

# **POLITECNICO DI MILANO**

Facoltà di Ingegneria Industriale

Corso di Laurea in Ingegneria Aeronautica

# "ANALISI STATICA CARRELLO PRINCIPALE M346: confronto teorico/sperimentale prove di resistenza e prove di rigidezza"

Relatore: Prof. Giuseppe Sala

Alessandro Pagani 735422

Anno Accademico 2012/13



# INDICE

| S | SOMMARIO9 |                                                    |    |
|---|-----------|----------------------------------------------------|----|
| A | BSTI      | RACT                                               | 10 |
| 1 | Ι         | NTRODUZIONE                                        | 11 |
|   | 1.1       | L'AZIENDA                                          | 11 |
|   | 1.2       | L'ADDESTRATORE AVANZATO M-346                      |    |
|   | 1.3       | SCHEDA TECNICA M-346                               | 14 |
| 2 | S         | STRUTTURA DEL CARRELLO PRINCIPALE M-346            | 17 |
|   | 2.1       | DESCRIZIONE DELLA STRUTTURA                        | 17 |
|   | 2.2       | PROVE SPERIMENTALI DI RESISTENZA                   | 21 |
|   | 2         | 2.2.1 Descrizione delle prove di resistenza        |    |
|   | 2         | 2.2.2 Risultati delle prove di resistenza          |    |
|   |           | 2.2.2.1 Limit load case LC1 - 2pt spin up          |    |
|   |           | 2.2.2.2 Limit load case LC2 - 2pt spring back      | 31 |
|   |           | 2.2.2.3 Limit load case LC3 - 2pt drift landing    | 34 |
|   |           | 2.2.2.4 Limit load case LC4 - 2pt braked roll      |    |
|   | 2.3       | PROVE SPERIMENTALI DI RIGIDEZZA                    |    |
|   | 2         | 2.3.1 Descrizione delle prove di rigidezza         |    |
|   | 2         | 2.3.2 Risultati delle prove di rigidezza           |    |
| 3 | N         | MODELLO AD ELEMENTI FINITI DEL CARRELLO PRINCIPALE |    |
|   | 3.1       | DESCRIZIONE DEL MODELLO NUMERICO                   |    |
|   | 3         | 3.1.1 Parti modellate con mesh 3D                  | 50 |
|   | 3         | B.1.2 Elementi bar di collegamento (Pin)           | 54 |
|   | 3         | 3.1.3 Vincoli "MPC" di contatto                    | 55 |
|   |           | 3.1.3.1 Pintle pin-Main fitting                    | 55 |
|   |           | 3.1.3.2 Main fitting-Upper torque link             | 56 |
|   |           | 3.1.3.3 Upper torque link-Lower torque link        | 58 |
|   |           | 3.1.3.4 Lower torque link-Sliding tube             | 59 |
|   |           | 3.1.3.5 Main fitting-Sliding tube                  | 60 |
|   | 3         | 3.1.4 Vincoli "SPC" d'interfaccia                  |    |
|   | 3         | 3.1.5 Descrizione del Drag Brace                   |    |
|   |           | 3.1.5.1 Simulazione del Drag Brace                 | 64 |



|   | 3.1.6                                              | Descrizione del Wheel Axle                                                                                                                                                                                                 | 66  |
|---|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | 3.1.7                                              | Sistemi di riferimento per le condizioni di prova                                                                                                                                                                          | 67  |
|   | 3.1.8                                              | Proprietà dei materiali                                                                                                                                                                                                    | 68  |
|   | 3.2 AN                                             | ALISI MODALE                                                                                                                                                                                                               | 69  |
|   | 3.2.1                                              | Modale non vincolata                                                                                                                                                                                                       | 70  |
|   | 3.2.2                                              | Modale vincolata                                                                                                                                                                                                           |     |
|   | 3.3 AP                                             | PLICAZIONE DEI CARICHI                                                                                                                                                                                                     |     |
| 4 | CON                                                | FRONTO DEI RISULTATI (RIGIDEZZA)                                                                                                                                                                                           | 77  |
|   | 4.1 CO                                             | RRELAZIONE DEGLI SPOSTAMENTI                                                                                                                                                                                               | 77  |
| 5 | CON                                                | FRONTO DEI RISULTATI (RESISTENZA)                                                                                                                                                                                          | 86  |
|   | 5.1 CO                                             | RRELAZIONE DEGLI SPOSTAMENTI                                                                                                                                                                                               | 86  |
|   | 5.2 CO                                             | RRELAZIONE DELLE DEFORMAZIONI                                                                                                                                                                                              |     |
| 6 | CON                                                | CLUSIONI                                                                                                                                                                                                                   |     |
| 7 | BIBL                                               | IOGRAFIA                                                                                                                                                                                                                   | 100 |
| 8 | APPE                                               | NDICE                                                                                                                                                                                                                      | 101 |
|   | 8.1 FIL                                            | E DI LANCIO                                                                                                                                                                                                                | 101 |
|   | 8.1.1                                              |                                                                                                                                                                                                                            |     |
|   |                                                    | File di lancio: MLG_10_lc_02.bdf                                                                                                                                                                                           | 102 |
|   | 8.1.2                                              | File di lancio: MLG_10_lc_02.bdf<br>File di lancio: MLG_72_2pt_spin_up.bdf                                                                                                                                                 |     |
|   | 8.1.2<br>8.1.3                                     | File di lancio: MLG_10_lc_02.bdf<br>File di lancio: MLG_72_2pt_spin_up.bdf<br>File di lancio: Modal_0_nv.bdf                                                                                                               |     |
|   | 8.1.2<br>8.1.3<br>8.1.4                            | File di lancio: MLG_10_lc_02.bdf<br>File di lancio: MLG_72_2pt_spin_up.bdf<br>File di lancio: Modal_0_nv.bdf<br>FEM_MLG\Modal\mlg_0:                                                                                       |     |
|   | 8.1.2<br>8.1.3<br>8.1.4<br>8.1.5                   | File di lancio: MLG_10_lc_02.bdf<br>File di lancio: MLG_72_2pt_spin_up.bdf<br>File di lancio: Modal_0_nv.bdf<br>FEM_MLG\Modal\mlg_0:<br>FEM_MLG\Stiffness\mlg10:                                                           |     |
|   | 8.1.2<br>8.1.3<br>8.1.4<br>8.1.5<br>8.1.6          | File di lancio: MLG_10_lc_02.bdf<br>File di lancio: MLG_72_2pt_spin_up.bdf<br>File di lancio: Modal_0_nv.bdf<br>FEM_MLG\Modal\mlg_0:<br>FEM_MLG\Stiffness\mlg10:<br>FEM_MLG\Stiffness\mlg180:                              |     |
|   | 8.1.2<br>8.1.3<br>8.1.4<br>8.1.5<br>8.1.6<br>8.1.7 | File di lancio: MLG_10_lc_02.bdf<br>File di lancio: MLG_72_2pt_spin_up.bdf<br>File di lancio: Modal_0_nv.bdf<br>FEM_MLG\Modal\mlg_0:<br>FEM_MLG\Stiffness\mlg10:<br>FEM_MLG\Stiffness\mlg180:<br>FEM_MLG\Stiffness\mlg350: |     |



# **INDICE DELLE FIGURE**

| Figura 1 - M-346                                         | 13 |
|----------------------------------------------------------|----|
| Figura 2 - Tre Viste M-346                               | 15 |
| Figura 3 - MLG Shock Strut e MLG Drag Brace              |    |
| Figura 4 - Componenti MLG                                |    |
| Figura 5 - Dimensioni di riferimento MLG                 |    |
| Figura 6 - Schema impianto prove di resistenza           |    |
| Figura 7 - Schema carichi applicati MLG (LH)             |    |
| Figura 8 - Prove di resistenza: Spostamenti              |    |
| Figura 9 - Prove di resistenza: Posizione Estensimetri   |    |
| Figura 10 - Setup LC1 - 2pt Spin Up                      |    |
| Figura 11 - Setup LC2 - 2pt Spring Back                  |    |
| Figura 12 - Setup LC3 - 2pt Drift Landing                |    |
| Figura 13 - Setup LC4 - 2pt Braked Roll                  |    |
| Figura 14 - Prove di rigidezza: Configurazione carico +X |    |
| Figura 15 - Prove di rigidezza: Configurazione carico -X | 41 |
| Figura 16 - Prove di rigidezza: Configurazione carico +Y | 41 |
| Figura 17 - Prove di rigidezza: Configurazione carico -Y |    |
| Figura 18 - Prove di rigidezza: Spostamenti              |    |
| Figura 19 - Punti d'interfaccia MLG                      |    |
| Figura 20 - Modello 3D del MLG                           |    |
| Figura 21 - Modello 3D del MLG                           |    |
| Figura 22 - Pintle pin – MF                              |    |
| Figura 23 - MPC Pintle pin – MF                          |    |
| Figura 24 - MF–UTL                                       |    |
| Figura 25 - MPC MF–UTL - Contatto Y Negativo             |    |
| Figura 26 - MPC MF–UTL - Contatto Y Positivo             |    |
| Figura 27 - UTL–LTL                                      |    |
| Figura 28 - MPC UTL-LTL                                  |    |



| Figura 29 - LTL–ST                                        | ) |
|-----------------------------------------------------------|---|
| Figura 30 - MPC LTL–ST - Contatto Y Negativo              | ) |
| Figura 31 - MPC LTL–ST - Contatto Y Positivo              | ) |
| Figura 32 - MPC MF–ST                                     |   |
| Figura 33 - Vincoli SPC                                   | ) |
| Figura 34 - Mesh Drag Brace 64                            | ŀ |
| Figura 35 - Upper Drag Brace                              | į |
| Figura 36 - Lower Drag Brace65                            | į |
| Figura 37 - Wheel Axle                                    | 5 |
| Figura 38 - MPC Wheel Axle 66                             | 5 |
| Figura 39 - MLG SAT 10 - SAT 35067                        | 1 |
| Figura 40 - Modi non vincolati70                          | ) |
| Figura 41 - Modi vincolati71                              |   |
| Figura 42 - Applicazione dei carichi72                    | ) |
| Figura 43 - 2pt Drift Landing RH73                        | ; |
| Figura 44 - 2pt Braked Roll73                             | ; |
| Figura 45 - Carichi Rigidezza: LC 12 SAT 1074             | ŀ |
| Figura 46 - Carichi Resistenza: LC 2pt Drift Landing RH74 | ŀ |
| Figura 47 - Carichi Resistenza: LC 2pt Braked roll75      | į |
| Figura 48 - Diagramma Rigidezze75                         | 5 |
| Figura 49 - Pressurizzazione SAT 10 e SAT 35076           | ĵ |
| Figura 50 - Spostamento Punto 1 vs Load Case79            | ) |
| Figura 51 - Spostamento Punto 2 vs Load Case              | ) |
| Figura 52 - Spostamento Punto 6 vs Load Case              | ) |
| Figura 53 - Spostamento Punto 7 vs Load Case              |   |
| Figura 54 - Spostamento Punto 8 vs Load Case              |   |
| Figura 55 - Spostamento Punti 1-8 vs Load Case 1-6        | ) |
| Figura 56 - Spostamento Punti 1-8 vs Load Case 7-12       | ; |
| Figura 57 - Spostamento Max. vs Load Case 1-12            | ŀ |
| Figura 58 - Spostamenti LC1 - 2pt Spin Up 89              | ) |

| Figura 59 - Spostamenti LC2 - 2pt Spring Back      | 89 |
|----------------------------------------------------|----|
| Figura 60 - Spostamenti LC3 - 2pt Drift Landing RH | 90 |
| Figura 61 - Spostamenti LC4 - 2pt Braked Roll      | 90 |
| Figura 62 - Deformazioni del Punto 1 vs Load Cases | 94 |
| Figura 63 - Deformazioni del Punto 2 vs Load Cases | 95 |
| Figura 64 - Deformazioni del Punto 3 vs Load Cases | 96 |
| Figura 65 - Deformazioni del Punto 4 vs Load Cases | 97 |
| Figura 66 - Deformazioni del Punto 5 vs Load Cases | 98 |



# **INDICE DELLE TABELLE**

| Tab. 1 - Abbreviazioni                                                | 16 |
|-----------------------------------------------------------------------|----|
| Tab. 2 - Prove di resistenza: Condizioni di carico limite             |    |
| Tab. 3 - Prove di resistenza: Posizione e direzione degli spostamenti |    |
| Tab. 4 - Risultati LC1 - 2pt Spin Up: Spostamenti                     |    |
| Tab. 5 - Risultati LC1 - 2pt Spin Up: Deformazioni                    |    |
| Tab. 6 - Risultati LC2 - 2pt Spring Back: Spostamenti                 |    |
| Tab. 7 - Risultati LC2 - 2pt Spring Back: Deformazioni                |    |
| Tab. 8 - Risultati LC3 - 2pt Drift Landing: Spostamenti               |    |
| Tab. 9 - Risultati LC3 - 2pt Drift Landing: Deformazioni              |    |
| Tab. 10 - Risultati LC4 - 2pt braked roll: Spostamenti                |    |
| Tab. 11 - Risultati LC4 - 2pt braked roll: Deformazioni               |    |
| Tab. 12 - LC rigidezza: SAT 10                                        |    |
| Tab. 13 - LC rigidezza: SAT 180                                       |    |
| Tab. 14 - LC rigidezza: SAT 350                                       |    |
| Tab. 15 - Risultati LC rigidezza: Spostamenti                         | 45 |
| Tab. 16 - Punti d'interfaccia MLG                                     | 46 |
| Tab. 17 - MAIN FITTING                                                | 50 |
| Tab. 18 - SLIDING TUBE                                                | 51 |
| Tab. 19 - LOWER TORQUE LINK                                           | 52 |
| Tab. 20 - UPPER TORQUE LINK                                           | 53 |
| Tab. 21 - Pintle pin                                                  |    |
| Tab. 22 - Torque links pin                                            |    |
| Tab. 23 - Vincoli SPC                                                 |    |
| Tab. 24 - DRAG BRACE                                                  | 63 |
| Tab. 25 - LOWER DB–UPPER DB                                           | 64 |
| Tab. 26 - Sistemi di riferimento                                      | 67 |
| Tab. 27 - Materiali                                                   |    |
| Tab. 28 - Frequenze dei modi                                          | 69 |

| Tab. 29 - Condizioni di Rigidezza                                    | 77 |
|----------------------------------------------------------------------|----|
| Tab. 30 - Posizione LVDT                                             | 78 |
| Tab. 31 - Condizioni di Rigidezza – Spostamenti FEM                  | 79 |
| Tab. 32 - Condizioni di Rigidezza – Spostamenti TEST                 | 79 |
| Tab. 33 - Condizioni di Rigidezza – Errore Percentuale Spostamenti   |    |
| Tab. 34 - Condizioni di Resistenza                                   |    |
| Tab. 35 - Condizione LC1 – 2pt Spin Up                               |    |
| Tab. 36 - Condizione LC2 – 2pt Spring Back                           |    |
| Tab. 37 - Condizione LC3 – 2pt Drift Landing RH                      |    |
| Tab. 38 - Condizione LC4 – 2pt Braked Roll                           |    |
| Tab. 39 - Condizioni di Resistenza – Errore Percentuale Spostamenti  | 91 |
| Tab. 40 - Posizione Estensimetri                                     |    |
| Tab. 41 - Condizioni di Resistenza – Deformazioni FEM                | 92 |
| Tab. 42 - Condizioni di Resistenza – Deformazioni TEST               | 93 |
| Tab. 43 - Condizioni di Resistenza – Errore Percentuale Deformazioni | 93 |



Si ringraziano:

- ➢ I miei genitori e i miei fratelli.
- > Il prof. Giuseppe Sala, in qualità di tutor universitario.
- > L'ing. Maurizio Ghioldi, in qualità di tutor aziendale.
- L'ing. Claudio Bossi, per la disponibilità e la pazienza datami.

Rivolgo anche un sincero ringraziamento e i miei più calorosi saluti a tutti quelli che ho conosciuto e al gruppo di lavoro con cui ho avuto il piacere di collaborare per tutto questo periodo.



# Sommario

I carrelli aeronautici in una configurazione di tipo triciclo anteriore retrattile sono di due tipologie: il carrello anteriore, posto in prossimità del muso anteriore, e il carrello principale, posto in prossimità dell'ala. Generalmente, la struttura di un carrello è composta da un corpo principale sede dell'ammortizzatore, che sostiene la ruota, e da un elemento con funzione di controvento, che permette di tenere il carrello in posizione estesa durante le fasi di decollo, atterraggio e sosta a terra. La struttura è realizzata con parti in lega di alluminio, accanto a componenti d'acciaio ad alta resistenza nei punti di maggiore concentrazione delle sollecitazioni.

Lo scopo del lavoro è quello di correlare i dati numerici del modello ad elementi finiti della struttura del carrello principale dell'M-346 con i dati delle prove sperimentali di rigidezza e di resistenza per consentire la validazione del modello stesso. Sono state perciò condotte una serie di analisi statiche lineari che hanno permesso, alla fine delle attività, di ottenere un modello FEM rappresentativo del carrello principale.

#### **Parole chiave:**

Carrello principale; M-346; correlazione teorico/sperimentale



# Abstract

The aeronautical landing gears in a tricycle retractable configuration are of two types: "nose landing gear", located near the front nose, and "main landing gear", located in the vicinity of the wing. Generally, the structure of a landing gear is composed of a main body seat of the shock absorber, which supports the wheel, and by an element with the function of brace, that allows to keep the gear in the extended position during the phases of takeoff, landing and parking ground. The structure is realized with parts made of aluminum alloy, next to components of high-strength steel in the points of greatest stress concentration.

The aim of this work is to correlate the numerical data of the finite element model of the structure of the M-346 "Main Landing Gear" with the experimental data of stiffness and strength test to allow the validation of the theoretical model. Were therefore conducted a series of linear static analyses that have allowed, at the end of the activity, to obtain a representative FEM model of the main landing gear.

#### **Keywords:**

Main Landing Gear; M346; theoretical/experimental correlation



# **1 INTRODUZIONE**

La seguente relazione vuole presentare e commentare l'esperienza di tirocinio formativo svolta dal sottoscritto presso gli uffici di Progettazione e Sviluppo (Airframe M-346) dello stabilimento AleniaAermacchi di Venegono.

Il lavoro svolto riguarda l'analisi statica del carrello principale del velivolo M-346; in particolare, la generazione di un modello ad elementi finiti della struttura del carrello principale, il suo caricamento, in accordo a quanto eseguito durante le prove sperimentali, e il relativo confronto dei risultati delle analisi con i dati forniti dalle prove sperimentali.

Tutto questo al fine di mettere a punto il modello FEM, in modo da ottenere risultati il più possibile vicini a quelli ottenuti in via sperimentale. Il modello FEM "tarato" potrà così essere utilizzato in futuro con buona confidenza sulla qualità dei risultati qualora il velivolo dovesse subire variazioni significative di masse/centraggi.

#### 1.1 L'AZIENDA

AleniaAermacchi, società controllata del gruppo Finmeccanica S.p.A, è un leader italiano in campo aeronautico ed è tra i più avanzati complessi mondiali nel suo settore. La società è impegnata, direttamente o tramite partecipazione a consorzi e collaborazioni internazionali con le più importanti industrie mondiali, nella progettazione e realizzazione di una vasta gamma di velivoli e sistemi aeronautici sia civili che militari.

Produce prodotti come l'M-346, aereo progettato per soddisfare le esigenze di addestramento dei piloti di aerei da combattimento di 4° e 5° generazione, e il C-27J, versatile e moderno aereo da trasporto tattico.

L'azienda ha un ruolo chiave nella produzione di velivoli da difesa, da trasporto militare e pattugliamento; si occupa anche delle relative manutenzioni, revisioni, trasformazioni e modifiche di diversi velivoli. La società ha inoltre un ruolo di primo piano nel comparto dell'aviazione commerciale con la costruzione di aerostrutture avanzate per velivoli quali l'Airbus A380 e il Boeing B787.



I settori degli aerei militari e degli aerei commerciali hanno sede rispettivamente negli stabilimenti di Torino-Caselle e di Pomigliano D'Arco, con gli aerei d'addestramento e i sistemi basati nello stabilimento di Venegono, che è anche la sede legale. L'attuale azienda è stata costituita il 1° gennaio 2012 dalla fusione per incorporazione delle società Alenia Aeronautica e AleniaAermacchi. Il nome fa risalire la sua discendenza al 1913, quando l'iniziale Nieuport-Macchi è stata fondata; il 1° maggio di quest'anno si è celebrato il suo 100° anniversario.

### 1.2 L'ADDESTRATORE AVANZATO M-346

L'M-346, dotato di doppio turbogetto, è un innovativo velivolo da addestramento avanzato. Con i suoi comandi di volo e avionica completamente digitali, insieme alla semplicità di pilotaggio e alla manovrabilità ad elevati angoli d'attacco, l'M-346 è pienamente rappresentativo dei caccia di nuova generazione. Scaricando una percentuale significativa di ore dal programma d'addestramento è anche estremamente conveniente. Il velivolo, infatti, è stato progettato con gli ultimi concetti di "design-to-cost" e "design-to-maintain", per fornire il migliore equilibrio possibile tra l'alta efficacia dell'addestramento, le capacità operative e un basso costo del ciclo di vita.

L'M-346 sfrutta caratteristiche non convenzionali e sistemi di bordo avanzati, come il suo pacchetto di controllo ETTS (Embedded Tactical Training Simulation), per fornire prestazioni di livello, qualità di volo e sicurezza delle operazioni d'addestramento. Mantenendo sempre le sue avanzate/innovative caratteristiche di addestratore, l'M-346 è facilmente riconfigurabile sul campo per diventare un efficace aereo da combattimento. In questa configurazione operativa il velivolo è in grado di eseguire attacchi a terra o antinave e missioni con obiettivi aerei, in particolare nel cosiddetto ruolo di "difesa della patria".





Figura 1 - M-346

A pieno carico, l'M-346, mantiene un elevato rapporto spinta/peso (in realtà, non molto lontano da quello offerto da caccia d'assalto multiruolo pienamente armati) e un buon carico alare: entrambi contribuiscono nel complesso ad eccellenti prestazioni generali. Anche con un motore non operativo, l'M-346 è ancora capace di alte velocità e manovrabilità.

Questo si traduce in un notevole fattore di sopravvivenza sul campo di battaglia. La grande capacità del serbatoio interno, integrato da un massimo di tre serbatoi esterni e un tubo di rifornimento rapidamente smontabile, dota l'M-346 di un notevole raggio di combattimento e/o di una durata di pattugliamento ulteriormente rafforzata dai motori senza post-combustione.



Tra le caratteristiche che rendono l' M-346 un efficace velivolo da combattimento vi sono:

- la struttura progettata per trasportare fino a tre tonnellate di varie armi
- le nove sezioni di carico
- una configurazione aerodinamica che permette l'integrazione di una vasta gamma di carichi esterni
- la disponibilità di radar multiruolo
- la progettazione secondo criteri legati alla sopravvivenza
- la grande capacità di carburante per una maggiore durata di combattimento
- la notevole velocità e manovrabilità anche a pieno carico o con un motore non operativo.

# 1.3 SCHEDA TECNICA M-346

#### **Dimensioni:**

| Apertura alare   | 9.72 m (31.9 ft)       |  |
|------------------|------------------------|--|
| Lunghezza        | 11.49 m (37.7 ft)      |  |
| Altezza          | 4.76 m (15.6 ft)       |  |
| Superficie alare | 23.52 sqm (253.2 sqft) |  |

#### Pesi:

| Decollo (clean)     | 7,400 kg (16,310 lb)  |
|---------------------|-----------------------|
| Decollo (max.)      | 10,200 kg (22,490 lb) |
| Carico bellico max. | 3,000 kg (6,610 lb)   |

#### Impianto di potenza:

| Motori                     | Honeywell F124-GA-200       |
|----------------------------|-----------------------------|
| Spinta (max, sl, ISA)      | 2 x 2,850 kg (2 x 6,280 lb) |
| Serbatoi interni (usabile) | 2,000 kg (4,410 lb)         |



# Prestazioni (Clean, ISA):

| Max. velocità volo livellato             | 590 KTAS                            |
|------------------------------------------|-------------------------------------|
| Velocità limite                          | 572 KEAS                            |
| Velocità di stallo                       | 95 KCAS                             |
| Rateo di salita                          | 22,000 ft/min                       |
| Quota di tangenza                        | 45,000 ft                           |
| Fattore di carico limite                 | + 8 / - 3 g                         |
| Fattore di carico sost. (sl) / (15000ft) | 8.0 / 5.2 g                         |
| Lunghezza decollo                        | 400 m (1,310 ft)                    |
| Lunghezza atterraggio                    | 550 m (1,800 ft)                    |
| Autonomia (clean) / serbatoi est.        | 1,980 / 2,720 km (1,070 / 1,470 nm) |
| Durata (clean) / serbatoi est.           | 2h 45 min / 4 h                     |



Figura 2 - Tre Viste M-346



| Abbreviazioni | Significato                        |
|---------------|------------------------------------|
| AAEM          | AleniaAermacchi SpA                |
| A/C           | Aircraft                           |
| AFT           | After direction                    |
| DB            | Drag Brace                         |
| DL            | Drag Load                          |
| FWD           | Forward direction                  |
| FEM           | Finite Element Model               |
| L/G           | Landing Gear                       |
| LH            | Left Hand                          |
| LL            | Limit Load                         |
| LLI           | Liebherr-Aerospace Lindenberg GmbH |
| LTL           | Lower Torque Link                  |
| MF            | Main Fitting                       |
| MLG           | Main Landing Gear                  |
| NLG           | Nose Landing Gear                  |
| P/N           | Part Number                        |
| QTP           | Qualification Test Procedure       |
| QTR           | Qualification Test Report          |
| RH            | Right Hand                         |
| RR            | Rolling Radius                     |
| SA            | Shock Absorber                     |
| SAT           | Shock Absorber Travel              |
| SL            | Side Load                          |
| ST            | Sliding Tube                       |
| UTL           | Upper Torque Link                  |
| VL            | Vertical Load                      |
| WA            | Wheel Axle                         |

Tab. 1 - Abbreviazioni



# **2** STRUTTURA DEL CARRELLO PRINCIPALE M-346

La struttura del velivolo M-346 è progettata secondo la concezione di "damage tolerance". Gli elementi strutturali principali sono in lega leggera di alluminio, mentre leghe di titanio e acciaio sono utilizzate in aree specifiche. La maggior parte del rivestimento della fusoliera, porte d'accesso, pannelli, prese d'aria e condotti, sono realizzati con materiali compositi (fibra di carbonio, Kevlar).

### 2.1 DESCRIZIONE DELLA STRUTTURA

Della struttura M-346 è anche parte il sistema del carrello d'atterraggio, che ha una configurazione di tipo triciclo completamente retrattile. E' costituito dal carrello principale (MLG), composto da due parti speculari montate a sinistra e a destra nella zona della fusoliera in prossimità dell'ala, e dal carrello anteriore (NLG), che si trova nella zona centrale della fusoliera anteriore. Il sistema è equipaggiato con ruote singole e dotato di gambe telescopiche azionate da sistemi idraulici principali e d'emergenza che comandano anche il freno di parcheggio. E' dotato di tecnologia di frenata "Brake-by-wire" anti-skid Dual-Gain, inoltre lo sterzo della ruota del carrello anteriore utilizza i controlli "Steer-by-wire". Il carrello dell'M-346 è stato progettato e realizzato dall'azienda tedesca Liebherr-Aerospace Lindenberg GmbH.

Il carrello principale, di cui tratta questo lavoro, ha una gamba telescopica che incorpora un ammortizzatore oleo-pneumatico a singolo stadio. La retrazione è svolta da un attuatore incernierato alla gamba carrello. La gamba è supportata nella posizione estesa da un controvento che ha un sistema di "downlocking" integrato costituito da una molla e un attuatore idraulico. Per la retrazione del carrello d'atterraggio tale attuatore sblocca il meccanismo di down-lock del controvento e l'attuatore di retrazione muove il carrello nella posizione retratta. Il carrello principale deve assorbire l'energia d'impatto in atterraggio e limitare le reazioni del terreno permettendo così le operazioni di decollo, atterraggio e rullaggio.

La struttura del carrello principale (MLG) è composta dalle seguenti parti:



- MLG Shock Strut Subsystem LH P/N:2809A0000-03
- MLG Shock Strut Subsystem RH P/N:2810A0000-03
- MLG Drag Brace including Down Lock, P/N:2811A0000-03 (LH e RH)

Le seguenti figure mostrano MLG Shock Strut (LH) e MLG Drag Brace (LH) quando sono assemblati in posizione estesa:



Figura 3 - MLG Shock Strut e MLG Drag Brace





Figura 4 - Componenti MLG





Figura 5 - Dimensioni di riferimento MLG



### 2.2 PROVE SPERIMENTALI DI RESISTENZA

Per la validazione del MLG da parte di AAEM sono state condotte diverse prove che rispondono ai requisiti delle FAR/JAR25.

I dati e la descrizione delle prove di resistenza del MLG, sono presentati nel documento:

### LLI "2901QR0006 QTR Strength Test"

mentre le procedure sono spiegate nel documento:

> LLI "2901QP0004 QTP Strength Test".

### 2.2.1 Descrizione delle prove di resistenza

Le prove di resistenza sono state eseguite in accordo alle procedure, sul MLG Subsystem LH P/N 2901A0000-01, di cui fanno parte:

- MLG Shock Strut LH P/N 2809A0000-01
- MLG Drag Brace incl. Down Lock P/N 2811A0000-01

Le prove sono state realizzate con l'ausilio di una specifica struttura per la messa in posizione del carrello:





Figura 6 - Schema impianto prove di resistenza

Shock Strut, Drag Brace sono stati installati in posizione estesa e capovolta nell'impianto di prova. Una ruota fittizia (wheel dummy) è stata montata all'assale per simulare la trasmissione dei "ground load", ovvero le forze applicate dal terreno sul pneumatico del carrello. Per ciascuna condizione di prova, sono stati applicati con l'ausilio di attuatori idraulici, i carichi verticali (VL), longitudinali (DL) e laterali (SL). I punti d'ancoraggio



degli attuatori di carico sono stati posizionati prima di ciascuna prova in modo che i vettori di carico agiscano secondo una direzione normale o parallela al terreno al massimo carico di prova. Entrambe le camere d'olio e d'azoto dell'ammortizzatore (SA) sono state riempite con olio idraulico per ottenere una corretta corsa dell'ammortizzatore (SAT). Per ogni test il riempimento dell'ammortizzatore è stato fatto immettendo o rilasciando olio da o verso la camera d'azoto. Il buon funzionamento dell'ammortizzatore dal massimo SAT a SAT 0mm è stato verificato mediante l'applicazione d'olio idraulico alla camera di azoto con 1,0  $\pm$  0,5 MPa.

Per la certificazione della struttura del MLG sono state prese in considerazione le seguenti condizioni di carico: 2pt spin up, 2pt spring back, 2pt drift landing right, 2pt braked roll. La seguente tabella mostra queste condizioni di carico, ciascuna con la rispettiva corsa (SAT) e il relativo raggio di rotolamento (RR). Per le prime due condizioni il carico è stato applicato nel centro ruota mentre per le altre due i carichi sono stati applicati nel punto di contatto con il terreno ad una distanza dal centro ruota pari al raggio di rotolamento.

|                 | Limi                 | t MLG Gi             | ound Load            | s          |             |                    |
|-----------------|----------------------|----------------------|----------------------|------------|-------------|--------------------|
| Load Case<br>N° | Load Case            | DL<br>[kN]           | SL<br>[kN]           | VL<br>[kN] | SAT<br>[mm] | RR<br>[mm]         |
| 1               | 2pt spin up          | 49 <sup>(1)</sup>    | -7.8 <sup>(1)</sup>  | 50.4       | 72          | 273 <sup>(3)</sup> |
| 2               | 2pt spring back      | -45.6 <sup>(1)</sup> | -0.6 <sup>(1)</sup>  | 68.6       | 135         | 262 <sup>(3)</sup> |
| 3               | 2pt drift landing rh | 0                    | -24.3 <sup>(2)</sup> | 40.6       | 298         | 256                |
| 4               | 2pt braked roll      | 37.6 <sup>(2)</sup>  | 0                    | 47.1       | 300         | 268                |

#### Tab. 2 - Prove di resistenza: Condizioni di carico limite

- 1) Carico applicato nel centro ruota
- 2) Carico applicato nel punto di contatto col terreno
- 3) Solo per informazione



Le direzioni dei carichi sono:

- carico verticale (VL) positivo diretto verso l'alto
- carico longitudinale (DL) positivo diretto verso la coda
- carico laterale (SL) positivo diretto verso la semiala destra

Questo schema mostra i carichi applicati al MLG (LH):



Figura 7 - Schema carichi applicati MLG (LH)

Durante i test sono stati registrati i carichi introdotti, le corse dell'ammortizzatore, le letture degli spostamenti date dai trasduttori e quelle delle deformazioni dagli estensimetri.



I carichi massimi applicati stanno tra il 100 e il 102% dei carichi limite e sono stati applicati per almeno due minuti. Le SAT raggiunte al 100% del carico sono inferiori alle SAT nominali richieste, causano perciò sollecitazioni maggiori del previsto, quindi i risultati delle prove sono conservativi.

### 2.2.2 Risultati delle prove di resistenza

Le immagini seguenti mostrano la locazione dei quindici punti di misura degli spostamenti con la relativa direzione e il posizionamento degli estensimetri presi in considerazione:



Figura 8 - Prove di resistenza: Spostamenti



| No. | Name               | Position and description                                                                                                                                                                                                                                                              |
|-----|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | DB/STR_bolt        | Position: Connection bolt between Drag Brace and A/C Structure (at mid of bolt assembling).<br>Direction: perpendicular to the Drag Brace axis.                                                                                                                                       |
| 2   | DB/APX_bolt        | Position: Bolt between upper and lower Drag Brace (at mid of bolt assembling).<br>Direction: perpendicular to the Drag Brace axis.                                                                                                                                                    |
| 3   | DB/MF_bolt_DB_ax   | Position: Connection bolt between Drag Brace and Main Fitting (at assembling).<br>Direction: perpendicular to the Drag Brace axis.                                                                                                                                                    |
| 4   | DB/MF_bolt_bolt_ax | Position: Connection bolt between Drag Brace and Main Fitting (at bolt centre).<br>Direction: In bolt axis                                                                                                                                                                            |
| 5   | RA/MF_bolt         | Position: Connection bolt between Main Fitting and Retraction Actuator<br>(at mid of bolt assembling).<br>Direction: In Retraction Actuator direction, at gear extended condition                                                                                                     |
| 6   | TL/MF_bolt_X       | Position: Connection bolt between Upper Toque Link and Main Fitting<br>(at mid of bolt assembling).<br>Direction: X-Direction (ground system)                                                                                                                                         |
| 7   | TL_ST_bolt_X       | Position: Connection bolt between Lower Toque Link and Sliding Tube<br>(at mid of bolt assembling).<br>Direction: X-Direction (ground system)                                                                                                                                         |
| 8   | WA_centre_X        | Position: Wheel centre<br>Direction: X-Direction (ground system)<br>Remark: It is allowed to measure this stroke outside of the axle along<br>the wheel axle centre line.<br>In combination with measuring point 7 the aim of measurement is to<br>detect a rotation of sliding tube. |
| 9   | wheel_centre_Y     | Position: Wheel axle centre line.<br>Direction: Y-Direction (ground system)                                                                                                                                                                                                           |
| 10  | MF_bottom_Y        | Position: At bottom of Main Fitting.<br>Direction: Y-Direction (ground system)                                                                                                                                                                                                        |
| 11  | wheel_centre_Z     | Position: Wheel centre<br>Direction: Z-Direction (ground system)<br>Remark: It is allowed to measure this stroke outside of the axle along<br>the wheel axle centre line.<br>In combination with measuring point 7 the aim of measurement is to<br>detect a rotation of wheel axle.   |
| 12  | ST_centre_Z        | Position: At bottom of Sliding Tube in Sliding tube centre line.<br>Direction: Z-Direction (ground system)                                                                                                                                                                            |
| 13  | SAT                | Position: Shock Absorber Travel measured from the Main Fitting (lower<br>part) to the wheel axle.<br>Direction: Parallel to Shock Absorber centre line.                                                                                                                               |
| 14  | MF/TL_upper_bolt_Y | Position: Connection bolt between Main Fitting and Upper Torque Link<br>bolt<br>Direction: In bolt axis                                                                                                                                                                               |
| 15  | TL_apex_Y          | Position: Connection bolt between both Torque Links<br>Direction: In bolt axis                                                                                                                                                                                                        |

Tab. 3 - Prove di resistenza: Posizione e direzione degli spostamenti





Figura 9 - Prove di resistenza: Posizione Estensimetri



Sono riportati di seguito i risultati delle quattro condizioni di carico limite (100% LL) analizzate: nelle tabelle sono evidenziati in rosso i valori dei quindici spostamenti e delle cinque deformazioni che sono stati presi in considerazione nelle analisi.

### 2.2.2.1 Limit load case LC1 - 2pt spin up

SAT 72mm al 100% del LL richiesto secondo QTP: durante il test è stato raggiunto un SAT 70.35mm al 101% LL.



Figura 10 - Setup LC1 - 2pt Spin Up



|            | bint 15<br>Jm         | 0,00  | -2,58 | -5,42   | -2,87 | 0,10  | 0,0    | 0,0   | -2,68 | -5,50   | -8,31   | -11.08  | -13,85  | -16,71  | -19,60  | -22,54  | -25,51  | -28,46  | -28,51  | -28,52  | -28,53  | -28,53 | -28.54  | -28.55  | -24,26  | -18,53  | -12,52  | -6,47 | -3,33 | -5,82   | -3,33   | -0,21 |
|------------|-----------------------|-------|-------|---------|-------|-------|--------|-------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|-------|-------|---------|---------|-------|
|            | oint 14 F             | 0,00  | -1,18 | -2,64   | -1,36 | 0.07  | 0,00   | 0,00  | -1,25 | -2,70   | -4,14   | -5,56   | -6,98   | -8,45   | -9,93   | -11,43  | -12,93  | - 14,43 | -14,46  | -14,47  | -14,48  | -14,48 | -14,49  | -14.49  | -12,23  | -9,48   | -6,50   | -3,36 | -1.71 | -2,95   | -1,69   | -0,13 |
| 35mm       | oint 13 F<br>m n      | -0,01 | 0,54  | 1,33    | 1,01  | -0,07 | 0,0    | 0,00  | 0,61  | 1,40    | 2,18    | 2,92    | 3,62    | 4,30    | 4,97    | 5,62    | 6,26    | 6,84    | 6,85    | 6,85    | 6,85    | 6,85   | 6,85    | 6.85    | 6,32    | 5,86    | 4,52    | 2,42  | 1,32  | 1,64    | 1,31    | 0,08  |
| m = 70,3   | oint 12 P<br>m n      | 0.00  | 0.77  | 2,10    | 1.35  | -0.08 | 0,00   | 00'0  | 0,84  | 2,14    | 3,50    | 4,89    | 6,30    | 7.78    | 9,32    | 10,92   | 12,57   | 14,26   | 14,28   | 14,29   | 14,30   | 14,30  | 14,31   | 14.31   | 12, 19  | 9,93    | 6,95    | 3,47  | 1.77  | 2,48    | 1.75    | 0,11  |
| + 6,85m    | oint 11 P             | 0,01  | 2,34  | 5,67    | 3,16  | -0,10 | 0,00   | 0,00  | 2,41  | 5,64    | 00'6    | 12,40   | 15,86   | 19.48   | 23, 14  | 26,91   | 30,72   | 34,57   | 34,64   | 34,66   | 34,67   | 34,68  | 34,69   | 34.70   | 29, 19  | 22,82   | 15,50   | 7,69  | 3,83  | 6,21    | 3,78    | 0,21  |
| 295mm      | oint 10 P<br>m        | 8.0   | -1,24 | -2.87   | -1,44 | 0.08  | 8.0    | 0,00  | -1,32 | -2,93   | -4,55   | -6,13   | -7,71   | -9.35   | -11,01  | -12,68  | -14,34  | -16,01  | -16,06  | -16,06  | -16,07  | -16,07 | -16,08  | -16.08  | -13,54  | -10,48  | -7.18   | -3,64 | -1.80 | -3,18   | -1.77   | -0,16 |
| .5mm - 2   | ointo<br>B            | 8     | -2,64 | -5,92   | -2,80 | 0,18  | 8,0    | 00'0  | -2,82 | -6,10   | -9,37   | -12.63  | -15,87  | -19,23  | -22.60  | -25.99  | -29.39  | -32,80  | -32,89  | -32,87  | -32,90  | -32,89 | -32.90  | -32.93  | -27.05  | -20,56  | -13,90  | -6,94 | -3,37 | -6,46   | -3,32   | -0,32 |
| -) = 358   | m<br>m<br>m<br>m      | 8,0   | 5,61  | 10,68   | 6,31  | -0.01 | 8,     | 0,00  | 5,64  | 10,65   | 15,69   | 20.66   | 25,62   | 30,66   | 35,74   | 40.87   | 46,01   | 51,17   | 51,24   | 51.26   | 51,27   | 51,28  | 51.89   | 51.29   | 44,36   | 34,42   | 23,56   | 12,68 | 7,03  | 11,36   | 7,07    | 0,28  |
| 101% LI    | m<br>m<br>m           | 80    | 3.40  | 6,43    | 3,72  | -0.01 | 8,0    | 0,00  | 3,42  | 6,42    | 9,43    | 12,44   | 15,45   | 18,56   | 21,71   | 24,90   | 28,14   | 31,44   | 31,47   | 31,49   | 31,49   | 31,50  | 31,51   | 31.52   | 26,12   | 20,06   | 13,79   | 7,39  | 4,15  | 6,83    | 4,13    | 0,20  |
| SAT (at    | m<br>m<br>m           | 00'0  | 0,91  | 1,60    | 0,98  | -0.01 | 0,00   | 00,0  | 0,92  | 1,61    | 2,29    | 2,96    | 3,63    | 4,32    | 5,01    | 5,71    | 6,43    | 7,16    | 7,17    | 7,18    | 7,18    | 7,18   | 7,19    | 7.19    | 5,94    | 4,63    | 3,28    | 1,89  | 1,17  | 1,79    | 1,16    | 0,10  |
| mm         | m<br>m<br>m           | 00'0  | 0.00  | 00'0    | -0,01 | 0.00  | 0,00   | 0,00  | 00'0  | 0,00    | 00'0    | -0,01   | -0,01   | -0,01   | -0,01   | -0,02   | -0,03   | -0,03   | -0,03   | -0,03   | -0,03   | -0,03  | -0.04   | -0.04   | -0,04   | -0,04   | -0,03   | -0,03 | -0,03 | -0,02   | -0,02   | -0,01 |
| m = 63.    | m P                   | 00'0  | -0,45 | -0,97   | -0,54 | 0,02  | 00'0   | 0,00  | -0,46 | -0,97   | -1,49   | -1,98   | -2,48   | -3,02   | -3,56   | 4,12    | -4,67   | -5,24   | -5,26   | -5,27   | -5,27   | -5,27  | -5,28   | -5.29   | -4,49   | -3,52   | -2,46   | -1,34 | -0,75 | -1,13   | -0,73   | -0,12 |
| - 295m     | m<br>m<br>m<br>m      | 00'0  | 0.50  | 12      | 0.63  | -0.02 | 0,00   | 0,00  | 0,53  | 1,20    | 1,88    | 2.53    | 3,20    | 3.89    | 4,59    | 5.29    | 5,99    | 69'9    | 6.71    | 6.71    | 6.72    | 6.72   | 6.73    | 6.73    | 5.72    | 4,43    | 3.03    | 1,55  | 0.78  | 1,30    | 0.76    | 0,05  |
| 58.5mm     | m 12<br>m 12          | 00'0  | 0,24  | 0,65    | 0,27  | -0,05 | 0,00   | 0,00  | 0,29  | 69'0    | 1,07    | 1,43    | 1,81    | 2,20    | 2,61    | 3,01    | 3,39    | 3,79    | 3,79    | 3,79    | 3,79    | 3,79   | 3,79    | 3.79    | 3,15    | 2,35    | 1,47    | 0,63  | 0,24  | 0,59    | 0,25    | 0,03  |
| itial) = 3 | a<br>T<br>T<br>T<br>T | 0,0   | -0.03 | -0.07   | -0.05 | 0.0   | 0,00   | 0,00  | -0,03 | -0,07   | -0,11   | -0,14   | -0, 18  | -0.21   | -0, 25  | -0.28   | -0.31   | -0,35   | -0,35   | -0.35   | -0.35   | -0,35  | -0.35   | -0.35   | -0.30   | -0,25   | -0.19   | -0,13 | -0.08 | -0,11   | -0.08   | -0,02 |
| SAT (in    | e load P              | 0,00  | -0,79 | -1,58   | -0,79 | 0.00  | 0,00   | 0,00  | -0,79 | -1,58   | -2,36   | -3,16   | -3,94   | -4.72   | -5,48   | 6,32    | -7,10   | -7,83   | -7,83   | -7,83   | -7,83   | -7,83  | -7,83   | 7.83    | 6.32    | 4,71    | 3.15    | -1,58 | -0,79 | -1,58   | -0.78   | -0,01 |
| = 72       | t. Ioad sid<br>kN     | 00'   | 6.90  | 4.01    | 6,90  | .05   | ,05    | ,05   | 6,90  | 4,03    | 1,17    | 8,28    | 5,37    | 2,55    | 9,71    | 6,77    | 3,93    | 1,02    | 8       | 1,02    | 1.02    | 1,02   | 8       | 1.02    | 6,77    | 2,55    | 8,28    | 4,01  | 6.90  | 4,03    | 6.90    | 20'0  |
| nominal    | kN<br>Vec             | 523 0 | 3:04  | 3:41 -1 | 9:20  | 0:08  | 0:16 0 | 321   | + 650 | 1:37 -1 | 2:16 -2 | 2:56 -2 | 3:34 -3 | 4:14 -4 | 4:52 -4 | 5.31 -5 | 5:10 -6 | 5:48 -7 | 2- 60:2 | 7:29 -7 | 7:49 -7 | 60:6   | 9:29 -7 | 8:48 -7 | 9:28 -5 | 9:07 -4 | 0:44 -2 | 121   | 158   | 2:37 -1 | 3:14 -4 | 5:24  |
| ): SAT(r   | p Time<br>s           | 15:0  | 15:0  | 15:0    | 15:0  | 15:10 | 15:1(  | 15:10 | 15:10 | 15:1    | 15:12   | 15:15   | 15:1:   | 15:1-   | 15:1    | 15:1    | 15:16   | 15:11   | 15:1    | 15:15   | 15:13   | 15:1(  | 15:10   | 15:16   | 15:15   | 15:2(   | 15:2(   | 15:2  | 15.2  | 15:22   | 15.2    | 15:2  |
| -spin up   | load stel<br>%        | 0     | ₽     | 8       | ₽     | 0     | 0      | 0     | ₽     | 20      | 8       | 4       | 8       | 8       | 2       | 8       | 8       | 100     | 5       | 8       | 5       | ₿      | 8       | 100     | 8       | 8       | 4       | ຊ     | 9     | 20      | 9       | 0     |
| 2pt        | step                  | -     | ~     | ო       | 4     | ŝ     | ھ      | 2     | œ     | 6       | 2       | Ξ       | ₽       | ₽<br>2  | 4       | ŝ       | 9       | 17      | £       | 6       | 8       | 2      | ន       | 33      | 2       | 53      | 26      | 52    | 83    | 29      | ິ       | 3     |

ANALISI STATICA CARRELLO PRINCIPALE M346: confronto teorico/sperimentale prove di resistenza e prove di rigidezza

Tab. 4 - Risultati LC1 - 2pt Spin Up: Spostamenti



| 2pt-s  | pin up:      | SAT(nom  | inal) = 72 / | SAT (at 0% | )= 358.5mm | - 295mm =  | 63.5mm /   | SAT (at 101 | % LL) = 358 | .5mm - 295n | nm + 6,85mı | n = 70,35m | F          |
|--------|--------------|----------|--------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|------------|------------|
| step l | oad step     | Time     | vect. load   | side load  | Position 1 | Position 2 | Position 3 | Position 4  | Position 5  | Position 6  | Position 7  | Position 8 | Position 9 |
|        | %            | in<br>in | KN           | KN         | m/mµ       | m'mu       | m/mt       | m/mr        | mwn         | m/mµ        | m'm         | u Juni     | m/m        |
| -      | 0            | 15:05:23 | 0,0          | 0,00       | -          | 0          | 0          | 4           | -           | 0           | ÷           | ÷          | -          |
| ~1     | ₽            | 15:08:04 | -6,90        | -0,79      | -311       | -266       | -381       | 315         | 55          | -           | 86          | 111        | 8          |
| ი      | କ୍ଷ          | 15:08:41 | -14,01       | -1,58      | -653       | -551       | -789       | 668         | 101         | 01          | 212         | 221        | 127        |
| 4      | ₽            | 15:09:20 | -6,90        | -0,79      | -366       | -330       | -390       | 329         | 48          | 0           | 107         | 93         | 64         |
| 2      | 0            | 15:10:08 | 0'02         | 0,00       | 5          | 9          | ≌          | -53         | 9           | ÷           | -           | ÷          | 0          |
| 9      | 0            | 15:10:16 | 0,05         | 0,00       | 0          | -          | 9          | -           | -           | 0           | -           | -          | 4          |
| 7      | 0            | 15:10:21 | 0,05         | 0,00       | 0          | ÷          | -5         | -           | ÷           | -2          | 0           | ÷          | 3          |
| œ      | ₽            | 15:10:59 | -6,90        | -0,79      | -317       | -274       | -401       | 334         | 54          | 0           | 86          | Ξ          | 57         |
| 6      | 20           | 15:11:37 | -14,03       | -1,58      | -654       | -557       | -809       | 680         | 102         | °           | 213         | 220        | 124        |
| ₽      | 8            | 15:12:16 | -21,17       | -2,36      | -993       | -841       | -1217      | 1030        | 146         | 5           | 328         | 331        | 196        |
| Ξ      | <del>9</del> | 15:12:56 | -28,28       | -3,16      | -1327      | -1121      | -1625      | 1385        | 194         | 9           | 443         | 441        | 275        |
| 2      | 8            | 15:13:34 | -35,37       | -3,94      | -1656      | -1395      | -2029      | 1731        | 246         | 0           | 558         | 549        | 357        |
| 13     | 8            | 15:14:14 | -42,55       | 4,72       | -1988      | -1665      | -2437      | 2083        | 297         | თ           | 676         | 661        | 440        |
| 14     | 2            | 15:14:52 | -49,71       | -5,48      | -2322      | -1934      | -2842      | 2440        | 347         | 9           | 791         | 773        | 525        |
| 5      | 8            | 15:15:31 | -56,77       | 6,32       | -2656      | -2201      | -3245      | 2790        | 395         | ÷           | 905         | 887        | 607        |
| 16     | 8            | 15:16:10 | -63,93       | -7,10      | -2981      | -2475      | -3647      | 3151        | 441         | 12          | 1021        | 1005       | 694        |
| 17     | 100          | 15:16:48 | -71,02       | -7,83      | -3297      | -2751      | -4044      | 3497        | 485         | 14          | 1133        | 1124       | 773        |
| ₽      | 8            | 15:17:09 | -71,02       | -7,83      | -3296      | -2756      | -4046      | 3509        | 486         | 14          | 1136        | 1119       | 776        |
| 19     | ₿            | 15:17:29 | -71,02       | -7,83      | -3296      | -2760      | -4044      | 3506        | 486         | 14          | 1136        | 1121       | 778        |
| 8      | 8            | 15:17:49 | -71,02       | -7,83      | -3295      | -2759      | -4046      | 3510        | 486         | 14          | 1137        | 1117       | 778        |
| 21     | ₿            | 15:18:09 | -71,02       | -7,83      | -3295      | -2761      | -4045      | 3506        | 486         | 14          | 1136        | 1119       | 778        |
| ន      | ₿            | 15:18:29 | -71,02       | -7,83      | -3295      | -2762      | -4044      | 3502        | 486         | 14          | 1137        | 1119       | 776        |
| 23     | 100          | 15:18:48 | -71.02       | -7.83      | -3294      | -2762      | -4047      | 3504        | 487         | 14          | 1136        | 1116       | 775        |
| 24     | 8            | 15:19:28 | -56,77       | 6,32       | -3004      | -2560      | -3286      | 2865        | 429         | =           | 606         | 818        | 597        |
| 25     | 8            | 15:20:07 | -42,55       | 4,71       | -2292      | -2048      | -2476      | 2166        | 334         | 7           | 689         | 576        | 432        |
| 26     | 4            | 15:20:44 | -28,28       | 3,15       | -1502      | -1401      | -1651      | 1441        | 220         | 6           | 466         | 370        | 292        |
| 21     | ສ            | 15:21:21 | -14,01       | -1,58      | -752       | -713       | -817       | 713         | 109         | 0           | 214         | 197        | 154        |
| 28     | ₽            | 15:21:58 | -6,90        | -0,79      | -366       | -367       | -400       | 349         | 53          | 0           | 106         | 94         | 77         |
| 29     | 20           | 15:22:37 | -14,03       | -1,58      | -642       | -582       | -802       | 684         | 104         | 0           | 213         | 222        | 142        |
| 8      | ₽            | 15:23:14 | -6,90        | -0,78      | -376       | -367       | -398       | 349         | 54          | ÷           | 107         | 93         | 79         |
| 31     | 0            | 15:25:24 | 0,07         | -0,01      | 5          | L-         | 6          | 21          | 5           | ÷           | 4           | 4          | -5         |

Tab. 5 - Risultati LC1 - 2pt Spin Up: Deformazioni



# 2.2.2.2 Limit load case LC2 - 2pt spring back

SAT 135mm al 100% del LL richiesto secondo QTP: durante il test è stato raggiunto un SAT 132.98 mm al 101% LL.



Figura 11 - Setup LC2 - 2pt Spring Back



| 2pt-spr | 'ing back:     | SAT(nom | inal) = 1(       | 35mm /          | SAT (ini      | tial) =35     | 8.5mm-2       | 231,5mn       | n= 127mi      | m/SAT             | (at 101%      | % LL)=3       | 58.5mm         | -231,5m        | m+5,98I        | nm= 132        | 2,98mm         |                |
|---------|----------------|---------|------------------|-----------------|---------------|---------------|---------------|---------------|---------------|-------------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|
| step    | load step<br>% | s s     | vect. loac<br>kN | J Point 1<br>mm | Point 2<br>mm | Point 3<br>mm | Point 4<br>mm | Point 5<br>mm | Point 6<br>mm | Point 7<br>mm     | Point 8<br>mm | Point 9<br>mm | Point 10<br>mm | Point 11<br>mm | Point 12<br>mm | Point 13<br>mm | Point 14<br>mm | Point 15<br>mm |
| -       | 0              | 9:21:54 | -0,014           | 0,00            | 0,00          | 0,00          | 0,00          | 0,00          | 0,00          | 0,00              | 0,00          | 0,00          | 0,00           | 0,00           | 0.0            | 00'0           | 0,00           | 0,00           |
| 0       | ₽              | 9:25:59 | -8,391           | 0,03            | 0,38          | 0,60          | -0'33         | 0,0           | -0,36         | -1,46             | -3,97         | -3,86         | -1,86          | 3,73           | 1,22           | 0,50           | -1,28          | -0,55          |
| ო       | 20             | 9:26:44 | -16,696          | 0,09            | 0,77          | 1,18          | -0,66         | 0,03          | -0,75         | -2,86             | -7,71         | -7,52         | -3,69          | 7,67           | 2,70           | 1,20           | -2,50          | -1,06          |
| 4       | 9              | 9:27:22 | -8,367           | 0,06            | 0,60          | 0,71          | -0,38         | 0,02          | 0,41          | -1,63             | 4,56          | -4,21         | -2,12          | 4,76           | 1,97           | 1,10           | -1,43          | -0,49          |
| S       | 0              | 9:28:13 | 0,081            | 0,01            | 0,00          | 0,02          | 0,00          | 0,00          | 0,00          | 0,01              | 0,03          | 0,04          | 0,01           | -0,07          | -0,04          | -0,05          | 0,0            | 0,00           |
| 9       | 0              | 9:28:23 | 0,081            | 0,00            | 0,00          | 0,00          | 0,00          | 0,00          | 0,00          | 0,00              | 0,00          | 0,00          | 0,00           | 0,0            | 0,00           | 0,0            | 0'0            | 0,00           |
| 7       | 0              | 9:28:28 | 0,081            | 0,00            | 0,00          | 0,00          | 0,00          | 0,00          | 0,00          | 0,00              | 00'0          | 0,00          | 0,00           | 0,0            | -0,01          | 0,00           | 00'0           | 00'00          |
| 80      | 9              | 9:29:08 | -8,391           | 0,03            | 0,38          | 0,59          | -0,33         | 0,01          | -0,37         | -1,49             | 4,02          | -3,92         | -1,89          | 3,81           | 1,27           | 0,56           | -1,29          | -0,55          |
| 6       | 20             | 9:29:50 | -16,696          | 0,08            | 0,76          | 1,16          | -0,66         | 0,02          | -0,75         | -2,88             | -7,75         | -7,56         | -3,70          | 7,73           | 2,74           | 1,26           | -2,50          | -1,05          |
| 9       | 30             | 9:30:31 | -25,001          | 0,14            | 1,18          | 1,73          | 0,98          | 0,03          | -1,14         | 4,26              | -11,40        | -11,18        | -5,50          | 11,70          | 4,24           | 1,95           | -3,72          | -1,56          |
| Ξ       | 40             | 9:31:13 | -33,425          | 0,22            | 1,65          | 2,29          | -1,31         | 0'0           | -1,53         | -5,65             | -15,02        | -14,83        | -7,30          | 15,79          | 5,79           | 2,64           | -4,94          | -2,06          |
| 12      | 20             | 9:31:53 | -41,705          | 0,27            | 2,10          | 2,84          | -1,64         | 0,10          | -1,91         | <del>6</del> 6'9- | -18,55        | -18,47        | -9,10          | 19,90          | 7,35           | 3,29           | -6,15          | -2,56          |
| 13      | 60             | 9:32:32 | -50,057          | 0,34            | 2,61          | 3,46          | -2,01         | 0,14          | -2,29         | -8,35             | -22,16        | -22,32        | -11,04         | 24,12          | 8,97           | 3,92           | -7,48          | -3, 17         |
| 14      | 20             | 9:33:13 | -58,409          | 0,42            | 3,18          | 4,14          | -2,43         | 0,16          | -2,69         | -9,73             | -25,87        | -26,44        | -13,15         | 28,54          | 10,72          | 4,55           | -8,94          | -3,87          |
| 15      | 8              | 9:33:57 | -66,809          | 0,50            | 3,78          | 4,84          | -2,85         | 0,20          | -3,10         | -11,12            | -29,51        | -30,59        | -15,30         | 33,00          | 12,45          | 5,11           | -10,43         | -4,62          |
| 16      | 6              | 9:34:37 | -75,112          | 0,58            | 4,37          | 5,50          | -3,25         | 0,21          | -3,50         | -12,50            | -33,08        | -34,70        | -17,41         | 37,33          | 14,12          | 5,58           | -11,89         | -5,36          |
| 17      | 100            | 9:35:16 | -83,416          | 0,67            | 5,01          | 6,19          | -3,67         | 0,22          | -3,92         | -13,90            | -36,68        | -38,93        | -19,57         | 41,75          | 15,80          | 5,97           | -13,39         | -6,14          |
| 8       | 100            | 9:35:36 | -83,416          | 0,67            | 5,05          | 6,22          | -3,68         | 0,22          | -3,93         | -13,92            | -36,74        | -39,01        | -19,62         | 41,82          | 15,82          | 5,97           | -13,43         | -6, 16         |
| 19      | 10             | 9:35:56 | -83,416          | 0,68            | 5,06          | 6,23          | -3,69         | 0,23          | -3,94         | -13,93            | -36,75        | -39,04        | -19,64         | 41,85          | 15,84          | 5,97           | -13,44         | -6, 17         |
| 20      | 10             | 9:36:16 | -83,416          | 0,68            | 5,07          | 6,23          | -3,69         | 0,24          | -3,94         | -13,93            | -36,77        | -39,06        | -19,64         | 41,86          | 15,84          | 5,97           | -13,45         | -6, 18         |
| 21      | 100            | 9:36:36 | -83,416          | 0,68            | 5,07          | 6,24          | -3,69         | 0,24          | -3,94         | -13,94            | -36,78        | -39,08        | -19,65         | 41,88          | 15,85          | 5,98           | -13,46         | -6, 19         |
| ន       | 9              | 9:36:56 | -83,416          | 0,68            | 5,08          | 6,24          | -3,69         | 0,24          | -3,94         | -13,94            | -36,79        | -39,09        | -19,66         | 41,89          | 15,85          | 5,98           | -13,47         | -6,19          |
| 23      | 100            | 9:37:16 | -83,416          | 0,68            | 5,08          | 6,25          | -3,69         | 0,24          | -3,94         | -13,95            | -36,79        | -39,10        | -19,67         | 41,90          | 15,85          | 5,98           | -13.47         | -6,19          |
| 24      | 8              | 9:37:56 | -06,/85          | 0,64            | 4, 88         | 5.4<br>4      | -9°51         | 0,23          | -3,32         | -11,63            | 32,55         | -33,38        | -16,99         | 36,40          | 14,17          | 0.98<br>9.98   | -11,58         | 4/12           |
| 52      | 60             | 9:38:36 | -50,034          | 0,56            | 4,13          | 4,40          | -2,58         | 0,21          | -2,60         | -9'02             | -25,84        | -26,20        | -13,55         | 29,45          | 12,04          | 5,84           | -9,24          | -3,75          |
| 26      | 4              | 9:39:14 | -33,401          | 0,42            | 3,05          | 3,24          | -1,89         | 0,14          | -1,82         | -6,39             | -17,97        | -18,31        | -9,67          | 20,93          | 8,96           | 4,79           | -6,65          | -2,91          |
| 27      | 20             | 9:39:52 | -16,648          | 0,27            | 1,82          | 1,94          | -1,13         | 0,03          | -1,03         | -3,49             | -9,82         | -10,23        | -5,51          | 11,07          | 4,79           | 2,62           | -3,84          | -1,89          |
| 58      | ₽              | 9:40:32 | -8,343           | 0,18            | 1,18          | 1,25          | -0,74         | 0,0           | -0,61         | -1,95             | 5,49          | -6,05         | -3,34          | 6,08           | 2,66           | 1.<br>44       | -2,37          | -1,32          |
| 29      | 20             | 9:41:12 | -16,648          | 0,19            | 1,34          | 1,68          | -0,98         | -0,01         | -0,94         | -3,22             | -8,60         | -9,28         | -4,86          | 8,93           | 3,36           | 1,52           | -3,42          | -1,89          |
| 30      | 9              | 9:41:51 | -8,343           | 0,17            | 1,13          | 1,22          | -0,73         | 0,01          | 0,60          | -1,96             | 5,53          | -6,02         | -3,32          | 6,06           | 2,64           | 1,43           | -2,35          | -1,28          |
| 31      | 0              | 9:45:15 | 0,224            | 0,06            | 0,29          | 0,39          | -0,26         | -0'02         | -0,12         | -0,14             | -0,46         | -1,30         | -0,86          | 0,66           | 0,31           | 0,10           | -0,66          | -0,62          |

| 2pt-sprii | ng back: S     | AT(nominal) | =135mm / S/        | AT (initial) =     | :358.5mm-23        | 1,5mm=127          | mm / SAT (a        | at 101% LL):       | :358.5mm-2         | 31,5mm+5,9         | 8mm= 132,96        | mm                 |
|-----------|----------------|-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| step      | load step<br>% | time<br>s   | vect. load<br>kN   | Position 1<br>µm/m | Position 2<br>µm/m | Position 3<br>µm/m | Position 4<br>µm/m | Position 5<br>µm/m | Position 6<br>µm/m | Position 7<br>µm/m | Position 8<br>µm/m | Position 9<br>µm/m |
| -         | 0              | 9:21:54     | -0,01              | 0                  | 0                  | 0                  | ÷                  | 0                  | 0                  | -                  | -                  | ÷                  |
| ~1        | 6              | 9:25:59     | -8,39              | 290                | -121               | -203               | 214                | -43                | Ģ                  | -225               | -254               | -128               |
| е<br>С    | 20             | 9:26:44     | -16,70             | 586                | -260               | -405               | 426                | -85                | 4                  | -470               | -505               | -277               |
| 4         | ç              | 9:27:22     | -8,37              | 334                | -170               | -212               | 225                | -44                | Ģ                  | -289               | -222               | -156               |
| 9         | 0              | 9:28:13     | 0,08               | မှ                 | -                  | 4                  | 2-                 | -                  | 0                  | ۍ<br>۲             | 9                  | 0                  |
| 9         | 0              | 9:28:23     | 0,08               | 0                  | Ģ                  | 0                  | 01                 | ÷                  | <del>.</del>       | ÷                  | 0                  | 0                  |
| 7         | 0              | 9:28:28     | 0,08               | -                  | 0                  | 0                  | 5                  | 0                  | 0                  | ÷                  | ÷                  | 2                  |
| 80        | 9              | 90:62:6     | -8,39              | 296                | -123               | -208               | 219                | -44                | ų.                 | -233               | -261               | -131               |
| 6         | 20             | 9:29:50     | -16,70             | 592                | -261               | -410               | 434                | -87                | 4                  | -477               | -511               | -277               |
| 9         | 30             | 9:30:31     | -25,00             | 881                | -402               | 613                | 647                | -126               | မု                 | -726               | -759               | -442               |
| Ξ         | 4              | 9:31:13     | -33,43             | 1171               | -543               | -818               | 861                | -165               | ထု                 | -962               | -1004              | -615               |
| 12        | 50             | 9:31:53     | -41,71             | 1454               | -685               | -1023              | 1076               | -208               | -10                | -1236              | -1247              | -797               |
| 13        | 60             | 9:32:32     | -50,06             | 1735               | -818               | -1227              | 1288               | -253               | H-                 | -1487              | -1490              | -981               |
| 14        | 70             | 9:33:13     | -58,41             | 2018               | -958               | -1437              | 1509               | -299               | -13                | -1744              | -1728              | -1166              |
| 5         | 80             | 9:33:57     | -66,81             | 2288               | -1100              | -1651              | 1729               | -344               | - 14               | -2007              | -1964              | -1376              |
| 16        | 8              | 9:34:37     | -75,11             | 2545               | -1242              | -1866              | 1949               | -390               | -15                | -2271              | -2194              | -1598              |
| 17        | 100            | 9:35:16     | -83,42             | 2800               | -1388              | -2087              | 2172               | -434               | -16                | -2542              | -2422              | -1832              |
| 18        | 8              | 9:35:36     | -83,42             | 2800               | -1391              | -2088              | 2169               | -435               | -17                | -2551              | -2415              | -1840              |
| 19        | 8              | 9:35:56     | -83,42             | 2799               | -1390              | -2080              | 2169               | -435               | -17                | -2554              | -2412              | -1842              |
| 20        | ₿              | 9:36:16     | -83,42             | 2799               | -1390              | -2090              | 2173               | -435               | -17                | -2555              | -2409              | -1840              |
| 21        | ₿              | 9:36:36     | -83,42             | 2799               | -1389              | -2089              | 2174               | -435               | -16                | -2556              | -2408              | -1841              |
| 8         | 8              | 9:36:56     | -83,42             | 2799               | -1389              | -2090              | 2171               | -435               | -17                | -2558              | -2407              | -1844              |
| 23        | 100            | 9:37:16     | -83.42             | 2798               | -1389              | -2089              | 2170               | -436               | -17                | -2559              | -2407              | -1846              |
| 24        | 8              | 9:37:56     | <del>-</del> 66,79 | 2599               | -1416              | -1737              | 1795               | -378               | -15                | -2330              | -1800              | -1619              |
| 25        | 60             | 9:38:36     | -50,03             | 1999               | -1129              | -1322              | 1376               | -292               | -12                | -1792              | -1354              | -1211              |
| 26        | 4              | 9:39:14     | -33,40             | 1310               | -762               | -872               | 919                | -197               |                    | -1185              | -912               | -744               |
| 22        | 20             | 9:39:52     | -16,65             | 651                | -380               | -431               | 459                | 96-                | 4                  | -585               | -451               | -350               |
| 88        | ₽              | 9:40:32     | -8,34              | 326                | -187               | -214               | 230                | -48                | -                  | -290               | -219               | -176               |
| 29        | 20             | 9:41:12     | -16,65             | 560                | -271               | -403               | 429                | -86                | ę.                 | -467               | -500               | -297               |
| 8         | 9              | 9:41:51     | -8,34              | 335                | -188               | -213               | 230                | -48                | -                  | ģ                  | -219               | -176               |
| 31        | 0              | 9:45:15     | 0,22               | 3                  | ę                  | ÷                  | 0                  | <sup>5</sup>       | ÷                  | 7                  | 5                  | -                  |
|           |                |             |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |





٦



# 2.2.2.3 Limit load case LC3 - 2pt drift landing

SAT 298mm al 100% del LL richiesto secondo QTP: durante il test è stato raggiunto un SAT 294.9mm al 100% LL



Figura 12 - Setup LC3 - 2pt Drift Landing



| ŧ. | landin       | g: SAT(  | nomina           | l) = 29ε             | 3/mm          | SAT (init     | ial) =356     | 3,5mm-6       | 8,5mm         | =290mr        | /SAT          | (at 100%      | , LL)= 3      | 58,5mm         | ь68,5m         | m+4,90         | mm = 2         | 94,9mm         |                |
|----|--------------|----------|------------------|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|
|    | ad step<br>% | s<br>s   | vert. load<br>kN | side load<br>kN      | Point 1<br>mm | Point 2<br>mm | Point 3<br>mm | Point 4<br>mm | Point 5<br>mm | Point 6<br>mm | Point 7<br>mm | Point 8<br>mm | Point 9<br>mm | Point 10<br>mm | Point 11<br>mm | Point 12<br>mm | Point 13<br>mm | Point 14<br>mm | Point 15<br>mm |
|    | 0            | 13:53:02 | -0.01            | -0.02                | 00'0          | 0.0           | 0.00          | 0.0           | 00'0          | 00'0          | 0.00          | 0.00          | -0.01         | 00'0           | 0.00           | 0.00           | 0,00           | 0,0            | 0.00           |
|    | 10           | 13:55:20 | -4,25            | -2.52                | 0,05          | 0.67          | 1.09          | -0.67         | 000           | 0.05          | 0,12          | -0.48         | -3,82         | -2,73          | 2,88           | 0.98           | 0,53           | -2,17          | 2,00           |
|    | 20           | 13:56:00 | -8,36            | 4.8                  | 0,11          | 1.23          | 2.00          | -1.25         | -0'01         | 0,13          | 0,28          | -0,77         | -6,92         | -5,03          | 5,56           | 1.97           | 1.07           | -3,99          | -3,65          |
|    | 10           | 13:56:40 | -4.23            | -5.52                | 0.06          | 0,80          | 1,20          | -0,75         | -0,02         | 0'0           | 0,15          | 0.5           | -4,13         | 3,00           | 3,50           | 1.38           | 0,84           | -2,38          | -2,16          |
|    | 0            | 13:57:31 | -0,01            | 0.0                  | 00'0          | 0,0           | 0,0           | 80            | 00'0          | 00'0          | 0,00          | 0,00          | 80            | 00'0           | 0,00           | 0,00           | 0,0            | 80             | 0,00           |
|    | 0            | 13:57:34 | -0,01            | -0.02                | 00'0          | 0,00          | 0,00          | 00'0          | 0,00          | 0,00          | 0,00          | 0,00          | 00'0          | 0,00           | 0,00           | 0,00           | 0,00           | 00'0           | 0,00           |
|    | 10           | 13:58:16 | -4,25            | -7<br>22<br>23<br>27 | 0,04          | 0,56          | 0,93          | -0,56         | 00'0          | 0'02          | 0,12          | -0,37         | -3,33         | -2,38          | 2,43           | 0,82           | 0,44           | -1,89          | -1,76          |
|    | 20           | 13:58:59 | -8,36            | -4,96                | 0,10          | 1,10          | 1,83          | -1,14         | 0,00          | 0,12          | 0,28          | -0,66         | -6,43         | -4,67          | 5,10           | 1,80           | 0,98           | -3,70          | -3,40          |
|    | 30           | 13:59:43 | -12,46           | -7,37                | 0,16          | 1,65          | 2,72          | -1.71         | 00'0          | 0,18          | 0.44          | 96.O          | -9,48         | -6,95          | 7,89           | 2,82           | 1,51           | -5,50          | -5,04          |
|    | 40           | 14:00:31 | -16,57           | -9.87                | 0,23          | 2,20          | 3,62          | -2,31         | 0'0           | 0,26          | 0.61          | -1.14         | -12,60        | -9,29          | 10,93          | 3,90           | 2,05           | -7,35          | -6,67          |
|    | 50           | 14:01:14 | -20,72           | -12,27               | 0,30          | 2,76          | 4,53          | -2,90         | 0'0           | 0,34          | 0.79          | -1,36         | -15,69        | -11,61         | 14,14          | 4,99           | 2,58           | -9,19          | -8,30          |
|    | 60           | 14:01:57 | -24,78           | -14.75               | 0,36          | 3.34          | 5,45          | -3,52         | 0'0           | 0,43          | 0.98          | -1.60         | -18,83        | -13,98         | 17,51          | 6,10           | 3,09           | -11.07         | -9,96          |
|    | 70           | 14:02:39 | -28,93           | -17,18               | 0,43          | 3.94          | 6,40          | 4,15          | 0'0           | 0.52          | 1.18          | -1,85         | -22,02        | -16,40         | 21,09          | 7.26           | 3,59           | -12,99         | -11,65         |
|    | 80           | 14:03:21 | -33,03           | -19,66               | 0,49          | 4,56          | 7,35          | -4,80         | 00'0          | 0,63          | 1,39          | -2.00         | -25,23        | -18,83         | 24,84          | 8,44           | 4,06           | -14,92         | -13,35         |
|    | 8            | 14:04:01 | -37,21           | -22,11               | 0,55          | 5,14          | 8,26          | -5,42         | 00'0          | 0,73          | 1,59          | -2.33         | -28,36        | -21,20         | 28,56          | 9,58           | 4,49           | -16,81         | -15,00         |
|    | 100          | 14:04:39 | -41,29           | -24,56               | 0,61          | 5,71          | 9,14          | -6,02         | 0,00          | 0,83          | 1,78          | -2,54         | -31,37        | -23,47         | 32,23          | 10,69          | 4,89           | -18,62         | -16,60         |
|    | ₽            | 14:05:00 | 4128             | -24,56               | 0,62          | 5,73          | 9,16          | -6,04         | -0,01         | 0,83          | 1,78          | -2.55         | -31,41        | -23,50         | 32,27          | 10,71          | 4,90           | -18,65         | -16,62         |
|    | ₿            | 14:05:21 | 41,23            | -24,56               | 0,62          | 5,74          | 9,17          | -6,04         | -0,01         | 0,83          | 1,78          | -255          | -31,43        | -23,52         | 32,29          | 10,72          | 4,90           | -18,66         | -16,63         |
|    | 8            | 14:05:40 | 41,29            | -24,56               | 0,62          | 5,74          | 9,17          | -6,05         | -0,01         | 0,83          | 1.78          | -2,55         | -31,43        | -23,52         | 32,29          | 10,72          | 4,90           | -18,67         | -16,63         |
|    | ã            | 14:06:00 | 41,28            | -24,56               | 0,62          | 5.74          | 9,18          | -6,05         | -0,01         | 0,83          | 1.78          | -2,55         | -31,44        | -23,53         | 32,30          | 10,72          | 4,90           | -18,67         | -16,64         |
|    | ē            | 14:06:21 | 41,23            | -24,66               | 0,62          | 5.74          | 9.18          | -6.05         | -0'0          | 0,83          | 1.78          | -2.56         | -31.45        | -23.53         | 32,30          | 10.72          | 4,90           | -18,68         | -16,64         |
|    | 100          | 14:06:41 | -41,29           | -24,56               | 0,62          | 5,75          | 9,18          | -6,05         | -0,01         | 0,83          | 1.78          | -2,56         | -31,45        | -23,54         | 32,31          | 10,72          | 4,90           | -18,68         | -16,64         |
|    | 80           | 14:07:20 | -33,03           | -19,61               | 0,54          | 5,10          | 7,91          | -5,24         | 00'0          | 0.71          | 1.57          | -2.55         | -27.07        | -20,34         | 27,47          | 9,48           | 4,61           | -16,07         | -14,02         |
|    | 60           | 14:08:01 | -24,73           | -14,75               | 0,43          | 4,14          | 6,28          | -4.15         | 00'0          | 0.52          | 119           | -2.24         | -21,38        | -16,13         | 21,21          | 7,81           | 4,14           | -12,72         | -10,97         |
|    | 4            | 14:08:41 | -16,52           | -0,88                | 0'30          | 3.02          | 44,4          | -2,94         | 00'0          | 0,32          | 0.77          | <br>8         | -15,02        | -11,34         | 14,14          | 5,46           | 3,05           | -8,95          | -7,69          |
|    | 50           | 14:09:26 | -8,36            | 4<br>2               | 0,17          | 1,75          | 2,46          | -1,64         | -0'01         | 0,13          | 0,36          | -1,28         | -8,26         | -6,19          | 7,13           | 2,86           | 1,64           | -4,91          | 4,19           |
|    | 10           | 14:10:06 | -4,25            | 52<br>17<br>12       | 60'0          | 1,03          | 1,41          | -0,95         | -0,03         | 0'02          | 0,17          | 98'0-         | -4,65         | -3,46          | 3,78           | 1,54           | 0'88           | -2,76          | -2,30          |
|    | 20           | 14:10:46 | -8,41            | -4,94                | 0,13          | 1,45          | 2,17          | -1,40         | -0,02         | 0,11          | 0,29          | -1,07         | -7,42         | -5,46          | 5,88           | 2,11           | 1,12           | -4,35          | -3,82          |
|    | 10           | 14:11:25 | -4,25            | -2,52                | 60'0          | 1.03          | 1,39          | -0,93         | -0,02         | 0,05          | 0,17          | -0.84         | -4,62         | -3,44          | 3.77           | 1,53           | 0,88           | -2,74          | -2,30          |
|    | 0            | 14:14:33 | 0,02             | -0,02                | 00'0          | -0,06         | -0,07         | -0,02         | 0,01          | 0,00          | 0,01          | -0,01         | 0,21          | 0,15           | -0,12          | -0,03          | -0,02          | 0,12           | 0,16           |
|    |              |          |                  |                      |               |               |               |               |               |               |               |               |               |                |                |                |                |                |                |

ANALISI STATICA CARRELLO PRINCIPALE M346: confronto teorico/sperimentale prove di resistenza e prove di rigidezza

Tab. 8 - Risultati LC3 - 2pt Drift Landing: Spostamenti


| m            | osition 9    | hm'm | 0        | -67      | -128         | -67      | -        | ÷        | 89<br>99         | -117     | -173     | -239     | 900-     | -355     | -412     | -470           | -532     | -594     | -592     | -592     | -593     | -594         | -594     | -595     | -555     | -420     | -30      | -139     | -62      | -112     | -64            | 5        |
|--------------|--------------|------|----------|----------|--------------|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|----------|
| mm = 294,9r  | Position 8 F | μm/m | 9        | -108     | -210         | -100     | 0        | ÷        | -106             | -207     | -306     | -406     | -503     | -509     | -605     | -789           | -894     | -976     | -973     | -972     | -971     | -971         | -971     | -971     | -757     | -574     | -389     | -194     | -97      | -208     | 8 <sup>;</sup> | 6        |
| 8,5mm+4,90   | Position 7   | шvт  | ę        | -100     | -192         | -134     | -        | -2       | 0 <del>6</del> - | -183     | -274     | -368     | -458     | -547     | -637     | -726           | -814     | -899     | -902     | -903     | -904     | -904         | -905     | -905     | -905     | -738     | -501     | -255     | -129     | -182     | -130           | 12       |
| 358,5mm-6    | Position 6   | m/mu | 0        | 0        | -            | 0        | -        | ÷        | 0                | 0        | 0        | -        | 5        | -        | -        | 67             | 9        | 3        | 5        | 2        | 2        | <del>ر</del> | 0        | 2        | 2        | 5        | -        | ÷        | ÷        | ÷        | ÷              | -2       |
| 00% LL)=     | Position 5   | шvіт | φ        | 49       | ÷            | 4        | 0        | 0        | 2                | 5        | 8        | 51       | 4        | ŧ        | 17       | 6              | ର        | 22       | 2        | 21       | 21       | 8            | ଷ        | 20       | 10       | 0        | ¢        | 9        | -        | 4        | 0              | 0        |
| / SAT (at 1  | Position 4   | m/mu | -19      | 393      | 780          | 409      | 0        | ې        | 385              | 11       | 1158     | 1536     | 1914     | 2298     | 2671     | 3055           | 3425     | 3777     | 3781     | 3784     | 3784     | 3780         | 3778     | 3779     | 3136     | 2384     | 1590     | 799      | 402      | 776      | 400            | -51      |
| nm=290mm     | Position 3   | μm/m | 17       | -303     | -769         | -415     | 0        | 0        | -378             | -755     | -1125    | -1496    | -1864    | -229     | -2592    | -2967          | -3312    | -3655    | -3655    | -3655    | -3655    | -3654        | -3655    | -3654    | -3063    | -2357    | -1584    | -796     | -397     | -752     | -398           | 48       |
| ,5mm-68,5n   | Position 2   | m/mµ | 7        | -256     | -505         | -331     | 0        | 0        | -233             | -486     | -729     | -974     | -1216    | -1452    | -1690    | -1928          | -2162    | -2386    | -2389    | -2389    | -2389    | -2389        | -2390    | -2390    | -2329    | -1898    | -1302    | -661     | -333     | -503     | -337           | 27       |
| nitial) =358 | Position 1   | hm/m | ÷        | -        | 2            | 8        | ÷        | ÷        | ÷                | 0        | ÷        | ÷        | -13      | -22      | <u>5</u> | 8 <sup>9</sup> | 4        | -51      | -51      | -52      | -51      | -51          | -52      | -51      | -29      | -14      | е<br>С   | е<br>С   | 2        | 2        | 2              | ÷2       |
| m/SAT (i     | side load    | ¥    | -0,02    | -2,52    | -4,95        | -2,52    | -0,02    | -0,02    | -2,52            | -4,96    | -7,37    | -9,87    | -12,27   | -14,75   | -17,18   | -19,66         | -22,11   | -24,56   | -24,56   | -24,56   | -24,56   | -24,56       | -24,56   | -24.56   | -19,61   | -14,75   | -9,88    | -4,94    | -2,52    | -4,94    | -2,52          | -0,02    |
| al) = 298m   | vert. load   | Ŋ    | -0,01    | 4,25     | -8.36        | 4,23     | -0,01    | -0,01    | 4,25             | -8,36    | -12,46   | -16,57   | -20,72   | -24,78   | -28,93   | -33,03         | -37,21   | -41,29   | -41,29   | -41,29   | -41,29   | -41,29       | -41.29   | -41.29   | -33,03   | -24,73   | -16,52   | -8.36    | 4,25     | -8,41    | 4,25           | 0,02     |
| SAT(nomin    | time         | 63   | 13:53:02 | 13:55:20 | 13:56:00     | 13:56:40 | 13:57:31 | 13:57:34 | 13:58:16         | 13:58:59 | 13:59:43 | 14:00:31 | 14:01:14 | 14:01:57 | 14:02:39 | 14.03:21       | 14:04:01 | 14:04:39 | 14:05:00 | 14:05:21 | 14:05:40 | 14:06:00     | 14:06:21 | 14:06:41 | 14:07:20 | 14:08:01 | 14:08:41 | 14:09:26 | 14:10:06 | 14:10:46 | 14:11:25       | 14:14:33 |
| t landing:   | load step    | %    | 0        | 9        | କ୍ଷ          | ₽        | 0        | 0        | ₽                | 8        | 8        | 4        | 8        | 8        | 02       | 8              | 8        | 10       | <u>6</u> | <u>6</u> | <u>6</u> | <u>1</u> 0   | 6        | 100      | 8        | 8        | 4        | କ୍ଷ      | ₽        | 8        | 9              | 0        |
| 2pt drif     | step         |      | -        | 2        | <del>ر</del> | 4        | ŝ        | 9        | -                | 8        | 6        | ₽        | Ξ        | 5        | 5        | 4              | ÷        | 16       | 17       | ₽        | 6        | 8            | 21       | 22       | ន        | 2        | 8        | 8        | 27       | 58       | 8              | 90       |

Tab. 9 - Risultati LC3 - 2pt Drift Landing: Deformazioni



# 2.2.2.4 Limit load case LC4 - 2pt braked roll

SAT 300mm al 100% del LL richiesto secondo QTP: durante il test è stato raggiunto un SAT 298.15mm al 101% LL



Figura 13 - Setup LC4 - 2pt Braked Roll

Alessandro Pagani



| 2pt Br | aked Ro        | il: SAT(i | ominal)          | = 300m          | m / SAT        | (initial)         | =358,5        | mm-67,        | 5mm=2         | 91mm /        | SAT (at       | 101%          | LL)=358,      | 5mm-6          | 7,5mm+         | .7,15mn           | n =298,1       | 5mm            |                |
|--------|----------------|-----------|------------------|-----------------|----------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|----------------|-------------------|----------------|----------------|----------------|
| step   | load step<br>% | s<br>S    | vert. load<br>kN | drag load<br>kN | Point 1<br>mm  | Point 2<br>mm     | Point 3<br>mm | Point 4<br>mm | Point 5<br>mm | Point 6<br>mm | Point 7<br>mm | Point 8<br>mm | Point 9<br>mm | Point 10<br>mm | Point 11<br>mm | Point 12<br>mm    | Point 13<br>mm | Point 14<br>mm | Point 15<br>mm |
| -      | 0              | 14.30.34  | 2,10             | -1,80           | 00'0           | 0,0               | 00'0          | 00'0          | 00'0          | 0.0           | 0.01          | 00'0          | 00'0          | 0,00           | 0.01           | 0,0               | 00'0           | 0,00           | 0.00           |
| 5      | 10             | 14.33.34  | -484,70          | -383,30         | -0,05          | 0,01              | 0.29          | -0,40         | 0,02          | 0,73          | 1.8           | 2,82          | -1,23         | -0.86          | 1.80           | 0,50              | 0,71           | -0.81          | 1.5            |
| ო      | 8              | 14.34.16  | -969,20          | -761,10         | -0'0           | 0,28              | 0,72          | -0.71         | 80            | 1,24          | 2,86          | 4,90          | -2,42         | -1,78          | 3,59           | 1,33              | 1,48           | -1,66          | -7<br>80       |
| 4      | 9              | 14.34.57  | -482,30          | -383,30         | -0,05          | 0'01              | 0,41          | -0,42         | -0,02         | 0,75          | 1.75          | 3,00          | -1,35         | -1.01          | 2,35           | 0,97              | 1,08           | -0.95          | -1,68          |
| ŝ      | 0              | 14.36.04  | 2,10             | -1,80           | 0'00           | 0,0               | 0,00          | 0,00          | 0,00          | 0.0           | 0.0           | 00'0          | 0,00          | 0,00           | 0.0            | 8,0               | 00'0           | 0,0            | 0.0            |
| 9      | 0              | 14.36.11  | 2,10             | -1,80           | 0,00           | 0,00              | 0,00          | 0,00          | 0,00          | 00'0          | 00'0          | 0,00          | 0,00          | 0,00           | 00'0           | 00'0              | 00'0           | 0,00           | 0,00           |
| 7      | 9              | 14.36.55  | -487,10          | -383,30         | 9<br>9         | 0,0               | 0,30          | -0,32         | -0'01         | 0,71          | <u>5</u>      | 3,10          | -1,07         | -0'11          | <u>-</u><br>2  | 0,53              | 0'63           | -0,75          | -1,88          |
| 8      | 20             | 14.37.36  | -971,60          | -761,10         | -0,06          | 0,24              | 0,65          | -0,66         | -0,01         | 1,24          | 2,86          | 5,20          | -2,21         | -1,64          | 3,30           | 1,25              | 1,46           | -1,56          | -2,97          |
| 6      | 8              | 14.38.20  | -1436,90         | -1138,80        | -0,10          | 0,45              | 1,02          | -0,98         | -0'01         | 1,75          | 4,03          | 7,22          | -3,39         | -2,53          | 5,14           | 2<br>8            | 2,24           | -2,38          | -4,28          |
| 9      | 4              | 14.39.01  | -1923,80         | -1521,50        | -0,13          | 99.<br>0          | 4             | -1,31         | 00'0          | 2,24          | 5,17          | 9,18          | 4.60          | -3. <b>4</b> 3 | 7,06           | 8                 | 3,01           | -3,21          | ,<br>9,<br>80  |
| Ξ      | 50             | 14.39.43  | -2386,70         | -1896,80        | -0,15          | 0,85              | 1.76          | -1,62         | 0,0           | 2,72          | 6.30          | 11,12         | -5,78         | -4.32          | 8,80           | 3,60              | 3,75           | -4,02          | -6,89          |
| 12     | 60             | 14.40.25  | -2873,60         | -2272,10        | -0,18          | 8                 | 2,14          | -1,96         | 0,01          | 3,21          | 7,42          | 13,05         | -6,99         | -5,23          | 10,81          | 4,40              | 4,50           | -4,86          | -8,21          |
| 13     | 20             | 14.41.08  | -3358,00         | -2652,20        | -0,21          | 1,28              | 2,52          | -2,28         | 0,02          | 3,69          | 8<br>8        | 15,00         | -8,20         | -6,12          | 12,70          | 5,20              | 5,23           | -5,69          | 9<br>2         |
| 14     | 8              | 14.41.49  | -3823,30         | -3034,90        | -0,23          | <del>1</del>      | 2,89          | -2,62         | 0,04          | 4,18          | 9'67          | 16,92         | -9,40         | -7,02          | 14,55          | 89                | 5,91           | -6,52          | -10,86         |
| 15     | 8              | 14.42.32  | 4307,80          | -3410,10        | -0,25          | 1.71              | 3,27          | -2,95         | 0,05          | 4,67          | 10,78         | 18,84         | -10,62        | -7,93          | 16,40          | 6,72              | 6,54           | -7,35          | -12,20         |
| 16     | 100            | 14.43.13  | -4773,10         | -3797,70        | -0,27          | 1,91              | 3,63          | -3,28         | 0,07          | 5,15          | 11,89         | 20,77         | -11.79        | 8,80           | 18,18          | 4                 | 7,14           | -8,15          | -13,51         |
| 17     | 5              | 14.43.28  | 4773,10          | -3797,70        | -0.28          | 1.91              | 3.64          | -3,29         | 0'0           | 5,15          | 11,89         | 20,78         | -11.80        | -8,81          | 18,19          | 7,45              | 7,14           | -8,17          | -13,53         |
| 18     | 8              | 14.43.47  | 4773,10          | -3797.70        | -0,28          | 8                 | 3.65          | -3,29         | 0'02          | 5,15          | 8             | 20,78         | -11.82        | 8,<br>8,       | 18,20          | 7,46              | 7,15           | -8<br>18       | -13,53         |
| 19     | 5              | 14.44.09  | 4773,10          | -3797,70        | 9 <sup>0</sup> | 8                 | 3,65          | -3,29         | 0'0           | 5,16          | 8             | 20,79         | -11,82        | 8<br>8         | 18,20          | 7,46              | 7,15           | -8,18          | -13,53         |
| ଷ      | 5              | 14.44.27  | 4773,10          | -3797,70        | -0,28          | 8                 | 3,65          | -3,30         | 0'01          | 5,16          | 11,91         | 20,79         | -11,82        | 8.<br>8        | 18,21          | 7,46              | 7,15           | -8,18          | -13,5 <u>1</u> |
| 5      | 8              | 14.44.48  | 4773,10          | -3797.70        | -0,28          | <del>,</del><br>8 | 3.65          | -3,30         | 0'0           | 5,16          | 11,91         | 20.79         | -11.82        | 8.<br>8.       | 18.21          | 7,46              | 7,15           | 8<br>8<br>8    | -13,54         |
| 52     | 100            | 14.45.08  | -4773,10         | -3797,70        | -0,28          | 1,92              | 3,66          | -3,30         | 0,07          | 5,16          | 11,91         | 20,80         | -11,82        | -8,83          | 18,21          | 7,46              | 7,15           | -8,18          | -13,54         |
| ន      | 8              | 14.45.47  | -3823,30         | -3032,40        | -0,25          | <u>1</u><br>33.   | 3,15          | -2,84         | 0'06          | 4,33          | 10,05         | 17,73         | -9,94         | -7,53          | 15,96          | 6.84              | 6,64           | -6,96          | -11,45         |
| 5      | 60             | 14.46.27  | -2868,90         | -2272,10        | -0,21          | 8                 | 2.45          | -2,24         | 0'0           | 3.41          | 7.87          | 13,72         | -7,76         | -5,83          | 12,97          | 5,78              | 5,72           | -5.46          | -8,79          |
| ধ      | 4              | 14.47.06  | -1921,40         | -1519,00        | -0,16          | 0,62              | 1,68          | -1,58         | 0,04          | 2,43          | 5,50          | 9,76          | -5,38         | -4,12          | 8,8            | 3<br>3<br>8       | 3,95           | -3,80          | -6,15          |
| 8      | 8              | 14.47.48  | -969,20          | -761,10         | -0,10          | 8                 | 0,86          | -0,86         | 00'0          | <del>6</del>  | 3,17          | 5,64          | -2,73         | -2,11          | 4,61           | 5                 | 2,12           | -1,98          | -3,37          |
| 27     | 9              | 14.48.28  | -484,70          | -383,30         | 90.09<br>-     | 0,0               | 0.42          | -0,47         | -0'01         | 0,84          | 1.86          | 3,44          | -1,32         | -1.03          | 2,37           | 1.<br>8.          | 1,14           | -0.98          | -1.<br>8       |
| 28     | 20             | 14.49.12  | -971,60          | -763,50         | -0,08          | 0,25              | 0,72          | -0,73         | -0,01         | 1,31          | 2,97          | 5,34          | -2,43         | -1,81          | 3,70           | 1,41              | 1,58           | -1,70          | -3,12          |
| ଷ      | ę              | 14.49.51  | -487,10          | -383,30         | 9<br>9         | 5                 | 0,42          | -0,47         | -0,01         | 0,83          | 1.86          | 3,43          | -1,31         | -1,01          | 536            | <del>1</del><br>8 | 1,15           | -0,97          | -1,89          |
| 8      | 0              | 14.53.00  | 2,10             | -1,80           | 0,00           | -0,01             | 0,00          | -0,02         | 0,01          | -0,02         | -0,16         | -0,33         | 0,05          | 0,02           | -0,04          | 0,01              | -0,03          | 0,03           | 0,17           |

Tab. 10 - Risultati LC4 - 2pt braked roll: Spostamenti

| 2pt Bra | aked Roll: | SAT(nomi   | nal) = 300m | ım / SAT (i | nitial) =358   | ,5mm-67,5I | mm=291mr   | n / SAT (at | 101% LL)=3 | 358,5mm-6  | 7,5mm+7,15  | 5mm =298,1      | 5mm        |
|---------|------------|------------|-------------|-------------|----------------|------------|------------|-------------|------------|------------|-------------|-----------------|------------|
| step    | load step  | time       | vert. load  | drag load   | Position 1     | Position 2 | Position 3 | Position 4  | Position 5 | Position 6 | Position 7  | Position 8      | Position 9 |
|         | %          | s          | Ϋ́          | Ŷ           | m'mц           | m/mµ       | m/mu       | m/mµ        | m'mµ       | m/mu       | т           | m/mu            | m'mu       |
| -       | 0          | 14.30.34   | 2,10        | -1,80       | 7              | ÷          | -          | ¢           | ÷          | ÷          | 0           | ÷               | 2          |
| ~       | 10         | 14.33.34   | -484,70     | -383,30     | -150           | -227       | -269       | 214         | 8          | -          | 69          | 75              | 46         |
| e       | ଷ          | 14,34,16   | 969.20      | -761,10     | -315           | 436        | -519       | 424         | 8          | 0          | 158         | æ               | 100        |
| 4       | 5          | 14, 34, 57 | -482,30     | -383,30     | 91-            | -278       | -277       | 219         | ଷ          | -          | 76          | ន               | 51         |
| ю       | 0          | 14.36.04   | 2,10        | -1,80       | 0              | 0          | 0          | œ           | 0          | 0          | ÷           | Ģ               | 0          |
| 9       | 0          | 14.36.11   | 2,10        | -1,80       | 0              | 0          | ÷          | q.          | 0          | 0          | -2          | ?               | ÷          |
| -       | ₽          | 14.36.55   | -487,10     | 383.30      | <u>1</u><br>25 | -215       | 250        | 204         | 8          | -          | 80          | 87              | 52         |
| 8       | 20         | 14.37.36   | -971,60     | -761,10     | -321           | -422       | -509       | 405         | 56         | -          | 167         | 175             | 103        |
| 6       | ອ          | 14.38.20   | -1436,90    | -1138,80    | -489           | -627       | -759       | 616         | 8          | е<br>С     | 25          | 266             | 159        |
| 9       | 4          | 14.39.01   | -1923,80    | -1521,50    | -650           | -832       | -1011      | 821         | 101        | 4          | 338         | 355             | 215        |
| Ξ       | 3          | 14.39.43   | -2386,70    | -1896,80    | -824           | -1032      | -1258      | 1020        | 119        | 5<br>G     | 424         | 444             | 273        |
| 9       | 8          | 14.40.25   | -2873,60    | -2272,10    | 9 <sup>6</sup> | -1232      | -1510      | 1226        | 143        | 9          | 511         | 531             | 336        |
| ₽<br>₽  | 2          | 14.41.08   | -3368,00    | -2652,20    | <b>19</b> 1-   | -1437      | -1761      | 1432        | 170        | 7          | 609         | 620             | 402        |
| 4       | 8          | 14.41.49   | -3823,30    | -3034,90    | -1328          | -1630      | -2005      | 1639        | 198        | 0          | 689         | 713             | 471        |
| ÷       | 8          | 14.42.32   | -4307,80    | -3410,10    | -1493          | -1824      | -2253      | 1838        | 226        | 0          | 775         | 801             | 535        |
| 16      | 100        | 14.43.13   | 4773,10     | -3797,70    | -1656          | -2009      | -2495      | 2035        | 253        | 10         | 863         | 897             | 601        |
| 4       | ē          | 14.43.28   | -4773,10    | -3797,70    | -1656          | -2012      | -2496      | 2043        | 252        | 10         | 999<br>990  | 268             | 604        |
| 8       | ē          | 14.43.47   | -4773,10    | -3797,70    | -1656          | -2013      | -2496      | 2041        | 8          | 9          | 996         | 96<br>96        | 602        |
| 6       | <u>0</u>   | 14.44.09   | -4773,10    | -3797,70    | -1657          | -2015      | -2497      | 2040        | 253        | 0          | 965         | <del>8</del> 94 | 602        |
| କ୍ଷ     | <u>6</u>   | 14.44.27   | -4773,10    | -3797,70    | -1657          | -2015      | -2498      | 2036        | 252        | 10         | 965         | 893             | 601        |
| 21      | 100        | 14,44,48   | -4773,10    | -3797,70    | -1657          | -2015      | -2497      | 2038        | 252        | 0          | <b>9</b> 99 | 88<br>88        | 602        |
| 22      | 100        | 14.45.08   | 4773.10     | -3797,70    | -1657          | -2014      | -2497      | 2036        | 253        | 10         | 998         | 894             | 601        |
| ສ       | ຣ          | 14.45.47   | -3823,30    | -3032,40    | -1430          | -1852      | -2057      | 1677        | 207        | 7          | 209         | 657             | 472        |
| 24      | 8          | 14.46.27   | -2968,80    | -2272,10    | -1030          | -1517      | -1576      | 1275        | 150        | ۍ          | 546         | 451             | 337        |
| 8       | 4          | 14.47.06   | -1921.40    | -1519,00    | 6/9-           | -1045      | -1067      | 859         | 3          | е<br>С     | 370         | 288             | 233        |
| 8       | ଷ          | 14.47.48   | -969,20     | -761,10     | 9 <b>2</b> 9   | -539       | -538       | 426         | 4          | -          | 171         | 55              | 122        |
| 27      | ₽          | 14,48,28   | -484,70     | -383,30     | ŝ              | -275       | -260       | 208         | ន          | 0          | 84          | 75              | 60         |
| 28      | 20         | 14.49.12   | -971,60     | -763,50     | -319           | -434       | -518       | 415         | 50         | -          | 163         | 175             | 108        |
| 8       | 9          | 14.49.51   | -487,10     | -383,30     | -161           | -276       | -269       | 211         | ន          | 0          | 36          | 75              | 63         |
| 30      | 0          | 14.53.00   | 2,10        | -1,80       | 16             | 12         | 15         | -15         | -2         | ÷          | ې           | 4               | 0          |
|         |            |            |             |             |                |            |            |             |            |            |             |                 |            |

Tab. 11 - Risultati LC4 - 2pt braked roll: Deformazioni





### 2.3 PROVE SPERIMENTALI DI RIGIDEZZA

La rigidità del carrello d'atterraggio è determinata attraverso le prove di rigidezza. I dati e la descrizione delle prove di rigidezza del MLG sono presentati nel documento di LLI "B\_TA\_4143\_01\_MLG\_Drop\_tests\_report". Dopo una prima campagna di prove il MLG Shock Strut è stato modificato per rispettare alcuni requisiti. Le prove di rigidezza sono state fatte perciò sul MLG LH P/N 2901A0000-02, di cui fanno parte:

- MLG Shock Strut LH P/N 2809A0000-02
- MLG Drag Brace incl. Down Lock P/N 2811A0000-01

#### 2.3.1 Descrizione delle prove di rigidezza

Per le prove di rigidezza il carrello è stato assemblato nell'impianto di prova in configurazione d'atterraggio e senza ruota. Una struttura movibile "dummy" che simula la ruota, è applicata all'assale per il "touch down" del carrello. Il rispettivo carico è stato applicato mediante un dispositivo meccanico.

Le diverse configurazioni di carico sono mostrate nelle figure seguenti:



Figura 14 - Prove di rigidezza: Configurazione carico +X





Figura 15 - Prove di rigidezza: Configurazione carico -X



Figura 16 - Prove di rigidezza: Configurazione carico +Y

Alessandro Pagani





Figura 17 - Prove di rigidezza: Configurazione carico -Y

Le seguenti tabelle riportano le dodici condizioni di carico di rigidezza con relativo identificativo di prova suddivise per le differenti corse SAT:

| Lc n° | Test ID | Fx [N] | Fy [N] | SAT [mm] |
|-------|---------|--------|--------|----------|
| 1     | 0.2     | 0      | -10000 | 10       |
| 6     | 0.7     | 20000  | 0      | 10       |
| 7     | 0.8     | -20000 | 0      | 10       |
| 12    | 0.13    | 0      | 10000  | 10       |

Tab. 12 - LC rigidezza: SAT 10



| Lc n° | Test ID | Fx [N] | Fy [N] | SAT [mm] |
|-------|---------|--------|--------|----------|
| 3     | 0.4     | 0      | -15000 | 180      |
| 4     | 0.5     | 25500  | 0      | 180      |
| 8     | 0.9     | -30000 | 0      | 180      |
| 11    | 0.12    | 0      | 15000  | 180      |

Tab. 13 - LC rigidezza: SAT 180

| Lc n° | Test ID | Fx [N] | Fy [N] | SAT [mm] |
|-------|---------|--------|--------|----------|
| 2     | 0.3     | 0      | -20000 | 350      |
| 5     | 0.6     | 25000  | 0      | 350      |
| 9     | 0.1     | -35000 | 0      | 350      |
| 10    | 0.11    | 0      | 20000  | 350      |

Tab. 14 - LC rigidezza: SAT 350

#### 2.3.2 Risultati delle prove di rigidezza

Gli spostamenti dei singoli punti di ciascuna condizione di carico sono stati determinati tramite fotogrammetria confrontando le due posizioni catturate per ogni punto analizzato, senza carico applicato e con carico applicato. Gli spostamenti fanno riferimento agli assi del sistema di coordinate globale del velivolo.

Il posizionamento dei punti che sono stati analizzati è evidenziato nella figura sottostante:





Figura 18 - Prove di rigidezza: Spostamenti

Le tabelle successive riportano i risultati delle deflessioni di questi punti:



| Test-ID     | Position |          | Deflections      |      | Test-ID    | Pasition | ,    | Defections       | -        |
|-------------|----------|----------|------------------|------|------------|----------|------|------------------|----------|
| -           |          |          | ,12.2            | 47   |            | 4        |      | ۲<br>م ب         | ۲<br>۵۰. |
| 1           |          | 4×       | 14,0             |      | 4 I I      | 2        | 10.0 | -1,0             | -1,3     |
|             | 2        | -444     | -14,2            | 11,5 | -          | 2        | 19,9 | 1,8              | -0,5     |
| 100         |          | -41      | qu               | 40   | - 15.1 ×   | 3        | 0,5  | -0,3             | -0,2     |
| 0.2<br>-y   |          | ųo       | -4,3             | ųσ   | 0.5<br>+X  | 4        | -0,1 | 0,2              | 0,2      |
| 1000        | 5        | -0,3     | -Q.1             | Q,3  | 150mm      | 5        | 0,0  | 0,0              | 0,0      |
| 8           | 6        | Q1       | -5,3             | Q.9  |            | 6        | 3,4  | -0,5             | -0,7     |
| 2           | 7        | Q9       | -13,2            | 5,7  |            | 7        | 9,4  | -1,9             | -1,9     |
| 2           | 8        | -01      | -2,9             | Q,6  |            | 8        | 1,8  | -0,6             | -0,6     |
| 0           | 1        | Q.5      | -10,3            | 42   |            | 1        | 4,4  | -1,5             | -0,4     |
|             | 2        | -15      | -11,2            | 1,6  |            | 2        | 12,6 | 1,2              | 0,2      |
|             | 3        | Q1       | Q1               | QO   |            | 3        | 0,6  | 0,2              | -0,1     |
| 0.3         |          | QD       | -Q4              | -Q.1 | 0.6        | 4        | 0,2  | 0,3              | 0,2      |
| 350mm       | 5        | -0.4     | -0,1             | Q,5  | 350mm      | 5        | 0,3  | 0,1              | 0,0      |
|             | 6        | Q3       | -7,2             | 1,4  |            | 6        | 2,8  | -0,3             | -0,5     |
|             | 7        | Q.5      | -10,2            | -3,2 |            | 7        | 4,5  | -1,5             | -0,4     |
|             | 8        | -Q1      | -41              | 1,0  | ti t       | 8        | 1,8  | -0,4             | -0,4     |
| 3           | 1        | Q.G      | -13,8            | 2,3  |            | 1        | 14,4 | -3,0             | -2,7     |
| 8           | 2        | -12      | -14,6            | 8,7  |            | 2        | 28,7 | 3,0              | -0,3     |
| 1           | 3        | -0,2     | -0,2             | Q,1  | * =        | 3        | 0,5  | 0,1              | -0,2     |
| 0.4         | 248      | -0,2     | -0,2             | -0,1 | 0.7        | 4        | 0,0  | 0,2              | 0,2      |
| ¥<br>180mm  | 5        | -Q.E     | QO               | Q.5  | +X         | 5        | 0,1  | 0,0              | 0,1      |
| 1           | 6        | -Q1      | -7,0             | 1,3  | f          | 6        | 3.3  | -0.5             | -0.7     |
| 3           | 1        | QG       | -13,6            | 2,3  | -          | 7        | 14.6 | -3.1             | -2.7     |
| 8           |          | -04      | -40              | 0.9  | t -        | a        | 16   | -0.4             |          |
| Test-ID     | Position | x        | Deflections<br>y | z    | Test-ID    | Position | x    | Deflections<br>Y | z        |
| 2           | 1        | -12,5    | 3,2              | 21   |            | 1        | 0,2  | 9,7              | 3.9      |
|             | 2        | -26,0    | -1,4             | Q3   |            | 2        | 3,3  | 11,0             | -0,9     |
|             | 3        | 0,5      | 1,1              | 0,2  |            | 3        | 0,2  | -0,3             | -0,1     |
| 0.8         | 4        | 0,8      | -0,1             | -0,2 | 0.11       | 4        | -0,1 | 0,3              | Q,O      |
| 10mm        | 5        | 0,7      | 0,0              | -0,1 | 350mm      | 5        | 0,5  | 0,0              | -0,6     |
|             | 6        | -2,0     | 0,9              | Q,5  |            | 6        | 0,2  | 6,9              | -1,4     |
| 3           | 7        | -12,6    | 3,2              | 21   |            | 7        | 0,2  | 9,6              | 3.9      |
|             | 8        | -0,6     | 0,9              | Q,4  |            | 8        | 0,5  | 3,8              | -1,0     |
|             | 1        | -8,6     | 2,1              | 1,9  |            | 1        | -0,3 | 11,2             | -1,0     |
|             | 2        | -20,3    | -1,7             | Q,7  |            | 2        | 2,6  | 12,4             | -6,5     |
| 1           | 3        | 0,1      | 1,3              | 0,3  |            | 3        | 0,1  | 0,0              | 0,0      |
| 0.9         | 2        | 0,9      | -0,1             | -0,3 | 0.12       | 4        | 0,0  | 0,2              | 0,1      |
| 180mm       | 5        | 0,6      | 0,1              | -0,1 | 180mm      | 5        | 0,4  | 0,0              | -0,4     |
|             | 6        | -2,5     | 0,8              | 0,6  |            | 6        | 0,1  | 6,3              | -1,1     |
|             | 7        | -8,7     | 2,1              | 1,9  |            | 7        | -0,3 | 11,1             | -1,0     |
|             | 8        | -1,0     | 0,9              | 0,5  |            | 8        | 0,4  | 3,5              | -0,8     |
|             | 1        | -5,1     | 1,3              | 0,7  |            | 1        | -0,2 | 12,5             | 3,2      |
| 2           | 2        | -15,4    | -1,9             | 0,3  |            | 2        | 3,5  | 14,2             | -2,0     |
|             | 3        | -1,1     | -0,6             | Q,1  | 1 1        | 3        | 0,1  | 0,0              | -0,1     |
| 0.10        | 4        | -0,5     | -0,1             | -0,3 | 0.13       | 4        | 0,0  | 0,2              | 0,1      |
| -x<br>350mm | 5        | -0,6     | 0,1              | 0,0  | +y<br>10mm | 5        | 0,3  | 0,0              | -0,3     |
|             | 6        | -3,1     | 0,0              | 0,5  | 1 1        | 6        | 0,2  | 4,9              | -0,9     |
| 1           | 7        | -5,2     | 1,3              | Q.7  | 1 1        | 7        | -0,2 | 12,4             | 3,2      |
|             | arces 7  | 101-1020 | 523              | 1213 | ㅋ! 바       | 31203    | 1211 | 6780-622         | 112/273  |

#### Tab. 15 - Risultati LC rigidezza: Spostamenti

Alessandro Pagani



# 3 MODELLO AD ELEMENTI FINITI DEL CARRELLO PRINCIPALE

Il modello ad elementi finiti (FEM) del MLG è stato creato in accordo agli ultimi disegni e modelli 3D del MLG Shock Strut LH P/N 2809A0000-03. Sono state caricate nel modello le coordinate geometriche dei punti notevoli d'interfaccia, prese dal documento LLI "2900GD0001 M346 MLG Interface Control Document", e verificate le loro effettive posizioni. Nel carrello ci sono diversi tipi di interfaccia: strutturale, meccanica, elettrica, idraulica e di equipaggiamento a terra.

L'MLG Shock Strut s'interfaccia infatti con la struttura del velivolo, con il MLG Drag Brace, con l'attuatore di estensione/retrazione, con le ruote e gli pneumatici.

| Descrizione                            | Pt. di riferimento |
|----------------------------------------|--------------------|
| Lower pintle pin to airframe structure | SM1                |
| Upper pintle pin to airframe structure | SM2                |
| Drag brace to airframe structure       | SM3                |
| Door attach. at Strut (Upper/Fwd)      | SM4                |
| Mid-Door attach. at Strut (Upper/Aft)  | SM5                |
| Mid-Door attach. at Strut (Lower)      | SM6                |
| Aft-Door attachment at Strut           | MM1                |
| Strut to drag brace                    | MM2                |
| Retract actuator attachment at Strut   | MM3                |
| Strut to uplock                        | MM4                |
| Drag brace to DLRA                     | MM5-MM6            |
| Wheel to axle                          | MM7                |
| Sliding tube flange to brake           | MM8                |

Tab. 16 - Punti d'interfaccia MLG





Figura 19 - Punti d'interfaccia MLG



Figura 20 - Modello 3D del MLG



### 3.1 DESCRIZIONE DEL MODELLO NUMERICO

Partendo dalla geometria tridimensionale del carrello, è stato realizzato un modello ad elementi finiti del MLG, composto dai seguenti elementi:

- il *main fitting*, corpo fisso della gamba carrello
- lo *sliding tube*, stelo scorrevole della gamba carrello
- l'*upper torque link* ed il *lower torque link*, i due componenti del cinematismo del compasso
- il *drag brace*, ovvero il controvento
- il *wheel axle*, perno su cui è montata la ruota

Il main fitting è sostanzialmente un elemento tubolare, incernierato alla fusoliera in due punti con un perno, il pintle pin. Al suo interno scorre un altro elemento tubolare più sottile, lo sliding tube, al cui estremo inferiore si collega l'assale della ruota.

L'interno di entrambi gli elementi è sede dell'ammortizzatore oleopneumatico: la camera d'azoto è ricavata nella parte inferiore dello sliding tube, al di sopra è situata la camera d'olio.

Durante la compressione dell'ammortizzatore, lo spostamento relativo tra sliding tube e main fitting, provoca il passaggio dell'olio dalla camera superiore a quella inferiore attraverso dei fori nella testa dello sliding tube.

L'upper torque link ed il lower torque link sono i due "braccetti" del compasso: l'upper torque link, incernierato al main fitting, collega il main fitting al lower torque link; quest'ultimo è incernierato nella parte inferiore allo sliding tube.

Il drag brace incernierato tra main fitting e struttura velivolo è composto da due parti con un meccanismo integrato di aggancio/sgancio che permette di tenere in posizione estesa il carrello durante le fasi di decollo, atterraggio e sosta a terra.

Il modello ad elementi finiti simula la presenza del drag brace mediante un' asta di rigidezza equivalente. Il drag brace non è oggetto del presente lavoro.





Figura 21 - Modello 3D del MLG

Il carrello rappresenta sia un elemento strutturale che un cinematismo mosso da un attuatore, che permette la retrazione e l'estensione. La presenza di cerniere tra le sue componenti, con relativi perni passanti nelle sedi delle lug, conduce a considerare l'effetto del contatto tra i vari corpi. Tuttavia l'obiettivo del lavoro è un'analisi di tipo statico che non riguarda l'analisi delle componenti di contatto, per cui sono state adottate semplificazioni nella modellazione delle parti a contatto. Le connessioni sono modellate mediante MPC (multi point constraint).



#### MAIN FITTING Modello CATIA Modello FEM Numerazione **Proprietà FEM** Numero Da a 217515 1000001 1300018 Nodi(\*) Elementi CTETRA 986899 1000001 1986899 MPC Lug RBE3(\*\*) 1999999 1999003 4 Mat1.1000001 Materiale 1 Proprieta' Psolid.1000001 1 Ref. Coord. System 1 Coord.2R Globale 0 Note: (\*) tutti i nodi sono riferiti nel sistema di coord.0, eccetto il nodo centrale

#### 3.1.1 Parti modellate con mesh 3D

(\*) tutti i nodi sono riferiti nel sistema di coord.0, eccetto il nodo centrale dell'mpc interno (interfaccia sliding tube) coord. 740000 e i nodi del pintle pin coord. 1700000.

(\*\*) G.d.l. nodo centrale lug inferiori (interfaccia con upper link) 1,3 coord. 820000, g.d.l. nodo centrale lug (interfaccia con drag brace) 1,2,3 coord.0, i sei g.d.l. nodo centrale lug superiore (interfaccia con retract actuator) coord 999999.

#### Tab. 17 - MAIN FITTING





#### Tab. 18 - SLIDING TUBE



| LOWER TORQUE LINK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Image: Contract of the second seco | TIA                                              | Image: Contract of the second seco | M                                           |
| Proprietà FEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Numero                                           | Numerazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a                                           |
| Nodi(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33060                                            | 3000003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3232126                                     |
| Elementi CTETRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 150735                                           | 3000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3150735                                     |
| MPC Lug RBE3(**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                | 3500001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3500003                                     |
| Materiale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                | Mat1.3000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |
| Proprieta'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                | Psolid.3000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |
| Ref. Coord. System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                | Coord 2R 530000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |
| Note:<br>(*) tutti i nodi sono riferiti nel<br>(**) G.d.l. nodo centrale lug i<br>530000, g.d.l. nodo centrale<br>del coord. 530000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sistema di ri<br>nferiori (inte<br>lug superiore | ferimento indicato.<br>rfaccia con sliding t<br>e (interfaccia con up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ube) 1,3 del coord.<br>oper link) 1,2,3,4,6 |

Tab. 19 - LOWER TORQUE LINK



| UPPER TORQUE LINK                  |                |                      |                       |  |  |
|------------------------------------|----------------|----------------------|-----------------------|--|--|
|                                    |                | B2000<br>Z           |                       |  |  |
| Modello CAT                        | ΙA             | Modello FEM          |                       |  |  |
|                                    | NT             | Numerazione          |                       |  |  |
| Proprieta FEM                      | Numero         | Da                   | a                     |  |  |
| Nodi(*)                            | 28543          | 2000001              | 2198139               |  |  |
| Elementi CTETRA                    | 126968         | 2000001              | 2126198               |  |  |
| MPC Lug RBE3(**)                   | 3              | 2200001              | 2200003               |  |  |
| Materiale                          | 1              | Mat1.2000001         |                       |  |  |
| Proprieta'                         | 1              | Psolid.2000001       |                       |  |  |
| Ref. Coord. System                 | 1              | Coord 2R 82000       | )                     |  |  |
| Note:                              | ·              |                      |                       |  |  |
| (*) tutti i nodi sono riferiti nel | sistema di ri  | ferimento indicato.  |                       |  |  |
| (**) G.d.l. nodo centrale lug s    | uperiori (inte | erfaccia con main fi | tting) 1,3 del coord. |  |  |
| 820000, g.d.l. nodo centrale lu    | ug inferiore   | (interfaccia con low | ver link) 1,2,3,4,5,6 |  |  |

del coord. 820000.

#### Tab. 20 - UPPER TORQUE LINK



| <u>Pintle pin</u>  |                     |               |                  |
|--------------------|---------------------|---------------|------------------|
| 004                |                     | 1760000<br>Z  |                  |
| Duantiatà FEM      | Numero              | Numerazione   |                  |
| Proprieta FEM      | Numero              | Da            | a                |
| Nodi(*)            | 18                  | 1217492       | 1300016          |
| Elementi CBAR      | 17                  | 1988001       | 1988017          |
| Materiale          | 1                   | Mat1.100002   |                  |
| Proprieta'         | 3                   | Psolid.100000 | 2 1000003 100004 |
| Ref. Coord. System | 1                   | Coord 2R 170  | 0000             |
|                    | Tab. 21 - <u>Pi</u> | ntle pin      |                  |

# **3.1.2** Elementi bar di collegamento (Pin)

| <u>Torque links pin</u>        |        |                   |                 |
|--------------------------------|--------|-------------------|-----------------|
|                                | 8      | 820000<br>×       |                 |
| 3                              | e      | Ø.                |                 |
|                                | 3      | z 530000          |                 |
| Proprietà FEM                  | Numero | Numerazione<br>Da | 9               |
| <i>Elementi</i> CBAR upper pin | 4      | 2126169           | 2126172         |
| Elementi CBAR lower pin        | 4      | 3150736           | 3150739         |
| Elementi CBAR middle pin       | 1      | 3150740           | •               |
| Materiale                      | 3      | Mat1.200002       | 3000002 3000003 |
| Proprieta'                     | 3      | Psolid.200002     | 3000001 3000002 |
| Ref. Coord System              | 2      | Coord 820000 5    | 530000          |

Tab. 22 - <u>Torque links pin</u>



### 3.1.3 Vincoli "MPC" di contatto

#### 3.1.3.1 Pintle pin-Main fitting

Il collegamento tra main fitting e pintle pin è composto da quattro elementi di connessione RBE3 ed un RBE2. Gli elementi RBE3 simulano la presenza delle boccole presenti tra main fitting e pintle pin.

Le connessioni esprimono la lunghezza effettiva dei contatti dove sono presenti le boccole. Quella superiore, di maggiore lunghezza, è stata suddivisa in tre connessioni per cercare di dare una maggiore precisione nel trasferimento dei vincoli e dei carichi ai nodi del main fitting.

I nodi centrali delle connessioni appartengono alla bar del pintle pin e fanno riferimento al coord.1700000. L'elemento rigido RBE2, che collega i nodi della faccia esterna in battuta con la struttura, trasferisce i gradi di libertà di traslazione ad un unico nodo vincolato nella direzione dell'asse.



Figura 22 - Pintle pin – MF





Figura 23 - MPC Pintle pin – MF

- MPC inferiore 1990002 (g.d.l. nodo centrale 2,3)
- MPC superiori 1990009 1900008 1900001 (g.d.l. nodo centrale 1,2,3,4 per il primo e 2,3 per gli altri due)
- MPC esterno 1990004 (quello più a destra, g.d.l. nodi dipendenti 1,2,3)

### 3.1.3.2 Main fitting-Upper torque link

Le seguenti figure rappresentano la connessione tra il main fitting (MF) e l'upper torque link (UTL):



Figura 24 - MF-UTL





Figura 26 - MPC MF-UTL - Contatto Y Positivo

Le connessioni MPC rappresentate sono sette:

- quattro che collegano i nodi delle bar ai nodi delle superfici interne sedi delle lug, MPC lug UTL/MF-bar: 2200002 2200003 1990007 1990003 (vedi Tab. precedenti)
- una, quella centrale, che rappresenta il collegamento della bar al main fitting, MPC centrale MF-bar: 1990006 (g.d.l. 2,5 nodo centrale)
- e due, che costituiscono il contatto tra le superfici in battuta del main fitting e dell'upper torque link (a sinistra o a destra seconda della condizione di carico):

MPC contatto MF-UTL: 1990010 2200004 (contatto è verso Y negativo) MPC contatto MF-UTL: 1990011 2200005 (contatto è verso Y positivo)

I nodi centrali delle connessioni fanno riferimento al coord.820000. Tutti i sei gradi di libertà sono trasferiti ai nodi centrali dei contatti, questi sono uniti tra loro con una CELAS in direzione dell'asse y (g.d.l. 2).

Alessandro Pagani



#### **3.1.3.3** Upper torque link-Lower torque link

Le seguenti figure rappresentano la connessione tra l'upper torque link (UTL) ed il lower torque link (LTL):



Figura 27 - UTL-LTL



Figura 28 - MPC UTL-LTL

Il collegamento avviene tra gli estremi della bar, che sono anche i nodi centrali delle due connessioni MPC, e i nodi delle superfici interne sedi delle lug:

• MPC lug UTL/LTL-bar: 2200001 3500002 (vedi note Tabelle precedenti)



#### 3.1.3.4 Lower torque link-Sliding tube

Le seguenti figure rappresentano la connessione tra il lower torque link (LTL) e lo sliding tube (ST):



Figura 31 - MPC LTL-ST - Contatto Y Positivo

Alessandro Pagani



Le connessioni MPC rappresentate sono sei:

- quattro che collegano le lug del lower torque link e dello sliding tube alle bar, *MPC lug LTL/ST-bar: 3500001 3500003 5500001 5500002 (vedi nota Tab. precedenti)*
- due che rappresentano il contatto tra le relative facce delle lug (a sinistra o a destra a seconda della condizione di carico):

MPC contatto LTL-ST: 3500005 5500005 (il contatto è verso Y negativo) MPC contatto LTL-ST: 3500004 5500004 (il contatto è verso Y positivo)

I nodi centrali delle connessioni fanno riferimento al coord.530000. Tutti i sei gradi di libertà sono trasferiti ai nodi centrali dei contatti, questi sono uniti tra loro con una CELAS in direzione dell'asse y (g.d.l. 2).

#### 3.1.3.5 Main fitting-Sliding tube

Lo sliding tube (ST) scorre all'interno del main fitting (MF). I due elementi tra loro sono in contatto relativo in due zone. Consultando i disegni si è verificata l'effettiva posizione di queste due zone e sono stati creati quattro MPC di contatto: una coppia di contatti nella zona inferiore e un'altra coppia in quella superiore.

Quella inferiore è composta da un MPC fisso, che collega i nodi sulla superficie interna del main fitting, e da un MPC più interno connesso ai nodi della superficie esterna dello sliding tube, che cambia per ogni condizione di schiacciamento dello sliding tube.

Viceversa il contatto nella parte superiore è dato da un MPC fisso, che collega i nodi della parte alta dello sliding tube, e da un MPC più esterno connesso ai nodi della superficie interna del main fitting, che cambia per ogni condizione di schiacciamento dello sliding tube.



Entrambe le coppie di contatti hanno il nodo centrale coincidente che si riferisce al coord.740000 avente l'asse x diretto come l'asse dello sliding tube. Questi nodi sono uniti da CELAS in direzione delle traslazioni (g.d.l. 1,2,3).



Figura 32 - MPC MF-ST

- MPC inferiore fisso MF: 1990012 (G.d.l nodo centrale 2,3)
- MPC inferiore mobile ST: (varia con la condiz. di carico, G.d.l. nodo centrale 2,3)
- MPC superiore fisso ST: 5500008 (G.d.l nodo centrale 1,2,3)
- MPC superiore mobile MF: (varia con la condiz. di carico, G.d.l. nodo centrale 2,3)



# 3.1.4 Vincoli "SPC" d'interfaccia

La figura mostra i punti dove sono stati imposti dei vincoli SPC (Single Point Constraint) per fissare il modello del MLG:



Figura 33 - Vincoli SPC

| Vincoli SPC               | G.d.l. vincolati | Sist. Riferimento CID |
|---------------------------|------------------|-----------------------|
| Drag brace-struttura      | 1 2 3 4          | 3100001               |
| Pintle pin-struttura      | 23               | 1700000               |
| Main fitting-pintle pin   | 1                | 1700000               |
| Main fitting-sliding tube | 234              | 740000                |

#### Tab. 23 - Vincoli SPC

Il main fitting nella parte superiore è vincolato in due punti alla struttura attraverso il pintle pin. Nella parte inferiore del main fitting è incernierato il drag brace, il quale a sua volta è vincolato alla struttura con un bullone passante nella lug superiore. Infine lo sliding tube è stato collegato al main fitting con una bar vincolata al suo estremo superiore.

#### 3.1.5 Descrizione del Drag Brace

Il drag brace (DB) è incernierato tra main fitting e struttura velivolo.

E' composto da due parti principali, il lower drag brace e l'upper drag brace, collegate con un meccanismo integrato di aggancio/sgancio che permette di tenere in posizione estesa il



MLG durante le fasi di decollo/atterraggio e sosta a terra. E' stato rappresentato con elementi bar. Per definire le proprietà di tali bar sono stati fatti due modelli di dettaglio (vedi capitolo successivo).



#### Tab. 24 - DRAG BRACE



#### 3.1.5.1 Simulazione del Drag Brace

Per simulare il drag brace si è proceduto nel seguente modo: dapprima si è creata la mesh delle due parti principali, ovvero, la parte superiore (upper DB) e inferiore (lower DB). In seguito le due parti sono state analizzate con lo scopo di trovare un'area equivalente da assegnare al puntone-tirante nel modello globale del MLG. Le due parti sono state vincolate a terra e sono state caricate staticamente lungo la retta congiungente i centri delle lug. Dopo aver verificato lo spostamento del punto d'applicazione del carico (il centro della connessione MPC) è stata calcolata l'area equivalente per le due parti da assegnare al puntone-tirante sfruttando la semplice relazione:

$$K = \frac{F}{S} = \frac{EA}{L}$$



Figura 34 - Mesh Drag Brace

|          | F [KN] | L [mm] | E [Mpa] | S [mm] | A [mm^2] | R [mm] |
|----------|--------|--------|---------|--------|----------|--------|
| LOWER DB | 10     | 254.6  | 68950   | 0.0382 | 966.63   | 17.54  |
| UPPER DB | 10     | 605    | 70327   | 0.0946 | 909.37   | 17.01  |

Tab. 25 - LOWER DB-UPPER DB





Figura 35 - Upper Drag Brace



Figura 36 - Lower Drag Brace

Infine per consentire il movimento tra le due parti è stata creata una connessione ELAS (g.d.l. 1,2,3,4,5,6) tra i nodi dove si congiungono gli elementi bar del lower drag brace e dell'upper drag brace.



# 3.1.6 Descrizione del Wheel Axle

L'assale su cui è posizionata la ruota, detto wheel axle (WA), è l'elemento montato all'interno dello sliding tube che introduce il carico nel MLG Shock Strut.



Figura 37 - Wheel Axle



Figura 38 - MPC Wheel Axle

Le figure rappresentano la geometria del wheel axle e l'MPC di contatto tra wheel axle e sliding tube. Il wheel axle è stato rappresentato con un elemento MPC che ha come nodo centrale il nodo 5300004 (g.d.l. 1,2,3,4,5,6) dove sono introdotti i carichi di prova, e come nodi dipendenti (g.d.l. 1,2,3) i nodi della superficie interna dello sliding tube.



#### 3.1.7 Sistemi di riferimento per le condizioni di prova

Per ogni condizione di prova sono stati creati dei sistemi di riferimento in modo da posizionare le parti del modello secondo le relative corse dell'ammortizzatore SAT. Dato che il main fitting e il drag brace sono fissati alla struttura, le parti che hanno bisogno di essere posizionate correttamente sono quelle in movimento: mentre lo sliding tube e il wheel axle traslano in direzione verticale, l'upper torque link ruota rispetto al main fitting e il lower torque ruota e trasla. Per trovare le origini dei sistemi di riferimento ci si è ricondotti in un unico piano passante per tre punti, in seguito sono stati creati sistemi ortogonali posizionati secondo gli assi degli elementi.

| Parte del modello | Sist. Riferimento CID |
|-------------------|-----------------------|
| MF                | 0                     |
| DB                | 3100001               |
| ST                | 740000                |
| WA                | 210000                |
| UTL               | 820000                |
| LTL               | 530000                |



Tab. 26 - Sistemi di riferimento

Figura 39 - MLG SAT 10 - SAT 350



# 3.1.8 Proprietà dei materiali

Per i materiali, indicati nella documentazione "2901QD0007", è stato consultato il database "MMPDS-03" per ricavare i valori del modulo elastico, del modulo di elasticità tangenziale e del coefficiente di Poisson.

|                |                   |              | Fty   | Ftu   | Ε      | G     | v    |
|----------------|-------------------|--------------|-------|-------|--------|-------|------|
| Parte modello  | Tipo di materiale | Materiale    | [Mpa] | [Mpa] | [Mpa]  | [Mpa] |      |
| MF             | Lega alluminio    | Al 7175 T74  | 420   | 490   | 70327  | 26439 | 0.33 |
| ST/UTL         | Lega acciaio      | E35NCD16H    | 1450  | 1800  | 199948 | 75738 | 0.32 |
| WA/Torque      | Lega acciaio      | MarvalX12H   | 1300  | 1400  | 196501 | 74432 | 0.32 |
| link pin       |                   |              |       |       |        |       |      |
| LTL/Pintle pin | Lega acciaio      | 15-5PH       | 1000  | 1069  | 196501 | 77221 | 0.27 |
| UDB            | Lega alluminio    | A17050 T7451 | 413   | 482   | 70327  | 26439 | 0.33 |
| LDB            | Lega alluminio    | Al7075 T7351 | 358   | 475   | 68950  | 25921 | 0.33 |

Tab. 27 - Materiali



### 3.2 ANALISI MODALE

Per verificare i primi dieci modi del MLG è stata fatta un'analisi modale sia per la struttura vincolata che non vincolata.

| Modi  | Frequenza [Hz] |        |  |  |
|-------|----------------|--------|--|--|
| would | NV             | VV     |  |  |
| 1     | 0              | 83.272 |  |  |
| 2     | 0              | 101.68 |  |  |
| 3     | 0              | 273.11 |  |  |
| 4     | 0              | 333.78 |  |  |
| 5     | 0              | 445.35 |  |  |
| 6     | 0              | 465.81 |  |  |
| 7     | 270.84         | 609.6  |  |  |
| 8     | 373.53         | 766.11 |  |  |
| 9     | 379.1          | 808.26 |  |  |
| 10    | 542.42         | 855.34 |  |  |

Tab. 28 - Frequenze dei modi

Sono riportate le immagini dei primi sei modi rigidi per la modale non vincolata e i primi sei modi per la modale vincolata



## 3.2.1 Modale non vincolata

Deform: MODALE\_NV.SC1, A1:Mode 1 : Freq. = 0.0018854, Eigenvectors, Deform: MODALE\_NV.SC1, A1:Mode 2 : Freq. = 0.0016571, Eigenvectors,



Deform: MODALE\_NV.SC1, A1:Mode 3 : Freq. = 0.0014227, Eigenvectors, Deform: MODALE\_NV.SC1, A1:Mode 4 : Freq. = 0.0012413, Eigenvectors,



Deform: MODALE\_NV.SC1, A1:Mode 5 : Freq. = 0.0010173, Eigenvectors, Deform: MODALE\_NV.SC1, A1:Mode 6 : Freq. = 0.00065827, Eigenvectors,



Figura 40 - Modi non vincolati



### 3.2.2 Modale vincolata

Deform: DEFAULT.SC1, A1:Mode 1 : Freq. = 83.272, Eigenvectors, Deform: DEFAULT.SC1, A1:Mode 2 : Freq. = 101.68, Eigenvectors,



Deform: DEFAULT.SC1, A1:Mode 3 : Freq. = 273.11, Eigenvectors, Deform: DEFAULT.SC1, A1:Mode 4 : Freq. = 333.78, Eigenvectors,



Deform: DEFAULT.SC1, A1:Mode 5 : Freq. = 445.35, Eigenvectors, Deform: DEFAULT.SC1, A1:Mode 6 : Freq. = 465.81, Eigenvectors,



Figura 41 - Modi vincolati


## 3.3 APPLICAZIONE DEI CARICHI

Nel modello del MLG sono applicati i carichi statici per le condizioni di prova analizzate. I carichi sono dati dalle forze longitudinali Fx, laterali Fy, e verticali Fz. Sia per le condizioni di carico di rigidezza che per quelle di resistenza i carichi sono introdotti nel modello nel nodo 5300004 (centro ruota) e sono diretti secondo gli assi globali del velivolo. Per entrambe le condizioni sono applicati carichi longitudinali e/o laterali. Rispetto alle condizioni di carico di rigidezza, le condizioni di carico di resistenza si differenziano, oltre che per l'entità delle forze applicate, per l'introduzione di carichi verticali.



Figura 42 - Applicazione dei carichi

Inoltre per due condizioni di carico di resistenza è stato introdotto un momento di trasporto dovuto all'applicazione della forza nel centro ruota (anziché nel punto di contatto col terreno come nelle prove) avente come braccio il raggio di rotolamento della ruota (RR). Per la condizione 2pt drift landing RH, è stato introdotto un momento Mx, dovuto all'applicazione della forza Fy; invece per la condizione 2pt braked roll è stato introdotto un momento My, dovuto all'applicazione della forza Fx.





Figura 43 - 2pt Drift Landing RH



Figura 44 - 2pt Braked Roll

Alessandro Pagani



Le figure seguenti riportano tre condizioni di carico: nella figura sottostante si vede una forza positiva Fy di 10KN per la condizione di rigidezza LC12, mentre le due figure più in basso mostrano la condizione di resistenza 2pt drift landing RH, e la condizione di resistenza 2pt braked roll. (componenti rosse in x, gialle in y, azzurre in z).



Figura 45 - Carichi Rigidezza: LC 12 SAT 10



Figura 46 - Carichi Resistenza: LC 2pt Drift Landing RH





Figura 47 - Carichi Resistenza: LC 2pt Braked roll

Inoltre, dato che non si ha a disposizione la curva di schiacciamento dell'ammortizzatore, è stato necessario esprimere un valore di rigidezza medio da dare all'elemento CELAS di contatto tra main fitting e sliding tube. Per far questo è stato creato un grafico con i valori di rigidezza per le quattro condizioni di carico di resistenza:



Figura 48 - Diagramma Rigidezze



Come valore medio tra i quattro casi è stato trovato un valore di 8110N/mm. Per essere conservativi è stata data alla CELAS un valore più alto pari a 10000N/mm.

Oltre all'applicazione dei carichi statici nel modello del MLG, per ciascuna condizione di prova, è stato assegnato un carico di pressurizzazione alla superficie interna dell'ammortizzatore (SA) pari al valore applicato durante le prove:

- prove di rigidezza 1.45 Mpa
- prove di resistenza 1.00 Mpa



Figura 49 - Pressurizzazione SAT 10 e SAT 350



## 4 CONFRONTO DEI RISULTATI (RIGIDEZZA)

### 4.1 CORRELAZIONE DEGLI SPOSTAMENTI

Le tabelle riportano le dodici condizioni di rigidezza e le otto posizioni alle quali sono stati misurati gli spostamenti.

| LC n° | Test ID | Fx [N] | Fy [N] | SAT [mm] |
|-------|---------|--------|--------|----------|
| 1     | 0.2     | 0      | -10000 | 10       |
| 2     | 0.3     | 0      | -20000 | 350      |
| 3     | 0.4     | 0      | -15000 | 180      |
| 4     | 0.5     | 25000  | 0      | 180      |
| 5     | 0.6     | 25000  | 0      | 350      |
| 6     | 0.7     | 20000  | 0      | 10       |
| 7     | 0.8     | -20000 | 0      | 10       |
| 8     | 0.9     | -30000 | 0      | 180      |
| 9     | 0.10    | -35000 | 0      | 350      |
| 10    | 0.11    | 0      | 20000  | 350      |
| 11    | 0.12    | 0      | 15000  | 180      |
| 12    | 0.13    | 0      | 10000  | 10       |

Tab. 29 - Condizioni di Rigidezza

Per le tre corse dell'ammortizzatore (SAT) sono applicate forze longitudinali Fx e laterali Fy sia esse positive che negative.



| LVDT n° | Posizione     | Nodo FEM |
|---------|---------------|----------|
| 1       | ST-WA         | 5600112  |
| 2       | WA            | 5300004  |
| 3       | DB-fusol.     | 4000001  |
| 4       | Pintle pin sx | 1300016  |
| 5       | Pintle pin dx | 1300003  |
| 6       | UTL-MF        | 1217496  |
| 7       | LTL-ST        | 3232124  |
| 8       | MF-DB         | 1217497  |

Tab. 30 - Posizione LVDT

Nelle successive tabelle sono riportate le risultanti degli spostamenti degli otto punti del FEM e delle prove. I grafici seguenti mettono a confronto i risultati ottenuti dall'analisi FEM con quelli ottenuti dalle prove sperimentali.



| SPOST.   |       | LOAD CASE |       |       |      |       |       |       |       |       |       |       |
|----------|-------|-----------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| FEM [mm] | LC1   | LC2       | LC3   | LC4   | LC5  | LC6   | LC7   | LC8   | LC9   | LC10  | LC11  | LC12  |
| 1        | 14.10 | 8.88      | 12.09 | 8.15  | 3.64 | 14.63 | 14.69 | 9.78  | 4.95  | 8.99  | 12.20 | 14.16 |
| 2        | 15.16 | 9.70      | 13.16 | 15.18 | 8.70 | 27.69 | 27.46 | 17.99 | 11.87 | 10.28 | 13.74 | 15.65 |
| 3 (*)    | 0.00  | 0.00      | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| 4 (*)    | 0.00  | 0.00      | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| 5 (*)    | 0.00  | 0.00      | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| 6        | 4.52  | 5.79      | 5.50  | 2.48  | 1.91 | 2.58  | 2.53  | 2.92  | 2.60  | 5.81  | 5.52  | 4.53  |
| 7        | 12.78 | 7.97      | 11.07 | 8.96  | 4.08 | 15.99 | 15.63 | 10.29 | 5.07  | 8.09  | 11.19 | 12.87 |
| 8        | 2.33  | 3.10      | 2.91  | 1.36  | 1.19 | 1.22  | 1.23  | 1.63  | 1.66  | 3.11  | 2.92  | 2.33  |

#### Tab. 31 - Condizioni di Rigidezza – Spostamenti FEM

Nota (\*): gli spostamenti 3-4-5 sono nulli in quanto punti di vincolo

| SPOST.   |       | LOAD CASE |       |       |       |       |       |       |       |       |       |       |
|----------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| TEST[mm] | LC1   | LC2       | LC3   | LC4   | LC5   | LC6   | LC7   | LC8   | LC9   | LC10  | LC11  | LC12  |
| 1        | 14.50 | 10.80     | 14.00 | 9.66  | 4.67  | 14.95 | 13.07 | 9.05  | 5.31  | 10.46 | 11.25 | 12.90 |
| 2        | 18.29 | 11.41     | 17.04 | 19.99 | 12.66 | 28.86 | 26.04 | 20.38 | 15.52 | 11.52 | 14.24 | 14.76 |
| 3        | 0.10  | 0.14      | 0.30  | 0.62  | 0.64  | 0.55  | 1.22  | 1.34  | 1.26  | 0.37  | 0.10  | 0.14  |
| 4        | 0.30  | 0.41      | 0.30  | 0.30  | 0.41  | 0.28  | 0.83  | 0.95  | 0.59  | 0.32  | 0.22  | 0.22  |
| 5        | 0.44  | 0.65      | 0.78  | 0.00  | 0.32  | 0.14  | 0.71  | 0.62  | 0.61  | 0.78  | 0.57  | 0.42  |
| 6        | 5.38  | 7.34      | 7.12  | 3.51  | 2.86  | 3.41  | 2.25  | 2.69  | 3.14  | 7.04  | 6.40  | 4.99  |
| 7        | 14.41 | 10.70     | 13.81 | 9.78  | 4.76  | 15.17 | 13.17 | 9.15  | 5.41  | 10.36 | 11.15 | 12.81 |
| 8        | 2.96  | 4.22      | 4.12  | 1.99  | 1.89  | 1.75  | 1.15  | 1.44  | 2.17  | 3.96  | 3.61  | 2.79  |

Tab. 32 - Condizioni di Rigidezza – Spostamenti TEST



Figura 50 - Spostamento Punto 1 vs Load Case





Figura 51 - Spostamento Punto 2 vs Load Case



Figura 52 - Spostamento Punto 6 vs Load Case





Figura 53 - Spostamento Punto 7 vs Load Case



Figura 54 - Spostamento Punto 8 vs Load Case





Figura 55 - Spostamento Punti 1-8 vs Load Case 1-6





Figura 56 - Spostamento Punti 1-8 vs Load Case 7-12

Alessandro Pagani



Il modello FEM è leggermente più rigido del modello sperimentale dato che i valori numerici nella maggioranza dei casi sono risultati inferiori a quelli misurati in prova. Lo spostamento 2, ovvero quello dove è caricato il MLG, è quello massimo sia per la prova sperimentale che per il modello numerico.



Figura 57 - Spostamento Max. vs Load Case 1-12

L'errore percentuale è stato calcolato in questo modo:

$$E\% = \left| \frac{Spost. FEM_{i-esimo} - Spost. TEST_{i-esimo}}{Spost. TEST_{i-esimo}} \right|$$

Alessandro Pagani



In seguito è stata calcolata la media percentuale per le singole condizioni di carico e la relativa media percentuale totale.

|               |      |      |      |      |      | LOAD | CAS  | E    |      |      |      |      |
|---------------|------|------|------|------|------|------|------|------|------|------|------|------|
| E% Spost.     | LC1  | LC2  | LC3  | LC4  | LC5  | LC6  | LC7  | LC8  | LC9  | LC10 | LC11 | LC12 |
| Punto 1       | 2.8  | 17.8 | 13.7 | 15.7 | 22.0 | 2.2  | 12.3 | 8.0  | 6.7  | 14.1 | 8.4  | 9.8  |
| Punto 2       | 17.1 | 15.0 | 22.8 | 24.0 | 31.3 | 4.0  | 5.4  | 11.8 | 23.5 | 10.8 | 3.5  | 6.1  |
| Punto 6       | 15.9 | 21.1 | 22.8 | 29.3 | 33.2 | 24.2 | 12.6 | 8.3  | 17.1 | 17.6 | 13.7 | 9.2  |
| Punto 7       | 11.3 | 25.5 | 19.8 | 8.4  | 14.4 | 5.4  | 18.7 | 12.5 | 6.3  | 22.0 | 0.4  | 0.5  |
| Punto 8       | 21.4 | 26.5 | 29.3 | 31.6 | 37.1 | 30.6 | 6.3  | 13.9 | 23.6 | 21.5 | 19.0 | 16.5 |
| Media E%x LC  | 13.7 | 21.2 | 21.7 | 21.8 | 27.6 | 13.3 | 11.1 | 10.9 | 15.4 | 17.2 | 9.0  | 8.4  |
| Media Tot. E% |      |      |      |      |      | 15   | 5.9  |      |      |      |      |      |

| Tab. 33 - | Condizioni d | li Rigidezza – | Errore | Percentuale | Spostamenti |
|-----------|--------------|----------------|--------|-------------|-------------|
|-----------|--------------|----------------|--------|-------------|-------------|

Sono stati considerati anche gli spostamenti del punto 6 e del punto 8 che, essendo molto bassi, causano errori in percentuale superiori, che fanno alzare la media totale sopra il 15%. Senza considerare questi due punti la media totale scende al 12%. Dato che il limite che ci siamo prefissi è un valore del 15% si può dire che il modello FEM è rappresentativo del reale comportamento del MLG.



# **5** CONFRONTO DEI RISULTATI (RESISTENZA)

## 5.1 CORRELAZIONE DEGLI SPOSTAMENTI

Le tabelle riportano le quattro condizioni di resistenza analizzate:

| LC n° | DL<br>[N] | SL<br>[N] | VL<br>[N] | SAT<br>nominale<br>[mm] | SAT<br>iniziale<br>[mm] | SAT 101%<br>del carico<br>[mm] | ΔSAT<br>[mm] | RR<br>[mm] |
|-------|-----------|-----------|-----------|-------------------------|-------------------------|--------------------------------|--------------|------------|
| 1     | 49000     | -7800     | 50400     | 72                      | 63.5                    | 70.35                          | 6.85         | 273        |
| 2     | -45600    | -600      | 68600     | 135                     | 127                     | 132.98                         | 5.98         | 262        |
| 3     | 0         | -24300    | 40600     | 298                     | 290                     | 294.9                          | 4.9          | 256        |
| 4     | 37600     | 0         | 47100     | 300                     | 291                     | 298.15                         | 7.15         | 268        |

### Tab. 34 - Condizioni di Resistenza

Per ciascuna condizione sono riportate oltre le quindici posizioni in cui sono stati misurati gli spostamenti in prova (descritti nelle prove sperimentali di resistenza), i corrispondenti nodi e le corrispondenti direzioni degli spostamenti del modello numerico con i relativi risultati.



| LC      | 1: 2pt_spin_up     | SAT 72 [m         | im]         | Ris. FEM    | Ris. EXP    |
|---------|--------------------|-------------------|-------------|-------------|-------------|
| LVDT n° | Posizione          | Nodo FEM          | CID FEM     | Spost. [mm] | Spost. [mm] |
| 1       | DB/STR_bolt        | 4000001           | Z - 3100001 | 0.00        | -0.35       |
| 2       | DB/APX_bolt        | 4000110           | Z - 3100001 | 3.67        | 3.79        |
| 3       | DB/MF_bolt_DB_ax   | 1217497           | Z - 3100001 | 5.17        | 6.73        |
| 4       | DB/MF_bolt_bolt_ax | 1217497           | Y - 3100001 | -4.22       | -5.29       |
| 5       | RA/MF_bolt         | 1600005           | X - 999999  | 0.58        | -0.04       |
| 6       | TL/MF_bolt_X       | 1217496           | X - 0       | 5.97        | 7.19        |
| 7       | TL/ST_bolt_X       | 3232124           | X - 0       | 30.77       | 31.52       |
| 8       | WA_centre_X        | 5300004           | X - 0       | 46.81       | 51.29       |
| 9       | Wheel_centre_Y     | 5300004           | Y - 0       | -31.24      | -32.93      |
| 10      | MF_bottom_Y        | 1600006           | Y - 0       | -14.44      | -16.08      |
| 11      | Wheel_centre_Z     | 5300004           | Z - 0       | 22.79       | 34.70       |
| 12      | ST_centre_Z        | 5600012           | Z - 0       | 9.69        | 14.31       |
| 13      | SAT                | 1600006 - 5600112 | X - 740000  | 4.47        | 6.85        |
| 14      | MF/TL_upper_bolt_Y | 1217496           | Y - 820000  | -12.01      | -14.49      |
| 15      | TL_apex_Y          | 3232122           | Y - 820000  | -25.25      | -28.55      |

Tab. 35 - Condizione LC1 – 2pt Spin Up

| LC2:    | 2pt_spring_back    | SAT 135 [n        | nm]         | Ris. FEM    | Ris. EXP    |
|---------|--------------------|-------------------|-------------|-------------|-------------|
| LVDT n° | Posizione          | Nodo FEM          | CID FEM     | Spost. [mm] | Spost. [mm] |
| 1       | DB/STR_bolt        | 4000001           | Z - 3100001 | 0.00        | 0.68        |
| 2       | DB/APX_bolt        | 4000110           | Z - 3100001 | 2.94        | 5.08        |
| 3       | DB/MF_bolt_DB_ax   | 1217497           | Z - 3100001 | 4.27        | 6.25        |
| 4       | DB/MF_bolt_bolt_ax | 1217497           | Y - 3100001 | -2.41       | -3.69       |
| 5       | RA/MF_bolt         | 1600005           | X - 999999  | 0.89        | 0.24        |
| 6       | TL/MF_bolt_X       | 1217496           | X - 0       | -4.29       | -3.94       |
| 7       | TL/ST_bolt_X       | 3232124           | X - 0       | -17.70      | -13.95      |
| 8       | WA_centre_X        | 5300004           | X - 0       | -35.66      | -36.79      |
| 9       | Wheel_centre_Y     | 5300004           | Y - 0       | -34.90      | -39.10      |
| 10      | MF_bottom_Y        | 1600006           | Y - 0       | -15.18      | -19.67      |
| 11      | Wheel_centre_Z     | 5300004           | Z - 0       | 27.07       | 41.90       |
| 12      | ST_centre_Z        | 5600012           | Z - 0       | 11.71       | 15.85       |
| 13      | SAT                | 1600006 - 5600112 | X - 740000  | 6.58        | 5.98        |
| 14      | MF/TL_upper_bolt_Y | 1217496           | Y - 820000  | -10.39      | -13.47      |
| 15      | TL_apex_Y          | 3232122           | Y - 820000  | -4.48       | -6.19       |

Tab. 36 - Condizione LC2 – 2pt Spring Back

| LC3: 2  | 2pt_drift_landing  | SAT 298 [n        | nm]         | Ris. FEM    | Ris. EXP    |
|---------|--------------------|-------------------|-------------|-------------|-------------|
| LVDT n° | Posizione          | Nodo FEM          | CID FEM     | Spost. [mm] | Spost. [mm] |
| 1       | DB/STR_bolt        | 4000001           | Z - 3100001 | 0.00        | 0.62        |
| 2       | DB/APX_bolt        | 4000110           | Z - 3100001 | 4.76        | 5.75        |
| 3       | DB/MF_bolt_DB_ax   | 1217497           | Z - 3100001 | 6.80        | 9.18        |
| 4       | DB/MF_bolt_bolt_ax | 1217497           | Y - 3100001 | -4.66       | -6.05       |
| 5       | RA/MF_bolt         | 1600005           | X - 999999  | 0.85        | -0.01       |
| 6       | TL/MF_bolt_X       | 1217496           | X - 0       | 0.68        | 0.83        |
| 7       | TL/ST_bolt_X       | 3232124           | X - 0       | 1.31        | 1.78        |
| 8       | WA_centre_X        | 5300004           | X - 0       | -2.97       | -2.56       |
| 9       | Wheel_centre_Y     | 5300004           | Y - 0       | -30.03      | -31.45      |
| 10      | MF_bottom_Y        | 1600006           | Y - 0       | -20.60      | -23.54      |
| 11      | Wheel_centre_Z     | 5300004           | Z - 0       | 23.27       | 32.31       |
| 12      | ST_centre_Z        | 5600012           | Z - 0       | 8.60        | 10.72       |
| 13      | SAT                | 1600006 - 5600112 | X - 740000  | 3.24        | 4.90        |
| 14      | MF/TL_upper_bolt_Y | 1217496           | Y - 820000  | -15.65      | -18.68      |
| 15      | TL_apex_Y          | 3232122           | Y - 820000  | -13.91      | -16.64      |

Tab. 37 - Condizione LC3 – 2pt Drift Landing RH

| LC4:    |                    | SAT 300 [r        | nm]         | Ris. FEM      | Ris. EXP    |
|---------|--------------------|-------------------|-------------|---------------|-------------|
| LVDT n° | posizione          | Nodo FEM          | CID FEM     | Spost. Z [mm] | Spost. [mm] |
| 1       | DB/STR_bolt        | 4000001           | Z - 3100001 | 0.00          | -0.28       |
| 2       | DB/APX_bolt        | 4000110           | Z - 3100001 | 2.12          | 1.92        |
| 3       | DB/MF_bolt_DB_ax   | 1217497           | Z - 3100001 | 2.98          | 3.66        |
| 4       | DB/MF_bolt_bolt_ax | 1217497           | Y - 3100001 | -2.74         | -3.30       |
| 5       | RA/MF_bolt         | 1600005           | X - 999999  | 0.41          | 0.07        |
| 6       | TL/MF_bolt_X       | 1217496           | X - 0       | 4.38          | 5.16        |
| 7       | TL/ST_bolt_X       | 3232124           | X - 0       | 12.23         | 11.91       |
| 8       | WA_centre_X        | 5300004           | X - 0       | 17.58         | 20.80       |
| 9       | Wheel_centre_Y     | 5300004           | Y - 0       | -12.06        | -11.82      |
| 10      | MF_bottom_Y        | 1600006           | Y - 0       | -8.20         | -8.83       |
| 11      | Wheel_centre_Z     | 5300004           | Z - 0       | 13.87         | 18.21       |
| 12      | ST_centre_Z        | 5600012           | Z - 0       | 6.77          | 7.46        |
| 13      | SAT                | 1600006 - 5600112 | X - 740000  | 4.13          | 7.15        |
| 14      | MF/TL_upper_bolt_Y | 1217496           | Y - 820000  | -6.96         | -8.18       |
| 15      | TL_apex_Y          | 3232122           | Y - 820000  | -11.44        | -13.54      |

Tab. 38 - Condizione LC4 – 2pt Braked Roll









Figura 59 - Spostamenti LC2 - 2pt Spring Back

Alessandro Pagani









Figura 61 - Spostamenti LC4 - 2pt Braked Roll



Lo spostamento del punto 8 è quello massimo per le prove sperimentali LC1 e LC4, invece lo spostamento del punto 11 è quello massimo per le prove sperimentali LC2 e LC3.

Dai grafici si vede complessivamente che gli spostamenti dei punti del modello seguono quelli misurati in prova. Fa eccezione il punto 11, che assieme al punto 12 e 13 è misurato in direzione verticale. Questo è dovuto al fatto che l'analisi è di tipo statico, senza variazioni di pressione nella camera dell'olio all'interno dell'ammortizzatore; il modello non risente dello schiacciamento in funzione del carico applicato.

La tabella mostra l'errore percentuale (calcolato come visto prima), la media percentuale degli errori per LC e la media percentuale totale:

| E%Sport       |      | LOAD | CASE | •    |
|---------------|------|------|------|------|
| E%Spost.      | LC1  | LC2  | LC3  | LC4  |
| Punto 3       | 23.1 | 31.7 | 25.9 | 18.7 |
| Punto 4       | 20.2 | 34.6 | 23.0 | 16.8 |
| Punto 6       | 17.0 | 9.0  | 18.1 | 15.2 |
| Punto 7       | 2.4  | 26.9 | 26.5 | 2.7  |
| Punto 8       | 8.7  | 3.1  | 16.1 | 15.5 |
| Punto 9       | 5.1  | 10.8 | 4.5  | 2.1  |
| Punto 10      | 10.2 | 22.8 | 12.5 | 7.1  |
| Punto 11      | 34.3 | 35.4 | 28.0 | 23.8 |
| Punto 12      | 32.3 | 26.1 | 19.7 | 9.3  |
| Punto 13      | 34.7 | 10.0 | 33.9 | 42.2 |
| Punto 14      | 17.1 | 22.9 | 16.2 | 14.9 |
| Punto 15      | 11.5 | 27.6 | 16.4 | 15.5 |
| Media E% x LC | 18.1 | 21.7 | 20.1 | 15.3 |
| Media Tot. E% |      | 18   | 3.8  | -    |

Tab. 39 - Condizioni di Resistenza – Errore Percentuale Spostamenti

Lo spostamento del punto 1 non è considerato in quanto vincolato, gli spostamenti dei punti 2-5 non sono oggetto di analisi. Per completezza sono riportati i valori delle medie percentuali di tutti i punti considerati. Oltre al fatto citato prima, riguardante la non precisione nell'individuazione degli spostamenti del modello in direzione verticale, bisogna considerare che, essendo alcuni spostamenti estremamente ridotti, questi danno un errore percentuale maggiore e quindi fanno alzare la media totale sopra il 15%.

Tenendo conto di questi due fattori il modello FEM è comunque con una buona approssimazione rappresentativo del reale comportamento del MLG.



### 5.2 CORRELAZIONE DELLE DEFORMAZIONI

Le misurazioni fatte in prova sono state confrontate con i valori di deformazione del modello numerico. Di seguito sono indicate le posizioni nelle quali sono stati posti i cinque estensimetri:

| Estensimetri | Posizione                                       |  |  |  |
|--------------|-------------------------------------------------|--|--|--|
| n°           |                                                 |  |  |  |
| 1            | Torque Link - at middle center                  |  |  |  |
| 2            | Main Fitting - near upper Pintle Pin            |  |  |  |
| 3            | Main Fitting - at a cylindrical part of housing |  |  |  |
| 4            | Main Fitting - fwd rib                          |  |  |  |
| 5            | Sliding Tube - Radius to wheel axle             |  |  |  |

Tab. 40 - Posizione Estensimetri

Le tabelle successive riportano i valori di deformazione sperimentali e numerici, gli errori percentuali e le relative medie per ogni condizione di carico.

| DEFORM. FEM. | LOAD CASE |       |       |       |
|--------------|-----------|-------|-------|-------|
| [µm/m]       | LC1       | LC2   | LC3   | LC4   |
| Punto 1      | -2900     | 2360  | 30    | -1400 |
| Punto 2      | -3170     | -1310 | -2770 | -2390 |
| Punto 3      | -4010     | -1840 | -3650 | -2350 |
| Punto 4      | 3170      | 1790  | 3750  | 1870  |
| Punto 5      | 470       | -400  | -10   | 190   |

Tab. 41 - Condizioni di Resistenza – Deformazioni FEM



| DEFORM. TEST. | LOAD CASE |       |       |       |
|---------------|-----------|-------|-------|-------|
| [µm/m]        | LC1       | LC2   | LC3   | LC4   |
| Punto 1       | -3294     | 2798  | -51   | -1657 |
| Punto 2       | -2762     | -1389 | -2390 | -2014 |
| Punto 3       | -4047     | -2089 | -3654 | -2497 |
| Punto 4       | 3504      | 2170  | 3779  | 2036  |
| Punto 5       | 487       | -436  | 20    | 253   |

#### Tab. 42 - Condizioni di Resistenza – Deformazioni TEST

Anche per le deformazioni, nello stesso modo degli spostamenti è stato calcolato l'errore percentuale.

|                 | LOAD CASE |      |      |      |
|-----------------|-----------|------|------|------|
|                 | LC1       | LC2  | LC3  | LC4  |
| Punto 1         | 12.0      | 15.7 | *    | 15.5 |
| Punto 2         | 14.8      | 5.7  | 15.9 | 18.7 |
| Punto 3         | 0.9       | 11.9 | 0.1  | 5.9  |
| Punto 4         | 9.5       | 17.5 | 0.8  | 8.2  |
| Punto 5         | 3.5       | 8.3  | *    | *    |
| Media E% x LC   | 8.1       | 11.8 | 5.6  | 12.1 |
| Media E% Totale | 9.7       |      |      |      |

\*non considerati in quanto le deformazioni sono estremamente ridotte

#### Tab. 43 - Condizioni di Resistenza – Errore Percentuale Deformazioni

Dal confronto si vede che c'è una buona correlazione delle deformazioni dei punti misurati in prova.

Le immagini successive illustrano le cinque deformazioni del modello per le quattro condizioni di prova:



-2.44+003

-2.48+003 -2.52+003 -2.55+003 -2.63+003 -2.67+003 -2.71+003 -2.75+003 -2.79+003

-2.82+003 -2.86+003 -2.90+003 -2.94+003 -2.98+003 2.43+003

2.40+003 2.36+003 2.33+003 2.30+003 2.26+003 2.23+003 2.19+003 2.16+003 2.13+003

2.09+003 2.06+003 2.03+003 3.38+001

3.30+001 3.22+001 3.14+001 3.06+001 2.98+001 2.90+001 2.82+001 2.74+001 2.66+001

2.58+001 2.50+001 2.42+001 -1.18+003

-1.21+003 -1.23+003 -1.25+003 -1.28+003 -1.30+003 -1.33+003 -1.35+003 -1.37+003 -1.40+003

-1.42+003 -1.45+003 -1.47+003

Fringe: SC1:MLG\_72\_2PT\_SPIN\_UP\_LIMIT, A1:Static Subcase, Strain Tensor, , X Component, (NON-LAYERED)



Fringe: SC1:MLG\_135\_2PT\_SPRING\_BACK\_LIMIT, A2:Static Subcase, Strain Tensor, , X Component, (NON-LAYERED)



Fringe: SC1:MLG\_298\_2PT\_DRIFT\_LANDING\_RIGHT\_LIMIT, A3:Static Subcase, Strain Tensor, , X Component, (NON-LAYERED)



Fringe: SC1:MLG\_300\_2PT\_BRAKED\_ROLL\_LIMIT, A4:Static Subcase, Strain Tensor, , X Component, (NON-LAYERED)



Figura 62 - Deformazioni del Punto 1 vs Load Cases



-3.07+003

-3.08+003

Fringe: SC1:MLG\_72\_2PT\_SPIN\_UP\_LIMIT, A1:Static Subcase, Strain Tensor, , X Component, (NON-LAYERED)



E'm

STRAIN 2 LC 4



-2.42+00

-2.43+003 -2.44+003 -2.46+003 -2.47+003





Figura 64 - Deformazioni del Punto 3 vs Load Cases





Figura 65 - Deformazioni del Punto 4 vs Load Cases





Figura 66 - Deformazioni del Punto 5 vs Load Cases



## 6 CONCLUSIONI

I risultati hanno mostrato una buona correlazione degli spostamenti e delle deformazioni misurati in prova rispetto a quelli ricavati dal modello numerico dato che si sono rivelati minori del prefissato limite del 15%. Il modello ad elementi finiti è perciò rappresentativo del reale comportamento del MLG.

Va tenuto in considerazione il fatto che i maggiori scostamenti rilevati potrebbero essere relativi al fatto che sono state adottate delle approssimazioni nell'introduzione dei carichi e nella rappresentazione dei vincoli. Si potrebbe ulteriormente sviluppare il lavoro integrando il modello con la presenza del wheel axle e sostituire i contatti realizzati attualmente con MPC con elementi gap (e analisi non lineare).

Credo che il tempo trascorso in azienda abbia contribuito molto alla mia formazione, sia dal punto di vista delle informazioni acquisite che dal lato personale, per aver avuto il piacere di conoscere e collaborare con persone capaci ed esperte nel proprio mestiere.



# 7 BIBLIOGRAFIA

- [1] documento di LLI "2901QR0006\_Issue01\_QTR\_Strength Test"
- [2] documento di LLI "2901QP0004\_Issue02\_QTP\_Strength Test"
- [3] documento di LLI "B\_TA\_4143\_01\_MLG\_Drop\_tests\_report"
- [4] documento di LLI "2900GD0001 MLG Interface Control Document"
- [5] documento di LLI "2901QD0007\_Issue04\_MLG\_Stress\_Report"
- [6] sito AAEM, scheda M-346
- [7] FAA, Metallic Material Properties MMPDS-03, Vol I, 2006.
- [8] N.S.Currey, Aircraft Landing Gear Design: Principles and Practices, AIAA Education Series, Przemieniecki Series Editor-in-Chief, 1988.



## **8** APPENDICE

### 8.1 FILE DI LANCIO

Per la preparazione e l'analisi del modello sono stati creati diversi file di lancio, ciascuno rappresentativo di ogni condizione di carico. Di seguito sono mostrati due esempi di file di lancio per una condizione di rigidezza e una condizione di resistenza e un file di lancio per l'analisi modale.



### 8.1.1 File di lancio: MLG\_10\_lc\_02.bdf

```
$ NASTRAN input file created by the MSC MSC.Nastran input file
$ Direct Text Input for Nastran System Cell Section
<u>$ Direct Text Input for File Management Section</u>
[$ Linear Static Analysis] Database
Col 101
SOL 101
$ Direct Text Input for Executive Control
CEND
ECHO = NONE
$ Direct Text Input for Global Case Control Data
SUBCASE 1
SUBCASE 1
Subcase name : Default
SUBTITLE=MLG_10_LC_02
SPC = 20
L0AD = [708]
DISPLACEMENT(PLOT)=ALL
                                                     <> condizione di rigidezza
     SPCFORCES(PRINT)=ALL
GPFORCE(PLOT)=ALL
MPCFORCE(PLOT)=ALL
                                                     <>richiesta risultati
BEGIN BULK
PARAM POST O
PARAM PRTMAXIM YES
PARAM, KGROT, 100.
PARAM, PRGPST, NO
PARAM, AUTOSPC, NO
PARAM, SNORM, 20.
                        .NO
$
INCLUDE 'main_fitting_3D_tet4.bdf'
INCLUDE 'sliding_tube_3D_tet4.bdf'
INCLUDE 'lupper_Link_3D_tet4.bdf'
INCLUDE 'Lower_Link_3D_tet4.bdf'
INCLUDE 'drag_brace_spezzato.bdf'
INCLUDE 'mpc_wheel_tet4.bdf'
INCLUDE 'sliding_tube_int_skin_t3.bdf'
INCLUDE 'displacements_points.bdf'

                                                                                      caricamento
                                                                                   dati MLG
S
INCLUDE 'Coord_system_at_10.bdf'
INCLUDE 'skin_main_fitting_10_t3.bdf'
INCLUDE 'mpc_sliding_10_tet4.bdf'
INCLUDE 'pload_10.bdf'
INCLUDE 'pload_10.bdf'
INCLUDE 'Y_neg_tet4.bdf'
                                                                                  in funzione
                                                                                   della corsa
                                                                                   SAT 10

        S
        S

        $ Elements and Element Properties for region : pbar.6000001

        PROD
        6000001 10000011.

        CROD
        6999999 6000001 5030352 6000001

        GRID
        6000001
        6777. -1063.06-335.335 740000

$
$$$$$$ contact sliding/main_fitting $$$$$$$$$$$$$$$$
$
PELAS
                6600001 1.+5
6600002 6600001 1300018
6600003 6600001 1300018
                                                                        2 5300005
3 5300005
CELAS1
                                                                                                       23
CELAS1
文
                6600004 1.+5
6600005 6600004 1300019
6600006 6600004 1300019
PELAS
                                                                       2 5300003
3 5300003
CELAS1
                                                                                                      23
CELAS1
$
PELAS
                 6600007 1.+4
6600008 6600007 1300019
                                                                        1 5300003
                                                                                                      1
CELAS1
$$$$$$ CONSTRAIN $$$$$$$$$$$$$$$$$$$$$$$$$$$
SPCADD
                20
                               10
                                              30
                                                            40
                                                                            50
$ Displacement Constraints of Load Set : drag_brace
SPC1 10 1234 4000001
$ Displacement Constraints of Load Set : pin
SPC1 30 23 130003 1300016
SDisplacement Constraints of Load Set : pin_axis
SPC1 40 1 1300017
SDisplacement Constraints of Load Set : sliding
SPC1
                 50
                               234
                                               6000001
708 1.
                                           1.55 1
                                                                         1.45 2
LOAD
                                                                                                      1.
                                                                                                                       3
FORCE
                              5300004 0 1.
                                                                                       -10000. 0.
                 3
                                                                          0.
ENDDATA
```



### 8.1.2 File di lancio: MLG\_72\_2pt\_spin\_up.bdf

```
$ NASTRAN input file created by the MSC MSC.Nastran input file
$ Direct Text Input for Nastran System Cell Section
<u>$ Direct Text Input for File Management Section</u>
<u>$ Linear Static Analysis</u>
Linear Static Analysis
 SOL 101

$ Direct Text Input for Executive Control
 CEND
 ECHO = NONE
 SUBCASE name : Default

SUBTITLE=MLG_72_2pt_spin_up_limit

SPC = [20]

LOAD = 801

DISPLACEMENT(PLOT)=ALL

SPCFORCES(PRINT)=ALL

GPFORCE(PLOT)=ALL

MPCFORCE(PLOT)=ALL

STRAIN(PLOT)=ALL

STRAIN(PLOT)=ALL
                                                                                      di resistenza
 $
S
BEGIN BULK
PARAM POST O
PARAM PRTMAXIM YES
PARAM, KGROT, 100.
PARAM, AUTOSPC, NO
PARAM, SNORM, 20.
 $
INCLUDE 'main_fitting_3D_tet4.bdf'
INCLUDE 'sliding_tube_3D_tet4.bdf'
INCLUDE 'upper_Link_3D_tet4.bdf'
INCLUDE 'Lower_Link_3D_tet4.bdf'
INCLUDE 'drag_brace_spezzato.bdf'
INCLUDE 'mpc_wheel_tet4.bdf'
INCLUDE 'sliding_tube_int_skin_t3.bdf'
INCLUDE 'displacements_points_mod.bdf'

                                                                            Caricamento dati MLG
 $
$
INCLUDE 'Coord_system_at_63_5.bdf'
INCLUDE 'skin_main_fitting_72_t3.bdf'
INCLUDE 'mpc_sliding_72_tet4.bdf'
INCLUDE 'pload_72_mod.bdf'
INCLUDE 'y_neg_tet4.bdf'
                                                                                       in funzione della
                                                                              Corsa SAT 72

        INCLOSE
        Finegree

        $
        $

        $
        Elements and Element Properties for region : pbar.6000001

        PROD
        6000001 10000011.

        CROD
        6999999 6000001 5030352 6000001

        GRID
        6000001
        6777. -1063.06-335.335 740000

$
$$$$$$ contact sliding/main_fitting $$$$$$$$$$$$$$$$$$
PELAS 6600001 1.+5
CELAS1 6600002 6600001 1300018
CELAS1 6600003 6600001 1300018
                                                                                  2 5300005
                                                                                                                   2
                                                                                 3 5300005
                                                                                                                   2
                   6600004 1.+5
PELAS
CELAS1 6600005 6600004 1300019
CELAS1 6600006 6600004 1300019
                                                                             2 5300003
3 5300003
                                                                                                                   23
PELAS 6600007 1.+4
CELAS1 6600008 6600007 1300019
                                                                              1 5300003
                                                                                                                   1
 $$$$$$ CONSTRAIN $$$$$$$$$$$$$$$$$$$$$$$$$$
$ Loads for Load Case : Default
SPCADD 20 10 30 40
                                                                                      50
SPCADD 20 10 30 40 50

S Displacement Constraints of Load Set : drag_brace

SPC1 10 1234 4000001

S Displacement Constraints of Load Set : pin

SPC1 30 23 1300003 1300016

S Displacement Constraints of Load Set : pin_axis

SPC1 40 1 1300017

S Displacement Constraints of Load Set : sliding

SPC1 50 234 6000001

S
 801 1. 1.07 1
LOAD
                                                                                1. 2
                                                                                                                  1.
                                                                                                                                      3
 FORCE
                                 5300004 0 1.
                                                                               49000.0 -7800.0 50400.0
                 з
ENDDATA
```

Alessandro Pagani



### 8.1.3 File di lancio: Modal\_0\_nv.bdf

```
$ NASTRAN input file created by the MSC MSC/NASTRAN input file
$ Direct Text Input for File Management Section

$ Normal Modes Analysis, Database

$ Direct 103

TIME 600

$ Direct Text Input for Executive Control

CEND

SEALL = ALL

SUPER = ALL

ECHO = NONE

MAXLINES = 999999999

$
$ Direct Text Input for Global Case Control Data
SUBCASE 1
$ Subcase name : Default
$ SUBTILE=[Modale_nv]  modale non
METHOD = 1
VECTOR(PLOT)=ALL
CONTENT OF THE OTHER VINCOLATA
        SPCFORCES(PLOT)=ALL
 BEGIN BULK
PARAM POST
PARAM, NOCOMPS, -1
                                         0
PARAM PRTMAXIM YES
EIGRL 1
$
                                                                                 10 0
 $$$$$$ FEM MODEL $$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
INCLUDE 'main_fitting_3D_tet4.bdf'
INCLUDE 'sliding_tube_3D_tet4.bdf'
INCLUDE 'Upper_Link_3D_tet4.bdf'
INCLUDE 'Lower_Link_3D_tet4.bdf'
INCLUDE 'mpc_wheel_tet4.bdf'
INCLUDE 'sliding_tube_int_skin_t3.bdf'

                                                                                                              caricamento
                                                                                       dati MLG
$
INCLUDE 'Coord_system_at_0.bdf'
INCLUDE 'skin_main_fiting_0_t3.bdf'
INCLUDE 'mpc_sliding_0_tet4.bdf'
INCLUDE 'Y_neg_tet4.bdf'

 $$$$$$ contatto sliding/main_fitting $$$$$$$$$$$$$$$$

        6600001
        1.+5

        6600002
        6600001
        1300018
        2
        5300005

        6600003
        6600001
        1300018
        3
        5300005

 PELAS
 CELAS1
                                                                                                                                        23
CELASI
S
PELAS

        J
        ELAS
        6600004
        1.+5

        CELAS1
        6600005
        6600004
        1300019
        2
        5300003

        CELAS1
        6600006
        6600004
        1300019
        3
        5300003

                                                                                                                                        23
 $
PELAS
PELAS 6600007 1.+4
CELAS1 6600008 6600007 1300019
                                                                                     1 5300003
                                                                                                                                       1
 $
ENDDATA
```



E' riportato un elenco di tutti i file di lancio e dei relativi file da caricare.

# 8.1.4 FEM\_MLG\Modal\mlg\_0:

| mlg_0                        |                  |          |            |
|------------------------------|------------------|----------|------------|
| Nome                         | Ultima modifica  | Tipo     | Dimensione |
| Coord_system_at_0.bdf        | 21/11/2012 10:41 | File BDF | 1 KB       |
| drag_brace_spezzato.bdf      | 04/04/2013 13:55 | File BDF | 4 KB       |
| Lower_Link_3D_tet4.bdf       | 12/03/2013 16:22 | File BDF | 10387 KB   |
| main_fitting_3D_tet4.bdf     | 07/03/2013 10:12 | File BDF | 66547 KB   |
| 📄 modale_0_nv.bdf            | 11/06/2013 08:23 | File BDF | 2 KB       |
| 📄 modale_0_vv.bdf            | 11/06/2013 08:24 | File BDF | 3 KB       |
| mpc_sliding_0_tet4.bdf       | 20/12/2012 12:13 | File BDF | 7 KB       |
| mpc_wheel_tet4.bdf           | 07/03/2013 10:17 | File BDF | 11 KB      |
| skin_main_fitting_0_t3.bdf   | 22/04/2013 09:49 | File BDF | 1646 KB    |
| sliding_tube_3D_tet4.bdf     | 16/04/2013 18:23 | File BDF | 9192 KB    |
| sliding_tube_int_skin_t3.bdf | 20/12/2012 12:18 | File BDF | 1492 KB    |
| Upper_Link_3D_tet4.bdf       | 06/02/2013 17:04 | File BDF | 8789 KB    |
| Y_neg_tet4.bdf               | 04/02/2013 14:28 | File BDF | 5 KB       |
| Y_pos_tet4.bdf               | 20/12/2012 11:56 | File BDF | 5 KB       |



# 8.1.5 FEM\_MLG\Stiffness\mlg10:

Mlg\_10

| Nome                         | Ultima modifica  | Тіро     | Dimensione |
|------------------------------|------------------|----------|------------|
| Coord_system_at_10.bdf       | 21/11/2012 10:45 | File BDF | 1 KB       |
| displacements_points.bdf     | 12/04/2013 09:36 | File BDF | 2 KB       |
| drag_brace_spezzato.bdf      | 04/04/2013 13:55 | File BDF | 4 KB       |
| Lower_Link_3D_tet4.bdf       | 12/03/2013 16:22 | File BDF | 10387 KB   |
| main_fitting_3D_tet4.bdf     | 07/03/2013 10:12 | File BDF | 66547 KB   |
| MLG_10_Lc_02.bdf             | 22/04/2013 17:17 | File BDF | 3 KB       |
| MLG_10_Lc_07.bdf             | 22/04/2013 17:18 | File BDF | 3 KB       |
| MLG_10_Lc_08.bdf             | 22/04/2013 17:18 | File BDF | 3 KB       |
| MLG_10_Lc_013.bdf            | 22/04/2013 17:19 | File BDF | 3 KB       |
| mpc_sliding_10_tet4.bdf      | 20/12/2012 12:37 | File BDF | 7 KB       |
| mpc_wheel_tet4.bdf           | 07/03/2013 10:17 | File BDF | 11 KB      |
| 📄 pload_10.bdf               | 21/12/2012 14:32 | File BDF | 69 KB      |
| skin_main_fitting_10_t3.bdf  | 16/04/2013 17:55 | File BDF | 1603 KB    |
| sliding_tube_3D_tet4.bdf     | 16/04/2013 18:23 | File BDF | 9192 KB    |
| sliding_tube_int_skin_t3.bdf | 20/12/2012 12:18 | File BDF | 1492 KB    |
| Upper_Link_3D_tet4.bdf       | 06/02/2013 17:04 | File BDF | 8789 KB    |
| Y_neg_tet4.bdf               | 04/02/2013 14:28 | File BDF | 5 KB       |
| Y_pos_tet4.bdf               | 20/12/2012 11:56 | File BDF | 5 KB       |



# 8.1.6 FEM\_MLG\Stiffness\mlg180:

### Mlg\_180

| Nome                           | Ultima modifica  | Tipo     | Dimensione |
|--------------------------------|------------------|----------|------------|
| Coord_system_at_180.bdf        | 21/11/2012 10:55 | File BDF | 1 KB       |
| displacements_points.bdf       | 12/04/2013 09:36 | File BDF | 2 KB       |
| drag_brace_spezzato.bdf        | 04/04/2013 13:55 | File BDF | 4 KB       |
| Lower_Link_3D_tet4.bdf         | 12/03/2013 16:22 | File BDF | 10387 KB   |
| main_fitting_3D_tet4.bdf       | 07/03/2013 10:12 | File BDF | 66547 KB   |
| MLG_180_Lc_04.bdf              | 22/04/2013 17:19 | File BDF | 3 KB       |
| MLG_180_Lc_05.bdf              | 22/04/2013 17:19 | File BDF | 3 KB       |
| MLG_180_Lc_09.bdf              | 22/04/2013 17:19 | File BDF | 3 KB       |
| MLG_180_Lc_012.bdf             | 23/04/2013 08:24 | File BDF | 3 KB       |
| mpc_sliding_180_tet4.bdf       | 21/12/2012 10:04 | File BDF | 7 KB       |
| mpc_wheel_tet4.bdf             | 07/03/2013 10:17 | File BDF | 11 KB      |
| 📄 pload_180.bdf                | 19/12/2012 12:14 | File BDF | 224 KB     |
| skin_main_fitting_180_t3.bdf   | 22/04/2013 09:52 | File BDF | 925 KB     |
| sliding_tube_3D_tet4.bdf       | 16/04/2013 18:23 | File BDF | 9192 KB    |
| 📄 sliding_tube_int_skin_t3.bdf | 20/12/2012 12:18 | File BDF | 1492 KB    |
| Upper_Link_3D_tet4.bdf         | 06/02/2013 17:04 | File BDF | 8789 KB    |
| V_neg_tet4.bdf                 | 04/02/2013 14:28 | File BDF | 5 KB       |
| Y_pos_tet4.bdf                 | 20/12/2012 11:56 | File BDF | 5 KB       |


## 8.1.7 FEM\_MLG\Stiffness\mlg350:

Mlg\_350

| Nome                         | Ultima modifica  | Tipo     | Dimensione |
|------------------------------|------------------|----------|------------|
| Coord_system_at_350.bdf      | 21/11/2012 10:59 | File BDF | 1 KB       |
| displacements_points.bdf     | 12/04/2013 09:36 | File BDF | 2 KB       |
| drag_brace_spezzato.bdf      | 04/04/2013 13:55 | File BDF | 4 KB       |
| Lower_Link_3D_tet4.bdf       | 12/03/2013 16:22 | File BDF | 10387 KB   |
| anain_fitting_3D_tet4.bdf    | 07/03/2013 10:12 | File BDF | 66547 KB   |
| MLG_350_Lc_03.bdf            | 22/04/2013 17:20 | File BDF | 3 KB       |
| MLG_350_Lc_06.bdf            | 22/04/2013 17:21 | File BDF | 3 KB       |
| MLG_350_Lc_010.bdf           | 22/04/2013 17:22 | File BDF | 3 KB       |
| MLG_350_Lc_011.bdf           | 22/04/2013 17:22 | File BDF | 3 KB       |
| mpc_sliding_350_tet4.bdf     | 21/12/2012 10:03 | File BDF | 7 KB       |
| mpc_wheel_tet4.bdf           | 07/03/2013 10:17 | File BDF | 11 KB      |
| 📄 pload_350.bdf              | 19/12/2012 15:05 | File BDF | 95 KB      |
| skin_main_fitting_350_t3.bdf | 22/04/2013 09:59 | File BDF | 240 KB     |
| sliding_tube_3D_tet4.bdf     | 16/04/2013 18:23 | File BDF | 9192 KB    |
| sliding_tube_int_skin_t3.bdf | 20/12/2012 12:18 | File BDF | 1492 KB    |
| Upper_Link_3D_tet4.bdf       | 06/02/2013 17:04 | File BDF | 8789 KB    |
| Y_neg_tet4.bdf               | 04/02/2013 14:28 | File BDF | 5 KB       |
| Y_pos_tet4.bdf               | 20/12/2012 11:56 | File BDF | 5 KB       |



## 8.1.8 FEM\_MLG\Strength:

Strength

| Nome                                      | Ultima modifica  | Тіро     | Dimensione |
|-------------------------------------------|------------------|----------|------------|
| Coord_system_at_63_5.bdf                  | 08/04/2013 14:14 | File BDF | 1 KB       |
| Coord_system_at_72.bdf                    | 21/11/2012 11:51 | File BDF | 1 KB       |
| Coord_system_at_127.bdf                   | 08/04/2013 14:14 | File BDF | 1 KB       |
| Coord_system_at_135.bdf                   | 21/11/2012 10:54 | File BDF | 1 KB       |
| Coord_system_at_290.bdf                   | 08/04/2013 14:15 | File BDF | 1 KB       |
| Coord_system_at_291.bdf                   | 08/04/2013 14:15 | File BDF | 1 KB       |
| Coord_system_at_298.bdf                   | 21/11/2012 11:55 | File BDF | 1 KB       |
| Coord_system_at_300.bdf                   | 21/11/2012 10:58 | File BDF | 1 KB       |
| displacements_points_mod.bdf              | 12/04/2013 11:44 | File BDF | 3 KB       |
| 📄 dms_strain gauge.bdf                    | 17/04/2013 11:49 | File BDF | 1 KB       |
| drag_brace_spezzato.bdf                   | 04/04/2013 13:55 | File BDF | 4 KB       |
| Lower_Link_3D_tet4.bdf                    | 12/03/2013 16:22 | File BDF | 10387 KB   |
| main_fitting_3D_tet4.bdf                  | 07/03/2013 10:12 | File BDF | 66547 KB   |
| MLG_72_2pt_spin_up_limit.bdf              | 23/04/2013 08:31 | File BDF | 3 KB       |
| MLG_135_2pt_spring_back_limit.bdf         | 23/04/2013 08:33 | File BDF | 3 KB       |
| MLG_298_2pt_drift_landing_right_limit.bdf | 23/04/2013 08:33 | File BDF | 3 KB       |
| MLG_300_2pt_braked_roll_limit.bdf         | 23/04/2013 08:33 | File BDF | 3 KB       |
| mpc_sliding_72_tet4.bdf                   | 11/04/2013 16:21 | File BDF | 7 KB       |
| mpc_sliding_135_tet4.bdf                  | 11/04/2013 16:28 | File BDF | 7 KB       |
| mpc_sliding_298_tet4.bdf                  | 12/04/2013 09:20 | File BDF | 7 KB       |
| mpc_sliding_300_tet4.bdf                  | 12/04/2013 09:30 | File BDF | 7 KB       |
| mpc_wheel_tet4.bdf                        | 07/03/2013 10:17 | File BDF | 11 KB      |
| pload_72.bdf                              | 19/12/2012 15:02 | File BDF | 175 KB     |
| pload_72_mod.bdf                          | 21/12/2012 12:13 | File BDF | 179 KB     |
| <pre>pload_135.bdf</pre>                  | 19/12/2012 15:03 | File BDF | 217 KB     |
| 📄 pload_298.bdf                           | 19/12/2012 15:03 | File BDF | 155 KB     |
| pload_300.bdf                             | 19/12/2012 15:04 | File BDF | 153 KB     |
| skin_main_fitting_72_t3.bdf               | 16/04/2013 17:57 | File BDF | 1353 KB    |
| skin_main_fitting_135_t3.bdf              | 22/04/2013 09:51 | File BDF | 1108 KB    |
| skin_main_fitting_298_t3.bdf              | 22/04/2013 09:54 | File BDF | 453 KB     |
| skin_main_fitting_300_t3.bdf              | 22/04/2013 09:58 | File BDF | 441 KB     |
| sliding_tube_3D_tet4.bdf                  | 16/04/2013 18:23 | File BDF | 9192 KB    |
| sliding_tube_int_skin_t3.bdf              | 20/12/2012 12:18 | File BDF | 1492 KB    |
| Upper_Link_3D_tet4.bdf                    | 06/02/2013 17:04 | File BDF | 8789 KB    |
| Y_neg_tet4.bdf                            | 04/02/2013 14:28 | File BDF | 5 KB       |
| Y_pos_tet4.bdf                            | 20/12/2012 11:56 | File BDF | 5 KB       |

