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Abstract

Cloud Computing has become a feasible alternative to in-house servers, thanks to a se-

ries of enabling factors: increase of global Internet connectivity, increase of hardware

power, development of new virtualization techniques. Nowadays there are numerous on-

line providers that offer VMs among a variety of cloud services and more providers rise

on the market every year.

Unfortunately, deploying appropriately a service on online VMs is not an auto-

matic task. It requires the knowledge of many parameters, which the common user does

not know. Concretely, the proper usage of cloud elasticity is a method that can drive the

cloud client to save money with respect on in-house deployment or to spend a fortune.

This thesis concentrates on cost-effective adaptation plan synthesis for cloud deployments

of software applications for a service that has to be deployed using VMs offered by an

online provider, as it is the most difficult to estimate.

After modeling the prices of various cloud providers in a standard form and

obtaining them through an application specifically developed for this purpose, the plan

synthesis process takes care of calculating the VMs that will be required by the service

to deal with a variable workload that includes periods of burstiness. The plan synthesis

is divided in two sub-processes, one for reserved VMs and one for on-demand VMs, to

better exploit the intrinsic characteristics of each type of reservation.
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Sommario

Il Cloud computing è diventata una valida alternativa rispetto a mantenere i server interni

all’azienda, grazie a una serie di fattori: l’incremento della connettività globale a Internet,

l’incremento di potenza dell’hardware, lo sviluppo di nuove tecniche di virtualizzazione.

Al giorno d’oggi ci sono vari online provider che offrono, tra i vari servizi cloud, L’uso di

VMs online, e ci si aspetta la presenza di nuovi provider sul mercato ogni anno.

Sfortunatamente, eseguire il deploy in modo appropriato di un servizio su VMs

online non è un compito automatico. Questo, infatti, richiede infatti la conoscenza di

molti parametri, cosa che l’utente comune non sa. Questa tesi si concentra sulla sintesi

di un piano di adattamento adatto a gestire l’elasticità delle virtual machines, per un

servizio che deve essere installato usando VMs offerte da un provider online, in quanto è

uno dei parametri più difficili da stimare.

Dopo aver modellato i prezzi di vari cloud provider e averli ottenuti mediante

una applicazione specificatamente creata a questo proposito, il processo di sintetizzazione

del piano si occupa di calcolare il numero di VM che saranno richieste per sostenere il

carico di lavoro variabile, che include periodi di burst dell’applicazione. Questo processo

di sintetizzazione del piano è diviso in due sotto-processi, uno per le VM riservate e uno

per le VM on-demand, per meglio sfruttare le caratteristiche intrinseche di ogni tipo di

prenotazione.
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Chapter 1

Introduction

“Engage”

Capt. Jean-Luc Picard

Cloud computing is a competitive alternative to deploy software applications of a company,

principally thanks to the elasticity offered by the cloud infrastructure. It is in fact possible,

and should be exploited, to acquire resources only when needed, like in the case of the

worst case scenario of the application, and then releasing them when there is no more the

necessity of such a quantity of resources. The list of cloud computing providers is long

and increasing each year. Choosing one provider is not a trivial task, as many factors

come into play in the decision: costs, servers’ geographic location, performance, ...

Naturally, cloud providers offer some ways of calculating their VMs’ costs, but

the tools provided are neither powerful nor flexible enough to properly aid the customer

in the selection, as require deep knowledge of how and when the elasticity will be used.

As a matter of fact VMs’ costs depends greatly on how the company makes use

of the cloud elasticity: a naive adaptation plan can easily lead to spend a fortune, maybe

even without reaching the performance desired, while a wise plan for using the elasticity

can allow the organization to meet the required performance at reasonable costs. Oddly,

the same plan that leads to excellent performance and low costs on a concrete system

under a concrete type of workload can perform poorly on a slightly different workload,

making the job of deciding the plan that will guide the elasticity very challenging.

Studies on Internet services supported workloads showed that there is a boosty

nature in them, meaning that a large amount of requests are received in a small portion
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Figure 1.1: Relations between user, service provider and cloud provider

of time. The spikes happen unpredictably. This behavior can, and should, be managed

automatically, as the amount of traffic varies very quickly, too quickly to be managed by

a human.

In Figure 1.1 are present the three main actors that are present in this thesis. The

first one from the right is the Cloud Provider, offering cloud services over the Internet. A

partial list of online cloud providers is in Appendix A. The Service Provider is the actor

that uses the cloud resources offered by the Cloud Provider to provide a service to its

own users. Because of that, it is also called Cloud Client. The third actor is the End

User, which uses the service provided by the Cloud Client. For the rest of the thesis will

be used consistently the term client to indicate the Cloud Client and the term user to

indicate the End User.

1.1 Cloud Computing

The world of cloud computing is vast and in rapid development. Every year new providers

appear on the scene, while the existing ones consolidate their presence on the market. New

products and offers are announced with high frequency and many companies are planning

to move part of their systems on online servers. This parading change is the result of

the growth of new needs inside the companies. Larger companies tend to create a private

cloud, with dedicated server or even datacenters, to be able to fully control the data flow

and the security measures. Medium and small companies, however, see in the public cloud

a new opportunity to increase the efficiency, reduce the IT costs and give the employees

new services.

But what is, concretely, cloud computing? As the National Institute of Standards

and Technology[23] states, it is “an expression used to describe a variety of computing

concepts that involve a large number of computers connected through a real-time com-

munication network such as the Internet”. It continues stating that “the popularity of

the term can be attributed to its use in marketing to sell hosted services in the sense

of application service provisioning that run client server software on a remote location”.

Amazon[2], instead, defines cloud computing as “the on-demand delivery of IT resources

via the Internet with pay-as-you-go pricing.”.
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Figure 1.2: Two types of hypervisor. Image taken from [32]

The explosive growth of cloud providers has been partially driven also by the

innovations in the hardware department. Computing power has never been cheaper,

servers have become more powerful and energy efficient, leading to the reduction of the

number of machines used. Services that 10 years ago needed to be deployed on dedicated

machines are now installed on the same server, because it is powerful enough to sustain

them.

Software innovations also made possible cloud computing. In particular, virtual-

ization technologies have driven the rise of cloud computing since the year 2000, pioneered

by Amazon. Their use enabled the usage of a single physical server by multiple indepen-

dent OS assigned to different users. Before their massive usage, a single OS had to be

installed on a physical machine and then users shared the environment, with the isolation

provided by the OS. Each physical machine was limited to install a single OS. Nowadays

virtual machines works thanks to hardware virtualization, a piece of software that hides

the physical characteristics of a computing platform and shows another abstract com-

puting platform on which the OS are installed. This job is done by hypervisors. There

are two types of hypervisors, as showed in Figure 1.2. Type 1 installs itself directly on

the hardware, allowing the execution of multiple OS at the same time and giving the

illusion to each OS to own the full machine resources. In type 2, instead, the hypervisor

is a software installed inside a OS that has the full hardware control. Naturally, type 1

hypervisors are much more efficient because they don’t have the overhead of having an

OS layer between them and the hardware resources. Cloud providers virtual machines

are on type 1 hypervisors.

Regarding the changes in management for a company that chooses to “go to the

cloud”: it depends on the service that is moved to the cloud. Let it be, for example, a

mail server. In the past, a small company has usually had its private physical mail server,

managed by an external consultant because there is no IT dedicated employee. So, there

are hardware costs for the physical machines; consultant costs; electricity and general
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server maintenance costs; licensing costs for the software installed; security costs. Data

is in a single physical location, vulnerable to accidents like a fire that can compromise

the work of years in a matter of seconds. Moreover, access to the data is limited by

the upload bandwidth of the company’s Internet connection. In the event of a company

expansion, the adjustment of the mail server is not so automatic and could imply buying

new hardware equipment. Finally, protection from Internet attacks is not trivial and it

has to be delivered by a specialist.

Moving the mail server to the cloud can certainly help solve some of the problems.

First of all, data is always accessible from any browser with just an Internet connection.

There is no more need to worry about backups, hardware maintenance and electricity

bills. Adding more power is just a matter of minutes, thanks to the pay as you use

model. Unfortunately, all that is gold does not glitter. Dimensioning the online servers is

not automatic and there are no standard/universal procedures that can accomplish this

goal.

Let me present a simile between computing servers performances and water-

transportation pipes. Having a service on standard in-house servers that users request

over the Internet is similar to owning a pipe where some water has to flow. The water

represents the users that connect to the server. The size of the pipe corresponds to the

server’s capacity/power: the larger the pipe, the higher the capacity/power. If the flow

of water a.k.a. users is below the pipe’s limit, everything runs smoothly. An interesting

parallel with this metaphor is that even with the pipes, as the flow of water is above 80%

the pipe’s area, it begins to create turbulence that makes it difficult for the transmission

of liquid. This is very similar to what is experienced on a server under high loads, as

the queue theory states, for high loads of a server, the response time experienced by the

user boosts as the queue of requests waiting to be served grows exponentially. If there is,

for any reason, a temporary increase in the flow that would need three times the pipe’s

area to be managed, it is impossible to ensure the flow required because pipe’s dimensions

are fixed. The same happens with a standard in-house server: it is impossible to sustain

a peak of accesses that exceeds its limits. Well, cloud computing can help solve this

situation, by temporarily acquiring new servers, just for the peak of requests, and then

releasing them when they are not needed anymore. It is like having the ability to resize

the pipe’s area!
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1.2 Thesis contributions

This thesis deals with the challenge exposed in the previous sections. It assists users

to use cloud elasticity and to predict their cloud deployment costs. Using a trace log

that represents the expected workload (including periods of burstiness), it uses formal

theories to calculate an efficient adaptation plan that manages the cloud elasticity in

a cost-effective manner. This efficient plan is then offered to the cloud client for its

usage. As the consideration at once of every type of elastic resource that cloud providers

offer and for which a cloud client is charged would make the study unmanageable, this

thesis focus on the charge for the usage of virtual machines (VMs), being the them most

unpredictable of all the resources. In fact, predicting the costs of other cloud components

like load balancers, storage spaces, network bandwidth, etc. is easier due to the fact that

all these components are quantifiable with a high degree of confidence due to their reduced

volatility.

1.3 Structure of the thesis

Chapter 2, Background, provides the required background needed to understand the topics

exposed in the thesis.

Chapter 3, Proposed approach, describe the challenge and propose a method to

address and resolve them. This method is composed of three steps, two of which have

been implemented in this thesis.

Chapter 4, Cost model retrieving, explains the first step of the proposed approach,

that is what is, how and why it is produced a cost model for a cloud provider. It also

introduces the program implemented.

Chapter 5, Plan synthesis, describe the second step of the proposed approach. It

explains how it the plan is synthesized.

Chapter 6, Example, shows a real life example of both cost model retrieving and

plan generator programs.

Chapter 7, Conclusions, draws conclusions on the work done in this thesis.



Chapter 2

Background

Three Laws of Robotics

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey the orders given to it by human beings, except where such orders would conflict

with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the First

or Second Law.

Isaac Asimov

In this chapter we describe the theories and the concepts that constitute a necessary pre-

requisite to understand the problem and developed the solution proposed in this thesis.

2.1 Performance evaluation techniques

Modern computer systems are evolving at a very high pace, increasing their importance

every year in all kind of business operation. They are ubiquitous and their presence is

almost granted. Just looking back a few years you realize how much computer systems

have evolved and how crucial are in everyday life. As a result, the request of tools to

understand and predict their behavior raised as well.

Lazowska et al. [20] identifies three approach types to deal with this need:

6
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1. Use of intuition and trend extrapolation.

2. Use of experimental evaluation of alternatives

3. Use of models

The first two approaches represent the extremes, one solely based on human experience

and intuition, rapid and inexpensive but inaccurate, while the other relies on laborious

trials, accurate but most of the time not cheap. The third approach, the use of models,

is a sort of compromise between the first two. A model is an abstraction of a system: an

attempt to identify those aspects that are essential to the system’s behavior. Once defined,

the model can be parametrized to reflect any of the alternatives and then evaluated to

determine its behavior.

Creating a model takes a certain effort in term of time and resources spent, but

once it is defined, parametrized, stabilized and tested it can predict with accuracy a wide

set of situations. It is more reliable than intuition because it is formally defined. It is also

more flexible than experimental evaluation (i.e. the so called what if scenarios) because,

thanks to the parametrization, very different examples can be tested in matter of minutes,

while on actual experiments it may take hours or days.

Modeling, then, provides a framework for gathering, organizing, evaluating, and

understanding information about a computer system. Among the multiple modelling

languages that exist fore performance evaluation, in this thesis has been followed the

theories of the Queueing Networks models.

2.1.1 Queueing networks models

Queueing networks modelling is a different approach to computer systems modelling,

where the computer system is modeled as a network of queues and is then evaluated

analytically[20]. Each resource is modeled as a service center, receiving customers that

are temporarily stored in a queue, if necessary. The customer is served when is his turn,

than it can depart from the service center. A service center is depicted in Figure 2.1.

The simplest possible queueing model consist of two parameters. The first one

is called workload intensity and it could be of two types: open and closed. In case

it is of type closed, the number of users in the system is fixed. In case it is of type

open, the parameter is called arrival rate, identified with the symbol λ, and indicates

the rate at which customers arrive. For example, customers can arrive at an arrival rate
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Figure 2.1: A single service center with open workload

λ = 0.5 customers/s.

The second parameter is the service demand, which is the average service requirement

of a customer. For example, each request takes 1.25 seconds to be served. From this

parameter it is usually derived the service rate, which is the number of customers served

each second by the server. It is indicated with the symbol µ and is the inverse of the

service demand ; i.e., with the previous service demand of 1.25 seconds, the corresponding

service rate is µ = 1.25−1 = 0.8 jobs/s.

This simple yet powerful notation allows the calculation of four performance

measures:

1. service utilization: proportion of time the server is busy

2. response time: average time spent by a customer in the server, both waiting in the

queue and receiving service

3. queue length: average number of customers in the server, both waiting in the queue

and receiving service

4. throughput: rate at which customers pass through the service center

For the parameters stated earlier, that is λ = 0.5 customers/s and µ = 0.8 jobs/s, these perfor-

mance values measures are utilization = 0.625, residence time = 3.33s, queue lenght =

1.67 customers and throughput = 0.5 customers/s.

The important fact to remark, as done by Prof. Mor Harchol-Balter[17], is that

queueing networks theory is a very powerful predictive tool. In fact, it can be used to

assist the decision when, for example, there is the need to update a computer system.

Queueing theory can identify the components that, if updated, can significantly boost the

system’s performance and also demonstrate how other components, even if updated, do
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not speed up the system. But this model does not limit its influence on prediction on

existing systems as it can also be a very useful design tool. In fact, using this model is

not uncommon to find out how some counterintuitive choices can bring increase in the

performance in spite of what the experience and the intuition would have suggested. The

public available first chapter of Prof. Mor Harchol-Balter’s book [17] contains a series of

useful examples showing how solutions based on intuition can be mistaken.

In this thesis it is used this type of models to predict the user experience (in

terms of response time) with a variable number of servers, each of them with a particular

service rate.

2.2 Self-adaptive systems

The explosive growth of information and its natural integration with technology require

new and innovative approaches for building, running and managing software systems. In

addition to the increasing complexity, software systems should also become more versatile,

flexible, resilient, dependable, configurable and self-optimizing by adapting to changes in

the environment they are build for and modifications of the system requirements. In one

word, software systems should become self-adaptive, that is able to modify their behavior

and/or structure in response to their perception of the environment, the system and the

requirements. This is an active research area, as demonstrated in [7, 13, 15, 8].

An important remark is that the only common element among the various ini-

tiative to explore self-adaptability behavior is usually the software, mostly thanks to its

flexibility. Still, the proper implementation of self-adaptive software applications is a

formidable intellectual challenge. Cheng et al. [7] and then de Lemos et al. [13] identify

four principal research topics:

• design space for adaptive solutions

• processes

• from centralized to decentralized control

• practical run-time verification and validation

The website [15], instead, provides information about software engineering for self-adapt

systems and contains a wiki aimed to facilitate communication and idea exchange for

adaptive and self-managing systems.
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2.3 Cloud Computing

Cloud computing has become an increasingly popular paradigm during the last years. It

consists of renting computing power from online providers in exchange of a fee. One of

the property of a cloud computing is its elasticity, which has been defined by Herbst et

al.[?] as the degree to which a system is able to adapt to workload changes by provisioning

and deprovisioning resources in an autonomic manner, such that at each point in time

the available resources match the current demand as closely as possible.

As stated in the Introduction, the use of cloud computing is the focal point of

this thesis. With an accurate use of the elasticity offered by the cloud infrastructure, it

is possible for users to deploy a service using cloud computing, granting excellent user

experience at a lower cost than in-house servers.

Cloud providers offer to their user web pages where it is possible to calculate the

total cost of ownership of the deployed servers. The web pages for Amazon, Rackspace

and Azure calculators are available respectively at [4], [30] and [25]. The common problem

in all these pages is that there are requested a set of system usage parameters that are

unfeasible to be known by the average cloud client. A non-expert selection of resources

can make the client spend a fortune in VMs and the application will not even satisfy its

requirements.

With the approach proposed in this thesis, explained in Chapter 3 and detailed

in Chapter 4 and Chapter 5, it is possible to calculate these parameters. Moreover, these

parameters are tailored for the specific needs of the user. So, once the user knows these

values, he can compare the costs of a cloud deployment for his application and draw

conclusions of whether it is convenient or not.

2.4 Technologies used

To develop this thesis a series of different technologies has been utilized.

The first software used, in chronological order, was Matlab[22]. It is a numerical

computing environment that allows matrix manipulation, plotting of functions and data,

and implementations of algorithms. It has been very useful because, being an interpreted

language, it is quicker to modify the code and to create models with respect to other,

compiled, languages. Besides, it is useful to visualize the data and Matlab gives excellent

tools to accomplish this job.
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After working with Matlab, refining functions and procedures, the job became

integrating these functions and procedures in Java[26] programs to take advantage of its

portability and efficiency. Java is one of the most widespread programming languages

in the world, based on the principle WORA (Write Once Run anywhere). To do so, the

applications are compiled in a bytecode that can run on any JVM (Java Virtual Machine),

regardless of computer architecture. It would seem not efficient having a virtual machine

interpreting the bytecode, but this is proven to be not true as benchmarks demonstrate

how Java programs are as efficient as C or C++ programs[5]. In fact, a function of this

thesis passing from a Matlab implementation to a Java one became 10 times faster. Being

programmed in Java, this thesis is easily enabled to be part of a more complex framework

that study cloud providers usage.

Together with Java another key technology used was XML[10], which is a markup

language that defines a set of rules for encoding documents in a format that is both human-

readable and machine-readable. It has been used to import and export data and to write

the configuration files for the programs.

Finally, JSON [1], a lightweight data-interchange format that derives from Javascript

notation, has been used to retrieve and parse data from online locations.



Chapter 3

Proposed approach

“I did it for me. I liked it. I was good at it. And, I was really... I was alive.”

Walter White, Breaking Bad 5x16

In this Chapter, I present the developed approach that deals with the challenges intro-

duced in Chapter 1.

First, it is described a general overview of the challenge that this thesis solves

and what is the proposed approach, schematized in Figure 3.1.

Will then be presented all the inputs that have been used in this thesis.

Chapter 4 discusses the role and implementation of the Cost Model synthesis

block of Figure 3.1, together with the explanation of the Cost model.

Chapter 5 explains the role of the second block of Figure 3.1, Adaptation Plan

synthesis. Its inputs, (SLA, Workload log and VM characteristics) are introduced in the

current chapter and refined in Chapter 5.

3.1 Overview

The developed approach consists of three steps, as shown in Figure 3.1 together with the

input data each one requires.

To consider the revenues and costs of the Internet service a cost model of the

cloud providers is necessary. This could be done by working directly with the information

12
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Figure 3.1: Overview of the approach

published on the web by service providers. However, this would make that service the core

of our approach, with cost wired to a concrete cloud provider. Instead, using a cost-model

that abstracts the different payment implementations done by each provider it is possible

to generate a general process that works for any cloud provider.

Usually cloud providers write VMs prices in tables on their web pages, but each

provider has its standard and so comparing prices can be not trivial. Sometimes even

the tables are not enough, as they need to be completed by a text that explains how and

when those prices are applied, text that only a human can understand. A uniform cost

model brings homogeneity across different pricing standards, creating a uniformed format

that programs can then access, in a completely transparent way.

The first step executes the synthesis of a cost model using data published by

cloud providers regarding the billing options for VM usage. The cost-model is compliant

with the cost metamodel proposed for representing VM billing characteristics and will be

shown in Chapter 4.

The second step synthesizes an efficient adaptation plan for the application. This

step requires information regarding: the cost model of the selected cloud provider, the

expected workload the application will receive, the SLA of the application and perfor-

mance characteristics of the application running in a VM of the cloud provider. This step

is discussed extensively in Chapter 5.

The third step calculates the profit of the application executing under the syn-

thesized adaptation plan. This step has not been implemented yet.
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3.2 Inputs of the approach

In the next section I explain the Inputs required by the developed approach.

As depicted in Figure 3.1 with ovals, the inputs of the approach are:

• SLA

• Workload log

• VM characteristics

3.2.1 SLA

A service-level agreement (SLA) is a contract between a customer one (or more) service

provider where the provider agrees to provide the client a service that respects the quality

bounds defined in the contract. There exist many manners in which a service provider

and a user agree the QoS and the price that the user is willing to pay for it. SLA can

also indicate, besides the service level, the penalties that the provider incurs in case of

violation of such levels. A SLA is important because it defines on a legal document the

required application QoS and revenues; i.e., if the provider fails to sustain them it is

possible to proceed legally against it. If a provider does not comply the SLA the client

can also ask the termination of the contract.

To decide the type of SLA that my approach would accept, I have studied some

different types of SLA used in the scientific community of Performance Evaluation. We

describe some of these types of SLA in the next subsections. Finally I present the chosen

SLA type and I motivate its election.

3.2.1.1 SLA type 1

A SLA can be defined as a maximum response time R and a percentage P . It would be

formulated as “response time shall be lower than R seconds for the P % of requests”. In

this case, the SLA is complied (without paying any penalty) even if up to the (100−P )%

of requests are served in more than R seconds. The penalty may be formulated as “each

request that exceeds the tolerable threshold P pays an amount C”.

To calculate the penalties, it is required to define a time interval [Ti, Tf ] in where
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count all the requests and their response time. Then, count the “slow” ones, the one

served in more than R seconds, and compare this value with the threshold value, the

number of allowed “slow” requests, calculated as numReq · 1−P
100

. If the number of slow

requests are higher, pay the penalty.

This makes the calculation of penalties very easy once the data is ready. Unfortu-

nately, this formulation has also limits. First of all, the penalty is always C, independently

from how much time over R the request has been served. Secondly, it needs the definition

of a time interval, and it must wait until the time interval is over to know if and how

much penalty has been payed.

3.2.1.2 SLA type 2

It is possible to define a SLA as a maximum response time R, formulate as follows:

“response time shall be lower than R seconds”. There is a penalty of C monetary units

for each requests that are above R seconds. This is a particular case of the type 1, where

P = 100%. In this case, it is not needed to wait the end of the time interval to pay the

penalty, it can be payer as soon as the request is served in more than R seconds.

It is easy as in the previous type to calculate the penalties and moreover in this

case the penalties are known as soon as the request is executed, without having to wait

the end of the time interval. However, yt also shares a problem of type 1: the penalty C

is fixed.

3.2.1.3 SLA type 3

Another possible definition of SLA involves multiple stages with different penalties. It

would be formulated as “the response time for a request shall be lower than R1 seconds.

If response time is between R1 and R2, the penalty for the request is C1 monetary units.

If response time is between R2 and R3, the penalty is C2 monetary units... If response

time is above RN the penalty is CN−1 monetary units.”. The underling conditions are

R1 < R2 < ... < RN and C1 < C2 < ... < CN−1.

This SLA type is a generalization of type 2, where N = 1, so R1 = R and

CN = C.

This way of formulating the SLA has many benefits. First of all, it is still easy

to calculate the penalties. Then, they can be calculated as soon as a request is served.
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Property Type 1 Type 2 Type 3 Type 4

Easy to calculate penalties Y Y Y N
Penalties calculated as soon as the request is served N Y Y Y

Penalty proportional to the request time N N Y Y
User can choose easily the parameters Y Y N N

Table 3.1: Properties comparison of different SLA types

Finally, it takes into account how much time a request has taken to execute: the penalty

is not the same for any time over R seconds. The principal limitation of this type is that

it is not easy to define the parameters Ri and Ci, especially for a normal user.

3.2.1.4 SLA type 4

Finally, the last type defines the SLA as a dense function, so it is possible to define a

different penalty for each response time R1 ∈ ℜ
+. The SLA would be defined as “response

time shall be lower than R seconds. If the response time is R1 ≥ R it is paid a penalty

C = f(R1).”. The function f defines the penalty, and may be stepwise or may not be.

This type is a generalization of type 3, where the number of R intervals is infinite.

This definition still have the good properties of returning the penalty as soon as

the request is executed and having a the penalty proportional to the response time. Still,

it is unlikely that a user can input a proper f function that models perfectly the behavior

that should have the penalty. Moreover, it becomes difficult to calculate the penalties.

3.2.1.5 The chosen SLA

In this thesis it is used the type 3 definition, “stepwise SLA”, because is the one that

best suites the needs. In Table 3.1 there is a comparison if the properties of the four SLA

types.

More formally, it is written in the form

sla = ((r1, m1), (r2, m2), . . . , (∞, mS)) (3.1)

being r0 = 0, rS = ∞, r0 < r1 < r2 < · · · < rS and m1 > m2 > · · · > mS where for

each σ ∈ [1, S], (rσ, mσ) represents that the service provider gets an income (revenue) of

mσ monetary units if the response time is below rσ but not below rσ−1. This type of

description is yet simple and, since the number of components (rσ, mσ) in the SLA is
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not restricted, it allows the representation of a wide set of types of agreements. Besides,

this SLA definition accepts negative revenues, where provider loses money maybe due

to damages in client’s (or its own) interests caused by low performance, and it allows

knowing the income for a request as soon as it is served.

Example Given sla = ((1, 0.01), (2, 0), (∞,−0.01)), being t the response time of an

execution and f(t) the provider income:

f(t)



















0.01 if t < 1

0 if 1 ≤ t < 2

−0.01 if t ≥ 2

(3.2)

It models the situation where, if the response time is less than 1 second the revenue

is equal to 0.01. If the response time is between 1 and 2 seconds, the revenue is zero.

Finally, if the response time is greater than 2 seconds, the revenue is −0.01. This model

is suitable to model a web server that has to return web pages of an online shop. If the

page is returned quickly there are more chances that a customer will buy items on the

store. If a website takes long time to return its pages it usually leads the customer to

leave or change the website, resulting in a potential loss of money for the business owner.

This is exactly what is written in the sla.

3.2.2 Workload log

The second and third step of the approach need to know the load history of the application

in order to generate a plan, if the application to model already exists. To accomplish it,

logs that represent the incoming workload to the application are used. In case of a new

service, it is possible to use an expected workload. A log contains the incoming workload

to the application in terms of count of requests during consecutive time intervals, where

all time intervals are of the same length. Formally,

log = (I, (n1, n2, . . . , nN)) (3.3)

where I is the length of the time interval and each ni, i ∈ [1, N ] are the amount of

requests during time interval i. This kind of information can be easily acquired from

activity records of servers like Apache http server or IIS .

Example In the exemplification of the behavior of this approach it has been used the

workload logs extracted from the information of FIFA 1998 World Cup website accesses
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(logs available at [27]). It has been extracted the accesses during three million seconds to

the servers of Paris region and counted the accesses over intervals of 10 seconds. The log is

log = (10s, (292, 241, . . . , 181)) and it contains 3 ·105 counts of requests. The complete log

information is shown in Figure 3.2; it is possible to see that this log shows high variability

of the workload over time.
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Figure 3.2: Workload log, requests every 10 seconds

3.2.3 VM characteristics

A key component for a correct resource estimation is the knowledge of the application’s

performance on each VM considered for deploying the software. Formally, assuming M

types of VMs,

demand = [e1, e2, . . . , eM ] (3.4)

where ei > 0 is the execution time in the i-th type of VM (VMi). Given the fact that the

number of VMs offered by the providers is very high, in the order of dozens of different

types, trying to measure the performance of the same software on every VM is a tremen-

dous effort from a economical point of view, but it’s also time-consuming and not prone

to automation. Moreover, the results are non reusable: they work only for the specific

software tested at the specific version. Even changing the software version could alter the

results. Finally, it is not feasible to count on clients providing this kind of information.

The solution to this problem is to measure only application’s time information in

one of the VMs and then to internally estimate the mean execution time of the application
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in the other VMs.

To accomplish this task the program will need to know the relative performance

among all different VMs or subcomponents of the VMs, so it will be possible to deduce the

execution times ei from the execution time obtained from a live test. There are numerous

studies in this direction [11], dedicated in studying VM performance, as it is a not trivial

field, but this is out of the scope of this thesis.

Example For exemplifying this approach, consider a completely CPU intensive applica-

tion, and therefore consider only the relative CPU speed of VMs. Assume the existence

of M different VMs, and the existence of a vector of relative CPU performance of each

VM CP U = [cpu1; ... cpui; ... cpuM ] with 1 ≤ i, j ≤M . The meaning is that if
cpui

cpuj

= 2,

then VMj requires double of time of CPU for serving a request than VMi. The input

from the client will be the mean time that the application needs to use the CPU to serve

a request and the type of VM to which refer that CPU time; call tj
CP U to the CPU time

measurement obtained from the j-th type of VM. With this data, it is possible to calculate

the values in demand vector by

ei = tj
CP U

cpui

cpuj

, ∀ 1 ≤ i ≤ M

To fill the CPU vector is possible to privately test the capabilities of VM subcomponents

or being based on previous research results about cloud resources benchmarking, like those

on Cloud Harmony website[9].

To compare an application that is not exclusively CPU intensive it is possible to

add the time taken by each subcomponent to the sum of ei. Usually the subcomponents

used for the comparison, in addition to the CPU, are memory and disk, as their perfor-

mance affect an application total running time. The generic formula to calculate a value

i in demand vector becomes

ei =
∑

subcom∈{CP U,memory,disk}

(tj
subcom ·

subcomi

subcomj

)

Of course, if there are no subcomponents other than CPU, the calculation of ei is reduced

to the previous case.



Chapter 4

Cost model retrieving

“I don’t know half of you half as well as I should like; and I like less than half of you half

as well as you deserve”

Bilbo’s farewell speech, The Fellowship of the Ring

This chapter will detail the necessity of a cost model retrieving, its implementation and

the challenges found in the process.

4.1 Introduction

The need of an automatic cost model retrieving raises from the observation that a sin-

gle provider like Amazon puts in the market more than 500 different VMs. A manual

comparison between different VMs is therefore highly impractical and it is discouraged.

Besides, there is the possibility of price changes or the introduction of new types of VMs

by a vendor, making the cost retrieval a periodic task and not a one time job.

To allow the comparison of VMs from different providers there is the need of a

model that could represent all the characteristics for which any cloud provider is interested

in charging their clients of each VM. This is achieved with the Cost Metamodel, detailed

in Section 4.2.

An automated cost retrieving program has been implemented, allowing the auto-

matic synthesis of cost models for Amazon, Rackspace and HP Cloud Services, ready to

be fed to the second step of the process, and it’s specified in Section 4.3.

20
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4.2 Cost metamodel

The three step process shown in Figure 3.1 requires in the second step information regard-

ing how providers charge their clients for VM usage. Cloud providers publish this kind

of information in their websites, usually in tables or in natural language. Comparing the

published information of VM usage costs of different cloud providers it is easy to see that

they do not follow an homogeneous procedure for billing. To make easier an automatic

analysis that uses the billing information different cloud providers, it is advisable to have

such information represented in the same language. That is why it has been developed

an extensible metamodel for representing the billing information of cloud providers.

Studying the websites of cloud providers, such as Amazon[3], Rackspace[31],

Azure[24], HP[18] and others [6, 21] we have found different characteristics for which cloud

clients are charged. Clients can be charged depending on the region where the datacenter

is allocated and on the usage of resources such as: storage, load balancers, monitors, data

transfer, virtual machines, databases or cache. Figure 4.1 shows an extensible metamodel

that allows the representation of these characteristics.

Since this thesis concentrates on the costs of a cloud deployment cut to the usage

of VMs, I have only extended the representation of Computing resources costs for which

clients are billed.

As it is evident in Figure 4.1, only the Computing element has been specialized

while the other six billing categories have not. The refinement consists of the specification

of VM’s characteristics and the different manners in which the utilization of a VM with

certain characteristics are charged.

Regarding VMcharacteristics, the model allow representing that cloud providers

offer different types of VMs and a set of Operating System (OS) to run in each VM type.

Attribute typeOfVM holds the model identification for the VM and operativeSystem holds

the OS type.

Regarding the MachineCost, it defines the catalog of choices offered by the cloud

provider for paying for a VM with certain characteristics. It consists of four attributes

that allow modeling the VMs costs both when running the VM on-demand and when the

VM has been reserved. I found that many providers allowed to reserve VMs, meaning

that a client must pay an upfront fee but in return it has a lower running cost for the

VM. This means that running a VM becomes cheaper if it is made an upfront payment

that reserves it for a long period. Finally, given the moment in time when a concrete
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Figure 4.1: Model of a Virtual Machine

VMx is activated (called T x
init) and the moment when a VMx is deactivated (called T x

end),

the assessment of time that a VM has been running is not unique among cloud providers.

Attribute periodicPayment holds the amount of money the client has to pay upfront when

reserving a VM - in case of an on-demand VM this attribute value is zero. period holds

the time period for which the reservation is stipulated; usual values are 1 year or 3 years.

runningPayment is the attribute that contains the amount of money requested by the

provider to run the VM for an interval of time equal to intervalRunning - e.g., 0.24$ per

hour. currency identifies the currency used in periodicPayment and runningPayment and

finally usageType is the attribute that specifies if the VM is on-demand or is reserved. If

it is reserved, it also specifies what type of reservation is.

Classes MachineRunningCost and MachineCalendarCost allow modelling the dif-

ferences found in the assessment. An object of MachineRunningCost means that the num-

ber of intervals that the machine has been running is ⌈
T x

end − T x
init

intervalRunning
⌉. This is, for

example, the case of Amazon billing policy. An object of MachineCalendarCost, instead,
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Figure 4.2: Azure timeline example

means that the number of intervals is

1 +
∑

∀n∈N | T x

init
<startingDate+n·intervalRunning<T x

end

1

being startingDate the moment in time where the cloud provider started charging its

clients. An example can clarify the formalism used. Figure 4.2 depicts the situation:

a VM has been started at Tinit = 10 : 45 and ended at Tend = 12 : 15 of the same

day. intervalRunning is 1 hour and startingDate is 1/11/2013. The summation result

is 2 and represents the second and third hour, as the condition is respected for n = 11

and n = 12: in the first case 10 : 45 < 11 : 00 < 12 : 15 and in the second case

10 : 45 < 12 : 00 < 12 : 15. Other n values does not respect the condition. The first hour

is counted by the 1 outside the summation symbol, arriving at a total of three billing

hours. This is the case for Azure[24] billing policy, that bills a VM for a full hour even if

it is deployed 1 minute before the next hour.

This model takes account of the most common virtual machine setting and con-

figurations possibilities, but can be expanded and modified in case of changes in the way

providers offer their products.

4.2.1 Amazon

Figure 4.3 depicts a partial instance of the metamodel that models the cost of two types of

instances small and HighCPU-extraLarge types of VM running Linux in U.S. East region of

Amazon AWS (whose billing model follows the MachineRunningCost manner in intervals

of one hour). These VMs are offered as a reserved VM for three years with different

types of upfront payments (e.g., for the case small instance, its reservation options are:

an upfront payment of $215 and $0.017 more for each hour that is actually running, or

an upfront payment of $257 and $0.012 for each hour that it is running) or as purely

on-demand VMs (e.g., in the small instance type, there is not any upfront payment but

it costs $0.06 each hour that it is running).

A peculiarity of this provider is that Amazon’s "heavy" reservation VMs have a

particular billing characteristic. They are billed for every hour in the month, whether
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Figure 4.3: Example of Amazon billing model for small instance running Linux

they are used or not, while "light" and "medium" VMs are billed only for the hours they

are powered on. This characteristic is only found in “heavy” reservation, and given the

amount of people discussing about it on the Internet, it was not explained in a clear

manner. In fact, if a client only reads the tables and does not read the particular details

for the heavy reservation type it could be tricked into thinking that the three reservation

types have the same rules. This problem has been solved by calculating in advance

the cost of the heavy reserved VM during the reference period as periodicP ayment +

runningP ayment · hoursInP eriod, becoming this the new periodicPayment and setting

to zero runningPayment, as evident in Figure 4.3.

Example A “Medium” Amazon VM costs 277$ upfront and 0.042$ per hour at the US

East (North Virginia) data center for a reservation term of 1 year. The actual cost is

obtained multiplying 0.042$ with 8766, that are the number of hours in 1 year, and then

adding 277$ to the result: 277$ + 0.042 $
h
· 8766h = 645.172$. To reserve this VM for 1

year, whether if it’s used or not, costs 645.172$, so this is the new upfrontPayment while

runningPayment is set to zero.

4.2.2 Rackspace Example

Figure 4.4 displays a partial instance of the metamodel that models the cost of the

same 1GB instance type of VM, one running Windows and the other running Linux of

Rackspace. Rackspace does not have regions, so the only region used is named “Unique”.
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Figure 4.4: Example of Rackspace billing for the same instance on Windos and Linux OS

Moreover, Rackspace offers only on-demand VMs, as the two in the figure. It is small,

but noticeable, the increase in hourly cost of the Windows’ VM with respect to the Linux

one, increase due to the licensing costs.

The prices are so low because are referred to one minute of VM deployment

and are obtained simply by taking the hourly price and dividing it by 60. This is made

possible by the fact that Rackspace’s minimum billing period is one minute, as this paper

[11] explains in Section 6.1.

4.3 Implementation

4.3.1 Requirements

Implementing this piece of software, apparently straightforward, posed indeed a series of

challenges that had been resolved in the process. First of all, the program had to comply

a few design requirements: it had to be modular and portable.

Modularity was the most important requirement, as the program needed to be

easy to maintain and expand in the event of a change in the underlying model caused
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by providers updates. Portability had to be enforced due to allow the widest possible

audience to use this software.

Purpose of this software is to automatically retrieve information about VMs pric-

ing from online provider, to process them and to output the cost model in a homogeneous

and consistent format. This software should be operated whenever a cost model is re-

quired, if it is not already present. Its results are valid until a provider decides to changes

his prices or add VMs to his offer. This event happens randomly but with low frequency,

in the order of a few times per year, so maintaining the results weekly seems a reasonable

compromise. On the other hand, it is also possible to run this program every time the

cost model is needed, but it is most of the time a waste of resources.

4.3.2 Getting the data

The challenge posed by this program was to find a way to fetch information about virtual

machines in an autonomous way from the providers’ sites. Usually this information is

stored in tables or is written in natural language in one or more pages of the provider’s

website.

Next sections explain how this problem has been addressed with three different

providers: Rackspace, HP and Amazon. These three providers have been chosen because

they cover a large share of the market, but other providers can be added to the program

at any time, as the design of the program is modular and extendible.

The choice to hard-code the first two provider prices and to automatically parse

the ones from Amazon derives from a simple cost-benefits comparison: Rackspace and HP

have a manageable number of VMs and so the time spent trying to generate an automatic

online price parser greatly exceeds the time saved by manually compiling the XML file.

Amazon, instead, has a large VMs offer that is hard to manage and update manually, so

in that case the time spent building an automatic price retrieving program is well spent.

4.3.2.1 Rackspace

Rackspace is an American based cloud provider since 1998, having in its portfolio public

cloud, private cloud and dedicated bare metal computing. Its public cloud prices are

available at Rackspace Pricing and at the current date it’s composed by 7 different VMs

for Linux-based OS and 6 different VMs for Windows-based OS. The pricing information

is presented in a table, where the VMs are identified by their RAM quantity, from a

http://www.rackspace.com/cloud/public-pricing/
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minimum of 512MB to a maximum of 30GB. The only indication of VM’s CPU power is

the number of virtual cores, ranging from 1 to 8, but it is not specified what a virtual

core is equivalent to.

Being the prices stable for more than a year and giving the fact that the number

of VMs is low, creating an automatic parser of the price tables was an greater effort with

respect to a manual inspection, so these prices have been hard-coded in the program. If

in the future they are subject to change, they can be modified directly in the output XML

file of the program.

4.3.2.2 HP Cloud

HP is one of the most known companies in the computer field, with thousands of employees

worldwide and hundreds of products, but only in the last years they opened to the market

of cloud computing. At HP Cloud Pricing is shown their offer, that consist of 6 VMs with

either Linux or Windows OS. They range from a "extra small" instance equivalent to 1 HP

Cloud Computing Unit to the "double extra large" instance of 32 HP Cloud Computing

Unit. One Cloud Computing Unit is a unit of CPU capacity that describes the amount

of compute power that a virtual core has available to it. 6.5 CCUs are roughly equivalent

to the minimum power of one logical core (a hardware hyper-thread) of an Intelr 2012

Xeonr 2.60 GHz CPU.

The same consideration made for Rackspace is done here: there are so few VMs

that create an automatic parser is an overkill. Prices have been hard-coded in the pro-

gram.

4.3.2.3 Amazon

Amazon is the principal online vendor and offers to its client more than 500 different

types of VM billing. It has a very detailed costs page at Amazon EC2, where it is

possible to view the VMs grouped by reservation type, that is on-demand, Light, Medium

and Heavy. In each panel there is a list of VMs and it is possible to change the region from

where the VMs prices are shown. Finally, in the panel there is also the option to choose

between different OS. Information about the VMs performance are at Amazon Instance

Types. In particular, CPU performance are measured in ECU, where "one EC2 Compute

Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon

processor".

http://www.hpcloud.com/pricing#Compute
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/instance-types/
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There are also "Spot instances" that are VMs that are temporarily unused and

that Amazon sells on a auction, where users bid to get the VM. This thesis’ approach

is expected to be used by clients who want to deploy a service or application over the

internet, to satisfy third-users desires. This can lead to significant price discounts, but it

is totally unreliable as the VM won can be reclaimed at any second from another user, so

they have not been considered. This option looked as an attractive option to sustain a

best-effort task of heavy computation on a cheap position, but not for deploying a stable

internet service (at least at this grade of computing maturity).

Noting that the number of VMs is too high to be manageable by a human, an

automatic parser is recommended. Analyzing the webpage source it came out that the

prices are not embedded in the HTML but they are asynchronously fetched with Javascript

from a series of JSON files. It comes natural to exploit this fact, using directly the JSON

files to retrieve the prices of the VMs. The software that creates a cost model from the

information of this process is available at [27]. Chapter 6 explains its usage.

4.3.3 Design

The program has been developed in Java, to ensure portability and efficiency. Besides,

it’s one of the most common programming languages nowadays and I was already familiar

with it. The program has only a command line interface, no graphical UI is necessary at

this point. A GUI can be easily created in a second time.

A class diagram is shown in Figure 4.5. There is a CloudProvider class that acts

as a bean, containing all the information about the provider’s VMs and their pricing.

With the toXML() method this knowledge is serialized in a XML file, ready to be written

into a file. The XML format has been chosen because it’s easy to understand for both

humans and computers and it’s highly customizable and expandable.

CloudParser is an abstract class that holds a method interface that each provider

class must implement getPrices() and two common function, writeToFile() and getDataFro-

mURL(). A abstract class is a type of class that cannot be instantiated and contains an

incomplete implementation, as in this case. For each provider there will be a class im-

plementing this abstract class that will retrieve and parse the prices and return them

in a CloudProvider object. getPrices() is the method that will return a CloudProvider

object containing the billing information of the provider parsed by the specific class.

writeToFile() is a utility method that writes a string to a file, while getDataFromURL()

reads the contents of a web page and returns them in a string.
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Figure 4.5: Cost model class design

The metamodel explained in Section 4.2 had to be converted into a class model.

Figure 4.6 shows the classes that has been created. Starting from the top, there is a Cloud-

Provider class containing the name of the cloud provider and a list of Region objects. Each

Region holds the region name and a list of TypeOfMachines objects. Each TypeOfMa-

chines is identified by its machineCode and holds a list of OperatingSystem objects. Each

OperatingSystem contains the name of the OS and a list of MachineRunningCost objects.

Finally, a MachineRunningCost contains the following attributes:

• periodicPayment: also known as upfront payment, is the amount payed only once

in the specified period to run a single instance of the VM, in the currency specified.

• runningPayment: amount payed to run a single instance of the VM in a period

running time interval, in the currency specified.

• currency: currency used in the pricing. Can be USD or EUR.

• period : period of time where the virtual machine is reserved.

• periodRunning: minimum amount of time in which a virtual machine can be billed.

• usageType: type of virtual machine reservation that some providers, like Amazon,

offer can be one of the following states: on_demand, light, medium, heavy.

The only method common to each class is toXML() that has the task to serialize the

information contained inside the class and output it in a XML string. purge() is used to
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Figure 4.6: Cloud Provider class model

check the presence of empty or useless objects, such as a Region with no TypeOfMachine

objects or a MachineRunningCost instance with both periodicPayment and runningPay-

ment set to zero, and to remove them. Each add() method adds the passed parameter to

its list of objects, checking for duplicates recursively. In case of a duplicate, the duplicate

is not added. The join() method in CloudProvider class has the same behavior, but first

checks that the joining CloudProvider object has the same providerName property.

4.3.3.1 XML

Having chosen XML as output file it was necessary to define the equivalent XML repre-

sentation of each object in Figure 4.6.

It has been decided to create a single tag for each class, while each classes’ prop-

erties are written as attributes. This is a very compact and efficient way of writing

information, with low text redundancy. Another possibility was to create for each at-

tribute the corresponding tag, but it would have been difficult for a human to read the

file as the information is dispersed in many ramifications.

Figure 4.7 shows an extract of the Amazon cost model XML output by the final program.
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Figure 4.7: Amazon cost model in a XML file

4.3.3.2 Amazon JSON

Amazon publishes its prices on webpages as tables that load the data dynamically. After

some investigation, it has been found that tables get their data from asynchronously

fetched JSON files which contains all the pricing information. Identified the JSON files

location, they were exploited to retrieve Amazon’s prices automatically.

The structure of a Amazon JSON prices file, regarding prices of Linux on-demand

VMs, is shown in Figure 4.8.

Being the JSON objects formatted in a slightly different model with respect to

the one presented in Figure 4.6, there is the need to traduce from objects in this notation

to the objects shown in Figure 4.6.

Being this not a formal API it could be subject to sudden changes in case Amazon

decides to alter its prices webpage. In that case it will be sufficient to update the traducer

code to reflect the changes made. This happened only once in one year and the change

made was not in the file structure but in the content of an attribute, so the traducer code

has been quickly updated.
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Figure 4.8: Part of a JSON file containing Amazon Linux on-demand VMs prices

Among the utilities that are used for parsing JSON files, I decided to use the

Google JSON Java Library[16] for the program, because it is a lightweight standalone

library with no external dependencies, excellent performance and easy to use. With just

one line of code it reads and parses a JSON files and returns a Java object populated with

the JSON file’s data. Other parsers, like JSONLib[12] and FlexJSON[19] were discarded

due to the excessive tuning required to properly work with the Amazon JSON files.

4.3.4 Implementation

The program has been implemented in Java, following the design directives. The most

challenging part has been the parsing of Amazon’s JSON file, because it wasn’t docu-

mented as the JSON files are not parts of a public API. The programming has been done

with the Eclipse editor.

4.4 Running program

The program can be invoked by this command
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java −j a r c loudParser . j a r [ Amazon | Rackspace | HP] [ d e s t i na t i o n

f i l e xml ]

It is possible to specify two arguments. The first one is the name of the provider

that will have its prices parsed. The second is the name of the destination XML file,

where the prices will be written.

It is also possible run the program without arguments; in this case, the program

will interactively ask for a provider and a destination file.

Program’s running time computing Amazon prices is, on average, 5057ms; to

write the Rackspace cost xml file the running time is 237ms. The reason to this discrep-

ancy is in the fact that Amazon prices need to download 8 different JSON files, while

Rackspace have its prices hard-coded. These running times are perfectly reasonable for

the running frequency this program has been designed to.



Chapter 5

Plan synthesis

“I’m feeling lucky”

Google

This chapter explains the process of the adaptation plan synthesis. It details concepts

as what the prerequisites are, what the process consists of, the rationale behind the

separation between reserved and on-demand processes, what “buckets” are.

Once we have a cost-model of a cloud provider that can be easily managed auto-

matically, it can be synthesized an adaptation plan that takes carefully into account the

cost of VMs. Such adaptation plan will guide the allocation and de-allocation of VMs, ex-

ploiting the elasticity offered by the cloud. The plan is divided in two processes: the first

one deals with the most predictive type of trace and uses only reserved VMs to generate

a plan; the second part of the process, instead, works on the workload trace remaining

from the first process, containing mainly bursty accesses, and uses exclusively on-demand

VMs. Each process generates an adaptation plan where it is specified the number and

type of VMs to activate depending on the input access rate.

5.1 Overview

The plan synthesis process has the job of calculating the number and, if possible, the

reservation type of VMs needed to run a service, given its expected workload and SLA to

meet.

Figure 5.1 details this stage, for reasons that will be explained subsequently: the

34



35

�����������	�
����	������

����������������	
�����������	�
���

�����������	

���������

��	


��

���������

�������	�

���������������

�����������

�����

��������

��������

��������	�

��������

�����������

�����

Figure 5.1: Two-stage plan synthesis

process has been separated into two parts, one only for on-demand VMs and one for

reserved VMs. Inputs of this stage are the workload log, SLA, the cost model and the

computing resource demand. The outputs of the first part are a set of adaptation rules,

the upfront payments and a remaining workload. In turn, outputs of the second part are

only the set of adaptation rules for the on-demand stage.

A plan is a set of rules that automatically indicate when to deploy or remove

VMs according to the incoming access rate of the service.

5.1.1 Separation between on-demand and reserved plan synthesis

As it was exemplified in the cost model in Section 4.2, some providers offer the option to

book VMs in order to obtain a less hourly cost. Reserved instances must be booked ahead

and constitute a finite set of available VMs, while on-demand VMs can be theoretically

infinite and so there is no limit in deploying them. This is a core difference: reserved VMs

are a finite number as their number must be known ahead, while on-demand VMs are not

planned and at any moment of time a large number of them can be powered on.

Due to this distinction two distinct procedures and the different kind of workload

that are expected to support have been developed to best exploit the potentiality of each

instance type.
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5.2 Inputs and outputs

The second stage of the process, the plan synthesis, has four different inputs and generates

two or one output, depending which module has been used. These inputs have already

been shown in Section 3.2, so will be briefly refreshed.

5.2.1 Cost Model

The cost model is the output of the program discussed in Chapter 4. It consists of a XML

file containing the prices of all the relevant VMs of a provider, in the format shown in

Figure 4.6.

5.2.2 SLA

The SLA follows the specification detailed in Section 3.2.1 and specifies the service perfor-

mance, together with the “reward” obtained for each step of the SLA. This SLA identifies

and regulates the performance that the service provider has to guarantee in order to sat-

isfy its user requirements. The Service Provider is in his turn a client of the the Cloud

Provider: it makes use of cloud resources and its agreements to satisfy its users needs and

maximize its benefits. Figure 1.1 exemplified the situation.

5.2.3 VM Characteristics

Information about VM performance have to be fed to the program. Since VM performance

are application dependent, there could not be added anything generic to the cost model

that allows the plan synthesis process to compare a set of VMs.

Other research groups are currently benchmarking and ranking VM performance

of different cloud providers[11]. In this thesis it is assumed as known just the common

information in Performance evaluation research, the service rate (µ) of each VMs used in

the plan synthesis, together with the information to identify and retrieve the correct VMs

from the cost model.
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5.2.4 Workload log

The adaptation plan synthesis step creates a plan tailor-made for an existing software

application or service that is intended to offer its services over the Internet. Infor-

mation about the expected load of the service is provided through the workload log,

as explained in Section 3.2. Formally, the log has been defined in equation 3.3 as

log = (I, (n1, n2, . . . , nN )), where I > 0 is the length of the time interval and each

ni, i ∈ [1, N ] is the amount of requests during time interval i.

This definition is useful for mathematical and theoretical reasoning. In the im-

plemented process, there is a log file that contains for each line the number of request ni,

while the length of the time interval I is given separately in a configuration file.

5.3 Workload analysis and its impact on resources cost

5.3.1 Burstiness

One of the common things of services accessible through Internet, like mail servers, web

servers or database servers, is that they all have variable and bursty access rates. It is a

well known fact in the IT world and it’s even more evident if we plot the access requests

of any of these servers on a plot, as did in Figure 3.2. On top of a normal day-night cycle,

there is a great number of unpredictable access peaks. To deal with the peaks on a user

managed server the only solution is to dimension the server capacity in order to handle

the maximum number of requests, plus a margin as safeguarding; i.e., set it up to be

able to cope with the worst-case scenario. This leads to server underutilization because

usually the worst-case scenario rarely happens but it shows a much higher arrival rate of

requests than the normal usage. This is the first reason to switch from in-house servers

to cloud deployment: the possibility to own and pay only for the resource needs in each

moment, rather than for the worst case scenario.

Example Figure 3.2 shows the access rates of the FIFA World Cup 1998 webserver

during 2 consecutive weeks. The highest access rate registered was of 453.5 req/s while

the mean access rate was of 46.9 req/s. This behavior can be traced to the nature of the

website: during a world series football match, people who had no access to television

wanted to know the result of the match, probably constantly refreshing the page to get

the last updates. This is the reason for the access peaks in this particular case.
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Without the extreme outlier values, the server could have been dimensioned for

approximately 120 req/s, but instead it had to be dimensioned for 500 req/s. Even worse,

without a careful study of bursty periods, one could only use the expected mean arrival

rate of requests (46.9 req/s) and naively feel that its deployment can deal with the workload

of the service. It is 4 times more powerful, and only to sustain an inbound traffic that

happens in a small fraction of the total time. Indeed, only the 5.3% of the time the

requests are more than 120 req/s, so for the 94.7% of the time the server is underutilized.

However, the requests during such period represent the 21.56% of the total.

5.3.2 Cloud Providers

An online cloud provider offers to its clients the possibility of buying various services,

including but not limited to VMs, load balancers, monitors, backup & replication, dns,

databases. For these services there could be engineered an adaptation plan that manages

their usage in each moment in order to compute the client costs. This thesis concentrates

on the VMs management, abstracting away from the rest of artifacts offered by the cloud

providers.

Comparing cost web pages for VMs across different providers it is evident how

some of them, especially the largest ones, offer different types of purchase. The different

types of purchases have been grouped into two sets: on-demand and reserved.

On-demand is the famous “pay as you go”, the user pays only for the resources

effectively used, and he can request as many resources as he can afford. There is no limit

in purchasing on-demand resources and the performance delivered are the same respect a

reserved instance.

For reserved instances, instead, the user will have to pay an amount upfront, with

the benefit of a discounted hourly price for the VMs. Among the different levels of VM

reservation that this set includes, the common rule is “the more the user pays upfront the

less the VMs costs hourly”.

A partial list of online providers is present in Appendix A.

5.3.3 Cost study

Let me now show a study of the price of the same VM on different reservation prices.

The VM used for this study is from Amazon, region US East, OS Linux, type Large,
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reservation for 1 year and for 3 years, prices of October 2013. Prices have been extracted

from the cost model generated with the cost model retrieving.

reservation upfrontPayment periodicPayment period

on-demand 0 0.24 -
light 243 0.136 1 year

medium 554 0.084 1 year
heavy 1166.84 0 1 year
light 384 0.108 3 years

medium 860 0.067 3 years
heavy 2237.57 0 3 years

Table 5.1: Costs for a Amazon Linux VM, US East region, as of October 2013

In Figure 5.2 it is shown the cost graph for the VM at 1 year reservation period.

The red line represents the cost for a heavy reservation VM, which is constant as these

VMs are billed whether they are powered on than not, so it is parallel to the x axis.1

Costs are obtained by the formula

cost(h) = upfrontP ayment + periodicP ayment · h

where h is the number of hours the VM has been running while upfrontPayment

and periodicPayment are the attributes of the cost model presented in Section 4.2 and

summarized in Table 5.1.

To pay the minimum cost possible, the only variable to know is how many hours

the VM will be active. Once this variable has been set, it is easy to choose the best type

of VM purchase just looking at the graphic and selecting the reservation associated to the

lower line. In a more systematic way, it’s easy to find the point where the lines intersect

and use that value as a threshold for the usage of the current reservation type.

In this case, the limit value for being the on-demand VM usage the most economic

is 2337 hours (26.67%). In turn, for light VM reservation is 5981 hours (68.23%) and for

medium VM reservation is 7296 hours (83.23%). Remember that the number of hours in

1 year is 8766. This information can be condensed in system 5.1.

1Pre-reviewers of this document noticed that the line seems inclined downwards. It is merely an optic
illusion.
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on demand h < 2337

light 2337 ≤ h < 5981

medium 5981 ≤ h < 7296

heavy 7296 ≤ h < 8766

(5.1)
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Figure 5.2: Cost of the same Amazon VM at different reservations - 1 year period

Figure 5.3 shows the cost graph for the VM at 3 years reservation period, or equiv-

alently 26298 hours. On-demand VM is convenient until 2910 hours of usage (11.07%),

light reservation VM is convenient until 11610 hours (44.15%) and medium VM is conve-

nient until 20561 hours (78.18%). This information is summarized in the system 5.2.







































on demand h < 2910

light 2910 ≤ h < 11610

medium 11610 ≤ h < 20561

heavy 20561 ≤ h < 26298

(5.2)

It is evident how on-demand VM should be considered only for seldom usage,

while the other reservation types can help containing costs. This statement is in agreement

with the burstiness of Internet services workloads; the bursty periods rarely happen but,

when they do, they require a large number of resources for a short period.

From Figure 5.3 it is clear how a naive approach that uses only on-demand VMs

costs spends in about a year the amount needed to run the same VM at a different
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Figure 5.3: Cost of the same Amazon VM at different reservation types, all of them con-
sidering the 3 years period

reservation for 3 years.

This analysis is fundamental to understand what type of reservation choose,

knowing the number of hours the VM will be deployed. It is clear also the usefulness

of the study performed on this thesis, since usually a service provider that deploys its

service in the cloud can hardly calculate without help from an expert the proportions of

time that VMs will be active.

5.4 Plan synthesis for Reserved VMs

This stage creates a subset of rules of the adaptation plan, those rules that will be in charge

of activating and deactivating VMs that are reserved. Since the cost of VMs reservation

should be payed before running the service, the number of VMs to reserve and the type of

reservation of each of these VMs should be known before running the services. Therefore,

in this stage it has also been implemented a method that returns such information, i.e.

the type of VMs to reserve and how many VMs of each type of reservation available in

the cost model, as shown in Figure 5.1. A flowchart that describes this process in a more

detailed manner is provided in Figure 5.4.

Before being used, the workload log log has to be normalized. The log provided

by the user is, as explained in Section 5.2.4, a series of N numbers where each value

represents the amount of requests received in I seconds. The plan synthesis works with

units in seconds, so the log trace is normalized by dividing each value by I. Having stated

previously that I > 0 this division doesn’t pose any problems. After this preliminary
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operation, the plan synthesis can start.

This stage works on the most stable part of the workload, as the bursts will be

analyzed and managed with on-demand VMs. Due to this fact, it is not made use of the

variety of VMs offered by the cloud providers but it has been decided to use only one of

the types. Otherwise, it would make the application’s performance less predictable and a

slight change in the workload could entail a big difference in the computing infrastructure,

which will turn into an excessive adaptation rate. It has been selected the most powerful

type of VM for the type of application’s computing resource demand. For example, if

the application is memory intensive, it will be selected a VM with high performance for

memory-intensive executions; if the application is CPU-intensive, it will be selected the

type of VM with high computing capacity, and so on. So for this let’s call it V Mi.

The rule synthesis starts by calculating the optimal usage thresholds un for each

reservation type of V Mi and store them in a vector. A usage threshold un ∈ [0, 1] is the

limit where one type of reservations stops being convenient and another type starts being

the optimal choice; i.e., the generalization of the example illustrated in Section 5.3.3. The

thresholds are found by intersection of the cost lines, where a cost line is given by

periodicP ayment + runningP ayment · hours (5.3)

periodicP ayment and runningP ayment are obtained from the cost model and hours ∈

[1, period] is the variable number of hours the VM has been used during the period

(for example, for Amazon a period is 1 year or 3 years, equivalent to 8766 and 26298

hours, while for Azure a period is 6 months or 1 year). As hours is the only variable,

it is easy to find the intersection between two functions as an equation between the two

lines; afterward, the usage threshold is obtained by dividing the hours found with the

referring period. Saying reservation1 has periodicP ayment1 and runningP ayment1 and

reservation2 has periodicP ayment2 and runningP ayment2, then it is found the value

hours that makes

periodicP ayment1+runningP ayment1·hours = periodicP ayment2+runningP ayment2·hours

So,

hours =
periodicP ayment2 − periodicP ayment1

runningP ayment1 − runningP ayment2

Finally, it is derived the usage proportion, independently of the time unit used:

u1 =
hours

period
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This information is structured in a list called usage. The usage list is composed

by pairs in the format (costn, un), where costn is an object of the cost model with the cost

information of the type of reservation that is the optimal up to usage un and un is the

usage thresholds for that cost. In the rest of the thesis for identifying the two elements

that compose the n-th list item I use the notation usagen.cost and usagen.u.

Example Here it will be shown the steps to calculate the thresholds for the the first

threshold is obtained by comparing on-demand and light reservation types for a Amazon

VM, region US East, OS Linux, type Large, reservation for 3 years. The first threshold

is found by comparing on-demand and light reservation costs:

0 + 0.24 · h = 384 + 0.108 · h⇒ h1 =
384− 0

0.24− 0.108
= 2909

Having period = 3 years = 26298 hours,

u1 =
h1

26298
= 0.1106

Comparing light and medium reservation,

h2 =
860− 384

0.108− 0.067
= 11610

that becomes

u2 =
11609

26298
= 0.4415

Finally,

h3 =
2237, 57− 860

0.067− 0
= 20561

and

u3 =
20561

26298
= 0.7818

So, the usage threshold is

usage = ((coston−demand, 0.1106); (costlight, 0.4415), (costmedium, 0.7818), (costheavy, 1))

Curiosity

The formula used to calculate usage thresholds has the benefit to always

give back a result, unless Figure 5.2 showed two lines in parallel, in which case the

denominator of the fraction becomes zero. In this case it is easy to see that a kind

of VM purchase is always better than another, and this situation could be easily
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recognizable by the software tool. Interestingly, it can also happen that the number

of hours returned is negative, meaning again that one cost line is always better than

the other. This fact indeed happened during the tool implementation. The tool I

implemented founded 3 cases in the Amazon AWS2 public prices where prices were

inconsistent, I reported my findings to Amazon, they recognized the inconsistency and

they corrected their worldwide public prices[28].

Once the usage list is initialized, it is initiated a iterative process that unveils the

amount of VMs to contract with each type of cost, as shown in Figure 5.4 and Algorithm

B.1.

It is created an empty array, called reservation, that will hold the calculated

number of VMs for each type of reservation. Each position in the array will store the pair

(costn, numV Msn). Therefore, the array will have the form

reservation = [(cost1, numV Ms1), (cost2, numV Ms2), ...]

being costn an object of the cost model with the cost information of a VM for a type of

reservation and numV Msn a natural value with the number of VMs to reserve at a cost

costn. The size of reservation array is N (i.e., the same of usage) the idea is to cycle

through each usage element and allocating to each payment type a number of VMs. The

number of VMs for each payment type depends on the frequency with which they will

be allocated. The process starts considering the amount of machines that are expected

to be active the highest proportion of the time. Thus, the process starts considering

the information in the last position of usage (i.e. those ones with the highest upfront

payment).

5.4.1 Calculate the workload thresholds

Into the loop of Figure 5.4, the first operation is to calculate the workload thresholds (in

terms of arrival rate of requests) λj for which, taking into account the sla, the profit of

the system becomes the same either using j instances of V Mi or j + 1 instances. This

thresholds are stored in the workloadThresholds array, which is an output of the activity

(as depicted in Figure 5.4). The thresholds mean that, ideally, the best moment to have

the j+1-th VM activated is just when the arrival rate of requests to the application exceeds

λj. Figure 5.5 shows the profit function with sla , service rate of requests µ constant, and

numV M variable. The parameters used are sla = ((1, 0.01), (2, 0), (∞,−0.01)), µ = 5 req/s



46

0 5 10 15 20 25
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Request arrival rate ( λ)

P
ro

fit
 (

$)

 

 

1 VM
2 VMs
3 VMs
4 VMs
5 VMs

Figure 5.5: Profit in function of the workload and amount of active VMs

and costV M = 0.1, while numV M ∈ [1, 5]. The intersection between the first curve and

the second is located at λ1 = 3.63 req/s.

profit function Curves in Figure 5.5 were obtained by using the well-known queueing

theory that states that the probability that the response time τ of a request is less than

r is:

P (τ < r) = 1− e(λ−µ)r (5.4)

when each VM holds its own queue of requests and assuming than requests to the ap-

plication are randomly forwarded to one of the VMs3. The arrival rate of requests is

assumed to follow the exponential distribution, with an arrival rate of λ, which in this

case is the workload of the log trace. µ, instead, is the service rate, the number of requests

handled per second by the VM (assuming again that the time to serve a request follows

the exponential distribution); its value can be obtained from the demand array of Section

3.2.3, and the relation is µi = e−1
i

Under this assumptions, the function profit is defined as

profit(λ, µ, cV M, numV M, SLA) = revenue(λ, µ, numV M, SLA)− numV M · cV M

(5.5)

3The assumption of random workload forwarding allows to have in the queue of each VM an exponen-
tially distributed inter-arrival time of requests
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where cV M is the cost of having powered on a VM, numV M is the number of VM used

and SLA holds the SLA information in the format explained in Section 3.2.1. revenue is

the function that calculates the revenue of the system with the parameters specified, and

is defined as

revenue(λ, µ, numV M, SLA) = λ ·
∑

∀(ri,mi)∈SLA

(mi ·(e
( λ

numV M
−µ)ri−1−e( λ

numV M
−µ)ri)) (5.6)

This function uses queuing theory to consider the probability of finishing the execution f

a request in each of the intervals considered in the sla.

As said earlier, each threshold λn is found at the intersection of two consecutive

profit functions, or else when

profit(λ, µ, cV M, n, SLA) = profit(λ, µ, cV M, n + 1, SLA)

5.4.2 Scan log and populate resourceNeedsLog

Once even the workloadThresholds array is populated, it is time to use it to scan the log

resource trace in order to find, for each point of the log trace, what is the optimal number

of VMs that should be used for dealing with that amount of traffic. This operation is

executed by activity Scan log and populate resourceNeedsLog in Figure 5.4 and its results

are stored in resourceNeedsLog, which is an array of size N , the same as the workload

log. This is accomplished by scanning workloadThresholds and finding the index j such

as workloadThresholdsj−1 < logl ≤ workloadThresholdsj, where logl is the current trace

element. Formally, resourceNeedsLog is populated with Equation 5.7

∀l ∈ [1, N ] ∀j ∈ [1, W ]

resourceNeedsl = j |workloadThresholdsj−1 < logl ≤ workloadThresholdsj (5.7)

having N = log.length and W = workloadThresholds.length. For example, using the

log of Figure 3.2 and workloadThresholds calculated as in the example shown just above,

the first iteration of the loop gives as result the resourceNeeds array shown in Figure

5.6.
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Figure 5.6: Number of required resources that maximize the profit in function of the
variable workload for the first iteration of the algorithm

5.4.3 Count resourceNeedsLog

The third operation inside the loop, called “Count resourceNeedsLog”, is intended to study

resourceNeeds array. In particular, the function count is used upon resourceNeeds in

order to know the proportion of time each number of VMs is active. The result is a new

array, called countOfResourceUsage and it is defined in Formula

∀i ∈ [1..P ] ∀l ∈ [1..N ] countOfResourceUsagei =
count(logl ≥ i)

N

P is the maximum value stored in resourceNeedsLog, called P = resourceNeeds.max;

N = resourceNeedsLog.length and the function count simply returns the number of

element of the resourceNeeds array that have values higher or equal i. The result of this

operation can be seen in Figure 5.7. Frequency equal to 1 means that there are always

needed at least this amount of VMs, frequency 0 means that there is never required that

amount of resource. Naturally, at position 1 the frequency is 1 because there is always at

least 1 VM active, but the curve drops rapidly and at around 28 VMs the frequency is

around 20% - it means that more than 28 VMs are needed for less than 20% of the time.

The fact that in Figure 5.7 a large number of VMs are used for a very small fraction of

the time means that seldom is required a high number of VMs, confirming that the log

trace has a bursty nature.
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Figure 5.7: Distribution of the VM requirements

5.4.4 Calculate number of VMs to reserve

Next, it is executed the fourth operation inside the loop of Figure 5.4 called “Calculate

number of VMs to reserve”, which decides the number of VMs to reserve at the cost consid-

ered in the current iteration of the loop, i.e. at usagen.cost. To do so, it is used the freshly

calculated countOfResourceNeeds array and the usage array. The aim of this operation

is to decide what is the best amount of VMs to reserve at a cost usagen.cost. The number

of VMs to reserve, called numV Ms, is the maximum index i of countOfResourceNeeds

where countOfResourceUsagei is greater than the usage thresholds usagen−1.u. In this

manner each reservation type can reserve a number of VMs that will be deployed in their

most cost effective part of the cost model.

Example For the first round of the loop, n = 4 and so usagen−1.u = 0.7818. The maxi-

mum index i of countOfResourceNeeds that holds the inequality countOfResourceNeedsi >

0.7818 is numV Ms = 7, with a frequency equal to countOfResourceNeeds7 = 0.8156;

in fact, countOfResourceNeeds8 = 0.7716.

This means that 7 VMs are required (at least) 81.56% of the time. Being the current

type of reservation convenient if and only if the VMs are used more than 78.18% of the

time (that is usagen−1.u · 100), these 7 VMs are correctly allocated with this type of

reservation.
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5.4.5 Update reservations list

The next step, the fifth block inside the loop called “Update reservations list”, simply

adds the calculated number of VMs and the current cost object in the reservation list:

reservation← add(reservation, (costn, numV Ms))

At this point the objective of the process iteration has been achieved, to decide

all number of VMs to reserve at a cost usagen.cost. Now it is prepared the used data of

the iterative process for the next iteration.

5.4.6 Calculate workload supported by numVMs

First, the amount of requests that are expected to be served by the calculated numV Ms

VMs should not be considered anymore. This is the work of the sixth block, called

“Calculate workload supported by numVMs”. It calculates the amount of workload that

will be supported by numV Ms VMs and store it in supportedWorkload. At first sight, it

could seem that it is simply workloadThresholdsnumV Ms, that is the maximum amount

of workload that is optimally handled by numV Ms VMs, but it would be incorrect. In

fact, workloadThresholds array is calculated when all the curves sharing the same cost

model. Here, instead, the first numV Ms VMs will have the same cost model costn.cost

and the next VM deployed, numV Ms + 1, will have the cost model costn−1.cost because

will be reserved at the next cycle with a different cost model. So, the workload effectively

supported by the new reserved VMs is calculated by a new function also based on Queuing

Networks theory called calculateEquivalentP rofit. The result of this function is stored

in supportedWorkload variable.

The mentioned function calculateEquivalentProfit finds the workload value for

which the profit is equivalent either using numV Ms at cost usagen.cost or using numV Ms

VMs at cost usagen.cost and one VM at cost usagen−1.cost. The new threshold should be

marginally higher than the old, because the costV M is higher for the VM numV Ms + 1

and accordingly the gain curve starts at a lower y-axis point.

calculateEquivalentProfit function The purpose of this function is to find the max-

imum amount of workload that numV Ms VMs can sustain maintaining maximum the

profit, knowing that the numV Ms + 1 VM will have a different cost model. To ac-

complish this goal, it is not possible to use directly the profit function passing as pa-
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rameters numV Ms and numV Ms + 1 otherwise the result will be the same obtained in

workloadThresholds. The first curve is obtained from the function

profit(λ, µ, cV M, numV Ms, SLA)

with λ ∈ [0, numV Ms · µn], while for the second curve has been used a slightly modified

version of the profit function. In fact, the numV Ms + 1-th VM has the same µ value of

the previous VMs as all the VMs equals in terms of performance, but differs for its cost.

So, the profitEq function becomes

profitEq(λ, µ, cV M1, cV M2, numV Ms + 1, SLA) =

revenue(λ, µ, numV Ms, SLA)− (numV Ms) · cV M1− cV M2

In this function, numV Ms is the number of VMs used at the current cost cV M1 and

only the last one is at cost of the next reservation cV M2. The revenue generated by all

the VMs is reduced by the cost of the numV Ms− 1 VMs of the same cost model and by

the cost of the single VM with a different cost model.

The intersection between profit(λ, µ, cV M, numV Ms, SLA) and

profitEq(λ, µ, cV M, cV M2, numV Ms + 1, SLA) is the supportedWorkload.

Example Let’s say that after the first cycle numV Ms = 7, where the VMs are from

Amazon, type “medium”, heavy reservation with µ = 5 req/s. Thresholds have already been

calculated and workloadThresholds[7] = 6.01. costV M for this VM is 0 as it is a VM at

heavy reservation, so the periodic payment is zero and therefore so is costV M . For the

next type of reservation, medium, costV M = 0.00034. The calculateEquivalentP rofit

function needs to find the intersection between one curve that represents the profit ob-

tained using numV Ms “large” VMs at reservation heavy and numV Ms “large” VMs at

reservation heavy plus one “large” at reservation medium. Being the medium reserva-

tion VM at a higher cost, its curve is slightly worse - and so lower - with respect to a

curve with all heavy reservation VMs. For this reason, the workloadSustained = 18.23

obtained by calculateEquivalentP rofit is marginally higher: 18.23 respect to 16.47 of

workloadThresholds7. Although it has been observed that the difference is not huge, it

has theoretically been known that this is the precise method to calculate the thresholds

and so it has been implemented to test the differences between the precise method and

the inaccurate one that would directly use the workloadThresholdsnumV Ms value.
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Figure 5.8: Remaining workload after the first cycle of the Reserved plan synthesis

5.4.7 Remove supportedWorkload from log

Now that it is calculated the equivalent workload supported by numV Ms VMs and these

VMs have been added to the reservation array, it is safe to remove this amount of

workload to the log trace. This operation is done in the action called “Remove support-

edWorkload from log; n = n - 1” of Figure 5.4. This is accomplished by subtracting from

each element of the log trace the value supportedWorkload. If the result is negative, the

element value is set to zero. Formally,

log = max(log − supportedWorkload, 0)

Figure 5.8 depicts the modified log trace after the first cycle of the loop. It would seem

that the plot is the same as Figure 3.2, but it is not. In fact, each element has been scaled

down by the value workloadSustained = 18.23

After the log trace has been updated, n is decremented by one and the loop

restarts until n > 1.

When n = 1 the process exits from the loop and ends. log becomes remainingWorkload,

as it contains the workload that has not been addressed by the reserved VMs and will be

the input for on-demand plan synthesis. It can be viewed in Figure 5.9. The reservation

list can be returned to the user as it is completed.
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Figure 5.9: Workload remaining after the complete Reserved plan synthesis

5.5 On-demand Plan synthesis

At this point, it has been calculated the number of VMs to reserve, the type of reservation

of each of those VMs and the arrival rate of requests thresholds where each VM should

be ideally activated or deactivated. These calculated VMs are expected to deal with an

important part of the workload, for example 90% of the time (as it was unveiled in Section

5.3.3) these reserved VMs can deal with the received workload. There are however some

parts of the expected workload that should be managed by VMs activated purely on-

demand; these are the behaviors of the workload that rarely happen but require a much

larger quantity of resources than the usual workload.

This is the second stage depicted in Figure 5.1 and it is dedicated to calculate

the part of the plan that guides the plan synthesis using only on-demand VMs. Input

of this stage is the remaining workload of the previous stage (Reserved Plan synthesis),

SLA, the cost model, VMs’ booting time and the VM characteristics. Practically, they

are the same inputs of the previous stage, except for the addition of VMs’ booting time

and the fact that the log arrives from the previous stage stage. In case the provider does

not offer reserved instances it is possible to use only this stage directly with the workload

log coming from the application. In any case, the ideal log input is workloadRemaining

because this stage is designed to deal with bursty loads. Having as natural input the

workloadRemaining generated by the previous process, the input log does not require any

normalization. This means that, differently from the reserved plan synthesis where each

value is divided by the interval length I, the log trace in this process is untouched and

goes straightforward to the analysis process.

This process is expected to create the adaptation rules that will deal with the
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sudden increments and decrements in the workload (i.e, the bursts of requests). The

speed with which these increments take place makes unfeasible the creation of adaptation

rules that modify the computing infrastructure by only one unit, as it was done in the

previous process. Instead, adaptation rules that activate or deactivate buckets of VMs

are created. On one hand, the concurrent activation of a bucket of VMs will create a

temporal over-provisioning of resources. On the other hand, the activation one by one of

VMs would cause a temporal under-provisioning of resources.

The activation of VMs one by one during bursty periods and the consequent

under-provisioning has much more harmful consequences for the service than the activa-

tion of VMs by buckets and the resulting over-provisioning. There are two main reasons

that support the fact that under-provisioning is more harmful than over-provisioning:

• the over-cost due to over-provisioning of resources is linear to the amount of the VMs

over-provisioned and the amount of time they are active. Regarding the amount

of time they are active, it is known that it will be for short times since, due to

the manner in which the rules in the previous section have been created, none of

the current VMs is expected to be active more than usage1.u proportion of time.

Regarding the other term, i.e., the amount of machines over-provisioned, in the

following paragraphs adaptation rules are created taking into account this issue; so,

having under control the number of VMs over-provisioned

• the over-cost due to under-provisioning of resources is very harmful in this case

because it is function of the application’s performance loss and number of requests

received. In case of under-provision of VMs, when the workload becomes bursty

the application may collapse, so requests will show poor performance during that

time and therefore losses from the SLA will boost. Moreover, even if the length of

the interval of time of the spike of request is short, the number of requests received

during this interval is much higher than the average (even an order of magnitude

higher), as shown in Subsection 5.3.1.

As a consequence, to propose a safe adaptation plan, adaptation rules have been created

that consider some over-provisioning of VMs by means of activating buckets of VMs at the

same time, so it is avoided remaining for long time periods under the optimal computing

capacity when the arrival rate increases fast. Figure 5.10 compares the two approaches. It

depicts a burst of accesses: in less than 50 minutes requests rise from zero to 110 req/s. The

burst is already extrapolated on top on the normally sustained workload by the reserved

VMs, i.e. 0 req/s in Figure 5.10 does not mean that the system received zero connections

as they have already been handled by the deployed VMs.

On the left of Figure 5.10, to deal with the incoming burst a new on-demand VM is
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Figure 5.10: Comparison between single VM deployment and bucket deployment.

deployed each time the incoming arrival rate exceeds the number of requests that the

system handles maintaining maximum profit. However, before being ready to reply at

incoming connections, the new VM needs to boot and this operation takes an amount of

time called bootingTime that in this case has been set to 60 seconds. After bootingTime

seconds, the VM is ready to accept workload. As the burst increases rapidly the arrival

rate, the deployment of one VM at a time is not able to keep up. This leads to worse user

experience and lower service profit due to the higher response times.

On the right, instead of single VM, buckets of VMs are deployed when the incoming

workload rises. Also in this case buckets become active bootingTime seconds after their

deployment, but thanks to the temporary over-provisioning it is rare to find cases where

the arrival rate (in blue) overcomes the amount of requests handled by the VMs (in red).

The response times are kept within optimal values.

Therefore, in order to avoid remaining for long time periods under the optimal

computing capacity when the arrival rate increases, it has been decided to create rules

that activate a bucket of VMs concurrently, although it could case some temporal over-

provisioning of resources. To calculate the bucket size two different paths have been

explored: one of them is based on finding “special” arrival rate values and another is

based on the difference in the workload between the moment in which it is launched a

VM activation order and the moment in which the VM is effectively serving requests.

Next paragraph describe these two methods.

Decision of buckets of VMs based on resistance values for the arrival

rate

It has been studied in the remaining workload how the arrival rate usually in-

creases. It was expected to find some arrival rate values that acted as resistance (i.e., a

value of arrival rate for which the workload “bounces” off this value rather than breaking

through it). In case of finding such arrival rates, an adaptation plan would be devised

where each rule would activate a bucket that contained the optimal number of VMs for

dealing with the arrival rate difference between two consecutive resistance values. For
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Figure 5.11: Cumulative function of peak values

doing this study peaks arrival rate values have been extracted from the remaining work-

load trace. To calculate the peaks values, it has been considered a potential peak if it was

the maximum arrival rate value between two zero values of the remaining workload (most

of the positions in the remaining workload array are zero since it stores only the peaks

above the usual workload that rarely happen). After, among the potential peaks found, it

has been kept only the maximum value during each periodRunning (e.g., maximum one

peak for each hour in the case the provider is Amazon) as a peak. Using the created set

of peak values, it has been calculated the probability of a peak to be lower than a value;

i.e., P (peak ≤ x), which is analog to the cumulative function of peak values. Figure 5.11

shows such a plot. Looking at the figure, there is no arrival rate that acts as a resistance

value, because otherwise the plot would show a shape like an irregular stair. Therefore,

this method for creating buckets of VMs has been discarded.

Decision of buckets of VMs based on the VM bootingTime

This method is based on the calculation of the number of VMs that are expected

to be required to maximize the client’s profit when the system adaptation finishes. This

is, when a VM activation order is launched, there will be activated as many VMs as they

should be required when the adaptation process finishes. Therefore, the bucket size of

each adaptation rule should allow the deployed computing capacity to join the optimal

computing capacity once the VMs are effectively serving requests. This method entails a

workload prediction for the system in the near future. The term bootingTime has been

used to indicate the time required for VMs to adapt, which includes for example the VM
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activation time and the time for application initialization. Now the interesting values are

the expected workload when the system finishes its adaptation. These values have been

called workloadAfterBoot.

The flowchart describing this stage’s steps is shown in Figure 5.12 and it is de-

scribed in detail in the next sections.

The on-demand plan synthesis receives a set of M VMs, the cost-model that

describes the cost of the VM when its periodicP ayment = 0, i.e. VMs are purely on-

demand, and the demand array containing the computational power of each VM. Say, for

V Mi, µi = demandi.e
−1.

Other research groups are working on characterization the performance of VMs

offered in the cloud [11]. Such work is out of the scope of this thesis. Instead, it is

assumed as input the service rate µm of the application on each type of VM, assuming

that eventually those research groups offer confident results.

5.5.1 Calculate thresholds of each VM

The first operation is to calculate workloadThresholds array for each VM, with the same

procedure explained in the previous section.

Each array is stored in workloadThresholdsm, a list of arrays where m ∈ [1, M ], from

the most powerful at position 1 in descending order (a VM V M1 is more powerful than a

VM V M2 if µ1 > µ2). So, workloadThresholds1 is an array containing the thresholds of

the most powerful VM, workloadThresholds2 contains the thresholds of the second most

powerful VM, and so on. The list of arrays workloadThresholds is depicted in Figure 5.13.

The buckets list that will hold the bucket arrays is initialized. Each bucket is an

array of size M where in each position of the array is saved the number of VMs of a type

of VM that compose the bucket. So,

buckets = (bucket1, bucket2, ..., bucketB)

where each bucketi, i ∈ [1..B] is an array of size M , holding in each position the number

of VMs of the respective type that compose the bucket. For example,

bucket1 = [3 2 1 0]
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Figure 5.12: On-demand VMs plan synthesis flowchart
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Figure 5.13: Organization of the workloadThresholds list of arrays

meaning that the first bucket is composed by 3 VMs of the first VM type, 2 VMs of

the second VM type, 1 VM of the third VM type and 0 VM of the fourth type. Inside a

bucket, there are no restrictions for the order in which the VM types are written, but once

it has been chosen it must be the same for all the buckets. Although, it is recommended

to sort the type of VMs from the least powerful to the most powerful. i.e., in the example

written before the least powerful type of VM had 3 VMs in the bucket, while the most

powerful had 0 VMs.

5.5.2 Find peak values peaks

The second step is to find the peaks values in remainingWorkload trace. As it was stated

earlier, as definition of peak that has been adopted is “the maximum arrival rate value

between two zero value of the log trace”. With this definition, the smallest peak possible

is a single positive value preceded and followed by a zero.

After some testing of finding peaks values in the remainingWorkload trace, it has

been found that there were too many single points with very low values that brought

nothing but noise in the process. Therefore I changed the definition the following: “a

peak is the maximum arrival rate value in a window of values of the remainingWorkload

trace different from zero”.

With this new definition, all the noise points are eliminated or anyway have a

lesser impact in the process. The window size is set to the maximum value between

the intervalRunning and the bootingTime. For example, let it bootingTime be equal to

10 minutes. In case the provider is Amazon, intervalRunning is equal to 1 hour and

the window size is consequently set to 1 hour; in case the provider is Rackspace, which

has intervalRunning equal to 1 minute, the window size is set to 10 minutes, as the

bootingTime period is greater than intervalRunning. The peaks are found by searching

in the remainingWorkload trace, staring from the beginning, in intervals of window size

the maximum value and storing its position in the peaksP osition array. If the maximum
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Figure 5.14: Peaks found in the remainingWorkload trace, marked in red

value of an interval is zero, the position is not added. If in an interval there are multiple

peaks of the same arrival rate value, only the first one is considered. In Figure 5.14 we

show the peaks found on the remainingWorkload trace, marked in red.

5.5.3 Calculate workloadAfterBoot

After finding all the peaks, it is possible to calculate the workloadAfterBoot array. For

each peak, it is found the last zero element, i.e. the closest zero that precedes in time

the peak, and from that position it is taken the value present bootT ime time after the

moment of that zero value. The rationale is to predict the workload that will be present

in the system when the activated VMs finished their booting period and are ready to

serve client’s requests.

Example Let’s say that the first peak is at position 300 of the log trace and the last zero

value is at position 240 (it means that all the values between 241 and 300 are positive).

bootingT ime is 60s and it is known that between each element of the trace passed 5s.

It means that, to move forward of 60s in the trace, it is necessary to shift of 60s
5s

= 12

elements, arriving at element 252. The log value at position 252 is workloadAfterBoot:

workloadAfterBoot1 = log252.
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5.5.4 Calculate mmean

The next step simply extract the average of the workloadAfterBoot array:

mmean =
1

L

L
∑

i=1

workloadAfterBooti

where L = workloadAfterBoot.length.

If mmeanis zero, it means that the array workloadAfterBoot contains only zero

values or that it is empty. In both cases, the loop breaks and the buckets are given to

the user, otherwise the algorithm continues creating the bucket. Given the set of VMs to

utilize, it is needed to find the combination of VMs that offer the highest profit for this

arrival rate mmean.

5.5.5 Calculate bucket and add to buckets

To find the combination of VMs that is best suited to sustain the arrival rate mmean, an

iterative approach is used.

First of all, an array bucket of size M , where M is the number of VMs and the size of

demand array, is initialized with all the elements to zero. It will contain the number of

combination of VMs that best sustain the arrival rate mmean.

The list of arrays workloadThresholds is involved in this procedure. It is worth remem-

bering that in this array each threshold λV Mi

n indicates that from λV Mi

n−1
req/s and up to

λV Mi

n
req/s the ideal number of VMs to use is n, because the profit is maximum. Moreover,

this list is sorted in such a way that the workloadThresholds arrays are sorted from the

most powerful VM to the least powerful. So, starting from n = 1, the most powerful VM,

it is scanned workloadThresholdsn[x] up until it is found the first threshold that has a

greater value than mmean. Analytically,

x ∈ N |workloadThresholdsn[x] > mmean ∧ workloadThresholdsn[x− 1] < mmean

Naturally, x ≤ workloadThresholdsn.size. This formulation leaves out the case where

x = 1, but this is not a limitation as this case would be discarded anyway, as explained

at the end of the paragraph. If a value x is found, that means that using x VMs of the

current type exceeds the input requests, as workloadThresholdsn[x] > mmean, leading to

some underutilization. So, using x − 1 VMs it is certain to exploit the full potential of

the VMs. Consequently, bucketn = x − 1, that means the current bucket, at position n,

utilize x− 1 VMs. That is also the reason for which x = 1 is not an acceptable solution:
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with just 1 VM mmean has been exceeded, probably a smaller and cheaper VM is best

suited to take care of that burst of requests.

The workload allocated to the x− 1 VMs is removed from mmean by doing

mmean = mmean − workloadThresholdsn[x− 1]

The mmean remaining is positive because it holds the inequality

mmean > workloadThresholdsn[x− 1]

Then, n is increased by one unit and the procedure restarts, terminating when n =

workloadThresholds.size.

Once the VMs that compose the bucket have been calculated, it can be added

to the list of buckets, after a simple check. If, at the end of the loop, the bucket is

empty, that is ∀n ∈ [1, M ] bucketn = 0, it means that every VM was too powerful and did

not sustain optimally the access rate mmean. This happens only if mmean is lower than

the first threshold of the smallest VM, nominally mmean < λV MM

1 , which is in position

workloadThresholdsM [1].

If the bucket is not empty it is added to the buckets list:

buckets = add(buckets, bucket)

5.5.6 Remove bucket’s workload from log

The procedure continues by removing from remainingWorkload the workload supported

by the current bucket. The workload supported by the bucket is obtained by summing all

the workloadThreholdsn[x], where n ∈ [1, M ] and x is bucketM−n+1, i.e. the supported

workload of each VM that compose the bucket. This notation is valid only if in the bucket

the VMs are sorted from the least powerful to the most powerful VM, while it is worth to

remember that the list of array workloadThresholds is sorted from the most powerful to

the least powerful VM. So, if s is the supported workload of the bucket and it is initialized

to zero, it is calculated by

∀n ∈ [1, M ] s = s + workloadThresholdsn[bucketM−n+1]
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Example The current iteration found, for example, the bucket bucket = [4 3 2 1] and

now it is needed to calculate the workload supported by this bucket.

First of all, it is initialized s at zero: s = 0. Then the procedure starts by adding the

workloadThreshold corresponding to the first VM, the most powerful:

n = 1⇒ s = s + workloadThresholds1[bucket4] = workloadThresholds1[1] = 15.64

Then, it moves to the second VM of the workloadThreshold array, the third of the

bucket:

n = 2⇒ s = s+workloadThresholds2[bucket3] = 15.64+workloadThresholds2[2] = 41.56

At this point, it is added the third VM of the workloadThreshold array, the second of the

bucket:

n = 3⇒ s = s+workloadThresholds3[bucket2] = 41.56+workloadThresholds3[2] = 66.26

Finally, it is added the last VM of the workloadThreshold array, the first of the bucket,

the least powerful VM:

n = 4⇒ s = s+workloadThresholds4[bucket1] = 66.26+workloadThresholds4[1] = 74.94

So, the workload sustained by the bucket bucket = [4 3 2 1] is s = 74.94.

After calculating the supported workload, this is removed from the remaining-

Workload trace because the newly created bucket will support it. This is done by the

same function as in reserved plan synthesis:

remainingWorkload = max(remainingWorkload − s, 0)

The procedure that calculates the buckets terminates also in case the remaining-

Workload trace has all values equal to zero, because in that case there are no more bursts

to analyze.



Chapter 6

Experiment

“If you want to know what a man’s like, take a good look at how he treats his inferiors,

not his equals.”

Sirius Black

In this chapter will be shown an experiment that executes the developed approach using

a real-world scenario.

The service to model is a public web server, serving web pages for a series of

important sport events.

It has been experimented the approach using Amazon AWS as cloud provider as

it is one of the most important and complete among the cloud providers.

6.1 First stage

This stage is a preparatory phase where all the future inputs are collected, checked and

ready to be fed to the programs.

It consists of preparing the cost model XML files that will be used in the next

stages, along with the preparation of the other inputs that are needed later on: the

workload trace, the SLA and the computing resource demand.
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6.1.1 Cost models

The program reads the web to create automatically a cost-model, following the metamodel

described in Section 4.2. The cost model contains the billing details of each VM of the

provider in the format displayed in Figure 4.7 and is contained in a XML file.

The provider used for this experiment is Amazon. Their cost model has been

obtained with the Cost Model Retrieving program described in Chapter 4.

To generate the cost model XML for Amazon, the command issued was

java −j a r c loudParser . j a r Amazon amazon . xml

The program cloudParser.jar can be found at [27].

Part of the amazon.xml file can be seen in Figure 4.3 - it has not been shown its

integral version because it is 2402 lines long.

Although the experiment concentrates on Amazon ,there could be easily ob-

tained the other two cost models, for Rackspace and HP. They are much smaller due

to the lower number of VMs offered by them with respect to Amazon.

6.1.2 Workload trace

The workload trace used to plan adaptations is the one described in Section 3.2. It is the

log of the accesses to servers located in the Paris region for the 1998 FIFA World Cup.

The trace represents the arrival rate during 3.000.000 seconds, each element represents

the accesses registered during 10 consecutive seconds, and so the log consists of 300.000

elements. The trace is showed in Figure 3.2.

6.1.3 SLA

The SLA models the penalty/reward system explained in Section 3.2.1.

For a user writing the SLA is not trivial because it asks to decide a revenue on

the basis of the service response time of each request.
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Figure 6.1: Graphical representation of the SLA

The SLA used is the example is

SLA



















0.1 if t < 1s

0 if 1s ≤ t < 2s

−0.1 if t ≥ 2s

This SLA assign a revenue of 0.1 for each service response that is received by the user in

less than 1 second. The profit drops to zero in case the response is received between 1 and

2 second and becomes negative if the service response time is above 2 seconds. Figure 6.1

shows the SLA.

6.1.4 VM characteristics

For the VM performance characteristics, this thesis relies on studies that compare VM per-

formance already published on the web. Concretely, it has been used Cloud Harmony[9].

This data is publicly available and is the source of the µ value used.

Given the fact that the service object of the analysis is a web server, benchmark

data about its performance on VMs offered by the provider used in this comparison is

obtained from the “LAMP” benchmark. It has been selected the “LAMP” benchmark

because it measures performance using Linux, Apache, MySQL, PHP, which are the core

components that are typically used to run a website, although they are non the only ones.

The VMs whose benchmark were present are Amazon’s small, medium, large and xlarge

VMs from the servers located in Ireland. Their values are displayed in Table 6.1.

As the µ values depend on the concrete application to deploy, part of the work
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Provider Type Result µ

Amazon ec2-eu-west.linux.m1.small 35.37 7.07
Amazon ec2-eu-west.linux.c1.medium 72.25 14.45
Amazon ec2-eu-west.linux.m1.large 94.89 18.98
Amazon ec2-eu-west.linux.c1.xlarge 101.71 20.34

Table 6.1: Benchmark data from Cloud Harmony website for the “LAMP” benchmark

that is completely out of the scope of this thesis, it has been kept the ratio shown in

Table 6.1 regarding VM performance. For exemplifying the approach, it has devised an

application that required 50ms to execute in the most powerful VM. So, the results in

Table 6.1 have been divided by 5, then obtaining the µ values for each VM while keeping

their real performance ratio.

6.2 Second stage

After completing the first stage, all the input files should be ready to be used by this

stage. There is still the need to complete the configuration file for the plan synthesis

program.

As Figure 5.1 showed, this stage is divided in two parts: the first one generates

the rules for reserved VMs, while the second one uses only on-demand VMs to create a

plan.

6.2.1 Reserved plan synthesis

The execution of the experiment for the reserved instances follows the configuration ex-

plained in the next Section. In order to be reproducible, the execution performed is

explained in Section 6.2.1.2. Both intermediate and final result of this stage are described

in Section 6.2.1.3.

6.2.1.1 Configuration file

The configuration file for the plan synthesis program contains all the required information

to successfully generate a valid plan and needs to be filled carefully. An example of a valid

configuration file is in Figure 6.2.
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Figure 6.2: Example of a valid configuration XML file for a reserved only plan synthesis

Let’s review the parameters of the configuration file.

• mu: it’s the µ value, the number of requests per second that the VM can deliver.

It is a single value because for a reserved plan synthesis it is used only a single VM,

and this is its µ value.

• vmName: it’s the name of the VM that will be used for the reserved plan synthesis.

It should be the most powerful VM suitable for the application under study, and

the name should be the same as the one used in the cost model, corresponding to

the attribute name of the typeOfMachines tag.

• secondsBetweenWorkloadValues: this parameters tells the program how much time

passed, in seconds, between two consecutive values in the workload log trace file. It

is implied that each value of the log trace holds the cumulative number of consecutive

requests received in this amount of seconds. Is the value called I in Section 3.2.2.

• regionsToAnalyze: list of regions where the VM to analyze is located. Each region

must contain the VM specified in vmName and a plan will be generated for each

region’s VM independently. Each region’s name must be present in one of the values

of attribute name of the region tag in the cost model. Different regions are separated

by a comma. If the desire is to generate a plan for each region present in the cost

model, it is sufficient to set this parameter to “all”.

• os: indicates the VM’s Operative System. If set to “all”, all the OS of the chosen

VM will be used to generate a plan. Each OS will generate a different plan because
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identifies a different VM.

• period : indicates the period of time for which the VMs are reserved. For Amazon

provider, it can be “1 year” or “3 years”. This parameters allows the program to

select the right VM from the cost model, as the same VM displays different costs

depending on the reservation period.

• verbosityLevel: with this parameter it is possible to choose the verbosity level of the

application, i.e. what is the degree of detail of its operations that the program will

show to the user. Level 2 is the most verbose, where the program outputs all kinds

of internal information, useful only in case of debug. Level 1 is intermediate, where

general information messages are displayed. Level 0 is the less verbose, where only a

handful of messages are showed regarding the starting or termination of procedures.

General users should keep this parameter to 0.

• allowOverwrite: if this parameter is set to “1” (or “true”, is equivalent), the program

is allowed to overwrite the output files in the case they already exist. This can

happen when the plan synthesis is run multiple times having selected the same VM.

In case this parameters is set to “0” (or “false”), the program won’t write the output

file if a file with the same name is already present.

• writeToStdout: if is set to “1” or “true”, the application can write messages to the

console. If is “0” or “false”, it will not write messages to the console. This parameter

is independent from verbosityLevel, that is even with verbosityLevel=2 the program

won’t output messages to the console.

• costModelFileName: this parameter locates the cost model file. It can be specified

an absolute path to the file or a relative one from the application’s folder. The cost

model is a XML file generated with the cloudParser.jar application, executed in

Section 6.1.1.

• workloadLogFileName: this parameter locates the workload log file, the application’s

trace. This file should be a text file where each line contains the number of request

received in the same interval I of time. The interval of time I is specified in the

parameter secondsBetweenWorkloadValues.

• sla: this parameter defines the application’s SLA. For a more detailed explanation

of SLA, see Section 3.2.1. It is defined in a Matlab-like format: each line contains

first the reward obtained if the response time is below R seconds, and the second

parameter indicates the R seconds. The end of a line is delimited by a semicolon.
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The first line should be “0 0;”. The last line should contain, in place of R, “inf”, to

indicate that is the last step of the SLA.

• workloadLogOutputFileName: with this parameter the user chooses the location and

the initial file name of the workload remaining after the program’s elaboration. In

fact, an output of plan synthesis is the workload that has not been allocated by

the reserved VMs and it is written in the same format as the workload log. To

distinguish between different remaining workload logs, at the end of the file name is

appended, in this order, the region, the OS and the type of VM that has been used

to generate the plan. An example of output file name is “workloadLogOutput_eu-

west-1_linux_c1-xlarge.txt”

• vmReservedOutputFileName: this parameter specifies the location and the initial file

name of the XML file that will contain the result of plan synthesis. The XML file

will hold an XML tag named single_virtual_machine with all the information about

the VM that has been used to generate the plan, a tag named workload_log_file

indicating the full path to the workload log file used for the plan and a tag named

vm_reserved that contains the number of VM calculated for each reservation type.

At the end of the XML file name is appended, in this order, the region, the OS and

the type of VM that has been used to generate the plan. An example of output file

name is “vmReserved_eu-west-1_linux_c1-xlarge.xml”.

These are the parameters for a reserved-only plan synthesis. As it will be explained in

the following sections, on-demand parameters are almost identical but are present in a

separated section of the XML file.

6.2.1.2 Program execution

After setting the parameters in the configuration file, called config.xml, it is the time to

run the program. The configuration is shown in Figure 6.2.

To generate the plan for Amazon, the command issued was

java −j a r planGenerator . j a r c o n f i g . xml

The planGenerator.jar and config.xml files are in the same folder. The whole pro-

cess takes around 2 seconds. The output of the program is two files, workloadLogOutput_eu-

west-1_linux_c1-xlarge.txt and vmReserved_eu-west-1_linux_c1-xlarge.xml
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Figure 6.3: Reserved plan synthesis XML output file

A .zip file with the program and a sample configuration can be downloaded from [27].

The first file contains the remaining workload explained in the previous chapters, that is

the amount of arrival rates from the workload log file that the plan synthesis process did

not allocate to the reserved VMs and is to study with the on-demand plan synthesis. The

remaining workload trace should be the most highly variable (i.e. bursty) fragment of the

workload trace, containing bursts and spikes of different intensities. A plot of a work-

load remaining is displayed in Figure 5.9. The workload remaining is saved in the folder

specified in the configuration file with the name workloadLogOutput_eu-west-1_linux_c1-

xlarge.txt

The second file is the XML containing the results of the plan synthesis. An example is

shown in Figure 6.3. This file contains a tag, workload_log_file, indicating the full path to

the workload log file used for the plan. Then, the single_virtual_machine XML element

contains all the details about the VM used to generate the reserved plan. In particular,

this tag contains provider, region, os, name, µ and reservation period of the VM, so it can

be uniquely identifiable in the cost model. Moreover, it contains the payments information

for each type of reservation of this VM and for the on-demand one. Finally, it contains

also the usage thresholds calculated, which have been explained in Section 5.4. The last

tag, vm_reserved, contains the result of the plan synthesis. In fact, each child element

holds the number of VMs that have been calculated to be reserved for each reservation

type.
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6.2.1.3 Results

The program calculated that, for the input trace and with the configuration provided, the

optimal number of VMs to reserve are:

1. 2 VMs at reservation light

2. 2 VMs at reservation medium

3. 2 VMs at reservation heavy.

It is now explicated the input arrival thresholds that should trigger the activation of each

VM.

Virtual Machines heavy reservation:

• 1 powering on when input arrival rate is greater than 0 req/s

• 1 powering on when input arrival rate is greater than 13.16 req/s.

handling a total of 28.39 req/s.

Virtual Machines medium reservation:

• 1 powering on when input arrival rate is greater than 28.39 req/s

• 1 powering on when input arrival rate is greater than 43.23 req/s

handling a total of 29.12 req/s.

Virtual Machines light reservation:

• 1 powering on when input arrival rate is greater than 72.35 req/s

• 1 powering on when input arrival rate is greater than 87.55 req/s

handling a total of 29.98 req/s.

All the 6 VMs reserved can sustain totally 117.53 req/s.

Figure 6.4 shows the evolution of the log workload during the reserved plan syn-

thesis process.
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The first sub-figure 6.4a shows the initial workload trace, already normalized, i.e. each

trace value has been divided by the interval I which, in this case, amounted of 10 seconds.

It almost doesn’t contain any values equal to zero; the maximum arrival rate is 453.5 req/s.

The second sub-figure, 6.7b, depicts the trace after the workload supported by the two

heavy reserved VMs calculated. The new trace is already for the 38.94% of the time at

zero, while the maximum arrival rate becomes 425.11 req/s, which is exactly 28.39 req/s less

than the previous one. This is another proof of the bursty nature of the input workload

trace: nearly 40% of the time the trace is below 28.39 req/s, which is the sustained work-

load of the 2 heavy reserved VMs. So, 40% of the trace is below the 6.26% of the total

dynamic range of the arrival rates.

The third sub-figure 6.4c is made after removing the workload supported by the two

medium reserved VMs. The trace is for 73.71% of the time at zero and the maximum

arrival rate is 395.99 req/s. With these 2 VMs another 29.12 req/s sustained workload is

eroded from the trace. The amazing result of this fact is that 4 VMs are sufficient for the

74% of the time!

Finally, part 6.4d of the Figure shows the trace after removing the two light reservation

VMs calculated. This is the trace that will be written as remaining workload output and

used as input in the on-demand plan synthesis. This trace contains zeros for the 90.31%

of the time, while the maximum arrival rate is 366.01 req/s. Again, if there was any doubt,

showing this inner part of the study, it is confirmed the burstiness nature of the input

trace. Only in 10% of the total time the input trace is above 117.53 req/s, which is the

supported workload by all the reserved VMs, but when it does it reaches peaks 4 times

higher than this value. The definition of bursty, high accesses peaks for short periods of

time, applies perfectly to the situation.

6.2.2 On-demand plan synthesis

After generating the plan using exclusively one VM type at different reservations, the

remaining workload output of that process in used as input for the plan synthesis created

with exclusively on-demand VMs. Here there is no limitation in using only one type of

VM. Different VMs with different service rates are used together to create buckets of

VMs, where each bucket has the duty to support a certain workload. The size of each

bucket is studied with the procedure explained in Section 5.5.

6.2.2.1 Configuration file

The configuration file for on-demand plan synthesis is showed in Figure 6.5.
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(a) Initial workload log
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(b) Workload log after heavy VMs reservations
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(c) Workload log after medium VMs reservations
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(d) Workload log after light VMs reservations, becoming
remaining workload

Figure 6.4: Evolution of log workload during the reserved plan synthesis

Figure 6.5: On-demand XML configuration file
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In this case, all the parameters used for reserved plan synthesis are still in the

configuration file. This has been designed as normally a complete plan synthesis involves

firstly the reserved process and secondly the on demand process. Using the same configu-

ration file for both, it allows the program to do in just one sweep both cases, in sequence,

using the outputs of the first process as inputs of the second process. As many of the

configuration parameters are in common between the two processes, they are specified

only in one point, the reserved plan synthesis parameters. It is also possible to run just

the on-demand plan synthesis, under the condition of writing all the required parameters

in the right places.

The on-demand specific parameters are collected inside the tag on_demand of

the XML configuration file. Let’s review them.

• mu: specifies the service rate (µ) values for the VMs used in on-demand plan syn-

thesis. There are 2 modes to write them. The first one is write all the µ values,

in ascending order, separated by a single space. The number of µ values must be

the same as the number of VMs written in the vmName tag. The second one is to

write only the first µ value, the smallest one, and then let the program calculate

the others with the muScalingFactor factor.

• muScalingFactor : optional parameter, it specifies the multiplying factor to obtain

all the µvalues. It is used only if the parameter mu is composed of only one element

and vmName contains multiple VMs. In this case, it is possible to specify a single

scaling factor that is multiplied to mu in order to obtain the service rates values

for the remaining VMs. It is also possible to specify an array of scaling factors,

that must be of dimension N − 1, where N is the number of VMs written into the

vmName tag. In that case, to obtain each µ value the corresponding scaling factor

value is utilized.

• vmName: it specifies the names of the VMs used for on-demand plan synthesis. It

can be a single VM or multiple VMs, in which case the different names are separated

by a space. The order is important and should be from the least powerful to the

most powerful, as in the mu tag.

• regionsToAnalyze: this parameter specifies the names of the regions that the pro-

gram will use to generate the plan. In the case of multiple regions, their name are

separated by a comma. If the will is to compare all the regions, it is sufficient to

write “all” instead of all the region’s names.

• os: this parameter specifies the OS of the VMs used in the plan synthesis. If set to
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“all”, all the OS are used.

• workloadLogInputFileName: it specifies the name of the file containing the remaining

workload trace. In case of single run of both reserved and on-demand plan synthesis,

this parameter is unknown as the output file has not been written yet. In that case,

it can be left empty. Otherwise, it must contain the path to the remaining workload

trace file, either absolute or relative to the program’s base path.

• bootingTime: this parameter specifies, in seconds, the time that a VM takes to boot,

i.e. from deployment to be fully operative.

• vmOnDemandOutputFileName: it specifies location and the initial file name of the

output XML files generate by the on-demand plan synthesis. After the initial file

name are appended the region and the OS that generated that plan. These files

will contain the generated buckets. A file name example is vmOnDemand_eu-west-

1_linux_.xml

Apart from these on-demand specific parameters, a subset of parameters from the reserved

plan synthesis configuration is also used. These parameters must be present, even if there

is no reserved plan synthesis. They are:

• verbosityLevel

• allowOverwrite

• writeToStdout

• costModelFileName

• secondsBetweenWorkloadValues

• sla

In case there is both reserved and on-demand plan synthesis, these parameters are shared

between the two different procedures.

6.2.2.2 Program execution

After setting the parameters in the configuration file, called config.xml, it has been run

the program again. The configuration used is showed in Figure 6.5.
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Figure 6.6: On-demand plan synthesis XML output file

To generate the on-demand plan for Amazon, the command issued was still

java −j a r planGenerator . j a r c o n f i g . xml

The program, together with a sample configuration file, can be downloaded from

[27].

This time, the process takes around 1.5 seconds. The output of the program is

one XML file, vmOnDemand_us-west-1_linux_.xml.xml, written in the position specified

in the configuration file, containing the results of the on-demand plan synthesis. An

extract of the file is shown in Figure 6.6. This XML file contains 3 main tags inside the

root tag: workload_log_file, virtual_machines and thresholds. Some tags are compressed

in the figure to condense in one image all the main parts of the file.

The first tag, workload_log_file, contains in the attribute name the full path to

the workload file used in the process, a.k.a. workload remaining.

The second tag, virtual_machines, contains M single_virtual_machine tags,

where M is the number of VMs used in the process. Each single_virtual_machine ele-

ment contains all the information about one of the VMs used in the process. The VMs are

sorted in ascending order by their µ value. Naturally, having this process only on-demand

VMs, their payments consists of only one element.

The third tag, thresholds, holds the information about the calculated buckets.
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It contains a series of threshold tags, each one representing a bucket. Each bucket is

identified by a unique sequential id attribute, that serve also as position identifier. The

attribute workload_step indicates the amount of workload that the current bucket alone

can sustain; i.e., is the bucket supported workload calculated in Section 5.5.6. The last

attribute, workload, holds the maximum arrival rate value that id buckets can sustain;

i.e., is the sum of all the workload_step values from the first bucket to the current one,

included.

Inside the threshold tag there are M tags, one per each VM, called on_demand. The

on_demand element has two attributes: vm_name and num. The first one specifies the

type of VM, while the second one carry the number of VMs of the specified type that

compose the current bucket. The on_demand elements appear in the same order as the

single_virtual_machine tags.

6.2.2.3 Results

The program computed that given as input the remaining workload and using the VMs

specified in the configuration file it is appropriate to use 18 buckets.

The composition of the buckets is the following:

• Bucket number 1. Maximum supported access rate: 15.64 req/s.

Cumulative maximum sustained access rate: 15.64 req/s

– 0 VMs small

– 0 VMs medium

– 0 VMs large

– 1 VMs xlarge

• Bucket number 2. Maximum supported access rate: 20.34 req/s.

Cumulative maximum sustained access rate: 35.98 req/s

– 2 VMs small

– 0 VMs medium

– 0 VMs large
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– 1 VMs xlarge

• Bucket number 3. Maximum supported access rate: 24.75 req/s.

Cumulative maximum sustained access rate: 60.73 req/s

– 0 VMs small

– 1 VMs medium

– 0 VMs large

– 1 VMs xlarge

• Bucket number 4. Maximum supported access rate: 24.75 req/s.

Cumulative maximum sustained access rate: 85.48 req/s

– 0 VMs small

– 1 VMs medium

– 0 VMs large

– 1 VMs xlarge

• Bucket number 5. Maximum supported access rate: 24.75 req/s.

Cumulative maximum sustained access rate: 110.23 req/s

– 0 VMs small

– 1 VMs medium

– 0 VMs large

– 1 VMs xlarge

• Bucket number 6. Maximum supported access rate: 24.75 req/s.

Cumulative maximum sustained access rate: 134.98 req/s

– 0 VMs small

– 1 VMs medium
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– 0 VMs large

– 1 VMs xlarge

• Bucket number 7. Maximum supported access rate: 29.98 req/s.

Cumulative maximum sustained access rate: 164.96 req/s

– 0 VMs small

– 0 VMs medium

– 0 VMs large

– 2 VMs xlarge

• Bucket number 8. Maximum supported access rate: 24.75 req/s.

Cumulative maximum sustained access rate: 189.71 req/s

– 0 VMs small

– 1 VMs medium

– 0 VMs large

– 1 VMs xlarge

• Bucket number 9. Maximum supported access rate: 24.75 req/s.

Cumulative maximum sustained access rate: 214.46 req/s

– 0 VMs small

– 1 VMs medium

– 0 VMs large

– 1 VMs xlarge

• Bucket number 10. Maximum supported access rate: 15.64 req/s.

Cumulative maximum sustained access rate: 230.1 req/s

– 0 VMs small
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– 0 VMs medium

– 0 VMs large

– 1 VMs xlarge

• Bucket number 11. Maximum supported access rate: 18.27 req/s.

Cumulative maximum sustained access rate: 248.37 req/s

– 1 VMs small

– 0 VMs medium

– 0 VMs large

– 1 VMs xlarge

• Bucket number 12. Maximum supported access rate: 11.74 req/s.

Cumulative maximum sustained access rate: 260.11 req/s

– 1 VMs small

– 1 VMs medium

– 0 VMs large

– 0 VMs xlarge

• Bucket number 13. Maximum supported access rate: 6.7 req/s.

Cumulative maximum sustained access rate: 266.81 req/s

– 3 VMs small

– 0 VMs medium

– 0 VMs large

– 0 VMs xlarge

• Bucket number 14. Maximum supported access rate: 6.7 req/s.

Cumulative maximum sustained access rate: 273.51 req/s
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– 3 VMs small

– 0 VMs medium

– 0 VMs large

– 0 VMs xlarge

• Bucket number 15. Maximum supported access rate: 6.7 req/s.

Cumulative maximum sustained access rate: 280.21 req/s

– 3 VMs small

– 0 VMs medium

– 0 VMs large

– 0 VMs xlarge

• Bucket number 16. Maximum supported access rate: 8.68 req/s.

Cumulative maximum sustained access rate: 288.89 req/s

– 4 VMs small

– 0 VMs medium

– 0 VMs large

– 0 VMs xlarge

• Bucket number 17. Maximum supported access rate: 13.59 req/s.

Cumulative maximum sustained access rate: 302.48 req/s

– 0 VMs small

– 0 VMs medium

– 1 VMs large

– 0 VMs xlarge
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• Bucket number 18. Maximum supported access rate: 6.7 req/s.

Cumulative maximum sustained access rate: 309.18 req/s

– 3 VMs small

– 0 VMs medium

– 0 VMs large

– 0 VMs xlarge

The evolution of remaining workload trace is shown in Figure 6.7. Sub-figure 6.7a depicts

the input trace, the remaining workload generated by the reserved plan synthesis. It is

composed at the 90.3113% of zeros and the maximum value is 366.01 req/s.

The on-demand plan synthesis starts and after calculating 4 buckets the trace

remaining is shown in sub-figure 6.7b. The 4 buckets, combined, sustain a workload

of 85.48 req/s that has been removed from the initial trace. The trace, at this point, is

composed of zeros at the 97.4667% and the maximum value is 280.53 req/s.

The process continues, and after reserving 4 more buckets the situation is the one

depicted in sub-figure 6.7c. Eight buckets support 189.71 req/s access requests, bringing

up the number of trace elements to zero at 99.323%. The maximum value becomes

176.3 req/s.

Sub-figure 6.7d shows the remaining trace after the calculation of the workload

supported by 12 buckets, equal to 260.11 req/s. The number of trace elements at zero is

the 99.82%, while the maximum arrival rate is 105.9 req/s.

In sub-figure 6.7e the buckets calculated are 16, supporting an arrival rate of

288.89 req/s. There are very few positive trace elements left, as the number of workload

remaining set to zero is the 99.9153%. The maximum arrival rate is 77.12 req/s.

The last sub-figure 6.7f shows the trace left at the end of the on-demand plan

synthesis process. In total, 18 buckets with a overall support of 309.18 req/s have been

calculated. The remaining trace contains a total of 114 elements with a value greater than

zero over a total of 300.000 trace elements, the 0.038% (or, equivalently, the 99.962% of

the trace is at zero). The maximum value of these 114 elements is 56.83 req/s. The bucket

creation process stopped because this spikes lasts for so little time that it is not appropriate

to switch on new VMs; i.e., when the VMs finished their booting and were ready to serve

requests, the spikes in the workload will have finished.
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(b) Trace after 4 buckets
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(c) Trace after 8 buckets
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(d) Trace after 12 buckets
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(e) Trace after 16 buckets
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(f) Final trace, after 18 buckets

Figure 6.7: Evolution of remaining workload during the on-demand process synthesis



Chapter 7

Conclusions

“Beam me up, Scotty”

Captain Kirk

It is time to draw the conclusions of the work done in this thesis.

We have shown how a relevant part of Internet services experiences request ar-

rivals with a bursty nature, meaning that a high number of requests, even an order of

magnitude higher than the normal arrival rate, are concentrated in a short period of time.

Dealing with this problem with traditional methods, i.e. physical servers, is costly and not

effective, as the dimensioning of the servers is done a priori and so there is a upper arrival

rate limit that the servers can sustain. If the arrival rate is above their dimensioned ca-

pacity, the service provided with the servers becomes slow or can even crash, with obvious

monetary repercussions for the service owner and unsatisfactory users experience.

Cloud Computing is a new and important paradigm that rise in popularity and

adoption among companies and end users. It consists of renting online virtual machines

just for the time needed to perform some work or to offer a service. Everything below

the OS is a commodity offered by the cloud provider, so the client should never bother

about electricity, servers’ hardware, maintenance, Internet connection, etc. because it is

all taken care of. This fact, coupled with the intrinsic property of Cloud Computing called

elasticity, is the main reason that makes convenient the usage of such a platform instead

of a private server.

This thesis has proposed a method to synthesize adaptation plans that manage

cloud elasticity in terms of number of active virtual machines. To be able to generalize
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the core method of the adaptation plan synthesis we have proposed a cost metamodel,

which enables the representation of the costs of VMs of different cloud providers, acting

as an abstraction layer between the provider’s costs implementations and the developed

process of plan synthesis. We have also developed a tool that automatically generates the

cost model for Amazon, Rackspace and HP cloud providers. This tool is easily extendible

to other online providers and, being written in Java, is multiplatform.

During the development of this thesis I have been in contact with some companies

that offer cloud services, which showed interest for the work done in this thesis and were

very interested in the activation/deactivation of VMs just-in-time. This which is a very

plausible future work using the work of this thesis as basis.

It is worth mentioning that the study performed during this thesis about VMs

cost and usage thresholds led us to discover an incoherence in the instance prices of one

of the most important cloud providers in the world. We notified them the incoherence

we found in their prices, and the result was that they acknowledge our notification and

updated worldwide the incoherent price. These inconsistencies are not easily seen at a first

sight in the website, but some study about prices, as the one I performed, was required

in order to realize the incoherence.

Most of cloud providers offer the possibility to reserve VMs, i.e. they allow

paying an amount of money upfront in order to decrease the hourly cost of the VMs.

This has been taken into account by our approach. The first part of the adaptation plan,

in fact, is synthesized using reserved VMs. The expected workload of the application we

are studying is required for this process, together with the SLA and the characteristics

of the reserved VM used. For synthesizing the plan, we have cared of requiring only

information that is feasible to believe that can be provided by the cloud client as the

expected workload, SLA and application’s performance in a VM. The excepted workload

is composed by the log trace of the application under study, where each value consists of

the number of requests received by the application during a sequential interval I of time.

The SLA, instead, models the service’s performance and it consists of a series of stepwise

rewards obtained if the service responds within a certain amount of time. This modeling

of the performance of the service allows a reward when the application responds quickly

to the requests and a penalty when the response times exceeds a configurable amount

of time. Finally, the VM characteristics are all the information about a VM, including

provider, OS, billing prices, ect. and its performance, i.e. the service rate µ. This value

should be obtained by the user either by online public benchmarks of the VM used or

directly by measuring the service’s performance on a real instance of the VM.

It has been shown how the reserved VM plan synthesis take care of the most



87

stable part of the workload, which is usually 90% of the workload trace analyzed. The

VM calculated are therefore effective for the 90% of the total time the service is used. The

remaining 10% of the workload trace is the one that contains the bursty behavior, with

peaks higher than the normal access rate for even 5 times, if not more. It is analyzed by

the on-demand plan synthesis, which as the name states uses only on-demand VMs in the

process. As the bursts of requests are unpredictable and have a rapid growth, it has been

demonstrated how deploying one VM at a time to deal with them is ineffective. So, the

on-demand plan synthesis creates buckets of VMs that, deployed sequentially, deal with

the bursts of requests in a more effective way, maximizing the service’s profit.

To store the output of the approach, I have chosen a easily understandable format:

XML. Output of the plan synthesis process are two XML files, one for reserved VMs and

one for on-demand VMs, containing the information about the VMs used in the process

and their calculated quantity to sustain the workload generated by the service modeled.

With this information the clout client can use cloud providers price calculators

to estimate in a more accurate manner the cost of deploying such a service on the chosen

provider and decide whether it is more convenient the private servers solution or the cloud

computing one. In case the second option is the best one, the user already have all the

activation thresholds for the VMs.

As future work, I plan to use the work in this thesis to study deeply the just-in-

time VM activation/deactivation, challenge in which the cloud companies I contacted were

interested. This future work will include the management of the short-time variability

of the workload, i.e, the slight variations that happen in intervals of few seconds. This

variability can lead to adjustments that can be called as false positives. In this moment,

I know that there are several research groups and many research works that are dealing

with this challenge, i.e. [29, 14]. We have preferred not to implement any of them ad-hoc

in the thesis, but leave the work in the thesis as a reliable background for a subsequent

research on the dealing with false positives.
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Appendix A

List of online providers

This is a partial list of online cloud providers, sorted in alphabetically order.

• Amazon[3]

• Aruba[6]

• Azure[24]

• HP Cloud[18]

• LunaCloud[21]

• Rackspace[31]
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Algorithms
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Algorithmus B.1 Calculate VMs to reserve for each type of reservation

Require: sla, workload log , demand ei, usage thresholds usage
Ensure: VMs to reserve for each type of reservation reservation[], adaptation rules,

remaining workload
1: set n = N N is the number of entries in usage: usage.length()
2: set reservationi = 0 ∀i ∈ [1..N ]
3: while n > 1 do

4: set workloadThresholds[] = EmptyArray
5: set j = 1; limitArrivalRate = 0
6: while limitArrivalRate ≤ max(log) do

7: limitArrivalRate← calculateThreshold(usagen.cost, ei, sla, j)
8: workloadThresholds[j]← limitArrivalRate
9: j ← j + 1

10: end while

11: resourceNeedsLog ← createResourceNeeds(log, workloadThresholds[])
12: countOfResourceUsage← count(resourceNeedsLog)
13: numberOfV MsToReserve← selectNumberOfV Ms(countOfResourceUsage, usagen−1)

14: reservationn ← (usagen.cost, numberOfV MsToReserve)
15: supportedWorkload← calculateEquivalentP rofit(usagen.cost,

numberOfV MsToReserve, usagen−1.cost, 1, sla)
16: logi ← max(logi − supportedWorkload, 0)
17:

18: n← n− 1
19: end while

20: return Reservation, Rules, log


	Dedication
	Ringraziamenti
	Abstract
	Sommario
	List of Figures
	List of Tables
	List of Appendices
	List of Symbols
	1 Introduction
	2 Background
	3 Proposed approach
	4 Cost model retrieving
	5 Plan synthesis
	6 Experiment
	7 Conclusions
	Bibliography

