




Prefae

In the following thesis I onsider the realm of Complex Events Proessing,

the answer to the neessity of extrating new information from ontinuous

streams of events data �owing from peripherals observers to a entral sys-

tem, extrating patterns of events temporally bound. More in details I will

fous on TRex, a CEP middleware based on the TESLA formal language,

developed by Cugola and Margara [7℄ [5℄.

The ore omponent of this middleware is the CEP engine; the kind of

information proessed and algorithm employed by the engine are suitable to

o�er a great level of parallelism. As a result in this thesis I will desribe

the development of a new engine for TRex that uses NVIDIA CUDA [4℄ to

exploit the proessing power of modern GPUs to improve CEP performane.

My work extends a test projet [6℄ developed by Cugola and Margara that

already foused on this goal.

The resulting engine, alled GTRex, proved to be very e�ient in many

senarios and with the same API and feature set of the default TRex engine,

CPU based.

This allowed me to modify the TRex middleware to integrate both en-

gines at the same time. The two an now be used interhangeably applying

eah of them to the rules it exeutes more e�iently.
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Introdution

Complex Event Proessing is an important topi in information teh-

nology: it analyzes streams of information oming from multiple soures to

extrat new, more omplex, knowledge. Many CEP middlewares, taking dif-

ferent approahes, have been developed as a solution to the CEP problem;

one of these is TRex2, developed by Cugola and Margara [5℄.

At the same time modern graphis ards with powerful Graphis Pro-

essing Units (ommonly abbreviated GPU), are nowadays installed in every

omputer sold, and using their apabilities for general purpose omputation

is quikly beoming a ommon tehnique. NVIDIA is the major player in

this �eld, thanks to it proprietary tehnology alled CUDA, that greatly

simpli�es the usage of their GPUs to make generi omputations not related

to the visualization of an image on the omputer display.

In this thesis indeed CUDA will be exploited to boost the performane of

the TRex2 ore engine; CHAPTER 1 starts with an exempli�ed introdution

to the CEP problem and ontinues with the desription of the urrent version

of the TRex2 middlware and, with more details, of its ore engine.

CHAPTER 2 instead gives an overview of the typial arhiteture of a

modern GPU, explains the priniples of GPU programming and shows the

programming model and some of the features of CUDA.

CHAPTER 3 is where the atual work done in this projet is desribed:

it ontains the ore algorithms of the GPU powered version of the engine as

well as many desriptions of the solutions adopted to make everything work.

CHAPTER 4 analyzes with many benhmarks trying di�erent workloads

the performane gains obtained over the standard CPU version of TRex2.

Eah test is presented with a pair of graphs and an interpretation of the

result.
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Chapter 1

Complex Event Proessing

1.1 Introdution

Sometimes information systems have to deal with big quantities of �owing

data that enter the system ontinuously; as example fraud detetion tools,

�nanial appliations and even airlines must promptly take ations based

on the information they gather in real time. Being able to timely proess

this data to extrat new knowledge is not trivial, and is the main goal of

Complex Event Proessing.

Reently, di�erent approahes to the problem have been studied: some

rely on the solid base of DBMS (DataBase Management Systems), introdu-

ing some modi�ations to better adapt those systems to the world of live

streams of data, others are built from the beginning around the idea of event

noti�ations, observers and sinks.

As example, Data Stream Management Systems allow data to be pro-

essed in streams, while it �ows through the system, with ontinuous query

exeution. They operate on windows of events, where a window is a �-

nite olletion of events temporally bound. These systems operate mainly

on pure relational tables, where they index the inoming data before the

omputation begins. This kind of omputation is indeed unnatural and not

enough �exible to support the onstruts needed by a omplex event pro-

essing language, that selets omplex patterns of events bound by temporal

relations.

On the other hand there are systems built around a native onept of

3



CHAPTER 1. Complex Event Proessing

event noti�ation. In these systems (like the one shown in FIGURE 1.1)

many omponents ollaborate exhanging information about events our-

ring: some of these omponents publish noti�ations about events happened

(they are the observers), while others (the onsumers) subsribe to noti�a-

tions of events they are interested in. The whole system relies on a message

based ommuniation (the boxes in the piture). The dispather is in harge

of routing the events to the subsribers. In this senario a CEP engine (the

brain in the entre of the piture) generates omplex events based on ombi-

nations of events noti�ations as desribed in spei� rules, installed in the

engine.

Figure 1.1: Overview of a CEP appliation.

TRex2, the CEP middleware presented and enhaned in this thesis, is

based on the latter kind of systems. One basi example, that will guide

us throughout the thesis, is the following possible senario in whih a CEP

middleware ats: in an automation system there are N tanks that ontain

some kind of liquid. Eah tank has its own valve that an be opened and

losed remotely. In order to make the system safe, an alarm state must be

noti�ed in the following ases:

4



1.2. TESLA

• a spei� tank is not empty within 10 minutes after a valve open om-

mand has been issued for the same tank

• a spei� tank is empty and not any valve open ommand has been

issued in a 10 minutes interval before the empty tank noti�ation

• the maximum level of liquid in a spei� tank is greater than a spei�ed

treshold within 1 minute from a valve open ommand for the same tank

• the level of liquid for a spei� tank is inreasing in the last 10 readings

and a valve open ommand has been issued within 1 minute

In this example eah of the four data extration paths is spei�ed in a

di�erent rule; the sensors for the level of the liquid installed in the tanks are

the observers, while the alarm systems are the sinks.

As the will see below TRex2 has observers, an engine and a dispather;

rules for the TRex2 engine are written in the TESLA spei�ation language,

that will be introdued in the next setion.

1.2 TESLA

TESLA is a omplex event spei�ation language; it has been proposed

by Cugola and Margara in 2010 [7℄. It ombines a simple and lean syntax

with an high expressiveness and �exibility. It provides ontent and temporal

onstraints, parameterization, negations, sequenies, aggregates, timers and

fully ustomizable poliies for events seletion and onsumption. With these

features it �ts the requirements needed to express all the four formulations

of the example problem. It onsiders inoming data items as noti�ations

of events and de�nes rules delaring how they ombine to build new om-

plex events. Events happen instantaneously at some point in time and are

observed by soures, whih enode them in event noti�ations. Eah event

has a type, a timestamp and a set of attributes, identi�ed by their name and

information kind.

In the automation system example a reading for the level of liquid in a

tank is an event with the attributes Value, stating the level of the liquid,

and TankID, representing the tank for whih the level has been read. Also

5



CHAPTER 1. Complex Event Proessing

the valve open ommands issued an be thought at as events, with a TankID

attribute representing the target tank.

As example the event stating that at time 10 a liquid level of 5 for tank

number 1 has been read is formatted as:

Level�10{TankID = 1, Value = 5}

while an event stating that at time 3 a valve open ommand for tank 1

has been issued an be formatted as:

Open�3{TankID = 1}

Parameters express relations between attributes of di�erent events: the

fat that the the tank for whih the level of liquid is read and the valve

open ommand has been issued must be the same, as example, is expressed

through a parameter on the TankID attribute of the Open and Level events,

that must be equal.

Negations instead state what should not happen at some time in the

events sequene: as example the seond formulation of the example above

spei�es that there must not be any Open event in a 10 minutes range before

the Level event.

Aggregates allow the omputation of a single value as a funtion of the

values of attributes of the events respeting the aggregate onstraints; as

example the maximum of levels read in a time interval an be omputed as

a max funtion on the values read.

Seletion Poliy is an important aspet in the rule de�nition, as it a�ets

deeply how the simple events are used and ombined to form omplex events;

let's see what it does with the help of the following general struture of a

TESLA rule:

Rule De�nition

de�ne CE(Att1 : Type1, ..., Attn : Typen)

from Pattern

where Att1 = f1, ..., Attn = fn

onsuming e1, ..., en

De�ne desribes the omplex event reated by the rule, with its name

and its attributes.

The pattern lause is probably the most important, beause it desribes

the pattern of events that form the omplex event. The temporal relation be-

6
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tween them, the stati onstraints on their attributes as well as the seletion

poliy are de�ned here.

The �rst event de�ned in the pattern lause is alled terminator; it is

indeed the event that loses a sequene of events that an reate a new

omplex events and whose timestamp is used as timestamp for the event to

be reated. As we will see later, it is very important espeially in the CDP

[se 1.4.2℄ algorithm beause it is the event that triggers the key ompuation

for the reation of new omplex events.

Eah event in the lause following the terminator is preeeded by the

seletion operator: the seletion operator an be one out of eah-within, last-

within or �rst-within. It allows to de�ne preisely and without ambiguity

whih simple events must be seleted for the reation of the omplex event.

Finally all the events of the pattern lause are translated in states, that

will beome important when talking about the implementations of the CEP

engines.

The where lause instead spei�es parameters binding di�erent events,

while the onsuming one spei�es whih events will be onsumed, thus deleted,

one they have partiipated to the reation of a omplex event.

The �rst formulation of the automation example above an thus be ex-

pressed with the following TESLA rule:

Rule R1

de�ne Alarm(TankID : int)

from Level(TankID = $x, V alue < 5)

and last Open(TankID = $x) within 10 from Level

where TankID = $x

Note that the seletion poliy for the Open event is of the last-within

kind. This means that if there are more than 1 Open events ourred in the

last 10 minutes when a terminator arrives, only the last valid one will be

seleted, and only one omplex event will thus be reated. With an eah-

within seletion instead eah Open event would have aused the reation of

1 omplex event.
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CHAPTER 1. Complex Event Proessing

1.3 TRex Middlware

TRex is a omplete middleware for omplex event proessing. It is based

on a simple publish-subsribe arhiteture [5℄ It has a server that initial-

izes the omputation engine, deploys rules and listens for new subsriptions

and events noti�ations. These are provided by java lients, that use spe-

i� TRex libraries. Clients send subsription pakets (SubPkt) and event

noti�ations (PubPkt) to the server, that aordingly, and using the rules

deployed, reates and publishes omplex events (still represented as PubPkt)

to the subsribed lients, as shown in FIGURE 1.2. Still the most ritial

omponent in this system is probably the engine: it is the most impating

omponent on overall performane of the middleware, when it is not limited

by other fators like poor network onnetions.

Figure 1.2: Overview of the middleware.

1.4 TRex Engine

Three versions of the engine have been reated before my projet took

o�: two of them run on the host CPU and employ di�erent algorithms, AIP

and CDP, while a third one, still based on the CDP algorithm, used CUDA

8



1.4. TRex Engine

to speed up the omputation, but was a very limited test projet with only a

small subset of funtinalities. Currently the AIP version has been dropped,

beause it demonstrated to be less e�ient than the CDP one; still I will

give a basi introdution to the AIP, as it represents the typial approah to

rule proessing adopted by ommonly available CEP engines.

1.4.1 Automata Inremental Proessing

The AIP approah is probably the most natural one when reating an

algorithm to proess omplex events; it is also used by Esper [1℄, that is the

most used open soure CEP system. It models rules as linear, deterministi

and �nite automata, whih evolve with the events entering the engine.

Figure 1.3: Example of the AIP model of rule R1.

FIGURE 1.3 is an example of suh rule model for rule R1. To keep trak

of the history of events arrived, instanes of the automata are reated; eah

instane that is not in a �nal state represents a partial sequene.

A partial sequene is a olletion of events that partially satis�es a spei�

rule installed in the engine. Still it an't trigger the reation of a new omplex

event sine there are still missing pakets to omplete the sequene required

by the rule.

At the beginning all the automata have a single state, the inital one

(M in FIGURE 1.3). When a new event enters the engine the omputation

starts heking all the available automata and deleting the ones that learly

an't evolve any further beause their timing onstraints an't be ompatible

with any event ourring from that moment on. Then the kind and the

parameters of the new event are heked against the transition onstraints

of the urrent state of the automata. These onstraints depend on the rule

that the automata is following and the parameters of the events that brought

to that spei� automata up to that moment. As example, in FIGURE 1.3,

a transition from the state M is triggered when an event of kind O is reeived
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CHAPTER 1. Complex Event Proessing

at any time and with any attribute value. The transition from state O to

state L is allowed only when an event Level arrives with a V attribute lower

than 5 and with a TankID equal to that of the O event. If everything is

ompatible, a new automata is reated from the previous one, that is not

deleted beause it may still evolve di�erently with future events. When

an automata reahes its ending state, the orresponding omplex event is

generated and the automata is deleted.

Table 1.1: Example of pakets arriving

Time Event

1 O{TankID = 3}

2 O{TankID = 4}

4 O{TankID = 1}

5 O{TankID = 5}

7 O{TankID = 3}

12 L{TankID = 3, V=1}

Consider as example the events from table 1.1, showing a possible our-

rene of inoming events; they produe the omputation showed in FIGURE

1.4. At time 1 the event O{TankID = 3} arrives and a new instane of an

automata is reated. The same happens at time 2, when there will be 2

automata instanes waiting for a possible terminator event L. At time 12,

when a terminator arrives, the instanes reated at time 1 and 2 previously

will be deleted, sine they will be too old to trigger any new omplex event.

On the other hand there will be an automata, reated at 7, that will evolve

in its �nal state. That automata will reate a new omplex event.

Figure 1.4: Example of evolution with the events from table 1.1.

If a multiple seletion poliy is adopted, then all the automata must be

heked for every new event. Instead, with a single seletion poliy, the

omputation triggered by the arrival of the last terminator event an be
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1.4. TRex Engine

stopped as soon as the �rst valid automata evolution is found, as long as they

are heked in the order requested by the seletion poliy. The algorithm is

quite simple, but, even if implemented e�iently, an onsume quite a lot of

memory, and is not as e�ient as the CDP algorithm.

1.4.2 Column-based Delayed Proessing

The CDP approah is the opposite when ompared to AIP: when a new

event is noti�ed the engine does nothing but storing it for a delayed om-

putation. The representation of events and partial sequenes is, indeed,

ompletely di�erent from the AIP. The basi data struture employed is a

olumn: one olumn stores all the reeived events that are relevant for a

spei� state of an installed rule, as shown in FIGURE 1.5; the olumns

are bound with onstraints on the timestamps and on the attributes of their

events. Moreover the dimension of the olumns reserved for the terminator

events is only 1: this is beause at any time only 1 terminator at maximum

will be stored in the engine.

Figure 1.5: CDP data strutures.

Only one physial opy of the event is stored, so that the events in the

olumns are in reality only pointers to the unique original event. As said

before the omputation is delayed, and is launhed only when a termina-

tor event is olleted, beause a terminator is the neessary ondition for

a omplex event to be reated. So when a new event arrives it is heked

against all the rules installed and added to the olumns of the orresponding
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states delared in the rule, if any. In this phase also the stati onstraints on

their attributes are heked. If one of these states is a terminator one, the

omputation for the related rule is launhed, as shown in algorithm 1.4.1.

• line 5: old events in the olumns that an't ombine with any newly

generated event are deleted

• line 7: all the olumns are heked in turn and partial sequenes are re-

ated; a partial sequene is the orresponding element of the automata

of the AIP approah: it is a sequene of primitive events that up to

the state urrently being heked form a valid sequene for a omplex

event. Again, if a full valid sequene is found, a orresponding om-

plex event is generated. Events in the olumns are stored in order from

the oldest to the newest, so that the omputation for a spei� state,

when a single seletion poliy is applied, an be stopped as soon as the

�rst valid element is found and added to the partial sequene. With

a multiple seletion poliy, instead, all the elements of a olumn must

be heked in any ase.

• line 8: if there are valid sequenes the orresponding omplex events

are reated

FIGURE 1.6 shows an example of omputation for rule R1. There are

two olumns, one for the event type O and one for the terminator event L,

with a size of 1.

At time 12 the terminator arrives and the omputation starts: the O

olumn is analyzed in order, from the last or the �rst event depending on

wether the seletion poliy is �rst, last or eah within. The event with times-

tamp 1 is immediately disarded and deleted, sine it won't be ompatible

with any future terminator. The rest of events are all analyzed, but only

O(t=3)�7 meets all the requirements and is used to form a valid sequene.

From this valid sequene the omplex event A(t=3) is reated, with the same

timestamp of the terminator in its sequene.

Computing Aggregates

The omputation of aggregates spei�ed in a rule is performed at the end

of the work yle related to the arrival of an event, sine it is only needed

12
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Algorithm 1.4.1: CDP Algorithm on CPU

1 foreah rule in getMathingRules(e) do

2 foreah olumn in getMathingColumn(rule) do

3 olumn.add(e)

4 if olumn.isLast() then

5 deleteOldEvents(olumn)

6 partialSequenes.insert(e)

7 sequenes = omputeSequenes(partialSequene.olumn)

8 generateCompositeEvents(sequenes)

9 deleteOldEvents(ol)

10 if ol.isFirst() then

11 return

12

ol.getPreviousCol().deleteOlderThan(ol.getFirstTS()-ol.getWin())

13 deleteOldEvents(ol.getPreviousCol())

14 omputeSequenes(partSeqs, ol)

15 if ol.isFirst() then

16 return partSeqs

17 previousColumn 	olumn.getPreviousColumn()

18 foreah p in partSeqs do

19 foreah ev in ol.getPreviousCol().getEvents() do

20 if p.hekParameters(ev) then

21 newPartSeqs.insert(reatePartSeq(p,ev))

22 if hekSingleSeletion() then

23 break

24 omputeSequenes(newPartSeqs, ol)

when new omplex events are found. It is performed sequentially on the

events requested by the rule de�nitions. The events relevant for a spei�

aggregates have their own olumns assigned, just like the events used for the

omputation of the states transitions. The algorithm loops through them

and, if the parameter veri�ation sueeds, their attribute are proessed as

needed to omplete the omputation.

Computing Negations

Negations, in the CDP algorithm, are heked within the omputation

routine. Indeed when a new andidate primitive event for a partial sequene

13
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Figure 1.6: Example of CDP proessing.

is found, negation onstraints are sequentially heked, looping over the nega-

tions olumn, and eventually invalidate the new possible partial sequene,

that is deleted. Again, just like aggregates, events relevant for a negation

are stored in a dediated olumn.

Exploiting multi-ore CPUs

Exploiting modern CPUs having multiple omputational ores e�iently

is quite easy, at least in theory, in a CEP engine. Indeed a very simple form of

parallelism is exposed by the fat that usually an engine must handle multiple

rules; so both AIP and CDP an easily distribute the ompuation designating

di�erent CPU threads to di�erent rules. Eah thread an then perform its

jobs without a�eting or being a�eted by the others, thus exploiting all the

physial ores available, as long as there are enough rules to oupy them.

14



Chapter 2

General Purpose omputation

on GPU

2.1 Introdution

In this hapter I will introdue Graphis Proessing Units and desribe

in details the General Purpose omputing on GPU programming model,

with its advantages and disadvantages. I will fous on CUDA, sine it has

reahed a great suess and maturity, and is the reommended hoie for

general purpose GPU programming.

2.2 Graphis Proessing Units

A GPU (Graphis Proessing Unit) is a speialized proessor designed

to e�iently make the omputations neessary to reate an image to be

displayed. It is the ore of a graphis ard, that also inorporates dediated

memory hips and the iruitry to allow ommuniations between the GPU

and the rest of the omputer system, like the host CPU and DMA ontrollers.

From the very �rst models, developed in the �rst '80s, graphis ards

were designed with very spei� funtionalities; they had ustom mirohips

implementing a very limited set of funtionalities, for whih they were great.

On the other hand they ouldn't do anything but what they were designed

for. They were mainly used to draw simple geometri shapes like lines and

irles �rst, and for playing 3D games or high-end 3D rendering then.
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With the advent of the OpenGL API and similar funtionality in DiretX,

GPUs added programmable shading to their apabilities. Eah pixel ould

now be proessed by a short program that ould inlude additional image

textures as inputs, and eah geometri vertex ould likewise be proessed by

a short program before it was projeted onto the sreen.

Indeed the workload for the reation of a 3d sene is more or less the same

for every pixel and vertex of the sene, so that an arhiteure with hundreds

or thousands of simple omputation units performing �oating point algebra

following the same rules is the ideal solution. The osts ould be kept low

beause the basi arhiteture was very simple.

NVIDIA was the �rst to produe a hip apable of programmable shad-

ing, the GeFore 3 (ode named NV20). By Otober 2002, with the in-

trodution of the ATI Radeon 9700 (also known as R300), the world's �rst

Diret3D 9.0 aelerator, pixel and vertex shaders ould implement looping

and lengthy �oating point math, and in general were quikly beoming as

�exible as CPUs, and orders of magnitude faster for image-array operations.

Pixel shading is often used for things like bump mapping, whih adds texture,

to make an objet look shiny, dull, rough, or even round or extruded.

In 2006, though, NVIDIA released the G80 GPU. It was the very �rst

GPU with programmable generi stream proessing units. Thus the G80

ould be exploited to make general purpose omputation, not neessarily

related to the reation of an image to be displayed.

Atually there are two alternatives to develop gpu enabled programs:

OpenCL [3℄, and NVIDIA CUDA [4℄. While the former generates ode us-

able on a wide range of devies suh as GPUs from di�erent manifaturers

and multi ore CPUs with di�erent arhitetures, the latter an only do it

for NVIDIA GPUs; still, being targeted for a narrow sope of devies, it is

more optimized to exploit all the apabilities of the spei� hardware. I will

analyze only the NVIDIA framework, whih is the most used and probably

the easiest to start gpu development with, but the ideas showed in this thesis

should apply to any of these parallel development environments, with exep-

tion of the CUDA only dynami parallelism (ap 3), that will be supported

soon anyway also by OpenCL.
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2.2.1 NVIDIA GPU arhitetures

Before showing the programming model, it is important to desribe a bit

the hardware that will run the CUDA programs, sine it is fundamental to

analyze and understand the performane of the programs that they exeute.

Sine CUDA has been very appreiated in di�erent �elds of the informa-

tion tehnology, from �nanial to physis and mediine, NVIDIA ontinued

to improve the general purpose omputing apabilities of its GPUs with

every new arhiteture, and even produing some spei� models designed

spei�ally for this purpose, without any apability of showing an image on

a display. From 2006, when it was introdued, there have been mainly three

signi�ant arhiteture advanements, G80, Fermi and Kepler, as desribed

in the next setions. Within a single family, moreover, the same arhite-

ture is on�gured in di�erent ways: as example the GPU ould be sold with

di�erent numbers of ative ores, with faster or slower memory, with dif-

ferent ore loks and so on to over all the slies of the market. Still the

apabilities of the GPU within the same family don't vary.

G80

Figure 2.1: Sketh of the NVIDIA G80 streaming proessors array arhite-

ture.

The G80 hipset is the �rst that uni�es all the shaders (pixel, vertex, ge-

ometrix or physis) under one omputational unit, alled Stream Proessor,
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Figure 2.2: Sketh of the model of a shader proessor in the G80/G92 gpus.

that is the ore of CUDA. As we see in FIGURE 2.1, in one GPU there is

an array of idential SPs.

In the skethed �g. 2.2 the layout is made learer: there are many

streaming multiproessors (SM), where eah has a number of SPs, eah with

its own Registers, one ommon Shared Memory and one Instrution

Unit, that is in harge of mapping ative threads on the available SPs.

Within the SM there are also the read only Constant Memory and

the Texture Memory. The devie memory, alled Global Memory resides

outside the multiproessor, being e�etively the DRAM of the board, avail-

able to every multiproessor. The image also shows that the only memory

loked to one SP is the register spae, while eah other memory is shared

between all the SP of one multiproessor or between di�erent SMs too. A SP

is a fully pipelined single-issue proessing ore with two ALUs and a single

�oating point unit (FPU). Single integers operations are performed with a

24bit preision.

SM are in turn grouped by two or three in Texture Proessor Clusters

(TPC), that inludes support for Texture proessing, though these features

are seldom used for general purpose omputing and will not be investigated

in this thesis.
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Evolutions: Fermi, Kepler

Figure 2.3: Sketh of the NVIDIA GF100 streaming proessors array arhi-

teture.

The Fermi arhiteture made its debut in the end of 2009 and greatly

enhaned the GPGPU apabilities, as a response to the notable interest

gained by CUDA. The GPUs used in hapter 4 to test the performane of

GTRex are both based on this arhiteture, that is today largely di�used

in most personal omputers. Fig 2.3 shows the new bloks (still alled SM,

streaming multiproessors), now with 32 or 48 ores eah. SPs are now alled

Cuda Cores, showing the intent of NVIDIA to push and promote the CUDA

tehnology. With a total of 16 SM, GF100, the referene GPU for the Fermi

family, an reah 512 uda ores. Eah uda ore exeutes 1 warp of 32

threads.

One of the most interesting extra of the new ore is the presene of an L2

ahe between the SM and the global memory that relaxes the onstraints

to obtain oalesed memory aesses with the �rst generation GPU and also
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allows a more e�ient usage of the global memory. This is indeed a very

important aspet as will be shown below.

Figure 2.4: Sketh of a multiproessor on the GF100 gpu, with the new uda

ore.

Fig 2.4 shows the new SM, even if it remains quite similar to the pre-

eeding ones. The interesting news are the number of registers available,

now 32768 per SM and the new INT unit to make operations with integers

natively. This feature is another example of enhanements introdued speif-

ially for the GPGPU, sine vertex and pixel omputations rely on �oating

point math.

Finally, with Kepler, released in 2012, the GPGPU apabilities of the

NVIDIA GPUs were enhaned even more, with a brand new SM (shown in

FIGURE 2.5), now alled SMX, grouping 192 Cuda Cores and bringing a

new speialized unit to allow dynami parallelism, a major enhanement for

CUDA that will probably make even more pro�table the usage of CUDA to

aelerate parallel appliations.

On the other hand the GPUs based on Kepler are still high pried and

not so muh di�used, so that I hadn't the hane to try this innovation for

GTRex. More onsiderations on possible Kepler advantages for the projet

are shown in the onlusions of this thesis.
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Figure 2.5: Sketh of a multiproessor on the GF100 gpu, with the new uda

ore.

2.3 CUDA

The CUDA toolkit is omposed of a ompatible driver, a losed soure

ompiler (nv) and a set of libraries to interat with the gpu from within

a normal C program. Many wrappers exist that allow the usage of uda in

di�erent programming environments, but it is designed for C and C++. To

interat with the graphi hardware there are two methods, not ompatible

one with another. They are C for CUDA and Driver API. While the �rst

is simpler to use, the latter exposes more options and low level funtions,

giving a better level of ontrol over the hardware. For the projet the C

for CUDA approah was used, sine it allows to write a smaller and simpler

ode granting at the same time all the features exploited by the engine. In

the following I will not analyze in details all the spei� funtions to all in

order to initialize the environment; all those informations an be found in

the NVIDIA CUDA Programming Guide [2℄; I will try to give an overview

of the basi priniples to understand in order to program with CUDA.
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From now on I will all host ode the program that will run on the CPU,

while the program run by the graphi ard will be referred to as devie.

2.3.1 Programming model

The most important onept in the development of a uda appliation

is the kernel: it desribes the job that will be done by the gpu. It is the

equivalent of the main() funtion of the host ode. The keyword to delare

suh a funtion is __global__, and it must return a void type. From a

kernel the programmer an all other funtions run by the gpu and delared

as __devie__ that don't need to neessarily return a void.

The memory spae aessed by the kernels is ompletely separate and

independent from the memory of the C program using CUDA, at least in

the most general and more e�ient ase where the uni�ed address spae is

not used. Thus, in order to give the GPU the data to work on, spei�

funtions to opy memory areas to and from the GPU must be used.

Figure 2.6: Sketh of the typial work�ow in a CUDA enabled program.
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FIGURE 2.6 represents the typial work�ow: the program at a ertain

point asks the CUDA driver to opy some data to the devie, then it invokes

the kernel that will be exeuted on the GPU. The kernel launh request on

the host side is asynhronous and typially very quik. From this moment the

CPU and the GPU work in parallel. On the GPU the kernel an all other

funtions that will be exeuted on the devie and share the memory spae

with the allee; at the same time the CPU an do anything else. Finally

the host program asks for the resulting data to be opied bak to the host

memory. This all instead is typially bloking, sine the ompletion of the

kernel is neessary for the data to be opied bak to be valid and onsistent.

In this way the memory opy from the devie will end a bit later than the

end of the GPU omputation, beause of the time neessary to phisially

move the data.

Figure 2.7: Sketh of the grid of threads in uda.

2.3.2 Computing resoures organization

The amount of parallel proessing units on a GPU is great, but oordi-

nating and managing all them is not trivial: the following hierarhial model

is used.

From the smallest to the biggest, the massive amount of omputing units

is grouped as follows: thread, warp, blok, grid, as shown in FIGURE 2.7.

More in details 32 threads form a warp, a ustom number of threads form a
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blok and a ustom number of bloks ompose the grid, that haraterizes

the kernel launh.

• thread: it's the basi omputational unit; this means that the ode of

the kernel will be e�etively exeuted by eah thread. Eah thread is

uniquely identi�ed in a kernel launh thanks to the intrinsis threa-

dIdx, blokIdx and blokDim. All these three-dimensional variables

have x, y and z sub�elds. Indeed the threads an be organized in multi

dimensional grids. As example, in the ommon onvention, the �rst

thread of a 1 dimensional grid will be the one having threadIdx.x and

blokIdx.x equal to 0

• warp: the warp abstration is hidden to the developer, sine there's not

any routine or API all to modify a warp anyhow. Indeed it is diretly

bound to the physial on�guration of the GPU. It's important to know

of its existene beause it is a set of 32 threads that in a given moment

will be performing exatly the same instrution, sine it is supplied by

a single instrution issuer. So, when a kernel inludes some divergent

paths, if all the threads of one warp will take the same path it would

not harm the result too muh, but this will be shown in SECTION

2.3.5

• blok: the blok dimension must instead be set by the developer, and

an be read from the kernel ode with the blokDim variable. It is a 1,2

or 3 dimensional group of threads that share the same shared memory

and that will be sheduled for exeution at the same time by the driver.

The optimal hoie of the dimension of one blok is a multiple of 32 -

that is a multiple of the dimension of a warp -, beause otherwise there

would be for sure some shared proessors idling for the duration of the

entire kernel.

• grid: the biggest grouping entity is the grid. It is only 1 in a kernel; like

for the threads and bloks, though, it provides the gridSize variable,

that represents the number of bloks per dimension (x, y and z like

before) and an be aessed from eah thread. This omes useful when

the developer has to map di�erent memory areas to eah thread within

his kernel.
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One trivial example for the grid organization, where only one dimension

is de�ned for eah entity: if we launhed 10 bloks, eah with 32 threads, we

would have a total of 320 threads numbered from 0 to 319, with blokIdx.x

varying from 0 to 9 and threadIdx.x varying from 0 to 31 and blokDim.x

�xed at 32. Eah thread ould ompute its index and be uniquely identi�ed

as idx = threadIdx.x+ blockIdx.x ∗ blockDim.x.

2.3.3 Memory spaes

The memory area where data is opied to from the host ode is physially

resident on the GPU DRAM; there are many reasons for whih it shouldn't

be used as the default memory for the ode exeution and there are better

alternatives o�ered by CUDA, that gives di�erent kinds of memory (shown

in �g. 2.8) to rely on, eah with di�erent pros and ons. The following list

enumerates the memory spaes available starting from the "outer", phisially

the furthest from the SP or Cuda Core, to the inner, the nearest.

Figure 2.8: Memories available in the devie ode.

• Global memory: it is phisially the DRAM of the graphi ard, so

it is the biggest spae available in the devie ode. In fat almost

the whole quantity of ram (a little spae for the displayed image must

not be requested) an be assigned to a single pointer. It has a huge

bandwidth (more than 80GB/se), but also a huge lateny (around

400-600 lok yles). This means that it is perfet to feth very big

and ontiguous memory areas, but it is not reommended for a random
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aess to few bits per time. In the Fermi and newer arhitetures this

disadvantage is partially masked by the shared ahe to global memory.

This is the only memory that makes possible the return of values from

the GPU to the host.

• Constant memory: as the name itself indiates, this memory is a-

essible in a read only way from the devie ode, and it an be written

only from the host ode. It is limited in size (64kbyte), but, being

ahed, it is useful when many threads onurrently aess the same

memory loation.

• Shared memory: this small sized memory (from 16kb up to 48kb)

is shared between all the threads of one blok. It is very fast, but the

programmer should take are to redue onurrent aess to the same

memory blok, otherwise the performane ould drop.

• Registers: they are tied to one spei� thread during the exeution,

so that they are really fast and they an't su�er from onurrent aess,

but they are limited and an exessive usage an restrit the number

of onurrent threads really exeuted at the same time. Their number

inreases from G80/G92 to GT200 and to GF100 and GK110, and

starts from a minimum of 8192 to a maximum of 65536.

So the general solution to exploit e�iently the resoures of the GPU is:

opy the data to the global memory, let eah thread read the needed data

in its registers or in shared memory, wether the threads of a blok should

ooperate on the same data, and �nally write bak the results to the global

memory, from where it will be opied to the host memory.

Memory aess oalesing

Beause of the limits of the global memory, that is mainly a huge lateny,

it is important to organize aess to this memory so that with a single trans-

ation a lot of data an be fethed (remember also that it has an inredible

bandwidth). The requirements for this to happen have relaxed from gener-

ation to generation of gpus, but I will now show the requirements needed to

ahieve it on every gpu family, whih have been used in the urrent projet.

From the CUDA programming guide, we know that the global memory aess
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by all threads of a half warp is oalesed into one or two memory transation

if it satis�es the following three onditions:

• eah thread must aess either 4, 8 or 16 bytes words, respetively

oalesed into a 64, 128 or 128 bytes memory transation

• all 16 words must lie in the same segment of size equal to the memory

transation size, or twie the memory transatio size when aessing

16byte words

• threads must aess words in sequene: the kth thread must aess the

kth word of the memory segment

. If one of these onditions is not met, then 16 di�erent memory transations

are issued, with a throughput signi�antly redued. Again, with Fermi and

Kepler these onditions have been relaxed a lot, so it is muh easier to write

an e�ient ode without all these onstraints.

2.3.4 GPU Oupany

As said above the resoures of the GPU are limited, and they will a�et

the real level of parallelism that a spei� kernel will reah: sine every

kernel will need a prede�ned number of register per thread to work, and

sometimes also shared memory, there will be often a ap to the maximum

number of threads that will e�etively run in parallel for a given kernel.

As example if we have a kernel that needs 30 registers and runs on a G92

gpu, depending on the on�guration of threads per blok the oupany of

the gpu will range from 17% to a maximum of 33%. In fat with the G92

hipset eah multiproessor has 8192 registers, so eah multiproessor will

run 8192/30 = 273 threads at maximum, divided in bloks of 128 threads

eah result in 2 ative bloks per multiproessor. But the theorial limits of

the gpu allow it to run 768 threads per multiproessor, so the oupany is

256/768 = 0.33. Besides this, the more multiproessor a gpu has, the more

threads it will really run in parallel (in the example 256 more threads per

multiproessor). It is also important to note that a di�erent on�guration

an hange the oupany of the gpu: as example if for the same kernel we

would have launhed 192 threads per blok, then only one blok of threads

ould have run at a given moment on one multiproessor, and the oupany
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would have dropped to 192/768 = 0.25. For this kind of onsiderations there

is the CUDA Oupany Calulator, a tool released by nVidia that will plot

the real oupany of a given GPU with the register/shared memory usage

set by the user. Moreover the number of register used by one thread an

be apped giving some instrution to the nv ompiler, but it is important

to note that not always an higher oupany will bring better performane,

beause to redue the number of registers some data an be shifted to the

global memory, that has an high lateny.

2.3.5 The SIMD arhiteture

There is a big di�erene between writing a working ode and writing an

optimized ode. On the gpu the hardware limits make a �ne development

essential to ahieve the results expeted from the huge omputational power

available. It is suggested to read the CUDA Best Praties Guide from nVidia

to get some useful triks in the optimization of the ode. This is for sure

the most important onept to understand in order to write uda enabled

appliations with good results. What SIMD means is Single Instrution

Multiple Data. This means that many omputational units need to exeute

exatly the same instrution every other unit is doing on its own hunk of

data. In fat one instrution issue unit make eah thread of a spei� warp

perform the same instrution; as a result if only one thread of a warp needs

to do a di�erent task the parallelism is broken: in an unpreditable way �rst

some units than some others stop working atively and just omplete some

dummy loops waiting to reeive some good instrutions, while the remaining

part do some useful work. It is easy to realize that is far from the ideal

ase, and the resulting performane of the program is heavily ompromised.

Anyway sometimes it will be probably impossible to ompletely avoid this to

happen, so in those ases the best options is to redue the most you an the

portions of ode that may result in divergent paths to the shader proessor

of the same multiproessor. Note that this doesn't mean you should always

avoid onditional statements in your devie ode. In fat if one onditional

statement gives the same result for all the threads launhed with a spei�

kernel, then the performane is not a�eted, sine there is no divergene in

the exeution path of the di�erent threads. Also, when possible, the nv

ompiler will automatially avoid divergene with an equivalent mahine
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ode.

2.3.6 CPU-GPU parallelism

One advantage of the gpgpu that has been extensively used in this projet

is the ability to onurrently run di�erent instrutions on the gpu and on

the pu. In fat when the programmer launhes a kernel from the devie

ode using indi�erently the C for CUDA or the runtime API, almost all the

funtions used to interat, under some irumstanes, with the GPU are

asynhronous. This means that as soon as a memory opy or a kernel launh

is requested the algorithm on the pu an go on, without waiting for the job

of the gpu to be ompleted. All the operations, unless otherwise spei�ed,

are still sheduled sequentially by the CUDA driver.

In order to synhronize the host program with the GPU work�ow there

are spei� funtions that an be used, both to stop the exeution of the

host program until the GPU has done all that has been sheduled and to

poll the exeution state without bloking the host program.

29



CHAPTER 2. General Purpose omputation on GPU

30



Chapter 3

GTrex implementation

3.1 Introdution

In this hapter I will show the key result of the projet: a new GPU

aelerated proessing engine for TRex. I will start with an overview of the

entire engine and of the algorithm that ontrols the GPU omputation, then

I will desribe the algorithm employed for the ore proessing tasks, that was

already existing in the test projet done by Cugola and Margara [6℄; �nally

I will show many other enhanements that optimized the ode in terms of

performane and features.

3.2 The new server

In the �rst plae it is important to say that this projet involved only

the engine omponent of the middleware. In fat the new CUDA powered

engine an be installed in the middleware without any modi�ation to the

rest of the system, exluding of ourse some ode to atually ativate and

take advantage of it. So the ommuniation, queue ontrol and management

omponents of the system are exatly as they were before. Using the new

engine is as simple as delaring a new GPU Engine and pass to it the rules

and event noti�ations, exatly in the same way done with the CPU engine.

Figure 3.1 depits the new server, where two independent engines are reated:

one is the old plain CPU engine, the other is the one developed in this thesis.

The interfae and the interation between the two engines and the rest of the

middleware is exatly the same for both the engines. The main algorithm
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CHAPTER 3. GTrex implementation

Figure 3.1: Overview of the new TRex Server.

employed by this GPU engine is the CDP introdued in CHAPTER 2.

3.3 CPU ode

The GPU engine itself is modularized, as shown in FIGURE 3.2: there

is a GPUEngine lass that is instantiated only one during the initialization

of the server of the middleware. The engine then initializes the memory

manager; this is also a unique omponent, that is reated one during the

initialization of the engine and ontrols all the GPU memory requested by

the program. Then, for eah rules installed in the engine, a GPUProessor

is reated: it takes are of the management part, that is oordinating the

kernels exeuted on the GPU with rest of the work to be done to make every-

thing work. The GPUProessor also reates its CudaKernel, that is a lass

ompiled by the NVIDIA CUDA ompiler that atually holds the CUDA

kernel ode and launhes omputation when requested by the GPUProes-

sor. When an event noti�ation is reeived, the GPUEngine passes it to all
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Figure 3.2: Overview of the GPU Engine.

its proessors, that eventually store it, in ase it is relevant for its rule. If the

event is a terminator, the real omputation that reates new valid sequenes

is triggered.

The main idea is the one desribed in algorithm 3.3.1. Note that this

ode atually runs on the CPU, and only the funtions labelled with <> are

invoations of GPU kernels.

The omputation begins with a single partial sequene ontaining one

event: the terminator. Then the program loops through all the states of the

deployed rule (line 2); at eah step a new state of the sequene is analyzed to

look for new potential events to be added to the partial sequenes onstruted

up to that moment. The swith at line 7 is used to determine the best

path to take for the spei�ations of the state that will be analyzed: the

seletion poliy, the presene of negations and even the size of the kernel to

be launhed determine whih kernel will be used. Moreover the information

needed to set up the GPU omputation are set by the prepareForNextLoop

funtion. This must be alled for the �rst time before the �rst round of the

loop (line 1), but it is then omputed on the CPU while the GPU is busy

at line 23 for the following states. Indeed an expliit synhronization with

the GPU is requested at line 25, so that, if the CPU ends its part before
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the GPU, it waits for the results on this bloking all. The number of valid

partial sequenes found during the omputation of a state is read bak from

the GPU memory at eah step (line 24): if it is 0 the omputation an be

stopped sine there won't be any valid omplete sequene in any ase. There

is the risk that the omputation performed at line 23 is then thrown away

when the GPU returns 0 results (line 27), but sine the job is done in parallel

this doesn't have onsequenes on the performane. The partial sequenes

eventually returned at eah loop will be one event longer than those given

as input at the beginning of the loop.

From the algorithm there are also many other aspets worth noting. One

interesting aspet is that there is already the usage of the MemoryManager

that will be introdued later in this hapter: it is identi�ed by the mm

pointer, and o�ers wrappers for memory operations to the GPUProessors

and CudaKernels. In order to identify the alling rule, the mmToken is

reated when one GPUProessor subsribes to the memory manager, during

the initialization phase, and is assigned to the GPUProessors, that, then,

must use it when alling a memory manager method.

If at the end of the loop resultsSize is a positive number, partialSequenes

are opied bak to the host memory and analyzed to ompute their aggregate

funtions and reate the resulting omplex events. These resulting sequenes

are proessed sequentially and in order by the CPU, but the aggregate om-

putation is performed by an e�ient CUDA redution kernel, desribed in

SECTION 3.5.3. The reation of omplex events instead is left to the CPU,

but it is a very easy and light task, and it's also partially overlapped with

the GPU exeution.

3.4 CDP on CUDA

The CDP [seen in SECTION 1.4.2℄ is the only algorithm that an be

e�iently adapted to the CUDA environment, beause of its simple data

strutures and its delayed and parallelizable omputation that an be han-

dled by the GPU. The �rst thing to take are of, though, is that it would be

very une�ient to stik with olumns of pointers as happened in the CPU

implementation. In fat that would ause a memory fragmentation leading

to terrible performane on th GPU. As a result in this implementation the
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3.4. CDP on CUDA

Algorithm 3.3.1: Overview of the handling ode

1 loopKind = prepareForNextLoop();

2 desribed foreah state in states do

3 udaMemsetAsyn(mm->getResultsSizePtr(mmToken), 0);

4 if size==0 then

5 resultsSize = 0;

6 return;

7 swith loopKind do

8 ase MULTIPLE

9 omputeComplexEventsMultiple()<>;

10 ase SINGLE

11 omputeComplexEventsSingle()<>;

12 ase MULTIPLENEG

13 prepareNegationsInfo();

14 omputeComplexEventsMultipleWithNegations()<>;

15 ase SINGLEGLOBAL || SINGLENEG

16 udaMemsetAsyn(mm-

>getCurrentResultsPtr(mmToken), 0);

17 prepareNegationsInfo();

18 omputeComplexEventsSingleG()<>;

19 mm->swapPointers(mmToken);

20 redueFinal()<>;

21 mm->swapPointers(mmToken);

22 if state > 0 then

23 loopKind = prepareForNextLoop();

24 e=udaMempyAsyn(resultsSize,

mm->getResultsSizePtr(mmToken));

25 udaDevieSynhronize();

26 if resultsSize==0 then

27 return;

28 else if resultsSize>0 then

29 mm->swapPointers(mmToken);
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olumns hold opies of the events, with their attributes and timestamps. On

the other hand the CPU still has to delete old events and set parameters for

the CUDA kernels, so the timestamps of the events must be kept also in the

host memory. For the sake of simpliity from now on when talking about

events on the host memory I am indeed referring to their timestamps, that

is the only information atually stored.

When a non terminator event enters the engine the algorithm is similar

to the standard version: it still adds the event to the related olumns, that

are resident on the GPU global memory. When a terminator arrives the

program deletes old events analyzing the timestamps on the CPU memory

and starts the omputation. This is where the CUDA kernels are launhed

and the main omputation takes plae. Informations about deleted events,

as well as any other information needed to omplete the omputation, is

passed to the CUDA kernel with spei� parameters.

As example. remembering the history of events presented in the table 1.1,

at time 12 the omputation is started; the �rst two events, with a timestamp

lower or equal to 2, are deleted, while the other events are opied to the devie

memory. At this point the appropriate kernel for the spei�ations of the

given state is launhed to analyze the events and �nd new partial sequenes.

Algorithm 3.4.1 shows a simpli�ed kernel for the omputation of a mul-

tiple seletion state without negations.

Algorithm 3.4.1: CDP Algorithm on GPU, Multiple Seletion

1 x = blokIdx.x*blokDim.x+threadIdx.x;

2 y = blokIdx.y;

3 timestamp = stak[x℄.timestamp;

4 previousTimestamp = prevResults[y℄.infos[referredState℄.timestamp;

5 valid = (timestamp < previousTimestamp && timestamp >

previousTimestamp-win);

6 if hekParameters(x, y)==0 then

7 valid = 0;

8 if valid!=0 then

9 writeIndex = atomiAdd(urrentIndex, 1);

10 urrentResult[writeIndex℄.infos[state℄ = stak[x℄;

11 opyPreviousEvents(writeIndex);

This is the most general form of the algorithm. It doesn't ompute
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negations and it has some simpli�ations, but the basi idea is there. A 2D

grid of CUDA thread bloks is launhed, and within eah blok there is an

array of threads. So eah thread will have a unique (x,y) pair: x identi�es the

new primitive event that will be analyzed from the thread, while y identi�es

the partial sequene found so far that will be heked against the primitive

event. The thread performs a hek on the timestamps at line 5, on the

parameters at line 6, and, if everything mathes, it writes the new partial

sequene: this will be like the one that the thread used as input with the

addition of the primitive event x. The write is done in a dediated memory

area alled urrentResult, at lines 10-11 of the algorithm.

To do this it uses a speial funtion alled atomiAdd (line 9): sine all

the lines of ode are exeuted in parallel by all the threads within a blok,

in order to be able to write an ordered output sequene without memory

on�its, some kind of synhronization is needed between threads. This is

where atomiAdd omes useful: it inrements the variable pointed by the

�rst argument by a quantity spei�ed by the seond argument, and it does

it so that no other thread an interfere during the operation. Finally it

returns the new value, as it is after the addition. This means that, thanks

to this funtion, eah thread will have a unique inremental writeIndex used

to write without on�its to the output array.

At the end of the omputation the CPU ode swaps urrentResult and

prevResults as seen before, so that the output sequene of a step beomes

the input of the next one.

This is the most general form of the algorithm: di�erent ode paths have

been written in pratie, to optimize as muh as possible the ode produed

by the CUDA ompiler.

FIGURE 3.3 is an overview of the algorithm and its data strutures with

the events from table 1.1 at the beginning of the omputation at time 12.

In the input array of partial sequenes there is only the terminator event

reeived, L. In the olumn for the urrent state, instead, there are the 3

O events that haven't been deleted. In this ase 1 blok with 3 threads is

launhed. These threads will have indexes (0,0), (1,0) and (2,0), where the

�rst number is their index within their blok and seond number indiates

the blok in whih they reside. Thread (0,0) and thread (1,0) terminate their

exeution when heking the parameters of the events, sine they don't math

37



CHAPTER 3. GTrex implementation

Figure 3.3: Algorithm exeution example, Multiple Seletion.

the TankID attribute of the terminator reeived. Thread (2,0), instead, will

sueed. At this point it will inrement the urrentIndex variable, reading at

the same time the value 0; �nally it will write the new valid partial sequene

found in position 0 in the output array. If, for example, 2 threads survived

the parameters heks and had to write the new partial sequene, one of the

two would have found the value 1 in urrentIndex and would have written

its partial sequene in position 1 in the output array and so on.

In ase of a single seletion operator, instead, it is a bit more triky, as

shown in algortihms 3.4.2 and 3.4.3.

The �rst part of the algorithm is idential to that of the multiple seletion

ase; the di�erenes are all in the ode that handles the write of the result

to the global memory. Indeed when the single seletion poliy is used, 1

input partial sequene an be ombined with at most 1 simple event from

the olumn; thus many threads will have to ompete so that only one, that

with the oldest or the newest event from the olumn, survives and writes its

result to the global memory. One important aspet in this version is that

the results are not orretly written in an ordered array ready to be opied
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3.4. CDP on CUDA

Algorithm 3.4.2: CDP Algorithm on GPU, Single Seletion, last-

within

1 x = blokIdx.x*blokDim.x+threadIdx.x;

2 y = blokIdx.y;

3 timestamp = stak[x℄.timestamp;

4 previousTimestamp = prevResults[y℄.infos[referredState℄.timestamp;

5 valid = (timestamp < previousTimestamp && timestamp >

previousTimestamp-win);

6 if hekParameters(x, y)==0 then

7 valid = 0;

8 if valid!=0 then

9 oldMax = atomiMax((int *)&maxIdxloal, x);

10 if x < maxIdxloal then

11 return;

12 oldMax = atomiMax((int *)&(maxTS[y℄), x);

13 __threadfene();

14 if maxTS[y℄ == x then

15 urrentResult[y℄.infos[state℄ = stak[x℄;

16 opyPreviousEvents(writeIndex);

on the host memory as happened in the multiple seletion ase with a simple

atomi instrution. Indeed the atomiMax funtion is provided by CUDA,

but simply using that with the single seletion ase, when more than one

ompuational blok is launhed, would lead to wrong results. This is aused

by the sheduling of the NVIDIA driver: di�erent bloks don't run in parallel

for sure, it depends on many aspets like the physial availability of resoures

on the GPU hip.

So, using an approah similar to that used in the multiple seletion ase,

it may happen that more than 1 result is onsidered valid. As example one

event ould be the last at a ertain point of the omputation, thus it may

be written to the output sequene; but, in a blok that still hadn't reahed

that point of the omputation, there may be another event with a greater

timestamp: this would be again onsidered last and written to the output

sequene.

In the end a kernel wide synhronization barrier is needed; unfortunately

CUDA doesn't o�er anything like that, and the only method to work around

this problem is to launh two di�erent kernels: in this way the seond kernel

will be exeuted only after the ompletion of the �rst one.
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So the algorithm 3.4.2 does the following:

• line 9-10: a loal max is determined within eah blok thanks to a

temporary __shared__ variable and to the atomiMax funtion, that

behaves just like the atomiAdd shown before but omputes the maxi-

mum. In this way only 1 thread per blok should survive. This prelim-

inar �lter is important for performane reason: reduing the number

of surviving threads here redues the number of on�iting memory

aess in the global memory in the next lines, that are muh more

signi�ant in terms of performane

• line 11-12: the surviving threads repeat the operation, this time though

on a __global__ variable that is aessed by all the bloks of the

kernel. The write loation, though, is identi�ed by the y variable, so

that only threads analyzing the same partial sequene will ompete for

the addition of a new event

• line 14: at this point only the wanted event should have been written

to the urrentResult[y℄ loation.

In this way, on the other hand, the resulting memory struture isn't om-

patible with the rest of the algorithm: an ordered array of partial sequenes

is needed. This is the role of the redution kernel 3.4.3.

Algorithm 3.4.3: Redution method used for Single Seletion

1 x = threadIdx.x + blokIdx.x * blokDim.x;

2 if prevResults[x℄.infos[state℄.timestamp == 0 then

3 return;

4 writeIndex = atomiAdd(urrentIndex, 1);

5 opyPreviousEvents(writeIndex);

The method to distinguish valid partial sequenes that must be returned

to the host is simple: the memory area where they are stored is zeroed with

a spei� udaMemset funtion, and the informations are written over only

if the requirements heked in algortihm 3.4.2 are ok, as per line 15-16; so

it is enough to hek if the timestamps of the events are greater than 0 to

make sure that the related partial sequene must be kept (line 2 of algorithm

3.4.3). In fat 0 shouldn't be a valid timestamp for any real event.
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Figure 3.4: Algorithm exeution example, Single Seletion.

In order to omprehend better the algortihm onsider FIGURE 3.4,

where, one more time, the pakets from table 1.1 at time 12 have been

onsidered along with a last-within seletion poliy. This time suppose that

the input partial sequene is in position 1 (thus in position 0 there will be

another input partial sequene, but we're not interested in that). The �rst

part is just like in the multiple seletion ase. When thread (2,1) onvalidates

its simple event this time it �rst heks to be the last within its blok, with

the help of the atomiMax funtion alled on the shared variable loalMax.

In this example loalMax will be updated form the initial value of 0 to the

value 2 by thread (2,1).

In ase it's not it ends its omputation, otherwise it performs the seond

hek, again with the atomiMax funtion, but this time on a global memory

variable, still initialized to 0. In this way all the threads heking the same

input partial sequene will ompete on the same global variable. If one more
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time the threads �nds itself to be the last it writes the partial sequene in

the same position where the input sequene was (position 1 in the example).

In this way when this threads ends the array of partial sequenes will have

in eah position a valid partial sequene ombined with the appropriate last

simple event or a partial sequene having an event with timestamp 0. Thus

the seond kernel launhed with a 1-dimensional blok on�guration will

simply have to hek this timestamp and reorder the array in the same way

done in the multiple seletion ase, with the urrentIndex stored in global

memory so that the omputation is orret even with more than 1 blok of

threads.

Note that the simple version reported here omputes only the last-within

operator; in ase of a �rst-within the greater-than operators beome less-

than, and the atomiMax funtion beomes atomiMin.

Finally note that the single seletion ase an work in this way only if

the olumns store events in order, so that, a thread with a greater index will

have for sure an event oured later in time. Indeed using the timestamps

themselves to hoose the �rst or the latest one would be theoretially right,

but would also mean using atomis with 64bit arguments in shared memory,

and this is possible only with the latest hardware supporting uda apabilities

3.5. On the other hand the assumption should always be respeted, sine

the timestamp of an event entering the engine should always greater than

that of the preedent one.

One more onsideration about performane is that if only one blok is

enough to take are of all the new events, there is no need for global synhro-

nization among the kernel launh, so a speial kernel is used that ompletes

the omputation immediatly, like in algorithm 3.3.1 at line 11.

3.5 Compatibility

In order to make the draft of the GPU ode work as a omplete GPUEngine

many aspets have been taken are of, like the following:

• memory strutures

• negations support
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• attributes ould only be of INT kind, leaving out FLOAT, BOOLEAN

and STRING kinds

• aggregate omputation ould handle only the SUM funtion, leaving

out MAX/MIN/AVG/COUNT operators

• the onsuming lause was not supported at all

3.5.1 Memory Strutures

The �rst step was to adapt the ode of the GPU test projet to use

the strutures used in the TRex2 projet. This, though, was not possible

without some modi�ations. In fat the CPU ode relied a lot on pointers

and C++ spei� libraries. Both these elements were inompatible with the

requirements of a CUDA implementation, but an be handled by the host

ode that manages the GPU usage. So in the end the solution of keeping the

original lass struture for the events was hoosed. When an event has been

aepted and must be opied to the GPU, it is onverted in a new stati

data struture that perfetly �ts the GPU requirements. This is done on

the �y when needed, but it demonstrated to be very fast, thus not being a

onsiderable overhead for the projet. Also the need for statially alloated

memory areas brought to the usage of irular bu�ers for olumns, so that

the same memory area an be used to hold in�nite events, if its maximum

apaity is not surpassed in any moment by the size of the window of events.

3.5.2 Negations

One entirely new, non trivial problem, was that of negations. Events

relevant to the negations de�ned in a rule are store in dediated olumns,

just like any other event. The �rst implementation followed right away the

CPU one: the orretness of a potential partial sequene was heked after

the sequene itself was reated. This is the simplest approah, and it an

even be easily parallelized over the possibly big number of negations that

have to be heked against the sequene.

On the other hand, though, the idea works orretly on multiple seletion

prediates, but not on single seletion ones. Indeed, if the �rst possible

sequene found is invalidated by a negation, then the omputation is not
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over in the single seletion ase: it must ontinue until a valid sequene is

found or there are no more sequenes to test.

There were two possibilities to rewrite the negations heking ode to

work around this problem:

• let eah thread of the kernel loop over all the negations to validate the

new event during the reation of the partial sequenes, in the same

kernel

• launh a new kernel that fully exploited the great parallelism o�ered

by the GPU to hek all the negations against all the partial sequenes

and all the new andidate events to signal the non usable ones.

Both these approahes have advantages and disadvantages. The former

doesn't require a spei� launh on�guration, thus it an be oalesed in the

kernel that performs the reation of new partial events, and it does exatly

the least amount of work neessary to omplete the omputation. On the

other hand it performs a loop with a non preditable length, keeping eah

thread warp being oupied by the longest loop in the warp even in ase of

a shorter loop.

The latter instead ompletely avoids any kind of loop, making a huge us-

age of the parallelization; this launhes a great number of threads and bloks.

Indeed one dimension states whih partial sequene will be heked, another

one states the new simple event that will be heked for addition to the par-

tial sequene, while the last dimension states whih negation event will be

mathed with the partial sequene and the new event. In this ase though

there is some amount of work that is not neessary; in fat all the ombina-

tions of events and partial results are heked with all the negations reeived,

but just one valid negation is su�ient to invalidate a partial sequene. It

also requires a spei� launh on�guration with a 3d grid of bloks, that

an quikly grow a lot, and, beause of the single seletion requirement of

having already �ltered out the inompatible events when hoosing the �rst

or the last one, it must be launhed before the kernel that reates new par-

tial events. This means again work thrown away, in ase the related event

doesn't pass the timestamp or parameter test.

In the end both approahes have been implemented, and it is possible to

swith between them setting a preproessor de�nition at ompile time, but
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the former one, that loops over negations during the omputation, demon-

strated to be more e�ient in most test ases. The algorithm 3.5.1 is a sim-

pli�ed version of the GPU funtion that is alled from the kernels omputing

new partial sequenes. It takes the new possible event ev1, the negations re-

lated to the state of the rule being omputed in that moment and the related

partial sequene, alled here prevResults, as inputs and returns a bool: if

true the partial sequene must be invalidated, while it's ok otherwise.

Algorithm 3.5.1: GPU funtion that ontrols negations

1 foreah n in negations do

2 negTimestamp = stak[n℄.timestamp;

3 maxTS = prevResults.infos[negations[n℄.upperId℄.timestamp;

4 if negations[n℄.lowerId < 0 then

5 minTS = maxTS - negations[n℄.lowerTime;

6 else

7 minTS = ev1.timestamp;

8 if negTimestamp <= maxTS && negTimestamp > minTS then

9 if hekParameters(ev1, n)==0 then

10 return false;

11 return true;

3.5.3 Aggregates

Aggregate omputation was also already present in the test projet, but

only for the SUM funtion and the int data type. It is still almost the same;

eah aggregate is omputed exploiting parallelism but sequentially, one after

another, for eah new omplex event generated by the omputation. The

kernel used is the typial redution one, promoted also by NVIDIA to solve

a wide range of problems exploting the GPU parallelism, modi�ed to handle

parameter heking.

Let's see how the algorithm works with the help of FIGURE 3.5.

First it is important to say that the number of threads per blok must be

a power of 2, and it must be greater than half the number of elements to be

onsidered in the omputation. In the example there are 7 events seleted

for the aggregate, so 1 blok with 4 threads is needed.

Eah thread tx reads two events from the global memory from the indexes
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Figure 3.5: Work�ow of a redution kernel.

x and x + blockDim.x, so that memory aess are ontiguos and oalesed

as muh as possible. For eah of these events the parameters are heked in

the same way they were heked in the kernels that �nd new valid partial

sequenes: if the parameters hek doesn't sueed, the value of the event

read is hanged with the neutral value for the funtion to be omputed. In

the same way, if the index of the element to be read is out of the bounds

of the array of events to be redued, the value is replaed with a neutral

element. Bak to the example: the funtion to be omputed is a sum: t0

reads e0 and e4. The parameters of e0 don't math, so the v attribute of e0

is set to 0, that is the neutral element for the sum. The same thing is done

by all the ative threads; when t3 has to read from index 7, sine there is no

valid event in position 7, it uses again the neutral value.

Finally eah thread tx omputes the funtion of the its pair of values and

stores it in position x. As example t0 omputes 0 + 9 = 9 and stores it in

position 0.

The algorithm ontinues halving the number of threads at eah step until

only 1 thread survives and opies the �nal value from position 0 in the shared
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array to the global memory.

In this senario the main limit to the number of threads per blok that

an be launhed is represented by the quantity of shared memory available:

to make the program work on any Fermi based GPU, the limit has been

set to 512. So if there are more than 512 events to be omputed for the

aggregate more than 1 blok is launhed, obtaining a number of partial

results equal to the number of bloks launhed (eah blok will produe

one partial result). Depending on the number of these partial results, the

redution an be �nished on the CPU, with a simple sequential omputation

over the array of partial results, or launhing again a redution kernel, that

this time won't hek parameters orretness.

Note that this algorithm ould orretly be exeuted entirely on global

memory; opying the values in shared memory and working there is done for

performane reasons. Extending the support for the remaining funtions,

that are COUNT, AVG, MIN, MAX, and for the �oat data type was quite

trivial. For the MAX and MIN funtions the neutral value is respetively a

very big positive or negative number, while to COUNT and AVG funtions

simply need to have a ount of the valid events read. This is aomplished

with an atomiAdd on a shared variable within the blok. Also the support

for parameter on aggregates has been added. This is another quite a simple

thing: the omputeVal funtion has been extended to hek all the param-

eters, and in ase one doesn't math, the value of the returned attribute is

set to 0.

3.5.4 Consuming lause

Another feature missing in the sample projet was event onsuming. Un-

fortunately this an't be parallelized in any way and must be handled entirely

on the CPU. The events are heked and deleted on the host memory only,

and the orresponding memory page (on next setion) on the devie is �agged

as invalid, so that not any CUDA operation is �red until a new terminator

for the related sequene arrives. One problem arose during the development

of this aspet was that of events uniqueness. On the pu ode it was simple

to disern two pakets of any kind simply heking their address in memory;

in fat the ode is written to store only one single opy of eah event enter-

ing the engine to redue memory usage, and to use pointers to events when
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needed. This was not the ase with the GPU implementation. Data must

be really opied from the host to the devie memory for it to be aessible

from a CUDA kernel, unless the very slow host mapped memory is used,

but this an be a good idea only if the GPU is an IGP, not the ase we're

interested in. So, to state if two events are the same or not, the ode heks

its harateristis: the timestamp �rst and the event type �rst, followed by

all their attributes, in terms of kind and value. This should be ok as long as

two idential events enter the engine: in that ase the behaviour of the en-

gine is unde�ned and wrong results may be observed. On the other hand, at

least theoretially, this partiular situation should never happen. Extending

the ode to properly handle also this ase is very trivial, but requires an ID

�eld to be added to the event lass, thus requiring at leadt 4 more bytes for

every single event, so I deided not to take this path and leave the possibly

broken events omparison algorithm.

3.6 Memory manager

As pointed out by Cugola and Margara in their paper [6℄ one of the pitfalls

of the test projet was memory usage: the really trivial memory alloation

used, along with the lak of big memory availability on GPUs, made it

impossible to store more than about ten rules at the same time on the GPU.

To overome this limit I added a brand new paged memory manager to the

projet, with the goal of a smarter memory alloation allowing more rules

to be stored on the devie at the same time, more transfer e�ieny and

also bringing support for memory swapping between the devie and the host

memory.

3.6.1 Pagination

The �rst goal of the memory manager was to overome the limitations

imposed by the statially alloated memory areas. This is done thanks to

the pagination of the memory used by the engine. Let's make an example:

if the user wanted eah rule handled by the TRex engine to be able to ope

with 100k events in a single window, in the original GPU implementation he

had to statially alloate during the initialization phase the memory needed

to store 100k events for eah olumn of eah rule installed, without even
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knowing if that memory would have really been used thereafter. As example

a rule with a large window and few inoming events would result in a huge

memory waste. Now instead the maximum size of an events window, that

an still be spei�ed, doesn't imply any prior memory alloation.

Figure 3.6: Paged memory.

A page of memory is atually a purely abstrat onept. As shown in

FIGURE 3.6 the physial memory of the GPU instead is alloated all at

one, with one single CudaMallo all, during the initialization phase of the

engine. The size of the alloation is spei�ed in the MAX_SIZE de�nition,

thus it is ompletely under the user ontrol. The address returned by the

alloation funtion is then stored in the onstant memory on the GPU. This

is indeed the ideal usage of this kind of memory in CUDA: small amount of

data aessed onurrently by many threads, that will be able to read values

in a very short time thanks to the ahe of the onstant memory. Then the

blok of alloated memory is splitted in pages, where eah page holds exatly

the number of events spei�ed by the PAGE_SIZE �ag. In the beginning

all the memory pages are free; when a new rules is installed in the engine,

the related proessor makes a subsription to the memory manager, and is

provided with one memory page for eah state of its sequene and for eah

aggregate or negation that it holds. As example in the FIGURE rule R0

has 2 states and 1 aggregate, and it is the �rst subsribing to the memory

manager. It gains aess to the �rst 3 pages, while the others remain free for

other rules or if R0 will need more pages. Indeed if and when more pages will

be needed the memory manager will automatially assign a new page to the

rule, if there is any available. All the memory operations are exeuted by the

memory manager, that deides the best path to take to optimize resoures

usage. A spei� memory struture of the memory manager keeps trak of

the mapping between the page indexes for a rule and page indexes in the
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main memory alloation. FIGURE 3.7 is an example of suh data struture

for the rule R0 of the previous example: the rule has 2 states, 1 attribute and

0 negations; the maximum alloation size set for a single olumn equals 3

times the size of a single page, so that 3 indexes are allowed for eah olumns

of eah kind.

Figure 3.7: Paged memory.

With suh a data struture for every rule installed in the engine, it is easy

to keep trak of the pages assigned to di�erent rules and it is quik to aess

the orret event knowing the rule ID, the kind of the olumn wanted (state,

aggregate or negation) and the index of the event. Aessing the wanted

event is as simple as doing a division and a modulo operation. Assume for

example a page size of 10 events; event 13 will be in page 13/10 = 1, in the

rule domain, in position 13 mod 10 = 3. One the page number (1) and the

event o�set (3) are known, along with the base alloation address obtained

in the initialization phase, it is simple to ompute the memory address.

One a page has been assigned to a rule, it is never released until the

orresponding GPU proessor quits and alls the unsubsribe method of the

memory manager. Lukily this is not a problem and even if an oversized

maximum alloation size per olumn has been de�ned, in ase it is needed

the page won't remain unused, thanks to the swapping feature implemented

in the projet.

3.6.2 Swapping

Pagination itself is already very useful to redue improper memory usage,

allowing the de�nition of theoretially big events' staks without wasting a

lot of memory spae in ase the real number of event is substantially smaller.

Still it is also the prerequisite for another great feature to optimize memory

usage by the engine, that is memory swapping.

Moreover when old events are �ltered out beause they go out from the

window, the orresponding spae is not freed, that is the orresponding mem-
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ory page in not released by the owning rule. This may be a waste if the

window is small when ompared to the maximum alloation size parameter,

beause in that ase only a small portion of the requested memory spae

would be atively used. One solution ould be to dynamially release mem-

ory pages when no more used, but this would also introdue ompliations

and would require new data strutures to keep trak of the exat memory

alloation requested by eah rule. One simple workaround would be to get

rid of the stati maximum alloation size parameter and better size the maxi-

mum number of events per stak to suite the related window size. This ould

be easy if more onstraints on events timing would be introdued.

Swapping memory overomes this limit: in fat eah devie memory page

an be shared by more than 1 rule.

The basi idea is to exploit the quantity of host memory avialable on

modern omputers: it is usually muh greater that the GPU memory, and

an even be expanded easily and without big eonomi e�orts. So, at ompile

time, in GTRex, it is also possible to speify the host memory multipliator

parameter. This states the number of times that the total GPU memory used

is alloated on the host omputer. As example setting the GPU memory

to 512MB and the host memory multipliator to 2, 512MB of ram will be

used on the GPU and 1GB of ram on the host. As a onsequene eah

memory page on the GPU ould be shared by up to 2 di�erent rules. It is

important for the sharing rules to be di�erent beause the omputation for

a single rule is ompleted atomially, without other rules operations being

proessed in the meantime, and all the events belonging to the spei� rule

must be available on the physial GPU memory for the omputation. With

the underlying strutures for memory pagination it was quite easy to add

this new feature; basially 2 new �elds were needed to map virtual pages,

alloated only in the host memory, to real pages in the GPU memory and to

signal to whih rule the events in the devie memory belong. FIGURE 3.8

shows a shema of the new struture.

In the depited example the there are 2 rules installed in the engine.

512MB of GPU ram are used and the host memory multipliator is set to 2,

while the page size is set to 1024. In a possible situation rule R1 obtained 4

memory pages from the memory manager, while 3 pages are needed by R2.

Sine the GPU memory an host up to 5 pages, the omputation wouldn't be
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Figure 3.8: Example of a paged memory on�guration

possible without swapping. In the sene depited when R1 asks the fourth

page, the free pages were �nished; so the memory manager loops through

all the virtual pages (with indexes 5-9) until it �nds the �rst not already

assigned to rule R1 and not already shared by 2 other rules. Page 8 meets

the requirements and is given to R1. On the other hand page 8 is alloated

in the same spae of page 3 in the devie memory.

When an event enters the engine and is relevant for any deployed rule it is

opied and kept on the host memory. Also the memory manager heks if the

page where the new event is opied is already loaded in the devie memory

and, if that is the ase, performs immediatly an asynhronous memory opy.

In this way it is never neessary to opy bak events from the devie memory

to the host one.

When a terminator event is reeived and the omputation must start,

the memory manager makes sure that all the related events are really on

the devie memory in the address where the CUDA kernels expets them to

be. This is aomplished heking all the required pages: if they are already

on the devie memory there's nothing to be done, otherwise the opy is

immediately asked and performed before the omputation begins.

To keep trak of the rules to whih the events in the pages in the devie

memory belong the onGpu �eld is used, as shown in the FIGURE 3.8 exam-

ple. -1 is used to invalidate the page so that is will be opied again to the

devie memory whatever rule will be using it next. It is used as example

when onsumed events are deleted. In the example, if rule R1 reeives a

terminator, memory manager opies the whole page 0 from the host memory
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to the devie memory page 0, then it opies the host page 8 to the devie

page 3 and then the omputation an begin. If instead of a terminator a

normal event was reeived, as example to be added to page 8, the memory

manager would have only added the event to the host memory, sine page 3

is not assigned to rule R1 in the same moment.

Altough quite omplex, this memory swapping mehanism proved to

work quite well (as shown in SECTION 4.13.2) and allows onsistent memory

saves, allowing even GPUs with 512MB of ram (under the urrent average),

to store and manage a great number of rules onurrently.
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Chapter 4

Experimental results

4.1 Introdution

In this hapter I will illustrate a big seletion of test onduted to evaluate

the performane of the GTRex engine opposed to those of the original one

based on the CDP algorithm on CPU. Evaluating the performane of a CEP

engine is not easy as it is strongly in�uened by the workload, haraterized

by the type and number of rules and the events to proess. Unfortunately

there are no publily available workloads oming from real deplyments, so the

tests performed here have been reated ad ho to test the engine in di�erent

situations over a wide parameters spae and to test the engine where it ould

show its limits.

4.2 Con�gurations

The tests have been done on 2 di�erent omputers: one with a low end

graphis ard (table 4.1) and one with an mid range one (table 4.2). Exlud-

ing the graphis ards, the two on�gurations are omparable: 4gb of ram,

that is the quantity available on the lower spes p, is enough for any kind

of test omputation done in this hapter, and the host CPU is very similar

in terms of arhiteture and lok frequeny, but has more physial ores on

the higher end on�guration. Thus the results of the CPU engine running

on the two on�gurations are very similar when only 1 rule is proessed, and

in the graphs they have been uni�ed, for the sake of simpliity.

The GPU engine used is the result of this projet, the brand new CUDA
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powered engine for TRex, while the CPU engine is the latest version of the

CDP based TRex engine, that makes use of multiple CPU ores and showed

good results when many rules are installed in the engine. It is the default

engine urrently used in the TRex middleware.

Table 4.1: Components of PC1

PART MODEL/QUANTITY

CPU AMD Phenom II x4 965 �3400MHz

RAM 4GB DDR3

GPU GeFore GT520 512MB (GF110)

OS Ubuntu 13.04 64bit

Table 4.2: Components of PC2

PART MODEL/QUANTITY

CPU AMD Phenom II x6 1055t �2800MHz

RAM 8GB DDR3

GPU GTX460 1024MB (GF110)

OS Ubuntu 12.04 64bit

4.3 Workload

The base workload is exatly the one used by Cugola and Margara in

their paper [6℄ desribing the �rst GPU implementation of the TRex engine.

Rule R2

de�ne CE(att1 : int)

from C(att = $x) and last B(att = $x) within 1000000 from C

and last A(att = $x) within 1000000 from B

where att1 = Sum(A(att = $x).value within 1000000 from B)

This simple rule onsiders a sequene of three states, one for eah event

type. Two parameters are de�ned on B and C so that all the events ompos-

ing a omplex one have the same value for the integer attribute att. Also an

aggregate is de�ned to ompute the sum of the attributes. The total num-

ber of events given to the engine is 100000, and they are equally distributed

over all the de�nitions of the rule. Moreover the window size is set so that
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not any event is deleted beause of its timestamp during the entire ompu-

tation. As a result in the base senaraio eah olumn will hold on average

33333 events. Starting from this base senario many parameters have been

hanged to trak the response of the engine in di�erent situations.

4.4 Parameters settings

The new GPU engine provides di�erent parameters that an be tweaked

in a single header �le to ompile it for various workloads. This is nees-

sary beause of the stati alloations needed by the GPU engine to work

e�iently; they desribe the maximum apaity in di�erent �elds, like the

maximum number of rules that an be handled or the maximum number

of parameters that a state in a rule an have. If oversizing most of these

parameters has the only onsequene of wasting some memory, 2 of them

a�et seriously the performane; they are the maximum number of states for

a rule and the maximum number of attributes that an event an have.
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Figure 4.1: Impat of an oversized max rule �elds parameter

Graph 4.1 shows the impat of di�erent max rule �elds parameters on

exatly the same workload: the speedup dereases with larger values. Note
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that the very same parameter is de�ned and used also by the CPU engine, but

thanks to its memory strutures based largely on pointers, its performane is

not a�eted by the parameter. On the GPU, on the other hand, more unused

slots in partial sequene ontainers mean more memory fragmentation, thus

worse performane.
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Figure 4.2: Impat of an oversized max attributes

Exatly the same happens for the max attr parameter; this time the un-

used memory slots are in eah event spae alloated in the GPU memory and

the performane are a�eted even more. This kind of parameter is not even

de�ned in the CPU implementation, where attributes are in a dynamially

alloated array in an event paket.

In the following tests these parameters have been set to the optimal value

for the spei� workload. In reality it ould be impossible to know exatly

a priori the harateristis of the workload.

4.5 Testing methodology

All the following tests, omparing the performane of GTRex with those

of the standard CPU engine, were done loally, with the two engines ati-
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vated in the same middleware instane. Also the events noti�ations were

generated within the same program, with an evaluation omponent built ad

ho for these simulations.

Feeding the engine diretly with pakets eliminated the impat of the

ommuniation layer in the measures. Moreover the omplex events noti�-

ations generated triggered exatly the same exeution paths for both the

engines, and ad ho tests on�rmed that it didn't alter the results in any

way.

The initialization phase was left out from the time reordings: only the

time to proess the single paket and signal the reation of the omplex event

was registered from outside the engines in order to ondut an analysis as

muh onsistent as possible.
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4.6 Base Senario
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Figure 4.3: Single Seletion.
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Figure 4.4: Multiple Seletion.

Figure 4.5: Base Senario

In the base senario the advantage of the GPU is onsistent and signif-

iant. Indeed the senario is very suited for the GPU omputation: it has

many events per olumn, that oupy enough the GPU in terms of work-

load, it has a single rule, that limit the CPU sequential management ode,

and it is hard to �nd valid omplete sequenes, beause the hane that all

the parameters are met is quite low (only 1800 to 2500 omplex events have

been generated in these tests). This latest point redues the advantage that

the sequential ode has in the omputation of single seletion onstraints,

beause it an stop as soon as the �rst valid sequene is found.

Moreover, while the omputation time for the single seletion poliy on

the CPU is lower than that of the multiple seletion poliy, on the GPU the

situation is turned upside down. Indeed when a single seletion poliy is

applied the CPU algorithm stops the omputation as soon as the �rst valid

element is found; the GPU instead when has to deal with single seletion

poliy must �re two onseutive kernels to omplete the omputation or-

retly. On the other hand the CPU when dealing with a multiple seletion

poliy must hek all the events in the olumn in any ase, just like the GPU

does.

The speedup is inredible: the GT520, in spite of its irrelevant prie,

already gives an average speedup of 15X in the single seletion ase and

21X in the multiple seletion. The GTX460, on the other hand, reahes

respetively an average speedup of 77 and 110 times.
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4.7 Length of sequenes
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Figure 4.6: Varying Sequene Length Senario

The main aspet that in�uenes the performane when varying the se-

quene length while keeping anything else onstant is the number of events

per olumn. Indeed more states bring to less events per olumn, that go from

above 30k when there are 3 states to about 20k with 5 states. As a onse-

quene the rule beomes simpler to ompute and the average omputation

time lowers both on the CPU and on the GPU. The speedup of the GPU

over the CPU is lowered, sine the amount of work parallelizable dereases,

but still onsistent even in the 5 states test, beause 20k events per olumn

are still enough to exploit the SMs of the GPUs. Again the multiple seletion

poliy is faster than single seletion on the GPU, while the opposite happens

on the CPU.
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4.8 Number of Values
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Figure 4.7: Varying Number of Values

With number of values the amount of possible values for the attribute att

is indiated. A lower number inreases the possiblity that the parameters of

events in the same partial sequene math and thus inreases the number of

omplex events reated as well as of partial omputation brought on by the

engines before being disarded. A lower number of values impats on the

performane of the GPU engine more than on the CPU engine; indeed more

omplex events reated mean more atomi aess to the shared variables in

the CUDA kernels, an so more serializations and performane drops. Also

moving full partial sequenes from the devie memory to the host one has a

ost in terms of time, and it raises with the number of events reated. Fi-

nally having less possible values helps the CPU engine in the single seletion

senario, where the �rst valid event in a olumn found is enough to stop the

omputation on that olumn. In the end the speedup beoming lower with

less possible values was expeted, but, unless the rule beomes very simple

and a single seletion poliy only is useed, the speedup remains onsistent.
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4.9 Size of windows
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Figure 4.8: Varying Size of Windows

Reduing the size of windows has the same e�et as inreasing the number

of states: there are less events in the olumns to be omputed in parallel, thus

a smaller window means less avdantage for the parallel hardware. Note that

the relation between windows size and number of events per olumn in this

example is not 1:1. It is very interesting to see how below a ertain windows

size the performane of the GT520 and of the GTX460 beome omparable:

it happens beause below a threshold of about 370 events per olumns the

GTX460 has more omputational units than needed, that remain unused.

This is totally expeted, remembering that the GT520 has 1 SM with 48

uda ores; eah uda ore exeutes 32 threads onurrently, so that the limit

of threads running in parallel on the GT520 is 1536, more or less the point at

whih the performane of the two GPUs beome omparable. At the same

time the GTX460 is apable of exeuting up to 10752 threads onurrently,

and this is re�eted in the average omputation time that starts growing

only in the test with about 30k events per olumn.
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4.10 Number of Rules
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Figure 4.9: Varying Number of Rules

While the time needed by the CPU implementation dereases when more

rules are installed, that of the GPU one inreases, ausing also a rapid de-

rease of the average speedup to 1. The ause is mainly found in the number

of events stored in the olumns when a omputation is launhed. As exam-

ple, if with only one rule deployed eah olumn will store about 33K events,

with 50 there will already be around 660. Considering a blok size of 256 in

the CUDA on�guration, this results in only 3 bloks launhed per kernel,

far less than an ideal situation and not enough to exploit the omputational

power of the GPUs used. Moreover the quantity of work to �nd the right

olumns for events and for work distribution that must be done sequentially

on the CPU inreases with the number of rules, helping the onvergene of

the time taken by the two implementations for the average omputation.

With 500 rules this job beomes the relevant one, and the performane of

the engines onverge. Note also that 500 rules mean only about 66 events

per olumn, far too few to test the performane of the engines and to reate

any omplex event.
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4.11 Negations
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Figure 4.10: Varying Number of Negations

Support for negations is one of the new features brought by GTRex;

as said in Cap. 3, two di�erent algorithm have been developed for this

new feature, that is indeed not an easily parallelizable operation. It is not

possible to know the exat size of the exeution in advane, and lots of

omputational units are wasted in the kernels, sine few threads an keep

the whole warp busy. For these tests the fastest version has been used; the

other options should be maintained beause it ould be a good base for future

developments exploiting the dynami parellelism of the Kepler GPUs (refer

to the onlusions for further info). Indeed these pitfalls are re�eted in the

graphs, that show a lear drop in the speedup when 1 or 2 negations are

added. The CPU time is almost idential in the di�erent tests, while that of

the GPUs raises notably when the �rst negation is added. Adding parameters

to negations impats again on the sequential ode exeuted by eah thread

on the GPU, raising one more onsistently the average omputation time;

at the sime time it doesn't a�et the CPU performane a lot. Another e�et

to onsider is that adding parameters to negations inreases the number of

omplex events generated, with the additional e�et of damaging the GPU

performane beause of the data opied from the devie memory.
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4.12 Basi Single Seletion Rules
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Figure 4.11: Varying Number of Parameters between states

These tests are very interesting beause they show the most ommon

situation in whih the CPU implementation still outperforms GTRex, even

on a single rule. In this ase a very simple rule, without any parameter

between onstraints, is deployed. The number of states is still 3 and there

are still many events per olumn, enough to fully exploit the omputational

power of the GPUs. The seletion poliy tested is only single beause using a

multiple one in these onditions would bring to an explosion of events reated,

and beause the interesting aspet is only present in the single seletion ase.

What happens is that without parameters the CPU engine is muh faster

than the GPU one: in fat �nding a ompatible event for partial sequenes

is very easy. This, ombined with the single seletion poliy, makes the CPU

job absolutely trivial. Indeed the �rst element tested will always be valid

and the omputation for that state will immediately stop, with a valid re-

sult. The GPU, on the other hand, will still analyze all the events in the

olumns without knowing anything on their values; the GT520 indeed needs

muh more time than the CPU and the GTX460, that an still analyze all

the events of the olumns in a time omparable to that taken by the CPU.

Inreasing the number of events would worsen even more the performane

of the GPUs, even for the GTX460, while would not a�et the CPU perfor-

mane. The e�et is highly hidden already with 1 parameter, that makes

the CPU average time muh higher, while the time needed by the GPU is

lowered. This last e�et is aused by the number of omplex events reated

(that inreases a lot with less parameters) and to be opied on the host.
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4.13 Memory Manager performane

The tests above analyze the response of the engine to di�erent kinds of

workload. One important feature of the new engine, on the other hand, is the

memory manager that allows memory pagination to save the limited GPU

memory to install more rules in the GPU engine, and also to swap memory

pages to inrement even more the e�ieny, allowing the alloation of virtual

memory pages on the GPU. The size of a single page an be set in terms of

events number at ompile time with a spei� preproessor �ag. Also the

usage of memory pagination an be tweaked as explained in SECTION 3.6.

4.13.1 Page Size
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Figure 4.12: Varying Page Size

A lower page size allows the engine to better use the devie memory,

avoiding the alloation of memory areas that won't be used for the om-

putation. On the other hand a lower size means that more pages will be

needed for the same omputation, thus also a bigger parameter spae and

more possible fragmentation slowing down global memory reads. As the

graph shows this is not a problem until the size of the page beomes very

small, but when the size beomes lower than 8192 performane dereases

rapidly. It is also interesting how the usage of a onsuming �ag interats

with the pagination. Overall the onsuming lause worsens the speedup of

the GPU, sine it introdues more memory opies between the host and the

devie as well as sequential work to be done by the CPU to �nd the events to

be deleted. Indeed when an event is onsumed it must be deleted from the

olumns. If this is a trivial task on the CPU thanks to the strutures based
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on pointers, when dealing with the GPU memory the whole page must be

opied again after the deletion of an event. Note that it ould be possible to

simply �ag the event as deleted, but this would ause memory fragmentation

and wasted threads. In the end smaller pages should help when a onsuming

lause is used, beause the size of memory bloks that must be opied again

when a page is invalidated is redued. This re�ets marginally on the overall

performane, as it an be seen from graph 4.12, where the di�erene in the

average omputation between the onsuming and the not onsuming rules

lowers with smaller pages.
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4.13.2 Swapping
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Figure 4.13: Varying Page Swapping Usage

Testing exatly the impat of page swapping on the overall performane

was not trivial: there's no diret way to ontrol the swapping of the pages,

and it must be intentionally aused ombining the e�ets of the available

GPU memory, the host memory multiplier, the number of rules, the size of

the pages and the distribution of events.

Lukily enough the distribution of events is, as usual, equal: eah event

entering the engine has the same probability to be stored in any olumn

reated. Setting the pages to be small in relation to the foreast of events

that eah olumn will store then is essential to enhane the usage of di�erent

pages and thus swapping. The last parameter to be set is GPU memory:

keeping all the other settings �xed, lowering the GPU memory until the

omputation annot �nish is the �rst step. At that point, inreasing the hsot

over devie memory multiplier allows the omputation to �nish orretly and

the swapping feature to be used.

Thus in the graph the GPU memory used to omplete the omputation

is reported: at eah step a greater multiplier was needed, so that in the

70mb test no swapping was used, with 35mb a page ould be shared by two

di�erent rules, with 17mb by three and with only 13mb four di�erent rules

ould aess the same page.

The results are interesting: page swapping allows to greatly redue mem-

ory onsumption without a�eting too muh the performane.

In the last test memory usage was just about 18% of that of the �rst one,

and the average omputation time raised by only 13% on the GT520 to 16%

on the GTX460.
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Future work There are various enhanements that an be applied to the

ode that ould potentially optimize the performane of GTRex.

In �rst plae the GPUs used for the development and the performane

analysis of the projet were all based on the Fermi arhiteture, that implies

omputation apabilities 2.1.

One of the very interesting features of the new Kepler GPUs, bringing

CUDA 3.5 apabilities, is dynami parallelism. It an be exploited to bypass

the limitations of both the approahes proposed for the negations' omputa-

tion; indeed with this new feature new kernels an be alled from the devie

ode, so that a new parallel funtion that heks all the negations an be

launhed only if the event meets parameter and timestamp requirements in

the previous steps of the omputation.

Dynami parallelism ould also redue the synhronization requirements

atually present during the omputation of omplex events in single seletion

ases.

Another interesting aspet that an be studied is related to the page

swapping management. As seen before, the atual ode that hooses a new

page to be alloated for a requesting rule is very basi. It hooses simply the

�rst slot available that is not on�iting with another slot already possessed

by the rule and not being shared by more rules than the minimum possible.

This hoie works well with the sripted workloads tested during the projet

development. On the other hand in di�erent, maybe more realisti, situations

there may be better implementations. As example it ould be possible to

implement an LRU (least reently used) seletion poliy, that ould lead to

less memory swapping in partiular ases where terminators for some rules

ome muh less frequently than others.



Conlusions

In the end, note that all the GPU ativity done in the projet relies on the

�rst GPU listed by the NVIDIA driver. This is ok for most on�gurations

where the omputer has only 1 GPU. On a PC with many GPUs, though,

it may be useful to have the possibility to assign di�erent rules to di�erent

GPUs, so that even a greater parallelization and even greater performane

ould be ahieved. On the other hand this should be a trivial modi�ation

to the projet ode, and ould be done without too many e�orts. It ould

be enough do instantiate more than one GPUengine (thus also more Mem-

oryManagers) in the exeution and tell eah one whih GPU it should use.

Of ourse then the rules must be assigned proportionally to all the available

engine aording to the apabilities of the related GPU.

State Of Art One of the most known and used CEP middleware used in

the world is Esper [1℄, an open soure java enterprise level produt, widely

used and mature, adopting a �exible language with a rih syntax and fo-

using on e�ieny and performane. It uses an automata representation of

sequenes of events similar to that of the AIP algorithm

As shown by Cugola and Margara in their paper [5℄ the �rst version of

TRex, exploiting the AIP algorithm, was already faster than Esper in all the

test ases; in some senarios the di�erene was very onsiderable.

In addition GTRex demonstrated to be very powerful: it brings inredible

performane improvements in many workloads without loosing the features

and the �exibility of the standard CPU implementation of the TRex engine,

with the exeption of some ompile time variables that must be set for the

sizes of di�erent omponents of the engine.

In onlusion, even if a diret omparison between GTRex and Esper

was not onduted, the engine developed in this thesis should outperform

substantially Esper in most, if not all, the possible usage senarios.

Resume and Final Considerations In this thesis I have implemented

a new CUDA powered engine that an be easily embedded in the existing

TRex2 middleware for Complex Event Proessing.

My implementation started from a test projet developed by Cugola and

Margara, that had a very limited feature set and wasn't ompatible with the

urrent version of the middleware.
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I added support for various types of aggregates, negations, onsuming

lause, rules with both single and multiple seletion operators as well as

the same �exibility in the rule de�nitions haraterizing the TRex standard

engine and adapted the data strutures and the interfae to be ompatible

with the other omponents of the engine.

Moreover I designed and developed from srath the new memory man-

ager that brings pagination and virtualization, allowing at the same time

GPUs to handle a big number of rules even using a small amount of memory

and to optimize memory transfers with performane improvements.

Finally I optimized the whole engine with the goal of overlapping as muh

as possible the exeution of di�erent jobs on the host CPU and on the GPU.

The new engine demonstrated to be very e�ient in terms of performane

and even quite �exible, keeping a onsiderable advantage over the lassi

CPU engine in a wide variety of use ases.

On the other hand it has still some limitations, that an be redued with

future developments.

In my opinion pairing the urrent CPU based engine with GTRex would

be a great improvement for the TRex middleware: with an appropriate rule

dispather both the engines ould work in pair and in parallel with the

rules that best �t their harateristis. As example rules with many single

seletion operators and an high probability of �nding new omplex events

ould be routed to the CPU engine, while in ase of multiple seletion and

large windows of events they ould be proessed by GTRex.

In this way the performane of the middleware an be substantially en-

haned with an a�ordable expense, sine even a GPU osting less than 100

Euros an bring massive improvements in ertain situations.
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