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ABSTRACT 

Since the 1950s, hyperelastic materials have become an important engineering 

material. Because of its deformability, this kind of material is widely used in the 

vehicles, springs, seals, cushioning pad, couplings and tires of the load structure. With 

the rapid progress of modern engineering and improving of people’s living standard, it 

is essential to pay more attention to the durability and security of hyperelastic materials. 

As a result, it is the key subject to study the experiments of this kind of materials. 

In recent years, the research about the modelling and experimental identifications 

of hyperelastic material has become very popular all over the world. A large number of 

works have been done to develop many methods and founded a variety of models. In 

this thesis, six different models developed to reproduce the behavior of hyperlastic 

materials are used to characterize the behavior of three gels. Three different loading 

conditions are obtained by using a laboratory uniaxial tensile testing machine. The data 

collected will be used to identify the models parameters for the tested materials. 

 

 

KEY WORDS: continuum mechanics; hyperelastic material; hyperelastic models; 

experimental identification. 
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CHAPTER 1 Introduction 

Since the beginning of last century, non-linear continuum mechanics has been a 

very active field of research due to its wide range of industrial applications, demanding 

predictive analyses for the economic design of complex devices under different loading 

conditions. During this period of time, its development has some closely related 

characteristics. First of all, it has got rid of the situation that the continuum mechanics 

and thermodynamics sliced from each other, and keeping develop forward in the 

procedure of their interaction; Secondly, it has promoted the research in the field of 

constitutive relationship of the continuum; Then, the modern mechanics’ progress has 

provided the powerful tools to us in order to study the complex mechanical behaviors 

of continuum; Finally, it focuses on the study of finite deformation. This procedure not 

only provides the researchers more new edification, but also new energy, which 

encourages the researchers to grasp this subject form a higher and more general point 

of view. 

Till now, the last few decades, developments in computational mechanics, 

especially in finite element method have enabled three-dimensional, large strain 

analyses of complex elastomeric products to be an integral part of design processes, 

which, vice versa, has led to a more critical assessment and further development of 

constitutive model for rubber elasticity since an accurate reproduction of the three-

dimensional stress-strain behavior is indispensable for any numerical simulation of 

complex deformation. 

As the improving of the rubber-like materials’ requirements, to simulate them in a 

most accurate way is more and more important now.  In order to have a better 
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simulation about hyperelastic materials, the start point of hyperelastic material 

modelling is the formulation of a scalar strain (or stored or potential) energy function 

by using the experimental facilities (see Figure 1.2). In this thesis, it will be done step 

by step that introduction of the basic knowledge as well as the procedure of the 

experimental identification of the three gels. 

 

Figure 1.1 The products of rubber-like materials. 

The main content of this article are as follows: 

1) In the first section (CHAPTER 2 and CHAPTER 3), the basic theories such as 

the basis of nonlinear continuum mechanics and hyperelastic materials are introduced, 

in order to express the key points and parameters. 

  In CHAPTER 2, the main aspects such as deformation gradient, strain tensors 

(right and left Cauchy-Green deformation tensors, principal invariants and stretch ratios) 

and stress tensors (first and second Piola-Kirchhoff stress tensor and Cauchy stress 

tensor) will be introduced. 

  In CHAPTER 3, the derivative of constitutive equations, the classification of 

the 21 existing hyperelastic models and the introduction of micro-mechanical models 

will be introduced. 

2) The second section (CHAPTER 4 to CHAPTER6) is mainly about the 
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procedure of the experimental identifications, where the process of the standard tests, 

the data collection and the simulation by means of the existing models will be 

introduced. 

In CHAPTER 4, the three standard tests by using a laboratory uniaxial tensile 

testing machine as well as the procedure of data collection through image processing 

will be introduced. 

   In CHAPTER 5, the results of the simulation with six different models for the 

three types of gels will be obtained. 

   In CHAPTER 6, the conclusion of this thesis will be reported. 

 

 

Figure 1.2 The experiments facility of hyper elastic materials. 
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CHAPTER 2 Basic Theories of Continuum Mechanics 

2.1 Basics of Continuum Mechanics 

In this section, it is mainly about the basics of continuum mechanics. Thanks to 

the works of Prof. Gerhard A. Holzpfel[1], which does help in explaining the theories 

in a clear and intelligible way. 

In the real world, all of the physical objects are composed by molecules which are 

formed by atomic and subatomic particles. The microscopic system is studied by means 

of magnifying instruments such as a microscope. This kind of studies is effect at the 

atomic level and very important in the exploration of a variety of physical phenomena. 

The atomistic point of view, however, is not a useful and adequate approach for the 

common engineering applications. 

The method of continuum mechanics can be used as a powerful and effective tool 

to explain the various physical phenomena successfully without detailed knowledge of 

the complexity of the internal micro-structures. For instance, water is made up of 

millions of molecules. A good approximation is to treat water as a continuous system 

characterized by a certain field of quantities which are associated with the internal 

structure, such as density, temperature and velocity. From the physical point of view, 

this is an approximation in which the large numbers of particles are taken place by a 

few quantities, a macroscopic system is considered. Hence, the primary interface with 

nature is through the quantities which represent averages over dimensions that are small 

enough to capture high gradients and reflect some micro-structural effects. Of course, 

the prediction based on macroscopic studies is not exact but effective enough for design 

of machine elements in engineering. 
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Under an electron microscope, it is possible to see the discontinuous atomic 

structure of matter. The molecules may be crystalline or randomly oriented. Between 

each tow particles there are large gaps. Theories considering the discrete structure of 

matter are molecular and atomistic theories, which are based on a discrete particle 

approach. For macroscopic systems, such theories tend to be too complex to yield the 

desired results and the approach is indispensable for the study of physical phenomena. 

A review of atomistic models can be found in the work of Ortiz [1999]. 

2.1.1 Notation of a particle and a continuum body 

Macroscopic systems often can be described successfully with a continuum 

approach (macroscopic approach). Such an approach leads to the continuum theory. 

The continuum theory has been developed independently of the molecular and atomistic 

theory, which is meeting our needs. The fundamental assumption therein states that a 

body, denoted by , may be viewed as having a continuous (or a piecewise continuous) 

distribution of matter in time and space. The body is imagined as being a composition 

of a (continuous) set of particles (or continuum particles or material points), represented 

by P∈ as shown in Figure 2.1. 
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Figure 2.1 Configuration and motion of a continuum body, adapted from Nonlinear Solid 

Mechanics [1]. 

It is important to mention that the notion ‘particle’ (or ‘continuum particle’ or 

‘material point’) refers to a part of a body, which does not imply any association with 

the point mass of Newtonian mechanics or the discrete particle of the atomistic theory 

which is mentioned above. A typical continuum particle is an accumulation of a large 

amount of molecules, yet is small enough to be considered as a particle. The behavior 

of a continuum particle is a result of the collective behavior of all the molecules 

constituting that particle. 

As a result, in a macroscopic study, it is concerned with the mechanics of a body 

which both mass and volume are continuous (or at least piecewise continuous) function 

of continuum particles, which is called a continuum body, or just a continuum. A 

continuum is determined by macroscopic quantities. It has macroscopic dimensions 

which are much larger than the intermolecular spacing. 
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2.1.2 Configuration and motion of continuum bodies 

Assuming a continuum body  with particle P∈ which is embedded in the three-

dimensional Euclidean space at a given time t, as indicated in Figure 2.1. 

A right-handed reference frame in introduced, rectangular coordinate axes at a 

fixed origin  with orthonormal basis vectors. While the continuum body  moves in 

space from one instant of time to another, it occupies a continuous sequence of 

geometrical regions denoted by , …, . As a result, every particle P of  corresponds 

to a so-called geometrical point owning a position in regions , …, . The regions 

which are occupied by the continuum body  at the given time t are known as the 

configurations of  at the time t. The continuum body  may have infinite number of 

configurations in space. 

Region with the position of a typical point X corresponds to a fixed reference 

time. The region is referred to as the fixed reference (or undeformed) configuration of 

the body . A region at initial time t=0 is referred to as the initial configuration. 

Assuming that the region  of space moves to a new region which is occupied 

by the continuum body at a subsequent time t>0. The configuration of  at t is so-

called current (or deformed) configuration. 

Assuming that the map X = ( P , t ) is a one-to-one correspondence between a 

particle P∈ and the point X∈that  occupies at the given instant of time t=0. 

Moreover, let the map act ono produce the regionat time tThe place 

x( P , t ) that the particle P (evidently identified with X and t) occupies at t is 

described by (in symbolic and index notation) 
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 x = 
X , t  =  ( X , t ) (2.1) 

for all X∈ and for all times t. In eq. (2.1)  is a vector field that specifies the place 

x of X for all fixed t, and is called the motion of the body The motion carries 

points X located at to places x in the current configuration . Assuming 

subsequently that  possesses continuous derivatives with respect to space and time. 

The parametric eq. (2.1) determines successive position x of a typical particle P in 

space. All successive points together form a curve in the Euclidean space which is 

called the path line (or trajectory) of the particle P. 

The motion is assumed to be uniquely invertible. Consider ( x , t ), the position 

of point X, which is associated with the place x at time t, is specified uniquely be eq.(2.1) 

as 

 X = ( x , t ) (2.2) 

with the inverse motion denoted by . For a given time t, the inverse motion eq. (2.2) 

carries points located at  to points in the reference configuration . In (2.1) and (2.2) 

respectively the pairs ( X , t ) and ( x , t ) denoted independent variables. 

A motion  of a body will generally change its shape, position and orientation. A 

continuum body which is able to change its shape is said to be deformable. By a 

deformation  (or inverse deformation ) of a body which is meant a motion (or 

inverse motion) of a body that is independent of time. 
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2.2 Deformation Gradient 

As is known, a typical point X∈ identified by the position vector X maps into 

the point X∈ with position vector x. It is possible to know how curves and tangent 

vectors deform. 

2.2.1 Deformation gradient 

Consider a material (or undeformed) curve X =  , where  denotes a 

parameterization (see Figure 2.2). The material curve is associated with the reference 

configuration  of the continuum body. Hence, the material curve is not a function of 

time. During a certain motion  the material curve deforms into a spatial (or deformed) 

curve x =  , at time t. 

 

Figure 2.2 Deformation of a material curve   into a spatial curve  , adapted from 

Nonlinear Solid Mechanics [1]. 

The spatial curve at a fixed time t is then defined by the parametric equation 

 x =  , t =  ( , t  (2.3) 

It is possible to denote the spatial tangent vector to the spatial curve as dx and the 

material tangent vector to the material curve as dX. They are defined by 
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 dx = ’ (  , t ) d  ,  dX = ’ (  ) d  (2.4) 

The tangent vectors dx and dX, which are infinitesimal vector elements in the 

current and reference configuration (see Figure 2.2), are often referred to as the spatial 

(or deformed) line element and the material (or undeformed) line element, respectively. 

By using (2.3) and the chain rule, it is possible to find that ’ ( , t ) = (( X , t ) 

/X) ’(  ). Hence, from eq. (2.4) the fundamental relation can be deduced  

 dx = F ( X , t ) dX (2.5) 

where the definition 

 
X, t)

F(X, t) Gradx(X, t)
X


 


 (2.6) 

is to be used. The quantity F is crucial in nonlinear continuum mechanics and is a 

primary measure of deformation, called the deformation gradient. In general, F has nine 

component for all t, and it characterizes the behavior of motion in the neighborhood of 

a point. 

It can be supposed that the derivative of the inverse motion -1 with respect to the 

current position x of a (material) point exists so that  

 

1
1 (x, t)

F (x, t) gradX(x, t)
x


 

 


 (2.7) 

where the tensor F-1 is the inverse of the deformation gradient. It carries the spatial line 

element dx into the material line element dX according to the (linear) transformation 

rule dX = F-1(x, t)dx. 

Generally, the nonsingular (invertible, i.e. detF 0) tensor F depends on X which 

denotes a so-called inhomogeneous deformation. A deformation of a body in question 

is said to be homogeneous if F does not depend on the space coordinates. The 

components FaA depend only on time. Every part of a specimen deforms as the whole 
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does. The associated motion is called affine. For a rigid-body translation for which the 

displacement field is independent of X, it is possible to get as F = I, FaA = aA. However, 

if there is no motion, it can be get as F = I and x = X. 

2.2.2 Nanson’s formula 

As is known the notifications of points, curves, tangent vectors are ,for example, 

X, , dX, map onto points, curves, tangent vectors x, , dx, respectively. An arbitrary 

differential vector maps via the deformation gradient F (see (2.5)). 

However, a unit vector N normal to the infinitesimal material (or undeformed) 

surface element dS does not map to a unit vector n normal to the associated infinitesimal 

spatial (or deformed) surface element ds via F, as shown in the following. 

The change is performed in volume between the reference and the current 

configuration at time t 

 dv = J(X, t) dV (2.8) 

 J(X, t) = detF(X, t) > 0 (2.9) 

in which J is the determinant of the deformation gradient F, known as the volume ratio 

(or Jacobian determinant). In (2.8), dV and dv denote infinitesimal volume elements 

defined in the reference and current configurations called material (or undeformed) and 

spatial (or deformed) volume elements, respectively. Further, it can be assumed that the 

volume is a continuous (or at least a piecewise continuous) function of continuum 

particles so that dV = dX1 dX2 dX3 and dv = dx1 dx2 dx3 (continuum idealization). 

Since F is invertible, it can be obtained as J(X, t) = detF(X, t) 0. Because the 

volume of elements cannot be negative, the volume ratio J(X, t) must be greater than 

zero for all X∈ and for all time t (J(X, t) > 0). The inverse of eq. (2.9) follows with 

identity as J-1 = detF-1 (x, t) > 0, where F-1 is involved in eq. (2.7). 
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If there is no motion (F = I and x = X), the consistency condition J = 1 is obtained, 

because det F = detI = 1. However, at each particle in each configuration and time, the 

motion or deformation with J = 1 is called isochoric or volume-preserving, which keeps 

the volume constant. 

In order to obtain the relationship between the unit vectors n and N, it is necessary 

to consider an arbitrary material line element dX, which maps to dx during a certain 

motion . Now, it is possible to express the infinitesimal volume element in the current 

configuration dv as a dot-product. From the eq. (2.8), the following relation is obtained, 

 dv = ds dx = J dS dX (2.10) 

where ds = ds n and dS = dS N, denoting vector elements of infinitesimally small areas 

defined in the current and reference configurations, respectively. 

With the eq. (2.5) and the rule of transpose of a tensor, the eq. (2.10) be written as 

the following 

 (FT dS – J dS) dX = 0 (2.11) 

Since eq. (2.11) holds for arbitrary material line elements dX, it can be obtained 

that 

 dS = J F-T Ds  (2.12) 

the relationship (2.12) is called Nanson’s formula, which shows how the vector 

elements of the infinitesimally small areas ds and dS on the current and reference 

configurations are related. 

2.3 Strain Tensors 

Being unlike displacements, which are measurable quantities, strains are based on 

the concept introduced to simplify analyses. As a result, a variety of definitions and 

names of strain tensors have been proposed in the literature. In the following, the most 
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common definition of strain tensors established in nonlinear continuum mechanics will 

be discussed and compared. 

2.3.1 Material strain tensor 

It is possible to compute the change in length between the two neighboring points 

X and Y, which are located in the region , occurring during the motion (see Figure 

2.3), where neighboring means that the point X is very close to the point Y. 

 

Figure 2.3 Deformation of a material line element with length d into a spatial line element with 

length d, adapted from Nonlinear Solid Mechanics [1]. 

The geometry in the reference configuration is given by 

 
Y X

Y Y X X X Y X X dX
Y X

 (2.13) 

 0dX d a  and d Y X  with 0

Y X
a

Y X
 (2.14) 
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Denoting the material length of the material line element dX = Y – X by d. It is 

the distance between the neighboring points X∈ and Y∈. The unit vector a, 

0a 1, at the referential position X describes the direction of the material line element, 

as shown in Figure 2.3. As a result, the following can be found 

 2

0 0dX dX d a d a d  (2.15) 

Note that the vector quantities dX and a are naturally associated with the reference 

configuration of the body. 

Certain motion transform the two neighboring points X and Y into their displaced 

positions x = (X, t) and y = (Y, t) of region , respectively. According to Taylor’s 

expansion, y may be expressed by means of eq.(2.13), eq. (2.14) and eq. (2.6), as 

 0 0y (Y, t) (X d a , t) (X, t) d F(X, t)a o(Y X)  (2.16) 

Where, the landau order symbol o(Y – X) refers a small error that tends to zero faster 

than Y – X o. with motion x = (X, t) and eq. (2.14), it follows subsequently from 

eq. (2.15) that 

 0y x d F(X, t)a o(Y X) F(X, t)(Y X) o(Y X)  (2.17) 

The equation above clearly shows that the term F( Y – X ) linearly approximates 

the relative motion y – x. the more Y approaches X the better is approximation, the 

smaller is d Y X . 

Next, the stretch vector a in the direction of the unit vector a at X∈ can be 

defined as following 

 
0a 0(X, t) F(X, t)a  (2.18) 

where length 
0a  is called stretch ratio or simply the stretch (see Figure 2.3). 
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Then, the length of spatial line element (originally in the direction of a). From eq. (2.17) 

and eq. (2.18), the following expression can be obtained 

 
0 0

1 2 1 2

a ay x (y x) (y x) ( ) d d  (2.19) 

As a result, a material line element dX at X with length d at time t = 0 becomes 

the length d at time t. The stretch  is a measure of how much the unit vector a has 

stretched. A line element is called extended, unstretched or compressed, according to 

> 1, = 1,< 1, respectively. 

The square of  is computed as following 

 
0 0 0 0

2 T

a a a a 0 0 0 0F F a F Fa a Ca  (2.20) 

 C = FT F (2.21) 

where the right Cauchy-Green tensor C is introduced as an important strain measure in 

material coordinates. C is also called Green deformation tensor in the literature. 

Note that C is symmetric and positive definite at each X∈. Thus, 

 C = FTF = (FTF)T = CT  and   u Cu > 0 for all u 0 (2.22) 

Consequently, with definition of eq. (2.21), the following can be found 

 detC = (detF)2 = J2 > 0 (2.23) 

The so-called Piola deformation tensor, denoted by B, is defined by the inverse of the 

right Cauchy-Green tensor, which is expressed as following 

 B = C-1, with C-1 = (FT F)-1 = F-1F-T (2.24) 

Furthermore, it is possible to define the change in the squared lengths, with eq. 

(2.20), eq. (2.15) and the unit tensor as following 

 2 2 T 2

0 0

1 1
( d ) d (d a ) F F(d a ) d dX EdX

2 2
 (2.25) 

 T1
E (F F I)

2
 (2.26) 

where the introduced normalization factor 1/2 will be evident within the linear theory. 
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This expression describes a strain measure in the direction of a at point X∈. In eq. 

(2.26), a commonly used strain tensor E is introduced, which is known as Green-

Lagrange strain tensor. Since I and C are symmetric, E = ET can be proved as well. 

    Since the strain tensors C, E and their inverse operate on the material vectors a, 

X, they are called material strain tensors. 

2.3.2 Spatial strain tensors 

In order to obtain the relationship between strain measures and quantities, which 

are associated with the current configuration, the following arguments are used. 

 

Figure 2.4 Deformation of a spatial line element with length d  into a material line element with 

length 1d , adapted from Nonlinear Solid Mechanics [1]. 

The geometry in the current configuration is given by 

 
y x

y y x x x y x x dx
y x

           (2.27) 

 dx d a  and d y x  with 
y x

a
y x

            (2.28) 

Denoting the spatial length of the spatial line element dx = y – x by d y x , 
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with d / x 1 ( x 0) . The unit vector a, a 1, acts at the current position x and 

points in the direction of the spatial line element, which is the direction of a, which is 

shown in Figure 2.4 Deformation of a spatial line element with length d  into a 

material line element with length 1d . As a result, the following can be found 

 
2

dx dx d a d a d                      (2.29) 

When Fa = a is given, it is possible to deduce the following relationship by using 

eq. (2.17), eq. (2.19), eq. (2.28) and eq. (2.18) 

 0a a                 (2.30) 

Note that the vector quantities a and dx are naturally associated with the current 

configuration of the body. 

By using Taylor’s expansion, the associated position vector Y∈, which is 

described by the inverse motion -1(y, t), may be expressed by means of eq. (2.27), eq. 

(2.28) and the inverse of the deformation gradient eq. (2.7). It is possible to find the 

following relationship by the chain rule and the analogy with eq. (2.16) 

 1 1 1 1Y (y, t) (x d a, t) (x, t) d F (x, t)a o(y x)   (2.31) 

    Now it is possible to define the stretch vector a in the direction of the unit vector 

a at x∈ 

 1 1

a (x, t) F (x, t)a                      (2.32) 

The length of a material line element is obtain form eq. (2.31) by neglecting terms 

of order
2

d . By means of 
1Y X d F a  it is possible to obtain 

 
1 2 1 1 1 2

a aY X (Y X) (Y X) ( ) d d        (2.33) 

where the length of the inverse stretch vector a
-1is the inverse stretch ratio -1 (or 
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simply the inverse stretch, see Figure 2.4 Deformation of a spatial line element with 

length d  into a material line element with length 1d ). 

The square -1 can be found as following 

 2 1 1 1 1 T 1 1

a a F a F a a F F a a b a           (2.34) 

 1 T 1b F F                         (2.35) 

The strain tensor b-1 is the inverse of the left Cauchy-Green tensor b, which is 

defined as following 

 Tb FF                            (2.36) 

In the literature the left Cauchy-Green tensor b is sometimes referred to as the 

Finger deformation tensor, which is important in terms of spatial coordinates. The left 

Cauchy-Green tensor is symmetric and positive definite at each x∈. 

 b= FFT = (FFT)T = bT  and  u bu > 0  for all u 0        (2.37) 

With the eq. (2.36) and eq. (2.9) it is obtained as following 

 det(b) = det(F)2 = J2 >0                    (2.38) 

As a last important measure, it is possible to define the change in the squared 

lengths. With eq. (2.34), eq. (2.29) and the unit tensor I, the relationship can be 

expressed solely through quantities in . 

 
2 21 2 T 11 1

(d d ) d (d a) F F (d a) dx edx
2 2

         (2.39) 

 T 11
e (I F F )

2
                       (2.40) 

The eq. (2.40) describes a strain measure in the direction of a at place x∈. The 

symmetric strain tensor e is well-known as the Euler-Almansi strain tensor. 

So far the introduced strain tensors operate on the material vectors a, x. As a result, 

b, e and their inverse are also referred to as spatial strain tensors. 
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2.3.3 Push forward and pull-back operation 

The transformation between material and spatial quantities are typically called a 

push-forward operation and a pull-back operation, respectively. 

In particular, a push-forward is an operation which transforms a vector or tensor 

valued quantity based on the reference configuration to the current configuration. Since 

the Euler-Almansi strain tensor e is defined with respect to spatial coordinates, which 

is possible to compute as a push-forward of the Green-Langrange strain tensor E, which 

is given in terms of materal coordinates. From eq. (2.40) and eq. (2.26), the following 

is obtained 

T 1 T T T 1 11 1
e (I F F ) F F (I F F )F F

2 2
 

T T 1 1 T 11
F (I F F ) F F EF

2
 

*(E)                                       (2.41) 

A pull-back is an inverse operation, which transformations a vector or tensor-

valued quantity based on the current configuration to the reference configuration. 

Similarly to the above, the pull-back of e is 

T 1 T T T 1 11 1
E (F F I) F F (F F I)F F

2 2
 

T T 1 T1
F (I F F ) F F EF

2
 

1

* (e)                                     (2.42) 
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2.3.4 Stretch tensors 

At each point X∈ and each time t, the following unique polar decomposition of 

the deformation gradient F is obtained. 

 F RU vR                   (2.43) 

 TR R I  ,    TU U ,    Tv v     (2.44) 

This is a fundamental theorem in continuum mechanics. In eq. (2.43), U and v 

define unique, positive definite, symmetric tensors, which are called right (or material) 

stretch tensor and left (or spatial) stretch tensor, respectively. They measure local 

stretching or contraction alone their mutually orthogonal eigenvectors, which is a 

change of local shape. The right stretch tensor U is defined with respect to the reference 

configuration while the left stretch tensor v acts on the current configuration. 

The positive definite and symmetric tensors U and v are introduced, so that 

 2U UU C    and   2v vv b        (2.45) 

It is possible to introduce the mutually orthogonal and normalized set of 

eigenvectors aN  and their corresponding eigenvalues a, a = 1, 2, 3, of the material 

tensor U as 

 a aaUN N  ,   aN 1                   (2.46) 

Furthermore, by means of the combination of eq. (2.45) and eq. (2.46), it is 

possible to obtain the eigenvalue problem for right Cauchy-Green tensor C as 

 
2 2

a a aaCN U N N                     (2.47) 

It is necessary to solve homogeneous algebraic equations for the unknown 

eigenvalues a, a = 1, 2, 3, and unknown eigenvectors aN , a = 1, 2, 3, in the form 

 
2

a a(C I) oN                        (2.48) 

In order to obtain the eigenvalues, the characteristic polynomial of C must be 

solved. 



33 

 

 
3 2

a 1 a 2 a 3I I I 0  ,   a = 1, 2, 3           (2.49) 

with the three principal invariants Ia of the right Cauchy-Green deformation tensor C, 

 1I (C) tr(C)                         (2.50) 

 
2 2

2

1
I (C) tr(C) tr(C )

2
                  (2.51) 

 3I (C) det(C)                        (2.52) 

In these equations, the right Cauchy-Green deformation tensor C can be replaced 

by the left Cauchy-Green deformation tensor b. The gigenvalues of the symmetric 

tensor U are a, called the principal stretches, while for the symmetric tensor C, which 

are found to be the squares of the principal stretches denoted by a
. 

Stretch rations are defined as the square root of the eigenvalues of C (equal to 

those of b) and are classically denoted as a, a = 1, 2, 3. Using these ratio, principal 

invariants can be expressed as 

 2 2 2

1 1 2 3I (C) tr(C)                 (2.53) 

 
2 2 2 2 2 2 2 2

2 1 2 1 3 2 3

1
I (C) tr(C) tr(C )

2
      (2.54) 

 2 2 2

3 1 2 3I (C) det(C)                  (2.55) 

2.4 Stress Tensors 

Motion and deformation give rise to interactions between the material and 

neighboring material in the interior part of the body. One of the consequences of these 

interactions is stress, which has physical dimension force per unit of area. The notion 

of stress, which is responsible for the deformation of materials, is crucial in continuum 

mechanics. 
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2.4.1 Surface tractions 

As is shown in the Figure 2.5 Traction vectors acting on infinitesimal surface 

elements with outward unit normal, a deformable continuum body  occupying an 

arbitrary region  of physical space with boundary surface  at time t. 

It is possible to postulate that arbitrary forces act on parts or the whole of the 

boundary surface (called external forces), and on an imaginary surface within the 

interior of that body (called internal forces) in some distributed manner. 

 

 

Figure 2.5 Traction vectors acting on infinitesimal surface elements with outward unit normal, 

adapted from Nonlinear Solid Mechanics [1]. 

 

Let the body be cut by a plane surface which passes any given point x∈ with 

spatial coordinates xa at time t. As shown in Figure 2.5, the plane surface separates the 

deformable body into two portions. It is necessary to pay attention to the part of the free 

body lying on the tail of a unit n at x, directed along the outward normal to an 

infinitesimal spatial surface element ds∈ . Since considering interaction of the two 

portions, forces are transmitted across the internal plane surface. 
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Initially, before motion occurred, the continuum body  was in the reference 

configuration at the reference time t = 0 and has occupied the region  of physical 

space with boundary surface . The quantities x, ds and n which are associated 

with the current configuration of the body are noted by X, dS and N when they are 

referred to reference configuration. 

Every surface element can be claimed according to Figure 2.5. 

      df tds TdS                        (2.56) 

 t t(x, t,n)  ,  T T(X, t, N)                  (2.57) 

where t represents the Cauchy (or true) traction vector, exerted on ds with outward 

normal n. the vector T represent the first Piola-Kirchhoff (or nominal) traction vector, 

and points in the same direction as the Cauchy traction vector t. The pseudo traction 

vector T does not describe the actual intensity. It acts on the region  and is, in constrast 

to the Cauchy traction vector t, a function of the referential position X and the outward 

normal N to the boundary surface . This circumstance is indicated in Figure 2.5 

in the form of a dash line for T. the eq. (2.44) is Cauchy’s postulate. 

   The vectors t and T that act across the surface elements ds and dS with respective 

normal n and N are referred to as surface tractions (or contact forces, stress vectors or 

just loads). 

2.4.2 Cauchy stress tensor and the first Piola-kirchhoff stress tensor 

There exist unique second-order tensor fields  and P, so that 

 t(x, t,n) (x, t)n   and   T(X, t, N) P(X, t) N          (2.58) 

where  denotes a symmetric spatial tensor field called the Cauchy (or true) stress tensor, 

while P characterizes a tensor field called first Piola-Kirchhoff (or nominal) stress 

tensor. The eq. (2.45) reveals that P , like F, is a two-point tensor in which one index 
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describes spatial coordinates xa, and the other material coordinates XA. 

Eq. (2.45) which combines the surface traction with the stress tensor, is one of the 

most important axioms in continuum mechanic and is known as Cauchy’s stress 

theorem (or Cauchy’s law). Basically it states that if traction vectors such as t or T 

depend on the outward unit normal n or N, then they must be linear in n or N, 

respectively. 

From the eq. (2.45), it is possible to obtain an immediate consequence, which is 

the following relationship between t, T and the corresponding normal vectors, 

 t(x, t,n) t(x, t, n)   or  T(X, t, N) T(X, t, N)     (2.59) 

for all unit vectors n and N. This is known as newton’s third law of action and reaction, 

which is shown in Figure 2.6. 

 

Figure 2.6 Newton’s third law of action and reaction, adapted from Nonlinear Solid Mechanics 

[1]. 

To write Cauchy’s stress theorem, in the more convenient matrix notation which 

is useful for computational purposes, it can be obtained as following 

 t n                           (2.60) 

 

1

2

3

t

t t

t

 ,   

11 12 13

21 22 23

31 32 33

 ,   

1

2

3

n

n n

n

         (2.61) 
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where  is usually called the Cauchy stress matrix. 

Finally, the relation between the Cauchy stress tensor  and the first Piola-

Kirchhoff stress tensor P can be found. From eq. (2.43), eq. (2.44) and eq. (2.45), the 

transformation can be obtained as following 

 t(x, t,n)ds T(X, t, N)dS , 

 (x, t)nds P(X, t) NdS                     (2.62) 

Using Nanson’s formula (eq. (2.12)), P may be written in the form 

 P = J F-T                      (2.63) 

The passage form  to P and back is known as the Piola transformation. For 

convenience, the arguments of the tensor quantities can be subsequently omitted. The 

explicit expression for the symmetric Cauchy stress tensor results as the inverse of the 

eq. (2.49) 

  = J-1 TPF             (2.64) 

which necessarily implies 

 T TPF FP                           (2.65) 

2.4.3 The second Piola-kirchhoff stress tensor 

Often it is convenient to work with the so-called Kirchhoff stress tensor , which 

differs from the Cauchy stress tensor by the volume ratio J. It is a contra-variant spatial 

tensor field parameterized by spatial coordinates, and is defined by 

 J                            (2.66) 

It is possible to introduce further the second Piola-Kirchhoff stress tensor S which 

doesnot admit a physical interpretation in terms of surface tractions. The contra-variant 

material tensor field is symmetric and parameterized by material coordinates. Therefore, 

it often represents a very useful stress measure in computational mechanics and in the 

formulation of constitutive equations. 
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The second Piola-Kirchhoff stress tensor is obtained by the pull back operation on 

the contra-variant spatial tensor field, which is 

 1 TS F F                          (2.67) 

Using eq. (2.66) and eq. (2.67), the Piola transformation relation the two stress 

fields S and  can be obtained 

 S J 1 T 1 TF F F P S                    (2.68) 

From eq. (2.68), a fundamental relationship between the first Piola-Kirchhoff 

stress tensor P and the second Piola-Kirchhoff stress tensor S is found as following 

 P FS                           (2.69) 
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CHAPTER 3 Hyperelastic Materials 

3.1 Basics of Constitutive Equations of Hyperelastic Materials 

Constitutive theories aim to develop mathematical models for representing the real 

behavior of matter. In particular, a nonlinear constitutive theory is presented to be 

suitable to describe a wide variety of physical phenomena in which the strains may be 

large. For the case of a hyperelastic material the resulting theory is called finite hyper 

elasticity theory for which nonlinear continuum mechanics is the fundamental basis. 

Throughout the rest of the thesis, the hyperelastic materials are assumed to be 

isotropic and incompressible, while all inelastic phenomena such as viscoelasticity, 

stress-softening or damage are neglected. Only their highly non-linear elastic response 

under large strain is retained and the general theory of hyperelasticity is considered. 

3.1.1 Introduction of constitutive equations 

A so-called hyperelastic material (or Green-elastic material) postulates a existence 

of a Helmholtz free-energy function, which is defined as per unit of deformed volume, 

depends on the strain tensor b (left Cauchy-Green tensor) and is denoted W. 

For the case in which W = W(F) is solely a function of F or some strain tensor. 

The Helmholtz free-energy function is referred to as the strain-energy function or 

stored-energy function. The strain-energy function W = W(F) is typical example of a 

scalar-valued function of one tensor variable F, which is assumed to be continuous. 

A hyperelasic material is defined as a subclass of an elastic material, which may 

have physical expressions of the form 

 
W(F)

P
F

                           (3.1) 
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and by use of eq. (2.64) for the symmetric Cauchy stress tensor, the following equation 

will be obtained 

 J-1 TW(F)
F

F
 J-1

T
W(F)

F
F             (3.2) 

If the strain energies may be expressed as a set of independent strain invariants of 

the symmetric Cauchy-Green tensor C and b, namely, through Ia = Ia(C) and Ia = Ia(b), 

a = 1, 2, 3, respectively. It is possible to be obtained 

 1 2 3 1 2 3W W I (C), I (C), I (C) W I (b), I (b), I (b)            (3.3) 

Since C and b have the same eigenvalues, which are the squares of the principal 

stretches a
, a = 1, 2, 3, it is obtained as following 

 1 1I (C) I (b)  ,   2 2I (C) I (b)  ,   3 3I (C) I (b)           (3.4) 

In order to determine constitutive equations for isotropic hyperelastic materials in 

terms of strain invariants, consider a differentiation of W(C) = W(I, I, I) with respect 

to tensor C. It is possible to assume that W(C) has continuous derivatives with respect 

to the principal invariants Ia, a = 1, 2, 3. By means of the chain rule of differentiation, 

it is possible to find 

 
3

3 a1 2

a 11 2 3 a

I II IW(C) W W W W

C I C I C I C I C
        (3.5) 

The derivative of the first invariant I respect to C can be derived as 

 1I tr(C) tr(I : C)
I

C C C
                   (3.6) 

The derivatives of the remaining two invariants with respect to C can also be 

derived as following 

 
2

2
1

I 1 tr(C )
2tr(C) I I I C

C 2 C
 ,   13

3

I
I C

C
        (3.7) 
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By using 2E = C – I, the alternative expressions may be obtained for the Piola-

Kirchhoff stress tensors P and S as following 

 
W(C)

P 2F
C

 ,   
W(C) W(E)

S 2
C E

            (3.8) 

As a result, substituting eq. (3.5)-(3.7) into constitutive equation eq. (3.8) gives 

the most general form of a stress relation in terms of the three strain invariants, which 

characterizes isotropic hyperelastic materials at finite strains as following 

 
1

1 3

1 2 2 3

W(C) W W W W
S 2 2 I I C I C

C I I I I
        (3.9) 

The gradient of the invariant W(C) = W(I, I, I) has the simple representation, 

which is a fundamental relationship in the theory of finite hyperelasicity. Note that eq. 

(3.9) is a general representation for three dimensions, in which W may adopt any scalar-

valued isotropic function of one symmetric second-order tenor variable. 

Multiplication of eq. (3.9) by tensor C from the right-hand side or from the left-

hand side leads to the same result. It is possible to say that W(C) / C  commutes with 

C in the sense that 

 
W(C) W(C)

C C
C C

                  (3.10) 

Which is an essential consequence of isotropy. 

3.1.2 Incompressible hyperelasticity 

    Materials which keep the volume constant throughout a motion are characterized 

by the incompressibility constraint as 

                                1J                            (3.11) 

In general, a material which is subjected to an internal constraint, of which 

incompressibility is the most common, is referred to as a constrained material. 

In order to derive general constitutive equations for incompressible hyperelastic 

materials, the strain-energy function can be postulate as following 



42 

 

 W = W(F) – p(J – 1)                  (3.12) 

where the strain energy W is defined for J = detF = 1. The scalar p serves as an 

indeterminate Lagrange multiplier, which can be identified as a hydrostatic pressure. 

Note that the scalar p may only be determined from the equilibrium equations and the 

boundary conditions. It represents a workless reaction to kinematic constraint on the 

deformation field. 

Differentiating eq. (3.12) respect to the deformation gradient F, a general 

constitutive equation for the first Piola-Kirchhoff stress tensor P can be obtain as 

following 

 T W(F)
F

F
P p T W(F)

F
F

               (3.13) 

Multiplying eq. (3.13) by 1F  form the left-hand side, and from eq. (2.68), the 

second Piola-Kirchhoff stress tensor S can be obtained as 

 S p 1 T 1 W(F)
F F F

F
p 1 W(C)

C 2
C

          (3.14) 

However, Multiplying eq. (3.13) by TF  form the right-hand side, and according 

to the eq. (2.64) it is possible to obtain the symmetric Cauchy stress tensor  as 

following 

 p TW(F)
I F

F
p

T
W(F)

I F
F

            (3.15) 

3.1.3 Incompressible isotropic hyperelasticity 

For the case of isotropy, the dependence of W on the Cauchy-Green tensors C or 

B may be expressed by their three strain invariants as eq. (3.3). However, for the 

incompressible case, 3I det C det b 1. Therefore, the two principal invariants 1I

and 2I are the only independent deformation variables. 

A suitable strain-energy function for imcompressible isotropic hyperelastic 
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materials is given by 

 
1 2

1
W W I C ,I C

2
p

3 1 2

1
I 1 W I b , I b

2
p 3I 1   (3.16) 

where p/2 serves as an indeterminate Lagrange multiplier. 

In order to examine the associated constitutive equation in terms of the two 

principal strain invariants 1I and 2I , the derivation of eq. (3.16) with respect to tensor C. 

And the constant 3I =1, the second Piola-Kirchhoff stress tensor can be obtained 

 
31 2 1

1

1 2 2

p I 1W I , I W W W
S 2 pC 2 I I 2 C

C C I I I
  (3.17) 

A push-forward operation of eq. (3.17), the Cauchy stress tensor can be obtained 

as following 

 
2

1

1 1 2

W W W
pI 2 I b 2 b

I I I
              (3.18) 

In order to find a constitutive equation for incompressible materials, an alternative 

formation of eq. (3.18) can be obtained 

 
W b W b

pI 2 b pI 2b
b b

             (3.19) 

which is in terms of the spatial strain variable b. This is only valid for imcompressible 

isotropic hyperelastic materials. 

Also, the constitutive equations in terms of principal stretches can be expressed as 

following 

 a J
a

a

W
 ,   

a

a

W
P  ,   

a

a a

1 W
S          (3.20) 

If W should be expressed as a function of the three principal stretches a, it is 

possible to write W(, , ) – p(J – 1) in the place of eq. (3.12), with the 
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indeterminate Lagrange multiplier p. Using J/ a = J a
-1, a = 1, 2, 3, which is 

expressed in principal stretches, eq. (3.20) can be replaced by 

 
a a

a

W
p  ,   

a

a a

1 W
P p  ,   

a 2

a a a

1 1 W
S p   (3.21) 

with the three principal Cauchy stresses a and the Piola-Kirchhoff stresses Pa, Sa. These 

stress relations incorporate the unknown scalar p, which must be determined from the 

equilibrium equations and the boundary conditions. The incompressibility constraint J 

= 1 takes on the form  

 1 2 3 1                         (3.22) 

leaving two independent stretches as the deformation measures. Expressing the first 

and second Piola-Kirchhoff stresses in terms of the Cauchy stress, it is possible to obtain 

 1

a a aP    and   2

a a aS  ,  a 1,2,3           (3.23) 

3.1.4 The constitutive equations of a simple tension and a pure shear 

In the case of the thesis, it is necessary to consider a simple tension for which 

1 . Then, obeying incompressibility constraint 1 2 3 1 , the equal stretch 

ratios in the transverse direction are, by symmetry, 1 2 1 2

2 3 1 . Show that 

the for this mode of deformation the homogeneous stress state reduced to 

1 2 3, 0 , with 

 
2

1 2

1 W W 1
2

I I
                 (3.24) 

    From the relationship of eq. (3.23), the first Piola-Kirchhoff stress can be obtained 

from the Cauchy stress as following 

 
2

1 2

1 W W 1
P 2

I I
                (3.25) 
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where the invariants are 1 2 2

1 2I 2 , I 2 2 . 

Moreover, it is possible to consider a homogeneous pure shear deformation with 

the relation 1 2 3, 1, 1/ . Show that the nonzero Cauchy stress components 

are 

 
2

1 2

1 2

1 W W
2

I I
                  (3.26) 

 
2

2 2

1 2

1 W W
2 1

I I
                (3.27) 

In the same way, from the relationship of eq. (3.23), the first Piola-Kirchhoff 

stresses can be obtained from the Cauchy stress as following 

 1 3

1 2

1 W W
P 2

I I
                  (3.28) 

 
2

2 3

1 2

1 1 W W
P 2

I I
                (3.29) 

with 2 2

1 2I I 1 

Besides, although the equibiaxial extension will not present in this thesis, it is still 

possible to derive the equations. As 2

1 2 3,  and 1 2 3, 0 , 

the Cauchy stress component can be obtained 

 
2 2

4

1 2

1 W W
2

I I
                 (3.30) 

Also, from the relationship of eq. (3.23), the first Piola-Kirchhoff stress can be 

obtained from the Cauchy stress as following 

 
2

5

1 2

1 W W
P 2

I I
                  (3.31) 

where the invariants are 2 4 4 2

1 2I 2 , I 2 . 
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3.2 Introduction and Classifications of Hyperelastic Models 

    Nowadays, many hyperelastic models have been proposed to describe the reponse 

of hyperelastic materials, but only few of them are probed to be able to describe the 

complete behavior of the material. The expression complete behavior refers to the 

response of the material under different loading types. It is obvious that the most 

interesting models are those which can describe the complete behavior with the minimal 

number of material parameters which should be experimentally determined. As a result, 

it is necessary for an engineer to choose a proper model among the existing ones. 

3.2.1 Brief introduction and classification of hyperelastic models 

Hyperelastic models can be classified into three types of formulation, depending 

on the approach to develop the strain energy function. 

The first kind of models are from the mathematical developments of W. They are 

classically referred as phenomenological models. Material parameters a generally 

difficult to determine and such models can lead to error when they are used out of the 

deformation range in which their parameters were identified. 

1.1) The Mooney-Rivlin Model [2] 

 10 1 01 2W C (I 3) C (I 3)  (3.32) 

1.2) The Yeoh Model [3], [4] 

 2 3

1 1 2 1 3 1W C (I 3) C (I 3) C (I 3)  (3.33) 

1.3) The Biderman Model [5] 

 2 3

10 1 01 2 20 1 30 1W C (I 3) C (I 3) C (I 3) C (I 3)  (3.34) 

1.4) The Haines-Wilson Model [6] 

2 2 3

10 1 01 2 11 1 2 02 2 20 1 30 1W C (I 3) C (I 3) C (I 3)(I 3) C (I 3) C (I 3) C (I 3)                                                                       
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(3.35) 

 

1.5) The Ogden Model [7] 

 n n n

N

n
1 2 3

n 1 n

W 3  (3.36) 

1.6) The Shariff Model [8] 

 
i i i

i

W
p f  (3.37) 

The Young’s modulus E is proposed as a general factor and f can be written as 

 
n

j j

j 0

f E  (3.38) 

with  = 1. Then following values for j are 

 0

2ln

3
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1 e 2  

 
1

2 e  

 

3

3 3.6

1
 

 
j 1

j 1 , j 4,5,...,n  (3.39) 

 

    The phenomenological-based models are summarized in Table 3.1. 

Table 3.1 List of the phenomenological-based models by the year of publication 

Model Year Number of material parameters Equation 

Mooney-Rivlin 1940 2 (3.32) 

Biderman 1958 4 (3.34) 

Ogden 1972 6 (3.36) 

Haines-Wilson 1975 6 (3.35) 

Yeoh 1990 3 (3.33) 

Shariff 2000 5 (3.37) 
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The second kind of models, which directly determine material functions 1W / I  

and 2W / I  using experimental data, are classically referred as experimental based 

models. 

2.1) The Gent and Thomas Model [9] 

 2
1 2

I
W C I 3 C ln

3
 (3.40) 

2.2) The Hart-Smith Model [10] 

 
2

1 1

1

W
G exp k I 3

I
 and 2

1 1

kW
G

I k
 (3.41) 

2.3) The Valanis and Landel Assumption [11] 

 1 2 3W ( ) ( ) ( )  (3.42) 

where the determination of W is restricted to the one of w., the form of w is proposed 

as following 

 
w

2 ln  (3.43) 

2.4) The Gent Model [12] 

 1
m

m

I 3E
W I 3 ln 1

6 I 3
 (3.44) 

2.5) The Yeoh and Fleming Model [13] 

 BR

m 10 m

A
W I 3 1 e C I 3 ln 1 R

B
 with 1

m

I 3
R

I 3
 (3.45) 

 

The experimental-based models are summarized in Table 3.2. 
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Table 3.2 List of the experimental-based models by the year of publication 

Model Year Number of material parameters Equation 

Gent and Thomas 1958 2 (3.40) 

Hart-Smith 1966 3 (3.41) 

Valanis and Landel 1967 1 (3.42) 

Gent 1996 2 (3.44) 

Yeoh and Fleming 1997 4 (3.45) 

 

The third kind of models are those developed from physical motivation. Such 

models are based on both physics of polymer chains network and statistical methods. It 

leads to different strain energy function depending on microscopic phenomena 

accounted for. In most cases, this kind of models are quite complicated. 

The deviation in experimental data of the ideal chain models presented above is 

classically imputed to the so-called phantom assumption which does not account for 

chains entanglement and for which chains can pass through mutually. As a result, the 

general theory of real chain network are proposed to separate the strain energy function 

as following 

 
ph cW W W  (3.46) 

where Wph is the phantom network part and Wc is the constrained or cross-linking part. 

Some of the following models are based on this general theory. 

3.1) The Neo-Hookean Model [14] 

 
B 1

1
W nk T(I 3)

2
 (3.47) 

3.2) The 3-chain Model [15] 

 1

i i

nkT
L p

3 N N
 (3.48) 

where L-1 deonted the inverse Langevin function defined by L x coth x 1 x . 
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3.3) The Isihara Model [16] 

 2

10 1 20 1 01 2W C (I 3) C (I 3) C (I 3)  (3.49) 

3.4) The Slip-Link Model [17] 

 

23 3
i2 2

c i s i2
i 1 i 1 i

11 1
W kTN kTN ln 1

2 2 1
 (3.50) 

3.5) The van der Waals Model [18] 

 

3

2
2

m

2 I 3
W G 3 ln 1

3 2
 (3.51) 

where 2

mI 3 / 3  and 1 2I I 1 I . 

3.6) The Constrained Junctions Model [19] 

 
3

c i i i i

i 1

1
W kT B D ln B 1 ln D 1

2
 (3.52) 

where 
2

2 2 2

i i iB 1  and 2 1

i i iD B . The phantom part is the Neo-

Hookean model. 

3.7) The 8-Chain Model [20] 

 
2

1 chi
i

ch

nkT N
L

3 N
 (3.53) 

where ch 1I / 3 . 

3.8) The Tube Model [21] 

 * *e
c

2G
W G I (2) I ( )  (3.54) 

where the model takes the form of the two terms of the Ogden model (eq. (3.36)) with 

1 2 1 c2, , G  and 2 e2G / . 
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3.9) The Extended-Tube Model [22] 

 

2

1 2c
c 12

1

1 I 3G
W ln 1 I 3

2 1 I 3
 (3.55) 

3.10) The Non-Affine Micro-Sphere Model [23] 

 
m

2
i 2 1 p s p 2 s

ph i s i

s 1
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 (3.56) 

with  

 

1 p
m

s p 2

s

s 1

w  (3.57) 

where S SFr , F being the deformation gradient. 

 
m q 2 2

i s s
sc i2

s 1i

1
q U w v r  (3.58) 

where sT 1 S
sv r C r . 

    In eq. (3.56)- eq. (3.58), I is the principal stretch in direction ie and s

ir is the i-th 

component of the s-th orientation vector Sr . 

 

The physical-based models are summarized in Table 3.3. 

 

Table 3.3 List of the physical-based models by the year of publication 

Model Year Number of material parameters Equation 

Neo-Hookean 1943 1 (3.47) 

3-chain 1943 2 (3.48) 

Ishihara 1951 3 (3.49) 

Slip-link 1981 3 (3.50) 

Constrained juction 1982 3 (3.52) 

van der Waals 1986 4 (3.51) 

8-chain 1993 2 (3.53) 

Tube 1997 3 (3.54) 

Extended-tube 1999 4 (3.55) 

Micro-sphere 2004 5 (3.56) (3.58) 
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3.2.2 Basics of micro-mechanical models 

Besides the first type of classification introduced in section 3.2.1, the models can 

be also classified as phenomenological or micro-mechanical (see Figure 3.1). The latter 

one are derived from statistical mechanics arguments on networks of idealized chain 

molecules, whereas the former utilize more or less complicated, frequently polynomial 

formulations in terms of strain invariants or principal stretches. Although intrinsically 

tied to higher computational costs (and homogenization requirements), micro-

mechanical approaches recently got more and more attention due to the fact that their 

governing parameters, at least somehow, relate macroscopic mechanical behavior to the 

causative physical/chemical structure. This property is a significant advantage 

compared to phenomenological models, especially if, for instance, gradients in the 

structural composition as observed at phase boundaries (interphases) or temporal 

changes in the network structure (curing) do occur and have to be described. Prominent 

examples for micro-mechanical models are the 3-chain, 4-chain, 8-chain models as well 

as the unit sphere (21-chain) model which have been proven to be appropriate for 

moderate to large elastic deformations of rubber-like materials. 
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Figure 3.1 The second method of classification of hyperelastic models, adapted from Hyperelastic 

Models for Rubber-like Materials [34]. 

The basic theories and brief introduction of phenomenological models have 

already been discussed in the previous sections. It is necessary to introduce some basics 

of the micro-mechanical models. 

Micro-mechanical approaches to hyperelasticity usually departs from a description 

of deformation behavior of a single polymer chain. The macromolecule constituting the 

chain is itself built from a certain number of chemically identical repeat units, which is 

the so-called monomers. This structure is frequently modelled as a chain of N rigid 

beams, each of length l, which are allowed to be arbitrarily oriented with respect to each 

other (freely-jointed chain). The beams are commonly denoted as Kuhn segments, and 

the assumption of free toration usually requires that each segment comprises multiple 

monomers since chemical bond angles can take only certain admissible values. The 

maximum distance between the two chain ends equals its contour length maxr Nl , 

which means in case the chain is fully elongated and all segments are aligned identically. 

From statistical considerations, the end-to-end distance of a stress-free undeformed 
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chain results as 0r Nl , which motivates the introduction of the chain stretch as 

following 

 
0

r r

r Nl
 (3.59) 

Similar to macroscopic continuum, the elastic behavior of a single chain is 

described in terms of a scalar free energy function, which will here be denoted by 

. Two prominent examples are the so-call the Gauss and Langevin chains, 

respectively, whose strain energy functions are expressed as following 

 Gauss 2

B 0

3
k T

2
 (3.60) 

 

1

Langevin 1

B 0

1

L
N

k TN L ln
N N

sinh L
N

 (3.61) 

and wherein Bk ,T  and 1L  denote Boltzmann’s constant, absolute temperature and 

inverse of the Langevin function, respectively. Note that the Gaussian chain is valid 

only for moderate stretches N  since the corresponding chain force 

 
Gauss

Gauss

Bf 3k T  (3.62) 

is a linear function and does not adequately reflect finite chain extensibility, that is ,the 

dramatic force increase that is observed if the chain approaches its maximal end-to-end 

distance maxr . In numerical applications, the inverse of Langevin’s function is usually 

substituted by the following Padé approximation 

 
2

1

2

3N
L

NN N
 (3.63) 

With the above type of chain description, the macroscopic material models are 
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derived by averaging the energies of a certain ensemble of chains, which ideally is 

chosen such that it reflects the mechanical behavior of the true polymer network as 

realistic as possible 

 
K

k

k 1

n
W W C : n

K
 (3.64) 

The number of chains K as well as their spatial orientations are decisive with 

regard to qualitative behavior and isotropy of the model, whereas the chain density n 

quantitative relatively relates micro- and macro-stiffnesses. Furthermore, some relation 

between macroscopic deformation C  and chain stretches k  has to be defined, for 

which non-affine as well as affine approaches like the following have been proposed: 

If the initially unstretched chain is assumed to be aligned with a unit normal vector 0

kt , 

its end-to-end vector reads 
0 0

k kr Nlt  and a deformation gradient F implies 0

k kr Fr  

for the end-to-end vector of the correspondingly stretched chain. As a result, it is 

possible to obtain 

 

0 0 0 T 0

k k k kk 0 0 0 0

k k k k k0

k

Fr ,Fr Nl t ,F Ftr
t ,Ct C : t t

r Nl Nl
 (3.65) 

as required to evaluate eq. (3.64). Three different micro-mechanical models, which 

result from certain choices for chain energy w, chain number K, initial chain orientation 

0

kt  and micro- and macro-stretch relation k k (C) , will be discussed later. 

Regarding the analytical stress-stretch relations for UT and PS, a re-parametristion 

of W in terms of the principal macro-stretches i can be considered. From the eq. (3.21), 

the pressure p can be expressed as 

 j

j

W
p  (3.66) 

from a nominal principal stress Pj being zero due to the type of deformation, for 
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instance, P = 0 in the case of UT. Reinserted into eq. (3.21), utilization of chain 

energy average eq. (3.64) yeilds 

 
K K

j jk k
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k 1 k 1i i j k i i k j

W W n n
P

K K
 (3.67) 

Therein, the derivatives of chain stretches k , principal macro-stretches i  follow from 

corresponding relations like eq. (3.65), while the chain forces k k kf are 

given by eq. (3.62) for the Gaussian case and 

 
Langevin

Langevin 1 k
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k

f k T NL
N

 (3.68) 

for the Langevin chain, respectively. 
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CHAPTER 4 Experimental Tests and Data Collection 

4.1 Standard Tests 

The standard experimental test for hyperelastic materials are usually divided into 

four types, which are referred to uniaxial tension test, compression test, pure shear test 

and biaxial tension test. In this thesis, the first three ones have been done in order to 

make an experimental identification of the specimen. 

As is shown in Figure 4.1, the apparatus typically used for the tests for the 

hyperelastic materials, by changing the set of the system, which can be able to make 

the experiments such as uniaxial tension test, pure shear test and compression test. 

The specimen is mounted between the two clamps, the lower one fixed and the 

upper one attached to a movable force gauge. A recorder is used to monitor the out put 

of the gauge as a function of time in order to obtain equilibrium values of the force 

suitable for comparisons with theory.  

 

Figure 4.1 Apparatus for tests on a hyperelastic material, adapted from Hyperelastic Modelling 

for Hyperelastic Rubber-like Materials [35]. 
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4.1.1 Uniaxial tension test 

As is shown in Figure 4.2, the system is set for a uniaxial tension test. The 

dumbbell specimen are mounted by the two clamps, the lower one is fixed while the 

upper one is movable and connected with a load cell. 

The mark points are precisely placed on each test sample of the dumbbell shaped 

specimens (see Figure 4.3). The initial length between these marks is measured for each 

sample. The samples are carefully mounted in the test fixture to provide uniform 

alignment and position. The upper clamper stretches the sample to the specified 

elongation. The sample is then unloaded. During this procedure, the recorder records 

all the data needed. 

 

 

Figure 4.2 The system for uniaxial tension test. 

As long as the specimen size is concerned, ASTM D 412 specifies a dumbbell 

shaped specimen. The specification describes 6 options for the sample dimensions, but 
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the preferred sample is ‘Die C’ (shown as Figure 4.4).  

 

Figure 4.3 The specimen with mark points 

‘Die C’ has an overall length of 115mm (4.5 inches) with a narrow section 33mm 

(1.31 inches) long. This provides a gauge length (benchmark) 25mm (1 inch) long and 

a gauge width of 6mm (0.25 inch). 

 

Figure 4.4 The size of the dumbbell specimen for uniaxial tension test. 

4.1.2 Pure shear test 

As is shown in Figure 4.5, the system is set for a pure shear test. The machine is 
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the same as the one of uniaxial tension test. 

 

Figure 4.5 The system for pure shear test. 

As is shown in Figure 4.6 and Figure 4.7, the four specimen of hyperelastic 

material with the size of 320 25 5mm  are vulcanized on steel members. 

 

Figure 4.6 The size of the specimen for pure shear test. 
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Figure 4.7 The specimen set on the system. 

    As is shown in Figure 4.8, the x axial aims to the vertical upwards direction and 

the lower part of the system is fixed, while the upper steel members can move due to 

the load F, whose direction is the same as the x direction. 

 

Figure 4.8 The sketch about the load direction, adapted from Hyperelastic Modelling for 

Hyperelastic Rubber-like Materials [35]. 

4.1.3 Compression test 

As is shown in Figure 4.9, the system is set for a compression test. The machine 



62 

 

is the same as the one of uniaxial tension test with two pressure head. During the test, 

the specimen is fixed in the middle of the lower plane of the system, while the upper 

plane will move vertically downwards loaded by the load cell to compress the 

specimen. 

 

Figure 4.9 The system for compression test. 

    As shown in Figure 4.10, the specimen is a plate with a diameter of 30mm. 

 

Figure 4.10 The size of the specimen for compression test 

4.1.4 Equibiaxial extension test 

    Although the test of equibiaxial extension is not involved in the tests of the thesis, 
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it is still necessary to make an brief introduction about it. As is shown in Figure 4.11 

and Figure 4.12, the specimen is clamped by the clamps in both directions.  

 

Figure 4.11 The scheme of equibiaxial tension test, adapted from Baidu pictures. 

During the procedure of the test, the specimen will be pulled and the sensor will record 

the load, while it is possible to get the deformation data from the mark line. 

 

Figure 4.12 The principle of equibiaxial tension test, adapted from Baidu pictures. 
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4.2 Data Collection 

During the experimental tests, the data of the load is saved by the recorder, while 

the information of the deformation is recorded by means of a camera. As a result, it is 

necessary to transfer the video into a series of pictures (the Matlab codes are involved 

in Appendix A), which should be ulteriorly dealt with, in order that the coordinates of 

the mark points can be translatable by Matlab. 

4.2.1 Image processing basis 

As some dimensional data can be obtained from imagines, the quantitative 

measurements such as distances, angles, center of gravity, area, circularity compactness 

inertia and so on. The acquired image has to have the best available quality. Factors that 

may influence the image quality such as random noise, systematic noise and distortion 

should be avoided (see Figure 4.13). 

 
Figure 4.13 The Gaussian noise in each image pixel. 

The logical steps of the image processing are: Firstly, the image is acquired as well 

as possible; Secondly, the pre-processing techniques are applied in order to enhance the 

desired details; Finally, the image is processed to gather meaningful data. 

In the case of the thesis, it is necessary to cleaning up noise images. As a result, 
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the morphology functions should be used. 

The typical morphology functions are: 

1. Reduce objects (erode) 

2. Expand objects (dilate) 

3. Remove small objects and peninsulas (open) 

4. Fill gaps and eliminate holes (close) 

 
Figure 4.14 The comparison of erode and dilate function. 

1) Erode operation 

    As is shown in Figure 4.15, erosion tends to spread dark pixels around, causing 

them to eat away at erode bright objects. 

 

Figure 4.15 The effect of erode operation. 

2) Dilate operation 

    Instead of reducing objects, the effect of dilation is to take each bright pixel in 

source image and expand it into the shape of a given kernel (see Figure 4.16). 
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Figure 4.16 The effect of dilate operation. 

3) Opening operation 

    As is shown in Figure 4.17, the opening operation can be accomplished by an 

erode operation followed by a dilate operation. The goal is to remove the small particles 

and then restore the original size of the other blobs. 

 

Figure 4.17 The effect of opening operation. 

4) Closing operation 

    As is shown in Figure 4.18, the closing operation is a dilate operation followed by 

an erode operation. The goal is to ‘fill in’ the small gaps in the blobs without enlarging 

the final size of the blobs. 
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Figure 4.18 The effect of closing operation. 

4.2.2 Image processing and data collection of the experimental tests 

    As the pictures are caught from the video, a certain number of steps to process the 

pictures are essential. The original pictures are shown as Figure 4.19. 

 

Figure 4.19 The original image. 

    The first step is to transfer the image into grey scale, which is shown as Figure 

4.20. 
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Figure 4.20 The original image in grey scale. 

   In order to eliminate the negative influence of the background, it is necessary to 

remove the background of the picture. In fact, this process is an opening operation, 

during which the detailed elements such as mark points are recognized and eliminated. 

As a result, the remaining part are the useless background. Then, removing the 

background from the original image, the new imagine is much clearer with the detailed 

elements (see Figure 4.21). 

 

Figure 4.21 The image with background removed. 
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   Then, it is possible to adjust the image by nonlinear scaling, which leads to a high 

level of contrast of the image, shown in Figure 4.22. 

 

Figure 4.22 The adjusted image with nonlinear scaling. 

As long as the computer is concerned, the best method for it to recognize an 

element from an image is to transfer the picture from gray scale into black and white.  

 

Figure 4.23 The image transferred into black and white. 

Besides, in order to continue the following operation such as erode and dilate 
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operation, the interconvert between the colors black and white is necessary. 

 
Figure 4.24 The image with interconverting between black and white. 

    In order to make the mark points more recognizable, the operations of erode and 

dilate is suggested. 

 

Figure 4.25 The image with the erode operation. 
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Figure 4.26 The image with the dilate operation. 

Finally, in order to obtain the position of the mark points, a limitation of the area 

of recognition should be handed out, which is shown as Figure 4.27. 

 

Figure 4.27 The remaining useful part of the image. 

Note that, all the codes of image processing and position detection will be attached 

in Appendix A. 
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CHAPTER 5 Results and Model Parameters 

5.1 The Detailed Introduction of the 6 Models used  

5.1.1 The Neo-Hookean model 

The Neo-Hookean model constitutes the simplest specification of the Mooney-

Rivlin model series since it only considers 10C 0  in eq. (3.69), which means the 

summation stops at i 1, j 0  and the additive constant 00C  is set to be zero. The 

resulting strain energy function reads 

 
1W I 3

2
 (5.1) 

where the material parameter 102C denotes the shear modulus. From the eq. 

(3.25) and eq. (3.28), the analytical Pi(i) relations for uniaxial tension (UT) test and 

pure shear test (PS) can be expressed as following 

 UT UT

1 2

1
P  (5.2) 

 PS PS

1 3

1
P  (5.3) 

As is shown, for all of the experimental tests, it is possible to regard the material 

parameters UT

10 and PS

01 as the unknowns to solve. 

5.1.2 The Mooney-Rivlin model 

The general Mooney-Rivlin strain energy function can be expressed as following 

 
i j

ij 1 2

i, j 0

W C I 3 I 3  (5.4) 

A more sophisticated, yet simple specification of eq. (3.69) is called Mooney-

Rivlin or Mooney model.  



73 

 

 10 1 01 2W C I 3 C I 3  (5.5) 

It considers the parameters 10 01C 0,C 0 , which means the summation stops 

at i, j 1 , and the other parameters such as 00 11C ,C  are set to be zero. This model are 

widely used for the hyperelastic parts in which deformation remains moderate (lower 

than 200). 

From the eq. (3.25) and eq. (3.28), the analytical Pi(i) relations for uniaxial 

tension (UT) test and pure shear test (PS) can be expressed as following 

 UT UT UT

1 10 012 3

2 2
P C 2 C 2  (5.6) 

 PS PS PS

1 10 013 3

2 2
P C 2 C 2  (5.7) 

The eq. (3.71) can be also expressed as following 

 
UT

UT UT1
10 01

2

P 1
C C

2
2

 (5.8) 

As is shown, for the uniaxial tension test, eq. (3.71), it is possible to regard the two 

material parameters UT

10C and UT

01C as two unknowns in a linear equation to solve. 

5.1.3 The Yeoh model 

Motivated by the experimental observation that the load-deformation curves of 

filled elastomers exhibit almost zero values 2W I 0 , Yeoh proposed an 

accordingly adapted function belonging to the class of Mooney-Rivlin model. It 

abstains from considering the second invariant in the free energy and includes all 

uncoupled 1I  terms up to the power of three. As a result, the strain energy function 

can be expressed as following 
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2 3

1 1 2 1 1 1W C I 3 C I 3 C I 3  (5.9) 

where the three material parameters 1 2 3C ,C ,C  are of shear modulus type, and the 

second index for the neglected 2I  terms is omitted. The typical nonlinear increase of 

the shear modulus at high strains is reproduced sufficiently accurate by this model due 

to the third-order 1I  terms. A very similar model additionally incorporation the first 

2I  term has been proposed in 1958 by Biderman. From the eq. (3.25) and eq. (3.28), 

the analytical Pi(i) relations for uniaxial tension (UT) test and pure shear test (PS) can 

be expressed as following 

 
2

UT UT UT UT UT UT

1 1 2 1 3 1 2

1
P 2C 4C I 3 6C I 3  (5.10) 

 
2

PS PS PS PS PS PS

1 1 2 3 3

1
P 2C 4C I 3 6C I 3  (5.11) 

5.1.4 The 8-chain model 

The eight approach proposed by Arruda and Boyce is resorting o a cuboid spanned 

by the principal directions of the isochoric eight Cauchy-Green tensor. The local 

polymer network is, as the name indicates, then approximated by an ensemble of K = 8 

chains, each of which being oriented along one of the half diagonals of the cuboid see 

Figure 5.1 Eight chain model: initial and deformed chain orientation and stretches.. 

The edge length of the undeformed cube immediately follows as ( 1)

0 0a 2 3 r  from 

basic geometric considerations, wherein 0r Nl  is again denoting the end-to-end 

distance of an unstretched chain. All chains are equally elongated if the surrounding 

box is deformed with the principal stretches i . This leads to 

( 1) 2 2 2

k 0 1 2 3r r 3  for the new end-to-end distances and one finally obtains 
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 2 2 2k 1
k 1 2 3

0

r I1

r 33
 , k = 1, …, 8 (5.12) 

That is, a unique stretch which is valid for all chains regardless of their orientation with 

in the cuboid. 

 
Figure 5.1 Eight chain model: initial and deformed chain orientation and stretches. 

If Langevin cain behavior is assumed, it can be obtained as following 

 
8 3

Langevin Langevin

k k

k 1 k 1

n
W n N ln

8 sinhN
 (5.13) 

Together with the Padé approximation, from the eq. (3.25) and eq. (3.28), the 

analytical Pi(i) relations for uniaxial tension (UT) test and pure shear test (PS) can be 

expressed as following 

 
UT 2 1

UT UT 2

1 UT 2 1

1 9N 2
P

3 3N 2
 (5.14) 

 
PS 2 2

PS PS 3

1 PS 2 2

1 9N 1
P

3 3N 1
 (5.15) 

5.1.5 The extended tube model 

Heinrich and Kaliske pursued the works of Edwards and Vilgis, and Doi. They 

proposed a model in which Chains are constrained to remain in a tube formed by 

surrounding chains, which refers to the tube model. This assumption is attributed to the 

high degree of entanglement of rubber network. The confinement of chains is governed 

by a topology restoring potential, which can be determined with the statistical 
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mechanics as following 

 * *e
c

2G
W G I 2 I  (5.16) 

where 
*I  is the first invariant of the generalized -order strain tensor. The model 

takes the form of the two terms Ogden model with 1 2 1 c2, , G  and

2 e2G . However, this model is limited to moderate deformation and is not able 

to reproduce strain-hardening. 

The limitations of the above model to moderate deformations are inherent to its 

foundations which refer to entanglement constraints but not to chain extensibility. 

Kaliske and Heinrich replaced the Gaussian distribution by the non-Gaussian one, they 

introduced an inextensibility parameter  and established a new strain energy function 

in which the cross-link part is 

 

2

1 2c
c 12

1

1 I 3G
W ln 1 I 3

2 1 I 3
 (5.17) 

While the tube constraint term of eq. (5.16) remains unchanged. In the previous 

equation, the empirical parameter  is supposed to lie between 0 and 1. From the eq. 

(3.25) and eq. (3.28), the analytical Pi(i) relations for uniaxial tension (UT) test and 

pure shear test (PS) can be expressed as following 

2 2
UT c e

1 22 22
11

G G1 1 1 1
P 2 2

2 1 I 31 I 3
(5.18) 

  
2 2

PS c e
1 23 2 22

11

G G1 1 1 1
P 2 2

2 1 I 31 I 3
(5.19) 

5.1.6 The unit sphere model 

    Different to the three-chain approach, the unit sphere model proposed by Miehe et 
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al. doer not consider the C-eigenvectors cuboid as the confining volume of the local 

polymer network. It instead resorts to a unit sphere in which the chains are assumed to 

be oriented along radius vectors from the center to the surface. In the most gereral case, 

this would require to extend average as eq. (3.64) to an integration over the energies of 

chains aligned with all possible unit vectors. To avoid a complicated analytical 

evaluation, a numerical scheme inspired by a contribution of Bazant and Oh on the 

discrete integration over spheres is applied. Similar to a Gauss integration, K = 21 unit 

vectors 0

kt  and the weight factor kw  are chosen such that an approximately uniform 

distribution of the chains across the sphere is realized, which ensures isotropic behavior 

of the local network. If Langevin chain behavior is assumed, the macroscopic free 

energy density follows as 

 
21 21

Langevin k k k
k k k

k 1 k 1 k

W n w N w ln
sinhN

 (5.20) 

where Bnk T  and 1

k kL N  denote inverse Langevin function of the 

chain stretches as before. Due to the particular choice of initial chain orientations 0

kt , 

the stretches k  must be computed according to eq.(3.65) 

 
0 0

k k kC t C t  (5.21) 

which means, they do not follow directly in closed form via geometric consideration as 

has been the case for three-chain model. 

The corresponding factious tangent operator simply required another derivative C. 

To derive analytical stress-stretch relation for UT and PS, it is needed to depart from 

 
21

jLangevin k k
i k

k 1 i i j

P n w  (5.22) 

as obtained by insertion of energy density eq. (3.87) into eq. (3.67). The chain force are 
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again substituted by Padé approximation eq. (3.63) of eq. (3.68) into which the 

deformation-specific chain stretches 

 
UT 2 PS 2k3 k3k2
k k1 k k1 k2 2

t tt
t , t t  (5.23) 

in terms of applied macro-stretch  have to be inserted. These are easily obtained by 

evaluating with the deformation mode dependent strain tensor C, which in turn follow 

from the particular deformation gradients. For the sake of simplicity, it has been 

introduced as 

 
2

0

ki i kt : e t  (5.24) 

Then, it is possible to find that 

 
3

2
0 0 2 0k
k k a a k

a 1i i k i

1
t C t N t

2
 (5.25) 

that is, the general computation of these derivatives necessitates the eigenvectors Na of 

C. Since the here considered uniaxial tension and pure shear involve diagonal 

deformation gradients only, the eigenvectors are not rotated from their reference 

orientation, and we may identify a aN e , which allows to further simplify the 

expression towards as following 

 
3 3

2
2 0k i ki
a a k a ai ka

a 1 a 1i k i k k

t1 1
N t 2 t

2 2
 (5.26) 

From the eq. (3.25) and eq. (3.28), the analytical Pi(i) relations for uniaxial 

tension (UT) test and pure shear test (PS) can be expressed as following 

 

UT 2 121
k1 k2 k3UT UT k2

1 k k1UT 2 1 2
k 1 k1 k2 k3

3N t t t t
P w t

N t t t
 (5.27) 

 
PS 2 221

PS PS k1 k2 k3 k3
1 k k1PS 2 2 2

k 1 k1 k2 k3

3N t t t t
P w t

N t t t
 (5.28) 
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5.2 NP Gel 

5.2.1 The Neo-Hookean model 

 

Figure 5.2 The simulation of uniaxial tension test with the Neo-Hookean model. 

 

 

Figure 5.3 The simulation of pure shear test with the Neo-Hookean model. 
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Figure 5.4 The simulation of compression test with the Neo-Hookean model. 

 

 

 

Figure 5.5 The overall simulation of three tests with the Neo-Hookean model. 
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As is shown in the results, obviously, the Neo-Hookean ansatz is not sufficient to 

correctly reproduce the experimental data. Especially, the characteristic S-shape cannot 

be captured since the simple model structure does not allow for a change of curvature. 

Merely fitting the latter half data of compression test yields an acceptable result. 

Table 5.1 The material parameters of the Neo-Hookean Model. 

Neo-Hookean 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.072787268 0.020808096 0.027239239 0.04645 
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5.2.2 The Mooney-Rivlin model 

 

Figure 5.6 The simulation of uniaxial tension test with the Mooney-Rivlin model. 

 

 

Figure 5.7 The simulation of pure shear test with the Mooney-Rivlin model. 
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Figure 5.8 The simulation of compression test with the Mooney-Rivlin model. 

 

 

 

Figure 5.9 The overall simulation of three tests with the Mooney-Rivlin model. 
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The model performs similar to the Neo-Hookean ansatz. While the pure test is 

hardly reproduceable by fitting, the situation is better for the much less curved the 

uniaxial tension test and the compression test. The remarks already given for the Neo-

Hooke model remain valid, a restriction to smaller stretches improves the accuracy 

significantly. The model is still not complex enough to capture the pronounced S-shape 

of uniaxial deformations at very large strains. 

 

Table 5.2 The material parameters of the Mooney-Rivlin Model. 

Mooney-

Rivlin 

Uniaxial 

Tension 
Pure Shear Compression overall 

C10 0.242960138 0.071902709 0.067285419 0.151357 

C01 -0.22862672 -0.041694628 -0.032195025 -0.13546 
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5.2.3 The Yeoh model 

 

Figure 5.10 The simulation of uniaxial test with the Yeoh model. 

 

 
Figure 5.11 The simulation of pure shear with the Yeoh model. 
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Figure 5.12 The simulation of compression with the Yeoh model. 

 

 

 

Figure 5.13 The overall simulation of three tests with the Yeoh model. 
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The corresponding curves are plotted. The cubic character of Yeoh’s model is 

obviously suited to reproduce the S-shape at large strains. On the other hand, as 

indicated by the almost perfect approximation of the data of the uniaxial tension test 

and the pure shear test, this may also depend on the range of stretches used for 

parameter optimization. Furthermore, it can be stated that each set of optimal 

parameters yields simulation results for the complementary deformation modes that are 

qualitatively much more reasonable than for any of the previous models. This is 

particularly remarkable in view of W lacking I2 and the small number of only three 

material parameters. Yeoh’s stress–stretch relations are obviously not distinct enough 

to cover the spread in deformation behaviour with a single parameter set. 

Table 5.3 The material parameters of the Yeoh Model. 

yeoh 
Uniaxial 

Tension 
Pure Shear Compression overall 

C1 0.052014883 0.035371404 0.037035536 0.042144 

C2 0.072751291 0.052502038 0.068093295 0.065028 

C3 0.056580708 0.035846875 0.133629834 0.0863 
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5.2.4 The 8-chain model 

 

Figure 5.14 The simulation of uniaxial tension test with the eight chain model. 

 

 

Figure 5.15 The simulation of pure shear test with the eight chain model. 
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Figure 5.16 The simulation of compression test with the eight chain model. 

 

 

 
Figure 5.17 The overall simulation of three tests with the 8-chain model. 
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The results above depict the corresponding curves. Reproduction of experimental 

data via fitting is as perfect as for the Yeoh model while the general validity of 

parameters is better, although not yet satisfying, and can be compared to that of Yeoh’s 

model. Optimized segment numbers are again neither identical nor do they satisfy the 

intuitive expectations concerning the stiffness of the different deformation modes. It is 

obvious that the eight chain model is able to fit the data of the uniaxial tension test and 

the pure shear test, while not enough to fit the data of the compression test at the 

beginning. Note that the eight chain model is much less sensitive locking stretches, that 

is, all segment numbers are valid for the whole stretch range. 

Table 5.4 The material parameters of the 8-chain Model. 

eight chain 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.031602915 0.018347268 0.054478166 0.037874 

N 1.322650966 1.824883606 1.222652222 1.48037 
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5.2.5 The extended tube model 

 

Figure 5.18 The simulation of uniaxial tension test with the extended tube model. 

 

 

Figure 5.19 The simulation of pure shear test with the extended tube model. 
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Figure 5.20 The simulation of compression test with the extended tube model. 

 

 

 
Figure 5.21 The overall simulation of three tests with the extended tube model. 
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The results above depict the corresponding curves. Reproduction of experimental 

data via fitting is as perfect as for the eight chain model and the Yeoh model, especially 

for the compression test, while the former two model are not able to fit the data of the 

compression test very well. Besides, as is shown, at the beginning of the result of the 

uniaxial tension test and the compression test, there are still parts not being well-fitted. 

However, the extend tube model is able to fit the curve exactly. 

 

Table 5.5 The material parameters of the extended tube Model. 

extended 

tube 

Uniaxial 

Tension 
Pure Shear Compression overall 

Gc 0.526026108 0.569108017 1.068909707 0.762268 

Ge 0.124358976 0.195244522 0.746850481 0.451432 

 1 1 1 1 

 0.71680639 0.343244161 0.324123636 0.495541 
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5.2.6 The unit sphere model 

 

Figure 5.22 The simulation of uniaxial tension test with the unit sphere model. 

 

 
Figure 5.23 The simulation of pure shear test with the unit sphere model. 
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Figure 5.24 The simulation of compression test with the unit sphere model. 

 

 

 

Figure 5.25 The overall simulation of three tests with the unit shpere model. 
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As is shown in the results above, because of the integration points and weights on 

unit sphere, when the stretch is equal to 1, the stress is not able to reach 0. That is the 

reason why there is a shift at the beginning of each kind of test. From the result of the 

simulation, it is obvious that for the latter half the data of the uniaxial test and the 

compression test, the unit sphere model is able to fit the curve very well, while for the 

pure shear test, the unit sphere model has a much worse behavior. 

 

Table 5.6 The material parameters of the unit shpere Model. 

unit sphere 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.038147383 0.054906094 0.038147383 0.044441 

N 2.879359518 3.852992001 2.879359518 3.236612 
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5.3 T5 Gel 

5.3.1 The Neo-Hookean model 

 

Figure 5.26 The simulation of uniaxial tension test with the Neo-Hookean model. 

 

 
Figure 5.27 The simulation of pure shear test with the Neo-Hookean model. 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
T5-Uniaxial Tension:Neo-Hookean

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
T5-Pure Shear:Neo-Hookean

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.



98 

 

 
Figure 5.28 The simulation of compression test with the Neo-Hookean model. 

 

 

 

Figure 5.29 The overall simulation of three tests with the Neo-Hookean model. 

0.75 0.8 0.85 0.9 0.95 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
T5-Compression:Neo-Hookean

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.

0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5
T5 Gel:Neo-Hookean

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data UT

Sim. UT

Data PS

Sim. PS

Data C

Sim. C



99 

 

As is shown in the results above, compared with the NP gel, it is obvious that the 

Neo-Hookean model is able to have a better fit to the T5 gel. The reason is the behaviors 

of the T5 gel are more linear, which means for this one order model is easier to fit them. 

 

Table 5.7 The material parameters of the Neo-Hookean Model. 

Neo-Hookean 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.153500636 0.611356596 0.455995011 0.449166 
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5.3.2 The Mooney Rivlin model 

 

Figure 5.30 The simulation of uniaxial tension test with the Mooney-Rivlin model. 

 

 

Figure 5.31 The simulation of pure shear test with the Mooney-Rivlin model. 
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Figure 5.32 The simulation of compression test with the Mooney-Rivlin model. 

 

 

 

Figure 5.33 The overall simulation of three tests with the Mooney-Rivlin model. 
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As is shown above, just like the Neo-Hookean model, as the T5 gel is quite linear, 

the Mooney-Rivlin model is quite enough to fit the data, especially for the uniaxial 

tension test and the compression test, while for the pure shear test, the fitted curve is 

not enough to have a good simulation. 

 

Table 5.8 The material parameters of the Mooney-Rivlin Model. 

Mooney-

Rivlin 

Uniaxial 

Tension 
Pure Shear Compression overall 

C10 0.104143178 0.06959029 0.105658858 0.094609 

C01 0.765131229 0.702016468 0.451596716 0.653756 
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5.3.3 The Yeoh model 

 

Figure 5.34 The simulation of uniaxial tension test with the Yeoh model. 

 

 
Figure 5.35 The simulation of pure shear test with the Yeoh model. 
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Figure 5.36 The simulation of compression test with the Yeoh model. 

 

 

 

Figure 5.37 The overall simulation of three tests with the Yeoh model. 
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According to the results above, the Yeoh is able to fit the data for all the three kinds 

of test as a better simulation. Compared with the Neo-Hookean and Mooney-Rivlin 

model, the Yeoh model can also fit the data of the pure shear test in a quite perfect way, 

thanks to its high order. 

 

Table 5.9 The material parameters of the Yeoh Model. 

yeoh 
Uniaxial 

Tension 
Pure Shear Compression overall 

C1 0.176962027 0.04694086 0.326809381 0.216274 

C2 0.300628552 0.17569078 0.085977392 0.207072 

C3 0.010706585 0.04764080 0.016079811 0.029681 
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5.3.4 The 8-chain model 

 

Figure 5.38 The simulation of uniaxial tension test with the 8-chain model. 

 

 

Figure 5.39 The simulation of pure shear test with the 8-chain model. 
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Figure 5.40 The simulation of compression test with the 8-chain model. 

 

 

 
Figure 5.41 The overall simulation of three tests with the 8-chain model. 
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The result of the simulation above shows that for the very linear result of the pure 

shear test, the 8-chain model is able to have a good simulation, while for the uniaxial 

tension test and the compression test, like the Neo-Hookean model, it is not well fitted 

at the beginning of the data curve. 

 

Table 5.10 The material parameters of the 8-chain Model. 

eight chain 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.306998713 0.630806298 0.27477693 0.434997 

N 1.559440287 2.041080682 1.34912856 1.675113 
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5.3.5 The extended tube model 

 
Figure 5.42 The simulation of uniaxial tension test with the extended tube model. 

 

 

Figure 5.43 The simulation of pure shear test with the extended tube model. 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
T5-Uniaxial Tension:Extended Tube

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
T5-Pure Shear:Extended Tube

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.



110 

 

 

Figure 5.44 The simulation of compression test with the extended tube model. 

 

 

 
Figure 5.45 The overall simulation of three tests with the extended tube model. 

0.75 0.8 0.85 0.9 0.95 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
T5-Compression:Extended Tube

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.

0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5
T5 Gel:extended tube

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data UT

Sim. UT

Data PS

Sim. PS

Data C

Sim. C



111 

 

The same as the NP gel, the extend tube model is able to fit all the three kinds of 

test as a perfect simulation. 

 

Table 5.11 The material parameters of the 8-chain Model. 

extended 

tube 

Uniaxial 

Tension 
Pure Shear Compression overall 

Gc 0.084410861 0.090319094 0.085865808 0.086902 

Ge 0.339985812 0.233456886 0.495298678 0.372117 

 1 1 1 1 

 0.466989877 0.329007657 0.687105617 0.515894 
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5.3.6 The unit sphere model 

 
Figure 5.46 The simulation of uniaxial tension test with the unit sphere model. 

 

 

Figure 5.47 The simulation of pure shear test with the unit sphere model. 
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Figure 5.48 The simulation of compression test with the unit sphere model. 

     

 

 
Figure 5.49 The overall simulation of three tests with the unit sphere model. 
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As is shown above, despite for the compression test, the unit sphere model is not 

able to fit the other two tests very well. And there are still shift at the beginning of the 

curve fitting. 

 

Table 5.12 The material parameters of the unit sphere Model. 

unit sphere 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.447253489 0.266493874 0.313948323 0.351007 

N 5.395733853 3.932882687 2.108556361 4.042587 
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5.4 The Simulation of B Gel 

5.4.1 The Neo-Hookean model 

 

Figure 5.50 The simulation of uniaxial tension test with the Neo-Hookean model. 

 

 
Figure 5.51 The simulation of pure shear test with the Neo-Hookean model. 
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Figure 5.52 The simulation of compression test with the Neo-Hookean model. 

 

 

 

Figure 5.53 The overall simulation of three tests with the Neo-Hookean model. 
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As is shown above, because of the low order of the Neo-Hookean model, it is not 

able to fit the data of the uniaxial tension test, while the result is acceptable for the pure 

shear test and the compression test. 

 

Table 5.13 The material parameters of the Neo-Hookean Model. 

Neo-Hookean 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.083922965 0.030730969 0.04557323 0.057921 
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5.4.2 The Mooney Rivlin model 

 

Figure 5.54 The simulation of uniaxial tension test with the Mooney-Rivlin model. 

 

 
Figure 5.55 The simulation of pure shear test with the Mooney-Rivlin model. 

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
B-Uniaxial Tension:Mooney-Rivlin

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
B-Pure Shear:Mooney-Rivlin

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.



119 

 

 
Figure 5.56 The simulation of compression test with the Mooney-Rivlin model. 

 

 

 

Figure 5.57 The overall simulation of three tests with the Mooney-Rivlin model. 
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   According to the results above, compared with the Neo-Hookean model, the 

Mooney-Rivlin model has a better simulations, especially in the compression test. 

 

Table 5.14 The material parameters of the Mooney-Rivlin Model. 

Mooney-

Rivlin 

Uniaxial 

Tension 
Pure Shear Compression overall 

C10 0.220472892 0.175839787 0.215065013 0.204761 

C01 0.188060986 0.178912883 0.213668444 0.194106 
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5.4.3 The Yeoh model 

 

Figure 5.58 The simulation of uniaxial tension test with the Yeoh model. 

 

 
Figure 5.59 The simulation of pure shear test with the Yeoh model. 
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Figure 5.60 The simulation of compression test with the Yeoh model. 

 

 

 

Figure 5.61 The overall simulation of three tests with the Yeoh model. 
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According to the results above, the Yeoh is able to fit the data for all the three kinds 

of test as a better simulation. Compared with the Neo-Hookean and Mooney-Rivlin 

model, the Yeoh model can also fit the data of the pure shear test in a quite perfect way, 

due to its high order, while the simulation is not so good at the beginning of the curve 

fitting of the uniaxial test and the compression test. 

 

Table 5.15 The material parameters of the Mooney-Rivlin Model. 

yeoh 
Uniaxial 

Tension 
Pure Shear Compression overall 

C1 0.07076078 0.024945433 0.051766086 0.052628 

C2 0.02112366 0.055401772 0.042177842 0.04201 

C3 0.05660333 0.032302763 0.080972418 0.060011 
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5.4.4 The 8-chain model 

 

Figure 5.62 The simulation of uniaxial tension test with the 8-chain model. 

 

 

Figure 5.63 The simulation of pure shear test with the 8-chain model. 
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Figure 5.64 The simulation of compression test with the 8-chain model. 

 

 

 

Figure 5.65 The overall simulation of three tests with the 8-chain model. 
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As is shown above, very similar with the Yeoh model, the 8-chain model is able to 

fit the data very well, while at the beginning of the uniaxial test and the compression 

test, the simulation is not very good. 

 

Table 5.16 The material parameters of the 8-chain Model. 

eight chain 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.046825926 0.031512374 0.091146001 0.061896 

N 1.430221776 2.029960592 1.388700937 1.642637 
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5.4.5 The extended tube model 

 

Figure 5.66 The simulation of uniaxial tension test with the extended tube model. 

 

 

Figure 5.67 The simulation of pure shear test with the extended tube model. 
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Figure 5.68 The simulation of compression test with the extended tube model. 

 

 

 

Figure 5.69 The overall simulation of three tests with the extended tube model. 
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As is shown above, for the B gel, the extended tube model is able fit the data 

perfectly, while not so good at the beginning of the uniaxial tension test. 

 

Table 5.17 The material parameters of the extended tube Model. 

extended 

tube 

Uniaxial 

Tension 
Pure Shear Compression overall 

Gc 0.407168965 0.771519821 0.779083748 0.675278 

Ge 0.180814059 0.167422658 0.506844025 0.325379 

 1 1 1 1 

 0.733376166 0.319791412 0.312419861 0.495888 
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5.4.6 The unit sphere model 

 

Figure 5.70 The simulation of uniaxial tension test with the unit sphere model. 

 

 

Figure 5.71 The simulation of pure shear test with the unit sphere model. 

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
B-Uniaxial Tension:Unit Sphere

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
-2

0

2

4

6

8

10

12
x 10

-3 B-Pure Shear:Unit Sphere

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.



131 

 

 
Figure 5.72 The simulation of compression test with the unit sphere model. 

 

 

 

Figure 5.73 The overall simulation of three tests with the unit sphere model. 

0.7 0.75 0.8 0.85 0.9 0.95 1
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
B-Compression:Unit Sphere

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data

Sim.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
B Gel:unit sphere

stretch[-]

n
o
m

in
a
l 
s
tr

e
s
s
 [

M
P

a
]

 

 

Data UT

Sim. UT

Data PS

Sim. PS

Data C

Sim. C



132 

 

According to the results above, very similar to the T5 gel, the unit sphere model is 

able to fit the compression test very well, while not so good for the uniaxial test and the 

pure shear test. 

 

Table 5.18 The material parameters of the unit sphere Model. 

unit sphere 
Uniaxial 

Tension 
Pure Shear Compression overall 

 0.127629715 0.081173506 0.047439879 0.091522 

N 3.043084835 3.870697269 2.420386826 3.167593 
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CHAPTER 6 Conclusions 

1) From the theoretical point of view, it is necessary to understand the relationship 

and the derivation of stain tensors, stress tensors and stain energy function. Then it is 

possible to take advantage of the existing constitutive models. Besides, in order to have 

a better simulation of the behavior of the hyperelastic materials, having the knowledge 

about the micro-mechanical model is essential. 

2) From the experimental point of view, the preparation of the specimen, such as 

marking the mark points, cutting of the gels and the recording of the data. Thanks to 

the powerful function of image processing of Matlab, it is possible to get relatively 

good data by using the common devices such as a camera or a digital video. 

3) From the models’ point of view, most of the times, the extended tube model has 

a best behavior. For some material which is quite linear, the Neo-Hookean is also able 

to have a good simulation. As is concerned to the Mooney-Rivlin model, it is able to 

have a better simulation compared with the Neo-Hookean model due to is one-higher 

order. Besides, the Yeoh model and the 8-chain model can simulate the gels very well 

in most of the times. Because of the initial shift due to the integration points and weights, 

the unit sphere performs not so well in the situation of the small deformation. 

4) From the materials’ point of view, all of the three gels have a softening 

phenomenon in the uniaxial test, while the NP gel has a hardening behavior at the very 

beginning period of test. As is concerned to the pure shear test, the T5 gel and B gel 

perform very linear. For the compression test, the T5 gel and the B gel is proved to be 

very ‘hard’ to be compressed.  
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Appendix A: Matlab codes for data collection 

%% Load image in memory 

imageName=strcat('image.jpg'); 

I = imread(imageName); 

  

%% Convert the image to grayscale 

im_g=rgb2gray(I); 

[height,width]=size(im_g); 

  

figure 

imshow(im_g) 

title ('Original image in grayscale'); 

  

min_intens=min(min(im_g)); 

max_intens=max(max(im_g)); 

  

  

%% Background removing 

background = imopen(im_g,strel('square',500)); 

  

im2 = im_g - background; 

  

figure 

imshow(im2) 

title (['background removed image']) 

  

%% Intensity scaling with imadjust and NON linear scaling between a 

minimum and a maximum 

gamma=1.2; 

min_new=255; 

max_new=255; 

  

min_intens_scaled=double(min_intens)/255; 

max_intens_scaled=double(max_intens)/255; 

  

im3=imadjust(im2, double([min_intens_scaled   max_intens_scaled]), [0 

1], gamma); 

min_intens2=min(min(im3)); 

max_intens2=max(max(im3)); 

  



135 

 

figure 

imshow (im3); 

title (['Imge nonlinearly scaled between zero and 255, with gamma=' 

num2str(gamma)]) 

  

%% Convert the grayscale image to black & white 

level = graythresh(im3); 

bw = im2bw(im3,level-0.01); 

bw = bwareaopen(bw, 500); 

figure 

imshow(bw) 

  

bw1=~bw; 

figure 

imshow (bw1) 

  

eroded_im=imerode(bw1,strel('square',1)); 

figure 

imshow (eroded_im); 

title ('Eroded image') 

  

dilated_im=imdilate(eroded_im,strel('square',5)); 

  

figure 

imshow (dilated_im); 

title ('Dilated image') 

axis on 

 

%% Eliminate the useless part 

dilated_im(1:251,:,:)=0;         % up 

dilated_im(:,1:345,:)=0;         % left  

dilated_im(283:end,:,:)=0;       % down       

dilated_im(:,670:end,:)=0;       % right 

  

figure 

imshow(dilated_im); 

axis on 

  

%% Find and mark the centroid of the points 

cc = bwconncomp(dilated_im, 4); 

cc.NumObjects; 
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grain = false(size(dilated_im)); 

grain(cc.PixelIdxList{14}) = true; 

  

figure 

imshow(grain); 

  

graindata = regionprops(cc, 'basic'); 

  

if cc.NumObjects==16; 

  

centroids = [graindata.Centroid]; 

centroid(1,1) = centroids(1,1); 

centroid(1,2) = centroids(1,2); 

centroid(2,1) = centroids(1,3); 

centroid(2,2) = centroids(1,4); 

centroid(3,1) = centroids(1,5); 

centroid(3,2) = centroids(1,6); 

centroid(4,1) = centroids(1,7); 

centroid(4,2) = centroids(1,8); 

centroid(5,1) = centroids(1,9); 

centroid(5,2) = centroids(1,10); 

centroid(6,1) = centroids(1,11); 

centroid(6,2) = centroids(1,12); 

centroid(7,1) = centroids(1,13); 

centroid(7,2) = centroids(1,14); 

centroid(8,1) = centroids(1,15); 

centroid(8,2) = centroids(1,16); 

centroid(9,1) = centroids(1,17); 

centroid(9,2) = centroids(1,18); 

centroid(10,1) = centroids(1,19); 

centroid(10,2) = centroids(1,20); 

centroid(11,1) = centroids(1,21); 

centroid(11,2) = centroids(1,22); 

centroid(12,1) = centroids(1,23); 

centroid(12,2) = centroids(1,24); 

centroid(13,1) = centroids(1,25); 

centroid(13,2) = centroids(1,26); 

centroid(14,1) = centroids(1,27); 

centroid(14,2) = centroids(1,28); 

centroid(15,1) = centroids(1,29); 

centroid(15,2) = centroids(1,30); 

centroid(16,1) = centroids(1,31); 
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centroid(16,2) = centroids(1,32); 

  

x1=centroid(2,1); 

y1=centroid(2,2); 

x2=centroid(14,1); 

y2=centroid(14,2); 

C(j,1)=x1; 

C(j,2)=y1; 

C(j,3)=x2; 

C(j,4)=y2; 

D(j,1)=sqrt((x2-x1)^2+(y2-y1)^2); 

  

else D(j,1)=99; 

     

end 
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Appendix B: Matlab codes for data analysis 

%% DATA 

data = load('lp2.txt'); 

  

  

%% STRAIN 

lamda = data(:,1); 

  

lamda1 = lamda; 

lamda2 = lamda1.^(-0.5); 

lamda3 = lamda2; 

I1 = lamda1.^2+lamda2.^2+lamda3.^2; 

I2 = lamda1.^2.*lamda2.^2+lamda2.^2.*lamda3.^2+lamda3.^2.*lamda1.^2; 

I3 = lamda1.^1.*lamda2.*lamda3; 

  

  

%% STRESS 

P = data(:,2); 

sigma = lamda.*P; 

  

  

%% Neo-Hookean 

C0 = 0.2; 

lb = 0; 

ub = inf; 

opt = optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-

15,'TolFun',1e-15,'TolX',1e-15,'MaxFunEvals',10000,'MaxIter',10000); 

C = lsqcurvefit(@neohookean,C0,lamda,P,lb,ub,opt); 

  

m=C; 

  

P_nh = 2*(lamda-lamda.^(-2))*m; 

  

figure  

plot(lamda,P,lamda,P_nh) 

title('B-Uniaxial Tension:Neo-Hookean') 

xlabel('stretch[-]') 

ylabel('nominal stress [MPa]') 

grid on 
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%% Mooney-Rivlin 

C0 = [0.17,0.008]; 

lb = [-inf,-inf]; 

ub = [inf,inf]; 

opt = optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-

15,'TolFun',1e-15,'TolX',1e-15,'MaxFunEvals',10000,'MaxIter',10000); 

C = lsqcurvefit(@mooneyrivlin,C0,lamda,P,lb,ub,opt); 

  

C_10 = C(1);   

C_01 = C(2); 

  

P_mr = 2*(lamda-lamda.^(-2)).*(C_10*ones(length(lamda),1)+lamda.^(-

1)*C_01); 

  

figure  

plot(lamda,P,lamda,P_mr) 

title('B-Uniaxial Tension:Mooney-Rivlin') 

xlabel('stretch[-]') 

ylabel('nominal stress [MPa]') 

grid on 

  

  

%% Yeoh 

C0 = [0.2,0.2,0.2]; 

lb = [-inf,-inf,-inf]; 

ub = [inf,inf,inf]; 

opt = optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-

15,'TolFun',1e-15,'TolX',1e-15,'MaxFunEvals',10000,'MaxIter',10000); 

C = lsqcurvefit(@yeoh,C0,lamda,P,lb,ub,opt); 

  

a=C(1); 

b=C(2); 

c=C(3); 

  

C3 = a/3; 

C2 = 0.5*(b+18*C3); 

C1 = c-27*C3+6*C2; 

  

P_y = 2*(lamda-lamda.^(-2)).*(C1+2*C2*(I1-3)+3*C3*(I1-3).^2); 

  

figure  
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plot(lamda,P,lamda,P_y) 

title('B-Uniaxial Tension:Yoeh') 

xlabel('stretch[-]') 

ylabel('nominal stress [MPa]') 

grid on 

  

  

  

%% 8-chain 

C0 = [0.33,200]; 

lb = [0,0]; 

ub = [inf,inf]; 

opt = optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-

15,'TolFun',1e-15,'TolX',1e-15,'MaxFunEvals',10000,'MaxIter',10000); 

C = lsqcurvefit(@eightchain,C0,lamda,P,lb,ub,opt); 

  

miu=C(1);  %1/3*nkt 

N=C(2); 

  

P_ec = miu/3*(((3*N-lamda.^2-2*lamda.^(-1)).^(-1)).*(9*N-lamda.^2-

2*lamda.^(-1))).*(lamda-lamda.^(-2)); 

  

figure  

plot(lamda,P,lamda,P_ec) 

title('B-Uniaxial Tension:8-chain') 

xlabel('stretch[-]') 

ylabel('nominal stress [MPa]') 

grid on 

  

  

%% Extended-tube model 

C0 = [0.202,0.168,0.178,0.0856]; 

lb = [-inf,-inf,0,-inf]; 

ub = [inf,inf,1,inf]; 

opt = optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-

15,'TolFun',1e-15,'TolX',1e-15,'MaxFunEvals',10000,'MaxIter',10000); 

C = lsqcurvefit(@extendedtube,C0,lamda,P,lb,ub,opt); 

  

Gc=C(1); 

Ge=C(2); 

beta=C(3); 

delta=C(4); 
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X = (lamda1-lamda1.^(-2)); 

Y = lamda1.^(-1); 

Z = (lamda1.^(beta/2)-lamda1.^(-beta)); 

  

D = 1-delta^2*(I1-3); 

par = (1-delta^2)*D.^(-2)-delta^2*D.^(-1); 

  

P_et = Gc*X.*par+2*Ge/beta*Y.*Z; 

  

figure 

plot(lamda,P,lamda,P_et) 

title('B-Uniaxial Tension:Extended Tube') 

xlabel('stretch[-]') 

ylabel('nominal stress [MPa]') 

grid on 

  

  

%% Unit Sphere 

C0 = [0.202,22.2]; 

lb = [-inf,-inf]; 

ub = [inf,inf]; 

opt = optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-

15,'TolFun',1e-15,'TolX',1e-15,'MaxFunEvals',10000,'MaxIter',10000); 

C = lsqcurvefit(@unitsphere,C0,lamda,P,lb,ub,opt); 

  

miu2=C(1);  

N2=C(2); 

  

A = load('sphere.txt'); 

  

t1=A(:,1); 

t2=A(:,2); 

t3=A(:,3); 

w=2*A(:,4); 

  

k=1; 

P_us= miu2*w(k)*((N2-t1(k)*lamda.^2-(t2(k)+t3(k))*lamda.^(-1)).^(-

1)).*(3*N2-t1(k)*lamda.^2-(t2(k)+t3(k))*lamda.^(-1)).*(t1(k)*lamda-

t2(k)*lamda.^(-2)); 

for k=2:21 
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P_us= P_us+miu2*w(k)*((N2-t1(k)*lamda.^2-(t2(k)+t3(k))*lamda.^(-

1)).^(-1)).*(3*N2-t1(k)*lamda.^2-(t2(k)+t3(k))*lamda.^(-

1)).*(t1(k)*lamda-t2(k)*lamda.^(-2)); 

  

end 

  

figure 

plot(lamda,P,lamda,P_us) 

title('B-Uniaxial Tension:Unit Sphere') 

xlabel('stretch[-]') 

ylabel('nominal stress [MPa]') 

grid on 
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Appendix C: Intergration points and weights on unit sphere 
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