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“Life is not a problem to be solved, 

but a reality to be experienced.” 

-Soren Kierkegaard-  
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Abstract 
 

 

 

 

 Modern approaches in oncology are based on the use of different imaging 

modalities in order to better define the morphological and biological characteristics 

of the tumors. Moreover, imaging can be used in radiotherapy (RT) to better control 

irradiation, monitoring the therapy and preserving organs at risk (OAR). This 

approach requires the use of registration techniques able to correctly remap the 

patient anatomy in the same spatial reference system, possibly taking into account 

organ deformations often occurring in patients undergoing a RT treatment plan. 

 The aim of this work is to propose and evaluate an innovative elastic 

registration method capable to recover complex deformations in specific thoracic 

RT images, like those presented in 4D CT lung images. The proposed approach 

consists in two steps: first, a global affine registration using the Particle Filter (PF) 

is performed; second, the transformation is locally refined using a discrete 

implementation of the Horn-Schunck Optical Flow (OF) method with four control 

parameters. This two-step elastic registration method is referred in the thesis as the 

Particle Filter + Optical Flow (PF+OF) approach. 

 This novel registration technique was evaluated in particular with two 4D 

CT medical images datasets: first, a set of 4D CT lung images from a controlled 

model; second, a dataset of 4D CT lung clinical images from five patients treated 

with RT. In addition, performance comparison between the PF+OF method and 

other fluid like non-parametric registration algorithms already proposed in RT for 

the registration in the thoracic district, Demons and Diffeomorphic Demons, was 

performed analyzing anatomical structures of clinical interest. 
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Introduction 

 Modern approaches in oncology are based on the use of different imaging 

modalities in order to better define the morphological and biological characteristics of the 

tumors. Moreover, imaging can be used in radiotherapy (RT) to better control irradiation, 

monitoring the therapy and preserving organs at risk (OAR) [Hill et al., 2001]. This 

approach requires the use of registration techniques able to correctly remap the patient 

anatomy in the same spatial reference system, possibly taking into account organ 

deformations often occurring in patients undergoing a RT treatment plan. 

 RT is a medical therapy that uses controlled high energy ionizing radiation for the 

treatment of tumors. The radiation damages the cellular DNA, making these cells no longer 

able to split and reproduce [Dobbs et al., 1998]. This fact is of particular interest because 

cancerous cells divide more rapidly than healthy cells, reason why cancerous cells are 

more sensitive to ionizing radiation, resulting in damage cancer cells and the reduction of 

the irradiated tumor. Healthy cells can also be damaged by irradiation, however they are 

able to repair much more effectively than cancer cells. Thus, the main goal of RT is to 

maximize the dose administered to the tumor cells and minimize the dose administered to 

healthy cells. The beneficial effects on the neoplasia are not immediate; typically more 

aggressive tumors whose cells divide more quickly, respond faster to the treatment, which 

results to be painless during the treatment for the patient. 

 Every tumor, lesion or malformation to be treated is called the target volume (TV), 

and for purposes of the treatment it is essential to know the location, size and shape of the 

target, as well as its proximity to OAR. The dose is delivered in several sessions; before 

each session CT images are acquired for the correct positioning of the patient and to 
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evaluate anatomical alterations that may be presented due to physiological movements 

(respiration, heartbeat or displacement of body fluids), reduction of the tumor size, patient 

weight loss because of an alteration in the distribution of muscle mass and / or fat of the 

patient. 

 In particular, breathing motion and organ deformation may lead to geometric 

misses that have the potential of underdosing tumor and overdosing healthy tissue, when 

RT is used to treat tumors located in thorax, which could increase the risk of toxicity in the 

OAR [Rosu et al., 2007]. A solution to this type of problem is to plan the irradiated dose 

taking into account the tumor motion. 

 In the past few years, the development of four dimensional (4D) CT scanning 

technology made possible the generation of sequential image datasets for multiple phases 

of the breathing cycle [Vedam et al., 2003; Low et al., 2003; Pan et al., 2004]. Integration 

of similar concepts and tools into RT has led to 4D RT treatment planning, which could be 

defined [Keall et al., 2003] as the “explicit inclusion of the temporal changes of anatomy 

during the imaging, planning and delivery of radiotherapy.” 4D CT approaches have been 

examined in many studies of RT for patients with lung cancer evaluating 4D scanning, 

planning, and treatment delivery [Rosu et al., 2005; Keall et al., 2006; Tewatia, 2006]. RT 

treatment plans generated using 4D CT images to assess the dose to be dispensed on each 

structure must be the result of a compromise between adequate administration of ionizing 

radiation to the TV and the limitation of toxicity effects on OAR. In this context, local 

rigid or deformable registration methods are important to the RT treatment planning 

because they are capable to determine the geometric relationship of the structures of 

interest (TV and OAR) between the phases of the respiratory cycle [Nijkamp et al., 2007; 

Brock et al., 2006; Wolthaus et al., 2008]. 

 In this context, the aim of this PhD project is to propose and evaluate an innovative 

elastic registration method, referred in this thesis as the Particle Filter + Optical Flow 

(PF+OF) approach, capable to recover complex deformations in specific thoracic RT 

images, like those presented in 4D CT lung images. 
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Medical Image Registration 

 Image registration is the process of determining the correspondence between 

objects in two images, by convention between the source (IS) and target (IT) images. To 

determine correspondences it is necessary to find the geometrical or spatial mapping 

(transformation) applied to IS so that it aligns with IT. From a medical point of view, image 

registration could be divided into two main streams: rigid and elastic or non-rigid 

registration methods. 

 Rigid transformations are those that preserve the distance between all points in the 

image; they are global transformations described by three parameters of translation and 

three parameters of rotation, and are equivalent to a change from one Cartesian system of 

coordinates to another one which differs by shift and rotation. Rigid registrations are often 

integrated with scale and shear parameters, this kind of transformations are referred to as 

affine transformations. The affine transformation preserves the parallelism of lines, but not 

their lengths or their angles. It extends the degrees of freedom of the rigid transformation 

with a scaling factor for each image dimension and additionally, a shearing in each 

dimension.  

 Because most of the human body cannot be seen as rigid body, non-rigid 

registration techniques are introduced for the correction of elastic deformations that may 

occur due to anatomical motions or morphological changes. In literature a great number of 

different elastic image registration methods are reported. One important classification 

could be done between points or surface based methods and intensity based methods. In 

the first category, corresponding points or surfaces on the two images, IS and IT, are used to 

find the existing global deformation. They have the disadvantage of needing to know 

corresponding points or contours in the images, which could be time consuming, costly 

and not always easy to obtain, but the advantage of being more locally accurate in the areas 

used for calculation if corresponding point are accurately chosen (i.e. the accuracy of these 

registration methods strictly depends on the accuracy of corresponding points placement or 

surfaces delineation). Methods belonging to this class are thin-plate spline [Bookstein, 

2002], Wendland functions [Fornefett et al., 2001], elastic body splines [Kohlrausch et al., 

2005] and finite element based methods [Brock et al., 2005]. On the other hand, intensity 

based methods (also called voxel property based methods) use only image intensity 
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information to recover the spatial transformation connecting the images, consequently 

being more automatic and less costly but more sensitive to image noise or intensity 

mismatching. Most used methods belonging to this category are the optical-flow approach 

[Horn et al., 1981] and Thirion’s Demons algorithm [Thirion, 1998], B-spline free-form 

deformation [Rueckert et al., 1999], calculus of variation based methods [Lu et al., 2004] 

and level-set methods [Vemuri et al., 2003]. 

 For medical image registration algorithms, the major difficulty currently resides in 

their computational complexity. Although the speed of computers has been constantly 

growing, the need to decrease the computational time of methods persists. Moreover, the 

demand for higher robustness and accuracy of the registration usually enforce solutions 

utilizing the iterations or backtracking, which also produce increase of computational 

complexity of the method [Maintz et al., 1998; Mani et al., 2013]. In this work we 

proposed an algorithm with a good balance between accuracy and complexity. The 

proposed  PF+OF approach consists in two steps: first, a global accurate affine registration 

using the Particle Filter (PF) is performed; second, the transformation is locally refined 

using a discrete implementation of the Horn-Schunck Optical Flow (OF) method with four 

control parameters. 

 The PF can be seen as a recursive implementation of Monte Carlo based statistical 

signal processing, in which the key idea is to obtain a posterior probability density function 

(pdf) from a set of random samples with associated weights, which allows one to estimate 

state variables defining a dynamic system [Arce-Santana et al., 2010]. As the number of 

samples becomes very large, this Monte Carlo characterization becomes an equivalent 

representation to the usual functional description of the posterior pdf, and the PF 

approaches the optimal Bayesian estimate. This algorithm has recently adapted to solve the 

rigid image registration problem in [Arce-Sanatana et al., 2009] and has increasingly been 

proved to be accurate, robust and, because of its parallelizable structure, it can be also 

considered a fast algorithm [Arce-Sanata et al., 2010; Arce-Santana et al., 2012; Mejia-

Rodriguez et al., 2011; Reducindo, 2010]. 

 On the other hand, OF methods consider that the differences between two images 

(target and source) could be described as motion of voxels based on the OF equation:  

 

)()()( xaxbxau  ,      (1) 
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where a(x) and b(x) refer to the intensity value of a voxel x in the target and source images 

respectively, and u is the velocity component of the optical flow. Sequences of ordered 

images allow the estimation of motion as either instantaneous image velocities or discrete 

image displacements. In general, OF methods try to calculate the motion between two 

image frames, taken at times t and t, at every voxel position. Equation (1) has two 

unknowns and cannot be solved as such; this is known as the aperture problem of OF 

algorithms and to deal with it and find the OF 𝑢 another set of equations is needed, given 

by some additional constraint. One technique to solve the OF is used in [Arce-Santana et 

al., 2010] which is based on a discrete reformulation of the Horn-Schunck method [Horn et 

al., 1981], where it is minimized the next energy function: 

 

  
 


r sr

ST sdrdrdrIrId
,

2

2

2
||)()(||))(()()(  ,    (2) 

 

where d is the displacement field, r is the coordinates vector of the pixel or voxel, <r,s> 

represents the nearest neighbors of r,  is a regularization constant to control the flow 

homogeneity, and ||.|| represents the Euclidean norm. In this case the regularization term is 

expressed in probabilistic terms in the form of a prior Markov Random Field [Marroquin, 

2000]. 

 

 

Particle Filter +Optical Flow Registration Approach. 

 Given a source and a target images, IS and IT, the basic idea of the parametric 

registration based on PF is to estimate the parameters vector 𝑃𝑎𝑟 of a geometrical 

transformation (e.g. affine) by an stochastic search over an optimization surface (cost 

function). This goal is achieved by using a set of 𝑁𝑆 test points called particles 

(𝑃𝑎𝑟1, ⋯ , 𝑃𝑎𝑟𝑁𝑆
), and their associated weights (𝑊1, ⋯ , 𝑊𝑁𝑆

) calculated by a likelihood 

function 𝑝(𝑧|𝑃𝑎𝑟𝑗) for a measurement 𝑧 between the images: 
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𝑊𝑗 =
1

√2𝜋𝜎𝜂
exp {

−(2−NMI{𝐼𝑇(𝐫),𝐼𝑆(𝑇(𝐫|𝑃𝑎𝑟𝑗))})

2𝜎𝜂
2 },       𝑗 = 1, ⋯ , 𝑁𝑆;  (3) 

 

where 𝐫 is the coordinates vector (x,y,z) of a voxel, 𝑇(𝐫|𝑃𝑎𝑟) is a geometrical 

transformation depending on the parameters vector 𝑃𝑎𝑟, 𝜎𝜂
2 is the noise variance in the 

measurement 𝑧, and NMI(∙,∙) represents the normalized mutual information between two 

images. 

 Weights 𝑊𝑗 are used to approximate a posteriori pdf 𝑝(𝑃𝑎𝑟𝑗|𝑧) of the unknown 

parameters vector 𝑃𝑎𝑟 given a measurement 𝑧. In this way, for a window of 𝑘 observations 

(𝑧1, ⋯ , 𝑧𝑘), the estimated vector 𝑃𝑎𝑟̂𝑘 of the parametric transformation can be computed 

by the expected value of the approximated pdf as follows: 

 

𝑃𝑎𝑟̂𝑘 = 𝐸[𝑃𝑎𝑟|𝑧1, ⋯ , 𝑧𝑘] ≈ ∑ 𝑊𝑗
𝑘𝑃𝑎𝑟𝑗

𝑘𝑁
𝑗=1 ,    (4) 

 

 Once carried out the initial parametric registration using the PF, the remaining 

displacements 𝑑(𝐫) are obtained by an OF technique, in particular by minimizing the 

following non-linear quadratic energy function: 

 

   
 


rr sr

T

STopt rdsdrdrdrIrId 2

,

22
||)(||))()(())(()()(  ,  (5) 

where 〈𝐫, 𝐬〉 represents the nearest neighbors of 𝐫, 𝜆𝑇 is the vector containing the 

regularization terms x, y and z to control the flow homogeneity in every direction of the 

image, ||.|| represents the Euclidean norm, and  is a regularization term to control the 

optical flow field velocity. The non-linear quadratic cost function in eq, (5) can be 

linearized by conducting a first order Taylor approximation on the data term ∑ [𝐼𝑇(𝑟) −∀𝑟

𝐼𝑆(𝑟 + (𝑑(𝑟))]2 and the solution for the quadratic problem can be obtained deriving with 

respect to 𝑑(𝐫), and then solving the resulting system of linear equations by the iterative 

Gauss-Seidel technique. Thus, the PF+OF elastic registration algorithm can be achieved in 

the next three steps:  
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1. Parametric Registration (Rigid). Find the parameters vector 𝑃𝑎𝑟 ̂ of the perspective 

transformation 𝑇(𝐫|𝑃𝑎𝑟̂) that provide the best alignment between 𝐼𝑇(𝐫) and 𝐼𝑆(𝐫), 

and compute the initial (rigid) displacement vector field 𝑑0(𝐫). 

2. Optical Flow. Find the displacements between 𝐼𝑇 and 𝐼𝑆 by an OF iterative 

scheme, 𝑑(𝐫) = 𝑑1(𝐫) + 𝑑2(𝐫) + ⋯ +𝑑𝑘(𝐫), until convergence is achieved; where 

at each k-th iteration the OF is computed over 𝐼𝑇(𝐫) and 𝐼𝑆
𝑘(𝐫), where 𝐼𝑆

𝑘(𝐫) ≜

𝐼𝑆(𝐫 + ∑ 𝑑𝑖(𝐫)𝒌−𝟏
𝒊=𝟏 ). 

3. Elastic Registration. Finally, we can obtain the vector field of the non-rigid 

deformation by adding the rigid vector field to the one obtained by the iterative OF, 

i.e., 𝑉(𝐫) ≜ 𝑑0(𝐫) + 𝑑(𝐫). Consequently, we can deduce the elastic registered 

image as 𝐼𝑅(𝐫) ≜ 𝐼𝑆(𝐫 + 𝑉(𝐫)). 

 

 

Experimental Protocol 

 The PF+OF registration technique was evaluated in particular with two 4D CT 

medical images datasets. As a first step, registration algorithms were evaluated using the 

POint-validated PIxel-based (POPI) breathing thorax model provided by 

[Vandemeulebroucke et al., 2007]; the POPI model consists of a dataset of 4D CT thorax 

images binned into 10 respiratory phases (00%, 10%, 20%, ..., 90%) acquired from a real 

patient; CT images from phase 10 (onset of inspiration) were always used as IT, the nine 

remaining phases were used as IS, thus leading to a total of nine registrations. Then, a 

clinical images dataset formed by 4D CT images from studies of 5 patients treated for 

locally advanced non-small cell lung cancer (NSCLC) with Helical Tomotherapy (HT) was 

use to complement the evaluation of the proposed registration algorithm. For each patient, 

images from the inspiratory and expiratory phases were registered, using the first one as 

the target image. 

 In addition, a performance comparison between the PF+OF method and other fluid-

like non-parametric registration algorithms already proposed in RT for the registration in 

the thoracic district due to their high performance and accuracy, Demons and 



Summary 
________________________________________________________________________________ 

x 

Diffeomorphic Demons [Peyrat et al., 2008; Janssens, 2009; Castillo, 2009; Zhong, 2010], 

was performed analyzing anatomical structures of clinical interest. 

 Differences in structures between correspondence respiratory phases before and 

after the registration process were calculated using standard indices usually adopted for 

registration accuracy assessment [Wang et al., 2008; Heimann et al., 2009; Faggiano et al., 

2011-a; Ecabert et al., 2011]: the Dice similarity coefficient (DICE), that measures the 

overlap between two structures; the Average Symmetric Distance (ASD), that gives an 

idea about the mean mismatch; the Maximum distance between structures (DMax), a 

quantitative value of the worst mismatch; and the Percentage of Distance Bigger than the 

Voxel Dimension (%DBVD), a metric of all misalignments bigger than the voxel thickness 

between structures. For the POPI model, the Target Registration Error (TRE) was also 

computed as the error distance between coordinates of available landmarks in the target 

and source images. 

 

 

Results 

 An example of the results found with the PF+OF approach with both datasets is 

presented in figure 1, where it is possible to observe a proper recovery of the 

misalignments due to the respiratory motion presented in the 4D CT lung images. 

 

 

(a) 

 

                   (b) 

Figure1. Examples of the registration results achieved by the PF+OF proposed approach using the 

POPI model (a), and the clinical images dataset (b). In both cases the green contours represent the 

structures of interest (lungs and GTV) after the registration process. 
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In this image is possible to observe the good performance achieved by the proposed 

method, being able to recover complex misalignments, in particular in the tumor zone, due 

to the respiratory motion. 

 Quantitative analysis performed by the registration accuracy indices, shows a good 

improvement achieved by PF+OF with respect to the indices values found before the 

registration process (Pre). Considering the POPI model the results found (PF+OF vs. Pre) 

were : ASD - 0.87±0.12 vs. 2.01±0.64 mm; DICE - 0.96±0.01 vs. 0.94±0.01; DMax - 

33.12±2.95 vs. 35.59±2.59 mm; %DBVD - 8.77±9.80 vs. 40.33±11.05 %; and TRE - 

1.65±0.68 vs. 3.13±1.95 mm. Considering the clinical images dataset results were: ASD 

lungs - 1.74±0.43 vs. 4.02±2.17 mm, ASD GTV - 1.43±0.10 vs. 3.08±1.57 mm; DMax 

lungs - 63.21±18.90 vs. 77.89±43.93 mm, DMax GTV - 12.06±4.64 vs. 14.36±6.75 mm; 

DICE lungs - 0.94±0.02 vs. 0.87±0.09, DICE GTV - 0.72±0.06 vs. 0.52±0.09; %DBVD 

lungs - 27.16±11.79 vs. 46.65±29.03 %, %DBVD GTV - 33.74±19.58 vs. 62.19±25.91. 

These results are comparable to the ones found with Demons and Diffeomorphic Demons 

algorithms. As a matter of fact, no significant differences were found between PF+OF and 

the Demons based algorithms.  

 

 

Conclusion 

 In this work, a novel non rigid registration approach was presented, based on a 

global accurate affine registration using the Particle Filter followed by an elastic local 

transformation using a discrete implementation of the Horn-Schunck Optical Flow with 

four control parameters that gives to the user the possibility to better control the flow field.  

 The results have shown that our elastic registration method is capable to recover 

complex deformations presented in the thoracic district caused by the respiratory motion 

and is comparable to the state of the art algorithms, suggesting that the PF+OF approach 

could be useful in a clinical RT context, for applications such as assessing the dose to be 

dispensed on the gross target volume (GTV) and organs at risk (OAR) of RT treatment 

plans generated by the use of 4D CT images. 
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Chapter 1 
 

 

 

Introduction 
 

 

 

 

 Modern approaches in oncology are based on the use of different imaging 

modalities in order to better define the morphological and biological characteristics of 

tumors. Moreover, imaging can be used in radiotherapy (RT) to better control irradiation, 

monitoring the therapy and preserving organs at risk (OAR) [Hill et al., 2001]. This 

approach requires the use of registration techniques able to correctly remap the patient 

anatomy in the same spatial reference system, taking into account organ deformations due 

to breathing, reduction of the tumor treated with radiation, or side effects (weight loss or 

increase / reduction of OAR surrounding the tumor) often occurring in patients undergoing 

a RT treatment [Faggiano et al., 2011-b]. In particular, when RT is used for the treatment 

of Non-Small-Cell Lung Cancer (NSCLC), lung parenchyma can significantly modify its 

volume and shape [Fox, 2009]; as a direct consequence, dose discrepancies can occur 

between the planned cumulative dose distribution and the actual cumulative dose [Mageras 

et al., 2007]. This is a major issue in lung cancer as lung parenchyma is one of the most 

radiosensitive healthy tissues in the thorax; in addition a proper correction of respiratory 

motion is needed in order to achieve an accurate cumulative dose distribution [Orban et al., 

2007]. In this context, accurate image registration algorithms capable to correct motion of 

both lung and tumor along the respiratory cycle are needed. 

 Medical image registration methods have been studied for many years [Hill, 2001], 

and, for practical purposes, they can be divided into two main streams: rigid registration 
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(RR), and elastic or non-rigid registration (NRR) [Zitova et al., 2003; Modersitzki, 2004]. 

In RR methods a global transformation is applied to every voxel in the image to be 

registered; they have been studied extensively, where techniques based on gradient descent 

[Nocedal et al., 2006; Pluim et al., 2000] are most commonly used to optimize a similarity 

metric (e.g. Mutual Information [Wells et al., 1996; Pluim et al., 2003]) and to obtain the 

spatial transformation that aligns the target and source images. Other options based on 

global optimization methods such as genetic algorithms [Man et al., 2001] and particle 

filtering [Arulampalam et al., 2002], have begun to play an important role in this field [Das 

et al., 2010; Arce-Santana et al., 2012]. On the other hand, NRR methods estimate a 

transformation for each voxel, incorporating restrictive assumptions (e.g. smoothness in 

the deformation field) in order to make the problem well-posed. In the literature, one of 

the most common methods to solve the elastic registration process is based on splines, 

where a family of functions is used to approximate the complex deformations, but despite 

their good performance a main drawback of these methods is their complexity and high 

computational cost [Xuan et al., 2006; Klein et al., 2009; Faggiano et al., 2011-a]. 

Another common approach to solve the NRR problem is based on the optical flow 

(OF) concept, where algorithms work under the assumption of intensity conservation 

between images, making possible to describe deformations as motion of voxels in the 

images to be registered [Horn et al., 1981; Guerrero et al., 2004; Zhang et al., 2008]. 

 The aim of this work is to propose and evaluate an innovative elastic registration 

method capable to recover complex deformations in the thoracic district, like those 

presented in RT 4D CT lung images. Our approach consists in two steps: first, a global 

accurate affine registration using a Particle Filter (PF) methodology is performed; second, 

the transformation is locally refined using a discrete iterative Optical Flow (OF) 

implementation. In PF an iterative stochastic search of the rigid transformation 

parameters is carried out using a Monte Carlo model. This iterative process has 

proved to be accurate and capable to recover complex rigid deformations and, because 

of the algorithm structure is highly parallelizable, is also considered a fast solution 

to the RR problem [Arce-Santana et al., 2009; Arce-Santana et al., 2012]. For the 

NRR step, our proposed OF is a discrete implementation of the Horn-Schunck OF with 

four control parameters instead of one used in the original method [Horn et al., 1981], 

making possible to control the flow in each dimension of the image (x,y,z), and the velocity 

of the flow field.  
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 This novel registration technique, PF followed by an OF process (PF+OF), is 

specifically configured for its use with 4D CT images of the thoracic district in patients 

with NSCLC undergoing RT treatment. To evaluate registration accuracy, differences in 

anatomical structures of interest (tumor and OAR), before and after registration, were 

calculated by using standard indices adopted for accuracy assessment. In addition, PF+OF 

results were compared with some of the state of the art algorithms used in medical 

imaging, such as Demons [Thirion, 1998] and Diffeomorphic Demons [Vercauteren et al., 

2008]. 

 This project was developed at the Institute of Bioimaging and Molecular 

Physiology from the National Research Council (IBFM-CNR) in Milan (Italy), in 

collaboration with the Medical Physics Department of San Raffaele Hospital in Milan 

(Italy) and the Faculty of Sciences from the Autonomous University of San Luis Potosi 

(Mexico). 

 In Chapter 2 a brief description of the clinical scope and the related image 

registration techniques proposed in literature for their use in RT are shown. In Chapter 3, 

theoretical basis of PF and OF to solve the image registration problem and a detail 

description of the proposed PF+OF implementation are presented. The experimental 

protocol to validate and compare the PF+OF approach with the Demons and 

Diffeomorphic Demons algorithms using 4D CT lung images is presented in Chapter 4. 

Results are shown in Chapter 5 and, finally, in Chapter 6 discussion and conclusions of the 

PhD work are presented; further research possibilities are also discussed in the last chapter 

of this work. 

 In addition, three appendices are also presented in this thesis, which describes the 

preliminary results of future research paths, in which the proposed PF+OF algorithm is 

involved. Appendix A presents the validation and accuracy evaluation of the proposed 

method using 2D CT and MR brain images with simulated and real deformations of brain 

structures. In Appendix B, initial results of the proposed registration method to overcome 

the intensity conservation constrain of OF and solve multimodal image registration cases 

by applying an intensity mapping based on local variability measures (LVM) are shown. 

Finally, Appendix C details an alternative to assess the registration accuracy fully in 3D, 

analyzing structures of interest under a mesh-based approach. 



 



 
5 

 

Chapter 2 
 

 

 

 

Image Registration Methods 

for Radiotherapy 

Applications 
 

 

 

 Medical images are used for diagnosis, treatment planning, disease monitoring and 

image guided surgery; they are acquired using a variety of imaging modalities like Computed 

Tomography (CT), X-ray, Magnetic Resonance Imaging (MRI), Positron Emission 

Tomography (PET), Ultrasound (US), among others. Images obtained using different 

modalities need to be compared and/or combined for analysis and decision making. To 

monitor disease progress and growth of abnormal structures, images are acquired from 

subjects at different times or with different imaging modalities; therefore misalignment 

between images is inevitable and this reduces the accuracy of further analysis. Image 

Registration plays an important role in medical image analysis, because is a task capable to 

reliably estimate the geometric transformation such that two images can be precisely aligned; 

its application in radiotherapy (RT) is particularly useful. 

 In this chapter, a brief description of the clinical goal of RT, is presented. In addition, 

description of medical image registration methods, alongside with the usual validation 

strategies used in clinical applications, are presented. 
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2.1 Radiotherapy treatment - Basic concepts 

 RT is a medical therapy that uses controlled high energy ionizing radiation for the 

treatment of tumors. The radiation damages the cellular DNA, making these cells no longer 

able to split and reproduce [Dobbs et al., 1998]. This fact is of particular interest because 

cancerous cells divide more rapidly than healthy cells, reason why cancerous cells are more 

sensitive to ionizing radiation, therefore resulting in damage cancer cells and the reduction 

of the irradiated tumor. Healthy cells can also be damaged by irradiation, however they are 

able to repair much more effectively than the cancer cells. The main goal of RT is to 

maximize the dose administered to the tumor cells and minimize the dose administered to 

healthy cells. The beneficial effects on the neoplasia are not immediate; typically more 

aggressive tumors whose cells divide more quickly, respond faster to the treatment, which 

results to be painless during the treatment for the patient. 

 Radiation can be administered with two different approaches: 

1. By administration of radiation through an external beam generated by a 

device that conveys high energy radiation (X-rays, gamma rays or photons) 

to the tumor.  

2. By an internal irradiation conveyed from the inside of the body by placing the 

radioactive material directly inside the tumor (brachytherapy). 

 An example of a complete typical process followed by a RT treatment is presented 

in figure 2.1. According to the International Commission on Radiation Units and 

Measurements (ICRU), every tumor, lesion or malformation to be treated is called the target 

volume (TV), and for purposes of the treatment it is essential to know the location, size and 

shape of the TV as well as its proximity to organs at risk (OAR). In addition, several volumes 

related to both tumor and normal tissues have been defined for use in the treatment-planning 

and reporting processes of RT. Delineation of these volumes is an obligatory step in the 

planning process, as absorbed dose cannot be prescribed, recorded, and reported without 

specification of target volumes and volumes of normal tissue at risk.  The volumes to be 

defined are [Journal of the ICRU, Vol 10 No 1 (2010), Report 83, Oxford University Press]: 
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 GTV (gross tumor volume), the volume containing the gross demonstrable extent of 

the tumor. 

 CTV (clinical target volume), the volume that has to be radiated, allowing margins 

around GTV for subclinical disease including any other tissues with presumed tumor. 

The CTV must receive adequate dose to achieve the therapeutic aim. 

 ITV (internal target volume), this volume allows margins on the CTV for positional 

and shape changes during therapy. 

 PTV (planning target volume) takes into account the asymmetric nature of positional 

uncertainties and patient movements combined subjectively so that the prescribed 

dose is received by the CTV.  

 

 
 

Figure 2.1. Flowchart of a typical course of radiotherapy (image taken from [Journal of the ICRU, Vol 

10 No 1 (2010), Report 83, Oxford University Press]). 
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Taking into account these definitions, it is possible to state that GTV, CTV, and OAR 

correspond, respectively, to volumes of known (GTV), and/or suspected tumor infiltration 

(CTV), and volumes of normal tissues that might be irradiated and affect the treatment 

prescription (OAR). These volumes have an anatomical/physiological basis, in contrast to 

the ITV and the PTV, which are concepts introduced to ensure that the absorbed dose 

delivered to the corresponding CTV and OAR match the prescription constraints. A visual 

representation of the defined volumes used in a RT context is shown in figure 2.2. 

 
Figure 2.2. ICRU volumes definition: GTV (gross tumor volume), CTV (clinical target volume), ITV 

(internal target volume), PTV (planning target volume), organs at risks (OAR). 

 

The dose is delivered in several sessions; before each session CT images are acquired 

for the correct positioning of the patient and to evaluate anatomical alterations that may be 

presented due to physiological movements (respiration, heartbeat or displacement of body 

fluids), reduction of the size of the tumor, weight loss of the patient because of an alteration 

in the distribution of muscle mass and / or fat of the patient.  

 It has been proved in [Brock, 2007] that the update of the treatment plan may be 

useful in the dose administration error resulting from the anatomical changes (physiological 

and pathological) of the patient, which can deliver a dose to the GTV and the OAR structures 

different from the functional dose planned to treat a particular disease. In this context, image 

registration methods are useful for the RT treatment planning because they have the potential 

to estimate and recover deformations presented in the images acquired at different times 

during the treatment. 

 On the other hand, breathing motion and organ deformations may lead to geometric 

misses that have the potential of underdosing tumor and overdosing healthy tissue, when RT 

is used to treat tumors located in thorax, which could increase the risk of toxicity in the OAR 
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[Rosu et al., 2007]. A solution to this type of problem is to plan the irradiated dose taking 

into account the tumor motion. 

 Historically, the three-dimensional (3D) anatomical description of the patient used 

for RT treatment planning was acquired during free breathing CT scanning, and thus was 

affected by motion artifacts [Balter et al., 1996; Wong et al., 1999; Shimizu et al., 2000]. 

This has made TV definition prone to errors and inaccuracies, as well as the estimation of 

the dose to be received by the patient. Voluntary breath hold or active breathing control 

techniques [Wong et al., 1999; Dawson et al., 2001], and deep inspiration breath hold 

[Hanley et al., 1999; Rosenzwaig et al., 2000; Mah et al., 2000], improved the quality of the 

CT images, but usually limited the geometrical information to just one phase of the breathing 

cycle. As a result, the subsequent delivery of the radiation only during a selected phase or 

portion of the breathing cycle significantly reduced the duty cycle. In the past few years, the 

development of the four dimensional (4D) CT scanning technology made possible the 

generation of sequential image datasets for multiple phases of the breathing cycle [Vedam 

et al., 2003; Low et al., 2003; Pan et al., 2004]. Integration of similar concepts and tools into 

RT has led to 4D RT treatment planning, which could be defined [Keall et al., 2003] as the 

“explicit inclusion of the temporal changes of anatomy during the imaging, planning and 

delivery of radiotherapy.” 4D CT approaches has been examined in many studies of RT for 

patients with lung cancer evaluating 4D scanning, planning, and treatment delivery [Rosu et 

al., 2005; Keall et al., 2006; Tewatia, 2006]. RT treatment plans generated using 4D CT 

images to assess the dose to be dispensed on each structure must be the result of a 

compromise between adequate administration of ionizing radiation to the TV and the 

limitation of toxicity effects on OAR. In this context, local rigid or deformable registration 

methods are important to the RT treatment planning because they are capable to determine 

the geometric relationship of the structures of interest (TV and OAR) between the phases of 

the respiratory cycle [Nijkamp et al., 2007; Brock et al., 2006; Wolthaus et al., 2008].  

2.2 Medical Image Registration Methods 

 Image registration is the process of determining the correspondence between objects 

in two images, by convention between the source (IS) and the target (IT) image. To determine 

correspondences it is necessary to find the geometrical or spatial mapping (transformation) 

applied to IS so that it aligns with IT. From a medical point of view, image registration could 

be divided into two main streams: rigid and elastic or non-rigid registration methods.  
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 Rigid transformations are those that preserve the distance between all points in the 

image; they are global transformations described by three parameters of translation and three 

parameters of rotation, and are equivalent to a change from one Cartesian system of 

coordinates to another one which differs by shift and rotation. The first works related to the 

registration of medical images attempted to realign brain images from the same patient 

acquired with different image modalities (MRI and CT or PET) or the bones when neither 

skull nor dura has been opened [Crumet al., 2004]. It is popular because in many common 

medical images the rigid body constraint leads to a good approximation and it has relatively 

few parameters to be determined. Rigid registrations are often integrated with scale and shear 

parameters, this kind of transformations are referred to as affine transformations. The affine 

transformation preserves the parallelism of lines, but not their lengths or their angles. It 

extends the degrees of freedom of the rigid transformation with a scaling factor for each 

image dimension and additionally, a shearing in each dimension. In medical imaging this 

type of transformations are capable to partially compensate problems due to differences in 

the calibration between scanners or large scale differences between subjects. 

 Because most of the human body cannot be seen as rigid body, non-rigid registration 

techniques are introduced for the correction of the elastic deformation that may occur due to 

anatomical motions or morphological changes. In literature a great number of different 

elastic image registration methods are reported. One important classification could be done 

between points or surface based methods and intensity based methods.  

 In the first category, corresponding point or surfaces on the two images IS and IT are 

used to find the existing global deformation. They have the disadvantage of needing to know 

corresponding point or contours in the images which could be time consuming, costly and 

not always easy to obtain, but the advantage of being more locally accurate in the areas used 

for calculation if corresponding point are accurately chosen (i.e. the accuracy of these 

registration methods strictly depends on the accuracy of corresponding points or surfaces 

delineation). Methods belonging to this class are thin-plate spline [Bookstein, 2002], 

Wendland functions [Fornefett et al., 2001], elastic body splines [Kohlrausch et al., 2005] 

and finite element based methods [Brock et al., 2005]. On the other hand, intensity based 

methods (also called voxel property based methods) use only image intensity information to 

recover the spatial transformation connecting the images consequently being more automatic 

and less costly but more sensitive to image noise or intensity mismatching. Most used 

methods belonging to this category are optical-flow [Horn et al., 1981] and Thirion’s 
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Demons algorithm [Thirion, 1998], B-spline free-form registration [Rueckert et al., 1999], 

calculus of variation based methods [Lu et al., 2004] and level-set methods [Vemuri et al., 

2003]. In the next paragraphs, some of the registration methods mentioned above used in a 

RT context will be briefly described. 

 

Thin-plate spline registration method 

 The thin-plate spline (TPS) method [Bookstein, 2002; Chui et al., 2003], estimates 

the deformation through the minimization of the distance between corresponding points in 

the images to be registered. To determine the transformation function the following energy 

function have to be minimized: 
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where ∑ ||𝑝𝑗 − 𝑓(𝑞𝑗)||
2 is the distance to be minimized between the reference points pj and 

the deforming points qj, f is a TPS of the form 𝑓(𝑥) = 𝜙(𝑥) ∙ 𝑐 + 𝑥 ∙ 𝑑 (where c is a matrix 

of non rigid coefficients, d is an affine matrix and 𝜙(𝑥) is vector related to the TPS kernel), 

𝜆𝑇 is a deformation weight term that controls the degree of deformation of the transformation 

function, and ||Lf||2 is a smoothness measure of f. For more details in the implementation the 

reader is refer to [Chui et al., 2003; Vasquez Osorio et al., 2009]. Each control point 

belonging to a thin-plate spline has a global influence on the transformation in that, if its 

position is perturbed, all other points in the transformed image change. This can be a 

disadvantage because it limits the ability to model complex and localized deformations and 

because, as the number of control points increases, the computational cost associated with 

moving a single point rises steeply. An example of the use of this approach in RT is presented 

in [Vasquez Osorio et al., 2008] where a thin-plate elastic registration algorithm was applied 

to head-and-neck cancer (HNC) patients with a planning contrast-enhanced CT and one 

contrast-enhanced CT acquired two weeks after, with the purpose to performed a local 

regional evaluation of anatomical changes of parotid and submandibular glands using 

deformation calculated by image registration. 

 

 

B-spline free-form registration method 
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 B-splines Free-Form Deformation (FFD) proposes to deform an image by 

manipulating a regular grid of points distributed over the image with a variable spacing to 

ensure maximum flexibility in the control of the precision of the deformation of the grid. 

The estimation of the local strain on the nodes of the grid and the deformation on the voxels 

of the image, which do not match with the control points, require a B-Spline interpolation 

[Rueckert et al., 1999]. B-spline functions are define as polynomial basis function of n>0 

degree, and could be define also as the convolution of splines of order n-1 with the spline of 

zero degree B0. In particular, FFD methods used the familiar 1-D cubic B-splines: 
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B-spline based non-rigid registration techniques are popular due to their general 

applicability, transparency and computational efficiency. Their main disadvantage is that 

special measures are sometimes required to prevent folding of the deformation field and 

these measures become more difficult to enforce at finer resolutions. Orban et al. [Orban et 

al., 2007] computed dense displacement fields using a combination of rigid and a b-splines 

FFD registration between Respiratory Correlated - CT (RC-CT) images in order to improve 

the treatment planning in RT for NSCLC by adding information in tumor delineation and 

dose planning. In [Faggiano et al., 2011-a], they proposed and validated a registration 

method based on FFD and mutual information to elastically register planning kilo voltage 

CT (kVCT) images with daily mega voltage CT (MVCT) images in order to estimate lung 

parenchyma modification of NSCLC patients during Tomotherapy treatment 

 

 

Optical-flow methods 

 Fluid registration, also known as optical flow (OF), methods consider that the 

differences between target and source images could be described as motion of voxels based 

on the OF equation: 
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where a(x) and b(x) refer to the intensity value of a voxel x in the target and source images 

respectively and u is the velocity component of the flow. Given a sequence of two images, 

OF methods find voxels correspondence by computing a displacement field describing the 

apparent motion represented by matching the intensity gradients in the two images. In order 

to solve the OF equation, another set of equations is needed, given by some additional 

constraint, for example a term of smoothness in the flow field. All optical flow methods 

introduce additional conditions for estimating the actual flow. In literature the principal 

methods to solve the OF process are the Horn-Schunck [Horn et al., 1981] and Lucas-Kanade 

[Lucas et al., 1981] methods; current OF methods are mainly variations of these methods 

[Bruhn et al., 2003; Zhang et al., 2008]. The main drawback of OF methods is that usually 

their additional constrains limit the velocity of the flow making it difficult to recover large 

deformations. In addition, OF methods are constrained by the assumption of intensity 

conservation between images, thus, methods are limited to monomodal cases. Castillo et al. 

[Castillo et al., 2009] evaluated an Optical Flow (OF) registration method and a landmark-

based moving least-squares algorithm using a large number of landmarks (>1100) for the 

registration of 4D CT thoracic treatment planning data. Their results demonstrate that large 

landmark point sets provide an effective means for objective evaluation of deformable image 

registration algorithms with a narrow uncertainty range, based on the high performance 

found in both studied methods, suggesting that this strategy could be used for quality 

assurance of registration methods on a routine clinical basis. 

 

 

Thirion’s Demons algorithm 

 In [Thirion, 1998], the author proposed to consider non-parametric non-rigid 

registration as a diffusion process. He introduced demons that push according to local 

characteristics of the images in a similar way Maxwell did for solving the Gibbs paradox 

(thermodynamic). The forces are inspired from the OF equations, thus the algorithm can be 

considered as a variant of a fluid NRR method. However the main difference is that instead 

of having a flow field in the entire image, in the Demons algorithm the forces are applied in 

the borders of the objects inside the images (figure 2.1). 
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Figure 2.1Illustration of the demons forces (a) with target image (IT) in gray and source image (IS) in 

transparent blue; the demons indicated by vector arrows warp the image by applying a force in the 

direction of the image gradient. In (b), there is a better overlap between the images and, as a result, the 

corresponding force is reduced, indicated by shorter vectors. In (c), the images overlap and there is no 

applied force by the demons because there is no difference in the gradient. 

 

 

The method alternates between computation of the forces and regularization by a Gaussian 

smoothing. The goal of Demons, similar to the OF algorithm, is the minimization of intensity 

differences between voxels in the target (IT) and source (IS) images. The intensity difference 

between the two images determines the applied force and its direction; when the difference 

between the two is greater than zero, IS moves in the direction of IT ; however, when the 

difference is less than zero, IS moves against IT. The demons stop exerting force when the 

images overlap completely. The optical flow equation was used to calculate the force applied 

by the demons, but is renormalized because of the effects of small image intensity gradients. 

Demons algorithm is a very accurate method, however it requires a great deal of computation 

time, which is a major drawback for many clinical applications. Furthermore, another 

limitation of the demons algorithm is that it does not provide diffeomorphic transformations 

[Vercauteren et al., 2009]. Wang et al. proposed a modified version of the original demons 

algorithm (implemented for CT image guided RT [(Xie et al 2003, Guimond et al 2001]) by 

introducing an ‘active force’ along with an adaptive force strength adjustment during the 

iterative process [Wang et al., 2005]. This modification led to a 40% speed improvement 

over the original algorithm and a high tolerance of large organ deformations. The proposed 

accelerated Demons was tested with: 1) a set of mathematical transformations for a series of 

patient’s CT images; 2) a physically deformable pelvic phantom; and 3) in physician-drawn 

(a) (b) (c)
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contours outlining the tumor volumes and certain anatomical structures in the original CT 

images along with the CT images acquired during subsequent treatments or during a different 

respiratory phase for a lung cancer case under different conditions. Their results suggest that 

the accelerated demons algorithm has significant potential for delineating and tracking doses 

in targets and critical structures during CT guided RT. 

 

 

Diffeomorphic registration methods. 

Diffeomorphisms is a mathematical condition in which an invertible function, that maps one 

differentiable manifold to another, exist such that both the differentiable function and its 

inverse are smooth. For the registration problem, a diffeomorphism means that it preserve 

the topology of the objects and prevent folding which is often physically impossible. They 

are considered to be a good working framework when no additional information about the 

spatial transformation is available. Diffeomorphic image registration usually relies on the 

computationally heavy solution of some partial differential equations [Avants et al., 2008; 

Beg et al., 2005]. Vercauteren et al. [Vercauteren et al., 2009] proposed a non-parametric 

diffeomorphic image registration algorithm based on the demons algorithm. The main idea 

of the Diffeomorphic Demons (DDem) algorithm is to adapt the entire space of displacement 

fields optimized by the Demons algorithm to a space of diffeomorphic transformations by 

combining a recently developed Lie group framework on diffeomorphisms and an 

optimization procedure for Lie groups. Another widely used algorithm in RT is the 

Diffeomorphic Morphons (DMor) [Janssens et al., 2009], which is an algorithm based on 

matching of edges and lines. The difference between this algorithm and OF and DDem is 

that the computation of the field is based on the local phase difference rather than the 

intensity difference between images. The phase difference between periodic signals with the 

same frequency allows the estimation of the spatial difference between these signals. The 

morphon iteratively deforms a source image into a target image by morphing the moving 

image [Wrangsjo et al., 2005]. In addition to the diffeomorphism property, methods such as 

DDem and DMor have the advantages that their transformations are smoother and closer to 

the true transformations in terms of Jacobians; but their main drawback is the complexity of 

their methods which results in high computational time. In [Janssens et al., 2011]. a 

Diffeomrphic version of the Demons and Morphons algorithms were validated in the context 

of RT for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax 
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with and without variable contrast enhancement. Their results suggest that diffeomorphic 

methods managed to estimate the deformations in a breathing thorax, with high accuracy, 

accomplishing the property of invertibility. Moreover, the Diffeomorphic Morphons 

managed to accurately estimate the deformations between images with variable contrast, 

while the Demons based method led to misalignment of anatomical structures affected by 

the contrast variation.  

 

 

2.3 Validation of registration methods 

 Because of the impact of image registration in RT, it is important to assess the 

accuracy of registration methods before being applied in a clinical context. The accuracy of 

the registration process depends on the quality of the images to be registered, the image 

information content, the spatial transformation model, cost function and optimization 

process used to achieved the registration. In addition, the validation of the registration have 

to take into account the specific experimental protocol, the main purpose why registration 

would be used, e.g. repositioning of the patient, or recovery of misalignment of OAR and/or 

TV in images acquired at different times. 

 Perform a visual inspection is the most immediate way of evaluating the result of a 

registration process. In this case, expert observers qualitatively evaluated the resulting 

images and assign a score based on some user-defined criteria; this type of assessment gives 

a rough idea of the algorithms performance but has the disadvantage of being dependent on 

the user, different observers may have different opinions about the registration result. 

 To overcome this limitation, quantitative indices that reflect the performance of the 

algorithm are used. Pearson's Correlation coefficient (CC) and the Target Registration Error 

(TRE) are examples of standard indices which provide a global measure of the registration 

performance [Castadot et al., 2008; Fiorino et al., 2006]. CC is a measure of the correlation 

between the intensities of corresponding voxels in the two images within a volume A, and is 

defined as: 
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,     (2.4) 

 

where xi is the intensity of the ith voxel in the fixed image and yi is the intensity of the 

corresponding voxel in the registered image; X and Y are the voxel intensities averaged in 

the considered volume A. On the other hand, TRE uses markers positioned respectively on 

the images to be registered, thus is possible to evaluate the distance error between markers. 

TRE is defined as: 

 

222 )()()( jijiji zzyyxxTRE  ,    (2.5) 

 

where (xi, yi, zi) are the coordinates of the markers in the target image and (xj, yj, zj) are the 

correspondent coordinates in the source image. In this case to obtain a robust validation a 

large number of markers are needed, this represent a drawback because the definition and 

positioning of the markers is a highly time-consuming task. 

 Previous metric examples, as mentioned before, provide a global idea of the 

registration performance. For a more specific evaluation some metrics design to give 

information about a particular structure of interest are highly used in RT. These indices need 

the contours or segmentations of the structures to be analyzed. In this case comparisons are 

made by volume or center of mass difference evaluation [Lee et al., 2008], through surfaces 

or contours distance calculation such as the average Symmetric Distance (ASD) or the 

Maximum Symmetric Distance (MSD) [Heimann et al., 2009] or by volume overlap indices 

analysis [Dice, 1945; Zouet al., 2004; Faggiano et al., 2011-a; Faggiano et al., 2011-b ]. ASD 

and MSD indices gives information about the mean and worst mismatch found between to 

structures, they are defined as: 
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where CA and CB are the two contours to be evaluated pA and pB are the corresponding points 

to be evaluated in A and B respectively and d(.) is the Euclidean distance between a point p, 

located in a contour, and its closest voxel in the other contour. 

 The DICE similarity coefficient indicates the overlapping ratio between the two 

volumes of interest. It is defined as:  

 

BA

BA
DICE






2
,      (2.8) 

 

where A and B are the two sets of voxels to evaluate. The perfect match between the volumes 

of interest gives a DICE equal to one, whereas two disjoint volumes lead to zero. The main 

drawback for these indices is the presence of inter-observer and intra-observer variabilities, 

meaning that the accuracy of the evaluation depends on the accuracy of the contour 

delineation or the segmentation. For this problem, some approaches to automatically 

propagate contours or segment structures have been studied. In these cases is necessary to 

verify if the uncertainties of the automatic contour fall within those achieved by human 

observers [Duma et al., 2010; Faggiano et al., 2011-b].  

 It is important to mention that the validation indices described in this chapter are used 

in clinical settings, despite their drawbacks, since each one of them provides useful 

information regarding the images or deformation fields obtained by a particular registration 

method. Furthermore, nowadays it does not exist a common consolidated strategy to perform 

validation of registration methods because the validation process is highly dependent of the 

clinical scope of the registration. However, a good strategy for the evaluation of registration 

methods is to combine several of the indices presented here to get a proper information about 

the accuracy and robustness of the methods. 
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Chapter 3 
 

 

 

Particle Filter + Optical 

Flow Registration Approach 
 

 

 

 

After almost three decades that medical image registration methods have been studied 

[Hill et al., 2001], their major difficulty currently resides in its computational complexity. 

Although the speed of computers has been growing, the need to decrease the computational 

time of methods persists. Moreover, the demand for higher robustness and accuracy of the 

registration usually enforce solutions utilizing the iterations or backtracking, which also 

produce increase of computational complexity of the method [Maintz et al., 1998; Mani et 

al., 2013]. In this work we proposed an algorithm with a good balance between accuracy 

and complexity carrying out, first, a global transformation using the Particle Filter (PF), 

followed by an iterative Optical Flow (OF) process. The PF is accurate, robust and, 

because of its parallelizable structure, it can be also considered a fast algorithm; while the 

proposed iterative OF algorithm is accurate enough and has a considerable lower 

mathematical complexity with respect to other accurate fluid like algorithms such as 

Demons and Diffeomorphic Demons. 
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In this chapter, the basis of the PF and OF is introduced. Then, the theory to adapt both 

methods to the image registration problem and the proposed algorithm to achieve a 3D 

elastic registration guided by the proposed PF + OF approach is described. 

 

3.1 Particle Filter 

PF is a method based on Bayesian estimation that uses a Monte Carlo algorithm to 

estimate states of nonlinear dynamic systems by estimating a probability density function 

[Arulampalam et al., 2002; Ristic et al., 2004]. Monte Carlo methods are very flexible 

because they do not require any assumptions about the probability distributions of the data. 

From a Bayesian perspective, sequential Monte Carlo methods make possible to compute a 

posterior probability distributions of interest parameters. As a result, they are being applied 

to a large number of engineering problems such as target tracking, computer vision, blind 

deconvolution, statistical model diagnosis, neural network training, optimal control, 

reinforcement learning, signal enhancement, financial modeling and time series analysis, 

among others [Doucet et al., 2001]. 

 

3.1.1 Bayesian Estimations Basis 

A dynamic system can be modeled with two equations: the state evolution equation 

and the measurement equation (see figure 3.1). First, to define the state evolution model, 

consider that the evolution of states of a dynamic system is described by: 

 

),( 11  kkkk vxfx ,      (3.1) 

 

where fk() is a possibly nonlinear function of the state xk-1, and vk-1 is independent and 

identically distributed (iid) noise. Note that the current state only depends on the previous 

state, i.e. it is a first order Markov process. Thus, it is possible to recursively estimate the 

state vectors xk from a set of measurements described by the following model: 

),( kkkk nxhz  ,       (3.2) 
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where hk(·) is a measurement function which could also possibly be nonlinear, and nk are 

iid noise samples. 

Using eqs. 3.1 and 3.2 it is possible to estimate xk based on the set of available 

measurements z1:k = (zi; i = 1, ..., k) by computing the probability density function (pdf) 

p(xk | z1:k). This pdf can be obtained recursively defining two stages equations: prediction 

and update. As it is shown in figure 3.2, suppose that p(xk-1 | z1:k-1) is accessed at time k -1, 

then the pdf of the state system at time k can be described in prediction stage via the 

Chapman-Kolmogorov equation: 

 

   11:1111:1 )|()|()|( kkkkkkk dszxpxxpzxp ,    (3.3) 

 

 

Figure 3.1. Graphical representation of a dynamic system space. 

 

 

 

Figure 3.2. Sequence of prediction and update stages. 

 



3 - Particle Filter + Optical Flow Registration Approach 
________________________________________________________________________________ 
 

 
22 

 At time k, a measurement zk is available. Using the Bayes theorem, we can update 

the prior (update stage) via: 
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where the normalizing constant: 

 

   kkkkkkk dszxpxzpzzp )|()|()|( 1:11:1
, 
    (3.5) 

 

depends on the likelihood function p(zk|xk) defined by the measurement model described 

on eq. (3.2) and the known statistics of nk. 

In some cases, noises vk and nk are independent and Gaussian with known means and 

covariance. In addition, if functions fk(.) and hk(.) are known linear functions, the updated 

pdf p(xk|z1:k) could be given by the well-known Kalman filter [Arulampalam, 2002] if the 

state variable sk is continuous. 

However, in many applications, functions fk(.) and hk(.) are not linear and noises vk and 

nk may not be Gaussian. To solve these cases, the PF becomes an accurate and robust 

option for practical applications [Ristic, 2004, Doucet, 1998]. 

 

 

3.1.2 Particle Filter Basis 

The PF can be seen as a recursive implementation of Monte Carlo based statistical 

signal processing. The key idea of the PF is to obtain a posterior pdf from a set of random 

samples with associated weights, which allows one to estimate state variables defining a 

dynamic system [Arce-Santana et al., 2010]. As the number of samples becomes very 

large, this Monte Carlo characterization becomes an equivalent representation to the usual 

functional description of the posterior pdf, and the PF approaches the optimal Bayesian 

estimate.  
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In the PF algorithm, the distribution p(xk|z1:k) is described by samples (particles) 

{(𝑥𝑘
𝑖 , 𝑤𝑘

𝑖 : i=0, ..., Ns)}, where the 𝑥𝑘
𝑖  represent the particle values at time k, 𝑤𝑘

𝑖  are the 

associated weights such that ∑𝑤𝑘
𝑖 =1, and Ns is the number of particles. Then, the posterior 

density at time k can be approximated as: 

 

)()|( :1
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k
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i

k

i

kkk xxwzxp    ,      (3.6) 

 

where  is the Kronecker delta function. It can be shown that when Ns → ∞, the above 

approximation can approach the true posterior density p(xk|z1:k). 

PF thus consists on the recursive propagation of the weights and support points while 

each measurement is received sequentially. It is composed of two stages [Arce-Santana et 

al., 2009]: 

1. Prediction stage: each of the state variables (particles) is modified using eq. (3.1), 

through a recursive propagation of the particles at time k. 

2. Update stage: the weights of the particles are recalculated according to the 

measurements zk from eq. (3:2), in order to obtain representative samples of p(xk|z1:k). 

It is important to mention that a common problem in the prediction stage is that after a 

few iterations, all but one particle will have a negligible weight. This phenomenon is 

known as the Degeneracy Problem [Doucet et al., 1998], and implies that a huge 

computational effort is devoted to updating particles whose contribution to the 

approximation of p(xk|z1:k) is almost zero. A suitable measure of degeneracy is the effective 

sample size Neff introduced in [Bergman, 1999] and [Arulampalam et al., 2002], which is 

defined as: 
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where Var(𝑤𝑘
∗𝑖) is referred as the true weight which cannot be evaluated exactly. Yet we 

can obtain an estimate 𝑁𝑒𝑓𝑓
^  of 𝑁𝑒𝑓𝑓 which is described as: 
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,      (3.8) 

 

where 𝑤𝑘
𝑖  is the normalized weight. It is clear that effective sample size Neff ≤ Ns and a 

small Neff represents severe degeneracy. The simplest method to mitigate the degeneracy 

effect is to use a very large number of particles (Ns). However, this will increase 

computational load, which is often impractical. Therefore, resampling is used as another 

way to resolve this problem. 

The basic idea of resampling is to replace old set of particles, samples, and weights 

with a new set of samples with their respective new weights such that the sample 

probability density can better reflect the true posterior density [Ying Liu et al., 2006] (see 

figure 3.3). 

At time k-1 the particles that represent p(xk|zk) are used to obtain new particles. Then, 

the stage of each of these particles is modified according to the prediction eq. (3.3). 

Finally, the weights 𝑤𝑘
𝑖  of the particles are updated guided by the likelihood function 

p(zk|xk) in order to get the representative samples of p(xk|zk). Weights are normalized before 

the resampling stage.  
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Fig. 3.3. Process of resampling. 

 

3.1.3 Image Registration Based on Particle Filter 

In [Arce-Santana et al., 2009], the PF algorithm was adapted to solve the image 

registration problem in 2D. In this section of the chapter, the extension of the PF algorithm 

to its 3D implementation is presented. Given a target and a source images, IT and IS 

respectively, the observation model is described as: 

 

))),,(((),,( zyxTIFzyxI ST  ,     (3.9) 

 

where F(.) represents an intensity relationship between images, and T(.) could be an affine 

transformation: 
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where dx,, 𝜆𝑥 and 𝜃𝑥 are the translation, scale and rotation angle factors on the x axis 

respectively; dy,, 𝜆𝑦 and 𝜃𝑦 are the factors for the y axis; and dz,, 𝜆𝑧 and 𝜃𝑧 are the factors 

for the z axis. 

In order to carry out the registration, the state variables are assumed as the vector 

(𝑠𝑘
𝑖 )=[ 𝑑𝑥𝑘

𝑖 , 𝑑𝑦𝑘
𝑖 , 𝑑𝑧𝑘

𝑖 , 𝜆𝑥𝑘
𝑖 , 𝜆𝑦𝑘

𝑖 , 𝜆𝑧𝑘
𝑖 , 𝜃𝑥𝑘

𝑖 , 𝜃𝑦𝑘
𝑖 , 𝜃𝑧𝑘

𝑖 ]T which is formed from the geometric 

affine transformation parameters. Then the state equation of image registration is defined 

as a simple random walk: 
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we can see that the prediction equation is just the preceding value disturbed by the noise 

vector 𝑣 = [𝑣𝑑𝑥
, 𝑣𝑑𝑦

, 𝑣𝑑𝑧
, 𝑣𝜆𝑥

, 𝑣𝜆𝑦
, 𝑣𝜆𝑧

, 𝑣𝜃𝑥
, 𝑣𝜃𝑦

, 𝑣𝜃𝑧
]𝑇. 

Here, we apply Gaussian and independent noise for each parameter with zero mean 

and different standard deviation 𝜎𝜃, 𝜎𝜆, 𝜎𝑑  respectively. 
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The update equation is given as the equation below in order to evaluate how well each 

new particle value 𝑠𝑘
𝑖  fits the observation model 

 

),,(),,())),,((( zyxzyxIzyxTIF TS  ,     (3.12) 

 

where the γ(x, y, z) is iid noise, with zero mean and standard deviation 𝜎𝛾. Because IT and 

IS are considered to be monomodal images, the image intensity at corresponding points 

between the two images should be the same. In this way is possible to consider F(.) as the 

identity; and the observation model could be described as: 

 

),,(),,()),,(( zyxzyxIzyxTI TS  ,    (3.13) 

 

In order to accelerate the process, we consider a set of m uniformly distributed voxels 𝐶 =

{(𝑥𝑖, 𝑦𝑖, 𝑧𝑖); 𝑖 = 1,… ,𝑚} in IT and IS. Thus, the likelihood function can be described as: 
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In the next section of this chapter, the detail implementation of the image registration 

guided by the PF is presented. 

 

 

3.1.4 PF Image Registration Proposed Algorithm  

Given a set of NS particles and their weights at time k-1, {(𝑠𝑘−1
𝑖 , 𝑤𝑘−1

𝑖 ): 𝑖 =

1,2, … ,𝑁𝑆}, where the state values are given by the transformation parameters (𝑠𝑘
𝑖−1)  = 

[ 𝑑𝑥𝑘
𝑖−1, 𝑑𝑦𝑘

𝑖−1, 𝑑𝑧𝑘
𝑖−1, 𝜆𝑥𝑘

𝑖−1, 𝜆𝑦𝑘
𝑖−1, 𝜆𝑧𝑘

𝑖−1, 𝜃𝑥𝑘
𝑖−1, 𝜃𝑦𝑘

𝑖−1, 𝜃𝑧𝑘
𝑖−1]T; the next steps have to be completed in 

order to achieve the registration process: 
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1. For each particle, compute the cumulative probability as: 
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1 kc ,        (3.15) 
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  ; i= 1, 2, ..., NS,     (3.16) 

 

2. For each particle 𝑠𝑘−1
𝑖 , do the resampling as shown below: 

 (a) Generate a uniform random value u 𝜖 [0; 1]. 

 (b) Find the smallest index j such that 𝑐𝑘−1
𝑖 ≥ u. 

 (c) Select the state 𝑠𝑘−1
^𝑖 = 𝑠𝑘−1

𝑗
 . 

 

3. In the prediction stage, obtain the new samples at time k, using the equation: 
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k vss ,      (3.17) 

 

4. In the update stage, for each new particle 𝑠𝑘
𝑖 , compute the corresponding weight 

𝑤𝑘
𝑖 ,according to the likelihood function: 
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5. Normalize the weights, such that ∑ 𝑤𝑘
𝑖

𝑖 = 1. Meanwhile, update the variances of the 

noise components vk, in order to gradually reduce the variability in the optimization 

search. 

 

6. Once the weights of the particles have been computed, we could evaluate the mean of 

the particles to achieve the estimation: 
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Step 1 to 5 are iteratively executed until the number of iterations defined by the user 

are completed or when the estimation of the effective sample size 𝑁𝑒𝑓𝑓
^  is bigger than a 

threshold Nt, defined by the user. 

In the update stage, calculation of the likelihood is based on a similarity measure, i.e. 

similar gray value distance, mutual information (MI), etc. Since particle filtering is a 

technique based on Bayesian estimation, it is necessary to define a likelihood function 

[Simon, 2006, Trees, 2001]. For a given measurement z (between IT and IS) and a 

parameter vector s, the likelihood function 𝑝(𝑧|𝑠) could be given as: 
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where the (x,y,z) are the voxel coordinates on IT, T(·) is a parametric transformation 

between IT and IS, σ is the noise standard deviation of the measurements, and SM(:) is the 

similarity metric which is used to compare the two images. Thus, SM should approach zero 

when similarity between corresponding voxels in both images increases [Reducindo et al., 

2010]. 

Different measures would result in different registration accuracy. Besides, it is 

performed by using only a selected set of image voxels, and therefore, the number of 

voxels in this set and how they are sampled may also affect the registration process. In this 

work we used as similarity metric the normalized mutual information (NMI). Although 

metrics based on mutual information (MI) are a standard for multimodal registration, it has 

been proved in [Zhiyong et al., 2006] that NMI performs accurately, is stable and robust in 

both monomodal and multimodal registration of different dimensions. Moreover, NMI has 

been proved to be the similarity measure with better performance for parametric 

registration based on PF [Reducindo et al., 2011]. Given a target and a source images IT 

and IS , the NMI is given by: 
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where H(IT) and H(IT) are the marginal entropies of IT and IT respectively, and H(IT, IS) is 

the joint entropy. Based on the NMI properties [Studholme et al., 1999], this metric is 

always bounded by 2, therefore the SM defined in eq. (3.28) in terms of the NMI is given 

by: 
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3.2 Optical Flow 

3.2.1 Optical Flow Basis 

Optical flow (OF) could be defined as the pattern of apparent motion of objects, 

surfaces, and edges in a visual scene caused by the relative motion between an observer (an 

eye or a camera or an image acquisition sensor) and the scene [Horn, 1981; Horn, 1993]. 

Sequences of ordered images allow the estimation of motion as either instantaneous 

image velocities or discrete image displacements. In general, OF methods try to calculate 

the motion between two image frames, taken at times t and t, at every voxel position. 

These methods are called differential since they are based on local Taylor series 

approximations; they use partial derivatives with respect to the spatial and temporal 

coordinates. For simplicity reasons the 2D+t dimensional OF case is shown, however 3D 

or n-D cases are similar. In a given image, a voxel located at (x, y, t) with intensity E(x, y, 

t) will have moved by x, y and t between two image frames, and the following 

constraint equation can be given: 

 

),,(),,( ttyyxxEtyxE  ,     (3.31) 

 

Assuming voxel movement to be small, eq. (3.31) can be developed using Taylor series as: 
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From eq. (3.32) it follows that: 
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where Vx and Vy are the x and y components of the velocity or OF. The derivatives of the 

image at (x,y,t) can be rewritten as Ex, Ey and Et respectively, leading to:  

 

tyyxx EVEVE  ,      (3.36) 

 

or 

 

t
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,       (3.37) 

 

Equation 3.36 is known as the instantaneous optical flow equation. This is an equation 

in two unknowns and cannot be solved as such. This is known as the aperture problem of 

OF algorithms; to deal with it and find the optical flow 𝑉⃗  another set of equations is 

needed, given by some additional constraint. One algorithm that can be used was originally 

proposed by Horn and Schunck [Horn et al., 1981], which seeks to minimize the following 

energy function: 

 

dxdycb  222  ,      (3.38) 

 

where 𝜉𝑏 is the error in the intensity changes between image frames, or between target and 

source images, and it is equal to the instantaneous optical flow equation

tyxb EvEuE  , 𝛼 is a regularization term to control the flow speed, and 𝜉𝑐 is the 

additional constrain which searches to minimize the square of the magnitude of the 

gradient of the OF velocity, also known as the smoothness measurement of the 

displacement flow, and is defined as: 
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Other technique to solve the OF is used in [Arce-Santana et al., 2010] which is based on a 

discrete reformulation of the Horn-Schunck method where it is minimized the next energy 

function: 
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where d is the displacement field, r is the coordinates vector of the pixel or voxel, <r,s> 

represents the nearest neighbors of r,  is a regularization constant to control the flow 

homogeneity, and ||.|| represents the Euclidean norm. In this case the regularization term is 

expressed in probabilistic terms in the form of a prior Markov Random Field [Marroquin, 

2000]. 

The quadratic cost functions in eqs. (3.38) and (3.40) have a similar structure, since 

both include a data error term and a regularization term, and in both equations their optimal 

solution can be computed by solving a system of linear equations for each pixel or voxel 

using efficient iterative methods such as the Gauss-Seidel technique [Barret et al., 1994]. 

In this work we develop a variant of the discrete reformulation of the classical Horn-

Schunk method studied in [Arce-Sanatana et al., 2010] by adding regularization terms to 

eq. (3.40) in order to have a finer control in the OF field. 

 

3.2.2 Optical Flow Image Registration Proposed Algorithm 

Given a target and source images IT and IS in 3D, the energy function proposed to 

solve the OF includes a data error term and two regularization terms. This energy function 

is formulated as: 
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where d represents the displacement flow field, r is the coordinates vector (x,y,z) of a 

voxel, <r,s> represents the nearest neighbors of r,  =[x, y z]
T is the vector containing 

regularization constants to control the flow homogeneity in every direction of the image, 

||.|| represents the Euclidean norm, and  is a constant that weights the velocity control 

term of the OF field. Main modifications of the proposed energy function with respect to 

eq. (3.40) are, first, the use of a vector  in the homogeneity regularization term: 
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instead of a global  in the regularization term, which gives to the user the possibility to 

control the homogeneity in every direction of the image according to its resolution; and 

second, the addition of a velocity regularization term: 

 


r

rd 2||)(|| ,      (3.43) 

 

which controls the velocity of the whole field; big values of  will lead to slow (more 

controlled) displacements of the OF field. The non-linear quadratic cost function (3.41) can 

be linearized by conducting a first order Taylor approximation on the data term: 

 

𝐼𝑆
′ (𝐫 + 𝑑(𝐫)) ≈ 𝐼𝑆

′ (𝐫) + ∇𝐼𝑆
′ (𝐫)𝑇𝑑(𝐫),     (3.44) 

 

Then, the minimum solution for the quadratic problem can be obtained by a direct 

calculation of the stationary optimality conditions of eq. (3.41) with respect to 𝑑(𝐫): 
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Rearranging eq. (3.45) we obtain: 
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which can be express in terms of each dimension of the image as follows: 
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Finally, the solution to the optimization problem in (3.41) is obtained by solving the 

system of linear equations depending of dx(r), dy(r) and dz(r), described by (3.47), (3.48) 

and (3.49), which can be solved for iteratively with Gauss-Seidel. 

 

3.3 Particle Filter + Optical Flow Image Registration Approach 

The theorical basis of PF and OF presented in this chapter can be summarized as 

follows. Given a source and target images IS and IT, first, the basic idea of the parametric 
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registration based on PF is to estimate the parameters vector 𝑃𝑎𝑟 of a geometrical 

transformation (e.g. affine) by an stochastic search over an optimization surface (cost 

function). This goal is achieved by using a set of 𝑁𝑠 test points called particles 

(𝑃𝑎𝑟1,⋯ , 𝑃𝑎𝑟𝑁𝑠
), and their associated weights (𝑊1, ⋯ ,𝑊𝑁𝑠

) calculated by a likelihood 

function 𝑝(𝑧|𝑃𝑎𝑟𝑗) for a measurement 𝑧 between the images: 

 

𝑊𝑗 =
1

√2𝜋𝜎𝜂
exp {

−(2−NMI{𝐼𝑇(𝐫),𝐼𝑆(𝑇(𝐫|𝑃𝑎𝑟𝑗))})

2𝜎𝜂
2 },       𝑗 = 1,⋯ , 𝑁;  (3.50) 

 

where 𝐫 is the coordinates vector (x,y,z) of a voxel, 𝑇(𝐫|𝑃𝑎𝑟) is a geometrical 

transformation depending on the parameters vector 𝑃𝑎𝑟, 𝜎𝜂
2 is the noise variance in the 

measurement 𝑧, and NMI(∙,∙) represents the normalized mutual information between two 

images. 

Weights 𝑊𝑗 are used to approximate a posteriori pdf 𝑝(𝑃𝑎𝑟𝑗|𝑧) of the unknown 

parameters vector 𝑃𝑎𝑟 given a measurement 𝑧. In this way, for a window of 𝑘 observations 

(𝑧1, ⋯ , 𝑧𝑘), the estimated vector 𝑃𝑎𝑟̂𝑘 of the parametric transformation can be computed 

by the expected value of the approximated pdf as follows: 

 

𝑃𝑎𝑟̂𝑘 = 𝐸[𝑃𝑎𝑟|𝑧1, ⋯ , 𝑧𝑘] ≈ ∑ 𝑊𝑗
𝑘𝑃𝑎𝑟𝑗

𝑘𝑁
𝑗=1 ,    (3.51) 

 

Once carried out the initial parametric registration by using the PF, the remaining 

displacements 𝑑(𝐫) are obtained by using an OF technique, in particular by minimizing the 

non-linear quadratic energy function described in eq. 3.41,  

   
 


rr sr

T

STopt rdsdrdrdrIrId 2

,

22
||)(||))()(())(()()(  . 

This non-linear quadratic cost function in can be linearized by conducting a first order 

Taylor approximation on the data term, as shown in eq. (3.45), and the solution for the 

quadratic problem can be obtained deriving with respect to 𝑑(𝐫), and then solving the 
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resulting system of linear equations (equation 3.47, 3.48 and 3.49) by the iterative Gauss-

Seidel technique.  

Hence, the initial estimation 𝑑0(𝐫) can be refined by accumulating the displacements 

obtained after solving the optimization in (3.45) recursively. Thus, the PF+OF elastic 

registration algorithm can be achieved in the next three steps:  

1. Parametric Registration (Rigid). Find the parameters vector 𝑃𝑎𝑟 ̂ of the perspective 

transformation 𝑇(𝐫|𝑃𝑎𝑟̂) that provide the best alignment between 𝐼𝑇(𝐫) and 𝐼𝑆(𝐫), 

and compute the initial (rigid) displacement vector field 𝑑0(𝐫). 

2. Optical Flow. Find the displacements between 𝐼𝑇 and 𝐼𝑆 by an OF iterative 

scheme, 𝑑(𝐫) = 𝑑1(𝐫) + 𝑑2(𝐫) + ⋯+𝑑𝑘(𝐫), until convergence is achieved; where 

at each k-th iteration the OF is computed over 𝐼𝑇(𝐫) and 𝐼𝑆
𝑘(𝐫), where 𝐼𝑆

𝑘(𝐫) ≜

𝐼𝑆(𝐫 + ∑ 𝑑𝑖(𝐫)
𝒌−𝟏
𝒊=𝟏 ). 

3. Elastic Registration. Finally, we can obtain the vector field of the non-rigid 

deformation by adding the rigid vector field to the one obtained by the iterative OF, 

i.e., 𝑉(𝐫) ≜ 𝑑0(𝐫) + 𝑑(𝐫). Consequently, we can deduce the elastic registered 

image as 𝐼𝑅(𝐫) ≜ 𝐼𝑆(𝐫 + 𝑉(𝐫)). 
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Chapter 4 
 

 

 

PF+OF for Registration of 

4D CT Lung Images - 

Experimental Protocol 
 

 

 

 

 In this chapter, the experimental protocol to evaluate the developed algorithms, PF, 

OF and the combination of them, PF+OF, using two datasets is presented. First, a 4D CT 

lung images dataset from a controlled model was studied; then a dataset of 4D CT lung 

clinical images from five patients treated with RT was used to analyze the performance of 

the proposed registration approaches. In addition, performance comparison between the 

proposed methods and other non-parametric algorithms already proposed in RT for the 

registration process in the thoracic district [Wang, 2005; Peyrat, 2008; Murphy, 2011], 

Demons (Dem) and Diffeomorphic Demons (DDem), is performed analyzing anatomical 

structures of clinical interest.  

 

4.1 Controlled Images Dataset 

 As a first step, registration algorithms were evaluated using the POint-validated 

PIxel-based (POPI) breathing thorax model provided by [Vandemeulebroucke et al., 2007]. 
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The POPI model consists of a dataset of 4D CT thorax images binned into 10 respiratory 

phases (00%, 10%, 20%, ..., 90%) acquired from a real patient (figure 4.1); in addition to 

the images, authors provide also 41 associated anatomical landmarks with their respective 

spatial information (spatial coordinates). The landmarks are anatomically homologous 

points that were manually delineated by radiologists at all 10 phases of the original 4D CT 

image sets based on anatomical features that correspond to various locations in the lung 

such as carina, calcified nodules, division branch of pulmonary artery, etc. Landmarks 

were used to evaluate the registration accuracy by the estimation of the distance between 

markers before and after the registration process. The POPI model consisted of CT images 

of 512× 512×141 voxels with a voxel dimensions of 0.97 × 0.97 × 2.00 mm3 (2.00 mm is 

the slice thickness). CT images from phase 10 (onset of inspiration) were always used as 

the target image IT, the nine remaining phases were used as the source image IS, thus 

leading to a total of nine registrations.  

 

 
 

Figure 4.1. POPI model 4DCT image with the respective axial, sagittal and coronal view of the gross 

target volume (GTV). 
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4.2 Clinical Images Dataset 

 Clinical images dataset was formed by 4D CT images from studies of 5 patients 

treated for locally advanced NSCLC with Helical Tomotherapy (HT). For each patient, 

images from the inspiratory and expiratory phases were registered, using the first one as 

target image; an example of the complex deformation found between the inspiratory and 

expiratory phases is shown in figure 4.2. In figure 4.3, an example of the CT image from 

an inspiratory phase is shown, in which contours of the lungs and the tumor are delineated 

with the correspondent RT dose planning, where the most irradiated zone correspond to the 

purple one (GTV); the upper right image shows a volumetric representation of the right 

lung (green), left lung (blue) and GTV (purple) are also presented. For this images dataset, 

registration methods were used with the purpose of the alignment of volumetric structures 

of interest, which leads to the recovery of information about the movement of lungs and 

tumor due to respiration, information that could be used for the definition/modification of 

the dose distribution of the RT treatment plan. Furthermore, the robustness of the proposed 

algorithm is tested taking into account the intra-subject variability, where different 

morphologies of the anatomical structures of interest, tumor (TV) and lungs, are presented 

(figure 4.4). The number of slices in these images ranged from 72 to 128, and each slice 

was 512 x 512 pixels with a voxel size equal to 0.98 x 0.98 x 2.50 mm3. 
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Figure 4.2. Example of a CT image from the thoracic district used for the RT dose planning.  

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 4.3. Example of the complex lung deformation found between the inspiratory ((a), (b) and (c)) 

and expiratory ((d), (e) and (f)) phases presented in their respective axial, sagittal and coronal view. 
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Figure 4.4. Visualization of the 4D CT lung images studied from five patients treated for locally advanced non-small cell lung cancer (NSCLC). For each patient the 

tumor is located by a red contour. 
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4.3 Pre-processing 

 In order to reduce the computing time of the registration process, reduction of all 

volumetric images was performed without losing useful information, eliminating only the 

unnecessary areas which had no relevant information related to the lungs. The reduction of 

the images was performed using the software MIPAV [McAuliffe et al., 2001]. Three or 

four slices in excess of the district of interest at the front and back of the image were used 

as rule to reduce the images, to avoid that any artifacts introduced by the registration 

process could interfere with the sections containing the structures of interest. In addition, 

several background voxels corresponding to the air surrounding the patient were 

eliminated, however representative voxels of this area near the district of interest are 

considered; the reason to eliminate theses voxels is, because of noise in the image 

background voxels have slightly different values to the ideal background value (around -

1000) and even if these voxels are not strictly part of the district of interest, they are 

considered by the registration algorithms. The last pre-processing step was the 

reassignment of the origin. This procedure is necessary because the reduction of the 

volume modify the size of the image in every direction moving the origin of image, which 

always corresponds to the upper left corner of the first slice in agreement with the RAI 

(Right to left, Anterior to posterior, Inferior to superior) convention (figure 4.5). 

 

Figure 4.5. Example of reassignment of an image origin. 
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 4D CT images from the POPI model, after the pre-processing steps, consisted of 

422x300x51 voxels; due to the reduction on the images, the original 41 markers provided 

were cut off to 30 landmarks. 4D CT images from the clinical dataset remained with a 

variable dimension from 365x282x48 to 472x332x128 voxels after the pre-processing 

stage. 

 

 

4.4 Implementation and Parameters of Image Registration 

Algorithms 

 The proposed registration algorithms have been implemented using C++language 

and the standard libraries included in the Insight Toolkit (ITK) v.4.2 [Ibanez et al., 2003]. 

For PF, the settings for all registrations included 500 particles and a maximum of 500 

iterations; the iterative process stops when it reaches the maximum number of iterations or 

when the estimation of the effective sample size 𝑁𝑒𝑓𝑓
^  is bigger than the stop criteria Nt 

=1x10-6. Estimation of OF was achieved with a maximum of 300 iterations and 

smoothness control parameters x = 6000, y = 6000, z = 15000 and w = 200000; the OF 

iterative process was stopped if the changes measures in terms of the sum of squared 

differences (SSD) were less than 1.0%. Dem and DDem algorithms were implemented, 

also in C++ language, in an iterative and multiscale scheme with the same settings 

proposed by the authors [Janssens et al., 2009], that is using eight scales with a maximum 

of 20 iterations at each scale and a Gaussian smoothing with a standard deviation σ=2.  

 Registrations were executed in a standard PC with an Intel Core i5 CPU running at 

2.27GHz. Registration times were about 6 min for Dem, 10 min for DDem, 55 min for PF 

and 20 min for OF. It is important to mention that in this work the comparison between the 

proposed method PF+OF, Dem and DDem was evaluated in terms of the registration 

accuracy and not in terms of executing time; in the present implementation PF and OF are 

not adopted multi-resolution schemes, thus leading to speed computational disadvantages. 

In a near future this drawback will be overcome by a multiscale implementation of the 

PF+OF approach, however in this work speed processing was not considered as an 
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important factor to evaluate the proposed NRR method PF+OF, eliminating the 

computational time advantage of the multiscale implementation of Dem and DDem. 

 

 

4.5 PF+OF – Original Version vs. Four Control Parameters 

Version 

For a better understanding of reasons to add control parameters to the presented 3D 

implementation of the OF approach originally proposed by [Arce-Santana, et al., 2010], 

which have only one control parameters (see eqs. 3.40 and 3.41), two particular 

registration were performed. In these experiments, phases 10, 30 and 60 from the POPI 

model were used, to perform the registration between phases 10-30 and 10-60 (in both 

cases phase 10 was used as the target image). These phases were selected in order to 

evaluate the performance of the two versions of the PF+OF approach with two different 

patterns of complex deformation, beginning of the inspiration (phase 10) versus the middle 

of the inspiration (phase 30) and the onset of the expiration (phase 60), being the last one 

the more complex deformation. 

The value of  for the PF+OF version with one control parameter was set to 6000 

(as x and y); the rest of the algorithm parameters were set as described in section 4.4 of 

this chapter. 

 

 

4.6 Registration Accuracy 

 In order to validate the registration accuracy, for each registration method the 

manual segmentation of anatomical structures of interest, the lungs and the tumor (Gross 

Target Volume - GTV ), were performed by expert observers in RT images using the 

Treatment Plan System (TPS). 
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 From these segmentations, differences in structures between correspondence 

respiratory phases registered before and after the registration process were calculated using 

standard indices usually adopted for registration accuracy assessment [Wang et al., 2008; 

Heimann et al., 2009; Faggiano et al., 2011-a; Ecabert et al., 2011]: the Dice similarity 

coefficient (DICE), the Average Symmetric Distance (ASD), the Maximum distance 

between structures (DMax), and the Percentage of Distance Bigger than the Voxel 

Dimension (%DBVD). For the POPI model, the Target Registration Error (TRE) was also 

computed. 

 DICE is an index that measures the overlap between two structures described by 

binary masks. Hence given two different binary masks A and B representing the area 

delimited by a contour, DICE was calculated as: 
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      (4.1) 

 

where # denotes the cardinality of the set. DICE ranges from 0 (no spatial overlap) to 1 

(complete overlap). 

 Likewise, given two contours CA and CB, the ASD index first calculates for each 

contour pixel pB ∈ CB, the Euclidean distance between pB and its closest pixel in CA. In 

order to provide symmetry, the same process is applied to the contour pixels pA ∈ CA with 

respect to CB. The ASD is then defined as the average of all computed distances: 
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where d(p,C) = minq∈C ||p-q||2. Therefore, a perfect match between contours CA and CB is 

expressed as a zero value for ASD. 

 DMax calculates the maximum distance between the analyzed overlapped contours, 

where zero means a perfect overlap. As a result, DMax provides an estimation of the worst 

local distance mismatch and is defined as: 
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 %DBVD estimates the percentage of mismatching distances bigger than a 

permissive threshold value, defined by the user, such as the thickness of the voxel, being 

0% a perfect match between structures. Given two sets GA and GB defined as: 
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where VoxelDim is the image voxel dimension (slice thickness) value, then the %DBVD is 

calculated as follows: 
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 TRE index is the residual misalignment between the original landmarks positions in 

the target image (𝑥𝑖,  𝑦𝑖 ,  𝑧𝑖) and the updated positions (𝑥′𝑖,  𝑦′𝑖,  𝑧′𝑖) obtained after 

applying the transformation field to landmarks in the source image; TRE is define as 

follows: 

  

     222
''' iiiiii zzyyxxTRE      (4.7) 

 

4.7 Comparison 

 In this work, the PF and OF algorithms were tested individually and together as the 

proposed PF+OF approach; individual evaluation of the algorithms was assessed for a 

better understanding of the impact of the affine transformation, achieved by PF, in the 

proposed OF algorithm. Thus, the comparison of the registration accuracy was performed 

between accuracy values computed before the registration and values obtained after the 

registration by PF, OF, Dem, DDem and PF+OF approaches. 



4 -Experimental Protocol 
________________________________________________________________________________ 
 

 
49 

 For the POPI model, accuracy indices were calculated using the lung segmentations 

provided together with the 4D CT images, and 30 anatomical landmarks. For the clinical 

dataset, segmentations of the lungs and GTV were considered for the computing of 

registration accuracy indices; no landmarks were available for this dataset, therefore the 

TRE index was not considered for the evaluation. 

 After a rejection of normality on the data in both datasets, for each accuracy index, 

a Kruskall-Wallis test was performed to assess the presence of significant differences 

among the studied methods (p<0.05). Then, a comparison between each possible pair of 

algorithms was performed by a Wilcoxon rank-sum test to verify significant differences 

between each registration approach. 
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Chapter 5 
 

 

 

Results 
 

 

 

 

5.1 Registration Accuracy on the POPI Model 

5.1.1 PF+OF versions comparison 

The experiments designed to show the differences between using one or four 

control parameters in the PF+OF approach are presented in figures 5.1 and 5.2. Figure 5.1 

exhibits the 10-30 phases registration result obtained by both versions of the algorithm, 

where is possible to observe that both algorithms were capable to recover the warps caused 

by this particular respiratory motion. The 10-60 registration results are presented in figure 

5.2, where is possible to observe that considering the largest deformation found within the 

POPI model, inspiration and expiration phases images, it is possible to observe a proper 

recovery of the misalignments by the proposed PF+OF version with four control 

parameters, while the one control parameter version is capable to recover the respiratory 

motion but adds artefact to the image due to inhomogeneities in the deformation field. 
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(a) (b) (c) 

 

(d) (e) (f) 

 

(g) (h) (i) 

 

(j) (k) (l) 

Figure 5.1. Comparison between PF+OF versions. Images correspond to: POPI model phase 10 image 

(IT), sub-images (a), (b) and (c); POPI model phase 30 image (IS), sub-images (d), (e) and (f); 

registration result obtained by the  PF+OF with one control parameter, sub-images (g), (h) and (i); 

registration result obtained by the  PF+OF with four control parameters, sub-images (j), (k) and (l). 

Each image is viewed by its axial, sagittal and coronal anatomical planes. 
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(a) (b) (c) 

 

(d) (e) (f) 

 

(g) (h) (i) 

 

(j) (k) (l) 

Figure 5.2. Comparison between PF+OF versions. Images correspond to: POPI model phase 10 image 

(IT), sub-images (a), (b) and (c); POPI model phase 60 image (IS), sub-images (d), (e) and (f); 

registration result obtained by the  PF+OF with one control parameter, sub-images (g), (h) and (i); 

registration result obtained by the  PF+OF with four control parameters, sub-images (j), (k) and (l). 

Each image is viewed by its axial, sagittal and coronal anatomical planes. 
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5.1.2 Algorithms comparison on the POPI model 

 Figure 5.3 shows an example of the registration results obtained by the different 

registration algorithms studied in this work using the POPI model in terms of the analysis 

of the lungs; in particular, here is shown the registration between the most distant 

respiratory phases (10 and 60). In figures 5.1 (a) to 5.1 (e) is possible to visually assess 

each algorithm (PF-(a), Dem - (b), DDem - (c), OF - (d), PF+OF -(e)) by comparing their 

corresponding lung contours with the ones of the source image before the registration 

process (orange contours). Figure 5.1 (f) is a zoom in the zone of the gross target volume 

(GTV) in which contours of the four NRR algorithms studied in this work are 

superimposed to the target image, where is possible to observe that Dem, DDem and 

PF+OF (yellow, blue and green contours respectively) have similar performance, and that 

OF (red contour) behaves similarly to the other NRR algorithms in the border of the lung 

but presents some misalignments when considering the GTV zone. 
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(a) 
(b) (c) 

(d) (e) (f) 

Figure 5.3. Results achieved by the analyzed registration methods using phases 10 (target image) and 60 (source image) of the POPI model. Figures (a) to (e) present 

the phase 10 image with two superimposed lungs contours: lungs contours of the phase 60 image before the registration process (orange), and lungs contours of the 

phase 60 image after the registration using : (a) Particle Filter (PF) - purple, (b) Demons (Dem) - yellow, (c) Diffeomorphic Demons (DDem) - blue, (d) Optical Flow 

(OF) - red and (e) PF followed by OF (PF+OF) - green. Figure (f) shows a zoom into the tumor zone where contours of Dem, DDem, OF and PF+OF are presented 

superimposed for visual comparison. 
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 Tables 5.1 to 5.5 present the overall results by using the accuracy indices described 

in chapter 4. For each index, six conditions were analyzed: before registration (1-Pre), and 

after each registration with the studied algorithms: Particle Filter (2-PF), Demons (3-Dem), 

Diffeomorphic Demons (4-DDem), Optical Flow (5-OF) and PF followed by OF (6-

PF+OF). Complementing each table, figures 5.4 to 5.8 present the correspondent box plot 

in order to have a visual representation of the performance for each registration algorithm 

on every index. 

 Table 5.1 present the results for the ASD index, where is possible to observe that all 

four NRR methods improve the ASD value with respect to Pre and the RR performed by 

the PF; for this index the best value is achieved by PF+OF (0.87±0.12 mm). Significant 

differences were found between the 4 NRR methods with respect to Pre and PF; in addition 

PF+OF was also significantly different from DDem, but not from the rest of the NRR 

approaches. Figure 5.4 gives a visual representation that the performance is similar 

between Dem, DDem, OF and PF+OF (all with a mean and median values less than 1 

mm). 

 DICE results are presented in table 5.2. also for this index, all 4 NRR algorithms 

have a better mean value (0.96) against Pre and PF values (0.94); taking into account the 

median value, PF+OF is slightly better (0.01 bigger) than the rest of the NRR methods. 

This fact is possible to be observed in figure 5.5. For this index, significant differences 

were found between the 4 NRR approaches with respect to Pre, and only OF and PF+OF 

were also significantly different with respect to PF; however no significant differences 

were found among NRR methods. 

 Results for the DMax index are shown in table 5.3, where is possible to observe 

that NRR methods decrease the Pre and PF DMax values around 2 mm; particularly DDem 

presented the best mean value (31.66±1.52 mm) being 1.46 mm (4%) smaller than the 

proposed PF+OF algorithm. In addition, only Demons based methods are statistically 

different from Pre, and DDem was also significantly different from PF and OF; PF+OF did 

not present statistically differences at all. In figure 5.6 is possible to observe that all NRR 

registration algorithms improve DMax by decresing the Pre value at least 2 mm, and 

corroborate that the best performances, in terms of the median value, were obtained by 

Dem and DDem.  
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 Table 5.4 shows the results for %DBVD index; in this case all registration 

algorithms (PF and the 4 NRR methods) show a significant improve with respect to Pre, 

but only registration algorithms involving the OF process were significantly different with 

respect to PF, and the best performance correspond to PF+OF with a mean value of 

8.77±9.80 % of distances bigger than the voxel thickness (2mm). The large std value in 

PF+OF is due to a maximum value of 32.25%, found on Reg10-60; it is important to note 

that this maximum value also is presented in all the other algorithms. Figure 5.7 

corroborates that PF+OF is the best performer (in terms of both mean and median values) 

for %DBVD, despite the outlier value of Reg10-60 that is visible on the box plot.  

 Finally, for the POPI model analysis, TRE values are presented in table 5.5. 

Analyzing this index, all four NRR approaches improve the Pre and PF values going from 

values above 3 mm to values below 2 mm; however only Demons based methods show 

results around an error of 1 mm. In this case PF+OF was 0.7mm higher than DDem, which 

has the best value (0.95±0.25 mm). In figure 5.8 it is possible to appreciate that DDem and 

Dem were the best performers, while OF and PF+OF presented values below 2 mm. 

Demons based algorithms were significantly different with respect to PF, and DDem was 

also statistically different in comparison with OF and PF+OF. 
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Table 5.1. POPI model registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical 

Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Average Symmetric Distance (ASD). 

For each condition, nine ASD values corresponding to the registration performed between phase 10 

and the nine remaining phases (00, 20, 30, ..., 90), alongside with the corresponding mean, standard 

deviation (std) and median values are presented. Presence of significant differences was assessed by a 

Kruskall-Wallis test (p<0.05). Differences between conditions are carried out by Wilcoxon rank-sum 

test; p-values for each comparison are presented at the end of the table, by matching columns and 

rows of each studied condition. 

ASD 
  1 2 3 4 5 6 

  Pre PF Dem DDem OF PF+OF 

              

R10-00 1.22 1.08 0.83 0.84 0.84 0.76 

R10-20 1.19 1.18 0.80 0.83 0.85 0.77 

R10-30 1.73 1.35 0.90 0.93 0.89 0.81 

R10-40 2.41 1.97 1.06 1.07 1.06 0.95 

R10-50 2.81 2.45 1.25 1.21 1.21 1.06 

R10-60 2.80 2.63 1.18 1.17 1.13 1.06 

R10-70 2.45 1.99 1.03 1.05 0.93 0.83 

R10-80 2.00 1.60 0.92 0.95 0.84 0.81 

R10-90 1.49 1.22 0.84 0.87 0.80 0.80 

              

              

mean 2.01 1.72 0.98 0.99 0.95 0.87 

std 0.64 0.57 0.16 0.14 0.14 0.12 

median 2.00 1.60 0.92 0.95 0.89 0.81 

              

              

Kruskall-Wallis 1.30E-06           

Wilcoxon 3,4,5,6 3,4,5,6 1,2 1,2,6 1,2 1,2,4 

p-values             

1-Pre x           

2-PF 0.29 x         

3-Dem 1.65E-04 0.00 x       

4-DDem 8.23E-05 2.88E-04 0.72 x     

5-OF 8.23E-05 2.88E-04 0.85 0.53 x   

6-PF+OF 4.11E-05 4.11E-05 0.11 0.04 0.12 x 
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Figure 5.4. Box plot of the Average Symmetric Distance (ASD) index estimated for each of the six 

conditions studied using the POPI model dataset: before registration (Pre), Particle Filter (PF), 

Demons (Dem), Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). 

For each condition the box plot presents the median value (red line) bounded by the maximum and 

minimum values. 
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Table 5.2. POPI model registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical 

Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Dice similarity coefficient (DICE). For 

each condition, nine DICE values corresponding to the registration performed between phase 10 and 

the nine remaining phases (00, 20, 30, ..., 90), alongside with the corresponding mean, standard 

deviation (std) and median values are presented. Presence of significant differences was assessed by a 

Kruskall-Wallis test (p<0.05). Differences between conditions are carried out by Wilcoxon rank-sum 

test; p-values for each comparison are presented at the end of the table, by matching columns and 

rows of each studied condition. 

DICE 
  1 2 3 4 5 6 

  Pre PF Dem DDem OF PF+OF 

              

R10-00 0.96 0.95 0.97 0.97 0.96 0.94 

R10-20 0.96 0.96 0.97 0.97 0.97 0.97 

R10-30 0.95 0.96 0.96 0.96 0.97 0.97 

R10-40 0.94 0.93 0.95 0.95 0.96 0.95 

R10-50 0.93 0.94 0.95 0.95 0.96 0.97 

R10-60 0.93 0.91 0.95 0.95 0.96 0.94 

R10-70 0.94 0.94 0.95 0.95 0.96 0.96 

R10-80 0.94 0.95 0.96 0.96 0.97 0.97 

R10-90 0.95 0.96 0.97 0.97 0.97 0.97 

              

              

mean 0.94 0.94 0.96 0.96 0.96 0.96 

std 0.01 0.02 0.01 0.01 0.00 0.01 

median 0.94 0.95 0.96 0.96 0.96 0.97 

              

              

Kruskall-Wallis 0.01           

Wilcoxon 3,4,5,6 5,6 1 1 1,2 1,2 

p-values             

1-Pre x           

2-PF 0.82 x         

3-Dem 0.02 0.06 x       

4-DDem 0.02 0.06 1.00 x     

5-OF 8.64E-04 2.30E-03 0.23 0.23 x   

6-PF+OF 0.03 0.04 0.71 0.71 0.77 x 
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Figure 5.5. Box plot of the Dice similarity coefficient (DICE) index estimated for each of the six 

conditions studied using the POPI model dataset: before registration (Pre), Particle Filter (PF), 

Demons (Dem), Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). 

For each condition the box plot presents the median value (red line) bounded by the maximum and 

minimum values. 
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Table 5.3. POPI model registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical 

Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Maximum distance (DMax). For each 

condition, nine DMax values corresponding to the registration performed between phase 10 and the 

nine remaining phases (00, 20, 30, ..., 90), alongside with the corresponding mean, standard deviation 

(std) and median values are presented. Presence of significant differences was assessed by a Kruskall-

Wallis test (p<0.05). Differences between conditions are carried out by Wilcoxon rank-sum test; p-

values for each comparison are presented at the end of the table, by matching columns and rows of 

each studied condition. 

DMax 
  1 2 3 4 5 6 

  Pre PF Dem DDem OF PF+OF 

              

R10-00 31.81 31.88 31.04 31.27 33.59 30.32 

R10-20 34.97 33.63 31.14 33.04 33.17 32.52 

R10-30 32.81 30.16 30.66 30.88 32.15 30.32 

R10-40 38.09 33.33 33.84 33.20 33.33 33.33 

R10-50 37.92 36.57 37.70 31.20 35.40 35.22 

R10-60 38.14 38.10 33.84 29.89 38.09 37.92 

R10-70 38.29 38.14 34.64 34.40 37.11 36.97 

R10-80 35.06 32.46 30.66 30.66 31.89 30.84 

R10-90 33.20 33.20 30.41 30.41 30.88 30.66 

              

              

mean 35.59 34.16 32.66 31.66 33.96 33.12 

std 2.59 2.81 2.50 1.52 2.43 2.95 

median 35.06 33.33 31.14 31.20 33.33 32.52 

              

              

Kruskall-Wallis 0.04           

Wilcoxon 3,4 4 1 1,2,5 4 - 

p-values             

1-Pre x           

2-PF 0.37 x         

3-Dem 0.02 0.37 x       

4-DDem 2.06E-03 0.04 0.50 x     

5-OF 0.23 0.81 0.29 0.03 x   

6-PF+OF 0.07 0.45 0.98 0.50 0.31 x 
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Figure 5.6. Box plot of the Maximum distance (DMax) index estimated for each of the six conditions 

studied using the POPI model dataset: before registration (Pre), Particle Filter (PF), Demons (Dem), 

Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). For each 

condition the box plot presents the median value (red line) bounded by the maximum and minimum 

values. 
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Table 5.4. POPI model registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical 

Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Percentage of Distances bigger than the 

Voxel Dimension (%DBVD). For each condition, nine %DBVD values corresponding to the 

registration performed between phase 10 and the nine remaining phases (00, 20, 30, ..., 90), alongside 

with the corresponding mean, standard deviation (std) and median values are presented. Presence of 

significant differences was assessed by a Kruskall-Wallis test (p<0.05). Differences between conditions 

are carried out by Wilcoxon rank-sum test; p-values for each comparison are presented at the end of 

the table, by matching columns and rows of each studied condition. 

%DBVD 
  1 2 3 4 5 6 

  Pre PF Dem DDem OF PF+OF 

              

R10-00 27.08 7.95 3.05 3.37 4.74 2.80 

R10-20 24.15 24.58 4.19 5.73 7.18 5.47 

R10-30 36.50 24.03 8.21 5.11 10.74 3.50 

R10-40 45.50 30.96 30.88 23.18 18.10 16.23 

R10-50 51.30 25.31 41.76 30.25 22.98 5.13 

R10-60 54.09 44.91 44.01 34.81 21.83 32.25 

R10-70 51.65 32.70 38.41 31.50 17.57 8.18 

R10-80 40.11 17.91 26.82 19.01 11.74 2.41 

R10-90 32.59 17.79 2.99 5.05 6.32 2.95 

              

              

mean 40.33 25.13 22.26 17.56 13.47 8.77 

std 11.05 10.52 17.58 12.94 6.85 9.80 

median 40.11 24.58 26.82 19.01 11.74 5.13 

              

              

Kruskall-Wallis 3.96E-04           

Wilcoxon 2,3,4,5,6 1,5,6 1 1 1,2 1,2 

p-values             

1-Pre x           

2-PF 0.01 x         

3-Dem 0.04 0.80 x       

4-DDem 1.85E-03 0.26 0.73 x     

5-OF 4.11E-05 0.01 0.55 0.67 x   

6-PF+OF 1.65E-04 3.99E-03 0.09 0.14 0.06 x 
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Figure 5.7. Box plot of the Percentage of Distances Bigger than the Voxel Dimension (%DBVD) index 

estimated for each of the six conditions studied using the POPI model dataset: before registration 

(Pre), Particle Filter (PF), Demons (Dem), Diffeomorphic Demons (DDem), Optical Flow (OF) and PF 

followed by OF (PF+OF). For each condition the box plot presents the median value (red line) bounded 

by the maximum and minimum values. 
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Table 5.5. POPI model registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical 

Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Target Registration Error (TRE). For 

each condition, nine TRE values corresponding to the registration performed between phase 10 and 

the nine remaining phases (00, 20, 30, ..., 90), alongside with the corresponding mean, standard 

deviation (std) and median values are presented. Presence of significant differences was assessed by a 

Kruskall-Wallis test (p<0.05). Differences between conditions are carried out by Wilcoxon rank-sum 

test; p-values for each comparison are presented at the end of the table, by matching columns and 

rows of each studied condition. 

TRE 
  1 2 3 4 5 6 

  Pre PF Dem DDem OF PF+OF 

              

R10-00 0.50 0.52 0.67 0.62 0.53 0.55 

R10-20 0.44 0.52 0.59 0.51 0.48 0.59 

R10-30 2.24 2.16 1.33 1.23 2.09 1.47 

R10-40 4.27 4.09 1.22 1.09 2.00 1.99 

R10-50 5.35 5.32 1.29 1.17 2.36 2.26 

R10-60 5.55 5.57 1.08 1.02 2.45 2.41 

R10-70 4.46 4.27 1.27 1.15 2.08 2.06 

R10-80 3.40 3.19 1.00 0.90 1.88 1.86 

R10-90 1.94 1.82 0.88 0.82 1.82 1.70 

              

              

mean 3.13 3.05 1.03 0.95 1.74 1.65 

std 1.95 1.91 0.27 0.25 0.73 0.68 

median 3.40 3.19 1.08 1.02 2.00 1.86 

              

              

Kruskall-Wallis 1.82E-02           

Wilcoxon - 3,4 2 2,5,6 4 3,4 

p-values             

1-Pre x           

2-PF 0.95 x         

3-Dem 0.05 0.05 x       

4-DDem 0.05 0.03 0.44 x     

5-OF 0.16 0.17 0.05 0.04 x   

6-PF+OF 0.16 0.18 0.04 0.03 0.67 x 
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Figure 5.8. Box plot of the Target Registration Error (TRE) index estimated for each of the six 

conditions studied using the POPI model dataset: before registration (Pre), Particle Filter (PF), 

Demons (Dem), Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). 

For each condition the box plot presents the median value (red line) bounded by the maximum and 

minimum values. 
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5.2 Registration Accuracy on the Clinical Dataset 

 Figure 5.9 presents an example of the registration results obtained using a 4D CT 

image from one patient of the clinical images dataset. In figures, from fig.5.9 (a) to (f), it is 

possible to observe the right lung and the GTV of the inspiratory phase (target image) 

alongside the contours of both structures of interest obtained from the expiratory phase 

(source image) in six conditions: before registration Pre - (a), and after the registration 

achieved by five different algorithms: PF - (b), Dem - (c), DDem - (d), OF - (e) and 

OF+PF - (f). In this figure, it is possible to visually assess the performance of each 

registration algorithm taking into account how well each contour is realigned with its 

correspondent zone in comparison with the overlapped contours presented in figure 5.9 (a), 

where the misalignment in both structures of interest due to the respiratory motion is clear 

(structures in the inspiratory phase versus the expiratory phase). Considering the lung, all 

four NRR algorithms show good performance, being able to recover the misalignments 

presented at the top and inner sections of the lung. Analyzing GTV contours, it is possible 

to observe no improvement achieved by PF being nearly identical to Pre, and misalignment 

recovery achieved by the four NRR approaches. In addition, it is possible to observe that 

the improvement among elastic registration methods is different, Dem and DDem are very 

similar qualitatively having an acceptable performance but still having some issues on the 

border of the tumor; similarly OF has an acceptable performance but is possible to identify 

some misalignments; and a clear improvement between OF and PF+OF, being the last one 

the best performer qualitatively for this particular example. 
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(a) 

 

(c) 

 

(e) 

 

(b) 

 

(d) 

 

(f) 

Figure 5.9. Example of the results achieved by all the registration methods using a lung 4DCT image. In each sub-image the target image (inspiratory phase) is 

presented with the superimposed lung and GTV contours obtained from the source image (expiratory phase) from the six studied conditions: (a) Before registration 

(Pre) - orange, (b) Particle Filter (PF)- purple, (c) Demons (Dem) - yellow, (d) Diffeomorphic Demons (DDem) - pale pink, (e) Optical Flow (OF)- red, (f) PF followed by 

OF (PF+OF) - green. 



5 - Results 
________________________________________________________________________________ 
 

 

70 

 Tables 5.6 to 5.13 summarize the overall registration accuracy results for the clinical images 

dataset from a quantitative point of view. For each index, results were divided into lungs and GTV 

for each of the six conditions analyzed in this work: before registration (1-Pre), and after each 

registration algorithm studied: Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-

DDem), Optical Flow (5-OF) and PF followed by OF (6-PF+OF). As in the POPI model results, 

figures 5.10 to 5.17 present a visual representation of the performance as a box plot for each 

registration algorithm on every index. 

 In tables 5.6 and 5.7 the results for the ASD in the lungs and GTV are presented 

respectively. Considering the lungs, a remarkable improvement was found by all NRR methods, 

being Dem, DDem and PF+OF the methods with ASD values below 2 mm; in this case PF+OF was 

3.5 % bigger than the best value achieved by Dem (1.68±0.50 mm); Significant differences were 

found between PF+OF, Dem and DDem with respect to Pre and PF but not among them. 

Considering the GTV structures, the behavior in all registration algorithms was similar, again being 

PF+OF, Dem and DDem the best performers with ASD values around 1.4 mm; in this particular 

case, PF+OF presented the best value (1.43±0.10 mm). Despite the similar behavior between lung 

and GTV values, no significant differences were found considering GTV structures. In figures 5.10 

and 5.11 it is possible to observe that PF+OF, Dem and DDem have values below 2 mm in both 

groups of anatomical structures. 

 DMax results are shown in tables 5.8 and 5.9. In this case the best values were achieved by 

Dem, DDem and PF+OF methods, being capable to decrease the Pre in at least 14 mm; the best 

DMax value, in terms of the mean, was obtained by Dem in both datasets (55.78±18.46 mm for the 

lungs, and 11.17±3.48 mm for GTV) being 9% and 10% lower than PF+OF for lungs and GTV 

structures respectively. Figures 5.12 and 5.13 exhibit that all NRR algorithms have a similar median 

value around 60 mm considering the lungs; while analyzing GTV, Dem is slightly improved with 

respect to PF+OF. However, in both group of structures, no significant differences were found. 

 Tables 5.10 and 5.11 present the DICE index results. In this case, PF+OF alongside with the 

demons based algorithms showed a notable improvement in both datasets (from a Pre DICE mean 

value of 0.87 to 0.94 for the lungs, and from 0.52 to 0.72 for GTV), being PF+OF the algorithm 

with the best index values in both, the lungs (0.94±0.03), and GTV (0.72±0.06). Figures 5.14 and 

5.15 shown, in both cases, that PF+OF, Dem and DDem have similar behaviors, all of them with 

improving considerable with respect to Pre. For this index, despite the similar trends found in both 

datasets, no significant differences were found for the lungs; while considering GTV, Dem, DDem 
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and PF+OF were significantly different with respect to Pre, and only PF+OF was also statistically 

different with respect to OF. 

 Finally, analyzing %DBVD in table 5.12 is possible to observe that OF and PF+OF are the 

algorithms with the largest improvement considering the lungs structures, reducing the original 

mean Pre value (46.65±29.03 %) to values below 30 %, being PF+OF the best performer with a 

value of 27.16±11.79 %; for the GTV case, results are presented in table 5.13, where is possible to 

observe that the best value belongs again to PF+OF (33.37±19.58%). In figure 5.16 is possible to 

observe that all registration methods improved, in terms of the median value, between 10% (PF) 

and 20% (PF+OF) with respect to Pre for the lungs; while figure 5.17 shows the behavior for GTV 

with PF+OF and Dem having the best performances. For this index again, despite improvements 

achieved, no significant differences were found in both datasets. 
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Table 5.6. Clinical dataset- Lungs registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical Flow (5-

OF) and PF followed by OF (6-PF+OF) in terms of the Average Symmetric Distance (ASD). For each condition, 

ASD values corresponding to the registration performed between inspiratory and expiratory phases of the Right 

(Rx) and Left (Lx) lungs for each of the five patients, alongside with the corresponding mean, standard deviation 

(std) and median values are presented. Presence of significant differences was assessed by a Kruskall-Wallis test 

(p<0.05). Differences between conditions are carried out by Wilcoxon rank-sum test; p-values for each 

comparison are presented at the end of the table, by matching columns and rows of each studied condition.  

ASD - Lungs 
    1 2 3 4 5 6 

    Pre PF Dem DDem OF PF+OF 

                

P1 
Rx 3.12 2.26 1.84 1.84 2.07 1.76 

Lx 2.68 2.37 1.55 1.66 1.89 1.71 

P2 
Rx 6.50 4.94 1.47 1.55 4.06 1.92 

Lx 7.06 4.94 1.35 1.43 3.97 1.90 

P3 Rx 6.24 5.47 2.83 2.88 4.41 2.55 

P4 Rx 2.23 2.33 1.22 1.25 1.07 1.09 

P5 
Rx 2.47 2.65 1.63 1.68 1.59 1.64 

Lx 1.90 2.52 1.51 1.55 2.07 1.33 

                

                

  mean 4.03 3.43 1.68 1.73 2.64 1.74 

  std 2.17 1.41 0.50 0.50 1.29 0.43 

  median 2.90 2.58 1.53 1.61 2.07 1.73 

                

                

  Kruskall-Wallis 3.86E-04           

  Wilcoxon 3,4,6 3,4,6 1,2 1,2 - 1,2 

  p-values             

  1-Pre x           

  2-PF 0.63 x         

  3-Dem 1.86E-03 2.95E-03 x       

  4-DDem 1.86E-03 2.95E-03 0.46 x     

  5-OF 1.30E-01 0.08 0.06 0.08 x   

  6-PF+OF 2.18E-03 1.86E-03 0.44 0.57 0.19 x 
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Figure 5.10. Box plot of the Average Symmetric Distance (ASD) index estimated for each of the six conditions 

studied in the clinical images dataset: before registration (Pre), Particle Filter (PF), Demons (Dem), 

Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). ASD values were 

calculated from the lung segmentations of the 5 patients studied in the clinical images dataset. For each condition 

the box plot presents the median value (red line) bounded by the maximum and minimum values. 
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Table 5.7. Clinical dataset- Gross Target Volume (GTV) registration accuracy. Comparison between six 

different conditions: before registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons 

(4-DDem), Optical Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Average Symmetric Distance 

(ASD). For each condition, ASD values corresponding to the registration performed between inspiratory and 

expiratory phases of the GTV for each of the five patients, alongside with the corresponding mean, standard 

deviation (std) and median values are presented. Presence of significant differences was assessed by a Kruskall-

Wallis test (p<0.05). 

ASD - GTV 
    1 2 3 4 5 6 

    Pre PF Dem DDem OF PF+OF 

                

P1 GTV 1.87 1.65 1.47 1.44 1.66 1.50 

P2 GTV 4.11 2.73 1.24 1.29 4.19 1.46 

P3 GTV 5.20 5.55 1.55 1.62 2.88 1.39 

P4 GTV 2.78 2.72 1.25 1.29 1.56 1.55 

P5 GTV 1.42 0.89 1.76 1.69 1.35 1.28 

                

                

  mean 3.08 2.71 1.45 1.46 2.33 1.43 

  std 1.57 1.77 0.22 0.19 1.20 0.10 

  median 2.78 2.72 1.47 1.44 1.66 1.46 

                

                

  Kruskall-Wallis 0.10           
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Figure 5.11. Box plot of the Average Symmetric Distance (ASD) index estimated for each of the six conditions 

studied in the clinical images dataset: before registration (Pre), Particle Filter (PF), Demons (Dem), 

Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). ASD values were 

calculated from the Gross Target Volume (GTV) segmentations of the 5 patients studied in the clinical images 

dataset. For each condition the box plot presents the median value (red line) bounded by the maximum and 

minimum values. 
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Table 5.8. Clinical dataset- Lungs registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical Flow (5-

OF) and PF followed by OF (6-PF+OF) in terms of the Maximum distance (DMax). For each condition, DMax 

values corresponding to the registration performed between inspiratory and expiratory phases of the Right (Rx) 

and Left (Lx) lungs for each of the five patients, alongside with the corresponding mean, standard deviation (std) 

and median values are presented. Presence of significant differences was assessed by a Kruskall-Wallis test 

(p<0.05). 

DMax - Lungs 
    1 2 3 4 5 6 

    Pre PF Dem DDem OF PF+OF 

                

P1 
Rx 46.27 45.60 44.19 44.19 61.12 51.12 

Lx 49.04 49.07 51.16 53.43 55.24 53.53 

P2 
Rx 101.06 82.37 51.54 51.56 66.81 58.09 

Lx 167.34 158.96 66.82 66.87 143.32 86.96 

P3 Rx 70.80 71.09 64.52 66.10 72.27 72.27 

P4 Rx 39.86 39.37 39.28 39.28 37.70 38.48 

P5 
Rx 102.84 101.56 92.60 101.30 94.85 92.60 

Lx 45.91 45.94 36.13 43.95 53.46 52.59 

                

                

  mean 77.89 74.25 55.78 58.33 73.10 63.21 

  std 43.93 40.48 18.46 20.07 32.83 18.90 

  median 59.92 60.08 51.35 52.49 63.96 55.81 

                

                

  Kruskall-Wallis 0.71           
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Figure 5.12. Box plot of the Maximum distance (DMax) index estimated for each of the six conditions studied in 

the clinical images dataset: before registration (Pre), Particle Filter (PF), Demons (Dem), Diffeomorphic Demons 

(DDem), Optical Flow (OF) and PF followed by OF (PF+OF). DMax values were calculated from the lung 

segmentations of the 5 patients studied in the clinical images dataset. For each condition the box plot presents the 

median value (red line) bounded by the maximum and minimum values. 
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Table 5.9. Clinical dataset- Gross Target Volume (GTV) registration accuracy. Comparison between six 

different conditions: before registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons 

(4-DDem), Optical Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Maximum distance (DMax). 

For each condition, DMax values corresponding to the registration performed between inspiratory and 

expiratory phases of the GTV for each of the five patients, alongside with the corresponding mean, standard 

deviation (std) and median values are presented. Presence of significant differences was assessed by a Kruskall-

Wallis test (p<0.05). 

DMax - GTV 
    1 2 3 4 5 6 

    Pre PF Dem DDem OF PF+OF 

                

P1 GTV 8.29 7.04 6.25 6.25 9.21 9.21 

P2 GTV 21.62 17.58 13.10 13.60 25.69 14.66 

P3 GTV 18.66 22.14 14.52 17.95 15.44 15.75 

P4 GTV 17.05 17.30 13.14 13.14 15.44 15.44 

P5 GTV 6.18 7.04 8.84 8.05 9.00 5.26 

                

                

  mean 14.36 14.22 11.17 11.80 14.96 12.06 

  std 6.75 6.83 3.48 4.68 6.78 4.64 

  median 17.05 17.30 13.10 13.14 15.44 14.66 

                

                

  Kruskall-Wallis 0.77           
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Figure 5.13. Box plot of the Maximum distance (DMax) index estimated for each of the six conditions studied in 

the clinical images dataset: before registration (Pre), Particle Filter (PF), Demons (Dem), Diffeomorphic Demons 

(DDem), Optical Flow (OF) and PF followed by OF (PF+OF). DMax values were calculated from the Gross 

Target Volume (GTV) segmentations of the 5 patients studied in the clinical images dataset. For each condition 

the box plot presents the median value (red line) bounded by the maximum and minimum values. 
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Table 5.10. Clinical dataset- Lungs registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical Flow (5-

OF) and PF followed by OF (6-PF+OF) in terms of the Dice similarity coefficient (DICE). For each condition, 

DICE values corresponding to the registration performed between inspiratory and expiratory phases of the 

Right (Rx) and Left (Lx) lungs for each of the five patients, alongside with the corresponding mean, standard 

deviation (std) and median values are presented. Presence of significant differences was assessed by a Kruskall-

Wallis test (p<0.05). 

DICE - Lungs 
    1 2 3 4 5 6 

    Pre PF Dem DDem OF PF+OF 

                

P1 
Rx 0.94 0.95 0.96 0.96 0.95 0.96 

Lx 0.96 0.95 0.96 0.96 0.96 0.96 

P2 
Rx 0.76 0.80 0.93 0.93 0.83 0.95 

Lx 0.75 0.79 0.93 0.93 0.81 0.94 

P3 Rx 0.80 0.82 0.91 0.91 0.89 0.90 

P4 Rx 0.93 0.92 0.95 0.94 0.96 0.96 

P5 
Rx 0.93 0.91 0.91 0.91 0.93 0.93 

Lx 0.93 0.91 0.92 0.92 0.93 0.92 

                

                

  mean 0.87 0.88 0.94 0.93 0.91 0.94 

  std 0.09 0.07 0.02 0.02 0.06 0.03 

  median 0.93 0.91 0.93 0.93 0.93 0.95 

                

                

  Kruskall-Wallis 0.20           
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Figure 5.14. Box plot of the Dice similarity coefficient (DICE) index estimated for each of the six conditions 

studied in the clinical images dataset: before registration (Pre), Particle Filter (PF), Demons (Dem), 

Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). DICE values were 

calculated from the lung segmentations of the 5 patients studied in the clinical images dataset. For each condition 

the box plot presents the median value (red line) bounded by the maximum and minimum values. 
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Table 5.11. Clinical dataset- Gross Target Volume (GTV) registration accuracy. Comparison between six 

different conditions: before registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons 

(4-DDem), Optical Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Dice similarity coefficient 

(DICE). For each condition, DICE values corresponding to the registration performed between inspiratory and 

expiratory phases of the GTV for each of the five patients, alongside with the corresponding mean, standard 

deviation (std) and median values are presented. Presence of significant differences was assessed by a Kruskall-

Wallis test (p<0.05). Differences between conditions are carried out by Wilcoxon rank-sum test; p-values for 

each comparison are presented at the end of the table, by matching columns and rows of each studied condition. 

DICE - GTV 
    1 2 3 4 5 6 

    Pre PF Dem DDem OF PF+OF 

                

P1 GTV 0.64 0.74 0.76 0.76 0.71 0.73 

P2 GTV 0.57 0.71 0.81 0.81 0.54 0.81 

P3 GTV 0.42 0.39 0.78 0.78 0.63 0.74 

P4 GTV 0.47 0.49 0.69 0.69 0.62 0.69 

P5 GTV 0.52 0.51 0.53 0.54 0.64 0.63 

                

                

  mean 0.52 0.57 0.71 0.72 0.63 0.72 

  std 0.09 0.15 0.11 0.11 0.06 0.06 

  median 0.52 0.51 0.76 0.76 0.63 0.73 

                

                

  Kruskall-Wallis 0.04           

  Wilcoxon 3,4,6 - 1 1 6 1,5 

  p-values             

  1-Pre x           

  2-PF 0.84 x         

  3-Dem 0.03 0.10 x       

  4-DDem 0.03 0.10 1.00 x     

  5-OF 0.15 0.60 0.22 0.15 x   

  6-PF+OF 0.02 0.20 0.79 0.73 0.05 x 
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Figure 5.15. Box plot of the Dice similarity coefficient (DICE) index estimated for each of the six conditions 

studied in the clinical images dataset: before registration (Pre), Particle Filter (PF), Demons (Dem), 

Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). DICE values were 

calculated from the Gross Target Volume (GTV) segmentations of the 5 patients studied in the clinical images 

dataset. For each condition the box plot presents the median value (red line) bounded by the maximum and 

minimum values. 
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Table 5.12. Clinical dataset- Lungs registration accuracy. Comparison between six different conditions: before 

registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons (4-DDem), Optical Flow (5-

OF) and PF followed by OF (6-PF+OF) in terms of the Percentage of Distances bigger than the Voxel Dimension 

(%DBVD). For each condition, %DBVD values corresponding to the registration performed between inspiratory 

and expiratory phases of the Right (Rx) and Left (Lx) lungs for each of the five patients, alongside with the 

corresponding mean, standard deviation (std) and median values are presented. Presence of significant 

differences was assessed by a Kruskall-Wallis test (p<0.05). 

%DBVD - Lungs 
    1 2 3 4 5 6 

    Pre PF Dem DDem OF PF+OF 

                

P1 
Rx 79.71 25.97 40.96 39.94 28.62 31.80 

Lx 38.54 26.25 35.16 44.74 27.72 25.52 

P2 
Rx 56.85 39.66 59.47 59.89 35.40 29.14 

Lx 60.80 21.06 48.75 50.13 32.23 42.09 

P3 Rx 61.49 45.31 64.43 63.88 36.09 33.92 

P4 Rx 68.62 82.65 28.76 29.70 19.23 17.01 

P5 
Rx 0.11 3.08 18.63 17.98 19.35 4.12 

Lx 7.05 21.04 28.30 26.66 30.80 33.66 

                

                

  mean 46.65 33.13 40.56 41.61 28.68 27.16 

  std 29.03 23.72 16.01 16.21 6.49 11.79 

  median 58.82 26.11 38.06 42.34 29.71 30.47 

                

                

  Kruskall-Wallis 0.25           

 

 

 

 

 



5 - Results 
________________________________________________________________________________ 
 

 

85 

 

 

 

 

 

Figure 5.16. Box plot of the Percentage of Distances Bigger than Voxel Dimension (%DBVD) index estimated for 

each of the six conditions studied in the clinical images dataset: before registration (Pre), Particle Filter (PF), 

Demons (Dem), Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). %DBVD 

values were calculated from the lung segmentations of the 5 patients studied in the clinical images dataset. For 

each condition the box plot presents the median value (red line) bounded by the maximum and minimum values. 
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Table 5.13. Clinical dataset- Gross Target Volume (GTV) registration accuracy. Comparison between six 

different conditions: before registration (1-Pre), Particle Filter (2-PF), Demons (3-Dem), Diffeomorphic Demons 

(4-DDem), Optical Flow (5-OF) and PF followed by OF (6-PF+OF) in terms of the Percentage of Distances 

Bigger than Voxel Dimension (%DBVD). For each condition, %DBVD values corresponding to the registration 

performed between inspiratory and expiratory phases of the GTV for each of the five patients, alongside with the 

corresponding mean, standard deviation (std) and median values are presented. Presence of significant 

differences was assessed by a Kruskall-Wallis test (p<0.05). 

%DBVD - GTV 
    1 2 3 4 5 6 

    Pre PF Dem DDem OF PF+OF 

                

P1 GTV 72.92 48.02 56.04 56.04 61.23 57.60 

P2 GTV 80.36 77.67 24.34 25.84 86.03 29.77 

P3 GTV 70.13 76.26 45.43 43.52 47.48 49.83 

P4 GTV 16.39 12.30 29.82 37.27 12.12 11.20 

P5 GTV 71.15 40.38 22.92 20.00 41.61 20.28 

                

                

  mean 62.19 50.93 35.71 36.53 49.69 33.74 

  std 25.91 27.24 14.45 14.30 27.09 19.58 

  median 71.15 48.02 29.82 37.27 47.48 29.77 

                

                

  Kruskall-Wallis 0.40           
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Figure 5.17. Box plot of the Percentage of Distances Bigger than the Voxel Dimension (%DBVD) index estimated 

for each of the six conditions studied in the clinical images dataset: before registration (Pre), Particle Filter (PF), 

Demons (Dem), Diffeomorphic Demons (DDem), Optical Flow (OF) and PF followed by OF (PF+OF). %DBVD 

values were calculated from the Gross Target Volume (GTV) segmentations of the 5 patients studied in the 

clinical images dataset. For each condition the box plot presents the median value (red line) bounded by the 

maximum and minimum values. 
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Chapter 6 
 

 

 

Discussion 
 

 

 

 

In this work, the aim was to propose an innovative elastic registration method to 

recover complex deformations presented in RT 4D CT lung images. The proposed PF+OF 

approach first obtains an accurate global affine transformation using the Particle Filter 

(PF), and then the transformation is locally refined accurately using a novel discrete 

iterative Optical Flow (OF) implementation. The characteristics of both algorithms lead to 

an approach that has a good balance between accuracy and mathematical complexity, 

which is the main goal of today elastic registration methods used in RT context.  

The PF has increasingly been proved to be accurate, robust and, because of its 

parallelizable structure, it can be also considered a fast algorithm [Arce-Sanata et al., 2010; 

Arce-Santana et al., 2012; Mejia-Rodriguez et al., 2011; Reducindo, 2010]; while the 

proposed iterative OF algorithm is accurate enough and has a considerable lower 

mathematical complexity, with respect to other accurate fluid like algorithms such as 

Demons and Diffeomorphic Demons [Mani et al., 2013]. In this chapter is presented: the 

discussion regarding the analysis of the main differences between the proposed PF+OF 

approach and the algorithm originally proposed by [Arce-Santana et al, 2012], and the 

evaluation and comparison of the proposed algorithm against other fluid like registration 

methods, using controlled and clinical 4D CT lung images, based on the analysis of 

structures of interest. In addition, the conclusion of this work and future directions of 

research activities related to the proposed PF+OF algorithm are presented. 
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6.1 Comparison of Algorithms on POPI Model 

The POPI model is built up from a real 4D CT lung acquisition, therefore it 

constitutes a realistic representation of human anatomy and breathing motion 

[Vandemeulebroucke et al., 2007]. In addition, because it was acquired under the same 

conditions applied during normal RT treatment planning, the POPI model is widely used 

for the validation of registration methods because it can provide accurate information about 

the performance of the algorithms before its use in clinic [Vandemeulebroucke et al., 2007; 

Janssens et al., 2011; Latifi et al., 2013]. 

 Apart from the mentioned above, the use of the POPI model in this work has three 

purposes. First, to highlight the impact of the proposed OF process with four control 

parameters against the original version proposed by [Arce-Santana et al., 2012]; second, to 

evaluate the impact of PF in the OF process for the registration of 4D CT lung images; and 

third, to compare the proposed PF+OF approach against the Dem and DDem algorithms, 

two algorithms widely used with 4D CT lung images for their high performance [Peyrat et 

al., 2008; Janssens, 2009; Castillo, 2009; Zhong, 2010]. 

 

 

6.1.1 PF+OF comparison- original version vs. four control parameters version 

 Regarding the comparison against the original version proposed, as stated in 

chapter 3, two main differences between methods were implemented: first, the 

modification of the control parameter  in the regularization term in eq. 3.40 from a 

constant value to a vector containing a control parameter for each dimension of the image 

( =[x, y z]
T) defined in eq. 3.42; and second, the addition of a regularization term to 

control the velocity of the optical flow field weighted by a control parameter  (eq. 3.43).  

 Modification of the control parameter  was made base on the fact that within 3D 

images is possible to find anisotropic voxels (different resolutions on axis x, y and z), thus 

apply equally the regularization term to all image dimensions may lead to irregularities in 

the 3D deformation field. This issue was not considered in the previous implementation of 

the method [Arce-Santana, et al. 2010], because isotropic pixel sizes were found in the 

studied 2D images. Moreover, this modification gives to the user the possibility to adapt 

the algorithm in terms of the characteristics of the images to be registered, decreasing or 
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increasing  values according to if a dimension on a particular direction of the voxel is 

larger or smaller with respect to the others. 

 On the other hand, the value of the global control parameter  gives the possibility 

to control the velocity of the whole optical flow, looking for to avoid foldings in the 

structures of interest due to inhomogeneities in the deformation field; this could be seen as 

a regularization term that tries to mimic the regularization achieved by the diffeomorphic 

property of DDem but adding a regularization term less complex that the use of the Lie 

algebra [Vercauteren et al., 2009], because the global solution of the  proposed OF 

estimation process is computed by a system of linear equations, which ensures a low 

computational cost. Large values of  lead to a lower velocity of the optical flow, meaning 

a smaller displacement of the voxels due to the deformation field; therefore, in order to 

recover complex deformations between images an increase in the number of iterations 

performed by the OF process will be needed. 

 A qualitative comparison between the proposed PF+OF algorithm, with four 

control parameters, and its previous version is shown in figures 5.1 and 5.2. These figures 

show the result of the registration of respiratory phases 10-30 and 10-60 from the POPI 

model, using phase 10 as IT and phases 30 and 60 as IS respectively. In order to make a fare 

comparison and highlight the effect of the proposed four control parameters, the  value of 

the algorithm with only one control parameter was set equal to the value used in axis x and 

y of the proposed method (=6000), the rest of the parameters (number of particles, 

number of maximum iterations in PF and OF, etc.) were the same for both 

implementations. In figure 5.1 is possible to observe that both versions of the PF+OF 

approach were capable to properly recover deformations between images at the beginning 

of the inspiration and at 30% of the inspiration; on the other hand, figure 5.2 shows that 

only the proposed PF+OF was able to realign the lungs between the inspiratory and 

expiratory phases (phases 10 and 60 of the POPI model respectively), while the algorithm 

with only one control parameter roughly recovers the misalignments between images but 

adding inhomogeneities in the borders of some borders of anatomical structures, 

suggesting that for complex and large deformations the inclusion of the proposed control 

parameters is desirable for a better performance of the PF+OF algorithm.  

 It is important to keep in mind that the establish parameters used in this thesis were 

selected empirically using the information of the 4D CT images of the POPI; the same 

parameters were used for also for the clinical images dataset in order to test the robustness 
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of the algorithm when analyzing different anatomies. However, establish a methodology to 

improve the selection of proper parameters and automatize this process base on the 

characteristics of the images is an issue considered as a future work. 

 

6.1.2 Algorithms comparison by the registration accuracy analysis 

 For the analysis of registration accuracy using the POPI model, only the lung 

segmentations provided also by [Vandemeulebroucke et al., 2007] were considered as 

structures of interest. In figure 5.3 registration performed between respiratory phases 10 

(target image, IT) and 60 (source image, IS) was selected as example because these are the 

most distant phases, thus the more difficult registration to achieve is presented (GTV is 

visible at the inspiratory phase but is completely out of scope in the expiratory phase in the 

same representative slice). In figures 5.3 (a) to (e) it is possible to observe that all 

registration methods (PF, Dem, DDem, OF and PF+OF) had an improvement with respect 

to Pre. Improvements achieved by PF (figure 5.3 (a)) are mainly due to recovery of 

translations, but it failed recovering the borders surrounding GTV (as expected because PF 

generates an affine transformation). On the other hand PF+OF and OF (figures 5.3 (e) and 

(d) respectively) were capable to realign the lungs taking into account the complex 

deformations due to GTV; demons based algorithms were also capable to recover wraps in 

the POPI model realigning properly the tumor, results expected been similar to the ones 

reported by [Vandemeulebroucke et al., 2007] and [Latifi et al., 2013]. In figure 5.3, it is 

also possible to appreciate similarities and differences between the performance of all four 

elastic registration methods (figure 5.3 (f)). For this particular qualitative comparison, 

Dem, DDem and PF+OF stand as the more accurate approaches, while OF present a less 

smoother result presenting small variations in the borders of the GTV structure. For a 

better understanding about these differences, the standard indices for the registration 

accuracy provide quantitative evidence about the registration algorithms performance. 

 For the DICE index, which gives information about the global overlapping between 

structures, the best mean improvements were achieved by all four NRR increasing from 

0.94 to 0.96, and in terms of the median value PF+OF performs better than the rest of the 

NRR algorithms but just by an increase of 0.01. The overall improvement of the four NRR 

algorithms is similar (all of them with significant differences with respect to Pre), with 

differences between them of less than 1% (no significant differences among them), thus 

small differences between approaches cannot be properly assessed with DICE index, 



6 - Discussion 
________________________________________________________________________________ 
 

 
93 

considering that DICE gives information about the global overlapping, small variations in 

large size structures, like the lungs, do not have a notable impact. 

 DMax index gives information about the worst mismatch between structures; in this 

case PF+OF reduced the maximum mismatch about 2.5 mm, however this result was not 

statistically different with respect to the original Pre value. Only the demons based 

algorithms, that improved between 4 and 2.5 mm, were the only ones with significant 

differences with respect to Pre, but no differences were found among them. Despite the 

lack of significance in PF+OF, the tendency (decreasing) of the mean value and p-value of 

0.07 suggest that in a scenario with more samples the statistical significance may be reach 

also by the proposed approach. 

 For ASD, %DBVD and TRE, the impact of the results depend on the voxel 

dimension, in this case (0.97 x 0.97 x 2.00 mm3). ASD gives information about the mean 

mismatch. In this case the four NRR methods reduce the ASD mean value below 1 mm, 

therefore all four approaches are considered to have a good performance taking into 

account the voxel size. Nevertheless, it is important to mention that PF+OF shows the best 

improvement (43% with respect to Pre) with significance difference with respect not only 

to Pre and PF, but also with respect to DDem (p-value = 0.04), suggesting that for this 

particular index the proposed PF+OF approach is preferable among all the studied 

registration algorithms. In addition, the fact that OF was not significant from the other 

NRR approaches, could be considered as evidence of the positive effect of the PF 

combined with OF, making preferable PF+OF also with respect to OF. 

The %DBVD gives an idea of the distances between structures that are bigger than 

the voxel thickness; this threshold was selected with the idea to evaluate the robustness of 

the algorithms. Considering this index, PF+OF has the best performance reducing the 

percentage from 40.3% (Pre) to 8.7% after the registration process resulting in significant 

differences with respect to Pre and PF; the same significant differences were found 

considering OF, putting these two algorithms as the best performers for this particular . On 

the other hand, demons based methods putting OF and DDem alongside PF+OF as the best 

performers. 

 Finally, analyzing the TRE index, PF+OF and the other three NRR algorithms have 

values below 2 mm, which is considered a satisfactory result being the registration error 

approximately of the size of a voxel; however, despite the reduction to half of the mean Pre 

value, no significant differences were found between OF and PF+OF with respect to Pre 
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nor PF. On the other hand, DDem and Dem reduce TRE to values around 1 mm, and 

particularly DDem presented significant differences with respect to PF, OF and PF+OF, 

suggesting that the diffeomorphic version of the Demons algorithm is the most adequate 

approach to assess the TRE. The lack of significance in the NRR methods that used the OF 

process may be due to the fact that the demons based algorithms used in this thesis work 

under a multi-resolution scheme, while the proposed algorithms (PF, OF and PF+OF) do 

not. The TRE has been used previously in literature to evaluate, with the POPI model, 

Dem, DDem and a Horn-Schunck OF [Vandemeulebroucke et al., 2007; Janssens et al., 

2011; Latifiet al., 2013], all of them implemented using a multi-scale approach; results 

found by these research groups are similar to the ones presented in this work, in terms of 

the mean values, and no significant differences were found among demons based and 

optical flow based methods; suggesting that the results found here could be improved when 

the multi-scale version of the proposed algorithm will be available. 

 The overall information provided by the standard indices to assess the registration 

accuracy based on structures of interest suggest PF+OF, alongside the other three NRR 

algorithms (Dem, DDem, and OF), could be considered to have a good performance 

registering 4D CT lung images from the POPI model, due to the mean quantitative 

improvement with respect to Pre, particularly considering the ASD index. However, it is 

important to state that a larger database and a multi-scale implementation of the proposed 

algorithm are desirable in order to collect more information that could highlight the 

benefits of the proposed algorithm. Also, considering the qualitative information provided 

by the overlapped contours in figure 5.3 (f), it is possible to observe that only PF+OF, Dem 

and DDem are truly comparable in terms of registration accuracy of the lungs. Despite OF 

improvement, in this figure is also possible to observe that some mismatching in zones 

with complex shapes (e.g. around GTV) are presented. Besides, for overlapping 

information, such as the one provided by the DICE index, the lack of significant 

differences may be due to the size of the analyzed structures (lungs) in which small 

differences may not have an impact on the statistics; suggesting that for a better evaluation 

of the registration accuracy, small and highly deformable structures of interest, such as the 

GTV, should be taken into account. 
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6.2 Comparison of Algorithms on Clinical Images Dataset 

 One drawback of using the information of only one patient of the POPI model to 

evaluate a new image registration method is that it is limited to a specific anatomy and one 

breathing pattern. To overcome this limitation and complement the information collected 

in the previous section, we decide to analyze the proposed algorithms using 4D CT images 

from five different clinical cases of NSCLC, taking into account different morphologies of 

lungs and gross target volume (GTV) (see figure 4.4). This two anatomical structures were 

analyzed independently to avoid bias in the validation because of the different sizes. 

 Considering the lungs, figure 5.9 shows a good recovery of the misalignment 

achieved by all four elastic registration approaches; and analyzing the accuracy indices 

information, results were similar but not equal to the ones found using the POPI model.  

 In ASD, apart from OF, elastic registration methods reduce the original Pre value 

below 2mm, being significantly different from Pre and PF, however no significant 

differences were found between PF+OF, Dem and DDem; particularly in this case the best 

performance was achieved by Dem, being 3% better than PF+OF. Considering OF, the 

lack of statistical differences contributes to the idea of the necessity of PF together with OF 

for a better performance. 

A similar performance, with respect to the POPI model analysis, was achieved with 

DICE index, where all four NRR approaches increased the Pre value from 0.87 above 0.90, 

in this case PF+OF and Dem stand as the methods with the largest improvement (0.94). 

Nonetheless, no significant differences were found at all.  

 In DMax, considerable improvements were achieved by the demons based methods 

and the PF+OF approach, the best performance were achieved by Dem and DDem with a 

mean improvement of 20 mm in comparison with Pre (77.89 mm), being 10% better than 

PF+OF which had a mean improvement of 14 mm; however because of dispersion of the 

data (large std) also no significant differences were found at all considering DMax. 

 Similar evidence was observed in %DBVD, where OF and PF+OF achieved the 

biggest mean improvement (reduction around 15%), but no significant differences were 

found because of the large variability in the data due to the intra-subject differences of the 

five study cases.  

 All the information collected from lung segmentations of the clinical images dataset 

suggest, as the evidence found in the POPI model analysis, that PF+OF could be 

considered as an accurate method comparable with Dem and DDem for the analysis of 
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large structures, based on the tendency to improve the standard indices values studied in 

this thesis, notwithstanding the intra-subject variability. 

 On the other hand, with the analysis of GTV is possible to collect information about 

the performance of the methods in a smaller scale. In figure 5.9, the selected example 

remarks the complex deformation due to the size and shape of the GTV in this particular 

patient, which is the smallest and amorphous of the available clinical studies. In this case is 

possible to observe that a good recovery is achieved by all four elastic methods, and that 

the method capable to recover more details after the registration process was PF+OF 

(figure 5.9 (h)). 

 ASD values found for GTV have similarities to those found considering the lungs. 

Again PF+OF and the demons based algorithms (Dem and DDem) have the best 

improvements (around 50%) with values below 1.5 mm; despite this improvement, no 

significant differences were found. 

 For the DICE index, PF+OF and DDem were the approaches with the best 

performance (mean value of 0.72 with respect the original Pre value of 0.52); in this case 

significant differences were found between NRR methods Dem, DDem and PF+OF with 

respect to Pre, and only PF+OF was statistically different from OF, this fact gives positive 

evidence regarding the use of PF alongside OF for a better performance of the NRR 

method. It is important to mention that the improvement of methods is considerably higher, 

20% improvement in GTV versus 7% improvement in lungs; result expected because 

misalignments recovered after the registration process are more representative in small 

structures (such as GTV) than in large ones (such as the lungs); it was also expected that 

the mean DICE value (above 0.90) was higher analyzing the lungs than the mean value 

found considering GTV structures (around 0.70), also because of the size of the structures, 

and due to the variability of complex deformations studied in the five 4D CT clinical 

images. 

 Analyzing DMax, a slightly improvement (around 2.5 mm) was achieved by 

PF+OF, Dem and DDem algorithms; however no significant differences were found 

between all conditions. Also for %DBVD, GTV no significant differences were found 

considering GTV despite the improvement achieved by PF+OF, Dem and DDem methods 

around 25%. 

 Overall, the tendency found between accuracy indices in lungs and GTV structures 

of the clinical 4D CT images dataset is similar but, as expected, differences in mean, std 
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and median values were found due to the different dimension and degree of deformation of 

the structures, suggesting that PF+OF could be considered as an accurate and robust 

algorithm to register 4D CT lung images despite differences among anatomical structures 

of interest. Notwithstanding, the large variability presented among GTV structures limited 

the evaluation of the methods in a very small scale, because the case presented in figure 5.9 

is considerably smaller than the rest of the GTV studied in this work. In particular, for this 

case the visual inspection suggest that PF+OF could be preferable when small structures 

with complex shapes are considered; however, more study cases with this kind of 

structures are needed in order to support this hypothesis and increase the statistical 

evidence. 

 Considering the findings using both the controlled and the clinical datasets is 

possible to state that:  

 

 The affine transformation provided by the PF algorithm has a positive impact, in 

terms of registration accuracy, when it is used alongside the proposed OF method, 

forming the PF+OF approach. 

 

 The proposed iterative OF method using four control parameters represents an 

improvement to the version proposed by the Arce-Santana research group, not only 

extending the algorithm to its volumetric version, but also making it possible to 

deal with isotropic and anisotropic voxel sizes (possibility of set different values of 

 for each dimension of the image), ensuring also smooth deformation fields due to 

the global control parameter .  

 

 The proposed OF algorithm could be considered as a good option to recover 

complex deformations in 4D CT lung images by itself, however it is recommended 

to use it alongside PF in order to improve its performance, based on the information 

provided by the standard indices for registration accuracy. 

 

 The proposed PF+OF approach has shown good results registering 4D CT lung 

images in both, controlled and clinical cases. Its performance behaves similar, 

qualitatively and quantitatively, to the Dem and DDem algorithms. It is important 

to mention that a larger dataset for the quantitative analysis is desirable in order to 
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extract solid statistic evidence about the potential of the proposed method to be 

considered as a novel NRR method useful in a RT context. In addition, the result 

presented in this work of PF+OF are not under a multi-scale implementation, as 

Dem and DDem, therefore improvement in the performance of this method can still 

be done to the PF+OF implementation developed in this thesis. 

 

 It is important to mention that the lack of consistency between significant 

differences found considering the POPI model and the clinical images dataset 

remarks the necessity to increase the data available to perform the analysis of the 

proposed PF+OF, in order to construct solid evidence based not only on mean or 

median trends but with consistent and strong statistical conclusions. Furthermore, 

consider to improve the methodology to extract the contour of the structures of 

interest would help also in the statistical analysis; the manual contouring inter-

observer variability issue could be solve considering the use of validated algorithms 

to perform the automatic segmentation of structures of interest. 

 

 As mentioned before, results found in this thesis suggest that the proposed PF+OF 

approach with four control parameters could recover properly the deformation 

found in 4D CT lung images due to the respiratory movement and / or the effects of 

the RT treatment, thus it is possible to state that the proposed method could be 

useful in a clinical context considering that 3D imaging and the selection and 

delineation of volumes such as GTV, CTV, and OAR, are crucial steps for the RT 

treatment. Before the use of PF+OF in a real scenario, it is important to mention, 

again, that a deeper analysis of the proposed algorithm have to done. 

 

 

6.3 Conclusion 

 In this work, a novel non rigid registration approach was presented, which is based 

on a global accurate affine registration using the Particle Filter (PF) followed by an elastic 

local transformation using a discrete implementation of the Horn-Schunck Optical Flow 

(OF) with four control parameters. The proposed method, PF+OF, was evaluated using two 

datasets of 4D CT lung images: the POPI model and a set of five 4D CT images from 

clinical patients treated for non-small cells lung cancer (NSCLC). Registration accuracy 
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was assessed visually and by computation of indices for the analysis of anatomical 

structures of interest (lungs and tumor). In addition, a comparison with the Demons (Dem) 

and Diffeomorphic Demons (DDem) algorithms was performed to assess the accuracy of 

the proposed approach against methods widely used for the registration of 4D CT lung 

images.  

 The results have shown that our NRR method is capable to recover complex 

deformations presented in the thoracic district caused by the respiratory motion, and is 

comparable to the state of the art algorithms, suggesting that the PF+OF approach could 

provide useful information for RT applications, for example, providing useful information 

to help assessing the dose to be dispensed on the gross target volume (GTV) and organs at 

risk (OAR) of RT treatment plans generated by the use of 4D CT lung images. 

 

 

6.4 Future Work 

 Important future developments related to the work presented in this thesis could be: 

 

 Optimization of the PF+OF registration process. A multi-core implementation of 

PF and a multi-scale approach of the OF registration process are considered as a 

first future development; in this way, a considerable speed up of the registration 

method would be achieved, thus a full comparison between PF+OF, Demons and 

Diffeomorphic Demons algorithms considering both, accuracy and speed 

processing, could be analyzed. This implementations are projected to be developed 

in the next month. 

 

 Improvement of the 4D CT lung images dataset for a more robust evaluation of the 

PF+OF method, taking into account inter-subject variability to assess the 

performance of the method with different breathing patterns and considering 

different anatomical shapes, in both controlled and clinical cases is recommended. 

The improvement of the dataset will also help with the statistical significance of the 

PF+OF method. This point is projected to be reach also in a near future.  

 



6 - Discussion 
________________________________________________________________________________ 
 

 
100 

 Application of the PF+OF approach to different anatomical districts and image 

modalities, e.g. the head-and -neck track using MR images, to study the accuracy 

and impact of the method with different medical protocols. Preliminary results in 

2D about this topic are presented in appendix A. 

 

 Evaluation of the PF impact on different non-rigid registration algorithms. The 

main hypothesis of this future development is that non rigid registration algorithms 

in which the initial rigid transformation is crucial for the accuracy (e.g. B-Splines 

Free Form Deformation) could be benefit from the robustness of PF. 

 

 To extend the use of the PF+OF approach to multimodal cases by applying a local 

intensity mapping to the images in order to overcome the monomodal restriction of 

the method. Metrics such as the Entropy as a local variability measure, or the 

conditional statistics of the joint intensity distribution will be studied. Initial results 

with 2D CT-MR brain images are presented in appendix B. 

 

 Evaluating the registration accuracy of the proposed method based on the analysis 

structures of interest represented by mesh data structures. The motivation of this 

future work and an example of the proposed registration accuracy indices for the 

analysis are presented in appendix C.  

 

 Introduction of this novel registration method within a software package (such as 

the Insight Toolkit - ITK) to make it available for its general use with clinical 

images. 



 

101 

 

Appendix A 
 

 

 

Elastic Registration in 

Radiotherapy Images with 

Brain Deformations 

 

 

 

 In the present work it has been proved that PF+OF approach is a good option to recover 

complex deformations presented in 4D CT lung images due to respiratory movements. Despite the 

results presented in this thesis, PF impact could not be assessed properly because patients remain in 

the same position during images acquisition, therefore rigid deformations are limited. On the other 

hand, images acquired during different sessions of a RT treatment have to correct first 

misalignments due to patients repositioning with a global registration step in order to achieve a 

good elastic registration. Within this context, in this appendix the first results of PF+OF method 

using 2D CT and MR images with brain deformations caused by anatomical modifications of the 

tumor are presented. For both image modalities, synthetic and real cases were studied. Registration 

results showed good accuracy, qualitatively and quantitatively, suggesting that the PF+OF approach 

may be considered as a good new option for RT applications like patient's follow up treatment in 

the head-and-neck tract. The present appendix is based on the article : 

Mejia-Rodriguez A, Arce-Santana ER, Scalco E, Tresoldi D, Mendez MO, A. M. Bianchi, G. M. 

Cattaneo, G. Rizzo. "Elastic registration based on particle filter in radiotherapy images with brain 

deformations". Proceedings of the 33rd Annual International Conference of the IEEE Engineering 

in Medicine and Biology Society; 2011: 8049–8052. 



  

 

Abstract—This paper presents the evaluation of the accuracy 

of an elastic registration algorithm, based on the particle filter 

and an optical flow process. The algorithm is applied in brain 

CT and MRI simulated image datasets, and MRI images from a 

real clinical radiotherapy case. To validate registration 

accuracy, standard indices for registration accuracy assessment 

were calculated: the dice similarity coefficient (DICE), the 

average symmetric distance (ASD) and the maximal distance 

between pixels (Dmax). The results showed that this 

registration process has good accuracy, both qualitatively and 

quantitatively, suggesting that this method may be considered 

as a good new option for radiotherapy applications like 

patient's follow up treatment. 

 
 Index Terms—Elastic image registration, particle filter, 

optical flow, simulation datasets, radiotherapy real clinical 

case. 

I. INTRODUCTION 

NE important subject in medical image analysis is 

image registration [1], which consists in a spatial 

remapping of one image to another to obtain a voxel by 

voxel correspondence of the same anatomical structures in 

the two images. In fact, image registration is useful to 

recover organ deformations during the evolution of certain 

diseases or the treatment of them. In particular, in 

radiotherapy, it allows the estimation of strains that can be 

caused by increase or reduction of tumors treated with 

radiation, or by side effects such as weight loss or increase / 

reduction of the healthy organs surrounding the tumor [2]. 
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 In the last years, image registration has been approached 

with rigid and non-rigid techniques. Rigid registration 

methods assume that the same global transformation is 

applied to each image pixel, thus reducing the problem to 

find only the parameters which describe the global 

transformation. However, these methods present serious 

drawbacks when one of the images shows complex 

deformations with respect to the other one. On the other 

hand, non-rigid or "elastic" registration methods estimate a 

transformation for each pixel, incorporating only weaker 

smoothness assumptions in order to make the problem 

well-posed. Elastic methods are more general than the 

rigid ones but also more computationally demanding, and 

difficult to implement and calibrate [3]. 

 Recently, a new approach has been proposed for 

rigid registration, based on the Particle Filter (PF), an 

algorithm commonly used for parameter estimation in 

dynamical systems [4]. In this method, an iterative 

stochastic search is performed using a Monte Carlo 

model. This new approach based on PF has been also 

adapted to non rigid image registration cases, by 

incorporating an optical flow approximation [5]. This 

iterative process is reported to be easy to implement 

and powerful enough to achieve complex non-rigid 

registrations; however, before its application on a real 

clinical context, validation of the algorithm accuracy 

should be performed. 

 In this work, the evaluation of PF elastic registration 

accuracy is carried out in the case of 2D images, using 

simulated data. Its application to a real clinical case is also 

shown. 

II. METHODS 

A. Simulated Image Datasets 

 CT and MRI studies of two patients with cerebral tumor 

treated with macroscopically total resection were selected, in 

which the presence of deformations in the head and neck 

tract caused by tumors were evident. These patients 

underwent pre-operative diagnostic, surgical resection and 

radiotherapy treatment at the San Raffaele Hospital in Milan, 

Italy. 

 CT and MR 2D images of three different sections of the 

head were selected to study different morphological 

structures; each image was deformed in a controlled way (5 

deformations per image). 

 The controlled deformations were obtained using the 

Moving Least Squares (MLS) algorithm [6], which is a 

deformation technique that allows to compute a map 
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f:R2→R2 from the transformation of a set of N pivot points 

“p” in new positions “q”. For the simulated deformations we 

put 6 pivot points initially placed at 60, 120, 180, 240, 300 

and 360 degrees around the outer structure of each image. 

Subsequently, these pivot points were moved, randomly, 

±5–10 pixels, both in x-axis and y-axis, to generate the 

corresponding warps.  

 Two simulated datasets were thus obtained: 

 

1. CT simulated dataset; original CT images with their 

corresponding simulated deformations. 

2. MRI simulated dataset; original MRI images with 

their corresponding simulated deformations. 

 

It should be emphasized that for evaluation purposes, 

simulation was intended to study deformations even 

exaggerated or impossible to find in actual radiotherapy 

clinical cases. 

 

B. Clinical Images 

A real clinical case was considered using MRI images 

acquired before (MRI-Pre) and after (MRI-Post) a 

radiotherapy treatment, where it is possible to observe 

deformations of brain structures, in the axial plane, due to 

the tumor shrinkage as a result of the treatment. In this case 

the proposed method was used to remap post-treatment 

imaging back to pre-treatment images in order to estimate 

brain structures changes occurred during treatment. 

A slice by slice correspondence between MRI-Pre and 

MRI-Post was obtained, using the rigid registration software 

available on the radiotherapy plan computer. 

 

C. Parametric Particle Filter 

 The Particle Filter (PF) is a method based on Bayesian 

approach that uses a Montecarlo algorithm to estimate a 

probability density function (pdf) [4]. The goal of the PF is 

to obtain a posterior pdf at time k, through a set of test points 

  
 
 (particles: in this case the parameters of an affine 

transformation) with associated weights    
 
   

 
 
   

  
, such 

that    
   

     , and NS the particle number. 

 The PF algorithm is an iterative process composed of two 

stages: 

 

1. Prediction stage: each particle is modified by a 

random walk pattern (                where 

      represent i.i.d. noise samples), through a 

recursive propagation of the particles at time k. A 

resampling process is needed in order to select only 

the best particles to be propagated, solving the 

Degeneracy Problem (particles with negligible 

weights). 

2. Update stage: the weights are recalculated 

according to the measurements   , using the 

likelihood function         , defined by the 

measurement model in order to obtain 

representatives samples of          [5]. 

 

The algorithm uses mutual information (MI) as likelihood 

measurement in the image registration process, thus it is 

possible to define the output measurement   as:  

 

                                             (1) 

 

where IT and IS are the target an source images, T(.) is the 

geometric (affine) transformation and wk represent i.i.d. 

noise samples; if IS is the result of a bijective intensity 

mapping for IT, then, by using the property of MI [5], and 

the entropy H(.) of the IS, it is possible to define        as 

likelihood metric [7]: 

 

      

 
 

    
     

                              
 

   
             

 

for a given measurement noise variance   >0 and a set of m 

equispaced pixels                      , in both 

images. Note that (2) reaches its maximum when       
            , where F(.) denotes an injective intensity 

mapping. 
 

D. Elastic Registration using PF and optical flow 

 For the elastic registration the key idea lies in a two step 

iterative algorithm; first, the global affine registration 

between both images using the PF approach is 

computed; second, the transformation is locally refined for 

each pixel using an optical flow approximation [5]. The 

aligned candidate image, obtained at each iteration, is used 

as the input candidate image in the following iteration 

until convergence is reached. An important advantage on 

this method is that only a few control parameters are 

required and these parameters are robust with respect to the 

images to be registered. In the case of affine registration, the 

parameters are the number of particles and the number of 

iterations, while, for optical flow, estimation requires taking 

into account the number of iterations and the value of a 

regularization factor , that controls the smoothness of the 

resulting flow field. In this work for all the registrations we 

used 300 particles and 200 iterations for calculating the 

affine transformation, and 50 iterations with =5000 for the 

computation of optical flow. All these experiments were 

performed on a PC running at 3.06 GHz.  
 

E. Registration accuracy on simulated data 

 The algorithm was applied to the simulated datasets, using 

the parameters mentioned above; the mean registration time 

was 45 seconds. 

 To validate registration accuracy, in both internal and 

external brain structures, segmentation of some structures of 

interest were performed: in each simulated study an expert in 

radiological images interactively drew the brain contour 

(including the main sulci), the lateral cerebral ventricles 
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contours (divided in top and bottom left/right ventricles) and 

the tumor boundary using MIPAV software [8]. 

From these data, differences in structures between original 

and deformed images (pre registration) and between original 

and post registration images were calculated using standard 

indices usually adopted for registration accuracy assessment 

[9]: the dice similarity coefficient (DICE), the average 

symmetric distance (ASD) and the maximal distance 

between pixels (Dmax). 

The value of DICE ranges from 0, indicating no spatial 

overlap between two sets of binary segmentation results, to 

1, indicating complete overlap. ASD is based on the contour 

pixels of two segmentations A and B. For each contour pixel 

of B, the Euclidean distance to the closest surface pixel of A 

is calculated and stored. In order to provide symmetry, the 

same process is applied from contour pixel of A to B. The 

ASD is then defined as the average of all stored distances, 

which is 0 for a perfect segmentation. The Dmax index 

calculates the maximum distance between the analyzed 

overlapped contours, where zero means a perfect overlap. 

 

F. Clinical Case Registration 

The algorithm was applied to the clinical images, using 

the same parameters set for the simulated datasets. For these 

images the registration time was 46 seconds. 

Qualitative analysis of the algorithm performance was 

carried out by an expert physician, taking into account the 

misalignment recovery of particular structures (right 

ventricle and tumor). Quantitative analysis was performed 

using the same criterion applied in simulated data. 

III. RESULTS AND DISCUSSION 

A. Simulated data 

Figure 1 shows an example of the results found using 

images with simulated deformations in both MRI (row a) 

and CT (row b) images. In this figure, we can see (by 

columns) the original images, the deformed images and their 

respective registration (resulting image). It could be 

observed that the PF has made an acceptable registration 

between images. Qualitatively, registered images look very 

similar to the original ones, regardless of the degree of the 

applied strain. The good recovery is particularly evident by 

looking at the contours of the brain, the brain ventricles and 

the tumor (white area at the top left). 

Complementing figure 1, Table I shows the results of 

calculated indices DICE, Dmax and ASD in CT-CT and 

MR-MR registrations. Values were calculated for pre and 

post registrations, corresponding to values of the pairs 

original-deformed images and original-registered images 

respectively, of the 5 strains applied (Def 1, Def 2, Def 3, 

Def 4 and Def 5). It also presents the mean, standard 

deviation and median values for each pre and post indices.  
 

 
Fig. 1. a) MRI images, b) CT images. 

 

 The values of pre and post ASD were about 2.70 ± 0.59 

mm and 0.80 ± 0.41 mm for CT, 2.68 ± 0.43 mm and 0.92 ± 

0.60 mm for MR, while Dmax values decreased from 7.76 ± 

1.68 mm to 3.46 ± 1.23 mm for CT and 8.47 ±1.57 mm to 

3.80 ± 1.17 mm in MR respectively. Taking into account 

that the pixel size of these images is 0.819 mm, these results 

show that the uncertainties in the alignment of the structures 

were reduced to values comparable to the pixel size. For 

DICE index results show a considerable improvement since 

the found values increased from 0.55 ± 0.28 for CT and 0.48 

± 0.07 for RM, to 0.86 ± 0.19 and 0.85 ± 0.10 respectively, 

indicating that the overlap of the contours had an 

improvement from 50% to 85%. 
 

TABLE I 

REGISTRATION ACCURACY IN SIMULATED DATA. 

EACH DEFORMATION VALUE (DEF) IS THE MEAN VALUE OF THE BRAIN AND 

VENTRICLES STRUCTURES FOR EACH SIMULATION. 
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B. Clinical Images 

 Figure 2 shows the result for the real clinical case, in 

which the right hemisphere of the brain is affected by the 

tumor. In this figure pre-treatment, post-treatment and 

recovered images are presented.  

 To analyze the efficiency of the registration, arrows were 

placed pointing the most deformed structures (cerebral 

ventricles and tumor). Comparing the post-treatment image 

with respect to the pre-treatment one, deformations on the 

brain ventricles structures of the right hemisphere are 

observed; also a shrinking of the tumor is present. Analyzing 

the recovered image and the pre treatment image, it is 

possible to appreciate that the shape of the ventricles is 

properly recovered, maintaining  the tumor's shrinkage. 

Table II presents the results obtained with ASD, Dmax and 

DICE indexes in this particular case, confirming 

qualitatively the efficiency of the proposed registration 

method in real clinical data. These results suggest that the 

methodology proposed in this work may be helpful for 

following up studies in radiotherapy thanks to its good 

performance and accuracy. 

 

 
Fig. 2.  Real MRI clinical case images elastic registration. 

 

 
TABLE II 

REGISTRATION ACCURACY IN CLINICAL DATA. 

 
 

 

IV. CONCLUSIONS 

This work evaluated the accuracy of elastic registration 

guided by the particle filter (PF) with an optical flow process 

in 2D. In CT and MRI images of radiotherapy patients, in 

both simulated and real environment, registration showed 

good accuracy, both qualitatively and quantitatively. These 

results, in terms of accuracy, corroborate the advantages 

already mentioned on PF approach such as easy 

implementation, robustness to initial parameters and speed 

processing [7],[8], suggesting that extending it to a 3D 

registration process may be considered as a good new option 

for radiotherapy applications like patient's follow up 

treatment. 
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Appendix B 
 

 

 

Multimodal Image 

Registration Approach 

Based on Local Variability 

Measures 
 

 

 

 Non-rigid registration algorithms based on the optical flow concept work under 

the assumption of intensity conservation between voxels of the images to be registered, 

limiting these algorithms to monomodal registration cases. In medical imaging, 

multimodal image registration is useful in a clinical context because different types of 

medical images could lead to better identifying structures of interest for the RT treatment 

plan, such as the tumor and organs at risk, and for studying the efficiency of RT and its 

collateral effects. In this appendix a novel proposal to overcome the monomodal 

restriction and adapt the PF+OF approach to multimodal registration cases is presented. 

The main idea is to add a step which maps images from different modalities into a space 

where their intensities can be compared, such as the intensity variability around neighbor 

elements of a voxel. Four measures that meet the above description, which we call Local 

Variability Measures (LVM's) based on the entropy and variance computed over a 

window centered in a pixel of interest, are implemented to achieved the PF+LVM+OF 

multimodal registration method. These methods were tested using 2D CT and MR images 
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from patients with cerebral tumor. Images with synthetic deformations and real warps due 

to RT treatment were studied. The resulting registrations were evaluated both 

qualitatively and quantitatively by standard indices of correspondence over anatomical 

structures of interest in RT (brain cortex, tumor and cerebral ventricles). These results 

showed that one of the proposed LVM (entropy) offers a superior performance in 

estimating the non-rigid deformation field. The present chapter is based on the article : 

 

Isnardo Reducindo, Aldo R. Mejia-Rodriguez, Edgar R. Arce-Santana, Daniel U. 

Campos-Delgado, Flavio Vigueras-Gomez, Elisa Scalco, Anna M. Bianchi, Giovanni M. 

Cattaneo, Giovanna Rizzo. "Multimodal Non-Rigid Registration Methods Based on Local 

Variability Measures in CT and MR Brain Images". IET Image Processing (submitted 

2013). 

 

 

Introduction 

 Multimodal image registration is the process of geometrically align two or more 

overlaying images from different modalities (CT, MRI, PET, etc.). Applications of 

multimodal non-rigid registration (NNR) are abundant and diverse, predominantly 

diagnostic in nature. For instance, multimodal NRR is useful in radiotherapy (RT), where 

different types of medical images could lead to better identifying the structures of interest 

for the RT treatment plan, such as the tumor and organs at risk (OAR), and for studying 

the efficiency of RT and its collateral effects [Rueckert et al., 2010; Bin et al., 2010]; for 

example when 3D conformal radiotherapy treatment planning (CRTP) is employed for 

tumor treatment, the relative position between the tumor and its adjacent tissues could be 

obtained accurately through analyzing the medical data sets, which fuse the information 

of functional and anatomical images [Bin et al., 2010]. In literature, current multimodal 

registration techniques, such as those based on Sum of Squared gray value Differences 

(SSD) and Mutual Information (MI), attempt to find similarities between images obtained 

from different modalities in a direct fashion, without a prior knowledge [Hill et al., 2001]. 

This is often very difficult as images acquired from different modalities can have very 

different intensity mappings. 
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 In this context, the work presented in this appendix pursues to overcome the 

monomodal restriction of the PF+OF algorithm, by applying a local intensity mapping 

over the images, after an initial parametric registration. In this proposal, the multimodal 

images are mapped into a space where their intensities can be compared, in order to 

perform an OF algorithm iteratively, as proposed in [Reducindo et al., 2012].  

 

 

Methods 

Multimodal non-rigid registration based on local variability measures 

 As mentioned in previous chapters, the NRR problem can be formulated as to find 

the displacements vector field 𝑉(𝐫) such that it can align a source image, 𝐼𝑆,with a target 

one, 𝐼𝑇. Then, the problem can be mathematically written as follows: 

 

𝐼𝑇(𝐫) = 𝐹[𝐼𝑆(𝐫 + 𝑉(𝐫))],     (1) 

 

where 𝐫 = (𝑥, 𝑦)⊺ denotes a pixel position within the rectangular domain Ω ⊂ ℝ2 of the 

images, and 𝐹[∙] represents the relation between the intensities of both images 𝐼𝑇and 𝐼𝑆. 

According to eq. (1), 𝐹 is the identity if the two images are monomodal, and the 

registration problem can be solved by the PF+OF algorithm, where the vector field of the 

non-rigid deformation is obtained by adding the rigid vector field, achieved by the PF, to 

the one obtained by the iterative OF process. For details of the implementation the reader 

is referred to chapter 3. 

 For the case of multimodal NRR an extension of the PF+OF methodology is 

proposed in order to overcome the limitations by applying an intensity mapping over the 

images by using measures that describe the intensity variability around each pixel 

[Reducindo et al., 2012]. This mapping transforms both images into a space where each 

pixel intensity in one image could be compared with its corresponding in the other image, 

despite their intrinsic multimodal characteristics; namely, establishing a mapping 𝐺[∙] 

such that: 
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𝐺[𝐼𝑇(𝐫)] = 𝐺[𝐼𝑆(𝐫 + 𝑉(𝐫))],      (2) 

 

 In order to define this mapping, we propose to employ measures that do not 

depend on the intensity level of the pixels, but on their intensity variability around 

neighbor elements. Two measures that meet the above description are the entropy and the 

variance, computed over a window centered in a pixel of interest, which we call Local 

Variability Measures (LVMs). In addition, we also propose to employ a combination of 

these two metrics in order to take advantage of the local information that they capture. 

Hence, the Euclidean and maximum weights are used, similarly to the two and infinity 

norms of 2-D vectors. The proposed methodology PF+LVM+OF for multimodal NRR 

adds two intermediate steps between the rigid and the elastic registration to the algorithm 

described in previous chapters: 

1. Parametric (rigid) registration, Find the parameters vector 𝜃 ̂ of the perspective 

transformation 𝑇(𝐫|𝜃) that provide the best alignment between 𝐼𝑇(𝐫) and 𝐼𝑆(𝐫), 

and compute the initial (rigid) displacement vector field 𝑑0(𝐫). 

 

2. Intensity mapping based on LVM. Apply the mapping 𝐺[∙] based on a LVM over 

all the pixels 𝐫 in the images 𝐼𝑇(𝐫) and 𝐼𝑆(𝐫). That is, compute the intensity 

mapping, and obtain 𝐼𝑇(𝐫) ≜ 𝐺[𝐼𝑇(𝐫)] and 𝐼𝑆
0(𝐫) ≜ 𝐺[𝐼𝑆(𝐫 + 𝑑0(𝐫))], according 

to the following four proposals: 

 

𝐺1[𝐼(𝐫)] = ∑ 𝑝𝐫(𝐼(𝐬)) log[𝐼(𝐬)]𝐬∈𝑁𝐫
,     (3) 

𝐺2[𝐼(𝐫)] = ∑ 𝑝𝐫(𝐼(𝐬))[𝜇𝐫 − 𝐼(𝐬)]2
𝐬∈𝑁𝐫

,     (4) 

𝐺3[𝐼(𝐫)] = √𝐺1[𝐼(𝐫)]2 + 𝐺2[𝐼(𝐫)]2,     (5) 

𝐺4[𝐼(𝐫)] = max
𝐫

{𝐺1[𝐼(𝐫)], 𝐺2[𝐼(𝐫)]},     (6)

 
 

where G1 represents the LVM using entropy, G2 using variance, G3 an Euclidean 

weight between variance and entropy, and G4 selecting the maximum value 

between variance and entropy at each pixel. In addition, 𝑁r represents the set of 

pixels of a 𝑛 × 𝑛 window centered at 𝐫, 𝑝r(𝐼(s)) is the local probability 
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distribution of the image intensities 𝐼(s) within 𝑁r, and 𝜇r is the average value of 

the intensity 𝐼(s)with s ∈ 𝑁r. 

 

3. Equalization. After the transformation, the intensities of the images (𝐼𝑇 and 𝐼𝑆
0) 

could have small values and could be concentrated in a short dynamic range. For 

this reason, it is necessary to scale the two images intensities into a range from 0 

to 255 (grayscale), and to apply a histogram equalization [Gonzalez, 2009]. 

 

4. Optical Flow. Find the remaining displacements between 𝐼𝑇 and 𝐼𝑆
0 by an OF 

iterative scheme, 𝑑(𝐫) = 𝑑1(𝐫) + 𝑑2(𝐫) + ⋯ +𝑑𝑘(𝐫), until convergence is 

achieved. 

 

5. Non-rigid registration. Finally, we can obtain the vector field of the non-rigid 

multimodal deformation by adding the rigid vector field to the one obtained by the 

iterative OF, i.e., 𝑉(𝐫) ≜ 𝑑0(𝐫) + 𝑑(𝐫). 

 

 

Clinical and synthetic images datasets 

 CT and MR clinical studies of three patients with cerebral tumor were selected for 

evaluation purposes. In these studies, it is possible to observe deformations of the brain 

structures in the axial plane, due to tumor shrinkage as a result of the medical treatment. 

These patients underwent pre-operative diagnostic and RT treatment at the San Raffaele 

Hospital in Milan, Italy. The dataset was composed by a CT scan and a MR image before 

the RT treatment (CT-Pre and MR-Pre), and a MR image after the treatment (MR-Post). 

From the three clinical studies, ten pairs of CT/MR 2D images of different sections of the 

head were selected to study different morphological structures. Each image has a 

dimension of 512 x 512 pixels with a pixel size of 1.0 × 1.0 mm. A slice-by-slice 

correspondence between CT-Pre and both MR images (Pre and Post) was obtained by 

using the software available in the Treatment Plan System.  

 In addition to the clinical dataset, we generated new synthetic data for the 

algorithm evaluation, where two MR-Pre images of different sections of the head were 

deformed in a controlled way (three deformations per image) by using the Moving Least 

Squares (MLS) algorithm [Schaefer et al., 2006]. This algorithm allows to compute a 



Appendix B -Multimodal Image Registration Approach Based on Local Variability Measures 
_______________________________________________________________________________ 
 

 
112 

transformation map L: ℝ2→ℝ2 from a set of N pivot points “p” and their corresponding 

new positions “q”. These deformations were constructed to simulate the ideal effect of the 

RT treatment, i.e. only the tumor suffers shrinkage due to the therapy but the healthy 

organs surrounding it remain intact. Therefore, for the simulated deformations, we placed 

six initial pivot points on the brain contour and six around the tumor. Subsequently, only 

the pivot points of the tumor were moved to an inner position closer to the center of the 

tumor, to simulate a shrinking effect. Meanwhile, the pivot points on the brain contour 

remained at the same positions. In this way, the NRR process was performed between a 

CT-Pre image and the synthetically modified MR-Pre image. 

 

 

Registration accuracy 

 First, an expert physician evaluated the results of the registration process by visual 

inspection, in order to label the performance as acceptable or not acceptable from a 

clinical point of view. Then, segmentations of the structures of interest (brain cortex, 

ventricles and tumor), in both synthetic and clinical datasets, were carried out for each of 

the 4 images obtained after the registration with the PF+LVM+OF method, and for the 

original PF+OF implementation (without LVM). For analysis purposes, we define LVMk 

as the PF+LVM+OF approach by using the mapping Gk, as described in equations (3-6), 

and No-LVM for just PF+OF. Due to the difficulty in properly locating anatomical 

structures just by using the CT image, a CT-Pre/MR-Pre correspondence was used to 

ensure a proper segmentation of the structures of interest in CT images, where contour 

delineations of the structures in MR-Pre images were used for this purpose. These 

segmentations were performed by an expert observer through the MIPAV software 

[McAuliffe et al., 2001] (see Figure 1). From these segmentations, differences in 

anatomical structures before and after the registration process were calculated by using 

standard indices usually adopted for accuracy assessment: area difference (ADiff), dice 

similarity coefficient (DICE), average symmetric distance (ASD), and maximum 

symmetric distance (DMax) [Mejia-Rodriguez et al., 2011; Faggiano et al., 2011-b; Wang 

et al., 2008; Heimann et al., 2009] (indices definitions can be found in section 4.5 of this 

document). 
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(a) (b) (c) 

Figure 1. A pair of the set of images used for the algorithm evaluation. (a) CT-Pre, (b) MR-Pre with 

contours of the anatomical structures of interest, and (c) CT-Pre with contours of the anatomical 

structures of interest obtained from MR-Pre. 

 

 

 To avoid bias in the quantitative evaluation due to differences in the dimensions of 

the structures of interest, the resulting indices were analyzed for each type of anatomical 

structure (brain contour, ventricles and tumor). So the evaluation results are presented as 

mean ± std for each of the three structures. Additionally, in the synthetic images, eight 

markers were placed around the tumor with the goal of estimating the Euclidean distance 

between the coordinates of the markers in the images, before and after the registration 

process (see figure 2). 

 

 

 

 

 

 

(a) (b) (c) (d) 

Figure 2. Example of a MR-Pre image used to generate a synthetically deformed image with eight 

markers placed around the tumor. (a) MR-Pre, (b) MR-Pre tumor, (c) MR-Pre deformed image in a 

controlled way, and (d) Tumor of the MR-Pre deformed image. 
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Results 

Synthetic images 

 Figure 3 shows an example of the registration results obtained by the different 

LVMs proposed in this paper, where a CT-Pre image is used as IT, and an MR-Pre 

synthetically deformed as IS. Table 1 presents the overall results of the accuracy indices 

for brain contour and tumor. Results show a similarity in ADiff for the brain contour, 

before and after the registration process (for any LVM); while in the tumor, a considerable 

decrease of about 60% is observed in LVM1 and LVM4, and an increase of about 50% is 

presented for LVM2, LVM3, and No-LVM. For the ASD index, the NRR results for the 

brain structure show a slight decrease only by LVM1 with respect to the initial registration 

value. At the same time, an increment of about 20% is found in ASD for the rest of the 

LVMs. In the tumor, a considerable decrease (around 45%) was accomplished by LVM1 

and LVM4, with respect to the ASD value before registration; LVM2, LVM3 and No-LVM 

presented an increment of approximately twice its initial value. Analyzing the brain 

contour for the DMax index, a slightly decrease is observed in LVM1 and LVM4 (around 

20%), although LVM2 and LVM3 remain approximately at the same value before the 

NRR process, and No-LVM presented an increase of 23%. For the tumor, a 20% decrease 

is presented in LVM1 and LVM4 for DMax. Although a 35% increase is presented with 

the other two LVMs and No-LVM case. Finally, the NRR average performance for the 

brain structure with the DICE index was always above 0.9 for all cases, before and after 

the NRR process. In the tumor, DICE shows an increase after the NRR process with 

LVM1 (10%) and LVM4 (7%), and a decrease of about 15% with LVM2, LVM3 and No-

LVM. The overall evaluation in Table 7.1 shows that the NRR with LVM1 achieved the 

best mean index in 75% of the cases, and the lowest variability (std) in 63%. 

 In addition to the accuracy indices, the Euclidean error is calculated between the 

tumor markers before and after the NRR process in table 2. For each deformation (Def), 

the mean ± std value of the distance between the eight markers around the tumor is 

presented for each LVM. In this table, we can observe a decrease in the mean error and its 

variability (std) for LVM1 and LVM4 (25%). Meanwhile, the error increased for LVM2, 

LVM3 and No-LVM (roughly 50%).  
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 Target image  Source image  

 

 

 

 

 

 (a)  (b)  

LVM1 LVM2 LVM3 LVM4 No-LVM 

     
(c) (d) (e) (f) (g) 

Figure 3. Example of NRR results of the synthetic dataset for the four LVMs and original PF+OF algorithm (No-LVM). (a) Target image (b) Source image. (c), (d), 

(e), (f) and (g), show the registration result of LVM1, LVM2, LVM3, LVM4and No-LVM, respectively. 
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Table 1. Mean and standard deviation of ADiff (area difference), ASD (average symmetric distance), DMax (maximum symmetric distance) and DICE (dice 

similarity coefficient) obtained before the registration process, with the four LVM (entropy, variance, and Euclidean and maximum weights between them) and 

with the No-LVM version; for the three anatomical structures of interest in the synthetic images. 

 

Index Anatomical 
structure 

Before registration LVM1 LVM2 LVM3 LVM4 No-LVM 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

ADiff(mm2) 
Brain 0.005 0.002 0.004 0.003 0.005 0.002 0.007 0.004 0.004 0.002 0.008 0.005 

Tumor 0.283 0.049 0.100 0.073 0.445 0.187 0.432 0.132 0.145 0.096 0.328 0.094 

ASD (mm) 
Brain 0.340 0.075 0.331 0.086 0.466 0.178 0.495 0.170 0.415 0.205 0.542 0.185 

Tumor 2.698 0.729 1.427 0.587 4.560 1.226 4.284 1.063 1.735 0.766 3.992 1.001 

DMax(mm) 
Brain 3.549 0.992 2.730 0.846 3.413 1.312 3.276 0.518 2.867 0.449 4.368 0.992 

Tumor 6.143 2.120 4.778 1.967 8.327 1.750 8.371 2.139 4.837 1.929 8.600 1.989 

DICE 
Brain 0.995 0.001 0.996 0.001 0.994 0.002 0.993 0.003 0.995 0.002 0.993 0.002 

Tumor 0.817 0.042 0.906 0.036 0.667 0.126 0.693 0.094 0.883 0.049 0.729 0.051 

 

 

Table 2. Euclidean distance (mm) of the tumor markers, before and after registration for each synthetic deformation (Def). 

 

Deformations 
Before registration LVM1 LVM2 LVM3 LVM4 No-LVM 

Mean std Mean std Mean std Mean std Mean std Mean Std 

Image1 
Def1 3.695 0.910 1.714 0.461 8.019 1.283 6.074 1.767 1.675 1.106 5.650 3.244 

Def2 5.383 1.081 3.761 2.799 7.522 2.488 7.270 2.146 3.385 1.865 6.898 2.778 

Def3 4.437 1.103 2.061 1.196 8.369 1.052 6.919 1.466 2.428 1.504 6.303 3.099 

Image2 
Def1 3.571 2.267 3.169 1.397 5.540 3.104 5.892 3.364 3.530 1.214 5.978 2.648 

Def2 3.468 2.228 3.206 2.384 5.021 2.984 5.142 3.012 3.621 2.538 5.500 2.205 

Def3 6.364 3.999 5.400 2.896 8.141 5.516 8.367 2.680 5.676 2.896 8.476 4.315 
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Clinical images 

 Figure 4 shows an example of the NRR results obtained by applying the 

PF+LVM+OF approach to the clinical dataset, where it is possible to visually assess the 

performance of the registration process for each LVM. In this example, the CT-Pre and 

MR-Post images (IT and IS respectively) show the tumor before and after the RT 

treatment, located in the center of the left hemisphere. Therefore, the visual inspection 

consisted in evaluate if the registration process was able to recover the deformation 

(shrinking) suffered by the tumor due to the RT treatment. Taking this information into 

account, LVM1, LVM3 and LVM4 have an acceptable performance from a clinical point 

of view (see Figures. 4 (h), (j) and (k)); while LVM2 and No-LVM have not since they 

predict a change in opposite direction (see Figures. 4. (i) and (l)). 

 The quantitative analysis is presented in table 3, where for each performance 

index the mean ± std for each group of anatomical structures of interest are shown. For 

the brain contour, a slight decrease in ADiff is presented with respect to its initial value 

before NRR with the exception of LVM4; for the ventricles and the tumor, a more evident 

decrease was presented in all LVMs and No-LVM case. The results for the brain contour 

and ventricles show also a decrement in ASD. For DMax, a slight reduction is observed 

after the NRR process for the brain structure; although for the No-LVM case, there is an 

increase in this index for all anatomical structures. For the ventricles, a decrease was 

found with all four LVMs, where LVM2 showed the largest improvement (15%). Finally, 

DICE shows for the brain structure a performance always above 0.9, before and after the 

NRR process; in the ventricles, the DICE shows a slight increase after NRR (about 8%) 

with all LVMs and No-LVM scenarios. Analyzing the tumor, LVM2 and No-LVM did not 

improve ASD, DMax and DICE after the NRR process. An improvement in all four 

indices is found only for LVM1, LVM3 and LVM4; being the best improvements of 40% 

for the ADiff, 17% for the ASD, 15% for the DMax, and 9% for the DICE, all of them by 

using LVM1. 
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 Target image  Source image  

 

 

 

 

 

 (a)  (b)  

LVM1 LVM2 LVM3 LVM4 No-LVM 

     
(c) (d) (e) (f) (g) 

Figure 4. Registration results for the four LVMs and No-LVM version. (a) and (b) CT-Pre and MR-Post images used as target and source, respectively; (c)-(g) 

registered images, and (h)-(l) deformation fields after NRR. 
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Table 3. Mean and standard deviation of ADiff (area difference), ASD (average symmetric distance), DMax (maximum symmetric distance) and DICE (dice 

similarity coefficient) obtained before the registration process, with the four LVM (entropy, variance, 2-Norm and Infinity-Norm) and with the No-LVM version; 

for the three anatomical structures of interest. 

 

Index Anatomical 
structure 

Before registration LVM1 LVM2 LVM3 LVM4 No-LVM 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

ADiff(mm2) 
Brain 0.012 0.010 0.008 0.008 0.010 0.007 0.010 0.009 0.013 0.010 0.008 0.007 

Ventricles 0.964 2.163 0.520 0.915 0.679 1.973 0.692 2.108 0.665 1.084 0.501 0.879 

Tumor 0.420 0.263 0.252 0.365 0.415 0.292 0.366 0.310 0.278 0.340 0.389 0.350 

ASD (mm) 
Brain 0.999 0.235 0.781 0.398 0.741 0.289 0.720 0.250 0.859 0.326 0.769 0.219 

Ventricles 2.197 1.241 1.891 1.157 1.811 1.234 1.829 1.081 1.970 1.202 1.868 1.441 

Tumor 4.265 3.285 3.517 4.123 4.669 3.752 4.009 3.926 3.590 3.694 4.804 4.265 

DMax(mm) 
Brain 4.341 0.674 4.013 0.717 4.259 0.846 3.964 0.973 4.341 0.868 4.586 0.791 

Ventricles 7.841 6.372 7.308 6.599 6.604 5.447 6.918 4.875 7.833 6.783 8.042 7.424 

Tumor 9.398 4.046 7.980 4.710 10.144 4.843 9.031 5.228 8.368 4.560 10.362 5.713 

DICE 
Brain 0.986 0.004 0.989 0.006 0.990 0.004 0.990 0.004 0.988 0.005 0.990 0.003 

Ventricles 0.608 0.198 0.659 0.191 0.662 0.213 0.645 0.214 0.656 0.185 0.681 0.205 

Tumor 0.683 0.264 0.746 0.319 0.661 0.289 0.710 0.301 0.741 0.294 0.652 0.322 
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Discussion 

Synthetic images 

 In the analysis of the synthetic evaluation, only the brain contour, the biggest rigid 

structure presented in the images, and the tumor, which is the structure that presents 

complex deformations, were considered as structures of interest for RT. Therefore, as 

expected, the values of all four accuracy indices (ADiff, DICE, ASD and DMax) 

calculated for all the LVMs and No-LVM at the contour of the brain did not change 

significantly compared to their values before NRR. For the tumor, an improvement was 

presented only for LVM1 and LVM4 in all indices, being LVM1 the one with the largest 

improvement. The analysis of the Euclidean error among markers in the tumor section 

provided an estimation of the NRR accuracy on specific points for a structure of interest; 

anew, the corresponding results show positive performance only for LVM1 and LVM4. 

However, by considering the results in [Reducindo et al., 2012], where LVMs were first 

proposed for the registration of medical images, an acceptable performance was found in 

all four LVMs. Moreover, the performance analysis in [Reducindo et al., 2012] was only 

based on the mean error of the entire vector field after applying the NRR algorithm; while 

in this paper, we analyze the performance of the different LVMs methodologies by 

specifically addressing the anatomical structures of clinical interest. 

 

 

Clinical images 

 The resulting images after the NRR process show that LVM1 (entropy) provides 

qualitatively and quantitatively the best results on the set of images used for the 

evaluation, followed by LVM4 (maximum weight between entropy and variance), 

appropriately aligning the anatomical structures in MR-Post with CT-Pre. Although 

LVM2 and LVM3 (variance and Euclidean weight between entropy and variance) achieve 

an adequate alignment for some structures of interest, these metrics generated 

anatomically inconsistent deformations, and changes in the textures of tissues in the 

registered images. The inconsistent deformations obtained after NRR by LVM2 might be 

caused by highly textured in MR versus low contrast areas in CT, as in several brain 

regions, where the values obtained by computing local variance are constant due to the 

low variability of the intensities in these regions. This phenomenon becomes similar to 

estimate the OF between two constant-intensity areas, where any displacement in any 
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direction keeps unchanged the cost function. In the same way, within an homogeneous 

area, there is high probability of obtaining values of variance and entropy for two 

different locations with similar magnitudes, generating an identical problem for LVM3 

(Euclidean weight). These effects explain the inconsistent deformations generated by 

LVM2 and LVM3, which do not occur in LVM1, because in highly textured areas, the 

entropy values are very different from the rest, due to the high uncertainty in the 

intensities of these regions. Images 5.(a) and (b) show the tumor for MR-Pre and CT-Pre 

respectively, where it is possible to observe the lack of contrast for the tumor, which 

makes difficult the registration of this structure with the MR-Post (figure 5 (c)), by using 

any LVM. On the other hand, images 5 (d) and (e) show an example of good contrast, 

where it is easy to distinguish the tumor in both CT and MR images, thereby facilitating 

the registration of this structure with MR-Post (figure 5 (f)). Thus, an acceptable 

difference can be considered as the suitable contrast in the CT-Pre that enables to 

distinguish the tumor from the rest of the brain in the CT. 

 

Lack of 

contrast for 

the tumor in 

CT-Pre 

   

 (a) MR-Pre (b) CT-Pre (c) MR-Post 

Good contrast 

for the tumor 

in CT-Pre 

   

 (d) MR-Pre (e) CT-Pre (f) MR-Post 

 

Figure 5. Examples of good and lack of contrast of the tumor in the CT-Pre. Images (a) and (b) show 

the tumor for MR-Pre and CT-Pre respectively, where it is easy to see in CT-Pre that the tumor has 

poor contrast, which makes difficult the NRR of this structure with the MR-Post, shown in (c), by 

using any LVM. Images (d) and (e) show the tumor for MR-Pre and CT-Pre respectively, where is 

possible to see a good contrast of the tumor in CT-Pre, thereby facilitating the registration of this 

structure with the MR-Post, shown in (f). 
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 In fact, the quantitative analysis on the tumor shows that the best results for the 

NRR algorithm were obtained by using LVM1 and LVM4, despite some problems with the 

contrast in the CT-Pre images. Moreover, the No- LVM approach does not provide good 

results to estimate the tumor deformation, because the tissue intensities at each modality 

(CT and MR) are very different. Contrarily, the No-LVM approach gave the best results in 

terms of ADiff and DICE in the ventricles and the brain contour (along with LVM1) and 

also presented positive results in the ventricles for the ASD index (see Table 3). This 

behavior could be related to the similarity of intensities in the ventricles, for both CT and 

MR. 

 The positive results found with the No-LVM implementation follow the 

performance shown in [Arce-Santana et al., 2010; Mejia-Rodriguez et al., 2011], where it 

is stated that the use of the PF+OF method is a valuable tool for complex NRR problems. 

In the meantime, the negative results support the disadvantage of this methodology for 

multimodal cases, reinforcing the motivation for using LVMs to achieve a multimodal 

registration that does not parameterize the elastic deformation space, in contrast to the 

majority of the methods reported in the literature. Furthermore, a parameterization of the 

deformation space increases the computational cost because the optimization process used 

in these methods are typically nonlinear [Xuan et al., 2006; Serifovic-Trbalic et al., 2009; 

Klein et al., 2009]. These two problems are solved with the proposed PF+LVM+OF 

technique, since each pixel can move independently, thus increasing the manifoldness of 

deformations that can be reproduced. Also, the OF estimation process is formulated as a 

quadratic optimization over a convex surface, and its global solution is computed by a 

system of linear equations, which ensures a low computational cost. 

 Making a comparison between the four LVMs and the No-LVM implementation 

(see Tables 1, 2 and 3), it is possible to see a consistent advantage of LVM1 (entropy) 

over the other LVMs and No-LVM approach in mean performance, and even in some 

cases, with less variability. This idea suggests that the local entropy is the best performing 

LVM under a quantitative analysis of anatomical structures of interest for RT brain 

images. Furthermore, the results found in this work suggest that the PF+LVM+OF 

algorithm, if extended to a 3D version, could be useful in RT for some important tasks, 

such as the monitoring of medical treatment. 
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Conclusion 

 In this work, local intensity transformations are suggested to perform a 

multimodal NRR based on PF and iterative OF. These transformations map the target and 

source images into a space where the multimodal property is overcame, such that an 

efficient OF solution can be pursued. The evaluation of the proposal was based on CT and 

MR brain images deformed synthetically and on real clinical cases. The results showed 

that the local entropy is the LVM with the best performance, both qualitatively and 

quantitatively, by analyzing the anatomical structures of interest in RT (brain contour, 

tumor and ventricles). Therefore, our NRR proposal could be considered as a new option 

of medical image registration for RT applications. 
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Appendix C 
 

 

 

 

Registration Accuracy Based 

on Mesh Data Structures 
 

 

 

The analysis of anatomical structures of interest used in this work to evaluate the accuracy of 

registration methods is also of great importance in a clinical context. For example the analysis of 

anatomical modifications occurring during RT treatments is useful to identify potential predictors of 

toxicity in organs at risk (OAR) and to design optimized adaptive treatment plans. To have a better 

perspective of the distortions that occur, the mesh data-structure is one of the most used techniques 

in RT for rendering 3D structures of interest. However, although meshing is widely used, the 

analysis is usually carried out by extracting quantitative metrics from a set of 2D binary images 

whose contours define a 3D surface, as it was performed in this work; in this way a coarser 

representation of the structure surfaces is obtained. In this appendix, a mesh-based approach is 

proposed to improve the analysis of 3D anatomical structures in RT, by calculating directly over the 

meshes the standard indices previously used. Mesh surfaces corresponding to the right and left 

parotid glands, from a set of Megavoltage CT (MVCT) images from patients treated for head-and-

neck cancer (HNC) were constructed from manual contour delineations. This approach is compared 

with the standard binary image approach in order to evaluate if the introduction of this more 

accurate 3D representation results in differences between both strategies of structure analysis; the 

set of binary images used for the classical analysis was also generated using the same contour 

delineations. Results suggest that the proposed mesh approach could represent a useful tool in RT 

for the analysis structures of interest, being able to provide a finer 3D shape representation, and 
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could have more relevance when anatomical structures with more complex or deformable shapes, 

like the lungs, are considered. The present chapter is based on the article : 

Aldo R. Mejia-Rodriguez , Elisa Scalco, Daniele Tresoldi, Anna M. Bianchi, Edgar R. Arce-

Santana, Martin O. Mendez, Giovanna Rizzo. "A Mesh-Based Approach for the 3D Analysis of 

Anatomical Structures of Interest in Radiotherapy". Proceedings of the 34th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society; 2012: 6555 - 6558. 



  

 

Abstract— In this paper a method based on mesh surfaces 

approximations for the 3D analysis of anatomical structures in 

Radiotherapy (RT) is presented. Parotid glands meshes 

constructed from Megavoltage CT (MVCT) images were 

studied in terms of volume, distance between center of mass 

(distCOM) of the right and left parotids,  dice similarity 

coefficient (DICE), maximum distance between meshes (DMax) 

and the average symmetric distance (ASD). A comparison with 

the standard binary images approach was performed. While 

absence of significant differences in terms of volume, DistCOM 

and DICE indices suggests that both approaches are 

comparable, the fact that the ASD showed significant difference 

(p=0.002) and the DMax was almost significant (p=0.053) 

suggests that the mesh approach should be adopted to provide 

accurate comparison between 3D anatomical structures of 

interest in RT. 

 

I. INTRODUCTION 

HE analysis of anatomical structures of interest is a 

relevant task in the medical field. For example in 

Radiotherapy (RT), patients undergoing a head-and-neck 

cancer (HNC) treatment are known to experience significant 

decrease in the volume of the parotid glands and their 

migration toward the midline of the patient with a distance 

change of a few millimeters. Due to these anatomical 

modifications the parotids can receive a total dose 

significantly higher than the planned one. In this context the 

importance of the analysis of the anatomical modifications 

occurring during RT treatments is to both identify potential 

predictors of toxicity and design optimized adaptive 

treatment plans [1]. 
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To have a better perspective of the distortions that occur 

in structures of interest, different techniques to represent 

structures in 3D have been implemented [2, 3]. The mesh 

data-structure is one of the most used techniques for 

rendering 3D objects and it is defined as a collection of 

vertices (points positioned in a virtual space), edges (a 

connection between two vertices) and faces (a closed set of 

edges) that defines the shape of a polyhedral object. The 

faces could form polygons of any type (quadrilaterals, 

concaves or convexes complex polygons) but triangular 

polygons are commonly used since this simplifies rendering 

[3]. 

Although meshing is widely used for rendering 3D 

geometrics, in RT, analysis of anatomical structures of 

interest is usually carried out by extracting quantitative 

measurements from a set of 2D binary images whose 

contours define a 3D surface [4, 5]. In this way a coarser 

representation of the structure surfaces is obtained [2].  

In this paper, we propose a mesh-based approach to 

improve the analysis of 3D anatomical structures in RT. This 

approach is compared with the standard binary image 

approach in order to evaluate if the introduction of this more 

accurate 3D structure representation results in differences in 

structure analysis. 

II. METHODS 

A. Analysis of structures of interest by meshes 

Analysis of the 3D anatomical structures by meshes 

proposed in this paper consists in the calculation of nine 

quantitative standard indices. The indices could be divided 

into two categories, 1) indices that give spatial and 

geometrical information of an individual mesh: coordinates 

of the baricenter, surface area and volume; and 2) indices 

that make a comparison between two meshes: Euclidean 

distance between baricenters, surface area difference, 

volume difference, dice similarity coefficient (DICE) [1], 

maximum distance between meshes (DMax) and average 

symmetric distance (ASD) [1].  

DICE index is a metric of the overlap between 2 surfaces 

ranging from 0 (no spatial overlap) to 1 (complete overlap). 

DMax index calculates the maximum distance between two 

surfaces and gives an idea of the worst local distance  

mismatch. ASD index is defined as the average Euclidean 

distance between two surfaces, which is  0  for  a  perfect 

match.  
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For the calculations of the meshes and the set of indices 

the standard libraries included in the Visualization Toolkit 

(VTK) package were used, particularly the VTK package 

implemented for its use in Python [6]. 

B. Boolean operations on meshes 

For DICE, DMax and ASD calculations, a set of classes 

that enable computation of boolean operations on meshes 

were used [7]. Boolean operations over meshes can be 

computed using the signed distance field (distance from a 

point x in one mesh to the nearest point on the surface 

defined by another mesh). The sign of the distance field 

corresponds to whether a point is inside (negative), outside 

(positive), or on (zero) the other mesh. In this context, the 

boolean operations of union, intersection and difference were 

defined as: 

 

 Union: set of cells in each mesh such that the 
distance from each cell point to the other mesh is ≥ 
0. 

 Intersection: set of cells in each mesh such that the 
distance from each cell point to the other mesh is ≤ 
0. 

 Difference: set of cells of the mesh A (MA) whose 

points are a non-negative distance from mesh B 

(MB) combined with the cells of MB whose points 

are a non positive distance from MA. 
 

Taking these assumptions into account and given two 
meshes A and B, the DICE, ASD and DMax indices were 
calculated as: 

BA

BA

VV

VV
DICE





2         (1) 

  

















 



),(),(
1

BAAB Mp

AB

Mp

BA

BA

MpdMpd
MM

ASD    (2) 

 










),(max),,(maxmax AB

Mp
BA

Mp
MpdMpdDMax

BBAA

   (3) 

 

where VA and VB are the sets of cells within A and B, 
respectively, d(pA, MB) and d(pB, MA) indicate the shortest 
distance between an arbitrary point to A or B, respectively.  

The same equations can also be used to define 
correspondent indices for the standard binary image analysis, 
where, instead of meshes, A and B refer to binary image 
contours. 

Fig. 1 shows an example of two meshes to be compared 
and the respective meshes generated by the boolean 
operations. 

 
Fig. 1 Example of 3D representation of two meshes:  A and B, with 

their respective boolean operations meshes. 

 

C. Comparison between mesh and binary image 

approaches for the analysis of 3D structures 

Mesh analysis was applied to a set of Megavoltage CT 
(MVCT) images from 10 patients treated for HNC with 
Helical Tomotheraphy analyzed in [1] with the standard 
analysis based on binary images. Triangular mesh surfaces 
corresponding to the right and left parotids were constructed 
from the manual contour delineation by three different expert 
observers in radiological images using the power crust 
method [8]; the set of binary images used for the parotid 
analysis studied in [1] were also generated using these 
manual contour delineations. 

A comparison between measurements calculated from 

binary images in [1] and measurements computed from 

meshes was made in terms of parotid volumes, distance  

between right and left parotids center of mass (DistCOM), 

DICE, ASD and DMax indices. Wilcoxon signed rank test 

(p<0.05) between both approaches was used to assess the 

comparison. 

III. RESULTS 

Table I presents the results for the calculation of the 
volume of the parotid glands from both meshes and binary 
images. For each patient mean ± std values of the right 
parotid (Par R) and left parotid (Par L) are presented. The 
comparison between mesh and binary images volume values 
was assessed for each expert observer (Exp). The mean ±std 
values found for Exp1 were 16.759±5.132 cm

3
 vs. 

16.760±5.129 cm
3
; Exp2 16.377±5.023 cm

3
 vs. 

16.405±5.037 cm
3
; and Exp3 18.304±5.107 cm

3
 vs. 

18.166±5.044 cm
3
, for mesh approach and binary image 

approach respectively. No significant differences were found 
(Exp1 p =0.668; Exp2 p=0.861 ; Exp3 p=0.538 ).   

Table II shows the comparison for DistCOM of the right 
and left parotids. The mean ± std values found for Exp1 were 
110.55±8.64 mm vs. 111.44±8.44 mm; Exp2 109.97±8.52 
mm vs. 111.03±8.55 mm; and Exp3 109.55±7.88mm vs. 
110.40±7.68 mm. No significant differences were found 
(Exp1 p = 0.623; Exp2 p=0.677 ; Exp3 p=0.677 ). 

Table III presents the results for DICE, DMax and ASD 
indices; for each patient the mean ± std value of all possible 
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pairs comparisons between the three expert observers are 
presented. The mean ± std values of the mesh and binary 
images estimations respectively for each index were: DICE 
0.796±0.043 vs. 0.812±0.028; DMax 9.014±2.052 mm vs. 
9.617±1.840 mm; and ASD 1.157±0.429 mm vs. 
1.581±0.250 mm. No significant differences were found for 
the DICE (p=0.179) and DMax (p=0.053), while ASD shows 
significant differences (p=0.002) between mesh and binary 
image approaches. 

IV. DISCUSSION 

Volume and DistCOM give geometrical and spatial 
information of a structure of interest, in this case parotid 
glands from patients treated with RT. The absence of 
significant differences between the mesh-based analysis and 
the approach based on sets of binary images suggests that 
both methodologies are suitable to provide quantitative 
anatomical information in parotid glands. DICE, DMax and 
ASD allow comparisons between two structures; in this case 
allowed to compare the parotid glands 3D representations 
constructed from the manual contours delineated by three 
different expert observers in RT. Results showed that the two 
approaches studied in this work are comparable in terms of 
DICE and DMax, but showed significant difference (21%) 
when ASD is considered.  

Volume, DistCOM and DICE indices give spatial global 
information about the structures analyzed, therefore these 
indices are less susceptible to the variations presented in the 
mesh-based rendering and the representation using binary 
images; hence, the absence of significance between the two 
approaches was expected. On the other hand, ASD and 
DMax indices are more sensitive to these variations because 
they give information about the mean mismatch and the 
worst mismatch case between 2 structures respectively. The 
fact that the ASD showed significant difference (p=0.002) 
and the DMax was almost significant (p=0.053) suggests that 
mesh-based analysis presented in this paper should be 
preferable to obtain geometrical information of 3D 
structures. Besides, an additional advantage related to the 
use of a mesh approach is that it facilitates modeling of 
complex deformations, such as the ones that could be found 
in RT.  

V. CONCLUSION 

The mesh approach presented in this work could represent 

a useful tool in RT to compare anatomical structures of 

interest, being able to provide a finer 3D shape 

representation. This approach could have more relevance 

when anatomical structures with more complex or 

deformable shapes, like the lungs, are considered.  

 

 

 

 

 

 

 

TABLE I. VOLUME COMPARISON BETWEEN MESH AND BINARY IMAGES 

APPROACHES. VALUES WERE CALCULATED FOR RIGHT (R) AND LEFT (L) 

PAROTIDS FOR EACH PATIENT (PAT) 

VOLUME (cm3) 

 Exp1 Exp2 Exp3 

  Mesh Binary Mesh Binary Mesh Binary 

Pat1 R 18.540 18.540 19.836 20.190 23.340 23.340 

Pat1 L 21.500 21.500 20.650 20.650 22.434 22.430 

Pat2 R 17.693 17.690 18.343 18.340 19.626 19.630 

Pat2 L 19.131 19.130 16.799 17.020 20.674 18.500 

Pat3 R 17.566 17.570 16.691 16.690 19.310 19.310 

Pat3 L 10.225 10.260 15.005 15.000 13.630 13.630 

Pat4 R 17.350 17.350 21.825 21.820 20.273 20.270 

Pat4 L 17.282 17.280 18.019 18.020 17.023 17.020 

Pat5 R 22.938 22.940 24.334 24.330 22.975 22.980 

Pat5 L 21.703 21.700 17.327 17.330 22.832 22.830 

Pat6 R 24.590 24.590 20.068 20.070 28.834 28.830 

Pat6 L 26.204 26.200 21.145 21.140 19.952 19.950 

Pat7 R 14.082 14.080 13.341 13.340 15.121 15.180 

Pat7 L 17.724 17.720 15.875 15.880 17.878 17.880 

Pat8 R 7.896 7.900 5.399 5.400 10.666 10.670 

Pat8 L 10.393 10.390 9.104 9.050 11.167 11.170 

Pat9 R 11.463 11.460 12.111 12.110 11.002 11.000 

Pat9 L 10.738 10.740 7.164 7.210 10.658 10.660 

Pat10 R 15.698 15.700 20.629 20.630 23.076 22.440 

Pat10 L 12.460 12.460 13.880 13.880 15.601 15.600 

              

MEAN 16.759 16.760 16.377 16.405 18.304 18.166 

STD 5.132 5.129 5.023 5.037 5.107 5.044 

No significant differences were found with the Wilcoxon signed rank 
test (p<0.05). 

 

TABLE II. DISTCOM COMPARISON BETWEEN MESH AND BINARY IMAGES 

APPROACHES. VALUES WERE CALCULATED FOR RIGHT (R) AND LEFT (L) 

PAROTIDS FOR EACH PATIENT (PAT) 

DistCOM_ (mm) 

  Exp1 Exp2 Exp3 

  Mesh Binary Mesh Binary Mesh Binary 

Pat1 115.77 116.53 115.66 116.16 113.17 114.45 

Pat2 106.06 107.20 106.68 107.53 106.19 107.10 

Pat3 112.78 113.18 114.27 115.31 115.24 115.57 

Pat4 113.11 113.39 109.49 109.57 110.42 109.29 

Pat5 121.49 122.47 121.81 123.82 119.16 120.48 

Pat6 122.22 122.83 119.23 120.76 117.42 118.37 

Pat7 98.09 99.08 95.56 97.79 96.10 98.56 

Pat8 99.09 100.19 99.45 100.35 98.31 99.52 

Pat9 102.90 104.53 104.09 104.70 105.96 105.20 

Pat10 113.98 114.97 113.41 114.35 113.54 115.42 

              

MEAN 110.55 111.44 109.97 111.03 109.55 110.40 

STD 8.64 8.44 8.52 8.55 7.80 7.68 

No significant differences were found with the Wilcoxon signed rank 
test (p<0.05).
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TABLE III.  

DICE, DMAX AND ASD COMPARISONS BETWEEN MESH AND BINARY IMAGES APPROACHES. VALUES WERE CALCULATED FOR RIGHT (R) AND LEFT (L) 

PAROTIDS FOR EACH PATIENT (PAT). 

  DICE DMax (mm) ASD (mm) 

  Mesh Binary Im. Mesh Binary Im.  Mesh Binary Im. 

  Mean std Mean Std Mean std Mean std Mean std Mean std 

Pat1 R 0.790 0.018 0.788 0.019 10.612 0.708 9.844 0.450 1.208 0.224 1.895 0.053 

Pat1 L 0.822 0.009 0.809 0.025 9.618 0.751 13.834 2.672 1.102 0.082 1.832 0.209 

Pat2 R 0.840 0.018 0.836 0.007 6.760 2.382 8.469 1.000 0.570 0.209 1.326 0.083 

Pat2 L 0.785 0.019 0.828 0.031 10.280 1.630 9.199 1.455 0.960 0.342 1.457 0.296 

Pat3 R 0.769 0.063 0.771 0.040 8.464 1.161 8.859 1.499 0.981 0.465 1.941 0.458 

Pat3 L 0.786 0.028 0.808 0.064 7.699 1.404 8.113 2.114 1.393 0.461 1.490 0.481 

Pat4 R 0.767 0.054 0.774 0.026 11.374 3.690 11.770 1.603 1.503 0.457 1.881 0.238 

Pat4 L 0.809 0.033 0.793 0.020 8.792 0.252 10.324 1.138 0.901 0.212 1.589 0.129 

Pat5 R 0.843 0.001 0.838 0.011 6.731 1.017 8.117 0.814 0.729 0.077 1.473 0.084 

Pat5 L 0.788 0.028 0.812 0.017 8.194 1.276 10.301 1.927 0.940 0.323 1.646 0.110 

Pat6 R 0.808 0.021 0.855 0.028 10.900 1.986 8.949 3.859 0.989 0.848 1.434 0.305 

Pat6 L 0.841 0.441 0.827 0.029 7.992 1.882 9.013 0.825 1.695 0.930 1.613 0.315 

Pat7 R 0.730 0.044 0.786 0.028 8.786 1.892 10.983 0.645 1.350 0.585 1.721 0.220 

Pat7 L 0.825 0.034 0.813 0.032 7.789 0.825 8.103 0.849 0.886 0.264 1.567 0.266 

Pat8 R 0.703 0.104 0.824 0.053 13.578 4.264 6.548 2.908 2.364 0.583 1.391 0.473 

Pat8 L 0.837 0.037 0.825 0.027 7.053 1.162 8.231 3.042 1.001 0.299 1.226 0.176 

Pat9 R 0.874 0.042 0.878 0.024 6.483 1.863 9.436 3.206 0.625 0.273 1.028 0.207 

Pat9 L 0.748 0.069 0.817 0.044 7.359 0.947 8.024 2.011 1.192 0.442 1.422 0.321 

Pat10 R 0.753 0.044 0.791 0.026 13.115 3.069 13.327 2.958 1.768 0.229 1.953 0.278 

Pat10 L 0.803 0.019 0.771 0.011 8.707 0.448 10.893 0.722 0.979 0.201 1.743 0.126 

                          

MEAN 0.796   0.812   9.014   9.617   *1.157   1.581   

STD 0.043   0.028   2.052   1.840   0.429   0.250   

 * p=0.002, ASD presented significant difference with the Wilcoxon signed rank test  
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