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Abstract

THE upper part of the Earth crust is modelled as superimposed regions
of homogeneous rock with constant physical properties. On geo-
logical time frames, rocks can be considered fluids with very high

viscosity and their evolution can be described by the Stokes equations.
To solve the problem in a reasonable time it is important to develop a

parallel implementation. In this work, the solution of the Stokes problem is
coupled with a suitable algorithm to track the interfaces between rock lay-
ers. The parallel implementation of this solver presents some challenges:
we need to find suitable parallel preconditioner for the Stokes problem and
to devise an efficient strategy for the set of hyperbolic equations governing
the interface tracking. Simulations have been performed on several HPC
architectures to test and optimize the proposed solutions. Details on perfor-
mance and scalability are given.
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Summary

NUMERICAL simulations of large scale sedimentary basins in their
geological evolution are a topic of great interest in oil industry. The
concern is a direct consequence of the strong correlation, assessed

by geological studies, between salt domes and the formation of oilfields in
their proximity.

Mathematical models and numerical tools in this field have seen a steady
development in the last years [23, 24, 30, 32]. Full three-dimensional sim-
ulations are required to reproduce the evolution of realistic portions of the
upper part of the Earth crust, that are of the size of a few kilometres in each
direction. Under these constraints the number of unknowns of the resulting
discretized problem is typically very large (from 40 million degree of free-
dom up to 1-2 billion) and therefore parallel techniques become a necessity
to achieve reasonable simulation times.

Our work is indeed strongly based on [24, 30], where a serial version of
the algorithm for the simulation of sedimentary basins modelled as strati-
fied fluids has been presented and analysed. This work will focus on the
parallel implementation. It tackles the problem of suitable parallel pre-
conditioning techniques and the porting and testing on High Performance
Computing machines.

The work is organized as follows: in chapter 1 we introduce the geo-
logical problem, in chapter 2 we detail the mathematical problem and its
numerical formulation. In chapter 3 we illustrate the tracking algorithm,
while in chapter 4 and 5 we introduce respectively the preconditioning tech-
niques, the performance metrics and the machines used. Then in chapter 6
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we discuss the results, while in the chapter 7 we explain the parallel imple-
mentation. Finally in chapter 8 we show an applicative example.
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CHAPTER1
Geological model of a sedimentary basin

1.1 Introduction

The term sedimentary basin is used to refer to any geological feature ex-
hibiting subsidence and consequent infilling by sedimentation, as shown
in Figure 1.1 where some geological features of sedimentary basin are out-
lined. Indeed sedimentary basins consist of stockpiles of gravel, sand, rocks
and biological remains that have been transported by natural agents like
wind, rivers, glaciers and sea. A typical example of a sedimentary basin
is an alluvial plain where the erosion of the surrounding mountain ranges
provides most of the deposited sediments.

The physical characteristics of the layers evolve with the geological eras
that can last tens of millions of years. Typically the type of deposited sed-
iments changes suddenly in the geological time scale framework, creat-
ing well defined sedimentary layers of almost homogeneous material. This
stratified configuration is clearly visible in Figure 1.2. Consequently, the
mixing between layers is very limited and the interfaces are called hori-
zons. The sedimentary basin is delimited by the top surface, the basement
and a lateral contour which conventionally limits the area of interest. The
basement is a solid compacted layer and can be either continental or oceanic
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Chapter 1. Geological model of a sedimentary basin

(many sedimentary basins develop under the surface of the oceans). It is the
bed over which the other sediments (called overburden) lie and it has bet-
ter mechanical characteristics than the overburden. The surface is the upper
part of the basin. The lateral contour is usually an arbitrary boundary which
delimits the area of interest and in many cases it has no physical meaning.
The size of typical basins is of the order of 100 by 100 km in the horizontal
plane and 10 km in depth.

Figure 1.1: An example of a sedimentary basin. A sedimentary basin is a hollow in
the relief. Erosion products accumulates in it and gradually fill it up. Its size varies
considerably from lake to ocean. The bottom is called basement of substratum (S). The
sedimentary fill, or cover (C) is a sequence of layers of different kinds (C1, C2, C3,
C4). The deepest layers are the oldest, lining the bottom of the initial hollow, figure
from [4].

1.2 Geology of sedimentary basin

During geological time scales sedimentary basins can experience strong
deformations and also topological changes of the geometry of the layers.
One of the main driving forces is the sedimentation that is the continuous
deposition of debris. Nevertheless, there are many other forces applied
from the inside and outside of the basin. For instance the movement of the
basement and of the lateral edges has a great impact on the morphology of
the basin.

From a tectonic viewpoint the basin is located on the upper part of the
crust. Crust movements and the continental drift affect the movement of the
boundary of the basin. This basin evolution could, in turn, modify the local
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1.2. Geology of sedimentary basin

evolution of the crust: in fact the steady deposition of sediments causes the
sinking of the basement by several kilometres in tens of millions of years.
This phenomenon is also known as flexural lithostasis.

Figure 1.2: A schematic view of a sedimentary basin illustrating relationship between
topographic surface, subsurface reservoirs and deeper basement level structures.

Among the several internal phenomena that could trigger the evolution
of the basin, of particular importance is the buoyancy of the lighter layers
over the denser ones. For example, salt is less compressible than other ma-
terials. Thus, rock-salt may become less dense than the surrounding rocks
and turn into one of the primary internal driving forces of the sedimentary
basin dynamics. The sediments compressed by the overburden instead ex-
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Chapter 1. Geological model of a sedimentary basin

pel most of their water content and become heavier than the salt layer. Other
types of rocks such as lightweight shale can be also affected by buoyancy
effects.

The sediments and the rocks behave, on geological time scales, as a
viscous fluid. In Table 1.1 are described the main physical characteristics
of different types of sediments.

Table 1.1: Viscosities and densities of various rocks found in sedimentary basins.

Type of sediment or rock Density (Kg/m3 ) Viscosity (Pa · s)
Shale 2300 1021

Under-compacted Shale 2200 1020

Sandstone 2400 1021

Limestone 2500 1022

Rock-salt 1800 1019

Rock 2500 1021

The fluid behaviour of the rocks could be explained at least by two phys-
ical arguments:

1. the first one deals with the crystalline structure of the rocks and the
movement of voids and dislocations.
The rock structure contains many defects in the crystalline lattice, thus
their position evolves in geological time scales and their distribution
can be statistically determined.
The movement of the voids is equally probable in all the directions
without applied loads, but if a load is applied, their movement be-
comes more probable in some specific directions, [7] and the macro-
scopic net effect is a fluid behaviour associated to a Newtonian rheol-
ogy.

2. The second one is based on the solubility of rock components in wa-
ter. It is known that pressure affects the solubility of solids in water, so
where a load is applied, the solubility increases. In the contact regions
among grains the rock dissolves, and later deposits on unstressed ar-
eas. This phenomenon is represented macroscopically by a shear flow
of a Newtonian fluid, see [7].

Nevertheless not all the effects can be explained by viscous fluid models.
In fact also plasticity plays a key role: the rocks, under the pressure applied
by the overburden, tend to fracture and to modify their reciprocal position.
These effects are usually modelled with a plastic-type rheological law, see
[42].
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1.2. Geology of sedimentary basin

The fault formation can be seen as a plastic effect: in the faulted re-
gions the soil is highly damaged and it cannot sustain the applied stress.
All these phenomena are active in a sedimentary basin and none of them
alone can fully explain the rheological behaviour of the sediments. So far,
a comprehensive model that links the stress to the strain and the strain to
the velocity is missing, therefore semi-empirical relations are widely used
like [7], [31], [42], [44].

Another important phenomenon is compaction: superficial layers of
sediments can have up to 50% of void space filled by air/water (sea water if
the sedimentary basin is the sea bed). Indeed the pore spaces are saturated
by water below few hundred meters. As the layers are progressively buried
by the accumulation of sediments, the overburden pressure rises. This trig-
gers the reduction of the pore spaces and the liquid phase is expelled from
the porous media.

In some cases the water can be trapped by impermeable traps: in this
case the fluid pressure rises as part of the overburden is supported by the
liquid phase. This case is also known as overpressure and it has strong
consequences on the safety of oilfield exploitation.

The chemical reactions are another key element, in fact they can modify
the chemical composition of the rocks, an example is the cementification.
Chemistry is involved also in the rock formation (the diagenesis): older
sediment layers are made of compacted rock with much stronger mechan-
ical characteristics than the shallow under-compacted sediments. Also the
formation of natural oil and gas is affected by chemical reactions.

Another important feature to be considered is the temperature distribu-
tion inside the sedimentary basin. The thermal gradient is generally about
30◦/km, therefore the basement could reach a temperature of three hundred
degrees Celsius.

The main effect is the heat diffusion from the lower layers and from the
upper mantle, but also the transport of heat carried by the water is an im-
portant aspect. Temperature greatly affects the chemical reactions and the
rheology. Finally, salt is a good heat conductor and this has many implica-
tions in the petroleum formation.

1.2.1 Salt tectonics

Salt tectonics is concerned with the geometries and processes associated
with the presence of significant thicknesses of evaporites containing rock
salt within a stratigraphic sequence of rocks. The formation of salt domes
is due both to the low density of salt, which does not increase with burial,
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and its low strength.
A salt dome is a type of structural dome formed when a thick bed of

evaporite minerals (mainly salt, or halite) found at depth intrudes vertically
into surrounding rock strata, forming a diapir. It is important in petroleum
geology because salt structures are impermeable and can lead to the forma-
tion of a stratigraphic trap.

The formation of a salt dome begins with the deposition of salt in a re-
stricted marine basin. The restricted flow of salt-rich seawater into the basin
allows evaporation to occur, resulting in the precipitation of salt, with the
evaporites being deposited. The rate of sedimentation of salt is significantly
larger than the rate of sedimentation of clastics [41], but it is recognised that
a single evaporation event is rarely enough to produce alone the vast quan-
tities of salt needed to form a salt diapir. This indicates that a sustained
period of episodic flooding and evaporation of the basin happened, as can
be seen from the example of the Mediterranean Messinian salinity crisis.
At the present day, evaporite deposits can be seen accumulating in basins
that have restricted access, but do not completely dry out.

Over time, the layer of salt is covered with deposited sediment, and
buried under an increasingly large overburden. The overlying sediment un-
dergo compaction, causing an increase in density and therefore a decrease
in buoyancy. Unlike clastics, pressure has a significantly smaller effect on
the salt density due to its crystal structure and this eventually leads to it
becoming more buoyant than the sediment above it.

Figure 1.3: Examples of salt domes: the geological profile through northern Germany
with salt domes in blue (taken from wikipedia).

The ductility of salt initially allows plastic deformation and lateral flow,
decoupling the overlying sediment from the underlying sediment. Since the
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1.2. Geology of sedimentary basin

salt has a larger buoyancy than the sediment above, if a significant faulting
event affects the lower surface of the salt, it can be enough to cause the salt
to begin to flow vertically, forming a salt pillow.

The vertical growth of these salt pillows creates pressure on the upper
surface, causing extension and faulting. Eventually, over millions of years,
the salt will pierce and break through the overlying sediment, first as a
dome-shaped and then a mushroom-shaped, the fully formed salt diapir.
If the rising salt diapir reaches the surface, it can become a flowing salt
glacier like the salt glacier of Lüneburg Kalkberg in Germany. In cross
section, these large domes can measure from 1 to 10 km in diameter, and
extend as deep as 6.5 km.

Figure 1.4: Schematic view of the process of the growth of salt domes (taken from wikipedia).

The rock-salt that is found in salt domes is mostly impermeable. As
the salt moves up towards the surface, it can penetrate and/or bend layers
of existing rock with it. As these strata are penetrated, they are generally
bent slightly upwards at the point of contact with the dome, and can form
pockets where petroleum and natural gas can collect between impermeable
layers of rock and the salt. The strata immediately above the dome that
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are not penetrated are pushed upward, creating a dome-like reservoir above
the salt where petroleum can also gather. These oil pools can eventually be
extracted, and indeed they form a major source of the petroleum produced
along the coast of the Gulf of Mexico.

1.3 Importance of numerical simulation

Sedimentary basins, in particular salt basins, are among the best places to
find petroleum, natural gas and to store nuclear waste material. In fact the
low permeability of salt guarantees low water leakages that are the main
concern for the safety of nuclear waste storage. Precise data regarding the
basin evolution on geological timescales are required to solve the problems
related to these two applications.

The history of the basin has a deep impact on the characteristics of the
generated oil: in particular the geometrical evolution and the temperature
experienced by the sediments determine localization, quantity and qual-
ity of the oil. For example temperature is a key aspect that controls the
petroleum-gas ratio, the latter being less valuable than the former. Another
example is the geometry of the cap-rock which is the sealing layer of the
oilfield. Oil usually floats and collects near the cap-rock. In other terms,
to have detailed information about an oilfield, we must have information
about the past history of the basin.

Until now sedimentary basin studies have been based on the geological
interpretation of experienced specialists. Geologists can usually outline
several evolution scenarios of the basin. Therefore we must choose among
them the ones which are coherent from a physical viewpoint. Numerical
simulation could provide a tool for choosing the right scenario. Moreover,
it can provide quantitative information (for instance the stress field) which
are difficult to estimate by other means.

The great interest in numerical tools is boosted by the technical diffi-
culties to carry out analogical experiments. Indeed it is difficult to scale
correctly all the physical quantities in a relatively small model.

Sandbox experiments [12] provide useful information regarding the brit-
tle behaviour of grains but can not represent all the viscous creeping mech-
anisms which require millions of years to produce a measurable effect. The
experiments devoted to investigate the sediment rheology are difficult to
carry out too. As a matter of fact it is necessary, at the same time, to reach
extreme values of pressure and to measure very small displacements.

Also the nuclear industry is interested in structural geology simulations.
Here the main interest is oriented to simulate future evolution of the basins

8



1.3. Importance of numerical simulation

and, in particular, the stability of a deposit in a time frame comparable to
the half life of the isotopes to be stored.
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CHAPTER2
Mathematical Problem

2.1 Introduction

In the description of the evolution of sedimentary basins and of the diapir
growth the typical time scales are of the order of millions of years. At this
time scale sedimentary rocks can be modelled as Newtonian fluids charac-
terized by high viscosity. Thanks to this assumption the description of the
diapir growth can be cast into the framework of the Rayleigh-Taylor the-
ory describing the evolution of gravitational instability between fluid lay-
ers. Thus, let us consider sedimentary rocks and halite as incompressible
Newtonian fluids having variable and possibly discontinuous density and
viscosity, possibly discontinuous. In this case the Navier-Stokes equations
read:


ρ∂u

∂t
+ ρ (u · ∇)u−∇ ·


µ

∇u+∇u⊤+∇p = ρg

∇ · u = 0
(2.1)

in an open set Ω ∈ Rd and t > 0; ρ is the density, µ the viscosity, u the
velocity field, p the pressure and g = (0, 0,−g)⊤ the gravity acceleration.
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Chapter 2. Mathematical Problem

Note that the domain Ω evolves in time because of the presence of a free
surface (the top layer).

2.2 Stokes equation

Let us perform a dimensional analysis of (2.1) by considering the typical
values of the dynamic parameters involved in the diapir growth (see Table
1.1). According to literature data [23] we choose the following reference
values for density and viscosity:

µ = 1020 Pa · s , ρ = 103
kg

m3
(2.2)

Since the time scale is of order of 1Ma, while the characteristic length
of a sedimentary basin is about 1 km vertically, let introduce the following
scaling factors for the space and time:

T = 1Ma = 3.1536 · 1013 s, L = 1000m (2.3)

while the pressure will be scaled by

P = ρgL = 9.81 · 106 Pa (2.4)

Therefore, we adopt the following non-dimensional quantities:

t =
t

T
, x =

x

L
, p =

p

P
,

u =
u

U
= u

T

L

(2.5)

So, time and space derivatives can be rescaled as:

∂(·)
∂t

=
1

T

∂(·)
∂t

∇ (·) = 1

L
∇ (·) ∇ · (·) = 1

L
∇· (·) (2.6)

where ∇ and ∇· are respectively the gradient and divergence operators
with respect to the set of non-dimensional variables. Then, it is possible
to rewrite equations (2.1) in terms of the non-dimensional quantities (2.5)
where it is omitted the · from now.


∂u
∂t

+ (u · ∇)u− 1
Re
∇ ·

µ

∇u+∇u⊤+ 1

Fr
∇p = 1

Fr
g

∇ · u = 0
(2.7)
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2.2. Stokes equation

The Reynolds and Froude non-dimensional numbers defined respectively
as come out from the previous assumption:

Re =
ρL2

µT
, Fr =

L

T 2g
(2.8)

represent respectively the ratio between the inertial and viscous forces, and
the ratio between buoyancy and inertial forces.
Since in the application of our interest:

Re = 3.174 · 10−25, F r = 1.027 · 10−25 (2.9)

the inertial terms can be dropped from the momentum equation of the
Navier-Stokes system since they are extremely low.
The evolution of a sedimentary basin can therefore be described by the
Stokes problem, namely

−Fr
Re
∇ ·

µ

∇u+∇u⊤+∇p = g

∇ · u = 0
(2.10)

Then considering also the equation to track the physical properties (that
will be presented in section 2.3) it is possible to summarize the closed sys-
tem of equations

−Fr
Re
∇ ·

µ(∇u+∇u⊤)


+∇p = ρg in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]
∂ρ

∂t
+ u · ∇ρ = 0 in Ω× (0, T ]

∂µ

∂t
+ u · ∇µ = 0 in Ω× (0, T ]

ρ = ρ0, µ = µ0 in Ω× {0}
u = ũ on Γ

(2.11)

The effect of stress in the fluid is represented by the left hand side of the
first equation (2.11). The term ∇p is called the pressure gradient and arises
from the isotropic part of the Cauchy stress tensor. This part is given by
normal stresses that turn up in almost all situations. The anisotropic part of
the stress tensor gives rise to ∇ ·


µ(∇u+∇u⊤)


, which conventionally

describes viscous forces; for incompressible flow, this is only a shear effect.
The second equation represents the incompressibility constrain while

the last two equations are balance equations of respectively density ρ and
viscosity µ.
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Chapter 2. Mathematical Problem

2.2.1 Boundary conditions

Let us consider the model sketched in Figure 2.1, with the boundary condi-
tions summarized in (2.12): on ΓB , the bottom of the domain, the velocity
is set to zero as the rocks are considered static, on ΓS and ΓL the condition
for the velocity is u ·n = 0, so there is no velocity in the normal direction,
while the upper part ΓS behaves like a free surface.

Ω S

L
B

Figure 2.1: External shape of the domain Ω. The external boundary Γ is divided into
three parts: the basement ΓB , the free surface ΓS and the lateral contour ΓL.

The existence and uniqueness of the solution has been already proved
in [17]. 

ρ = ρ0, µ = µ0 in Ω× {0}
u = ũ on ΓB

u · n = 0, σ · n− n⊤σn = 0 on ΓL

σ · n = 0 on ΓS

σ = µ(∇u+∇u⊤)−∇p

(2.12)

2.2.2 Weak problem

Finite elements formulations of the Stokes problem are based on the weak
form of (2.12). Details may be found for instance in [34]. Here we recall
only the basic steps. Now we multiply the momentum balance equation
by suitable test function v ∈ V ⊂ [H1 (Ω)]

d and we integrate by parts to
obtain: 

Ω

∇u : ∇v +


Ω

p∇ · v =


Ω

f · v ∀v ∈ V (2.13)

14
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Finally, we multiply the continuity equation by a test function

q ∈ L2 (Ω) (2.14)

to obtain: 
Ω

q∇ · u = 0 ∀q ∈ L2 (Ω) (2.15)

The final weak formulation is as follows.
Find (u, p) ∈ VB × L2(Ω) such that:

Ω
∇u : ∇v +


Ω
p∇ · v =


Ω
f · v ∀u ∈ VB

Ω
q∇ · u = 0 ∀q ∈ L2 (Ω)

(2.16)

where

V = {v ∈

H1 (Ω)

d
: v |ΓB

= 0, v · n |ΓS∪ΓL
= 0} (2.17)

and

VB = {v ∈

H1 (Ω)

d
: v |ΓB

= ũ, v · n |ΓS∪ΓL
= 0} (2.18)

It is clear from the previous derivation that a classical solution of the
Stokes problem is also a weak solution. If we define:

a (u,v) =


Ω

∇u : ∇v (2.19)

b (v, p) =


Ω

p∇ · v (2.20)

F (v) =


Ω

f · v (2.21)

the weak problem can be cast in the form:
a (u,v) + b (v, p) = F (v) ∀v ∈ V

b (u, q) = 0 ∀q ∈ S = L2 (Ω)
(2.22)
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2.3 Hyperbolic tracking equation

Given the incompressibility constraint stated in the second of (2.11), the
pure advection equation for the density ρ is equivalent to the mass conser-
vation law. Following [46], we introduce a set of characteristic functions
λα, each one associated to the sub-domain Ωα, that identify a region with
homogeneous material properties. More precisely,

λα(x, t) =


1 if x ∈ Ωα(t)

0 if x /∈ Ωα(t)
(2.23)

where the dependency on time is kept explicit here to remark that the sub-
domain Ωα evolves in time. We denote by λ the vector of values λα where
the subscript α denotes the layer that is tracked. If we consider that the
physical properties vary sharply across the interfaces Γαβ = ∂Ωα ∩ ∂Ωβ ,
we can rewrite the density ρ and the viscosity µ as

ρ =
s

α=1

λα ρα, µ =
s

α=1

λα µα (2.24)

where s denotes the total number of sub domains Ωα. We can now similarly
rewrite the initial conditions for the physical properties as

ρ0 =
s

α=1

λα0 ρα, µ0 =
s

α=1

λα0 µα

Therefore we can drop the transport equations in (2.11) and replace them
with an evolution equation for the set of λα

∂λ

∂t
+ u · ∇λ = 0 in Ω× (0, T ]

λ = λ0 in Ω× {0}
(2.25)

where λ0 = {λα0}. Finally, the complete model for the basin becomes
∇ · (µ(∇u+∇u⊤))−∇p = −ρg
∇ · u = 0
∂λ

∂t
+ u · ∇λ = 0

(2.26)

with suitable boundary and initial conditions, and complemented with the
algebraic relations (2.24).
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CHAPTER3
Discretized Problem and Parallel

Implementation

This chapter illustrates the discretized problem and the method to track
interfaces between immiscible fluids when several fluids are present. In the
first part are given the algorithmic details while the second part deals with
the parallelization.

3.1 Tracking Algorithm

The aim is to construct an efficient and robust method, effective even when
the interfaces experience a strong deformation, with good mass conserva-
tion properties, that can be used on 2D and 3D unstructured meshes. The
basic methodology, which we briefly recall in the following, has been taken
from [46].

3.1.1 Characteristic function discretization

To solve (2.25) we adopt a coupled level set/volume tracking technique that
can deal with many fluid components. The two representations are in direct
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Chapter 3. Discretized Problem and Parallel Implementation

correspondence with a two-fold interpretation of the discretized problem,
as explained in the cited reference.

τ∗

τ∗

bλƒ
bλƒ̄

Figure 3.1: A cell τ∗i of the dual mesh and the position of the fluxes λf and λf̄ .

Let’s denote with T ∗
h the dual mesh of Th and with τ ∗i a generic element

of T ∗
h . A two-dimensional example of the relationship between meshes is

shown in Figure 3.1. Mesh T ∗
h has a number of cells equal to the number

of points of Th. Let
λn

h = [λnh,1, . . . λ
n
h,s]

T

be the vector containing the discrete solution of (2.25) at time step tn, where
s is the number of components. We take each λnh,α, α = 1, . . . s, in the space
V ∗
0 defined as

V ∗
0 = {φh ∈ L2(Ω) : φh|τ∗i ∈ P0(τ ∗i )}, (3.1)

where P0(τ ∗i ) is the space of constant polynomials in τ ∗i . If χi is the char-
acteristic function of τ ∗i we can expand λn

h as

λn
h =

np
i=1

λn
i χi,

where λn
i ∈ R is the value of λn

h on τ ∗i .
Let

V1 = {ψh ∈ C1(Ω) : ψh|τk ∈ P1(τk)}
be the space of piecewise linear functions on τh and Πh : V ∗

0 → V1 be the
interpolant such that ψ = Πn

hλ satisfies

ψ(xi) = λ(xi), i = 1, . . . np.

From now on, the subscript h, that identifies the discrete solution, will
be discarded to ease notation and we set the level set function ψn as ψn =
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3.1. Tracking Algorithm

Πhλ
n. This way we link the volume tracking and the level set representa-

tions together.
We define a finite volume advection scheme for λ of the form

λn+1
i =


1 +


j∈Ci

νni,j


λn

i −

j∈Ci

F n
i,j.

Here, Ci is the set of elements of T ∗
h adjacent to τ ∗i , where νnk,j are the

interface Courant numbers defined as

νni,j =
∆tn

|τ ∗i |


l∗ij

un · n,

where l∗ij = ∂τ ∗i ∩ ∂τ ∗j and n the normal to ∂τ ∗i .
The interface fluxesF n

i,j are defined asF n
i,j = νni,jΦij(λ

n,+
i,j ,λ

n,−
i,j ) where

Φij(λ
+,λ−) =


λ+ if νni,j ≥ 0

λ− if νni,j < 0

is the upwind function. Here, λn,±
i,j are suitably reconstructed states on the

two sides of l∗ij: that facing τ ∗i and that facing τ ∗j , respectively. The re-
construction is carried out by a particular MUSCL-type algorithm, detailed
in [46] and based on the minimization of a local constrained problem that
guarantees mass conservation as well as the positivity of the solution. This
reconstruction requires the knowledge of the value of the level set function
ψ in a neighbourhood of each element of the dual grid.

3.1.2 Time discretization

To solve (2.26) numerically we proceed with a time discretization of the
time interval [0, T ] in discrete times 0 = t0, t1, . . . with variable time step
size ∆tn = tn+1 − tn. We adopt a first order accurate splitting algo-
rithm [32] in order to segregate the evolution of the fluid variables u and p
from the evolution of the characteristic functions λα. We denote the quanti-
ties at tn with the superscript n. At each time step n+1 we therefore adopt
the following scheme:

i) we advance the characteristic vector function λ using u at time step n
in an explicit manner

λn+1 − λn

∆tn
+ un · ∇λn = 0 (3.2)
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Chapter 3. Discretized Problem and Parallel Implementation

ii) we use λn+1 to compute ρn+1 and µn+1,

iii) we solve the Stokes system
∇ · (µn+1(∇un+1 +∇un+1⊤) )−∇pn+1 = −ρn+1g

∇ · un+1 = 0
(3.3)

to obtain the new velocity and pressure fields un+1 and pn+1.

The time derivatives are discretized with a first order scheme since the
splitting already reduces the order of convergence of the global algorithm
to first-order in time. While the Stokes system is solved implicitly, so there
is no restriction on the time step, the set of equations for λ is discretized
explicitly, leading to the well known Courant condition [25]. For this reason
a single time step for the Stokes system is usually matched by multiple sub-
steps for the hyperbolic solver.

3.2 Spatial discretization of the Stokes problem

τk
j j̄

τkj

Figure 3.2: An element τk of the mesh and a facing element τkj .

Problem (2.16) can be discretized with a suitable finite element approa-
ch [11]. Let Th be a simplicial tetrahedral grid on Ω with ne elements and
np points, and let h denote the maximum diameter of the grid elements. Let
also τk be a generic element of Th, i.e.


k τk = Th. If fk is the number

of faces of τk, we denote by τkj the element that faces τk on the j-th face,
while j̄ is the index of the face of τkj that faces τk, as depicted in Figure 3.2
for the two-dimensional case.

We denote with un
h and pnh the discrete variables for the velocity and the

pressure fields at the n-th time step, respectively. The spaces that contain
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3.2. Spatial discretization of the Stokes problem

these functions are respectively Xh ⊂ [H1 (Ω)]
d and Sh ⊂ L2

0 (Ω), that are
two sets of finite dimensional subspaces parametrized by h. To satisfy the
Ladyzenskaja-Babuska-Brezzi condition we choose Xh to be a subspace
formed by first order polynomials with an additional cubic bubble function
at the barycentre of the element (denoted by P1

b), while Sh is the subspace
of first order polynomials P1, so

un
h ∈ Xh, Xh = {vh ∈


H1 (Ω)

d
: vh|τk ∈ P1

b}
pnh ∈ Sh, Sh = {qh ∈ L2

0 (Ω) : qh|τk ∈ P1}

Albeit Stokes problem is stationary, we need to treat the time for the
hyperbolic tracking equation (see section 2.3). It is now possible to write
(2.10) in its discretized weak form, dropping the superscript n+ 1 from all
variables for simplicity, as

a(uh,vh) + b(ph,vh) = f(vh) ∀vh ∈ Xh

b(qh,uh) = 0 ∀qh ∈ Sh

(3.4)

We expand the discrete solutions uh and ph on the test functions vh and
qh, as

uh =

np+ne
i=1

uivi ph =

np
i=1

piqi

so we can finally write (2.10) in the algebraic form that reads
A B⊤

B 0


V
P


=


F
0


(3.5)

where V = {ui}, P = {pi} and

A = {a(vi, vj)} B = {b(qi, vj)} F = {f(vi)}

Further details on the discretization can be found in [46].
The size of these matrices can be quite large when dealing with realistic

cases, where unstructured meshes with hundred of thousands up to million
of points are used. Sparse matrix memorization and iterative solvers are
therefore a necessity. The conditioning number of the matrix is greatly in-
fluenced by the jumps in the values of the viscosity. Suitable precondition-
ing techniques must be adopted to reach convergence with an acceptable
number of iterations and in a reasonable time.

The parallelization of the solutions of the discretized Stokes problem is
tackled via a parallel preconditioned Krylov solver, whose details are given
in the next chapters.
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3.3 Parallel Implementation

Our code is implemented in the project called LifeV which is a parallel
Finite Elment (FE) library "providing implementations of state of the art
mathematical and numerical methods. It serves both as a research and pro-
duction library. It has been used already in medical and industrial context
to simulate fluid structure interaction and mass transport. LifeV is the joint
collaboration between four institutions: École Polytechnique Fédérale de
Lausanne (CMCS) in Switzerland, Politecnico di Milano (MOX) in Italy,
INRIA (REO, ESTIME) in France and Emory University (Sc. Comp) in
the U.S.A.".

LifeV is based on a parallel framework called Trilinos (for further infor-
mation see [21]). The Trilinos framework "uses a two level software struc-
ture that connects a system of packages. A Trilinos package is an integral
unit, usually developed to solve a specific task, by a (relatively) small group
of experts. Packages exist beneath the Trilinos top level, which provides a
common look-and-feel. Each package has its own structure, documentation
and set of examples, and it is possibly available independently of Trilinos".

We will describe the following subset of the Trilinos packages used.

• Epetra. The package defines the basic classes for distributed matrices
and vectors, linear operators and linear problems. Epetra classes are
the common interface used by all the Trilinos packages. Each Trilinos
package accepts as input Epetra objects and also LifeV is based on
Epetra objects that can be serial or distributed transparently on several
processors.

• AztecOO. This is a linear solver package based on preconditioned
Krylov methods. AztecOO also supports all the Aztec interfaces and
functionality, and also provides significant new functionality. It has
the main disadvantage to precondition only on the right side and to
support only the single precision.

• Belos. It provides next-generation iterative linear solvers and a pow-
erful linear solver developer framework. Compared to AztecOO, it
brings more preconditioned Krylov methods like MINRES and Recy-
cling methods. Additionally it can apply preconditioners also on the
left side, it supports double precision and last but not least it is thread
safe.

• IFPACK. The package performs various incomplete factorizations,
and is used with AztecOO.
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3.3. Parallel Implementation

• Teuchos. This is a collection of classes that can be essential like xml
parser to retrieve the Belos parameter.

• ML. It is an algebraic multilevel and domain decomposition precondi-
tioner package that provides scalable preconditioning capabilities for
a variety of problems. It is used as a preconditioner for AztecOO/Be-
los solvers and it can also use IFPACK and Amesos as smoothers.

• Amesos. The package provides a common interface to certain sparse
direct linear solvers (generally available outside the Trilinos frame-
work), both sequential and parallel like SuperLU, SuperLU_dist and
UMFPACK.

• Zoltan. A tool-kit of parallel services for dynamic, unstructured,
and/or adaptive simulations. Zoltan provides parallel dynamic load
balancing and related services for a wide variety of applications, in-
cluding finite element methods, matrix operations, particle methods,
and crash simulations.

The Trilinos framework hides every MPI call to make possible to re-use
the same code in serial and in parallel. The Epetra library take care of the
communication between the various processors, so the user do not need
strictly to have some familiarity with distributed memory computing.

When we want to create an Epetra distributed object (both vectors and
matrices), we first need to create a communicator that could be the MPI
communicator or a "serial" one.
Then it is possible to create an Epetra_Map that is a distribution of a set
of integer labels (or elements) across the processes. Finally it is possible to
create a distributed vector based on this map.

For off-processor communications we can use the Epetra_Import
and Epetra_Export classes, which are used to construct a communi-
cation plan that can be called repeatedly by computational classes such as
Epetra_Vector and Epetra Matrices.

Epetra provides an extensive set of classes to create and fill distributed
sparse matrices. These classes allow row-by-row or element-by-element
constructions. Support is provided for common matrix operations, includ-
ing scaling, norm, matrix-vector multiplication. Using Epetra objects, ap-
plications do not need to know about the particular storage format and other
implementation details, such as the data layout, the number and location of
ghost nodes. Epetra furnishes two basic formats, one suited for point ma-
trices, the other for block matrices.

23



Chapter 3. Discretized Problem and Parallel Implementation

As a general rule, the process of constructing a (distributed) sparse ma-
trix is as follows:

• to allocate an integer array, whose length equals the number of local
rows;

• to loop over the local rows, and estimate the number of non-zero ele-
ments of each row;

• to create the sparse matrix;

• to fill the sparse matrix.

In our project LifeV we use the Epetra_FECrsMatrix class which
defines a Compressed Row Storage matrix with the capability to set non-
local matrix elements. Like the distributed vectors, the matrices that we use
are created with a map:

Epetra_FECrsMatrix A(Map);

we fill the matrix with the function SumIntoGlobalValues that adds
the coefficients specified to the matrix, adding them to any coefficient that
may exist at the specified location.

In a finite element code, the user often insert more than one coefficient
at a time (typically, all the matrix entries corresponding to an elemental
matrix). Next, we need to exchange data, so that each matrix element not
owned by process 0 could be send to the owner, as specified by Map. This
is accomplished by calling, on all processes:

A.GlobalAssemble();

GlobalAssemble gathers any overlapping/shared data into the non-
overlapping partitioning defined by the Map that was passed to this matrix
at construction time. Data imported from other processors is stored on the
owning processor with a "sumInto" or accumulate operation. This is a col-
lective method – every processor must enter it before anyone will complete
it. GlobalAssemble() calls FillComplete() that signals that data
entry is complete. It performs transformations to local index space to allow
optimal matrix operations, see [40].

3.3.1 Overlapping maps

A typical approach adopted for parallelizing the solution of a PDE involves
the decomposition of the domain into sub-domains [34], so that each pro-
cess operates on a smaller part of the domain. This implies that, when up-
dating a value on the interface that separates these sub-domains, not all the
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necessary information may be available on the given processor and com-
munication is needed.

The case of hyperbolic equations such as the one just described presents
some further difficulties. In particular the update of λn

i requires the knowl-
edge of the level set function ψn in all the nodes surrounding the node i.
This implies that we need to recover values of λn in a layer of elements
around the given one.

Standard parallel mesh decomposition paradigms do not consider this
type of communication [26].

SUBDOMAIN_INTERFACE

P0 P1 P0 P1

Figure 3.3: On the left, a sample 2D mesh. On the center, the mesh is distributed on 2
processes, with the green nodes that are shared between the two. On the right, the
extended sub-domains associated to the process 0 that contains the complete support
to all the nodes that were assigned to that process.

Thus, we have implemented a specialized parallel data structure that
guarantees the access to all the needed data. This has been obtained by
creating overlapping sub-domains together with the framework for the nec-
essary parallel communications.

The construction of this data structure is based on the mesh connectivity
and it has been made sufficiently general so that it is possible to create an
overlapped point-based map or an overlapped element-based map, with an
arbitrary number of layers.

The algorithm is summarized in the following:

• to build the connectivity maps that enable to search neighbourhood
information;

• partition the mesh;

• identify sub-domain interface entities;

• for each level of overlap:

– add all neighbours to the current partition;
– update list of sub-domain interface entities;
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Here “entity” may denote either a node or an element of the mesh depend-
ing on which type of communication map we wish to build:

An illustration of the this algorithm is given in Figure 3.3, where a two-
dimensional domain is split into two sub-domains.

This technique allows to build the framework to access in a parallel set-
ting the n-th neighbour of any mesh entity.

3.3.2 Stokes Solver Algorithm

The Stokes solver is totally transparent to the parallelism, in fact the code
does not seem parallel except for few routines like the mesh partitioning
and the Epetra routine GlobalAssemble (see above).
The algorithm is summarized in the following:

• read the datafile;

• read the mesh and partition it using ParMetis [26];

• read density and viscosity vectors from file or set them from the data
in the local mesh;

• create the finite elements;

• create the map for pressure and velocity fields;

• create the Stokes matrix, the preconditioner matrix, the right hand side
vector (rhs) and the solution vector;

• fill in the Stokes matrix, the preconditioner matrix and the rhs;

• close the matrices and the rhs (with globalAssemble);

• apply the boundary conditions;

• pass the Stokes matrix, the preconditioner matrix, the right hand side
vector (rhs) and the solution vector to Belos/AztecOO and solve the
system;

• write the HDF5 binary file of the solution.

During the operation of matrix filling the divergence, gradient pressure
and stiffness terms are assembled into the Stokes matrix, while the pres-
sure mass and stiffness terms are assembled into the preconditioner. Notice
that this operation is local except the all to all communication to close the
matrices at the end, performed by GlobalAssemble .
So, summarizing the properties of the algorithm:
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• scalability: it is highly scalable since it requires few MPI calls, it ex-
ploits data locality and it does not requires much memory;

• load balancing: it is highly balanced because every processor has al-
most the same workload depending on the partitioning;

• amount of communication: it requires communication only to read
and partition the mesh, to close the matrices and to write the output
file;

• locality: every core works locally exploiting data locality;

• communication masking: the communications are partially masked by
Trilinos, but since they are not so many it is not a problem.

For further information on the implementation details see the paragraph
7.2.2.

3.3.3 Tracking Algorithm

The tracking algorithm is loosely similar to the Stokes one, except of the
temporal loop and of the overlapped maps to track the physical quantities
like viscosity and density (both in red).
The algorithm is summarized in the following:

• read the datafile;

• read the mesh and partition it using ParMetis [26];

• create the overlap map;

• create the finite elements;

• read density and viscosity vectors from file or set them from the data
in the local mesh;

• set the the velocity from file or from the Stokes solver output;

• temporal loop; repeat until reached the desired end time;

• compute the volumes of the Voronoi cells;

• compute the active structure of the mesh, the entities that are
crossed by different composition;

• compute the volumetric fluxes on the the active entities;

• compute the mean value of the potential on the the active entities;
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• compute the maximum time step allowed by CFL condition;
• compute the new interfaces only on the active entities;
• move compositions on the active entities;
• update the old composition;
• update time;
• write the HDF5 binary file of the solution.

• end simulation when reached the end time.

Let’s summarizing the properties of the algorithm:

• scalability: it is highly scalable since it requires few MPI calls, it ex-
ploit data locality and it does not requires much memory;

• load balancing: it is highly balanced because every processor has al-
most the same workload depending on the partitioning;

• amount of communication: it requires more communication than Sto-
kes solver, but still not much because the algorithm works only on the
active regions of the domain;

• locality: every core works locally exploiting data locality like in the
Stokes case;

• communication masking: the communications are only partially ma-
sked by Trilinos, we did not work on hiding them.

For further information on the implementation details see the paragraph
7.3.

3.4 The complete algorithm

In graph 3.4 we summarize each time step of the entire iterative algorithm:
we reconstruct the physical quantities from the computed data λnh (only λ0h
is given as initial condition), then we solve the Stokes problem. Since the
phases are immiscible, they all move following the Stokes flow, so we can
finally track the new quantities λn+1

h given unh.
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3.4. The complete algorithm

λn
h

RECON

ρnh and µn
h

STOKES

un
h and pnh

TRACK

λn+1
h

λn
h

Figure 3.4: The algorithm that summarize the entire process: first, the physical quantities
are reconstructed from the data given, then they are used to solve the Stokes problem
and then the velocity and pressure fields of its output are used to track again the the
physical quantities.
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CHAPTER4
Saddle Point Problems

This chapter provides a concise overview of iterative approaches for the so-
lution of saddle point problems. Efficient iterative schemes are of particular
importance in the context of large scale computations. In the the last part
we introduce a suitable preconditioner for Stokes problems with varying
viscosity and we will discuss various options considering also their parallel
scalability.

4.1 Saddle Point Problem

Saddle point problems arise frequently in many applications in science and
engineering, including mixed formulations of partial differential equations,
circuit analysis, constrained optimization and many more. Indeed, con-
strained problems formulated with Lagrangian multipliers give rise to sad-
dle point systems.

Here we introduce some of the most effective preconditioning tech-
niques for Krylov subspace solvers applied to saddle point problems, in-
cluding block and constraint preconditioners.

Indeed problems arising from the discretization of saddle point problems
result in finite-dimensional system of equations of large size. These prob-
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lems may be expressed as a sequence of quadratic minimization problems
subject to linear equality constraints like,

minJ(u) = 1
2
u⊤Au− f⊤u

subject to Bu = g
(4.1)

Here A ∈ Rn×n is symmetric and positive semi-definite, and B ∈ Rm×n

with m < n, f ∈ Rn and g ∈ Rm. The conditions for the first order
optimality are expressed by the linear system:

A B⊤

B 0


v
p


=


f
g


(4.2)

In (4.2), p ∈ Rm is a vector of Lagrange multipliers.
More generally, we consider linear systems of the form:

Ax =


A B⊤

B −C


u
p


=


f
g


= b (4.3)

where A and B are defined as above and C ∈ Rm×m is symmetric and
positive semi-definite. Systems of the form (4.3) with a non-zero C block
arise, for instance, in mixed finite elements approximation of incompress-
ible flow problems, when some form of pressure stabilization is included in
the discretization, and in the modelling of slightly compressible materials
in linear elasticity theory.

Typically, A is large and sparse and (4.3) must be solved iteratively,
usually by means of Krylov subspace algorithms, but unfortunately, Krylov
methods tend to converge very slowly when applied to saddle point sys-
tems [2,10], and good preconditioners are mandatory to achieve rapid con-
vergence.

4.1.1 Properties of saddle point systems

If A is non-singular, the saddle point matrix A admits the following block
triangular factorization:

A =


A B⊤

B −C


=


I 0

BA−1 I


A 0
0 S


I A−1B⊤

0 I


(4.4)

where S = −

C +BA−1B⊤ is the Schur complement of A in A.

Several important properties of the saddle point matrix A can be derived
from (4.4). To begin with, it is clear that A is non-singular if and only
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if S is. Moreover, since (4.4) defines a congruence transformation, A is
indefinite with n positive and m negative eigenvalues if A is symmetric
positive definite (SPD).

There are some important applications in whichA is symmetric positive
semi-definite and singular, in which case a block factorization of the form
(4.4) is not possible. If C is null and B has full rank, then A is invertible
if and only if the null spaces ofA andB satisfy N (A)∩N (B) = {0}. In
this case A is, again, indefinite with n positive and m negative eigenvalues.
For instance this is the case of the matrix of the Stokes problem.

In some important applications A is SPD and B is rank deficient and
the linear system (4.3) is singular but consistent. Generally speaking, the
singularity ofA does not affect the convergence of the iterative solver [10].
The simple stratagem of changing the sign of the last m equations in (4.3)
leads to a linear system with completely different spectral properties. In-
deed, assuming that A is SPD and C is symmetric positive semi-definite,
it is easy to see that the non-symmetric coefficient matrix (4.5) is positive
definite, in the sense that its spectrum is contained in the right half-plane
R(z) > 0.

A =


A B⊤

−B C


(4.5)

Hence, −A is a stable matrix. Furthermore, under some reasonable addi-
tional conditions on A, B and C, it can be shown that A is diagonalizable
and has all real and positive eigenvalues. Regardless of the formulation of
the saddle point system (symmetric indefinite or non-symmetric positive
definite), the convergence of Krylov subspace methods is almost always
extremely slow unless a good preconditioner is available.
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4.2 Preconditioning

Definition 4.2.1. Preconditioning: it is an application of a transformation,
called the preconditioner, that conditions a given problem into a form that
is more suitable for numerical solution.

The efficient solution of large sparse linear systems

Ax = b (4.6)

is very important in many numerical simulations both in science and in en-
gineering since it is often the most time-consuming part of a computation.

Direct methods, which are based on the factorization of the coefficient
matrix A into more easily invertible matrices, are often used in many indus-
trial codes, in particular where reliability is the primary concern. In fact,
they are very robust, and tend to require a predictable amount of resources
in terms of memory and time [8, 16].

Unfortunately, direct methods scale badly with problem size in terms of
memory requirements and operation counts, especially on problems arising
from the discretization of PDEs in three space dimensions. Indeed detailed,
three-dimensional multi-physics simulations lead to linear systems of mil-
lions or even billions of equations with as many unknowns.

Then for these problems, iterative methods are the only available option.
While iterative methods require less memory and often require fewer op-
erations than direct methods (especially when an approximate solution of
relatively low accuracy is sought), they are not as reliable as direct meth-
ods [2, 3]. In some applications, iterative methods fail and preconditioning
is mandatory try to obtain convergence in a reasonable time.

The traditional classification of solution methods as being direct or it-
erative is an oversimplification and is not a satisfactory description of the
present state of art. The difference between the two classes of methods
is nowadays blurred, with ideas and techniques from sparse direct solvers
that have been transferred (in the form of preconditioners) to the iterative
framework, with the result that iterative methods are becoming more and
more reliable.

While direct solvers are always based on some version of Gaussian elim-
ination, the field of iterative methods includes a wide variety of techniques,
ranging from the classical Gauss-Seidel, Jacobi and SOR iterations to mul-
tilevel methods and Krylov subspace methods. Hence it is somewhat mis-
leading to gather all these techniques under a single heading, in particular
when one considers also preconditioners.

34



4.2. Preconditioning

In the context of linear system the term preconditioning refers to trans-
forming (4.6) into another system with better properties for its iterative so-
lution. A preconditioner is usually in the form of a matrix that applies such
transformation. Preconditioning tries to improve the spectral properties of
the coefficient matrix. For instance the rate of convergence of the conju-
gate gradient method depends on the distribution of the eigenvalues of A
in case of symmetric positive definite (SPD) problems. Hence the optimal
transformed matrix should have a smaller spectral condition number (i.e.
ratio between maximal and minimal eigenvalue) and possibly eigenvalues
clustered around 1.

For non-symmetric problems the situation is more complicated and the
eigenvalues alone cannot describe the convergence of the non-symmetric
matrix iterations like GMRES (Generalized Minimal RESidual method)
[18]. In practice M is a non-singular matrix that approximates A, then
the linear system

M−1Ax = M−1b (4.7)

has the same solution as (4.6), but it could be easier to solve. Here M is
called preconditioner.

System (4.7) is preconditioned from the left, but it is also possible to
precondition from the right

AM−1y = b, x = M−1y (4.8)

Of course one never computes the preconditioned matrices M−1A or
AM−1 explicitly because this can be too expensive, and lead to the loss
of sparsity. On the contrary, matrix-vector products and solutions of linear
systems Mz = r are performed. Split preconditioning is also possible

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y (4.9)

where the preconditioner can be expressed as a product M = M1M2.
Notice that matrices M−1A, AM−1 and M−1

1 AM−1
2 have the same

eigenvalues.
In general, a good preconditioner M should fulfil the following require-

ments:

• The preconditioner should be cheap to construct and to apply in terms
of storage requirements and computational power.

• The preconditioning system Mz = r should be easy to solve.

• The solution of the preconditioned system shown take less time than
the solution of the original system. Moreover, the number of iterations
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should be bounded independently from the grid size and, for parallel
preconditioners, from the number of processes used.

The first two requirements are in competition each other, then it is nec-
essary to find a balance between the two needs.

An acceptable cost for the construction of the preconditioner, also said
setup time, will typically depend on whether the preconditioner can be
reused or not. In the general situation it could be worthwhile spending
some time computing a powerful preconditioner when there is a sequence
of linear systems with different right-hand sides and with the same coef-
ficient matrix to be solved, because the setup time can be amortized over
repeated solutions. For instance this is the case when solving slightly non-
linear problems by a variant of Newton’s method or evolution problems by
implicit time discretization.

There are two approaches to constructing preconditioners. One ap-
proach consists in designing specialized algorithms that are optimal for a
small class of problems. This application specific approach could be very
successful, but it requires complete knowledge of the problem, including
for example the boundary conditions, the original equations, details of the
discretization, the domain of integration. This approach includes precon-
ditioners based on “nearby” PDEs which are easier to solve than the given
one. Multi-grid preconditioners are usually of this kind [33].

The problem-specific approach could not always be feasible. The devel-
oper may not have complete knowledge of the problem to be solved, or the
information might be too difficult to obtain or to use. Moreover, problem-
specific approaches are often very sensitive to the problem details, and even
small changes in the problem can compromise the efficiency of the solver.
For these reasons, there is a need for preconditioning techniques that can
be more universally applicable. Consequently, reason there is an enduring
interest in general-purpose, purely algebraic methods that use only infor-
mation contained in the coefficient matrix A.

These techniques, albeit not optimal for any particular problem, could
achieve a reasonable efficiency on a wide range of problems. Algebraic
methods are easier to develop, use and maintain and are particularly well
suited for irregular problems such as those arising from discretizations with
unstructured meshes or problems from mesh-free applications.

Also, general-purpose solvers codes can be easily re-targeted and adap-
ted as the underlying application changes. Last but not least, algebraic
methods can be fine-tuned to exploit specific features of the given problem.
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4.3 Preconditioned Krylov subspace methods

An important class of iterative methods, exploit the property of Krylov sub-
space [38].

The well known Conjugate Gradient method is widely used for the iter-
ative solution of symmetric definite matrix systems. The main iterative ap-
proaches for indefinite symmetric matrix systems are instead the MINRES
(Minimum RESidual method) and SYMMLQ (Symmetric LQ method) al-
gorithms [6] which are based on the Lanczos procedure [22, 28]. These
algorithms require any preconditioner to be symmetric and positive defi-
nite.

An alternative is the Symmetric QMR (SQMR) method [36], which al-
lows to use symmetric and indefinite preconditioning (but it has less clear
theoretical convergence properties).

As concerns computational cost, the matrix times vector product may
be efficiently computed for sparse or structured matrices. Hence the main
issue concerning the overall computational work in the iterative solution of
a linear system with these methods is the number of iterations it takes for
convergence to the desired accuracy.

Methods which guarantee some monotonic and relevant error reduc-
tion at each iteration are favoured in a number of situations: the MINRES
method has such a property and thus it is sometimes the preferred choice
[10]. However the SYMMLQ method has a related ‘Petrov-Galerkin’ prop-
erty and is favoured for reasons of numerical stability when many iterations
are required [14].

For a generic linear system

Ax = b (4.10)

where A is symmetric (and either indefinite or definite), the MINRES
method computes a sequence of iterates ⟨xk⟩ for which the residual rk =
b−Axk minimizes ∥rk∥ over the subspace.

r0 + span

Ar0, · · · ,Akr0


(4.11)

The iterates themselves belong to the Krylov subspace where x0 is the
initial iterate (the initial ‘guess’) and r0 the corresponding residual,

x0 +Kk(A, r0) = x0 + span

r0,Ar0, · · · ,Ak−1r0


(4.12)

This minimization property leads to a description of the convergence
properties of the MINRES method: since any vector s, in the space (4.11)
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can be written as s = q(A)r0 where q is a polynomial of degree k with
constant term equal to one we obtain the following inequality

rk 6 ∥q(A)r0∥ 6 ∥q(A)∥∥r0∥ (4.13)

Now the diagonalization of the symmetric matrix A as A = XΛX⊤,
where Λ is the diagonal matrix of eigenvalues and the matrix X is the
orthogonal matrix of eigenvectors, implies

∥q(A)∥ = ∥Xq(Λ)X⊤∥ = ∥q(Λ)∥ (4.14)

because the Euclidean norm is invariant under orthogonal transformations.
Moreover q(Λ) is a diagonal matrix and then we obtain

∥rk∥ 6 min
q∈Πk,q(0)=1

max
z∈σ(A)

∥q(z)∥∥r0∥ (4.15)

where Πk is the set of (real) polynomials of degree k and σ(A) is the set
of eigenvalues of A. Then, only for a real symmetric matrix, convergence
depends only on its eigenvalues. At each additional iteration the degree
increases by one and so in such cases a reasonable accuracy can be quickly
achieved. Various constructions based on the Chebyshev polynomials can
give more explicit convergence bounds, but these are more complicated to
write for indefinite symmetric matrices.

In most situations M is constructed in a way such that it is fast to solve
the linear systems of the form Mz = r for z when r is given.

It is usually advisable to preserve the symmetry of the system. In fact
the iterative solution of non-symmetric linear systems is less reliable and
often more expensive in general.

When using MINRES [10], a symmetric and positive definite precon-
ditioner M needs to be employed so that it is possible to factorize M as
LL⊤ for some matrix L (for example the Cholesky factor). This is only a
mathematical artefact used to derive the method: this factorization is not
required in practice though of course it could be used if it were available.
The MINRES iteration is effectively applied to the symmetric system as

L−1AL−⊤y = L−1b, L⊤x = y (4.16)

and convergence depends on the eigenvalues of the symmetric and in-
definite matrix L−⊤AL−1.

Via the similarity transformation

L⊤L−⊤AL−⊤L⊤ = M−1A (4.17)
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it is clear that the eigenvalues of the matrix M−1A determine the con-
vergence of the method, hence (4.15) describes the convergence of the pre-
conditioned MINRES iteration with the eigenvalue spectrum σ (A) repla-
ced in the preconditioned case by σ (M−1A).

There are similar considerations and good preconditioners should sat-
isfy similar criteria for SYMMLQ. As concerns SQMR (Simplified Quasi-
Minimal Residual), it could generally only be used with a symmetric and
indefinite preconditioner and there are no estimates of convergence in this
case, but practical experience indicates that SQMR convergence can be very
good with a suitable indefinite preconditioner [35].
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4.4 Block preconditioners

Block preconditioners are based explicitly on the block factorization (4.4).
The performance of these preconditioners depends on the availability of ap-
proximate fast solvers for linear systems involving A and the Schur com-
plement S. If we assume that A and −S = C + BA−1B⊤ are both
Symmetric Positive Definite, the ideal block diagonal preconditioner is :

Pd =


A 0
0 −S


(4.18)

Preconditioning of A with Pd gives the matrix M [10].

M = P−1
d A =


I A−1B⊤

−S−1B 0


(4.19)

The matrix M is symmetrizable, non-singular by assumption and it sat-
isfies the following identity

(M−I)

M− 1

2


1 +

√
5

I


M− 1

2


1−

√
5

I


= 0 (4.20)

Hence M is diagonalizable and has only three distinct eigenvalues: 1,
1
2


1 +

√
5


and 1
2


1−

√
5

.

Therefore for each initial residual r0, we have that dimKn+m (M, r0) 6 3
which means that MINRES will terminate after at most three iterations if it
is applied to the preconditioned system with the preconditioner Pd. In the
same way, the ideal block triangular preconditioner is:

Pt =


A B⊤

0 ±S


(4.21)

A diagonalizable preconditioned matrix with only two distinct eigenval-
ues equal to ±1 is obtained if we choose the minus sign in (4.21) while
choosing the plus sign leads to a preconditioned matrix with all the eigen-
values equal to 1. In this case the matrix is non-diagonalizable, but has
a minimum polynomial of degree two. With the other choice of the sign
in (4.21), the non-symmetric iterative solver GMRES [38] is guaranteed to
converge in exact arithmetic in at most two steps.

The ideal preconditioners Pd and Pt are not practical choices, because
the exact Schur complement S is not available and is generally a dense
matrix. Then in practice,A and S are substituted by some approximations,
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Â ≈ A and Ŝ ≈ S. If the approximations are chosen appropriately, the
preconditioned matrices have most of their eigenvalues clustered around
the eigenvalues of the ideally preconditioned matrices P−1

d A and P−1
t A.

Of course the choice of the approximations Â and Ŝ is a highly problem-
dependent. Often the matrices A and S are not explicitly available, rather
it is given a prescription for computing the action ofA−1 and S−1 on given
vectors.

The application of these techniques to other saddle point problems is
more problematic. For instance in the absence of elliptic operators it is
not very clear how to build suitable approximations Â ≈ A and Ŝ ≈ S.
One possibility is to use incomplete factorizations of A to build Â, but it
is unclear how to construct good approximations to the (typically dense)
Schur complement S. In this case an alternative approach is the constraint
preconditioning [2, 10].

4.5 Silvester preconditioner

Although Stokes preconditioners with fixed viscosity are nowadays well
established, there is less literature on Stokes preconditioners with varying
viscosity. A first choice is the classical Silvester preconditioner [10]. Con-
sidering the problem: 

A B⊤

B 0


V
P


=


f
g


(4.22)

we note that it can be preconditioned ideally with

P =


A 0
0 −S


(4.23)

where S is the Schur complement.
Hence (4.23) can be approximated leading to the Silvester preconditioner

Pd =


Â 0
0 −diag (M )


(4.24)

where A is approximated in Â, which is an easy invertible matrix and
S is approximated in diag (M), where M is the mass matrix of the pres-
sure. Often A is approximated with a Multi-Grid algorithm that keeps the
spectral properties unchanged. Let use the notation ⟨·, ·⟩ for the Euclidean
scalar product. Consider:
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µmin = inf
Ω
µ (x) , µmax = sup

Ω
µ (x) (4.25)

where the natural assumption is µmin > 0 and µmax <∞.
Let consider finite element:

velocity Xh ⊂ [H1 (Ω)]
d and pressure Sh ⊂ L2

0 (Ω) spaces. Assume that
the spaces pair Xh, Sh is stable in the Ladyzenskaja-Babuska-Brezzi sense
so there exists a mesh independent constant c0 > 0 such that:

c0 < inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)

∥qh∥∥∇ · vh∥
(4.26)

then it holds:

c20µ
−1
maxM 6 S 6 µ−1

minM (4.27)

From this result it follows:

cond

M−1S


6 c−2

0

µmax

µmin

(4.28)

Indeed we need a particular attention to the ratio ∆ because it can make
explode the condition number if not opportunely treated. In [19] they
proved better estimates than (4.28) but only in the special case of Bingham
fluids.

Then, the preconditioner with M rescaled is not effective for varying
viscosity as detailed also in [45], where it is proposed to rescale M using
the ratio

∆ =
µmax

µmin

(4.29)

There are various ways to operate:

• rescaling the entire matrix by a fixed global ∆,

• rescaling the local finite element matrices by a local ∆ calculated only
in the finite element [37].

Furthermore, sometimes only rescaling could not be effective as re-
ported in [5], where the rescaled lumping of theM is considered.
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4.6 Other common techniques

Other preconditioning techniques have been proposed in the literature on
saddle point problems. For instance, the classical Uzawa method can be
shown to be a special type of block triangular preconditioner. Another ex-
ample is the Augmented Lagrangian formulation: the assumption thatA is
non-singular may be too restrictive and in factA is singular in many appli-
cations. However, it is often possible to use augmented Lagrangian tech-
niques [13] to replace the original saddle point system with an equivalent
one having the same solution but in which A is now non-singular. Then,
block diagonal and block triangular preconditioners based on approximate
Schur complement techniques could still be applicable. The augmented La-
grangian idea can also be useful in cases whereA is highly ill-conditioned
and in order to transform the original saddle point system into one that is
easier to precondition.
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CHAPTER5
HPC concepts and architectures

In this chapter we introduce some technical details of the High Performance
Computing machines that have been used and some important definitions
necessary to understand the analysis of the results of the next chapter.

5.1 Definitions

A very important concept in parallel computing is the scalability, which is
a measure of the capability of an algorithm to perform when increasing the
number of parallel tasks and/or workload.

Albeit the term scalability is widely used throughout literature in several
application fields, many different operational definitions and interpretations
coexist. A general definition is given in [27], which makes an abstraction
from the specific application considered. The definition of scalability re-
quires a performance metric typically function of several parameters. The
choice of the performance metric strongly influences the type of scalability
considered, which is usually reached for a bounded region in the parameters
space.

We consider the parallel efficiency as performance metric. While float-
ing point efficiency is usually measured in FLOPS (Floating Point Op-
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erations per Second) and hardware efficiency is measured in FLOPS/W
(FLOPS per Watt), the parallel efficiency of an operation is here defined as
the inverse of the elapsed time T spent to perform such an operation. We
distinguish between strong and weak scalability:

• Strong scalability: to assess the strong scalability the workload is
fixed and we measure the parallel efficiency while varying the num-
bers of processors. Optimal scalability implies that efficiency is pro-
portional to the number of processors, yet it is very difficult to obtain
it in practice. The overall time T is the sum of the time spent for the
computations, and that spent for the communications between proces-
sors. While for the former operations the performance scales, for the
latter it does not and for most algorithms, as the workload per process
decreases the relative importance of communication increases.

• Weak scalability: in this case the ratio between the workload and the
number of processor is kept constant. Weak scalability measures the
capability of the algorithm to handle problems of increasing size. Op-
timal scalability implies, in this case, a constant parallel efficiency.
The lack of weak scalability can be caused by either a loss of perfor-
mance of the computing part, or by an increase of the latency time
introduced by the hardware communication.

We already remarked that different definitions of performance lead to
different types of scalability. For instance, in a domain decomposition con-
text, parallel scalability is often interpreted as the independence of the con-
vergence rate from the sub-domain size H [34]. This is in analogy with
general requirement of independence from the mesh size h.

Another important indicator for parallel efficiency is the speedup σ,
whose definition is

σ =
Tserial
T

(5.1)

where Tserial is the time spent in the serial execution. If an algorithm is
strongly scalable, σ is the number of processors.
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5.2 Machine used

We have used 4 high performance machines that belong to barely three
generations:

• the first generation is represented by Sp6,

• the second generation is represented by SGI Altix ICE 8200 and Blue
Gene/P,

• the third generation is represented by Blue Gene/Q.

Figure 5.1: The Sp6 machine.

5.2.1 Sp6 machine

We used the Sp6 machine installed at CINECA (Consorzio interuniversi-
tario dell’Italia NordEst) in Casalecchio di Reno (Bologna, Italy). The Sp6
machine 5.1 is a IBM pSeries 575 cluster based on IBM Power6 processor,
4.7 GHz with Simultaneous Multi-Threading (SMT) support. The Internal
Network is a fat-tree Infiniband x4 DDR and the Operating System is AIX
6. It has 168 Computing Nodes and 5376 Computing Cores (32 core/node).
The RAM is 21 TB ( 128 Gb/node), while the total disk space is around 1.2
PB.
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The peek power is 101 TFLOPS versus 3 TFLOPS of Sp5, the previous
machine. Every node has 128 GB of shared memory. The particularity of
these machine are the AIX Operating System.

5.2.2 Blue Gene/P machine

We used the Blue Gene/P machine installed at CINECA. The design of
Blue Gene/P is the evolution from Blue Gene/L. Each Blue Gene/P Com-
pute chip contains four PowerPC450 processor cores, running at 850 MHz.
The cores are cache coherent and the chip can operate as a 4-way symmet-
ric multiprocessor (SMP). The memory subsystem on the chip consists of
small private L2 caches, a central shared 8 MB L3 cache, and dual DDR2
memory controllers. In Figure 5.2 is depicted a Blue Gene/P machine.

The chip also integrates the logic for node-to-node communication, us-
ing the same network topology as Blue Gene/L, but at with the double of
the bandwidth. A compute card contains a Blue Gene/P chip with 2 or 4
GB DRAM, comprising a "compute node".

A single compute node has a peak performance of 13.6 GFLOPS. 32
Compute cards are plugged into an air-cooled node board. A rack contains
32 node boards (thus 1024 nodes, 4096 processor cores). By using many
small, low-power, and densely packaged chips, Blue Gene/P exceeded the
power efficiency of other supercomputers of its generation.

The Blue Gene/P supercomputer and its predecessor are unique in the
following aspects:

• Trading the speed of processors for lower power consumption. Blue
Gene uses low frequency and low power embedded PowerPC cores
with floating point accelerators. While the performance of each chip
is relatively low, the system could achieve better performance to en-
ergy ratio, for applications that could use larger numbers of nodes.
Moreover also the memory per core is small: 512 MB or in some rare
cases 1 GB.

• Dual processors per node with two working modes: co-processor mo-
de where one processor handles the computation and the other handles
communications; and virtual-node mode, where both processors are
available to run the code, but the processors share both the computa-
tion and the communication load.

• System-on-a-chip design. All node components were embedded on
one chip, with the exception of 512 MB external DRAM.
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• A large number of nodes (scalable in increments of 1024 up to at least
65, 536)

• Three-dimensional torus interconnect with auxiliary networks for glo-
bal communications (broadcast and reductions), I/O and management;

• Lightweight OS per node for minimum system overhead (system noi-
se).

Albeit these features are needed to improve the parallel scalability, they
also make more difficult to use the machine.

Figure 5.2: The Blue Gene/P machine.

5.2.3 SGI Altix ICE 8200 machine

We have used the SGI Altix ICE 8200 called Jade installed at CINES
(Centre Informatique National de l’Enseignement Supérieur) in Montpel-
lier (France) thanks to HPC-Europa2 project.

SGI Altix ICE 8200 is a cluster made of 46 racks as can be seen in Figure
5.3. It has a peak power of 267 TFLOPS. It has 23, 040 cores spread over
2880 blades (nodes) each one with two Intel Quad-Core E5472 (name-code
Harpertown) and X5560 (name-code Nehalem) processors.

The network is an Infiniband (IB 4x DDR) double plane network for
the Harpertown section of the machine. On the Nehalem section of the
machine, 4 InfiniBand 4X QDR drivers provide 72 IB 4X QDR ports on
output of each IRU (576 GB/s). Each IRU encloses 16 compute blades
(nodes), while there are 2 processors per node (blade). Each processor has
4 cores (Harpertown 3 GHz) and 4 GB of memory per core. By default the
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IB plan is used for MPI communications with a non-blocking hypercube
topology and the other one is used for access to the parallel file system
LUSTRE.

It is possible to compare Blue Gene/P and SGI Altix ICE 8200 be-
cause they belong to the same generation even if they are based on different
philosophies: SGI Altix ICE 8200 is based on powerful processors and lot
of memory per node while Blue Gene/P has much less memory per node
and slower processors, but it has three proprietary dedicated networks.

Figure 5.3: The SGI Altix ICE 8200 machine installed at CINES, Montpellier, France.

5.2.4 Blue Gene/Q machine

We have used the Blue Gene/Q machine called Fermi installed at CINECA.
The Blue Gene/Q Compute chip is called A2 and it is a 64-bit PowerPC
processor with 18 cores which are 4-way simultaneously multi-threaded,
and they run at 1.6 GHz. 16 processor cores are used for computing, while
a 17th core is used for operating system assist functions such as interrupts,
asynchronous I/O, MPI pacing and RAS. Lastly the 18th core is used as a
redundant spare, used to increase manufacturing yield. Each processor core
has a SIMD Quad-vector double precision floating point unit (IBM QPX).
In this Blue Gene generation IBM has decided to improve the computa-
tional power of the CPUs since it was the Blue Gene Achille’s heel.

It delivers a peak performance of 204.8 GFLOPS at 1.6 GHz. The chip
is mounted on a compute card along with 16 GB DDR3 DRAM (i.e., 1 GB
for each user processor core).

A compute drawer have 32 compute cards, each water cooled. A "mid-
plane" (crate) of 16 compute drawers have a total of 512 compute nodes,
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electrically interconnected in a 5D torus configuration (4x4x4x4x2). Be-
yond the midplane level, all connections are optical. Racks have two mid-
planes, thus 32 compute drawers, for a total of 1024 compute nodes, 16,384
user cores and 16 TB RAM. Separate I/O drawers, placed at the top of a
rack or in a separate rack, are air cooled and contain 8 compute cards and 8
PCIe expansion slots for Infiniband networking [1]. Blue Gene/Q systems
also topped the Green500 list of most energy efficient supercomputers with
up to 2.1 GFLOPS/W. Blue Gene/Q has been ranked as 7-th powerful high
performance machine in the world in June 2012.

Figure 5.4: The Blue Gene/Q machine installed at CINECA, Casalecchio di Reno,
Bologna, Italy.

To conclude we report a Table 5.1 that highlights the main features of these
machines.

Machine Processor Network Proc.
Freq.
(GHz)

Vendor

Sp6 Power6 fat-tree Infiniband x4
DDR

4.7 IBM

Altix ICE
8200

Intel Quad-Core
E5472/X5560

Infiniband (IB 4x DDR) 3.0 SGI

Blue Gene/P PowerPC450 3D proprietary torus 0.85 IBM
Blue Gene/Q PowerPc A2 5D proprietary torus 1.6 IBM

Table 5.1: Main architecture features of Sp6, Blue Gene and SGI Altix ICE 8200.
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CHAPTER6
Numerical tests

In this chapter we investigate the parallel performance of the Stokes solver
implemented in LifeV on various HPC machines of the type already intro-
duces in section 5.2. We finally report weak and strong scalability results
for some of the preconditioners described in the next section.

6.1 Numerical results on the Sp6 machine

On the Sp6 machine (for further details on this machine see 5.2) we tested
the performance of the code considering only the Stokes solver. The track-
ing solver at that time was not available. We have considered constant den-
sity and viscosity. The main purpose was to test the behaviour of the code.
We focused on how toughen up the code looking to bottlenecks, memory
leaks and any other common problems. We have considered a preliminary
version of the Stokes solver that has been preconditioned with a black-box
preconditioner from the Ifpack package [39], in particular it was ILU-DD.

In the Figure 6.1 we report the speed up of the Stokes solver. Being a
preliminary test, it was performed with 1 up to 512 processors (strong scal-
ability) using only 200.000 tetrahedra. P2 and P1 finite elements were used
respectively for velocity and pressure. The binary was optimized tuning the
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compiler flags, in order to obtain the maximum performance targeting the
underling architecture.

Figure 6.1: The strong scalability on AIX relative to eight tasks.

Looking at Figure 6.1 it is clear that the behaviour is far from optimal.
Since it is a strong scalability plot, it is normal to see a degradation of
the performance because the data processed per processors lowers, while it
increases the numbers of processors, but it is not the only reason.

Analysing the data at every step of the simulation, we have noticed that
the time to read and partition the mesh rise steeply when increasing the
number of CPUs as can be seen in Figure 6.2. This phenomenon worsen
with bigger meshes since every processor read and partition the mesh taking
only its local part.

Thus, a big issue is the i/o time, indeed the number of iteration increases
remarkably when the number of processors increase as can been seen in
Figure 6.3. In fact the preconditioner used does not scale properly, in par-
ticular we numerically see that the solution does not even converge with
more 395 processors. This type of preconditioners may be a good solution
only for a small number of processors (up to 64 processors).

Lastly another bottleneck is the writing of output file, as can been seen
in Figure 6.4. Pie charts that depicts the ratio between the various parts of
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Figure 6.2: The time to read and partition the mesh. In this case the mesh had 25,000
elements

the simulation: in blue the time spent building the space finite elements, in
brown the time to assemble the matrix of the linear system, in orange the
time to write the solution in a HDF5 file, in light blue the time to read and
partition the mesh, in green the time to set the system, in yellow the time to
apply the boundary conditions.

The results of the test, carried on the preliminary version of the code,
has put in evidence the importance of an efficient I/O.
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Figure 6.3: Iteration number of the preconditioner only. The conditioning of the pre-
conditioned matrix worsens when increasing the number of processors at a point (395
processors) that the simulation does not converge.
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Figure 6.4: Serial case. Figure 6.5: Two processors.

Figure 6.6: Four processors. Figure 6.7: 256 CPUs.

Figure 6.8: Pie charts of the various parts of the simulation: in blue the time spent building the
space finite elements, in brown the time to assemble the matrix of the linear system, in orange
the time to write the solution in a HDF5 file, in light blue the time to read and partition the mesh,
in green the time to set the system, in yellow the time to apply the boundary conditions. Note in
orange the time to write the output.

57



Chapter 6. Numerical tests

6.2 Numerical results on Blue Gene/P machine

On Blue Gene/P the output bottleneck has been resolved changing the in-
terface from HDF5 1.6 to HDF5 1.8 as can be seen in Figure 6.9: in blue
the old interface, in pink the new one, in green the new interface using the
compression while in red the serial text-based output. We can notice that
the compression is not relevant thanks to large network bandwidth of the
Blue Gene/P.
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Figure 6.9: The time to write the output file varying the number of processors. Purple
line is hidden by the green line, in this test we did not seen any difference between the
compressed and not compressed HDF5 output.

We decided to off-load the partitioning of the mesh from the simulation
to avoid the bottleneck when reading the mesh, the results can be seen in
Figure 6.10 and in Table 6.1. In red we have the online partitioning (during
the computation) while in blue and green the offline one. During online
partitioning each processor reads the entire mesh and partitions it taking its
own local part, while during offline partitioning only the local part of the
mesh is read.

After solving the I/O bottleneck, the scalability on Blue Gene/P im-
proved distinctively as can be seen in Figure 6.11, although it was not opti-
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Figure 6.10: Time to read and partition the mesh varying the number of processors.

elements offline (s) online (s)
196,608 3.3 127.5

1,572,864 34.2 842.3

Table 6.1: Comparison between offline and online partitioning with two different number
of elements.

mal. This inefficiency was due to high memory footprint since on the Blue
Gene/P there is only 1 GB per processor and this lead to have only a few
number of DOFs (Degree of Freedom) per processor (i.e. 100, 000 DOFs)
before saturating the processor memory.

From this consideration, we started to investigate tools to reduce mem-
ory requirements and we adopted Scalasca [15], Massif and Tau [43] to
profile the code. In this way we identified the slowest routines and some
unneeded functions which we have decided to remove. Additionally we
have substituted Boost::uBLAS with C-like vectors/matrices whenever
possible.

The overall performance improvement was of just 5%, and unfortunately
we did not notice any remarkable decrease of memory footprint. Therefore
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Figure 6.11: Strong scalability on Blue Gene/P.

we decided to rethink our code in a way that should occupy less memory.
Another important point is to reduce the communication, for example

by creating the graph for matrix initialization before the creation of the
matrices. Further information on this issues is contained in the next chapter
7.2.2.

Beside this, we have implemented lighter quadrature rules to heavily re-
duce the memory footprint as can be seen in Table 6.2. Also finite elements
can impact on the memory footprint. Indeed in our case have we have con-
sidered only the stable couples: P1

b / P1 and P1nc / P0 respectively for the
velocity and for the pressure fields and we abandoned the couple P2 / P1

since it is heavier than the previous ones.

elements qR 4 pt qR 15 pt qR 64 pt
196,608 786,432 2,949,120 12,582,912

1,572,864 6,291,456 94,371,840 6,039,797,760

Table 6.2: Comparison between different types of quadrature rules: number of doubles
stored for every quadrature rule in case of two different meshes.

Other important points are the choice of the linear solver and the pre-
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6.2. Numerical results on Blue Gene/P machine

conditioner. As a solver we considered both algorithms in Belos and in
AztecOO [20], while Belos has many more solver like MINRES, AztecOO
has been used long assuring high reliability. On Blue Gene/P we have used
GMRES.

6.2.1 Preconditioning

When we consider optimal preconditioners as those illustrated in 4.5, it is
very important to select a suitable preconditioner for the elliptic part of the
problem.

We decide to use an Algebraic Multi-Grid (AMG) preconditioner be-
cause it is very scalable and it has a low memory footprint, since it does not
built directly the preconditioner.

There are only a few open-source multi-grid libraries that can scale well
on high performance machines, the most used are ML and Hypre. In our
case we have chosen the ML package from the Trilinos library since the
version of Hypre at that time suffered scalability problems [5] and further-
more our code was already based on Trilinos.

Compared to geometric multi-grid, AMG can have advantages because
of its ability to take into account for variations in viscosity and adaptively
refined meshes in the grid hierarchy. AMG requires a setup phase, in which
a coarse grid hierarchy and corresponding restriction and interpolation op-
erators are constructed.

In ML, we use a processor-local (uncoupled) coarse grid aggregation
scheme. When the number of unknowns per processor becomes small in the
aggregation process, we repartition to a smaller number of processors. The
new parallel partitioning often allows aggregation of unknowns originally
on different processors. We use an aggregation threshold of 0.01, and 3
sweeps of smoother for both the pre- and post-smoothing. As a smoother
we considered several choices: the AztecOO implementation of GMRES,
ILU, symmetric Gauß-Seidel, Jacobi. For this choice of ML parameters,
the small coarse grid problem is set up on a single processor and solved by
a direct method (SuperLU [29]).

The most delicate parameter in a AMG algorithm is the smoother, in
fact it highly affects the cost to construct the preconditioner and the pre-
conditioner spectral properties. GMRES and ILU are proved to be the most
robust smoothers, while Cholesky, Gauß-Seidel, Jacobi are cheaper but can
fail occasionally when increasing the number of processor or using more
“distorted” meshes. It is important to notice that ILU smoother is usable
only with small meshes, since with larger meshes the time to build the
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preconditioner becomes infeasible. The coarse grid aggregation scheme is
very important, but often a processor-local (uncoupled) scheme is scalable
and robust. In some case it is important to use the energy minimization
scheme built in ML to find good damping parameters for the prolongator
smoothing, like in the case of Gauß-Seidel smoother that in this way can
outperform GMRES smoother.

After this improvements we moved to test the code on SGI Altix ICE
8200 and on Blue Gene/Q machines.
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6.3. Numerical results on SGI Altix ICE 8200

6.3 Numerical results on SGI Altix ICE 8200

SGI Altix ICE 8200 has a totally different architecture compared to Blue
Gene (see 5.2.3), for this reason we tested our code on this machine to see
its behaviour compared to the Blue Gene architecture.

As shown in Figure 6.12 it is preferable to use a Domain Decomposition
ILU in a parallel environment up to 32 processors as it is easier to setup and
it still has good performance.
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Figure 6.12: Strong scalability of GMRES solver preconditioned with ILU-DD from Ifpack
library on SGI Altix ICE 8200.

When increasing the number of processors, the only viable choice is a
Multi-Grid preconditioner. In Figure 6.13 we show the weak scalability be-
tween various smoothers. ILU smoother is the smoother that occupies the
most amount of the memory since it actually builds physically the precon-
ditioner. Notice that Gauß-Seidel with repartition an AztecOO smoothers
is the most scalable.

On SGI Altix ICE 8200 we were able to run a simulation up to 40 million
DOFs and in Figure 6.14 we report the speed up of the linear solver. The
best smoothers that we found are based on GMRES (used as a smoother)
and on Gauß-Seidel with repartition, because they are cheap to apply and
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Figure 6.13: Weak scalability of GMRES solver preconditioned with ML with different
smoothers on SGI Altix ICE 8200.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 200  400  600  800  1000  1200

W
ea

k 
sc

al
ab

ili
ty

 -
 n

or
m

al
iz

ed

Number of tasks

Weak scalability - Multigrid

ML - 40 MDOFs
reference

Figure 6.14: Weak scalability of GMRES solver preconditioned with ML, 40, 000 DOFs
per processor up to 40 MDOFs.

do not use a lot of memory. In Figure 6.15 we report the number of GM-
RES iterations of the solver depending on the type of smoother and on the
number of processors. In blue the ILU smoother leads to the less iteration
than GMRES smoother (in red). Notice the importance of repartition (the
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6.3. Numerical results on SGI Altix ICE 8200

rebalancing) in case of Gauß-Seidel smoother: in pink the case without re-
balancing that cannot converge with more than 8 processors, while the case
with rebalancing (the green line) outperforms even the other smoothers.
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Figure 6.15: Number of iterations of the GMRES solver preconditioned with ML with
different smoothers.

The time to setup the preconditioner plays an important role. In Figure
6.16 the timings to setup the Multi-Grid preconditioner are shown: in red
a case of a ILU smoother with 105 DOFs, in blue and green a Gauß-Seidel
smoother with respectively 105 DOFs and 107 DOFs and then a AztecOO
smoother with 107 DOFs. Notice the remarkably time difference between
Gauß-Seidel/AztecOO and ILU.

Lastly we compare the Blue Gene/P and SGI Altix ICE 8200, as illus-
trated in Figure 6.17. The red line is the reference, the brown line is the
Blue Gene/P in case of 5.8 MDOFs while the blue and green lines are re-
spectively the SGI Altix ICE 8200 for 42 MDOFs and 5.8 MDOFs. To
achieve 42 MDOFs we have run one processor per node to obtain the max-
imum memory in the node.
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Figure 6.16: Time to construct the multi-grid preconditioner.
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Figure 6.17: Speed up comparing Blue Gene/P and SGI Altix ICE 8200 machines.
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6.3. Numerical results on SGI Altix ICE 8200

6.3.1 Schur complement preconditioning

In this section we present various results considering highly changing vis-
cosities and densities. We choose the Multi-Grid preconditioner of the pre-
vious sections for the elliptic part. We test different choices to precondition
the Schur matrix:

• the classical diag (M ) rescaled by ∆,

• the matrixM lumped and rescaled by ∆,

• the entire matrixM rescaled by ∆.

We have decided to rescale by a global fixed value ∆. In Figure 6.18 we
can see the results. In red the lumping ofM , in green the diag (M ) and in
blue the approximate inverse ofM based on a Multi-Grid W-cycle. We can
notice that the diag (M ) works up to ∆ = 103 and the lumped M works
until ∆ = 108, while the approximate inverse of M works very well up to
∆ = 1014.

 2

 3

 4

 5

 6

 7

 1  100  10000  1e+06  1e+08  1e+10  1e+12  1e+14

N
um

be
r 

of
 it

er
at

io
n

Delta ratio

Comparing Schur preconditioning options

Lumped M
approx inv M

diag(M)

Figure 6.18: The number of solver iteration as increase ∆.

Therefore we choose the approximate Multi-Grid based of M as pre-
conditioner. In Figure 6.19 we investigated its behaviour with bigger me-
shes, as in Figure 6.18 we report the Lumped M (400, 000 DOFs) and the
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Multi-Grid approximate based of M (400, 000 DOFs) respectively in red
and blue, while we report in green the Multi-Grid approximate based ofM
(1 MDOFs) with 64 cores on Blue Gene/Q machine (for further details on
Blue Gene/Q see 5.2.4). In the case of 1 MDOFs, the increase of 1 iteration
is mainly due to the increasing number of mesh elements.
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Figure 6.19: The number of solver iterations as increase ∆ with 64 processors.

In Figure 6.20 we can notice that, even increasing the number of DOFs,
the number of iterations remain barely constant. All tests reported in Fig-
ure 6.20 have been performed with 64 processors; we notice that with more
than 1 MDOFs we need to substitute ParMetis with Zoltan in the reparti-
tioning because ParMetis freezes killing the simulation. In red a mesh of
100 kDOFs, in blue a mesh of 1 MDOFs and in green a mesh of 10 MDOFs.
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Heterogeneous density

In Figure 6.21 we show that the preconditioner performs well with small
variations of density, and in Figure 6.22 we can see that even in presence of
high variation of density the preconditioner performs well.
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Figure 6.21: Number of iterations when increasing density.
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Figure 6.22: Number of iterations when increasing density of different order of magnitude.
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6.4 Numerical results on Blue Gene/Q machine

On Blue Gene/Q we have focused on investigating various linear system
solvers and testing various multi-grid parameters. In Figure 6.23 we present
the comparison between various solvers in Belos and in AztecOO packages.
We have considered only the solvers that can be used with the Stokes prob-
lem: the GMRES solver from AztecOO and the BlockGMRES, MINRES,
GCRODR (GMRES with recycling) from Belos.

The size of the problem was of 400 kDOFs: every solver was able to
converge in 4 iterations, but the GMRES family of solver was always faster
both in Belos and AztecOO packages. Surprisingly we can notice that the
Flexible GMRES in Belos resulted slightly faster (1.3 s) than BlockGmres
Belos solver.
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Figure 6.23: Comparison of solver time with 400 kDOFs on 4 processors between various
solvers in Belos and AztecOO.

In Figure 6.24 we show that number of iterations of the solver can be in-
fluenced by the rebalance algorithm used. In red the number of iteration per
numbers of processors using graph partitioning ParMetis algorithm, while
in blue we show the number of iteration per numbers of processors using the
Zoltan Hyper-graph partitioning. For more than 64 processors only Zoltan
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works.
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Figure 6.24: Number of iterations using ParMetis or Zoltan as a repartition algorithm.

Lastly we show, in Figure 6.25, the weak scalability on Blue Gene/Q
considering about 450, 000 DOFs per processor: in green the time to apply
the boundary conditions, in black the time to construct the finite elements
spaces, in pink the time to assemble all the operators, in blue the setup of
the preconditioner, and in red the time spent to solve the linear system.
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CHAPTER7
Implementation aspects

This chapter is sub-divided in three parts: in the first part we describe some
general aspects of the porting process on HPC machines in particular the
Blue Gene architecture. In the second part we illustrate the porting of the
Stokes solver and finally we describe the tracking framework.

7.1 Porting

We ported the LifeV project [9] to RISC processor in particular to Power6
processor and to AIX Operating System . The porting required to remove
the dependencies from GCC/GNU tools of the original program and we
had to rewrite various parts in order to fully comply with the standard C++
since XL compiler is more rigorous about the ISO than the other compilers.

In the case of Blue Gene/P and Blue Gene/Q, the porting was far less
laborious since it was based on previous work on Sp6. In this case, it fo-
cused on improving the performance as detailed in section 7.2.2 and in the
previous section 6.2.
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7.2 Stokes framework

We have implemented two Stokes solvers: the first one was based on the
original framework already present in LifeV. In 7.2.1 we provide a brief
introduction to motivate why we shifted to a different paradigm and then
we present this new framework in 7.2.2.

7.2.1 Stokes Solver

Firstly we have implemented a Stokes solver based on the pre-existent
OseenSolver class in Lifev, but we have decided to abandon the first
implementation after the preliminary tests on Sp6 machine (see 5.2.1) in
favour of a complete rewritten solver based on a different paradigm. The
first implementation was based on the idea of a generic Solver object: a
user should be able to run a solver without knowing almost anything about
the operators assembled and used.

It is a sort of black box that performs the assembling of the entire matrix.
For this reason, this approach is easier for elementary simulations and it is
also user friendly, but it is less effective for more complicated problems
since it is less flexible. This approach does not allow to optimize memory
occupation e CPU usage easily. This is due to the generality of a big solver
class that it has to contain several data structures not always used by all
applications.

The choice to abandon the first implementation was motivated also by
another reason: a source code is generally used and modified by several
people and our aim is to make it available to a wide audience. Hence it is
very important that the source code should be easy to be used, understood
and modified.

1 OseenSolver < mesh_Type > f l u i d ( f l u i d D a t a P t r ,
∗uFESpacePtr ,

3 ∗pFESpacePtr ,
commPtr ,

5 nLagranMul t ) ;
f l u i d . se tUp ( d a t a F i l e ) ;

7 f l u i d . b u i l d S y s t e m ( ) ; / / b u i l d t h e m a t r i c e s
f l u i d . upda teSys t em ( r h s ) ; / / s e t t h e r h s

9 f l u i d . i t e r a t e ( bcH ) ; / / s o l v e t h e l i n e a r sys tem

Code 7.1: example of the old Stokes class. The user have to specify only few information.

7.2.2 Stokes Assembler

After we have performed the tests of Sp6 machine described in section
5.2.1, we decided to write a new framework to reduce memory footprint:
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7.2. Stokes framework

the idea was to create a lighter class based on the Assembler paradigm,
containing only the operators needed by the Stokes problem and avoiding
unnecessary data structures. In box 7.2 is shown the declaration of the class
with the attributes. This class permits to the user to choose from outside the
quadrature rules, the finite elements and the methods to build the various
operators needed by the Stokes problem.

1 t e m p l a t e < typename meshT , typename matr ixT , typename vec to rT >
c l a s s S t o k e s A s s e m b l e r

3 { p u b l i c :
/ / Empty C o n s t r u c t o r

5 S t o k e s A s s e m b l e r ( ) ;
/ / D e s t r u c t o r

7 v i r t u a l ~ S t o k e s A s s e m b l e r ( ) { } ;

9 / / t h e method t o s e t t h e FE Spaces
vo id s e t u p ( uFESpace , pFESpace ) ;

11 / / method t o s e t t h e s t i f f n e s s o p e r a t o r
vo id a d d V i s c o u s S t r e s s ( ma t r ix , v i s c o s i t y ) ;

13 / / method t o s e t t h e s t i f f n e s s o p e r a t o r
vo id a d d G r a d P r e s s u r e ( m a t r i x ) ;

15 / / method t o s e t t h e d i v e r g e n c e o p e r a t o r
vo id addDive rgence ( ma t r ix , c o e f f i c i e n t = 1 . ) ;

17 / / method t o s e t t h e p r e s s u r e mass
a d d P r e s s u r e M a s s ( ma t r ix , c o e f f i c i e n t ) ;

19 / / method t o add RHS
addMassRhs ( vectoRhs , f u n c t i o n _ T fun , v e c t o r coef , t ime ) ;

21 p r i v a t e :
/ / V e l o c i t y FE s p a c e

23 f e s p a c e P t r M_uFESpace ;
/ / P r e s s u r e FE s p a c e

25 f e s p a c e P t r M_pFESpace ;

27 / / C u r r e n t FE
c u r r e n t F E P t r M_viscousCFE ;

29 c u r r e n t F E P t r M_gradPressureUCFE ;
c u r r e n t F E P t r M_gradPressurePCFE ;

31 c u r r e n t F E P t r M_divergenceUCFE ;
c u r r e n t F E P t r M_divergencePCFE ;

33 c u r r e n t F E P t r M_massPressureCFE ;

35 / / Cur ren tFE f o r t h e mass r h s
c u r r e n t F E P t r M_massRhsCFE ;

37

/ / Loca l m a t r i x
39 l o c a l M a t r i x P t r M_loca lVi scous ;

l o c a l M a t r i x P t r M _ l o c a l G r a d P r e s s u r e ;
41 l o c a l M a t r i x P t r M _l oc a l D iv e r ge nc e ;

l o c a l M a t r i x P t r M _ l o c a l M a s s P r e s s u r e ;
43 l o c a l V e c t o r P t r M_localMassRhs ; } ;

Code 7.2: the structure of the stokes class.

In this way, the user has more freedom to assemble the operators that are
effectively needed. The methods that builds the various operators require
smart pointers as input for matrices and vectors so they avoid useless copy
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of data structures while being memory safe. Every private attribute is ac-
tually a smart pointer, so if it is not instantiated it occupies almost nothing.
The class StokesAssembler relies on other data structures and func-
tions to assemble the operators, for instance we report the computation of
the pressure mass matrix in code 7.3. We loop the mesh elements updating
the values of the basis functions in the quadrature nodes on the given ele-
ment (line 9), hence we assemble the local mass matrix (line 15) and finally
we assemble the global matrix (line 21).

1 a d d P r e s s u r e M a s s ( ma t r ix , c o e f f i c i e n t )
{ / / Some c o n s t a n t s

3 c o n s t UIn t nbElements ( M_pFESpace−>mesh ( )−>numElements ( ) ) ;
c o n s t UIn t f i e l d D i m ( M_pFESpace−>f i e l d D i m ( ) ) ;

5

/ / Loop ove r t h e e l e m e n t s
7 f o r ( UIn t i t e r E l e m e n t ( 0 ) ; i t e r E l e m e n t < nbElements ; ++ i t e r E l e m e n t )

{
9

M_massPressureCFE−>u p d a t e ( M_pFESpace−>mesh ( )−>e l e m e n t (
i t e r E l e m e n t ) , UPDATE_PHI | UPDATE_WDET ) ;

11

/ / Clean t h e l o c a l m a t r i x
13 M_loca lMassPres su re −>z e r o ( ) ;

15 / / l o c a l s t i f f n e s s
AssemblyElemen ta l : : mass (∗ M_loca lMassPres su re , ∗M_massPressureCFE ,

c o e f f i c i e n t , f i e l d D i m ) ;
17

/ / Assembly
19 f o r ( UIn t i F i e l d D i m ( 0 ) ; i F i e l d D i m < f i e l d D i m ; ++ i F i e l d D i m )

{
21 a s s e m b l e M a t r i x ( ma t r i x ,

∗M_loca lMassPres su re ,
23 ∗M_massPressureCFE ,

∗M_massPressureCFE ,
25 M_pFESpace−>dof ( ) ,

M_pFESpace−>dof ( ) ,
27 iF ie ldDim , iF ie ldDim ,

o f f s e t U p , o f f s e t L e f t ) ;
29 }

}
31 }

Code 7.3: the method to assemble the mass pressure matrix.

Moreover the object-oriented paradigm helps to keep the memory foot-
print low because every-time the object is deleted its memory is freed. Nev-
ertheless, it can happen in the high performance machines that the garbage
collector does not free the memory during the computation (like on the Sp6
machine). Thus a trick, that works well, to free the memory is to enclose
parts of the code in a separate scope to force the memory to be cleared.
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Data structures, pointed by the smart pointer, survives outside the scope.
Indeed we can selectively chose what leave in memory and what not, there
is a small example in the box 7.4.
/ / t h e s e a r e s m a r t p o i n t e r s

2 m a t r i x P t r s t o k e s M a t r i x ;
s o l v e r P t r s t o k e s S o l v e r ;

4 v e c t o r P t r s t o k e s S o l u t i o n ;
{

6 / / b u i l d t h e v a r i o u s o p e r a t o r s needed
s t o k e s A s s e m b l e r . addDive rgence ( ∗ s t o k e s M a t r i x , 1 . ) ;

8 s t o k e s S o l v e r −>s e t O p e r a t o r ( s t o k e s M a t r i x ) ;
}

10 / / a t t h i s p o i n t s u r v i v e on ly t h e s t o k e s S o l v e r
/ / o b j e c t and a l l d a t a s t r u c t u r e s l i n k e d t o i t

12

/ / s o l v e t h e l i n e a r sys tem
14 s t o k e s S o l v e r −>s o l v e ( s t o k e s S o l u t i o n ) ;

Code 7.4: example of scope reduction.
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7.2.3 Mesh movement

Since a free surface boundary condition is applied on the top of the compu-
tational domain, we need to move the mesh along the free boundary.

As reported in the example in the box 7.5, we firstly instanced in a new
vector (line 2) the velocity field that has been previously interpolated to P1

elements (line 4).
v e l o c i t y −>s u b s e t (∗ s o l u t i o n ) ;

2 v e c t o r P t r _ T y p e d i s p ( new v e c t o r _ T y p e ( u_FESpace−>map ( ) , Repea ted ) ) ;
∗ d i s p = mFESpace−>f e T o F E I n t e r p o l a t e ( ∗uFESpace , ∗ v e l o c i t y ) ;

4 t r a n s f o r m e r . moveMeshSelected ( ∗ d i sp , ( p_FESpace−>dof ( ) . numTotalDof ( ) +
c_FESpaceP0−>dof ( ) . numTotalDof ( ) ) ∗ 3 ) ;

6 moveMeshSelected ( c o n s t VECTOR& disp , UIn t dim )
{

8 p o i n t s _ T y p e p o i n t s _ T y p e ;
p o i n t s _ T y p e& p o i n t L i s t ( M_mesh . p o i n t L i s t ) ;

10 f o r ( u n s i g n e d i n t i = 0 ; i < M_mesh . p o i n t L i s t . s i z e ( ) ; ++ i )
{

12 f o r ( UIn t j = 0 ; j < nDimens ions ; ++ j )
{

14 i n t i d = p o i n t L i s t [ i ] . i d ( ) ;
I n t marker = p o i n t L i s t [ i ] . marker ( ) ;

16

s w i t c h ( marker )
18 {

c a s e 3000 :
20 p o i n t L i s t [ i ] . c o o r d i n a t e ( j ) = M _ p o i n t L i s t [ i ] . c o o r d i n a t e ( j

) + d i s p [ j ∗ dim + i d ] ;
b r e a k ;

22 c a s e 0 :
p o i n t L i s t [ i ] . c o o r d i n a t e ( j ) = M _ p o i n t L i s t [ i ] . c o o r d i n a t e ( j

) + d i s p [ j ∗ dim + i d ] ;
24 b r e a k ;

}
26 }}}

Code 7.5: the algorithm to move the mesh.

Then we call a function that moves selectively the node of the mesh ac-
cording to the velocity field and the boundary flag that allow to identify the
nodes to be moved. Since the movement is often small we do not need to
regularize the mesh after moved.

7.3 Tracking framework

In this section we briefly describe the implementation choices of the tracker
algorithm in paragraph 3.3.3.

Let us consider the code in 7.6, the algorithm is the following:

• partition the mesh and build the overlapped parts (line 2),
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• create the connectivity map for the nodes (line 4),

• create the scalar finite element spaces to track the compositions vari-
ables (line 6),

• create the data structures to handle the ghost maps (line 8),

• create the data structures containing the mesh and the time informa-
tions (line 10),

• create the tracking solver (line 12),

• set up the initial value of the composition (line 16),

• set the velocity field for the tracking solver (line 20),

• solve Stokes problem and export the solution (line 24),

• set up the step count for the temporal cycle (line 28),

• set again the velocity field for the tracking solver (line 30),

• set initial time, end time and time step (line 34),

• check if the time step is consistent (line 38),

• advance the solution to the next time step and advance the current time
of ∆t (line 42),

• get new values of the viscosity and density (line 46),

• solve Stokes problem and iterate.

/ / c r e a t e t h e o v e r l a p p e d maps
2 meshPar t . s e t B u i l d O v e r l a p p i n g P a r t i t i o n s ( t r u e ) ;

4 / / c r e a t e node ne ighbourhood i n f o r m a t i o n s f o r Track s o l v e r
c r e a t e T r a c k N o d e N e i g h b o r s ( ∗ l o c a l M e s h P t r , ∗Members−>comm ) ;

6

/ / S c a l a r f i n i t e e l e m e n t s p a c e o f t h e c o m p o s i t i o n v a r i a b l e .
8 f e S p a c e P t r _ T y p e c_FESpaceP1 ( new feSpace_Type ( ) ) ;

10 Ghos tHandle r <mesh_Type > ghos tP1 ( ) ;

12 / / C r e a t e t h e d a t a f i l e f o r t h e i n t e r f a c e t r a c k i n g s o l v e r
TrackData <mesh_Type > t r a c k D a t a ;

14

/ / I n s t a n t i a t i o n o f t h e t r a c k s o l v e r .
16 t r a c k S o l v e r _ T y p e t r a c k S o l v e r ( ) ;

18 / / s e t up t h e i n i t i a l v a l u e o f t h e c o m p o s i t i o n
t r a c k S o l v e r . c o m p u t e I n i t i a l C o m p o s i t i o n ( ) ;

20
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/ / s e t t h e v e l o c i t y f i e l d f o r t h e Track s o l v e r
22 v e c t o r P t r _ T y p e c o m p o s i t i o n V e l o c i t y ( new v e c t o r _ T y p e ( u_FESpaceP1−>map ( ) ,

Repea ted ) ) ;
∗ c o m p o s i t i o n V e l o c i t y = u_FESpaceP1−>f e T o F E I n t e r p o l a t e ( ∗u_FESpace , ∗

v e l o c i t y , Repea ted ) ;
24 t r a c k S o l v e r . s e t V e l o c i t y ( c o m p o s i t i o n V e l o c i t y ) ;

/ / s o l v e S t o k e s − n o t shown
26 / / e x p o r t t h e c o m p o s i t i o n

UInt s t e p C o u n t ( 0 ) ;
28 / / t ime loop of t h e h y p e r b o l i c eq . t h a t t r a c k t h e p h y s i c a l q u a n t i t i e s

f o r ( Rea l c u r r e n t T i m e ( i n i t i a l T i m e ) ; c u r r e n t T i m e < endTime −
t o l e r a n c e ; s t e p C o u n t ++ )

30 {
v e l o c i t y −>s u b s e t ( ∗ s t o k e s S o l u t i o n ) ;

32 ∗ c o m p o s i t i o n V e l o c i t y = u_FESpaceP1−>f e T o F E I n t e r p o l a t e ( ∗u_FESpace , ∗
v e l o c i t y , Repea ted ) ;

t r a c k S o l v e r . s e t V e l o c i t y ( c o m p o s i t i o n V e l o c i t y ) ;
34

/ / Track s o l v e r i n n e r loop
36 t r a c k D a t a . da taTime ( )−> s e t I n i t i a l T i m e ( c u r r e n t T i m e ) ;

t r a c k D a t a . da taTime ( )−>setEndTime ( c u r r e n t T i m e + t i m e S t e p ) ;
38 t r a c k D a t a . da taTime ( )−>s e t T i m e S t e p ( t i m e S t e p ) ;

40 / / Check i f t h e t ime s t e p i s c o n s i s t e n t , i . e . i f i n n e r T i m e S t e p +
c u r r e n t T i m e < endTime .

i f ( t r a c k D a t a . da taTime ( )−>i s L a s t T i m e S t e p ( ) )
42 { t r a c k D a t a . da taTime ( )−>s e t T i m e S t e p ( t r a c k D a t a . da taTime ( )−>l e f t T i m e

( ) ) ; }
/ / advance t h e s o l u t i o n t o t h e n e x t t ime s t e p

44 Real t imeComputed = t r a c k S o l v e r . s t e p ( ) ;
/ / Advance t h e c u r r e n t t ime of \ D e l t a t .

46 t r a c k D a t a . da taTime ( )−>updateTime ( t imeComputed ) ;
/ / g e t new v a l u e s o f t h e v i s c o s i t y and d e n s i t y

48 physProp−>u p d a t e ( c o m p o s i t i o n ) ;
v i s c o s i t y = physProp−>g e t P r o p e r t y ( v i s c o s i t y N a m e ) ;

50 d e n s i t y = physProp−>g e t P r o p e r t y ( dens i tyName ) ;
/ / d i v i d e wi th t i m e s t e p

52 ∗ d e n s i t y /= t i m e S t e p ;

54 / / s o l v e S t o k e s − n o t shown

56 }
/ / end of c o m p u t a t i o n

Code 7.6: the structure of track algorithm.
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CHAPTER8
Applicative example

In this chapter we describe an application of the developed framework
based on the benchmark presented in [45].

8.1 Sedimentary basin simulations

The simulation that is described in this section is performed on the do-
main visualized in Figure 8.1. We consider three different layers of rock
divided by non-horizontal planes. This fact induces the formation of the
Rayleigh-Taylor instability that is purely generated from the gravitational
forces, since the initial condition for the velocity is set equal to zero in
each point of the domain. The physical properties of the strata are listed
in Tab. 8.1. The domain simulates a section of the upper part of the Earth
crust and its dimensions are 3× 1× 5 km. The domain is discretized with
a three-dimensional tetrahedral mesh with about 25 million DOFs. The
boundary conditions that are imposed in the model are the following: on
ΓB, the bottom of the domain, the velocity is set to zero, on ΓS and ΓL the
condition for the velocity is u ·n = 0, so there is no velocity in the normal
direction. In fact, the upper part ΓS behaves like a free surface, but since
the configuration considered in this chapter does not take into account the
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Figure 8.1: A test section of the Earth crust. The dimensions of the domain are 3×1×5 km.

Physical properties
density (kg/m3) viscosity (Pa · s)

upper layer 3.0 1.1e14
middle layer 2.0 6.3e13
bottom layer 0.1 3.2e13

Table 8.1: Physical properties of the three layers.

compaction of the layers, there is no movement of the grid, so ΓS does not
evolve in time.

The time evolution of the test is depicted in Figure 8.2. The simulated
time frame is 5 millions of years (Ma). The time step is set to 0.1 Ma for the
implicit Stokes solver, while the tracking solver performs a variable number
of sub-steps in order to keep the Courant number acceptable. In any case,
the number of sub-steps is never greater than 40. Only half of the domain
is displayed in the figures in order to show what happens inside the basin.
The lower stratum, that is the lighter one, tends to move up, pushing the
other two layers down. The classic mushroom-shaped interface develops
during the rising of the lower layer, until the velocity decreases when the
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8.1. Sedimentary basin simulations

Figure 8.2: Time evolution of the test. In each picture, the bottom layer with streamlines
(left) and the middle layer with the velocity field (right) are displayed. From the top
left to the bottom right the times are: 0.8 Ma, 1.6 Ma, 2.4 Ma, 3.2 Ma, 4.0 Ma, 4.8 Ma.

lighter stratum sets above the others.
The discretized version of the test has about 25 millions degrees of free-

dom (DOFs). The Stokes system matrix is solved with a Flexible GMRES
method (see paragraph 6.4). Different preconditioners have been consid-
ered: while algebraic preconditioners of the incomplete factorization family
(from the IFPACK package in Trilinos) show good performance on serial
runs, we have found that they scale poorly in parallel. Multi-grid precon-
ditioners, such as the ones implemented in the ML library from Trilinos,
show optimal scaling with the number of parallel processes. In particular,
the multi-grid preconditioner has been set up to use a three-level scheme,
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with a Smoothed Aggregation approach to create the prolongation and re-
striction operators. On the coarsest level a direct solver from the Super-
LUdist [29] package was adopted, while on the finer levels the smoother is
a Gauß-Seidel method, for more information see paragraph 6.2.1.

Figure 8.3: Mesh partitioned among the processors.

Even if the preconditioning techniques is optimal from the point of view
of the dimension of the matrix and the number of parallel processes [10],
the condition number of the system could remain strongly influenced by the
ratio of the viscosity values, but not in this test-case. In particular, for the
test-case shown above, the condition number is practically proportional to
the viscosity ratio, see chapter 6.

The test have been performed with a growing number of parallel pro-
cesses on the SGI Altix from CINES. Figure 8.4 shows the strong scalabil-
ity performance of the solver. The test was performed running one proces-
sor per node to obtain the maximum memory available in the node.
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Figure 8.4: The strong scalability with a linear reference line of the test-case on SGI Altix
ICE 8200.

8.1.1 Conclusion

Our code enables the simulation of the test-case [45] on HPC machines
with more than 25 MDOFs. Now the main difficulty to scale more on ma-
chine like Blue Gene/Q is to find bigger meshes and to reduce the memory
requirements.

8.1.2 Lithostatic test-case

Figure 8.5: Mesh partitioned among the processors in the lithostatic test-case.

This is another test-case still based on [45], where we simulate only the
lithostatic pressure (the Stokes problem). In Figure 8.5 it is presented the
physical domain and the mesh partitions.
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The continuous and the discrete problems are still the same, as well the
parameters used to solve the Stokes problem in the previous test-case and
discussed in the previous chapters. In this test we investigate two aspects:
the behaviour of our code with a high number of DOFs (the maximum that
we can achieve with biggest mesh that we can have) and the behaviour of
the preconditioner with highly varying viscosity (layers with a ratio of 106).

The test was 48 MDOFs big over 128 processors and it was performed
on the Blue Gene/Q at CINECA, Italy. The test was performed with 32, 64
and 128 cores.

In Figure 8.6 it is presented the pressure field of the solution.

Figure 8.6: Pressure field of the lithostatic test-case.
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CHAPTER9
Conclusion

9.1 Conclusion

This thesis deals with the porting on HPC machines of a Finite Element
code, the parallel preconditioning of a Stokes problem with varying viscos-
ity and the parallel implementation of the algorithm introduced in [30, 46].
We introduce a suitable parallel preconditioner for Stokes problems with
varying viscosity. We investigate the parallel performance of the Stokes
solver implemented on various HPC machines.

9.1.1 Difficulties

The biggest difficulties arose during the code porting to AIX Operating
System and to XL compiler, in fact we took around one year to port the
code. Also debugging in a HPC programming environment with hundreds
of MPI tasks was quite difficult and it slowed down the code development.

9.1.2 Original Work and goals reached

We have developed a novel tracking solver and a Stokes solver that can
run on High Performance Machines of the last generation. The approach
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that we have adopted is based on coarse grain parallelism. More precisely,
the numerical techniques adopted is domain decomposition. Further im-
provements on modern hybrid architectures could be reached by adopting a
shared memory protocol (SMP) type of parallelism at the sub-domain level.

Given the hyperbolic nature of the equation for the tracking of the layers,
we have the need of collecting data from neighbour sub-domain. To collect
this information we have introduced a dedicated parallel data structure on
overlapping sub-domains that allows to reconstruct the numerical fluxes
across the sub-domain interfaces in an efficient way.

The accuracy and performance of the method has been assessed in a
surrogate test. In particular, given the dimensions of realistic sized sedi-
mentary basins, we focused on the correct and optimal configuration of the
preconditioner of the Stokes system, that happens to be the most expensive
part of the computation.

We have tested several options, including preconditioning tools made
available by state of the art parallel linear algebra packages. By the selec-
tion of the appropriate preconditioning we were able to reach good scalabil-
ity on more than one-thousand processors. The code has also been applied
to realistic industrial test-cases.

9.1.3 Future work

Future work will include the introduction of the compaction of the rocks,
which requires to introduce a suitable compaction model and modify the
grid to account for new sedimented layers. The coupling with subsurface
fluid models is also an interesting extension. In the future we will also
investigate other stable polynomial couples and stabilization for low order
polynomial.
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