
Identification and control techniques for
multicore scheduler design

Tesi di:
Matteo Carini
matr. 750193

Relatore: Prof. Alberto Leva
Correlatore: Ing. Federico Terraneo

Politecnico di Milano
Facoltà di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica
Anno accademico 2013 - 2014

Desidero dedicare questo lavoro di tesi alla mia mamma Giuseppina.
Vedere coronato il mio percorso di studi è sempre stato un suo grande desiderio,
spero che l’impegno per realizzare questo lavoro possa, almeno in parte,
compensare l’affetto che non sono riuscito a darle.

Mi mancherà sempre e la porterò sempre nel mio cuore.

2

Ringraziamenti

Desidero ringraziare Alberto Leva e Federico Terraneo per tutte le idee, la disponi-
bilità e il supporto dedicato alla realizzazione di questa tesi;
Questo documento è stato realizzato e impaginato attraverso LATEXsu un sistema
GNU/Linux. Gli algoritmi realizzati in questo elaborato saranno prossimamente ri-
lasciati gratuitamente con licenza open source.

3

Contents

I. Principles of control based scheduling 14

1. Introduction 16
1.1. The scheduling problem . 16
1.2. Control Designed Scheduler: Control theory approach 18
1.3. Control Designed Scheduler: Multicore Scheduler Design 19

2. State of the art 21
2.1. Single core scheduler . 21
2.2. Parallel execution and core switching 22
2.3. Extending control design to a Multicore scheduler 23

II. Identification for multicore simulator and task profiling 24

3. Task Profiling 26
3.1. Task classification . 26

3.1.1. Performance metrics . 26
3.1.2. Task classes . 27

3.2. Profiling experiments . 27
3.3. Profiling tools: Performance Counters subsystem 28
3.4. Profiling tools: trace-cmd . 31
3.5. Performance profiling dynamic library 33

3.5.1. Stand alone profiling module . 37
3.6. Profiling setup . 38
3.7. Profiling results . 39

3.7.1. Periodic tasks . 39
3.7.2. Batch tasks . 54
3.7.3. Priority tasks . 58
3.7.4. Event based tasks . 62

4. Task model identification and validation 73
4.1. Time on and time off identification . 74

4.1.1. Toff identification for periodic tasks 74
4.1.2. Ton identification for periodic tasks 78
4.1.3. Toff identification for ’batch’ I/O bound tasks 80

4

Contents

4.1.4. Ton identification for ’batch’ I/O bound tasks 83
4.1.5. Ton and toff identification for priority tasks and batch tasks . . 88
4.1.6. Toff identification for event based tasks 88
4.1.7. Ton identification for event based tasks 90

4.2. Cache references identification . 94
4.2.1. Cache references identification for periodic tasks 95
4.2.2. Cache references identification for batch CPU bound tasks . . . 97
4.2.3. Cache references identification for ’batch’ I/O bound tasks . . . 99
4.2.4. Cache references identification for priority tasks 103
4.2.5. Cache references identification for event based tasks 105

4.3. Cache miss identification . 107
4.3.1. Cache miss identification for periodic tasks 107
4.3.2. Cache miss identification for batch tasks 109
4.3.3. Cache miss identification for ’batch’ I/O bound tasks 113
4.3.4. Cache miss identification for priority tasks 114
4.3.5. Cache miss identification for event based tasks 115

III. Simulator 118

5. Development of a Multicore Scheduler Simulator 119
5.1. Interconnection between task profiling and scheduler simulator 119
5.2. Developing language: Python . 120
5.3. Multicore Scheduler Simulator Architecture 121
5.4. Multicore Scheduler Simulator Implementation 127

5.4.1. Task and TaskPool implementation 127
5.4.2. Task Batch . 129
5.4.3. Task Periodic . 130
5.4.4. Task Priority . 131
5.4.5. Task Event Based . 132
5.4.6. Task Pool . 134
5.4.7. Single core scheduler implementation 136
5.4.8. LoadBalancer implementation 141
5.4.9. SetPointGenerator implementation 145

5.5. Testing and profiling . 150
5.5.1. Profiling . 153

6. Conclusions and future developments 155
6.1. Future work . 155

5

List of Figures

2.1. Single core scheduler block schema . 22

3.1. CPU cycles and context switches plot related to a periodic task 41
3.2. Effective period of a 4 seconds periodic task 41
3.3. Cumulated context switches on a 4 seconds periodic task 42
3.4. 10 ms scheduler tick influences cache references dynamic 43
3.5. Cache references plot with 1 ms scheduler tick 44
3.6. Cache miss large plot . 44
3.7. Periodic memory bound CPU cycles and context switches 47
3.8. Cache miss and cache reference detail plot 48
3.9. Ton periodic memory bound task . 49
3.10. Toff periodic memory bound task . 49
3.11. Toff measured on two mplayer executions of the same video stream:

red trace is trace-cmd data set, blue one is profiling library data set . . 50
3.12. Ton measured on two mplayer executions of the same video stream . . 51
3.13. Cache reference and cache miss related to about first 3000 samples of

mplayer execution . 51
3.14. toff related to Mplayer execution under Real Time module: red trace is

related to trace-cmd data set, blue trace is related to profiling library . 52
3.15. CPU cycles and context switches of related to mplayer video playback

under Real Time module . 53
3.16. ton related to two different Mplayer execution under Real Time module 53
3.17. CPU cycles and context switches of a batch task implemented in C . . 54
3.18. Cache references and cache miss of a batch task implemented in C . . . 55
3.19. Cache references and cache miss of a batch task implemented in Python 55
3.20. Cache references detail of a batch task implemented in Python 56
3.21. First samples detail of CPU cycles related to ls profiling 57
3.22. First samples details of cache references and cache miss related to ls

profiling . 58
3.23. First samples details of CPU cycles plot of a batch memory bound task 59
3.24. First samples details related to cache references and cache miss plot of

a batch memory bound task . 59
3.25. First samples detail related to kate editor, profiled with real time module 60
3.26. Some negative durations, collected profiling kate with real time module 61
3.27. A detail related to nano CPU cycles and context switches profile 61
3.28. A larger detail related to nano cache references and cache miss profiles 62
3.29. CPU cycles and context switches plot of an event based task 66

6

List of Figures

3.30. Cache reference and cache miss plot of an event based task 67
3.31. Comparison between nano toff and event based toff; nano trace is the

blue one, event based trace is the red one 67
3.32. CPU cycles and context switches plot of an event based interactive task 68
3.33. Cache references and cache miss plot of an event based interactive task 68
3.34. Comparison between nano toff and event based task toff: nano trace is

the blue one; event based task trace is the red one 69
3.35. CPU and Context switches plot of a nano execution with a long wait . 69
3.36. CPU and Context switches plot of a single input execution 71
3.37. Cache references and cache miss plot of a single input execution 71

4.1. toff periodogram of data inferred by CPU cycles measured by profiling
library and toff periodogram of data measured by trace-cmd tool . . . 75

4.2. toff model output residuals autocorrelation 76
4.3. toff state space model schema . 76
4.4. toff state space model in Fourier transform domain 77
4.5. toff state space model time fitting . 78
4.6. ton state space model power spectrum 80
4.7. ton state space model time fitting . 81
4.8. ton model output residuals autocorrelation 81
4.9. toff data power spectrum of an ls execution trace compared to model

ones . 82
4.10. toff time fitting related to the ar model and to the state space model . . 82
4.11. toff model output residuals autocorrelation; 99% confidence interval . 84
4.12. ton data spectrum of validation data set compared to the one of the

state space model . 85
4.13. ton state space model time fitting . 87
4.14. ton autocorrelation of residuals, 99% confidence interval 87
4.15. toff spectrum of event based CPU bound task model compared to val-

idation data set one . 89
4.16. toff produced by one-step predictor model compared to validation data

set in time domain . 90
4.17. toff residuals autocorrelation, 99% confidence interval 91
4.18. power spectrum of the ton signal produced by the model compared to

power spectrum of the validation data set 91
4.19. ton produced by the one-step predictor built from the model, com-

pared to the validation data set . 92
4.20. ton residuals autocorrelation; 99% confidence interval 94
4.21. Identification approach for cache reference signal 95
4.22. Frequency response of validation data and identified models 96
4.23. Arx model time fitting detail . 96
4.24. State space model: noise power spectrum frequency fitting 98
4.25. State space model: time fitting . 98
4.26. Cache references plot of a CPU bound batch task implemented in Python100

7

List of Figures

4.27. Cache references detail plot of a CPU bound batch task implemented
in Python . 100

4.28. Ar model noise power spectrum frequency fitting 101
4.29. Ar model time fitting over ls data set . 102
4.30. Ar model time fitting over an other data set 102
4.31. Cache references residuals autocorrelation; 99% confidence interval . . 103
4.32. Arx model frequency response compared to validation data one 104
4.33. Cache references arx model time fitting 105
4.34. Arx and state space models frequency response compared to the vali-

dation data set one. 106
4.35. Arx model time fitting over the validation data set 106
4.36. Frequency response of Arx model . 108
4.37. Arx model noise power spectrum and data set power spectrum 108
4.38. Arx model data set time fitting . 109
4.39. Cache miss data set related to CPU bound task written in C 110
4.40. Cache miss data spectrum of a CPU bound task written in Python . . . 111
4.41. Cache miss model time fit of a CPU bound task written in Python . . . 111
4.42. Cache miss ar model output residuals autocorrelation plotted with 99%

confidence level interval . 112
4.43. Arx model estimated noise power spectrum compared to the valida-

tion data power spectrum . 113
4.44. Arx model frequency response compared to validation data one 114
4.45. Cache miss arx model time fitting . 115
4.46. Cache miss arx model residuals plotted with 99% confidence level in-

terval . 116
4.47. Arx model frequency response compared to the validation data set one 116
4.48. Arx model noise spectrum compared to the validation data set one . . 117

5.1. General scheme of the multicore scheduler simulator 122
5.2. Single core scheduler control structure 124
5.3. General class diagram of multi core scheduler simulator 125
5.4. workload and beta in task execution . 126
5.5. UML class diagram of TaskBatch class 129
5.6. UML class diagram of TaskPeriodic class 131
5.7. UML class diagram of TaskPriority class 132
5.8. UML class diagram of TaskEvent class 133
5.9. UML class diagram of TaskPoolSimple class 134
5.10. Block diagram of the control structure in general, evidencing the con-

trollers in the ULC and the SLC. 137
5.11. UML class diagram of TwoLevelSingleCoreScheduler class 139
5.12. UML class diagram of MultiCoreLoadBalancer class 143
5.13. Accumulated CPU time for periodic tasks 145
5.14. UML class diagram of a simple implementation of a setpoint generator 147
5.15. UML class diagram of task pool unit test class 151

8

List of Figures

6.1. Quad core scheduler simulation: in plots 1,3,5,6 the red trace is the
task time slice set point, the blue one is the actual task burst; in the
other plots, the blue trace is the accumulated CPU time. At time 200 a
batch task is migrated, the detail is shown in second plot. 156

6.2. Quad core scheduler simulation: in plots 1,3,5,6 the red trace is the task
time slice set point, the blue one is the actual task burst; in the other
plots, the blue trace is accumulated CPU time. At time 200 a batch task
is received, the detail is shown in second plot. 157

6.3. Quad core scheduler simulation: in plots 1,3,5,6 the red trace is the
task time slice set point, the blue one is the actual task burst; in the
other plots, the blue trace is accumulated CPU time. Around time 400
a periodic task is received, the detail is shown in second plot. 158

9

List of Tables

4.1. Summary table of identified models . 74

5.1. Table summary of profiling results, ordered by cumulative time 154

10

Abstract

This thesis is part of a long term research line whose purpose is to apply the principles
of the systems and control theory to the design of software systems [14]. This research
is motivated by the fact that a significant class of computing system problems found
in computing systems at large and, more in detail, within operating systems, are de
facto control problems, even though, traditionally, are solved directly through algo-
rithms or heuristics.

A relevant and prominent example is the problem of task scheduling in operating
systems, for which a fully control-based scheduler was designed, implemented and
profiled [17, 15]. It was shown that such a design approach results in a simpler im-
plementation with respect to many classical ones, and permits to analyze and assess
the results formally.

This thesis extends the quoted work in a previously unexplored direction, a control-
based approach to schedulers designed for multi core architectures. To use control-
design principles in a multicore context, first of all, it’s necessary to develop the model
of the process which will be controlled. So, first part of the thesis is focused on a
preliminary analysis about how to model tasks in multi core context. Tasks have been
divided into classes, characterized by similar task behaviors from system resources
point of view, and then each class has been modeled.

Since there are no physical principles available to write models, they have been
obtained from data, profiling, for each class, a representative application. Models
have to well represent all the tasks belonging to the same class, so they have been
developed to represent a family of similar, but different, applications, united by some
basic behaviors.

In the second part of the work, it’s presented a multi core scheduler simulator de-
velopment. This simulator is useful to have a plain, controlled environment where
control structures can be implemented, tested and tuned, without external influences.

11

Sommario
Questa tesi fa parte di una linea di ricerca di lungo periodo il cui fine è l’applicazione
dei principi della teoria dei sistemi e del controllo alla progettazione dei sistemi soft-
ware [14]. La ricerca è motivata dal fatto che una vasta gamma di problemi che si
incontrano nell’ambito dei sistemi software, e più in particolare, dei sistemi operativi
sono in relatà dei problemi di controllo, anche se tradizionalmente risolti direttamente
tramite algoritmi o euristiche.

Tra questi problemi, un esempio rilevante è quello dello scheduling nei sistemi
operativi, per il quale una soluzione interamente basata sulla teoria del controllo è
stata progettata, implementata e comparata con soluzioni più tradizionali [17, 15],
dimostrando che un tale approccio progettuale dà come risultato una maggiore sem-
plicità rispetto a molti algoritmi classici e, soprattutto, permette di analizzare e val-
utare i risultati ottenuti formalmente.

In questo lavoro si è proposto di estendere l’approccio basato sulla teoria del con-
trollo a scheduler progettati per architetture multi core. Per utilizzare i principi di
progettazione proposti della teoria del controllo in un contesto multicore, prima di
tutto è necessario sviluppare il modello del processo che sarà controllato. Cosı̀, la
prima parte della tesi è focalizzata su un’ analisi preliminare su come modellare i task
in un contesto con più unità di calcolo indipendenti, ciascuna dotata di una cache lo-
cale. I task sono stati suddivisi in classi, caratterizzate da comportamenti (dei task)
simili dal punto di vista delle risorse di sistema e, successivamente, ogni classe è stato
modellata. Le classi individuate sono distinte sulla base del tipo di workload (peri-
odico, non periodico, che necessita di interazione con l’utente o con altri risorse, ecc),
sulla base del tipo di interazione con l’utente e, infine, sul grado di reattività richiesto
al sistema, individuando complessivamente, quattro classi:

• task con deadline periodiche (o task periodici)

• task con una sola deadline e scarsa necessità di interazione con l’utente (o task
batch)

• task senza deadline ma interattivi, che richiedono una buona reattività del sis-
tema (task priority based)

• task attivati dal verificarsi di un evento (task ebent based)

Per ciascuna di queste classi è stata poi considerato il modo in cui i task possono in-
teragire con il sistema (task I/O bound, cpu bound o memory bound), importante per
sviluppare uno scheduler che possa tener conto dell’impatto dei task (e delle eventu-
ali migrazioni) a livello di cache e di utilizzo di cpu o di altre risorse (come il disco, le
periferiche ecc.).

12

List of Tables

Poiché non ci sono principi fisici su cui basarsi per scrivere i modelli, essi sono
stati ottenuti a partire dai dati, profilando, per ciascuna classe, l’applicazione più
rappresentativa (alcune sono applicazioni di uso comune, altre sono state scritte ad-
hoc).

I modelli devono rappresentare bene tutti i task che appartengono alla stessa classe,
quindi non sono stati sviluppati per fare un buon fitting sulle tracce di esecuzione di
uno specifico task, ma devono rappresentare una famiglia di diverse tracce di ese-
cuzione, accomunate da alcuni comportamenti fondamentali (i.e da un certo modo
di utilizzare la cache o la cpu, dal grado di reattività richiesto al sistema, ecc..). Per
ottenere questo, è stato scelto di scrivere modelli che fossero strutturati come dei filtri
formatori. In questo modo, il modello può essere analizzato (e validato) anche nel
dominio delle frequenze, presentando, nel contempo, una struttura semplice e facile
da mettere a punto.

Nella seconda parte dell’elaborato, è presentato lo sviluppo di un simulatore in
grado di testare algoritmi di scheduling per sistemi multi core. Il simulatore è utile
perchè mette a disposizione un ambiente controllato dove le strutture di controllo
possono essere implementate, testate e messe a punto, senza l’influenza di scheduler
già esistenti o di altri moduli del sistema operativo. Inoltre, il simulatore è stato pro-
gettato per implementare e simulare facilmente sia scheduler single core che sched-
uler multi core, e per fornire simulazioni in breve tempo, realizzando cosı̀ un frame-
work flessibile e facile da usare.

13

Part I.

Principles of control based
scheduling

14

List of Tables

This part of the thesis introduces the scheduling problem, evidences its relevance in
the context of computing systems, and discusses some classical solutions proposed in
literature. After a brief introduction, the discussion concentrates on explaining why
control-based schedulers are a particularly effective way to approach the evidenced
problems. Subsequently, moving the focus to the specific subject of this work, the
chapter addresses possible ways to exploit control-theoretical principles to extend
the scheduling solutions proposed for the single core case, to a multicore situation.

15

1. Introduction

1.1. The scheduling problem

The term ‘scheduling’ refers to a wide class of problems [9], very different from one
another in terms of structure and complexity. Quite expectedly, therefore, many au-
thors have attempted a systematization and a taxonomic classification of the wide
range of methods that have grown up over the past 30 years, relating the desired
taxonomic axes to those problems [19].

Such a huge effort has produced many interesting results, which allow today to
classify many scheduling models in a systematic way, and to unify some algorithmic
approaches. However, for the most difficult problems encountered in the scheduling
context, it has not yet been possible to indicate a single approach that is somehow
“uniformly” preferable. Many works have in fact suggested the use of heuristics,
rather than enumeration algorithms, approximation algorithms and so on [12, 3, 11].

A possible way to define scheduling problems is “those decision problems where
the factor of importance is time”, viewed as a resource (potentially scarce) to be allo-
cated “optimally” in certain activities. Generally, the goals of scheduling are

• maximizing the throughput of the entire system, minimizing the time that the
resource is unused;

• attempting to order and regulate resource requests so as to minimizes the ra-
tio of service time (i.e., the time to serve a request) and time “turnaround” (the
amount of time that elapses between the instant at which the request is gener-
ated and the time when the request is satisfied);

• avoiding undesirable phenomena like starvation or the “eternal waiting” for
some requests, experienced in certain conditions;

• giveing system user the perception that multiple requests are met at the same
time;

To attain such goals, for example by following combinatorial optimization approaches,
in the literature a wide range of algorithms have been developed. Here follows a brief
description of some classical algorithms and of some implementations.

A classic example: Round-robin algorithm Round-robin (RR) is one of the most
widely adopted algorithms for process and network schedulers. According to the
most common meaning and use of the term, time slices are assigned to each process

16

1.1. The scheduling problem

in equal portions and in a circular order, handling all processes without priority (this
is also known as “cyclic executive”).

Round-robin scheduling is simple, easy to implement, and starvation-free. It can
also be applied to other scheduling problems, such as data packet scheduling in com-
puter networks. The name of the algorithm comes from the round-robin principle
known from other fields, where each person takes an equal share of something in
turn. In order to schedule processes fairly, a round-robin scheduler generally em-
ploys time-sharing, giving each job a time slot or quantum (its allowance of CPU
time), and interrupting the job if it is not completed by then. The job is resumed next
time a slot is assigned to it. In the absence of time sharing, or if the quanta are large
with respect to to the sizes of the jobs, a process that produced large jobs would be
favored over other processes.

For example, if the time slot is 100 milliseconds, and job1 takes a total time of 250
ms to complete, the round-robin scheduler will suspend the job after 100 ms and give
other jobs their time on the CPU. Once the other jobs have had their equal share (100
ms each), job1 will get another allocation of CPU time and the cycle will repeat. This
process continues until the job terminates, and needs no more CPU time.

Job1 = Total time to complete 250 ms (quantum 100 ms).
First allocation = 100 ms.

Second allocation = 100 ms.
Third allocation = 100 ms but job1 self-terminates after 50 ms.

Total CPU time of job1 = 250 ms

Another approach is to divide all processes into an equal number of timing quanta
such that the quantum size is proportional to the size of the process. As one can guess
from the brief description given, classical RR scheduling algorithm is starvation free,
and it is simple, but in general, it does not take into account the task needs as they
change over time. hence, if a task has some constraint related to the completion of its
workload, RR is not able to guarantee compliance with this constraint and, in general,
scheduling policy is fixed or, anyway, has difficulty adapting to the needs (often time-
varying) of the task pool to be scheduled.

Following are some examples that show how, trying to overcome the problems
just mentioned following the combinatorial approach, results obtained are known to
work but presents some flaws[5].

Two Linux schedulers: Complete Fair Schedule and Real Time Round Robin
Two examples of scheduler implementations which follow, in some way, a combina-
torial approach, can be found in the Linux kernel; Round Robin algorithm cannot be
implemented as it is on a production system, because the fair version (where CPU
quantum is fixed and equal for all the tasks) is highly inefficient, and also the ver-
sion where CPU quantum size is proportional to process size is not enough: if there
is a large number of small tasks which need to complete execution within a certain
instant, RR does not give guarantees.

17

1.2. Control Designed Scheduler: Control theory approach

A first way to overcome this problems, was the idea to implement a certain number
of task queues, each managed by RR dispatcher 1 and to assign to each queue a certain
priority level. This solved some problems, but introduced also new ones; to guarantee
starvation-free property and to respect task priorities, long-term schedulers have to
take into account all the tasks present in all the queues to decide which is the next task
to execute. This results in a scheduler having temporal complexity of Θ(n) where n
is the number of tasks present in the system. Such an order of complexity is a quite
big problem when number of tasks increase, because a not negligible portion of CPU
time is wasted to decide which is the next task to execute.

A big step forward has been made with introduction of the so-called Complete
Fair Scheduler (CFS) [1]. The main objective of CFS was to realize a scheduler able
to guarantee fairness, with a temporal complexity lower than Θ(n). To do that, CFS
uses a red-black three data structure; in the leaves are stored tasks; the task in the
first leave on the right is the task which will execute next, in the last leave on the left
there’s the task which has just been executed, task’s priorities are somehow coded
inside the three [2].

In some sense, CFS moves the scheduling problem complexity from time to data
structures, in fact, if RR (and its version with Priority Queues) was simple and clear,
CFS has a good temporal complexity (in the order of time needed to make an access
in an ordered tree, so it is about constant), it uses a complex data structure to access
the tree, and maintain it balanced. The algorithm is however quite complex (no crit-
icism intended, needless to say), for example making it not immediate to follow the
process by which time slices are calculated. Moreover, CFS guarantees fairness, but
it is not particularly able to correctly manage soft and hard real time tasks, in fact, in
the Linux scheduler, a priority RR module is still present to manage real time tasks,
implemented exploiting priority queues.

1.2. Control Designed Scheduler: Control theory
approach

Lately, some literature works proposed to design scheduling algorithms based on the
principles of the systems and control theory, that is, task schedulers entirely consti-
tuted of a feedback control structure, not of some already functional scheduler with
some loops closed around it [17]. In the reference just quoted it was shown that such
a design approach has a number of advantages, the major ones being:

• tendentiously simpler scheduling algorithm with respect to “classical” (i.e., not
control-centred) ones;

• inherent self-adaptation (in the sense the term is given by the computer science
community) to the effective system load, as the presence of a loop makes the
control (scheduling) action reacts in a state-dependent manner (in the sense,
conversely, of the control jargon);

1The scheduler module that takes care of the scheduling in the short term

18

1.3. Control Designed Scheduler: Multicore Scheduler Design

• possibility to analyze and assess the results formally;

Moreover, in [14] it is recognized that the control structure proposed for task schedul-
ing has in fact a general validity for many resource allocation problems. After all, as
mentioned in the 1.1 section, a CPU scheduler must manage, possibly in an optimal
manner, a scarce resource (the CPU time of course). Then, it is expected that once the
model of individual tasks is developed, one can design a control system that deals
with managing the assignment of time slices to the various tasks, and that, exploiting
feedback, it is able to do it in a “good” way.

To do it, however, a central fact is that task models are needed in the control the-
ory sense, that is, in the form of dynamic systems. Recognizing this leads to identify
and dynamically model the core phenomena that rule the controlled object (here, the
tasks). The models resulting from such an approach are typically simpler than those
obtained by just looking at the computing system from outside, as a black-box entity.
The former in fact undoubtedly require more effort and insight on the part of the an-
alyst, but on the other hand inherently avoid the main pathology of the latter, i.e., the
necessity of describing the mentioned core phenomena plus a lot of software layers
that are not sgrictly part of the object to be controlled.

In [15] it has been shown that on single core architectures, task models are simply
time delays, leading to a simple control structure (based on PI blocks) and a simple
scheduling algorithm. Since this approach has given such good results on single core
architectures, it is interesting to extend the same control-based approach to multicore
architectures, designing a Multicore Scheduler based on control theory principles.

1.3. Control Designed Scheduler: Multicore Scheduler
Design

On a multi core architecture, in addition to dealing with core-level time slicing, a
scheduler must manage the migration of tasks between the different cores [4]. As
such, in this context, a task model cannot be a simple delay anymore.

In a multicore context, in fact, there are parallel execution flows, and tasks compete
for resource access. There is no determinism and time invariance, because task be-
havior is time dependent and differs a lot from one class of task to another one, just
think about how different is the behavior of the interrupt handler of the mouse from
the behavior of a simulation software. Furthermore, load balancing is needed, and
for that purpose it is necessary to know what (in terms of resources) a task needs, and
when.

The first part of this work focuses on finding out task models suitable to design a
Multicore Scheduler following a control theory approach.

The second part is conversely centered on implementing a simulator for both single
core and multicore control-designed scheduling, in order to have a clean controlled
environment where different scheduler structures and different scheduling policies
can be tuned and tested in reasonable time, and with no external interferences (exist-
ing schedulers and operating system in general).

19

1.3. Control Designed Scheduler: Multicore Scheduler Design

Considering finally the subject of task models, these can be written starting from
principles (i.e., models of physical object or phenomena) or be obtained from data
through an identification process; of course, also a mix of the two procedures can be
used. In our case, tasks are not a physical object, thus we cannot write model starting
from principles, and models have to be obtained from data.

Naturally, it is impossible (and also useless) to write a model for each possible
executable task. Hence a preliminary work is needed, as it is necessary to divide
tasks in classes, in such a way that tasks belonging to the same class have similar
needs from the system’s point of view. A possible classification is sketched out below.

• Tasks with periodic deadlines: a certain work load must complete in a certain
time span, repeated over time).

• Tasks with a single deadline: tasks go into execution, and after the deadline
they expire (hopefully, having completed their workload).

• Tasks with no deadlines: this is the typical situation for interactive tasks, such
as desktop applications.

• Event-triggered tasks: this is the case of many services, for example the mouse
driver.

Since it is interesting to know how a task impacts on both core and local core cache
utilization [21], for each of the classes listed above, it is interesting to further differ-
entiate cases where the tasks are CPU bound, memory bound, or I/O bound. Corre-
spondingly, models which have to be identified from data, should not fit on execution
traces of a single specific task, but should represent the whole class of tasks to which
the task belongs. Note that task classes have been here described with synthetic high
level models which try to be simple and, at the same time, try do describe a wide
group of different situations (but with common characteristics) belonging to the same
class.

In the following, the mentioned approach to task modeling and scheduler design,
are applied to the particular context of this work.

20

2. State of the art

2.1. Single core scheduler

Some references previously quoted, following the same control-centric approach of
this work and specifically devoted to task scheduling [17], are based on a “bare-
physics” model of the tasks’ behavior. At the beginning of the time span (or round)
between a scheduler intervention and the subsequent one, some of the N tasks that
are present in the operating system pool, are allotted a CPU time slice or burst; at
the end of the round, those tasks have used a certain amount each of CPU time, not
necessarily equal to their burst. Extending to the entire pool of tasks, this is simply
translated in the difference equation

τt(t) = b(t− 1) + δb(t− 1)

τr(t) =

N∑
i=1

τt,i(t)r

τ(t) = τ(t− 1) + τr(t− 1)

where t counts the scheduler interventions, τt is the actually used CPU time, b the
burst, summations are over the pool, τr is the time between two subsequent scheduler
interventions (no matter how many tasks were allotted a nonzero burst and in which
order), and finally τ is the system time. The disturbance δb accounts for any action on
the phenomenon other than that of allotting b, such as for example anticipated CPU
yields, delays in returning the CPU whatever the cause may be, and so forth.

A suitable structure to control the system as just modeled, is that shown as block
diagram in figure 2.1. Block Rt(z) is devoted to computing the task bursts b in such
a way that each task’s CPU time usage τt follows the corresponding set point τot (t).
This set point is obtained by partitioning the measured round duration τr according
to the (possibly time-varying) vector α(t), the elements of which sum to one. An idle
task can be introduced to manage the case in which the total CPU share request is less
than one, but this is totally straightforward and has no relevance here.

Coming back to the scheme, the bursts are additively corrected by the burst cor-
rection bc output by block Rr(z), so that τr follow its set point τor . This is important
because if, for example, some task gets blocked, Rt(z) can still keep the CPU time us-
age for the others, but the round duration set point is lost. The discrete-time control
in figure 2.1 is single-rate, and the rate is dictated by the outer level, i.e., the scheduler
performs its computations once per round; the discrete time index t thus counting the
scheduler’s interventions.

21

2.2. Parallel execution and core switching

Figure 2.1.: Single core scheduler block schema

2.2. Parallel execution and core switching

In a multicore context, any single core scheduling approach is not sufficient to ad-
dress the encountered problems, because there are parallel execution flows, and tasks
compete for resource access [4]. Tasks cannot be modeled as simple delays any more,
and determinism and time invariance are no more a property inherently enjoyed by
the devised models, because not only the tasks’ behavior is time dependent, which
is clearly true also in the single core case, but in addition said time variance affects
the scheduling problem, for example by altering the degree of parallelism of a task
and/or the communication needs of its threads. Furthermore, and along the same
reasoning just sketched, load balancing (or more in general, load distribution man-
agement) has to be performed, making it necessary to know what a task needs (in
terms of resources) and when.

In a multicore context, one has to observe the coexistence of two different temporal
scales:

• a single-core time scale, where the granularity magnitude has the order of the
single task time slice,

• and a system time scale, concerned mainly with task migrations that apparently
occur on a longer horizon.

The consequences of such a remark, that by the way falls very naturally into the
concept of “dynamic separation” typical of many control design methodologies, are
numerous and relevant. To mention just the major ones, a context switch (local to one
core) has a time and resource cost that is far smaller than that of a migration, whence
the need for a bandwidth separation as neat as possible between the two control sys-
tems, that are designed along very different performance requirements and costs.
Also, when dealing with task migration one has to take into account memory issues,
most frequently in the form of of cache misses required for the moved task to have its
data available in the local cache of the arrival core. Moreover, memory bound tasks

22

2.3. Extending control design to a Multicore scheduler

behaviors are quite frequently encountered, and one would like to migrate this kind
of task as few times as possible. At the same time, however, it is not desirable to have
all memory bound (and cache critic) tasks on the same core. Finally, on multicore
architectures, one would also like to avoid thermal issues: in this respect, a “fair”
task-core allocation policy can balance the workload among different cores, in order
to avoid thermal gradients, and favor a better performance at physical level.

2.3. Extending control design to a Multicore scheduler

It is clear even from the short discussion above that a multicore scheduler needs a
different approach with respect to a single core one; as such, it is legitimate to wonder
whether or not the same control design approach, which has given good results for
single core scheduler, could be profitable for multicore scheduler too.

As will emerge in the following, the answer seems to be definitely affirmative; how-
ever, it is necessary to develop and complete it with other new elements: for example,
the task classification dealt with in 1.3 is intended to be the basis for the development
of a control structure that manages load balancing.

In any case, control-compatible metrics are needed that characterize how the task
impacts on the system performances, since (as already discussed) models cannot be
written starting from “principles”. It is thus necessary to develop a solution to obtain
data from which to start to identify task models. These aspects are discussed in the
following parts of this work.

23

Part II.

Identification for multicore
simulator and task profiling

24

2.3. Extending control design to a Multicore scheduler

This part of the thesis is divided into two chapters: the first one refers to task pro-
filing, describing the related problems that were faced, and the techniques adopted;
the second one is dedicated to the discussion of how task models, suitable for the
considered research context, were obtained from data.

25

3. Task Profiling

In the previous part it has been stated that tasks models are needed. Now it will
be explained how task profiling and models identification have been approached.
The first sections explain how many and which task classes have been defined; then,
which metrics have been defined to characterize task’s needs from a system point of
view. The last section contains a description of the tools used and how the profil-
ing experiments have been set up. All experiments were run on a Linux machine,
equipped with a 3.10.1 kernel.

3.1. Task classification

3.1.1. Performance metrics

For our purposes, it is necessary to define some metrics which can characterize the
relevant system performances. From a qualitative point of view, some task perfor-
mance metrics have been outlined:

• Task execution time, (how much time a task is being executed by a core)

• Task sleep/wait time (how long a task stays in sleep/wait status)

• Cache references

• Cache misses

The long term objective is to develop an optimum load manager; hence, it is necessary
to understand what kind of system load will be produced by a given task [6]. The
combination of the task execution time and its sleep/wait times allows to estimate its
burstiness, which allows to understand its behavior from the CPU point of view: is
it a periodic task? is it a batch task? How does it behave from the CPU use point of
view?

From the load manager point of view, it is desirable to know if it is possible to im-
prove performance migrating one or more tasks from a core to an other. As an exam-
ple, migrating a task because it is making a significant amount of memory allocation,
and so it is doing a lot of page faults, changes nothing from the memory subsystem
point of view, as after the task is relocated it will restart making page faults on the
other core (and, moreover, it will make cache misses too, because the task’s data are
not present in the local cache of the new core). So, there’s no reason to relocate tasks
on page faults basis, but it could be a good idea to use task migration for cache opti-
mizations, as if there are two or more cache-heavy tasks on the same core, migrating

26

3.2. Profiling experiments

one of them could improve system performance. In this way, conflict misses can be
partially reduced and the cache miss rate can be improved. This simple example mo-
tivates the selection of cache misses and cache references as representative metrics, as
they represent how much the cache subsystem is stressed by a certain task.

3.1.2. Task classes

Having identified, in a qualitative way, suitable performance metrics, it is clear that
their optimization cannot be addressed if not by means of some task pool charac-
terization. Starting from performance metrics, we have therefore tried to qualify a
significant set of task classes.

Four classes have been identified:

• Tasks with periodic deadlines (periodic tasks)

• Tasks with a single deadline (batch tasks)

• Interactive tasks (priority tasks); they have no deadlines and usually have a
high degree of interactiveness with the end user (i.e. text editors, file managers
etc)

• Event triggered tasks (event based tasks): they have no deadlines and usually
need to be executed after that an event (or a group of events) has occurred (i.e.
the mouse driver, or other event based services).

Periodic tasks: tasks which have a periodic behavior fall in this class: i.e. video
players, audio players, periodic communications etc.

Batch tasks: tasks which have low interactivity and CPU/memory intensive load:
simulators, scientific calculus software, model checkers etc.

Priority tasks: this class includes tasks which do not require a lot of CPU, but that
require it frequently and with low latency: text editors and desktop applications are
the most representative tasks.

Event based tasks: tasks which require system resources after that an event (or
a group of events) has occurred. Usually they need a good system responsiveness:
these task class may include kernel threads activated in response to an interrupt.

3.2. Profiling experiments

There are not physical principles suitable to write task models, so it is necessary to
setup appropriate experiments to obtain suitable data sets. There are different possi-
bilities to obtain data:

• Task instrumentation

27

3.3. Profiling tools: Performance Counters subsystem

• Nominal characterization: static characterization, assigns the target (cumula-
tive) values of the metrics to the task

For the purpose of multicore load balancing it is important to know the temporal
trends of the various performance metrics exploited in section 3.1.1, so nominal char-
acterization is not a good choice. It thus is necessary to select representative samples
of applications for each task class, and profile these tasks.

3.3. Profiling tools: Performance Counters subsystem

For profiling, tasks to be profiled are needed and profilers are needed too. Moreover,
on modern computer systems, instruction throughput is very high, so there’s a huge
amount of hardware events (like for example cache misses) which occur in a very
short time. To make application profiling, we need a profiler which is as lightweight
as possible light, both in terms of memory and CPU occupation, to not risk interfering
with the task to be identified. To decrease the computational overhead of the profiler
and thus improve the quality of the gathered data, only events related to the metrics
outlined in section 3.1.1 will be measured. In addition, to record data without missing
sample points, a profiler has to be executed with a high priority.

The first profiler tried was perf tool, included in the linux-tools package. It is based on
performance counters, which are a hardware somponent designed to aid application
profiling by presenting a set of special registers, that can be configured to count the
occurrence of a predefined set of events. The perf tool tool gives plenty of possibilities
about event monitoring, but it gives only cumulative data, i.e. it merely reports the
number of events that occurred during the entire lifetime of an applications instead
of reporting their dynamics, so it resulted useless for this specific profiling intent, that
is reconstruction of temporal transients.

Although it was clear that perf tool was not suitable, performance counters could
still be used for task level profiling, but a dynamic profiling library needed to be de-
veloped, that periodically reads performance counters and logs the returned value.

Performance counters are special hardware registers available on most modern
CPUs. These registers count the number of certain types of hardware events: such
as instructions executed, cache misses suffered, or branches mis-predicted without
slowing down the kernel or applications. The Linux Performance Counter subsys-
tem provides an abstraction of these hardware capabilities. It provides per task and
per CPU counters, counter groups, and it provides event capabilities on top of those.
It provides ’virtual’ 64-bit counters, regardless of the width of the underlying hard-
ware counters. Performance counters are accessed via special file descriptors. There’s
one file descriptor per virtual counter used.

The special file descriptor is opened via the perf event open() system call, return-
ing the new file descriptor. It can be used via the normal VFS system calls: read()

28

3.3. Profiling tools: Performance Counters subsystem

can be used to read the counter, ioctl() function can be used for special actions
on the counter (i.e. enable/disable or reset counters). fcntl() can be used to set
the blocking mode, obviously, these file descriptors cannot be written by user ap-
plications. Multiple counters can be kept open at a time, and counters can be polled.

Observation 3.3.1. Glibc does not provide a wrapper for this system call; it must be
called using syscall(). This performance counters abstraction is a Linux specific
solution, not available on other systems. So, this profiling library is not portable
(without modifications) on other operating systems. If someone wants to use this
library on a system different from Linux, it is necessary to find out which is its specific
performance counter abstraction and modify the profiling library, using the proper
system call.

Performance counters subsystem supports very extended data structures, that will
be only partially reported (to improve readability). features useful for the purpose of
this thesis will be outlined and commented.

The first function used is perf event open():

int perf_event_open(struct perf_event_attr *attr, pid_t pid, int CPU, ...)

• pid is process pid (intended for a per-process profiling);

• CPU is CPU identifier; it has to be different from -1 only if a per-CPU profiling
is intended; it goes from 0 to MAX NUM CORE-1;

• attr is a pointer to a perf event attr structure: this is one of the most im-
portant data structures, describing specific counter parameters.

Below is partially reported perf event attr{} data structure:

29

3.3. Profiling tools: Performance Counters subsystem

struct perf_event_attr {
__u32 type; /* Type of event */
__u32 size; /* Size of attribute structure */
__u64 config; /* Type-specific configuration */
.
.
.
__u64 disabled : 1, /* off by default */
inherit : 1, /* children inherit it */
pinned : 1, /* must always be on PMU*/
exclude_kernel : 1, /* do not count kernel space events */
exclude_hv : 1, /* do not count hypervisor space events */
exclude_idle : 1, /* do not count when idle */
.
.
.
inherit_stat : 1, /* per task counts */
enable_on_exec : 1, /* next exec enables */
exclude_callchain_kernel : 1, /* exclude kernel callchains */
exclude_callchain_user : 1, /* exclude user callchains */
}

type is an unsigned integer; it points out three possible types of events:

• PERF TYPE HARDWARE: are hardware events, measured directly by PMUs 1 reg-
isters. This kind of events is very reliable; hardware measures are very fast and
can get a large amount of events occurred in a very small time. Direct access
to PMUs is one of the most pleasant features of performance counters Linux
subsystem. Their limit is the number of PMUs present on the CPU (four on the
machine used for this work).

• PERF TYPE SOFTWARE: are events that are measured by a software wrapper;
are less fast and precise than hardware events, on the other side, number of
events measured is not limited by number of PMUs presents on chip.

• PERF TYPE TRACEPOINT: trace point events; generally are operating system
related, i.e. scheduling events, kernel events etc. They are measured in a similar
way with respect to software events, with similar pros and cons. Here they are
not analyzed in detail, because another, more precise, tool has been used to get
kernel events.

size is perf event attr structure size.

1Performance Monitoring Unit, are special hardware registers present on every core.

30

3.4. Profiling tools: trace-cmd

config is event specific configuration field: it is encoded inside performance coun-
ters subsystem by macros (for software and hardware events) or by specific numeric
id, found in kernel debug file system (for tracepoint events). In particular they can be
found in /sys/kernel/debug/tracing/events subdirectories.

disabled indicates whether performance counter is active or inactive; when a counter
is disabled, it maintains its counting value.

inherit indicates whether children processes inherit or not father’s performance
counters (yes by default).

pinned indicates whether event is permanently present on PMU for counting or not;
when pinned is 0, cumulative sampling mode is activated and counter is incremented
after that a certain number of events have occurred: this introduces cumulative sam-
pling and we want to avoid it, so, in this work, pinned is always 1.

exclude kernel: 1 indicates to do not count events in kernel space (1 by default).
this field will remain 1, profile is intended to detect task behavior in user space.

exclude hv: 1 indicates to do not count events in hypervisor space; this field is
useful only for profiling in virtual machines environments. in this work it will al-
ways be 1.

exclude idle: 1 indicates to do not count events when task is idle

inherit stat indicates whether profiling is per-task or per-CPU. 1 means per task
profiling (default).

enable on exec: if it is 1, indicates that counter will be automatically enabled on
the next exec() execution (1 by default); it is especially useful if profiler is a stand
alone executable and we want to profile a command passed by command line.

exclude callchain kernel: if 1 it exclude kernel callchains from event count-
ing (useful for tracepoint events, 1 by default).

exclude callchain user: if 1 it exclude user space callchains from event count-
ing (useful for tracepoint events, 1 by default).

3.4. Profiling tools: trace-cmd

In this work, it was considered that profiling only ad-hoc applications could be not
sufficient to give an idea of what really happens, from a system point of view, when
a common use application is executed. Common use applications, in fact, have some
characterization, but are not ’exactly’ periodic, batch, event based or priority, more-

31

3.4. Profiling tools: trace-cmd

over, application characterization could be time variant. So it was decided to profile
common use applications belonging, in principles, to each of the task classes spot-
ted. Fearing that the approach based on performance counters could not be sufficient
to catch the large amount of events generated by a common use application, which
usually has also a heavy graphic user interface, an other tool has been used: trace-
cmd tool [20]. This tool is based on ftrace and adopts a timestamp based approach,
furthermore it provides fine filter options, directly on the events to record or on the
events reported.

A little extract from trace-cmd man page: “trace-cmd is a user interface to Ftrace.
Instead of needing to use the debugfs directly, trace-cmd will handle of setting of
options and tracers and will record into a data file.

The record feature of trace-cmd uses the system call ”splice”. Splice allows the user
space to move pages directly from the Ftrace ring buffer into a file or network without
ever needing to go through userspace. This move is a zero copy algorithm. A page is
removed from the ring buffer and sent directly to the destination. No copy is required
making the record extremely fast.

This method is even faster than mmap. mmap is quick to get the data from the
kernel to userspace, but if the data has to be saved to a file or to the network, then a
copy is still required to send the data from userspace back to the kernel.

The trace data format file records all the necessary data to move the data file to other
machines and be able to read it there. The endianess and long size is also recorded
such that big endian trace data files can be read from little endian machines, and vice
versa.“

After recording data, and generating trace.dat file, it is possible to furthermore
filter data and generate a text file. Generally, exploiting trace-cmd record capabil-
ities, only events of our interest were monitored (as sched sleep, sched wait and
sched wakeup). Unfortunately, time stamp approach is suitable to measure execution
times (ton) and sleep/wait times (toff), but it is less well suited to the measurement
of cache references and cache misses; we’d like to know how much cache miss and
cache references are made by a task in a millisecond, trace-cmd tells us when a cache
miss or a cache reference are made. Anyway, for ton and toff measures, it is an helpful
tool; after that data have been recorded, exploiting trace-cmd report and some other
filters, a time ordered log file has been generated and finally, through a perl script,
timestamp values have been extracted and put in a row ordered csv file; each row has
this format:

sleep/wait timestamp,wakeup timestamp

. As it can be seen, trace-cmd is a efficient low-level tool, which relies on kernel debug
file system. In this way a fast reliable tool is at our disposal, at least, we can measure
ton (effective execution time) and toff (sleep/wait time) also on high stressing tasks.

Hereafter we’ll see that it is possible to get ton and toff profiling measures both
with trace-cmd (for ton and toff) and dynamic profiling library, but, in general, data
obtained by trace-cmd have a better quality and are better suited to the identifica-
tion procedure; that is reasonable, because trace-cmd time stamps have nanosecond
resolution. Cache measures are obtained by dynamic profiling library, which has,

32

3.5. Performance profiling dynamic library

anyway, millisecond resolution.

3.5. Performance profiling dynamic library

Once the Performance Counters subsystem has been briefly introduced, performance
profiling dynamic library can be described. In this work, a dynamic library and a
stand alone profiler 2 have been developed, both in c++ language.

Dynamic library has a multithreaded structure and a very simple interface:

void start profiler(pid t pid) this function starts profiling; profiling is in-
tended per-task, so pid is process identifier of the task who has to be profiled.

void stop profiler() this function stops profiling and writes samples on row-
by comma separated values file.

Library structure is quite simple and centered around performance counters, de-
scribed in section 3.3: substantially start profiler(pid) creates a new thread,
inside thread are initialized

• a locker

• a mutex variable

• an array of four performance counters

Performance counters are here detailed:

• CPU clock cycles counter (hardware counter)

• Context switches counter (software counter)

• Cache references counter (hardware counter)

• Cache miss counter (hardware counter)

They are all set up to do profiling in user space only (excluding kernel, hypervi-
sors and callchains), to make a per-task profile and to inherit counters by child pro-
cesses. Including directly the library inside application code, enables profiling invok-
ing start profiler(pid) and stop profiler() functions directly from code.
Parameter pid is the process identifier of the task to be profiled. When stop profiler()
is called, profiling is stopped and data are written in profile.csv in the present
working directory.

Profiling library reads counters in polling and uses a singly linked list structure to
save profiling samples; each millisecond, profiling samples are saved into an array of
four elements (one element for each counter) and this array is saved in a list node.
When profiling stops, all data saved in the list are written in profile.csv file. Data

2which, anyway, uses dynamic profiling library

33

3.5. Performance profiling dynamic library

are written off line to avoid library from generating a lot of I/O interrupts, heavy to
manage (we want a profiling sample every millisecond). Here follows description of
the singly linked list data structure and a sketch of profiling algorithm (in particular
a sketch of the thread function called by profiling algorithm):

34

3.5. Performance profiling dynamic library

// Global section

// Globally define number of performance counters managed
#define NCOUNT = 3

// Global boolean flag, true if profiling should be stopped
static bool quit = false;

// Global flag,
// it prevents multiple start_profiler(pid) invocations
static bool started = false;

// Global mutex init, it’ll protect quit flag
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

// Global profiling thread variable;
// it’ll point to thread function a run time
pthread_t thread;

// Global array of NCOUNT perf_event_attr structures
static struct perf_event_attr default_attrs[NCOUNT];

// Global array of NCOUNT file descriptors
static int fd[NCOUNT];

// Define a linked list of profiling samples

struct prof_entry
{
/* Array of NCOUNT unsigned long long integers,

used to record a single profiling sample;
one sample for each performance counter.*/

unsigned long long dataStack[NCOUNT];

//Pointer to the next list node
prof_entry* next;

};

35

3.5. Performance profiling dynamic library

Algorithm 1 start profiler(pid) thread function

Require: pid is a valid process identifier
Ensure: profile.csv is a row-by file, containing profiling data related to process

identified by pid; each row has four values, separated by a comma.
1: ...
2: single count; // Used to read a single performance counter file descriptor
3: data[NCOUNT]; // array intended to record a single profiling sample
4: prof entry∗ currdata = (prof entry∗) malloc(sizeof(prof entry));

// currdata is a new list node;
5: prof entry ∗ newdata; // newdata is an other new list node
6: prof entry ∗ head = currdata; // head is list’s head pointer and points to
currdata

7: ofstream prof ; // prof is on output stream
8: new nice = −20 // High priority, ok under Complete Fair Scheduler module
9: nice1 = nice(new nice) // Try to set high priority for profiler execution;

10: if nice1 ! = new nice then
11: return exit(−1); // Error, nice fail, abort
12: end if
13: ...
14: // default attrs[] init; every element is a pointer to a struct perf event attr{ };

each struct is configured to init a performance counter file descriptor
15: for (i = 0; i < NCOUNT ; i++) do
16: fd[i] = sys perf event open(&default attrs[i], pid, −1, −1, 0);
17: if fd[i] < 0 then
18: return −1 // Error on perf event open() syscall
19: end if
20: end for
21: while 1 do
22: usleep(1000) // Sleep for 1 ms
23: for for(i = 0; i < NCOUNT ; i++) do
24: res = read(fd[i], &single count, sizeof(unsigned long long));
25: if res ! = sizeof(unsigned long long) then
26: return exit(−1) // Error on reading performance counter, exit
27: end if
28: data[i] = single count; // Store counting values into data[] array
29: end for
30: ...
31: ...
32: // Store data[] into current list node and refresh list pointers to prepare new

sample recording
33: for (i = 0; i < NCOUNT ; i++) do
34: ioctl(fd[i], PERF EV ENT IOC RESET, 0); // Perf counters reset
35: end for
36: PthreadLocker lock(mutex); // Lock on the mutex
37: if quit == True then
38: started = False;
39: for (i = 0; i < NCOUNT ; i++) do
40: ioctl(fd[i], PERF EV ENT IOC DISABLE, 0);
41: close(fd[i]);
42: // If quit == True, disable perf counters and close all file descriptors
43: end for
44: prof.open(”profile.csv”, ios :: out); // Open profile.csv file in writing mode

45: // Scroll linked list from the head
46: ...
47: // Write data sample row by row into profile.csv file
48: end if
49: end while

36

3.5. Performance profiling dynamic library

Now follows void stop profiler() algorithm:

Algorithm 2 stop profiler()

Require: start profiler(pid) has been called in the past
Ensure: quit = True

1: PthreadLocker lock(mutex); // Get lock on mutex protecting quit flag
2: quit = True // Set quit True
3: pthread join(thread,NULL); // Wait for thread completion

As it can be noticed reading these two algorithms briefly sketched, profiling library
is very simple and meant to be light and fast, in fact, profiling every millisecond
force to pay high attention on programming language selection, algorithm logic and
implementation details. Library has been developed in c++; in this way profiling
directly invoking profiling functions can be made in c and c++ applications.

3.5.1. Stand alone profiling module

In this work, have been profiled also common use applications; modify source code
of big and complex applications is difficult and error-prone, so, a stand alone pro-
filing module has been developed: it exploits dynamic profiling library exposed in
3.5, and it has, in principle, the same conceptual structure: absolute path of the ap-
plication to be profiled has to be passed by command line when launching stand
alone module; stand alone profiler creates performance counters, initializes them
(but it do not enable counting); then it creates a child process. Father process calls
start profiler() and then will wait for child termination; after child has termi-
nated, it calls stop profiler(). Child process does an exec, loading code of the
application to be profiled. Since enable on exec flag is 1, when exec is completed,
counters are automatically enabled.

Here follows a sketch of the stand alone module.

37

3.6. Profiling setup

Algorithm 3 main(int argc, char* argv[])

Require: argc >= 2
Ensure: 1 is returned if everything was ok, 0 otherwise.

1: if argc < 2 then
2: printf(...P rogram usage...);
3: return 0
4: end if
5: pid t pid = fork(); // Creates a child process
6: if pid > 0 then
7: start profiler(pid); // We are in father; start profiling on child process
8: waitpid(pid, NULL, 0); // Wait for child process completion
9: stop profiler(); // Stop profiling

10: else
11: // We are in child; now execute command passed by command line
12: execvp(””, (char ∗ ∗)argv); // Make a dummy execvp for efficiency reasons
13: argv++; // Skip process command name
14: execvp(argv[0], argv); // Execute command passed by command line
15: return 1
16: end if
17: return 1

Observation 3.5.1. This library is not meant to profile more applications in parallel
execution (simply because with one, we use three of the four PMUs available on pro-
filing machine), but for more complex and powerful systems, is easy to extend library
for parallel profiling.

3.6. Profiling setup

It has been already exploited that for a good profiling work a fast and light profiler is
needed; similarly, profiling environment has to be set up to be as cleaner as possible,
so that other tasks and system itself do not interfere or, at least, interfere as little as
possible. In fact, we cannot eliminate current system scheduler and its impact on
task profiling, but graphical server and graphic user interface can be (and should
be) eliminated, improving profiling quality. Each experiment has been run in a very
base Linux environment: here there’s a brief list of what has been eliminated (with
reference to a common Linux based system):

• No user graphic interface (kde/gnome)

• No graphic server (xorg) and graphic applications (dolphin/konqueror/oku-
lar/firefox etc..)

• No network managers (nm,wicd, etc..)

• No print servers (cups, etc..)

38

3.7. Profiling results

• No shell/frameworks different from bash.

A system with this kind of configuration is quite fast (from CPU point of view)
and light (from memory point of view; it occupies an amount of about 150-200 MB in
ram).

A little specification about profiling setup from task and system point of view: in
3.1.2 we have spotted a number of classes, representing principals task behaviors on a
computing system. Since performance metrics are related to how tasks use CPU and
memory, it is interesting to further characterize task classes, from system resources
point of view. From CPU, memory and user interactions point of view, a task could
also be characterized as:

• Task CPU bound

• Task I/O bound

• Task memory bound

For each of the four task classes (periodic, batch, priority and event-based), have
been written and profiled ad-hoc applications CPU bound, I/O bound and memory
bound, except for some unrealistic or redundant combinations: event based and pri-
ority tasks, as defined in section 3.1.2, are intrinsically I/O bound, periodic tasks can
be I/O bound, but they are better represented by media players, so it is not necessary
write new ad-hoc applications, a batch task hardly is I/O bound, and so on. For each
pool, some ad-hoc applications have been written, varying some parameters, as pe-
riod in periodic tasks, programming language in batch CPU bound tasks or number
of memory access for memory bound tasks. In the following sections, more details
will be provided.

3.7. Profiling results

3.7.1. Periodic tasks

CPU bound

CPU bound ad-hoc periodic tasks are here analyzed: code will not be explained in
detail, because is not particularly useful for work’s purpose. Task structure is quite
simple: using timer fd() interface, which creates file descriptor based timers, a pe-
riodic timer is created; main function executes two nested cycles: outer cycle is on
the number of periods we want to profile; for each period, a cycle of algebraic oper-
ations is executed (inner cycle). When inner cycle has terminated, wait period(&
infos) function is called and task wait for timer expiration; in this way, the number
of outer cycle iterations is the number of periods executed (and profiled), inner cycle,
instead, represents single period workload, so we can tune :

• Period duration

39

3.7. Profiling results

• Number of periods

• Workload intensity

When the task ends inner cycle iterations, this in fact results in a blocking read()
on the timer (it goes in wait status).

Algorithm 4 Periodic main() template

1: pid t pid = getpid(); // Get process pid
2: start profiler(pid); // Start profiling current task
3: int i, j, workload // workload is number of inner cycle iterations
4: int period // Task period (in milliseconds)
5: int periods // Number of periods to do
6: double p, t, n // Support variables
7: struct periodic info info; // Support structure
8: make periodic(period,&info); // Init periodic timer
9: while (i < periods) do

10: i++; // i starts from 0
11: for (j = 0; j < workload; j++) do
12: ...
13: ...
14: // Inner cycle, performs algebraic operations
15: end for
16: wait period(&info); // Support function; makes task waiting for periodic

timer expiration
17: end while
18: stop profiler(); // Stop profiling and terminate

Here there are some plots referred to some of the profiled variables:
Figure 3.1, shows that there’s a periodic trend of CPU clock cycles; for every ris-

ing/descending front there’s a context switch and, sometimes, this context switch is
recorded with some delay (compared to rising/descending fronts), an indication that
a parallel real time profiling is difficult, even in a light, well setup environment.

In figure 3.2 there is a detail of CPU cycles reported in figure 3.1. Task period should
be 4 seconds; we can see that effective period is a bit different; this remarks that Com-
plete Fair Scheduler module has some serious trouble about granting time deadlines;
it is ok about fairness, but it is not able to satisfy precise real time constraints (as exact
scheduling periodicity of a given task). That is not the only effect of Linux scheduler
on task profiling; other effects will be analyzed more precisely in the next figures.

Figure 3.3 spots an other profiling problem: some times (especially on high work-
load tasks) application throughput is high and a lot of events happen in the same
time. Since real parallelism is limited (on testing machine we have two independent
cores), sometimes it is not possible to read and record all events of interest in a single
millisecond, so some profiling samples present cumulative measures. In this specific

40

3.7. Profiling results

Figure 3.1.: CPU clock and context switches of a periodic task

Figure 3.2.: Effective period of a 4 seconds periodic task

41

3.7. Profiling results

Figure 3.3.: Cumulated context switches problem on a high workload 4 seconds peri-
odic task

example, some times there are two or three context switches in the same millisecond
(which is quite unfeasible). The same problem is attributable to very high peaks on
CPU cycles. This problem is quite difficult to completely eliminate from high work-
load experiments (even using Real Time scheduler module), so, in this cases we con-
tent ourselves of ’good enough’ measures, filtering out what is patently implausible.

Moving on to analyze cache miss and cache reference, an other unexpected (and
unfortunately general) problem comes out:

Figure 3.4 shows a detail of context switches and cache references plot, spotting that
Linux scheduler and its 10 ms periodic scheduler tick, distorts some measures. In fact
these measures, which were made before compiling a new kernel with 1 ms periodic
scheduler tick, show that there is not a cache reference sample for every millisecond,
but a cumulated sample, recorded every 10 ms, when scheduler ticks is raised and a
reschedule happens. Simplifying, even if task is executing, reading from performance
counters needs a system call and a context switch, which cannot be performed every
millisecond, but it is bound to 10 ms scheduler tick periodicity, because that is the
minimum rescheduling granularity. To resolve this problem, which is general and
affects also all other kinds of tasks, it was necessary to compile a new Linux kernel
(version 3.10.1), setting scheduler tick periodicity at 1 millisecond.

Periodic tasks analysis has been exploited to remark some problems faced dur-
ing profiling operations, some specifically related to periodic tasks (as effective task
period), other more general, as cumulative context switches (related to all high work-
load tasks) and measures distorted by 10 ms periodicity related to scheduler tick (very
general problem, affects all tasks).

42

3.7. Profiling results

Figure 3.4.: 10 ms scheduler tick influences cache references dynamic

In next figure 3.5 is reported detailed cache references and cache miss plot related
to a piece of execution of a periodic task profiled on a kernel with 1 ms scheduler tick
periodicity. Cache reference dynamic has no more a “periodic” aspect. From now on,
all experiments reported have been made under a 1 ms scheduler tick Linux kernel.

It can seem strange that cache miss are fixed to zero, but reader should remember
that this profiling is related to a CPU-bound periodic task; as it is sketched in algo-
rithm 4, this kind of task uses a very little amount of memory (a couple of counters
and a couple of numeric variables). Its data are quickly loaded into memory and are
very small, so cache miss are quite unlikely to happen. watching plot ’in the large’
as it is showed in figure 3.6 however it can be noticed a little amount of cache miss,
scattered along task execution.

Memory bound

Now we are going to take a look over memory bound periodic tasks; task structure
is quite simple and similar to CPU bound one. The base idea is to create a periodic
task which makes a large memory allocation in the heap, at the very beginning of
its execution, and then makes, periodically, random memory accesses (read or write
accesses).

// Global section, support structure definition
typedef struct{
long int field[8000];
} bigMem;

43

3.7. Profiling results

Figure 3.5.: Cache references plot with 1 ms scheduler tick

Figure 3.6.: Cache miss plot

44

3.7. Profiling results

bigMem is an array of 8000 long int variables; it is the base data structure: each
variable in the array has 8 Bytes size (testing machine is a 64 bit machine), so each
bigMem variable has a size of 64000 Bytes (that is about 64 KB). in algorithm 5 we
declare an array of 1000 pointers to bigMem data structure; in this way, the overall
data structure exploited has a size of about 64 MB. The overall data structure can
not be contained in cache all together. Simulation of a memory intensive, periodic
application is carried on making random read/write accesses to the data structure.

In this kind of task we can tune:

• Period duration (period variable)

• Number of periods to execute (periods variable)

45

3.7. Profiling results

Algorithm 5 Memory Bound periodic main() template

1: pid t pid = getpid(); // Get process pid
2: start profiler(pid); // Start profiling current task
3: bigMem ∗ data[1000]; // Array of 1000 bigMem pointers
4: int rnd1, rnd2; // rnd1 and rnd2 are random numbers to make memory access

5: int period // Task period (in milliseconds)
6: int periods // Number of periods to do
7: int j, k // Support counters
8: long int read, write = 42 // Support variables
9: struct periodic info info; // Support structure

10: for (i = 0; i < 1000; i++) do
11: data[i] = (bigMem∗) malloc(sizeof(bigMem)); // Make a malloc of bigMem

size for each element of data[] array
12: memset(data[i], 0, sizeof(bigMem)); // Init memory area to 0
13: end for
14: srand(time(NULL)); // Seed random generator
15: i = 0;
16: make periodic(period,&info); // Make task periodic
17: while (i < periods) do
18: i++;
19: for (j = 0; j < 10000; j++) do
20: rnd1 = rand lim(1000); // 10 random accesses for each bigMem element;
21: // Potentially, make 1 access for every element of bigMem.field[]
22: for (k = 0; k < 8000; k++) do
23: if (rnd1 % 2 == 0) then
24: rnd2 = rand lim(8000); // if rnd1 is even, do a random write
25: data[rnd1] −→ field[rnd2] = write;
26: else
27: rnd2 = rand lim(8000); // Do a read
28: read = data[rnd1] −→ field[rnd2];
29: end if
30: end for
31: end for
32: wait period(&info); // Wait for period to expire
33: end while
34: stop profiler(); // Stop profiling and terminate

On the next figures, we’ll have a look at periodic memory bound task plot; this task
has a 6 seconds period and makes 80 millions memory accesses in every period:

in figure 3.7 we see that, also for memory bound periodic tasks, there’s a periodic
trend in CPU clock cycles plot; context switches are coherent with clock cycles plot.
Effective execution time (ton) and sleep/wait time (toff) are inferred from CPU cycles
plot; when CPU cycles are greater than a threshold, a rising front is recorded; when

46

3.7. Profiling results

Figure 3.7.: Periodic memory bound CPU cycles and context switches

CPU cycles are lower than threshold, a descending front is recorded. If we use an
index i, desc(i) is the i-th descending front and rising(i) is the i-th rising front, ton
and toff are calculated with the following formulas:

ton = desc(i)− rising(i)

toff = rising(i+ 1)− desc(i)

This is based on the assumptions that a rising front always precede a descending
front, so the first rising front and the first descending front spot the first execution
time, whereas, the second rising front and the first descending front, spot the first
sleep/wait time. These are the reasons of the index i in the formulas.

What is really interesting in memory bound tasks is cache reference and cache miss
plots; they have a square wave like trend, similar to clock cycles trend, but, in the
piece of time where task is in execution, CPU clock cycles have a ’noisy’ behavior, but
everything fluctuate around a mean value, instead, cache miss and cache reference
signals have a very remarkable high frequency component, which is quite evident in
figure 3.8.

More or less, this is what we expected, in fact, this task makes about 80 millions
memory accesses in each period, and memory area accessed is much bigger than
cache size, so an high level of stress related to cache subsystem, is a natural conse-
quence; this stress is observed in the form of high frequency components in cache
miss and cache references signals. In figure 3.9 and figure 3.10 are respectively re-
ported ton and toff of 150 periods related to a periodic memory bound execution

47

3.7. Profiling results

Figure 3.8.: Cache miss and cache reference detail of an execution fragment

trace.

Common use periodic applications: Mplayer

As it was believed that profiling only ad-hoc tasks, could not be sufficient, it was de-
cided to profile common use applications to. For periodic task class, a video player
is considered a sufficiently representative application, both from CPU and memory
point of view. In this section is reported profiling results of a video streaming play-
back benchmark performed with Mplayer. Video streaming is Big buck bunny, played
at 24 fps and no audio.

Observation 3.7.1. Video players stress system a lot, both from CPU and memory point
of view. Initially there was concern that it was not possible to have a good enough
profile. Luckily, quite good profiling results have been collected. This probably be-
cause Mplayer is implemented in order to have direct access to memory, without
going through xorg. In this way, dynamic profiling library is able to read from perfor-
mance counters every millisecond, avoiding cumulative data readings. Naturally, to
profile Mplayer (and similarly for all the others common use applications), it has been
used stand alone profiling module, avoiding to modify source code of the application
and recompiling it. To make sure that data profiles were good, we profiled Mplayer
also with an other tool: trace-cmd, explained in section 3.4 and then a cross-check
was made between ton and toff inferred by CPU cycles retrieved from performance
counters and the ones directly measured by trace-cmd.

Here are reported profiling data collected with CFS scheduler module and real time
scheduler module.

48

3.7. Profiling results

Figure 3.9.: Ton periodic memory bound task

Figure 3.10.: Toff periodic memory bound task

49

3.7. Profiling results

Figure 3.11.: Toff measured on two mplayer executions of the same video stream: red
trace is trace-cmd data set, blue one is profiling library data set

Profiling with Complete Fair Scheduler Figure 3.11 reports toff measures of two
mplayer executions of the same video stream; red trace is related to toff measured
by trace-cmd tool; blue trace is the one related to toff inferred by CPU clock cycles
measured by performance counters. Both signals have very evident high frequency
components, symptom that CFS module has some troubles to support decoding at 24
fps and profiling at 1 ms at the same time. Anyway, in both signals there’s a quite
evident mean value, around which measures oscillate; for blue trace is about 35 ms,
for red trace is about 36 ms.

Figure 3.12 reports ton related to two different Mplayer executions of the same
video stream (remark: these executions are the same from which toff has been ex-
tracted). Here overlying is more difficult, so it is reported a zoom on the first 550
samples; however there are high frequency contributes around a mean value in both
signals. That is ok, because ton depends on scheduler module and on the complexity
of the frame which has to be decoded, so some variability, even on the mean ton value
was expected. Anyway, both mean values are about 2 ms (reasonable, if we think that
kernel was compiled to have 1 ms periodic scheduler tick).

Considering that measures are related to two different mplayer executions, results
are not so bad and we can conclude that video player (or at least Mplayer) are ef-
fectively periodic tasks and, moreover, data collected by performance counters are
usable, and suitable to identificate a model.

Figure 3.13 reports cache references and cache miss plots. Nothing in particular
needs to be remarked; plots are reasonable, they resemble a chain of pulses, and cache
reference are always much bigger than cache miss.

50

3.7. Profiling results

Figure 3.12.: Ton measured on two mplayer executions of the same video stream

Figure 3.13.: Cache reference and cache miss related to about first 3000 samples of
mplayer execution

51

3.7. Profiling results

Figure 3.14.: toff related to Mplayer execution under Real Time module:red trace is
related to trace-cmd data set, blue trace is related to profiling library

Profiling with Real Time module Since profiling under Complete Fair Scheduler
module remarks a quite high variability on data collected, execution under Real Time
Round Robin module of Linux scheduler, has been forced. Maximum priority has
been assigned to Mplayer execution (99, in a scale from 1 to 99).Real Time module
should ensure respect of the periodicity of video playback (in this case 24 fps). Here
are reported obtained results.

in figure 3.14 we see toff profiled using trace-cmd (red signal) and toff profiled us-
ing performance counters (blue signal). In this case trends are quite different each
from the other. toff measured by trace-cmd is always around 35 ms, whereas, watch-
ing at blue signal, we see a very precise square wave, oscillating between 2 and 3 ms.
The suspicion is that, with performance counters, we catch some dynamics winch
are strictly related to scheduler and that are not caught by trace-cmd, as subsequent
reschedules of mplayer itself: the idea is that, having an high priority in this execution
trace, Mplayer is often rescheduled anyway; when it doesn’t need to be executed, it
undergoes immediately preempt. Probably trace-cmd ignore these reschedule of the
same task, giving us more user-space related data, while performance counters catch
every single low level scheduler interruption (and that could be the reason for such a
precise square wave). in fact, in figure 3.15 there’s a context switch every millisecond.

In figure 3.16 dynamics are substantially similar to the ones represented in the pre-
vious figure; data collected by trace-cmd and the ones collected by performance coun-
ters are different, but here values are more similar. This could confirm that there
are some discrepancies on detecting chain of reschedule related to the same task
(Mplayer).

52

3.7. Profiling results

Figure 3.15.: CPU cycles and context switches of related to mplayer video playback
under Real Time module

Figure 3.16.: ton related to two different Mplayer execution under Real Time module

53

3.7. Profiling results

Figure 3.17.: CPU cycles and context switches of a batch task implemented in C

3.7.2. Batch tasks

Now analysis will be focused on the batch class, starting from batch, CPU bound
tasks.

CPU bound

Batch CPU bound tasks are very simple, from the code point of view; they are just a
cycle withO(n2) complexity, where n is big enough to have a sufficiently long profile.
To improve work readability, algorithm is not reported. In particular, batch CPU
bound tasks have been implemented using c language and python language, pointing
out quite different results, especially from cache point of view. Here follows profiling
results:

Figure 3.17 shows CPU cycles and context switches; results are more or less what
we expected; CPU cycles settle to a mean value and there is a sequence of context
switches.

More interesting is cache reference and cache miss plot, especially if compared to
cache miss and cache reference plots of a batch task written in python.

Figure 3.18 reports cache references and cache miss of a batch application written
in c; figure 3.19 reports cache references and cache miss of an application written in
python. Cache miss have usual random trend. What is very different is cache refer-
ences plot. In c application, cache references plot is similar to a saw tooth, and that
is not strange, some times, task makes memory allocation and some times it does
not. In python application, cache references has a saw tooth trend, as reported in fig
3.20, but peaks get larger and larger over time. That could be explained remembering

54

3.7. Profiling results

Figure 3.18.: Cache references and cache miss of a batch task implemented in C

Figure 3.19.: Cache references and cache miss of a batch task implemented in Python

55

3.7. Profiling results

Figure 3.20.: Cache references detail of a batch task implemented in Python

how a python task is executed. Python is an interpreted language, characterized by
dynamic typing and dynamic binding. When a python application is executed, an
instance of python shell is invoked, then shell executes line by line python code. In
python, every object is implemented as a dictionary, in this way is possible to add
methods, attributes or other data structures to a certain instance of a certain class a
run time. When we make profile, de facto we are profiling python shell while is exe-
cuting our python application’s code, and that is why we see cache references grow
over time. While execution gradually proceeds, shell dictionaries grow in dimen-
sions (especially if we are executing for cycles) and that is why, in cache, larger and
larger memory allocation are done. On the other side, if we are lucky, that memory
allocation should help on reducing cache miss.

I/O bound ’batch’

To profile batch I/O bound tasks, ad-hoc applications have not been written; indeed,
in this case, the concept of a task batch has been slightly relaxed. In general, a batch
task is associated to an application which starts working and, if no external interfer-
ences occur, continues execution until termination, so, generally, a batch task is not
I/O bound. This time, a little relaxing has been done, including an application of
common use: ls. ls usually starts and executes until the entire contents of the direc-
tory is shown, so, from this point of view, is a batch task, but, if the directory is big
and full of files (as /usr/bin directory) ls has to wait for the disk controller to ex-
tract data, fill disk cache and then starts sending extracted data to ls, so, from this
point of view, it can be considered I/O bound or, anyway, an interesting case. Exper-

56

3.7. Profiling results

Figure 3.21.: First samples detail of CPU cycles related to ls profiling

iments have been conducted exploiting stand alone profiling module and launching
./tperf ls− la/usr/bin bash command in a clean light environment, as it is exposed
in section 3.6. ls profiling was carried on in an environment with no user graphic in-
terface, so it was not necessary to force real time scheduler module to obtain good
results. /usr/bin contains all the executables (or symbolic links to the executable)
present on the machine and launchable by users, so it is a quite big directory, and
execution is sufficiently long to allow significant profiling. CPU cycles and context
switches plot are not very different from the ones related to CPU bound tasks, so they
are not entirely reported to avoid redundancy. What is quite interesting is the very
first samples, reported in detail in figure 3.21

At the beginning of the execution, task waits, than executes a bit and then waits
again. This can be explained by the procedure of disk caching. /usr/bin is a quite big
directory, and ls − la retrieves data from file system and then alphabetically orders
data and shows it. In the first phase, disk put data blocks in its cache, then the data
is retrieved, ordered and shown. Wait time that is visible at the beginning of the
execution, is probably due to disk caching: task waits for disk putting all data blocks
in disk cache and then starts retrieving data.

in figure 3.22 is reported a zoom on the first 1000 samples. Cache miss trend is
interesting, in fact, during disk caching phase, as it can be expected, there are high
cache miss peaks, also due to the fact that ls own code and data have to be loaded in
core local cache.

57

3.7. Profiling results

Figure 3.22.: First samples details of cache references and cache miss related to ls pro-
filing

Memory bound

Batch memory bound ad-hoc application are based on the same data structure of the
periodic ones, shown in 3.7.1. For readability reasons, the structure of the code is not
listed, anyway, task is composed by a O(n2) cycle, where, at each cycle iteration, two
random numbers are extracted, addressing a bigMem element and accessing one of
its internal elements for a read or a write. In figure 3.23 first 1000 samples of CPU
cycles plot is reported; in figure 3.24 first 1000 samples of cache miss and cache ref
trends are reported.

3.7.3. Priority tasks

In this work, what is intended with priority task term are all that applications which
have an high level of interactivity with user; we can identify as priority tasks, ap-
plications such as text editors, photo editors, and other desktop applications. Since
writing a text editor or a photo editor from scratch is quite complicated and not par-
ticularly useful for the purpose of this work, priority task profiling has been carried
out only on common use applications, in particular, the original intent was to profile
some text editors, as kate and kile. These applications are intrinsically I/O bound
and both memory and CPU intensive, so no further distinctions have been made.

Problems Initially, it was thought that with Real Time scheduler module and trace-
cmd, could be possible to have a good profile, but soon it was evident that prob-

58

3.7. Profiling results

Figure 3.23.: First samples details of CPU cycles plot of a batch memory bound task

Figure 3.24.: First samples details of cache references and cache miss plot of a batch
memory bound task

59

3.7. Profiling results

Figure 3.25.: First samples detail related to kate editor, profiled with real time module

lems related to cooperation with graphical interface were worse than expected. Per-
formance counters are not fast enough to profile CPU clock cycles and cache every
millisecond. In fact, while using the real-time scheduler module, context switches
recorded for each sample are far too many, figure 3.25 shows an example.

Context switches per sample are always much bigger than one; data collected are
not reliable.

Also profiling through trace-cmd did not give good results: probably it has a mul-
tithreaded implementation and the large amount of events to record creates synchro-
nization problems, so much that, durations of some sleep/wait and of some execution
times resulted negative; figure 3.26 shows an example.

Profiling Kile gave even worse results; problems are always similar to those that
afflict kate, but more pronounced, so plots are not reported, to improve readability.
Probably these text editors are not implemented ’puncturing’ xorg and making re-
serving resources directly from the kernel, so, the amount of events generated is too
large to get caught by profiling tools at our disposal.

At this point, to carry out profiling of at least a text editor, it has been chosen a
command line text editor: nano. Here are reported some results of executing nan
owith no graphical interface, under Complete Fair Scheduler module.

In figure 3.27 is reported a detail of CPU cycles and context switches related to a
nano execution. During this execution, a short text has been written and, at the end,
buffer has been closed without saving. it is quite evident that even writing fast, task
spends most of its time waiting for keyboard input. For this kind of tasks, what is
critical is responsiveness, not amount of CPU cycles reserved by system; simplifying,
they need little CPU, but they need it quickly.

60

3.7. Profiling results

Figure 3.26.: Some negative durations, collected profiling kate with real time module

Figure 3.27.: A detail related to nano CPU cycles and context switches profile

61

3.7. Profiling results

Figure 3.28.: A larger detail related to nano cache references and cache miss profiles

On the other side, even a simple and light editor as nano, need a not inconsiderable
amount of memory; in figure 3.28 larger fragments of cache reference and cache miss
plots are reported.

3.7.4. Event based tasks

In this section event based task profiling is presented. Event based task are considered
all those applications inherently asynchronous, where processing starts as a result of
an external event, that could be an interrupt, a remote request or something similar.

Observation 3.7.2. Note that, with this conceptual approach, traditional client-server
mechanism can be comprehended in the event based paradigm.

CPU bound

Under event based paradigm a lot of different applications could be included, from
the interrupt handler to a client-server application. However, there are some common
factors:

• computation starts after that an external event has happened, so, external events
frequency is a critical factor

• computation can be short and light (i.e. mouse interrupt handler) or long and
heavy (i.e. a ftp request), in both cases, what is more desirable is responsiveness.

• often, event based applications have a parallel structure

62

3.7. Profiling results

In view of these considerations, memory bound and CPU bound distinction has been
made. I/O bound case has not been explicitly considered because event based tasks
are intrinsically I/O bound. however, it was built a simple client-server application
(but not a classic socket server), and the server has been profiled.

CPU bound ad-hoc application has been written with this structure:

• multithreaded: main function is substantially a cycle; for every cycle iteration,
a new thread is spawn.

• periodic: it can seem wrong, but we have to simulate in some way that event
inter arrivals are not too close. In this way, main() function has been made
periodic, 1 second period.

• at each cycle iteration, a pseudo random number n is calculated; then a tread
is spawn and n-th prime number is calculated by thread function; main() waits
for thread function completion.

• thread function executed is a CPU bound function: it calculates n-th prime
number with a O(n) complexity algorithm (it uses successive divisions to com-
pute n-th prime number). When thread function ends, n-th prime number is
returned to main() and it waits for period expiration, to go ahead with next
cycle iteration

Here are reported algorithms sketches; algorithm 6 presents thread function sketch;
that is the function used by new thread, spawn to calculate the n-th prime number by
successive divisions.

63

3.7. Profiling results

Algorithm 6 Event based compute prime() template

Require: arg is a pointer to a integer casted to void
Ensure: a void pointer to the n-th prime number is returned

1: void∗ compute prime(void∗ : arg) // Thread function signature, to conform with
standards, argument is a void pointer and function returns a void pointer to

2: {
3: int n = ∗((int∗) arg); // put ∗arg value into an int variable
4: while 1 do
5: int factor;
6: int is prime = 1;
7: for (factor = 2; factor < candidate; ++factor) do
8: if (candidate%factor == 0) then
9: is prime = 0; // If factor divides candidate, candidate is not prime

10: break; // candidate is a global variable
11: end if
12: if is prime then
13: if - -n == 0 then
14: return (void∗)candidate // Decrement n, if it is 0, we have the n-th

prime
15: end if
16: ++candidate // Increment candidate
17: end if
18: end for
19: return NULL
20: end while
21: }

algorithm 7 presents a sketch ofmain() function. it is quite simple, basically it starts
profiler, set period (1 second) and initializes a quite high random number (from 0
to 4000) and a bias (bias is about 3000); after that a cycle begins; we have a cycle
iteration for each simulated external event to process (for identification, at least 500).
At each loop iteration, candidate restarts from 2, a new thread is spawn and executes
thread function, passing as parameter the n-th prime number to compute. prime to
be computed is put in which prime variable, and is calculated as a sum of bias and
random number extracted. Bias has been introduced to avoid too fast computations
due to very low numbers randomly extracted (i.e. 2,5,10 etc..)

64

3.7. Profiling results

Algorithm 7 Event based main() template

1: pid t pid = getpid();
2: start profiler(pid); // Start profiler
3: .
4: .
5: int ∗ prime; // Pointer to a int, where thread function put result
6: int which prime, rnd1;
7: int steps = 500; // Number of events to simulate
8: int bias = 3000; // Bias to calculate not too small numbers
9: int i = 0; // Counter

10: unsigned int period;
11: .
12: .
13: // Make main() function periodic, exploiting makeperiodic() function, already

introduced
14: while (i < steps) do
15: rnd1 = rand lim(4000); // rnd1 is a random number between 0 and 4000
16: which prime = bias+ rnd1;
17: pthread create(&thread, NULL, &compute prime, &which prime); // Spawn

a new thread
18: pthread join(thread, (void ∗ ∗) &prime); // Wait for thread to complete, and

get the result
19: .
20: .
21: // Print n-th prime number
22: wait period(&info); // Wait for period expiration
23: end while
24: return NULL

Figure 3.29 reports CPU cycles and context switches; figure 3.30 reports cache ref-
erence and cache miss plots. Event based tasks plots resemble, in some way, priority
tasks plots, exposed in section 5.4.4. The main difference is event based tasks regular-
ity; this because we made them periodic, to ensure a bit of waiting, from an event to
the other; moreover, probably prime number to compute are all quite similar or small
(nevertheless, a random generator has been used) and task needs a quite short time
to complete computation (about 200 ms). This kind of tasks has been reported for
completeness of exposition, but they did not result very useful during identification
phase (from a certain point of view, they are a particular case of periodic tasks). In-
stead, client-server application, both CPU and memory bound have been more useful
during identification.

In priority tasks, sleep/wait time are more variable; when user is writing or doing
something, they are quite short, but sometimes, when user stops, we have quite big
peaks (2 or 3 seconds).

65

3.7. Profiling results

Figure 3.29.: CPU cycles and context switches plot of an event based task

Anyway, figure 3.31 shows comparative plot between event based task and a pri-
ority task. Event based toff is the red trace; nano toff is the blue one.

In the next figures is presented what happens in a very simple client-server ap-
plication; Server waits to get a number n by command line (standard input); when
number is inserted, a new thread is spawn and the n− th prime number is calculated
and printed on the shell (standard output).

In figure 3.34 is reported a brief plot comparison of sleeping/waiting time related
to nano (blue trace) and our event based interactive task (red trace). Now, event
based task toff fluctuates much more, than the toff measured on the event based task
CPU bound reported in figure 3.31. Indeed, now, toff depends substantially on how
much time passes between the insertion of a number and the next by the user, and
sometimes it could be a long time.

Wait/sleep time could be elevated also for a priority task; figure 3.35 shows an
example. In this figure a long wait is remarked. that is probably due to a long waiting
by user, before going on writing text. In that case, editor goes in wait status and it
is not executed until a new keyboard interrupt happens. When interrupt happens, it
is processed and then execution goes on. Interrupts are usually not very heavy, from
CPU point of view, but is a common desire that they are served quickly, to ensure
responsiveness. This is the reason why priority tasks are not particularly CPU critical,
but the small amount of CPU they need, should be given with low latency.

66

3.7. Profiling results

Figure 3.30.: Cache reference and cache miss plot of an event based task

Figure 3.31.: Comparison between nano toff and event based toff; nano trace is the
blue one, event based trace is the red one

67

3.7. Profiling results

Figure 3.32.: CPU cycles and context switches plot of an event based interactive task

Figure 3.33.: Cache references and cache miss plot of an event based interactive task

68

3.7. Profiling results

Figure 3.34.: Comparison between nano toff and event based server toff: nano trace
is the blue one; event based task trace is the red one

Figure 3.35.: CPU and Context switches plot of a nano execution with a long wait

69

3.7. Profiling results

Memory Bound

Memory bound tasks have the same structure of interactive event based application
described in the previous paragraph; server waits for a number on a blocking scanf();
every time user inserts a number, server spawns a new thread. The main difference
compared to the previous case, is that new thread allocates a lot of memory in the
heap and then it does random read/write accesses in this memory area. in algorithm
8 memory bound thread function is sketched.

Algorithm 8 Event based memory bound thread function template

1: void ∗ memory scan(void ∗ arg)
2: {
3: bigMem ∗ data[1000]; // Declare an array of 1000 bigMem pointers;
4: // Each bigMem element contains an array of 8000 long int elements
5: int ∗ ptr;
6: int rnd1, rnd2, j, i;
7: int write = 42;
8: int read; // Support integers
9: .

10: .
11: .
12: // Init data structure array to 0 and starts random generator
13: for (i = 0, i < 10000, i++) do
14: rnd1← rand lim(1000); // Do 10000 accesses; Put a random number between

0 and 1000 in rnd1
15: for (j = 0, j < 10000, j++) do
16: rnd2← rand lim(8000); // extract a random number between 0 and 8000;
17: // If rnd1 is even, do a write, else do a read
18: if (rnd1%2 == 0) then
19: data[rnd1]→ field[rnd2] = write;
20: else
21: read = data[rnd1]→ field[rnd2];
22: end if
23: end for
24: end for
25: // Return a void pointer for portability and compilation issues, then terminate
26: }

Next figures report a detail of CPU cycles, cache reference and cache miss of a single
input execution.

Event based memory bound task has been implemented, but, watching profiling
results (and also from a conceptual point of view), it does not need a dedicated model;
in fact, it is very similar to a batch application executed n times, where n is the number
of input given by the user. From this point of view, a client-server memory bound

70

3.7. Profiling results

Figure 3.36.: CPU and Context switches plot of a single input execution

Figure 3.37.: Cache references and cache miss plot of a single input execution

71

3.7. Profiling results

computation, can be seen as a batch memory bound task which is launched every
time that a user forwards a request. For this reason, in part 4, event based memory
bound tasks are not explicitly modeled.

Data logging and results representation All profiling data has been saved in
comma separated values files. These files have been imported, filtrated, plotted and
analyzed using Matlab framework. Plotting data and observing it from both an high
level and detailed point of view helped to understand task behavior and notice even-
tual experiment setup errors. For example, at the very beginning of profiling work,
some tasks have been profiled without killing xorg but, plotting profiles, it turned
out that context switches for sample were too high, so memory and computational
system load had to be reduced. Matlab also helped us finding out that graphical text
editors were not suitable for profiling, because plotting data retrieved by performance
counters and trace-cmd tool pointed out some structural unavoidable problems. Last
but not least, Matlab has a powerful system identification tool, which it was essential
to carry out the identification work, discussed below. Profiling work has confirmed
expectations about task behavior. From a qualitative point of view, cache miss, cache
reference and CPU clock cycles (so also ton and toff), have the temporal trend ex-
pected, especially for common use applications.

72

4. Task model identification and
validation

This chapter presents the work related to the identification of a task model, starting
from data [16, 7] obtained during profiling (profiling details are described in section
3.7).

Work described here is particularly critical, because the quantities profiled are not
produced by a physical system having a structure or, at least, a representation known
a priori. Moreover, the same quantity (i.e. cache references) has a very different
behavior, according to the different classes of the task analyzed. The models identi-
fied are meant to develop a control structure able to handle load balancing on multi
core architectures, so they will be implemented in Multi Core Scheduler simula-
tor, described in chapter 5, to favor the development of a suitable load balancing
controller,exploiting, at the same time, work already present in literature to address
scheduling on each single independent core.

These are some reasons why each model have to be general enough, not only to
fit different execution traces of the same task, but also to fit execution traces related
to different tasks belonging to the same class. This has led to validate the models in
Fourier transform domain, verifying that Fourier transform of signals produced by
identified models is similar to the one of profiled data or, in case of Input-Output
models, that frequency response of the model is similar to the one of the data set.

This is not, however, an easy task, because, as it will be better explained later, data
have a quite complex behavior, and results of identification attempts are not always
clean and elegant as one would like them to be.
To achieve better results, profiling data have been windowed, cleaning them up from
the initial set up phase, when task is executed for the first time (except ls profile);
during this phase, very different tasks (even belonging to different classes) have a
similar behavior (quite similar to batch tasks behavior), invoking syscalls, loading
data and code on memory etc. This behavior, in many cases, is quite different from
task’s ’normal’ one, so it has been removed, to don’t polarize the identification pro-
cess. Moreover, to identify a model, each data set has been detrended and divided
into two parts: one part has been used to estimate model, the other one to validate
the model, using cross validation approach, since original data set were big enough
to allow this approach.

Here follows a table which summarizes which classes of profiled tasks have been
analyzed and which quantities of interest (profiled signals) have been identified.

• ok means that the model has been identified;

73

4.1. Time on and time off identification

Task class (application) Ton Toff Cache miss Cache references

Periodic (Mplayer) ok ok ok ok
Batch (C) n.d. n.d. no ok

Batch (Python) n.d. n.d. ok no
I/O bound (ls) ok ok ok ok
Priority (nano) no no ok ok

Event (interactive) ok ok ok ok

Table 4.1.: Summary table of identified models

• no means that the identification process was not successful (detailed reasons
will be explained later in the specific task class section);

• n.d. means that the signal has no meaning for the specific task class (i.e. ton
and toff have no meaning for a batch task which ideally, would execute with no
interruption from beginning to termination);

4.1. Time on and time off identification

4.1.1. Toff identification for periodic tasks

To identify a model related to periodic task class, the data obtained by Mplayer pro-
filing, exposed in section 3.7.1, have been used. This decision has been taken because
video player is a common use application which has natural periodic behavior and
that stresses both CPU and memory subsystem. Luckily, Mplayer implementation
enables collection of good quality profiling data. Infact, ton and toff of a periodic ap-
plication are roughly constant (their fluctuation depends mainly on the complexity of
the reproduced frame), and this helps on achieving good identification results.
In figure 4.1 is reported toff periodogram 1 of two data series: toff inferred by CPU
cycles measured by profiling library and toff measured by trace-cmd tool.

The behavior of the two data series in Fourier transform domain is quite similar,
so, both have been used to make model identification. It has been held the model
which presented the best fit. The state space model derived from trace-cmd data
series has proved having an acceptable interpolation (in terms of estimated noise
spectrum, according to the model block schema reported in figure 4.3).

Toff and ton data sets are time series, so, to identify suitable models, the approach
represented in the block schema reported in figure 4.3 has been adopted. This model
schema has been adopted in general for toff and ton identification, not only on the
periodic tasks case.

Figure 4.4 shows power spectrum of data produced by model, compared to the
power spectrum of validation data set.

1periodogram is the normed absolute square of the Fourier transform of the data.

74

4.1. Time on and time off identification

Figure 4.1.: toff periodogram of data inferred by CPU cycles measured by profiling
library (cyan trace) and toff periodogram of data measured by trace-cmd
tool (yellow trace)

Figure 4.2 shows the model output residuals autocorrelation; interval reported is
99% confidence interval, so residuals can be considered white.

For convenience, let’s call the state model vector x(t), the noise input signal e(t)
and the model output y(t). where e(t) = H(z)in1(t) is a filtered white noise (a colored
noise). Noise spectrum is given by the formula

Definition 4.1.1.
Φe(w) = λ

∣∣H(ejw)
∣∣2

and it characterizes the output data power spectrum.
The state space model has the following structure:

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)

Where

75

4.1. Time on and time off identification

Figure 4.2.: off model output residuals autocorrelation

Figure 4.3.: toff state space model schema

76

4.1. Time on and time off identification

Figure 4.4.: toff state space model in Fourier transform domain

A =

x1 x2 x3 x4 x5 x6
x1 0.98322 0.07196 0.04423 −0.02662 0.00458 0.02164
x2 0.04864 −0.82168 0.52474 −0.09456 −0.19205 −0.04238
x3 −0.00606 −0.41741 −0.57365 −0.58350 0.34966 0.11492
x4 −0.01785 −0.05423 0.31083 0.29636 0.89847 0.00856
x5 −0.01174 0.36117 0.42365 −0.74100 0.14495 −0.14128
x6 0.00177 0.00625 0.00900 0.01398 −0.00950 0.61084

C =

x1 x2 x3 x4 x5 x6
y1 40914 −11612 −53998 30836 19946 −24821

K =

y1
x1 1.2238 ∗ 10−6

x2 −1.2096 ∗ 10−6

x3 1.1323 ∗ 10−6

x4 6.0076 ∗ 10−6

x5 −1.6404 ∗ 10−6

x6 2.8898 ∗ 10−7

77

4.1. Time on and time off identification

Figure 4.5.: toff state space model time fitting

Initial conditions:

x(0) =
x1 −0.039941
x2 0.010294
x3 0.003551
x4 −0.028165
x5 −0.020146
x6 −0.002447

The model was estimated using Matlab identification toolbox (n4sid, a subspace
algorithm [18]); it is a sixth order model, with an input in1 and an output toff. it is a
reasonable simple model and gives satisfactory results. Figure 4.5 shows time fitting
of data produced by a five step predictor based on the state space model:

The model does not overfit on the single execution trace and the model output
temporal trend is quite similar to the measured data temporal trend.

4.1.2. Ton identification for periodic tasks

Also for ton analysis, the data set chosen to carry out identification process was the
one related to Mplayer profiling, for the same reasons explained in toff identification
section. Ton are characterized by a ’more complicated’ frequency content, substan-
tially because ton related to a video stream playback depends on actual frame decod-
ing complexity. To identify this model, it has been applied the same procedure used
for toff model identification. Both data sets obtained by trace-cmd tool and by pro-

78

4.1. Time on and time off identification

filing library were used to identify a model. Also in this experiment, data measured
by trace-cmd have allowed us to obtain the best model, and it is again a state space
model. It has been identified using Matlab identification toolbox (n4sid algorithm).
Figure 4.3 shows block schema representation related to the model. For convenience,
let’s call the model state vector x(t), e(t) is a white noise input signal and y(t) is the
model output.

The identified model has the following structure:

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)

where e(t) = H(z)in1(t) is a filtered white noise (a colored noise). e(t) spectrum is
given by the formula 4.1.1 reported before.

A =

x1 x2 x3 x4 x5
x1 −0.69886 0.64777 0.28810 −0.01953 0.02202
x2 0.12078 0.50144 −0.85654 0.02595 −0.02476
x3 −0.69773 −0.53241 −0.42441 −0.04451 0.02505
x4 −0.02842 0.02169 0.02916 0.30019 −0.93685
x5 −0.02972 −0.01010 0.00620 0.94781 0.31357

C =

x1 x2 x3 x4 x5
y1 13.49 34.64 15.62 −13.29 23.58

K =

y1
x1 0.00220
x2 0.00078
x3 −0.00348
x4 −0.00291
x5 −0.00051

Initial conditions:

x(0) =
x1 −0.00948
x2 −0.05615
x3 0.01578
x4 −0.00208
x5 −0.00128

Figure 4.6 shows power spectrum of the model output and of the validation data

79

4.1. Time on and time off identification

Figure 4.6.: ton state space model power spectrum

set; the model has a good Fourier transform domain behavior. Also time fitting re-
sults are quite good, reproducing temporal trend and avoiding overfitting. Figure 4.7
shows time fitting of the data produced by a five step predictor based on the state
space model.

Figure 4.8 shows the model output residuals autocorrelation; 99% confidence inter-
val is remarked. Residuals can be considered uncorrelated.

4.1.3. Toff identification for ’batch’ I/O bound tasks

In this section, identification process is carried out for ’batch’ I/O bound tasks, ac-
cording to the considerations made in section 3.7.2. To represent this class of tasks,
ls application has been chosen and profiled. Here are reported the model obtained
by toff data set, in the next section the model obtained from ton data set will be dis-
cussed.

Figure 4.9 shows toff data power spectrum, compared to the ones of different sig-
nals, produced by some different models.

The state space model behavior in time domain is quite good. Figure 4.10 shows
that the model represents quite well the main temporal trend spotted by validation
data set.

The state space model has the usual structure:

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)

where e(t) = H(z)in1(t) is a filtered white noise (a colored noise). e(t) spectrum is

80

4.1. Time on and time off identification

Figure 4.7.: ton state space model time fitting

Figure 4.8.: ton model output residuals autocorrelation

81

4.1. Time on and time off identification

Figure 4.9.: toff data power spectrum of an ls execution trace compared to model ones

Figure 4.10.: toff time fitting related to the ar model and to the state space model

82

4.1. Time on and time off identification

given by the formula 4.1.1 reported before.

Model matrices are reported here:

A =

x1 x2 x3 x4
x1 0.56061 0.81571 −0.01586 −0.00153
x2 −0.81325 0.52590 −0.08115 0.04857
x3 0.00386 0.04736 −0.35871 0.78999
x4 0.00386 0.02195 −0.85367 −0.48741

C =

x1 x2 x3 x4
y1 56.515 −78.095 −46.873 39.427

K =

y1
x1 −0.001447
x2 −0.001698
x3 0.002889
x4 0.001221

x(0) =
x1 −0.056511
x2 −0.019984
x3 0.071438
x4 −0.013319

The model was estimated using Matlab toolbox (n4sid algorithm).
Figure 4.11 shows the toff model residuals autocorrelation. Residuals can be con-

sidered uncorraleted and prediction error is white with confidence level of 99% .

4.1.4. Ton identification for ’batch’ I/O bound tasks

In this section identification of a ton model related to I/O bound ’batch’ task class
is performed. As explained before, the application chosen to represent this class of
tasks is ls. As happened with other profiles, the data obtained by trace-cmd tool and
the ones obtained by profiling library was quite similar, so it was chosen the model
who produced the best fit in Fourier transform domain. Data set produced by trace-
cmd, as in the previous cases, gave the best model. This happened quite often and it
is easily explained by the fact that trace-cmd measured are made by time stamping,
using kernel level high resolution clocks (which have nano second resolution). Hard-
ware counters exploited by profiling library are fast, but, however, they have milli
second resolution, so toff and ton data obtained using profiling library are inevitably

83

4.1. Time on and time off identification

Figure 4.11.: toff model output residuals autocorrelation; 99% confidence interval

less precise.
The state space model estimated using Matlab toolbox has given acceptable results;

figure 4.12 shows a comparison between the validation data power spectrum, and the
model output signal power spectrum.

As in previous cases, this state space model represents a time series, so, the model
structure is:

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)

where e(t) = H(z)in1(t) is a filtered white noise (a colored noise). e(t) power spec-
trum is given by the formula 4.1.1 reported before. In the figure is compared power
spectrum of e(t) with the validation data power spectrum.

Model matrices are now exposed:
A =

x1 x2 x3 x4 x5
x1 0.53128 0.80200 −0.02920 0.18018 −0.03100
x2 −0.75427 0.51491 0.25160 −0.20969 0.16584
x3 −0.07218 −0.15932 0.55650 0.72872 −0.16968
x4 −0.03076 0.11633 0.13265 −0.20048 −0.94512
x5 −0.18695 −0.05815 −0.65692 0.23111 −0.21707
x6 −0.03424 −0.07355 −0.10666 −0.04601 −0.29466
x7 −0.02414 0.04350 −0.03558 0.16315 −0.04546
x8 0.05694 −0.05682 0.12314 −0.18791 0.03534

84

4.1. Time on and time off identification

Figure 4.12.: ton data spectrum of validation data set compared to the one of the state
space model

85

4.1. Time on and time off identification

x6 x7 x8
x1 0.02326 0.00384 0.02181
x2 1.92e− 5 −0.08590 −0.15863
x3 0.12634 0.04092 −0.13397
x4 0.22278 0.09394 0.10903
x5 0.43725 −0.07265 −0.26296
x6 −0.83871 −0.10369 −0.19724
x7 −0.03537 −0.84307 0.36027
x8 0.10626 −0.50028 −0.41170

C =

x1 x2 x3 x4 x5
y1 31.270 −30.812 21.713 −35.121 −0.514

x6 x7 x8
y1 13.288 −3.5793 0.731

K =

y1
x1 −0.003994
x2 −0.001888
x3 −0.002904
x4 0.002711
x5 −0.003557
x6 −0.003065
x7 0.001203
x8 −0.001213

x(0) =
x1 −0.099478
x2 −0.169450
x3 0.244040
x4 0.272980
x5 −0.092217
x6 0.184390
x7 −0.272850
x8 0.192680

Figure 4.13 shows the model’s time domain behavior:
The identified model is able to grasp the major temporal trends that characterize

the validation data set.
Finally, residuals autocorrelation has been investigated. It is reported in figure 4.14

highlighting 99% confidence interval.

86

4.1. Time on and time off identification

Figure 4.13.: ton state space model time fitting

Figure 4.14.: ton autocorrelation of residuals, 99% confidence interval

87

4.1. Time on and time off identification

4.1.5. Ton and toff identification for priority tasks and batch tasks

Unfortunately, ton and toff related to priority tasks depend on the time that user
needs to insert single characters; this time depends on a lot of parameters that can
hardly be estimated, as how long is the word, how far are single characters on the
keyboard and on what user is thinking about. For these reasons (and maybe others),
ton and toff processes related to priority tasks are not stationary, so no model can be
identified with linear, time invariant approach. About batch tasks, instead, question
is quite different; they are effectively preempted by scheduler, so ton and toff data
sets related to batch tasks exist, but these data sets do not model task behavior, but
scheduler behavior. In fact, a batch task, on an ideal machine would execute with no
interruptions, until its termination, so, its toff model is zero, and its ton model is total
task duration.

4.1.6. Toff identification for event based tasks

In this section is discussed identification of a toff model from event based task pro-
files. As discussed in section 3.7.4, event based tasks are intrinsically I/O bound
and, usually, computation is quite light. Task used to represent this situation, waits a
number n in input and then calculates n− th prime number by a successive divisions
algorithm. In this case, light computation is simulated inserting small numbers (but
sometimes, some big ones are inserted, to simulate some heavier request to satisfy;
this impacts mainly on ton model). A priori, also this model can be affected by the
problem of non stationarity faced during priority toff model identification procedure.
Probably here, time variance is not so heavy; number inserted are quite small and
similar, and also time intervals elapsed are not so dramatically different. Anyway,
modeling is not easy, in fact the best model identified is a first order model, symptom
that some dynamics were missed, but, as figure 4.15 shows, the most important ones
were modeled, leaving other dynamics in the noise model,

The model with the best fitting properties is derived from ton time series profiled
by trace-cmd tool, and it has the usual structure:

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)

where e(t) = H(z)in1(t) is a filtered white noise (a colored noise). e(t) power spec-
trum is given by the formula 4.1.1 reported before.

Model matrices are listed here:
A =

x1
x1 0.92685

88

4.1. Time on and time off identification

Figure 4.15.: toff spectrum of event based CPU bound task model compared to vali-
dation data set one

C =

x1
y1 7136.10

K =

y1
x13.4146e− 5

x(0) =
x1 0.11832

The model is very simple, but, as related figures show, it fits data quite well both in
Fourier transform and time domain.

In figure 4.15 is compared power spectrum of e(t) with data validation one.
The next figure 4.16 reports time domain model fitting.
The main problems emerge user inserts big numbers. In the middle of the toff

signal, in fact, are presents high peaks, followed by low toff values. High peaks cor-
respond to sleeping time while task is waiting for the next input by keyboard; follow-
ing low sleeping durations are due to execution preempt while task is attempting to
calculate the n − th (big) prime number (in fact low toff values correspond to high
ton values in the ton data set). This can be seen as a non stationarity factor which
is not well modeled by the state space model. However, the model is able to follow
main temporal trend (confirmed by spectrum plot in figure 4.15) and that is what was

89

4.1. Time on and time off identification

Figure 4.16.: toff produced by one-step predictor model compared to validation data
set in time domain

desired.
Finally, residuals autocorrelation is plotted in figure 4.17 where 99% confidence

interval is highlighted.

4.1.7. Ton identification for event based tasks

In this section a model for event based task ton is discussed. Some considerations
made for toff are still valid: event based tasks are intrinsically I/O bound and, usually,
computation is quite light. Task used to represent this situation, waits a number n in
input and then calculates n − th prime number by a successive divisions algorithm.
Light computation is simulated inserting small numbers (but sometimes, some big
ones are inserted, to simulate some heavier requests).

Variations in the computational load had a quite important impact on ton data
series and, differently from toff data set, the resulting model is quite complex, but,
from both spectral and time analysis, this model has a good behavior. Figure 4.18
shows spectral analysis and figure 4.19 shows temporal analysis.

The model structure, as usual, is:

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)

where e(t) = H(z)in1(t) is a filtered white noise (a colored noise). e(t) spectrum is
given by the formula 4.1.1 reported before. Matrices are reported above:

90

4.1. Time on and time off identification

Figure 4.17.: toff residuals autocorrelation, 99% confidence interval

Figure 4.18.: power spectrum of the ton signal produced by the model compared to
power spectrum of the validation data set

91

4.1. Time on and time off identification

Figure 4.19.: ton produced by the one-step predictor built from the model, compared
to the validation data set

A =

x1 x2 x3 x4 x5
x1 0.87508 −0.22471 0.16716 0.15469 0.18617
x2 0.15253 −0.62780 −0.45092 −0.15294 −0.54898
x3 0.15048 0.31147 0.20683 0.68917 −0.49596
x4 −0.08876 −0.05538 −0.68026 0.59645 0.42169
x5 0.14428 0.52737 −0.42561 −0.24206 −0.34669
x6 −0.07523 −0.08609 0.07759 0.15190 −0.19648
x7 −0.00943 −0.04101 0.05043 0.02092 −0.02180
x8 0.07706 −0.00515 0.04119 −0.06441 0.31077
x9 0.00760 0.04994 −0.03774 −0.01103 −0.03090
x10 0.01093 −0.01302 0.01435 0.00025 0.07245

92

4.1. Time on and time off identification

x6 x7 x8 x9 x10
x1 −0.12540 −0.04383 0.15408 −0.05833 0.08658
x2 0.10382 0.03661 −0.04626 0.08462 0.02647
x3 0.22052 −0.00597 −0.00706 0.12733 0.04776
x4 −0.02566 −0.00699 −0.00328 −0.04156 −0.03650
x5 −0.29599 0.21665 0.36928 0.05127 0.17801
x6 −0.84705 0.01507 −0.38664 −0.04751 −0.19033
x7 0.14789 0.95801 −0.18225 −0.19783 −0.12335
x8 −0.23165 0.32668 0.08755 0.58654 0.21458
x9 0.06421 −0.03519 −0.59880 0.11225 0.70646
x10 −0.08863 −0.004797 0.12629 −0.68434 0.49459

C =

x1 x2 x3 x4 x5
y1 −6851.7 −3748.2 2139.2 2337.2 −3227.1

x6 x7 x8 x9 x10
y1 89.902 822.22 2561.3 1038.8 1776.9

K =

y1
x1 −3.2761e− 5
x2 2.6593e− 5
x3 2.7867e− 5
x4 −7.4396e− 6
x5 −9.2383e− 6
x6 −3.6710e− 6
x7 −5.1017e− 6
x8 2.1865e− 5
x9 −3.3267e− 6
x10 6.7874e− 6

x(0) =
x1 −0.22398
x2 −0.24837
x3 0.14686
x4 0.16053
x5 −0.04963
x6 −0.08630
x7 0.07140
x8 0.33834
x9 0.03765
x10 0.13184

93

4.2. Cache references identification

Figure 4.20.: ton residuals autocorrelation; 99% confidence interval

As usual, this model was estimated using Matlab identification toolbox (n4sid algo-
rithm) applied on the data set profiled with trace-cmd. This is a ten-th order model; it
is one of the most complex identified, a testimony that, indeed, modeling ton of this
type of task is not easy.

Figure 4.20 shows residuals autocorrelation; 99% confidence interval is highlighted.
Residuals can be considered uncorrelated, error signal is white (with a 99% confi-

dence level) and the model can be accepted.

4.2. Cache references identification

In this section, it will be discussed a model identification of cache reference signal.
Identification procedure will be performed for all the different task classes exploited.
It is important to remark that the models are not intended, as usual, to identify a sin-
gle entity, but they must adequately represent a large class of tasks. Tasks belonging
to the same class have common characteristics, from system behavior point of view,
but, in general, they have different structure and implementation at application level.
For example, Amarok audio player and Mplayer video player, are very different ap-
plications, but, from system point of view, they have similar needs: both should reach
their target workload before a certain time deadline, and this is periodically repeated,
on the base of audio or video stream played. They should then be modeled by the
same model (or, at least, by two models having the same structure), even if a single
Mplayer execution trace is very different from a single Amarok execution trace. This
remark is valid for all the task classes (and subclasses) pointed out in this work. The
cache references (and cache miss) models are identified from data sets produced by
profiling library (described in section 3.5). It is important to remember that library

94

4.2. Cache references identification

Figure 4.21.: Identification approach for cache reference signal

samples at 1000 Hz, so Nyquist frequency, for all cache reference (and cache miss)
data sets is 500 Hz (except for those data sets where it’s otherwise specified).

4.2.1. Cache references identification for periodic tasks

Mplayer is a quite good candidate to represent periodic tasks; it stresses system from
both CPU and memory point of view. In this section, identification of a cache refer-
ence model will be discussed. To identify a model, an auxiliary signal has been built,
the enable signal. The enable signal can assume only two values: it is one when task
is in execution, zero otherwise.

The enable signal has been built from a threshold analysis over CPU clock cycles
count signal; when signal is greater then the threshold, enable signal is one, otherwise
is zero.

However, data are affected by noise, so the identification approach has to take ac-
count of this. A suitable cache reference model structure is represented in the block
schema of figure 4.21.

Figure 4.22 shows the frequency response of the model, compared to the validation
data one.

Both the state space model and the arx [8] model seem to have a good behavior;
it has been chosen the arx model because it is simpler and it has a slightly better
behavior both in frequency and time domain.

Figure 4.23 shows a time fitting detail, related to the arx model data set.
The model identified is an arx(4,3); its structure is simple:

A(q)y(t) = B(q)u(t) + e(t)

A(q) = 1 + 0.0355q−1 + 0.001662q−2 + 0.05611q−3 − 0.7448q−4

95

4.2. Cache references identification

Figure 4.22.: Frequency response of validation data and identified models

Figure 4.23.: Arx model time fitting detail

96

4.2. Cache references identification

B(q) = 9974 + 230.6q−1 − 587.1q−2 + 2374q−3

It was estimated using Matlab identification toolbox (arx algorithm).

4.2.2. Cache references identification for batch CPU bound tasks

In this section, a model identification for cache references signal, related to CPU batch
tasks is performed. Before to proceed, a little remark is needed: Even if particular
batch memory bound tasks have been implemented (in C and Python) and profiled,
cache subsystem identification (cache references and cache miss signals) has been per-
formed only on CPU bound tasks. This because Python language has a quite complex
memory subsystem management, so, a CPU bound task is enough to see how a batch
task stresses both CPU and memory subsystem. Moreover, we have a quite direct
comparison on how two similar applications, implemented with different languages,
stress the same resources (in profiling section 3.7.2, it’s remarked that Python tasks
and C tasks are characterized by very different cache miss and cache references sig-
nals).

CPU bound task implemented in c

To identify the model laying under cache references signal of a CPU bound batch
task implemented in C, time series approach has been used; original signal, sampled
at 1000 Hz, is too noisy and identifying a model over that data set results very diffi-
cult. So, to overcome this problem, original signal has been ’resampled’, cumulating
samples a group of ten. Original data set is divided in groups of ten samples and
data of the group are summed, creating one sample that represents cumulated value
of the group of ten samples. New signal results sampled at 100 Hz (so its Nyquist fre-
quency is 50 Hz). This approach is useful to spot slow dynamics, eventually hidden
by high frequency noise. On the other hand, the model identified has to be exploited
to realize a multi core load manager, and load manager migration frequency should
be, at least, ten times lower on core scheduling frequency. A reasonable value for on
core scheduling frequency could be 1000 Hz, so, a suitable migration frequency could
be 100 Hz and data sampled at 100 Hz are still a suitable data set.

The identification approach is the classical one adopted for time series and repre-
sented by block schema in figure 4.3.

Figure 4.24 shows the estimated input noise power spectrum frequency fitting.
Cache references signal has still a quite noisy behavior, but, time fitting, reported

in figure 4.25, is acceptable, because identified model is able to catch main temporal
trends spotted by the validation data set.

Identification procedure has led to a third order state space model; it has the fol-
lowing structure:

x(t+ Ts) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)

97

4.2. Cache references identification

Figure 4.24.: State space model: noise power spectrum frequency fitting

Figure 4.25.: State space model: time fitting

98

4.2. Cache references identification

In our case Ts = 0.01s; let x(t) be the state vector of the system, e(t) a colored noise
in input and y(t) the model output. Matrices are

A =

x1 x2 x3
x1 0.96105 −0.23924 −0.00703
x2 −0.21629 −0.95672 0.19741
x3 −0.02533 −0.16660 −0.97555

C =

x1 x2 x3
y1 245.11 20.538 175.81

K =

y1
x1 0.00027493
x2 −2.6445e− 05
x3 −0.00024509

x(0) =
x1 0.016702
x2 −0.002312
x3 −0.001361

This model was estimated using Matlab identification toolbox (n4sid algorithm).

CPU bound tasks implemented in python

Unfortunately, cache references signal of python CPU bound task has a profile that
can hardly be identified with linear methods: in figure 4.26 is reported global cache
references signal plot.

How can be guessed, (and better shown in detail of figure 4.27) cache references sig-
nal is not stationary, so it has not been possible to obtain good identification results
over this data set; an useful future work could be the project of a different identifica-
tion approach to obtain a suitable model for this signal.

4.2.3. Cache references identification for ’batch’ I/O bound tasks

The clarification made earlier about this class are still valid; batch concept is a little
bit relaxed to consider that group of applications which behaves like ls. To identify
model of cache references signal related to this task class, time series approach has
given better results than approaches involving exogenous signals. Model structure is
represented in the block schema in figure 4.3, where the only model input is noise.

Original cache reference signal, has a large amount of samples and a quite ’noisy’
behavior; trying to identify a model from it has given poor results. To overcome this

99

4.2. Cache references identification

Figure 4.26.: Cache references plot of a CPU bound batch task implemented in Python

Figure 4.27.: Cache references detail plot of a CPU bound batch task implemented in
Python

100

4.2. Cache references identification

Figure 4.28.: Ar model noise power spectrum frequency fitting

problem, sample was aggregated (summed) a group of then; in this way, from 10
original samples, only one sample (which is the cumulative value) remains. This is
licit, and already discussed in section 4.2.2.

Figure 4.28 shows the validation data set’s power spectrum and the model’s noise
power spectrum comparison. Since cumulative data realized correspond to a 100 Hz
sampling, new Nyquist frequency is 50 Hz. Ar model, even if it is a simple model, is
able to interpolate the data frequency content in an acceptable way.

To provide a further test in support of the goodness of this modeling approach,
figure 4.29 reports time fitting of identified ar model over the validation data set ex-
tracted from ls cache references profile. Figure 4.30 shows time fitting of the same ar
model over an other (written ad-hoc) application’s cache references data set.

The model is able to catch main signal trend in both cases, even if the two time
series are quite different. This little example should give an idea about which is the
purpose of the models built in this work: Our intent is not to to model every single
kind of implementable application, it would be too difficult and, probably, useless; we
would like to build models which can catch task ’high level’ behavior, in other words,
these models should grasp the structural properties of a certain class of task, in such
a way that a lot of different tasks, belonging to the same class, can be represented by
the same model, trying to limit model complexity.

To come back to the model, it has the classic ar structure:

A(q)y(t) = e(t)

A(q) = 1− 0.1379q−1− 0.2215q−2− 0.2089q−3− 0.1253q−4

It was estimated using Matlab identification toolbox (arx algorithm).

101

4.2. Cache references identification

Figure 4.29.: Ar model time fitting over ls data set

Figure 4.30.: Ar model time fitting over an other data set

102

4.2. Cache references identification

Figure 4.31.: Cache references residuals autocorrelation, 99% confidence interval

To conclude this section, figure 4.31 shows output residuals autocorrelation, with
the usual 99% confidence interval highlighted.

4.2.4. Cache references identification for priority tasks

In this section, the identification procedure is carried out over nano execution trace
profile. nano has been chosen as representative of priority based tasks, because it is
a text editor simple but functional and, working on terminal, it is easy to profile it
completely excluding graphic server (X or similaria) interference. Task models are
made to implement a load balancing controller in a multicore control-based sched-
uler and to tune a suitable migration policy. Load balancer module should migrate
tasks between different cores to guarantee an homogeneous (homogeneous in term of
CPU needing, cache utilization and responsiveness needed) workload for each core,
in other words, mix of periodic, batch, priority and event based tasks present on core
should be homogeneous from performances point of view. To ensure that, load bal-
ancer needs to know how much and how quickly each task needs for CPU and cache,
to decide what to migrate and where. This control loop should work slower than the
control loop that, on every independent core, sets CPU bursts for tasks present, so, if
calculus of task bursts on an independent core works, hypothetically, at 1000 Hz (re-
alistic), load balancing control can work at 100 Hz: load balancing control should see
single cores always a regime from CPU quantum assignation point of view, to avoid
dangerous interference that could have bad impacts on overall system performances.
For this reason, and to obtained models suitable for a wider range of real applications,
original data set has been reorganized, grouping samples by ten end creating cumu-
lated samples: each ten samples are summed forming one sample which is cumulated
value of the group of ten.

103

4.2. Cache references identification

Figure 4.32.: Arx model frequency response compared to validation data one

In this way, a data set which was originally sampled at 1000 Hz, after data reorga-
nization, results sampled at 100 Hz (and corresponding Nyquist frequency is 50 Hz).
Moreover, cache references signal, often has a ’noisy’ behavior; reducing sampling
frequency helps pointing out slow dynamics of the signal (useful from the perspective
of a load balancing model-driven), which could be hidden by fast ’noisy’ dynamics.

Priority based tasks are interactive, so it makes sense trying to identify a cache
references model building enable signal. This signal, as explained before, is one when
CPU cycles count signal is higher than a certain threshold, zero otherwise.

The identification approach has followed the schema reported in figure 4.21 with
two input signals (a colored noise and enable signal) and one output (simulated cache
references signal).

The model resulting from identification procedure, is an arx model, which has
proven to have good interpolation properties, both in time and frequency domains.

Figure 4.32 reports the model frequency response, compared to the data one. Arx
model has a frequency response quite similar to the one of the validation data set (at
least in a certain frequency range), an acceptable fitting in time domain is expected to
and, in fact, time fitting of figure 4.33 is good.

This model is an arx(4,3); its structure is:

A(q)y(t) = B(q)u(t) + e(t)

where u(t) and e(t) are input signals (u(t) is the enable signal and e(t) is the input
colored noise) and y(t) is model output signal.

A(q) = 1− 0.1605q−1 + 0.01819q−2 − 0.001504q−3 + 0.0003832q−4

104

4.2. Cache references identification

Figure 4.33.: Cache references arx model time fitting

B(q) = 1695− 36.21q−1− 15.72q−2 + 2.98q−3

The model was estimated using Matlab identification toolbox (arx algorithm).

4.2.5. Cache references identification for event based tasks

To represent event based class, which is mainly characterized by light computational
load, high user interactivity and responsiveness needing, an interactive task has been
used: details are shown in section 3.7.4. It waits on a user terminal for a number n
which has to be inserted by user. After that a number has been inserted, it spawns
a new thread which calculates the n − th prime number by a successive divisions
algorithm. The modeling approach follows the schema of figure 4.21, exploiting an
enable signal in input. Enable signal construction has been already discussed in pre-
vious sections and is no longer reported to improve readability.

Figure 4.34 shows frequency response of the two identified models (a state space
model and an arx model). The original data set has been sampled at 1000 Hz, so
frequency axis goes from 0 to 500 Hz (Nyquist frequency).

Figure 4.35 shows arx model time fit.
Since both models have a frequency response quite different from the one of the

data set, it was chosen the arx model because it is simpler and it has a better time fit.
The model identified is an arx(4,3), and it has the structure:

A(q)y(t) = B(q)u(t) + e(t)

A(q) = 1− 0.006074q−1 − 0.06423q−2 − 0.03039q−3 + 0.004727q−4

105

4.2. Cache references identification

Figure 4.34.: Arx and state space models frequency response compared to the valida-
tion data set one.

Figure 4.35.: Arx model time fitting over the validation data set

106

4.3. Cache miss identification

B(q) = 512.7− 104q−1 + 56.93q−2 − 48.13q−3

It was identified using Matlab identification toolbox (arx algorithm).

4.3. Cache miss identification

In this section is discussed a cache miss model identification related to the classes of
tasks already exposed. The identification approaches followed are mainly the two
already spotted:

1. Approach exploiting an enable signal, resulting in a state space model or in an
arx model, both having enable signal and a colored noise as input signals.

2. Approach reorganizing profile data set (creating cumulative samples). Reor-
ganized data set can be treated as a time series (in the case that enable signal
is not useful) or as an input/output model if enable signal is useful, and then
proceeding to identify a model and a noise spectrum.

4.3.1. Cache miss identification for periodic tasks

Now cache miss signal related to Mplayer data set is analyzed. Identification ap-
proach exploiting enable signal, as represented in figure 4.21 has given good results,
both in frequency and time domains; arx model has proven to have good fitting prop-
erties together with a simple structure. The identified model is an arx(4,3) process.

Figure 4.36 shows frequency response of the identified model, compared to the
validation dataset one;

Estimated noise power spectrum has an acceptable interpolation of the data set
power spectrum, reported in figure 4.37.

In time domain, the identified model has a good fitting, catching main trend of
cache miss validation data set; figure 4.38 shows time domain plot.

After that model properties have been described both in time and frequency do-
mains, here it is reported model structure and coefficients values: it has a classical arx
structure:

A(q)y(t) = B(q)u(t) + e(t)

where y(t) is output signal, u(t) is input signal (in our case enable signal) and e(t) is
a colored noise.

Polynomials:

A(q) = 1 + 0.04013q−1 + 0.05161q−2 + 0.09379q−3 − 0.5797q−4

B(q) = 5003− 913.3q−1 − 517q−2 + 340.2q−3

The model, as usual, was estimated using Matlab identification toolbox (arx algo-
rithm).

107

4.3. Cache miss identification

Figure 4.36.: Frequency response of Arx model

Figure 4.37.: Arx model noise power spectrum and data set power spectrum

108

4.3. Cache miss identification

Figure 4.38.: Arx model data set time fitting

4.3.2. Cache miss identification for batch tasks

Program written in c to simulate a CPU bound batch task stresses a lot CPU sub-
system, but, how it’s reported in figure 4.39, it is affected by a very few cache miss
(we have about 350.000 samples and less than 10 cache miss). This because compu-
tation is performed on a very small set of data, which probably can be totally stored
in local core cache (probably cache miss recorded are due to other system’s tasks in-
terference). This kind of execution trace, so, is not significant to build a model. Even
using enable signal does not help, because it represents execution times established
by scheduler, but when task is in execution, it rarely is affected by cache miss, so fre-
quency contribution of enable signal is not useful for model identification purpose.
To build a cache miss model, related to batch tasks, Python tasks can provide more
significant results.

Cache miss identification for Python tasks

To identify a cache miss model related to this task class, building enable signal is not
helpful. Enable signal is one when task is in execution, so time intervals in which
enable is high correspond to task execution times assigned by scheduler, but they
do not have correlation with the possibility that a cache miss happens or not (the
only correlation is given by the fact that cache miss are always zero when task is
not executed, and that’s not enough). So, to have at least one hope to identify the
model laying under data, cache miss signal has been reorganized, building cumulated
samples. Original signal was sampled at 1000 Hz, so, new cumulated samples signal
result sampled at 100 Hz (its Nyquist frequency is 50 Hz).

109

4.3. Cache miss identification

Figure 4.39.: Cache miss data set related to CPU bound task written in C

Python language manages objects through dictionaries, so it has a quite complex
memory system. This is reflected by spectrum of cache miss signal, reported in figure
4.40.

Data spectrum is almost flat from 0 to Nyquist frequency; it is quite similar to a
white noise. This dramatically limits our expectations on time domain fitting; in fact,
the identified ar model, is able to catch mean value of the data validation set, but
the remaining dynamics are modeled by the noise; figure 4.41 shows the model time
fitting.

The identified model is simple: it has a classic ar(4) structure:

A(q)y(t) = e(t)

where e(t) is input colored noise and y(t) is the only model output; A(q) is the poly-
nomial

A(q) = 1− 0.06061q−1 − 0.03198q−2 − 0.02875q−3 − 0.08048q−4

This model was estimated using Matlab identification toolbox (arx algorithm). Fig-
ure 4.42 shows model output residuals autocorrelation, with 99% confidence interval
level highlighted;

Residuals can be considered white.

110

4.3. Cache miss identification

Figure 4.40.: Cache miss data spectrum of a CPU bound task written in Python

Figure 4.41.: Cache miss model time fit of a CPU bound task written in Python

111

4.3. Cache miss identification

Figure 4.42.: Cache miss ar model output residuals autocorrelation plotted with 99%
confidence level interval

112

4.3. Cache miss identification

Figure 4.43.: Arx model estimated noise power spectrum compared to the validation
data power spectrum

4.3.3. Cache miss identification for ’batch’ I/O bound tasks

In this section, identification procedure is carried out to obtain a model for cache
miss signal related to ls execution trace. As happened for cache references analysis,
the identification process did not give good results on cache miss data set ’as it is’
so, data have been reorganized, creating cumulative samples grouped by ten. This
operation is equivalent on reducing of an order of magnitude original sampling rate
(which was 1000 Hz), so, resulting sample rate is 100 Hz and Nyquist frequency is 50
Hz. The identification procedure on this data set has given acceptable results using
the time series approach and considering noise as the only input signal of the model.

Figure 4.43 shows estimated noise power spectrum compared to the data set power
spectrum.

Ar model is simple and gives anyway a good interpolation.
The model structure is the one of classical ar processes (represented by block schema

in figure 4.3) let e(t) be the colored noise in input and y(t) the model output; the model
structure is

A(q)y(t) = e(t)

A(q) = 1− 0.2724q−1 − 0.1252q−2 − 0.1358q−3 − 0.1902q−4

This model is ar(4), (quite simple) and it was estimated using Matlab toolbox (arx
algorithm).

113

4.3. Cache miss identification

Figure 4.44.: Arx model frequency response compared to validation data one

4.3.4. Cache miss identification for priority tasks

Now, cache miss identification procedure related to nano data set is discussed. nano
is an interactive application, so, the approach used to identify cache miss model, ex-
ploits the enable signal, built as usual, making a threshold analysis over CPU clock
cycles count signal: if clock count ¿= threshold, then enable = 1, else, enable = 0.

Since data profiled at 1000 Hz presented an excessive noisy behavior, identification
has been performed on ’resampled’ data, summing cache miss values by group of ten
samples. Cumulative cache miss signal is so sampled at 100 Hz.

The model structure is the one presented in figure 4.21, in this particular case, data
sets are all sampled at 100 Hz. The model frequency response, reported in figure
4.44 and the model time fitting, (a detail is shown in figure 4.45), are both acceptable,
confirming the validity of the approach.

This model is an arx(4,3), identified by Matlab identification toolbox (arx algorithm)
and it has the classic arx structure:

A(q)y(t) = B(q)u(t) + e(t)

let e(t) be the colored input noise and u(t) the exogenous enable signal, y(t) is the
model output.

A(q) = 1− 0.1043q−1 + 0.009027q−2 − 0.0006997q−3 + 0.0001723q−4

B(q) = 450.7 + 11.2q−1 − 3.513q−2 + 0.3579q−3

The model residuals autocorrelation is reported in figure 4.46, where interval re-

114

4.3. Cache miss identification

Figure 4.45.: Cache miss arx model time fitting

marked is 99% confidence level interval. Residuals can be considered uncorrelated.

4.3.5. Cache miss identification for event based tasks

In this section is identified a cache miss model for event based tasks class. Event
based tasks, usually, have a quite high degree of ’interactiveness’ (quotes because
with interactiveness is intended not only interactivity with user, but also with sys-
tem or even with other systems). Since identification results on the original data set
were not good enough, the data set has been reorganized creating cumulated sam-
ples. Then enable signal has been calculated and identification has been performed
following the schema of figure 4.21, with all signal sampled at 100 Hz, so, in spectrum
and frequency response plots, values go from 0 to 50 Hz (Nyquist frequency).

The identified model is an arx(4,3).
Figure 4.47 reports the model frequency response compared to the data set one;
The model frequency response is quite similar to the validation data set one (at

least in a certain range of frequencies); also estimated noise spectrum (reported in
figure 4.48) is similar to the one related to the validation data set.

This model has the classic arx structure:

A(q)y(t) = B(q)u(t) + e(t)

where u(t) is the enable signal, e(t) is a colored noise and y(t) is the model output.
Polynomials A(q) and B(q) are:

A(q) = 1− 0.3013q−1 + 0.02627q−2 − 0.06741q−3 + 0.04804q−4

115

4.3. Cache miss identification

Figure 4.46.: Cache miss arx model residuals plotted with 99% confidence level inter-
val

Figure 4.47.: Arx model frequency response compared to the validation data set one

116

4.3. Cache miss identification

Figure 4.48.: Arx model noise spectrum compared to the validation data set one

B(q) = 126.3− 70.88q−1 + 0.1422q−2 + 10.83q−3

The model was identified using Matlab identification toolbox (arx algorithm).

117

Part III.

Simulator

118

5. Development of a Multicore
Scheduler Simulator

5.1. Interconnection between task profiling and
scheduler simulator

In a multicore context, as already noticed, some aspects of the system extend beyond
the model used for the single core simulator, exposed in section 2.1. In the new con-
text, in fact, tasks can not be modeled as a simple delay anymore, Thus, a new and
more complicated model is needed.

To start specifying the new model requirements, a first fact to notice is the neces-
sity to catch task behavior aspects that specifically impact a multicore system, like
the parallelism degree, the induced CPU stress level, and the memory utilisation (ac-
counting for inter-core cache effects). Apparently, given the need for fast simulation
that is ubiquitous whenever the model has to be used for control synthesis and veri-
fication, the route to follow cannot be that of an instruction set simulator (hereinafter
iss for short). Incidentally, the choice just expressed is backed up by the further need
of parametrizing the model easily, and in such a way to represent not a specific ap-
plication or task, but some class of task behavior that is relevant from the control
standpoint at the system level. From both viewpoints the iss approach is too heavy,
and works at too low a level [13, 22]. It has to be made clear that this is in no sense
a criticism to the iss framework, rather just noticing that it is not the preferable one
for this particular work: iss tools in fact give very detailed and precious information
about code execution, which the models dealt with in this thesis cannot provide, but
it does not yield a system point of view simulation in a reasonable time.

As such, the first point to discuss is how to devise an alternative to iss for the ad-
dressed problems. Given the system-theoretic approach followed throughout, a quite
natural way to go is that of resorting to the so called “filter approach”. In a nutshell,
and neglecting a number of mathematical details to quickly introduce the matter, the
idea is that whenever a signal of interest, in the form of a time series, comes from
a stochastic process, it is possible to replicate said signal by filtering a white noise
through a dynamic block, the parameters of which come to describe the behavior of
the system that produces the signal. If that system traverses some different operating
modes, the hope is that a few parameters of the mentioned block, suitably changed
over time according to those models, permit a compact representation of the observed
behavior.

In 4 the matter is further discussed, showing that the filter approach actually proves
suitable, providing parametric models that by suitably changing parameters values,

119

5.2. Developing language: Python

can represent very different simulation scenarii. For example, once a general model
is identified for a “periodic” task, this can be used, with just different parameter sets,
to model a video player, an audio player, and virtually any application that processes
data and delivers output in lots at a specified rate. A relevant fact to mention is
that an adoption of the filtering approach like that just mentioned, is made possible
by the choice – that characterizes this research right from the beginning, see [14] –
to model any unforeseen action on the controlled variables as disturbances, in the
system-theoretical sense of the term.

Coming to how models are parametrized, and in more than one sense also struc-
tured, the most natural way to go is to start from profiling data, and adopt (at least ini-
tially) a black box approach. This brings the typical difficulties of input/output iden-
tification, with the additional characteristic that in general the inputs of the model
are here meant to model some qualification of the behavior of the modeled task at
a given time instant (think for example of a time-varying parallelism degree), while
the measured and treated data refer to a far shorter time scale. This makes the iden-
tification phase potentially critical, as models should not be overparametrized, so as
to avoid overfitting on some single task execution trace, and to preserve evidence of
the effects that a given parameter (and its variation) produces on the output of the
filter. Additionally, as tasks do not possess a precise physical identity, contrary to the
objects encountered when identification and filtering are used for example in process
control, the filter structure is definitely not known a priori.

In any case, once a task modeling framework related to the multicore context is set
up and the corresponding task models are ready, it is still necessary to develop a con-
trol structure suitable to manage inter-core load balancing, and then, to tune the load
balancing policy. To do this, however, a controlled simulation environment is further
necessary, compatible with any kind of filter structure, structured to simply allow
load balancing and single core scheduling implementation, and capable of providing
simulation results in a reasonable short time.

Develop a simulator is also useful from an algorithmic point of view; once the
scheduling/load balancing algorithm is completed and placed into the simulator, and
once the contained control policy is tuned, said algorithm is ready to be deployed,
with (ideally) a few adjustments but in any case with no conceptual differences, in an
operating system. Finally, in a simulator like that envisaged, there is a plain con-
trolled environment, where scheduling and migration policies can be tested without
direct influence of other tasks and the operating system.

After motivating the choice to develop an ad hoc simulator, the next sections deal
with its simulator development, going from the language choice to the architecture
definition, implementation, and testing.

5.2. Developing language: Python

The multicore scheduler simulator (mss for short) treated in this work, has been de-
veloped in Python [10]. This choice has different motivations. First, Python is a par-
ticularly powerful dynamic programming language, used in many types of applica-

120

5.3. Multicore Scheduler Simulator Architecture

tions. Some of its key features are

• a clear and readable syntax;

• a strong capacity for introspection 1;

• an intuitive management of object-oriented programming;

• a natural ability to express procedural code;

• a completely modular character, with full support for hierarchical structures in
modules;

• error handling based on exceptions;

• dynamic high level data types;

• standard libraries, very complete and extendible;

• ease in realizing graphical representations of the data manipulated (i.e. plots,
histograms, etc..);

• capacity to extend and integrate modules written with the most popular pro-
gramming languages as Java, .NET (Java for Jython, or .NET languages for
IronPython);

• integrability as a scripting interface for applications written in popular pro-
gramming languages.

The rapidity of development, combined with the peculiarities of the Python lan-
guage, are ideal characteristics for the type of simulator to implement. Moreover, the
choice of this language allows to easily reuse the code in other projects. Last but not
least, relevant motivations for the choice are the open source nature of Python project,
and the capacity to immediately execute code on any operating system.

The decision to implement the project with version 2.7 of Python was driven by the
greater diffusion of this version with respect to newer releases 2. This allows to have
a larger amount of support material to develop the project.

5.3. Multicore Scheduler Simulator Architecture

At present, there is no definite agreement on an appropriate control structure to man-
age load balancing, that incidentally extends far beyond the scope of this thesis. As
such, the simulator does not include an implementation of the final components re-
lated to load balancing, but it has a complete architecture to easily implement task
models and control structures to realize (and tune) multicore scheduling.

1Type checking is completely dynamic.
2Python versions since 3.x are not compatible with 2.x versions

121

5.3. Multicore Scheduler Simulator Architecture

Figure 5.1.: General scheme of the multicore scheduler simulator

In fact, mss has a layered structure, in order to apply a logic of encapsulation be-
tween the various levels. The basic idea is that each layer manages data within its
competence and pass it to the upper level, conforming to that level’s expectations. If
an error occurs, an exception is thrown and caught by the proper level. In this way,
each level has to manage only its own data and problems, and communicates with
other layers in a kind of black box strategy. To realize this, the overall scheduling
problem has been decomposed into the following subproblems:

• Set point signals generation,

• Inter core load balancing,

• On core (or core-level) scheduling,

• Task and task pool modeling,

This choice made it easier to exploit work already done about single core schedul-
ing. The set point signals generator is the highest level module; it encapsulates the
load balancer, the load balancer encapsulates the schedulers (one for each core), and
each scheduler encapsulates a task pool. Figure 5.1 gives a very simple and high-level
overview about how the simulator is layered; each layer will be better explained later.

In figure 5.3, the four layers introduced before are recognized.

122

5.3. Multicore Scheduler Simulator Architecture

• Set point signals generation is composed by the SpGen class, which implements
the SetPointGenerator interface. Each core implements a control structure sim-
ilar to the one in figure 5.2. In this way, for a n-core architecture, we have, for
every core, the same kind of control structure. The set point generator has to
compute vector α for every core (scheduler). This is done in according to the
task pool needs, modeled with signals created by multicore context task models
(which will be implemented in simulator).

• Inter core load balancing is composed by the MultiCoreLoadBalancer class,
which implements the LoadBalancer interface. This module should implement
a load balancing policy; at present, the control structure and its implementation
are not ready yet, given the effort devoted to identification and modeling, but
the placeholder for the mentioned element already exists, since a suitable way
to implement load balancing is apparently through a cascade control structure,
which migrates tasks to make load homogeneous between different cores.

• On core scheduling; this module reflects quite precisely control structure pre-
sented in [14]; figure 5.2 shows the corresponding block diagram. BlockRt(z) is
devoted to computing the task bursts b in such a way that each task’s CPU time
usage τt follows the corresponding set point τot . This set point is obtained by
partitioning the measured round duration τr according to the (possibly time-
varying) vector α(t), the elements of which sum to one. An idle task can be
introduced to manage the case in which the total CPU share request is less than
one, but this is totally straightforward and has no relevance here. The bursts
are additively corrected by signal bc output by block Rr(z), so that τr follow its
set point τor . This is important because if, for example, some task gets blocked,
Rt(z) can still keep the CPU time usage for the others, but the round duration
set point is lost.

• Task Pool: this, in a real system, is not a proper control layer; tasks are, in
some way, the process who should be controlled. In the simulator, however,
tasks models are something different and quite independent from the single
core scheduler, load balancer and set point generation. Task models derived
from profiling and subsequent identification works, are not implemented yet,
but simulator has task and task pool interfaces and related single core context
implementations, suitable to verify the quality of single core scheduling and
easy to extend to multicore context.

The main advantage of this modular approach is that, modules of each levels can
be changed, expanded or reduced, without that other levels need to know details; is
sufficient that new modules implement same interfaces of the old ones. In example,
to implement a single core simulator,a scheduler can be initialized in place of a load
balancer and set point generator is able to directly deal with it: LoadBalancer interface
and Scheduler interface are made to be both compatible with SetPointGenerator in-
terface, underlying modules (task pool etc) do not need modifications. Moreover,load
balancing policy can be changed, for example, taking in account thermal issues and

123

5.3. Multicore Scheduler Simulator Architecture

Figure 5.2.: Single core scheduler control structure

this can be done changing only details of load balancer layer (changing some meth-
ods implementations), but keeping the whole module compatible with other layers
interfaces. In this way, every layer knows details exposed from layers under him and
ignores details coming from layers over him.

In example, details about task pools are known at load balancer level, because sin-
gle core schedulers expose their own task pool, to let inter-core load balance, while
load balancer ignores how set point signals are generated and task models structure,
it just uses signals generated by set point generator to perform inter core load balanc-
ing. With this kind of structure, complexity is divided through different layers, and
every layer can be extended in a modular way, without that other layers need modifi-
cations. Below, in figure 5.3 general UML class diagram of the simulator is reported,
to better clarify simulator structure and hierarchy.

In current simulator version, no load balance policy is implemented, because real-
ization of a controller to perform load balancing is not part of this work, but simulator
is ready to be integrated with a load balance controller, all methods necessary to move
tasks from a core to an other are already implemented and tested. To test load bal-
ancer, tasks have been explicitly moved from a core to an other during simulation,
anyway, simulator testing is explained in details in section 5.5.

Main class has the role to initialize all data structures in the correct order, starts
simulation and then plots simulation data. Actually, task models obtained by identi-
fication phase, described in chapter 4 are not implemented yet, so task models used
are the one related to single core context. They are characterized by some nominal
parameters:

Periodic tasks:

• Period

• Workload: it is cumulated CPU time that task needs to complete its work over
a period

• Beta: beta is a coefficient which represents a real time constrain; task has to reach
its workload completion in t(1-beta) since task’s first scheduling over a period.
Beta has values in the interval [0, 1] and represents the angular coefficient of the
line representing cumulated CPU time of the task; higher is beta value, higher is

124

5.3. Multicore Scheduler Simulator Architecture

Figure 5.3.: General class diagram of multi core scheduler simulator

125

5.3. Multicore Scheduler Simulator Architecture

Figure 5.4.: workload and beta in task execution

the slope of the line. in figure 5.4 there’s a graphical representation of workload
and beta concepts.

Batch tasks:

• Arrival time (absolute time, with respect to simulation beginning instant)

• Duration: it is a relative time; it represents task deadline starting from task
arrival time.

• Workload: it is cumulated CPU time that task needs to complete its work.

• Beta: it has the same function of beta explained for periodic tasks.

Priority tasks:

• Priority: it represents task need of responsiveness; it varies on interval [0, 1]
it is not related with priority concept present in Linux scheduler; priority is
a real value variable on [0,1] interval which represents responsiveness degree
requested by task.

Event based tasks:

• Triggering times: it is an absolute time (with respect to simulation beginning
instant); it represents triggering task instants

• Alpha decay base: event based tasks get CPU time according to a decreasing
exponential function of the type b−(t−τ) b is the alpha decay base, τ is the last
triggering instant.

• Alpha0: it represents initial tentative value to calculate execution burst. It has
function of initializing value, it is overwritten by scheduler at every simulation
step.

126

5.4. Multicore Scheduler Simulator Implementation

5.4. Multicore Scheduler Simulator Implementation

In this section details related to Multicore Simulator implementation will be explained;
in particular, discussion will be carried out layer by layer, explaining modules details
and their relations with other modules. To support discussion, some UML schemes
(in particular class diagrams) are reported; notation is conform to UML2, but to re-
mark some particular python constructs implementations, some special notation are
used.

Before starting exposition, a further clarification is needed: according to UML2 no-
tation, abstract methods should be reported with italic text. Often, due to image size
and layout constraints, italic text is not easily distinguishable from normal text, so
here it is remarked that every interface class is composed only by abstract methods.
This remark is very important, because the presence of non abstract methods inside
an interface declaration, violates the definition of interface. Scheduler implementa-
tion is presented with a bottom-up approach, so that is easier to understand modules
layer division and aggregation.

5.4.1. Task and TaskPool implementation

For simulation purposes, different task categories share some data structures, use-
ful to manage basic task execution simulation aspects, as cumulated execution time,
active and alive flag and so on. These data structures comes directly from Task inter-
face definition and will be discussed before going into the details of the different tasks
categories. They are present in every Task implementation presented in this work.

Common attributes:

• pid:int it is process identifier; it represents uniquely task inside system; even
though the methods to manage pid, for extensibility reasons, are public, It
should be managed only by task pool, or directly set by the constructor.

• alive:boolean it is a boolean which indicate whether task is currently wait-
ing in a scheduler queue to be executed. This field is general, every task has
this flag, because, for implementation reasons related to simulation data plot-
ting (and exporting) explained later, every time a task is migrated, a deep copy
of him is made and put into an other scheduler queue; the old copy is set not
alive. This solution is not the best from memory efficiency point of view, but it
allows to avoid reordering every auxiliary scheduler queue every time a task is
migrated.

• active:boolean it is a boolean field, it tells if the task is active and waiting
to be executed.

• accCPU:float it is a float which represents how much time task has already
spent in execution; it stands for cumulated CPU time. In real systems, time
flows forward naturally, but for simulation purposes, time passing must be
managed explicitly.

127

5.4. Multicore Scheduler Simulator Implementation

• type:string represents task category: it can assume only values periodic,
batch, priority, event.

Common methods:

• hash():string overrides standard hash() method implemented in python;
python uses dictionary based data structures, overriding hash methods is a
good practice to have control of how language associate dictionary keys to data
structure instances.

• eq(other:Task):boolean overrides standard comparison operator ==. It
defines when two Task instances are equal. Each Task subclass has a specific
implementation of this method.

• neq(other:Task):boolean it is the dual of eq() method.

• str():string it gives a string representation of the Task object; each Task
subclass has a specific implementation of this method.

• setAccCPU(cputime:float) set cumulated execution time collected by task

• getAccCPU():float returns cumulated execution time collected by task.

• getPid():int returns process identifier

• setPid(pid:int) set process identifier. This method is public and common
to all Task implementations, to let Task object be compatible with different
TaskPool implementations, but pid should be managed only by TaskPool or
other higher level modules (Scheduler or LoadBalancer), in order to avoid er-
rors on pid management.

• isAlive():boolean returns a copy of the field alive for read purposes.

• isActive():boolen returns a copy of the field active for read purposes.

• setActive(flag:boolean) setter method: it turns a task active (and ready
to be executed) or inactive.

• setAlive(bool:boolean) setter method: it turns a task alive or dead on a
given task pool queue.

• getType():string returns task’s category string representation.

A little remark on difference between alive field and active field: active flag
represents a condition quite similar to the ready state on a real OS. A non active
task has its related α = 0 and will not be taken in consideration for next round’s
bursts calculus, but is present in task pool and at every simulation round is taken in
consideration to decide if it will become active or not at the beginning of the next
round. alive flag represents whether task is dead or alive. a dead task’s reference

128

5.4. Multicore Scheduler Simulator Implementation

Figure 5.5.: UML class diagram of TaskBatch class

remains in the task pool to address problems related to simulation data storing and
plot. Python automatically reorders a list when an element is removed, but this is not
a problem from, strictly speaking, scheduling point of view, but it is a problem when
simulation data have to be plotted (because not all data list have the same length etc).
So, when a task is removed, it is not physically removed from the task list, but its
alive flag is set to zero. A task having alive flag set to zero, is totally ignored during
scheduling. From a practical point of view, a not alive task has only a placeholder
function, preserving at zero all its simulation data.

5.4.2. Task Batch

in figure 5.5 is reported class diagram related to batch tasks representation. TaskBatch
class represents a batch task; in this work, a batch task is intended as a task who
is spawn at a certain time and that principally needs CPU time, memory and data
(coming from hard disks or other devices) for execution, with a few (or none) user
interaction. Attributes and methods come directly from this type of characterization.
Here are described only peculiar attributes and methods that distinguish batch tasks
from other tasks.

Attributes, they are all private fields, to access them, getter and setter methods are
provided.

• arrive:int it is task’s spawning instant, when it first came into system for
execution.

• duration:int it is task duration; it represents a temporal deadline; task has

129

5.4. Multicore Scheduler Simulator Implementation

to complete its workload within duration interval time. with respect to figure
5.4 Ti represents duration.

• workload:int represents cumulated execution time necessary to complete
task execution. In figure 5.4, Wi is task workload.

• beta:float beta function is explained in previous section: anyway beta is a
coefficient which represents a real time constrain; task has to reach its workload
setpoint in T (1 − β) so, it represents rapidity needed by task to complete its
workload. In figure 5.4 a graphical explanation is given.

Methods

• TaskBatch(workload, arrive, duration, beta=0, active=0, pid=0);
this is the constructor, some fields, if not specified, have default value.

• getDuration():int getter method: it returns task’s cumulated execution
time; it returns an integer for simplicity, because in simulation only task with
an integer duration have been used. anyway python has dynamic typing and
binding, so type indication is purely indicative; a float duration can be used and
it will be correctly managed. In fact simulation time is continuous.

• getWorkload():int getter that returns task’s workload. It returns an integer
for simplicity, but consideration made for getDuration() method are still
valid.

• getArrive():int getter method that returns task’s arrival time. As before,
int return type is purely indicative; it has been used to spot a precise simulation
step, i.e. if a certain task has arrive = 3, it means that task has been spawn during
the third simulation step. it is important to remark that burst granularity is not
integer, in fact time flows with continuous granularity, at each simulation step,
an execution round is complete, and it has not, in general, an integer duration.
Indeed, control works over discrete granularity (scheduler works by discrete
steps). This remark is important to do not confuse time flow with control steps.
Stated that simulation time flows with continuous granularity (and so task CPU
burst have a non integer duration, from time point of view) is the reason why
integer durations do not reduce work generality.

• getBeta():float returns a copy of task’s beta.

5.4.3. Task Periodic

In figure 5.6 is reported class diagram related to periodic tasks representation. In this
work, a periodic task is intended as a task which needs a certain amount of CPU time
periodically. two simple examples of periodic tasks that we intended to represent
are audio players and video players, but we can imagine other examples, as periodic

130

5.4. Multicore Scheduler Simulator Implementation

Figure 5.6.: UML class diagram of TaskPeriodic class

data transmission in wireless sensor networks and so on. If we compare a single pe-
riod execution of a periodic task with a batch task, we found similar characteristics:
both have a setpoint workload to reach within a temporal deadline, both can have
constraints related to the rapidity needed to reach workload setpoint. The main dif-
ferences are that normally a batch task executes once, while a periodic task executes
periodically. These differences are reflected by TaskPeriodic class implementation:

below are described only attributes and methods that distinguish periodic tasks
from other ones.

Attributes:

• period:int it is period which characterizes task periodic execution.

Methods:

• TaskPeriodic(period:float, workload:int, beta = 0, active =
1, pid = 0) it is the constructor. task period is defined by constructor and it
can’t be further modified.

• getPeriod():float getter that returns a copy of task period.

5.4.4. Task Priority

In figure 5.7 is reported class diagram related to priority tasks representation. In
this work, a priority task is intended as a task which is highly I/O bound, like text

131

5.4. Multicore Scheduler Simulator Implementation

Figure 5.7.: UML class diagram of TaskPriority class

editors and file managers. Typically they are not particularly heavy, once they have
been spawn and are ready to receive user input, but they usually require a good
system responsiveness to ensure good user experience. This is the reason why in this
representation, TaskPriority has not a duration field; it is considered always active,
waiting for user input. Initial set up phase, where task is launched and loads data
and user interface, can be modeled as a batch task. 3

Priority task characterizing attributes are:

• prio:float it represents task priority; it varies on [0, 1]interval, where 0 is the
minimum priority, and 1 is the maximum one (real time priority) prio repre-
sents responsiveness degree needed by task.

Methods:

• TaskPrio(prio=0.5, active=1, pid = 0) it is the constructor; prio
field is initialized by constructor and it can’t be further modified. if it is not
explicitly defined, prio is set to 0.5.

• getPrio() getter method: it returns a copy of prio field.

5.4.5. Task Event Based

In figure 5.8 is reported class diagram related to event based tasks representation. In
this work, an event based task is intended as a task that needs to be executed only

3to make model identification, initial set up phase has been discarded.

132

5.4. Multicore Scheduler Simulator Implementation

Figure 5.8.: UML class diagram of TaskEvent class

after that a certain event (or group of events) occurs. it is highly I-O bound (for ex-
ample, mouse interrupt handler is a light, I/O bound task), but it could be also CPU
bound and memory bound, just think about the requests made to a web server. Mod-
els for CPU and memory bound event based task are discussed in chapter 4, in the
simulator light I/O bound event based task are modeled 4. Light I/O bound event
based tasks, are intrinsically active (like priority tasks) and normally need a good sys-
tem responsiveness (just think about mouse interrupt handler), but they usually do
not need a big amount of CPU time. To model this kind of behavior, when triggered,
they receive CPU time according to a decreasing exponential function, of the type
b−(t−τ). TaskEvent class implementation derives directly from this representation.

Attributes:

• alpha0:float it represents initial α value used to calculate initial burst (by
default is a quite low value). This value is overwritten by scheduler at every
simulation step.

• base:float it is the base used to calculate CPU time allocation by the formula
b−(t−τ) where b is base and t is time; τ is the last triggering instant (last time
that triggering event has occurred).

• tau last it is the last time instant where a triggering event has occurred; in
the formula reported above is τ .

• trig is a list of float; it contains all time instants in which a triggering event
occurs.

4CPU/memory bound tasks can be treated as batch tasks, with variable interarrival times

133

5.4. Multicore Scheduler Simulator Implementation

Figure 5.9.: UML class diagram of TaskPoolSimple class

Methods:

• TaskEvent(trigtimes, base=0.5 , alpha0=0.01, active=1, pid=0)
constructor method: some parameters are set by default (but they can be over-
written); trigtimes is the list of triggering instants and should be not empty. This
list is set by constructor and it is not editable.

• getAlpha0():float it returns a copy of the alpha0 field.

• getExpBase():floatit returns a copy of the base field.

• getLastTrgTau():float getter method: it returns a copy of the tau last
field

• getTrigTimes():list<float> getter method: it returns a deep copy of
trig list.

• setAlpha0(alpha0:float) setter method: it overwrites alpha0 field.

• setLastTrgTau(tau:float) setter method: it overwrites tau last field.

5.4.6. Task Pool

Figure 5.9 shows Task Pool interface and the implementation used by simulator. Task
pool is an abstraction used to model a set of Task, in general, belonging to different
categories (batch, priority etc). It presents data structures and operations necessary
to manage an ordered set of Task objects.

Attributes:

134

5.4. Multicore Scheduler Simulator Implementation

• Maxpid:int an integer variable used to keep trace of the maximum process
identifier contained in the task pool

• Ntasks:int an integer variable used to keep trace of the number of tasks
present in task pool.

• taut:list<float> it is the list of time slices given at each task; this list is
recalculated at every simulation step by Scheduler module.

• tasks:list <Task> it is task pool’s task list. each list element has to imple-
ment Task interface.

Methods:

• TaskPoolSimple(tasks:list<Task>) it’s the constructor: it initializes a
new TaskPoolSimple object. tasks has to be a non empty list of Task objects.

• eq(other:TaskPoolSimple) overrides == operator. Two TaskPoolSimple
objects are equal only if they have the same number of tasks and every task in
tasks list is equal to the corresponding one in other.tasks list.

• neq(other:TaskPoolSimple) overrides ! = operator. Is the dual of the
eq(other:TaskPoolSimple) method; two TaskPoolSimple objects are dif-
ferent if they do not have the same number of tasks in respective task list or if,
at least one task is different from the corresponding one in other.tasks list.

• str():string returns string representation of the task pool: it is a list of
string, every string is the result of str():string method invoked on corre-
sponding Task element.

• hash():string overriding of standard hash() method.

• maxPidCtrl() it’s a private support method to keep up to date Maxpid field
after task insertion/removal.

• addTask(task:Task) adds a Task object to the task list.

• getAliveProcesses():int returns number of alive processes present in the
task pool.

• getExecTimes():list<float> returns a deep copy of taut data structure.
it is useful to calculate burst correction at Scheduler level.

• getMaxPid():int getter methods: it returns a copy of Maxpid field; it’s use-
ful to manage pid assignment at LoadBalancer level.

• getTaskByPid(pid:int) returns a deep copy of the task identified by pid
passed as parameter; if task is not in task pool, a ValueError exception is raised.

135

5.4. Multicore Scheduler Simulator Implementation

• getTaskNum(type:string):int returns number of tasks of a given type;
type can assume values ’periodic’, ’priority’, ’batch’, ’event’.

• getTaskNumTot():int returns total number of tasks present in task pool.

• getTasks():list<Task> returns the reference to task list. This method is
public and exposes tasks field; it should be used with caution. it is imple-
mented to let Scheduler and LoadBalancer access directly to the task pool.

• removeTask(pid:int):list Removes task with a certain process identifier.
For implementation reasons, in particular to store, for every scheduler, lists of
simulation data having all the same length (at the end of simulation), avoiding
troubles when simulation data are plotted, tasks are not physically removed
from task list, because, after removing, task list would be automatically re-
sorted to maintain no empty elements, reducing its length. So, this method
doesn’t physically remove tasks: it sets alive flag into the task (alive=0). This
flag tells whether task is alive or not in the task pool and maintain list order and
length, avoiding plotting troubles. In real scheduler, task can be safely removed
from task list, because bursts vector and alpha vector are completely recalcu-
lated at every scheduling round. If task is found, method returns a list of 2
elements: result[0] is position index of removed task; result[1] is a deep copy of
removed task. If task identified by pid is not found, a ValueError exception is
raised.

• removeTaskAtPos(i:int) removes task at position i in task list. Task is
not physically removed, just alive flag is set to zero, as it is remarked with
respect to removeTask(pid) method. If index i is not correct, a TypeError or
ValueError exception is raised.

• setBursts(tauts:list<float>) set current simulation step tau vector cal-
culated by Scheduler and refreshes accumulated CPU time related to each task
of the task pool. To simulate real system execution, bursts are affected by a
Gaussian noise, to simulate the fact that sometimes tasks remain in execution for
a time a little bit longer (or shorter) respect to CPU quantum assigned by sched-
uler (reasons are different: critical section to be completed, interrupts events
etc).

5.4.7. Single core scheduler implementation

Single core scheduler layer is one of the most important of the whole project; it man-
ages taskpool and calculates CPU burst for each task present in the pool. Simulation
data are saved in suitable data structure to let plotting and exporting them on file for
further manipulation. TwoLevelSingleCoreScheduler is the class which implements
Scheduler interface; it contains all data structures necessary for scheduling simula-
tion and all auxiliary data structure to let plotting and data export. For two reasons
auxiliary data structure are not reported in the class diagram:

136

5.4. Multicore Scheduler Simulator Implementation

Figure 5.10.: Block diagram of the control structure in general, evidencing the con-
trollers in the ULC and the SLC.

1. auxiliary data structure are not conceptually related to Scheduler; in this imple-
mentation, for simplicity, are managed by scheduler, but they should be man-
aged by a stand alone auxiliary module. It could complicate a bit project archi-
tecture and reduce memory efficiency, but will result in a more clean and clear
scheduler implementation.

2. readability: reporting all auxiliary methods and data structure would result in
a huge and quite useless class diagram, reducing its efficacy.

TwoLevelSingleCoreScheduler class implementation makes reference to control struc-
ture shown at the beginning of the section. To better exploit two level control struc-
ture, it can be reformulated as it is shown in figure 5.10.

According to this structure, and given the necessity of minimizing the scheduling
overhead, simple User Level Control (ULC) and System Level Control (SLC) con-
trollers should be preferred. Based on previous works, there are some typical choices.
The ULC controller can either be an integral or a deadbeat one, while the SLC con-
troller can be a PI, a pure proportional, or, again, a deadbeat one. Using I/P/PI blocks
results in the lowest orders, while deadbeat blocks may require more stages, but al-
low to shape the set point responses. For example, this can be useful if it is required
that when the α component for a task is increased, the CPU allocation to it has an
initial overshoot. However, since this matter was already discussed and is not central
to this work, no further details are reported.

With reference to figure 5.10, Set point and alpha generation are managed by set-
point generator layer and this discussion is forwarded to section 5.4.8. Other works,
as reported before, has suggested that ULC and SLC should be of the I and PI type
respectively. These controllers, which have transfer function Rs(z) and Ru(z) respec-
tively, have the following structure:

Ru(z) = diag

(
Ku

z − 1

)
Rs(z) = Ks ∗

z − zeroslc
z − 1

137

5.4. Multicore Scheduler Simulator Implementation

At each scheduler round, Rs(z) block calculates burst correction rs to minimize
difference

ys − yos
you is single task CPU burst set point and it depends on α vector, ru is single task CPU
burst calculated by control and yu is actual CPU burst really used by single task (yu is
affected by noise). ys is round duration and it is the sum on all the tasks of the actual
CPU bursts yu yos is scheduling round set point and, together with alpha vector, is set
by setpoint generator.

Given the block scheme and the transfer functions reported, if we call xSLC the
state variable of the SLC, burst correction calculus is given by the formulas:

xSLC = xSLC + kSLC ∗ (1− zeroslc) ∗ (yos − ys)

rs = xSLC + kSLC ∗ (yos − ys)

After that burst correction rs and alpha vector (calculated by setpoint generator)
are ready, single task burst setpoint can be calculated; let i be the index of the i − th
task,

you[i] = alpha[i] ∗ (ys + rs)

And then, single task burst is calculated in this way:

ru[i] = ru[i] + kULC ∗ (you[i]− yu[i])

where ru[i] at the right of the equal is the previous value of single task burst calcu-
lated by controller (control structure works in feedback). Then burst are saturated:

ru[i] = max(0,min(bmax, ru[i]))

These formulas clarify furthermore why Rs(z) is the system level controller and
why Ru(z) is the user (task) level controller. SLC calculates burst correction rs trying
to nullify difference between round time setpoint and round time. Whit round, it is
intended the sum of all the timeslices given to the various tasks. In this way, SLC
works at system level, taking care about the duration of the whole execution round.
ULC takes care about single task timeslicing; once that round duration and burst
correction are fixed, through alpha vector, timeslicing for each single task is made,
fixing single task burst setpoint and ULC tries to nullify difference between single
task actual burst and its burst setpoint.

TwoLevelSingleCoreScheduler class reported in figure 5.11 implements two level
scheduler shortly described here.

Attributes:

• id:string is the scheduler text identifier, useful to have a text reference to
various schedulers, especially when simulation data are plotted.

138

5.4. Multicore Scheduler Simulator Implementation

Figure 5.11.: UML class diagram of TwoLevelSingleCoreScheduler class

• task pool:TaskPool is the reference to TaskPool object managed by TwoLevelS-
ingleCoreScheduler class. it contains all the task which should be executed by
a certain scheduler.

• bmax:float is the maximum CPU burst assignable to a certain task. it is use-
ful to insert a saturation in next round’s bursts calculus. It should avoid the
phenomenon of integral charge and the occurrence of excessively unbalanced
situations in the allocation of CPU time.

• kSLC:float is the gain of the SLC.

• zSLC:float is the zero of the SLC 5 it corresponds to zeroslc parameter.

• kULC:float is the gain of the ULC.

• spr cons:boolean is a flag used to indicate whether round time setpoint has
been set or not.

• alpha:list<float> is alpha vector, needed to realize timeslicing between
different tasks. it is calculated by SetPointGenerator module

• tauto:list<float> is the list of single task burst setpoints; it corresponds to
you signals

• b:list<float> is the list of single task bursts calculated by controller; it cor-
responds to ru signals.

5A zero is a value that given to the Laplace variable z makes numerator of a transfer function equal to
zero.

139

5.4. Multicore Scheduler Simulator Implementation

• taur:float is actual round duration: it is a single value because is given by
the sum on all tasks of their actual burst yu where yu = ru + δb where δb is an
exogenous noise. It corresponds to ys signal.

• tauro:float is round duration setpoint. it is calculated by SetPointGenerator
module and corresponds to yos signal.

• xSLC:float is SLC state variable. 6

• alpha cons:boolean flag used to know whether alpha vector has already
been calculated or not (useful for an eventually parallel implementation).

• nsim:int keeps trace of current simulation step.

Methods:

• TwoLevelSingleCoreScheduler(task pool, id=’’, bmax=1, kSLC=2.5,
zSLC=0.5, kULC=0.5)
it is constructor method; it needs a TaskPool object (already initialized). other
parameters, as maximum burst allowed bmax, SLC gain, ULC gain and SLC
zero position can be specified, otherwise default safe values are used.

• calculateNextRound(tau:float) calculate next round duration and next
round single task’s bursts according to control structure explained before. Pa-
rameter tau is the duration of the current round, passed by SetPointGenerator.

• dataExport(path:string, simrounds:int, draw=True) it is a sup-
port method to save simulation data into a textual file. path is the absolute
path of the file, simrounds is the number of rounds simulated and draw is a
flag used to tell whether to plot simulation data after data exporting or not.

• draw(idx:int) it is a support method, used to plot simulation data of the
current Scheduler.

• getAliveProcesses():int returns the number of alive tasks (tasks with
alive flag set to one) present in the underlying TaskPool.

• getTasks():list<Task> getter method: it returns scheduler’s tasks list (use-
ful to let alpha vector calculus performed by SetPointGenerator).

• getMaxPid():int getter method: it returns max process identifier contained
by the underlaying TaskPool object.

• addTask(task:Task) adds object passed as parameter to the underlaying
task pool; parameter has to implement Task interface.

6SLC has a PI structure, so it is a dynamic system.

140

5.4. Multicore Scheduler Simulator Implementation

• removeTask(pid:int):Task set alive flag of the Task identified by pid to
zero and returns a deep copy of the task. If task is not present in the task pool,
propagates ValueError exception launched by task pool.

• removeTaskAtPos(idx:int):Task set alive flag of the task in position idx
in the task pool’s task list to zero.

• setAlphas(alphas:list<float>) set alpha vector calculated by set point
generator into scheduler’s data structures. Alpha vector has to be not null and
its length has to be equal to the number of tasks contained in underlaying task
pool.

• setRoundTimeSP(tauro:float) setter method: it sets round time setpoint
in the Scheduler’s data structures.

5.4.8. LoadBalancer implementation

Load balancer module has been made to simulate management of work load on mul-
ticore architecture. The idea behind this module is that on a multicore architecture,
let n be the number of independent cores, timeslicing on every core is managed by a
TwoLevelSingleCoreScheduler, through the strategies described in section 5.4.7, and
this control layer has to act, usually, fast (i.e every millisecond burst have to be re-
calculated), so controller acts in a certain frequencies interval, which represents on
core control band. LoadBalancer module, instead, has to make different independent
core’s task pools as much homogeneous as possible. With homogeneous task pools, it
is intended that each task pool has to present a mix of task belonging to the four cat-
egories stated in section 3.1.2 (periodic task, batch task, priority task and event based
task) as homogeneous as possible in terms of system resources (or system responsive-
ness) needing. For example, if on a quad core architecture there is a certain number
of tasks and four tasks are batch tasks, with heavy requests in memory allocation and
CPU time, they shouldn’t be scheduled all four on the same core. If this happens,
LoadBalancer has to react and migrate three tasks on three different cores. Similarly,
all priority tasks shouldn’t be scheduled on the same core because it probably would
case cache saturation and cache miss increase, so if this happens, some tasks should
be migrated (probably the ones with smaller cache footprint). These simple examples,
anyway, introduce the intuitive idea that each core should work on a task pool com-
posed by a certain number of batch task, a certain number of periodic ones, priority
and so on.

The exact number can’t be fixed a priori, it depends on single tasks resource needs,
but, in well controlled system, each core should be characterized by similar amounts
of cache references, CPU utilization and cache miss rate. If it is not some tasks should
be migrated. This statement further clarifies why in multicore context, task model
can’t be a simple time delay (as it is in single core architectures), but should be
improved and refined, taking in account task resource needs and the temporal dy-
namic that characterizes these needs; we are not interested in cumulative data, as
how much cache references have been allocated to let task complete execution, or

141

5.4. Multicore Scheduler Simulator Implementation

how many clock cycles have been totally spent, to make load balancing decisions, we
need to know transients, what temporal dynamic has cache references allocation?
What temporal dynamic has execution times (ton) and sleep/wait times (toff)? What
temporal dynamic has cache miss counting? This is the reason why profiling real
tasks and deriving models referred to their system behavior (as described in chap-
ters 3 and 4 is useful. Once models are ready, it is possible to implement new task
models (MulticoreTask), which produce realistic signals representing cache reference,
ton, toff and cache miss; on the base of these signals and of overall system load, an
extended SetPointGenerator (MulticoreSetPointGenerator) will generate suitable set-
points and load balancing control can be realized through a linear control structure
(maybe P/PI or something similar).

This thesis work has not gone so far, MulticoreSetPointGenerator and Multicore-
Task are not implemented, but simulator architecture is completely able to easily in-
tegrate these future extensions. Anyway, coming back to load balancer focus, after
these brief comments, is quite evident that load balancing control should be ’slower’
than single core scheduling, to let single core scheduling reach an equilibrium and
then balancing system workload between different cores. If load balancing control
works in the same frequencies interval of single core scheduler, we would have a sys-
tem that tries to migrate a task every time that a CPU burst is recalculated. It easy to
imagine that a similar policy would take to an unstable system.

This work doesn’t include load balancing control structures or extended task mod-
els implementation. MultiCoreLoadBalancer module, shown in figure 5.12 imple-
ments methods to divide alphas calculated by SetPointGenerator between different
Scheduler modules, to migrate tasks between different schedulers and to ’manually’
add and remove tasks from system.

MultiCoreLoadBalancer attributes:

• Nsim:int a variable to keep trace of simulation step

• NsysTask:int a variable to keep trace of total number of tasks present in the
system.

• actual sched:reference<Scheduler> it is a reference to the current Sched-
uler object

• alpha sc:list< list<float> > it is a list of float lists; it is internally man-
aged by MultiCoreLoadBalancer to divide alpha vector, which is calculated by
SetPointGenerator at system level, without taking in account how tasks are di-
vided into different scheduler’s task pool. every element of alpha sc is alpha
vector related to the corresponding scheduler. i.e. on a quad core architecture,
alpha sc[0] contains alpha vector of scheduler 0, alpha sc[1] contains alpha vec-
tor of scheduler 1 and so on.

• alphas:list<float> it is the data structure used to save alpha vector passed
by SetPointGenerator module.

142

5.4. Multicore Scheduler Simulator Implementation

Figure 5.12.: UML class diagram of MultiCoreLoadBalancer class

• id:string it is the text identifier related to MultiCoreLoadBalancer object (its
’name’).

• maxPid:int it is the maximum process identifier present in the system. useful
to automatically manage pid assignation.

• schedulers:list<Scheduler> it is the list of Scheduler objects managed
by MultiCoreLoadBalancer.

• taus:list<float> this list contains previous round duration of every Sched-
uler object. Needed to let each Scheduler calculate next round duration.

Methods exposed:

• MultiCoreLoadBalancer(scheds = None, id=’’) it’s the constructor:
scheds parameter should be a list of Scheduler objects.

• alpha sc Reinit() it’s a private support method: reinit alpha sc; each ele-
ment of the list will be reinitialized to a list of zeros having the same length of
the corresponding scheduler’s task list.

• addScheduler(sc:Scheduler) adds a Scheduler object to the MultiCoreLoad-
Balancer instance.

• addTask(task:Task) adds a Task object to the Scheduler referenced by ac-
tual sched field.

143

5.4. Multicore Scheduler Simulator Implementation

• addTask2Sched(task:task, sched:int) adds a task object to the sched-
uler at position indexed by sched in load balancer’s scheduler list.

• calculateNextRound(tau:list<float>):list<float> calculates next
round duration calling calculateNextRound(tau:float) method on ev-
ery Scheduler belonging to schedulers list. collects new rounds duration in a
new list and returns it.

• draw(idx:int) it’s a support method to plot simulation data referred to sched-
uler in position idx in underlaying scheduler list.

• getAliveTask():list<int> it returns a list; each element of the list is the
total number of alive tasks present in the corresponding scheduler.

• getNumSched():int getter: it returns number of schedulers owned by Mul-
tiCoreLoadBalancer.

• getTasks():list<Task> it returns overall system tasks list (useful to let al-
pha vector calculus performed by SetPointGenerator).

• getTotNumTask():list<int> it returns a list; each element of the list is the
total number of tasks present in the corresponding scheduler.

• reInit() reinitializes internal MultiCoreLoadBalancer state.

• removeScheduler(idx:int) removes scheduler at position idx of current
MulticoreLoadBalancer scheduler list. Then internal MultiCoreLoadBalancer
state is reinitialized.

• removeTask(pid:int):Task removes task identified by pid passed as pa-
rameter; pid has to be a valid process identifier. If task belongs to one of the
schedulers contained in load balancer, its alive flag is set to zero and a deep
copy of the removed task is returned, else ValueError exception is propagated.

• removeTaskFromSched(pid:int idx:int) set to zero alive flag of the task
identified by pid from scheduler in position idx in scheduler’s list. A deep copy
of the task is then returned. If task is not found, a ValueError exception is prop-
agated.

• setAlphas(alphas:list<float>) set alpha vector in load balancer data
structures; this alpha vector refers to all tasks present in the system and is cal-
culated by setpoint generator. alphas is a list of floats (generally positive).

• setRoundTimeSP(tauro:float)method to set round time set point in Mul-
ticoreLoadBalancer data structures; parameter tauro is round time set point, it
is calculated by setpoint generator and it has to be positive.

144

5.4. Multicore Scheduler Simulator Implementation

Figure 5.13.: Accumulated CPU time for periodic tasks

5.4.9. SetPointGenerator implementation

Setpoint generator is an other important module of the simulator. This module is
compatible with both LoadBalancer objects and Scheduler objects (to directly realize
a single core scheduler simulator). It get task list from the underlaying module and
calculates alpha vector, which is essential to realize task’s timeslicing at core level.
From a conceptual point of view, is interesting to deepen the discussion about how
alpha coefficients are calculated. They can’t be separated from the belonging category
of the task, in other words, alpha calculus related to a priority task is structurally
different from alpha calculus related to a periodic task. Let proceed discussing it
category by category:

Alpha calculus for periodic tasks

Let Ti be the period of a task, and Wi its workload in the period (i.e., every Ti time
units the task must receive the CPU for Wi time units). The accumulated CPU time
in the period needs thus following the trapezoidal profile of figure 5.13, the start
of which is triggered by a periodic interrupt, while the end can be required by the
task once its per-period workload is accomplished (all the major operating systems
provide primitives for such a signaling). This means that at the beginning of each
period the task will be allotted a tentative α component, denoted by α̂i, given by

α̂ =
Wi

(1− βi)Tiτor
, 0 ≤ βi < 1

while the meaning of ’tentative’ has to do with preserving the unity sum of α, and
is explained later on. The same α̂i will be reset to zero by the task itself, to which
– correctly, for the scheduler’s generality – any decision is devoted on what to do
if Ti expires before Wi is accomplished. Note that α̂i remains constant unless τor is
changed while α̂i 6= 0, which is correct. Note also that a βi close to one requests
the CPU time ’as soon as possible’, which diminishes, in general, the probability of
missing a deadline. Building on such an idea, one can probably hope in the future to
have some tuning knob to pass with continuity to non real-time through soft up to

145

5.4. Multicore Scheduler Simulator Implementation

hard real-time constraints, a matter however too vast to be addressed here.

Alpha calculus for batch tasks

Such tasks, have a single deadline, and are managed in the same way as those with
periodic deadlines, except that only one period, of length equal to the desired task
duration, is triggered at its arrival. Also the meaning of W and β are the same.

Alpha calculus for priority tasks

These tasks have no deadlines: this is the typical situation for interactive tasks, such
as desktop applications. Since the proposed scheduling framework uses neither dead-
lines nor priorities, and in some sense section 5.4.9 lead to emulate a deadline mech-
anism relying for its enforcement on the feedback action, the same idea can be used
to emulate priorities for tasks that do not have deadlines. As such, one can define
for this kind of tasks only a real – i.e. not integer nor quantized – priority range,
say from zero (lowest) to one (highest), and obtain the corresponding tentative α̂ ele-
ments as:

α̂i = αmin,i + pi(αmax,i − αmin,i), 0 ≤ pi ≤ 1,

where pi is the mentioned ’priority’, the quotes indicating that its effect on the actually
allotted CPU time is definitely more direct and interpretable than it would be if the
term was given the traditional meaning.

Alpha calculus for event based tasks

This is the case of many services, think for example of the mouse driver. The idea is
that, when awakened, the task gets a certain tentative α element, which then decays
to zero at a given rate, i.e. as

α̂i(t) = α̂i(t)b
−(t−t0,i)
i

and is reset to the initial value (α̂i0 in the following) when a new awakening event is
triggered, typically via an interrupt, that simply has to reset t0,i to the current time
index. Note that this is the only case in which α̂i can in general undergo variations
over each round. If this is not acceptable for any reason, one could for example allot
a “small” fixed CPU share to the task, and consider it blocked when not awakened. It
was already shown that the proposed schedulers manage blockings correctly, so the
only price to pay for such a choice is a potentially (slightly) increased overhead.

Once all the tentative components α̂i are available, α is simply obtained by rescal-
ing them (uniformly, as “relative task importances” are already substantiated by the
choices of the sections above about α̂i calculus) so that the sum be one. In the case
of particularly critical periodic tasks a flag can be introduced to prevent their com-
ponents from being rescaled. Configuring a system simulation consists essentially in
setting

146

5.4. Multicore Scheduler Simulator Implementation

Figure 5.14.: UML class diagram of a simple implementation of a setpoint generator

1. What kind of architecture will be simulated (how many independent cores)

2. Set up initial task pools, setting limits on the admissible values for βi, pi and bi
, either system-wide or for some classes of tasks.

3. Set up TwoLevelSingleCoreScheduler parameterskSLC, kULC, zSLC for each
single core scheduler initialized

4. Set up SetPointGenerator, deciding admissible values for parametersαmin,i, αmax,i
and how many tasks can be excluded from rescaling.

5. Decide which tasks manually migrate from a core to an other and at what point
of simulation this should be done

6. Decide to plot simulation data or to export data to a file or both.

The interesting feature is that limits set on system behavior can be clearly interpreted
in terms of the used control scheme.

Implementation of SpGen class, shown in figure 5.14, comes straightforward from
the observations set out above.

Attributes:

• actual tau:float it’s an auxiliary field, to manage separately round dura-
tion of each different single core scheduler.

• actual taup:float it’s an auxiliary field, to manage separately previous
round duration of each different single core scheduler.

147

5.4. Multicore Scheduler Simulator Implementation

• alpha:list<float> it’s a list of rescaled alpha coefficients.

• alpha cons:boolean it’s a flag to state whether alpha rescaled vector has
been calculated or not.

• alpha t:list<float> it’s a list of tentative alpha coefficients.

• alpha t tot:float it’s the sum of all the elements of alpha t vector; neces-
sary to normalize it.

• alpha max:float it’s the maximum alpha value admissible.

• alpha min:float it’s the minimum alpha value admissible.

• rounds:int it’s the number of simulation rounds to perform.

• sched:LoadBalancer or Scheduler it is the scheduling manager that di-
rectly deals with setpoint generator; it can be a LoadBalancer -in the case that
simulation is referred to a multicore architecture- or a Scheduler, in the case that
simulation is related to a single core system.

• sim step:int it’s a variable to keep trace of current simulation step.

• spr cons:boolean it’s a flag to state whether round time setpoint has been
already set or not.

• tau:list<float> it’s a list of current round durations (an element for each
scheduler).

• taup:list<float> it’s a list of previous round durations (an element for each
scheduler).

• tauro:float it’s round time set point.

• tot consistent:boolean it’s a flag to state whether alpha t tot field has
been already calculated or not.

Methods:

• SpGen(sched, tauro, rounds, alphamax = 1, alphamin = 0) it’s the
constructor method: sched should be a Scheduler or LoadBalancer object ref-
erence; tauro is scheduling round duration setpoint rounds is the number of
simulation rounds to perform. alphamin and alphamax are the respectively
minimum and maximum value admissible for alpha coefficients. They can be
set explicitly or safe default values can be used.

• alphaCalc(taks:list<Task>,t:float) private support method to cal-
culate alpha coefficients. t is current simulation step, different from simulation
time.

148

5.4. Multicore Scheduler Simulator Implementation

• alphaRiscale() it’s a private support method to rescale alpha vector

• getAlpha(rescaled = 1):list<float> this method returns alpha vec-
tor; if rescaled is one, alpha vector is rescaled, else, it is returned without
rescaling.

• getAlphaTot():float it’s a private method: it returns the sum of the all
alpha coefficients.

• addTask(task:Task) it adds a task to the underlaying Scheduler or Load-
Balancer module.

• addTask2Sched(task:Task, idx:int) it adds task to the scheduler in po-
sition idx in underlaying LoadBalancer module.

• dataExport(path:string, simrounds:int, draw = 1) it is an aux-
iliary method to export simulation data to a file; path is the absolute path
where data should be saved; simrounds is the number of simulation steps
performed, draw is a flag to state whether data should be plotted or not. it is
a wrapper of the methods exposed by MultiCoreLoadBalancer and TwoLevelS-
ingleCoreScheduler.

• draw() it’s an auxiliary method to plot simulation data. It is a wrapper of the
method exposed by MultiCoreLoadBalancer and TwoLevelSingleCoreSched-
uler.

• generateNextRound(t:float) generates next simulation round; it calcu-
lates alpha vector and set it into sched data structure. Once alpha vector is
set (rescaled or not), calculateNextRound(tau) method, exposed by Load-
Balancer (or directly by TwoLevelSingleCoreScheduler, in case of single core
system simulation) is called.

• getRoundTimeSP():float it is a getter method; it returns set point of round
time duration.

• removeTask(pid:int):Task removes task from underlaying task pools (set-
ting its alive flag to 0), searching by task pid (passed as first parameter). It re-
turns a deep copy of removed task. If task is not found, a ValueError exception
is propagated.

• removeTaskFromSched(pid:int idx:int):Task exposes underlaying Load
Balancer interface: removes task identified by pid (setting its alive flag to 0)
from the scheduler in position idx in load balancer’s scheduler list. pid has to
be a valid process identifier; idx has to be a valid list index; returns a deep copy
of the removed task, if task is not found, a ValueError exception is propagated.

• removeTaskAtPos(idx:int):Task removes task at position idx (setting its
alive flag to zero) in current scheduler’s queue. it is compatible only with
TwoLevelSingleCoreScheduler module; if module managed by SpGen object is

149

5.5. Testing and profiling

not a TwoLevelSingleCoreScheduler, NotImplementedError exception is raised.
idx is an index, so it has to be a positive integer; it returns a deep copy of re-
moved task.

• setRoundTimeSP(tauro:int) setter method: sets round time set point, so
tauro has to be non negative, even if zero is a nonsense.

5.5. Testing and profiling

As described in previous sections, simulator is composed of a quite wide range of
modules. The most of them needs parameters in input and returns results to the caller,
so, exploiting python support modules as PyUnit tests, testing procedures have been
automatized.
Explaining testing procedure in detail would be very long and not particularly inter-
esting: Python is an interpreted language with dynamic typing and dynamic binding,
so, parameters type are not controlled at compile time, and testing procedures have to
take care to control parameter data type, parameter values, correct data management
and data returned. Work has been quite long, and completely report it here would
result in an excessive burdening of the thesis work, with little value added. For these
reasons, only general guidelines about testing project will be given, explaining the
concepts followed to realize a good code covering and how to eventually expand test
cases in the future. In the whole implementation, parameters passing has been man-

aged ’the pythonic way’: python is able to dynamically add methods or attributes to
single object instance and has a quite good and extended error management system,
so, it has been exploited to manage parameter passing. When a parameter is used
inside a method, it is surrounded by a try-catch block, managing only the exception
necessary to keep system working in a correct state and propagating the others. 7

This is a good way of managing parameter passing, for at least two reasons:

1. it is more efficient that using isinstance() function

2. Controlling runtime data types is anyway not sufficient to have absolute guar-
antees on the data correctness, because some instances could have methods
added a run time that original class archetype did not have or some attributes
type could be different from the one that we expected, so absolute guarantees
about data types are almost impossible to obtain

Anyway, simulator layered structure has helped on organizing and automatizing
testing procedures. All modules are equipped by test classes, having the following
structure:
for each module, one ore more test modules are implemented: all modules have PyU-
nit test module; in figure 5.15 is reported TaskPool unit test module as example;

7In python community it is said that if an animal seems a duck and acts like a duck, then, probably is a
duck.

150

5.5. Testing and profiling

Figure 5.15.: UML class diagram of task pool unit test class

Attributes:

• periodic:list<TaskPeriodic> it is a list containing initialized Periodic-
Task objects.

• batch:list<TaskBatch> it is a list containing initialized TaskBatch objects.

• prio:list<TaskPriority> it is a list containing initialized TaskPriority ob-
jects.

• event:list<TaskEvent> it is a list containing initialized TaskEvent objects.

• taskpool list:list it is a list: for task pool module, it is built with this tem-
plate:
taskpool list(idx,task pool, Nperiodic, Nbatch, Nprio, Nev, Ntot), where idx
is the list index, task pool is a TaskPool object, Nperiodic is the number of pe-
riodic tasks contained by task pool , Nbatch is the number of batch tasks con-
tained by task and so on.

objects have parameters useful to check methods correctness; particularly useful
are parameter values on the frontier of the sets of admissible values.

Methods:

• testGetTaskNum() checks, through assertions, every taskpool list element:
it checks that
task pool.getTaskNum(periodic) == Nperiodic,
task pool.getTaskNum(batch) == batch and so on;
Ntot checks that task pool.getTaskNumTot() == Ntot, testing the getTaskNum-
Tot() method, which returns total number of tasks present in task pool.

151

5.5. Testing and profiling

• testTaskPoolSimpleTypeCheck() this method tests that constructor method
TaskPoolSimple() works correctly; it tries to initialize different TaskPoolSimple
objects with non admissible parameters values and verifies that the correct ex-
ception is thrown.

• testSetBursts() this method tests setBursts(burtst:list <float >) method.
in the control schema, task’s burst are affected by a white Gaussian noise. This
is realized in simulator, adding a white Gaussian noise to bursts after they are
set. For this reason, this method does not check that a correct list of bursts is
correctly set into task pool data structure (effective burst values are not known
a priori). However, it tests that parameters have the correct type and that list
of bursts have the correct length and that every burst is effectively a positive
number.

• testGetTaskByPid() this method tests that method getTaskByPid(pid:int)
manages correctly parameter passed, throwing appropriate exceptions, in case
parameters passed do not assume correct values. Testing that the returned task
is effectively a deep copy of the Task object which is identified by the passed
pid and that the list contains the original task with alive flag set to 0 is too
complicated to do only through PyUnit test. To test this feature, functional test
has been used, using test TaskPoolSimple objects and manually verifying that
methods work correctly, inspecting TaskPoolSimple object state before an after
invoking getTaskByPid(pid:int) method and inspecting Task object returned
after method completion. This is realized in a stand alone test module with a
new test class (TaskPoolTest class).

• testGetExecTimes() this method tests getExecTimes() method of TaskPool-
Simple class; as for setBursts() method, due to the additive white Gaussian
noise, it is not possible to confront single values set into data structure (set val-
ues are generally different from the ones which are returned by getter method)
anyway, exploiting taskpool list attribute, test method controls that length of
execution times list is equal to Ntot field and that each element of the list is a
positive number.

• testRemoveTaskAtPos() this method tests removeTaskAtPos(idx:int) method;
as explained for testGetTaskByPid(), only correct parameter management is
tested by assert methods (in particular we test that not admissible parameter
values cause correct exception raising and that admissible values are accepted).
Correct method behavior is tested by TaskPoolTest class, through functional
testing, similar to the one described for testGetTaskByPid() method.

• testRemoveTask() this methods tests removeTask(pid:int) method. Strat-
egy adopted is very similar to the one of previous test method (parameter man-
agement tested through PyUnitTest and correct method behavior controlled ’by
hand’ exploiting functional testing).

• runAll() this method launches all test methods implemented in the test class.

152

5.5. Testing and profiling

• main() main method simply calls runAll() method; if every test class has this
structure, to test the whole simulator is sufficient to import all test classes and,
for each class, to invoke its main() method 8

Above example is related to TaskPoolSimple module, but the approach is general,
and it has been used to test all MultioreSchedulerSimulator project. For each module,
a test directory has been created, in this directory, PyUnitTest module and functional
test module 9 are implemented. PyUnitTest module at least controls that constructor
and all the methods exposed by tested class manages correctly parameter passed and
return correct data. Test cases list allows to easily append new test cases to the one
already present and to re-run all the test cases. Functional testing module controls
(but not automatically, test team has to control results) that complex methods work
correctly on the objects they modify. In this way is quite simple (but quite long, this
is the reason why testing project is not entirely reported) to write tests that realize
a good code coverage. In particular, it is easy to write new test cases to add to the
one already present or re run entire tests after that one ore more methods have been
modified.

5.5.1. Profiling

To understand which are the main bottle necks of simulator implementation, it has
been profiled. NetBeans offers a Python profiler module and it has been exploited to
carry out project profiling, finding out which are the main areas where future devel-
opment works should focus on. In table above are reported the first ten heaviest (in
term of total time execution) function calls:

as expected, the first is main() method of Main class. Simulation is carried out by
this method, which is called once and then calls, for every simulation step, methods
exposed by underlaying classes, so it is normal that is the function in which the most
of execution time is spent. Second function is a built-in python function, used to
manage lists (arrays in python are implemented as lists),since the most of simulator
structures are implemented exploiting lists, this is an other expected result. Result
at third, fourth and fifth position are more interesting: in fact it is pointed out that
calculateNextRound() method of TwoLevelSingleCoreScheduler class is the heaviest,
after main() method of Main class and that built-in function isinstance(object,string)
is the heaviest after the one to manage lists. In fact, isinstance() function controls that
runtime type of object is exactly the one identified by string. This function is one
of the heaviest, because it has to inspect deeply object passed and all its attributes
and methods. This explain also why the next most stressing method is alphaCalc()
method;
calculateNextRound() method result heavier because TwoLevelSingleCoreScheduler
manages also data structures used to plot and/or export simulation data. isinstance()

8NetBeans IDE does it automatically when ’test project’ command is launched (but every test method
name has to have ’test’ prefix.

9in case that correct behavior testing it is too difficult to be realized only through assertions.

153

5.5. Testing and profiling

function is used anytime a module wants to be sure about runtime type of a given
object, in particular, it is used a lot inside alphaCalc() method, to find out whether
a given task is a periodic one, a batch one, a priority one etc, to calculate its alpha
coefficient in the proper way. A possible solution to remove this bottle neck is to
check only type field exposed by the task. It will increase efficiency, but it is less safe
from software engineering point of view. Choice depends on how much simulation
time is a critical aspect.

3618863 function calls (3592247 primitive calls) in 89.850 seconds
Ordered by: internal time, cumulative time

ncalls tottime percall cumtime percall filename:(function)

1 75.167 75.167 76.634 76.634 {built-in method mainloop}
161010 2.022 0.000 2.022 0.000 {numpy.core.multiarray.array}

4000 0.786 0.000 2.533 0.001 TwoLevelSingleCoreScheduler:(calculateNextRound)
526081 0.563 0.000 0.563 0.000 isinstance

4000 0.503 0.000 1.177 0.000 SpGen:(alphaCalc)
4000 0.431 0.000 0.880 0.000 TaskPoolSimple:(setBursts)

93486 0.419 0.000 1.747 0.000 fromnumeric:(size)
302/278 0.365 0.001 2.103 0.008 {built-in method call}

143928 0.357 0.000 1.906 0.000 numeric:asarray
20616 0.337 0.000 0.751 0.000 path: init

Table 5.1.: Table summary of profiling results, ordered by cumulative time

154

6. Conclusions and future
developments

Overall, we can state that the results of the work described in this thesis are interesting
and encouraging. The classification of tasks into classes according to their different
behavior with respect to the system has allowed for the identification of high-level
models that can simulate the behavior of multiple tasks of different types, sharing
however some characteristic features (such as how they use the memory or interact
with the user). Moreover, the devised models are linear, have a simple structure, and
are characterized by a reduced number of parameters (ten in the case of the most
complicated ones).

The presented simulator works satisfactorily, as it proved for example able to sim-
ulate a quad core architecture with more than thirty tasks in about ten seconds. Its
architecture allows to easily implement new modules (most important, those that
will implement tasks models for multicore environment) and to test different con-
trol policies, either by modifying the parameters of the control structures already
implemented, or by implementing new structures: a module that takes into account
thermal issues, a function that manages automatically task migration, and so forth.

For completeness, we have to mention that a module is still missing, that automat-
ically handles the migration of tasks at high level, but the functions to handle the
migration at low (core) level are already available, tested, and working: in particu-
lar, to summarize some relevant obtained outcomes in the context of the concluding
remarks of this section, figure 6.1 reports simulation result related to core 4, in partic-
ular, detail of a batch task migration at simulation round 200.

Figure 6.2 shows what happens on core 3 which receives task migrated from core
4.A small remark on accumulated time of periodic task with period 73: this task has
a quite high value of beta (0.7) and a short period, so, when new period starts, its
accumulated CPU time is reset, but task is immediately rescheduled, refreshing accu-
mulated CPU time (this is the reason why its accumulated CPU time does not reach
zero value) and at the next step workload set point is reached.

In figure 6.3 is shown that scheduler manages in a good way also periodic tasks
which are not harmonic. Moreover, around step 400 a new period task is received
from an other core and properly scheduled.

6.1. Future work

This work was intended to set the foundations and the starting point for the applica-
tion of a control-centric attitude to simplify the development of new solutions for the

155

6.1. Future work

Figure 6.1.: Quad core scheduler simulation: in plots 1,3,5,6 the red trace is the task
time slice set point, the blue one is the actual task burst; in the other plots,
the blue trace is the accumulated CPU time. At time 200 a batch task is
migrated, the detail is shown in second plot.

156

6.1. Future work

Figure 6.2.: Quad core scheduler simulation: in plots 1,3,5,6 the red trace is the task
time slice set point, the blue one is the actual task burst; in the other plots,
the blue trace is accumulated CPU time. At time 200 a batch task is re-
ceived, the detail is shown in second plot.

157

6.1. Future work

Figure 6.3.: Quad core scheduler simulation: in plots 1,3,5,6 the red trace is the task
time slice set point, the blue one is the actual task burst; in the other plots,
the blue trace is accumulated CPU time. Around time 400 a periodic task
is received, the detail is shown in second plot.

158

6.1. Future work

project, deployment, tuning and testing of a multicore Scheduler, designed according
to the principles of the systems and control theory: some interesting and desirable
extensions could be, for example, the following ones.

• Develop a different approach to estimate models that have not been possible to
identify with linear methods

• Project a control structure to manage load balancing exploiting task models for
multi core context;

• Analyze closed loop system considering load balancing loop and single core
scheduling loop; is it stable? Exists an optimal control policy?

• Implement multi core task models and load balancing control structure in sim-
ulator;

• Tune up a good load balancing policy using simulator;

• Include a thermal module to take into account thermal issues in task migration
policy

Also, from the future work suggestions just sketched, it can be guessed that the
simulator proposed is a flexible and easy to use framework to project and implement
control systems suitable for resolving problems similar, although not perfectly identi-
cal to CPU time allocation. Probably, another interesting work could be the extension
of simulator to manage problems which involves managing system resources (like for
example memory), or network management.

159

Bibliography
[1] Completely fair scheduler and its tuning. http://www.scribd.com/doc/42318144/Cfs-

Tuning-2.

[2] Inside the linux 2.6 completely fair scheduler.
http://www.ibm.com/developerworks/linux/library/l-completely-fair-
scheduler/.

[3] Biswas K. Alam B., Doja M.N. Finding time quantum of round robin cpu
scheduling algorithm using fuzzy logic. pages 795–798, 2008.

[4] Devi U.C. Anderson J.H., Calandrino J.M. Real-time scheduling on multicore
platforms. In 12th IEEE Real-Time Embedded Technology and Applications Sympo-
sium, pages 179–190, 2006.

[5] Ken W. Batcher and Robert A. Walker. Dynamic round-robin task scheduling
to reduce cache misses for embedded systems. In Proceedings of the conference on
Design, automation and test in Europe, DATE ’08, pages 260–263, New York, NY,
USA, 2008. ACM.

[6] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, Jan. 2011.

[7] S. Bittanti and G. Picci. Identification, adaptation, learning: the science of learning
models from data, volume 153. Springer Verlag, 1996.

[8] Sergio Bittanti. Model Identification and Adaptive Systems. Pitagora Editrice,
Bologna,, 2004.

[9] Peter Brucker. Scheduling algorithms. Springer, 2007.

[10] Python community. Python official site, 2000. [Online].

[11] H Harwood, A; Shen. Using fundamental electrical theory for varying time
quantum uni-processor scheduling. JOURNAL OF SYSTEMS ARCHITECTURE,
47:181–192, 2001.

[12] Ketan Kotecha and Apurva Shah. Adaptive scheduling algorithm for real-time
operating system. In IEEE World Congress on Computational Intelligence, IEEE
Congress on Evolutionary Computation, pages 2109–2112, June 2008.

[13] R. Leupers, J. Elste, and B. Landwehr. Generation of interpretive and compiled
instruction set simulators. In Design Automation Conference, 1999. Proceedings of
the ASP-DAC ’99. Asia and South Pacific, pages 339–342 vol.1, 1999.

160

Bibliography

[14] A. Leva, M. Maggio, A.V. Papadopoulos, and F. Terraneo. Control-based Operating
System Design. IET, London, UK, 2013.

[15] A. Leva, M. Maggio, and F. Terraneo. Performance analysis of operating systems
schedulers realised as discrete-time controllers. In IEEE International Conference
on Control Applications (CCA), pages 745–750, 2012.

[16] Lennart Ljung. System Identification: Theory for the User. Prentice Hall, 2 edition,
Jan. 1999.

[17] M. Maggio, F. Terraneo, A.V. Papadopoulos, and A. Leva. A PI-based control
structure as an operating system scheduler. In Proceedings IFAC Conference on
Advances in PID Control. IFAC, Mar. 2012.

[18] P. Van Overschee and B. DeMoor. Subspace Identification of Linear Systems: Theory,
Implementation, Applications. Springer Verlag, 1996.

[19] Michael Pinedo. Scheduling Theory, Algorithms, and Systems. Springer, third edi-
tion, July 2008.

[20] Steven Rostedt, 2010. [trace-cmd man page].

[21] Richard West, Puneet Zaroo, Carl A. Waldspurger, and Xiao Zhang. Online cache
modeling for commodity multicore processors. In PACT, 2010.

[22] Jianwen Zhu and D.D. Gajski. A retargetable, ultra-fast instruction set simulator.
In Design, Automation and Test in Europe Conference and Exhibition 1999. Proceed-
ings, pages 298–302, 1999.

161

	Principles of control based scheduling
	Introduction
	The scheduling problem
	Control Designed Scheduler: Control theory approach
	Control Designed Scheduler: Multicore Scheduler Design

	State of the art
	Single core scheduler
	Parallel execution and core switching
	Extending control design to a Multicore scheduler

	Identification for multicore simulator and task profiling
	Task Profiling
	Task classification
	Performance metrics
	Task classes

	Profiling experiments
	Profiling tools: Performance Counters subsystem
	Profiling tools: trace-cmd
	Performance profiling dynamic library
	Stand alone profiling module

	Profiling setup
	Profiling results
	Periodic tasks
	Batch tasks
	Priority tasks
	Event based tasks

	Task model identification and validation
	Time on and time off identification
	Toff identification for periodic tasks
	Ton identification for periodic tasks
	Toff identification for 'batch' I/O bound tasks
	Ton identification for 'batch' I/O bound tasks
	Ton and toff identification for priority tasks and batch tasks
	Toff identification for event based tasks
	Ton identification for event based tasks

	Cache references identification
	Cache references identification for periodic tasks
	Cache references identification for batch CPU bound tasks
	Cache references identification for 'batch' I/O bound tasks
	Cache references identification for priority tasks
	Cache references identification for event based tasks

	Cache miss identification
	Cache miss identification for periodic tasks
	Cache miss identification for batch tasks
	Cache miss identification for 'batch' I/O bound tasks
	Cache miss identification for priority tasks
	Cache miss identification for event based tasks

	Simulator
	Development of a Multicore Scheduler Simulator
	Interconnection between task profiling and scheduler simulator
	Developing language: Python
	Multicore Scheduler Simulator Architecture
	Multicore Scheduler Simulator Implementation
	Task and TaskPool implementation
	Task Batch
	Task Periodic
	Task Priority
	Task Event Based
	Task Pool
	Single core scheduler implementation
	LoadBalancer implementation
	SetPointGenerator implementation

	Testing and profiling
	Profiling

	Conclusions and future developments
	Future work

