
POLITECNICO DI MILANO 

Master of Science in Automation Engineering 

Department of Electronics, Information and Bioengineering 

 

 

 

Quaternion-Based Unscented 

Kalman Filter for Robust Motion 

Tracking in Neurosurgery 

 

 

NearLab 

Neuro Engineering and medicAl Robotics Laboratory 

 

Supervisor       :  Prof. Giancarlo Ferrigno 

Co-Supervisor :  Dr. Elena De Momi 

 

Nima Enayati  

 

 

 

Academic year 2012/2013



 

 

 

 

 

 

 

 

 

 

 

(This page intentionally left blank.) 

 

 

 

 



 

i 

 

 

 

 

 

 

 

 

 

 

 

 

 To my parents.     

  



 

ii 

 

 

 

 

 

 

Abstract 

This dissertation presents a fusion algorithm designed for robust estimation of the pose of a 

freely moving target in neurosurgery. The filter used for the fusion processes data from an 

optical tracking system (OTS) and an inertial sensor unit (IMU) containing tri-axial angular 

rate sensors and accelerometers. While commercial optical tracking systems and inertial 

measurement units suffer respectively from a low frame frequency and error accumulation, 

by blending the data from both sensors, the sensor fusion system maintains the advantages 

of both, i.e. accuracy of OTS and high sampling frequency of IMU, and compensates their 

drawbacks. 

The blending of data from heterogeneous sensors or sensor units is commonly performed 

via an algorithm derived from Kalman filter. Specifically for systems that involve nonlinear 

behaviors Extended Kalman Filter (EKF) has been widely implemented. However, due to 

nontrivial drawbacks of the EKF that can affect the accuracy or even lead to divergence of 

the system, recently a number of related novel, more  accurate  and  theoretically  better  

motivated  algorithmic  alternatives  to the  EKF have surfaced in the literature, with 

specific application to state estimation for automatic control. The Unscented Kalman Filter 

(UKF) is a linear estimator which yields performance equivalent to the Kalman filter for 

linear systems, yet generalizes elegantly to nonlinear systems without requiring the explicit 

linearization steps required by the EKF. The fundamental component of this filter is the 

unscented transformation which uses a set of appropriately chosen weighted points to 

parameterize the means and covariance of probability distributions.  

The system represents rotation using quaternions rather than Euler angles or axis/angle 

pairs. A quaternion representation of the orientation is computationally effective and avoids 
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problems with singularities. The nonlinearities arising by using the quaternion 

representation are dealt with by the UKF in an efficient manner.  

Beyond improved performance in tracking, the designed system can compensate for brief 

optical marker occlusions by estimating the pose of the object using only inertial 

measurements. The accumulated error due to sensor drift is corrected as soon as optical 

measurements are available. Implementation and testing results of the quaternion-based 

Unscented Kalman filter are presented. Experimental results validate the filter design, and 

show the feasibility of using optical/inertial sensor fusion for robust motion tracking 

satisfying the requirements of neurosurgical computer assisted procedures. 
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Sommario 
Questa tesi presenta un algoritmo di fusione progettato per la stima robusta della posa di un 

target  in movimento libero in neurochirurgia. Il filtro utilizzato per la fusione elabora i dati 

provenienti da un sistema di localizzazione ottica e da un sensore inerziale composto da 

sensori di velocità angolare e accelerometri su i tre assi. Mentre i sistemi di localizzazione 

ottica commerciali e i sensori inerziali soffrono rispettivamente di una bassa frequenza di 

fotogramma e dell'accumulo di errore, fondendo i dati provenienti da entrambi i sensori, il 

sistema di fusione  dei sensori mantiene i vantaggi di entrambi, ovvero l’ accuratezza della 

localizzazione ottica ed l’alta frequenza di campionamento del sensore inerziale, 

compensando i loro svantaggi. 

La fusione dei dati provenienti da sensori eterogenei viene comunemente effettuata tramite 

un algoritmo derivato dal filtro di Kalman. In particolare, il  filtro di Kalman esteso (EKF) 

è stato implementato per i sistemi che presentano comportamenti non lineari. Tuttavia, a 

causa di inconvenienti non banali del EKF che possono influenzare la precisione e anche la 

divergenza del sistema, di recente sono emersi in letteratura algoritmi alternativi all’ EKF, 

più precisi e teoricamente migliori per applicazioni specifiche nella stima per il controllo 

automatico. Il filtro di Kalman Unscented (UKF) è uno stimatore lineare che produce 

prestazioni equivalenti al filtro di Kalman per sistemi lineari, ma generalizza elegantemente 

per sistemi non lineari, senza richiedere la procedura di linearizzazione richieste dal EKF. 

La componente fondamentale di questo filtro è la trasformazione Unscented che utilizza un 

insieme di punti scelti opportunamente ponderati per parametrizzare la media e la 

covarianza di una distribuzione di probabilità. 
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Il sistema rappresenta la rotazione utilizzando quaternioni anziché gli angoli di Eulero o la 

convenzione asse/angolo. Una rappresentazione dell’orientamento in forma di quaternione 

è computazionalmente efficace ed evita problemi di singolarità. Le non linearità derivanti 

utilizzando la rappresentazione quaternione sono trattate dalla UKF in modo efficiente. 

Oltre a migliorare le prestazioni in termini di tracking, il sistema progettato può 

compensare brevi occlusioni dei marcatori ottici, stimando la posa dell'oggetto utilizzando 

solo misure inerziali. L' errore accumulato a causa del drift del sensore viene corretto non 

appena le misure ottiche sono disponibili. Risultati riguardanti l’ implementazione e i test 

eseguiti sul filtro di ―quaternion-baesed Unscented Kalman‖ vengono presentati. I risultati 

sperimentali convalidano la progettazione del filtro, e mostrano la possibilità di utilizzare la 

fusione di sensori ottichi/inerziali per la stima robusta del movimento e soddisfano i 

requisiti delle procedure neurochirurgiche assistite dal computer. 
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Chapter 1:   Introduction 
 

 

1.1 Computer-Assisted Surgery  

At present, several terms are used for interactive interventions using computers: 

computer-assisted surgery, computer-integrated surgery, computer-aided surgery, 

image-guided surgery and navigated surgery that cover a wide range of computer 

applications during surgery such as robotics, 3D rendering, surface simulations, and 

intraoperative localization. The general aim is to define operative techniques which 

make use of advanced computer technology to process data from pre- and 

intraoperative sources, to present the most relevant information and achieve better 

performance during some parts of the surgical procedure.  

―Surgery is a side-effect of therapy.‖ It can be inferred from this statement that surgical 

trauma is mainly the result of reaching the target to be treated, rather than the 

consequence of the treatment itself. This observation has led to the development of 

systems that approach the affected tissue using a minimally invasive method in which 

surgical instruments are inserted into the body cavity via one or more small ports, often 

accompanied by an endoscopic video camera and/or imaging probes such as ultrasound, 

with externally manipulated instruments performing the intervention.  
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It is not only trauma that can be improved by Computer-assisted surgery (CAS). As it 

had been observed about 20 years ago by[1] : ―…the safety and quality of the operation 

will be increased, time consuming procedures can be avoided, and novel procedures in 

surgery become possible.‖  

Image-guided systems (IGS), augmented reality (AR) and navigation in endoscopic soft 

tissue surgery are among the main topics of surgical navigation. IGS involve matching 

the coordinates from medical imaging (preoperative registration) with coordinates from 

the patient in the operating room (registration and updating images). IGS have become 

the standard of care in providing navigational assistance during neurosurgery, offering 

subsurface and functional information to the surgeon. 

1.2 Surgical Robotics 

“The combination of magnification of the operative field and tool miniaturization has 

overwhelmed the spatial resolution of the adult human hand. Robots, in contrast, are 

capable of minute, tremor-filtered movements and are indefatigable.” [2] 

Frame-based technologies forced neurosurgeons to adapt their microsurgical techniques 

to the rigid stereotactic systems, which worked with high accuracy but reduced 

flexibility. Although frame-based stereotactic systems increased their intraoperative 

flexibility, it was computer-based navigation which, working interactively with images 

without visible coordinates and without instruments in the operating field, suited the 

visually oriented neurosurgeons.  

Surgical robotics was the obvious next step, enabling minimally invasive procedures to 

be performed with similar or greater dexterity, as under open surgery. Since then, 

dozens of research projects have been focusing on brain and spine surgery, differently 

addressing the challenges of accuracy and effectiveness. The field includes a wide 

range of procedures: Robot guided biopsy needle insertion for Brain tumor biopsy, 

Robotic placement of electrodes in deep brain stimulation for Parkinson’s disease, 

Robotic 3-D positioning of depth electrodes to determine focus of epileptic seizure for 

Epilepsy, Grid pattern tumor treatment, etc. 

The main motivation for implementing robotic surgery is clearly to improve the safety 

and consistency of procedures, as well as the ability to minimize traumatic and often 

disfiguring incisions to access the target organ. However, robotic surgery offers much 

more than these. Current research projects are not only dealing with conventional 

surgical robots, but also new approaches that use robotics-inspired principles toward 

enhancing the capabilities of conventional surgical approaches; Surgical robotics, 

therefore, has become a very active area that promises to revolutionize the way many 
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surgical procedures are performed today. There is no doubt that robotic surgery is 

transforming the current surgical practice, and not necessarily only those for which 

robotic technology was originally developed.  

1.3 Problem Statement 

Image-guided minimally invasive interventions began with Stereotactic neurosurgery, 

where a target was defined in the brain, and located with respect to a coordinate system 

defined by a frame attached to the patient’s skull with bone screws. While the accuracy 

of navigation is generally an important factor in computer aided surgery, it is of critical 

importance in computer aided neurosurgery, due to more restricted requirements.   

The error of the navigation can be divided into the technical error of the device 

calculating its own position in space, the registration error due to inaccuracies in the 

calculation of the transformation matrix between the navigation and the image space, 

and the application error caused additionally by anatomical shift of the brain structures 

during operation.[3]  

Current systems allow for sub-millimeter intraoperative spatial positioning, however, 

certain limitations still remain. Unintended changes are prone to happen in the OR 

setup, including patient’s movement relative to the robot tool frame. This can happen 

not only due to external sources (forces applied by surgeon, personnel bumping into the 

operating table, inadequate head fixation etc.) but also due to seizure, that is not 

uncommon in deep brain stimulation, tumor or epilepsy surgery, in which the patient is 

kept awake to map functional neural bases via electrophysiological assessment. These 

disturbances are aperiodic, unpredictable and it is not possible to model them.  

Under these circumstances, the positioning inaccuracy in procedures involving robots is 

a significant danger to patients and accurate and robust tracking of the patient’s head 

and surgical tools is a prime requirement. This research tries to study this need and 

provide a practical solution that can be implemented in modern operation rooms. 

1.4 Tracking and Sensor Fusion 

Modern operating rooms often rely on optical tracking systems (OTS) for tracking the 

patient and surgical tool positions. An optical tracking system consists of stationary 

cameras and optical markers attached to the object which is being tracked. Commercial 

optical tracking systems used in computer-assisted surgery generally have state of the 

art accuracy but they suffer from a low bandwidth of 10–60 Hz and the risk of marker 

occlusion which make them unsuitable for servo-control of a handheld tool or 
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continuous head pose tracking. A viable solution would be using a second sensor to 

compensate for the flaws of the OTS. This process of blending data is often referred to 

as data fusion or multi-sensor data fusion (see for example [4]). 

Sensor fusion is an established technique to improve the quality and reliability of sensor 

data. Several sensor systems are used to observe a process, and the information from 

these systems is combined in such a way that it will make use of each individual 

sensor’s strengths and compensate their weaknesses. Beyond improved performance in 

limited working volumes, future systems will almost certainly involve large-scale 

hybrid systems, necessitating the blending of data from heterogeneous sensors or sensor 

units.  

The combination of relatively high bandwidth and no line of sight requirement makes 

inertial measurement units (IMU) a potential candidate. With their small size and low 

cost IMUs can be integrated into the measurement platforms for both handheld tools 

and patient’s head. The inherent drift problem of the IMUs can be compensated by the 

accurate OTS measurements. 

1.5 Pose estimation by Kalman Filter 

Generally the goal in tracking is not finding where the object is at present but knowing 

where it will be in, for example, two time steps ahead. On the other hand sensors are 

prone to introduce noise into the measurements and the ―real‖ value needs to be 

estimated. Within the space of approximate solutions, Kalman Filter (and its extended 

versions) has become one of the most widely used algorithms with applications in state 

estimation. The Kalman filter is a set of mathematical equations that provides an 

efficient computational (recursive) means of using noisy measurements to estimate the 

state of a linear system, while minimizing the expected mean-squared estimation error. 

On the other hand, fusion of the data from multiple observations is often achieved 

through some variant of the Kalman filter. The capability of heterogeneous data fusion, 

combined with the state estimation and predictive applications, makes the Kalman filter 

(and its extended versions) the optimum method for our problem. 

1.6 Research Objectives and Work Overview  

This work aims to provide a practical solution for a robust tracking system in the 

robotic neurosurgery application. As it will be discussed later, similar efforts that have 

been pursued regarding this or similar problems lack either the required accuracy or 

appropriate orientation representation. In our approach the pose estimation is achieved 
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by fusing the data from an optical tracking system and an inertial measurement with a 

modified Kalman filter, the Unscented Kalman Filter (UKF). The proposed system 

increases the low acquisition frequency of the optical tracking system and compensates 

brief marker occlusion, allowing for a robust and accurate pose tracking.  

 

The following paragraph gives the structure of this M.Sc. thesis:  

An extensive literature review is done in Chapter 2, starting from a brief review of 

surgical robotics arriving at researches targeting motion tracking and sensor fusion. 

Chapter 3 addresses the methods implemented in this work. The used hardware, 

software and algorithms are described. The quaternion-based unscented Kalman filter is 

explained and finally the experimentation phase and methods are presented. The results 

of the experiments and simulations are exhibited in Chapter 4 and the final discussions 

and evaluation of the performance are presented in Chapter 5. 
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Chapter 2:  Literature review 
 

Several platforms have been presented in the literature for object tracking. Some of 

which benefit from multi sensor measurements while others simply implement single 

sensors to estimate the object’s pose. This chapter provides a brief literature review, 

starting with a short summary of efforts in Computer-assisted Neurosurgery and 

Neurosurgical Robotics and continuing with a review of related motion tracking and 

sensor fusion researches. 

2.1 Computer-assisted Neurosurgery 

At the beginning of 20
th
 century, the topic of diagnostic localization of lesions could be 

understood only by analyzing the neurologic symptoms of the patient, without the 

possibility of referring to radiologic images. The first imaging technique, introduced in 

1918, was visualization of the ventricles by direct injection of air and later of contrast 

medium into the ventricles. Later, in 1927, angiography was described but direct 

visualization of the cerebral tissue was not possible before CT was introduced in 1973.  

Intraoperative localization technique was based on knowledge of characteristic bony 

landmarks and the neurosurgeon’s skill and 3D knowledge. This anatomic localization 

method was the gold standard not only before CT and MR imaging but also after their 

introduction. Micro-neurosurgeons used this detailed anatomic image information for 
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better intraoperative identification of the anatomic structures and sophisticated planning 

of approaches. 

Parallel to the anatomic localization strategy, there was also the tendency from the 

beginning of neurosurgery to define the anatomic and pathologic structures in advance 

by using mechanical devices to define accurate approaches to targets and to provide 

objective information independent of the individual surgeon’s skills. Frame based 

stereotactic localization techniques were developed based on a rigid coordinate system 

in which the target and a straight trajectory were determined based on the image 

information. However, until recently micro-neurosurgeons were more comfortable with 

intraoperative anatomic identification than with stereotactic coordinates. The reason for 

this is not only that micro-surgeons like to decide each step separately, depending on 

the changing anatomic situation in the course of operation, but also because they trust 

more what they see rather than what computers calculate in abstract coordinates. 

Frame-based and robotic technologies forced neurosurgeons to adapt their 

microsurgical techniques to the rigid stereotactic systems, which worked with high 

accuracy but reduced flexibility. Although frame-based stereotactic systems increased 

their intraoperative flexibility, it was computer-assisted methods which, working 

interactively with images without instruments in the operating field, suited the visually 

oriented neurosurgeons. 

The idea of frameless, interactive, computer-aided surgery consisted in navigation 

systems able to show in real time the position of the tip of an instrument in the 

corresponding images and not requiring a stereotactic frame for calculation. This 

required efficient methods to track the surgical instrument and patient’s parts. Because 

the tracking devices were basically adaptations of robot technology to surgical 

applications in regard to all the mathematical and technical knowledge necessary for 

real-time navigation, it seems justified to start with a very brief historical review of 

surgical robots. 

2.2 Neurosurgical robotics review 

In the middle of the 1980s, all the necessary mathematical and technical 

presuppositions existed for the realization of devices for navigated surgery: Fast 

computers with appropriate data banks to handle image-based information in real time, 

hardware and software for manipulators based on industrial robot technology with a 

high degree of accuracy, a high technical standard of image processing partly due to 

space research programs. Modified industrial robots with higher positioning accuracy 

were used in neurosurgery in the beginning of 1990s by Drake [5], Kwoh [6], 

Benabid [7], Burckhardt [8] and Nakamura [9]. 
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This technology had to be assembled in such a way as to satisfy surgical requirements. 

Passive manipulators, digitizers, and sensory arms which were able to determine their 

own position in space and transfer this information into images were introduced into 

neurosurgery in 1986 by Roberts [10]. He adapted a microscope for navigated surgery, 

equipped with ultrasound-emitting sources and microphones arranged outside the 

operating field. The microphone data were transported to a computer, which calculated 

the position of the microscope in space. The target point chosen on the CT/MR images 

could be projected into the ocular of the microscope and used for orientation during the 

operation. 

The first reported use of a robot in neurosurgery was in 1985 by Kwoh and 

colleagues [6], who employed a Programmable Universal Machine for Assembly 

(PUMA) industrial robot for holding and manipulating biopsy cannulae. Although the 

robot served only as a holder/guide, the potential value of robotic systems in surgery 

was evident. In 1991, Drake and coworkers [5] reported the use of a PUMA robot as a 

retraction device in the surgical management of thalamic astrocytomas. Despite their 

novel application, both systems lacked the proper safety features needed for widespread 

acceptance into neurosurgery. Beginning in 1987, Benabid et al [7] experimented with 

an early precursor to the robot marketed as NeuroMate (Integrated Surgical Systems, 

Sacramento, CA). NeuroMate uses preoperative image data to assist with surgical 

planning and a passive robotic arm to perform the procedure. The NeuroMate system 

has been used in more than 1,000 cases. 

In 1987, Watanabe independently introduced an arm-based navigation system for 

neurosurgical operations [11]. In Switzerland in 1988, Reinhardt [12] was working on 

an armless navigation system which used a pointer equipped with ultrasound sources. 

Magnetic sources were also described later by Kato [13], and infrared light-emitting 

diodes (LEDs) as emitting sources by Zamorano [14]. 

These first neurosurgical robots relied on preoperative images to determine robotic 

positioning. As a result, surgeons could not dynamically monitor needle placement 

under image-guidance and were blind to changes such as brain shift. To satisfy the need 

for a real-time, image-guided system, Minerva was developed (University of Lausanne, 

Lausanne, Switzerland). The system consisted of a robotic arm placed inside a 

Computed Tomography (CT) scanner, thus allowing surgeons to monitor the operation 

in real-time and make appropriate adjustments to the trajectory as needed[8]. 

Despite considerable engineering challenges, the design and construction of magnetic 

resonance (MR)– compatible robotic systems soon followed. MR compatibility ensures 

that the robot produces minimal MR imaging (MRI) artifact and that the operation of 

the robot is not disturbed by the electromagnetic field. Proper material selection is 

critical to avoid adverse effects on image distortion or changes in contrast and signal-to-
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noise ratio. The benefits of MR soft-tissue visualization nevertheless prompted 

investigators from Harvard University (Cambridge, MA)[15], the University of Tokyo 

(Tokyo, Japan) [9], and the University of Calgary (Calgary, Alberta, Canada) [16] to 

develop their own MR-compatible robotic systems. 

2.3 Developed Neurosurgical Robots 

At the moment only one general surgery robot is commercially available: The 

daVinci
TM

 [17] system developed by Intuitive Surgical Inc. It has been evaluated 

mainly in the field of minimally invasive heart surgery and has not been implemented 

for neurosurgery. The Robot-Assisted Microsurgery System (RAMS) was developed by 

NASA to enable new procedures for brain, eye, ear, nose and throat but has not been 

commercialized. Finally, NeuroArm, a research surgical robot is specifically designed 

for neurosurgery. It is the first image-guided, MR-compatible surgical robot that has the 

capability to perform both microsurgery and stereotaxy and will be commercialized 

under the name SYMBIS
TM

 Surgical System. The system is based on master-slave 

control in which commanded hand-controller movements are replicated by the robot 

arms (Figure 2.1). In 2008, NeuroArm operated on a on a human patient at the Faculty 

of Medicine, University of Calgary. This landmark operation was the first time a robot 

was used to perform image-guided neurosurgery, removing a brain tumor from the 21-

year-old patient [18]. 

2.4 Motion Tracking in Computer Assisted Surgery 

As far as motion tracking is considered, two general uses are encountered in computer 

assisted surgery literature. First, is the human body motion tracking and second is the 

  
Figure 2.1 NeuroArm (University of Calgary, Calgary, Alberta, Canada) in position for stereotaxy. Figures 

are from [2] 
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surgery tool tracking. Both applications approach another  typical  problem  in  medical  

scenarios,  where  a robotic  system  needs  to  compensate  physiological  movements 

of  a  target  region  related  to  the  patient. 

Many studies using inertial sensors have been performed. Depending on the type, 

number, and configuration of sensors used, some studies are limited to tracking two 

degrees of orientation in a plane, while others track 3-D orientation. Full  3-DOF  

orientation  tracking  is  most  commonly  performed   using   nine-axis   sensor   

modules   containing   three orthogonally  mounted  triads  of  angular  rate  sensors,  

accelerometers,  and  magnetometers.  Foxlin  et  al. [19] describe two commercial 

nine-axis sensing systems designed for head tracking applications. Sensor fusion is 

performed using a complementary separate-bias Kalman filter. Drift correction is 

described as only being performed during stationary periods when it is assumed 

accelerometers are sensing only gravitational acceleration. Thus, the described 

algorithm requires that all motion stop in order to correct inertial drift errors. 

Kraft [20] describes an ―unscented,‖ quaternion based Kalman filter for real-time 

estimation of rigid-body orientation using measurements of acceleration, angular 

velocity and magnetic field strength. The described filter approximates the Gaussian 

probability distribution using a set of sample points instead of linearizing nonlinear 

process model equations. Simulation results demonstrate the general validity of the 

described filter. Tests of the filter with real measurements are mentioned, but not shown 

or quantified. In [21], a quaternion-based UKF was used to estimate translation and 

rotation of an optically tracked surgical tool in cases of short line-of-sight occlusions. 

The filter showed a maximum error of 2.5 degrees for rotation and 2.36 mm for 

translation in cases of occlusion lasting for ten samples (20 Hz acquisition rate). 

2.5 Multi Sensor Motion Tracking 

Tracking systems that employ only one form of sensing all suffer inherent drawbacks. 

For example, purely inertial trackers suffer from drift, optical trackers require a clear 

line of sight, and magnetic trackers are affected by ferromagnetic and conductive 

materials in the environment [22]. To maintain more consistent performance throughout 

a working environment, across the frequency spectrum, and over a wide range of 

dynamics, researchers have sought to develop hybrid tracking systems. 

A  typical  example  from  the  field  of  outdoor navigation is  the inertial  sensors  and  

GPS  combination,  with  an  Extended Kalman filter used as the sensor fusion 

algorithm. An inertial measurement  unit  can  provide  frequent  measurements  of 

accelerations  and  angular  velocities  of  a  moving  object, while  the  GPS  is  used  
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to  correct,  from  time  to time, the position drift accumulated during integration of the 

inertial measurements [23][24].   

Regarding sensor fusion in body motion tracking, [19] has developed a system that is 

primarily inertial, but aided by angular rate sensors, both [25] and [26] have pursued 

systems that are primarily optical, but aided by inertial sensors (for prediction), virtual 

reality researchers at the University of Tokyo have sought to improve the data rate of 

the Polhemus tracker by augmenting it with rate gyros [27], while researchers at the 

University of North Carolina have sought to improve the accuracy of the Ascension 

magnetic tracker by augmenting it with a passive image-based system that observes 

known fiducial landmarks in the real world [28]. 

Some efforts have been focused on frequency augmentation or marker occlusion in 

optical tracking systems. [21] has used optical/electromagnetic UKF fusion for 

localizing surgical tools. An extensive experimentation has been performed and 9 

sample occlusion of 1, 2 and 3 markers are simulated (Both sensors sampling at 10Hz). 

Authors claim that the fusion drastically improves the estimation during marker 

occlusion, yielding a RMS error of less than 2.1 mm for translation and 3.6deg for 

rotation. 

Let us focus on approaches that have combined visual tracking and IMU data. In [29], 

the system tracks a pen-like tool to which is attached an IMU and its tip is detected by 

four cameras placed on a curved line. The sample rates are 100 Hz for the IMU and 20 

Hz for the cameras. The authors of [29] find that with this setup the position error is 

reduced compared to optical stereo tracking, but the quantity of estimation error is not 

mentioned. [30] presents a setup for medical applications, consisting of a Vicon optical 

tracking system with 6 cameras and an optical marker attached to an IMU which is 

fixed to the object being tracked. With an optical sample rate of 10 Hz and the IMU at 

100 Hz, the system accuracy in estimation at 100Hz is found to be as good as the 

Vicon’s, maintaining a RMS of error less than 1mm. however all calculations involving 

orientation are performed using rotation matrices. We prefer using quaternions for 

orientation representation which have the advantages: 

 Nonsingular representation (compared to Euler angles) 

 More compact (and computationally efficient) than matrices 

The authors of [31] combine an optical tracking system with three markers with a 

sample  rate  of  about  55 Hz  with  an  IMU  being  sampled  at  500 Hz which is 

attached to the optical markers. They find that pose estimation is possible even during 

short marker occlusions, as long as at least one marker is visible to the cameras. In case 

of not having any marker visible the estimation error is reported to be 29.1mm during 3 

seconds of occlusion. In [32], one video camera is used which tracks the position of a 
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fiducial marker pattern which is attached to an IMU being sampled at 400 Hz. The 

camera sample rate is 5–10 Hz. Authors report that this system can track a moving 

object and compensate short-time marker occlusions, however the position estimation 

errors are in the order of centimeters which does not fulfill neurosurgery requirements.  

Most of the mentioned approaches have used extended Kalman filter as the fusion 

algorithm and the estimation errors are mostly greater than the accuracy needed for 

neurosurgery procedures. None of the approaches known to us have implemented 

unscented Kalman filtering for Optical/IMU fusion. We aim to develop a pose 

estimation system that integrates optical and inertial data using the quaternion-based 

UKF. Therefore, our approach combines the benefits of the following key elements:  

 Optical/Inertial sensor fusion  

 Unscented Kalman filter 

 Quaternion representation for orientation 

The developed system must perform robust (able to manage occlusions) motion 

estimation at the higher of the implemented sensors’ frequency, while satisfying the 

requirements for computer-assisted neurosurgical interventions. 
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Chapter 3:  Methods 
 

The concept of multisensor data fusion is hardly new. Humans and 

animals have evolved the capability to use multiple senses to improve their 

ability to survive. For example, it may not be possible to assess the quality 

of an edible substance based solely on the sense of vision or touch, but 

evaluation of edibility may be achieved using a combination of sight, touch, 

smell, and taste. Similarly, while one is unable to see around comers or 

through vegetation, the sense of hearing can provide advanced warning of 

impending dangers. Thus multisensory data fusion is naturally performed 

by animals and humans to achieve more accurate assessment of the 

surrounding environment and identification of threats, thereby improving 

their chances of survival. (D. Hall [33]) 

 

The determination of a rigid body pose from various types of measurements is one of 

the basic problems of many motion control applications. Yet the solutions to this 

problem vary widely in terms of sensors, accuracy, stability and computational 

effectiveness. This chapter describes the hardware and methods that yield a robust pose 

tracking with the desired bandwidth. This approach combines the benefits of two 

different key ingredients, Sensor fusion and quaternion based Unscented Kalman filter. 
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3.1 Sensors 

As the principal means of perceiving a physical event, sensors are the first part of a 

control system that needs to be studied. Several measurement types have been used for 

object tracking that vary in precision and bandwidth. Cameras, Accelerometers, rate 

gyroscopes, magnetic field sensors, infrared and ultrasound sensors are among the 

measurement types used in computer assisted surgery systems. Our approach 

implements optical tracking system and inertial measurement unit. Both of which are 

widely used in motion tracking due to their notable characteristics. These characteristics 

are discussed in the following section. 

3.1.1 Optical tracking System 

Practical optical tracking systems (OTS) can be separated into two basic categories. 

Pattern recognition systems sense an artificial pattern of lights and use this information 

to determine translation and/or orientation. Such systems may be ―outside-in‖ when the 

sensors are fixed and the emitters are mobile or ―inside-out‖ when sensors are mounted 

on mobile objects and the emitters are fixed. Image-based systems determine position 

by using multiple cameras to track mounted points on moving objects within a working 

volume. The tracked points may be marked actively or passively. The used tracking 

system in this project is from the latter type and tracks active markers (infrared light 

emitting diodes). 

Optotrak Certus (OC) (Figure 3.1) is a popular tool used in industries, universities and 

research institutions around the world. OC obtains 3D position utilizing infrared light 

emitting diodes called optical markers that are sensed by the sensor mounted in a stand. 

The markers are available in two sizes: 16mm and 7mm. A position sensor consisting of 

three one-dimensional charge-coupled devices paired with three cylindrical lens cells 

are mounted on a 1.1 m long stabilized bar and calibrated by the manufacturer. The 

sensor captures the positions of the markers sequentially with a total sampling speed of 

4600 Hz, and maximum frame rate of 400 Hz (marker flashes are time-

multiplexed)stati. In addition, OC can track up to 512 markers and the size and weight 

of OC makes it easy to move between locations.  

3.1.2 Inertial Measurement Unit 

The term Inertial Measurement Unit (IMU) is widely used to refer to an electronic 

board containing three accelerometers and three gyroscopes and optionally three 

magnetometers. The accelerometers are placed such that their measuring axes are 

orthogonal to each other and measure inertial acceleration. Three gyroscopes are placed 
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in a similar orthogonal pattern, measuring rotational position in reference to an 

arbitrarily chosen coordinate system.  

Thanks to the MEMS fabrication technology, low cost and small size inertial 

measurement units are commercially available in various accuracy levels and have been 

integrated into numerous systems. However, it should be noted that data from low-cost 

MEMS accelerometers cannot be double-integrated for an extended period of time to 

determine position, due to a quadratic growth of errors. Any errors in measurement, 

however small, are accumulated from point to point. This leads to 'drift', or an ever-

increasing difference between where the system thinks it is located, and the actual 

location. 

The IMU used in this project is Inertial Two (ATAVRSBIN2) from ATMEL (Atmel, 

San Jose, USA). It delivers a nine degree-of-freedom sensor platform combining an 

accelerometer (KXTF9-1026 from Kionix), compass (HMC5883L from Honeywell), 

gyroscope (IMU-3000 from InvenSense). The sensors provide various sampling ranges 

(max: 2000 °/s for Gyro and 8 g for accelerometer) and frequencies (max: 2100 Hz for 

Gyro and 800 Hz for accelerometer). However, the final sampling frequency depends 

on the performance of the microcontroller board and the quality of communications. 

The IMU is mounted on a hardware platform (UC3-A3 Xplained) for evaluating an 

Atmel AT32UC3A3256 32-bit AVR microcontroller. 

3.1.3 Sensor Module Configuration 

For the object tracking experimentation, the configuration is a stationary Optical 

tracking system and a sensor module which is the object being tracked. The IMU and 4 

optical markers are rigidly connected and fixed to the sensor module as it can be seen in 

Figure 3.2. 

In order to produce 3-D pose estimations relative to an Earth-fixed reference frame, the 

filter uses input data from the accelerometers and gyros fixed to the sensor module with 

their own reference frame and the position and orientation data from the OTS.  
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3.1.4 Measurement Coordinate systems 

The measurement system comprises sensor groups for acceleration (accelerometer), 

angular rate (Gyro), 3D position (OTS) and 3D orientation (OTS). Measurements are 

spatial vectors with respect to sensors’ local reference frames. Acceleration and angular 

rate are measured with respect to the reference frame of the IMU board. Both sensors 

(Accelerometer and Gyroscope) have their X, Y, and Z axis aligned, and a symbol is 

provided on the board to indicate their directional alignment. The optical tracking 

system, however, involves two reference frames. One is attached to the sensor module 

and is defined as the dynamic reference frame (DRF) of the rigid body that the 4 

markers describe. Since the markers are rigidly fixed to the sensor module, the dynamic 

reference frame moves and rotates with the sensor module. The second reference frame 

called static reference frame (SRF) is stationary and fixed to the OTS cameras, 

therefore it can be considered as our world reference frame. The optical tracking system 

reports the position and orientation of the DRF with respect to the SRF. Figure 3.2 

shows the involved reference frames. Naturally, in order to fuse multiple measurements 

they must be with respect to the same reference frames. This is achieved here in two 

steps.  

First, by using an optical pointer (a pre-calibrated 4-marker object digitizing probe from 

Northern Digital Inc.) and measuring precise distances of the fixed markers and the 

IMU reference frame, the dynamic reference frame of the markers is redefined in a way 

 

 

Figure 3.1 Left: Inertial two module from ATMEL.   Right: Optotrak Certus Optical tracking system 
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to coincide with the IMU reference frame. Of course, a more sophisticated way to 

achieve this would be to design a calibration algorithm and find a homogeneous 

transformation matrix that transforms the point from one reference point to another. For 

example refer to [34] and [35].  

 

Figure 3.2 Measurement coordinate systems of the implemented sensors 

As the second step, the new DRF of the sensor module needs to be rotated to match the 

direction of the SRF. This conversion is done in each sampling step by using the 

orientation data provided by the optical tracking system (Or as it will be explained later, 

the orientation estimation whenever OTS measurement is not available). At this point, 

all the 4 categories of the measurements are reported with respect to the same reference 

frame, i.e. Static reference frame, and the fusion can be performed.  

 

3.2 Software 

Using multiple sensors means processing data of different type with different time 

scales that are being communicated in different ways. In order to facilitate the data 

process, synchronization and communication it is highly beneficial to develop a single 

platform for sensor management. 
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For this project software packages for data acquisition from the sensors were developed 

in Robot Operating System (ROS) framework. ROS is a software framework for robot 

software development, providing operating system-like functionality on a 

heterogeneous computer cluster. ROS is released under the terms of the BSD (Berkeley 

Software Distribution license), and is open source software. It is free for commercial 

and research use. Available code libraries from the manufacturer made the development 

of the data acquisition package for the optical tracking system straight-forward. For the 

inertial measurement unit, however, a firmware had to be written for the 

microcontroller to make serial data transfer between ROS and the sensor possible. The 

fusion algorithm was developed in MATLAB, for the purpose of this project, and it was 

run off-line by having the recorded data acquisitions fed to it. 

Regarding temporal issues, the time stamps of data registration by the sensor 

acquisition software is used and latencies of measurements are not studied in this work. 

Active synching is not performed and the data from both sensors are arranged off-line 

based on the ROS time stamps in a way to not have a time difference between the OTS 

and IMU samples that is greater than half a time interval (5ms for 200Hz).  

 

 

3.3 Fusion Method 

Combining information from multiple sensor types can be achieved with a data fusion 

algorithm. Kalman filter and its extensions are among the most popular methods of data 

fusion. Next section describes the reasons for this popularity. 

3.3.1 Kalman Filter 

There are four typical reasons why Kalman filters are employed in systems where a 

signal is to be estimated with a sequence of discrete measurements: (1) filtering; (2) 

data fusion; (3) prediction; and (4) calibration. Here a very brief description is 

presented. Further details can be found in Kalman filter texts such as [36][37][38]. 

 

3.3.1.1 Filtering 

―To track‖ means by definition ―to observe or monitor the course of‖ [39]. Observing 

the course of any event requires a sensing system to sense physical changes. In practice, 

all available means of sensing are susceptible to noise, e.g. electrical, mechanical, or 
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optical noise. Thus an ideal system would be able to somehow perfectly separate the 

true signal from the inherently noisy observations so that the target could be tracked 

perfectly.  

There is another practical limitation imposed by using digital computers to perform 

tracking. Because these computers operate in discrete time steps, we are limited to 

discrete observations of the target. Thus some uncertainty is introduced in terms of the 

target dynamics in between our discrete observations.  

Considering these imperfections, we would like some means to best estimate the target 

motion, i.e. we would like an optimal estimator. 

“An optimal estimator is a computational algorithm that processes measurements 

to deduce a minimum error estimate of the state of a system by utilizing: 

knowledge of system and measurement dynamics, assumed statistics of system 

noises and measurement errors, and initial condition information.” [37] 

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the 

discrete-data linear filtering problem [40]. The Kalman filter is a set of mathematical 

equations that provides an efficient computational (recursive) means of using noisy 

measurements to estimate the state of a linear system, while minimizing the expected 

mean-squared estimation error. The filter is very powerful in several aspects: it supports 

estimations of past, present, and even future states, and can do so even when the precise 

nature of the modeled system is unknown; it is inherently discrete and thus well suited 

to implementation on a digital computer; it can be extended to model systems with 

continuous dynamics; and (because it is recursive) it makes use of past information in 

an efficient manner. 

 

3.3.1.2 Data Fusion 

The Kalman filter assumes that the system being estimated has a measurement equation 

of the form given in equation (3.1) where the matrix  (  ) relates the state vector  ⃗ to 

the measurement vector  ⃗, and the vector  ⃗ represents the measurement noise.  

  ⃗(  )   (  )  ⃗(  )   ⃗(  ) 
(3.1) 

If the system being estimated has multiple forms of observation, there would be 

multiple corresponding measurement equations equation (3.1), i.e. multiple instances of 

the matrix  (  )  each representing a different relationship. By using the appropriate 

 (  ) for each type of measurement, the filter effectively combines, blends, or fuses the 

information contained in the heterogeneous measurements. 
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This capability for heterogeneous data fusion, combined with the properties discussed 

in section 3.3.1.1, has made the Kalman filter a very popular means of data fusion. 

 

3.3.1.3 Prediction 

The Kalman filter assumes that the system dynamics can be modeled as in equation 

(3.2) where matrix  (  ) relates the state at time step k to the state at step k+1 (in the 

absence of noise), and  ⃗⃗⃗(  ) represents the driving or process noise. 

  ⃗(    )   (  )  ⃗(  )   ⃗⃗⃗(  ) (3.2) 

In the classical discrete Kalman filter implementation, the time between filter steps k 

and k+1 is constant, and thus there is one instance of  (  ) that is used at each step of 

the filter to predict the state for that step as in equation (3.2). The best state estimate of 

the state at time step k+1 given measurements and corresponding estimates through 

time step k is  (  ) times the previous estimate. 

  ⃗(        )   (  )  ⃗(      ) (3.3) 

For obvious reasons, equation (3.3) reflects what is normally called a one-step 

prediction. To predict more than one step into the future, one can then simply use 

equation (3.3) with an appropriate change to  (  ). For nonlinear relationships an 

extended Kalman filter can be used. For the EKF,  (  ) becomes the Jacobian of the 

nonlinear function, and the (nonlinear) predictions are realized by integration.  

Even if another prediction scheme is used, the Kalman filter can often offer assistance 

by estimating states that one cannot directly measure. A common example is that of 

optimally estimating velocities when one only has measures of position. (Note that the 

alternative of directly computing derivatives from position measurements is inherently 

susceptible to noise). With velocities in hand one can better predict where the target 

will be than if the only information is where the target currently is. 

 

3.3.1.4 Calibration 

Knowledge about source and sensor imperfections can be used to improve the accuracy 

of tracking systems; thus efforts are often undertaken to measure components against a 

known standard in order to improve the accuracy of their estimated characteristics.  

The Kalman filter is generally presented as a way of estimating values of stochastic 

variables (the states) of linear systems whose associated system parameters (e.g. model 

dynamics and noise characteristics) have known values. Interestingly enough, the filter 
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can just as well be turned around and used to estimate values of unknown system 

parameters when the states are known [38]. In fact, it can even be used to estimate both 

system states and parameters. 

Unlike the first three cases of Kalman Filter applications mentioned earlier, Calibration 

is not implemented in this research and can be studied in future works. 

 

3.3.2 EKF vs. UKF 

Nonlinearities like the nonlinear relationship between estimated orientation and 

expected measurement in our tracking problem prevent the usage of a classical Kalman 

filter. It was mentioned earlier that the Extended Kalman Filter (EKF) is probably the 

most widely used estimator for nonlinear systems. The EKF applies the Kalman filter to 

nonlinear systems by simply linearizing all the nonlinear models so that the traditional 

linear Kalman filter equations can be applied. However, in practice, the use of the EKF 

has two well-known drawbacks: 

1. If the assumptions of local linearity are violated, linearization can cause instability in 

filters 

2. In many applications the derivation of the Jacobian matrices is nontrivial and may 

lead to significant implementation difficulties. 

The Unscented Kalman Filter is a linear estimator which yields performance equivalent 

to the Kalman filter for linear systems, yet generalizes elegantly to nonlinear systems 

without the linearization steps required by the EKF. The fundamental component of this 

filter is the unscented transformation which uses a set of appropriately chosen weighted 

points to parameterize the means and covariance of probability distributions.  

It has been argued [41] that the expected performance of the UKF is superior to that of 

the EKF and, is directly comparable to that of the second order Gauss filter.  Further, 

the nature of the transform is such that the process and observation models can be 

treated as ―black boxes‖.  It is not necessary to calculate Jacobians and so the algorithm 

has superior implementation properties to the EKF. The differences in performance in 

some example application are demonstrated in [42] [43]. 
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Figure 3.3 An evaluation of the accuracy of the scaled unscented transformation for mean and covariance 

propagation. From [43] 

An example experiment by [43] performs a comparison between EKF and a modified 

unscented transform called scaled unscented transform (Section 3.4.4). In this 

experiment a two dimensional Gaussian random variable (GRV) is propagated through 

an arbitrary highly nonlinear transformation and then the optimally calculated first and 

second order posterior statistics of the transformed random variable is compared with 

those calculated through normal linearization (EKF), and by the scaled unscented 

transformation (SUT). The optimal statistics were calculated with a Monte Carlo 

approach using 100, 000 samples drawn from the prior distribution and then propagated 

through the full nonlinear mapping. The result of this experiment is shown in 

Figure 3.3. On the top-left the prior GRV (indicated by its mean, covariance-ellipse and 

representative sample distribution) is shown. The posterior sample distribution after 

going through the nonlinear transformation can be seen at the bottom-left. Its true mean 

and covariance are as well indicated. The result of propagating the GRV through a first-

order linearized system is shown in the center plot. It can clearly be seen that the 

posterior mean estimate is biased and the posterior covariance estimate is highly 

inaccurate. The plot on the right shows the results of the estimates calculated by the 
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scaled unscented transformation. There is almost no bias error in the estimate of the 

mean and the estimated covariance is also much closer to the true covariance.  The 

superior performance of the SUT approach is clearly evident. Note that solely 5 sigma-

points (points sampling the probability distribution 3.4.1)) are used compared to the 

thousands needed by the pure Monte Carlo method on the left. 

 

3.4 Unscented Kalman Filter 

The Unscented Kalman filter (UKF) is an extension of the classical Kalman filter to 

nonlinear process and measurement models.  The main difference to the well-known 

Extended Kalman Filter (EKF) is that the UKF approximates the Gaussian probability 

distribution by a set of sample points whereas the EKF linearizes the (nonlinear) model 

equations. This leads to results which are usually both more accurate (because the 

original equations are used) and less costly to compute (because no Jacobi matrices 

need to be calculated). 

3.4.1 Filter Concept 

 The filter is based on Unscented Transformation which is established on the intuition 

that it is easier to approximate a Gaussian distribution than it is to approximate an 

arbitrary nonlinear function or transformation[44]. Figure 3.4 illustrates the main 

concept. A set of points called sigma points are selected so that their mean and 

covariance are  ̅ and    . The nonlinear function is applied to each point in turn to yield 

a cloud of transformed points and  ̅ and     are the statistics of the transformed points. 

Although this method bares a superficial resemblance to Monte Carlo-type methods, 

there is an extremely important and fundamental difference. The samples are not drawn 

at random but rather according to a specific, deterministic algorithm. Since the 

problems of statistical convergence are not an issue, high order information about the 

distribution can be captured using only a very small number of points. 

The transformation processes which occur in an unscented Kalman filter consist of the 

following steps: 

 Predict the new state of the system  ̂      and its associated covariance      . 

This prediction must take account of the effects of process noise. 

 Predict the expected observation  ̂      and the innovation covariance       
  . 

This prediction should include the effects of observation noise. 

 Finally, predict the cross-correlation matrix       
  . 
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These steps can be easily accommodated by slightly restructuring the state vector, 

process and observation models. First, the state vector needs to be described. 

 
Figure 3.4 The principle of the unscented transform.  A set of points (sigma points) are carefully chosen 

(Left) are transformed by the nonlinear function to yield a cloud of transformed points (Right). From [41] 

 

3.4.2 State Vector 

The output of the measurement system is a set of spatial vectors, measured with respect 

to the static reference frame. Given this data, the filter computes an estimate of the 

system state vector  ⃗: 

  ⃗   [   ⃗     ⃗     ⃗          ⃗⃗⃗  ] (3.4) 

Where  ⃗,  ⃗ and  ⃗ represent 3D vectors of position  ⃗(            ), velocity  

 ⃗(            )and acceleration  ⃗(            ) along the static reference frame. 

 (                ) is the orientation quaternion and  ⃗⃗⃗(            ) angular rate. The 

system state vector therefore has 16 components. 

The  body’s  orientation  is  represented  by  a  quaternion   ,  which  is  a  number  with  

four  real  components. Let   =  =  = -  then: 

                                             (3.5) 

Quaternions express rotation as a rotation angle about a rotation axis. This is a more 

natural way to perceive rotation than Euler angles. The representation of rotation using 

quaternions is compact in the sense that it is four dimensional and thereby only contains 

the four degrees of freedom required according to Euler's theorem. In practical 
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applications only unit quaternions are used for rotation. Thus, only one constraint on the 

representation must be upheld during computation compared to the six constraints on 

rotation matrices. 

Unit quaternions are defined as: 

 
‖ ‖   √  

    
    

    
  (3.6) 

 
       ‖ ‖                  (3.7) 

  is the set of quaternions, and    the set of unit quaternions. One degree of freedom of 

the quaternion is lost by applying the constraint on the size.  The remaining three 

degrees of freedom are sufficient to provide a representation for any spatial rotation. 

However, a side effect of the constraint is that the first four components of the state 

vector are no longer independent of each other.  This causes a conflict with the concept 

underlying a Kalman filter and the way noise is treated that will be addressed when we 

define the process and measurement noise. 

Another important advantage of using quaternions is that they offer a singularity-free 

description (as opposed to Euler angles), therefore Gimbal lock does not happen in 

quaternion representation. Gimbal lock is the loss of one degree of freedom in a three-

dimensional space that occurs when the axes of two of the three gimbals are driven into 

a parallel configuration, "locking" the system into rotation in a degenerate two-

dimensional space. Since gimbal lock is innate to the matrix representation of Euler 

angles, this problem does not appear in the quaternion representation.  

3.4.3 Process model     

Process model is used to predict the evolution of the state vector. It also describes the 

influence of the process noise. In the generalization of the classical Kalman filter, the 

process model equation is given by: 

  ⃗(    )   ( ⃗(  )  ⃗⃗⃗(  )) (3.8) 

  is an arbitrary function of  ⃗(  ) and   ⃗⃗⃗(  ).  The process noise  ⃗⃗⃗(  ) does neither 

have to be additive, nor does it has to have the same dimension as the state vector. 

Equation (3.8) is the basis of the process models of the filter described here. Different 

mathematics governs position and orientation state variables, therefore different models 

are defined for each. 



 

28 

 

3.4.3.1 Translation Process Model 

A second order equation of motion is employed as the discrete process model for 

position estimation: 

 
              

 

 
        ⃗⃗⃗  (3.9) 

                ⃗⃗⃗  (3.10) 

          ⃗⃗⃗  (3.11) 

Where vectors  ⃗⃗⃗   ⃗⃗⃗  and  ⃗⃗⃗ represent process noise and    is the length of the time 

interval. 

3.4.3.2 Orientation Process Model 

For orientation, however, the process model is not as simple as that of translation. This 

is due to the non-additive nature of rotations expressed in quaternions. Rotation by    

followed by rotation by    is equivalent to rotation by       Where (.) represents 

quaternion multiplication. For a thorough description of quaternion algebra refer 

to [45][45]. A simple first order model, i.e. constant angular velocity is chosen for 

orientation estimation: 

  ⃗⃗⃗     ⃗⃗⃗  (3.12) 

Experimental results prove this choice to be sufficient for a robust prediction. Given 

 ⃗⃗⃗  of the previous state estimate and the length    of the time interval, the differential 

rotation during this interval is defined with an angle    and an axis  ⃗ : 

       ⃗⃗⃗      
(3.13) 

 
 ⃗  

 ⃗⃗⃗ 

  ⃗⃗⃗  
 

(3.14) 

  ⃗⃗⃗   is the total angular velocity in rad/s. The corresponding quaternion is given by: 

    [   
  

 
    ⃗    

  

 
] (3.15) 

Dividing the quaternion into a scalar part    and a vectorial part(         ), illustrates 

the similarity between a quaternion and the angle/axis notation of the orientation. The 

new orientation      is calculated from the previous step quaternion-multiplied by   : 

           (3.16) 
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The resulting quaternion      is equivalent to the rotation    followed by the 

rotation    .The process model for the undisturbed state vector of orientation is defined 

by Equations (3.12) through (3.16).  

3.4.3.3 Process Noise Covariance 

Even though the state vector has 16 elements, it has only 15 degrees of freedom. 

Therefore we choose to describe the influence of the process noise with a 15-

dimensional noise vector   : 

     ( ⃗⃗⃗    ⃗⃗⃗    ⃗⃗⃗    ⃗⃗⃗    ⃗⃗⃗ ) (3.17) 

Despite the values of    change with every time step, the subscript is omitted in the 

components for matters of readability. The rate at which the uncertainty of the system 

state estimate increases with time is represented by the covariance   of the random 

variable   .  Apart from  ⃗⃗⃗ , the rest of the vector can be assumed to be additive. Based 

on the method described in [46] the components of matrix   can be calculated 

considering the order of the process model with: 

 
        

 
      (   )

(     ) (     ) (     (   ))
 (3.18) 

Where   is the time interval and m is the order of the process model. The value of   is 

found experimentally. 

 ⃗⃗⃗  represents an increase of the uncertainty in the orientation (degrees per time 

interval).  Since  ⃗⃗⃗  is a three dimensional noise vector, it cannot simply be added to the 

four component quaternion. It has to be converted into a unit quaternion. Let the 

random variable  ⃗⃗⃗ follow a normal distribution with covariance   (a 3*3-matrix) and 

mean 0. The vector  ⃗⃗⃗  can be regarded as a rotation vector.  This means that it 

represents a random rotation with the angle and axis equal to: 

       ⃗⃗⃗   
(3.19) 

 
 ⃗  

 ⃗⃗⃗ 

  ⃗⃗⃗  
 (3.20) 

Therefore the quaternion representation    of this rotation is: 

    [   
  

 
    ⃗    

  

 
] (3.21) 

It is possible to add the orientation process noise before the process model. In that case 

the final process model for orientation estimation is: 
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              (3.22) 

 
 ⃗⃗⃗     ⃗⃗⃗   ⃗⃗⃗  

(3.23) 

Note that  ⃗⃗⃗  is assumed to be additive as mentioned before. 

 

3.4.3.4 Measurement Model 

The measurement model relates the measurement value to the value of the state vector    

and describes the influence of a random variable v (measurement noise) on the 

measured value. 

  ⃗(    )   ( ⃗(  )  ⃗⃗⃗(  )) (3.24) 

Since the tracking system produces three different types of measurements, three 

measurement models (              ) are defined. Position and orientation from the 

Optical tracking system are part of the state vector, leading to the simplest model: 

              ⃗         ⃗   ⃗    (3.25) 

Angular rate measurements from the gyros need to be transformed to the static 

reference frame: 

              ⃗        
       

( ⃗⃗⃗   ⃗   ) (3.26) 

Where   
       

( ) describes the conversion of vector x from the static reference frame 

to the dynamic reference frame using the following quaternion preposition [45]: 

 Let           [          ]    Let   (     )      and   [   ]  
   
Then          is   rotated    about the axis    

(3.27) 

In which   is the orientation quaternion measured by the optical tracking system. 

Whenever   from OTS is not available (due to marker occlusion or lower sampling rate 

compared to that of IMU) the orientation quaternion from the estimated state vector is 

used. Doing so of course introduces an error due to the difference between the 

estimated orientation of the sensor module and its real orientation. This difference is 

corrected as soon as data from the OTS is available. 

The acceleration measurement function performs one further step that is removing the 

vector of gravitational field from the measurements. Linear accelerometers measure the 

vector sum of acceleration  ⃗⃗  and gravitational  ⃗⃗ in sensor coordinates. To remove the 
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component of acceleration due to gravity, the attitude of the accelerometer with respect 

to vertical must be known. The vector of the gravitational field is constant in the static 

reference frame, Therefore, by converting the acceleration measurements from DRF to 

SRF, gravity can be subtracted from the measured accelerations. Thus the measurement 

function for acceleration becomes: 

Where again   
       

( ) describes the conversion of vector x from the static reference 

frame to the dynamic reference frame as described in (3.27). 

3.4.4 Sigma Points 

In the beginning of every UKF recursion the previous estimates of the state vector 

 ̂    and its covariance      are known.  A set of points (or sigma points) are chosen 

so that their sample mean and sample covariance are  ̂    and     .   

In the Unscented transform, for an n-dimensional random variable   with mean  ̅ and 

covariance       2n+1 sigma points and their corresponding weights are given by: 

           ̅      (   )⁄  (3.29) 

           ̅  ( )        (   )⁄   

         ̅   ( )         (   )⁄   

Where ( )  is the  th row or column of the matrix S computed as: 

   √(   )    (3.30) 

Where      is an arbitrary weighting factor. The effect of   on the filter performance 

is summarized in [41]. Since     is a covariance matrix, it happens to be symmetric and 

positive definite.  This allows us to use a Cholesky Decomposition to compute  . 

 

The sigma-point selection scheme used in the unscented transform (UT) has the 

property that as the dimension of the state-space (n) increases, the radius of the sphere 

that bounds all the sigma points increases as well.  Even though the mean and 

covariance of the prior distribution are still captured correctly, it does so at the cost of 

possibly sampling non-local effects. If the nonlinearities in question are very severe, 

this can lead to significant difficulties.  In order to address this problem, the sigma 

points can be scaled towards or away from the mean of the prior distribution by a 

proper choice of  . The scaled unscented transformation (SUT) was developed to 

              ⃗        
       

( ⃗   ⃗   ⃗   ) (3.28) 
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address this problem [47]. Again, for an n-dimensional random variable   with mean  ̅ 

and covariance       2n+1 ―scaled sigma points‖ and their corresponding weights are 

given by: 

 

           ̅   
   

 

(   )
 (3.31) 

 
          ̅  ( )  

  
   

 

(   )
 (    

  ) 

 

         ̅   ( )    
    

   
 

 (   )
  

 

Where   is equal to: 

     (   )    (3.32) 

Not much research effort has yet been spent on determining if there is a global optimal 

setting of the SUT scaling parameters (α, β and κ) but some guidelines can be found 

in [43]. 

3.4.4.1 Quaternion Sigma Points  

In our specific case (unit quaternion in state vector) we already know a simple addition 

of the random variable to the state vector is not possible because the dimensions do not 

match.  Instead, the sigma points have to be calculated in the way described for the 

process noise, similar to equation (3.22): 

        (
      

 ⃗⃗⃗     ⃗⃗⃗ 
) (3.33) 

   is the quaternion corresponding to three components of   that are related to 

orientation,  ⃗⃗⃗  denotes the angular velocity vector built from the respective three 

components of  ,       and   ⃗⃗⃗⃗⃗    are from the previous estate estimation. 

As it was mentioned before we have treated the noise according to the number of 

degrees of freedom of the state vector and not according to the number of elements. 

This of course affects the dimensionality of the vectors and covariances involved. 

Vectors of S are 15-dimensional, because they have the same dimension as the process 

noise vector. Their covariance is hence a [15,15] matrix. On the other hand, the sigma 

points are state vectors with a quaternion component and are therefore 16-dimensional. 

The transition between these two sets is performed by (3.33) and is based on the 

conversion of a rotation vector representation to a quaternion representation. 
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3.4.5 A posteriori estimate 

After generating the sigma points, each point is instantiated through the process model 

to project them ahead in time resulting in the set of transformed sigma points   : 

     (     ) (3.34) 

Note that since the influence of the process noise is already included in the sigma points 

no additional noise vector is being considered in the equation above. 

The set    samples the probability distribution of the a priori estimate.  ̂   
  is defined 

as the mean value of this distribution  ̅, and     
  is equal to the covariance   . The 

mean is given by the weighted average of the transformed points: 

 

  ̅  ∑  
     

  

   

 (3.35) 

Where   
  are the defined weights in (3.31). The covariance    is the weighted outer 

product of the transformed points: 

 

    ∑  
  (   

  

   

  ̅)(       ̅)  
(3.36) 

Usually the a priori estimate is computed when a new measurement occurs. A 

measurement update step requires both the a priori estimate and an estimate   
 of the 

measurement. The set    is thus transformed further by the measurement model H, 

resulting in a set    of projected measurement vectors. 

     (     ) (3.37) 

Again since the noise is included before there is no need to consider it here.   
  is equal 

to  ̅ the weighted mean value of   , and the measurement prediction covariance is equal 

to the covariance     : 

 

 ̅  ∑  
   

  

   

 
(3.38) 

 

     ∑  
 (   

  

   

 ̅)(    ̅)  
(3.39) 
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Note that the UKF uses the mean value of the projected distribution to compute the 

measurement estimation  ̂   
 . Instead In a classical Kalman filter, the measurement 

estimation is simply equal to  ( ̂   
 ). Both would be identical if function   is linear. 

Innovation    is defined as the difference between the actual measurement    and its 

predicted value   
 : 

          
  (3.40) 

Its expected covariance     is the sum of the projected state vector covariance (the 

uncertainty in the measurement caused by the uncertainty in the state vector 

prediction)       and the measurement noise covariance   (the additional uncertainty 

induced by the measurement process). 

             (3.41) 

 

The a posteriori estimate  ̂  is finally computed by adding the a priori estimate to the 

innovation multiplied by the Kalman gain   : 

  ̂   ̂ 
       (3.42) 

3.4.6 Computing the Mean 

In the original Kalman filter (and Unscented Kalman Filter), the state vector is an 

element of the vector space. The mean value of a vector is equal to its barycentric mean 

which is simply the sum over all elements of the set divided by the number of elements: 

 
 ̅  

 

 
∑  

 

   

 (3.43) 

The mean value of the state and measurement vector elements can be computed by 

barycentric mean, except for the orientation components.  

Orientations are members of a homogenous Riemannian manifold (the four dimensional 

unit sphere) but not of a vector space. Their mean value cannot be calculated by a 

simple barycentric mean because orientations are periodic.  Using equation (3.43) may 

not yield correct results as it can be seen from an example with two rotations of -170° 

and 180° around an axis. The barycentric mean is 5°, while the expected result is -5°.  

On the other hand, the mean  of  two  unit  quaternions  has  to  be  a  unit  quaternion, 

too. The barycentric mean of the quaternions {(0, 0, 0, 1), (0, 0, 0, 1)} does not 

obviously fulfill this requirement. 
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The intrinsic gradient descent algorithm described in [48] can be implemented to 

compute the mean of quaternion values. The key ingredient is the definition of a new 

metric which describes the distance between two elements.  For orientations, we use θ 

the angle of the rotation which turns one orientation into the other. Given two 

quaternions    and   , the rotation     which fulfills: 

              (3.44) 

Is given by: 

            
     (3.45) 

 

Rotation angle θ can be computed form the scalar part of    , see (3.15). 

            (   
 ) (3.46) 

 

In this method the mean orientation  ̅ is estimated by iteration starting with an arbitrary 

orientation. Iteration steps are denoted by the index t.  In each step, the so called error 

vectors are computed for every set element. An error vector  ⃗  is the rotation vector 

corresponding to the relative rotation between the set element    and the estimated 

mean of the last iteration  ̅ . The quaternion representation    of  ⃗ is: 

         ̅ 
    (3.47) 

So that: 

       ̅  (3.48) 

 

Which means    rotates the mean into the set element   . The barycentric mean  ⃗  of all 

error vectors: 

 
 ⃗  

 

 
∑ ⃗ 

 

   

 (3.49) 

is a measure of the deviation between the estimated mean and the real mean orientation. 

 ⃗ is a rotation vector that points in the direction of the real mean. The corresponding 

quaternion e can hence be used to calculate a better estimate for the next iteration step: 

  ̅      ̅  (3.50) 

Since  ⃗ is used to adjust the estimated mean from iteration to iteration it is called the 

adjustment vector. Its value is zero if  ̅  is equal to the real mean of the set of 
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orientations.  The size of the adjustment vector can consequently be used to stop the 

iteration once a satisfactory precision is achieved.  

The starting value of the iterations is arbitrary, but naturally it determines the number of 

iterations needed to reach the desired precision. It is therefore feasible to use the 

previous state vector estimate  ̂   and use its quaternion as a start value. 

3.4.7 Algorithm Summary 

1. Sigma point generation: 

      [ ̂   
        ̂   

   √           ̂   
   √    ] (3.51) 

(Where   represents the scaling factors.) 

2. Time-Update equation: 

         (     ) (3.52) 
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(3.54) 

 

3. Measurement-update equation: 

         (     ) (3.55) 
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4. And finally  a posteriori estimates: 

  ̂   ̂ 
    (    ̂ 

 ) (3.60) 

 

    
    

        
  

  (3.61) 

3.4.8 Temporal Concerns 

According to Nyquist sampling theorem [38] the measurement or sampling frequency 

should be more than twice the bandwidth of the target’s motion, or an estimator may 

track an alias of the true motion. Nevertheless, the sampling theorem provides a 

sufficient condition, but not a necessary one, for perfect reconstruction a higher 

bandwidth is necessary. Given that common arm and head motion bandwidth 

specifications range from 2 to 20 Hz [19][49], the sampling rate should ideally be 

greater than 40 Hz. Furthermore, the estimation rate should be as high as possible so 

that slight (expected and acceptable) estimation error can be discriminated from the 

unusual error that might be observed during periods of significant target dynamics.  

On the other hand tool tracking may be used for tool servo-controlling. Servo-control 

demands for a fast tracking system which has to be faster than human reaction in order 

to correct small errors the surgeon might make and compensate for unintended target 

displacements during the surgery. A bandwidth of 200 Hz seems to satisfy all the 

requirements needed for a fast object tracking system. 

For initialization the first position (and orientation) measurements from the OTS is used 

and velocities (angular rates) and accelerations are assumed to be zero. The state 

covariance initial value is a diagonal matrix with the OTS measurement noise on the 

diagonal. 

3.5 Experiment Setup  

The performance of the developed fusion algorithm was first simulated by numerically 

generated trajectories. After confirming that the system is capable of robustly tracking 

generated trajectories, it was put to test by acquiring real data from the sensors.  

The experimental setup was the following:  

o An optical tracking system (OTS)  

o A sensor module (the board to which the inertial measurement unit and 4 active 

optical markers were fixed)  
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o A computer running Linux Ubuntu operating system, in charge of data storage, 

implementing the packages that we developed in C++ for Robotic Operating 

System (ROS).  

The data was planned to be acquired at frequency of 200 Hz from both sensors, via 

Ethernet communication from the OTS and via serial communication from the IMU. 

However due to hardware problems the OTS could not go above 100Hz. Since the data 

was used off-line, a spline interpolation was performed on OTS data to reach 200 Hz. 

Doing so, of course, introduces uncertainty into samples of OTS that is used as a 

ground truth for error computation. To prevent this uncertainty from being taken into 

account, only the real values of OTS was used for error computation. 

In motion estimation, some researchers prefer to move the tracked object by mechanical 

systems. This would facilitate maintaining a systematic approach by generating 

repeatable trajectories. However, we decided to move the sensor module by hand in 

space, replicating the exact case scenario of a hand-held tool. This will include the 

higher frequency movements introduced by hand shake into the measurement signals. 

The performed experiments fall into two categories. First is the frequency augmentation 

test in which the OTS data are fed to the filter with a lower bandwidth than that of the 

IMU. The estimation is performed with the higher frequency and the estimation error is 

computed. In the second category marker occlusion is tested and the performance of the 

filter in case of temporary loss of optical tracking data is evaluated. 

3.5.1 Frequency Augmentation 

Existing optical tracking systems used in computer-assisted surgery have a low 

bandwidth of 10–60 Hz. In our experiment we consider the frame frequency of the OTS 

to be 20 Hz. Sampling frequency of the IMU is selected to be the maximum that it can 

provide, which is 200 Hz for both accelerometer and rate gyros. We define frequency 

augmentation ratio (FAR) as the ratio of sampling frequency of IMU to that of OTS. 

Having a FAR of 10 means that for each 10 samples from the IMU, 1 sample is 

acquired from the OTS that ―corrects‖ the drift caused by estimation from the IMU. 

While, the state vector is estimated at each time instance, we will call the estimated 

samples when OTS measurement is available ―Correction‖ and the rest that use only 

IMU measurements ―Estimation‖. Thus, after each correction 9 steps of estimation are 

performed till the next correction (Figure 3.5) 
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As it was mentioned before, the OTS measurements (which is claimed to have an 

accuracy of 0.1mm by the manufacturer) are considered as the ground truth for error 

computation. Thus, OTS measurement is assumed to be the ―real‖ pose. A down-

sampled 20 Hz signal of the acquired OTS data and a 200 Hz IMU measurement are fed 

to the fusion system that performs pose estimation at 200 Hz. The architecture of the 

frequency augmentation test is shown in Figure 3.6 

3.5.1.1 Simulation 

As the first evaluation step the fusion system was tested by simulated trajectories. 6 

random 3d trajectories with average and maximum linear velocities of 150mm/s and 

300mm/s are generated. The position trajectory is numerically double-differentiated 

using central difference approximation to provide acceleration data for the filter. A 

Gaussian noise with max amplitude of 100mm/s
2
 is added to the acceleration to 

 
Figure 3.5 Sensor fusion for frequency augmentation. Each circle represents a sample. For an IMU/OTS 

FAR of 10, 9 samples are estimated per each correction. The estimated state vector has the same frequency 

as the faster sensor. 

 
Figure 3.6 Frequency augmentation test. Capability of the sensor fusion in frequency augmentation is 

tested by comparing the estimated pose from the sensor fusion system with measurements of OTS. 



 

40 

 

simulate the IMU measurement noise. Orientation trajectories were periodic rotations 

around one axis and the gyro measurements were simulated by again numerically 

differentiating the generated orientation. The orientation trajectories are then converted 

to quaternions before feeding it to the sensor fusion algorithm. Assigned frequencies are 

the same as the ones in real data acquisitions (20Hz for OTS and 200Hz for IMU). The 

predicted pose is compared with the generated path to compute the estimation error.  

3.5.1.2 Experiments 

In object tracking systems the estimation error depends highly on dynamics of the 

motion. The higher the acceleration and velocity of the object the greater will be the 

estimation error. [49] reports the maximum velocity of patient’s head movement during 

awake brain surgery to be 60 mm/s. In case of surgical tool tracking the velocity may be 

higher. To cover for both cases, we have performed the experiments in two categories.  

A category of acquisitions having linear velocity with average of 40mm/s and 

maximum of 100mm/s and second category having linear velocity with average of 

100mm/s and maximum of 330mm/s. Orientation experiments are performed in one set 

of 12 acquisitions with an average angular rate of 20°/s and maximum of 50°/s. 

Next the real data acquisition is done by moving the sensor module by hand in square 

shaped trajectories with a side length of approximately 20 cm for 10 seconds. 12 data 

acquisitions were performed for each velocity category, thus in total 24 acquisitions 

were performed for position estimation. 

In frequency augmentation high-frequency inertial measurement is fused with low-

frequency Optical tracking system measurements. As it was described in Section 3.5.1, 

having a frequency augmentation ratio (FAR) of 10 means for each OTS correction 

step, 9 estimation steps are performed using only IMU data. The estimation error is 

measured at each step by comparing the estimated pose with the real pose (OTS 

measurement). For example Figure 3.7 shows the estimation error of a 5-second 

simulated position estimation. 

 
Figure 3.7 Estimation error of all samples during a 5 second position estimation. 
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Calculating the root mean square, percentiles and other statistical representations of the 

total error signal shown in Figure 3.7 provides some information about the performance 

of the filter. However, we would like to improve the representation by one further step. 

Since we expect the error to generally increase step by step (due to the drift 

accumulation) until the correction is performed, a better way to represent the estimation 

error is to consider the error of each step separately. In other words, after calculating the 

estimation error for all steps they are categorized in 10 populations called: 1
st
, 

2
nd

,3
rd

,…,10
th
 step estimation errors, depending on how many estimation steps away 

they are from the last OTS correction. Figure 3.8 describes how the estimation errors of 

for example 8
th
 and 9

th
 estimation steps are clustered. This classification yields 10 

statistical populations that exhibit the behavior of the estimation error in a more 

informative fashion. The errors do not have a Gaussian distribution. To represent the 

statistical dispersion, the root mean square error (RMSE) and a 95% confidence interval 

(CI) are computed from each population and graphically represented as the performance 

of the fusion algorithm. Equation (3.62) shows how the RMSE of n
th
 population for 12 

data sets is calculated: 

 

 

      √
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                   (
 

  
   ) 

(3.62) 

 

Where   represents number of samples in each acquisition. 

 
Figure 3.8 Estimation error populations. For each estimated sample the error is computed. Next, errors are 

categorized in 10 populations depending on their place with respect to OTS corrections. 
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3.5.2 Marker occlusion  

It was mentioned earlier that one of the disadvantages of using optical tracking systems 

in Computer-assisted surgery is the clear line-of-sight requirement. Sensor fusion can 

compensate for temporary loss of marker visibility. However, the longer the occlusion 

time the greater will be the error due to quadratic growth of the drift. In the second 

category of the experiments we aim to evaluate the performance of our fusion algorithm 

in marker occlusion. 

The sensor module was moved by hand in space for 5 seconds and data was acquired 

from both sensors at 200 Hz (feeding a down-sampled 40 Hz OTS signal to the fusion 

algorithm). The trajectories were random with maximum velocity of 30 mm/s.  

To be able to measure the estimation error during the occlusion, the markers were not 

covered during the acquisitions. Instead, the occlusions were simulated by not feeding 

the OTS measurements to the fusion algorithm for finite periods. As shown in 

Figure 3.9, an occlusion window lasting 100 samples was applied N times (N = 9), 

shifting it over the entire acquisition. 6 acquisitions were performed and 9 occlusions 

were simulated per acquisition resulting in a total of 54 occlusions. To evaluate the 

performance of the algorithm as function of the occlusion duration, the errors during 

each occlusion is recorded and the root mean square error (RMSE) of all the 54 

occlusions is calculated as a function of the sample progression from the beginning of 

the occlusion window. Details of the experimental process are summarized in Table 3.1 

and 3.2. 

 

 

 
 

Figure 3.9 Description of moving window of occlusion. For a marker occlusion experiment (1000 

samples) an occlusion period of 100 sample is simulated and the signal is used for sensor fusion. Results 

are recorded and the occlusion window is shifted 100 samples ahead and fed to the fusion system and so on 

till reaching the end of the signal. 

. 
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  Sensor Frequency 

in fusion (Hz) 
Max 

Velocity 

(mm/s) 

Mean 

Velocity 

(mm/s) 

Number of 

Acquisitions 
OTS IMU 

Frequency 

Augmentation 

Simulation 20 200 300 150 6 

Real data 
20 200 100 40 12 

20 200 330 100 12 

Marker 

Occlusion 
Real data 50 200 100 40 6 

Table 3.1 Summary of the performed experiments and simulations for position estimation 

 

  Sensor Frequency 

in fusion (Hz) 

Max 

Angular 

rate 

(°/s) 

Mean 

Angular rate 

(°/s) 

Number of 

Acquisitions 

(or Simulations) OTS IMU 

Frequency 

Augmentation 

Simulation 20 200 70 20 6 

Real data 20 200 70 20 12 

Marker 

Occlusion 
Real data 50 200 50 10 6 

Table 3.2 Summary of the performed experiments and simulations for Orientation estimation 

In the next chapter the results of these experiments are presented. 
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Chapter 4:  Results 
 

In this chapter the results of the performed experiments are presented. As it was 

explained in Chapter 3, the performance of the fusion algorithm was first evaluated by 

simulated trajectories and then several acquisitions in three categories of experiments 

were performed (2 for position and 1 for orientation) and fed to the fusion system. The 

results of each category are presented separately.  

Before analyzing the results, it is necessary to have an overview of the performance that 

is required for our specific application, i.e. robot-assisted neurosurgery. In general, 

Image-guided surgery (IGS) requires 3–5 mm accuracy, whereas 2 mm is 

recommended for IG neurosurgery.  However, in robot-assisted IGS, even higher 

accuracy might be necessary. Therefore we have considered 1mm and 2° to be the 

limits of acceptable estimation error, respectively for position and orientation 

estimation. 

4.1 Frequency Augmentation Results 

In 3.5.1 it was explained that for frequency augmentation test a simulation and some 

experiments were performed. First the result of the simulation is presented and later the 

experimental results are shown. 
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4.1.1 Simulated Trajectories 

Figure 4.1shows the RMSE of estimated simulated translations. Each bar represents the 

root mean square of errors corresponding to each estimation population. For example 

RMS Bar number 2 represents the root mean square of set of the errors of all the 2
nd

 

step estimated samples of the simulated trajectory. 95% confidence intervals are 

calculated to denote the statistical dispersion of each population. The results for the 

simulated orientation trajectories are shown in Figure 4.2. Errors are reported in 

degrees. As it can be clearly observed from the figures, both for position and orientation 

the estimation error stays well below the limits of 1mm and 2°. However, since the 

linear acceleration and angular rate were calculated numerically the results may not 

represent the accuracy of the pose estimation precisely. The results of the 

experimentation on the other hand will provide sufficient proof for capabilities of the 

fusion system.  

 
Figure 4.2 Errors of orientation estimation of the simulated trajectories (axis y) 

 
Figure 4.1 Position estimation error along axis y for simulated trajectories. For each estimated sample the 

error is computed. Next, errors are categorized in 10 populations of ―estimation steps after correction‖. 
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4.1.2 Results of the Frequency Augmentation Experiments 

Real data acquisitions were done by moving the sensor module by hand and recording 

the measurements from the sensors. In 3.5.1 it was explained that the tests were 

performed in two categories based on velocities. Figure 4.3 shows both the estimated 

and real trajectories of the object in an acquisition from velocity category 1. Values are 

all in static coordinate frame. It can be seen from the enlarged part of the drawing that 

the error in the estimated trajectory increases until the OTS correction is performed. 

Clearly the sensor fusion system is quite capable of tracking the sensor module and the 

accuracy of the tracking can be evaluated next. 

 
Figure 4.3  Real position and the estimated position vector from the sensor fusion system.  

 

Following the previously described method of visualizing the estimation error, each 

estimation step is put into the corresponding population and the statistical 

representations of each population are calculated. Note that each population contains 

the corresponding estimation step of all the 12 repeated acquisitions in each category. 

So as an example, 6
th
 population of estimation steps, represents the set of all estimated 

samples in 12 acquisitions that happen 6 step after an OTS correction. Figure 4.4 shows 

the result of the position estimation for acquisitions of velocity category 1 with a 

frequency augmentation ratio (FAR) of 10. As it is expected the error increases as we 
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go further from the correction step. It can be seen that the RMS of the error populations 

reaches 0.2mm. In Figure 4.5 the result of the position estimation for velocity category 

2 is presented. Naturally due to higher dynamics of movement the errors are higher and 

the RMSE reaches 0.9mm. Results of position estimation in frequency augmentation 

test are summarized in Table 4.1. 

 

 
Figure 4.4 Frequency Augmentation results category 1. RMSE of position estimation along axis y for 12 

acquisitions of velocity category 1 in case of FAR=10 

 

 

 
Figure 4.5 Frequency Augmentation results category 2. RMSE of position estimation along axis y for 12 

acquisitions of velocity category 2 in case of FAR:10 

  

Orientation experiments were performed in a group of 12 acquisitions. The result of 

sensor fusion for orientation estimation of the acquired data can be seen in Figure 4.6. 
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The maximum RMS of the error is 0.7° and the 95% confidence interval reaches 2.3°. It 

is observed that the values of errors are higher than those achieved in simulated tests. 

This is due to factors that were not present in simulations like coordinate systems 

calibration, synchronization and latencies. Nevertheless, the experimentation results 

suggest that the fusion system is capable of performing pose estimation at the 

augmented frequency of 200Hz with RMSE below the defined limits of 1mm and 2°. 

 

 
Figure 4.6 Frequency Augmentation results Orientation. RMSE of Orientation estimation around axis y for 

12 acquisitions. FAR:10 

 

Note that reducing the ratio of frequency augmentation will of course result in lower 

estimation errors. As an example Figure 4.7 and Figure 4.10 show the results of pose 

estimation of the high linear velocity acquisitions of category two with a frequency 

augmentation ratio of 5 (200Hz IMU/ 40Hz OTS). The RMSE of the position 

estimation has decreased from 0.9mm in previous case of 10x frequency augmentation 

to 0.5mm here. For orientation as well a decrease from 0.7 to 0.3 in RMSE can be 

observed.  Table 4.1 and Table 4.2 summarize the results of the frequency 

augmentation experiments.  
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Figure 4.7 RMSE of position estimation along axis y for 12 acquisitions of velocity category 2 in case of 

FAR: 5 

 
Figure 4.8 RMSE of orientation estimation along axis y for 12 acquisitions around axis y in case of FAR: 5 

 

 FAR Max RMSE(mm) 95% CI (mm) 

Velocity Category 1 10 0.2 0.7 

Velocity Category 2 10 0.9 2.6 

Velocity Category 2 5 0.5 1.3 
Table 4.1 Frequency augmentation results summary. RMSE and 95% confidence interval of position 

estimation error in experiments. 

 FAR Max RMSE (°) 95% CI (°) 

Angular Rate Category 1 10 0.7 2.3 

Angular Rate Category 1 5 0.3 1.2 
Table 4.2 Frequency augmentation results summary. RMSE and 95% confidence interval of Orientation 

estimation error in experiments. 
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4.2 Marker Occlusion Results 

Figure 4.9 depicts the performance of the sensor fusion system in presence of marker 

occlusions. The sensor fusion sampling frequencies are 200 Hz and 40 Hz respectively 

for IMU and OTS, resulting in an estimation frequency of 200 Hz. In the specific 

acquisition shown, three occlusions with durations of 50, 70 and 120 samples 

(Corresponding to 0.25, 0.35 and 0.6 second) happen.  

 
Figure 4.9 Position Estimation In Marker Occlusion Test. Position of the object is estimated using only 

inertial measurements during 3 occlusions of the optical markers. Vertical bars represent OTS 

measurements fed to the fusion system. Lowest plot shows the estimation error at each step. 

 

Figure 4.9.top. shows both the estimated position (along axis y) and the real path (OTS 

measurement). AS it can be seen the object has been moved about 100mm and returned 

to the first position with an average velocity of 40mm/s. The vertical lines represent 

OTS measurement. Since the sensor fusion algorithm is using OTS with 5 times 

sampling frequency of IMU, for each two estimated sample, one OTS correction 
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happens. Figure 4.9.down, shows how the estimation error changes during the occlusion 

periods. As it is expected the error increases due to the drift and it reaches a maximum 

of 0.7mm for this specific acquisition. 

As it was explained in 3.5.2 a set of 6 acquisitions were performed for testing marker 

occlusion compensation capabilities of the system, using a moving 100-sample window 

of simulated markers occlusion. In Figure 4.10 the results of the all marker occlusion 

intervals are reported. The graph represents the RMSE of all the 54 marker occlusion as 

a function of duration of the occlusion. As it is expected the error increases by 

extending the duration of markers occlusion reaching a maximum of 2.7mm at the end 

of 100 samples. 

  
Figure 4.10 RMSE of position estimation error  along axis y (Left) and orientation estimation error around 

axis y for 54 simulated occlusions 
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Chapter 5:  Discussion  
 

This chapter provides a concise, retrospective synopsis of the work presented in this 

dissertation and emphasizes the notable results.  From these results conclusions are 

drawn and directions for possible future research are proposed.  

In this work a quaternion based unscented Kalman filter was developed to be used as a 

fusion algorithm for Optical and Inertial measurements. Despite that the problems of 

marker occlusion and frequency augmentation for optical tracking systems have been 

previously addressed by researches, the accuracy of those efforts were either 

insufficient [31][32] or not evaluated [29]. The presented fusion algorithm performs 

robust pose tracking at the higher of the sampling frequencies of the sensors with 

accuracy in the required range for neurosurgery applications, while it is robust to brief 

optical marker occlusions. The developed sensor fusion system is based on quaternion 

representation for orientation, an advantage compared to using the common Euler 

angles ([30] for example) that suffer from kinematic singularities. In the next sections 

the achieved results are briefly reviewed and discussed. Last section describes possible 

future works. 

5.1 Frequency Augmentation 

The goal of frequency augmentation in sensor fusion is to compensate for low sampling 

frequency of a sensor by using a second sensor of a different type and estimating at a 

higher frequency, while keeping the measurement accuracy in an acceptable range. 

Here we have fused data from an Optical Tracking system at 20 Hz with spatial 

accuracy of 0.1 mm and an Inertial Measurement Unit sampling at 200 Hz. Results of 
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several real data acquisitions shown in chapter 4 exhibit that the fusion algorithm 

maintains the desired accuracy of 1mm (2° for orientation) at velocities as high as 

300mm/s while the maximum velocities during awake brain surgery is reported to be 

60mm/s [49]. Results also show that, by implementing a higher frequency OTS (40Hz) 

and therefore having a lower frequency augmentation ratio, the accuracy of the 

estimation will increase considerably. 

5.2 Optical Marker Occlusion 

Loosing line of sight is one of the main disadvantages of using optical tracking systems 

in operating room. Our proposed approach benefits from sensor fusion by estimating 

the pose of the tracked object using inertial measurements during marker occlusion. 

Presented results in 4.2 exhibit an acceptable performance from the sensor fusion 

system. The RMSE remains under our defined limits of 1mm and 1° for up to 55 

samples in position and up to 95 samples for orientation (in 200hz sampling). However, 

it must be considered that the movements during the occlusions had a relatively high 

velocity (up to 100mm/s) compared to those expected in neurosurgery applications. In 

case of facing lower velocities of movement the occlusion period can of course be 

extended.  

5.3 Limitations 

In this work calibration of the IMU coordinate system and the dynamic reference frame 

of the OTS has not been performed. Due to hardware problems the OTS signal could 

not be acquired at 200Hz and the ground truth signal was interpolated from 100 Hz 

OTS measurements. The object tracking was performed off-line and on-line 

implementations were not pursued. 

 

5.4 Future Works 

Marker occlusion is addressed in this work as the total loss of visibility of all markers. 

In other words losing visibility of 1 marker will stop the optical tracking data. A more 

extensive approach is considering the information of individual markers. This will 

provide partial information during partial occlusions that can be used to improve the 

accuracy of the sensor fusion system. 
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Regarding the accuracy improvement, performing a detailed calibration algorithm to 

calculate a precise transformation matrix from IMU coordinate system to the OTS 

dynamic reference frame will definitely improve the accuracy of the pose estimation. 

On the matter of implementation, the algorithm in this project was used off-line on 

recorded data from sensors. A definitive next step for this work is on-line 

implementation. The developed software packages in this project are capable to be 

implemented for On-line use. However, a study of sensor latencies and synchronization 

will be necessary first. Real time implementation of the sensor fusion algorithm is 

another valuable future work. 
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