
Politecnico di Milano
Scuola di Ingegneria Industriale e

dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica
Dipartimento di Elettronica, Informazione e

Bioingegneria

Interoperable data migration between NoSQL

columnar databases

Advisor: Stefano Ceri
Co-Advisor: Elisabetta Di Nitto

Master thesis by:
Marco Scavuzzo - matr. 782545

Academic Year 2012-2013

Dedico questa tesi ai miei genitori che hanno sempre

assecondato le mie scelte e che non mi hanno mai

fatto mancare il loro sostegno.

Ringraziamenti

Desidero innanzitutto ringraziare il Professore Ceri e la Professoressa Di Nitto

per avermi concesso la possibilità di svolgere questo lavoro di tesi. Li ringrazio

inoltre per la disponibilità e l’impegno con cui mi hanno seguito durante tutto

il periodo di svolgimento del lavoro di tesi.

Ringrazio inoltre il Professore Ardagna per l’aiuto e la disponibilità fornitami

per effettuare i test descritti in questo elaborato.

Ringrazio Santo Lombardo per i preziosi consigli e per il tempo concessomi

per discutere degli argomenti trattati in questa tesi.

Voglio infine ringraziare tutti gli amici che mi sono stati accanto durante tutti

questi anni, per il loro supporto e la loro amicizia incondizionata che, diverse

volte, ha saputo distogliere la mia attenzione dagli ostacoli che si sono presen-

tati.

Milano, 18 Dicembre 2013

Marco

Estratto

Con l’avvento delle applicazioni Web2.0, la quantità di contenuti generati dagli

utenti sta crescendo esponenzialmente. Inoltre, il maggiore utilizzo di web ser-

vices, in concomitanza con una migliore aspettativa di livelli di servizio, hanno

portato all’adozione di approcci atti a garantire maggiore tolleranza ai guasti,

availability e scalabilità. Dunque, per far fronte a moli enormi di dati e garan-

tire, al contempo, i requisiti di cui sopra, si è cominciato a far uso di database

NoSQL.

I più noti, tra questi, utilizzano tecniche e soluzioni proprie della teoria dei sistemi

distribuiti, al fine di fornire caratteristiche e proprietà differenti. Infatti, ognuno

di questi si contraddistingue per un data model ed una architettura differente.

Dunque, in base al problema da risolvere, un certo database può risultare più

adatto di un altro. Diversi tentativi per classificare i vari database NoSQL sono

stati fatti, tuttavia non vi è ancora una categorizzazione comunemente accettata.

Ciò è dovuto principalmente alla mancanza di uno standard per questi database.

Dunque, all’atto dello sviluppo di una applicazione, si dovrebbe avere una chiara

visione circa il panorama dei database NoSQL. Ma, dato il numero di essi, può

essere difficile fare da subito una scelta corretta. Inoltre, nuovi requisiti potreb-

bero emergere durante la fase di sviluppo.

Quando gli effetti di una scelta errata del database si manifestano, potrebbe es-

sere problematico, in termini di tempi e costi, effettuare un cambiamento. Questo

problema è noto come vendor lock-in e, al fine di porvi rimedio, in questo lavoro

di tesi si descrive un sistema interoperabile per la migrazione di dati tra database

NoSQL. In particolare, ci si concentra sui database a colonne, e si definisce un

metamodello originale che permette di migrare dati tra database di questo tipo,

ed anche Key-Value.

Il metamodello proposto è progettato in modo da preservare diversi livelli di

consistenza, indici secondari e tipi di dato. Inoltre, si descrive lo sviluppo di un

sistema di migrazione estensibile, che permette agli sviluppatori di supportare

nuovi database, senza che questi necessitino di conoscere il funzionamento degli

altri.

Abstract

With the advent of Web2.0 applications, the amount of user generated content

is growing exponentially. Moreover, the increasing number of people using web

services, together with more stringent service level expectations, have led to the

adoption of approaches able to grant fault tolerance, availability and scalability.

Hence, in order to handle very huge amount of data and granting, at the same

time, all of the above requirements, NoSQL databases have emerged.

The most relevant NoSQL databases combine approaches and solutions, relative

to the distributed systems theory, to provide different properties and character-

istics. Each of them proposes different data models and architectures. Hence,

based on the type of problem that needs to be solved, a certain database may be

more suitable than another. Several attempts have been made in order to catego-

rize NoSQL databases, but there is not yet a commonly accepted categorization.

This is mainly due to the lack of standards for NoSQL databases.

Hence, when developing an application, one should have a clear vision of all

NoSQL solutions. Given the number of existing databases, it may be difficult to

make the right choice in the first place. Furthermore, new requisites may arise

during application development.

If the effects of a poor database choice become evident, switching to another

database may be problematic in terms of costs and time. This problem is known

as vendor lock-in and, in order to mitigate it, this thesis proposes an interopera-

ble migration system for NoSQL databases. In particular, we focus on columnar

NoSQL databases and define an orginal metamodel that allows to transfer data

among this class of databases.

The proposed metamodel is designed in such a way to preserve different levels

of consistency, secondary indexes and different data types, during migration.

Moreover, we develop an extensible system which allows developers to easily

add support for new databases, without requiring any knowledge about the

other databases. For this reason, guidelines about the implementation of proper

database translators are provided, together with examples of how to support

Key-Value databases too.

Table of Contents

List of Figures xiv

List of Tables xv

1 Introduction 1

2 State of the art 5

2.1 Introduction . 5

2.2 NoSQL Motivations . 5

2.2.1 NoSQL common characteristics 6

2.2.2 NoSQL classifications . 7

2.2.3 Columnar NoSQL databases 9

2.3 Column-based NoSQL databases origins 10

2.3.1 Google BigTable . 10

2.3.2 Amazon Dynamo . 14

2.4 Google App Engine Datastore 19

2.4.1 Underlying technology 19

2.4.2 Data model . 20

2.5 Azure Tables . 22

2.5.1 Underlying technology 22

2.5.2 Datamodel . 23

2.6 Summary . 24

3 Definition of the migration system 27

3.1 Introduction . 27

3.2 Requirements . 28

3.3 System Architecture . 29

3.4 Metamodel design . 32

3.5 System design . 34

TABLE OF CONTENTS

3.5.1 Design strategies . 35

3.5.2 Producer-Consumer approach 38

3.5.3 Connection and Disconnection management 40

3.5.4 Credentials management 41

3.6 Summary . 41

4 Metamodel Transformations 43

4.1 Introduction . 43

4.2 Direct Translators . 43

4.2.1 GAE Datastore . 44

4.2.2 Azure Tables . 48

4.3 Inverse Translators . 50

4.3.1 GAE Datastore . 51

4.3.2 Azure Tables . 54

4.4 Summary . 56

5 Migration System Evaluation 57

5.1 Introduction . 57

5.2 Performance and overhead of the migration system 57

5.2.1 Data migration: compatibility test 60

5.2.2 Performance tests . 61

5.3 Comparing the proposed migration approach with direct

database-to-database translations 76

5.4 Extendability of the migration system 77

5.5 Discussion . 80

5.6 Summary . 82

6 Conclusions and Future Works 83

Appendices 85

A Rest API 87

A.1 Introduction . 87

A.2 Technology . 87

A.3 API design . 88

A.3.1 Switch Over API . 89

A.3.2 Databases credentials management API 91

xii

TABLE OF CONTENTS

B Application usage manual 93

B.1 Introduction . 93

B.2 Environment configuration . 93

B.3 Application configuration . 94

B.4 Application usage . 95

Bibliography 97

xiii

List of Figures

2.1 Consistent Hashing - initial situation 15

2.2 Consistent Hashing - situation after node join and departure . . 15

3.1 Migration System overview . 30

3.2 System architecture . 31

3.3 Metamodel . 33

3.4 UML class diagram . 36

3.5 Switch over sequence diagram 39

5.1 MiC NoSQL service Class diagram 58

5.2 Deployment architecture - In House scenario 64

5.3 Migration from GAE Datastore to Azure Tables - CPU usage . 64

5.4 Migration from GAE Datastore to Azure Tables - Times growth

- In House scenario . 65

5.5 Migration from Azure Tables to GAE Datastore preserving

eventual consistency - CPU usage 67

5.6 Migration from Azure Tables to GAE Datastore preserving

eventual consistency - Times growth - In House scenario 67

5.7 Migration from Azure Tables to GAE Datastore preserving

strong consistency - Times growth - In House scenario 69

5.8 Deployment architecture - Cloud scenario 71

5.9 Migration from GAE Datastore to Azure Tables - Times growth

- Cloud scenario . 72

5.10 Migration from Azure Tables to GAE Datastore preserving

eventual consistency - Times growth - Cloud scenario 73

5.11 Migration from Azure Tables to GAE Datastore preserving

strong consistency - Times growth - Cloud scenario 75

List of Tables

2.1 Classifications – Categorization and Comparison 8

4.1 Datastore – Direct Mapping . 45

4.2 Azure Tables – Direct Mapping 48

4.3 Datastore – Inverse Mapping . 51

4.4 Azure Tables – Inverse Mapping 54

5.1 Migration from GAE Datastore to Azure Tables - In House sce-

nario . 65

5.2 Migration from Azure Tables to GAE Datastore preserving

eventual consistency - In House scenario 66

5.3 Migration from Azure Tables to GAE Datastore preserving

strong consistency - In House scenario 69

5.4 Migration from GAE Datastore to Azure Tables - Cloud scenario 71

5.5 Migration from Azure Tables to GAE Datastore preserving

eventual consistency - Cloud scenario 73

5.6 Migration from Azure Tables to GAE Datastore preserving

strong consistency - Cloud scenario 74

5.7 GAE Datastore throughput test 75

A.1 Default API errors . 89

A.2 REST API calls . 90

Chapter 1

Introduction

With the advent of Web2.0 applications, in the last few years, the amount of

user generated content is growing exponentially. Furthermore, the increasing

number of people using web services, together with more stringent service

level expectations, have led to the adoption of approaches able to grant fault

tolerance, availability and scalability. Hence, in order to handle very huge

amount of data and granting, at the same time, all of the above requirements,

NoSQL databases have emerged.

The most relevant NoSQL databases combine approaches and solutions, rel-

ative to the distributed systems theory, to provide different properties and

characteristics. Each of them proposes different data models and architectures.

Hence, based on the type of problem that needs to be solved, a certain database

may be more suitable than another. At the moment of writing, the number of

NoSQL databases is more the 150; several attempts have been made in order

to categorize them, but there is not yet a commonly accepted categorization.

This is mainly due to the lack of standards for NoSQL databases.

Hence, when developing a new application, that should make use of such

databases, one should have a clear vision of all NoSQL solutions. Given the

number of existing databases, it may be difficult to make the right choice in

the first place. Furthermore, new requisites may arise during application de-

velopment. If the effects of a poor database choice become evident, switching

to another database may be problematic in terms of costs and time. This

problem is commonly referred to as vendor lock-in.

In order to mitigate vendor lock-in, this thesis proposes an interoperable

migration system for NoSQL databases. In particular, we focus on columnar

NoSQL databases and define an orginal metamodel that allows to transfer

Introduction

data among this class of databases. In addition, the proposed metamodel is

designed in such a way to preserve different levels of consistency, secondary

indexes and different data types, during migration.

Furthermore, we develop an extensible system which allows developers to eas-

ily add support for new databases, without requiring any knowledge about

the other databases. For this reason, guidelines about the implementation of

proper database translators are provided, together with examples of how to

support Key-Value databases too.

The usage of this migration system would let database user choose the proper

service to store his data, even after an initial wrong choice, or in the event

that a new vendor enters the market offering more adequate solutions.

Furthermore, data migration will provide more flexibility, letting users choose

how to “move” their data, based on the type of result they want to achieve.

For example, a more expressive query language may be needed and part of the

application logic should be delegated to the database. Hence, data should be

made compatible with, and moved to, a given database technology.

Or, maybe, big computational efforts need to be made in order to extrapolate

knowledge from data. Hence, a database which natively supports MapReduce

should be chosen and data should be properly migrated into it.

In general, this migration system will unleash the potentiality generated by all

NoSQL database solutions, independently from the original data location.

Original Contributions

This work includes the following original contributions:

• An innovative metamodel able to abstract data model characteristics and

properties of column-based NoSQL databases.

• Complete translators, which make use of the above metamodel, that

allow to migrate data between Google App Engine Datastore, Microsoft

Windows Azure Tables and Amazon DynamoDB (Key-Value).

Furthermore, guidelines on how to write custom translators are provided.

• An extensible migration system which makes actual migrations possi-

ble, and which provides a set of interfaces to easily add support to new

2

databases. Moreover, it provides REST APIs which make it integrable

with other applications.

Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 describes the current state of the art about NoSQL databases.

At first, we provide motivations that make users choose NoSQL databases

over relational ones. Subsequently, we report the most accepted catego-

rization for NoSQL databases and briefly discuss it.

Then, we recognize two papers as the main directives that led to the

development of the majority of NoSQL databases; hence, we briefly an-

alyze them in order to highlight the most common problems that arise

when designing such scalable and distributed databases.

Finally, we discuss the main properties of the databases used as use cases

in the whole thesis.

• Chapter 3 is dedicated to the design and the development of the migra-

tion system.

At first, we define the main requirements the system should respond to.

Then, the system underlying architecture is described. Hence, we report

the original metamodel that enables data migration between different

NoSQL columnar databases.

Finally, a deep analysis of the system design process is conducted.

• In Chapter 4 we study how translators from a source database to the

metamodel, and viceversa, should be developed in general. Furthermore,

we discuss the design and the implementation of two real translators:

Google App Engine Datastore and Azure Tables.

• In Chapter 5, we conduct several tests on the whole migration system.

A first test takes a real application as use case and tries to migrate

its data among two different databases. Then, we check whether the

application still works.

Furthermore, we conduct several tests both in private server and in IaaS

cloud environments, in order to determine the real performance of the

3

Introduction

migration system.

Subsequently, in light of previous tests, we make a theoretical comparison

between database-to-database translators, and translators which make

use of the Metamodel described in Chapter 3. Finally, we study

approaches in order to extend the proposed Metamodel, in particular

we show how a Key-Value database, with different consistency policies,

can be supported.

• Chapter 6 draws the conclusions on the entire work and proposes several

planned future works.

4

Chapter 2

State of the art

2.1 Introduction

This chapter starts by listing the typical approaches used to scale Web2.0

applications that make use of relational databases, highlighting the limita-

tions and difficulties. Hence, it introduces NoSQL databases which permit to

achieve better results with fewer efforts. After having categorized the different

“families” of NoSQL databases, it then continues by motivating the reasons

that led us to concentrate on columnar databases.

In Section 2.3 we analyze the two most important papers in this field, Google

BigTable paper and Amazon Dynamo paper, that laid the foundations for the

implementation of the most used NoSQL databases. Furthermore, databases

that have been influenced by each of these papers are briefly discussed.

Finally, the last two sections describe the NoSQL databases used, in this

thesis, to develop a middleware capable of migrating data between columnar

databases in an interoperable way.

2.2 NoSQL Motivations

NoSQL databases have recently started to become popular due to the advent

of Web 2.0 applications and the consequent need to manage a huge amount of

data.

This kind of databases try to cope with some limitations of RDBMS that

come up as the volume of data increases. In these cases aspects like: fault tol-

erance, availability across distributed data sources, scalability and consistency

become really important. Besides, several usage patterns do not require com-

State of the art

plex queries and management functionalities typically provided by RDBMS.

In the past years these problems where addressed incrementally; the very first

approach was to try to scale vertically by adding computational power to the

system, but still this solution suffers of the single point of failure issue. Sooner

or later, the problem would arise again and, at that point, you tried to scale

horizontally by adding clusters to the database. This generates data replication

and consistency problems, among the different instances, that should be taken

into account.

Furthermore, since RDBMS must comply with the ACID properties, dis-

tributed transactions need to be orchestrated across multiple nodes.

All of the previous strategies prefer consistency over availability. So, in order

to respond to the increasing needs of scalability and availability a further step

was taken: denormalizing the data inside the database violating the five normal

forms adopted when designing the application.

Finally one of the liabilities, in some scenarios, for RDBMS is given from the

constraints on the schema:

1. A fixed schema, in some cases, may not serve the application needs well,

making it impossible to be modified at runtime.

2. A properly normalized schema imposes to create additional tables to

express “many-to-many” relationships which implies the execution of

join queries, which in turn slow down the whole system.

2.2.1 NoSQL common characteristics

When talking about NoSQL databases there are two schools of thought [13].

One saying that NoSQL stands for “Not SQL”, the second one, instead, asserts

that the word NoSQL means “Not Only SQL”. And actually the second school

have proven to be right because some NoSQL databases actually use SQL-like

languages to express queries (for example Couchbase uses an SQL-like language

called UnQL).

NoSQL databases are used to store and retrieve large amounts of data

in a more efficient way, with respect to relational ones. This increase

in performance is achieved by loosening consistency constraints, horizon-

tal scaling, a finer control over availability and the lack of join queries.

6

2.2 NoSQL Motivations

ACID is a set of properties (Availability, Consistency, Isolation and Dura-

bility) which are guaranteed during operations over data inside a transaction.

ACID rules, generally used by relational databases, do not apply anymore in

NoSQL ones; instead NoSQL databases guarantee eventual consistency or, in

some databases, transactions limited to single data items.

NoSQL databases must cope with the CAP or Brewer’s Theorem which states

that given the properties of consistency, availability and partition tolerance, a

distributed computer system can satisfy up to two of those at the same time.

Consistency: a distributed system is said to be consistent if every node sees

the same data at the same time.

Availability: means that the system is designed to keep working even if a

failure to some nodes happens.

Partition tolerance: implies the ability of the system (divided in two or

more partitions) to continue its work even if these partitions cannot

communicate with each other.

For several number of applications and use-cases (large web-applications, e-

commerce platforms, etc.) availability and partition tolerance are more im-

portant than consistency, hence BASE approaches are applied.

BASE is an acronym for: Basically Available, Soft-state and Eventual consis-

tent; which means that “an application works basically all the time (basically

available), does not have to be consistent all the time (soft-state) but will be

in some known state eventually (eventual consistent)”.

2.2.2 NoSQL classifications

In the last few years a lot of new NoSQL databases have been devel-

oped. Each of them tries to fit several requirements (e.g. scalability,

maintenance and feature-set) differently. Some of these databases en-

hance Google BigTable, some others move from Amazon Dynamo or

a combination of both. Also databases based on completely different

technology (i.e. graphs theory) have emerged. Several classifications

have been proposed, one [12] of the most generic is indicated in Table 2.1.

7

State of the art

Table 2.1: Classifications – Categorization and Comparison

Performance Scalability Flexibility Complexity Functionality
Key-Value
Stores

high high high none variable
(none)

Column
stores

high high moderate low minimal

Document
stores

high variable
(high)

high low variable
(low)

Graph
databases

variable variable high high graph the-
ory

Relational
databases

variable variable low moderate relational
algebra

Key/Value stores Key/Value stores are similar to data-structures like

Maps or Hashtables, since they permit to retrieve information (values) given

their key.

The most simple implementations just store uninterpreted values – i.e. arrays

of bytes – associated to a key and allow queries only by key. Whereas, more

complex implementations try to interpret data to be stored as Values, hence

they permit more complex queries over Values. Furthermore, some implemen-

tations permit scan queries over Keys.

Data can be stored in two different fashions, depending on the implementation

that is being used: in-memory (e.g. Redis) or on-disk.

Column-oriented databases These databases owe their name to the data

model proposed by Google BigTable paper. Data are stored inside structures

named Columns, which in turn are contained inside Column Families, and are

indexed by Key. Typically, data inside the same Column (for every Key) are

persisted together.

Since this thesis will focus on columnar databases, a more in-depth description

will be given in Paragraph 2.2.3 and also in Section 2.3.

Document-oriented databases Document databases are mainly used to

store semi-structured data which are called Documents. Each document may

contain several unique ID fields, used to index other fields that can be of any

type, simple or nested, including other documents. Typical documents formats

are: JSON, BSON, YAML or XML.

8

2.2 NoSQL Motivations

This kind of databases allows to express queries over fields contained in the

document.

Each implementation differs from the others in that they may index data

differently, or they may provide diverse kind of queries; but, typically, the main

differences reside in consistency and replication mechanisms and on design

details.

Graph databases Graph databases are based on graphs theory and are

typically used to represent highly interconnected data. Information are stored

inside graphs; a node is the entity under consideration and its information is

stored inside the so called properties (key/value pairs). It is possible to express

relationships between nodes by means of edges.

A field where graph databases are becoming popular is that of social net-

works, since ever-growing relationships among people are the main requisite,

hence fast and scalable approaches, that just graph databases can provide, are

needed.

By the end of 2012 the number of the NoSQL products was about 120 and

obviously not all of them may perfectly match the categorization above.

2.2.3 Columnar NoSQL databases

This thesis will concentrate on Column stores for several reasons:

• They are typically released in two fashions: database as a service (DaaS)

– e.g. Google Datastore, Microsoft Tables (Hybrid solutions, not com-

pletely columnar) – and standalone – e.g. Cassandra, Hbase, etc.

• Useful to store semi-structured data designed to scale to a very large

size. In fact they are typically used for managing Big Data that can be

partitioned both horizontally and vertically.

• Thanks to projection on columns, only the data really needed can be

retrieved, maximizing the throughput.

• They are particularly useful in scenarios where individual row queries

need to be performed and aggregation operations are not necessary. This

is because of column families, i.e. items that need to be co-accessed can

be put in the same column family.

9

State of the art

Moreover, some columnar NoSQL databases guarantee strong consistency un-

der particular conditions, but, in general, they handle data in an eventually

consistent way.

Usually queries may filter on keys values or column name (projection), but

some of these databases permit to declare secondary indexes in order to filter

queries by means of an arbitrary column value.

Columnar oriented NoSQL databases are typically based on Google BigTable

Paper, hence they share some characteristics, such as: Memtables and SSTa-

bles usage, a multi-dimensional map to index properties, column families – in

order to group columns of the same type – and timestamp – to maintain data

up-to-date and perform versioning.

2.3 Column-based NoSQL databases origins

This section describes two of the most important papers that have deeply influ-

enced the development of the most recent NoSQL databases: Google BigTable

and Amazon Dynamo

Some of the problems and considerations addressed by these papers are di-

rectly adopted by different NoSQL databases, some other instead have been

solved differently. Anyhow, at the end of each paragraph, the most impor-

tant databases that have been influenced by the respective paper are briefly

discussed.

2.3.1 Google BigTable

Google BigTable has been categorized in different ways, in fact it is

commonly referred to as “wide columnar store”, or as an “extensible

record store”, or even as an “entity-value-attribute” (EAV) datastore.

The description given by Google in its paper ([7]) about BigTable is: “a

distributed storage system for managing structured data that is designed to

scale to a very large size: petabytes of data across thousands of commodity

servers”. Their main purpose was to “scale the capacity of their clusters by

simply adding more machines to the system as their resource demands change

over time”.

10

2.3 Column-based NoSQL databases origins

Underlying technology

BigTable makes use of several technologies:

Google File System (GFS): a proprietary, distributed file system used to

persist data and logs.

Cluster management system: used “for scheduling jobs, managing re-

sources on shared machines, dealing with machine failures and moni-

toring machine status”.

Memtable and SSTable file format: Memtables are data struc-

tures (write-back caches) that contain recently committed up-

dates which should be kept in memory and retrieved, when

necessary, by key. When a Memtable is full data is writ-

ten to disk, in a Sorted String Table (SSTable), contain-

ing key-value pairs, that, once written, become immutable.

The stored keys are of the type (rowkey, columnkey, timestamp).

After a certain amount of time, SSTables are compacted in order to

limit the number of SSTables which have to be considered for read

operations.

Chubby : a “highly-available and distributed lock service” used

for synchronizing accesses to shared resources, elect a mas-

ter and discover tablets in a BigTable cluster. Furthermore,

it is used to store metadata that contains information like

column-families for each table, access control lists (ACL), etc.

A chubby cell is made of a set of servers, called replicas; each of which

maintains copies of a single database. Among these servers, a master

server is elected by means of the Paxsos algorithm (Consensus algorithm

for multiple nodes to agree on a value despite failures or delays).

When a client application sends read or write requests (using the

chubby library) it is received by the master. If the request is a write

request, it gets propagated to the replicas throughout Paxos algorithm,

and after the write have reached the majority of replicas, the master

replies to it. In case of a read request, the master responds immediately.

If the master server dies a new one is elected among the other nodes, using

11

State of the art

the Paxos algorithm.

Hence, Paxos is used by BigTable to provide reliability and availability.

Data model

BigTable data model can be described as “a sparse, distributed, persistent

multidimensional sorted map”; data are stored in binary arrays and indexed

by a triple (rowkey, columnkey, timestamp).

Rows Rows are stored in lexicographic order by means of their

row-key and are dynamically partitioned into tablets, which rep-

resent “the unit of distribution and load balancing” in BigTable.

Tablets are stored in tablet servers which handle read and write re-

quests and split tablets that have grown too large (100-200MB).

It is up to the client application to exploit tablet property in order to

speed up read operations. Client applications communicate with BigTable by

means of a client library, which is in charge of look up tablet servers, and then

operate on data that should be read or written.

Columns Columns grouped in the same column family can benefit of several

properties:

• Since they “form the basic unit of access control”, it is possible to set

specific privileges in order to read, write and add column families.

• They typically store the same kind of data.

• BigTable compresses column family data together.

• Column families should be declared before data can be stored in it, and

they should have a printable name.

• Paper authors suggest to keep the number of column family small.

• Locality groups are a special feature which permits to declare group of

column-families that should be accessed together. This forces BigTable

to create an SSTable for each locality group within a tablet. This process

is used to speed up reads, reducing the number of disk seeks and the

quantity of data to be retrieved.

12

2.3 Column-based NoSQL databases origins

Timestamp Timestamps are used to perform versioning over data; data are

stored in decreasing order of their timestamp value so that the most recent ver-

sion can be retrieved. An automatic garbage-collector is in charge of deleting

the older revisions.

Operations The typical operations on data supported by BigTable are Cre-

ate, Read, Update, Delete (CRUD) and scans by range on keys; but searches

by column are not supported.

Consistency considerations

BigTables provides transactions on a single row basis: “Every read

or write of data under a single row key is atomic (regardless of the

number of columns being read or written in the row), a design de-

cision that makes it easier for clients to reason about the system

behaviour in the presence of concurrent updates to the same row”.

Instead, operations on multiple rows are eventually consistent.

BigTable influences

Google BigTable has influenced many other NoSQL databases, in particular

for the data model design. Some common examples are: Cassandra, HBase,

Hypertable.

HBase and Hypertable are BigTable open-source implementations which work

practically as described in Google BigTable paper.

Cassandra, instead, employes several techniques borrowed both from

BigTable and Amazon Dynamo. Cassandra data model is similar to the

one described in BigTable paper, with the exception of super-columns which

are a further data structure used to group similar columns inside the same

column-family. Even though Cassandra does not use a distributed file system

like GFS, it represents data in memory and on disk as BigTable does: firstly

new datum is written to a persistent commit log, then to an in-memory data

structure and, if it reaches a certain threshold of size, it gets persisted to disk.

All writes on disk are sequential and indexed to achieve better performance,

like BigTable does with block-indexes in SSTables.

13

State of the art

2.3.2 Amazon Dynamo

Another important paper that contributed to the development of the latest

NoSQL databases is Amazon Dynamo paper [8]. Even if it describes an actual

database, used internally by Amazon applications, it is not meant to be used

for external projects since it is tailored to Amazon specific needs and infras-

tructure architecture.

For example, the fact that it does not support any security mechanism, or that

data versioning must be handled by the client applications, are just two of the

factors that make it unusable for non-Amazon projects.

This is the reason why Amazon developed two other database systems, specif-

ically address to developers using its cloud architecture: SimpleDB (depre-

cated) and DynamoDB.

Nonetheless, Amazon Dynamo paper describes some useful techniques widely

adopted by other NoSQL databases, for example by Cassandra. As will be seen

below, some Cassandra common problems (such as partitioning, failures de-

tection and handling, data replication and versioning) have been solved taking

inspiration from Amazon Dynamo paper.

Amazon Dynamo is a key-value storage used to store data, up to 1MB of

size per pair, in binary form (uninterpreted byte array).

Since storage systems that provide ACID properties tend to have poor avail-

ability, Dynamo team has decided not to provide this kind of guarantees by

operating with weaker consistency, lack of isolation and thus offering only

single key update.

Dynamo operates in a non-hostile environment, hence no security mechanisms,

such as authorization and authentication, have been implemented.

Dynamo replicates data in a peer-to-peer-like fashion by storing enough in-

formation at each node (O(1) routing) in order to perform routing efficiently

(Zero hop DHT).

Data partitioning

Partitioning is one of the problems for which the paper proposes a solution.

In order to achieve incremental scalability, the system needs to dynamically

14

2.3 Column-based NoSQL databases origins

partition data across the nodes (i.e. storage hosts) that compose the system;

hence a variant of consistent hashing technique is employed.

Figure 2.1: Consistent Hashing
- initial situation

Figure 2.2: Consistent Hashing - situa-
tion after node join and departure

Consistent Hashing In consistent hashing the output range of a common

hash function is treated like a ring.

Each node composing the system is placed randomly on this ring. Instead,

items to be stored gets a position on the ring after having hashed their key

value. Which item is mapped to which node is decided by moving clockwise

on the ring; for example, in Figure 2.1 item 4 and 1 are mapped to node A,

item 2 to node B and so on.

Operating in this way, when the number of nodes changes it is not necessary

to remap all of the nodes, but just a subset of them (the ones contained by the

neighbours). This is what happens in Figure 2.2: node C leaves the system

and a new node called D enters, so now items 3 and 4 are mapped to node D

and the other items remain unchanged.

The basic algorithm presents two issues:

1. non-uniform data load and distribution due to random position assign-

ment for nodes in the ring.

2. node heterogeneity is not taken in consideration, i.e. nodes with different

storage space or computational power are treated in the same way.

15

State of the art

Virtual nodes In order to solve both of these problems, Dynamo uses a

variant of consistent hashing algorithm which contemplates the concept of

virtual nodes. When a node joins the system it gets assigned to multiple

points in the ring, i.e. a virtual node.

The number of virtual nodes, for a physical node, can be defined individually

based on its hardware configuration, thus it does not need to be the same for

every node on the ring.

In case of a node departure, data stored in it becomes unavailable unless it

has been replicated to other nodes before. The symmetric problem happens

when a new node joins the system and a neighbour node is not responsible

anymore for some of its data.

By introducing a replication factor (r) both of these problems can be solved,

since items are replicated to the next r physical nodes in clockwise direction.

Dynamo by default sets r = 3, so if we consider item 1, in Figure 2.1, it gets

stored by node A and replicated on node B and C.

The list of nodes in charge of storing a particular item is called preference list

and it typically contains just physical nodes.

Failure detection

Nodes joins and departures are noticed thanks to a gossip-based protocol

which maintains an eventual consistent view of the nodes in the system.

Thanks to the gossip protocol it is possible to avoid having a centralized

registry for storing membership and node liveness information (like BigTable

does).

Failure handling

Sloppy Quorum In order to keep the various replicas consistent, Dynamo

uses a sloppy quorum system based on the proper configuration of two param-

eters: R and W, which respectively represent the minimum number of nodes

that must participate in a successful read/write operation.

So, if N is the number of the first healthy nodes in the preference list, in order

to have a proper configured quorum system, the two parameters should be set

such that R + W > N .

If a write operation completes without errors the client can be sure that data

16

2.3 Column-based NoSQL databases origins

has been correctly replicated to, at lest, W − 1 nodes. But, if there is an

error in the write operation, the client cannot be sure if the operation has not

succeeded at all (i.e. none of the nodes processed the operation) or less than

W −1 processed it correctly. In the latter case, the nodes, which have received

the write request correctly, are now in charge of replicating the data correctly

to the other nodes and then agree on the most recent version.

Therefore, the only way for the client to achieve a consistent state is to re-issue

the write operation.

The overall system latency is determined by the slowest node among those in

the R and W group.

Hinted Handoff If a node becomes unreachable during a write operation

data is stored by another node, usually not responsible for this data item, and

gets hinted. When the proper node will be reachable again the item will be

synchronized. Whereas the node, having received the update as a substitute,

may then delete the hinted update from its local, separated, database. This

strategy is called Hinted Handoff.

Failure recovering

In order to prevent threats to durability, which may cause replicated data to

become inconsistent, Dynamo employs Merkle trees.

Merkle trees or hash trees consist of leaves which are hashes of the values of the

individual keys and parents nodes which are hashes of their children. Merkle

trees are typically used to efficiently verify the content of large data structures

and to assess that data is undamaged and unaltered in peer-to-peer networks.

Dynamo uses Merkle trees for its anti-entropy (replica synchronization) pro-

tocol: each node in the system maintains a Merkle tree for each key range it

hosts, so as to check whether those keys are synchronized. In this way it is

sufficient to just exchange the root of the tree, among the nodes which have

to get synchronized, to verify if data is uncorrupted.

Consistency considerations

Finally, in order to provide eventual consistency, which propagates replicas to

all nodes asynchronously, Dynamo makes use of data versioning.

Each write operation is treated as a new immutable version of the data, even

17

State of the art

if it is just an update, but in this case the system tries an automatic syntactic

reconciliation between the old and the new version. In case of a read opera-

tion, instead, the client may receive several different versions of the same item;

this implies that applications should be designed in order to handle multiple

versions of the same datum (semantic reconciliation).

Data versioning is internally implemented with vector clocks, which are

(node, counter) pairs associated with each data item. During each write re-

quest, the client application sends also a context variable, along with the item

to be persisted, which contains the vector clock previously got with a read

operation. Upon receiving this version, the node increments the vector clock

counter and stores the item.

Since vector clock size may grow too large, Dynamo contemplates a truncation

scheme, i.e. when a threshold is reached the oldest version is deleted.

Dynamo influences

Amazon Dynamo has influenced many other NoSQL databases belonging to

different categories (e.g. key/value stores, document stores and column-based

stores).

For example Scalaris, a key/value NoSQL database written in Erlang, borrows

a P2P mechanism, used to expose a distributed hash table to clients, similar

to the one used by Dynamo.

CouchDB is a Document-based NoSQL database which takes advantage of

a data versioning algorithm that delegates conflict resolution to the client

applications in the same way Dynamo does.

As a further example, Cassandra, a column-based NoSQL database, can be

considered. Cassandra uses several technologies described by Amazon Dynamo

paper such as partitioning, replication, membership and failure-detection al-

gorithms.

Cassandra partitioning algorithm relies on consistent hashing algorithm, but

instead of solving load-balancing problems throughout virtual nodes, it em-

ployes a measurement and analysis of the load of the various servers in the

system to decide where each node should be placed in the ring. Replication,

as in Dynamo, is achieved by setting a replication factor r and then distributing

data items to the next r nodes in clockwise direction. Finally membership and

18

2.4 Google App Engine Datastore

failure detection are implemented by means of a gossip-style protocol, similar

to the one used by Dynamo, named Scuttlebutt.

2.4 Google App Engine Datastore

This paragraph is about Google App Engine (GAE) Datastore, a schema-less

data-storage system. It will cover datastore underlying internals features, its

data model and consistency properties. Queries on the Datastore are beyond

the purposes of this thesis.

2.4.1 Underlying technology

Datastore is built upon several technologies: Chubby lock-service, Google File

System (GFS), Google BigTable and Megastore in order to assure scalability,

reliability and performance.

Scalability is achieved thanks to BigTable automatic sharding. Performance

are guaranteed by GFS and Chubby which assure a reduced lock granularity

and co-location of data. Finally, reliability is function of two technologies:

BigTable data replication and Megastore transactions which permit strong

consistency over data.

Megastore

All of these features have been described in the previous section, except for

Megastore.

According to paper [5], Megastore is a transactional indexed record manager

built on top of BigTable which adds richer primitives to it, such as ACID

transactions, indexes, and queues.

It introduces the concept of entity groups used to partition the database in

order to enable “transactional features for most operations while allowing scal-

ability of storage and throughput”. Entities within an entity group are modi-

fied by ACID transactions (whose commit record is replicated through Paxos).

Megastore uses Paxsos algorithm not only for locking, master election or repli-

cation of metadata, but also to replicate user data among different datacenters.

19

State of the art

Datastore writes

Before an entity reaches Google server it is encoded into a format called proto-

col buffer, typically used for remote procedure calls (RPC). Then, the encoded

data is sent to the datastore server, which processes the request in two distinct

phases: Commit phase and Apply phase.

Commit phase During this phase the server performs two actions

1. It writes data for the entities to the entity group log.

2. It marks the new log entry as committed.

Apply phase During this phase two write operations happen in parallel:

• entity data is written to disk.

• index rows for the entity are written. This operation execution time is

directly proportional to the number of indexed-properties contained by

the entity.

The write operations returns immediately after the Commit phase, leaving

the Apply phase to finish asynchronously. If the commit phase has succeeded

but the apply phase failed, the datastore will roll forward to apply the changes

to indexes.

2.4.2 Data model

The basic unit of storage in GAE Datastore is the Entity, identified by a key

that makes it unique in the system.

Key

The key is composed by different information:

1. Application ID, used to distinguish entities from those of other applica-

tions and to make them unique (another user may use the same identi-

fier). Each application has access only to its entities. Datastore API do

not allow to retrieve the application id from an entity.

20

2.4 Google App Engine Datastore

2. The kind is used to logically group entities of the same type in order to

categorize them and facilitate queries, furthermore it ensures uniqueness

for the rest of the key.

3. The entity identifier is used to distinguish entities of the same kind; it

can be a manually assigned string or an automatic generated number.

4. The ancestor path is a hierarchy containing the keys of the entities which

are parents of the given one and thus are in the same entity group.

Properties

Entity data is stored inside one or more properties. Each

property is characterized by a name and one or more values.

The Datastore supports different properties value types from simple

ones (string, integers, float, etc.) to collections (List, Arrays, etc.);

a complete list can be found on the online documentation page ([1]).

Each property can explicitly be declared as indexable or not; the difference

resides in the fact that queries can be performed only over indexed properties.

Binary and Blob properties cannot be indexed.

Entity Groups

The underlying usage of Megastore allows an user to declare entity groups by

means of the ancestor path; queries on entity groups are guaranteed to be

strong consistent, i.e. a client application will retrieve the same version of the

entities contained in the same partition group.

An entity group is created by declaring an entity to be a descendent of another

entity. If the latter does not descend from any other entity, then it is a root

entity.

Datastore uses optimistic concurrency to manage transactions. When more

than one transactions tries to modify (delete or update) entities inside the

same entity group at the same time , the first transaction that commits is the

one that will succeed; all others will fail on commit.

Furthermore, Datastore allows transactions to be applied among (at most 5)

entity groups; these are called Croos-Group transactions.

21

State of the art

2.5 Azure Tables

Azure Tables is a NoSQL datastore which offers structured, massively scalable,

storage in the form of tables; it supports an unlimited number of tables, and

each table can scale out to store billions of entities representing up to 200

terabytes (if Tables is the only storage service used within the same account).

2.5.1 Underlying technology

Azure storage architecture (which is the same for Blob, Tables and Queues)

can be divided in three different layers [6]:

Front-end (FE) layer handles incoming request by authenticating and au-

thorizing them, and then it routes them to a partition server which re-

sides in the Partition Layer. The choice of the partition server to forward

requests to is taken by means of a Partition Map cached by each front-end

server.

Partition Layer manages the partitioning of Blob, Tables and Queues ob-

jects inside streams contained by the stream layer, provides automatic

load-balancing in the system, and contains a Paxos lock service similar

to Chubby. Each of these objects belongs to one partition, and each

partition has one partition server assigned.

This layer regulates what partition is served on what partition server.

Automatic load-balancing and partitions assignment is performed by

Partition Master servers which check on the overall load of each partition

server.

This layer is in charge of providing transaction ordering and strong con-

sistency for objects; furthermore, it caches object data to minimize disk

I/O.

Distribution and replicated File System (DFS) Layer or Stream Layer

is in charge of storing data on disk, distribute and replicate it across

different servers in order to keep it durable. A partition server should

access to a DFS server when data needs to be retrieved.

These three layers are all contained by a so called Storage Stamp, a cluster of

N racks composed by storage nodes, located on separated fault domains. A

22

2.5 Azure Tables

component, named Location Service, manages all storage stamps for disaster

recovery and load-balancing. The location service is distributed across two

separate geographic locations for disaster recovery purposes.

The stream layer together with the partition layer provide strong consistency

at the object transaction layer. Azure Storage uses two different mechanism

to replicate data:

Intra-stamp replication (Stream Layer) , a synchronous replication hap-

pening at the stream layer and based on Paxos algorithm which creates

replicas of the data across different nodes on several fault domains. It

provides durability against hardware failure.

Inter-stamp replication (Partition Layer) , an asynchronous replication

mechanism which replicates data between stamps. It is used to replicate

object in stamps and the transactions on them. Indeed, it provides

redundancy against disasters happening in some geographic area.

2.5.2 Datamodel

In order to access to Windows Azure Storage a Storage Account is needed.

Each storage account can host up to 200TB of data in total for Blob, Queue

and Table services.

Azure Table service is made of Tables which contains Entities; each entity may

contain different properties. Since Azure Tables does not enforce a schema on

tables, each entity can contain a different set of properties.

An entity is similar to a database row and its maximum size (i.e. the size of

all the data in an entity properties) can be 1MB maximum.

A property is a key-value pair, where the key represents the name of the

property, for that particular entity, and the value is the actual value stored by

the property. Each entity can contain up to 252 properties; futhermore, three

more properties are fixed: Row key, Partition Key and Timestamp.

Azure properties support the most common type values: string, integer,

boolean, etc. (a complete list can be found on the online documentation [2]);

complex data types, such as lists, can be stored as arrays of bytes.

Keys Row keys, inside the same table, must be unique. Row key and par-

tition key, together form a primary key, called clustered index, for the given

23

State of the art

entity. The clustered index is first ordered by Partition Key and then by Row

key.

Timestamp The Timestamp, instead, represents the date and time the en-

tity was last modified, and it is used internally to provide optimistic concur-

rency.

Partitions

In order to support load-balancing across storage nodes, tables are partitioned

by means of the partition key value.

A partition is formed by a consecutive number of entities, in the same table,

possessing the same partition key.

The fact that each partition is served by one partition server permits to have

faster responses on queries and strong consistency for entities in the same

partition. Anyway, these properties come at the cost of a limit on throughput

– i.e. a partition can serve up to 500 entities per second – but, in general, the

instantaneous throughput of a partition depends on the load of the partition

server.

Entities in the same table, with the same Partition Key, are said to be in

the same Entity Group. The entity group permits transactions over contained

entities.

2.6 Summary

This chapter discussed NoSQL databases by firstly comparing them to rela-

tional ones, in the context of new scalable applications and big data which,

thanks to cloud computing, are becoming more and more popular. After hav-

ing described what choices bring a developer to choose a NoSQL database

for his projects, a common NoSQL categorization have been proposed.

Two of the most important papers, that have led to the development of almost

all NoSQL databases, have been analyzed in order to highlight the common

practices used to address several problems when building distributed, scalable

and highly available NoSQL databases. The last paragraphs of this chapter

concentrated on column-based NoSQL databases that will be used, in this

24

2.6 Summary

thesis, to develop a middleware capable of migrating data between columnar

databases in an interoperable way.

25

Chapter 3

Definition of the migration
system

3.1 Introduction

The main purpose of this thesis is to design and build a system able to migrate

data across NoSQL databases, provided by different vendors. This topic is be-

coming more and more relevant as the number of NoSQL databases increases.

Since NoSQL databases have not been standardized yet, each vendor is build-

ing its own NoSQL database solution which is typically incompatible with the

others. Furthermore, NoSQL databases are being offered both as standalone

system, and as a service (DaaS) by cloud providers.

This plethora of non-standardized NoSQL databases causes a phenomenon

called vendor lock-in, i.e. the customer becomes dependent on vendor services

and is unable to switch to another vendor without incurring in significant costs.

Switching to another vendor may be motivated by several project requirements;

for example, some data may need to be modelled differently from other data,

or some data may need a different level of consistency, or maybe a more expres-

sive querying language, etc. If all this requirements are not clear, or cannot

be established at design time, then the consequences may be catastrophic.

A solution to these problems may be given by a system capable of performing

data migration among different NoSQL solutions, preserving, whenever possi-

ble, fundamental characteristics like different levels of consistency or secondary

indexes. This system would let database user choose the proper service to store

his data even after an initial wrong choice, or in the event that a new vendor

enters the market offering more adequate solutions for his problems.

Definition of the migration system

In the context of databases, data migration is the process of transferring

data between two or more different databases. Typically this task is performed

automatically and requires as few inputs from the user as possible.

Data migration is usually achieved thanks to the definition of a metamodel

that groups all the common features of the different databases to be migrated.

Once this metamodel has correctly been defined, it is possible to describe two

translators for each database, that will transform data from the database to

the intermediate model and viceversa.

The advantage of this kind of approach is that when a new database has to

be supported, just two new mappings rules need to be defined in order to map

the data to any other database. In contrast with the approach which imposes

to define a mapping rule for any database supported by the system, together

with an inverse one.

So, if N is the number of databases supported by the system, while in the

first way you would need 2 ·N mappings (i.e. the number of translators grows

linearly), in the second way N · (N − 1) translators would be needed (i.e. the

number of translators grows quadratically).

The concept of an intermediate model is also used by Torlone et al. [11] to

define a schema translation tool for Web data, whereas, Atzeni et al. propose

a common programming interface [4], based on a metamodel previously defined

in paper [3], to be used as a library in projects that aim to use different NoSQL

solutions.

This chapter introduces to the design and the development of such a system

by firstly defining the main requirements the system should respond to. Tak-

ing into account all those requirements the system underlying architecture is

described. Section 3.4 introduces the metamodel that enables data migration

between different NoSQL columnar databases. Finally, a deep analysis of the

system design process is conducted. In this phase, some design patterns are

adopted in order to build an extensible and reusable system.

3.2 Requirements

We want to design a system capable of migrating data from a columnar

database to another.

28

3.3 System Architecture

In the rest of this thesis we will refer to “applications hosted on different

cloud services which make use of data that needs to be migrated” as remote

applications.

This thesis will concentrate exclusively on complete data switch over, i.e. we

suppose that source and destination databases are not utilized during migra-

tion phase; in short we can say that the migration happens when remote ap-

plications are offline. Future developments, which consider different scenarios,

are discussed in Chapter 6.

This system should be independent, whenever possible, from remote applica-

tions; hence, it must sit in between and should know nothing about how data

is generated. It should be also always available to serve migration needs. Fur-

thermore, it should communicate with databases by means of official libraries,

for maintenance and update reasons. Moreover, it should be designed in such

a way that developers may easily support new databases; hence, the system

should be independent from the implementation of the databases’ connectors

and should present clear interfaces to the programmers.

Finally, it should take into account different latencies among read and write

operations for the diverse databases.

3.3 System Architecture

Given the above requirements, in order to have an independent system al-

ways available, a client-server architecture is needed. In particular, the system

should reside in an application server (e.g. Tomcat) and should expose at least

a method to perform the switch over. Furthermore, since it should be decou-

pled from remote application logic, credentials needed to access the respective

databases should reside inside the system. Hence, some methods to handle

credentials need to be implemented.

For these reasons it has been decided to implement some REST APIs that

allows external applications or users to interact with the system.

A general overview of the system is given in Figure 3.1. The internals of

the system have been represented by means of two processes which behave

according to the producer-consumer approach described in Section 3.5.2. The

queue contains Metamodel objects, whose structure is reported in Section 3.4.

29

Definition of the migration system

Figure 3.1: Migration System overview

The client-server system architecture is multi-tiered – i.e. system func-

tionalities are logically separated across different layers – in order to provide a

more scalable and reusable system. System architecture is shown in Figure 3.2.

Representation Layer This layer is the system entry point for users and

external applications (clients), i.e. it exposes REST API to let client appli-

cations interact with the system. Its response formats are JSON or XML

depending on the Content-Type of the request message. REST API design is

discussed in Appendix A.

This layer communicates directly with Business Client Facade and with Cre-

dentials Access Layer by means of standard method calls.

Business Client Facade This layer contains the interfaces needed to re-

quest database switch over to the lower layers. Moreover, it holds a generic

abstraction for the supported databases, which describes their common oper-

ations, e.g. connection, disconnection, etc.

More details about the interfaces design process will be given in Section 3.5.

Business Layer This layer groups the business logic used to perform the

actual migration between databases. The logic consists of two threads, a

producer and a consumer which, respectively, extract data from the source

30

3.3 System Architecture

Figure 3.2: System architecture

database and put them in the destination database. The two threads com-

municate by means of a common shared queued, more details are provided

in Section 3.5.2. Hence, this layer contains also the intermediate Metamodel

and two transformers for each database. Furthermore, this layer directly com-

municates with the Access Layer which allows to actually retrieve and store

information, by means of library specific API.

Metamodel design is discussed in Section 3.4, whereas Transformers design is

treated in Chapter 4.

Access Layer This layer is in charge of performing read and write operations

by means of different protocols.

Databases Typically database libraries uses different API that, after

manipulating data passed to them, contact the respective database services

in order to transfer data through HTTP protocol.

31

Definition of the migration system

Credentials Credentials are stored directly, in the form of key-value

pairs, inside a file in the local file system.

3.4 Metamodel design

As stated in Chapter 2 the study is restricted on column-oriented NoSQL

databases. By analyzing the various type of columnar databases it is evident

that their data model derives from the one proposed in BigTable paper. So,

in order to perform a complete mapping between different databases, the in-

termediate Metamodel should be based on BigTable data model too.

Furthermore, some columnar databases introduced several properties which

make the respective database more performant, or which guarantee different

levels of consistency. Hence, the main properties we wish to maintain with the

switch over are strong consistency and secondary indexes (for databases that

support them). In the case in which the source database supports secondary

indexes, whilst the destination database does not, auxiliary data structures,

preserving indexed properties, are created in the destination database by the

migration system. The choice on how to design these data structures depends

on the destination database, hence, it is delegated to the specific database

translator, as described in Chapter 4.

To the best of our knowledge, the metamodel presented in this thesis is original,

since there is no other system that allows migration between NoSQL databases

and that preserves strong consistency as well as secondary indexes.

All things considered, the Metamodel in Figure 3.3 has been designed; it is

located in the Business Layer, and it can only be accessed by methods residing

in the same layer. A detailed description of each Metamodel component is

given in the following paragraphs.

Column The basic unit for storing data properties is the Column. It con-

tains the single datum property value to be persisted along with its name;

furthermore, it provides an explicit way to declare the datum property type

and if the property should be indexable or not.

Column name field, of type String, should contain printable datum property

name.

The system provides standard utility methods to serialize (deserialize) data

32

3.4 Metamodel design

Figure 3.3: Metamodel

into (from) Column value field, which should contain data in the form of bytes

array.

Column type field should contain datum property printable type that will be

used to deserialize data inside Column value field, if the destination database

supports its original data type. Otherwise data will be stored as an array of

bytes (typically supported by any database).

Column indexable field contains a boolean value which states if data contained

in Column value field should be set as indexable or not in the destination

database (if it supports indexes).

Key A set of Columns referring to the same datum is named Entity. Entity

Keys are used to index Entities.

Column Family As stated in Google BigTable paper, Column Families

are just groupings of different Entities Columns of the same type . In some

databases Column Families are used to guarantee the locality for data stored

in it.

The Metamodel provides a way to declare such groupings with a construct

named after BigTable Column Family.

Since one of the main characteristics of NoSQL databases is that of allowing to

store sparse data, – i.e. data data scheme is not fixed – Column Families may

33

Definition of the migration system

contain diverse number of Columns for every Entity, whose Columns belong

to the same Column Family.

Partition Group Some databases provide strong consistency by simply let-

ting users model data in constructs specific for each database, e.g Google

Datastore uses ancestor paths, whereas Azure Tables uses a combination of

Partition Key and Table Name.

For this very reason the Metamodel provides the Partition Group; i.e. Entities

inside the same Partition Group are guaranteed to be stored in the destination

database, in such a way that strong consistency will be applicable to them on

every operation performed by the destination database.

3.5 System design

Requirements expressed in Section 3.2, request that the system should support

several databases and use their official connectors. For this reason, a common

programming language, able to support the majority of the databases connec-

tors, should be used. Hence, Java has been chosen.

Furthermore, the system should expose clear interfaces to the programmers

and abstract the general parts of it from the database drivers logic. In order

to do so, three different design patterns have been adopted. The first two

of them reside in the Business Client Facade, since they are used to abstract

databases logic and perform the switch over. Whereas, the transformer pattern

has been used for classes hosted by Business Layer, since they are part of the

business logic which performs the actual mappings.

In software engineering design patterns are used to solve problems that recur,

with some slightly variation, when building an application. They propose

standard solutions that help to improve software quality and reduce develop-

ment time, making the code extensible and reusable. Design patterns are in

contrast with custom solutions in that, the latter may lead to more complex

or inefficient implementations for a given problem and they may result in code

which is harder to debug, extend and reuse.

For these reasons, a deep insight of how design patterns are used for building

this system is reported in Paragraph 3.5.1.

Finally, latencies among different operations and databases are mitigated by

34

3.5 System design

means of the producer-consumer approach, i.e. two concurrent processes share

a queue containing Metamodel objects. Further details are reported in Para-

graph 3.5.2.

3.5.1 Design strategies

In order to build a reusable and extensible migration system, several design

patterns have been adopted. Design patterns were originally classified based on

the type of problem they aimed to solve, i.e. creational patterns, behavioural

patterns and structural patterns; recently new patterns and classifications have

emerged, but they are not needed in this system.

Three patterns, described in the following paragraphs, have been tightened

together, to accomplish previously described tasks, and form a so called pat-

tern language. After a brief introduction, each paragraph describes how each

pattern is used in order to build the system depicted in Figure 3.4.

Defining common migration procedure

The migration system needs to implement a common mechanism to perform

data migration from a source database to a destination one. In order to do so,

several atomic steps – e.g. connection, translation, etc. . . – should be executed

in a given order, independently from the underlying database technology. For

this reason we use the template pattern, which belongs to the class of be-

havioural patterns, and focuses on the interactions between objects.

In particular, the template pattern defines the steps of an algorithm and the

order in which these steps should be executed, but lets subclasses implement

some of them.

These steps are implemented using abstract methods inside an abstract class.

Classes that will inherit the abstract class will not be able to override the

abstract methods, if they use the final modifier. The abstract class may also

define hook methods that can be overridden by subclasses.

This is exactly what happens for class AbstractDatabase in Figure 3.4. In

that class, hook methods are declared – i.e. connect, disconnect, fromMeta-

model, toMedamodel – together with the abstract method switchOver. The

latter method implements the switch over procedure between two databases

by using a combination of the hook methods.

35

Definition of the migration system

F
igu

re
3.4:

U
M

L
class

d
iagram

36

3.5 System design

When a new database needs to be supported by the system, it will be sufficient

to extend AbstractDatabase and override the hook methods.

Hook methods contain the logic specific to each database and depend on the

database connector.

Handling different databases interoperably

In order to build a migration system which is as general as possible, some

precautions should be taken. In particular, the system should not be aware of

the underlying database implementation, and should be able to operate with

any kind of source and destination database without any further knowledge.

Hence, an abstract way to deal with different databases is needed.

Creational patterns offer an interface which exposes methods needed for in-

stantiating objects, in order to mask how objects are actually implemented.

Factory pattern is a member of creational patterns and it provides an interface

to create an object without exposing the creation logic to the client. Further-

more, it lets the subclasses decide which object to instantiate and then refer

to it using a common interface.

In this specific case, Factory Pattern is used to seamlessly instantiate source

and destination databases, and call common methods (such as switchOver)

without warring about the actual database on which the call is performed.

In particular, the class DatabaseFactory is in charge of creating the proper

database instance, given its name. Each supported database should imple-

ment a common interface, but, since this pattern has to be used together

with template pattern, it has been chosen to use an abstract class instead of

an interface. Hence, databases classes need to extend AbstractDatabase and

implement its hook methods in order to be supported.

Transforming databases data models

The migration system should be designed in such a way to allow developers

to easily add support for a new database, without the necessity to modify

system code. Hence, the system should provide a “contract” that needs to

be agreed on by any newly supported database. For this reason, the system

should expose clear interfaces to the programmers.

Thus, we recur to the translator pattern, which is not an actual existing pat-

tern, but it is derived from Message Translator pattern described in book [10].

37

Definition of the migration system

It consists of an interface which declares methods to transform an object into

another format and viceversa.

In particular, the interface ITransformer exposes a method to convert a

Database model object to a Metamodel object, and a method to convert a

Metamodel object into a Database model object. For each new database that

needs to be supported, a transformer class, implementing these two methods,

needs to be defined. The implementation of the database model depends on

the specific database, hence it is not fixed. Whereas, the Metamodel design

has been analyzed in Section 3.4.

Thus, each class extending AbstractDatabase uses a Transformer object inside

the hook methods toMetamodel and fromMetamodel to provide the actual

transformations. Tranformers design and implementation will be covered in

Chapter 4.

3.5.2 Producer-Consumer approach

Distributed database architectures have different read and write latencies;

typically write operations are slower than reads. Hence, in order to migrate

data, it is unfeasible to extract data (convert them) and directly write

converted data into the destination database. Because, by doing so, read

request from the source database may time out and elements successive to the

current one may not be retrieved.

A solution to the above problem is given by the producer-consumer ap-

proach: two processes share a common buffer which is used as a queue, as

shown in Figure 3.1. The producer should not consume data when the buffer

is full and the consumer should not read from the queue when it is empty.

Java provides an implementation for this queue, called BlockingQueue, which

is thread-safe and offers automatic concurrency control.

All the classes and interfaces described reside in the Business Layer.

The template method switchOver, contained in AbstractDatabase class, cre-

ates two threads: a producer and a consumer, according to the approach de-

scribed above. Both of them use the hook methods to perform connection and

disconnection operations. A sequence diagram illustrating their behaviour is

shown by Figure 3.5.

38

3.5 System design

F
ig

u
re

3.
5:

S
w

it
ch

ov
er

se
q
u
en

ce
d
ia

gr
am

39

Definition of the migration system

The producer extracts data from the source database which are passed to the

hook method toMetamodel and stores the resulting Metamodel object inside

the blocking queue.

The consumer waits for an object to be inserted inside the blocking queue.

Once the consumer notices that at least an element is present inside the queue,

it pulls the element which is then passed to the hook method fromMetamodel,

and sends the resulting object to the destination database that will store it.

The process stops when the producer has extracted all the elements from the

source database and the consumer has pulled and converted all the Metamodel

objects inside the queue.

3.5.3 Connection and Disconnection management

Figure 3.5 shows how the system transparently communicates with source

and destination databases despite the fact that libraries and underlying tech-

nologies are completely different. In particular, connection and disconnection

methods rely on those proprietary libraries to operate, but, in order to build

a system that is as general as possible, these methods need to be wrapped by

components implemented following a standard approach. These components

represent the Access Layer of the system, as shown in Figure 3.2.

During the connection or disconnection phase, in case of an error all exceptions

are caught and a new custom exception (ConnectionException) is created and

then thrown; this allows to have a standardized connection mechanism for all

the supported databases. In this way, it suffices to insert the hook connect

method inside a try-catch block and just the ConnectionException will be

thrown, so that it can be handled in the same way by all the databases.

The disconnect method can be called inside the finally block, so that other op-

erations do not have to care about connection and disconnection management.

After having established the connection, an object used for operating with the

database is typically returned; this object is used across the system to keep

track of the status – i.e. if it is instantiated the system is connected to the

given database; if it is null then the system has not established a connection

yet. A check method is implemented and it can be called by other methods to

verify the status of the connection.

40

3.6 Summary

3.5.4 Credentials management

Usually, one needs to provide some kind of credentials to databases in order to

retrieve and store data. For example in Google App Engine (GAE) Datastore

calls can be made providing the same username and password needed to ac-

cess all GAE services; whereas, Azure Tables requires a particular hash string

generated from its online configuration portal.

In order to provide a standard interface for programmers to handle credentials,

a class named PropertiesManager has been implemented. This class, together

with those handling databases, is part of the Access Layer. It exposes utility

methods to create, read, update and delete credentials, in the form of key/value

pairs stored in a file. Furthermore, it implements other utility methods and

a nested class to make those operations above accessible even by REST API

(more details can be found in Appendix A).

3.6 Summary

This chapter proposed a solution for the design and implementation of a

system for data migration between different NoSQL columnar databases.

After an overview of the system architecture, the chapter presented an original

Metamodel to enable translations between different NoSQL databases and to

preserve, whenever possible, properties like strong consistency and secondary

indexes. Finally, a deep analysis of the system design phase was conducted,

highlighting the main design choices taken, in order to build reusable code

that allows to seamlessly plug in new components, so as to support new

databases.

41

Chapter 4

Metamodel Transformations

4.1 Introduction

As reported in Chapter 3, translators have been designed according to the

translator pattern. It is sufficient to instantiate a transformer class from a

hook method (contained by classes that extend AbstractDatabase) to operate

the translations.

In the following sections, we will demonstrate how to add support for a new

database by showing the general guidelines to design translators.

Section 4.2 studies direct translators, i.e. mappings between a source database

and the Metamodel defined in Chapter 3. Whereas, Section 4.3 covers inverse

translators, i.e. mappings from the Metamodel to a destination database.

For each translator type, two practical cases will be covered: GAE Datastore

and Azure Tables; and, for the solely purpose of guiding throughout the reading

of the examples sections, some pseudo-code excerpts are reported.

4.2 Direct Translators

A direct translator converts data from a source database into the Metamodel

representation.

The basic approach to create a correct mapping is to identify the single datum

container – e.g. a tuple in relational databases or an entity both in Datastore

and Azure Tables. This element can be mapped to a Metamodel entity and

data contained in it can be translated into Columns.

At this point it is fundamental to extract the proper information. Name field is

straightforward, whereas the value field should contain serialized data, since it

Metamodel Transformations

is not possible to know in advance if a type is supported by all other databases.

Hence, the system provides a utility method to perform serialization; it will be

sufficient to pass the value to this method to generate a valid, serialized, byte

array to be stored inside value field.

The type field should contain a string which states the type of the object

previously serialized. It typically can be obtained throughout reflection on the

object previously serialized.

If the source database supports secondary indexes then it is easy to establish if

a column should be set as indexable or not. Otherwise, the translator should

have knowledge about what type of queries will be expressed over data. A

trivial solution may be that of setting all columns as indexable.

The choice of a proper mapping for the Column Family depends on the source

database, but in general its purpose is to group Columns of the same type.

Under certain circumstances, it may happen that the Column Family will

contain an entire entity.

Finally, the Partition Group is a construct used to preserve strong consistency

and, if the source database supports it, the implementation may vary for each

database. In general, the Partition Group should contain all the entities for

which transactionality is desired. Since the Metamodel represents the Partition

Group as a string, it suffices to set the same value to two different entities, in

order for them to be accessed in a strongly consistent way.

In all NoSQL databases encountered so far, transactionality may be seen as a

function of two elements, hence a non-restrictive convention on the Partition

Group string has been adopted, i.e. the string is divided into two parts by an

hash symbol, e.g. <name>#<value>.

Practical examples of direct database translators are shown in the following

subsections.

4.2.1 GAE Datastore

The Datastore class, implementing AbstractDatabase class, extracts all infor-

mation entity by entity. In order to do so, as can be seen also in Algorithm 1:

1. all Kinds present in the Datastore should be retrieved; this is achieved

by means of metadata queries.

2. Subsequently, all entities for a given Kind are extracted.

44

4.2 Direct Translators

Algorithm 1 Datastore Class excerpt

Precondition: Implements AbstractDatabase class
1: kinds← datastore.getKinds()
2: for each kind in kinds do
3: entities← ds.getEntities(kind)
4: for each entity in entities do
5: metamodelEntity ← DatastoreTransformer.toMetamodel(entity)
6: Queue.put(metamodelEntity)

Table 4.1: Datastore – Direct Mapping

Datastore Metamodel
Entity Entity
Entity Key Identifier Entity Key
Entity Kind Column Family
Property Name Column Name
Property Value Column Value (serialized)
Property Value type Column Value type
Property.isUnindexedProperty Column Indexable
Ancestor Path root Entity Partition Group

3. Then, each entity is passed to the transformer class, which is in charge

of analyzing the entity and properly map it to the Metamodel.

A summary of the mappings is shown in Table 4.1.

Algorithm 2 Datastore Transformer Class excerpt

Precondition: metamodel object has already been instantiated
1: function toMetamodel(entity)
2: rootEntity ← generateRoot(entity)
3: mapPartitionGroup(metamodel, rootEntity)
4: mapKey(metamodel, entity.key)
5: mapColumnFamily(metamodel, entity.kind)
6: mapColumns(metamodel, entity)
7: return metamodel

Mapping functions, reported in Algorithm 2, are investigated in the following

paragraphs.

Entity Key and Column Families mapping

1. Datastore entity key identifier is directly mapped to Metamodel entity

key.

45

Metamodel Transformations

2. Datastore entity Kind can be mapped to a Metamodel entity column

family, since it is used to group Datastore entity properties.

Notice that, with this mapping, all Datastore entity properties will reside in

just one Metamodel Column Family.

Entity Column mapping Datastore entity properties are equivalent to

Metamodel entity columns.

In fact, the following mappings apply:

1. Property name can be directly mapped to Column name.

2. Property value type is mapped to Column type and it is derived from

Datastore Property object, contained by the Entity object, by means of

reflection.

3. Property value is directly serialized into a byte array and then stored in

Column value.

4. Finally, since the Datastore provides secondary indexes, a simple call to

Property method isUnindexedProperty returns a boolean value which

is stored by Column indexable field.

Partition Group mapping The ancestor path is the mechanism which

guarantees transactionality in the Datastore and it is uniquely identified by

the root entity, i.e. all entities in the same ancestor path will descent from

the same root entity. Hence, by determining root entity Kind and Key it is

possible to properly assign a Partition Group to any entity.

Root entity extraction A root entity can be extracted from any Data-

store entity key (even though it is not documented) by requesting a string

representation of it. This request will return the whole ancestor path which is

of the form Kind(Key)/Kind(Key)/...; by extracting the first occurrence of

the pair Kind(Key), root entity Kind and Key can be derived.

46

4.2 Direct Translators

Root entity mapping The Partition Group named after the extracted

root entity is generated. Its name is Kind#Key, and it is unique for that specific

ancestor path.

If entities, inside the Datastore, do not declare a parent entity, then each entity

will be mapped to a different Partition Group.

Considerations Google App Engine Datastore allows to express queries

over descendent entities, i.e. ancestor paths are treated like relations among

entities. This characteristic gets lost during the direct mapping procedure.

All things considered, since Datastore is the only database of its kind (i.e.

Column-based) to provide relations among data, Metamodel direct translation

for this database can be considered acceptable.

Even though the Datastore offers other documented mechanisms to recon-

struct an ancestor path, they are not as performant as the method described

in the previously.

The first approach consists in requesting all descendents for a given entity.

This way of proceeding requires to make a new query for every entity that

needs to be mapped; it can be extremely inefficient for two different reasons:

1. Each query involves considerable latencies. Hence, the overall switch

over performance would be influenced.

2. Since an entity can be a root one or not, in order to reconstruct a whole

ancestor path, it may be necessary to store a huge amount of entities

in memory, before determining the correct relations among all of the

entities.

The second approach may exploit Datastore statistics queries in order to

firstly retrieve all root entities and then derive all descendents. This approach

suffers of a problem as well: statistics queries operate on data which get

computed automatically by the Datastore once or twice in a day, hence results

retrieved by this queries may not be always reliable.

A third approach would force remote applications to add a property to each

entity, which states if that it is root or not. Hence, Statistics queries wouldn’t

47

Metamodel Transformations

Table 4.2: Azure Tables – Direct Mapping

Azure Tables Metamodel
Entity Entity
Row Key Entity Key
Table Column Family
Property Name Column Name
Property Value Column Value (serialized)
Property Value type Column Value type
- Column Indexable
Table name + Partition Key Partition Group

be needed, since it would be possible to retrieve all root entities with just a

query, and the previous approach problem would be solved. Unfortunately, the

system wouldn’t be transparent from remote applications point of view and it

would depend on remote application implementation.

4.2.2 Azure Tables

Algorithm 3 Tables Class excerpt

Precondition: Implements AbstractDatabase class
1: tableList← azure.getTableList()
2: for each table in tableList do
3: entities← azure.getEntities(table)
4: for each entity in entities do
5: metamodelEntity ← TablesTransformer.toMetamodel(entity)
6: Queue.put(metamodelEntity)

The Tables class, implementing AbstractDatabase class, extracts all infor-

mation entity by entity. In order to do so, as can be also seen in Algorithm 3:

1. All tables’ names present in Azure Tables are retrieved.

2. All entities contained by the same table are extracted.

3. Each entity is passed to the transformer class, which is in charge of

analyzing the entity and properly map it to the Metamodel.

A summary of the mappings is shown in Table 4.2.

Mapping functions, reported in Algorithm 4, are investigated in the following

paragraphs.

48

4.2 Direct Translators

Algorithm 4 Azure Tables Transformer Class excerpt

Precondition: metamodel object has already been instantiated
1: function toMetamodel(entity)
2: mapKey(metamodel, entity.rowKey)
3: mapColumnFamily(metamodel, entity.table)
4: mapColumns(metamodel, entity)
5: mapPartitionGroup(metamodel, entity.table, entity.partitionKey)
6: return metamodel

Entity Key and Column Families mapping

1. Azure Tables entity Row Key is directly mapped to Metamodel entity

key.

2. Azure Tables entity table can be mapped to a Metamodel entity column

family, since it is used to group Azure Tables entities.

Entity Column mapping Azure Tables entity properties are equivalent to

Metamodel entity columns.

For this reason the following mappings can be applied:

1. Property name can be directly mapped to Column name.

2. Property value type is mapped to Column type and it is derived from

Azure Tables EdmType object, contained by each EntityProperty object.

3. Property value is directly serialized into a byte array and then stored in

Column value.

4. Finally, since Azure Tables does not provide secondary indexes, if the

source data type is not an array then Column indexable field is set to

true.

Partition Group mapping Strong consistency in Azure Tables is achieved

by a combination of the Row Key and Table name, i.e. for all entities having

the same Partition Key, and contained by the same table, transactions may

be defined. Hence, by determining entities Partition Key and Table name, it

is possible to properly assign a Partition Group to any entity.

Since Partition Key and Table name can simply be extracted from an

entity, the Partition Group named Table Name#Partition Key can easily be

49

Metamodel Transformations

generated.

4.3 Inverse Translators

An inverse translator converts data from the Metamodel into the destination

database representation.

The basic approach to create a correct mapping is to identify the destina-

tion database single datum container in the same way of Section 4.2. This

element can be populated from a Metamodel entity. The inverse translation

strongly depends on the destination database data model. Other key destina-

tion database aspects to be considered are: supported data types, consistency

properties and secondary indexes.

As regards data types, Metamodel Column value always contains serialized

data; if the destination database supports the data type contained in Meta-

model Column type field, then the value can be deserialized by means of the

utility method provided with the system. Otherwise, the value is kept se-

rialized and a new “property”, in the destination database, should be cre-

ated in order to store the original data type. Direct translators should

check for such a “property” whose name is, conventionally, composed by

“<Column Name>#Type”.

If the destination database supports indexes, then during the inverse transla-

tion stage, data item should be marked as indexable; obviously the procedure

changes with the database.

If the destination database does not support secondary indexes two approaches

can be taken: do not consider information regarding secondary indexes, or store

that information in auxiliary data items inside the destination database. The

latter approach should be chosen in case data, that has already been migrated,

should be transferred back to the original database or migrated again to a an-

other database which supports secondary indexes.

Finally, entities in the same Partition Group should be stored, by the destina-

tion database, in such a way to guarantee strong consistency. Not all databases

permit strong consistency and when they do, it is platform dependent; hence,

examples of two databases, that support transactionality, will be provided in

the following paragraphs.

50

4.3 Inverse Translators

Table 4.3: Datastore – Inverse Mapping

Metamodel Datastore
Entity Entity
Entity Key Entity Key Identifier
Column Family Entity Kind
Column Name Property Name
Column Value Property Value (deserialized)
Column Value type Check on supported Property data

types
Column Indexable Property set index
Partition Group Fictitious root entity

4.3.1 GAE Datastore

Algorithm 5 Datastore Class excerpt

Precondition: Implements AbstractDatabase class
1: while true do
2: metamodelEntity ← Queue.take()
3: datastoreEntities ←

DatastoreTransformer.fromMetamodel(metamodelEntity)
4: datastore.put(datastoreEntities)

The Datastore class, implementing AbstractDatabase class, performs in-

verse translation by applying the following steps, as can also be seen in Algo-

rithm 5:

1. Extracts Metamodel Entities from the queue.

2. Each entity is then passed to the Datastore translator that performs the

correct transformation from Metamodel representation to Datastore data

model.

3. When a proper Datastore Entity is returned from the transformer, it gets

persisted to the Datastore.

A summary of the inverse mappings is shown in Table 4.3.

Mapping functions, reported in Algorithm 6, are investigated in the following

paragraphs.

51

Metamodel Transformations

Algorithm 6 Datastore Transformer Class excerpt

Precondition: datastoreEntities, a List of Datastore Entities, has already
been instantiated

1: function fromMetamodel(metamodelEntity)
2: if !existsF ictitiousEntity(metamodelEntity.partitionGroup) then
3: fictitiousEntity ←

createF ictitiousEntity(metamodelEntity.partitionGroup))
4: for each columnFamily in metamodelEntity.columnFamilies do
5: datastoreEntity ←

new Entity(columnFamily,metamodelEntity.key,
fictitiousEntity)

6: mapColumns(datastoreEntity,metamodelEntity)
7: datastoreEntities.add(datastoreEntity)
8: return datastoreEntities

Partition Group mapping Before creating a Datastore Entity, aspects

regarding transactionality should be considered. Entities in the same Partition

Group should be stored in such a way that the Datastore can apply strong

consistency policies on them.

The mechanism which grants transactionality in the Datastore is the ancestor

path which is uniquely identified by the root entity.

Fictitious Entity creation Hence, in order to keep transactionality as-

pects during the migration process, a fictitious root entity, for each partition

group, should be created.

Since Metamodel Entities are processed singularly, for performance reasons

and to keep as fewer elements as possible in memory, it is not possible to know

in advance all entities belonging to the same Partition Group; hence, it is

necessary to make a query to the Datastore asking if a fictitious entity, derived

from the Partition Group, is already present. If it is not, than it should be

added.

Fictitious Entity is generated from Partition Group name. The substring on

the left hand-side of symbol “#” is concatenated with the symbol “@” and

mapped to the fictitious entity kind. Whereas, the substring on the right

hand-side of symbol “#” is mapped to the fictitious entity key identifier.

Datastore Entity creation At this point, a Datastore Entity can be

created and its parent Entity will coincide with the fictitious root entity.

52

4.3 Inverse Translators

Entity Key and Column Families mapping

1. For every Column Family contained by a Metamodel Entity a new Data-

store Entity is generated, hence each Column Family is mapped to a

Datastore Entity Kind.

2. Every Metamodel Entity Key is directly mapped to a Datastore Entity

Key identifier.

This procedure may generate different Datastore Entities, starting from

just a Metamodel Entity, with the same key identifier, but different Entity

Kinds.

Entity Column A Metamodel Entity may contain several Columns, each

of them is mapped to a Datastore Entity property. Aspects that need to be

considered in this phase, are secondary indexes and supported data types.

These are the steps that need to be done in order to correctly map a Column

to a Property:

1. Column name is mapped to Property name.

2. Before deserializing data contained by Column value field, a check on

Datastore supported data types is performed.

• If that particular data type, contained by Column type field, is

supported, then Column value field is deserialized and mapped to

the property value.

• Otherwise, it is kept serialized and stored inside Column value field.

Hence, an auxiliary property named <Column Name>#Type is cre-

ated and the original data type, contained in Column type field, is

inserted into it.

3. If Column indexable field contains a true value, then the respective prop-

erty on the Datastore should be set as indexable too.

Considerations All things considered, in order to preserve strong consis-

tency, in the worst case, one read and two write operations per Metamodel

Entity are performed on the Datastore. This can result in significant migration

time interval, depending on the direct Metamodel translation.

53

Metamodel Transformations

Table 4.4: Azure Tables – Inverse Mapping

Metamodel Azure Tables
Entity Entity
Entity Key Entity Row Key
Column Family All stored inside the same table
Column Name Property Name
Column Value Property Value (deserialized)
Column Value type Check on supported Property data

types
Partition Group Table Name and Entity Partition

Key

4.3.2 Azure Tables

Algorithm 7 Azure Tables Class excerpt

Precondition: Implements AbstractDatabase class
1: while true do
2: metamodelEntity ← Queue.take()
3: tablesEntity ←

TablesTransformer.fromMetamodel(metamodelEntity)
4: tables.createTable(tablesEntity.tableName)
5: tables.put(tablesEntity)

The Tables class, implementing AbstractDatabase class, performs inverse

translation by applying the following steps, as can also be seen in Algorithm 7:

1. It extracts Metamodel Entities from the queue.

2. Each entity is then passed to the Tables translator that performs the

correct transformation from Metamodel representation to Azure Tables

data model.

3. When a proper Tables Entity is returned from the transformer, it is

persisted to Azure Tables.

A summary of the inverse mappings is shown in Table 4.4.

Mapping functions, reported in Algorithm 8, are investigated in the following

paragraphs.

54

4.3 Inverse Translators

Algorithm 8 Azure Tables Transformer Class excerpt

1: function fromMetamodel(metamodelEntity)
2: tablesEntity ← setTableName(metamodelEntity.partitionGroup)
3: for each columnFamily in metamodelEntity.columnFamilies do
4: mapColumns(tablesEntity, columnFamily,

metamodelEntity)
5: return tablesEntity

Partition Group mapping An important aspect to take into account when

migrating to Azure Tables is strong consistency. This database offers trans-

actionality to entities contained in the same table and that have the same

Partition Key.

Since in the Metamodel representation the unit of transactionality is repre-

sented by the Partition Group, a proper mapping between these aspects should

be provided.

As stated in previous Section, the convention typically adopted is to separate

Partition Group name into two parts, separated by the “#” symbol.

• The substring on the left-hand side of the “#” symbol is mapped to the

Table name;

• the substring on the right-hand side of the “#” symbol is mapped to the

Partition Key.

In this way, for all entities contained by the same Partition Group, strong

consistency can be guaranteed.

Entity Key and Column Families mapping

1. Column Families indexed by the same Entity Key, and contained by

the same Partition Group, are all put in the same Table, given that

transactionality should be also applied to them.

2. Metamodel Entity Key is mapped to Tables Entity Row Key.

Notice that, the concept of Column Family has no direct counterpart in Azure

Tables.

55

Metamodel Transformations

Entity Column A Metamodel Column can be directly mapped to a Tables

Property.

1. Column name is copied inside Property name field.

2. Before deserializing data contained in Column value field and storing it

as a Property value, a method that performs a check on Azure Tables

supported data types, is called. So:

• if the data type, contained inside Column Type field, is supported by

Azure Tables, then Column value is deserialized into the Property

value.

• Otherwise, data is left serialized and copied inside Property value

field. And an auxiliary property named <Column Name>#Type is

created to store the original data type, contained in Column type

field.

Considerations Azure Tables does not support secondary indexes. At the

actual stage of the implementation of the system, it has been decided not to

create a new table to store secondary indexes information. This choice has been

motivated by the fact that, currently, the system supports just two databases.

4.4 Summary

This chapter discussed how different database data models can be mapped to

the Metamodel defined in Chapter 3, and viceversa. Approaches adopted take

into account databases specific properties and differences, trying to support

all of them during the migration process. Moreover, several considerations,

regarding approach tradeoffs, have been expressed.

56

Chapter 5

Migration System Evaluation

5.1 Introduction

In this Chapter several evaluations are reported.

In Section 5.2, we conduct some tests aimed at verifying the performance of

the the migration system. In order to do so, we refer to an application, called

MiC.

Subsequently, in Section 5.3, we make some further considerations on the mi-

gration system, in particular we compare the Metamodel approach with a

direct database-to-database translation.

In Section 5.4, we show how a Key-Value database, like Amazon DynamoDB,

can be supported by the migration system described in the previous chapters.

Moreover, since DynamoDB deals with data consistency in a particular way,

several interesting mappings, that exploit the Metamodel properties, are re-

ported.

Finally, in Section 5.5, we draw the conclusions about performed tests.

5.2 Performance and overhead of the migra-

tion system

In order to test the migration system described in the previous chapters, data

stored by an application called “Meeting in the Cloud” (MiC) has been used.

This application, in turn, has been originally developed to test a library, called

“Cloud Portable Independent Model” (CPIM) [9].

CPIM aims to build an abstraction layer that enables applications, deployed

in different Cloud platforms, to use a common set of API to interact with

Migration System Evaluation

any Cloud service supported, independently from the Cloud platform vendor.

In particular, the services supported by CPIM are: Blob service, NoSQL

service, SQL service, TaskQueue service, MessageQueue service, Memcache

and Mailing services. At the moment of writing this thesis, CPIM supports

Java applications developed on Google App Engine and Windows Azure

platforms.

CPIM NoSQL service exploits Java Persistence API (API), specific for each

database implementation, to operate on NoSQL databases.

MiC is a social networking web application, written in Java, that uses CPIM

library to interact with all the services listed before. Upon registration, MiC

lets users declare their interests by choosing among seven default categories

(called Topics). For each chosen category, the user has to answer to some

questions, by expressing a rate from 1 to 5 (UserRatings). For these two kinds

of interactions –i.e. topics selection and user ratings – information are stored

inside the NoSQL database (GAE Datastore or Azure Tables).

MiC then calculates affinities between users and get them in touch, by

evaluating the Pearson’s coefficient. From this moment on, users will be able

to post messages about selected topics. In order to perform these last tasks,

MiC uses other services among those listed before, but since they do not affect

NoSQL databases behaviour, they are not further investigated by this thesis.

MiC uses a fixed data model that can be represented by the class diagram

in Figure 5.1, both for GAE Datastore and for Azure Tables.

Figure 5.1: MiC NoSQL service Class diagram

• Topic Class stores the topics about the questions that the user answers

to. Its attributes are:

– topicName: which contains the name for the given topic and it is

also the unique key.

58

5.2 Performance and overhead of the migration system

– topicQuestions: which contains a list of questions for a specific

topic.

• UserRatings class represents the answers that a specific user has given

to the questions proposed to him. Its attributes are:

– id: which uniquely identifies an answer. It is the concate-

nation of the “email” and the “topicName” attribute – e.g.

email topicName.

– email: which stores user email address.

– topicName: which represents the name of the topic related to the

answers given by the user.

– ratings: which contains the answers to the questions asked to user

“email”, regarding topic “topicName”.

The following paragraphs show how the two classes in Figure 5.1 have been

mapped to the respective databases by CPIM library.

Google App Engine Datastore Each class, represented in Figure 5.1, cor-

responds with a Kind, respectively UserRatings and Topic. Hence, every in-

stance of a class is mapped to an Entity. Whereas, each attribute in the classes

has been mapped to an Entity Property. Ratings and questions attributes’ data

types are Lists of integers and strings respectively, and since List data type

is natively supported by the Datastore it is automatically interpreted and no

further action is necessary.

CPIM library does not make use of ancestor paths, hence data are stored so

as that future operations will retrieve those data in an eventually consistent

way.

Azure Tables The classes in Figure 5.1 are translated into two different

tables by Azure Tables. For every class instance a new Entity (row) inside the

respective table is created. Each class attribute is then mapped to an Entity

Property.

Since ratings and questions attributes data types are Lists of integers and

strings respectively, and they are not supported by Azure Tables, the re-

spective Properties data type is set as binary array. To preserve original

59

Migration System Evaluation

data type information, CPIM library creates a new Property whose name is

jpa4azureBeanType, which contains the name of the object (UserRatings or

Topic) that will be used to deserialize the attributes labelled with the annota-

tion @Embedded – i.e. ratings and questions.

CPIM library sets the same Partition Key for every entity stored inside the

same table, this forces Azure Tables to store data so as that future operations

will retrieve those data in a strongly consistent way.

5.2.1 Data migration: compatibility test

The first test, that has been conducted, aimed at verifying whether MiC ap-

plication would have worked after complete data switch over from a NoSQL

database to another.

In order to do so, MiC application has been deployed on Google App Engine

and some data has been generated by simulating users answers. In particular

1,200,000 UserRatings Entities have been generated performing the following

steps:

• email field has been generated starting from the email address

modaclouds<number>@polimi.it and substituting <number> with

a progressive number.

• topicName field has been randomly chosen among elements of a set com-

posed by 7 different topics.

• ratings field has been generated by randomly choosing an answer among

five of them.

• id field is simply the concatenation of the previous email field and top-

icName field.

Finally, these generated entities have been directly inserted in GAE Datastore

by means of RemoteApi.

After that, the migration system, deployed on a local working station, has

been executed and the task of migrating data from GAE Datastore to Azure

Tables has been assigned to it. Details about migration system deployment

and execution are reported in Appendix B.

At data migration completion, MiC application has been deployed on Windows

60

5.2 Performance and overhead of the migration system

Azure. Almost all MiC functionalities have been tested and all of them worked

as expected.

The only exception is related to the function that calculates users similarities.

Similarity functions extract data contained inside ratings field and calculate

Pearson’s coefficient.

Ratings field contains a list of objects. Since lists are not natively supported by

Azure Tables, CPIM library serializes ratings list and stores the resulting bytes

as a Property, of byte array type, in Azure Tables. In the migration from GAE

Datastore to Azure Tables this does not represent a problem, since CPIM uses

JPA serialization algorithm, which is the same used by the migration system.

Hence, serialized migrated data is correctly interpreted by MiC application.

Although this problem does not occur in the migration from GAE Datastore to

Azure Tables, it arises after the inverse migration, from Azure Tables to GAE

Datastore, has been done. In fact, since GAE Datastore natively supports

lists, MiC application expects to read an object list from ratings Property, in

order to apply similarity algorithms. But, during the inverse migration, the

migration system reads a byte array from Azure Tables and migrates it to a

byte array on GAE Datastore. This implies that MiC function that calculates

users similarities does not work after this migration, because it expects to

retrieve a list and not a byte array.

So, in this particular case, MiC application should be modified in order to

read the original data type from the type Property, created by the migration

system, and then deserialize data into a list.

5.2.2 Performance tests

This section describes the migration tests conducted over data stored by MiC

application, both in GAE Datastore and in Azure Tables, from a quantitative

perspective. In particular, the migration is performed on UserRatings class,

since it contains more instances than Topic class. Furthermore, UserRatings

class contains attributes of several data types, including collections – i.e. a list

of integers – and, for testing purposes, other two boolean attributes have been

added.

MiC uses different consistency policies on the two databases, i.e. data present

in GAE Datastore have been stored in order to provide eventual consistency,

61

Migration System Evaluation

whereas, data in Azure Tables have been set up to preserve strong consistency

on all data contained by the table UserRatings.

For this latter reason, we made several tests with different consistency policies

for each database:

1. A migration from GAE Datastore to Azure Tables, where MiC source

data is stored, by MiC application itself, in order to provide eventual

consistency.

2. A migration form from Azure Tables to GAE Datastore, where MiC

source data is stored, by MiC application itself, in order to provide

strong consistency.

3. A migration form from Azure Tables to GAE Datastore, where data gen-

erated by the test at point 1 have been stored by the migration system,

in order to provide eventual consistency.

Each of these tests has been performed into two different scenarios:

1. On a Virtualized Private Server located in Politecnico di Milano.

2. On the Google Cloud IaaS platform, i.e. Compute Engine.

Each test considers four aspects:

1. The throughput of data transiting in the system, i.e. entering entities,

Metamodel entities in the Queue and exiting entities, as described in

Chapter 3.

2. CPU usage.

3. Overall time needed for migration completion.

4. Time needed for getting data from source database, translating it to

Metamodel representation and storing it in the queue – i.e. conversion

and extraction time.

The tools used to conduct the tests are:

• a linux virtual machine, whose characteristics depend on the scenario

considered, hence each of the following paragraphs will make them ex-

plicit.

62

5.2 Performance and overhead of the migration system

• sysstat package to measure the percentage of CPU used durings tests.

• log4j library, integrated in the migration system, gives information about

the duration of the tests and the time needed to finish the production of

the Metamodel objects to be stored in the queue.

• a customized library to measure the size of objects stored in the queue.

• Google App Engine statistics on Datastore to calculate the average di-

mension of entities stored and the total amount of data to be migrated.

In the following two paragraphs we provide the results for the two scenarios.

In Section 5.5 we discuss the obtained results.

In House scenario

All tests have been performed on an Intel Nehalem dual socket quad-core CPUs

@2.4 GHz with 24 GB of RAM running Ubuntu Linux 2011.4. The migration

system runs inside a Tomcat application server, installed on a virtual machine

with 3 dedicated physical cores and 8GB of RAM. The operating system in-

stalled on the virtual machine is Ubuntu Server 12.04 and it is configured as

described in Appendix B.

Google does not provide any information about the physical location of the

Datastore servers that host the MiC data. Whereas, data stored by Azure

Tables is located in Western-Europe datacenters.

Figure 5.2 shows the deployment architecture for the conducted tests.

Google App Engine Datastore to Azure Tables migration For the mi-

gration from GAE Datastore to Azure Tables five tests have been conducted,

each with a different number of entities to be migrated.

Based on Google App Engine statistics, an entity average size, for UserRatings

Kind, is 454 Byte; hence, a proper number of entities has been chosen in order

to transfer 16MB, 32MB, 64MB, 128MB, 256MB, and 512MB of data.

Given that, MiC does not use ancestor paths for storing data in GAE Data-

store, every entity is a root entity; hence, data get translated to Metamodel

representation preserving eventual consistency. So, based on the translation

approach described in Chapter 4, we can conclude that the system performs

a read operation from GAE Datastore and a write operation to Azure Tables

63

Migration System Evaluation

Figure 5.2: Deployment architecture - In House scenario

Figure 5.3: Migration from GAE Datastore to Azure Tables - CPU usage

64

5.2 Performance and overhead of the migration system

Table 5.1: Migration from GAE Datastore to Azure Tables - In House scenario
dataset
#1

dataset
#2

dataset
#3

dataset
#4

dataset
#5

dataset
#6

Source size 16 32 64 128 256 512

of Entities 36940 73879 147758 295515 591040 1182062

Migration
time (sec)

2009 3914 7915 16348 33156 61204†

Entities
throughput
(ent/s)

18.387 18.876 18.668 18.077 17.826 19.313

Queued data
(MB)

81.98 166.90 336.73 676.00 1331.20 2709.00

Extraction
and Con-
version time
(sec)

42 69 182 273 625 862

Queued data
throughput
(KB/s)

1998.75 2476.89 1894.57 2535.62 2181.04 3218.12

Exiting data
(MB)

70.95 141.89 283.79 567.57 1135.16 2270.28

Exiting data
throughput
(KB/s)

36.16 37.12 36.72 35.55 35.06 37.98

Avg. %CPU
usage

2.975 2.616 2.437 1.789 1.795 1.803

Tests started on Sunday afternoon at 6PM and ended on the next Tuesday at 5AM
†This particular test started on Thursday around 9PM

of entities

1,2e+06

of entities

1,2e+06

Figure 5.4: Migration from GAE Datastore to Azure Tables - Times growth -
In House scenario

65

Migration System Evaluation

for each entity that is migrated.

Results of each test are reported in Table 5.1. Whereas, Figure 5.3 illustrates

CPU usage variation during the migration; in particular, it shows that after

Metamodel entities production, CPU usage drops to values between 2% and

3%, and remains almost constant for the whole migration procedure. During

Metamodel entities production, the CPU experiences a greater usage, with

values ranging between 37% and 15%.

Finally, Figure 5.4 depicts how migration times and extraction and conversion

times grow, with respect to the number of entities.

Table 5.2: Migration from Azure Tables to GAE Datastore preserving eventual
consistency - In House scenario

dataset
#1

dataset
#2

dataset
#3

dataset
#4

dataset
#5

of Entities 9235 18470 36940 55410 73879

Migration time
(sec)

4944 10141 15738 30804 29666

Entities throughput
(ent/s)

1.868 1.821 2.347 1.799 2.490

Queued data (MB) 23.32 45.26 94.85 144.42 193.98

Extraction and
Conversion time
(sec)

13 24 42 58 69

Queued data
throughput (KB/s)

1836.623 1930.953 2312.609 2549.672 2878.701

Exiting data (MB) 4.00 8.00 16.00 24.00 32.00

Exiting data
throughput (KB/s)

0.83 0.81 1.04 0.80 1.10

Avg. %CPU usage 0.353 0.287 0.318 0.245 0.304

Tests started on Friday at 12AM and ended on the next Monday at midnight.

Azure Tables to Google App Engine Datastore migration preserving

eventual consistency In this paragraph we report the data we have

obtained migrating data that have been stored by tests performed in the

previous paragraph, preserving eventual consistency. This caused every single

entity, inside UserRatings table, to have a different Partition Key.

Since Azure Tables does not give any information on the tables size, it is not

possible to calculate an entity average size. Hence, an estimation, on the

numbers of entities to be extracted, have been done, based on GAE Datastore

entities.

66

5.2 Performance and overhead of the migration system

Figure 5.5: Migration from Azure Tables to GAE Datastore preserving even-
tual consistency - CPU usage

of entities # of entities

Figure 5.6: Migration from Azure Tables to GAE Datastore preserving even-
tual consistency - Times growth - In House scenario

67

Migration System Evaluation

During tests with more 70000 entities, we experienced frequent unrecoverable

crashes – i.e. HTTP 500 and 503 errors – not depending on the migration

system. These two latter errors refer to Google App Engine internal errors,

i.e. GAE instances are not able to manage continuous HTTP requests, lasting

more than a given amount of time. Hence, new approaches for transferring

a bigger amount of entities should be implemented in the future. A possible

solution is reported in Section 5.5.

In order to test the migration system in this situation, it has been decided to

migrate a lower number of entities.

The migration system, after having mapped source entities to the Metamodel

representation, checks their consistency policy and performs the proper

translation to the destination database. Hence, based on the translation

approach described in Chapter 4 and on the previous consideration on the

Partition Keys, we can conclude that the system performs a read operation

from Azure Tables, another read operation from GAE Datastore and two

write operations to GAE Datastore, for each migrated entity.

Figure 5.5 illustrates CPU consumption during the migration. After Meta-

model entities production, CPU usage drops to values between 0.2% and 1%,

and remains almost constant for the whole migration procedure.

Finally, Figure 5.6 depicts how migration times and extraction and conversion

times grow, with respect to the number of entities. From this figure we notice

that the migration time does not seem to grow linearly; in particular we infer

this from the last two tests – i.e. the one which transferred 55,410 entities

and the one which transferred 73,879. We assume this behaviour is due to the

multitenancy of the cloud database service, since the former test was executed

on a Monday at 3PM (possible higher load), while the latter was executed on

a Saturday at 16PM (possible lower load).

Azure Tables to Google App Engine Datastore migration preserv-

ing strong consistency This tests migrates MiC original data, stored with

strong consistency policies, to GAE Datastore, thus preserving strong consis-

tency. In fact, MiC assigns the same Partition Key to all entities contained by

the same table. Hence, for every entity to be migrated, the migration system

performs a read operation from Azure Tables, another read operation from

68

5.2 Performance and overhead of the migration system

of entities

60.000

of entities

60.000

Figure 5.7: Migration from Azure Tables to GAE Datastore preserving strong
consistency - Times growth - In House scenario

GAE Datastore – to check whether a parent entity already exists – and, since

the parent entity has already been created by the first migrated entity, just

one write operation on GAE Datastore is needed.

Details about this test are reported in Table 5.3.

Table 5.3: Migration from Azure Tables to GAE Datastore preserving strong
consistency - In House scenario

dataset #1 dataset #2 dataset #3

of Entities 9235 36940 55410

Migration time (sec) 1487 5719 8547

Entities throughput (ent/s) 6.210 6.459 6.483

Queued data (MB) 22.76 91.02 136.53

Extraction and Conversion
time (sec)

16 52 79

Queued data throughput
(KB/s)

1456.339 1792.341 1769.653

Exiting data (MB) 4.00 16.00 24.00

Exiting data throughput
(KB/s)

2.75 2.86 2.88

Avg. %CPU usage 0.830 0.755 0.690

Tests started on Thursday at 11AM and ended on the same day at about 11PM.

With respect to the previous test – i.e. where we preserved eventual con-

sistency – we can observe:

• The overall throughput for transferring all the entities, preserving strong

consistency, is almost three times greater.

• Extraction and conversion times are almost identical.

69

Migration System Evaluation

• The greater throughput seems to come at the cost of a higher average

CPU utilization. Anyway the difference is negligible, and in both cases

it settles below 1%.

Finally, Figure 5.7 depicts how migration times and extraction and conver-

sion times grow, with respect to the number of entities

Cloud scenario

Since the migration system will probably be executed inside cloud environ-

ments, some tests on Google Compute Engine Cloud IaaS platform have been

carried out.

Compute Engine is an IaaS platform and it allows to create virtual machines

with different characteristics. For these tests, a virtual machine with two

virtual CPUs and 7.5GB of RAM has been chosen. The virtual machine runs

a Linux-based (Debian) operating system, and the test environment has been

configured according to the previous Section 5.2.2. The virtual machine is

physically hosted by Google datacenters in Western-Europe.

The same tests of the previous Section have been conducted, this time with

just three different data sets, instead of six. The results are reported in the

following paragraphs. Figure 5.8 shows the deployment architecture for the

conducted tests.

Google App Engine Datastore to Azure Tables migration For the

migration from GAE Datastore to Azure Tables three data sets, with different

size, have been chosen: 16MB, 64MB and 512MB.

The results are reported in Table 5.4.

With respect to the In House scenario for the same test (reported in Sec-

tion 5.2.2) we observed:

• Migration times reduced by an average factor of 1.82, with respect to the

In House scenario.

• As a consequence of the previous point, the overall execution time results

are 1.82 times greater, on average, with respect to the In House scenario.

• Extraction and conversion times are in general lower, of a factor 1.33,

with respect to the In House scenario.

70

5.2 Performance and overhead of the migration system

Figure 5.8: Deployment architecture - Cloud scenario

Table 5.4: Migration from GAE Datastore to Azure Tables - Cloud scenario
dataset #1 dataset #2 dataset #3

Source size 16 64 512

of Entities 36940 147758 1182062

Migration time (sec) 1098 4270 34111

Entities throughput (ent/s) 33.643 34.604 34.653

Queued data (MB) 81.98 336.73 2709.80

Extraction and Conversion
time (sec)

31 120 768

Queued data throughput
(KB/s)

2707.985 2873.446 3613.067

Exiting data (MB) 69.00 283.79 2270.28

Exiting data throughput
(KB/s)

64.35 68.06 68.15

Avg. %CPU usage 4.749 3.947 4.111

Tests were conducted starting from Monday at 9AM until Wednesday at 11PM.

71

Migration System Evaluation

of entities

1,2e+06

of entities

1,2e+06

Figure 5.9: Migration from GAE Datastore to Azure Tables - Times growth -
Cloud scenario

• Average CPU usage is in general greater, around values of 4%, with

respect to the In House scenario, where it settles around values of 2%.

• As in the In House scenario, both migration time and the extraction

and conversion time grow almost linearly with respect to the number of

transferred entities.

Finally, Figure 5.9 depicts how migration times and extraction and conver-

sion times grow, with respect to the number of entities.

Azure Tables to Google App Engine Datastore migration preserving

eventual consistency This tests migrates data, generated from previous

test, back to GAE Datastore preserving eventual consistency.

Since Azure Tables does not give any information on the tables size, it is

not possible to calculate an entity average size. Hence, an estimation, on the

numbers of entities to be extracted, have been done, based on GAE Datastore

entities. The three data sets considered, together with the results of the tests

are reported in Table 5.5.

With respect to the In House scenario for the same test (reported in Sec-

tion 5.2.2) we observed:

• Almost equal migration times, just a slightly lower than in the In House

scenario. As a consequence the destination data throughput of both

scenarios are almost equal.

72

5.2 Performance and overhead of the migration system

Table 5.5: Migration from Azure Tables to GAE Datastore preserving eventual
consistency - Cloud scenario

dataset #1 dataset #2 dataset #3

of Entities 9235 36940 73879

Migration time (sec) 4128 13101 27970

Entities throughput (ent/s) 2.237 2.820 2.641

Queued data (MB) 22.97 93.50 191.22

Extraction and Conversion
time (sec)

10 24 44

Queued data throughput
(KB/s)

2352.302 3989.513 4450.118

Exiting data (MB) 4.00 16.00 32.00

Exiting data throughput
(KB/s)

0.99 1.25 1.17

Avg. %CPU usage 0.701 0.605 0.563

Tests started on a Tuesday at 9AM and ended on the same day at about 10PM

of entities

80.000

of entities

80.000

Figure 5.10: Migration from Azure Tables to GAE Datastore preserving even-
tual consistency - Times growth - Cloud scenario

73

Migration System Evaluation

• Extraction and conversion time is lower in this cloud scenario. This may

be due to the variability of the cloud performance in general.

• CPU usage is below 1% in both scenarios.

Finally, Figure 5.10 depicts how migration times and extraction and con-

version times grow, with respect to the number of entities.

Azure Tables to Google App Engine Datastore migration preserv-

ing strong consistency This test migrates MiC original data, stored in a

strongly consistent way by MiC application itself, to GAE Datastore. The

migration system will preserve strong consistency on the destination database,

i.e. GAE Datastore.

The three data sets considered, together with the results of the tests are re-

ported in Table 5.6.

Table 5.6: Migration from Azure Tables to GAE Datastore preserving strong
consistency - Cloud scenario

dataset #1 dataset #2 dataset #3

of Entities 9235 36940 55410

Migration time (sec) 1402 5340 8599

Entities throughput (ent/s) 6.587 6.918 6.444

Queued data (MB) 22.40 89.61 134.41

Extraction and Conversion
time (sec)

10 30 41

Queued data throughput
(KB/s)

2294.067 3058.627 3357.047

Exiting data (MB) 4.00 16.00 24.00

Exiting data throughput
(KB/s)

2.92 3.07 2.86

Avg. %CPU usage 1.509 1.139 0.957

Tests started on a Thursday at 15PM and ended on the same day at about 10PM

With respect to the In House scenario for the same test (reported in Sec-

tion 5.2.2) we observed:

• Almost equal migration times. As a consequence, the output throughput

is almost identical.

• Extraction and conversion times are lower, in all tests, with respect to

the In House scenario. Hence, the throughput on the queue is greater in

this scenario.

74

5.2 Performance and overhead of the migration system

of entities

60.000

of entities

60.000

Figure 5.11: Migration from Azure Tables to GAE Datastore preserving strong
consistency - Times growth - Cloud scenario

Furthermore, with respect to the previous test – i.e. where we preserved

eventual consistency – we can observe:

• The overall throughput for transferring all the entities, preserving strong

consistency, is almost three times greater.

• Extraction and conversion times are almost identical.

• The greater throughput seems to come at the cost of a higher average

CPU utilization. Anyway the difference is negligible.

Finally, Figure 5.11 depicts how migration times and extraction and con-

version times grow, with respect to the number of entities.

Table 5.7: GAE Datastore throughput test
dataset #1 dataset #2 dataset #3

of Entities 9235 18470 36940

Entities size (MB) 4 8 16

Populating time (sec) 16 22 55

Overall time (sec) 153 309 651

queue population throughput
(ent/s)

577.188 839.545 671.636

Overall throughput (ent/s) 60.359 59.773 56.743

Avg. %CPU usage 2.975 2.319 1.750

Tests started on a Monday from 12AM

Throughput test In order to measure the optimal entities throughput of

GAE Datastore, and then compare it to the throughput obtained with the

75

Migration System Evaluation

migration system, a custom application has been developed. This application

extracts entities from GAE Datastore, changes their Kind – i.e. from UserRat-

ings to Throughput – and put them in a queue. A consumer thread extracts

modified entities from the queue and puts them back to GAE Datastore, until

the queue is empty (data have been replicated).

Variables measured by this test are the overall completion time and the time

needed to populate the queue. The test has been performed with three different

entities data sets, respectively of 4 MB, 8 MB and 16 MB. Starting from these

data, the respective throughput has been calculated.

The custom application has been written in Java and it has been run on Google

Compute Engine platform with the same configuration of previous sections.

The results of these tests are shown in Table 5.7.

We can observe that the overall migration time grows linearly with the number

of entities to be transferred. The population time is variable and it depends

on the reading latencies from GAE Datastore. Finally, the overall through-

put decreases, in an inverse proportional way, with respect to the number of

transferred entities.

5.3 Comparing the proposed migration ap-

proach with direct database-to-database

translations

In this section we make some considerations about the Metamodel proposed in

this thesis, in contrast with direct database-to-database translators that could

be developed to accomplish the same task.

A database-to-database translator is a custom software that maps data from a

source database to a destination one. Every time a new database needs to be

supported, two new translators need to be written, for every database already

supported. Thus, if N is the number of databases then N · (N − 1) translators

should be developed. Hence, it is evident that the numbers of translators grows

quadratically with the number of databases.

Furthermore, when a new database needs to be supported, the developer has to

be familiar with all the programming interfaces and the possible issues specific

for every database already supported.

With the development of a metamodel, instead, the number of translators that

76

5.4 Extendability of the migration system

needs to be developed grows linearly, in fact it is 2 · N . Developers does not

need to know about details of the other supported databases, in order to write

proper mappings that work with all other databases.

One of the advantage of direct translators could be performance; i.e. if the

metamodel is not designed properly, it may heavily impact on the overall time

needed for the migration, and it may also affect CPU usage.

From the the tests results of the previous section, it is evident that the mere

translation process, from a source database to the Metamodel, requires always

less then 0.1% of the total migration time. Moreover, the overhead on CPU, for

the translation process, is always less then 50% and, after direct translation,

it suddenly drops to values below 5%.

Therefore, we can assert that the overall performance are not affected by the

introduction of this Metamodel.

This comparison does not take into account the inverse translation process,

since even in the case of direct mapping between databases, at least a transla-

tion should be done. Furthermore, the major part of the whole migration time

does not depend on translations, but on write latencies. The exactly same

write latencies are experienced by any translator, whether it is a direct one,

or it uses an intermediate metamodel.

Thus, to conclude, we can affirm that the introduction of this Metamodel does

not affect performance, indeed it eases the developers’ burden when writing

translators, and it offers a clear interface to preserve properties like secondary

indexes and different consistency policies.

5.4 Extendability of the migration system

As an added value of this thesis, we show how it is possible to support the

migration even of Key-Value databases thanks to the Metamodel described in

Chapter 3.

This section focuses on the migration of Amazon DynamoDB, a Key-Value

NoSQL database with a data model similar to the Dynamo one, discussed in

Chapter 2, but with a different underlying architecture.

77

Migration System Evaluation

DynamoDB data model

An Amazon DynamoDB database is made of tables, each table can contain

several items and each item is a collection of attributes. Each attribute is a

key-value pair, where the key is the attribute name, whereas the value stores

the attribute value. Furthermore, an attribute can be single-valued or a multi-

valued set.

Amazon DynamoDB is a schema-less database, hence the number of attributes,

that an item can contain, is not fixed. The only mandatory attribute is the

Primary Key. Amazon DynamoDB provides two different types of primary

keys:

• Hash Type Primary Key: a single-valued hash attribute, used to create

an unordered hash index.

• Hash and Range Type Primary Key: a double-valued attribute, whose

first attribute is the hash attribute and the second one is the range

attribute. An unordered hash index is built on the first attribute, whereas

a sorted range index is built on the second attribute.

Finally, Amazon DynamoDB allows users to specify whether they want a

read operation to be eventually consistent or strongly consistent.

Translators design

In order to design proper translators for Amazon DynamoDB, some consider-

ations should be done.

Since DynamoDB provides two different consistency policies, even though just

for read operations, a user expects that those policies are preserved by the

migration system. Hence, two different pairs of translators can be designed,

one for each type of consistency policy. Thus, upon data migration, the final

user can choose the proper consistency policy for the data he is about to

migrate.

The only difference between the two pairs of translators will reside in the

respective direct translator, i.e. the one that translates source data to Meta-

model data. In particular, in case strong consistency is chosen, the value of

the Metamodel Partition Group field should be the same for any DynamoDB

item contained by the same table. Whereas, in case of eventual consistency,

78

5.4 Extendability of the migration system

the Metamodel Partition Group value should vary with each DynamoDB item.

Since, Metamodel Partition Group value is composed by two strings divided

by an “#” symbol, in both cases the first string should coincide with the Dy-

namoDB table name; whereas, the second string, in case of strong consistency,

will be a fixed string for every entity ; or, in case of eventual consistency, it

may coincide with the DynamoDB primary key .

The remaining mappings are the same for both of translators pairs.

Direct translator Each DynamoDB item will correspond to a new Meta-

model Entity. Then, each Amazon DynamoDB table should be mapped to a

Metamodel Column Family.

Based on the type of DynamoDB item Primary Key, two different actions

should be performed:

• In case of Hash Type Primary Key, its value is directly mapped to Meta-

model Entity Key.

• In case of Hash and Range Type Primary Key, it should be separated.

The hash part is mapped to Metamodel Entity Key. Whereas, the second

part is mapped to a new Metamodel Entity Column, automatically set

to be indexable, in order to enable applications to express queries on its

value.

Finally, each attribute contained by a DynamoDB item should be mapped to

a Metamodel Entity Column. In case an attribute is indexable, a true value

should be set in the respective Metamodel Column indexable field. Every at-

tribute value should be serialized and mapped to a Metamodel Column Value,

and the original data type should be stored inside Column Type field.

Inverse translator Since consistency in DynamoDB does not depend on

the data model design, the Metamodel Partition Group can be ignored.

Each Metamodel entity can be translated into a DynamoDB item. Hence the

Metamodel Column Family should be extracted from the Entity and mapped

to a new DynamoDB table.

The entity key can be mapped to a DynamoDB Hash Type Primary Key.

Notice that, since a Metamodel entity can contain Columns that, in turn, are

contained by different Column Families, it may be necessary to duplicate the

79

Migration System Evaluation

same Entity key to different DynamoDB tables.

Each Metamodel Column, contained by an Entity, should be mapped to an

attribute. This attribute should be set as indexable in case the respective

Column indexable field value is true. Finally, Column value should be dese-

rialized and mapped to an attribute value, if its data type is supported. If a

check mechanism founds that a specific data type is not supported, Column

value should be left serialized and mapped to the attribute value. Thus, a new

DynamoDB attribute should be created, following the conventions, to host the

original data type.

5.5 Discussion

Some considerations can be done, based on previous tests.

Performance

In almost all considered performance tests, the time needed to perform a com-

plete migration grows linearly with the amount of data to be transferred –

i.e. source entities. The only exception was noted when migrating data from

Azure Tables to GAE Datastore preserving eventual consistency; we reckon

this behaviour was caused by the multitenancy of the cloud database service,

since one of the test was executed on a working day, while the other was started

on a week-end day. Hence the database service may have served our requests

under different workloads.

By analyzing data stored inside the queue, we can assert that its average size is

4.43 times greater than the source data size. This is because of metadata that

should be carried inside each Metamodel entity, in order to preserves transac-

tionality, secondary indexes and data types, among the different databases.

From the analysis of CPU logs, it is evident that CPU spikes are caused by

the translation of source data to the Metamodel representation. Nevertheless,

CPU usage, during extraction and conversion phases, always settles below 50%.

And, for the remaining migration time, CPU usage is almost constant around

2% value.

Moreover, extraction and conversion time occupies, on average, the 0.1% of

the entire switch over time; hence, the overhead on CPU is negligible.

Another key factor is the difference on read and write latencies between the

80

5.5 Discussion

two databases. The time needed to retrieve data from the source database –

i.e. extraction time – is considered together with the conversion time, hence it

is less then the 0.1% of the time needed for the complete migration. This, in

combination with Metamodel representation size, implies that queue size grows

very quickly with the number of entities retrieved from the source database.

Hence, a solution to this problem may be given by the implementation of a

queue that accepts only a limited amount of data; when the elements, not yet

consumed, become lower than a certain threshold, the producer may retrieve

more data from the source database. This approach would mitigate RAM

consumption at the cost of a higher average CPU usage.

Tests conducted for preserving strong consistency on GAE Datastore required

less time (3.22 times less) than those performed to preserve eventual consis-

tency. This is due to the fewer number of write operations that the migration

system needs to do, in order to preserve strong consistency.

The fact that test results, given in Section 5.2.2, assert that the overall migra-

tion time is almost two times less than those performed on Virtualized Private

Server may be due to the different load levels of the respective database ser-

vices, experienced during tests.

Moreover, having considered throughput results in Section 5.2.2, the migration

from Azure Tables to GAE Datastore can be considered acceptable, especially

for the fact that different consistency policies, as well as different data types,

are preserved by the migration system.

Finally, as reported in Section 5.2.2, GAE Datastore frequently returned errors

– i.e. HTTP error 500 and 503 – while trying to migrate more than 70,000

entities. This has led us to the conclusion that, as a future work, it will be nec-

essary to divide the migration work – from the Metamodel to the destination

database – thus, delegating a fewer number of entities to multiple threads.

Each thread will handle a separate connection and will reliably migrate a

smaller number of entities. The whole migration process will be considered

finished when all threads will have persisted all entities assigned to them and

when the central queue will be empty.

81

Migration System Evaluation

Database-to-database compared to metamodel approach

From performance tests and the analysis of the implications, due to the im-

plementation of database-to-database translators, discussed in Section 5.3, we

conclude that the proposed Metamodel does not have a significant overhead in

the migration process. As a matter of fact, the usage of this Metamodel eases

the developers’ burden when writing translators to support a new database,

since they do not need to have any further knowledge about already supported

databases. Furthermore, the proposed Metamodel provides clear interfaces to

preserve strong consistency and secondary indexes whenever possible.

Metamodel extendability

From Section 5.4 it is evident how the proposed Metamodel can support other

types of NoSQL databases, like Key-Value ones. By performing correct map-

pings between the source database data model and the Metamodel (and vicev-

ersa), it is possible to migrate data among different classes of NoSQL database.

Obviously, most of the times, secondary indexes, as well as strong consistency,

would not be supported by Key-Value databases, because of the typically more

restricted number of functionalities they support.

5.6 Summary

This chapter discussed several aspects about the migration system and the

Metamodel proposed in Chapter 3.

A first test took into account the compatibility of migrated data with a real

application. Other tests aimed at measuring performance of the migration

system, in different scenarios and with different data sets. Then, several tests

have been conducted in order to measure different properties of the migration

system. Subsequently, some considerations about other possible alternatives

to the metamodel approach have been discussed.

Finally, this chapter showed how it is possible to support also Key-Value

databases, as well as Column-Based ones. By doing so, the chapter also

described how it is possible to operate with databases that offer different

consistency policies.

82

Chapter 6

Conclusions and Future Works

This thesis presented an original approach that enables the migration of

data among different NoSQL databases, focusing in particular on Columnar

NoSQL databases.

As reported in Chapter 2, about the analysis of the state of the art on NoSQL

databases, there exists a wide number of different NoSQL databases solutions,

for which a standard representation does not exist. Furthermore, each of

these databases offers different properties and operations on data. Hence,

data migration with these technologies becomes problematic.

Chapter 3 provides a solution to the above problem, by proposing an original

migration system, composed of an intermediate metamodel, that enables

simple data migration among columnar NoSQL databases and which is able to

preserve key characteristics, like consistency policies and secondary indexes.

The actual version of the migration system provides translators, as described

in Chapter 4, for two databases: Google App Engine Datastore and Azure

Table. Notwithstanding this, the premises are in place for additional support

of other databases, as reported in Chapter 5.

The migration system, designed according to the latest Software Engineering

techniques, provides modular and extensible interfaces to the developers,

which enable fast translators development and integration.

Finally, the migration system exposes a set of REST API (described in

Appendix A) which allows external applications to interact with it.

By using data generated by a real application, called MiC, some tests have

been conducted, in order to evaluate system compatibility and performance.

As reported in Chapter 5, performance tests have demonstrated that the

overheads introduced by the migration system, in terms of latency and CPU

Conclusions and Future Works

usage, are negligible in every circumstance.

Possible future works should investigate on the three main directives briefly

discussed by the following three paragraphs:

Migration system generalization In order to support more databases,

new mappings can be added to the migration system, following the guidelines

reported in Chapter 4. This will also allow to perform parallel switch over on

multiple destination databases.

Migration system functionalities extension Furthermore, by distribut-

ing translators on diverse virtual machines (which may communicate by means

of message queues with the migration system), nearer to databases datacenters,

it will be possible to reduce the workload and provide better latencies.

Another improvement would consist in providing continuous data migration,

i.e. the possibility to perform the migration of new data as it gets inserted

or updated. Which, together with the possibility to perform partial updates

and automatic data consistency check among different databases, implies the

adoption of versioning and lock mechanisms.

Paradigm shift Finally, a further step, towards the improvement of the

migration system, would be the integration of the proposed metamodel with

an abstraction layer, like CPIM, in order to offer a common interface to appli-

cations which make use of NoSQL databases. Such an integration would allow

to implement applications which are independent from the underlying storage

mechanism. Thus, in case one were to change database vendor, application

data would easily be migrated and the application would continue to work

without any re-engineering process.

84

Appendices

Appendix A

Rest API

A.1 Introduction

This Appendix describes REST APIs useful to interact with the migration

system. The following sections describe the technology used to implement

these APIs and the operations that can be executed through them.

Table A.2 reports a summary of all the operations supported and the respective

object that should be returned.

A.2 Technology

REST is an architectural style, based on HTTP protocol. Everything that

should be accessed by the APIs is a resource which is identified by an URI.

Every resource should support the common HTTP operations. Furthermore,

resources may have different representations, e.g. xml, json, plain text, html,

etc. A client typically asks for one representation via HTTP.

The methods used in REST architectures are DELETE, GET, POST and

PUT. The convention says that:

• DELETE method should be used to remove resources.

• GET method should read resources without side-effects, i.e. the resource

should not be modified by the method.

• POST should be used to update a resource or create a new one.

• PUT method should be used to create a new resource.

Rest API

Since the migration system has been developed using Java, Java Specifica-

tion Request 311 (JSR) has been used in order to provide REST support to

it. In particular, the specification is called JAX-RS and the implementation

that has been used is Jersey.

Jersey permits to create a servlet that analyzes specific classes in order to

identify RESTful resources. The servlet, upon receiving an HTTP requests,

identifies the correct class and method to answer to the request.

Finally, in order to provide both JSON and XML representations for requested

resources, Java Architecture for XML Binding (JAXB) has been used. JAXB

simply maps a Java object, throughout reflection, to XML or JSON repre-

sentation. Hence by setting a proper content-type to an HTTP request, it is

possible to receive a response in JSON or XML.

A.3 API design

All API URLs listed in this appendix are relative to

http://<server address>/ModaCLOUD DB/api.

For example, the api/credentials?name=datastore.username API call is

reachable at

http://<server address>:8080/ModaCLOUD DB/api/credentials?

name=datastore.username

Table A.2 reports all the available API calls, together with the respective

HTTP method to make the call. Furthermore, the type of the returned object

is also indicated.

• The Status object indicates whether the request has been processed cor-

rectly or not. It is, also, always attached, as a separate object, to the

response. It contains a mandatory field called status which can assume

three different states: OK, WARNING or ERROR. Furthermore, the Status

object may contain other two optional fields: message and error code.

The message field can be present independently from the state of the

response. Whereas, the field error code is returned only when the state

of the response, contained by the status field, is ERROR.

A list of the default errors, together with their respective error code is

reported in Table A.1.

88

A.3 API design

• The Property object is used to return the credentials stored, by the

migration system, in the file credentials.properties. It contains two

mandatory fields and a mandatory Status object. The first field is called

name and it contains the name of the particular credential that has been

requested. The value field contains the value of the particular credential

that has been requested.

Two types of output formats are supported: XML(default) and JSON. To

use any of them, simply change the Content-type in the HTTP request, i.e. set

application/xml for XML format, or application/json for JSON format.

Any non-200 HTTP response code, can be considered an error; the returned

data will contain more detailed information.

Error
code

Message

1 A connection is already in place. Disconnect first.
2 Unable to connect to the destination.
3 No active connection.
4 Unable to save credentials.
5 Credential not found.
6 Unable to delete credentials.
7 One or all of the selected databases are not supported.
8 Too few parameters. Check the documentation.

Table A.1: Default API errors

A.3.1 Switch Over API

To perform a complete data migration from a source database to a destination

database, the following HTTP POST request should be made:

api/switchover?source=<source db>&destination=<destination db>

The values supported at the moment for source and destination databases are:

DATASTORE and TABLES. Indicating that it is possible to request a complete

data migration from Google App Engine Datastore to Azure Tables, and

viceversa.

Switch over API are designed in such a way that it is possible to provide mul-

tiple destination databases. Hence, when this happens, data is simultaneously

migrated to the indicated destination databases.

Once the switch over request has been issued, the migration process is started

89

Rest API

N
a
m

e
D

e
scrip

tio
n

H
T

T
P

M
e
th

o
d

R
e
su

lt
R

e
q
u
e
st

S
w

itch
over

M
ap

s
a

d
atab

ase
in

to
oth

ers
P

O
S
T

S
tatu

s
ap

i/sw
itch

over?sou
rce=

D
A

T
A

S
T

O
R

E
&

d
estin

ation
=

T
A

B
L

E
S
&

d
estin

ation
=

...
S
tore

cred
en

tials
C

reates
a

n
ew

cred
en

tial
in

to
th

e
sy

stem
P

U
T

S
tatu

s
ap

i/cred
en

tials?
n
am

e=
d
atastore.u

sern
am

e
&

valu
e=

p
olim

i.m
o
d
aclou

d
s@

gm
ail.com

G
et

cred
en

tial
G

ets
th

e
valu

e
for

a
given

cred
en

tial
n
am

e
G

E
T

P
rop

erty
ap

i/cred
en

tials?
n
am

e=
d
atastore.u

sern
am

e
U

p
d
ate

cred
en

-
tial

U
p

d
ates

th
e

valu
e

for
a

given
cred

en
tial

n
am

e
P

O
S
T

S
tatu

s
ap

i/cred
en

tials?
n
am

e=
d
atastore.u

sern
am

e
&

valu
e=

p
olim

i.m
o
d
aclou

d
s@

gm
ail.com

D
elete

cred
en

tial
D

eletes
a

cred
en

tial
from

th
e

sy
stem

D
E

L
E

T
E

S
tatu

s
ap

i/cred
en

tials?
n
am

e=
d
atastore.u

sern
am

e
T

ab
le

A
.2:

R
E

S
T

A
P

I
calls

90

A.3 API design

asynchronously by the migration system, and a Status object is returned to

the caller. Proper actions can be taken by the caller based on the returned

Status.

A.3.2 Databases credentials management API

The migration system allows a client to perform CRUD operations on the

system credentials. To modify the credentials the following HTTP request

should be made: api/switchover.

The parameters to be passed, and the HTTP method that should be used,

depend on the type of request that should be issued by the client. A complete

list of the requests that can be issued to modify the credentials, together with

the respective HTTP method and parameters, is provided in Table A.2.

All of the requests, except for the one that reads credentials (GET), return

only a status object. Whereas, the GET request returns a Property object, as

described above.

91

Appendix B

Application usage manual

B.1 Introduction

This Appendix gives a brief overview of the system configuration and usage.

Instructions are given for Linux operating system, based on Debian distribu-

tion; notwithstanding this, these guidelines can be easily applied to any other

distribution and/or operating systems.

B.2 Environment configuration

The system works with any Java based application server. In this chapter

we will provide configuration instructions for Tomcat application server.

Furthermore, in order for the system to work properly, Java Development Kit

7 (jdk7) should be installed.

These premises can be accomplished by issuing the following command in the

shell:

sudo apt-get install tomcat6 openjdk-7-jdk

After the installation has completed, proper folders should be linked and

access permissions should be provided:

cd /usr/share/tomcat6

sudo rm -r webapps

sudo ln -s /var/lib/tomcat6/conf conf

sudo ln -s /var/lib/tomcat6/webapps webapps

sudo chmod 777 /usr/share/tomcat6/webapps

Application usage manual

In order for Tomcat to be launched using jdk7, its configuration file

should be modified. Hence the following line should be added to file

/etc/default/tomcat6:

JAVA HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64

Furthermore, the text

JAVA OPTS="-Djava.awt.headless=true -Xmx128m -XX:+UseConcMarkSweepGC"

should be substituted by

JAVA OPTS="-Djava.awt.headless=true -Dfile.encoding=UTF-8

-server -Xms4096m -Xmx4096m -XX:NewSize=256m -XX:MaxNewSize=512m

-XX:PermSize=512m -XX:MaxPermSize=512m -XX:+DisableExplicitGC".

Values should be set according to machine RAM.

Finally, the ModaCLOUD DB.war file can be copied to directory:

/usr/share/tomcat6/webapps

and Tomcat can be started:

sudo service tomcat6 start

Tomcat will take care of deploying the file and creating a folder named

ModaCLOUD DB that will contain the files extracted from the ModaCLOUD DB.war

file.

B.3 Application configuration

Before performing the switch over, proper credentials should be added to the

credentials.properties.

There are two ways for doing this. The first consists in manual

insertion of credentials in the credentials file, located in directory:

/usr/share/tomcat6/webapps/ModaCLOUD DB/WEB-INF/classes/.

Otherwise, the credentials API, described in Appendix A, can be used.

Fields that need to be set for configuring GAE Datastore are:

datastore.username=<email>

datastore.password=<email password>

datastore.server=<server address>

Whereas, for Azure Tables just one field, containing a hash string, is needed:

azure.storageConnectionString=<hash string>

94

B.4 Application usage

This string can be generated from Microsoft Azure portal, by accessing to the

Tables service page and, thus, requesting an access key for the chosen storage

account. In particular, the hash string should be:

DefaultEndpointsProtocol\=http;AccountName\=<storage name>;

AccountKey\=<access key>

Google App Engine Datastore configuration The migration system

uses Google RemoteApi to interact with the Datastore, for this reason some

lines of code need to be added to file web.xml, present in every application

deployed on Google App Engine.

<servlet>

<servlet-name>RemoteApi</servlet-name>

<servlet-class>

com.google.apphosting.utils.remoteapi.RemoteApiServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>RemoteApi</servlet-name>

<url-pattern>/remote_api</url-pattern>

</servlet-mapping>

B.4 Application usage

In order to perform the switch over, an HTTP POST request, to the

application server, should be made.

A return format (JSON or XML) should be chosen, hence the HTTP

Content-Type field should be set to application/json or application/xml

respectively.

The POST request to issue is the following:

http://<server>:8080/ModaCloud DB/api/switchover?

source=<source db>&destination=<dest db>

Where typical values supported for <source db> and <dest db> are DATASORE

and TABLES.

Once the request has been issued, the API will respond with a status indicating

if the request has been accepted correctly. After that, the system will start to

migrate data asynchronously to the selected destination database.

95

Bibliography

[1] Datastore: Types and property classes. https://developers.google.

com/appengine/docs/python/datastore/typesandpropertyclasses.

[Online; accessed 28-Oct-2013].

[2] Understanding the table service data model. http://msdn.microsoft.

com/en-us/library/windowsazure/dd179338.aspx. [Online; accessed

28-Oct-2013].

[3] Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, and Giorgio Gian-

forme. A runtime approach to model-independent schema and data trans-

lation. In Proceedings of the 12th International Conference on Extending

Database Technology: Advances in Database Technology, EDBT ’09, pages

275–286, New York, NY, USA, 2009. ACM.

[4] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform access to non-

relational database systems: the sos platform. In Proceedings of the 24th

international conference on Advanced Information Systems Engineering,

CAiSE’12, pages 160–174, Berlin, Heidelberg, 2012. Springer-Verlag.

[5] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin,

James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim

Yushprakh. Megastore: Providing scalable, highly available storage for

interactive services. In Proceedings of the Conference on Innovative Data

system Research (CIDR), pages 223–234, 2011.

[6] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild

Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu,

Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Kha-

tri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi,

Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali

https://developers.google.com/appengine/docs/python/datastore/typesandpropertyclasses
https://developers.google.com/appengine/docs/python/datastore/typesandpropertyclasses
http://msdn.microsoft.com/en-us/library/windowsazure/dd179338.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dd179338.aspx

BIBLIOGRAPHY

Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sri-

ram Sankaran, Kavitha Manivannan, and Leonidas Rigas. Windows azure

storage: a highly available cloud storage service with strong consistency.

In Proceedings of the Twenty-Third ACM Symposium on Operating Sys-

tems Principles, SOSP ’11, pages 143–157, New York, NY, USA, 2011.

ACM.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.

Gruber. Bigtable: a distributed storage system for structured data. In

Proceedings of the 7th USENIX Symposium on Operating Systems Design

and Implementation - Volume 7, OSDI ’06, pages 15–15, Berkeley, CA,

USA, 2006. USENIX Association.

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly

available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220, Oc-

tober 2007.

[9] M. Shokrolahi Yancheshmeh D. Ardagna E. Di Nitto F. Giove, D. Longoni.

An approach for the development of portable applications on paas clouds.

Closer 2013 Proceedings, pages 591–601, Aachen Germany, 2013.

[10] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: De-

signing, Building, and Deploying Messaging Solutions. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[11] Paolo Papotti and Riccardo Torlone. An approach to heterogeneous data

translation based on xml conversion. In CAiSE Workshops (1), pages

7–19, 2004.

[12] Ben Scoffield. Nosql – death to relational databases(?). Presentation at

the CodeMash conference in Sandusky (Ohio), 2010-01-14., January 2010.

[13] Christof Strauch. Nosql databases. http://www.christof-strauch.de/

nosqldbs.pdf, 2011. [online verfügbar: 16.09.2012].

98

http://www.christof-strauch.de/nosqldbs.pdf
http://www.christof-strauch.de/nosqldbs.pdf

	List of Figures
	List of Tables
	Introduction
	State of the art
	Introduction
	NoSQL Motivations
	NoSQL common characteristics
	NoSQL classifications
	Columnar NoSQL databases

	Column-based NoSQL databases origins
	Google BigTable
	Amazon Dynamo

	Google App Engine Datastore
	Underlying technology
	Data model

	Azure Tables
	Underlying technology
	Datamodel

	Summary

	Definition of the migration system
	Introduction
	Requirements
	System Architecture
	Metamodel design
	System design
	Design strategies
	Producer-Consumer approach
	Connection and Disconnection management
	Credentials management

	Summary

	Metamodel Transformations
	Introduction
	Direct Translators
	GAE Datastore
	Azure Tables

	Inverse Translators
	GAE Datastore
	Azure Tables

	Summary

	Migration System Evaluation
	Introduction
	Performance and overhead of the migration system
	Data migration: compatibility test
	Performance tests

	Comparing the proposed migration approach with direct database-to-database translations
	Extendability of the migration system
	Discussion
	Summary

	Conclusions and Future Works
	Appendices
	Rest API
	Introduction
	Technology
	API design
	Switch Over API
	Databases credentials management API

	Application usage manual
	Introduction
	Environment configuration
	Application configuration
	Application usage

	Bibliography

