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Abstract

Developing a holistic approach for looking at the structure’s integrity through real-time
Structural Health Monitoring (SHM) defines the core of the project. This work argues the
implementation of the real-time SHM for an isolated panel of the rear fuselage of a
helicopter. This work initially presents an effective statistical approach to detect structural
damage utilizing a novelty detection method based on multidimensional outlier analysis
(OA). Going further into the hierarchy of damage identification, together with detection,
quantification of the damage intensity and localization of the damage site are performed
adopting a multi-layer perceptron (MLP) neural network structure.

Prior to the establishment of algorithms of any method (OA or MLP) a thorough study
regarding the identification of the provided database is lunched. Concerning outlier analysis,
the necessary database is acquired from experimental tests, consisting of sampled strain
measures for both undamaged and damaged scenarios coming from a network of Fiber Bragg
Grating (FBG) optical sensors. Due to the high expenditure of experimental test, comprising
the costs of both operating equipments and the one-time-use test specimen, the only available
experimental database regarding the damaged case is set to be a skin crack propagating from
the center of the central bay. To extract the damage sensitive features out of the sensors
readings, a normalization is performed where changes in sensor readings caused by damage
are separated from those caused by varying operational and environmental conditions.
Moreover, an initiative is taken to investigate the influence of possible localized stress
variations (this can occur due to localized loads and temperature variations present within the
panel) over the damage indices. This is of a great use as it firstly allows for a visual
representation of the influence and secondly becomes of a use later in outlier analysis to
check the flexibility and efficiency of the novelty detection algorithm.

In this thesis, the outlier analysis (OA) is conducted mainly for lowest level of fault detection
(i.e. damage detection) so that the method is simply required to detect signal deviations from
normal condition; i.e., the problem is the one of novelty detection. Therefore, the concept of
discordancy from the statistical discipline of outlier analysis is used to identify signal
deviance from the norm. Since the acquired database of the case study is multivariate, the
discordancy test is performed by using Mahalanobis square distance measure to calculate the
novelty values relevant to each observation of the database. In applying OA, the novelty
values are finally compared against a threshold which allows to group novelty indices as
novel or normal corresponding to damaged and undamaged cases respectively.

To develop a diagnostic unit that includes quantification and localization levels of a damage
state, as well as the damage detection level, MLP neural networks are implemented. Here, the
first challenge is to provide the ANNs with sufficiently large training database which can be
considered as a good representative of all possible damage cases that can occur on the panel.
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For that reason, a database simulated through a Finite Element (FE) model is used. When
applying artificial neural networks as the performing algorithms of diagnostic unit, there are
several parameters that are considered at each diagnostic level to optimize the performance of
the diagnostic algorithm. The first parameter to be optimized is the structure of an ANN and
in specific the number of hidden layers and nodes. Two other optimizing parameters are
considered which are “introduction of additive Gaussian noise to the training database” and
“optimal training database size”. Considering the classification algorithm for anomaly
detection, the concept of “optimal noise” is applied upon redefining the state of damage,
while the effect of additive noise in the performance of damage quantification an localization
algorithms is simply carried out by checking the corresponding Root Mean Square Error
(RMSE) in predictions. Finally, to verify the algorithms applicability to the real diagnostic
system, a real experimental centre crack propagation is fed to all three layers of the
diagnostic algorithm.
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Chapter 1 Introduction

In the most general terms damage can be defined as changes to a system that adversely
influence its current or future performance. Implicit in this definition is the concept that
damage is not meaningful without a comparison between two different states of the system,
one of which is assumed to represent the initial, and often undamaged, state. This work is
focused on the study of damage identification in an aerospace structure. Therefore, the
definition of damage will be limited to changes to the material and/or geometric properties of
these systems, including changes to the boundary conditions and system connectivity, which
adversely affect the current or future performance of these systems.

In terms of length scales, all damage begins at the material level. Although not necessarily
universally accepted terminology, such damage is usually referred to as a defect or flaw and
is present to some degree in all materials. Under appropriate loading scenarios the defects or
flaws grow and coalesce at various rates to cause component and then system level damage.
The term damage does not necessarily imply total loss of system functionality, but rather that
the system is no longer operating in its optimal manner. As the damage grows it will reach a
point where it affects the system operation to a point that is no longer acceptable to the user.
This point is referred to as failure. In terms of time scales, damage can accumulate
incrementally over long periods of time such as that associated with fatigue or corrosion
damage accumulation. On relatively shorter time scales damage can also result from
scheduled discrete events such as aircraft landings and from unscheduled discrete events such
as unplanned emergency maneuvers that exceed design limits, enemy fire on a military
aircraft.

The process of implementing a damage identification strategy for aerospace structures is
referred to as Structural Health Monitoring (SHM, Farrar and Worden, 2007). This process
involves the observation of a structure or system over time using periodically spaced
measurements, the extraction of damage-sensitive features from these measurements, and the
statistical analysis of these features to determine the current state of system health. For long-
term SHM, the output of this process is periodically updated information regarding the ability
of the structure to continue to perform its intended function in light of the inevitable aging
and damage accumulation resulting from its operational environments. Under an extreme
event, such as those encountered by military systems, SHM is used for rapid condition
screening. This screening is intended to provide, in near real-time, reliable information about
system performance during such extreme events and the subsequent integrity of the system.
Damage identification is carried out in conjunction with five closely related disciplines that
include SHM, Condition Monitoring (CM), Non-Destructive Evaluation (NDE), Statistical
Process Control (SPC), and Damage Prognosis (DP). Typically, SHM is associated with on-
line, global damage identification in structural systems. CM is analogous to SHM, but
addresses damage identification in rotating and reciprocating machinery. NDE is usually
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carried out off-line in a local manner with some a priori knowledge of the damage location.
SPC is process-based rather than structure-based and uses a variety of sensors to monitor
changes in a process, one cause of which can result from structural damage. However, many
of the statistical monitoring tools developed for SPC have been adapted to SHM applications.
Once damage has been detected, DP is used to predict the remaining useful life of a system.
There are no distinct boundaries between these various disciplines and in reality most
damage detection methods applied to aerospace structures makes use of some combination of
these disciplines.

1.1 A historic background of SHM

SHM definition given in the previous section contains two major elements of SHM: loads
monitoring as a means to determine the true operational conditions of a structure and damage
monitoring as the consequence of the operational conditions and a phenomenon subjected to
a statistical nature. It is difficult to say when the origin of loads and damage monitoring has
truly been but in aerospace many of the consequences have sadly been the result of serious
accidents. The aeronautical world realized the necessity of loads monitoring definitely after
the series of fatal crashes that occurred to the de Havilland Comet aircraft between 1952 and
1954. Monitoring systems were built that were based on monitoring the accelerations around
the centre of gravity of an aircraft and that would allow exceedances at specific load levels to
be monitored.

Figure 1.1 The Aloha Airlines accident and resulting consequences

The other event which triggered the issue of damage monitoring was the Aloha Airlines
accident flight 231 (Figure 1.1), which occurred in April 1988. What had to be learned from
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this was that the likelihood of cracking is increasing with an increasing age of an aircraft
structure which resulted in the description of the phenomenon called Multi-Site Damage
(MSD), which is the effect of a multitude of small cracks to be more sensitive to total
fracture than the sum of all these cracks represented as the length of a single crack. This
could be represented in general as an increase in crack propagation in a way it is
schematically shown in Figure 1.2. The consequence of this has been the regulation set by
the airworthiness authorities that ageing aircraft (usually those at the age of 15 years and
beyond) have to become subject of an enhanced inspection effort. This is where SHM
specifically comes into play.

Figure 1.2 Determination of crack propagation life in damage tolerant design

1.2 Motivation for SHM technology development

There is clearly a rational need for private and government industries to detect damage in
their products as well as in their manufacturing infrastructure at the earliest possible time.
Such detection requires these industries to perform some form of SHM and is motivated by
the potential life-safety and economic impact of this technology. As an example, the US
military has long recognized that over their service life the maintenance cost associated with
its aircraft far exceeds the purchase price of these systems. Therefore, contracts for new
military aircraft often make some mention of SHM with the intent that this technology will
help to minimize the lifecycle cost associated with this high-capital expenditure hardware.
Aerospace companies along with government agencies are investigating SHM technology for
identification of damage to the space shuttle control surfaces hidden by heat shields. Clearly,
such damage identification has significant life-safety implications. In addition, many portions
of our technical infrastructure including commercial aircraft are approaching or exceeding
their initial design life. As a result of economic issues, these structures are being used in spite
of aging and the associated damage accumulation. Therefore, the ability to monitor the health
of these structures is becoming increasingly important [1].
Most current structural and mechanical system maintenance is done in a time-based mode.
As an example, missiles are retired after a set amount of captive-carry hours on the wing of
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an aircraft. SHM is the technology that will allow the current time-based maintenance
philosophies to evolve into potentially more cost-effective condition-based maintenance
philosophies. The concept of condition-based maintenance is that a sensing system on the
structure will monitor the system response and notify the operator that damage has been
detected. Life-safety and economic benefits associated with such a philosophy will only be
realized if the monitoring system provides sufficient warning such that corrective action can
be taken before the damage evolves to a failure level. The trade-off associated with
implementing such a philosophy is that it requires a more sophisticated monitoring hardware
to be deployed on the system and it requires a sophisticated data analysis procedure that can
be used to interrogate the measured sensor readings.
Finally, many companies that produce high-capital-expenditure products such as airframes
and jet engines are exploring the possibility of moving to a business model where they lease
this equipment as opposed to selling the equipment. With these so called “power-by-the-
hour” business models the company that manufactures the equipment will take on the
responsibilities for maintenance of that equipment. SHM has the potential to extend the
maintenance cycles and, hence, keep the equipment out in the field where it can continue to
generate revenues for the owner. Also, the equipment owners would like to base their lease
fees on the amount of system life used up during the lease time rather than on the current
simple time-based lease fee arrangements. Such a business model will not be realized without
the ability to monitor the damage initiation and evolution in the leased hardware.

1.3 Overview of SHM applied to aerospace structures

Damage identification, as determined by changes in the dynamic response of systems, has
been practiced in a qualitative manner, using acoustic techniques (e.g., tap tests on train
wheels), since modern man has used tools. More recently, the development of quantifiable
SHM approaches has been closely coupled with the evolution, miniaturization and cost
reductions of digital computing hardware. In conjunction with these developments SHM has
received considerable attention in the technical literature and a brief summary of the
developments in this technology over the last 30 years as it relates to the aerospace industry
is presented below. To date, the most successful application of SHM technology has been for
CM of rotating machinery. The rotating machinery application has taken an almost exclusive
non-model based approach to damage identification. The identification process is based on
pattern recognition applied to displacement, strain, velocity or acceleration time histories (or
spectra) generally measured at a single point on the housing or shafts of the machinery
during normal operating conditions and start-up or shut-down transients. Often this pattern
recognition is performed only in a qualitative manner based on a visual comparison of the
spectra obtained from the system at different times. Databases have been developed that
allow specific types of damage to be identified from particular features of the vibration
signature. For rotating machinery systems the approximate damage location is generally
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known, making a single-channel fast-Fourier transform analyzer sufficient for most periodic
monitoring activities. Typical damage that can be identified includes loose or damaged
bearings, misaligned shafts, and chipped gear teeth. Today, commercial software integrated
with measurement hardware is marketed to help the user systematically apply this technology
to the operating equipment. The success of CM is due in part to: (i) Minimal operational and
environmental variability associated with this type of monitoring, (ii) Well-defined damage
types that occur at known locations, (iii) Large databases that include data from damaged
systems, (iv) Well-established correlation between damage and features extracted from the
measured data, and (v) Clear and quantifiable economic benefits that this technology can
provide. These factors have allowed this application of SHM to have made the transition
from a research topic to industry practice several decades ago resulting in comprehensive
condition management systems such as the US Navy’s Integrated Condition Assessment
System. Aircraft engine condition monitoring systems and rotorcraft health and usage
monitoring systems have subsequently evolved from these developments in CM and have
reached similar levels of maturity in the sense that such systems are now deployed on
commercial and military aircraft. The aerospace community began to study the use of
damage detection technology during the late 1970’s and early 1980’s for a variety of civilian
and defense applications. Early work focused on loads monitoring where a limited number of
sensors are tracked to count load cycles and/or to count the number of time certain threshold
response levels are exceeded. Loads monitoring continues to be one of the primary structural
health assessment tools used in practice. The development of SHM for aerospace
applications has continued and increased considerably in technical sophistication with current
applications being investigated for commercial and military aircraft, the National
Aeronautics and Space Administration’s (NASA) space station and the next generation of
reusable launch vehicles. One unique aspect of aerospace SHM applications is that regulatory
agencies have been involved with the certification of systems that are deployed on rotorcraft.
The application of SHM to aerospace structures has yielded several systems that have made
the transition from research to practice. The most notable are rotorcraft health and usage
monitoring system (HUMS) and the space shuttle modal inspection system (SMIS) program.
Other systems are currently being tested and this industry continues to expend considerable
resources on the development of new SHM technology. Perhaps the most refined forms of
SHM performed in the aerospace industry are the HUMSs used by the rotorcraft industry.
These systems were developed for commercial rotorcraft in response to the significant
number of crashes experienced by helicopters servicing North Sea oil platforms. In parallel,
these systems were developed for military rotorcrafts. With the introduction of HUMS for
main rotor and gearbox components on large rotorcraft, these systems have been shown to
reduce “the fatal hull loss within the UK to half what could have otherwise been expected
had HUMS not been installed”. The essential features of this success are that the rotor speed
– although not the torque – is maintained typically within 2% of nominal for all flight
regimes and that there is a single load path with no redundancy. These constraints provide a
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basis for a stable vibration spectrum from which a change in measured parameter is
attributable to component deterioration. As such, the use of vibration data trending for
predictive maintenance can be shown to increase rotor component life by 15%. The HUMS
systems are used to diagnose faults in helicopter drive trains, engines, oil systems and the
rotor system. Most significant is the fact that HUMS have been endorsed by the Federal
Aviation Administration (FAA) and Civil Aviation Authority (CAA) as part of an acceptable
maintenance strategy with the first certified HUMS systems being flown in the UK in 1991.
The Space Shuttle was designed as the first reusable space vehicle and as such requires
inspections to assess structural integrity after each flight where it experiences launch,
spaceflight, and landing loading environments. In response to this need the SMIS was
developed to identify fatigue damage in components such as control surfaces, fuselage panels
and lifting surfaces. These areas are covered with a thermal protection system making them
inaccessible and, hence, impractical for conventional local non-destructive examination
methods. The SMIS has been successful in locating damaged components that are covered by
the thermal protection system and all orbiter vehicles have been periodically subjected to
SMIS testing since 1987. Early shuttle inspections applied modal test techniques for
nondestructive evaluation of the orbiter structure. As an example, testing was performed on
the orbiter body flap, which is used to shield the main engines from heat and to provide pitch
control during atmospheric re-entry. Single-point random excitation was used to acquire
frequency response functions from the flap. Between modal tests, the flap was exposed to an
acoustic environment similar to operating conditions. It was observed that the frequencies of
the first three modes decreased following the acoustic exposure. Upon disassembly and
inspection of the test article, indication of galling in the spherical bearings at the actuator–rib
interfaces was discovered. Additionally, shear clips in the interface between the trailing edge
wedge and the flap ribs were found to contain significant cracking. It was noted that the
conventional visual, X-ray, and ultrasonic inspection techniques had failed to locate this
damage. Also, the conventional techniques require the removal of at least some orbiter
thermal protective system tiles, whereas the modal inspection technique does not.

The development of SHM systems for reusable launch vehicles continued as NASA began to
design a next generation launch vehicle. Strategies were proposed for rapid damage diagnosis
and decision making that focused on a distributed sensor system. In addition to the launch
vehicle itself, the composite fuel tanks were surfacing as one of the critical items for long-
term health monitoring. One such monitoring system for a next-generation launch vehicle
was successfully demonstrated during 1996 flight tests at White Sands Missile Range.

Space station applications have primarily driven the development of experimental/analytical
methods aimed at identifying damage to truss elements caused by space debris impact. These
methods are based on inverse-modeling approaches where analytical models of the
undamaged structure are correlated with measured modal properties from both the
undamaged and damaged structure. Changes in stiffness indices as assessed from the two
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model updates are used to locate and quantify the damage. Since the mid-1990’s, studies of
damage identification for composite materials have been motivated by the development of a
composite fuel tank for a reusable launch vehicle as well as the increasing use of composite
materials in all types of commercial and military aircraft. The failure mechanisms, such as
delamination caused by debris impacts, debonding of glued joints and corresponding material
response for composite fuel tanks are significantly different than those associated with
metallic structures. Often such damage is located below the surface of the structure thus
increasing the challenges of the damage detection. Also, the composite fuel tank problem
presents challenges because the sensing systems must not provide a spark source. This
challenge has lead to the development of SHM based on fiber optic sensing systems. Active
pulse-echo and pitch-catch wave propagation-based damage detection approaches, acoustic
emission passive wave propagation methods and active thermography methods have been
developed for damage detection in composite materials.

There are many other examples of more specialized aircraft SHM systems such a monitoring
nitrogen pressure in welded chrome-moly fuselage tubing to detect crack and corrosion
damage and the development of SHM to monitor rapid satellite assembly and deployment for
the US Air Force’s Operationally Responsive Space capability where the goal is to assemble
and launch a satellite within 1 week of mission definition.

1.4 Challenges for SHM applied to aerospace structure

The aerospace application of SHM has challenges that are, in general, similar to the
challenges faced by other SHM applications. Aerospace structures experience widely varying
environmental and operational conditions that can affect sensor readings. In the case of
aerospace structures these changes include widely varying thermal, vibration and acoustic
environments, changing gravitational environments, changing mass that results from fuel
consumption and changing aerodynamic load caused by varying atmospheric conditions and
changing loads that result from how the aircraft is operated. Many portions of the structure
are difficult to access when trying to retrofit an existing structure with a sensing system.
Some unique challenges faced by the aerospace industry are the restrictions on the weight of
the SHM system that can be deployed during flight. Also, the sensing system cannot be a
spark source when monitoring fuel tanks, which are a structure of considerable interest for
reusable launch vehicle applications. The basic premise of vibration-based SHM feature
selection is that damage will significantly alter the stiffness, mass or energy dissipation
properties of a system, which, in turn, alter the measured dynamic response of that system.
Although the basis for feature selection appears intuitive, its actual application poses many
significant technical challenges. The most fundamental challenge is the act that damage is
typically a local phenomenon and may not significantly influence the lower-frequency global
response of structures that is normally measured during system operation. Stated another
way, this fundamental challenge is similar to that in many engineering fields where the
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ability to capture the system response on widely varying length and time scales, as is needed
to model turbulence or to develop phenomenological models of energy dissipation, has
proven difficult. Another fundamental challenge is that in many situations feature selection
and damage identification must be performed in an unsupervised learning mode. That is, data
from damaged systems are not available. Damage can accumulate over widely-varying time
scales, and this poses significant challenges for the SHM sensing system. This challenge is
supplemented by many practical issues associated with making accurate and repeatable
measurements over long periods of time at a limited number of locations on complex
structures often operating in adverse environments. Finally, a significant challenge for SHM
is to develop the capability to define the required sensing system properties before field
deployment and, if possible, to demonstrate that the sensor system itself will not be damaged
when deployed in the field. If the possibility of sensor damage exists, it will be necessary to
monitor the sensors themselves. This monitoring can be accomplished either by developing
appropriate self-testing and validating sensors (analogous to Built-In Test Equipment or
Built-In Self-Test capabilities now routinely deployed in digital avionic systems) or by using
the sensors to report on each other’s condition. Sensor networks should also be ‘fail-safe’. If
a sensor fails, the damage identification algorithms must be able to adapt to the new network.
This adaptive capability implies that a certain amount of redundancy must be built into the
sensor network. In addition to the challenges described above, there are other non-technical
issues that must be addressed before SHM technology can make the transition from a
research topic to actual practice. These issues include convincing aircraft owners that the
SHM technology provides an economic benefit over their current maintenance approaches
and convincing regulatory agencies that this technology is reliable and provides a significant
life-safety benefit. All these challenges lead to the current state of SHM technology where
outside of HUMS applications, SHM in aerospace systems remains a primarily a research
topic that is still making the transition to field demonstrations and subsequent field
deployment. Therefore, there is a critical need for the development of design principles for
aerospace structures utilizing SHM systems (see Design Principles for Aerospace Structures
Utilizing SHM) and these design principles will have to be formulated around the
fundamental axioms (or some appropriate variant) that have been proposed for SHM. Finally,
as SHM technology evolves and matures, it will be integrated into a more comprehensive
process referred to as Damage Prognosis. Damage Prognosis (DP) is defined as the estimate
of an engineered system’s remaining useful life This estimate is based on the output of
models that predict material, component and system degradation by coupling information
from usage monitoring; SHM; past, current and anticipated future environmental and
operational conditions; the original design assumptions regarding loading and operational
environments, previous component and system level testing and maintenance, and predictive
models for damage initiation and evolution (see Damage Prognosis for Metal and Composite
Aerospace Structures). Here the term usage monitoring refers to the process of acquiring
operational loading data from a structure or system which preferably includes a measure of
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environmental conditions (e.g., temperature, moisture) and operational variables such as
mass or speed. Stated another way, DP attempts to forecast system performance by
measuring the current state of the system (i.e., SHM), estimating the future loading
environments for that system, and predicting through simulation and past experience the
remaining useful life of the system. Such predictions will necessarily be probabilistic in
nature and will build upon standard maintenance definitions provided under the FAA
Maintenance Steering Group-3 process that requires in-service reliability data to justify
maintenance as well as safety specific component and system life estimates.

1.5 Data acquisition and potential SHM technologies considered

The data acquisition portion of the SHM process involves selecting the excitation methods
(when necessary), the sensor type, number and locations, sampling parameter, and the data
acquisition/ storage/ transmittal hardware. This process will be application specific and
economic considerations will play a major role in making these decisions. The intervals at
which data should be collected are another consideration that must be addressed.

Sensing and data acquisition systems for aerospace SHM vary widely depending on the
specific application. Many of these systems are commercially available and deployed
onboard the structure while it is in flight such as the rotorcraft HUMS. In-flight SHM
systems have only become practical with the evolution of microelectronics that allows such
systems to be deployed onboard aircraft with minimal weight penalties. Other systems like
the shuttle model inspection system (SMIS) used traditional ground-based dynamics data
acquisitions systems for tests performed with the shuttle out of service. Generally, large
amounts of data can be acquired in-flight necessitating a data management strategy.

Kinematic quantities such as strain and acceleration are the most common response
parameters that are monitored using conventional electrical resistance strain gages and
piezoelectric accelerometers, respectively. In addition, the aerospace industry has studied the
use of fiber optic strain sensors for SHM applications because they are light-weight, do not
produce a spark source and because their size makes them somewhat non-intrusive. The
small size of optical fibers has motivated several studies where researchers are embedding
the fibers into composite materials for more direct measures of their response characteristics.
The fibers optic sensors have also been used to measure temperature. Other types of sensors
have been deployed for corrosion monitoring as part of a US military demonstration of health
monitoring systems for large structural components that investigated different sensing
modalities.

Most commonly, when tests are performed in-flight, the aerospace industry measures the
response of the structure to operational and environmental loading conditions such as those
caused by aerodynamics forces and engine vibration. More recently this industry has started
to use active sensing systems, where a small actuator is mounted on the structure to produce
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a local excitation signal tailored to enhance the damage detection process. Acoustic emission
studies rely on measuring the response of the system that results when strain energy is
released during damage initiation or growth. During ground vibration tests performed for
damage assessment purposes, electrodynamics shakers are used to excite the structure as is
the case with the SMIS.

There is a wide range of sensors and sensor systems being around and developed or under
consideration where a selection of those is shown in Figure 1.3 below. The sensors and
sensor systems are allocated to a specific physical parameter such as sound, vibration,
electromagnetism, temperature, light or possibly others, being further enhanced and more to
come such as at the nano scale. Some of the ones being considered most are described below.
Data acquisition unit of our case study make use of FBG sensors and in the following an
brief introduction of their characteristics is given.

Figure 1.3 Sensing options for structural health monitoring

FBG is to be applied to an optical fiber of 100 in diameter or less that can either be
adapted to or integrated into a structure. The latter is specifically popular with composite
materials while the former is the method applied to metals. The sensor is able to monitor any
kind of strain resulting from either mechanical loads, pressure, temperature, acoustic
vibrations or others. A major advantage of the sensor is that a multitude of sensors (possibly
hundreds) can be placed along a single fiber, which reduces complexity in wiring
significantly. Because of working on an optical basis the system is immune to any electro-
magnetic interference. It has shown robustness with regard to in service application

.
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1.6 Normalization and variability filtering

Because data can be measured under varying conditions, the ability to normalize the data
becomes very important to the damage identification process. As it applies to SHM, data
normalization is the process of separating changes in sensor reading caused by damage from
those caused by varying operational and environmental conditions. One of the most common
procedures is to normalize the measured responses by the measured inputs. When
environmental or operational variability is an issue, the need can arise to normalize the data
in some temporal fashion to facilitate the comparison of data measured at different times of
an environmental or operational cycle. Sources of variability in the data acquisition process
and with the system being monitored need to be identified and minimized to the extent
possible. In general, not all sources of variability can be eliminated. Therefore, it is necessary
to make the appropriate measurements such that these sources can be statistically quantified.
Variability can arise from changing environmental and test conditions, changes in the data
reduction process, and unit-to-unit inconsistencies.

1.7 Statistical model development for feature discrimination

The portion of the SHM process that has arguably received the least attention in the technical
literature is the development of statistical models for discrimination between features from
the undamaged and damaged structures. Statistical model development is concerned with the
implementation of the algorithms that operate on the extracted features to quantify the
damage state of the structure. The algorithms used in statistical model development usually
fall into three categories. When data are available from both the undamaged and damaged
structure, the statistical pattern recognition algorithms fall into the general classification
referred to as supervised learning. Group classification and regression analysis are categories
of supervised learning algorithms. Unsupervised learning refers to algorithms that are applied
to data not containing examples from the damaged structure. Outlier or novelty detection is
the primary class of algorithms applied in unsupervised learning applications. All of the
algorithms analyze statistical distributions of the features derived from the measured data to
enhance the damage identification process.

The damage state of a system can be described as a five step process given as the following:

1. Damage detection (existence of a damage)
2. Damage localization
3. Damage type identification (depending on the case study)
4. Damage quantification
5. Damage prognosis

Preceding further in the hierarchy of these steps an increasing knowledge of the damage state
is acquired. When applied in an unsupervised learning mode, statistical models are typically
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used to answer questions regarding the existence and location of damage. When applied in a
supervised learning mode and coupled with analytical models, the statistical procedures can
be used to better determine the type of damage, the extent of damage and potential remaining
useful life of the structure. The statistical models are also used to minimize false indications
of damage. False indications of damage fall into two categories: (i) False-positive damage
indication (indication of damage when none is present), and (ii) False-negative damage
indication (no indication of damage when damage is present). Errors of the first type are
undesirable as they will cause unnecessary downtime and consequent loss of revenue as well
as loss of confidence in the monitoring system. More importantly, there are clear safety
issues if misclassification of the second type occurs. Many pattern recognition algorithms
allow one to weigh one type of error above the other; this weighting may be one of the
factors decided at the operational evaluation stage.
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Chapter 2 Theory background

2.1 Outlier analysis

To constitute an introductory method for damage detection, here a statistical method, so
called ‘outlier analysis’ has been studied. The lowest level of damage identification hierarchy
is considered here so that the methods are simply required to signal deviations from normal
condition; i.e. the problem is the one of novelty detection. Here, the concept of discordancy
from the statistical discipline of outlier analysis is used to indicate deviance from the baseline
condition. In the following chapter the methodology has been implemented on our case
study.

The problem of damage detection and identification has a natural hierarchical structure. At
higher levels, one might require the diagnostic to return information about expected time to
failure of a structure, while at the lowest level, the question is simply of whether a fault is
present or not. In many ways, the latter is the most fundamental. In response to the need for
robust low-level damage detection strategies, the discipline of novelty detection has recently
been evolved [7] [8]. The problem is simply to identify, from measured data, if a machine or
a structure has deviated from normal condition, i.e., if the data is novel. The idea of novelty
detection is not entirely new, in many ways the philosophy is coincident with that of the
classical condition monitoring. However, the new terminology is justified by the fact that
novelty detection provides a unifying framework for techniques from a wide range of
disciplines. Among the large quantity of available approaches to the problem, some are
drawn from condition monitoring, others from the field of pattern recognition and yet others
from multivariate statistics. The latter field has a very substantial body of theory to support it
and is proving to be fruitful source of algorithms for damage detection.

The object of the study is to examine a technique from multivariate statistics and benchmark
it on our case study, which has been also examined through other techniques (see chapter 5).
The method is that of outlier analysis. This is a well-established field of statistics which has
not yet been systematically exploited for damage detection purposes [7]. It will be shown that
the method not only allows diagnosis of novelties, but also suggests to which extent the
dimension of the data set might be reduced without losing the efficiency of the diagnostic
algorithm.

2.1.1 Detection of outliers in univariate data

A discordant outlier in a data set is an observation that appears inconsistent with the rest of
the data and therefore is believed to be generated by an alternative mechanism to the other
data [7] [8]. The discordancy of the candidate outlier is a measure which may be compared
against an objective criterion allowing the outlier to be judged to be statistically likely or
unlikely to have come from the assumed generating model.
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In the case of the univariate data, the detection of outliers is a relatively straightforward
process in that the outliers protrude from or other end of the data set. There are numerous
discordancy tests but one of the most common, and the one whose extension to multivariate
data will be employed later, is based on deviation statistics and is given by,= | ̅|

(2.1)

where is the measurement corresponding to the potential outlier and ̅ and s the mean and

standard deviation of the sample respectively. The two latter values may be calculated with
or without potential outlier in the sample depending upon whether inclusive or exclusive
measures are preferred. This discordancy value is then compared to some threshold value and
the observation declared, or not, to be an outlier.

2.1.2 Detection of outliers in multivariate data

A multivariate data set consisting of n observations in p variables may be represented as n
points in p-dimensional object space. It becomes clear that detection of outliers in
multivariate data is more difficult that univariate situation due to the potential outlier having
the ability to appear more hidden data mass. That said many of ideas and techniques
associated with the detection outlier in multivariate data follow on from those applicable to
univariate problems.

The discordancy test which is the multivariate equivalent of equation 2.1 is the Mahalanobis
squared distance measure given by,= ( − { ̅}) [ ] ( − { ̅}) (2.2)

where { } is the potential outlier datum, { ̅} is the mean vector of the sample observations

and [S] the sample covariance matrix. T indicates transpose.

As with univariate discordancy test, the mean and covariance may be inclusive and exclusive
measures. In many practical situations the outlier is not known beforehand and so the test
would necessarily be conducted inclusively. The outlier displaying component method which
is discussed shortly is also an inclusive method. Finally, the Mahalanobis squared distance of
the potential outlier is checked against an appropriate threshold value, as in the univariate
case, and the system status is declared as a consequence.

2.1.3 Outlier displaying component

In order to display multivariate outliers when dealing with data of greater than two or three
dimensions it is necessary to apply special graphical methods. Although there are many
graphical techniques for multivariate data, most are not specifically designed to display
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outliers. This can be shown [8] to be equivalent to being based on the Mahalanobis squared
distance measure with the potential outlier included in the calculation of the sample statistics.

The aim is to find a one-dimensional representation of the sample observation so as to
highlight the potential outlier . The projection vector or one-outlier displaying component,

, which results in outlier protruding as far as possible from the data mass can be shown [8]
to be given by { } = [ ] ( − { ̅}) (2.3)

Where [ ] and { ̅}denote the covariance matrix and the mean of all observation respectively.

It is then possible to project the original P-dimensional sample { }, = 1,… , into one-

dimensional sample { , = 1,… , } using the one-outlier displaying component so that each
is obtained from equation 2.2.

Note that is equal to Mahalanobis squared distance of from the mean and the other

are the value against which can be evaluated.

Gordor stated that one of the useful features of the outlier displaying component is its ability
to show which dimensions contribute most to the discordancy of the outlier. It was claimed
that the coefficients in the outlier displaying component with the largest absolute values
corresponds directly to the variables which have the greatest effect on the discordancy.

2.1.4 Calculation of critical values of discordancy

In order to label an observation as an outlier or inlier there needs to be some threshold value
against which the discordancy value can be compared. This value is dependent on both the
number of observations and the number of dimensions of the problem being studied. The
value also depends whether an inclusive or exclusive threshold is required.

A Monte Carlo method was used to arrive at the threshold value and this may be summarized
by the following steps.

1) Construct a ( × ) (number of dimensions×number of observations) matrix with each
element being randomly generated from a zero (this “zero” value may change depending on
case study. see chapter 4) mean and unit (this “unit” value may change depending on case
study. see chapter 4) standard deviation normal distribution.

2) Mahalanobis squared distances calculated for the all observations, using equation 2.1
where { ̅} and [S] are either inclusive or exclusive measures (depending on the type of
threshold being conducted), and the largest value stores.
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3) Process repeated for large number of trails whereupon the array containing all the largest
Mahalanobis squared distances then ordered in terms of magnitude. The critical value for 5
and 1% tests of discordancy for a p-dimensional sample of n observations are then given by
the Mahalanobis squared distances in the array above which 5 and 1% of the trials occur.

2.2 An introduction to artificial neural network

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired
by the way biological nervous systems, such as the brain, process information. The key
element of this paradigm is the novel structure of the information processing system. It is
composed of a large number of highly interconnected processing elements (neurons) working
in unison to solve specific problems. ANNs, like people, learn by examples. An ANN is
configured for a specific application, such as pattern recognition or data classification,
through a learning process. Learning in biological systems involves adjustments to the
synaptic connections that exist between the neurons. This is true for ANNs as well.

Neural network simulations appear to be a recent development. However, this field was
established before the advent of computers, and has survived at least one major setback and
several eras.

Many important advances have been boosted by the use of inexpensive computer emulations.
Following an initial period of enthusiasm, the field survived a period of frustration and
disrepute. During this period when funding and professional support was minimal, important
advances were made by relatively few researchers. Currently, the neural network field enjoys
a resurgence of interest and a corresponding increase in funding. The first artificial neuron
was produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter
Pits. But the technology available at that time did not allow them to obtain good
performances.

Neural networks, with their remarkable ability to derive meaning from complicated or
imprecise data, can be used to extract patterns and detect trends that are too complex to be
noticed by either humans or other computer techniques. A trained neural network can be
thought of as an "expert" in the category of information it has been given to analyze. This
expert can then be used to provide projections given new situations of interest are examined
and to answer "what if" questions.

Other advantages include:

 Adaptive learning: An ability to learn how to do tasks based on the data given for
training or initial experience.

 Self-Organization: An ANN can create its own organization or representation of the
information it receives during learning time.
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 Real Time Operation: ANN computations may be carried out in parallel, and special
hardware devices are being designed and manufactured which take advantage of this
capability.

 Fault Tolerance via Redundant Information Coding: Partial destruction of a network
leads to the corresponding degradation of performance. However, some network
capabilities may be retained even with major network damage.

2.2.1 Human and Artificial Neurons

Much is still unknown about how the brain trains itself to process information, so theories
abound. In the human brain, a typical neuron collects signals from others through a host of
fine structures called dendrites. The neuron sends out spikes of electrical activity through a
long, thin stand known as an axon, which splits into thousands of branches. At the end of
each branch, a structure called a synapse converts the activity from the axon into electrical
effects that inhibit or excite activity from the axon into electrical effects that inhibit or excite
activity in the connected neurons. When a neuron receives excitatory input that is sufficiently
large compared with its inhibitory input, it sends a spike of electrical activity down its axon.
Learning occurs by changing the effectiveness of the synapses so that the influence of one
neuron on another changes.

In a similar way, an artificial neuron (Figure 2.1) is a device with many inputs and one
output. The neuron has two modes of operation; the training mode and the using mode. In the
training mode, the neuron can be trained to fire (or not), for particular input patterns. In the
using mode, when a taught input pattern is detected at the input, its associated output
becomes the current output. If the input pattern does not belong in the taught list of input
patterns, the firing rule is used to determine whether to fire or not.

Figure 2.1 A simple neuron

2.2.2 A more complicated neuron

The previous neuron doesn't do anything that conventional computers don't do already. A
more sophisticated neuron (Figure 2.2) is the McCulloch and Pitts model (MCP). The
difference from the previous model is that the inputs are ‘weighted’; the effect that each input
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has at decision making is dependent on the weight of the particular input. The weight of an
input is a number which when multiplied with the input gives the weighted input. These
weighted inputs are then added together and if they exceed a pre-set threshold value, the
neuron fires. In any other case the neuron does not fire.

Figure 2.2 An MCP neuron

In mathematical terms, the neuron fires if and only if;X1W1 + X2W2 + X3W3 + . . . > (2.3)

The addition of input weights (W) and of the threshold (T) makes this neuron a very flexible
and powerful one. The MCP neuron has the ability to adapt to a particular situation by
changing its weights and/or threshold. Various algorithms exist that cause the neuron to
'adapt'; the most used ones are the Delta rule and the back error propagation. The former is
used in feed-forward networks and the latter in feed-forward back propagation networks.

Feed-forward back propagation (Feedback) networks (Figure 2.3) can have signals travelling
in both directions by introducing loops in the network. Feedback networks are very powerful
and can get extremely complicated. Feedback networks are dynamic; their 'state' is changing
continuously until they reach an equilibrium point. They remain at the equilibrium point until
the input changes and a new equilibrium needs to be found. Feedback architectures are also
referred to as interactive or recurrent, although the latter term is often used to denote
feedback connections in single-layer organizations.
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Figure 2.3 Feedback network

2.2.3 Network layers

The commonest type of artificial neural network consists of three groups, or layers, of units.
A layer of "input" units is connected to a layer of "hidden" units, which is connected to a
layer of "output" units (Figure 2.3).

 The activity of the input units represents the raw information that is fed into the
network.

 The activity of each hidden unit is determined by the activities of the input units and
the weights on the connections between the input and the hidden units.

 The behavior of the output units depends on the activity of the hidden units and the
weights between the hidden and output units.

This simple type of network is interesting because the hidden units are free to construct their
own representations of the input. The weights between the input and hidden units determine
when each hidden unit is active, and so by modifying these weights, a hidden unit can choose
what it represents.

Single-layer and multi-layer architectures have to be distinguished. The single-layer
organization, in which all units are connected to one another, constitutes the most general
case and is of more potential computational power than hierarchically structured multi-layer
organizations. In multi-layer networks, units are often numbered by layer, instead of
following a global numbering.

2.2.4 The Learning Process

The memorization of patterns and the subsequent response of the network can be categorized
into two general paradigms:
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1. Associative mapping in which the network learns to produce a particular pattern on
the set of input units whenever another particular pattern is applied on the set of input
units. The associative mapping can generally be broken down into two mechanisms:

 Auto-association: an input pattern is associated with itself and the states of input
and output units coincide. This is used to provide pattern competition, i.e. to
produce a pattern whenever a portion of it or a distorted pattern is presented. In
the second case, the network actually stores pairs of patterns building an
association between two sets of patterns.

 hetero-association: is related to two recall mechanisms:

a. nearest-neighbor recall, where the output pattern produced corresponds to
the input pattern stored, which is closest to the pattern presented, and

b. Interpolative recall, where the output pattern is a similarity dependent
interpolation of the patterns stored corresponding to the pattern presented.
Yet another paradigm, which is a variant associative mapping, is
classification, i.e. when there is a fixed set of categories into which the
input patterns are to be classified.

2. Regularity detection in which units learn to respond to particular properties of the
input patterns. Whereas in associative mapping the network stores the relationships
among patterns, in regularity detection the response of each unit has a particular
'meaning'. This type of learning mechanism is essential for feature discovery and
knowledge representation.

Every neural network possesses knowledge which is contained in the values of the
connections weights. Modifying the knowledge stored in the network as a function of
experience implies a learning rule for changing the values of the weights. Information is
stored in the weight matrix W of a neural network. Learning is the determination of the
weights. Following the way learning is performed, two major categories of neural networks
can be distinguished:

 Fixed networks in which the weights cannot be changed, i.e. dW/dt = 0. In such
networks, the weights are fixed a priori according to the problem to solve.

 Adaptive networks which are able to change their weights, i.e. dW/dt ≠ 0.
All learning methods used for adaptive neural networks can be classified into two major
categories:

 Supervised learning which incorporates an external teacher, so that each output unit is
told what its desired response to input signals ought to be. During the learning
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process global information may be required. Paradigms of supervised learning
include error-correction learning, reinforcement learning and stochastic learning.
Important issue concerning supervised learning is the problem of error convergence,
i.e. the minimization of error between the desired and computed unit values. The aim
is to determine a set of weights which minimizes the error. One well-known method,
which is common to many learning paradigms, is the least mean square (LMS)
convergence.

 Unsupervised learning uses no external teacher and is based upon only local
information. It is also referred to as self-organization, in the sense that it self-
organizes data presented to the network and detects their emergent collective
properties. Paradigms of unsupervised learning are Hebbian learning and competitive
learning.

2.2.5 Transfer Function

The behavior of an ANN (Artificial Neural Network) depends on both the weights and the
input-output function (transfer function) that is specified for the units. This function typically
falls into one of three categories:

 linear (or ramp)
 threshold

 sigmoid

For linear units, the output activity is proportional to the total weighted output. For threshold
units, the output are set at one of two levels, depending on whether the total input is greater
than or less than some threshold value. For sigmoid units, the output varies continuously but
not linearly as the input changes. Sigmoid units bear a greater resemblance to real neurons
than do linear or threshold units, but all three must be considered rough approximations.

To make a neural network that performs some specific task, we must choose how the units
are connected to one another, and we must set the weights on the connections appropriately.
The connections determine whether it is possible for one unit to influence another. The
weights specify the strength of the influence.

2.2.6 The Back propagation Algorithm

The back propagation algorithm [bishop] is used in layered feed-forward ANNs. This means
that the artificial neurons are organized in layers, and send their signals “forward”, and then
the errors are propagated backwards. The network receives inputs by neurons in the input
layer, and the output of the network is given by the neurons on an output layer. There may be
one or more intermediate hidden layers. The back propagation algorithm uses supervised
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learning, where the error (difference between actual and expected results) is calculated. The
idea of the back propagation algorithm is to reduce this error, until the ANN learns the
training data. The training begins with random weights, and the goal is to adjust them so that
the error will be minimal.

The activation function of the artificial neurons in ANNs implementing the back propagation
algorithm is a weighted sum (the sum of the inputs multiplied by their respective
weights ): ( ̅ , ) = ∑ (2.4)

We can see that the activation depends only on the inputs and the weights. If the output
function would be the identity (output=activation), then the neuron would be called linear.
But these have severe limitations. The most common output function is the sigmoid function:

( ̅ , ) = ( , ) (2.5)

The sigmoid function is very close to one for large positive numbers, 0.5 at zero, and very
close to zero for large negative numbers. This allows a smooth transition between the low
and high output of the neuron (close to zero or close to one). We can see that the output
depends only in the activation, which in turn depends on the values of the inputs and their
respective weights.

Now, the goal of the training process is to obtain a desired output when certain inputs are
given. Since  the  error  is  the  difference  between  the  actual  and  the  desired output, the
error depends on the weights, and we need to adjust the weights in order to minimize the
error. We can define the error function for the output of each neuron:

( ̅ , , ) = ( ̅, ) − (2.6)

We take the square of the difference between the output and the desired target because it will
be always positive, and because it will be greater if the difference is big, and lesser if the
difference is small. The error of the network will simply be the sum of the errors of all the
neurons in the output layer:

̅ , , ̅ = ∑ ( ̅, ) − (2.7)

The  back propagation  algorithm  now  calculates  how  the  error  depends  on  the output,
inputs, and weights. After we find this, we can adjust the weights using the method of
gradient descendent:
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∆ = − (2.8)

This formula can be interpreted in the following way: the adjustment of each weight( ∆ ) will  be

the  negative  of  a  constant  eta ( ) multiplied  by  the  dependence  of  the previous weight on the
error of the network, which is the derivative of in respect to . The size of the adjustment will
depend on , and on the contribution of the weight to the error of the function. This is, if the weight
contributes a lot to the error, the adjustment will be greater than if it contributes in a smaller amount.
The Equation 2.8 is used until we find appropriate weights (the error is minimal).

Therefore, we “only” need to find the derivative of in respect to . This is the goal of the back
propagation algorithm, since we need to achieve this backwards. First, we need to calculate how
much the error depends on the output, which is the derivative of in respect to (Eq. 2.6).

= 2( − ) (2.9)

And then, how much the output depends on the activation, which in turn depends on the
weights (from Equations 2.4 and 2.5):

= = (1 − ) (2.10)

And we can see that (from Equations 2.9 and 2.10):

= = 2( − ) (1 − ) (2.11)

And so, the adjustment to each weight will be:∆ = −2 ( − ) (1 − ) (2.12)

We can use Equation 2.12 as it is for training an ANN with two layers. Now, for training the
network with one more layer we need to make some considerations. If we want to adjust the
weights (let’s call them ) of a previous layer, we need first to calculate how the error
depends not on the weight, but in the input from the previous layer. This is easy, we would
just need to change with in Equations 2.10, 2.11, and 2.12. But we also need to see

how the error of the network depends on the adjustment of . Therefore:

∆ = − = − (2.13)
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Where:

= 2( − ) (1 − ) (2.14)

And assuming that there are inputs into the neuron with (from Eq. 2.10):

= (1 − ) (2.15)

If we want to add yet another layer, we can do the same, calculating how the error depends
on the inputs and weights of the first layer. We should just be careful with the indexes,  since
each  layer  can  have  a  different  number  of  neurons, and we should  not confuse them.

For practical reasons, ANNs implementing the back propagation algorithm do not have too
many layers, since the time for training the networks grows exponentially. Also, there are
refinements to the back propagation algorithm which allow a faster learning.

2.2.7 Generalization and early stopping

One of the major advantages of artificial neural networks is their ability to generalize. This
means that a trained ANN could classify data from the same class as the learning data that it
has never seen before. In real world applications developers normally have only a small part
of all possible patterns for the generation of an artificial neural network. The default method
for improving generalization is called early stopping. This technique is automatically
provided for all of the supervised network creation functions, including the back propagation
network creation functions in software such as Matlab.

To reach the best generalization, the dataset should be split into three parts:
 Training data set: The training set is used to train an ANN. The error of this dataset is

minimized during training.
 Validation data set: The validation set is used to determine the performance of an

ANN on patterns that are not trained during learning.
 Test data set: A test set is used for final checking of the overall performance of an

ANN.
The learning should be stopped in the minimum of the validation set error. At this point the
ANN generalizes best. The validation error normally decreases during the initial phase of
training, as does the training set error. However, when the network begins to overfit the data,
the error on the validation set typically begins to rise. When the validation error increases for
a specified number of iterations, the training is stopped, and the weights and biases at the
minimum of the validation error are returned. When learning is not stopped, overtraining
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occurs and the performance of the ANN on the whole data decreases, despite the fact that the
error on the training data still gets smaller.

The test set error is not used during training, but it is used to compare different models. It is
also useful to plot the test set error during the training process. If the error in the test set
reaches a minimum at a significantly different iteration number than the validation set error,
this might indicate a poor division of the data set.

2.2.8 Committee of networks

It is a common practice in the application of the neural networks to train many different
candidate networks and then to select the best, on the basis of performance on an independent
validation set for instance, and keep only this network and discard the rest [13]. There are
two disadvantages with such an approach. First, all the effort in training the remaining
networks is wasted. Second the generalization performance on the validation set has a
random component due to the noise on the data, and so the network which had best
performance on the validation set might not be the one with the best performance on the new
test data.

These drawbacks can be overcome by combining the networks together to form a committee.
The approach of such an approach is that it can lead to significant improvements in
prediction of new data, while evolving little additional computational effort. In fact the
performance of a committee can be better than the performance of the best single network
used in isolation. For notational convenience we consider networks with a single output,
although the generalization to several outputs is straightforward. Suppose we have a set of
trained network models ( ) where = 1,… , . This set might contain networks having
different number of units, or networks with the same architecture but trained to different
local minima of the error function. It might even include different kinds of network models
or a mixture of network and conventional model. We denote the true regression function
which we are seeking to approximate by h(x). Then we can write the mapping function of
each network as a desired function plus an error.( ) = ℎ( ) + ( ) (2.16)

The average sum-of-squares for model ( ) can be written as= ℰ[{ ( ) − ℎ( )} ] = ℰ[ ] (2.17)
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Where ℰ[. ] denotes the expectation, and corresponds to an integration over weighted
(averaged) by unconditional density of , which in our literature is the crack length
variable, so that ℰ[ ] = ∫ ( ) ( ) (2.18)

From (2.17) the average error made by networks acting individually is given= ∑ = ∑ ℰ[ ] (2.19)

We now introduce a simple form of committee. This involves taking the output of the
committee to be the average of the outputs of network which comprise the committee.
Thus, we write the committee prediction in the form( ) = ∑ ( ) (2.20)

The error due to the committee can then be written as

= ℰ ( ∑ ( ) − h(x)) = ℰ ∑ (2.21)

If we now make the assumption that the errors ( ) have zero mean and are uncorrelated, so
that ℰ[ ] = 0, ℰ = 0 ≠ (2.22)

Then, using Equation 2.19 we can relate the committee error (Eq. 2.21) to the average error
of the networks acting separately as follows:= ∑ ℰ[ ] = (2.23)

This represents the apparently rather dramatic result that the sum-of-squares error can be
reduced by a factor of , simply by averaging the predictions of networks. In practice, the
reduction of error is generally much smaller than this, because the errors ( ) of different
models are typically highly correlated, and so the Assumption 2.22 does not hold. However
we can easily show that the committee averaging process cannot produce an increase in
expected error by making use of Cauchy’s inequality in the form(∑ ) ≤ ∑ (2.24)
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which gives the result ≤ (2.25)

Typically, some useful reduction in error is generally obtained, and the method has the
advantage of being trivial to implement. There is a significant reduction in processing speed
for new data, but in many in application this will be irrelevant. The reduction in error can be
viewed as arising from reduced variance due to the averaging over many solutions. This
suggests that the members of the committee should not individually be chosen to have
optimal trade-off between bias and variance, but should have relatively smaller bias, since
the extra variance can be removed by averaging.

The simple committee discussed so far involves averaging the predictions of the individual
networks. However, we might expect that some members of the committee will typically
make better prediction than other members. We would expect to be able to reduce the error
still further if we give greater weight to some committee members than to others. Thus, we
consider a generalized committee prediction given by a weighted combination of the
predictions of the members of the form( ) = ∑ ( ) = h( ) + ∑ ( ) (2.26)

where the parameter will be determined shortly. We now introduce the error correlation
matrix C with elements given by = ℰ ( ) ( ) (2.27)

This allows the error due to the generalized committee to be written as= ℰ[{ ( ) − h( )} ] (2.28)

= ℰ ( ) ( )
=

We can now determine optimal values for by the minimization of . The way to
calculate optimal values for is not discussed here as it involves mostly mathematical
concepts that are not of our interest here. The interested readers can refer to [13] [14].
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Chapter 3 Experimental setup and damage index
identification

This chapter starts with a brief explanation about the experimental setup procedure of our
case study. Further into the chapter the data mining and feature extraction will be performed
on the raw data acquired from the experimental tests (see Section 3.2); this part introduces
the same method of normalization that has to be performed on the FEM database used in
chapter 5. The eventual purpose of the chapter is to end up with experimental datasets which
will be of an essential use in the chapter 4 where outlier analysis will be conducted on these
data, and in chapter 5 where the Finite Element model, used in diagnostic algorithm, must be
compared and then verified with these data sets; Furthermore, all algorithms in the hierarchy
of diagnostics must be tested with the provided experimental datasets. Part of the information
provided by this chapter has not been carried out as a part of this thesis, and has beenextracted from the preceding works done on this case study. Interested readers canrefer to [4] for detailed information concerning this chapter. Finally the effect of random
load components can be investigated on the defined damage indices. In section 3.4 a different
method of data mining from the raw database, against the firstly introduced method in
section 3.3, has been taken in order to investigate the above mentioned issue regarding the
effect of random loads components on the defined damage index.

Sensor network

Figure 3.1 Experimental test setup with lower and upper gripper illustrated (Left). Sensor network alignment based on
FBG technology, installed on the test panel (Right).

The sensor network has been configured as depicted in Figure 3.1. The regions near the
upper and lower gripping systems were not considered. The resulting network consists of 20
FBG sensors positioned on stringers (5 sensors per stringer). Stringers are numbered in
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sequence from 1 to 4 (left to right), and 5 FBG sensors on each stringer are numbered from 1
to 5 (up to down).

3.1 Damage index definition

The helicopter fuselage is subjected to a time varying load that is hard to predict due to the
environmental influences. The effect of the boundary load has thus to be filtered out, while
taking into consideration that the strain variation due to the load, has orders of magnitude
higher than the damage effect over the strain field where e.g. the strain shows a value about
700 in an undamaged case and this value rises to a maximum about 1400 at the largest
crack length considered for a sensitive sensor (Figure 3.2 none normalized DI). One could
decide to leave the load condition as an output parameter of the diagnostic algorithm;
nevertheless this will further complicate the inference problem as a parameterization of the
load condition would be required. Thought this might be a further improvement of the work,
for the purposes of the present thesis it has been decided to filter the load influence on the
mentioned structure. The approach described here consists in normalizing each sensor of a
confined region (the entire panel might be seen as part of global fuselage) with respect to the
average value measured by all sensors within the same region [4]. As shown in Figure 3.2 the
damage influences a sufficient percentage of the sensors and the average strain value
measured by all the sensors is linearly dependent on loads and is largely unaffected by the
damage. Therefore, one can consider each sensor strain output as a multiplication of load by

a constant coefficient for a certain crack length i.e. = × , where is the applied

sinusoidal load by actuator, is the constant coefficient relevant to a certain crack length

of the sensor ( obviously increases for the sensors close to the crack, as the crack grows

longer) and is the corresponding collected strain value for that sensor.

Thus, by using the average strain as normalization factor for each single sensor, the effect of
the load can be filtered out (Eq. 3.1). The method remains valid only for linear material
behavior and under the assumption that the damage is localized and affects the minority of
the sensors; otherwise the damage information would neutralize the normalization factor. In
addition, it is important that the sensors contributing to the average value, all are measuring
homogeneous quantities (all measuring strain in the same direction as the normalized sensor
and simultaneously). Finally assuming that the N strain sensors measure exactly in the same
direction, the expression of the normalized output for the sensor is given by,= ∑ / (3.1)

= ×∑ × / = ∑ / = (3.2)

The real strain signal, without normalization, induced by the sinusoidal fatigue load with
constant amplitude adopted during the experimental fatigue crack propagation test for panel 1
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has been depicted in Figure 3.1 in the left plot. The strains are sampled when the peak of the
sinusoidal load applies (35kN). For each crack length, a number of sampling of peak strain
(peak mode sampling) are performed and then averaged, resulting to a more robust
evaluation of the peak strain value. In Figure 3.1 the Str3-FBG3 sensor is close to the crack
position as it shows a ascending trend (sensitive sensor), meanwhile the strain value of the
Str1-FBGg3 sensor remains rather constant with the crack propagation, as it is far from the
crack position (insensitive sensor). The normalization effect on load filtering can be
confirmed by comparing both plots of Figure 3.2; e.g. the absolute strain values of all 20
sensors show a discrepancy at crack length of 63mm with respect the normalized strain
values, where a consistency with strain values of neighborhood crack lengths is present. This
effect is crystal-clear referring to the Figure 3.3 in which strain sampling has been performed
randomly in time as the sinusoidal load varies.

Figure 3.2 Effect of normalization in load filtering when the strains are sampled at load peak value. Absolute strain
values (Left). Normalized strain values (Right)

Figure 3.3 Effect of normalization in load filtering when the strains are sampled at randomly in time. Absolute strain
values (Left). Normalized strain values (Right)
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3.2 Real data acquisition simulation

In real operation condition, there is no information a priori about the quality and quantity of
the load exerted to the system, therefore a method has to be introduced in order to generalize
the lab-case results to the real case. To simulate a real case with an unknown random load,
the time instant for the simultaneous acquisition of the sensor is randomly sampled 50 times
for each crack length level (peaks are not considered in this case), thus simulating a load
which falls in the [3.5kN-35kN] range. For a non normalized strain, this sampling method
corresponds to a wide variation in the sampled strain value (Fig. 3.3 left). Nevertheless, upon
the implementation of normalization, the load influence is filtered out from the strain values
(Fig. 3.3 right). To compare this sampling method with the one of peak selection, the mode
strain value has been calculated for these 50 strain values at each crack length. The mode
value can give a good estimate of the strains’ true value. In the next step, the mode value is
compared with the strain value obtained from peak sampling method (Fig. 3.4). The good
compatibility between two lines in Figure 3.4 verifies the efficiency of methodology in
random sampling (random mode sampling) which was adopted to generalize data acquisition
to a real case.

Figure 3.4 Comparison of modes of normalized randomly sampled strains with normalized peak sampled strains.

3.3 Effect of locally exciting random loads

In some cases, the monitored component will undergo some random local excitation e.g. due
to regional temperature variation within the panel, local stress distribution resulting from
localized external forces and the regional changes in boundary condition, etc. The variation
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of strain value, measured by all the sensors in average, is no longer linearly dependent on the
main load (e.g. the sinusoidal load which is applied in the boundary conditions and is sensed
by all sensors). This is due to the fact that not all sensors feel this local load function. The
sensors sensing this local load function (other than a load with the same frequency-pattern of
the main load or a load of constant or zero amplitude), are now producing strain values which
include an extra component which does not vary linearly together with other sensors. For this
reason the local load component cannot be filtered out of the sensors affected by it, and this
appears as a wider dispersion in the randomly sampled strain values for a certain crack
length. This influences the strain value dispersion similar to that of an uncorrelated noise
present in data acquisition from each sensor. Basically, in diagnostic framework, this might
induce misclassifications, intended as false alarms and missed damage detections.

Knowing this fact it is possible to investigate the effect of the locally exciting random loads
of different magnitudes by addition of Gaussian noise of different levels using equation 5.2.
The added noise is a function of the amplitude of the sampled strain. STDs of order of 2.5%
and 5% of the strain magnitude have been selected for the added noise. This can highlight the
effect of localized loads of different levels on the sampled strains (see Figure 3.5).
Considering the 95% of confidence interval (CI), the mentioned magnitudes for the
additional noise can be a representative of unknown localized loads of 5% and 10% of the
main load (the load which is sensed by all sensors).

At each crack length, the divergence from the ideal damage indices can be appreciated
comparing the mode value of the normalized randomly sampled strains (biased with
Gaussian noise) with the corresponding normalized peak strain indicates. We may call the
peak sampled strains as ideal damage indices as they are supposedly obtained in an ideal
testing condition from a test panel (this ideal damage index is of extensive use when
verifying the Finite Element model in chapter 5). The divergence of each mode line in Figure
3.6 from the ideal damage index line can be perceived as the uncertainty that can be present
in acquired strain values from fuselage when the helicopter operates in real conditions of
different severity. As it is expected for random sampling with no noise the mode line lies on
the ideal damage index line (Figures 3.4 and 3.6)

This uncertainty has not been counted as a parameter when defining the anomaly detection
algorithm in the outlier analysis context (chapter 4), or in Finite Element model verification
carried out in section 5.3. Nevertheless this uncertainty (introduction of additional noise)
becomes part of the considerations when testing the novelty detection system with real crack
propagation dataset of test panel 1 (see Section 4.9), and also when testing the diagnostic
algorithms, deigned based on MLP neural networks, with simulated crack propagations (see
Section 5.10).
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Figure 3.5 Randomly sampled strain values and relevant mode value. Strains biased with 5% additional noise (Left).
Strains biased with 10% additional noise (Right)

Figure 3.6 Mode comparison with ideal damage index line. The mode values have been calculated for normalized
randomly sampled strains where they are biased with noise of different levels of 0%, 5% and 10%.



46

Chapter 4 Outlier analysis for novelty detection in
multivariate empirical data sets

Outlier analysis is a statistical novelty detection method. The application of this method is
reliant upon possessing a sufficient sampled observation of the system in the normal state
(healthy condition). In the current case study this corresponds to sample enough strain
patterns from a healthy panel which is being tested under simulated operating load. The
database collected upon this condition is referred as baseline data set (undamaged database).
The availability of the baseline data set is of the essential need to define the diagnostic
algorithm based on outlier analysis.  In the other words, as the outlier analysis is considered
as an unsupervised algorithm, it is necessary and enough to only have the baseline database.
When designing outlier-analysis-based diagnostic unit, the most attention is given to the
definition of a threshold value against which the discordancy value of sensor readings can be
compared. This is necessary to label a sampled strain reading (observation) as an outlier or
inlier. This value is dependent on both the number of observations and the number of
dimensions of the problem being studied (Section 2.1). Confirming that the baseline strain
values, for each sensor, is distributed normally (see Section 2.1), a threshold value can be
obtained with the use of Monte Carlo method.

Detection of an outlier indicates that an abnormality is present in the behavior of the system.
This informs about a possible alternative mechanism inside the panel generating the
abnormality [7] [8]. After definition of a proper threshold value, any sampled observation
(strain readings) of the loaded panel can be checked against this threshold, thus, it allows
determining whether a damage is present in the panel or not. Working with a multivariate
data set in our case study, the Mahalanobis squared distance (Eq. 2.2) has been applied to
each sensor reading (potential outlier), which generates a scalar value that is checked against
an appropriate threshold value; this check provides a simple binary yes/no answer. The
system status is declared as a consequence.
In this chapter at first, data preparation framework is shortly discussed, where the necessary
data bases for threshold determination and algorithm testing are obtained. Then, the threshold
determination methods are discussed in details. MATLAB 2010a has been implemented for
the analysis of this chapter.

4.1 Procedures to data preparation

Data sets which are utilized in the context of outlier analysis are acquired from four
experimental fatigue crack propagation tests, namely test panel l, 2, 3 and 4. Within the
empirical tests all panels are subjected to a harmonic load which varies in range of 3.5KN to
35KN. Strain measures, for both damaged and undamaged scenarios, are sampled from 20
installed FBG sensors with a frequency of 1000Hz.  Note that this is the raw database which
is not used directly in the procedure of the design and testing of the algorithm. We shall take
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the same exact approach in data preparation and feature extraction which was taken in
chapter 3; therefore, again using both peak strain sampling and random strain sampling
modes.

After designing the diagnostic algorithm, the testing is performed where the both baseline
data set and damaged data set are used in testing. It is expected that these two testing data
sets will be labeled as normal data and damaged data respectively.

4.2 Threshold determination using Monte Carlo approach

The Monte Carlo approach (Section 2.4) in threshold evaluation makes uses of the
discordancy values calculated over sensor readings (sampled observations) of the baseline
condition. The scalar discordancy values can be evaluated by the use of the Mahalanobis
square distance (Eq. 2.2). Therefore, before going through the Monte Carlo approach, we
shall obtain the parameters “standard deviation ( )” and “mean ( ̅)” which are present in
the Equation 2.2. As the working data sets are multivariate, these tow parameters are given in
the forms of vectors.

As we will discuss later in Section 5.3, a calibration is performed on the experimental data in
which the mean value of the baseline strain measures (of each sensor-dimension) is set to
“one”. Therefore, all the elements of the mean vector are equal to one. The is calculated
over the distribution of the baseline strain measures (of each sensor-dimension), which are
sampled in the random mode (see Section 3.3). For example, 100 strain measures
(observations) are sampled randomly in time when the panel is loaded in its baseline
condition, thus providing a 20 × 100 matrix (20 FBGs or dimensions) of baseline data set.
Then, the STD of each dimension is calculated to give the elements of vector .

Upon the availability of these two parameters, the indicated procedure in Section 2.14 is
taken, in order to define the threshold. Note that some modification has to be done to make
the methodology applicable to our case study. Here, for the sake of convenience we shall
restate the steps (the necessary modifications have been executed):

1. Construct a ( × ) (number of dimensions×number of sampled observations) matrix
with each element being randomly generated from a one mean and calculated
standard deviation over the baseline strain measures, with a normal distribution.

2. Mahalanobis squared distances calculated for the all observations, using equation 2.1
where { ̅} and [S] are either inclusive or exclusive measures (depending on the type
of threshold being conducted), and the largest value stores.
The vector ̅ is a unit vector, and [S] is calculated over the baseline data set.

3. Process repeated for large number of trails (e.g. 200 times) whereupon the array
containing all the largest Mahalanobis squared distances then ordered in terms of
magnitude. The critical value for 5 and 1% tests of discordancy for a p-dimensional
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sample of n observations are then given by the Mahalanobis squared distances in the
array above which 5 and 1% of the trials occur.

4. Having the vector of largest Mahalanobis squared distances, in the last step, the mean
value and the STD of this vector is calculated. Then, the threshold of 95 and
99% confidence intervals (CI) (95 and 99% of the discordancy values fall in that
interval) are calculated as following:

% = + 1.96 ×
and

% = + 2.58 ×
respectively. This is adopted as 5 and 1% tests of discordancy for a p-dimensional
sample of n observations above which 5 and 1% of the trials occur [11].

4.2.1 Specifications on threshold determination

As it will be mentioned in Section 5.3, there are a variety of factors that contribute to the
presence of an uncertainty in sensor readings for both baseline and damaged strain patterns.
This uncertainty actually explains the reason why the strain reading of each sensor shows a
distribution, as they are influenced with this uncertainty. Furthermore, it has been mentioned
in chapter 3 that the strain readings for small cracks do not show sensitivity to the damage
presence. Therefore, these strain readings adopt values similar to the baseline strain
measures. Knowing these facts, we can include the strain measures of small cracks inside the
baseline database, which is used for the determination of the threshold (Fig. 4.1).

This approach suggests a number of benefits. First, we are provided with a larger baseline
database, which results to a more robust evaluation of the parameters of Equation 2.2.
Second, we end up with a baseline database that its distribution nature is more normal
(normal distribution of the data is a priory condition to use Monte Carlo Method). Third, we
insert the uncertainties in the final value of threshold; this provides a more robust threshold
as it decreases the probability of receiving a fake alarm due to the variation of the strain
readings which is caused by uncertainties.
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Figure 4.1 First four crack lengths of str3-brgg3 are taken to produce 13th dimension of “total testpattern 1”

4.3 Evaluation of the algorithm with experimental crack
propagation

After calculating the threshold value, in the next step, it is possible to check the performance
of the algorithm with a real crack propagation which is located in the centre of the panel. The
data which are provided for testing phase are sampled in the random mode (see Section 3.3).
In this method 50 normalized strain measures (observations), for each crack length, have
been sampled. In the next step the, each single strain measure is fed to the equation 2.2, in
order to assess the corresponding novelty value. Then, this novelty value which is an index of
the discordancy of the observation is compared against the threshold. Any novelty value
which falls above the threshold can be assumed as the presence of damage inside the panel.

In the next step, we shall to define a proper representation for the algorithm, wherein the
performance of the algorithm can be evaluated by an experimental strain pattern (see Fig.
4.5). In the Figure 4.5, Mahalanobis squared distance (novelty value) of all observations is
given as an implicit function of crack length. In the other words, all 50 novelty values
(corresponding to 50 observation) for each crack length is included in between of two
vertical lines. Note that Mahalanobis squared distances are given in log scale.

The reason lying behind this behavior is the fact that starting from a small crack length,
passing from one small crack length to the next one (e.g. crack length 16mm to 24mm) every
dimension experiences a variation in both mean value and standard deviation (data points
dispersion). In fact this variation has nothing to do with the sensitivity to crack presence but
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intrinsic noise of the system (highly possibly coming non-linear load effects and
temperature). Thereby there is an accumulation of the contribution of each dimension in
equation 2.2 which results in a larger novelty value as output using equation 2.2 comparing
to only when the sensitive sensors are considered. However, at larger cracks (e.g. above
45mm), where only monotonically increasing trend can be observed, the less sensible sensors
introduce a negligible contribution and the sensors 8 and 13 which are the closest to the
damage location project a dominant quantity in the output of equation .

Figure 4.2 Novelty values calculated for different crack lengths by using Mahalanobis squared distance (log scale). The
horizontal red line is the threshold.

4.4 Outlier analysis and damage localization

To go further it is possible to implement outlier analysis for damage location detection. This
analysis is not suggested for a real application, since the maximum precision in estimated
location using this methodology is incomparable with offered precision of methodology
which is conducted in chapter 5 (the application of the artificial neural networks). The
method applied here, proposes a very straightforward procedure to localize the crack.

To do so, a dimension reduction of the both baseline and damaged databases has been
considered. To be specific, the databases are divided into subsets, where each subset contains
only some of the sensors reading. These subsets once include the strain readings from FBGs
located on each stringer, and once the strain readings from FBGs located on each Bragg.
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In the next step the novelty values are calculated and represented in a similar manner of that
done for entire panel. When the novelty values of each subset are compared against the
corresponding threshold, it can be seen that at a certain crack length the threshold has been
surpassed (see Figure 4.6). However, this crack length is not equal for all subsets, and this
can be used to understand which is the closest stringer or Bragg to the damage site; e.g. by
looking to the Figure 4.6, the novelty values relevant to the third Bragg subset surpasses the
threshold at an earlier crack length. This can indicate that damage site is close to the central
Bragg.

Adopting the same path for the data subsets relevant to the FBGs located on stringers, we
obtain four corresponding plots of calculated novelty values (see Fig. 4.7). Considering these
plots, it is simple to decide that stringers 2 and 3 are the closest to the damage location; since
on average they violate the threshold from smaller crack lengths. Finally, when considering
Figures 4.6 and 4.7, one can infer that damage site is located somewhere close to the centre.
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Figure 4.3 Damage localization - Comparison of novelty indices provided from 5 different datasets. Each dataset is the
strain measures of FBG sensor located on one Bragg.

Figure 4.4 Damage localization - Comparison of novelty indices provided from 4 different datasets. Each dataset is the
strain measures of FBG sensor located on one stringer.
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Figure 4.3 Damage localization - Comparison of novelty indices provided from 5 different datasets. Each dataset is the
strain measures of FBG sensor located on one Bragg.

Figure 4.4 Damage localization - Comparison of novelty indices provided from 4 different datasets. Each dataset is the
strain measures of FBG sensor located on one stringer.

52

Figure 4.3 Damage localization - Comparison of novelty indices provided from 5 different datasets. Each dataset is the
strain measures of FBG sensor located on one Bragg.

Figure 4.4 Damage localization - Comparison of novelty indices provided from 4 different datasets. Each dataset is the
strain measures of FBG sensor located on one stringer.
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4.5 Threshold determination for the panel with the broken
stringer

A panel with damage initiated from a stringer is another case of interest. When a stringer
fails, the other stringers have to tolerate the extra load, and this extra load is sensed by other
sensors which results in a large strain values to be sensed by FBG sensors on other stringers.
As a consequence an abrupt increment occurs in damage indices of sensors positioned on
remaining stringers. Due to this large change it is expected that novelty indices surpass the
threshold immediately after the presence of the crack of smallest measure (Fig. 4.10).

Figure 4.5- Novelty detection for panel with broken stringer
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Chapter 5 The machine learning approach (MLP feed-
forward)

Artificial Neural Networks (ANN) have been selected as the most appropriate tool for the
damage diagnosis, mainly because of their ability to reason on the basis of the experience
created during the training phase. This basic knowledge is provided hereafter through finite
element simulations, thus reducing the cost of the design phase. The structure of the adopted
algorithm is described in Section 5.7, while Sections 5.7, 5.8 and 5.9 present the methods
adopted in order to optimize the learning process of the artificial neural networks, aimed to
increase the robustness of the structural diagnosis. The possibility to predict the SHM
performance in both simulated environment and real experimental data acquired during
fatigue crack propagation are described in Section 5.10. The ANN toolbox provided by
MATLAB 7.10.0 R2010a has been used hereafter.

5.1 Hierarchy of diagnosis algorithm

As it is mentioned in chapter 1, a hierarchy of procedure toward diagnostic and prognostic
together can be defined. Anomaly detection (classification), damage localization, damage
type identification, assessment of damage extent and prediction consist the different steps in
this hierarchy. However, the current case study only concerns the development of a
diagnostic algorithm, thereby no study about prediction or prognosis unit has been carried
out; furthermore within the diagnostic algorithm damage type identification (which refers to
identifying damage whether it is located on a skin or stringer of the panel) is excluded from
our study. A hierarchical model based on Neural Network is investigated in order to detect
the presence of the damage, to give a measure of intensity of damage and to locate the
damage. Two latter steps in the hierarchy will initiate in case the output of anomaly detection
confirms a damage presence.

The first step is an ANN employed to identify the presence of an anomaly and, in case of
damaged structure; the second step of the diagnostic hierarchy is assigned to characterize the
intensity of damage. As it is declared we do not regard the damage type identification in
literature of the current case study, therefore we only focus on skin crack scenario, and the
stringer failure case is not conducted. However the stringer failure assessment holds an
identical path to the one of skin crack. Interested readers can refer to [4].

The Diagnostic Unit can be divided into two macro-steps:

• Anomaly detection level is intended to indicate whether or not there is damage in the
structure, and this will be a problem of pattern recognition.
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• Following the case of damage detection, the corresponding levels of localization and
quantification specify in detail the position and the dimension of the damage. Both levels
represent a non-linear regression problem.

5.2 Database creation for diagnostic unit

Building a diagnostic unit using MLP neural networks, we need to establish a numerical
model, which is used to generate the simulated experience, necessary to train the diagnostic
unit. Two databases are available from [4], one for skin crack damage, the other for stringer
failure. The latter one is not of concern of the analysis of this chapter.

Concerning skin crack, a total number of 1700 cases have been simulated, increased to 3400
if the symmetry with respect to the vertical axis is considered. In particular, 17 crack lengths
have been simulated, ranging from 20mm to 100mm, with 5mm step. 100 crack centre
position have been considered at each crack length level, randomly selecting the [x, y]
position of the crack centre, within the validation region which is a rectangular region
covering the centre of the panel. The borders of the region have = 75 , = 525 ,= 70 , = 370 coordinates. It is important to notice that the positions of the
simulated crack centers are different at each crack length level, thus allowing more efficient
scan of damage domain. The damage index map (normalized strains) to be used for the
diagnostic has been calculated for each damage case. Apart from the required computational
effort there is no practical restriction of the number of damage examples that one can
simulate [4]. However, the minimum crack length is limited to 20mm because of the sensor
damage configuration adopted during experiment. In fact, given the fact that the skin crack
will be initiated in the centre of the bay the strain sensitivity for a sensor located on stringers
will be insignificant for cracks smaller than 20mm. this is clearly shown in Figure 5.1, where
numerical and experimental damage indices are compared as a function of crack length for
the identical sensor-damage configuration of the previous chapters. The efficiency of the FE
model to describe the damage effect is evident. Due to the fact that the sensors are located on
stringers, the early crack detection is not possible for damage located in the centre of the bay,
with a relatively damage index sensitivity practically equal to null when the crack is shorter
than 20 mm. This is true for all the strain readings from the sensors closest to the crack site.

5.3 Evaluation of two scaling methods and their relevant
uncertainties

Assuming that the FE simulation perfectly models the real panel while a particular loading
condition applies, it is expected that the strain measures of the experimental tests and
simulated environment will be the same in both undamaged and damaged (a crack of certain
position and length) scenarios. This of course does not happen in reality as the FE model
shows a level of uncertainty in matching real experimental model. As the algorithms of
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diagnostic unit are trained with the simulated model in the final scope of inferring the state of
a real model, investigating and understanding the extent of this uncertainty is important since
it surely influences the inference. To simplify the uncertainty analysis, the sensor readings
for both the real experimental panel and the FE model can be grouped into baseline condition
measure and the measures of damaged cases.

The uncertainty present in sensor reading relevant to the damaged scenario is the result of
various interfering factors as they are discussed in the following. If the FE simulation and the
virtual sensor network do not perfectly model the real panel, e.g. incorrect positioning of the
virtual sensors, having a geometry property different from the real panel and etc., a nonlinear
divergence (as crack evolves) in some sensor can be expected. Another reason for this
discrepancy between the FE and the real model comes from the testing condition i.e.
presence of some local stress distribution (due to localized loads and local temperature
variation) within the panel during crack propagation which influence only few sensors. This
testing condition variation only occurs in the real experiment. On the contrary, the condition
of simulation environment is totally under control. Another cause to this uncertainty can be
referred to the fact that in the real experiment the crack initiation site is somehow controlled
but its evolution cannot be controlled; therefore a controlled propagation from the crack
initiation spot cannot be guaranteed. This will obviously affect the sensor readings differently
from the FEM, where both the crack initiation and the evolution are imposed by the designer.

Concerning the inevitable presence of uncertainty in the sensor readings also for the baseline
condition, fewer factors contribute to the uncertainty level. Since strain measures are
acquired only once (compared to the damaged case that has to be repeated for different crack
lengths) the testing condition variation can be supposed as controlled. Therefore the only
causes for discrepancy of the FE model baseline measures from the real one are referred to be
first having a FE model which is different from reality, second, bad positioning of the virtual
sensors and, third, any environmental mismatch with respect to the modeled baseline
condition. The discrepancy present in baseline strain measures can be represented as a
difference vector.

At this step it is convenient to perform a calibration in a way that can at least exclude the
uncertainty in the baseline (undamaged) strain measures between FE and real model. The
baseline signal for both real and simulated model can be simply evaluated by testing them.
Therefore the path to calibrate the FE model on the real model at baseline condition is
straightforward. This calibration makes use of scaling vector. Two methods for calibration
have been suggested and their corresponding performances have been evaluated for both
methods. This evaluation is based on their uncertainties and their influence on the
performance of diagnostic algorithms. The uncertainty is considered as a discrepancy of real
experimental sensor readings from the corresponding readings of the FE model, calculated at
any crack length. It was stated before that the only available experimental database is for
centre crack propagation. Therefore, the calculated uncertainties regarding each virtual



57

sensor measures in the FE model, at each crack length, belong to a central damage evolution.
Due to the fact that the crack lengths at which the strains have been acquired are different for
experimental model and the FE model, interpolations of strain values has to be performed.

It is said before in chapter 3 that sensors are not sensitive to defects of small size. Therefore
the normalized strain values, for these small cracks, are expected to be constant (assuming
that strain values vary linearly with load). Thereby, after performing the calibration,
concerning small crack lengths the only present uncertainty can have its origin in the local
stress distribution that might occur in experimental test. Notice that if the meshing property
of the FE model has been selected properly it must show a fairly flat trend at these insensible
crack lengths (see Fig. 5.1).

Considering insensible crack lengths, it was stated that factors “imperfect FE model” and
improper virtual sensor network” do not contribute to the uncertainty. Therefore, to take into
account all contributing factors, the uncertainty is calculated for sensor readings for cracks
greater than 40mm (sensible crack lengths). In this manner all the discrepancy causes are
counted in the uncertainty measure and no trivial effort of uncertainty calculations is done.

Before concerning our analysis with uncertainties we shall define a procedure to calibration;
in the other words data scaling. In the literature of the previous works done on this case
study, a different approach from the current work was taken in defining a scaling method.
We shall discuss both methods to illustrate the extent to which the final performance of
diagnostic algorithms can be influenced by a proper scaling definition.

After applying both scaling factors to the baseline strains of FE model, obviously the scaling
method which provides less uncertainty in the damaged strain pattern corresponds to a better
matching of the FEM model to the experimental models. This results, as the ANNs are
trained with a more similar FEM model to experimental ones, to a better mapping of trained
ANNs and therefore better prediction when dealing with real observations. In the first scaling
approach the ratio of baseline readings of each real sensor to the corresponding virtual sensor
is calculated to compile a “ratio vector”. In the next step all the strain measures of both
baseline and damaged conditions are multiplied by this ratio vector. Therefore, baseline
strain values for centre crack propagation of real and simulated models initiate from a same
value for a sensor (Fig. 5.1). The elements of the ratio vector are calculated using Equation
5.1, where represents the number of the sensor. Letters and stand for real model and
simulated model respectively. = (5.1)

When applying the second scaling method two scaling vectors are calculated. One of the
vectors holds the differential values of real baseline strains from 1, and the other vector has
the same property but for the FEM baseline strains. Subtracting the scaling vectors from the
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corresponding FEM and real databases, all the undamaged (baseline condition) and damaged
strain measures are shifted of a same quantity. In this manner all baseline sensor measures of
both FE and real model adopt the value 1 (Fig 5.2).

Figure 5.1 Fem verification by damage indices comparison between the Fem baseline and 4 experimental baselines for
sensors 8 and 4 (Left), and sensors 13 and 17 (Right) using first scaling factor

Figure 5.2 Fem verification by damage indices comparison between the Fem baseline and 4 experimental baselines for
sensors 8 and 4 (Left), and sensors 13 and 17 (Right) using second scaling factor

To obtain the uncertainties, the differences of real model damage indices (strain values) from
the FEM damage indices for crack lengths greater than 40mm are calculated obtaining a
matrix of uncertainty values. Then, the average values of uncertainties are calculated for each
sensor separately. The value of the sensor with the maximum averaged uncertainty
percentage (represented as the percentage of nominal strain value) is selected and shown in
table 5.1 for 4 available experimental tests. Most probably this maximum uncertainty
belongs to the nearest sensors to the damage site. This is because these sensor’s outputs
contain one more uncertainty (as mentioned before) which is due to the fact that center crack
evolution in the real panel does not happen as same as the crack which is modeled in FEM.
Thus, the crack presence influences the sensitive sensors of different extent. The last row in
the table 5.1 gives the uncertainty magnitude of any sensor in average.
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Test number Test 1 Test 2 Test 3 Test 4
Maximum uncertainty-
1st scaling factor

4.49% 4.70% 5.00% 4.37%

Maximum uncertainty-
2nd scaling factor

4.60% 5.83% 3.34% 4.1%

Average uncertainty-
2nd scaling factor

1.78% 2.13% 2.58% 2.43%

Table 5.1 Uncertainty values for two different scaling factors

As the uncertainties for both scaling methods show similar values (table 5.1), this can end up
with the decision that there is not a better choice between the two scaling methods. However,
when considering the anomaly detection algorithm of the diagnostic unit, the undamaged
database is part of the training process. Thus, any change in the baseline strain map can have
a notable influence in the performance of the algorithm which is irrelevant to the influence of
uncertainty in the training data. As it will be discussed later in the section 5.4, the baseline
strain values (undamaged database) in the training database are associated to 0 in the output
vector during training process. As a matter of fact, when the anomaly detection algorithm is
trained with the database which is scaled by implementing the second scaling method, it
shows a better performance than algorithm trained with the database provided by first scaling
method. No mathematical explanation is proposed here, but Figure 5.4 might help to
understand that visually it is easier to associate the straight line (a vector with elements all
equal to 1) to an undamaged case (0 in the output) rather than the zigzag line. In specific,
during the training process the MLP neural network adjusts its connection (synapses) weights
in a way that it can generalize better during testing.

Figure 5.3 Comparison between undamaged and damage indices provided by two scaling methods. The blue line is
obtained when applying 1st scaling method and the green line when applying 2nd one
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To compare the performance of the ANNs trained with databases provided by each scaling
method, two classifying plots are represented in Figure 5.4. The Figure 5.4 shows
classification algorithm performance where the additive noise (See Section 5.8.2) to the
training database is 4% in both undamaged and damaged data sets. At this level of additive
noise it is evident that the second scaling method provides a better performance for the
algorithm to allocate anomaly indices (green line).

Figure 5.4 Left: Performance Comparison of two scaling methods when additive noise is 4% in the data- Right:
Performance Comparison of two scaling methods when additive noise is 8% in the data

We do not discuss the performance comparison between quantification and localization
algorithms when applying the two different scaling methods. It is enough to mention that
even in the assessment context of these two algorithms, it is also proved that second scaling
method stands for more reliable predictions, especially when inferring the position and
intensity of the cracks of smaller sizes.

5.4 Artificial Neural Network definition

To reduce the dimension of the ANN and thus the number of parameters to be optimized
during the training process, the inference relative to different damage parameters (position
and length) has been divided into separate ANNs, thus allowing for a separate optimization
of each diagnostic level. Three standard (refer to section 5.7) feed-forward ANNs have been
trained to perform the anomaly detection, the localization and the damage quantification
respectively. Three types of ANN algorithms have thus been trained and are summarized in
Table 5.2. One supervised-learning algorithm has been trained for anomaly detection, for



61

skin crack. The algorithm takes the information on both the undamaged and damaged
scenarios during training as input and tries to correctly classify new inputs during testing.

ID Diagnostic level Input data Output data

Type 1 Anomaly detection
Normalized strain database for
undamaged and skin crack cases

0 = no alarm, for
undamaged patterns; 1=
alarm, for skin crack pattern

Type 2 Quantification
Normalized strain database for skin
crack damages

Crack length

Type 3 Localization
Normalized strain database for skin
crack damages

Crack centre position

Table 5.2 General information about input and output of ANNs of different types.

Anomaly detection algorithm is entitled to distinguish damage index patterns relative to real
undamaged condition. The input format is a vector of 20 elements corresponding to the
virtual damage index vector. The output format is a [0, 1] class index, being “1” and “0”
associated to the alarm and non-alarm cases respectively. In order to provide a more balanced
training database (only one healthy case model is available, versus 3400 skin crack damaged
cases), the undamaged scenario has been replicated by sampling each virtual sensor measure
from a Gaussian distribution, centered on the nominal numerical value of each measure. The
characteristic of this Gaussian distribution is interconnected with one of the considered
algorithm optimization parameters (see Section 5.8) through its standard deviation. Although
the FE model has been calibrated on baseline signal (Section 5.3), this does not take into
account any possible discrepancy between FEM and reality, as the scaling factors practically
refer to a particular load, temperature, etc. condition. The characteristic of this Gaussian
distribution is thus indicative of the uncertainty due to environmental influences
(temperature, loading condition, etc.) and has been based on data from previous studies
(Section 5.3).

As we decided to focus on algorithms for skin crack characterization, two functions fitting
ANNs have been designed to estimate the crack centre position (Type 2) and crack length
(Type 3)(see table 5.2). The input format for training is again a 20-element vector containing
the simulated damage index pattern. Each algorithm receives the simulated experience on
both the damage position and dimension variables during training as the input. On the other
hand, the output is the simulated crack centre position and crack length respectively. The two
algorithms are thus trained with the same database (the entire database for skin crack
damage, Section 5.2) and are asked to extract information on crack centre position and crack
length respectively. Only the data relative to damaged cases have been used during the
learning process for damage characterization.

A summary for the input-output format for Type 1 to 3 ANN is reported in Table 5.3. In
practice, also the damaged scenarios in some cases have been replicated through the addition
of a random Gaussian noise, as will be explained in detail in Section 5.8.
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ID Undamaged
DB
replication

Skin crack
DB
replication

Input matrix
format

Output matrix
format

Output

Type 1 2620 1 20 × 5240 1 × 5240 Index in [0,1] range
Type 2 0 1 20 × 2620 1 × 2620 Crack length
Type 3 0 1 20 × 2620 2 × 2620 [x ,y] coordinates

Table 5.3 Specification on input and output of ANNs of different types

The adopted training technique was common to all the ANNs and a summary of the
parameters defining the ANN structure and the training procedure is reported in Table 5.4,
while the theory background for ANN is presented in Section 2.2. Early stopping criterion is
also adopted to guarantee generalization (Section 2.2.7).

To end up with more robustly performing diagnostic algorithms both hidden layer and
neuron numbers have been optimized (Section 5.7). In particular, the input-output dataset has
been randomly split into three subsets, namely training, validation and testing sets,
containing the 70%, 15% and 15% of the data respectively. The optimal hidden neuron and
layer numbers are the one that provides the least Mean Square Error on the validation set
(Section 5.7.1).

ID
Input
layer
nodes

Hidden
layer
number

Hidden
layers
nodes

Outpu
t layer
nodes

Training strategy

Activatio
n function
for output
node

Activatio
n function
for
hidden
node

Type 1 20 2 10 1 Levenberg-Marquardt
back propagation

Hyperbolic
tangent

Sigmoid

Type 2 20 2 10 1 Levenberg-Marquardt
back propagation

Hyperbolic
tangent

Linear

Type 3 20 2 10 2 Levenberg-Marquardt
back propagation

Hyperbolic
tangent

Linear

Table 5.4- Specification on structures, training functions and activation functions for ANNs of different types

5.5 Application of Committee of ANNs for damage diagnosis

Figure 5.5 shows the effect of ANN training uncertainty for ANN types 1, 2 and 3, relative
to anomaly detection, quantification and localization of a skin crack. The results reported in
Figure 5.5 have been obtained by simulating centre propagating crack with the validated
FEM (similar to the one adopted during experimental test). The sensor network configuration
is identical to the one of the experimental panel (20 sensors have been used to monitor the
whole panel). A random Gaussian noise has been added to the simulated strain pattern. The
10% range with respect to the FEM nominal value corresponds to the 95% confidence
interval for classification. This percentage value is in compliance with the optimal value of
the parameter “additive noise” which is determined later in section 5.8.1. The “additive noise
level” to the training data is also called as “training noise (TN)”. Considering the
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quantification and localization algorithms, this “additive noise” parameter has been set to
null which is consistent with the results obtained in section 5.8.2. A random Gaussian noise
has also been added to the strain pattern which is used to test the algorithms. This strain
pattern is sampled from a simulated crack propagation. The 6% range with respect to the
FEM nominal value corresponds to the 95% confidence interval for all three types of ANNs.
This percentage value is in compliance with the average uncertainty calculated for 2nd scaling
factor and given in table 1.1.

Figure 5.5 (upper left plot) demonstrates the relevance of the additional uncertainty
introduced by random sampling from a training database. The mean of the 20 ANNs is a
suitable estimation of the true committee output (Section 5.4) and provides a reasonable
guarantee for the repeatability for the ANN output. The alarm threshold has to be set to 0.5 to
ensure an unbiased detection resulting in a minimum detectable crack length of around
60mm. Considering the original database unbiased with noise, the minimum detectable crack
length is however strictly dependent on the selected geometry, sensor network and damage
configuration [4].

Figure 5.5 (upper right plot) focuses on damage quantification. In crack length estimation,
attention is drawn to how the simulated crack propagation is reflected in the quantification
committee output. An upper limit of 100mm for crack length has been chosen. This value is
based on the availability of the skin crack damage database presented by FEM simulation
which is limited by the geometry of the panel. The algorithm performance decreases for
smaller crack lengths (simulated cracks from 20mm to 100mm have been included in the
training database); as a matter of fact, this is reflected in a close to null sensitivity of the
damage index (Figs. 5.1 and 5.2) for a 20mm crack located in the centre of panel. However,
the quantification algorithm should be run after the generation of the alarm obtained from the
anomaly detection level. When the pattern recognition algorithm classifies the structure
correctly (detection index equal to or above 0.5), the quantification inference becomes
accurate. The uncertainty associated to one single ANN is significant, while the expected
values of the plotted distributions (the committee output) accurately predict the target crack
length.

Localization has been performed once to estimate normalized X crack position and once to
estimate normalized Y crack position for the same centre crack propagation (notice that
target position does not exist for a 0mm long crack). Similar to the quantification algorithm,
the localization performance manifests a general improvement while considering more sever
damages (longer cracks). Figure 5.5 (lower left and lower right plots) show the uncertainty
in the estimated crack centre position related to one single ANN.

In conclusion, it is important to focus on the algorithm structure design. For the purposes of
the current diagnostic system, algorithms for damage quantification and localization always
give an estimate, independent of the existence of cracks. They should therefore be used in
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series with the anomaly detection layer which provides an index indicating the reliability of
the assumptions made by the other ANNs [4].

Figure 5.5 Effect of uncertainty in ANN training for the (upper left Figure) anomaly detection, (upper right Figure)
damage quantification, (lower left Figure) damage localization of X coordinate and (lower right Figure) damage

localization of Y coordinate. A FEM simulated centre crack is used for testing the algorithms.

5.6 Performance optimization of an artificial neural network
algorithm

There exist a variety of interfering factors where a proper choice of each, leads to an optimal
performance of a typical feed-forward back-propagation ANN. We shall parameterize these
factors and consider theme as variables. In the literature of the feed-forward artificial neural
networks, the performance is referred as a better targeting of the algorithm when the
algorithm is fed with a new experience. To seize this aim a comprehensive study has to be
done, in order to firstly understand what are the influential parameters in ANN performance
and secondly to optimize these parameters.

Whatever purpose that an ANN is designed for, one of the crucial factors in the performance
of a neural network is its structure, apart from the sufficiency and efficiency of the available
training database. Thereby, the very first parameters to be optimized firstly are the number of
hidden layers and hidden neurons (in general hidden units) of an ANN structure, and this is
discussed in details in section 5.7.
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Another influential parameter that is treated as an influential parameter in the performance of
an ANN is supposed to be an artificially added Gaussian noise to the training database, and
we will investigate its impact on ANNs of all three types. As it is discussed before, the
training database is provided by simulated experiments in FE model. Therefore, it is assumed
that the data are not biased with noise a prior, which is good for the sake of availability of an
unbiased database. However, presence of noise of a certain level in the training data sets of
ANNs turns to be of a great benefit for classification purpose, as it allows the ANNs to
generalize their output better to an objective function (Section 5.8.1).

Another factor that we are willing to treat it as an optimization parameter is the training data
size used in training phase of ANNs of any type. As it is stated before we are not confined in
generating simulated damaged cases of various positions and lengths throughout the panel.
Obviously, a greater generated database will correspond to larger time spent in training phase
of ANNs of any type. Usually ANNs are provided with unnecessarily large training database
in order to keep the safe side in efficiency of training phase. Therefore, for two reasons, it
becomes of essential use to have an idea about the sufficient volume of this data generation
which grants an acceptable performance of the trained ANNs of any type. First reason is that
for the similar ANN training process, that might be required in later analysis, a noticeable
amount of time will be saved; second reason is that when simulating other portions of the
fuselage (of the similar geometry of the current panel) a great time can be saved in generating
adequate number of damage simulations when applying a similar sensor network to that
portion. This justifies the necessity of conducting an investigation to realize the optimal data
size in training phase as it is carried out in section 5.9.

5.7 Optimal architecture of the feed-forward ANN

To decide on the optimal architecture of an ANN, it is possible to construct a number of
ANNs which differ in the number of their hidden unit and check the performance of each one
against a target, where this target corresponds to a minimal root mean square error of ANNs.
The RMS error is an indication of the performance of an ANN that is easily evaluated in
training phase over the training, validation and test data sets (See section 2.2.7) while
implementing the neural network toolbox of Matlab. Among these three subsets of the
original data set, training data set is adopted for the training phase (See section 2.2.7);
therefore it cannot be considered as an independent data set that can permit a fair judgment
on the performance of the ANNs. The subset which will base the performance analysis of an
ANN is the validation data set. Keep in mind that performance index (RMS error), which is
obtained from the validation set, however is only of use in this section. In the other
optimization arguments we shall take other approaches to verify the best performing ANNs.

Since training of a neural network is a time consuming process, a minimal but sufficient
number of structures are considered to prove the robustness of the methodology (to acquire
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enough knowledge about the performances of the ANNs as their complexity increases) on
one hand, and to make it time-justifying in training stage on the other hand. Considering a
maximum complexity of an ANN to have 3 layers and 20 neurons, a total number of 60
different structures for each of the classifying, quantifying and localizing artificial neural
networks are designed.

To realize a trend, RMS error versus structure complexity of ANN is presented in the Figure
5.6 for quantification and localization ANNs. Three different curves in each plot represent
ANNs with 1, 2 and 3 layers where each varies in its number of neurons from 1 to 20.
Considering a maximum number of 3 layers and 20 neurons for the structure of an ANN, a
total number of 60 different structures for each of the classifying, quantifying and localizing
artificial neural networks are designed.

The performance is dependent on both number of hidden layers and number of neurons. For
the ANNs of 1, 2 and 3 layers, generally, the performance is enhanced as the number of
neurons increases in hidden layers. Based on this one can decide on more complex structure
to be assigned to the further analysis, but the fact is that, there is not much of the
performance difference between ANN having 2 hidden layers and 10 neurons and an ANN
having 3 hidden layers and 20 neurons in each. So, there is a need to compromise between
the complexity of the chosen optimal structure and it’s inevitably increasing training time in
the afterward analysis. To simplify our analysis, in our case study, one same optimal
structure for pattern recognition and function fitting has been selected which consists of 2
hidden layers and 10 hidden nodes in each.

It is worth to mention that the reason why the curves do not show a smooth trend, as the
number of hidden neurons increases, is because the split of the original data set (data set
acquired from the simulated environment to train ANNs) into training, validation and test
sets is carried out randomly, and also the initial synapses weights are adjusted randomly. This
random selection of validation dataset results to different RMS error even for two ANNs of
the same structure. In Figure 5.6 to provide a smoother curve one can train 10 ANNs of each
structure and make an average of RMS error of it, so the effect of the randomness of data set
split and weight adjustment are attenuated. This approach has been neglected since this will
be a time consuming approach to train an overall 1800 ANNs.
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Figure 5.6 RMS error evaluation for ANNs of different structures calculated for quantifying algorithms (Left) and
localizing algorithm (Right)

5.7.1 Statistical evaluation of RMS error of best performing ANNs

The artificial neural network can be employed for three major application fields; function
fitting, pattern recognition and data clustering. In the current case study the neural networks
are used for two first above-mentioned purposes. In the literature of this work pattern
recognition ANNs are referred as “classification” ANNs, and function fitting ANNs are used
for damage “localization” and “quantification” purposes. The classification ANNs are
employed to assign an anomaly index to each new input where this index varies between 0
(no crack exists) and 1 (presence of crack), and this allows for understanding the integrity
state of the structure. The quantification and localization ANNs are used in series with the
anomaly detection layer and aim to quantify and localize the existing crack respectively.

For classification networks the RMS error of best classifying ANN is 0.16 (see Table 5.5),
which correspond to 16% deviation (in average) in the ANN predictions from the true index
of the class (0 for undamaged and 1 for damaged). This RMS error for a baseline signal and
for large crack lengths tends to null and for the small cracks this error can adopt values much
greater than 16%. However, this indeed is a very good precision of prediction for
classification algorithm. This actually is not the case when the simulated data used in training
has to be biased with a level of noise (Section 5.8) to satisfy a defined objective (see Section
5.8.1) in the context of classification. Furthermore, the ANNs are going to be tested with
simulated crack propagations which are biased with a level of noise which obviously
increases the RMS error in predictions. This noise percentage is in compliance with the
uncertainty measured on real test with respect to the FEM in presence of damage and after
model calibration (See Table 5.4).

For quantification, the RMS error in predicting the length of the crack inside the panel
inferred by the best performing ANN is 8.52 mm. So, during the evolution of the crack from
20 to 100 mm the deviation of about 8.5 mm is expected. This is different from reality where
we again have to count for uncertainties as we did for classification.
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Table 5.5 The best performing ANNs based on their structures for Classification, Localization and Quantification
algorithms and their relevant RMSE error which has been calculated over the validation set of the training database

For localization, since both X and Y values of the crack position are normalized by the side
lengths of the panel, the dimensionless RMS error is multiplied by the length of the panel to
have the final error in millimeters. This is not a precise approach but an approximation,
because the error value belongs to both x and y predictions, and we only use the length of the
panel to convert it to millimeters. Finally, in position estimate an error of about 48mm can be
expected from the best performing ANN, where the uncertainties are excluded from this
evaluation.

5.8 Algorithm performance optimization by Gaussian noise
addition

As discussed in section 5.2 a number of factors contribute to the presence of an uncertainty
in FE model simulation to fit the real model. One of these factors was identified as local
stress distribution present within panel which comes from environmental influences. In the
real operational condition, each sensor installed on the fuselage can undergo a level a local
stress distribution that manifests as noise in strain measures which is often uncorrelated
among different sensors, thus generating “unexpected” strain maps. This makes the
interpretation requirement for the ANN a challenge.  Moreover, many training patterns are
needed to correctly represent complex functions with ANNs and the addition of noise can be
regarded as a methodology for regularization, allowing the ANN to generalize beyond the
training set. In this section we treat the artificially added noise to FEM database as a variable
that can optimize the performance of classification, quantification and localization algorithms
(later we will see that noise addition does not introduce any contribution to the performance
of the second and third level algorithms of diagnostics). This approach has been taken
because the function describing the relationship between the strain map and damage
parameters is difficult to approximate. This additional noise can also count for uncertainties
which are the result of other factors; i.e. unavailability of a perfect FE model and imprecise
configuration of the virtual sensor network. Thus, noise is another parameter that needs to be
defined (Eq. 5.2) and optimized [4]. = 1 + %× . (5.2)

ID Optimal number of
hidden layers

Optimal number of
number of neurons

RMS error over
validation set

1 2 19 0.16
2 3 16 ≅ 0.08 × 600 =48 mm
3 3 12 8.52 mm
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Equation 5.2 relates artificially noised strain to the FEM nominal value .% is the percentage noise with respect to FEM nominal strain and r is a random
number sampled from a Gaussian distribution with zero mean and unitary standard deviation.
The division by 2 is related to the association of a 95% confidence to the specified
percentage% .

5.8.1 Objective definition for classification algorithm

As it is discussed before the strain measures are not sensitive to the defect presence if the
crack is short in length. It corresponds to strain overlaps between the strain readings of
baseline condition and small cracks. However, the quantity of this “small crack” is strongly
dependent on crack configuration and sensor network as it was mentioned in section 5.5.
When training a MLP neural network with such data in the scope of pattern recognition, due
to overlap in two classes (undamaged and damaged), misclassification in the later testing of
the ANN is inevitable (see Fig. 5.4). However, it is possible to achieve perfect separation of
the training data by having a highly flexible model (complex model) as decision boundary,
but this does not guarantee a good separation of the testing data. In fact a highly complex
model can cause a poorer generalization performance than a model with intermediate
complexity [13].

To overcome the problem we shall redefine what is considered as damaged state. To do so,
the panel is considered faulty for cracks larger than 60mm and under this value the panel is
considered as healthy. With this assumption, a perfect classifying algorithm is expected to
release an alarm (in ANN testing phase) when the crack length has a value equal or greater
than 60mm. In the other words, ANN has to adjust an anomaly index above the threshold
(0.5, see section 5.5) when the strain reading belongs to a crack larger than 60mm. Actually
by setting the alarming threshold to 0.5 and minimum detectible crack lengths to 60mm, we
have indicated a objective against which the generalization performance of the classifying
algorithm can be evaluated in the next section.

5.8.2 Procedure to Classification algorithm optimization using additional
noise

Before discussing performance optimization of the classifying ANNs by any parameters of
section 5.6, we briefly explain an initiative that can enhance the reliability of the final
algorithm. It is important to verify the performance of diagnostic algorithms of any type, for
all possible crack propagation scenarios (cracks of different sizes and positions). In
optimizing the ANN performance with “additive noise” parameter, once that the parameter
selects a new value, the training process is repeated. The trained ANN, then, is tested with
crack propagation of certain position including crack length variability from 0 to 100mm.
This testing is done to provide another parameter that can be evaluated against the objective
defined in section 5.8.1. However, it is possible to elevate the reliability of the methodology
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by introducing a variability to the position of the candidate crack propagation, which are used
for testing. To make this happen 9 simulated crack propagations of different positions (see
Fig. 5.8) are generated through the FE model. Again a Gaussian noise is added to the data
sets of crack propagations. The 6% range with respect to the nominal strain value
corresponds to 95% confidence interval. This percentage value is in compliance with the
uncertainty percentage present in FEM model and given in table 5.1. As a result of noise
addition, a completely new strain pattern is generated. Therefore, the noise addition can be
adopted as a strategy to generate more strain pattern samples from a same crack position. In
this manner, more crack propagations are available that can be used in algorithm testing. This
allows for a more robust evaluation of the performance.

Figure 5.7 Positions of crack propagation chosen for testing diagnostic algorithm for classification, quantification and
localization; 9 crack propagations simulated in FEM

The anomaly detection for single ANN and committee is a supervised-learning classifier. Its
classification is essentially based on damage index sensitivity, which is clearly visible in
Figures 5.1 and 5.2 and small cracks can therefore easily be confused with the undamaged
case (missed detection) and vice versa (false alarm). The addition of noise during the training
phase masks small damages, due to the fact that the effect of a crack on the strain field has
the same order of magnitude as the noise itself. Consequently, only pronounced damage will
contribute significantly to the synapses weight optimization during training and will produce
a robust output curve, at least for the anomaly detection inference.

Here, a methodology is adopted that checks the performance of classifying ANNs by
producing three probability parameters. Probability of false alarm (PFA), probability of
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missing event (PME) and the probability of wrong decision (PWD) are the parameters upon
which we judge the performance. As it is mentioned in section 5.4, a classifying (anomaly
detection) algorithm allocates an anomaly index between 0 and 1 to each sensor reading.

After designing a classifying network, it is tested with a crack propagation e.g. crack number
5 (Fig. 5.7). Each crack propagation data set has 20 dimensions corresponding to 20 virtual
sensors. Each virtual strain pattern relevant to a simulated crack propagation has been
replicated 5 times by sampling each virtual sensor measure from a Gaussian distribution. The
classification algorithm is then tested with all 5 replicated strain patterns, producing 5
anomaly indices for each crack length. Based on the defined objective of the classification, it
is an ideal result to have all anomaly indices below threshold for cracks smaller than 60mm
and above threshold for cracks larger than 60mm. However, some misclassifications will
obviously occur for the classifying ANN.

PFA is the probability of having outputs above the threshold for the cracks smaller than
60mm. In a similar way one can define PME which counts for probability of having outputs
below the threshold for the cracks larger than 60mm. Having PFA and PME, it is
straightforward to calculate the PWD, which is the average of PFA and PME (see Fig. 5.9).
Once the optimization parameter “additive noise” has been set to a new value (addition of
Gaussian noise to the training database), the training process is repeated. PFA, PME and
PWD are also calculated again, after testing the ANN with all 5 replicated strain patterns.
Having calculated PWD for different levels of “additive noise” in training data, it is simple to
decide the optimal value of the parameter, which is coincident to the minimal value of PWD.
Figure 5.8 shows an optimal additive noise level of 10% at which the minimal value of PWD
is obtained. This means that the optimal additive Gaussian noise, with 95% confidence
interval, ranges 10% of the nominal strain value. Accordingly, the presence of this level of
normally distributed noise, contributes the classification ANN to generalize better to the
objective defined in section 5.8.1.
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Figure 5.8 Optimal noise level (OPNL) determination. PFA, PME and PWD calculated for anomaly detection
(classification) algorithm when applying a single neural network. Algorithm performance calculated for crack

propagation positions number 2, 5, 6 and 9

The performance of a single ANN was studied in the beginning of this section. Concerning
the application of committee of MLP neural networks, an average of 20 network predictions
is used as the committee inference. Thus, the parameters PFA, PME and PWD can be
calculated in an identical manner to the one of the single network. The PWD is calculated
for the committee of 20 ANNs and it again shows a minimum when the additive noise level
is about 10% (Figure 5.9).

To have a better understanding of the generalization performance of the algorithm at all
possible crack positions, the calculated PWD is averaged over 9 crack positions. These
average PWD values, for both single ANN and committee of ANNs, are given in table 5.6
for different levels of parameter “additive noise”. In this average mode of PWD it is clear
that on average an additive noise level of 10% in training data provides the best performance
for classification ANNs to generalize better to the objective defined in section 5.8.1.
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Figure 5.9 PFA, PME and PWD calculated for anomaly detection (classification) algorithm when applying committee of
20 networks. Algorithm performance calculated for crack propagation positions number 2, 5, 6 and 9

Table 5.6 The average probability of wrong decision (PWD) for single network and a committee of networks is
calculated and represented versus the additional noise level

The graphical representation of the two averaged PWD parameters versus noise level in the
training data is given in Figure 5.10. As these two parameters are indices of generalization
performance of classifying ANNs, one can easily decide on 10% of additional noise as it
coincides with a minimum PWD when applying both of single ANN and committee of
ANNs.

Noise level [%] 0 2 5 8 10 14 20
Average PWD of
single ANN [%]

49.60 44.15 27.09 17.27 10.87 21.35 32.92

Average PWD of
COMT [%]

49.63 44.94 26.67 11.36 7.53 17.90 29.01



74

Figure 5.10 Average probabilities of wrong decision (PWD) which is calculated by averaging the PWDs of both single
ANN and committee of networks of 9 crack positions

5.8.3 Procedure to Quantification and Localization algorithm optimization
using additional noise

In classification we decided to define an objective against which the generalization
performance of the classifying algorithm was evaluated. However, in working with
quantification and localization algorithms the procedure is routine, where we simply set the
objective to minimization of RMS error of the designed ANNs.

Two parameters have been used for quantification and localization performance analysis in a
simulated environment. First parameter offers an index of single neural network
performance. To do so, 100 strain readings are simulated in randomly selected positions. This
is repeated for each crack length. Then the root mean square error of 20 ANNs is calculated
separately, for each crack length, over the 100 strain readings. Finally, the average of 20
RMSE values for each crack length is taken to have a more robust assessment of the
performance of a single ANN. This is accomplished by using Eq. 5.2

= 1 ∑ ( − ) + ( − ):
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for localization where x and y are the coordinates of the estimated crack centre position,
and are the coordinates of the target crack position, referrers to the total number

of strain readings selected for each crack length and is the total number of ANNs
belonging to the damage localization and quantification ANNs. The parameter

= 1 ∑ ( − ):
is used to check the performance of the quantifying ANNs where and are estimated
crack length and the target crack length respectively. Results are reported for both
quantification and localization in Figure 5.11 (left plot) and Figure 5.11 (right plot)
respectively.

The second parameter concerns the performance of committee of ANNs (see Section 5.4)
and is expressed through Eq. 5.4 and Eq. 5.5. It is an error in the committee output indicating
the distance of the committee estimated crack centre from the target position for localization
and the difference of the committee estimated crack length and the target crack length for
quantification. Results are reported for both localization and quantification Figure 5.12 (left
plot) and Figure 5.12 (right plot) respectively.

Θ = ⎷⃓⃓⃓⃓
⃓⃓⃓⃓⃓∑ ∑ − + ∑ −

Θ = ∑ ∑ −
Where ∑
represents the output of committee of ANNs.

Regardless of the parameter “additive noise”, a small increase in the precision of the ANN is
evident for both parameters as the crack length increases; nevertheless this tendency is not
stable over the entire crack length range. To produce non-trivial results, two parameters have
not been calculated for the undamaged case for localization (crack length equal to 0mm).
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Nevertheless in Figure 5.11 (left plot) and Figure 5.12 (left plot) these two parameters are
calculated even for 0 crack length for quantification to give an idea of algorithm prediction in
an undamaged scenario. Here, it is enough to mention that selected optimal additive noise
level (OPNL) for quantification and localization is 0%. The RMSE for localization ANNs
has been calculated over normalized X and Y coordinates, therefore, it is dimensionless.

Quantification and localization algorithms essentially perform a multi-dimensional regression
on the available simulated data, and the available database contains enough information for
the optimization of the algorithm functions.

Figure 5.11 RMS error is calculated as an index of performance of a single ANN as a function of the noise level available
in training dataset.  This has been calculated for quantification algorithm (Left) and localization algorithm (Right). RMS

error calculated over observations of 100 randomly selected crack positions for each certain crack length

Figure 5.12 RMS error is calculated as an index of performance of committee of ANNs as a function of the noise level
available in training dataset.  This has been calculated for quantification algorithm (Left) and localization algorithm

(Right). RMS error calculated over observations of 100 randomly selected crack positions for each certain crack length

5.9 Optimizing training database size used in ANNs training

For ANNs of any type, the training database has to contain a good variability, in the sense
that it has to be a good representative of all possible damaged configurations that can occur
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on the panel. Furthermore, for ANNs of type 1, as said before, in order to provide a more
balanced training database the undamaged scenario has been replicated by sampling each
virtual sensor measure from a Gaussian distribution. This replication is specifically done for
the first level ANNs, since the undamaged scenario is excluded from training phase of type 2
and 3 ANNs.

One can claim that volume of the available training database (see Section 5.2 and Table 5.3)
is unnecessarily large that costs an extra training time, or in the opposite an inadequate
training database resulting to an unreliable diagnostic system. There was no preliminary
available methodology for the current case study to determine the ideal training database
size. Therefore, it is found convenient to parameterize the concept of the optimal training
database size, in a same approach which was conducted to define parameters “OPNL” and
“optimal architecture”. The initial assumption is that the primary training data size is
unnecessarily large which costs an extra training time. Therefore, the evaluation of the
parameter “database size” automatically concerns the reduction of the primary selected
database size.

In the next step, a size reduction vector is defined where each element of the vector
corresponds to the volume percentage of the primary database that must be randomly
eliminated. Starting with 0%, this volume reduction is conducted up to 95%. The 95% data
elimination corresponds to 260 sampled strain readings for classification and 130 sampled
strain readings for quantification and localization each, which are used as new training
databases. As the optimizing parameter adopts a new value, the training phase is repeated
over the resized database. Then, the generalization performance of the trained ANN is tested
against the objective parameter which is PWD for classification ANN and RMS error for
quantification and localization ANNs. In the training process of ANNs of any type, the
variability of the parameter “optimal data size” is considered together with the variability of
the parameter “OPNL” in training database. In this manner it is possible to count for the
changes in the selected optimal noise value that can happen as a consequence of variability of
the parameter “optimal database size, DPE”.

5.9.1 Optimal training database size for classification networks

To check the generalization performance of the ANN type 1 against the objective parameter
defined in section 5.8.1, the trained ANN is tested with one of the 9 simulated crack
propagations (Fig. 5.7), e.g. crack number 5. Testing is conducted for ANNs trained with
different additive noise and with 0, 50, 90 and 95% DPE in their training database. The
probability parameters PFA, PME and PWD are then calculated. To judge the effect of DPE
on the classification performance, the value “PWD” at the optimal noise level is calculated,
and this repeated for each DPE level. If a notable increase in the PWD happens at a certain
selected DPE, one can conclude that the DPE percentage has been great enough to leave a
deteriorating influence in the performance of classifying ANNs.
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As it is shown in Figure 5.13 there is not much of the difference in PWD values for
DPE=0% and DPE= 50%, but the difference is evident when comparing PWD of DPE= 0%
with those of DPE= 90% and 95%. This simply indicates that even working with half of the
available data the algorithm performance does not change, but training time cost can be
reduced. In the case of reducing the size of the training database up to 90% the performance
definitely declines as the PWD almost doubles.

The same analysis of algorithm performance applies when working in the context of the
committee of networks. The only difference is the less vulnerability of the algorithm
performance due to the employment of 20 ANN predictions instead of one single ANN
prediction (see Fig. 5.14). The numerical values of optimal noise at each level of DPE and
the corresponding PWD of single classifying ANN and the committee of ANNs are given in
Table 5.7.

Figure 5.13 Effect of DPE on the value of PWD for single ANNs
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Figure 5.14 Effect of DPE on the value of PWD for committee ANNs

DPE [%] 0.00 0.10 0.30 0.50 0.70 0.90 0.95
OPNL of both single
ANN and COMT[%]

10 10 10 10 10 10 8

PWD of single ANN
[%]

7.44 8.55 7.50 9.89 13.06 16.89 19.17

PWD of COMT [%] 3.67 2.22 4.44 4.44 5.56 6.58 10

Table 5.7 Presenting optimal noise level relevant to each DPE and the corresponding PWD committed by single ANNs
and committee of ANNs

5.9.2 Optimal database size for training Quantification and Localization
networks

In section 5.8.3, generalization performances of the ANNs of type 1 and 2 were analyzed,
where the minimization of the RMS error was the objective. In section 5.8.3 the parameter
“OPNL” was considered as the only optimization parameter. In this section the influence of
the parameter “DPE” on the generalization performance has been investigated (together with
the parameter “OPNL”). To this aim, at each level of additive noise (0, 2, 5, 8, 10 and 14%),
ANN training process is repeated for different values of DPE (0, 50, 90 and 95%). Then,
testing is conducted over the trained ANNs and the corresponding RMS errors are collected.
Having the RMSE values as a function of the parameters OPNL and DPE, one can judge the
influence of both parameters on the generalization performance simultaneously.
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A simple assessment of RMSE versus the parameter OPNL, at any levels of DPE, confirms a
null additive noise level as best level of noise addition to the training data (Fig. 5.15). This is
also true when checking the performance of both quantification and localization ANNs.
Thus, the variability of noise parameter can be excluded from our analysis by fixing it to 0%.
Thereby, we can confine our attention to the influence of training data size on the
performance.

For ANNs trained with different training data sizes, the RMS error can be evaluated at each
crack length, by adopting the same approach explained in section 5.8.3. Comparing the RMS
error values that are obtained at each level of DPE, it is possible to decide upon the
maximum data elimination that can be done without compromising the performance. By
referring to the Figures 5.16 and 5.17, it is easy to agree that the best performance is attained
when entire simulated database is used in training phase. This simply corresponds to
DPE=0% as best.

Remember that the execution of the quantification and localization algorithms is bounded to
existence of alarm in anomaly detection algorithm. This implicitly implies that, in the
concern of our performance analysis, RMSE values become important when crack length is
larger then 60mm.

Figure 5.15 RMS error is calculated as an index of performance of COMT of ANNs as a function of the noise level
available in training dataset and the imposed DPE to the original training database size.  This has been calculated for

localization algorithm. RMS error calculated over observations of 100 randomly selected crack positions for each certain
crack length
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Figure 5.16 RMS error is calculated as an index of performance of committee of ANNs as a function of imposed DPE to
the original training database size. The available noise percentage in training dataset has been set to 0%. This has been

calculated for quantification algorithm. RMS error calculated over observations of 100 randomly selected crack
positions for each certain crack length.

Figure 5.17 RMS error is calculated as an index of performance of committee of ANNs as a function of imposed DPE to
the original training database size. The available noise percentage in training dataset has been set to 0%. This has been
calculated for localization algorithm. RMS error calculated over observations of 100 randomly selected crack positions

for each certain crack length.
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5.10 Representation and evaluation of classification,
quantification and localization algorithms in simulated and
real experimental environments

In chapters 5.7, 5.8 and 5.9 we focused on the optimization of three types of algorithms
which are implemented in diagnostic unit. This was done by considering three optimization
parameters: optimal structure, optimal additive noise and optimal size of training database.
The final adopted value of each parameter for each network type is reported in table 5.8.
Having these optimal values, one can construct a number of ANNs to be assigned to the tasks
of diagnostic hierarchy (ANNs of type 1, 2 and 3). Up to this section, the mission of
designing a diagnostic unit is accomplished. However, it appears to be beneficial to provide
the user with some graphical interface of the algorithms inference. It is easier to visually
investigate the influence of optimization parameters over the inference performance.
Therefore the variations in the two optimization parameters OPNL (also shown by TN) and
DPE are included in the graphical representations. To be able to visually judge the inference
performance of the algorithms, a target has been set in each plot (e.g. a line, a point, etc.)
against which the inference deviation from the target can be seen. All the possible
consideration has been taken to provide an easy but comprehensive path to the overall
evaluation of the algorithms.

ID Hidden
layers
number

Hidden
neurons
number

Optimal
additive
noise

Original
training
data size

Minimum
valid data
size- single
ANN

Minimum
valid data
size- COMT

Type 1 2 10 10% 20 × 5240 20 × 2620 20 × 1572
Type 2 2 10 0% 20 × 2620 20 × 1310 20 × 786
Type 3 2 10 0% 20 × 2620 20 × 1310 20 × 786

Table 5.8 Final agreed parameters of designed ANNs.

The data used in evaluation phase, are the crack propagations from both real and simulated
models. Remember it is more important to verify the algorithms with real crack propagation,
since the final purpose of the algorithm is to infer in real situations. Therefore, after going
through the graphical evaluation of the algorithm with one of the 9 simulated crack
propagations (Fig. 5.7), the algorithms are checked with the real centre crack propagation.
Note that again a Gaussian noise is added to strain patterns of simulated crack propagations.
The 6% range with respect to the nominal strain value corresponds to 95% confidence
interval. This percentage value is in compliance with the uncertainty percentage present in
FEM model and reported in table 5.1.
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5.10.1Anomaly detection algorithm testing with a simulated database

Figure 5.18 Classification testing of ANNs trained with different additive noise in training data and DPE=0% (upper left),
DPE=50% (upper right), DPE=90% (lower left) and DPE=95% (lower right) and tested with simulated centre crack

propagation. The predictions are obtained by averaging 5 outputs of COMT.

5.10.2Anomaly detection algorithm testing with real experimental database

Figure 5.19 Classification testing of COMT of ANNs trained with different additive noise in training data and tested with
real centre crack propagation (left). Classification testing of COMT of ANNs trained with the optimal additive noise

(10%) in training data which is checked for DPE in database of 0, 50, 90 and 95% (right).
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5.10.3Quantification algorithm testing with a simulated database

Figure 5.20 Quantification testing of COMT of ANNs trained with different additive noise in training data and tested
with real simulated crack propagation. The straight line is the target.

Figure 5.21 Quantification testing of ANNs trained with different additive noise in training data and DPE=0% (upper
left), DPE=50% (upper right), DPE=90% (lower left) and DPE=95% (lower right) and tested with simulated centre crack

propagation. The predictions are obtained by averaging 5 outputs of COMT. The straight line is the target.
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5.10.4Quantification algorithm testing with real experimental a database

Figure 5.22 Quantification testing of COMT of ANNs trained with different additive noise in training data and tested
with real centre crack propagation (left). DPE=0%.

Figure 5.23 Classification testing of ANNs trained with different additive noise in training data and DPE=0% (upper left),
DPE=50% (upper right), DPE=90% (lower left) and DPE=95% (lower right) and tested with real centre crack propagation.

The predictions are obtained by averaging 5 outputs of COMT.
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5.10.5Localization algorithm testing with a simulated database

Figure 5.24 Normalized X position prediction of single ANNs and their COMT with TN=0% and tested with the simulated
crack number 3 (left). Normalized X position prediction of COMT of ANNs with different additive noise in training data

and tested with simulated crack number 1 (right).

Figure 5.25 Uncertainty effect in COMT predictions. Normalized X position prediction averaged over 10 COMT outputs
with TN=0% and tested with the simulated crack number 1.
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Figure 5.26 Localization testing with crack positioning (crack number 1) on panel using single ANNs with TN=0% (upper
left), TN=5% (upper right), TN=8% (lower left) and TN=10% (lower right)

Figure 5.27 Localization testing with crack positioning (crack number 1) on panel using COMT of ANNs with TN=0%
(upper left), TN=5% (upper right), TN=8% (lower left) and TN=10% (lower right)



88

Figure 5.28 A comprehensive representation of localization testing for COMT prediction which is averaged over 5 COMT
outputs. In accordance with the anomaly detection algorithm strategy, only the cracks greater than 50mm are

considered.

To be more informative in the graphical representation when testing the localization
algorithm, TN and DPE parameters are treated as variable simultaneously in a same plot; also
both position coordinates of damage site are indicated as well. This is done for simulated
cracks propagations number 1, 3, 5, 7 and 9 simultaneously (see Figures 5.29, 5.30, 5.31 and
5.32).

Again, the strain measures relevant to cracks smaller than 60mm are discarded from the input
of algorithm. Increasing the DPE from 0% to 50% does not reduce the inference
performance, but when DPE is set to 90%, the negative effect of insufficient training
database size becomes evident. This worsening influence is more apparent for greater values
of TN (additive training noise) i.e. TN=8%. Increasing the DPE even further up to 95%, only
algorithms with TN=0% can locate the crack large measure to some extent.
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Figure 5.29 Localization testing with crack positioning (crack number 1, 3, 5, 7 and 9) on panel using COMT ANNs
averaged over 5 inputs with TN=0, 5, 8 and 10% . DPE = 0%.

Figure 5.30 Localization testing with crack positioning (crack number 1, 3, 5, 7 and 9) on panel using COMT ANNs
averaged over 5 inputs with TN=0, 5, 8 and 10% . DPE = 50%.
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Figure 5.31- Localization testing with crack positioning (crack number 1, 3, 5, 7 and 9) on panel using COMT ANNs
averaged over 5 inputs with TN=0, 5, 8 and 10% . DPE = 90%.

Figure 5.32 Localization testing with crack positioning (crack number 1, 3, 5, 7 and 9) on panel using COMT ANNs
averaged over 5 inputs with TN=0, 5, 8 and 10% . DPE = 95%.
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5.10.6Localization algorithm testing with real experimental a database

Figure 5.33 Localization testing with real centre crack positioned on panel using COMT ANNs with TN=0% (upper left),
TN=5% (upper right), TN=8% (lower left) and TN=10% (lower right)0%. DPE=0%.

As stated in section 5.8.3 the final agreement on the optimal additive noise for localization
algorithm is the minimum value which is 0%. Relying on the result of section 5.8.3, it is
expected that the generalization performance decreases as TN (training noise) increases.
Nonetheless, the ANNs inference shows an improvement for position of a centre crack,
provided by both simulated and real experiment (see Figures 5.33 and 5.34). This is a
conflict that can lead to a misunderstanding of the true effect of the additive noise to the
training database and the performance of localization algorithm. To overcome this confusion,
it might be possible to associate this to the way that the weights of ANN synapses are
adjusted during training phase, and therefore answering this exceptional generalization
during testing.

In fact, this unusual observation in inference behavior can be seen in any localization ANN
which is trained with high level of additive noise in its training data. To be specific, wherever
the damage is on panel, the localizing ANNs trained with high noise level tend to infer the
damage site close to the panel centre (see Figures 5.26 and 5.27). This is so true for small
crack sizes. Finally, by again referring to Figures 5.26 and 5.27, it is agreed that ANNs
trained with the null additive noise in their training database show the best generalization
performance, when testing is carried out with crack propagation of other positions.



92

Figure 5.34 Localization testing with simulated centre crack positioned on panel using COMT ANNs with TN=0% (upper
left), TN=5% (upper right), TN=8% (lower left) and TN=10% (lower right)0%. DPE=0%.

Figure 5.35 Localization testing of ANNs trained with different additive noise in training data and DPE=0% (upper left),
DPE=50% (upper right), DPE=90% (lower left) and DPE=95% (lower right) and tested with real centre crack propagation.

The predictions are obtained by averaging 5 outputs of COMT.
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Chapter 6 Conclusion

The objective of the work described in thesis is the development of the diagnostic system for
helicopter fuselage crack propagation which works based on real time sensor acquisition. The
scope is to provide a diagnostic unit that makes use of a permanently on-board installed
sensor network to make an interpretation of the integrity state of the fuselage in real time.
Therefore, this diagnostic system can generate an alarm in case of abnormal structural
behavior. Upon the detection of an anomaly, damage parameters (damage intensity and
centre position) will be estimated, thus allowing for an evaluation of the health state of the
fuselage. Once the user is provided by damage parameters, it would be possible to decide in
real-time whether maintenance is required.

In this work two approaches have been taken toward designing a diagnostic system. One
approach uses an unsupervised anomaly detection algorithm which is called outlier analysis.
The other approach implements a more sophisticated supervised algorithm which is called
multi-layer perceptron (MLP) neural network. The viability of the fist approach depends on
only availability of baseline databases acquired from the experimental tests. In the
application of MLP neural network, the availability of damage experience for sensor network
interpretation is the key aspect for the success of the structural health monitoring systems.
Data-based and model-based approaches are usually adopted to retrieve such experience for
sensor signal interpretation.

The main issues that were discussed within and the accomplishment that were achieved in
this thesis are as the following:

 The outlier analysis (OA) theory proved to be successful in determining the panel
health state only for the first level of diagnosis hierarchy which is simply damage
detection. But, as an unsupervised algorithm, there is no training phase involved in
building the algorithm. This is an advantage comparing to the algorithm provided by
artificial neural network, where the availability of simulated model and the following
training phase are necessary.

 Concerning outlier analysis a conceptually rudimentary approach based on the MSD
is performed on a multivariate experimental data set. In performing OA analysis a
salient assumption is made which is the presence of only one single outlier (a single
damage site on the panel) at a time. This assumption is of a great help to avoid the
effect of masking the damage sensitive features in strain readings.

 Concerning the application of MLP neural network, the availability of a validated
numerical model offers the potential to simulate a relatively “unlimited” number of
damage conditions, taking into account much more damage variables (e.g. damage
intensity and position)
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 The performance of MLP neural network is strictly reliant on the training database
provided by FE model. Moreover there is the issue of FEM database deviation from
the real experimental model data which introduces the concept of uncertainties. This
issue is treated by considering the uncertainty as a parameter which is included in the
training phase as Gaussian noise. One very important assumption is made by
neglecting the effect of unknown localized loads that might be present and exert a
local stress distribution that helped enormously to the simplification in the use of
ANNs.

 Application of MLP networks offers the design of a complete diagnostic unit,
therefore handing two extra level of inference that regards the state of the damage in a
step further of its detection. These extra inferences of damage intensity and location
are of extreme necessity of development of a maintenance strategy referred as SHM
in introduction. Installing the diagnostic system provided by MLP on a machine a
continuous screening of the machine’s integrity state is possible, whereupon the case
of damage presence the system addresses, firstly, the damage intensity which can be
used as a decision making parameter to call off the machine from operation or not
and, secondly, the defect position which notably reduces downtime of the machine by
preventing the dismantling of the unnecessary components before reaching the faulty
component.
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