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I discovered the works of Euler and my
perception of the nature of mathematics
underwent a dramatic transformation. I was
de-Bourbakized, stopped believing in sets,
and was expelled from the Cantorian
paradise. I still believe in abstraction, but
now I know that one ends with abstraction,
not starts with it. I learned that one has to
adapt abstractions to reality and not the other
way around. Mathematics stopped being a
science of theories but reappeared to me as a
science of numbers and shapes.

A.Stepanov
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Abstract

VASCULAR network models are used to describe the propagation of pulse waves
in the cardiovascular system. However they depend on several parameters that
are difficult (if not impossible) to measure in vivo with sufficient confidence.

Yet, their knowledge could provide useful information to physicians on the state of the
vessels. It is therefore crucial to develop suitable techniques that allow to estimate these
parameters adequately, starting from available measurements.

In this work, we focus on the estimation of the compliance of arterial walls in vas-
cular networks. We represent the network as the combination of one-dimensional non
linear models (one for each vessel) coupled through suitable interface conditions. The
compliance of the vessel appears in the model as a parameter and, in general, it varies
from one vessel to another and may even vary within a single vessel, for instance, be-
cause of the presence of a stenosis. We estimate this parameter by solving an inverse
problem that fits the outputs of the state problem to measurements (typically section
area or flow rate). The problem is formulated as the constrained minimization of a
suitable cost function that we solve through the iterative resolution of three coupled
problems ( Karush-Kuhn-Tucker conditions ), namely

1. state problem, that describes blood flow in the vessels and that depends on param-
eters;

2. adjoint problem, that gives us the sensitivity of state model to the variation of
parameters and that depends on both state problem solution and parameters;

3. optimality condition, that permits us to update parameters and to understand when
we reach the minimum and that depends on both state and adjoint problem solu-
tions.

As a specific application, we consider the estimation of the compliance of the arteries
of a carotid bifurcation, exploiting real medical data (area section inside the domain and
flow rate at the inflow, respectively obtained by MRI and Eco Color Doppler exams).

Keywords: Parameter Estimation, Blood Flow Models, Networks Models, Carotid
bifurcation.
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Introduction

CARDIOVASCULAR diseases are the first cause of mortality in the world, thus mo-
tivating huge attention and economical investments in the research. Thanks to
the increasing computational power and the progress in imaging and geometry

reconstruction techniques, mathematical models and numerical simulations have be-
come an effective tool to study and understand the physiology of the cardiovascular
system as well as to predict the development of very common and dangerous cardio-
vascular pathologies. These models depend on a large number of parameters that may
considerably differ from person to person and even in the same person in presence of
anomalies.

The aim of this thesis is to develop and implement a mathematical method to es-
timate parameters in one dimensional network models of the circulatory system. In
particular we are interested in estimating the compliance of the vessels. In the follow-
ing, we first briefly recall the main elements of cardiovascular anatomy and the most
common associated pathologies, to define the context of the thesis. Then, we provide an
overview of the most recent achievements in the field of computational hemodynamics.
More precisely, we recall the main models used to account for the different compart-
ments of the cardiovascular system. Finally, we close the introduction presenting a
brief overview of the thesis objectives and outline.

Cardiovascular physiology

The cardiovascular system provides the transport of blood (and its contained gases,
cells, particles, and heat) among the different organs of the body. Due to the high
resistance against flow in the microcirculation, the transport of blood requires a rela-
tively high perfusion pressure. Maintenance of high levels of perfusion pressure with-
out overloading the pumping heart is only possible when the arterial network is elastic
(the windkessel effect).

The human cardiovascular system mainly consists of two parallel networks, the sys-
temic and the pulmonary circulations. In the systemic circulation the oxygenated blood
flows from the left atrium into the left ventricle through the mitral valve, which pre-

1
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Cardiovascular physiology

vents backflow. The contraction of the ventricle forces the blood into the aortic arch
and the aorta. The coronary arteries stem from the aortic root and nourish the heart
muscle itself. Three major arteries originate from the aortic arch (brachiocephalic, left
common carotid and left subclavian arteries), supplying blood to the head and the up-
per limbs. The other major arteries originating from the aorta are (i) the renal arteries,
which supply kidneys, (ii) the celiac and the superior and inferior mesenteric arteries,
which supply intestines, spleen, and liver, and (iii) the iliac arteries, which branch out
to the lower trunk and become the femoral and popliteal arteries of the thighs and legs,
respectively. At the far end of the arterial circulation the blood flows through the cap-
illary bed where it delivers nutrients and oxygen to organs and muscles and removes
carbon dioxide. Then, the capillaries converge to form venules, which in turn form
veins. The inferior vena cava returns blood to the heart from the legs and trunk; it is
supplied by the iliac veins from the legs, the hepatic veins from the liver, and the renal
veins from the kidneys. The subclavian veins, draining the arms, and the jugular veins,
draining the head, join to form the superior vena cava. The two venae cavae, together
with the coronary veins, return deoxygenated blood to the right atrium of the heart.
There, the pulmonary circulation starts: the blood flows from the right atrium into the
right ventricle through the tricuspid valve. The right ventricle contracts to force blood
into the lungs through the pulmonary arteries. In the lungs oxygen is picked up and
carbon dioxide eliminated, and the oxygenated blood returns to the left atrium of the
heart via the pulmonary veins, thus completing the circuit. Indeed, in pulmonary circu-
lation the arteries carry deoxygenated blood, and the veins bear oxygenated blood. Few
schematic pictures describing the main elements of the circulatory system are shown in
Figure 1.

The arterial system The structure and the mechanical properties of the arterial wall
are rather complex. Large arteries range approximately from 2.5 cm to 0.1 cm
of diameter and are made of three layers: the tunica intima (the inner coat), the
tunica media (the middle coat), and the tunica adventitia (the outer coat). The tu-
nica intima contains the endothelial cells, which sense and react to the normal and
shear stress coming from the fluid. The tunica media is the thickest layer and is
composed mainly of elastin and collagen fibers. The tunica adventitia is basically
an outer covering and does not contribute significantly to the compliance of the
vessel. Therefore, the mechanical properties of the wall are mainly determined
by the tunica media, which has a nearly elastic behavior in physiological condi-
tions. Regarding the small arteries, their wall is almost rigid and contains smooth
muscle cells, which allow to change the intraluminal pressure and radius, in order
to satisfy the needs of the surrounding tissues and to regulate the global arterial
pressure. In the arterial tree, the pressure is kept at a relatively high value be-
cause the distal end of the arterial system bifurcates into many vessels with small
diameters (arterioles) and hereby forms a large peripheral resistance. Pressure
pulsations are reduced by the elasticity of the vessels (the windkessel effect). This
elastic function of the arteries also helps perfusion during diastole and produces
the wave-propagation phenomenon. Smooth muscle cells in the arterial wall can
change their contractile state, thereby changing the diameter and hemodynamical
resistance. In this way blood flow is distributed to the different vascular beds in
accordance with the local instantaneous metabolic needs.

2
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Figure 1: Scheme of human circulatory system. Source: wikipedia.org

The capillary system The capillary system is a network of small vessels with walls
consisting of a single layer of endothelial cells lying on a basement membrane,
The diameter of the capillaries is small enough that the whole blood may not be
considered as a homogeneous fluid anymore. Blood cells move in a single-file
train and deform strongly. The plasma, together with the glycocalyx layer cover-
ing the endothelial cells, acts as a lubrication layer. In the microcirculation, vis-
cous forces dominate over inertia forces. Consequently, in its most simple form,
the microcirculation, including the arterioles, can be approximated as a collec-
tion of parallel tubes or a porous medium with a linear relation between perfusion
pressure and flow. In general, the peripheral resistance is not a constant and is
principally controlled by the smooth muscle tone of the arterioles.

The venous system The blood is then collected in the venous system (venules and
veins) in which the vessels rapidly merge into larger vessels directing the blood
back to the heart. As the diameters in the venous system are of the same or-
der of magnitude as in the arterial system, inertia forces may become influential
again. However, both characteristic velocities and pressure amplitudes are lower
than in the arterial system. As a consequence, in the venous system, unsteady
inertia forces are of less importance than in the arterial system. Also the pres-
sure within the veins is significantly lower than the arterial pressure. In certain
situations the pressure can be low enough that the normal functioning vein will
have an elliptic cross-sectional area or even collapse. Because of low pressures,
gravitational forces become important, especially in the upright position. To cope
with gravitational effects, veins have valves to prevent retrograde flow and ensure

3
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unidirectional flow toward the heart.

The blood Blood is composed mainly of erythrocytes, or red blood cells, whose num-
ber ranges from 4.5 millions to 6 millions per cubic millimeter. They are responsi-
ble for the exchange of oxygen and carbon dioxide between the lungs and the body
tissues. The leukocytes, or white blood cells, range approximately from 5000 to
10000 per cubic millimeter and defend the body against infecting organisms and
foreign agents, both in the tissues and in the bloodstream itself. The blood also
contains thrombocytes, or platelets, and several other factors active in blood clot-
ting. Serum, a straw-colored liquid essentially composed of plasma (made 98%
of water) without fibrinogen, makes up the liquid component of blood that sepa-
rates from the clot. The behavior of blood is found to be non-Newtonian and its
viscosity depends on the shear. The reason is that when the shear is low the red
blood cells tend to interact, thus increasing the macroscopic viscosity of blood.
For high shear there is no interaction and the viscosity of blood in large arteries is
approximately constant (approximately between 0.03 g/cm/s and 0.04 g/cm/s).

For more details about the cardiovascular system and its components see [Boron
and Boulpaep, 2008, Guyton and Hall, 2010, Netter and Colacino, 1989, Nichols et al.,
2011] and references therein.

Cardiovascular pathology

Cardiovascular pathologies are a class of diseases that involve heart, arteries, or veins.
In the following we briefly describe some of the main cardiovascular problems together
with a possible treatment.

Heart failure. Heart failure refers to a cardiac dysfunction in which the heart may not
pump blood at a sufficient rate in the arterial system. In systolic dysfunction,
the myocardial contraction is diminished, and as a result, blood accumulates in
the lungs or veins. Coronary artery disease, leading to a reduction of the flow of
oxygen-rich blood to the heart muscle, is a common cause of systolic dysfunction.
Also heart-valve disorders such as stenosis or leakage can cause systolic dysfunc-
tion as, over time, due to inadequate emptying of the ventricles, the heart enlarges
and cannot pump adequately anymore. In diastolic dysfunction, the heart muscle
has become stiffer and does not relax normally after contracting, which makes
filling with blood less effective. High blood pressure is the most common cause
of diastolic dysfunction. This is because the heart must eject blood against a too
high pressure in the arterial system, causing the heart walls to thicken (hypertro-
phy) and stiffen.

Vascular disorders. Vascular disorders are primarily related to arteriosclerosis. Ar-
teriosclerosis means hardening (sclerosis) of the arteries (arterio-) and usually
affects all humans as part of the aging process. Atherosclerosis, in which fatty
deposits (plaques) develop in the walls of medium-sized and large arteries, is the
most common type of arteriosclerosis causing symptoms. Various factors, includ-
ing high blood pressure, diabetes, and high levels of cholesterol in the blood,
may contribute to its development. Hemodynamical factors such as disturbed

4
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blood flow, low wall shear rate, and wall shear stress favor the development of
atherosclerosis. This is why regions of disturbed blood flow, such as bifurca-
tions and curved vessels, appear to be more prone to atherosclerosis. Plaques can
grow and gradually cause the artery to narrow, compromising blood flow. Plaques
can also rupture, exposing the lipid material within to the bloodstream. This can
trigger the formation of a blood clot, which can suddenly block all blood flow
or detach and travel downstream, creating an embolism. Heart attacks due to
coronary artery disease and stroke (resulting from atherosclerosis that affects the
arteries to the brain) are responsible for more deaths than all other causes com-
bined. The main clinical procedures to treat stenotic arteries are the creation of
arterial bypass, the insertion of a stent, a device which supports the vessel wall
preserving the original lumen area, or the removal of the plaque and the insertion
of a patch. Atherosclerotic processes are also seen as the most common cause of
aneurysms. Atherosclerosis locally weakens the vascular wall. The transmural
arterial pressure forces the weak area to remodel and bulge outward. An aortic
aneurysm may rupture, resulting in an often fatal internal bleeding. High blood
pressure, which is common among older people, increases the risk of aneurysm
development. Aneurysms may also occur in the arteries of the brain (cerebral ar-
teries). Rupture of a cerebral aneurysm may cause bleeding into the brain tissue,
resulting in a hemorrhagic stroke. An aneurysm can be either fusiform or saccular.
The former case is generally treated by grafting or by using stents. In contrast, a
saccular aneurysm is either clipped or filled with thin metallic coils.

Numerical simulation of cardiovascular system: state of the art

Blood flow dynamics is governed by the classical laws of mass, momentum, and en-
ergy conservation. The constitutive equations of the vessel wall provide an additional
constraint that strongly influences the dynamics of the blood; indeed, the deformation
of the vessel has to be taken into account to correctly predict the pulse wave propaga-
tion along the systemic network of arteries. In addition, the macroscopic modeling of
the blood flow as a Newtonian fluid and of the arterial wall as an elastic structure is
justified only for large arteries, while the circulation in arterioles and capillaries should
be simulated using more complex models accounting for the effects mentioned in the
previous sections. Furthermore the mechanical propulsion is provided by the muscle of
the heart, governed by its own constitutive equations including active components.

The selection of the appropriate model and geometrical dimension representation
depends on the aims and on the required accuracy of the research study. Being the time
constraint important in a medical environment, a compromise between model complex-
ity and computational cost is mandatory. For this reason usually only few specific com-
ponents of the problem are represented by complex three-dimensional models, while
the remaining parts are in general accounted for through reduced models. Indeed, the
dimensional-heterogeneity of the constituent components becomes unavoidable to cor-
rectly model the global and local circulation. Now we recall the main classes of models
that are used in numerical simulations of cardiovascular system (see also [Formaggia
et al., 2009]):

Three-dimensional (3-D) fluid-structure interaction (FSI) models provide a detailed

5
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pointwise description of the flow dynamics in complex geometrical situations,
such as those occurring at bifurcations, aneurysms, and stenoses among others.
Moreover, thanks to the advancements in 3-D imaging techniques, they can now
be employed to simulate patient-specific geometries starting from medical imag-
ing data (see, e.g, [Canic et al., 2005], [Gerbeau et al., 2005], [Torii et al., 2008],
[Taylor and Figueroa, 2009], [Vignon-Clementel et al., 2010] and [Faggiano et al.,
2012]). Several techniques can be used to model the interaction between the blood
and the vessel wall. Here we mention the arbitrary Lagrangian–Eulerian (ALE)
formulation (see, e.g., [Nobile, 2001], [Deparis et al., 2006], [Küttler and Gee,
2010], [Crosetto, 2011], [Pozzoli, 2012] and references therein) and the Eulerian
space-time formulation (see [Tezduyar et al., 2006,Tezduyar and Sathe, 2007]) to
handle the domain movement and partitioned or monolithic algorithms to manage
the fluid-structure interaction from a numerical point of view.

One-dimensional (1-D) FSI models are generally used to simulate the pulse wave
propagation along large networks of arteries (see [Wemple and Mockros, 1972],
[Avolio, 1980], [Stergiopulos et al., 1992], [Karamanoglu et al., 1994], [Olufsen
et al., 2000], [Sherwin et al., 2003], [Vignon and Taylor, 2004], [Wang and Parker,
2004], [Formaggia et al., 2003], [Formaggia et al., 2006], [Alastruey et al., 2007],
[Huo and Kassab, 2007], [Mynard and Nithiarasu, 2008], [Reymond et al., 2009],
and references therein). Originally introduced in [Euler, 1844], they provide a
cheap and accurate description of the main physiological quantities of interest
(flow rate, pressure, and average wall deformation) along the global systemic net-
work of arteries, thus accounting for the global interplay among the physical phe-
nomena taking place in the different compartments.

Zero-dimensional (0-D) (also called lumped parameters models) provide averaged spa-
tial information about the fundamental variables (pressure, flow rate, and volume)
of the compartment of interest (organ, vessel, or part of vessel) at any instant
in time, differentiating themselves from higher dimensional models that are also
able to capture the spatial variation of these parameters. They are particularly ap-
preciated in the description of complex multi-compartmental systems as they are
easy to develop and prototype, fast to solve, and may be refined by adding equa-
tions for second-order effects and nonlinearities. Usually, lumped parameter mod-
els consist of sets of differential algebraic equations describing the conservation
of mass and momentum which are complemented by a pressure-volume relation
(see, e.g., [Stergiopulos et al., 1999], [Segers et al., 2003], [Milišić and Quarteroni,
2004], [Ottesen et al., 2004], and references therein). System models assembled
from 0-D components generally feature the major components of the cardiovas-
cular network (see, e.g., [Ursino, 1998], [Liang and Liu, 2005], and [Lanzarone
et al., 2007]). For a recent review on lumped parameters models for cardiovascular
problems see [Shi et al., 2011] and references therein.

The use of these dimensionally-heterogeneous models together with their correct
mathematical coupling is called geometrical multiscale and has been firstly studied
in [Formaggia et al., 1999]. Its efficient solution is a challenging task which has been
addressed by several research groups with the final goal of accounting for the whole
circulation and autoregulation of the systemic network of arteries (see [Migliavacca
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et al., 2006], [Vignon-Clementel et al., 2006], [Blanco et al., 2007], [Grinberg and Kar-
niadakis, 2008], [Kim et al., 2009], [Reichold et al., 2009], [Malossi, 2012], [Esmaily
Moghadam et al., 2013] and references therein).

Thesis objectives and outline

The aim of this thesis is the development of a technique to estimate the elastic properties
of a network of vessels. More precisely, we approximate the vessels network with 1D-
FSI models and we make use of optimal control techniques to compute the compliance
parameters that best fits the observations. To obtain the parameters, we solve the first
order conditions (state equation, adjoint equation and optimality condition) iteratively
and we update the parameters at each iteration, until a suitable tolerance is reached.
The method is tested and finally applied to the estimation of the elastic properties of a
carotid bifurcation that had been operated because affected by atherosclerotic plaque.

The main original contributions of this work include

• the development of continuous first order conditions for the network model, with
particular attention to the adjoint coupling conditions and the adjoint compatibility
conditions at each junction of the network;

• the implementation of the solvers of first order conditions and of some optimiza-
tion techniques in the C++ finite element library LifeV;

• the verification and the tests of the developed optimal control technique with dif-
ferent optimization methods;

• the treatment of the real medical data and the application to real patient case.

This work is structured in four chapters in which we proceed from the preliminary
knowledges necessary for the development of our method to the application to the real
patient case. More precisely, the thesis is structured as follows.

In Chapter 1, we describe the preliminary background necessary to the development
of our method. Firstly, we introduce and briefly describe the field of data assim-
ilation, with specific attention to cardiovascular application. Then, we treat the
variational approach of data assimilation and we deepen in optimal control the-
ory, the Lagrangian approach and we focus on the particular case of hyperbolic
problems. Finally, we present the finite dimension optimization techniques that
we will use and their application to optimal control problems.

In Chapter 2, we describe the 1D-FSI model, starting from the derivation of the
model, moving to the discretization that we choose and the boundary conditions
that we impose and closing with the case of networks of vessels.

In Chapter 3, we describe the application of optimal control Lagrangian approach to
the 1D-FSI model. Firstly, we analyze the first order conditions for single ves-
sel 1D-FSI model: adjoint problem, its discretization, the treatment of boundary
and compatibility conditions and the optimality condition. Then, we analyze the
case of the network of vessels with particular attention to the adjoint coupling
conditions. Finally, we focus on the implementation aspects.

7
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In Chapter 4, we describe the application of our technique. Firstly, we present some
tests to validate the model and our implementation. Then we show the application
to a real case, employing medical data that come from the carotid bifurcation.

We close this thesis with a summary of the main conclusions drawn throughout the text
and the full list of bibliographic references.
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CHAPTER1
Data assimilation and optimal control for partial

differential equations

IN this chapter we present the background knowledge that is necessary in this thesis.
The chapter is organized as follows. In Section 1.1 we give a quick review on
data assimilation techniques. In Section 1.2 we present basic concepts of optimal

control theory for PDEs with particular attention to hyperbolic problems. In section 1.4
we describe some numerical methods used in optimization and their application to the
solution of optimal control theory.

1.1 Data assimilation methods

Mathematical modeling is nowadays a major tool for the study of many physical evo-
lutionary processes.

In many real-life situations, the following problems have to be faced:

(i) determine values of (part of) the input parameters, such as initial conditions,
boundary conditions or model parameters, that best match given observation (
values of output quantities).

(ii) determine which input parameters the output quantities are most sensitive to. In
some situations, one will be interested in the sensitivities of outputs with respect
to a large number of input parameters.

Data assimilation is the ensemble of techniques combining in an optimal way (in
a sense to be defined) the mathematical information provided by the equations and
the physical information given by the observation (generally sparse and noisy) into a

9
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numerical model based on the approximation of physical and constitutive laws. In other
words, the goal of data assimilation is to link together the heterogeneous (in nature,
quality, and density) sources of information in order to retrieve a coherent state of the
environment at a given date.

In the last decades, the study of geophysical fluids gave a huge impulse to the devel-
opment of data assimilation [Blum et al., 2008, Evensen, 2009, Navon, 2009, Robinson
and Lermusiaux, 2000, Wang et al., 2000], because of the maturity reached by mathe-
matical models of the atmosphere, the growth of the available computing resources and
the improvement in the collection of the observations. Originally, the problem of data
assimilation was to determine the initial condition of a dynamical system from noisy
observations taken during the time evolution. Using the same mathematical tools, data
assimilation can also include the estimation of model parameters, boundary conditions
or the state itself. The development of data assimilation methodology has mainly expe-
rienced three stages: objective analysis, statistical interpolation, stochastic methods and
variational analysis. Simple analysis methods were mostly used in the 50’s, when com-
puters were unavailable; these techniques were the earliest bases of data assimilation.
In the 60’s and 70’s, statistical considerations were introduced into the atmospheric data
assimilation. Based on these considerations, some forms of optimal interpolation were
used to assimilate observations into forecast models. In the same decades the Kalman
filter (KF) was introduced and efficiently improved into many extensions. In the 80’s
and 90’s, atmospheric data assimilation switched to variational methods ( [Courtier
et al., 1993]).

We can identify two main families in data assimilation methods:

Stochastic methods: The basic idea is to consider the state variables and initial con-
ditions as the realization of a stochastic process and carry out Kalman filtering
methods.

Variational methods: Data assimilation is set as being a problem of constrained opti-
mization, then the tools of optimal control are used to solve it.

1.1.1 The stochastic approach
Stochastic methods are mainly based on the application of Kalman filter. The Kalman
filter (KF) was developed by Kalman ( [Kalman, 1960, Kalman and Bucy, 1961] ) as
a new approach to linear filtering and prediction problems. It is a recursive filter for
the estimation of the state of a dynamic system from incomplete and noisy measure-
ments ( [du Plessis, 1967, Humpherys et al., 2012]). Because of its limitations in terms
of models (designed for linear systems) and memory requirements for the storage of
the structures involved (mainly the covariance matrix of the state variable at each time
step), several modifications and improvements have been developed, such as the Ex-
tended KF (EKF), the Ensemble KF (EnKF) and the Unscented KF (UKF). We report
briefly the formulation of the basic KF and we give some details of its extensions.

Consider a linear model representing the observation process:

yk = Hkuk + εk (1.1)

where k is a multiple of the number of time steps between consecutive observations, uk
is the vector of state variables, yk is the vector of the measures,Hk is the linear operator
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1.1. Data assimilation methods

which maps the state space into the observed space and εk is an additive Gaussian noise
representing the error; this is assumed to be white with zero mean and covariance matrix
Rk. For each time step we consider a discretized stochastic dynamic system

uk = Mk−1uk−1 +Bkvk + ηk−1 (1.2)

where Mk describes the model dynamics, vk is a set of parameters, Bk describes the
dependence of the model on parameters, ηk is the random error associated with model
parameters and we assume that ηk is an additive Gaussian noise with mean zero and
with covariance matrix Qk.

Kalman filter consists in averaging a prediction of the state with measures making a
weighted mean, whose weights depend on the covariances of the dynamic system and of
the observation process. The result is a new state that lies in between the predicted and
measured state and has a better estimated uncertainty than either alone. This process is
recursively repeated every time step and in each iteration it’s possible to identify two
distinct phases:

• Prediction step (or time update or forecast step) consists in making the dynamic
system evolve without taking into account the observations and computing the
forecast state ufk .

• Correction step (or measurement update or analysis step) consists in updating
the state computed in the previous step, by assimilating the observations into the
model and computing the assimilated state uak.

Algorithm 1.1.1 (Kalman Filter time step). Each time step of the Kalman filter can be
represented with these stages:

(i) advance in time:

{
ufk = Mk−1u

a
k−1 +Bkvk

P f
k = MkP

a
k−1M

T
k +Qk

(ii) compute the Kalman gain: Kk = P f
kH

T
k (HkP

f
kK

T
k−1 +Rk)

−1;

(iii) state update: uak = ufk +Kk(yk −Hku
f
k);

(iv) error covariance matrix update: P a
k = (I −KkHk)P

f
k ;

where P f
k and P a

k are the computed covariance matrix of ufk and uak.
The previous formulation can be extended to estimate also the vector of parameters

vk by applying the KF procedure to the system composed by the equation (1.2) coupled
with the equation

vk = vk−1 + ηvk−1. (1.3)

In (1.3) we assume that ηvk is the random error associated with the model parameters and
we assume that ηvk is an additive Gaussian noise with mean zero and with covariance
matrix Qv

k . This procedure is equivalent to consider as state vector ûk = (uk,vk)
T

instead of uk and considering the modified algorithm

Algorithm 1.1.2 (Kalman Filter time step for parameter estimation). Each time step of
Kalman filter can be represented with these stages:

11



i
i

“thesis” — 2013/10/7 — 22:03 — page 12 — #20 i
i

i
i

i
i

1.1. Data assimilation methods

(i) advance in time:

{
ûfk = M̂k−1û

a
k−1,

P̂ f
k = M̂kP̂

a
k−1M̂

T
k + Q̂k

(ii) compute the Kalman gain: Kk = P̂ f
k Ĥ

T
k (ĤkP̂

f
kK

T
k−1 + R̂k)

−1;

(iii) state update: ûak = ûfk +Kk(ŷk − Ĥkû
f
k);

(iv) error covariance matrix update: P̂ a
k = (I −KkĤk)P̂

f
k ;

where

M̂k =

(
Mk Bk

0 I

)
, Q̂k =

(
Qk 0

0 Qv
k

)
,

ŷk =

(
yk

0

)
Ĥk =

(
Hk 0

0 0

)
, R̂k =

(
Rk

0

)
The classical formulation of KF works very well for low-dimensional, linear dy-

namical systems, but, often in real applications, none of this assumptions is valid. The
main extensions of KF try to overcome this limitations [Simon, 2006].

Extended Kalman Filter The extended Kalman filter (EKF) has been developed to
treat a nonlinear dynamical system where equations (1.1) and (1.2) are replaced by

yk = h(uk, εk) uk = f(uk−1,vk, ηk), (1.4)

where h and f are nonlinear functions. EKF consists in applying KF to a linearized
version of (1.4) around the previous state. EKF has still some drawbacks:

• if the initial estimate of the state is wrong, or if the process is modeled incorrectly,
the filter may be unstable or even diverge;

• the estimated covariance matrix tends to underestimate the true covariance matrix;

• it has high memory requirements, the matrices computed in Algorithms 1.1.1 and
1.1.2 are full and have dimension equal to the dimension of the state variable.
To overcome this issue, low rank approximation techniques have been developed
[Farrell and Ioannou, 2001, Tuan Pham et al., 1998].

Unscented Kalman Filter The unscented Kalman filter (UKF) [Julier et al., 2000,
Julier and Uhlmann, 2004, Ambadan and Tang, 2009] represents a derivative-free al-
ternative to the EKF and provides better performance at an equivalent computational
complexity. In fact, in the UKF the state distribution is still Gaussian but it is specified
using a minimal set of “carefully chosen” sample points or snapshots which completely
capture the state mean and covariance. Furthermore, these points, when propagated
through the nonlinear system, capture the mean and covariance at the subsequent step
to the second order. Such sample points are chosen via unscented transform [van der
Merwe and Wan, 2001,van der Merwe, 2004] of the state at the current time step. Also
this method has high memory requirements if the state has high dimension. Another
issue is the number of sample point: in fact 2N sample points are necessary, where
N is the dimension of the state variable. Therefore, reduced rank approximations and
dimensional reduction strategies have been developed [Chandrasekar et al., 2008].
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Ensemble Kalman Filter The ensemble Kalman Filter (EnKF) [Evensen, 2003,Evensen,
2009, Reichle et al., 2002, Gillijns et al., 2006] is a Monte Carlo approximation of the
KF that approximates the probability distributions by random samples. The starting
point is choosing a set of sample points, that is, an ensemble of state estimates, that
captures the initial probability distribution of the state. These sample points are then
propagated through the true linear or nonlinear system and the probability density func-
tion of the actual state is approximated by the ensemble of the estimates. In the case
of the UKF, the sample points are chosen deterministically. In fact, the number of
sample points required is proportional to the dimension of the system. On the other
hand, the number of ensembles required in the EnKF is heuristic. While one would
expect that a large ensemble would be needed to obtain useful estimates, the literature
on EnKF [Evensen, 2009] suggests that an ensemble of size 50 to 100 is often adequate
for systems with thousands of state variables.

1.1.2 The variational approach
An optimal control approach considers the minimization of the misfit between the pre-
dicted state and the observations under the constraint of the partial differential equa-
tions (PDEs) governing the evolution of the system. Such optimization (or control)
problem may be solved with a large variety of numerical methods for PDE constrained
optimization problems. In the context of computational fluid dynamics there is a huge
literature for the solution of inverse problems, among many others we mention [Blum
et al., 2008, Gronskis et al., 2013, Gunzburger, 1987, Gunzburger, 2000, Hinze et al.,
2009,Navon, 2009,Penenko, 2009] and some others will be mentioned in the following
subsections.

The main ingredients of this kind of approaches are

• a deterministic state model that predict the physical behaviour of the system;

• a sparse and noisy set of observed values;

• a cost functional J that measures the distance between state variable and observa-
tions;

• a control variable that can be used to minimize the functional and on which the
state model depends.

The control problem is solved by deriving and solving the system of first order
necessary conditions:

• state model;

• adjoint model;

• optimality condition.

Optimal control methods can be grouped in two main categories;

optimize-then-discretize approach (OD) consists in deriving the system of infinite di-
mensional first order necessary conditions and then discretize and solve this sys-
tem;

13
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discretize-then-optimize approach (DO) consists in discretizing the state model and
then derive and solve the system of finite dimensional first order necessary condi-
tions.

For a deeper analysis of the differences of these two approaches, we refer the reader
to [Hinze et al., 2009].

1.1.3 Data assimilation in cardiovascular system modelling
While data assimilation for geophysical models had a huge development in the last
decades of the past century, data assimilation for cardiovascular models has featured
great advancements only in the beginning of this century. This development was due to
the tremendous increase of data gathering and the massive change in computational ca-
pabilities in the last few years. Therefore, well-established DA techniques are applied
to cardiovascular problems and, furthermore, they feature an overlap between estima-
tion theory, control theory and stochastic approaches. Moreover, they benefit from
the continuous improvement of numerical methods for order reduction [Moireau and
Chapelle, 2010, Bertoglio et al., 2012, Manzoni et al., 2012] and advanced discretiza-
tion techniques. Among the others, we mention and briefly describe the most relevant
works.

Stochastic approach

In [Devault et al., 2008] the circle of Willis was modelled with a network of one di-
mensional FSI models coupled with zero dimensional models to simulate outflow con-
ditions. These latter models have been calibrated by using EnKF and employing real
medical data for velocity and pressure of the blood and length and area of vessels.

In the same year, the group of Moireau and Chapelle applied the UKF to parame-
ter identification in the context of cardiac biomechanics [Moireau et al., 2008,Moireau
et al., 2009]. They also introduced an order reduction strategy [Moireau and Chapelle,
2010, Xi et al., 2011] and finally they applied these techniques also to the estima-
tion of wall stiffness in a fluid structure interaction model for arterial flow simula-
tions [Bertoglio et al., 2012], using also medical data [Moireau et al., 2012]. Their
filtering strategy, usable for any choice of sampling points distribution, provides a
tractable filtering algorithm that can be used with large-dimensional systems when the
uncertainty space is of reduced size. Such algorithm invokes the original dynamical
and observation operators, i.e. it does not require the computation of the tangent oper-
ator. Specifically, the covariance matrices are factorized in a form such that the costly
computations are performed on a reduced-order matrix of the order of the uncertainty
space. In [Marchesseau et al., 2013], MRI data are employed in reduced order UKF to
personalize an electromechanical model of the heart. In [Lombardi, 2013], a sequential
approach based on the UKF is applied to solve inverse problems in 1D hemodynamics,
on a large systemic network.

Variational approach

In the last years, a great number of parameter estimation methods has been developed
to minimize a cost functional that measures the misfit between state equation output
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and observations in various fields in cardiovascular modelling (for example, stiffness
in pure structural models [Stå lhand and Klarbring, 2005, Stå lhand, 2009, Balocco
et al., 2010, Harb et al., 2011] or one dimensional FSI models [Dumas, 2008, Dumas
et al., 2012,Bogaers et al., 2012], vascular territories resistance in one dimensional FSI
models [Blanco et al., 2012], lumped cerebrovascular models [Pope et al., 2008], ter-
minal parameters in three dimensional FSI models [Spilker and Taylor, 2010]), outflow
boundary conditions in three dimensional imaged-based patient-specific models of the
multi-branched pulmonary arteries and superior vena cava [Troianowski et al., 2011].
However, to the author’s knowledge, only few works enforce adjoint-based techniques
for the minimization of the cost functional:

• in [Lagrée, 2000], the author estimates the elastic parameter in a single vessel
one dimensional model by using OD approach and employing as observations the
output of the same one dimensional model,

• in [Martin et al., 2005], the authors estimate the elastic parameter in a single vessel
one dimensional FSI model by using a DO approach and employing as observa-
tions the output of a three dimensional FSI problem,

• in [Sermesant et al., 2006], ventricular myocardium contractility is estimated with
a DO strategy by making use of an electromechanical heart model on a patient
specific geometry and simulated heart displacements;

• in [D’Elia et al., 2012,Perego et al., 2011], the Young modulus of the vessel wall in
a three dimensional FSI model is estimated using a OD technique and assimilating
vessel displacements from registered medical images,

• in [D’Elia, 2011], the velocity data is included in hemodynamics simulations by
using a DO approach to recover an accurate and noise filtered approximation of
the blood flow,

• in [Ismail et al., 2013b, Ismail et al., 2013a], the parameters of windkessel models
at the outflow of a 3D FSI model are calibrated by using adjoint-based approach,

• in [Yang and Veneziani, 2013], the heart conductivity is estimated in the so called
bidomain model by using a OD strategy.

The works that are closest to ours are [Lagrée, 2000] and [Martin et al., 2005], in
which the elastic parameters of a single vessel one dimensional models are estimated.
The main difference with our work are that we consider also a network and we use
different and more sophisticated optimization methods. Then, differently from [Mar-
tin et al., 2005], we adopt OD approach in order to be able to change the numerical
discretization of the differential models to our choice.

To the author’s knowledge, in literature, no work has been done to estimate the
elastic properties of arterial walls using a network of one dimensional vessel models
and a OD variational approach.

1.2 Optimal control: Lagrangian formulation

The classical approach to optimal control for PDEs is based on the theory developed
by J.L. Lions ( [Lions, 1972, Lions, 1987]), which provides existence and uniqueness
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results for optimal control problems described by elliptic, parabolic, hyperbolic and
mixed PDEs. However, starting from the classical theory, a straightforward analysis for
a broader class of optimal control problems (e.g. with non-linearities of boundary con-
trol) is not always easy. An alternative approach which allows to handle a wider class
of optimal control problems is based on the Lagrangian formalism (see [Maurer and
Zowe, 1979, Maurer, 1981]). This approach is suitable also for problems described by
ordinary differential equations or integral equations, as well as for shape optimization
problems [Jameson, 2003, Mohammadi and Pironneau, 2001, Sokolowski and Zolesio,
1992]. For these reasons we make use and discuss the optimal control theory based on
the Lagrangian formalism, For a deeper study of optimal control theory, we refer the
reader also to [Agoshkov, 2003, Alekseev et al., 1987, Aziz, 1977, Fernández-Cara and
Zuazua, 2003, Hinze et al., 2009, Tröltzsch, 2010].

Remark 1.2.1. For the sake of simplicity, we present the Lagrangian formalism for
scalar PDEs depending on scalar variables, but the analysis can be straightforwardly
extended to vectorial PDEs with vectorial variables.

1.2.1 General case
The optimal control problem reads, in an abstract setting, as:

find v ∈ V , v = argmin
w∈V

J(u,w), where u ∈ U is solution of e(u, v) = 0 inW . (1.5)

Here J(u, v) is the cost functional, e(u, v) = 0 indicates a PDE (with appropriate
boundary and initial conditions), which is called state equation (or primal equation).
Consequently, the variable u ∈ U is called state variable, while v ∈ V is referred as
the control variable. The spaces U , V and W are, in general, Banach spaces. The
Lagrangian functional is defined on the basis of (1.5) as

L(x) = L(u, z, v) := J(u, v) + 〈z, e(u, v)〉W∗,W , (1.6)

where W∗ is the dual space of W and 〈·, ·〉W∗,W indicates the corresponding duality
pairing. The Lagrange multiplier z ∈ W∗ is called adjoint variable (or dual variable).
With x ∈ X , we indicate the variables x := (u, z, v), where X := U × W∗ × V . It
follows that the Lagrangian function is defined as L : X → R. We now recall the
following definitions.

Definition 1.2.1. By indicating with y := (u, v) ∈ U × V and e(y) := e(u, v), we
define the feasible space as Y := {y ∈ U× V : e(y) = 0}.
Definition 1.2.2. A feasible point y∗∗ := (u∗∗, v∗∗) ∈ Y is a local optimal solution if
there exists δ > 0 such that J(y∗∗) 6 J(y) ∀y ∈ Bδ(y∗∗), being Bδ(y∗∗) := {y ∈ Y :
‖y∗∗ − y‖Y 6 δ} with ‖ · ‖Y a suitable norm of the space Y .

Definition 1.2.3. A local optimal solution y∗∗ ∈ Y is a global optimal solution if
J(y∗∗) 6 J(y) ∀y ∈ Y .

Definition 1.2.4. Let J(y) and e(y) be continuously Fréchet differentiable1in Bδ(y∗),
being y∗ := (u∗, v∗) ∈ Y a critical solution, i.e. satisfying the first order necessary
conditions (1.7)-(1.9), and C(y∗) := Y × {ρ(v − v∗) : v ∈ V , ρ > 0} a convex cone.
We say that y∗ ∈ Y is a regular point ifW ≡ {ey(y∗)[δy] : δy ∈ C(y∗)}.
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For first order necessary conditions for the local optimal solution of problem (1.5),
we refer to the following theorem (for the proof see [Maurer, 1981] or [Tröltzsch,
2010]):

Theorem 1.2.1. If y∗∗ = (u∗∗, v∗∗) ∈ Y is a regular point and a local optimal solution
of problem (1.5), there exists a Lagrange multiplier z∗∗ ∈ Z such that

Lz(y∗∗, z∗∗) = e(y∗∗) = 0 inW , (1.7)
Lu(y∗∗, z∗∗) = Ju(y

∗∗) + e∗u(y
∗∗)[z∗∗] = 0 in U∗, (1.8)

Lv(y∗∗, z∗∗)[ψ] = 〈Jv(y∗∗) + e∗v(y
∗∗)[z∗∗], ψ〉V∗,V = 0 ∀ψ ∈ V , (1.9)

where the differentiation of the Lagrangian functional is in the Fréchet sense. The
operators e∗u(y

∗∗) and e∗v(y
∗∗) are the dual Fréchet derivatives of e(y) in y∗∗ with

respect to u ∈ U and v ∈ V , respectively; similarly Ju(y∗∗) and Jv(y
∗∗) are the

Fréchet derivatives of J(y) in y∗∗ with respect to u ∈ U and v ∈ V , respectively.

The first order necessary conditions (1.7)-(1.9) are usually called Karush-Kuhn-
Tucker conditions (KKT conditions), while solutions x∗∗ ∈ X satisfying the KKT
conditions are indicated as critical solutions. We note that equation (1.7) is the state
equation. The equation (1.8) is referred to as the adjoint equation (or dual equation)
while equation (1.9) is the optimality condition.

Theorem 1.2.1 is usually and conveniently used to find a local optimal solution,
but we underline that a critical solution of first order is not necessarily a local optimal
solution: therefore, we recall a second order sufficient optimality condition, whose
proof is reported in [Maurer, 1981, Maurer and Zowe, 1979].

Theorem 1.2.2. Let us suppose that J(y) and e(y) are twice Fréchet differentiable and
let x∗∗ = (y∗∗, z∗∗) ∈ X satisfy the first order necessary conditions (1.7)-(1.9). If there
exists θ > 0 such that(1.7)-(1.9)

Lyy(x∗∗)[y,y] > θ‖y‖2
Y (1.10)

holds ∀y ∈ Y for which
ey(y∗∗)[y] = 0 in W , (1.11)

then y∗∗ is a strict local optimal solution. In equation (1.10), we indicate with Lyy(x∗∗)
the second Fréchet derivative of the Lagrangian functional with respect to y, which
corresponds to the Hessian ofL(x∗∗) with respect to y. Analogously in equation (1.11),
ey(y∗∗) corresponds to the Jacobian of the state equation with respect to y.

This theorem allows to find local optimal solutions of the problem (1.5), but for
non-trivial problem is not easy if not impossible to compute Lyy(x∗∗). Furthermore it
is not always easy to understand if a local optimal solution is also a global one. This
depends, in general, on the particular optimal control problem under consideration.

Remark 1.2.2. Throughout this work we indicate with the apex ∗∗ an optimal solution.
1 Let be X and Y two spaces endowed with norm and F (x) : x ∈ E → Y an application defined on the open space E ⊂ X;

we say that F (x) is Fréchet differentiable in x ∈ E if there exists a linear and continuous operator Fx(x) ∈ L(X,Y ) s.t.:

∀ε > 0, ∃δ > 0 : ‖F (x+ h)− F (x)− Fx(x)[h]‖Y 6 ε‖h‖X ∀h ∈ X s.t. ‖h‖X < δ.

The expression Fx(x)[h], to which corresponds an element in Y for each h ∈ X , is said Fréchet differential, while the operator
Fx(x) is identified as Fréchet derivative of the application F (x) in x ∈ E. For a further deepening, we refer the reader to
[Kolmogorov and Fomin, 1999]

17



i
i

“thesis” — 2013/10/7 — 22:03 — page 18 — #26 i
i

i
i

i
i

1.3. Optimal control techniques for hyperbolic partial differential equations

1.3 Optimal control techniques for hyperbolic partial differential equations

In this section, we describe the computation of first necessary order conditions that have
been illustrated in the previous section to a first-order hyperbolic PDE and we analyze
the peculiar difficulties that arise in this kind of problems.

1.3.1 First order necessary conditions for hyperbolic partial differ-
ential equations

Using the same notation as in subsection 1.2.1, we start by introducing the time interval
[0, T ] and the spatial domain Ω such that Ω ⊂ Rn, n > 1, with boundary ∂Ω. In this
case the spaces V and U are, in general, Banach spaces over the space–time domain
Ω× (0, T ). We introduce the cost functionals of the form

J(u, v) = Jm(u) +
1

2
γ

∫ T

0

mv(v − vd, v − vd)dt =

∫ T

0

j(u, v)dt, (1.12)

where the term Jm(u) has the forms

Jm(u) =
1

2

∫ T

0

mu(u− ud, u− ud)dt, (1.13)

Jm(u) =
1

2

∑
i∈Iu

mu(u
i − uid, ui − uid) (1.14)

or
Jm(u) =

1

2
mu(u(T )− ud, u(T )− ud), (1.15)

and γ > 0, mu(·, ·) and mv(·, ·) are positive and symmetric bilinear forms, ud is the
desired solution, while vd the desired control, Iu is the set of couples (xi, ti) with xi ∈ Ω
and ti ∈ (0, T ) on which the desired solution is given; the cost functional J(u, v)
is twice differentiable in v ∈ V and u ∈ U . For the sake of simplicity, we neglect
to indicate the space dependence of the variables explicitly. Starting from (1.5), we
introduce the following state equation:

find u ∈ U : m

(
∂u

∂t
, ϕ

)
+ a(u, v)(ϕ) = F (ϕ), ∀ϕ ∈ U , with v ∈ V , t ∈ (0, T )

with u(0) = u0,

where m(·, ·) is a time–independent positive and symmetric bilinear form, a(·, ·)(·) is
a twice differentiable semilinear form (with linearity in the last argument), F (·) is a
continuous and linear functional and u0 is the initial condition. The space U is an
appropriate functional space taking into account any Dirichlet homogeneous boundary
conditions.

From (1.6), we define the Lagrangian functional for this particular case, which reads:

L(x) = L(u, z, v) := J(u, v) +
∫ T

0
F (z)dt−

∫ T
0
a(u, v)(z)dt

−
∫ T

0
m

(
∂u

∂t
, z

)
dt−m(u(0)− u0, z(0))

18
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1.3. Optimal control techniques for hyperbolic partial differential equations

In order to obtain the first order necessary conditions (1.7)-(1.9) for the local optimal
solution, we differentiate L(x) with respect to u, v and z. In particular, by differentiat-
ing L(x) with respect to u and integrating by parts, we obtain:

Lu(x)[ϑ] = Ju(u, v)[ϑ]−
∫ T

0
au(u, v)(z, ϑ)dt+

∫ T
0
m

(
ϑ,
∂z

∂t

)
dt

−m(ϑ(T ), z(T )).
(1.16)

where au(u, v)(z, ϑ) represents the differential of the form a(v, u)(z) with respect to u
evaluated in ϑ ∈ U . By using (1.16), we obtain the adjoint equation in weak form

find z ∈ U : −m
(
ϑ,
∂z

∂t

)
+ au(u, v)(z, ϑ) = Ju(u, v)[ϑ] ∀ϑ ∈ U , t ∈ (0, T ).

with z(T ) = 0
(1.17)

In the same way, by differentiating L(x) with respect to v, we obtain:

Lv(x)[ϑ] = Jv(u, v)[ψ]−
∫ T

0

av(u, v)(z, ψ)dt,

from which we deduce the optimality condition (1.9):

jv(u
∗∗, v∗∗)[ψ]− av(u∗∗, v∗∗)(z∗∗, ψ) = 0 ∀ψ ∈ V , t ∈ (0, T )

where av(u, v)(z, ϑ) represents the differential of the form a(v, u)(z) with respect to v
evaluated in ψ ∈ U and x∗∗ = (u∗∗, v∗∗, z∗∗) indicates the critical solution.

Remark 1.3.1. The hyperbolic adjoint PDE (1.17) evolves “backward” in time with the
“initial” conditions given at the final time t = T . From a numerical point of view, this
could lead to large computational costs. In fact, we need to solve the state equation until
the final time t = T before solving the adjoint equation at each time step t ∈ (0, T );
this is due to the dependence of the adjoint problem on u(t), t ∈ (0, T ).

From the beginning of this century, this classical framework has been seriously mod-
ified to take into account the presence of shocks and discontinuities in the solution u.
Fortunately, shocks do not appear in typical hemodynamical applications: so we will
not elaborate further this issue. For more details on optimal control for hyperbolic
equations in presence of shocks, see [Ulbrich, 2001] and reference therein.

1.3.2 Well-poseness of optimal control problems for hyperbolic equa-
tions

In general, if γ = 0 in (1.13)-(1.15), the optimal control problem can be ill-posed in the
sense that it can admit multiple local minima. The classical remedy for this difficulty
is to set γ positive, but if no a priori information on the characterization of the optimal
control variable are available, the choice of the bilinear form mv(·, ·) is not easy. An-
other possible strategy to avoid local minima is the so called multigrid method [Bunks
et al., 1995,Epanomeritakis et al., 2008,Banghert, 2008], which consists in decompos-
ing the problem by scale and solving iteratively the problem in a hierarchical sequence
of meshes from coarse to more refined ones, using the solution at the preceding level
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1.3. Optimal control techniques for hyperbolic partial differential equations

as start point. At long scales there are fewer local minima and those that remain are
further apart from each other. Thus, at long scales iterative methods can get closer
to the neighborhood of the global minimum. To illustrate this behavior of hyperbolic
problems, we consider the one dimensional wave equation

∂2u

∂t2
− c̃2∂

2u

∂x2
= 0 x ∈ [0, 1], t ∈ [0, 4],

u(0, t) = u(1, t), t ∈ [0, 4],

u(x, 0) =
∑4

k=1 cos(2kπx), x ∈ [0, 1].

(1.18)

where the parameter c̃ > 0. We solve (1.18) with different values of c̃ with a Lax-
Wendroff finite difference scheme and with different discretization grid and we com-
pute the functional

J(u, c̃) =

∫ 4

0

(u(L, t, c̃)− uex(L, t))2dt, (1.19)

where uex(x, t) is computed fixing c̃ = 1. In Figure 1.1, we plot the functional (1.19)
for different numbers of discretization intervals and the value of the parameter c̃.

Figure 1.1: Cost functional (1.19) for different numbers of discretization intervals (N = 10, 20, 40, 80)
and the value of the parameter c̃

We note that with few intervals the functional has only one minimum, but the func-
tional is far from zero and the minimum is not close enough to the real global minimum
(c̃ = 1). Increasing the number of intervals, the number of local minima increase, the
computed global minimum is closer to the real global minimum and the functional is
closer to zero.

20
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1.3. Optimal control techniques for hyperbolic partial differential equations

1.3.3 Controllability and observability of discretized hyperbolic equa-
tions

In this subsection, we describe the problems that arise when controlling a hyperbolic
equation that has been discretized in space and time. In this review, we follow what
is done in [Zuazua, 2005, Zuazua, 2007, Cannarsa and Coron, 2010]. For simplicity,
we focus on the boundary controllability of the constant coefficient one dimensional
equation

utt − uxx = 0 0 < x < 1, 0 < t < T

u(0, t) = u(1, t) = 0 0 < t < T

u(x, 0) = u0(x), ut(x, 0) = u1(x) 0 < x < 1

(1.20)

but the same considerations remain valid for more complicate hyperbolic equations.
We say that this equation is boundary controllable if, for any (z0, z1) ∈ L2(0, 1) ×

H−1(0, 1), there exists v ∈ L2(0, T ) such that the solution of the controlled wave
equation

ztt − zxx = 0 0 < x < 1, 0 < t < T

z(0, t) = 0; z(1, t) = v(t) 0 < t < T

z(x, 0) = z0(x), zt(x, 0) = z1(x) 0 < t < T

(1.21)

satisfies
z(x, T ) = zt(x, T ) = 0 0 < x < 1. (1.22)

This problem corresponds to finding the control v(t) = ux(1, t) ∈ L2(0, T ), minimiz-
ing the functional

J(u0, u1) =
1

2

∫ T

0

|ux(1, t)|2dt+

∫ 1

0

z0u1dx−
∫ 1

0

z1u0dx (1.23)

where u solves (1.20).

Remark 1.3.2. We note that (1.21) and (1.22) are the adjoint equation and the optimal-
ity condition, respectively.

We define the energy of the solution of (1.20) at time t ∈ (0, T )

E(t) =
1

2

∫ 1

0

[
|ux(x, t)|2 + |ut(x, t)|2

]
dx,

which is conserved i.e.
E(t) = E(0) ∀t ∈ (0, T ).

The problem of boundary observability of (1.20) consists in giving sufficient con-
ditions on T such that there exists C(T ) > 0 for which the boundary observability
inequality

E(0) 6 C(T )

∫ T

0

|ux(1, t)|2dt (1.24)

holds for all solutions of (1.20). The constant C(T ) is called observability constant.
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1.3. Optimal control techniques for hyperbolic partial differential equations

It can be proved that controllability and observability are equivalent problems and
that the following observability result holds (see [Zuazua, 2005, Cannarsa and Coron,
2010])

Proposition 1.3.1. For any T > 2, equation (1.20) is observable. In other words, for
any T > 2 there exists C(T ) > 0 such that (1.24) holds for any solution of (1.20).
Conversely, if T < 2, (1.20) is not observable, or, equivalently

sup
u solves (1.20)

[
E(0)∫ T

0
|ux(1, t)|2dt

]
=∞

Therefore (1.20) is boundary controllable iff T > 2. We note that the minimum
observability time (T = 2) is twice the length of the domain: in fact, it is the time
necessary for the information to propagate from an end point of the domain, reach the
other end point and return back to the starting point.

We now analyze the continuous dependence of the constant C(T ) with respect to
finite space discretization as the discretization parameter h tends to zero.

We consider a discretization of the interval [0, 1] into N + 1 subintervals of length
h = 1/(N + 1) with nodes {xj = jh, j = 0, . . . , N + 1}. We then consider the finite
difference approximation of the wave equation (1.20):

u′′j −
1

h2
[uj+1 + uj−1 − 2uj] = 0 0 < t < T, j = 1, . . . , N,

uj(t) = 0 j = 0, N + 1, 0 < t < T

uj(0) = u0
j , u

′
j(0) = u1

j , j = 1, . . . , N,

(1.25)

where uj(t) = u(xj, t), ∀j = 1, . . . , N . The energy of the solution of (1.25)

Eh(t) =
h

2

N∑
j=0

[∣∣u′j∣∣2 +

∣∣∣∣uj+1 − uj
h

∣∣∣∣2
]

(1.26)

is constant in time and it is also a natural discretization of the continuous energy (1.3.3).
The problem of observability of the system (1.25) consists in find T > 0 andCh(T ) > 0
such that

Eh(0) 6 Ch(T )

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt (1.27)

holds for all solutions of (1.25). We note that ux(1, t) ≈ [uN+1(t) − uN(t)]/h and,
taking into account that uN+1 = 0, ux(1, t) ≈ −uN(t)/h. Therefore |uN(t)/h|2 is an
approximation of |ux(1, t)|2 and the functional (1.23) can be discretized as

Jh((u
0,u1)) =

1

2

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt+ h

N∑
j=1

z0
ju

1
j − h

N∑
j=1

z1
ju

0
j , (1.28)

where (u0,u1) are the initial conditions of (1.25) and (z0, z1) are the initial condition
of the discretized version of the equation (1.21).

It can be proved (see [Zuazua, 2005,Cannarsa and Coron, 2010]) that the observabil-
ity constant Ch(T ) in (1.27) tends to infinity as h tends to zero. This is due to the fact
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1.3. Optimal control techniques for hyperbolic partial differential equations

that, while in the continuous problem all the frequencies that compose the spectrum
of the solution travel at the same velocity, at discrete level, higher frequencies travel
slower and velocity gap between two consecutive frequencies is proportional to 1/h. In
other words, the minimum observability time of the discretized problem tends to infin-
ity, as h tends to zero, because the velocity of higher frequencies tends to zero. In figure
1.2, the velocity gap between frequencies is illustrated as the gap between the eigenval-
ues of the continuous wave problem (1.20) and the correspondent discretized problem.
We note that this gap increase as the frequencies get higher. This considerations hold
both for finite differences and standard finite elements discretizations.

Figure 1.2: Square roots of the eigenvalues associated to the wave problem in the continuous and
discrete cases

Several remedies have been proposed to keep Ch(T ) uniformly limited with h. We
list some of them:

Fourier filtering mechanism [Zuazua, 2005] consists in eliminating the high fre-
quency Fourier components and restricting the semidiscrete wave equation under
consideration to the subspace of solutions generated by the Fourier components
corresponding to the eigenvalues λ 6 γh−2 with 0 < γ < 4.

Two-grid algorithm [Glowinski and Li, 1990,Glowinski, 1992] consists in using two
grids: the computational one in which the discrete wave equations are solved, with
step size h and a coarser one of size 2h. In the fine grid, the eigenvalues satisfy
the sharp upper bound λ 6 4/h2. And the coarse grid will “select” half of the
eigenvalues, the ones corresponding to λ 6 2/h2. This indicates that in the fine
grid the solutions obtained in the coarse one would behave very much as a filtered
solutions.

Tychonov regularization [Glowinski et al., 1990] consists in adding an extra term in
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the functional (1.23) and corresponds to relaxing the boundary observability in-
equality by adding an extra observation, distributed everywhere in the domain and
at the right scale so that it asymptotically vanishes as h tends to zero but it is strong
enough to capture the energy of the pathological high frequency components. In
particular, by considering the functional

J∗h((u0,u1)) =
1

2

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt+ h3

N∑
j=0

∫ T

0

∣∣∣∣u′j+1u
′
j

h

∣∣∣∣2 dt
+ h

N∑
j=1

z0
ju

1
j − h

N∑
j=1

z1
ju

0
j

in place of (1.28), we obtain that the observability inequality (1.27) becomes

Eh(0) 6 Ch(T )

[∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt+ h3

N∑
j=0

∫ T

0

∣∣∣∣u′j+1u
′
j

h

∣∣∣∣2 dt
]
, (1.29)

that holds for all T > 2 for a suitable Ch(T ) > 0 which is independent of h and
of the solution of the semidiscrete equation (1.25), as observed in [Zuazua, 2005]
and reference therein.

The considerations in this subsection hold also for more general hyperbolic prob-
lems and in particular for inverse problems and parameter estimation (see [Zuazua,
2005]). However, if initial data with a finite number of Fourier components are con-
sidered, also the solution has a finite number of frequencies and therefore a (possibly
large) observability constant exists (see [Micu, 2002]).

1.4 Optimization methods

The resolution of optimal control problems requires the resolution of finite dimensional
optimization problems. In this section we recall some of the most common optimization
methods (the Steepest Descent, Barzilai-Borwein, Newton and Quasi Newton methods)
and their application to optimal control problem described by PDEs. For a deeper
analysis on optimization techniques, we refer mainly to [Dennis and Schnabel, 1987,
Luenberger, 2003, Nocedal, 1992, Nocedal and Wright, 1999, Sun and Yuan, 2006].

1.4.1 A review of optimization methods
Let us consider the following finite-dimensional optimization problem

find x ∈ Rn, n > 1, s.t. x = argmin
y∈Rn

f(y)

Let us suppose that f(x) : Rn → R is twice differentiable in x and let us indicate
with g(x) ∈ Rn and H(x) ∈ Rn×n the gradient and the Hessian of f(x) with respect
to x and with x∗∗ and f(x∗∗) the global minimizer and the value of the cost functional
in it.

The classic schemes are iterative schemes which build a sequence xk; k = 0, . . .
with xk → x∗, being x∗ a (local) minimizer. They all require to choose an initial guess
x0 and fall into one of these two categories.
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Line search We (approximately) minimize the function of a single variable α as

ψ(α) = f(xk + αdk);

being dk the k-th search direction and

xk+1 = xk + αkdk, where αk = argmin
α∈(0,+∞)

ψ(α).

Trust region The function f is approximated by a simpler function f̃k in Bδk(xk), the
closed ball of radius δk around xk, called the trust region and

xk+1 = argmin
x∈Bδk (xk)

f̃k(x).

Both methods operate through a simplification of the original problem. However, the
underlying approach is rather different.

In a line search method the problem is simplified by reducing its dimensions to just
one and we use the full information of the actual function f . In a trust region method,
instead, the function f is replaced by an approximation f̃k where the search of the
minimizer is easier. Yet, the dimension of the problem we are facing has not changed.
In this review, we limit ourselves to line search techniques.

Line search methods

As we said in the previous subsection, in line search methods, the sequence {xk}k is
obtained by minimizing the one dimensional function ψ(α) = f(xk + αdk) given a
search direction dk. We describe with more details how line search methods work.

Definition 1.4.1. Given a point xk ∈ Rn, a direction dk ∈ Rn is a descent direction if
∃δ > 0 such that

f(xk + αdk) < f(xk) ∀α ∈ (0; δ) :

If f is continuously differentiable, we have that dk is a descent direction in the point
xk if and only if (g(xk);dk) < 0. In particular

dk = −Bkg(xk) (1.30)

is a descent direction for all symmetric positive definite matrices Bk.

We can sum up a generic line search method in the following algorithm

Algorithm 1.4.1 (Line search). Given an initial guess x0, two positive constant tollx
and tollg and a positive integer kmax.

For k = 0, . . . , kmax do

(i) Compute a suitable search direction dk;

(ii) Compute a suitable step length αk;

(iii) Update: xk+1 = xk + αkdk;

(iv) Convergence test: ‖xk+1 − xk‖ < tollx and ‖gk+1‖ < tollg. If true, stop; other-
wise go back to (i) and increase k.
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Remark 1.4.1. . The convergence criterion based on the difference between successive
iterates is normally implemented only as a safeguard against stagnation of the algo-
rithm. Terminating with ‖gk+1‖ > tollg is considered as a failure condition.

Remark 1.4.2. For the sake of notation, in the following we will often use the suffix k
to indicate quantities computed at x = xk.

The choice of dk (or equivalently Bk) determines the features of the line search
method and we will discuss it in the following.

Concerning the choice of αk, in principle, we should select

αk = argmin
α∈(0,+∞)

ψ(α)

but, in practical, this way can not be followed. Therefore αk is chosen with some
heuristic rules so that fk+1 < fk.

Armijo rule (or sufficient decrease condition) : for a given c1 ∈ (0, 1), we choose

f(xk + αkdk) 6 fk + c1αkg
T
k dk. (1.31)

Nonmonotone step selection [Grippo et al., 1989,Grippo and Sciandrone, 2002]: for
a given c1 ∈ (0, 1) and a positive integer M :

f(xk + αkdk) 6 max
0<j<min(k,M)

fk−j + c1αkg
T
k dk. (1.32)

Wolfe conditions : for given c1 ∈ (0, 1) and c2 ∈ (c1, 1), we choose

f(xk + αkdk) 6 fk + c1αkg
T
k dk, (Armijo rule)

|gTk+1dk| 6 c2|gTk dk|. (Curvature condition)
(1.33)

Due to its low computational request, the Armijo rule (1.31) is probably the most
used, but it can be proved that it is not always enough to ensure the global convergence
of line search method sequence, and, for this reason, a backtracking strategy is usually
associated to it. The nonmonotone step selection rule (1.32) is similar to Armijo rule
(1.31), but allows a local increase of the function f . The Wolfe conditions ensure that
the sequence globally converges, but it is clearly more complex than the other two
strategies.

Choice of dk
As said, the choice of the search direction dk determines the features of the line search
method and characterizes the different methods. In literature a huge number a line
search methods have been proposed, but in this subsection we focus only on those that
we have used in our application (see Chapter 4).

Steepest descent method The steepest descent method (SD or gradient method) is
the simplest and most classical methods for unconstrained optimization (it was firstly
proposed by Cauchy in [Cauchy, 1847]). It consists in choosing minus gradient as the
search direction i.e.

dk = −gk Bk = In
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where In is the n × n identity matrix. This method is very robust and requires a very
low amount of memory (at every iteration no previous step information is needed), but
it has only linear convergence rate and, therefore, a large number of iterations is needed
to converge.

Barzilai-Borwein method The Barzilai-Borwein method (BB or spectral gradient
method) was firstly proposed by Barzilai and Borwein in their pioneeristic work [Barzi-
lai and Borwein, 1988] and, then, analyzed in detail in [Raydan, 1993, Raydan, 1997,
Raydan and Svaiter, 2002,Fletcher, 2005,Dai and Fletcher, 2005]. The search direction
is proportional to minus gradient and, in particular,

dk = −γkgk Bk = γkIn.

Two choices of γk are possible

γ1
k =

sTk−1sk−1

sTk−1yk−1

γ2
k =

yTk−1sk−1

yTk−1yk−1

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. The first choice is the most studied
and used. We underline that at every iteration BB method makes use of information
referring also to the previous step. BB method is part of the family of fast gradient
methods ( [van den Doel and Ascher, 2012]), whose descent direction is proportional
to minus gradient but have better convergence properties than standard SD method.

BB method is usually coupled with nonmonotone line search technique (1.32) (
[Grippo and Sciandrone, 2002]) because it has been proved in [Raydan, 1997] that
with this choice BB methods has results comparable to conjugate gradient methods,
especially for non-quadratic and large scale problems. There is numerical evidence
that BB method has superlinear convergence rate. These properties and its simplicity
make this method very appealing for complex applications.

Newton and quasi-Newton methods Newton and quasi-Newton methods are proba-
bly the most used unconstrained optimization methods. Therefore they are largely dis-
cussed in most of the classical numerical optimization monographies like [Dennis and
Schnabel, 1987, Kelley, 1995, Luenberger, 2003, Nocedal, 1992, Nocedal and Wright,
1999].

Newton method makes use of second order information, i.e. the Hessian matrix Hk,
to choose the search direction

dk = −H−1
k gk Bk = H−1

k .

It is widely known that in a suitable neighbourhood of the solution x∗∗ Newton
method converges quadratically. The drawback of this method is that at each iteration,
the computation of the Hessian matrix and the solution of a linear system is needed.
This could lead to high computational cost, especially for large optimization, and sec-
ond order information are not always available or easy to compute.

To overcome these difficulties, in quasi-Newton methods, the matrix Bk is chosen
to be an approximation of H−1

k . There are a large number of quasi-Newton methods
that differ each other in the type of approximation used. One of the most effective and
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1.4. Optimization methods

used quasi-Newton methods is the BFGS method (named after its creators Broyden,
Fletcher, Goldfarb and Shanno), in which, starting from an initial approximation, at
each iteration a rank-one update is performed to obtain Bk+1 from Bk

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
(1.34)

It can be proved (see [Nocedal, 1992]) that BFGS method converges superlinearly and
it has a large computational saving respect to Newton method.

1.4.2 Optimization methods for optimal control problem described
by PDEs

In this Section we briefly discuss how to solve optimal control problems described by
PDEs by means of the optimization methods reported in Section 1.4,

By referring to Section 1.2, the solution of the optimal control problems (1.6) is
obtained by solving the first order conditions (1.7)-(1.9). The resulting system is in
general fully coupled in the sense that each equation (or system of equations) depends
on (u, z, v), with the exception of the state equation which does not depend on the
adjoint variable z.

In Section 1.4 we have introduced several iterative methods, which can be conve-
niently used also for the solution of optimal control problems described by PDEs. With
this aim, we need to use a numerical method for the approximation of the state, adjoint
and optimality equations which define the first order necessary conditions.

State
Problem

Adjoint
Problem

Optimality
Condition

Stop!
u z

under
tollerance

update v by using an optimization technique

Figure 1.3: Schematic representation of Algorithm 1.4.2

It is possible to solve the approximated optimal control problem by means of an
optimization iterative method, such as SD, BB, Newton or BFGS methods.

Algorithm 1.4.2 (Optimal control problem resolution). For a given approximated op-
timal control problem, the iterative algorithm reads:

(i) choose an initial guess v ;

(ii) solve the state equation (1.7) given v in order to obtain u and compute the cost
functional J(u, v);

(iii) solve the adjoint equation (1.8) given v and u in order to obtain z;

(iv) compute the optimality condition given u, v and z;

(v) if the optimality condition is below a certain tolerance, stop the algorithm; oth-
erwise update v according with one of the optimization methods introduced in
Section 1.4 and return to Step (ii).
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CHAPTER2
One dimensional fluid structure interaction

models for cardiovascular system

IN this chapter we introduce and describe the one dimensional fluid structure inter-
action model (or 1D-FSI model) that is conveniently used to describe blood vessels
and that we adopt as the state model in our work.

The chapter is organized as follows. In section 2.1 we describe the 1D-FSI model,
from its derivation to the analysis of the numerical approximation employed and the
boundary and compatibility conditions necessary to close the system. In section 2.2 we
describe how the model presented in section 2.1 can be extended to consider networks
of vessels.

2.1 One dimensional FSI models

One dimensional models provide simplified representation of the blood flow in de-
formable vessels. Although inadequate to give a detailed description of the full real
phenomena of flow field (e.g. recirculation or wall shear stress cannot be computed in
simplified models), they describe well wave propagation phenomena due to the com-
pliance of the wall.

2.1.1 Deriving the equations
There are several ways to derive a 1D model of an incompressible fluid flowing in a
compliant pipe. Here we follow the approach presented in Chapter 10 of [Formaggia
et al., 2009], that consists in deriving the equations from conservation principles.

We model an artery as a simple compliant tube (as illustrated in figure 2.1) that is
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2.1. One dimensional FSI models

VtSΓL ΓR

x = 0 x x = L

Figure 2.1: Scheme of a simple compliant tube and notations

assumed to be axial symmetric with the axis of vessel rectilinear and aligned to the x
axis. For the derivation of 1D equations, we start from Reynolds’ transport theorem for
an arbitrary control volume Vt with boundary ∂Vt and outer normal n. It asserts that

d

dt

∫
Vt

fdV =

∫
Vt

∂f

∂t
dV +

∫
∂Vt

fub · ndσ, (2.1)

where f = f(t,x) is a generic continuous function and ub is the velocity of the bound-
ary ∂Vt, composed by the arterial wall ∂Vt,w and the two end sections S1 and S2 that
are assumed normal to the axis. On S1 and S2 the normal component of ub is 0, while
on ∂Vt,w the velocity ub coincides with the velocity uw of the arterial wall, so that∫

∂Vt

fub · ndσ =

∫
∂Vt,w

fuw · ndσ. (2.2)

To obtain the one-dimensional equations, we have to consider values averaged on
the section of the pipe: the area-averaged value f̄ of f is given by

f̄ =
1

A

∫
S

fdσ (2.3)

where A = A(x, t) =
∫
S
dσ is the area of the cross section S. Then, we can write∫

Vt

fdV =

∫ x2

x1

[∫
S

fdσ

]
dx =

∫ x2

x1

Af̄dx, (2.4)

where x1 and x2 are the coordinates of cross sections S1 and S2. As x1 and x2 are
independent of time, we have that the left hand side of (2.1) is

d

dt

∫
Vt

fdV =

∫ x2

x1

∂

∂t
(Af̄)dx. (2.5)

We note that uw is different from the fluid velocity u because the lumen is perme-
able. The relative velocity between arterial wall and fluid is given by

w = uw − u.

With this equality the second term of the right hand side of equation (2.1) can be written
as ∫

∂Vt,w

fuw · ndσ =

∫
∂Vt,w

fw · ndσ +

∫
∂Vt,w

fu · ndσ.
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2.1. One dimensional FSI models

We also observe that∫
∂Vt,w

fu · ndσ =

∫
∂Vt

fu · ndσ −
∫
S1

fu · ndσ −
∫
S2

fu · ndσ =

=

∫
∂Vt

fu · ndσ +

∫
S1

fu1dσ −
∫
S2

fu1dσ,

where u1 is the x-component of the velocity u. Invoking Gauss’ theorem, we have∫
∂Vt,w

fu · ndσ =

∫
Vt

∇ · (fu)dV +

∫
S1

fu1dσ −
∫
S2

fu1dσ,

and, averaging on the section, at the end we obtain∫
∂Vt,w

fuw · ndσ =

∫
∂Vt,w

fw · ndσ −
∫ x2

x1

∂

∂x

[
A(fu1)

]
dx+∫

Vt

∇ · (fu)dV.

(2.6)

Finally, including the expressions (2.5) and (2.6) into (2.1), we have∫ x2

x1

∂

∂t
(Af̄)dx =

∫ x2

x1

(∫
S

∂f

∂t
dσ

)
dx+

∫ x2

x1

(∫
∂S

fw · ndγ
)
dx−∫ x2

x1

∂

∂x

[
A(fu1)

]
dx+

∫ x2

x1

(∫
S

∇ · (fu)dσ

)
dx.

This equation is true for any values of the coordinates and, consequently, we obtain the
final form of the one-dimensional transport theorem for a generic variable f

∂

∂t

(
Af̄
)

+
∂

∂x

[
A(fu1)

]
=

∫
S

[
∂f

∂t
+∇ · (fu)

]
dσ +

∫
∂S

fw · ndγ (2.7)

This relation is general. Now we will proceed to derive the governing equations by
invoking the principles of conservation of mass and balance of momentum.

Conservation of mass The equation representing the conservation of mass can be ob-
tained by taking f = 1 in (2.7) and, with assuming the assumption of incompressibility
(i.e. ∇ · u = 0), we have

∂A

∂t
+

∂

∂x
(Au1) =

∫
∂S

w · ndγ, (2.8)

where the right-hand side term is the volumetric outflow per unit length and unit time.

Balance of momentum We take f = u1 and assume that the fluid is incompressible.
The area-averaged Reynolds’ transport law (2.7) becomes

∂

∂t
(Au1) +

∂

∂x

(
Au2

1

)
=

∫
S

[
∂u1

∂t
+ u · ∇u1

]
dσ +

∫
∂S

u1w · ndγ,
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2.1. One dimensional FSI models

that can be written as

∂

∂t
(Au1) +

∂

∂x

(
Au2

1

)
=

∫
S

Du1

Dt
dσ +

∫
∂S

u1w · ndγ, (2.9)

where
Du1

Dt
=

∂u1

∂t
+ u · ∇u1 denotes the material derivative. We now recall the

balance of the momentum on the control volume Vt∫
Vt

D

Dt
(ρu)dV =

∫
Vt

ρf bdV +

∫
∂Vt

Tndσ,

where f b represents the body force per unit volume and T is the Cauchy stress tensor.
Assuming that the density ρ is constant and using divergence theorem, the previous
equation can be written as∫

Vt

Du

Dt
dV =

∫
Vt

f bdV +
1

ρ

∫
Vt

∇ ·Tdσ. (2.10)

The constitutive equation for the fluid states that

T = −pI + D, (2.11)

where p is the pressure, I is the identity tensor and D is the tensor of deviatoric stresses
due to viscosity. Setting∇ ·D = d and assuming that the pressure is homogeneous on
each cross section of the vessel, we have that

∇ ·T = −∇p+ d,

and therefore, by (2.10), we obtain∫ x2

x1

(∫
S

Du

Dt
dσ

)
=

∫ x2

x1

{∫
S

[
f b +

1

ρ
(−∇p+ d)

]
dσ

}
.

The coordinates x1 and x2 are arbitrarily chosen and so we can write the first component
of this equation as ∫

S

Du1

Dt
dσ =

∫
S

[
f b1 +

1

ρ

(
−∂p
∂x

+ d1

)]
dσ. (2.12)

Now, we substitute (2.12) in (2.9)

∂

∂t
(Au) +

∂

∂x

(
Au2

1

)
=

∫
S

[
f b1 +

1

ρ

(
−∂p
∂x

+ d1

)]
dσ +

∫
∂S

u1w · ndσ

which can be expressed in area-averaged values as

∂

∂t
(Au) +

∂

∂x

(
Au2

1

)
=
A

ρ

(
ρf̄ b1 −

∂p̄

∂x
+ d̄1

)
+

∫
∂S

u1w · ndσ.

The term u2
1 is handled by defining the Coriolis coefficient α which is a function of the

velocity profile

u2
1 =

1

A

∫
S

u2
1dσ = αu2

1.
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2.1. One dimensional FSI models

For a flat profile, we have α = 1 and for a parabolic profile we have α = 4/3. The
viscous force term d̄1 is taken as a linear function of area-averaged velocity u1

A

ρ
d̄1 = −KRu1, (2.13)

where KR is a strictly positive quantity which represents the viscous resistance of the
flow per unit length.

Finally, the balance of momentum equation is

∂

∂t
(Au) +

∂

∂x

(
αAu2

1

)
=
A

ρ
f̄ b1 −

A

ρ

∂p̄

∂x
−KRu1 +

∫
∂S

u1w · ndσ. (2.14)

Now we assume that the lumen is impermeable (w ·n = 0) and that the body forces
are negligible (f̄ b1 = 0) and we also simplify the notation, denoting u instead of ū1 and
p instead of p̄. Defining the mass flux across a section as Q = Au =

∫
S
u1dσ, the

resulting governing equations for continuity of mass and momentum become
∂A

∂t
+
∂Q

∂x
= 0 x ∈ (0, L), t ∈ (0, T )

∂Q

∂t
+

∂

∂x

(
α
Q2

A

)
+
A

ρ

∂p

∂x
+KR

Q

A
= 0 x ∈ (0, L), t ∈ (0, T )

(2.15)

2.1.2 Arterial wall model
The unknowns in the system of equations (2.15) are p, A and Q. We have three un-
knowns and only two equations. Therefore we need one more relation between two
of these quantities to close the system. We enforce a simple 1-D structural model for
the vessel wall, which is assumed to be axial symmetric and only radial displacement
are considered. This results in a pressure-area relation which may account for several
phenomena, as described in [Formaggia et al., 2003]. In this work, we consider only an
elastic response of the vessel wall and a pressure-area relation of the form

p = Pext + ψ(A, x) (2.16)

with Pext the external pressure (here taken constant) and

ψ(A, x) = β(x)

(√
A

A0(x)
− 1

)
(2.17)

where

β(x) =

√
π

A0(x)

h0(x)E(x)

1− ν2
, (2.18)

A0 is the vessel reference area, h0 is the vessel thickness, E is the Young modulus
and ν is the Poisson ratio, that is tipically taken equal 1/2 for biological tissues. The
relations (2.16), (2.17) and (2.18) are derived from a mechanical model for the vessel-
wall displacement [Quarteroni et al., 2000], as shown in [Formaggia et al., 2003].

Remark 2.1.1 (Choice of ψ). Note that (2.17) is only one of the possible choices of
ψ and more complex and general laws that take into account viscoelastic contributions
can be found e.g. in [Malossi et al., 2012]
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2.1. One dimensional FSI models

With the wall mechanism described by (2.16) and (2.17), the system (2.15) can be
written in conservative form

∂U

∂t
+
∂F(U)

∂x
+ S(U) = 0 (2.19)

with

U =

(
A

Q

)
, F(U) =

 Q

α
Q2

A
+
βA0

3ρ

(
A

A0

)3/2

 and

S(U) =


0

KR
Q

A
− β

3ρ

(
A

A0

)3/2
∂A0

∂x
+
A

ρ

[
2

3

(
A

A0

)1/2

− 1

]
∂β

∂x


(2.20)

The system is closed by providing a proper set of of boundary conditions on the
inflow and outflow boundaries ΓL and ΓR that we describe in subsection 2.1.5. We
postpone the discussion on the boundary conditions to subsection (2.1.5).

2.1.3 Characteristic variables
The system (2.19) can be written in quasi-linear form as

∂U

∂t
+ FU

∂U

∂x
+ S(U) = 0, (2.21)

where

FU =
∂F

∂U
=

 0 1

−αQ
2

A2
+

β

2ρ

(
A

A0

)1/2

2α
Q

A

 .

Under the assumption A > 0 (that is a necessary condition to have a physical relevant
solution), the matrix FU has two real eigenvalues λ1 and λ2 and the corresponding left
eigenmatrix L is

L =

(
lT1
lT2

)
,

where li indicates the i-th eigenvector such that liFU = λili. For the typical values of
velocity, vessel area and elastic parameter β under physiological conditions, we have
that λ1 > 0 and λ2 < 0. Therefore the system is strictly hyperbolic and subcritical
(see [LeVeque, 2002] for these definitions).

The characteristic variables can be determined by integrating the differential system

∂W

∂U
= L.

It may be shown (see [Quarteroni and Formaggia, 2004]) that the two characteristic
variables are

W1 =
Q

A
+ 4

√
β

2ρ

(
A

A0

)1/2

, (2.22)
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W2 =
Q

A
− 4

√
β

2ρ

(
A

A0

)1/2

. (2.23)

For a detailed analysis of characteristic variables of the system (2.19), we refer the
reader to [Quarteroni and Formaggia, 2004].

2.1.4 Numerical approximation
In literature, several approaches have been proposed for the numerical approximation
of the one dimensional system of conservation laws (2.15) (see [Sherwin et al., 2003,
Blanco et al., 2007, Reymond et al., 2009]). Following [Formaggia et al., 2003], in
this work we use an explicit second order Taylor-Galerkin discretization of the system
(2.19). We write the Taylor expansion truncated to the second order at time tn such that
∆t = tn+1 − tn, yielding

Un+1 = Un + ∆t
∂U

∂t

∣∣∣∣n +
∆t2

2

∂2U

∂t2

∣∣∣∣n . (2.24)

We replace the time derivative by space derivative, exploiting (2.19). We define the
matrix

SU =
∂S

∂U
=

 0 0

−KR
Q

A2
+

β

2ρA0

(
A

A0

)1/2
∂A0

∂x
+

1

ρ

(
A

A0

)1/2
∂β

∂x

KR

A


and we obtain

∂U

∂t
= −S− ∂F

∂x
(2.25)

∂2U

∂t2
= −∂S

∂t
− ∂2F

∂t∂x
= −SU

∂U

∂t
− ∂

∂x

(
FU

∂U

∂t

)
= SU

(
S +

∂F

∂x

)
+

∂

∂x
(FUS) +

∂

∂x

(
FU

∂F

∂x

)
.

(2.26)

Remark 2.1.2. We point out that the derivation of the scheme is slightly more complex
than the standard Lax-Wendroff scheme, because of the presence of a non-constant
source term and of the explicit dependence of the momentum flux F on x through β
and A0.

From (2.24), (2.25) and (2.26), we obtain the temporal scheme

Un+1 = Un −∆t
∂

∂x

(
F(Un)− ∆t

2
FU(Un)S(Un)

)
+

∆t2

2

[
SU(Un)

∂F(Un)

∂x
+

∂

∂x

(
FU(Un)

∂F(Un)

∂x

)]
−∆t

(
S(Un)− ∆t

2
SU(Un)S(Un)

)
.

(2.27)

For space discretization, we employ linear finite elements. We subdivide the domain
Ω into Nel finite elements Ωe of size he. We indicate by Vh the space of continuous
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vector functions defined on Ω, linear on each element and V0
h the subspace of Vh whose

functions are zero at the endpoints. The finite element solution of (2.27) requires, for
n > 0, to find Un+1

h in Vh such that, for all ϕh ∈ V0
h,

(Un+1
h , ϕh) = (Un

h, ϕh)−∆t

[
F(Un

h)− ∆t

2
FU(Un

h)

(
S(Un

h) +
∂F(Un

h

∂x

)
,
∂ϕh
∂x

]
−∆t

[
S(Un

h)− ∆t

2
SU(Un

h)

(
S(Un

h +
∂F(Un

h

∂x
)

)
, ϕh

]
(2.28)

At a discrete level, this scheme is closed by introducing two boundary and two
compatibility conditions, that we will discuss in subsections 2.1.5 and 2.1.6.

The main advantage of this scheme is the low computational cost of each time step,
due to the explicit nature of the scheme. However, the explicit time discretization has
a drawback: it implies a limitation on the time step related to the so-called Courant-
Friedrichs-Lewy (CFL) condition. In particular, from [Quartapelle, 1993], a Von Neu-
mann stability analysis leads to the condition

λM
∆t

h
6

√
3

3
, (2.29)

where λM = max{λ1, λ2}.

2.1.5 Boundary conditions
From the analysis of the characteristics (see [Formaggia et al., 2009]), we can argue
that only one boundary condition can be imposed at each end of the tube. For the sake
of simplicity, we focus only on the left boundary (x = 0). We recall that W1 is the
characteristic variable entering the domain (2.22) and W2 is the characteristic variable
going out (2.23). Let here U = U(t) be the vector of variables at the boundary point.
A boundary condition has the general form

G(U(t)) = g(t), for t > 0, (2.30)

where G is a C1 function and g a given function of time. Not all the choices are
possible: we require that

rT1 (U)
∂G(U)

∂U
6= 0, (2.31)

where r1 is the right eigenvector of FU(U(t)) associated to the characteristic variable
W1. This condition corresponds to the request that the boundary condition is not on the
outgoing characteristic.

In practice, we are interested only in two specific types of boundary conditions that
we are now going to describe

Proximal and distal conditions

It is simple to verify that the prescription of the flow rate Q, the section area A or the
flow velocity u at one end of the tube is allowable (i.e. it satisfies (2.31)). For example,
at x = 0, we can impose

Q(0, t) = g(t), for t > 0,
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where g is a given function of time. This type of condition is clearly reflective and
a simple wave associated to the outgoing characteristic is partially reflected into the
domain. This kind of boundary conditions is useful when we have to impose data
coming from real measurements.

Absorbing boundary conditions

Absorbing boundary conditions (or non-reflecting boundary conditions) allow the sim-
ple wave associated to the exiting characteristic variable to go out without spurious
reflections. Therefore, this type of boundary conditions can be useful at the distal
boundary (x = L). If we indicate the second left eigenvector of FU with l2, follow-
ing [Thompson, 1987] and [Hedstrom, 1979], absorbing boundary conditions at x = L
are provided by

lT2

[
∂U

∂t
− S(U)

]
x=L

= 0, (2.32)

which is equivalent to require that

dW2(t)

dt
− lT2 S(W2(U(t)) = 0, (2.33)

whereW2(t) = W2(L, t), U(t) = U(L, t) and we recall that the characteristic variables
can be expressed in function of the physical variables. As this is a condition on the
incoming characteristics, the condition (2.31) is satisfied. From a numerical point of
view, the absorbing boundary condition (2.33) can be temporally discretized at time
tn+1 = tn + ∆t as

W n+1
2 = W n

2 + ∆tlT2 S
n = 0,

where l2 and S are computed from the solution at time tn.

2.1.6 Compatibility conditions
As we have noted, the boundary conditions prescribe only one unknown at each end
of the tube or one nonlinear function relating the two unknowns. However to solve
problem (2.28), we need to know both A and Q at the endpoints. Therefore, we need
two more conditions, that are called compatibility conditions and that are based on
the extrapolation of outgoing characteristics. These conditions have been described
in [Formaggia et al., 2003] and extended in [Malossi et al., 2012].

Let us consider the quasi-linear form of problem (2.19)

∂U

∂t
+ FU(U)

∂U

∂x
+ S(U) = 0. (2.34)

Let Λ and L the eigenvalue and left eigenvector matrix of FU, such that LFUL
−1 = Λ.

They have the form

Λ =

(
λ1 0

0 λ2

)
, L = ς

(
−λ2 1

−λ1 1

)
, (2.35)
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W
2

x0 x0 − λ2∆t

Time = tn

Time = tn+1 = tn + ∆t

Figure 2.2: Characteristic extrapolation for the 1D-FSI problem on the left side of the domain

where ς = 1/A (as detailed in [Formaggia et al., 2003]) and

λ1,2 = α
Q

A
±

√
α(α− 1)

(
Q

A

)2

+
A

ρ

∂ψ

∂A

= α
Q

A
±

√
α(α− 1)

(
Q

A

)2

+
β

2ρ

(
A

A0

)1/2

.

(2.36)

We recall that the characteristic variable W are defined as

∂W

∂U
= L

and, therefore, by left multiplying (2.34) by L, we obtain

L
∂U

∂t
+ LFU(U)L−1L

∂U

∂x
+ LS(U) = 0, (2.37)

and, by
∂W

∂x
=
∂L

∂x
U + L

∂U

∂x
, (2.37) can be written as

L
∂U

∂t
+ Λ

[
∂W

∂x
− ∂L

∂x
U

]
+ LS(U) = 0. (2.38)

We note that, assuming that L is constant in time,

DW

Dt
= L

∂U

∂t
+ Λ

∂W

∂x

and, consequently, (2.38) is equivalent to

DW

Dt
= Λ

∂L

∂x
U− LS(U). (2.39)

On each end point, we are interested only in the outgoing characteristic that we assume
for simplicity to be Wi. Therefore, we consider only one equation of the system (2.39)

DWi

Dt
= λi

∂lTi
∂x

U− lTi S(U). (2.40)
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2.2. Network of vessels

By introducing the same time discretization used in the Taylor-Galerkin formulation,
we can write the compatibility condition

lTi (Un+1 −Un
? ) = ∆t

(
λi
∂lTi
∂x

Un
? − lTi S(Un

? )

)
, (2.41)

where Un
? = (An? , Q

n
? )T is the foot of the characteristic.

The final set of boundary conditions for the finite element problem is computed
by solving a 2 × 2 linear system on each side of the tube whose first equation is the
numerical compatibility condition and the second equation is the physical boundary
condition (for simplicity here we consider only boundary conditions on flow rate or
section area):

Left

L21 L22

1/0 0/1


A

n+1

Qn+1

 =

f
n
L

gnL

 ,

Right

L11 L12

1/0 0/1


A

n+1

Qn+1

 =

f
n
R

gnR

 ,

(2.42)

where gnL and gnR are the values of the prescribed boundary condition on the left and on
the right side, respectively, and

fnL = L21A
n
? + L22Q

n
?

+∆t

(
λ2

(
∂L21

∂x
An? +

∂L22

∂x
Qn
?

)
− L21S1(Un

? )− L22S2(Un
? )

)
fnR = L11A

n
? + L12Q

n
?

+∆t

(
λ1

(
∂L11

∂x
An? +

∂L12

∂x
Qn
?

)
− L11S1(Un

? )− L12S2(Un
? )

)

2.2 Network of vessels

The model described in the previous section can be easily extended to handle a network
of vessels by a domain splitting technique, following what is done in [Formaggia et al.,
2009]. We split the network into a set of pipes and each one is modelled by a 1D-FSI
model. At every bifurcation or branch of the tree, the models are coupled with suitable
interface (or coupling) conditions.

For simplicity, we now detail only the case of a single bifurcation (see figure 2.3)
that is the simplest network. It can be described by a triplet of one dimensional models,
three boundary conditions (one inflow and two outflow conditions) and a set of coupling
conditions. Let us denote with x∗ the bifurcation point and with Ui, i = 1, 2, 3 the
unknowns of corresponding models. In x∗ we have six unknowns in total. Therefore,
we need six coupling conditions. Three equations are obtained by the continuity of
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2.2. Network of vessels

BC1 CC

BC2

BC3

vessel 1
vessel 2

vessel 3

Figure 2.3: Schematic representation of a bifurcation

mass flux and total pressure

PT =
ρ

2

Q2

A
+ β

(√
A

A0
− 1

)
across x∗:

Q1(x∗) = Q2(x∗) +Q3(x∗), (2.43)

ρ

2

Q2
1(x∗)

A1(x∗)
+ β1

(√
A1(x∗)

A0
− 1

)
=

ρ

2

Q2
2(x∗)

A2(x∗)
+ β2

(√
A2(x∗)

A0
− 1

)
,(2.44)

ρ

2

Q2
1(x∗)

A1(x∗)
+ β1

(√
A1(x∗)

A0
− 1

)
=

ρ

2

Q2
3(x∗)

A3(x∗)
+ β3

(√
A3(x∗)

A0
− 1

)
.(2.45)

Then, at a numerical level, three compatibility conditions (one per vessel) are de-
fined to close the numerical system, in analogy with the compatibility conditions (2.41)
for the single vessel case.

The three equations (2.43)-(2.45) and the three compatibility conditions define a
nonlinear system that we solve to have the six unknowns that are used as boundary
conditions for the 1D-FSI models. We can now summarize how we proceed to solve
the network system at each time step:

(i) we solve the non-linear system of coupling conditions to compute Ui at each
bifurcation and branch of the network;

(ii) we solve each model using endpoints values Ui coming from either the coupling
conditions at network junctions or boundary conditions at proximal and distal
points.
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CHAPTER3
Optimal control for one dimensional FSI models

IN this chapter we apply the Lagrangian formalism described in Section 1.2 to the
model presented in the previous chapter to estimate a parameter of the model. In
particular, we want to estimate the compliance parameter β (depending on the

spatial variable x), given some measurements inside the domain of the model.
The chapter is organized as follows. In Section 3.1, we present the adjoint model

(subsection 3.1.2) and the optimality condition (subsection 3.1.6) for the single vessel
problem, with particular attention to the numerical discretization of the adjoint prob-
lem (subsection 3.1.3) and the derivation of the boundary and compatibility conditions
(subsection 3.1.4 and 3.1.5, respectively). Then, in Section 3.2, we describe how to
extend the framework to network problems, with particular attention to the treatment of
adjoint coupling conditions (subsection 3.2.2), and we show an application to a bifur-
cation (subsection 3.2.5). Finally, in Section 3.3 we discuss the overall optimal control
problem framework.

3.1 Optimal control for a single one dimensional FSI model

3.1.1 Lagrangian functional
As described in Section 1.2, we have to define a Lagrangian functional to guide the pa-
rameter estimation procedure. We consider problem (2.19), as state equation, endowed
with two generic scalar boundary conditions

G0(U(0, t)) = g0(t) GL(U(L, t)) = gL(t),

where G0 and GL can be any appropriate functions of the state variables U(x, t) =
(A(x, t), Q(x, t)) evaluated on the boundaries that satisfy (2.31), and g0 and gt are
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3.1. Optimal control for a single one dimensional FSI model

prescribed functions of time.
With these assumptions we can write the Lagrangian functional:

L(U, β,m) :=J(U, β) + 〈e(U, β),m〉

=J(U, β) +

∫ T

0

∫ L

0

((
∂U

∂t
+
∂F(U; β)

∂x
+ S(U; β)

)
,m

)
dxdt

+

∫ T

0

[((G0(U(0, t))− g0(t)),mC0) + ((GL(U(L, t))− gL(t)),mCL)]dt

+

∫ L

0

((U(x, 0)−U0(x)),m0)dx

(3.1)

where m = (m,mC0, cCL,m0)T is the set of adjoint variables and e(U, β) is the state
model. We observe that m(x, t) and m0(x) are vector functions, while mC0(t) and
mCL(t) are scalar functions.

We define J(U, β) as cost functional that take into account the difference between
the solution of (2.19) and some measurements, and can be written in a general way

J(U, β) = J in(U, β) + Jrb(U, β) + J lb(U, β)

where J in(U, β) depends only on quantities that are internal to the domain (0, L) and
Jrb(U, β) and J lb(U, β) depend on quantities on the right and left side of the boundary,
respectively.

In particular in real applications, we will consider the functional

J(U) =
1

2

Nt∑
k=0

Nx∑
j=0

(A(xj, tk)− AM(xj, tk))
2 . (3.2)

where A(x, t) is the first component of the state equation solution U(x, t), namely the
section area of the vessel, AM(x, t) are section area measurements and {xj}Nxj=1 and
{tk}Ntk=0 are the space and time nodes on which measurements are taken.

Remark 3.1.1. From this point on, we will put on evidence all the quantities that de-
pends directly on the compliance parameter β.

3.1.2 Adjoint state equation
We recall that the adjoint problem is the derivative of the Lagrangian functional with
respect to the state variable: LU(U, β,m) = 0. To compute LU(U, β,m) = 0 we
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3.1. Optimal control for a single one dimensional FSI model

integrate by parts the first integral in (3.1):

L(U, β,m) =J(U, β) +

∫ T

0

∫ L

0

(
−UT ∂m

∂t
− FT (U; β)

∂m

∂x
+ ST (U; β)m

)
dxdt

+

∫ T

0

[((G0(U(0, t))− g0(t)),mC0)− (FT (U; β)m)(0, t)]dt

+

∫ T

0

[((GL(U(L, t))− gL(t)),mCL) + (FT (U; β)m)(L, t)]dt

+

∫ L

0

[((U(x, 0)−U0(x)),m0)− (UTm)(x, 0)]dx

+

∫ L

0

(UTm)(x, T )dx.

From this form of the Lagrangian functional we can easily write the adjoint equation.



∂m

∂t
+ FT

U(U ; β)
∂m

∂x
− STU(U ; β)m = J inU (U, β) x ∈ (0, L), t ∈ (0, T ),

∂G0(U(0, t))

∂U

T

mC0 − (FT
U(U; β)m)(0, t) + J lbU(U, β) = 0 t ∈ (0, T ),

∂GL(U(L, t))

∂U

T

mCL + (FT
U(U; β)m)(L, t) + JrbU (U, β) = 0 t ∈ (0, T ),

m0 = m(x, 0) x ∈ (0, L)

m(x, T ) = 0 x ∈ (0, L)
(3.3)

where J (•)
U (U, β) =

∂J (•)(U, β)

∂U
is the Fréchet derivative of the functional J(U, β)

with respect to U. We note that the adjoint equation is a linear hyperbolic equation
evolving backward in time, i.e. it evolves from the final time T to the initial time 0.
We also observe that the flux matrix FT

U(U; β) is the transpose of the Jacobian matrix
of the state problem (2.19) and, therefore, the two matrices have the same eigenvalues
and the left eigenvectors of the one are the right eigenvectors of the other.

3.1.3 Numerical approximation
We solve the adjoint equation using a discretization analogous to that used to solve the
state equation i.e. a second order Taylor-Galerkin scheme. As in subsection 2.1.4 we
write the Taylor expansion truncated to the second order at time tn, but with ∆t =
tn − tn+1 < 0

mn = mn+1 + ∆t
∂m

∂t

∣∣∣∣n+1

+
∆t2

2

∂2m

∂t2

∣∣∣∣n+1

,

where mn = m(x, tn). For the sake of simplicity, from this point on, in this subsection
we omit the dependence of FU. SU and JU on U and β.
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3.1. Optimal control for a single one dimensional FSI model

We replace the time derivative by space derivative, exploiting the first equation of
(3.3), and we obtain

∂m

∂t
= −FT

U

∂m

∂x
+ STUm + J intU , (3.4)

and
∂2m

∂t2
=

∂

∂t

(
−FT

U

∂m

∂x
+ STUm + J intU

)
(3.5)

We note that, using Einstein notation,1 the terms in the right hand side of (3.5) can
be written as

∂

∂t

(
∂Fj
∂ui

∂mj

∂x

)
=

(
∂

∂t

∂Fj
∂ui

)
∂mj

∂x
+
∂Fj
∂ui

(
∂

∂t

∂mj

∂x

)
=

∂2Fj
∂ui∂uk

∂uk
∂t

∂mj

∂x︸ ︷︷ ︸
−T1

+
∂Fj
∂ui

(
∂

∂t

∂mj

∂x

)
︸ ︷︷ ︸

−T2

∂

∂t

(
∂Sj
∂ui

mj

)
=

(
∂

∂t

∂Sj
∂ui

)
mj +

∂Sj
∂ui

∂mj

∂t
=

∂2Sj
∂ui∂uk

∂uk
∂t

mj︸ ︷︷ ︸
T3

+
∂Sj
∂ui

∂mj

∂t︸ ︷︷ ︸
T4

∂

∂t

∂J in

∂ui
=

∂2J in

∂ui∂uk

∂uk
∂t︸ ︷︷ ︸

T5

We point out that m is independent of u and consequently we find out that

T1 + T3 + T5 =
∂uk
∂t

[
− ∂2Fj
∂ui∂uk

∂mj

∂x
+

∂2Sj
∂ui∂uk

mj +
∂2J in

∂ui∂uk

]
=

=
∂uk
∂t

∂

∂uk

[
−∂Fj
∂ui

∂mj

∂x
+
∂Sj
∂ui

+
∂J in

∂ui

]
=
∂uk
∂t

∂

∂uk

(
∂mi

∂t

)
= 0

(3.6)
Therefore, thanks to (3.6), (3.5) simplifies as

∂2m

∂t2
= −FT

U

∂

∂x

(
−FT

U

∂m

∂x
+ STUm + J inU

)
+ STU

(
−FT

U

∂m

∂x
+ STUm + J inU

)
(3.7)

Finally, from (3.4) and (3.7), after time discretization we obtain the scheme

mn = mn+1 −∆t

(
FT

U

∂m

∂x
− STUm− J inU

)∣∣∣∣n+1

+

+
∆t2

2

[
−FT

U

∂

∂x

(
−FT

U

∂m

∂x
+ STUm + J inU

)
+ STU

(
−FT

U

∂m

∂x
+ STUm + J inU

)]∣∣∣∣n+1

(3.8)
1Repeated indexes on the same side of an expression are implicitly summed, for instance

aibi ≡
∑
i

aibi

and
ai,kbi ≡

∑
i

ai,kbi.
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3.1. Optimal control for a single one dimensional FSI model

Remark 3.1.2. We remind that, due to the fact that the adjoint equation evolves back-
ward in time, in (3.8) we compute the n-th temporal value exploiting the (n + 1)-th
temporal value. We stress moreover that the time step ∆t = tn − tn+1 we use in the
adjoint equation is negative.

For the space discretization of the adjoint equation, we make use of the same strategy
that we employed to discretize the state equation in subsection 2.1.4, i.e. linear finite
elements. We subdivide the domain Ω = [0, L] into Nel finite elements Ωe of size he.
We indicate by Vh the space of continuous vector functions defined on Ω, linear on
each element and V0

h the subspace of Vh whose functions are zero on the end points of
Ω. The finite element solution of (2.27) requires to find mn+1

h in Vh such that, for all
ϕh ∈ V0

h and for n > 0,

(mn, ϕh) =
(
mn+1, ϕh

)
−∆t

((
FT

U

∂m

∂x
− STUm− J inU

)
, ϕh

)
+

∆t2

2

(
−FT

U

∂

∂x

(
−FT

U

∂m

∂x
+ STUm + J inU

)
, ϕh

)
+

∆t2

2

(
STU

(
−FT

U

∂m

∂x
+ STUm + J inU

)
, ϕh

)
.

(3.9)

We now integrate by parts the second term in the right hand side of (3.9)(
−FT

U

∂

∂x

(
−FT

U

∂m

∂x
+ STUm + J inU

)
, ϕh

)
=

(
−FT

U

∂m

∂x
+ STUm + J inU ,

∂FUϕh
∂x

)
= −

(
FT

U

∂m

∂x
,
∂FUϕh
∂x

)
+

(
STUm,

∂FUϕh
∂x

)
+

(
J inU ,

∂FUϕh
∂x

)
= −

(
∂FT

U

∂x
FT

U

∂m

∂x
, ϕh

)
−
(
FT

UF
T
U

∂m

∂x
,
∂ϕh
∂x

)
+

(
∂FT

U

∂x
STUm, ϕh

)
+

(
FT

US
T
U

∂m

∂x
,
∂ϕh
∂x

)
+

(
∂FT

U

∂x
J inU , ϕh

)
+

(
FT

UJ
in
U ,

∂ϕh
∂x

)
.
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Replacing into (3.9) and rearranging the terms, we get

(mn, ϕh) =
(
mn+1, ϕh

)
+ ∆t

[((
STU +

∆t

2

∂FT
U

∂x
STU +

∆t

2
STUS

T
U

)
m, ϕh

)
+

((
−FT

U −
∆t

2

∂FT
U

∂x
FT

U −
∆t

2
STUF

T
U

)
∂m

∂x
, ϕh

)
−
(

∆t

2

(
FT

UF
T
U − FT

US
T
U

) ∂m
∂x

,
∂ϕh
∂x

)]
+ ∆t

[((
I +

∆t

2
STU +

∆t

2

∂FT
U

∂x

)
J inU , ϕh

)
+

∆t

2

(
FT

UJ
in
U ,

∂ϕh
∂x

)]
.

We observe that for this scheme we have to fulfill the same CFL condition for the
state equation i.e. (2.29), because the flux operator of the state and adjoint problem
have the same eigenvalues. Therefore, to be sure to satisfy the condition we use the
same space and time discretization for both the problems.

3.1.4 Boundary conditions
We observe that in (3.3) have two scalar boundary conditions at each end, involving
the variables mC0 and m(0, t) on the left boundary and mCL and m(L, t) on the right
boundary, respectively. We are interested primarily in the variable m. To eliminate the
Lagrangian multipliers mC0 and mCL, we premultiply the second and third equation of

(3.3) by the vectors v0 and vL that are in the orthogonal space to
∂G0(U(0, T ))

∂U
and

∂GL(U(L, T ))

∂U
respectively, thus obtaining

vT0 [(FT
U(U; β)m)(0, t)− J lbU(U(0, t))] = 0,

vTL [(FT
U(U; β)m)(L, t) + JrbU (U(L, t))] = 0.

We obtain then one scalar boundary condition per end point, involving only m(0, t) and
m(L, t), respectively:

vT0 (FT
U(U; β)m)(0, t) = vT0 J

lb
U(U(0, t)),

vTL(FT
U(U; β)m)(L, t) = −vTLJrbU (U(L, t)).

(3.10)

In Table 3.1 we represent the quantities that appear in the adjoint boundary condi-
tions, depending to the state boundary conditions that are described in subsection 2.1.5.

State
∂G/∂U v vTFTU vT JUCondition

A (1, 0)T (0, 1)T ((FU)12, (FU)22) (JU)2
Q (0, 1)T (1, 0)T ((FU)11, (FU)21) (JU)1

p

(
β

2(AA0)1/2
, 0

)T
(0, 1)T ((FU)12, (FU)22) (JU)2

u (−u, 1)T (1, u)T ((FU)11 + u(FU)12, (FU)22) + u(FU)22) (JU)1 + u(JU)2

Table 3.1: Terms in adjoint boundary conditions in relation to the state boundary conditions
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Remark 3.1.3 (Computation of mC0 and mCL). We note that once we compute the
value of m on the boundaries, it is easy to compute mC0 and mCL with the formulae

mC0 =
1(

∂G0(U(0, T ))

∂U

)
1

(
(FU)2,1m2(0, t)−

(
J lbU(U(0, t))

)
1

)
,

mCL =− 1(
∂GL(U(L, T ))

∂U

)
1

(
(FU)2,1m2(L, t) +

(
JrbU (U(L, t))

)
1

) (3.11)

that is obtained from the boundary conditions in (3.3) and by noting that (FU)1,1 = 0

3.1.5 Compatibility conditions
As for the state equation, the adjoint boundary conditions (3.10) are composed by a sin-
gle scalar condition for the two unknowns on each boundary side. To solve the problem
(3.3) we have to add two more conditions (the compatibility conditions) and we use the
same approach of subsection 2.1.6, i.e. the extrapolation of the outgoing characteris-
tics, which consists in extending the equation on the boundary and we getting the value
of an unknown from the value at the previous time step.

Let Λ and R be the matrices of eigenvalues and right eigenvectors of the FU respec-
tively, such that R−1FUR = Λ. They have the form

Λ =

(
λ1

λ2

)
R = L−1 =

1

ς(λ1 − λ2)

(
1 −1

λ1 −λ2

)
=:
(
r1 r2

)
,

where L is the left eigenvectors matrix of FU in (2.35), ς = 1/A, r1 and r2 are the right
eigenvectors of FU and λ1 and λ2 are the eigenvectors of FU defined in (2.36).

We define the characteristic variable V such that

∂V

∂m
= RT .

Multiplying by RT equation (3.3) we obtain

RT ∂m

∂t
+RTFT

UR
−TRT ∂m

∂x
= RT

(
STUm + J inU

)
,

so that
∂V

∂t
+ ΛRT ∂m

∂x
= RT

(
STUm + J inU

)
.

Therefore
∂V

∂t
+ Λ

(
∂V

∂x
− ∂RT

∂x
m

)
= RT

(
STUm + J inU

)
. (3.12)

We note that, assuming that R is constant in time,

DV

Dt
= RT ∂m

∂t
+ Λ

∂V

∂x
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3.1. Optimal control for a single one dimensional FSI model

and, consequently, (3.12) is equivalent to

DV

Dt
= Λ

∂RT

∂x
m +RT

(
STUm + J inU

)
. (3.13)

On each end point, we are interested only in the outgoing characteristic that we assume
for simplicity to be Vi. Therefore, we consider only one equation of the system (3.13)

DVi

Dt
= λi

∂rTi
∂x

U− rTi S(U). (3.14)

By introducing the same time grid used in Taylor-Galerkin formulation and given
the value Vn+1, we compute the value Vn

i using the characteristic outgoing from the
foot Vn+1

i,∗

1

∆t

(
Vn
i −Vn+1

i,∗
)
−λn+1

i

(
∂rTi
∂x

)n+1

mn+1
∗ −

(
rTi
)n+1

[(
STU
)n+1

mn+1
∗ +

(
J inU
)n+1

]
= 0.

V1 x0 − λ1∆t

x0
Time = tn+1

Time = tn = tn+1 + ∆t

Figure 3.1: Characteristic extrapolation for the adjoint problem on the left side of the domain

Thus, the compatibility condition is(
rTi
)n+1

mn =
(
rTi
)n+1

{
mn+1
∗ + ∆t

[(
STU
)n+1

mn+1
∗ +

(
J inU
)n+1

]}
+ ∆t λn+1

i

(
∂rTi
∂x

)n+1

mn+1
∗ .

Furthermore, the derivative of R with respect to x is

∂R

∂x
= − 1

ς(λ1 − λ2)2

(
∂λ1

∂x
− ∂λ2

∂x

)(
1 −1

λ1 −λ2

)
+

1

ς(λ1 − λ2)

 0 0

∂λ1

∂x
−∂λ2

∂x

 ,

where the derivatives of the eigenvalues with respect to x are computed by deriving the
equation (2.36)

Finally, we impose the boundary and compatibility conditions solving a 2× 2 linear
system on each side of the domain(

rT1
vT0 F

T
U(U(0, tn))

)(
mn

1

mn
2

)
=

rT1
[
mn+1
∗ + ∆t

(
STUm

n+1
∗ + J inU

)]
+ ∆tΛ

∂rT1
∂x

mn+1
∗

vT0 J
lb
U(U(0, tn))

 ,

(
rT2

vTLF
T
U(U(L, tn))

)(
mn

1

mn
2

)
=

rT2
[
mn+1
∗ + ∆t

(
STUm

n+1
∗ + J inU

)]
+ ∆tΛ

∂rT2
∂x

mn+1
∗

vTLJ
rb
U (U(L, tn))

 .
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3.1. Optimal control for a single one dimensional FSI model

3.1.6 Optimality condition
Once we have computed the solutions of the state and the adjoint problems, we still
need to enforce the optimality condition given by the last KKT condition in (1.7)-(1.9).
We recall that such condition is obtained as the derivative of the Lagrangian with respect
to the parameter. We write the relation explicitly.

∂L
∂β

(U, β,m) =
∂J

∂β
(U, β) +

∂

∂β
〈e(U, β),m〉

=
∂J

∂β
(U, β) +

∂

∂β

{∫ T

0

∫ L

0

(
∂U

∂t
+
∂F

∂x
(U; β) + S(U; β),m

)
dxdt

+

∫ T

0

[((G0(U(0, t))− g0(t)),mC0) + ((GL(U(L, t))− gL(t)),mCL)]dt

+

∫ L

0

((U(x, 0)−U0(x)),m0)dx

}
=
∂J

∂β
(U, β) +

∫ T

0

∫ L

0

(
∂

∂β

∂F

∂x
(U; β) +

∂S

∂β
(U; β),m

)
dxdt

+

∫ T

0

[(
∂G0(U(0, t))

∂β
,mC0

)
+

(
∂GL(U(L, t))

∂β
,mCL

)]
dt

(3.15)

where

∂S

∂β
(U ; β) =

 0

− 1

3ρ

(
A

A0

)3/2
∂A0

∂x

 ,

and

∂

∂β

∂F

∂x
(U ; β) =


0

1

2ρ

√
A

A0

∂A

∂x
− 1

6ρ

[(
A

A0

)3/2
]
∂A0

∂x

 .

We note that the term involving the initial conditions disappears because it does not
depend on β. For the same reason, the terms that contain the multipliers mC0 or mCL

are present only if the functions GL or G0 depend explicitly on β, for instance when
we impose conditions on the pressure or absorbing boundary conditions. Therefore we
need to compute explicitly mC0 or mCL from (3.11) only in these cases.

For example, in the simplest case in which

• we do not take into account the vessel tapering (i.e. ∂A0/∂x = 0),

• we do not have any explicit dependence on β in the cost functional J (e.g. the one
in (3.2) ) ,

• we do not have any explicit dependence on β in the boundary functions GL and
G0 (e.g. conditions on flow rate or section area),
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3.2. Optimal control for a network of 1D-FSI models

equation (3.15) simplifies as

∂L
∂β

(U, β,m) =

∫ T

0

∫ L

0

(m)2

2ρ

√
A

A0

∂A

∂x
dxdt. (3.16)

3.2 Optimal control for a network of 1D-FSI models

The previous framework can be extended to handle the more general case of a network
of vessels. We consider, as state model, the model described in section 2.2 composed
by the set Nm of models connected by the set Nc of coupling nodes:



∂Ui

∂t
+
∂F

∂x
(Ui; βi) = S(Ui; βi) x ∈ (0, Li), t ∈ (0, T ), ∀i ∈ Nm

Gk
0(Uk(0, t), β) = gk0(t) t ∈ (0, T ), ∀k ∈ N init

m

Gk
L(Uk(Lk, t), β) = gkL(t) t ∈ (0, T ), ∀k ∈ N term

m∑
i∈N

Rj
m
Qi(Li, t) =

∑
i∈N

Lj
m
Qi(0, t) t ∈ (0, T ), ∀j ∈ Nc

Pi(Li, t) = Pk(Lk, t) t ∈ (0, T ), i ∈ NRj
m , ∀j ∈ Nc,

∀k ∈ NRj
m , k 6= i

Pi(Li, t) = Pk(0, t) t ∈ (0, T ), i ∈ NRj
m , ∀j ∈ Nc,

∀k ∈ N Lj
m

Ui(x, 0) = U0,i(x) x ∈ (0, Li), ∀i ∈ Nm
(3.17)

where UTOT = {Ui}i∈Nm , βTOT = {βi}i∈Nm and N term
m , N init

m , NRj
m , N Lj

m are the
subsets ofNm that are formed by the distal vessels, the proximal vessels, the vessels on
the right of the j-th coupling node and the vessels on the left of the j-th coupling node,
respectively. For each coupling node, we call i the first element of NRj

m .
The conditions

Gk
0(Uk(0, t), β) = gk0(t), Gk

L(Uk(Lk, t), β) = gkL(t)

are generic scalar boundary conditions on proximal and distal vessels, where Gk
0 and

Gk
L can be any appropriate functions of the state variables evaluated on the boundaries

that satisfy (2.31) and gk0 and gkt are the given functions of time.
We recall that this model consists in the splitting of the network into a set of pipes,

which are modelled by a set of 1D-FSI models (one for each vessel) and they are cou-
pled with coupling conditions at every bifurcation or branch that enforce the conserva-
tion of the mass (fourth equation in (3.17)) and continuity of the total pressure (fourth
and fifth equations of (3.17))

3.2.1 Lagrangian functional
The Lagrangian associated to the state problem (3.17) can be easily written as
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3.2. Optimal control for a network of 1D-FSI models

L(UTOT , βTOT ,mTOT ) =

= J(UTOT , βTOT ) +
∑
i∈Nm

∫ T

0

∫ Li

0

((
∂Ui

∂t
+
∂F(Ui; βi)

∂x
+ S(Ui; βi)

)
,mi

)
dxdt+

+
∑

k∈N initm

∫ T

0

(
Gk

0(Uk(0, t))− gk0(t),mC0,k

)
dt

+
∑

k∈N termm

∫ T

0

(
Gk
L(Uk(Lk, t))− gkL(t),mCL,k

)
dt+

+
∑
j∈Nc

∫ T

0

 ∑
i∈N

Rj
m

Qi(Li, t)−
∑
i∈N

Lj
m

Qi(0, t),mCC,j

 dt

+
∑
j∈Nc

∑
k∈N

Rj
m

k 6=i

∫ T

0

(
Pi(Li, t)− Pk(Lk, t),mCCRj ,k

)

+
∑
j∈Nc

∑
k∈N

Lj
m

∫ T

0

(
Pi(Li, t)− Pk(0, t),mCCLj ,k

)
+
∑
i∈Nm

∫ Li

0

(Ui(x, 0)−U0,i(x),m0,i) dx

(3.18)

where mTOT is the set of all the adjoint variables. As in the single vessel case (3.1), mi

and ,m0,i, i ∈ Nm are vector functions, while all the other adjoint variables are scalar
variables.

We define J(UTOT , βTOT ) as cost functional that takes into account the difference
between the solution of (2.19) and some measurements, and can be written in a general
way

J(UTOT , βTOT ) =
∑
i∈Nm

J in(Ui, βi) +
∑

k∈N initm

J lb(Uk, βk) +
∑

k∈N termm

Jrb(Uk, βk)

+
∑
j∈Nc

 ∑
k∈N

Rj
m

Jrb(Uk, βk) +
∑
k∈N

Lj
m

J lb(Uk, βk)

 ,

where

• J in(Ui, βi) depends only on the quantities inside the i-th vessel;

• J lb(Uk, βk) depends on the quantities on the left extreme of the k-th vessel;

• Jrb(Uk, βk) depends on the quantities on the right extreme of the k-th vessel.
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3.2. Optimal control for a network of 1D-FSI models

3.2.2 Adjoint problem
To obtain the adjoint problem we have to compute the derivative of the Lagrangian
functional with respect to the state variable, namely LUTOT

(UTOT , βTOT ,mTOT ) = 0.
After some computations, the adjoint problem can be written as

∂mi

∂t
+ FT

U(Ui; βi)
∂mi

∂x
− STU(Ui; βi)mi = J inU (Ui) x ∈ (0, Li), t ∈ (0, T ),

∀i ∈ Nm,

∂Gk
0(Uk(0, T ))

∂U

T

mC0,k − (FT
U(Uk; βk)mk)(0, t) = J lbU(Uk) t ∈ (0, T ),

∀k ∈ N init
m ,

∂Gk
L(Uk(Lk, T ))

∂U

T

mCL,k + (FT
U(Uk; βk)mk)(L, t) = JrbU (Uk) t ∈ (0, T ),

∀k ∈ N term
m ,

∂Qi(Li, t)

∂U
mCC,j+

+
∂Pi(Li, t)

∂U

(∑
k∈N

Rj
m

k 6=i

mCCRj ,k +
∑

k∈N
Lj
m
mCCLj ,k

)
+

+ (FT
U(Ui; βi)mi)(Li, t) = −JrbU (Ui) t ∈ (0, T ),

i ∈ NRj
m ,

∀j ∈ Nc
∂Qk(Lk, t)

∂U
mCC,j −

∂Pk(Lk, t)

∂U
mCCRj ,k+

+ (FT
U(Uk; βk)mk)(Lk, t) = −JrbU (Uk) t ∈ (0, T ),

∀j ∈ Nc,
∀k ∈ NRj

m , k 6= i

∂Qk(0, t)

∂U
mCC,j +

∂Pk(0, t)

∂U
mCCLj ,k+

+ (FT
U(Uk; βk)mk)(0, t) = J lbU(Uk) t ∈ (0, T ),

∀j ∈ Nc,
∀k ∈ N Lj

m

m0,i = mi(x, 0) x ∈ (0, Li),

∀i ∈ Nm

mi(x, T ) = 0 x ∈ (0, Li),

∀i ∈ Nm.
(3.19)

The adjoint problem for a network of vessel (3.19) has a structure similar to the
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3.2. Optimal control for a network of 1D-FSI models

adjoint problem for a single vessel (3.3). They are both composed by linear hyperbolic
backward-in-time equations and have analogous boundary conditions (for the treatment
of adjoint boundary conditions we refer to 3.1.4). The main difference lays in the
presence of coupling conditions.

We solve numerically problem (3.19) by considering each vessel model in parallel,
discretized by a second order Taylor-Galerkin scheme in time and linear finite element
method in space (exactly as we described for the single vessel model in subsection
3.1.3). At end points of each vessel we impose boundary conditions, int the same
way as we described in subsection 3.1.4) if the vessel is distal or proximal as well as
coupling conditions. Then we close the system with numerical compatibility conditions
as in subsection 3.1.5.

3.2.3 Adjoint coupling conditions
We now describe how we treat the coupling conditions in the adjoint problem. We
consider a generic coupling node j inside the network. We define NRj

m the ordered set
of models that enter the node and N Lj

m the ordered set of models that leave the node,
as shown in figure 3.2. Obviously, each set has at least one member. We call i the first
member of NRj

m . We define njR the cardinality of NRj
m , njL the cardinality of N Lj

m and
nj = njR + njL.

j-th node

i-th vessel

NRj
m

N Lj
m

Figure 3.2: Generic coupling node configuration

We recall that the adjoint coupling conditions have the form
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∂Qi(Li, t)

∂Ui

mCC,j+

+
∂Pi(Li, t)

∂Ui

(∑
k∈N

Rj
m

k 6=i

mCCRj ,k +
∑

k∈N
Lj
m
mCCLj ,k

)
+

+ (FT
Ui

(Ui; βi)mi)(Li, t) = −JrbUi
(Ui) t ∈ (0, T ),

i ∈ NRj
m ,

∀j ∈ Nc
∂Qk(Lk, t)

∂Uk

mCC,j −
∂Pk(Lk, t)

∂Uk

mCCRj ,k+

+ (FT
Uk

(Uk; βk)mk)(Lk, t) = −JrbUk
(Uk) t ∈ (0, T ),

∀j ∈ Nc,
∀k ∈ NRj

m , k 6= i

∂Qk(0, t)

∂Uk

mCC,j +
∂Pk(0, t)

∂Uk

mCCLj ,k+

+ (FT
Uk

(Uk; βk)mk)(0, t) = J lbUk
(Uk) t ∈ (0, T ),

∀j ∈ Nc,
∀k ∈ N Lj

m

We observe that these conditions constitute a system of 2nj equations in the 3nj

variables (mCC,j,mCCRj ,mCCLj ,mRj ,mLj) where

mCCRj = {mCCRj ,k, k ∈ N
Rj
m , k 6= i} mCCLj = {mCCLj ,k, k ∈ N

Lj
m }

mRj = {mi(Li, t), i ∈ N
Rj
m } mLj = {mi(0, t), i ∈ N

Lj
m }

We write this system in matrix form

Amj
CC + F jmj = J j, (3.20)

where

mj =

(
mRj

mLj

)
∈ R2nj , mj

CC =

mCC,j

mCCRj

mCCLj

 ∈ Rnj ,

and

A =


∂Qi(Li, t)

∂Ui

∂Pi(Li, t)

∂Ui

· · · ∂Pi(Li, t)

∂Ui

∂Pi(Li, t)

∂Ui

· · · ∂Pi(Li, t)

∂Ui

QU,Rj P2
U,R · · · P

njR
U,R

QU,Lj P1
U,L · · · P

njL
U,L

 ∈ R(2nj)×nj ,
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F j =



FRj1

. . .

FRj
njR

FLj1

. . .

FLj
njL


∈ R2nj×2nj ,

J j ∈ R2×nj , (J j)k =


−JrbU (Ui) k = 1,

−JrbU (Uk) 1 < k 6 njR,

J lbU(Uk) njR < k 6 nj

and

QU,Rj ∈ R2(njRj
−1)

(QU,Rj)k =

{
0 if k is odd,
1 if k is even,

QU,Lj ∈ R2njLj (QU,Lj)k =

{
0 if k is odd,
1 if k is even,

Pk
U,R ∈ R2(njRj

−1)×2
, k ∈ NRj

m , k 6= i,

(
Pk

U,R

)
l,∗ =


( 0, 0 ) l 6= k(
−
(
∂Pk(Lk, t)

∂Uk

)
1

, −
(
∂Pk(Lk, t)

∂Uk

)
2

)
l = k

Pk
U,L ∈ R2njLj

×2
, k ∈ N Lj

m ,

(
Pk

U,L

)
l,∗ =


( 0, 0 ) l 6= k((

∂Pk(0, t)

∂Uk

)
1

,

(
∂Pk(0, t)

∂Uk

)
2

)
l = k

FRjk = FT
Uk

(Uk(Lk, t); βk) ∈ R2×2, k ∈ NRj
m ,

FLjk = FT
Uk

(Uk(0, t); βk) ∈ R2×2, k ∈ N Lj
m ,

As for the boundary conditions, we are interested primarily in the variables mj and,
therefore, to eliminate the Lagrangian multipliers mj

CC , we premultiply the system
(3.20) by a matrix

B =



b1,1 b1,2 b1,3 · · · b1,nj

b2,1 b2,2

b3,1 b3,3

... . . .
bnj ,1 bnj ,nj

 ∈ Rnj×(2nj)
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where

b1,1 =

 1(
∂Pi
∂Ui

)
1

0



b1,k =



 1(
∂Pk
∂Uk

)
1

0

 1 < k 6 njRj

− 1(
∂Pk
∂Uk

)
1

0

 njRj < k 6 njLj

bk,1 =

−
(
∂Pi
∂Ui

)
2(

∂Pi
∂Ui

)
1

1



bk,k =



−
(
∂Pk
∂Uk

)
2(

∂Pk
∂Uk

)
1

1

 1 < k 6 njRj


(
∂Pk
∂Uk

)
2(

∂Pk
∂Uk

)
1

− 1

 njRj < k 6 njLj

The rows of B are orthogonal to the columns of A. In this way, we eliminate the
variable mj

CC and we have to solve the linear system of size 2nj × 2nj

BF jmj = BJ j. (3.21)

Remark 3.2.1 (Computation of mC0 and mCL). We note that once we have computed
mj , we recover easily to compute mj

CC by inverting the relations (3.20)

mj
CC = A†(J j −F jmj),

where A† is the pseudo-inverse of A.

3.2.4 Optimality condition
Once we compute UTOT from the state problem (3.17) and mTOT from the adjoint
problem (3.19), we can compute the optimality condition, deriving the Lagrangian
(3.18) with respect to βTOT

56



i
i

“thesis” — 2013/10/7 — 22:03 — page 57 — #65 i
i

i
i

i
i

3.2. Optimal control for a network of 1D-FSI models

∂L
∂βTOT

(UTOT , βTOT ,mTOT ) =
∂J

∂βTOT
(UTOT , βTOT )

+
∑
i∈Nm

∫ T

0

∫ Li

0

((
∂

∂βi

∂F(Ui; βi)

∂x
+
∂S

∂βi
(Ui; βi)

)
,mi

)
dxdt+

+
∑

k∈N initm

∫ T

0

(
∂Gk

0

∂βk
(Uk(0, t), βk),mC0,k

)
dt

+
∑

k∈N termm

∫ T

0

(
∂Gk

L

∂βk
(Uk(Lk, t), βk),mCL,k

)
dt+

+
∑
j∈Nc

∑
k∈N

Rj
m

k 6=i

∫ T

0

(
∂Pi
∂βi

(Li, t)−
∂Pk
∂βk

(Lk, t),mCCRj ,k

)

+
∑
j∈Nc

∑
k∈N

Lj
m

∫ T

0

(
∂Pi
∂βi

(Li, t)−
∂Pk
∂βk

(0, t),mCCLj ,k

)

(3.22)

where
∂Pi
∂βi

(x, t) =

(√
Ai(x, t)

A0
i

− 1

)
.

We note that the optimality condition does not depend on m0,i and mCC,j because
initial conditions as well as the coupling conditions stating the conservation of mass are
independent of the compliance parameter. In the same way, if the boundary conditions
are independent of βTOT (i.e. conditions on area, flow rate or velocity), the adjoint
variables on the boundaries do not appear in (3.22). either.

3.2.5 The example of a bifurcation
We now analyze the particular case of a bifurcation composed of three vessels (see
figure 3.3), that is the simplest type of network. From this point on, we refer to the
vessels using the numbering introduced in the figure. We consider the following state
problem

∂Ui

∂t
+
∂F(Ui; βi)

∂x
+ S(Ui; βi) = 0, x ∈ (0, Li), t ∈ (0, T ), i = 1, 2, 3

G1
0(U1(0, t), β1) = g1

0(t) t ∈ (0, T )

Gi
Li

(Ui(Li, t), βi) = giLi(t) t ∈ (0, T ), i = 2, 3

Q1(L, t) = Q2(0, t) +Q3(0, t) t ∈ (0, T ),

P1(L, t) = P2(0, t) t ∈ (0, T ),

P1(L, t) = P3(0, t) t ∈ (0, T ),

Ui(x, 0) = U0,i(x) x ∈ (0, Li), i = 1, 2, 3
(3.23)
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where the unknowns are UTOT = (U1,U2,U3)T and the set of parameters is
βTOT = (β1, β2, β3)T . In this simple model:

• the set of models is Nm = {1, 2, 3};

• the set of proximal models is N init
m = {1};

• the set of distal models is N term
m = {2, 3};

• the set of coupling nodes is Nc = {1};

• the set of models entering the only coupling node is NRj
m = {1};

• the set of models leaving the only coupling node is N Lj
m = {2, 3}.

BC1 CC

BC2

BC3

vessel 1
vessel 2

vessel 3

Figure 3.3: Schematic representation of a bifurcation

We impose boundary conditions at the inlet of the bifurcation i.e. at the inlet of the
first vessel (second equation in the system (3.23)) and at the outlet of the bifurcation
i.e. at the outlet of the second and third vessels (third equation in the system (3.23)).
Then, to link the three models, we apply coupling conditions on the continuity of the
total pressure and the conservation of the flow, that involve the value of U1 at the outlet
and of U2 and U3 at the inlet (third, fourth and sixth equation in the system (3.23)).

We consider a cost functional J(UTOT , βTOT ) that takes into account the difference
between the solution of (3.23) and the measurements, and can be split in the following
way.

J(UTOT , βTOT ) =
3∑
i=1

J in(Ui, βi) +
3∑
i=1

J lb(Ui, βi) +
3∑
i=1

Jrb(Ui, βi)

where J in(Ui, βi) depends only on quantities that are internal to the i-th vessel, J lb(Ui, βi)
depends on quantities on the left side of the i-th vessel and Jrb(Ui, βi) depends on
quantities on the right side of the i-th vessel. Therefore we can define the Lagrangian
and then we can derive the adjoint problem for the bifurcation case. We detail all the
terms thereafter.
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∂mi

∂t
+ FT

U(Ui; βi)
∂mi

∂x
− STU(Ui; βi)mi = J intU (Ui) x ∈ (0, Li),

t ∈ (0, T ),

i = 1, 2, 3

∂G1
0(U1(0, T )), β1

∂U

T

mC0,1 − (FT
U(U1; β1)m1)(0, t) = J lbU(U1) t ∈ (0, T ),

∂Gi
Li

(Ui(Li, T )), βi

∂U

T

mCL,i + (FT
U(Ui; βi)mi)(L, t) = JrbU (Ui) t ∈ (0, T ),

i = 2, 3

∂Q1(L1, t)

∂U
mCC,1 +

∂P1(L1, t)

∂U
(mCCL1,2 +mCCL1,3)+

+ (FT
U(U1; β1)m1)(L1, t) = −JrbU (U1) t ∈ (0, T )

∂Q2(0, t)

∂U
mCC,1 +

∂P2(0, t)

∂U
mCCL1,2+

+ (FT
U(U2; β2)m2)(0, t) = J lbU(U2) t ∈ (0, T )

∂Q3(0, t)

∂U
mCC,1 +

∂P3(0, t)

∂U
mCCL1,3+

+ (FT
U(U3; β3)m3)(0, t) = J lbU(U3) t ∈ (0, T )

m0i = mi(x, 0) x ∈ (0, Li),

i = 1, 2, 3

mi(x, T ) = 0 x ∈ (0, Li),

i = 1, 2, 3

(3.24)
where the

m = (m1,m2,m3,mC0,1,mCL,2,mCL,3,mCC,1,mCCL1,2,mCCL1,3,m01,m02,m03)T

is the vector of Lagrange multipliers and we choose i = 1;
The strategy that we use to solve this problem is described in subsection 3.2.2. Now

we want to focus on the treatment of the coupling conditions as shown in subsection
3.2.3.

The matrices and vectors in the coupling conditions system (3.20) have the form

A =



∂Q1

∂U1

∂P1

∂U1

∂P1

∂U1

∂Q2

∂U2

∂P2

∂U2

∂Q3

∂U2

∂P3

∂U3

 ∈ R6×3 mj
CC =

 mCC,1

mCCL1,2

mCCL1,3

 ∈ R3

59



i
i

“thesis” — 2013/10/7 — 22:03 — page 60 — #68 i
i

i
i

i
i

3.2. Optimal control for a network of 1D-FSI models

F1 =



∂F T
1

∂U1

∂F T
2

∂U2

∂F T
3

∂U3

 ∈ R6×6. mj =

m1

m2

m3

 ∈ R6

J 1 =

−J
rb
U1

(U1)

J lbU2
(U2)

J lbU3
(U3)

 ∈ R6

where
∂Fi
∂Ui

= FT
Ui

(Ui; βi), i = 1, 2, 3,

∂Qi(x, t)

∂Ui

=

(
0

1

)
i = 1, 2, 3

and

∂Pi(x, t)

∂Ui

=

−ρ
Q2
i (x, t)

A3
i (x, t)

+
β

2
√
Ai(x, t)Ai0

ρ
Qi(x, t)

Ai(x, t)

 i = 1, 2, 3

Therefore the matrix B has the form

B =



1

(∂P1/∂U1)1

0 − 1

(∂P2/∂U2)1

0 − 1

(∂P3/∂U3)1

0

−(∂P1/∂U1)2

(∂P1/∂U1)1

1
(∂P2/∂U2)2

(∂P2/∂U2)1

−1 0 0

−(∂P1/∂U1)2

(∂P1/∂U1)1

1 0 0
(∂P3/∂U3)2

(∂P3/∂U3)1

−1


∈ R3×6

where
(
∂Pi
∂Ui

)
j

is the j-th component of
(
∂Pi
∂Ui

)
. We note with some trivial com-

putations that BA = 0 i.e. the rows of B and the columns of A are orthogonal. By
multiplying the coupling conditions system by B, we obtain the reduced 3× 3 system

BF1m1 = BJ 1.

In this way we obtained three scalar conditions on m1, m2 and m3 that together
with suitable compatibility conditions obtained by extrapolation of the characteristics as
described in Subsection 3.1.5 allow us to solve the adjoint problem for the bifurcation.
Then, the vector m1

CC is computed by applying the pseudo-inverse matrix of A to the
original coupling condition system

m1
CC = A†

(
J 1 −F1m1

)
.

Finally, the optimality condition can be written as
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∂L
∂βTOT

(UTOT , βTOT ,mTOT ) =
∂J

∂βTOT
(UTOT , βTOT )

+
3∑
i=1

∫ T

0

∫ Li

0

((
∂

∂βi

∂F(Ui; βi)

∂x
+
∂S

∂βi
(Ui; βi)

)
,mi

)
dxdt+

+

∫ T

0

(
∂G1

0

∂β1

(U1(0, t), β1),mC0,1

)
dt

+
3∑

k=2

∫ T

0

(
∂Gk

L

∂βk
(Uk(Lk, t), βk),mCL,k

)
dt+

+
3∑

k=2

∫ T

0

(
∂P1

∂β1

(L1, t)−
∂Pk
∂βk

(0, t),mCCL1,k

)

(3.25)

3.3 Implementation aspects

The solvers for KKT conditions described in Chapter 2 and Chapter 3 and the optimiza-
tion methods presented in Section 1.4 have been implemented in LifeV2, a C++ finite
element library. The solvers for the state and the adjoint problems are partially based
and follow the strategy of the geometrical multiscale framework described in details
in [Malossi, 2012]. This choice would permit further development in the direction of
parameter estimation for other fluid structure interaction models, like 3D-FSI models.

We briefly describe the main classes that have set up to solve the problem.

LineSearch is the class that implements the finite dimension optimization tech-
niques that are presented in Section 1.4 and updates the value of the parameter at
each iteration of the optimization method. It also implements a scaling technique
of the step length of parameter update in order to stay in the region of admissibility
(for example, β > 0).

OneDFSIKKTNetwork is the class that sets up and solves the KKT conditions. It
manages the time loop applied to a single model or to a network. It also han-
dles the memorization of the state model solution and the measurements that are
needed for the adjoint model.

MultiscaleData is a data container for the global parameters of the problem.

MultiscaleModel is a base abstract class from which all the specific model classes
are derived. It provides a set of transparent interfaces to set up, update and solve
the specific problems.

MultiscaleCoupling is a base abstract class from which all the specific coupling
conditions are derived, both for state and adjoint problems.

MultiscaleCommunicatorsManager is a class designed to assign each specific
model to a different subset of processors or cluster nodes.

2http://lifev.org
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OneDFSISolver is the class that solves each single vessel model, both for state
and adjoint problem. It implements the numerical discretizations that have been
described in subsection 2.1.4 and subsection 3.1.3.

OneDFSIBC is the class that manages the imposition of boundary values for each
single vessel model and passes it to the OneDFSISolver class.

We underline that all these classes except for OneDFSISolver and OneDFSIBC
are managed through common abstract interfaces and make no assumptions regarding
equations, geometries and numerical approximations.

LineSearch

OneDFSINetworkKKT

State model Adjoint
model

Optimality
condition

Models
Couplings

Solver

Models
Couplings

Solver

UTOT mTOT

βTOT
∂L

∂βTOT

measurements

Figure 3.4: Implementation of one iteration of optimal control for 1D-FSI network model.

Figure 3.4 represents a schematic overview of the structure of one optimization
framework iteration. Starting from LineSearch class, a set of parameters is passed to
OneDFSINetwork class that first solves the state problem in the variable UTOT , then
solves the adjoint problem in the variable mTOT using also the measurements stored in
it. Finally OneDFSINetwork class computes the optimality condition that is passed
to LineSearch class to check if a optimal control problem solution has been found
or it is necessary to continue with the optimization process.

We now details the main features of our implementation.

Geometrical multiscale framework We adopt the geometrical multiscale strategy
developed and described in details in [Malossi, 2012]. In our code, the Linesearch
class creates one instance of a geometrical multiscale model for state equation and an-
other for the adjoint equation. Each instance in turn makes use of a factory design
pattern to create the instances of the given set of specific models, coupling conditions,
as well as of the specific algorithm for the solution of the nonlinear interface problem
for the state problem (for the adjoint problem we solve the linear system (3.21) with
LAPACK routines). At the level of the geometrical multiscale model class, all these el-
ements are seen as black boxes, managed through common abstract interfaces, without
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3.3. Implementation aspects

any preliminary assumption regarding the equations, the geometries, and the numerical
approximations behind each object. In other words, the geometrical multiscale model
class acts as a global container of the elements in the network. The description of net-
work geometry and topology, parameters of models and algorithms, the set of interface
and measurement types and values are provided through a set of data files. We note that
this choice permits future extensions to apply analogous parameter estimation tech-
niques to other models for vascular vessels like, for instance, three dimensional fluid
structure interactions.

Parallelization of model solutions The parallelism is handled by the multiscale com-
municators manager, which distributes the models across the available processors and
cluster nodes. The 1D-FSI models are distributed one per each available processor. If
the number of models exceeds the number of processors, the communicators manager
assigns more models to each processor.

Parameters distribution We allow different distributions of parameters, that we es-
timate, in each vessels. In particular, we consider three possible distributions:

uniform We consider that the parameter is constant on the vessel and, therefore, we
have to estimate one quantity per vessel.

linear We consider that the parameter is linearly distributed on the vessel or on part
of it. In other words, when we consider the parameter linearly distributed on one
vessel, we fix the values β1 and β2 of the parameter at each end of the vessel,
while, inside of the vessel, the parameter is computed by the formula

β(x) = β2
x

L
+ β1

L− x
L

.

Therefore, in our estimation process we have to compute two values of them pa-
rameter for each vessels or part of it.

pointwise We consider that the parameter possibly has a different value on each node
of the discretization. We underline that, while this distribution may be a good
approximation of the real properties of a vessel, especially in pathological condi-
tions, we can not expect that this choice is proficiently usable in parameter esti-
mation, particularly in real application, due to the large number of data necessary.

Optimization techniques In the LineSearch class, we implement the finite di-
mensional optimization techniques described in Subsection 1.4.1. We implement these
techniques serially because, reasonably, the number of value of parameters that we
compute is largely smaller than the number of degrees of freedom in the finite elements
discretization of the vessels.
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CHAPTER4
Application of parameter estimation method:

numerical tests and real data applications

IN this chapter we apply the framework illustrated in the previous chapters. In par-
ticular, in the first section we test our method, in a full controlled environment, to
validate the methodology and to assess the reliability and accuracy of the whole

procedure and of the different optimization techniques that we employ. In the second
section, we describe the application to the case of elastic parameter estimation in a
carotid bifurcation exploiting real medical data.

4.1 Numerical tests

We first present some tests to validate the methodology described in Chapters 2 and 3.
These tests are purely in silico, i.e. we use only synthetic data. In particular

(i) we set a goal (scalar or vectorial) parameter β∗∗ within a physiological range;

(ii) we generate observations AM by solving the state model with β∗∗ as compliance
parameter;

(iii) starting from an initial approximation β0, we apply the parameter estimation method
to retrieve β∗∗ as solution of the procedure.

We choose as cost functional

J(U, β) =
1

2

Nt∑
k=0

Nx∑
i=0

j(Uk
i , βi) =

1

2

Nt∑
k=0

Nx∑
i=0

(A(xi, tk)− AM(xi, tk))
2 . (4.1)
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4.1. Numerical tests

where Uk
i = U(xi, tk), βi = β(xi), A(x, t) is the first component of the state equation

solution U(x, t), namely the section area of the vessel, AM(x, t) are the section area
measurements and {xi}Nxi=1 and {tk}Ntk=0 the space and time nodes on which measure-
ments are taken.

If not explicitly stated otherwise, we assume that the observations AM are available
at each grid point xi and at each time tk. In all the simulations of the present section
we set in (2.20) A0 = 1 cm2, ρ = 1 g/cm3, KR = 0. The time and spatial discretization
parameters are ∆t = 10−5 s and h = 0.1 cm, respectively. Then, unless explicitly
stated otherwise, we impose at the inlet a condition on the flow rate

Q(0, t) = g0(t) =

 sin2

(
2πt

0.005

)
t 6 0.005,

0 t > 0.005.
(IC)

and at the outlet a condition on the section area

A(L, t) = A0(t) = 1. (OC)

We note that, with these choices of boundary conditions, the boundary terms vanish
in the optimality conditions (3.15) and (3.22).

For what concerns the optimization methods, we choose as stopping criterion a con-
trol on the relative decrease of the norm of ∂L(U, β)/∂β, i.e. we stop the optimization
process when ∥∥∥∥∂Lk∂β

∥∥∥∥
2

6 toll

∥∥∥∥∂L0

∂β

∥∥∥∥
2

, (4.2)

where
∂Lk

∂β
is the optimality condition at the k-th iteration of the optimization process.

In this section, we consider three optimization methods:

• standard Steepest Descent (SD), with Armijo rule step selection;

• Barzilai-Borwein (BB), with non monotone line search;

• BFGS, with Armijo rule step selection.

Finally, regarding the parameters of the optimization process, we set

• the maximum number of line search iteration NLS
max = 1000,

• the maximum number of backtracking iteration in step length choice NB
max = 10,

• the tolerance toll = 10−10,

• the memory parameter in non monotone step selection (1.32) M = 5.

Thanks to the low computational effort that the 1D-FSI model requires, all tests
presented in this chapter have been performed on a standard laptop provided with Intel
Core i7 CPU and 4.0 GB RAM.
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4.1. Numerical tests

4.1.1 Parameter estimation on a single vessel
In this subsection we test our framework on a simple case, i.e. a network formed by
a single vessel. We consider the state model (2.15), the adjoint model (3.3) and the
optimality condition (3.15), where L = 5.0 cm and T = 0.1 s.

We test two cases:

(i) we consider a uniformly distributed parameter on the whole vessel (i.e. we have
to estimate a scalar parameter β) as in Figure 4.1;

(ii) we consider a linearly distributed parameter on the vessel (i.e. we have to compute
two parameters (β1, β2) as in Figure 4.2, since

β = β2
x

L
+ β1

L− x
L

.

Uniformly distributed parameter case

IC β OC

Figure 4.1: Schematic representation of a single vessel with a single parameter.

In this test, we suppose that the parameter is uniformly distributed over the vessel
and, therefore, we have to compute only one parameter , as represented in Figure 4.1.
We choose β0 = 106 dyn/cm2 and β∗∗ = 1.1 · 106 dyn/cm2. In Table 4.1 we show the
result of this test case.

number value of J β

∥∥∥∥∂L∂β
∥∥∥∥of iterations

Steepest Descent 1000 7.6287 · 109 1.083986 · 106 4.815336

Barzilai-Borwein 8 1.3885 · 10−15 1.1 · 106 1.4619 · 10−13

BFGS 8 1.3885 · 10−15 1.1 · 106 1.4619 · 10−13

Table 4.1: Results of the test in the case of uniformly distributed parameter on the whole vessel.

We note that by using steepest descent, the maximum number of line search itera-
tions, that we have set to 1000, is reached without having reached convergence, while,
by using the other methods, the goal parameter β∗∗ is finally obtained. This is due to
the well known slow convergence of the steepest descent method. We decided to stop
using steepest descent method because of excessively slow convergence even for this
very simple test. We also note that the Barzilai-Borwein method and the BFGS method
have the same behaviour: this is due to the fact that in the case of the minimization of
a scalar function, the two methods coincide.

Linearly distributed parameter

In this test, we assume that the parameter is linearly distributed over the vessel and,
therefore, we have to identify two parameters (one for each end of the vessel), as repre-
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IC β1 β2 OC

Figure 4.2: Schematic representation of a single vessel with a couple of parameters.

sented in Figure 4.2. We choose β0 = (106, 106) dyn/cm2 and β∗∗ = (0.9 · 106, 1.1 · 106)
dyn/cm2. In Table 4.2, we show the result obtained in this test case. We note that BB
and BFGS do not have any more identical behaviour. However they reach the goal
parameter and they have still a similar performance.

number value of J
∥∥∥∥∂L∂β

∥∥∥∥of iterations

Barzilai-Borwein 16 5.3567 · 10−13 2.5387 · 10−12

BFGS 18 3.4210 · 10−13 1.8752 · 10−12

Table 4.2: Results for the test in the case of a linearly distributed parameter on the vessel.

4.1.2 Parameter estimation on a bifurcation

IC β1

vessel 1

CC

β2

vessel 2

β3

vessel 3

OC

OC

Figure 4.3: Schematic representation of a bifurcation.

In this subsection we test our method on a bifurcation network represented in Figure
4.3. We consider the state model (3.23), the adjoint model (3.24) and the optimality
condition (3.25) and we set Li = 5.0 cm, i = 1, 2, 3 and T = 0.1 s. We also assume
that on each vessel only one compliance parameter value is defined. In particular, we
set β0 = (106, 106, 106) and β∗∗ = (1.1 · 106, 1.1 · 106, 1.1 · 106). In Table 4.3, we
show the results for this test case.

We note that the number of iterations of the two methods (BB and BFGS) is similar
and we can not state with certainty which of the two has better performance. However
we recall that the BB method is simpler and it has computational advantages because
it is natively matrix-free (we recall that also a matrix-free version of BFGS exists, but
it is slightly more complex than the standard version that we have implemented). For
this reason, in the following, we consider only the BB method in our tests.
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number value of J
∥∥∥∥∂L∂β

∥∥∥∥of iterations

Barzilai-Borwein 27 2.4315 · 10−10 1.2135 · 10−10

BFGS 26 1.1523 · 10−10 8.9764 · 10−10

Table 4.3: Results of the test in the case of uniformly distributed parameters on each vessel of a bifurca-
tion.

Robustness of the method

We now study the robustness of our method when we change the initial approximation.
We consider the same configuration that we presented for the previous test and we use
only BB method. In Table 4.4, we show the number of iterations that are necessary to
reach convergence with different values of the initial approximation β0. We note that,
in a reasonable range around β∗∗, the behaviour of the method substantially does not
change and, therefore, we rely on the robustness of our method.

β0 number
(dyn/cm2) of iterations

0.5× 106 36

0.75× 106 31

1.0× 106 27

1.25× 106 25

1.5× 106 30

2.0× 106 45

Table 4.4: Number of iterations necessary for the convergence of the bifurcation test for different values
of initial approximations β0.

Simulations with noise

We are now interested to study the effect of the presence of noisy data, because real data
are always affected by noise. In particular, at each time step and on each discretization
node, we add a Gaussian white noise ωi,k to the observations

ÃM(xi, tk) = AM(xi, tk) + ωi,k,

where AM is the solution of state model with goal parameter β∗∗ and we consequently
consider the functional

J(U) =
1

2

Nt∑
k=0

Nx∑
i=0

(
A(xi, tk)− ÃM(xi, tk)

)2

,

instead of (4.1)
More precisely, we take

ωi,k = PMkGi,k,
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4.1. Numerical tests

where P is the percentage of error,Mk is the maximum in absolute value of {AM(xi, tk), i =
0 . . . Nx} andGi,k is a sample of a normal distribution with null mean and unit variance.

In Table 4.5 we report the mean error on the estimate over 5 simulations correspond-
ing to 5 different realizations of noise for different values of the percentage of error P .
We note that the computed solution is still in a neighbourhood of the exact solution and,
even in presence of large noise, the mean error is below 6%.

P

1% 5% 10%

‖β∗∗ − β∗∗
N ‖

β∗∗ 1.21% 3.74% 5.89%

Table 4.5: Mean percentage error of the five estimates for the different values of percentage of noise.

Treatment of sparse data

In the previous tests, we assumed to be able to observe the solution at each point of the
mesh and at each time step. This assumption in real application is unrealistic: typically
the grid on which data are observed is considerably coarser than the grid on which the
solution is computed. This latter must be refined enough to satisfy the CFL condition
(2.29). Therefore, we need to be able to handle problems with a small number of
observations. We recall that observations are needed only in the computation of the
functional J .

We identify two possible approaches to treat this issue:

Linear interpolation in space (LI): we interpolate in space the observations to have
measurements on each grid point.

Localised observations (LO): we exploit only the collected observations, i.e. we con-
sider the functional composed by the sum of the terms

j̃(Uk
i , βi) =

{
j(Uk

i , βi) if observation has been collected in the grid point (xi, tk),

0 otherwise,

where (xi, tk) is a point in the space-time discretization grid, Uk
i = U(xi, tk),

βi = β(xi) and j(Uk
i , βi) is the term in the full functional depending on the point

(xi, tk).

We analyze the behaviour of this two approaches in the first test case of this subsec-
tion, i.e. we consider a bifurcation where on each vessel a one parameter value is de-
fined and we set β0 = (106, 106, 106) dyn/cm2 and β∗∗ = (1.1 · 106, 1.1 · 106, 1.1 · 106)
dyn/cm2. We have considered different combinations of time steps and space positions
in which observations have been collected, but the results are analogous in all cases.
In Table 4.6, we show the results in the case in which we use two points per vessel in
space and ten instants in time as observations, while the computational grid is com-
posed by fifty elements per vessel in space and 1000 instants in time. This test has been
performed using the Barzilai Borwein method.
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4.2. Real data application: estimation of elastic parameters in carotid bifurcation

Vessel 1 Vessel 2 Vessel 3 Number of
iterations

β∗∗
LO (dyn/cm2) 1.1 · 106 1.1 · 106 1.1 · 106 26

β∗∗
LI (dyn/cm2) 1.0520 · 106 1.1554 · 106 1.1554 · 106 24

Table 4.6: Comparison between the sparse data approach and linear interpolation approach, where
β∗∗
LO is the parameter set that we obtain with LO approach and β∗∗

LI is the parameter set that we
obtain with LI approach

We note that with LO approach we are able to reach the goal parameters, while by
using LI approach we end in another set of parameters. This different behaviour is due
to the fact that LI approach reconstructs a set of observation that is not necessarily the
same generated by the goal parameters and is not compatible with system dynamics,
while in the LO approach observations are a subset of the ones generated by the goal
parameters. The drawback of LO approach is that a slightly larger number of iterations
is needed to converge, but this increase is not so substantial. Therefore, we conclude
that LO approach is preferable. For sparsity in time, analogous considerations can be
done and, so, we use LO approach both in time and in space.

4.1.3 Parameter estimation on more complex networks
We test our method also on more complex networks. We now present the application
to the network in Figure 4.4 composed by seven vessels that we take of equal length
Li = 5.0 cm, i = 1, . . . , 7 and we take T = 0.5 s. We consider parameters uniformly
distributed on each vessel: therefore, we have to estimate seven parameters. We assume
that on each vessel the goal parameter is equal to 1.1 · 106 and the initial guess is equal
to 106. Even in this test, our method is able to reach the goal parameters and in Table
4.7, we report the output regarding the convergence of this test case.

number value of J
∥∥∥∥∂L∂β

∥∥∥∥of iterations

BB 33 2.4512 · 10−9 1.5620 · 10−10

Table 4.7: Results for rhombus network

4.2 Real data application: estimation of elastic parameters in carotid bifurca-
tion

In this section we analyze the application of the methodology that we have described
in Chapter 3 to the estimation of the compliance parameters in carotid bifurcations,
employing real medical data.

The carotid artery are large arteries whose pulse can be felt on both sides of the neck
under the jaw and whose function is to supply oxygenated blood to the brain and to the
rest of the head. The anatomy of the carotid is shown in Figure 4.5. The two sides of
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Figure 4.4: Schematic representation of rhombus network.

the carotid artery (that in the first part is called common carotid artery) have different
origins; on the right side it starts from the brachiocephalic trunk (a branch of the aorta)
while on the left side it comes directly off the aortic arch. At the throat it forks into
the internal and external carotid arteries. The internal carotid artery supplies the brain,
and the external carotid artery supplies the face.

This fork is a common site for atherosclerosis, an inflammatory buildup of athero-
matous plaque that can narrow the lumen of carotid arteries (see Figure 4.5). When
the stenosis due to the plaque is strong, intervention (carotid stenting or carotid throm-
boendarterectomy) is necessary. Carotid stenting consists in the insertion of a slender,
metal-mesh tube, called a stent, which expands inside the carotid artery to increase
blood flow in areas blocked by plaque. In carotid thromboendarterectomy (TEA), the
surgeon opens the artery, removes the plaque and then repairs the artery with stitches
or a patch made with a vein or artificial material (patch graft). The Carotid Revascu-
larization Endarterectomy versus Stenting Trial (CREST) reported that the results of
stents and thromboendarterectomy were comparable. However, the European Interna-
tional Carotid Stenting Study (ICSS) found that stents had almost double the rate of
complications and recommended that carotid thromboendarterectomy should remain
the treatment of choice for patients suitable for surgery [Ederle et al., 2010].

We expect that the presence of the plaque or the insertion of a patch modifies the
elastic properties of the vessels and try to identify the effective compliance by applying
the adjoint-based parameter estimation technique developed in this thesis. In particular,
in this section we analyze the application of our technique to the parameter estimation
in a carotid that had surgery and in which a patch has been placed.

We first describe the data that have been used in this study and how they are pro-
cessed to be used in the parameter estimation method (subsection 4.2.1). Then we
present the results of the application of our method to the specific patient under study.
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4.2. Real data application: estimation of elastic parameters in carotid bifurcation

Figure 4.5: Image on the left: anatomical table representing one carotid bifurcation. Source:Henry
Gray’s Anatomy of the Human Body (1918).
Image on the right: Section of carotid artery with plaque. Source: wikipedia.org .

4.2.1 Real medical data
In this subsection we describe the data that have been collected and used in the applica-
tion of adjoint-based parameter estimation framework to real carotid bifurcation. The
data collected include Echo-Color Doppler (ECD) imaging to obtain the flow veloc-
ity inside the artery and Magnetic Resonance Imaging to compute the section area of
the three vessels that form the carotid bifurcation. These data have been collected by
Prof. Maurizio Domanin at the Unità Operativa di Chirurgia Vascolare Fondazione
I.R.C.C.S. Cà Granda Ospedale Maggiore Policlinico di Milano within the project
MACAREN@MOX, MAthematichs for CARotid ENdarterectomy @ MOX

Echo-Color Doppler Data

Carotid Echo-Color Doppler is a medical imaging procedure that uses reflected ultra-
sound waves to create images of an artery and to measure the velocity of blood cells
in some locations within the artery. This technique does not require the use of con-
trast media or ionizing radiation and has a relative low cost. Thanks to this complete
non-invasivity and also to the short acquisition time required, ECD scans are largely
used in clinics, even though they provide a less rich and noisier information than other
diagnostic devices. Figure 4.6 shows one ECD image. The ultrasounds image in the
upper part of the figure represents the longitudinal section of the vessel. It also shows
by a small gray box the position of the beam where blood particle velocities, in the
longitudinal direction of the vessel, are measured; the dimension of the box relates to
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4.2. Real data application: estimation of elastic parameters in carotid bifurcation

the dimension of the beam. In the case considered in this picture, the acquisition beam
is located at the center of the considered cross-section of the artery. The lower part of
the ECD image is a graphical display of the acquired velocity signal during the time
lapse of about three heart beats. This signal represents the histogram of the measured
velocities, evolving in time. More precisely, the x-axis represents time and the y-axis
represents velocity classes; for any fixed time, the gray-scaled intensity of pixels is
proportional to the number of blood-cells in the beam moving at a certain velocity.

Figure 4.6: Echo-color doppler image corresponding to the central point of the carotid section.

Following [Buratti, 2011], the signal extracted from ECD image is obtained, after
removing noise from the image with a threshold filter, computing the quantile of order
0.95 from all the histograms in time. This signal is then smoothed by projecting it on
a Fourier basis with period estimated through Fourier transform (see the red line in the
upper image in Figure 4.7). Finally, we obtain the time-dependent signal in the lower
image in Figure 4.7, of period 0.924 s, that is used to prescribe the boundary condition
at the inflow of the carotid bifurcation by imposing the following relation flow rate and
cross section area,

Q(0, t)− v(t)A(0, t) = 0 t ∈ [0, 0.924], (4.3)

where v(t) is the the time dependent signal obtained by ECD image.

Magnetic Resonance Imaging data

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology
to visualize internal structures of the body in detail. MRI makes use of the property
of proton nuclear magnetic resonance (NMR) that detects the presence of hydrogens
(protons) by subjecting them to a large magnetic field to partially polarize the nuclear
spins, then exciting the spins with properly tuned radio frequency radiation, and finally
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Figure 4.7: Upper image: processed and denoised signal from ECG image in Figure 4.6.
Lower image: velocity signal used to prescribe inflow boundary conditions.

detecting weak radio frequency radiation from them as they relax from this magnetic
interaction. Since the MRI uses proton NMR, it images the concentration of protons.
Many of those protons are the protons in water, so MRI is particularly well suited for
the imaging of soft tissue.

A large number of MRI sequences have been developed [Ridgway, 2010]. Here we
used two dimensional balanced steady state free precession (bSSFP) technique, (also
known with the commercial names of TrueFISP, FIESTA or bFFE) [Chavhan et al.,
2008, Lee, 2010, Scheffler and Lehnhardt, 2003]. This technique is largely spread in
medical applications thanks to the high signal-to noise ratio, the image contrast it offers
and the possibility to observe time evolving phenomena.

In our specific application, through bSSFP we collected 17 slices of the carotid (as
shown on the left of Figure 4.8) and its evolution in time in 25 instants during the heart-
beat. On the right of Figure 4.8, the positions of the collected slices are shown on a
three dimensional reconstruction of the carotid and in Figure 4.9 the positions of ob-
servations are indicated in a schematic plot. Each voxel in the image has dimension
1.103 × 1.103 × 1.103 mm3. We note that the dimension of the voxel is comparable
to the variation of section area from one observation time step to another. Each slice
of the three dimensional carotid is not exactly two dimensional, but has a thickness of
1.103 mm that we do not consider in our simulations. The minimum distance between
consecutive slides is 6.0 mm. We point out that the MRI is performed on a sequence
of heartbeats and then it is synchronized on a single heartbeat employing an electrocar-
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Figure 4.8: Left image: one of the slices of the head collected through bSSFP. Carotid arteries are
coloured in red.
Right image: positions of the observed slices referred to a three dimensional reconstruction of the
carotid.

diogram performed simultaneously to MRI acquisition and therefore these data are, in
some sense, averaged over several heartbeats. From each slice we extract the contour
of the carotids for each time instant that has been observed and we compute the area
of the vessel. In Figure 4.10, we show one contour and its evolution in the subsequent
observation. In Figure 4.11, we show the observations in three positions (positions 4,
10 and 15 in Figure 4.9).

We use these observations also to obtain the reference cross section area A0(x) of
the patient. We compute it as the mean of the measured cross section area over an
heartbeat. We report in Table 4.8 the computed mean cross section areas, compared
values computed from literature values. We note that the values that we have are sig-
nificantly different from that which are present in literature, for instance in [Reymond
et al., 2011]. This gap is so pronounced that we point out the importance of using real
data in parameter estimation.

4.2.2 Patient specific simulations
Here we describe how we have estimated the compliance parameter in the carotid artery,
employing real medical data. Figure 4.12 depicts how the carotid bifurcation has been
schematized. On the inflow we impose the velocity signal extracted from ECD imaging,
shown in Figure 4.7. On the outflows we impose absorbing boundary conditions (2.32).
We underline that absorbing boundary conditions do not represent the physiological be-
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Figure 4.9: Schematic representation of the position of MRI data on the bifurcation.

Figure 4.10: Contour of the artery extracted from MRI (left) and comparison of contours of the same
slice at different observation times (right).

Figure 4.11: Variation of the observations in time in position 4, 10 and 15 of Figure 4.9 in the carotid
bifurcation.

haviour of blood flow at the outflow of the carotid, but we choose this type of boundary
conditions to avoid the formation of spurious modes that can deeply affect parameter
estimation techniques in the case of hyperbolic systems. In further developments of
this work, it may be interesting to study the impact of this choice and other possible
choice of boundary conditions (e.g. standard boundary conditions [Vignon-Clementel
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Common Carotid Internal Carotid External Carotid

proximal distal proximal distal proximal distal

Observed 0.1594 0.4730 0.3386 0.0526 0.0648 0.0657

Literature 3.1426 1.5394 1.0207 0.9318 0.7854 0.6544

Table 4.8: Comparison of reference section areas computed starting from MRI observations versus the
same quantities computed from literature values in [Reymond et al., 2011] (all values are in cm2).

ECD β1 β2 CC

β3

β4

β5

β6

ABS

ABS

common carotid

internal carotid

external carotid

Figure 4.12: Schematic representation of the simulation design for carotid bifurcation, employing real
observations.

et al., 2010]). We use the values of section areas extracted from MRI measurements to
compute the cost functional (4.1) and we face the sparsity of these data adopting the
LO approach described in subsection 4.1.2.

We point out that no physiological initial conditions are available and, obviously,
we can not expect that the output of 1D-FSI model with zero initial conditions matches
physiological observations. However, due to the hyperbolic nature of 1D-FSI model,
we can assume that, after a suitable time, the solution of the 1D-FSI model does not
depend on the initial conditions, if non reflective boundary conditions are imposed
at the outflow. To prove that this assumption is true, we solve the 1D-FSI model on a
bifurcation network with physiological inflow conditions, absorbing outflow conditions
and zero initial conditions over three heartbeats. In Figure 4.13, we show the section
area in the middle of one of the vessels after the bifurcation. We note that the influence
of the initial conditions is lost after a time that is largely smaller that a single heartbeat
and a periodic solution is reached. Therefore, in our parameter estimation process, we
simulate two heartbeats of state model: after the first one, we are sure to have reached
the periodic solution for the state solution and we make use of the second period to
solve the adjoint problem and to compute the optimality condition.

In our simulation, we consider each vessel to be 3.6 cm long, i.e. Li = 3.6 cm.
We discretize each vessel in 12 elements and therefore h = 0.3 cm. We recall that the
period of the inflow signal is 0.924 s and, therefore, we consider the duration of a single
heartbeat equal to 0.924 s.
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Figure 4.13: Section area simulated by a 1D-FSI model with zero initial conditions

We consider a linearly variable distribution of the parameter in each vessel. We con-
sequently have to estimate two parameter values per vessel and six values in total (as
shown in Figure 4.12). We set as initial approximation β0 = (106, 106, 106, 106, 106, 106)
dyn/cm2. We make use of Barzilai Borwein method as line search method.

In Table 4.9, we show the results of the simulation. We report the value of the
compliance parameter β and the Young modulus E computed by inverting the relation
(2.18), i.e by the formula

E(x) = β(x)
1− ν2

h0(x)

√
A0(x)

π
.

where we take the vessel thickness h0(x) equal to the 10% of the vessel diameter com-
puter from vessel reference area A0(x). We recall that the Young modulus describes
the elastic properties of the vessel walls.

Common Carotid Internal Carotid External Carotid

β1 β2 β3 β4 β5 β6

Compliance Parameter 1.022 · 106 1.018 · 106 1.074 · 106 0.983 · 106 0.974 · 106 1.0236 · 106

Young modulus 6.839 · 106 6.808 · 106 10.804 · 106 9.882 · 106 8.764 · 106 9.214 · 106

Table 4.9: Results for the real patient application.

We note that there is clear difference between the Young modulus in the neighbour-
hood of the bifurcation. These results seems to be in accordance with effects due to the
presence of a patch near the carotid bifurcation.

In Table 4.10, we report the quantities regarding the convergence of our method. We
note that in this case the final value of J is not as close to zero as in in silico tests, as
expected. This occurrence is due to the presence of noise in the measurements and to
the model approximation.
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number value of J
∥∥∥∥∂L∂β

∥∥∥∥of iterations

28 7.537 · 10−4 1.4765 · 10−11

Table 4.10: Convergence quantities in the real patient application.

79



i
i

“thesis” — 2013/10/7 — 22:03 — page 80 — #88 i
i

i
i

i
i

Conclusions

In this thesis we have developed a parameter estimation technique to compute the elas-
tic properties of networks of blood vessels by employing real observations. Elastic
properties of vessels are can not to be measured directly in vivo in a non-invasive way.
We modelled the networks with well known 1D-FSI models. These are reduced mod-
els (and consequently less computationally expensive than three dimensional models )
but nevertheless they are able to capture the main characteristics of the physical phe-
nomena, like the propagation of pressure waves. These models depend on the so called
compliance parameter that takes into account the properties of the wall and in particular
the elastic features. Our goal is precisely to estimate the compliance parameter.

The method that we developed can be placed in the wider class of data assimilation
that consists in combining in an optimal way the mathematical information provided
by the models and the physical information given by the observations, generally sparse
and noisy. Data assimilation had a huge development in the last two decades in the field
of cardiovascular simulations.

One of the major novelties of our methods stay in the fact that it is the first attempt to
estimate a parameter in one dimensional network models by a variational data assimila-
tion approach. Firstly, we define a cost functional that takes into account the difference
between the observations and the output of the 1D-FSI model and consequently we in-
troduced the Lagrangian functional that we minimized by solving the coupled system
of first order conditions (the so-called KKT conditions), composed by the state equa-
tion, the adjoint equation and the optimality condition. Therefore we have built up an
iterative optimization framework in which we first solve the state and adjoint equation
and, then, we update the parameter by computing the optimality condition and apply-
ing finite dimensional optimization methods, until a certain tolerance is reached. In this
process, a particular attention had been devoted to the treatment of adjoint boundary
conditions and adjoint coupling conditions.

We implemented this framework in LifeV, a C++ finite elements library, partially
following the geometrical multiscale strategy proposed in [Formaggia et al., 1999] and
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developed in [Malossi, 2012]. In particular, we are able to manage and estimate differ-
ent distributions of the parameter (constant, linear and pointwise) inside each vessel or
part of vessel.

After having tested the method and our implementation, we applied it to a patient spe-
cific case employing real medical data, which is another of the main contributions of
our work. In particular, we studied and preprocessed real observations and then we
estimated the elastic properties of carotid that had undergone thromboendoarteroctomy
with patch insertion. The results of the application of our method seems to be in agree-
ment with medical hypothesis.

We can imagine some further developments of our work. First, it would be interest-
ing to compare the numerical behaviour of our framework with previously published
works, especially the ones in subsection 1.1.3. The most trivial development of the
presented framework is the estimation of other parameters of the 1D-FSI model. Other
possible more complex extensions include the estimation of physiological boundary
and initial conditions or the application to different vascular models, by exploiting the
geometrical multiscale implementation of differential problems.

81



i
i

“thesis” — 2013/10/7 — 22:03 — page 82 — #90 i
i

i
i

i
i

Bibliography

[Agoshkov, 2003] Agoshkov, V. (2003). Optimal Control and Adjoint Equation Methods in Problems of Mathe-
matical Physics. Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow (in Russian).

[Alastruey et al., 2007] Alastruey, J., Parker, K., and Peiró, J. (2007). Modelling the circle of Willis to assess the
effects of anatomical variations and occlusions on cerebral flows. Journal of biomechanics, 40(8):1794–1805.

[Alekseev et al., 1987] Alekseev, V., Tikhomirov, V., and Fomin, S. (1987). Optimal control. Plenum Press.

[Ambadan and Tang, 2009] Ambadan, J. and Tang, Y. (2009). Sigma-Point Kalman Filter Data Assimilation Meth-
ods for Strongly Nonlinear Systems. Journal of the Atmospheric Sciences, 66(2):261–285.

[Avolio, 1980] Avolio, A. (1980). Multi-branched model of the human arterial system. Medical & biological
engineering & computing, 18(6):709–18.

[Aziz, 1977] Aziz, A. (1977). Control theory of systems governed by partial differential equations. Academic
Press.

[Balocco et al., 2010] Balocco, S., Basset, O., Courbebaisse, G., Boni, E., Frangi, A., Tortoli, P., and Cachard,
C. (2010). Estimation of the viscoelastic properties of vessel walls using a computational model and Doppler
ultrasound. Physics in medicine and biology, 55(12):3557–75.

[Banghert, 2008] Banghert, W. (2008). A framework for the adaptive finite element solution of large inverse prob-
lems. SIAM Journal on Scientific Computing.

[Barzilai and Borwein, 1988] Barzilai, J. and Borwein, J. (1988). Two-point step size gradient methods. IMA
Journal of Numerical Analysis, 8(1):141–148.

[Bertoglio et al., 2012] Bertoglio, C., Moireau, P., and Gerbeau, J. (2012). Sequential parameter estimation for
fluid–structure problems: Application to hemodynamics. International Journal for Numerical Methods in
Biomedical Engineering, 28(4):434–455.

[Blanco et al., 2007] Blanco, P., Feijóo, R., and Urquiza, S. (2007). A unified variational approach for coupling
3D–1D models and its blood flow applications. Computer Methods in Applied Mechanics and Engineering,
196(41-44):4391–4410.

[Blanco et al., 2012] Blanco, P., Watanabe, S., and Feijóo, R. (2012). Identification of vascular territory resistances
in one-dimensional hemodynamics simulations. Journal of biomechanics, 45(12):2066–73.

[Blum et al., 2008] Blum, J., Le Dimet, F., and Navon, I. (2008). Data assimilation for geophysical fluids. Hand-
book of Numerical Analysis, 14(Computational Methods for the Atmosphere and the Oceans):377–434.

[Bogaers et al., 2012] Bogaers, A., Kok, S., Reddy, B., and Fran, T. (2012). Inverse parameter identification for a
branching 1D arterial network.

[Boron and Boulpaep, 2008] Boron, W. and Boulpaep, E. (2008). Medical physiology. Saunders.

[Bunks et al., 1995] Bunks, C., Saleck, F., Zaleski, S., and Chavent, G. (1995). Multiscale seismic waveform
inversion. Geophysics, 60(5):1457–1473.

[Buratti, 2011] Buratti, P. (2011). Analysis of Doppler blood flow velocity in carotid arteries for the detection of
atherosclerotic plaques.

82



i
i

“thesis” — 2013/10/7 — 22:03 — page 83 — #91 i
i

i
i

i
i

Bibliography

[Canic et al., 2005] Canic, S., Ravi-Chandar, K., Krajcer, Z., Mirkovic, D., and Lapin, S. (2005). Mathematical
model analysis of Wallstent and AneuRx: Dynamic responses of bare-metal endoprosthesis compared with those
of stent-graft. Texas Heart Institute Journal, 32(4):502.

[Cannarsa and Coron, 2010] Cannarsa, P. and Coron, J. (2010). Control of partial differential equations. Springer.

[Cauchy, 1847] Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations simultanées.
Comp. Rend. Sci. Paris, 25(1847):536–538.

[Chandrasekar et al., 2008] Chandrasekar, J., Kim, I., Bernstein, D., and a.J. Ridley (2008). Reduced-rank un-
scented Kalman filtering using Cholesky-based decomposition. International Journal of Control, 81(11):1779–
1792.

[Chavhan et al., 2008] Chavhan, G., Babyn, P., Jankaria, B., Cheng, H., and Shroff, M. (2008). Steady-State MR
Imaging Sequences: Physics, Classification, and Clinical Applications1. Radiographics, 28(4):1147–1161.

[Courtier et al., 1993] Courtier, P., Derber, J., Errico, R., Louis, J., and Vukićević, T. (1993). Important literature
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