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Abstract
The purpose of this thesis is to design a Model Predictive Control based

Motion Planner unit for an Autonomous Vehicle. The unit should provide
the trajectories of the inputs of the vehicle such that certain references are
followed and, at the same time, fixed and moving obstacles are avoided safely.

The first controller studied is an Active Front Steering system, where the
input is only the steering angle. The controller is a linear model predictive
control based on linearization of the nonlinear vehicle model and it was used
to thoroughly investigate its limits, especially for what concerns the purpose
of avoiding obstacles.

This linear controller is then enhanced including also the control of the
brake and throttle pedals. This allows us to further delineate properties and
defects of the linear controller.

Once the limits of the linear controller have been understood, the design
of the nonlinear model predictive control, again dedicated to define the
trajectories of the steering angle and of the brake and throttle pedal positions,
has been carried out. We have then challenged it with fixed obstacles, with
blind alleys and with moving obstacles. Also an extensive analysis on the
controller sensitivity for what regards obstacle shapes, optimization algorithm
and optimization initial conditions has been carried out in order to define the
best setup.

Keywords
Model Predictive Control, Motion Planner, Obstacle avoidance systems,
Autonomous vehicle.
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Sommario
Lo scopo di questa tesi è quello di progettare un’unità Motion Planner

basata sul Model Predictive Control da poter essere utilizzata su un veicolo
autonomo. L’unità dovrà provvedere a fornire le traiettoria dei controlli del
veicolo in modo tale da permettere di seguire determinati riferimenti e, allo
stesso tempo, di evitare ostacoli sia fissi che in movimento.

Il primo controllore studiato è un sistema Active Front Steering, dove
l’input del sistema è solamente l’angolo di sterzo. Il controllore è un Model
Predictive Control lineare basato sulla linearizzazione del modello non lineare
del veicolo, ed è stato usato per indagare a fondo i suoi limiti, specialmente
per quanto riguarda la capacità di evitare ostacoli.

Questo controllore lineare è stato quindi sviluppato in modo tale da
includere anche il controllo del pedale del freno e dell’acceleratore. Questo
ha permesso di definire più approfonditamente i pro e i contro di questo
controllore.

Infine si è progettato il controllore Model Predictive non lineare, volto a
definire le traiettorie dell’angolo di sterzo e della posizione del pedale del freno
e dell’acceleratore. Sono state quindi valutate le sue performance nei confronti
di ostacoli fissi nello spazio, di vicoli ciechi e di ostacoli in movimento. Inoltre
è stata condotta un’analisi dettagliata in funzione della forma dell’ostacolo,
degli algoritmi di ottimizzazione e delle condizioni iniziali della ottimizzazione.

Parole chiave
Model Predictive Control, Motion Planner, Sistemi di aggiramento ostacoli,
Veicolo autonomo.
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Chapter 1

State of the art

In the last few years the world of mechatronics developed interest in the
topic of fully autonomous vehicles. The attention in vehicles was then only
based on driver assistance, while now it is more about creating completely
independent cars.

1.1 Controlled vehicles overview

1.1.1 Semi autonomous systems
The term semi autonomous is used to indicate those systems that are capable
of governing one or more particular actions, but need also the presence of
an operator to cope with any other needs. This type of systems are simpler
with respect to completely autonomous ones, and this is the reason why these
systems were used in the past. The main difference is due to the measurement
system. In fact semi autonomous systems manage only a small part of the
whole system, and therefore need measurements and informations only about
that particular part. For example, a cruise control needs only information
about the speed of the vehicle, while a fully autonomous vehicle needs precise
informations about the whole state of the vehicle and also information about
the environment. Other examples of semi autonomous systems applied to
vehicles are the well known Antilock Braking System (ABS) or the Electronic
Stability Control (ESP) systems, but also more complicate Active Front
Steering (AFS) systems were studied. Little by little every mechatronic
system, although being semi autonomous, started to become more and more
complicated and invasive. At the beginning of this year Toyota [11] announced
a vehicle that is capable of autonomously avoid collisions. The system is
still to be considered semi autonomous since the vehicle, in spite of being

1



2 CHAPTER 1. STATE OF THE ART

very sophisticated especially in the measurement system, is not able to reach
destinations on its own. However the measurement system and the driving
capabilities of the car over a short track are absolutely commensurate to the
much more famous and fully autonomous Google car.

1.1.2 Autonomous systems
On the other hand fully autonomous system are, as already said, a lot more
complicated. Another big difference between the two types, in addition to the
complexity of measurement system that sometimes (as for the Toyota) might
be comparable, is in the management of references or paths. Semi autonomous
systems in fact operate the system only over a short track. A fully autonomous
system instead must guide the vehicle to a known destination: it must manage
stops, starts and, of course, the unexpected. Until a few years ago fully
autonomous vehicle were only slow driving Automated Guided Vehicle (AGV).
Only in the last decade the interest on medium-high speed applications started
growing. In 2007 the Defense Advanced Research Projects Agency (DARPA)
organized the DARPA Urban Challenge where fully autonomous vehicles were
challenged in a course filled with typical urban obstacles. The winner of that
race, the car named Boss, was driven by a system composed of three different
control layers: the Mission layer creates the reference trajectory, or global
path, depending on a known destination; the Behavioural layer is specialized
in managing intersections and lane changes; finally the Motion Planning layer
defines a local trajectory taking into account obstacles and informations from
the upper layers. The Motion Planning is also the part of the control logic
that actually drives the car, [1].

1.1.3 Model Predictive Control
The Model Predictive Control was developed to manage production plants
of chemistry factories or refineries in the early 80s. Based on a dynamic
model of the system, the controller makes a prediction of the outputs and
therefore defines the values of the manipulated variables such that a certain
cost function is minimized. Typically this functions is the error with respect
to defined references. One of the major advantages of this type of control is,
in addition to the capability of optimizing performances, the capability of
managing constraints both in the manipulated variables and in the system
outputs. An example could be the need to drive a valve that is only capable
to open up to a certain value of flow (constraint on the manipulated variable),
such that the system obtains a certain level of pressure but not over certain
value (constraint on the system output).
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A prediction horizon is required, which is the time interval that is consid-
ered for one optimization. On the top of that also a control horizon is set such
that the control needs to calculate the control actions only for a shorter period
of time, thus reducing the computational cost. Once the control actions for
the future horizon have been defined, the control action is only applied for the
first step. Then the optimization process is repeated. That is called receding
strategy and allows to cope with modelling errors and unexpected changes in
constraints.

Figure 1.1: MPC basic structure

Model Predictive Control (MPC) for both linear and non-linear systems
were studied, the second ones called Non linear Model Predictive Con-
trol (NMPC). We must say that the linear MPCs significantly reduce the
computational time. In fact for a linear model it is very easy and fast to ex-
trapolate a future prediction, even far, and, writing the optimization problem
as a quadratic problem, it is very easy to find solvers (for example quadprog in
Matlab) that are able of solving said problems in a very short time. NMPCs
apply exactly the same concepts of linear MPCs, but both the prediction
and the solver require higher computational costs to be solved by standard
computers.

The control of industrial process is guaranteed by the very slow dynamics
of such systems. Only recently, with the increase of the processing power
NMPCs have applied to systems having faster dynamics.

1.1.4 MPC guided vehicles
MPC is capable of managing only aspects very close to the real driving, i.e.
at the Motion Planning layer. In some papers MPC is applied to only few
aspects of the driving; i.e. only the steering is taken into account. In [2] and
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[3] we find the first interesting applications of AFS obtained with a MPC.
In these examples a known trajectory is provided to the controller (thus
the control is not capable of taking into account obstacles) with the goal
of verifying the stability of the vehicle in particular conditions. In [2] the
attention is focused on the comparison between NMPCs and Linear Time
Variant (LTV)-MPCs while managing icy roads. In [3] the research is focused
on stability with the vehicle forced by lateral wind with NMPC only. We
can find evolutions of these controls in [4] where two different levels of MPC
controllers were used. The first one with the task of creating a reference
trajectory, using a simplified mass-point vehicle with a NMPC, while the
second one with the task of driving the non-linear vehicle model with a LTV-
MPC. Although this tasks division allows a faster controller and thus a faster
real-time implementation, obstacles were not taken into account and therefore
it is not known if the first level, using a simplified dynamic system, is capable
of creating feasible trajectories for the second level to follow. Moreover with
these simplification we are losing the concept of optimization, in fact the
trajectory is not generated for the reason being the optimal one for the vehicle,
but from a simplified model that is very far from the real one.

It is clear that those systems are not useful enough to create a fully
autonomous vehicle. In fact they are missing the control for the longitudinal
dynamics of the vehicle, i.e. accelerator and brake pedal, thus missing to take
into account the joint lateral and longitudinal dynamics. The only papers
that consider at least the braking capabilities of the vehicle are [5], [6] and
[7] where the slip ratio notion is introduced. In [5] there is the hypothesis
that a brake system capable of creating the four required slip ratios exists.
The MPC is thus used to decide the four slip ratios and the steering to follow
a known trajectory. We find an evolution of this system in [6] where also
a model of the braking system is introduced. In another example, [7] uses
steering and blocking differential to control the yaw of the vehicle. Although
exercises for the longitudinal dynamic control exist, as in [9], nobody has
never considered MPC capable of driving a vehicle using common inputs like
steering, accelerator and brake pedals while avoiding obstacles at medium-high
speeds.

We appreciated from the beginning the choice of the MPC. Thanks to the
prediction based on the system dynamic model and thanks to the receding
strategy, its behaviour is as close to a racing driver as possible: it knows the
vehicle so well that it is able to predict the future state of the vehicle, but it
is also capable of managing unforeseen events. A common PID controller is
not capable of complying all these things and for these reasons we decided to
use the MPC as driver for our vehicle.
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1.2 Linear Discrete MPC theory
As we have already explained, the general design objective of model predictive
control is to compute a trajectory of a future manipulated variable u in order
to optimize the future behaviour of the plant output y. The optimization is
performed within a limited time window by giving system information at the
start of the time window. Being the optimization based on the model of the
system, it is obvious that an accurate system model is required. Typically
this is a very big problem with chemical plants, but in our case the vehicle
model is accurate. There are different approaches to predictive control design.
Each approach uses a different model structure. Among many we find step
response, transfer functions and state space models. The more used and more
adapt to cope with mechanical systems is the state space model.

Then there is the need to discretize the model of the system. The control
is in fact created only to cope with steps. This is because the control has to
obtain, through the optimization process, the actual values of the manipulated
variables over the whole time window. If the control is discrete, it means
that the optimization process has to provide, step by step, the values of the
manipulated variables. So, for example, a 2s time window with 50ms steps
results in 40 different manipulated variable values that the control has to
determine. Now if the control is not discrete, it means that the optimization
process should give us a continuous signal for the manipulated variables and
this, even though it can be made using primitive functions, is not typically
applied because the optimization process, already very tricky, becomes more
more complicated.

At this point we have explained the basic idea behind the control and
we have introduced the essential parameters for his functioning. To clarify a
little better, these are the fundamental components of our control:

• Discretization step ts;

• Prediction horizon ny;

• Control horizon nc;

During a single optimization the discretization step represents how often
there will be a change in the control forces. For this reason the controller can
only act every ts seconds, for example every 50ms. Therefore the optimization
result will consist in the values of the manipulated variables every ts seconds.
As soon as the optimization is completed, the controller applies only the first
value of the manipulated variables. The system will then move for an interval
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equal to the discretization step and then the whole optimization process will
be repeated.

The value of the prediction horizon defines how long will the time window
be. Typically ny is expressed as a number of steps. With this convention the
following will be true: Wl = ny · ts, where Wl is the time window length in
seconds.

For what regards the control horizon, it is defined as the number of steps
of the manipulated variables that are considered in the time window. In fact
we may want to consider only the actions of the manipulated variables in
the first part of the window to increase the speed of the optimization. In
this way the optimizator will have only to obtain the first nc values of the
manipulated variables and then, for the rest of the window, it will consider
them to remain constant.

The choice of these three parameters is of fundamental importance and
strictly depends on the system under control. As suggested in [12], the length
of the time window must be as long as the slowest dynamics of the system.
In this way the control is able to consider and optimize control actions that
allow the system to conclude the transient motion. Of course the longer the
better, but that will effect the speed of the optimization process and it might
be so slow that a real-time implementation will not be possible.

The value of the control horizon is, in the same way, to be kept as long
as possible, but typically it is taken to be equal to half of ny to allow faster
optimizations. Bigger values of nc means increasing the number of variables
that the optimizator must handle.

While the time window length must be kept as long as possible to consider
slow dynamics, the value of ts must be kept as short as possible to consider
fast dynamics. It is easy to understand that, if the system has got very fast
dynamics, a rough discretization will filter out part of his behaviour thus
producing control aliasing and this will greatly affect the stability of the
controlled system.

1.2.1 Augmented model
Now it is required to use the discretized mechanical system. From the
continuous vehicle model we obtain the discretized model thanks to c2d
matlab function that uses the Zero-order hold method [16]. If we write it in
the state-space form for a Multi Input Multi Output (MIMO) linear system:

~xm(k + 1) = Am~xm(k) +Bm~u(k) (1.1)
~y(k) = Cm~xm(k)
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where ~xm is the state vector, ~y is the vector of outputs of the system and ~u
is the vector of the manipulated variables. It is important to point out that
an MPC controller is capable of managing nonsquare systems (i.e. systems
with different number of outputs different from the number of manipulated
variables), but best results are obtained with square systems. In fact if we
have more outputs than manipulated variables we must accept offsets in some
of the outputs. On the other hand, if we have more manipulated variables
than outputs, we will have more conditions that give us the same results and
some set-up of the optimizator will be required in order to obtain reasonable
results.

To guarantee the perfect achievement of the references the state-space
model is modified so that an embedded integrator is included [13].

Subtracting two subsequent time instants, from (1.1), we obtain:

~xm(k + 1)− ~xm(k) = Am(~xm(k)− ~xm(k − 1)) +Bm(~u(k)− ~u(k − 1))

that can be easily rewritten as:

~∆xm(k + 1) = Am ~∆xm(k) +Bm
~∆u(k) (1.2)

It is important to notice that the inputs of this systems are ~∆u(k) and
not ~u. In the same way, for the outputs we have:

~y(k + 1)− ~y(k) = Cm(~xm(k + 1)− ~xm(k)) = Cm ~∆xm(k + 1)
= CmAm ~∆xm(k) + CmBm

~∆u(k)
(1.3)

Combining (1.2) and (1.3) we obtain another state-space model.

~x(k+1)︷ ︸︸ ︷[
~∆xm(k + 1)
~y(k + 1)

]
=

A︷ ︸︸ ︷[
Am 0Tm

CmAm 1

] ~x(k)︷ ︸︸ ︷[
~∆xm(k)
~y(k)

]
+

B︷ ︸︸ ︷[
Bm

CmBm

]
~∆u(k)

~y(k) =

C︷ ︸︸ ︷[
0m 1

] [
~∆xm(k)
~y(k)

] (1.4)

where 0m =

n1︷ ︸︸ ︷[
00 . . . 0

]
and n1 is the length of the state vector. The triplet

(A,B,C) is called the augmented model, that will be used in the design of
the predictive control.
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1.2.2 Linear prediction
Since we are now dealing with linear systems, the prediction can be analytically
written.We assume that the whole state vector for each prediction is known.
Thanks to this hypothesis the state vector at the time k is known. The future
control trajectory is denoted by:

~∆u(k), ~∆u(k + 1), . . . , ~∆u(k + nc − 1)

where nc is the already introduced control horizon. The prediction of the
state of our system starting from k, using the notion of [13], will be written
as:

~x(k + 1|k), ~x(k + 2|k), . . . , ~x(k + ny|k)

where ny is the already introduced prediction horizon. Being the system
a MIMO system, every ~x and ~∆u is a vector. Now considering the triplet
(A,B,C) we can easily write the future prediction of the state vector of our
linear system1.

~x(k + 1|k) = A~x(k) +B ~∆u(k)
~x(k + 2|k) = A~x(k + 1) +B ~∆u(k + 1)

= A2~x(k) + AB ~∆u(k) +B ~∆u(k + 1)
~x(k + ny|k) = Any~x(k) + Any−1B ~∆u(k) + · · ·+ Any−ncB ~∆u(k + nc − 1)

In the same way we can proceed with the outputs.

~y(k + 1|k) = CA~x(k) + CB ~∆u(k)
~y(k + 2|k) = CA~x(k + 1) + CB ~∆u(k + 1)

= CA2~x(k) + CAB ~∆u(k) + CB ~∆u(k + 1)
~y(k + ny|k) = CAny~x(k) + CAny−1B ~∆u(k) + · · ·+ CAny−ncB ~∆u(k + nc − 1)

We can now define the matrices Pxx, Hx, F and Φ:

1It is important to remember that the triplet is not the discretized model, but the
augmented version of it.
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~x(k + 1|k)
~x(k + 2|k)
~x(k + 3|k)

...
~x(k + ny|k)


︸ ︷︷ ︸

~x

=



A
A2

A3

...

Any


︸ ︷︷ ︸
Pxx

~x(k)+



B 0 . . . 0
AB B . . . 0
A2B AB . . . 0
... ... ... ...

Any−1B Any−2B . . . Any−ncB


︸ ︷︷ ︸

Hx



~∆u(k)
~∆u(k + 1)
~∆u(k + 2)

...
~∆u(k + ny − 1)


︸ ︷︷ ︸

~∆u

and



~y(k + 1|k)
~y(k + 2|k)
~y(k + 3|k)

...
~y(k + ny|k)


︸ ︷︷ ︸

~y

=



CA
CA2

CA3

...

CAny


︸ ︷︷ ︸

F

~x(k)+



CB 0 . . . 0
CAB CB . . . 0
CA2B CAB . . . 0

... ... ... ...
CAny−1B CAny−2B . . . CAny−ncB


︸ ︷︷ ︸

Φ

~∆u

At this point we have completely defined the future prediction of our
system starting from the state k. In particular we have managed to express
the prediction using a combination of only the triplet (A,B,C) multiplied by
the known initial state vector ~x(k) and by the unknown control trajectory
~∆u that the optimizator must define.

1.2.3 Optimization
We have now arrived at the main component of our control: the optimizator.
We will now need to write down in mathematical terms what we would like
the system to do, and this results in writing down a cost function for our
optimizator. However, before defining the cost function, we have to introduce
a reference vector. The control must in fact obtain a control trajectory feasible
with respect to the imposed constraints such that a certain reference path is
followed. The reference vector is introduced as such:

~RT
s =

[
~yref (k)T , ~yref (k + 1)T , . . . , ~yref (k + ny)T

]
(1.5)

where ~yref (ki)T is a vector since we are dealing with a MIMO system. Each
of these vectors contain the set points that all the outputs have to obtain at
a certain time ki.



10 CHAPTER 1. STATE OF THE ART

We can now introduce the cost function:

J = ||Q̃(~Rs − ~y)||22 + ||R̃ ~∆u||22 (1.6)

where Q̃ and R̃ are diagonal and positive definite matrices of weights. The
first matrix is used to weight differently the outputs, while the second one is
used to differently weight the control forces. As a common advice, the set up
of the control should start with normalized weights. As we can see, this cost
function grows when there is error between the outputs and their references,
and when control forces are different from zero.

The minimization problem is written as follows:

min
~∆u

J = ||Q̃(~Rs − ~y)||22 + ||R̃ ~∆u||22 (1.7)

subj. to Aineq ~∆u ≤ Bineq

A detailed discussion about the type of constraints, that explains the for-
mulation of the Aineq and Bineq matrices, will be dealt with in the next
paragraph.
By simply substituting the prediction as obtained in the previous paragraph
into (1.6), knowing that ~y = F~x(k) + Φ ~∆u, we obtain:

J = (~Rs−F~x(k))T Q̃(~Rs−F~x(k))−2 ~∆u
T

ΦQ̃(~Rs−F~x(k))+ ~∆u
T

(ΦTΦ+R̃) ~∆u
(1.8)

where we neglect the term (~Rs−F~x(k))T Q̃(~Rs−F~x(k)) since it is a constant
term that is not depending on ~∆u and therefore it cannot be minimized. If
we divide by 2 we obtain:

J = 1
2
~∆u

T
Hqp

~∆u+ F T
qp
~∆u

where

Hqp = (ΦTΦ + R̃)
Fqp = ΦT Q̃(−~Rs + F T~x(k))

i.e we can use quadratic programming to obtain the optimized control trajec-
tory ~∆u.
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1.2.4 Linear constraints
The Aineq and Bineq matrices can be used to impose constraints to the
optimizator, i.e. we can introduce upper and lower limits in the manipulated
variables so that the control understands that it cannot use a certain value of
control force:

~umin(ki) ≤ ~u(ki) ≤ ~umax(ki)
We can also introduce limits in the variation of the manipulated variable. In
this way the controller understands that it cannot move the manipulated
variable too fast:

~∆u
min

(ki) ≤ ~∆u(ki) ≤ ~∆u
max

(ki)
Finally we can introduce constraints in the outputs of the system:

~ymin(ki) ≤ ~y(ki) ≤ ~ymax(ki)
Since the constraints in the quadratic program must be written in a specific

manner, i.e. Aineq ~∆u ≤ Bineq, we have to rewrite them.
For what regards the constraints on the variation of the control forces we

can simply express them using two inequalities:

− ~∆u ≤ − ~∆u
min

~∆u ≤ ~∆u
max

The notion ~∆u is used, since now we are talking about constraints for any
sample times and not only for the instantki. This, in matrix form, becomes:

[
−I
I

]
~∆u ≤

− ~∆u
min

~∆u
max

 (1.9)

where ~∆u
max

and ~∆u
min

are column vectors with nc ·N elements of ~∆u
max

and ~∆u
min

respectively, N being the number of inputs.
In the case of a manipulated variable constraint, we write:

~u(k)
~u(k + 1)

...
~u(k + nc − 1))


︸ ︷︷ ︸

~u

=


I
I
...
I

 ~u(k−1)+


I 0 . . . 0
I I . . . 0
...
I I . . . I




~∆u(k)
~∆u(k + 1)

...
~∆u(k + nc − 1)


︸ ︷︷ ︸

~∆u

(1.10)
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We can re-write (1.10) using C1 and C2.

−(C1~u(k − 1) + C2 ~∆u) ≤ −~umin

(C1~u(k − 1) + C2 ~∆u) ≤ ~umax
(1.11)

where ~umin and ~umax are column vectors with nc · N elements of ~umin and
~umax respectively.

The output constraints are expressed in terms of ~∆u:

~ymin ≤ F~x(k) + Φ ~∆u ≤ ~ymax (1.12)

We can finally say that the constraints matrices are:

Aineq =

M1
M2
M3

 ; Bineq =

N1
N2
N3

 (1.13)

where

M1 =
[
−C2
C2

]
; N1 =

[
−~umin + C1~u(k − 1)
~umax − C1~u(k − 1)

]
; (1.14)

M2 =
[
−I
I

]
;N2 =

− ~∆u
min

~∆u
max

 ;

M3 =
[
−Φ
Φ

]
;N3 =

[
−~ymin + F~x(k)
~ymax − F~x(k)

]
;

1.3 Non linear model predictive control the-
ory

The NMPC has got, of course, the same characteristics that we have already
discussed about in the linear control section. The control is still a feedback
control based on an optimization method that requires a prediction of the
state vector based on a detailed model of the system. As before the prediction
is compared with the references and, through nonlinear optimizator, we aim
at obtaining the optimal future trajectories of the manipulated variables that
allow to follow in the best possible way these references while fulfilling the
constraints. Also in this case the receding strategy is applied: only the first
step of the manipulated variables is applied and then the whole optimization
process is repeated. As for the linear control, the constraints can be introduced
in the control variables, in their rate of change or in the outputs. However,
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for the case being, constraints are both linear and nonlinear, i.e. constraints
functions of the manipulated variables. This is one of the biggest advantage
of using a non linear model predictive control.

The other great advantage is the possibility of using a more realistic model
of the system. Even hybrid models are allowed, i.e. models that exhibit both
continuous and discrete dynamic behaviour. In wider terms we will have, for
a multi input multi output system:

~̇x = g(~x(t), ~u(t)) (1.15)
where g is a general non linear function. The model still needs to be discretized
and therefore, knowing the discretization step ts, we will need to define a
discrete function f such that:

~x(k + 1) = f(~x(k), ~u(k)) (1.16)
All parameters of this type of control have absolutely the same meaning

as explained in the linear section. Both ny and nc are present here and the
choice of these parameters follows the same guidelines as the linear ones.

As we can see, now that we have introduced the non linear model, ev-
erything is pretty much identical to the linear model. Though we have to
keep in mind that the way of actually implementing the control is completely
different than for the linear case.

1.3.1 Non linear programming
As for the linear control, the optimization problem can be written as:

min
~u

J = ||Q̃(~Rs − ~y)||22 + ||R̃ ~u||22 (1.17)

subj. to Cineq ≤ 0

where ~Rs is defined in 1.5, ~y are the future trajectories of the outputs of the
system that can be a component of the state vector but also a general non
linear function of the state vector, and the matrices R̃ and Q̃ have exactly
the same meaning of the linear case. The difference between the linear and
non linear problem is that now we cannot simplify the above equation in a
way that can be used in quadratic programming.

Thus, we can decide to use full discretization or recursive discretization.
The full discretization approach expects that the optimizator obtains, both
the trajectory of the future manipulated variables, and the trajectory of every
single component of the state vector. Thus the number of variables that need
to be optimized is very big. We have also to introduce the system dynamics
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in the constraints matrix. Being the constraint matrix simply a column vector
containing a list of generic non linear equations, we will need to add the
following equation for each sample time k:

~x(k + 1)− f(~x(k), ~u(k)) = 0 (1.18)

The advantage in using this approach is the ease of implementation, at the
cost of a very high number of variables thus resulting in high computational
time and difficulties in solution.

The other available method is the recursive discretization. In this approach
the number of variables to be optimized is much smaller compared to the full
discretization because only the control variables are considered. On the other
hand there is the need to introduce the evaluation of the system dynamics,
which is the trajectory of the system, function of the manipulated variables
determined by the optimizator. In this sense the verification of the dynamics
is carried out outside the optimizator and the fact of not considering it
within the optimizator algorithm can cause numerical difficulties since we are
neglecting some information of the system inside the optimization. Anyhow
this leads to a remarkable reduction in computational time and, for this
reason, is preferred and was used in our work.

1.3.2 Non linear prediction and constraints
For a non linear system it is not possible to analytically write the expression
of the prediction as we did for the linear case. The prediction needs to be
simulated for each guess. The optimizator, starting from the initial guess,
will make many attempts to combine various trajectories of the manipulated
variables, and every single attempts requires to use a non linear solver. The
solver provides the outputs that are used at the end of the process to calculate
the cost function. Then, depending on the optimizator algorithm, the variables
under optimization will be changed, a new attempt will be made, until an
optimal solution is found.

Thus, for the programmer point of view, the most complicated control to
implement is the linear one, since it requires the writing of many matrices of
generous size. In the non linear control instead the complication is all left
to the optimizator, in our case the fmincon function of Matlab. This brings
many problems for what regards the control setup. Weights and parameters
became fundamental both for the control stability and the for good results,
particularly if the constraints are pressing.

Also the constraints, compared to the linear control, are much more easy
to write. We can include non linear constraints and also constraints dependant
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on boolean functions. Of course we can include also constraints on the control
variables, but this time these constraints can be more sophisticated. For
example we might want the throttle pedal to be used at most at 80% in first
gear, while leaving the freedom of using full throttle in any other gear.

Note that it cannot be taken for granted that the optimizator is capable of
dealing with all these constraints. In fact it might happen that the optimizator
gives back a solution that fullfills only few constraints.
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Chapter 2

LTV MPC Active front steering

This chapter will focus on the steering angle control done using a LTV-MPC
controller. We started with a simple controller on purpose in order to examine
thoroughly the limits of this type of control. At a later stage the control will
be refined adding the management of the throttle and brake pedal in order
to get closer to a realistic Motion Planner inside a fully autonomous vehicle.
Note that until now nobody has ever taken into consideration this problem.

We must say that we have not considered the requirements necessary to
achieve a real-time control system. In fact, sample time by sample time, the
simulation time is stopped, the calculation of the future control variables is
made, and only then the simulation is started back again. This is due to the
fact that Matlab, and not a compiled code, is used. In any case considerations
about the time required by the control will be made: there will be a dedicated
section to show the control calculations speed and few simplifications on the
control model will be made to accelerate the optimization process.

2.1 Vehicle models and linearization
Since we are programming a control that acts only on the steering angle, we
must necessarily neglect the longitudinal dynamic of the vehicle. Thus from
the vehicle model explained in the appendix we simplify the longitudinal
forces acting on the tyres, as well as the aerodynamic forces. The vehicle needs
an initial speed to be set. We are well aware of the important assumptions
that we are doing but, as we have already said, the importance of the AFS is
dedicated to studying and understanding the linear MPC.

Furthermore, in the vehicle model that the controller is using, we neglect
both the load transfer and the relaxation lengths, while the simulated model,
albeit with no longitudinal forces, remains as sophisticated as possible. It

17
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is obvious but necessary to remember that a vehicle model, as simplified, is
extremely nonlinear both for the presence of strong non linearity due to the
tyres behaviour and for the geometric non linearities that we find already in
the balance of forces. Its implementation in a linear controller may be felt
as inconsistent and needs further explanations. What happens is that we
are using a standard linear controller, following slavishly the theory which
concerns it, but instead of using a normal linear model, we are using a local
linearization of a nonlinear model.

The nonlinear 2 contact single track vehicle model that the controller uses:


V̇x = (mσ̇Vy − Ftf sin(δ))/m
V̇y = (−mσ̇Vx + Ftf cos(δ) + Ftr)/m
σ̈ = (−Ftrb+ Ftfa cos(δ))/Jz
σ̇ = σ̇

ẋg = Vx cos(σ)− Vy sin(σ)
ẏg = Vx sin(σ) + Vy cos(σ)

(2.1)

where the expressions of the two tyre transversal forces, functions of the slip
angles, have been omitted for clarity, and where a slightly different expression
for ẋg and ẏg, that we remember being the speed with respect to the absolute
reference system, has been used. At each k we will have a defined condition
and therefore a defined state vector, around which we are going to linearize
the system calculating:

Am =



ϑV̇x

ϑVx

ϑV̇x

ϑVy

ϑV̇x

ϑσ̇
0 0 0

ϑV̇y

ϑVx

ϑV̇y

ϑVy

ϑV̇y

ϑσ̇
0 0 0

ϑσ̈
ϑVx

ϑσ̈
ϑVy

ϑσ̈
ϑσ̇

0 0 0
0 0 1 0 0 0
ϑẋg

ϑVx

ϑẋg

ϑVy
0 ϑẋg

ϑσ
0 0

ϑẏg

ϑVx

ϑẏg

ϑVy
0 ϑẏg

ϑσ
0 0


; Bm =



ϑV̇x

ϑδ
ϑV̇y

ϑδ
ϑσ̈
ϑδ

0
0
0


(2.2)

and those matrices Am and Bm need to be, as explained, augmented to obtain
the triplet (A,B,C) that is then used inside the controller to make the linear
prediction and therefore to obtain the future trajectories of the manipulated
variables. It is fundamental to understand how both the prediction and
thus the whole optimization is made with the strong hypothesis of keeping
constant the matrices of the system. In this way we are introducing important
prediction errors due to the strong non linearities of the system, but those
will become acceptable within certain limits thanks to the receding strategy.
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At the next step the linearization will be redone, new (A,B,C) matrices will
be obtained and the whole optimization process will be made again.

As we know it is possible to introduce constraints, provided that they
are linear or rather not function of the inputs ~∆u. They can also vary with
k, that is what we will do to introduce the obstacles in our work. For now
we limit ourselves to introducing constraints on the manipulated variable
and his rate of change. We can think about it directly as the steering angle
imposed to the wheel, and this hypothesis is not strong because the angle
at the wheel is the angle at the steering wheel multiplied by a constant.
With this consideration and the considerations made by [2], a maximum and
minimum value of ±π

8 rad is set for the steering angle, and of ±0.2rad/s for
what regards its rate of change. These were introduced because a normal
vehicle has a maximum physical value of steering that we can impose that
was not introduced in the model itself. For what regards the rate of change
we have set it like so because the control, not having the relaxation lengths in
its model, is not capable of understanding that the transversal forces are not
algebraic. Of course this could be limiting in some occasions. The constraints
on the rate of change could be used also to consider the limits in variations
that an actuator, that we have considered ideal, could possibly have.

2.2 Path follower
In this section we want to show the control for what it was developed in its
early stage. An MPC controller was in fact born with the purpose to follow
a reference in the best way possible, respecting some constraints that are
typically imposed on the manipulated variables. We will impose a reference
on the lateral position of the vehicle, therefore an output of the system, and
we will ask for the trajectory of the steering that allows to drive the vehicle as
close as possible to the reference. Nevertheless the controller has to consider
the constraints on the maximum steering angle and on its maximum rate
of change. It is important to notice that, at least for the linear controller,
the constraints are fulfilled only during the prediction, and so the controller
might not follow the limits in the rate of change for what regards the first
value he needs to choose for each prediction. Anyhow he will never void the
constraints during a prediction, but only when considering the first value.
This is a clarification that we needed to say, but it has never been a problem
for us. In fact, even though the linearization is a strong hypothesis, the
differences between two optimizations are very little.

The reference must be expressed as a function of time and is developed,
in this example, as a vector in which each value corresponds to the absolute
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Figure 2.1: Reference signal

lateral position in meters that the vehicle has to obtain at each sample time
k, as we can see in figure 2.1. Actually we can impose a reference in whatever
output of the system, as long as it is a linear combination of the state vector
since we are using a linear controller. Also we still need to consider many
references as control variables to maintain a squared control.

As we can see from figure 2.2, the controller is capable of following the
reference without any problems and is, unlike the classic PID controller, very
good at anticipating the step so that the error is minimized. In figure 2.3 we
can see the behaviour of the control variable, that is the steering. We can see
that it is shown with stems to underline the fact that the control is discrete.
The vehicle is in fact driven every ts seconds, in this example every 50ms,
and for each of this steps we can see the corresponding value of the steering.
From now on, to clarify, the steering signal will be shown as a continuous
line, as in figure 2.4, but we must never forget that a discrete controller is
always used. The trial is done at an initial speed of 50km/h with parameters
and weights that we found to be optimal. We want to remember that Q̃ is
the matrix of outputs weights and R̃ is the matrix of control forces weights.
Both are a single value in this case. In table 2.1 we find the list of all the
values used.
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Figure 2.3: Path follower - Steering stems
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Figure 2.4: Path follower - Steering

ny nc ts [s] Q̃ R̃
50 10 0.05 1 50000

Table 2.1: Standard parameters
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2.3 Obstacle
Finally we have arrived at the point where we can challenge our controller
with an obstacle. The proposed obstacle is a lorry that is represented by a
constraint 15m long and 2m wide. The width, that might look small, is half
the width of the lorry plus half the width of the car. Even though this could
look like a strong hypothesis, in any case we are just interested to show how
the control is capable of considering encumbrances and to act in order to
change his path. Also the fact of knowing the length of the obstacle could
be felt as not credible, but in reality from previous experience we know the
length of obstacles that are commonly found in roads. Everybody expects a
normal vehicle to be of the length that he typically is and this statement is
true also for lorries, people or animals. It is feasible to give to the controller
a length of the obstacle and nevertheless the information can be corrected
as soon as it is updated from the measurement system. We have made the
hypothesis that a measurement system is capable of detecting obstacles well
before our controller, while our MPC will be able to understand the presence
of an obstacle only if it appears in his prediction window. The ny parameter
becomes fundamental.

Even though we talked about meters, the obstacle must be defined in
time. For now, for the AFS systems that cannot cause big modifications in
the longitudinal velocity of the vehicle, the obstacle is imposed considering
constant speed. So, thanks to the measurement system we will know that we
will get to the obstacle in, for example, 25m, and those became, if travelling
at 50km/h, 1.8s. In this way we will say that until the next 1.8s the road
will be clear, while from 1.8s to 2.9s, if the obstacle is the lorry, the road
will not be practicable below 2m. Obviously this brings errors because the
speed is not constant over the manoeuvre, but these errors are small enough
not to cause any problems. Apart from being written in the time domain,
the obstacle, as well as the reference and the whole control, is discretized
every ts. It might happen that, if the speed is too high, a very short obstacle
could not be seen by the control. In fact if the obstacle is shorter than ts, not
even a single point will exist to define it. An obstacle that is 1m long will
be, at 150km/h, as long as 0.024s and this is shorter than our discretization
step. Of course this is not a big issue, since to solve it we can simply impose
obstacles at least 50ms long, but it is important to specify.

As we can see from figure 2.5 the discretization brought us to find another
problem. The blue lines are predictions at various sample time k. We have
highlighted a prediction that, even though it crosses over the obstacle, is
considered valid. In fact the optimizator checks the error with respect to the
reference and the validation of the constraints every ts, as we can see thanks
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Figure 2.5: Obstacle - Discretization problem

to the small blue dots. In that trial randomly it happened that the step
before the obstacle and the one right after are both out of the constrained
zone. Unfortunately the trajectory will have to go across the obstacle, but
the controller cannot understand that. A way for solving this is to reduce the
discretization step, but this will cause huge slowdowns in the optimization
process. What we decided to do was to slightly increase the obstacle width
such that, though crossing the constrained zone, it will avoid the real obstacle.
From now on we will see the real obstacle represented in black, while the
obstacle that is given to the controller includes also the red zone.

Thanks to figure 2.6 we can understand that a reference must still be
present. The controller must know that he has to follow the road, that in this
case means staying around the value zero because we are simulating a straight
line. It is important to notice that the controller is forced to increase the
value of the cost function in order to avoid the constraint. The priorities of
the controller are obvious. Anyhow the controller is very good at avoiding the
obstacle, and in this case is also capable of avoiding completely also the red
zone, as we can see from figure 2.7 and 2.8. The control parameters are the
one of the standard trial shown in table 2.1. Those figures show the advantage
of the MPC with respect to the classic PID controller. A PID controller
would have required the definition of a trajectory in order to complete this
manoeuvre, and that trajectory would have been defined by a programmer
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Figure 2.6: Obstacle - Reference

based on criteria that typically are not good enough to consider the various
problems that can be found. The MPC on the other hand is capable of
doing this all on his own. Every manoeuvre is engaged knowing the vehicle
behaviour and every event is dealt with so that an optimal result is obtained.



26 CHAPTER 2. LTV MPC ACTIVE FRONT STEERING

0 20 40 60 80 100 120

−1

0

1

2

3

4

Trajectory

Xg [m]

Y
g 

[m
]

Figure 2.7: Obstacle - Trajectory
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Figure 2.8: Obstacle - Steering
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ny nc ts [s] Q̃ R̃
25 10 0.05 1 50000

Table 2.2: ny = 25 - Parameters

2.4 Parameters’ choice
In this section we would like to show the reasons that guided us to choose
the parameters that then we have used to produce this paper. As we have
anticipated in the state of the art the choice of fundamental parameters, that
are ny, nc and ts, is guided by the system characteristics. Of course with
our nonlinear system used with a linear control is less easy to foresee the
optimal parameters, and therefore many trials in different conditions were
required to understand what was good and what was not. Here we just want
to explain what a certain parameter is important for. ny is the length of the
time window in steps, and generally it must be kept as big as feasible with the
time available for the optimization process and at least bigger than the slowest
dynamics of the system. In this way the control is capable of understanding
the future behaviour of the system until it gets to his steady state conditions.
Unfortunately, in our situation, two facts became fundamental. The first one
is the fact that the bigger ny is, the sooner the control gets aware that a
certain obstacle is present. So, even though smaller value of ny could have
been enough to follow a certain reference, it could not be enough to cope
with a very high obstacle. As we can see from figure 2.9, the control with
ny = 25 is stable and that means that in that condition 25 steps are enough
to drive a vehicle, but are too few to manage correctly the obstacle. In fact
compared with the trials made with ny equal to 50, there is a much bigger
over elongation. This trial is made with parameters as shown in table 2.2.

On the other hand also the situation where we have used an higher ny
turned out to be less performing than usual. We can see that we have changed
only that particular parameter in table 2.3. The trajectory in figure 2.9 has
an odd shape but, more importantly, we find that the steering trajectory,
again in figure 2.10, is a lot less accurate than before. This happens because
since we are asking for a longer prediction, we are introducing very important
errors due to the fact that the control forces a linearization of the system.
Those error can be easily seen comparing figures 2.11 and 2.12. In the first
one, even though prevision errors are present also due to the fact that we
are using a value of nc smaller than ny, we can see that the previsions are
coherent with the actual dynamic of the system, while in the last one much
bigger variance is present.
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Figure 2.10: ny comparison - Steering

ny nc ts [s] Q̃ R̃
100 10 0.05 1 50000

Table 2.3: ny = 100 - Parameters
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Figure 2.11: ny = 25 - Predictions
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ny nc ts [s] Q̃ R̃
100 20 0.025 1 50000

Table 2.4: ts = 0.025 - Parameters

ny nc ts [s] Q̃ R̃
5 1 0.5 1 50000

Table 2.5: ts = 0.5 - Parameters

We are for these reasons obliged to keep a value of the window length long
enough to keep into consideration the presence of obstacles, but also short
enough to avoid the prediction errors to became too important. All of these
trials were made at the same 50km/h, but it is important to notice that,
being a very nonlinear system, results vary also considering various initials
speed and obstacle shapes. Considering this we have found ny = 50 to be the
ideal value for us. Another important notice is that with a fixed value of ny
we have a different visual lengths available. For example 50 steps at 50km/h
are almost 35m, while at 150km/h they are almost 105m. This effects, that
is simply caused by the fact that we have to impose the obstacle in the time
domain, even if it has a fixed length in meters, helps us dealing with obstacles
at various speeds.

For what regards ts we have made few trials to show that, coherently
with the values we have found in [2], [3] and [4], our discretization step is
good enough. This value is to be kept as low as possible. Lower values will
cause the optimization to be too long, while bigger value cannot guarantee a
stable control. In the first trial we used values from table 2.4. You can see
that we needed to adjust also the prediction and control horizons to allow the
control to have the same window lenght to the previous trials. As we can see
from figure 2.13, the trajectory is almost identical to the standard trial, but
it has required a lot more to calculate since we have required a much thinner
discretization as we can see from the number of stems in figure 2.14.

The second trial, as shown in table 2.5, was made with a much coarser
discretization step. This brought us a much faster control, as we can see from
the number of stems in figure 2.15, but with them is not possible to deal with
the obstacle.

We have decided to avoid showing trials also for what regards nc, Q̃ or R̃,
but we have done many trials in different conditions (different obstacles and
different speeds) to define the most stable and performing control we could.
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Figure 2.14: ts = 0.025 - Steering stems
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Figure 2.15: ts = 0.5 - Steering stems

2.5 Various obstacles
Having now defined the optimal parameters, that we can find in table 2.1, we
would like to show that our control is capable of dealing also with different
types of obstacles. As an example, in figures 2.16 and 2.17, we can see that
our controller is capable of dealing with many obstacles, even if they are
placed close one to each other. The obstacles are placed such that they impose
lower or upper bound, or even narrow corridors.

In some cases less stable optimizator can cause problems with longer
obstacles. As we can see from figures 2.18 and 2.19, there is a period of
time in which the output corresponds to the constraints. In many cases it
could happen that the optimizator, for numerical reasons, finds the initial
position of the prediction to be inside the constrained area, and therefore it
stops because no solutions are possible to avoid the obstacle. Thankfully the
quadprog function in Matlab is able to cope with this problem and therefore
no further modifications of the control were required.
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Figure 2.16: Gymkhana - Trajectory
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Figure 2.17: Gymkhana - Steering
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Figure 2.18: Long obstacle - Trajectory
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Figure 2.19: Long obstacle - Steering
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Vx [km/h] Dist [m] δ̇ = 0.02 Dist [m] δ̇ = 0.04
30 12 10
45 15 13
50 17 15
60 20 17
70 23 19
90 25 24
100 29 26
110 32 44
130 36 53
150 42 76
170 69 80
210 145 300

Table 2.6: Minimum distance analysis

2.6 Minimum distance analysis
It is now interesting to study how much space is required for the control to
avoid the standard obstacle of figure 2.7 at a given initial speed. Even though
we know that a good controller must be capable of using also the accelerator
and brake pedal to cope with a manoeuvre at the limit, we thought that this
study could be interesting. The various trials were made all with the same
parameters, only changing the initial speed. Results that showed collision
with the obstacle, instability of the controlled system or a maximum lateral
position higher than the width of the road of 4m were considered failed.
Results of these tests are resumed in table 2.6 and figure 2.20.

As we can see two different constraint on the steering rate of change were
used and important differences were noticed. In fact for medium low speed
the higher rate of change gives back better results, requiring around 15%
less space compared to the standard value of 0.02rad/s. At higher speed
though, the controller showed signs of instability that required the obstacle
to be placed much further with respect to the standard case, and it become
extremely unreliable. Since the instability starts to appear at speed higher
than 150km/h, we can decide that, not being a legal speed pretty much
anywhere in the world, the higher value could be a valuable solutions, but we
like the fact that the lower value is capable of driving at any speed that the
vehicle is capable of obtain, and for this reason it was used in our work.

Typically the problem is that the control is not able to stay within the
required 4m in lateral position as we can see from figure 2.21, where an initial
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Figure 2.20: Minimum distance analysis

speed of 110km/h and a distance of 29.5 meters were used. The car is fast
enough to react and the obstacle is lower enough to be avoided pretty much
on every trial, but if we push too hard, the control will drive into the ditch.
This appears to be the optimal situation since the obstacle could be a person
that must be avoided at all costs.

What we have explained is what typically happens below 150km/h. At
higher speeds the problem starts to be instability, as we can notice from
figure 2.23 where an initial speed of 220km/h and a distance of 295 meters
were used. The linearization that we have forced the control to do starts to
introduce much bigger errors because the vehicle now is changing behaviour,
and therefore matrices, much faster than before. As we can see comparing
figures 2.25 and 2.26 the problem is the fact that at higher speed the prediction
is absolutely untrustworthy. This is a pure limit of the linear control.
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Figure 2.21: 110km/h 29.5m - Trajectory
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Figure 2.22: 110km/h 29.5m - Steering
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Figure 2.23: 220km/h 295m - Trajectory
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Figure 2.24: 220km/h 295m - Steering
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Figure 2.25: 110km/h 29.5m - Prediction
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Figure 2.26: 220km/h 295m - Prediction
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2.7 Real time implementation feasibility
Even if the purpose of this work is not to design a real time control, at the
end of this chapter few considerations around the control speed can be made.
A control can be implemented as a real time control if the time required for
calculations does not cause any losses of performances and stability. To have
an idea of how long it takes to do every optimization process we have measured
many trials. In figure 2.27 we can see what happens during the trial with the
standard obstacle. The first operations takes always very long, regardless of
the conditions, so we have decided to neglect its importance. This is probably
caused by the Matlab logic of allocating memory for calculations. Then we
can see that in the straight line the optimization takes always little time,
around half the value of ts. We then notice a peak that happens before the
obstacle, a little bit after 1s and, looking at figure 2.8, we can see that is
the moment when the control starts to use the steering. In all the trials
only one optimization is not made fast enough to calculate the next steering
input before it is too late. To understand if that is a dangerous situation
we tried to apply, instead of the first value of steering that the optimization
process gives back to us, the second one. This could also be intended as a
safety feature for a possible real time implementation of this control. If the
calculation requires too much time, the control stops it and set as input the
second value of the steering trajectory that it has calculated the step before.
If then the calculation fails again, the third value is set, and so on. The
results were incredibly similar to the ideal case, and this is because the steps
are so close to each other that the difference between them is very small. We
can conclude that the most important thing for this type of control is the
value of ts because it must evaluate the system dynamic accurately enough,
but then we can just skip one step of the inputs without many troubles.

We would also like to show the results of this analysis for the trial with
much lower ts with figure 2.14. In that case we required a much thinner
discretization and we have obtained comparable results for what regards
performances and stability but, as we can see from figure 2.28, the time
required for each optimization is always bigger than the discretization step.
In this case not even one optimization is made fast enough to be applied in a
real time implementation.

At the end we can say that our AFS control, even if it was developed in a
programming language that is known to be slow, can be capable of driving a
vehicle at normal speed and even in highways. The results shown in 2.27 are
in fact comparable with those that we have got from trials at higher speeds,
even if the MPC is renown for being an intricate control. We are satisfied
with those values since every paper about this control complains about the
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Figure 2.27: Calculation time
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Figure 2.28: Calculation Time Ts = 0.025
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fact that it can be used only at reduced speed.



Chapter 3

LTV MPC Complete vehicle

This chapter is dedicated to the linear control that drives the whole vehicle.
This section could be the motion planner part of a bigger control that is
capable of driving a vehicle on every day roads.

3.1 Vehicle models and linearization
As before we are dealing with two different models. The first one is more
simple and it is composed by a single track 2 contact model where the
relaxation lengths are neglected. The second one is the one used to simulate
the vehicle and therefore is the most sophisticated that we have that is the
one we explained in the appendix. If we write the system dynamic considering
the 2 contact model we obtain the following.

V̇x = (mσ̇Vy + Flf cos(δ)− Ftf sin(δ) + Flr)/m
V̇y = (−mσ̇Vx + Ftf cos(δ) + Flf sin(δ) + Ftr)/m
σ̈ = (−Ftrb+ Ftfa cos(δ) + Flfa sin(δ))/Jz
σ̇ = σ̇

ẋg = Vx cos(σ)− Vy sin(σ)
ẏg = Vx sin(σ) + Vy cos(σ)

(3.1)

Again we have only Flf because, being a 2 contact model only one force
per axes is considered, and again we have neglected the expression of the
forces for clarity. The linearization follows the same steps as before. At every
sample time k we will have a set state vector around which we are going to
linearize our system. From this linearization we will get exactly the same Am
matrix as the AFS control, in fact the state vector is the same also in this
control. What changes is the Bm matrix that has got a column more because

43
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we have introduced a control variable. Even if we want to deal with both
the accelerator and the brake pedal, we have only added one control variable
because that is what we are allowed to do because we can introduce only a
reference more and we want to keep the control squared. For this reason the
new control variable α will vary from −1 to 1 and will represent the engine
when positive, and the brakes when negative. With this simplification the
control will never be able to brake and accelerate simultaneously, but this is
a situation that is never helpful while avoiding obstacles.

Am =



ϑV̇x

ϑVx

ϑV̇x

ϑVy

ϑV̇x

ϑσ̇
0 0 0

ϑV̇y

ϑVx

ϑV̇y

ϑVy

ϑV̇y

ϑσ̇
0 0 0

ϑσ̈
ϑVx

ϑσ̈
ϑVy

ϑσ̈
ϑσ̇

0 0 0
0 0 1 0 0 0
ϑẋ
ϑVx

ϑẋg

ϑVy
0 ϑẋg

ϑσ
0 0

ϑẏg

ϑVx

ϑẏg

ϑVy
0 ϑẏg

ϑσ
0 0


; Bm =



ϑV̇x

ϑδ
ϑV̇x

ϑα
ϑV̇y

ϑδ
ϑV̇y

ϑα
ϑσ̈
ϑδ

ϑσ̈
ϑα

0 0
0 0
0 0


(3.2)

Of course the constraints on the steering are the same as before, but we
must introduce constraints for what regards the α input. The upper and the
lower bounds are set at −1 and 1 (or −100% and 100%), and also a limitation
on his rate of change was introduced. Since we have introduced both limits
for the positive and for the negative rate of change, we have decided not to
allow too fast acceleration therefore we allowed only 200%/s variation when
releasing the brake or accelerating. On the other hand we would like the
control to be able to act rapidly when using the brake and therefore a limit
of 400%/s was set for when releasing the accelerator or braking. These values
were chosen while looking at the behaviour of a race driver.

As we can see from table 3.1, we needed to introduce both weights for
the reference and for the control. The first reference is as always the lateral
position, while the second one is the longitudinal speed of the vehicle, and
from now on will be set at the speed limit. The controller will have to separate
from the reference to manage the obstacle and since maintaining the speed
is not important while avoiding obstacle, its weight is very little. We still
need it though because otherwise the vehicle will not get back to the required
speed after the obstacle.

3.2 Path follower
In this section we can see our controller following the two reference that we
are going to use. A reference is, as for the AFS control, the lateral position,
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Table 3.1: Complete - Parameters
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Figure 3.1: Complete path follower - Lateral displacement

while the other one is the longitudinal speed of the vehicle, that is the speed
that is displayed by the tachometer. With this trial we want to show that our
controller is very good at following references and also that both the model
and the linearization are correct. In figure 3.1 and 3.2 we can see that we
have imposed two steps in both references and that the controller is capable
of following them with no problem. The step in lateral displacement is very
similar compared with the step that the AFS did in figure 2.2. The step in
speed shows that the vehicle is less responsive if a speed increase is required
compared to when a speed decrease is required and that is because the brake
maximum torque is much higher with respect to the maximum torque that
the engine can provide. Performances for what regards the reference in speed
is slightly worse than expected but since the control is useful for avoiding
obstacle and it is not programmed to perform speed steps, we have decided
that weights and parameters could be kept as in table 3.1.

In figure 3.3 we can see the operation of the engine with the gearbox.
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Figure 3.2: Complete path follower - Longitudinal speed

As we can see the automatic gearbox logic is working perfectly and is not
creating any problem to the controller that is capable of slowing down or
accelerating the car. In figure 3.4 the control usage of the car inputs is shown.
We can see that it is never accelerating or braking simultaneously and that
the functioning is coherent with the requirements. Even if we can say that
we have built an efficient model predictive cruise control, we can see that its
performance is not perfect but, as we have stated before, the main purpose
of this control is not to be capable of following a speed reference perfectly,
but only to guide the vehicle around obstacles. The dotted line represent the
value of throttle pedal that cancel the engine brake.
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Figure 3.3: Complete path follower - Drivetrain
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Figure 3.4: Complete path follower - Controls
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3.3 Obstacle
Next in our work, the standard obstacle at 50m with an initial speed of
50km/h is tackled. There is a note that we must add to understand that
there are difficulties with this control. The linear MPC can only manage
linear system and therefore linear constraints. As we have explained before,
linear constraints are constraints that are not dependant on the manipulated
variables. This is true for the the AFS control, but not for this one. Here the
longitudinal speed of the vehicle is modified by the α input, and therefore
the speed of the vehicle is not the initial speed anymore. In the past, since
we needed to program the obstacle in the time domain even if it is in reality
a constant value in the space domain, we simply calculated the time that
corresponded to the space considering the speed as a constant value. We
cannot do this anymore, the constraint distance in the time domain is a
function of the inputs. In fact if the car brakes it will take more time to get
to the obstacle. This effect cannot be considered with the linear control. The
optimization process of a linear MPC will never be able to understand that
braking the vehicle will mean more available time to manage the obstacle.
Still, even if those problems will always be true, we have to find a way to
adjust the constraint if the longitudinal speed changes through the trial. At
each sample time k we calculate the average speed until that point and we
evaluate the distance in meters that there is between the vehicle and the
obstacle. Then from those values we obtain the expected time distance and
we set that as the new distance to the obstacle.

Figure 3.5 shows us that the trial is a success. The control is capable to
consider and avoid the obstacle without any problem. From figure 3.6 we
understand that it actually has not used the brake very much.

We would like to show results also for another trial at 110km/h with
the obstacle set at 50m. From figure 3.8 we can see that the brake was
neglected completely even if the obstacle has to be tackled at higher speed.
We added also a plot of the slip angles in figure 3.9 so that we can see that
the manoeuvre has still margin (the maximum of the lateral force of the
tyre happens at 0.12rad) but we might want anyway the brake to be used to
increase the safety of his operations.
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Figure 3.5: Complete obstacle - Trajectory
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Figure 3.6: Complete obstacle - Controls
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Figure 3.7: Complete obstacle 110km/h - Trajectory
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Figure 3.8: Complete obstacle 110km/h - Controls
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Figure 3.9: Complete obstacle 110km/h - Slip angles

3.4 Obstacle with rear slip angle control

Since we want to force the controller to brake, we tried adding a reference
path also for the rear slip angle. This will cause the system not to be squared
anymore, so from now on we cannot pretend the control to get to each
reference. Our intention was to help him understand that the smoother the
manoeuvre the better, and if the slip angles are low, that means that little
lateral force is exchanged and therefore is far from the limits. Being a linear
control we can impose references only to values that are linear combination
of the state of the system. This is not true for the slip angles, and therefore
we modified the state vector such that αr was added.

If we derive the αr nonlinear expression with respect to time and we
neglect the tangent function we can write α̇r:

α̇r = ((σ̈b− V̇y)Vx − V̇x(σ̇b− Vy))/V 2
x (3.3)

We can add this equation to the system:
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V̇x = (mσ̇Vy − Ftf sin(δ))/m
V̇y = (−mσ̇Vx + Ftf cos(δ) + Ftr)/m
σ̈ = (−Ftrb+ Ftfa cos(δ))/Jz
σ̇ = σ̇

ẋg = Vx cos(σ)− Vy sin(σ)
ẏg = Vx sin(σ) + Vy cos(σ)
α̇r = ((σ̈b− V̇y)Vx − V̇x(σ̇b− Vy))/V 2

x

(3.4)

and from this equation at each sample step k a linearization is made from
which we obtain:

Am =



ϑV̇x

ϑVx

ϑV̇x

ϑVy

ϑV̇x

ϑσ̇
0 0 0 0

ϑV̇y

ϑVx

ϑV̇y

ϑVy

ϑV̇y

ϑσ̇
0 0 0 0

ϑσ̈
ϑVx

ϑσ̈
ϑVy

ϑσ̈
ϑσ̇

0 0 0 0
0 0 1 0 0 0 0
ϑẋg

ϑVx

ϑẋg

ϑVy
0 ϑẋg

ϑσ
0 0 0

ϑẏg

ϑVx

ϑẏg

ϑVy
0 ϑẏg

ϑσ
0 0 0

ϑα̇r

ϑVx

ϑα̇r
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ϑσ̇
0 0 0 0


; Bm =



ϑV̇x

ϑδ
ϑV̇x

ϑα
ϑV̇y

ϑδ
ϑV̇y

ϑα
ϑσ̈
ϑδ

ϑσ̈
ϑα

0 0
0 0
0 0
ϑα̇r

ϑδ
0


(3.5)

This new linearized system has αr on its state vector so we can impose a
reference in zero to it. The same derivation cannot be made to αf and this is
the reason why we had to use the rear one.

We have simulated the same trial as before, with the obstacle at 50m and
initial speed at 110km/h, and the parameters used for this are shown in table
3.2. We can see the results in figure 3.10. The obstacle was overtaken without
many problems, but the control seems to be a little less stable than before.
Unfortunately the brake is still not used properly, and only minor values are
used after the obstacle. The values of the rear slip angles has not improved
and this is due to the fact that the prediction of the said slip angles is very
bad. The linearization introduces too many errors and we cannot pretend
the prediction to be accurate. From figure 3.13 we find also another problem.
Because the prediction is so bad, hard constraints cannot be used on the rear
slip angles. If we impose a lower bound of −0.04rad, even if in this trial the
simulated vehicle has not reached that value, the optimizator will fail to find
a suitable solution because the prediction goes well over it and there is no
possible manoeuvre to keep it lower.
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ny nc ts [s] Q̃ R̃

50 10 0.05

1 0 0
0 0.1 0
0 0 1500

 [
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0 10

]

Table 3.2: Complete obstacle w αr control - Parameters
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Figure 3.10: Complete obstacle w αr control - Trajectory
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Figure 3.11: Complete obstacle w αr control - Controls
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Figure 3.12: Complete obstacle w αr control - Slip angles



3.5. OBSTACLE WITH LATERAL SPEED OR YAW RATE CONTROL55

0 1 2 3 4 5 6
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05
Rear slip angle

Time [s]

α 
[r

ad
]

 

 
Rear α
Prediction

Figure 3.13: Complete obstacle w αr control - Rear slip angle prediction

3.5 Obstacle with lateral speed or yaw rate
control

Other simulations were done with references to other state variables to see if
somehow the control was able to understand the usage of the brake pedal.
The first one is performed with a reference in zero to the lateral speed of the
vehicle. Since it was originally part of the state vector no further modifications
are required for both this and the next trial. The weight for the αr control
is substituted with the one for the lateral speed in table 3.3. The trajectory
in figure 3.14 is very similar to the previous one, but we can notice that the
control used a little bit of brake before the obstacle. Unfortunately, as we can
see comparing figure 3.16 with the brake input, the braking peak happens
when the vehicle is not straight anymore. Braking in that condition is not
optimal. We would like the braking to happen in the straight line and not
while cornering since using longitudinal forces reduces the maximum lateral
force available.

The parameters for the trial when a reference on the yaw rate was imposed
are shown in table 3.4. Also for this example the control brakes while cornering
and the control seems to be even less stable than the previous one as we can
see in figure 3.17.
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ny nc ts [s] Q̃ R̃
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1 0 0
0 0.1 0
0 0 5
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Table 3.3: Complete obstacle w Vy control - Parameters
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Figure 3.14: Complete obstacle w Vy control - Trajectory
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Table 3.4: Complete obstacle w σ̇ control - Parameters
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Figure 3.15: Complete obstacle w Vy control - Controls
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Figure 3.16: Complete obstacle w Vy control - Lateral displacement
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Figure 3.17: Complete obstacle w σ̇ control - Trajectory
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Figure 3.18: Complete obstacle w σ̇ control - Controls
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3.6 Limits of LTV-MPC
In the previous section we have shown how the LTV-MPC was able to follow
references. The control is also capable of taking into account obstacles and
avoiding them, but it did not show capabilities of slowing down the vehicle in
the straight line before the obstacle.

This is a limit of the linear control. To explain this we can show an
example of the matrices that the linearization process calculates when the
vehicle is in the straight line. These matrices are from the trial with the
control also in the rear slip angle.

Am =



−0.0171 0 0 0 0 0 0
0 −4.5718 −28.9954 0 0 0 0
0 1.0209 −5.6475 0 0 0 0
0 0 1.0000 0 0 0 0

1.0000 0 0 −0.0153 0 0 0
0 1.0000 0 30.5556 0 0 0
0 0.1984 0.6785 0 0 0 0



Bm =



−0.0582 1.5852
58.2035 0
47.0368 0

0 0
0 0
0 0

0.3504 0



As we can see there is no correlation between the longitudinal speed and
the slip ratio variation because the first value of the last row is zero. This
means that if the vehicle is straight, the prediction of the slip angle does not
depend on the speed, and therefore the control does not see any advantages
in slowing down the vehicle. The control in fact decides that braking is useful
only when the car has already turned a bit, but that is not the optimal
condition for braking. On top of this limit of the linear control, we must also
remember that the bad quality of the predictions caused also the impossibility
to insert hard constraints on the slip ratios, and in general we can say that
controlling very nonlinear functions and nonlinear constraints it has been
proven very difficult with this type of control.

The only possibility of controlling the front slip ratio or the lateral accel-
eration, or using hard constraints on the slip ratios, or managing nonlinear
constraints is to use a nonlinear model predictive control.
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Chapter 4

NMPC Complete vehicle

A model of a road vehicle, even if we want to consider the steering input
only, is a complex nonlinear system that is not supposed to be used with a
linear control. The most logical thing to do is to threat it with a nonlinear
model predictive control, but at the beginning we wanted to try the linear
model predictive control first to thoroughly examine the limits of the linear
controller. The linear controller was also preferred because it is much faster
in its operations. The MPC controller is renown for being very difficult
to implement in real time applications because it is very laborious for the
calculator, especially if it has to deal with a big nonlinear system.

In this chapter we will threat the nonlinear control that is supposed to be
able to deal with nonlinear or even hybrid systems, with nonlinear constraints.
As we can understand from the state of the art section dedicated to this
control, the nonlinear controller is of much easier implementation for the
programmer, but it leaves all the difficulties to the minimization algorithm,
which for us is the fmincon function of Matlab.

4.1 Vehicle models

For this type of controller, since it is able to cope with every type of model,
we decided to use the same 4 contact single track model with steering and α
as inputs that we used in the linear complete vehicle both in the simulation
and in the controller. With this hypothesis we have no variance between the
predicted outputs and the simulated outputs, and so we can understand the
capabilities of the control to cope with the constraints, that is the first thing
we wanted to clarify. The whole system will be written as:

61
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mV̇x = mσ̇Vy − (Ftfl + Ftfr) sin(δ) + (Flf l + Flfr) cos(δ) + (Flrl + Flrr)− Faero
mV̇y = −mσ̇Vx + (Ftfl + Ftfr) cos(δ) + (Ftrl + Ftrr) + (Flf l + Flfr) sin(δ)
Jzσ̈ = +(Ftfl + Ftfr) cos(δ)a− (Ftrl + Ftrr)b+ (Flf l + Flfr)a sin(δ)
ẋ = Vx cos(σ)− Vy sin(σ)
ẏ = Vx sin(σ) + Vy cos(σ)

(4.1)
where the expressions of the four tyre transversal forces, functions of the slip
angles, have been omitted for clarity. No further modifications were made
because this is what directly is used both in the control and in the simulation.

We are going to apply the same constraints that we have used in the linear
complete vehicle, but we are going to neglect the constraints on the rate of
change of the manipulated variables. This is because the nonlinear optimiza-
tor has got unfortunately many limits, among which we find difficulties in
managing hard constraints priorities. We have tried to use also the said hard
constraints in the rate of change of the manipulated variables, but then the
control started to neglect the constraints represented by the obstacle. This
was not because the constraints on the rate of change were actually limiting
the control, it was simply causing numerical problems that we decided to
avoid by neglecting them. On the other hand we managed to insert hard
constraints in the front and rear slip angles. With this type of control we
are capable of obtaining accurate predictions also for what regards the slip
angles, and therefore it was possible to require the control to deal with also
limits on them. For what regards the modifications that were required for
the linear controller to consider a obstacle with fixed position in the space
domain, and therefore floating position in the time domain, here are not
needed anymore since the nonlinear controller is able to directly taking into
account its presence.

4.2 Path follower
To test the truthfulness of the nonlinear controller we run the same test as
we did for the linear controller. Exactly the same references in the lateral
position and longitudinal speed were used. The parameters that were used
for the controller have exactly the same meaning of the one used for the
linear one and are shown in table 4.1. The numbers are slightly different,
but the order of magnitude in difference between them is similar. Those
number are the results of the normalization with respect to the maximum
error possible for each measurement. Again the Q̃ matrix is the matrix of the
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ny nc ts [s] Q̃ R̃

50 35 0.05


55 0 0 0
0 5 0 0
0 0 3125 0
0 0 0 3125


[
650 0
0 20

]

Table 4.1: NMPC - Parameters

outputs weights and R̃ is the matrix of the two controls. As we can see we are
weighting four different outputs. The latest two are the front and rear slip
angles that we decided to include since they are fundamental values for the
vehicle dynamic and must be kept under control. Specifically we want them
to be as low as possible since we want the controller to have a safe margin
while taking corners. We also imposed hard constraints on the maximum
front and rear slip angles, since now with the nonlinear controller we are able
to have accurate prediction. We set that limit to 0.08rad.

As we can see from figure 4.1 and 4.2 the results are very good. The
references are obtained with very smooth transitions, much better than the
linear controller. From figure 4.3 we see how nicely the controller understands
and drives the vehicle. This is absolutely clear as there are no hesitations
while using the throttle. The difference between the linear and the nonlinear
controller is mostly due to the fact that this one is capable of making accu-
rate prediction and therefore taking accurate control actions as we can see
comparing figure 4.4 with figure 4.5. Unfortunately this improvement comes
with a high cost. This simulation required more than ten hours of computing,
an extreme amount of time if we consider that this should be used in a real
time implementation.

Since the purpose of this controller is to drive a vehicle on common roads,
the controller must be able to manage corners. Unlike all the trials that we
have shown until now, in this case the reference trajectory cannot be defined
easily in the time domain. To define the reference it is necessary to express it
as function of the curvilinear abscissa s that represent the travelled space of
the center of mass of the vehicle. To obtain it, the longitudinal speed of the
vehicle needs to be integrated. In this way, sample time by sample time, we
are going to be able to calculate the value of s and therefore to impose the
references xrif(s) and yrif(s). In this example we impose two corners while
asking the controller to stay steady at 50km/h. The hard constraints on both
the front and rear slip angles are lowered at 0.04rad in order to consider the
fact that while driving normally the safe margin should be high. In figure
4.6 we can see how the reference is followed perfectly. From figure 4.7 we
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Figure 4.1: NMPC Path follower - Lateral position
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Figure 4.2: NMPC Path follower - Longitudinal speed
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Figure 4.3: NMPC Path follower - Controls
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Figure 4.4: NMPC Path follower - Prediction



66 CHAPTER 4. NMPC COMPLETE VEHICLE

0 5 10 15 20 25 30 35 40 45
−20

0

20

40

60

80

100

120
Vx

Time [s]

V
x 

[K
m

/h
]

 

 
Vx
Prediction

Figure 4.5: Linear Path follower - Prediction

can see that the controller needed to use the brake, especially to engage the
second corner that is tighter than the first one. In fact, since the controller
is required to keep the slip angles below 0.04rad in figure 4.8, it is forced to
reduce its speed before entering the second corner.
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Figure 4.6: NMPC corner - Trajectory
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Figure 4.7: NMPC corner - Controls
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Figure 4.8: NMPC corner - Slip angles

4.3 Fixed obstacle
The real usage of this controller is to avoid obstacles. For the next trial
parameters and hard constraints are the same as for the path follower, initial
speed is set at 110km/h and the distance is the minimum possible, as obtained
from a number of trials. Results are in figure 4.9. Its performances have
improved compared to the linear controller. Here we are able to avoid the
obstacle even if it is placed at 26 meters, while before we had to require at
least 32 meters. Also this simulation has required many hours of calculations
to simulate this event, and this is the reason why we tried evaluating only
the minimum distance for the 110km/h initial speed trial instead of doing
the complete analysis as we did for the AFS control. Unfortunately here the
usage of the brake input is not as we would like to see, since we would like to
see the controller to slow down the vehicle while it is in a straight line. We
have also to consider that this trial is an extreme event. The space between
the vehicle and the obstacle is very small, and the controller could not have
any space to actually brake in the straight line. Of course the erratic usage
of the accelerator makes is not helpful and it causes also the slip angles to
break the hard constraint in figure 4.11. As we can see from figure 4.10 the
steering is used at the very beginning of the trial, and in those conditions the
accelerator should not be applied.

To test its capabilities of stopping the vehicle while being on a straight
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Figure 4.9: NMPC Obstacle 26m - Trajectory

line we decided to leave more space between the vehicle and the obstacle. In
this way there will be enough space to slow down the vehicle and overtake
the obstacle safely. In figure 4.12 we will see the result for the trial where the
same initial speed of 110km/h was used, but the obstacle was placed at 50m.
As we can see from figure 4.13, the controller is not slowing the vehicle down.
It is in fact accelerating until it overtakes the obstacle, then at that point a
little bit of brake is applied.

These trials showed that how with weights on the lateral position, on the
longitudinal velocity and on the front and rear slip angles it is not possible to
impose to the controller to slow down the vehicle. The minimization functions
is written in a way that promotes the usage of the brake. Even in there is
a weight in the longitudinal speed, taking a corner slowly will reduce a lot
more the slip angles, that are weighted more. At this point we considered the
cause of our problem to be the obstacle shape.
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Figure 4.10: NMPC Obstacle 26m - Controls
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Figure 4.11: NMPC Obstacle 26m - Slip angles
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Figure 4.12: NMPC Obstacle 50m - Trajectory
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Figure 4.13: NMPC Obstacle 50m - Controls
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Figure 4.14: Step - Trajectory

4.4 Obstacle shape sensitivity
The nonlinear controller showed sensitivity to the fixed obstacle shape. The
obstacle in our work was modelled as a rectangle, but of course we can make
the hypothesis to have whichever obstacle shape. The measurement system
will detect an obstacle, will determine its sizes and will pass those informations
to the controller. If we want, we can confine the real obstacle inside a shape
of our choice. Depending on the shape we decided to try, we have experienced
great variance with respect to the many trials. The standard event is the
fixed obstacle placed at 50m, with initial speed set at 110km/h. All those
trials, since it is very time consuming to simulate each event, are evaluated
only considering the first optimization. What we will see in the graphs are
values calculated only for the first time window.

The standard controller with the standard object shape behaves as shown
in figure 4.14. As we can see the controller is able to avoid the obstacle, but
it is not slowing the vehicle down. It seems like it is trying not to affect at all
the longitudinal dynamic of the vehicle.

We then tried to apply a ramp before the obstacle. This ramp was designed
to be 25m long. As we can see from figure 4.16 the controller is still avoiding
the obstacle, but it is now accelerating a lot more than before. A similar result
can be obtained using a ramp 8m long, while the ramp 4 and 15 meters long
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Figure 4.15: Step - Controls

fail to give a result that avoids the obstacle. This shows how the nonlinear
optimizator is a very non stable operator.

The next shape we have tried to apply is the circumference. As we can
see from figure 4.18, the obstacle is avoided while an intense usage of braking
is applied. This is what we want to see from a safe controller. The speed has
been reduced from 110km/h to 50km/h and the manoeuvre is taken with
smaller effort compared to the other results.

The circumference uses a lot of space since the obstacle must be included
in its shape. To avoid this kind of problem we tried to apply an ellipse.
Unfortunately, as we can see from figure 4.20, even if we expect a similar
behaviour to the circumference, the accelerator and the brake are used very
differently, almost randomly. Again the controller is able to avoid the obstacle,
but we can see how it is difficult to understand and setup the optimizator. Of
course this trial will not be valid anyway, because the smaller ellipse that is
capable of circumscribing the obstacle is higher than the road limit of 4.5m.

From all these figures we understand the great sensitivity that the controller
has with respect to the obstacle shape. The controller is pretty much always
able to avoid the obstacle, but its way of doing that, especially for what regards
the usage of the brake and throttle pedal, changes a lot. This sensitivity is
often non logical as the ramp shaped obstacle trials have shown, and those
defects are due to numerical problems that are again the biggest issue for this
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Figure 4.16: 25m ramp - Trajectory

0 0.5 1 1.5 2
−0.04

−0.02

0

0.02

0.04

δ 
[r

ad
]

Controls

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

%
A

cc
/B

ra
ke

Time [s]

Figure 4.17: 25m ramp - Controls
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Figure 4.18: Circumference - Trajectory
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Figure 4.19: Circumference - Controls
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Figure 4.20: Ellipse - Trajectory
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Figure 4.21: Ellipse - Controls
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control. Anyhow from all those trials we can conclude that the best one to
use is the circumference shaped obstacle because it allows the controller to
slow down the vehicle a lot, allowing a safe manoeuvre, but that shape uses a
lot of space that will fail to give good results in the case that the obstacle
blocks completely the road.



78 CHAPTER 4. NMPC COMPLETE VEHICLE

4.5 Optimization algorithm sensitivity
Since now we have never talked about the algorithm used in the optimizator
function to solve the minimization problem. Frequently in the other papers
dealing with this control we find references on commercial software written
specifically for nonlinear optimization. Unfortunately we were not able to use
those as they were not available for us. We have also to consider that those
are written for other programming languages. For what regards the linear
optimization algorithm there were no problems. The function was always
stable and able to provide efficient results since it was built to work with
linear problems that are a lot simpler compared to the nonlinear ones. On the
contrary the nonlinear case can be solved with many different algorithms. The
first one we have used, that is the one we used to provide the results above
is, as suggested by Matlab, the Interior-Point algorithm. Being very slow
at completing calculations, we decided to try also the Sequential Quadratic
Programming (SQP), that was declared to be faster. We have noticed a slight
improvement in speed, but still we are very far from a real time implementation.
Apart from this difference there are bigger diversities if we consider that the
controller was challenged with exactly the same obstacle shapes as before.
For example the standard obstacle with an SQP algorithm is overcame with
a very noisy accelerator pedal signal in figure 4.23, while the Interior Point
algorithm was able to obtain the same result with constant zero accelerator.
Other odd things must be reported for the ramp shaped obstacle. We have
said that the Interior Point algorithm was inexplicably not able to produce
a valid result with the ramp 4 and 15 meters long, even if it was capable of
doing it with the ramp 8 and 25 meters long. Now, with the SQP algorithm,
we can retrieve results for all those trials, but the behaviour for the 8 and 25
meters long ramp are very different. In figure 4.25 we can see that the new
algorithm uses a lot less accelerator than before in the 25m ramp, and also
from figure 4.27 with the 8m ramp we can say the same consideration.

The circumference is identical with respect to the case with the Interior
Point algorithm, as we can see from figure 4.29, while in the ellipse a major
fault has to be reported. The control wants to overtake the obstacle from
below in figure 4.30. To solve this problem we tried to add an hard constraint
to describe the limit of the road on the right, but unfortunately this brought
the control not to be able to return a feasible result, even if the ellipse is
perfectly symmetrical with respect to zero.

At the end of this analysis we can conclude that there are behaviours of
the optimizator function that are difficult both to understand and to manage.
Massive differences for what regards the control behaviour, especially with
the throttle and brake pedal, occur when comparing different obstacle shapes
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Figure 4.22: Step SQP - Trajectory
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Figure 4.24: 25m ramp SQP - Trajectory
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Figure 4.25: 25m ramp SQP - Controls
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Figure 4.26: 8m ramp SQP - Trajectory
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Figure 4.27: 8m ramp SQP - Controls
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Figure 4.28: Circumference SQP - Trajectory

but also while using different algorithms. The most performing combination
of the obstacle shape and algorithm is the circumference used with the SQP
algorithm. The circumference is in fact the only shape that allowed to slow
the vehicle down to safely overtake the obstacle, while the SQP algorithm is
definitively the most stable one. Since, as we have explained earlier, all those
trials are made only considering the first optimization step, we would like to
show in figure 4.31 and 4.33 the results of a complete simulation using the
circumference with the SQP algorithm. As we can see in the first part of the
simulation the controller wants to brake, while in the second part we see how
the controller wants to accelerate to get back to its reference in speed since
it has slowed down the vehicle a lot, as we can see from figure 4.32. This
is the behaviour we always expected to see. The slow speed of the vehicle
lets the control to be able to use less lateral force from the tyre. From figure
4.34 we can see how the maximum value obtained is 0.03rad, while without
the circumference with the nonlinear control a maximum value of 0.05 was
obtained, similar also to the maximum value resulted from the linear control.
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Figure 4.29: Circumference SQP - Controls
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Figure 4.30: Ellipse SQP - Trajectory
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Figure 4.31: Complete Circumference SQP - Trajectory
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Figure 4.32: Complete Circumference SQP - Speed
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Figure 4.33: Complete Circumference SQP - Controls
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Figure 4.34: Complete Circumference SQP - Slip angles
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4.6 Emergency brake test and initial condi-
tions sensitivity

Another important trial that we wanted to test is the emergency brake
manoeuvre, as it might happens to find the road completely closed. In those
conditions we expect the controller to understand that it is not possible to
overtake the obstacle, and therefore it must stop the vehicle before crashing
into it. This test was not feasible for the linear controller because it is not
capable of managing obstacles in the space domain as we explained in its
chapter, and therefore this type of trials were experienced only with the
nonlinear control. We have discovered a problematic sensitivity to the initial
conditions that we set for each step to the optimizator. The first initial
condition that we wanted to try are set, for the whole time window, as the
steering in zero and the throttle pedal in zero. The results are shown in figure
4.36, and we can see how the controller is not trying to stop the vehicle as it
is trying to accelerate while uselessly steering to avoid the obstacle in figure
4.35.
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Figure 4.35: Emergency brake Thr= 0 - Trajectory

This bad result pushed us to try to impose different initial conditions.
The next test is with the initial conditions set with the brake at 50% for
the whole time window. The results in figure 4.38 and 4.39 are again not
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Figure 4.36: Emergency brake Thr= 0 - Controls

0 0.5 1 1.5 2 2.5
48.5

49

49.5

50

50.5

51

51.5

52
Longitudinal velocity

Time [s]

V
x 

[K
m

/h
]

 

 
Vx
Reference

Figure 4.37: Emergency brake Thr= 0 - Speed
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satisfactory. The controller starts to understand that the brake is required
but it does not use it properly. The car stops within 14 meters if the brake is
applied completely, here the brake is not enough to reduce the speed before
crashing into the obstacle as we can see from figure 4.39.
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Figure 4.38: Emergency brake Brk= 0.5 - Trajectory

Before trying to impose full braking over the whole time window, we
would like to show another trial that prove how the optimization function is
difficult to understand and setup. The trial is with initial condition set at full
throttle for the whole time window. This condition is obviously not helpful
if we consider that we want the car to be stopped, but if we compare figure
4.42 with the first trial that we did with zero throttle in figure 4.36 we can
see that at least in this test the controller is not accelerating. This behaviour
of the optimizator is obscure.

The last test is the one with full braking set as initial condition. The
results in this case are as expected. In figure 4.44 we can see that the vehicle
is kept in a straight line and how it is able to stop before the obstacle, while
in figure 4.45 we can see how the brake is applied fully almost for the whole
simulation.

It is important to understand that for this type of trial we would not need
to change the setup of the controller, as it must understand the solution on
his own. This is the reason why the speed reference is always set to 50km/h
as that is the speed that normally it has to follow. Otherwise it means that
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Figure 4.39: Emergency brake Brk= 0.5 - Controls
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Figure 4.40: Emergency brake Brk= 0.5 - Speed
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Figure 4.41: Emergency brake Thr= 1 - Trajectory

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

δ 
[r

ad
]

Controls

0 0.5 1 1.5 2 2.5
0

0.5

1

%
 B

ra
ke

0 0.5 1 1.5 2 2.5
0

0.5

1

%
 G

as

Time [s]

Figure 4.42: Emergency brake Thr= 1 - Controls
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Figure 4.43: Emergency brake Thr= 1 - Speed
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Figure 4.44: Emergency brake Brk= 1 - Trajectory
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Figure 4.45: Emergency brake Brk= 1 - Controls
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Figure 4.46: Emergency brake Brk= 1 - Speed
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we would require an higher level logic unit capable of understanding if the
road is blocked, and therefore capable of applying the procedure to stop the
vehicle as soon as possible. But with this type of logic the model predictive
control is not required, since in those conditions we could simply impose
the speed reference to zero, and therefore we could simply use a classic PID
controller. Unfortunately for us, as we have seen with those trials, only with
the initial conditions set to full braking the controller is able to understand
that stopping the vehicle is a feasible solution, but this initial solution is not
the one used for every step of a normal driving situation. Normally for each
step we impose as initial conditions the solution that the optimizator has
obtained in the previous optimization. In this way we guarantee a smooth
operation and we increase the speed of calculations. For these reasons the
initial conditions are never set to full braking and therefore the controller will
never be able to stop the vehicle without the usage of an higher level logic
unit.
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4.7 Moving obstacle
The nonlinear model predictive control can also consider a moving obstacle in
its predictions allowing the vehicle to avoid the obstruction without any issue.
This is done directly into the minimization function and it is obvious how
this is an advantage on the basic PID path follower that requires necessarily
a trajectory to be defined. Of course the trajectory of the obstacle must be
known, and therefore somehow we must obtain the future behaviour of the
moving obstacle. Even if this can sound tricky, actually the great varieties
of obstacle that we find daily on the roads have standard behaviours. For
example people or animal crossing the road tend to have a constant velocity
across the road, while vehicles tend to remain parallel to it. In case there
is a change in velocity of the obstacle, this can be considered thank to the
receding strategy of the controller, therefore we are required to know correctly
only the first few second of the future behaviour of the obstacle.

The first challenge is an overtaking manoeuvre. Our vehicle is travelling
at 110km/h and it has to overtake a lorry, which is the standard obstacle
that we have used for all our work, driving at 50km/h. It is difficult to show
how the trial was a success but in figure 4.47 we can see how our vehicle is
able to be above the lorry encumbrance before getting into it. When the two
x coordinates are equal, the vehicle y coordinate is in fact higher than two
meters. To clarify we can also watch the series of frames that we took from
this trial in figure 4.49, 4.50, 4.51, 4.52, 4.53, 4.54.

To also consider the control ability to avoid moving obstacle going across
the road we made another trial. The vehicle is still starting from 110km/h
while the obstacle crosses the road with a velocity along the x axes of 54km/h
and along the y axes of 35km/h and its starting point is placed so that a
collision is imminent. While in the previous example the obstacle shape could
be whichever we wanted to, and we have chosen the step since it was the
simplest one to apply, here the obstacle must be defined as a general elliptical
closed curve, otherwise we cannot describe its shape and movement into the
minimization function. A logic choice could be the circumference, but since
the object is moving from one side to another of the road, the circumference
is taking too much space and therefore an ellipse is used instead. As we can
see from the frames in figure 4.55, 4.56, 4.57, 4.58, 4.59, the controller is able
to consider the obstacle and to slow down the vehicle to let the obstacle pass
as we can see from figure 4.60, without using the steering.
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Figure 4.47: Moving obstacle overtaking - Displacements
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Figure 4.48: Moving obstacle overtaking - Controls
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Figure 4.49: Moving obstacle overtaking - Trajectory Frame 1 (0s)
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Figure 4.50: Moving obstacle overtaking - Trajectory Frame 2 (2s)
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Figure 4.51: Moving obstacle overtaking - Trajectory Frame 3 (3.3s)
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Figure 4.52: Moving obstacle overtaking - Trajectory Frame 4 (4.25s)
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Figure 4.53: Moving obstacle overtaking - Trajectory Frame 5 (5s)
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Figure 4.54: Moving obstacle overtaking - Trajectory Frame 6 (6.45s)
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Figure 4.55: Moving obstacle crossing - Trajectory Frame 1 (0s)
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Figure 4.56: Moving obstacle crossing - Trajectory Frame 2 (1.5s)
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Figure 4.57: Moving obstacle crossing - Trajectory Frame 3 (2s)
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Figure 4.58: Moving obstacle crossing - Trajectory Frame 4 (2.5s)
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Figure 4.59: Moving obstacle crossing - Trajectory Frame 5 (5s)
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Figure 4.60: Moving obstacle crossing - Speed
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Chapter 5

Conclusions

We managed to evaluate the behaviour of a linear Model Predictive Control
applied to the steering only, and applied to the steering, to the throttle and
to the brake pedals. Moreover, we developed a nonlinear Model Predictive
Controller applied to the steering, to the throttle and to the brake pedals.
We tried all these controls as path followers and for the purpose of avoiding
obstacles.

The linear controller is easier to setup but it is difficult to implement
when it has to cope with nonlinear systems. It has shown good performances,
comparable or even better than common PID controllers, and good sensitivity
to the various parameters of the controller, i.e. any set of parameters is
typically able to cope with much more situations with respect to PIDs. In
fact, as can be seen in the appendix, the MPC controller was able to control
both a collocated and a non collocated system, while the PID controller
required a special setup for these two cases. This is because the setup of the
MPC controller concerns the optimizator function rather than the controller
itself. For these reasons, even if it requires a little bit of programming effort,
we can say that the linear MPC is easier to manage with respect to common
controllers. We were pleased by the performance of the linear MPC performing
on linear systems.

The active front steering management was a positive result. We were
not expecting such a good behaviour with a system linearized every 50ms
controlled by a completely linear logic. We have shown as the controller is
perfectly capable of following any reference trajectory with the vehicle even if
we have neglected the load transfer and the relaxation lengths in the model
of the controller. It is also capable of avoiding a fixed obstacle if this is seen
by the measurement system within a distance that is feasible for the usage
on normal roads and in normal traffic conditions. To these performances we
have to add the fact that it is has shown high computational speed. Even if
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we have used Matlab, the controller was able to calculate within 25ms for
almost every control step and even if the optimizator fails to obtain the value
of the future control variable, a valid escape route was identified. However,
also a number of problems showed up: at speeds higher than 150km/h the
controller showed signs of instability caused by the wrong predictions in the
lateral dynamics of the vehicle, while predictions of the slip angles were never
good enough to be used in hard constraints. These results are satisfactory
because they show that it is possible to use a MPC based AFS in order to
avoid obstacles. This is an evolution compared to the work that was done in
[2],[3] and [4] where an AFS was used to simply follow a reference path on
slippery surfaces. This development was also suggested in the conclusions of
[5].

In the following step the linear controller was applied over the accelerator
and brake pedal, as it was never done before. The vehicle driven by the
LTV-MPC was perfectly capable of following references both in the lateral
position and in the longitudinal speed of the vehicle and was also able of
avoiding obstacles. Nevertheless, it has never shown capabilities of using
the brake correctly. The control of the longitudinal dynamics of the vehicle
has never been very performing while avoiding obstacles and we have shown
that this is due to the limits of the linear controller. In fact the linearized
matrices do not show any relation between the brake input and the lateral
dynamics of the system. Therefore, the optimization function was never
able to understand the purpose of its usage while in straight line. Only
when cornering these matrices show relation between longitudinal and lateral
dynamics, thus allowing the brake to be applied.

All these limits, among which the impossibility of imposing hard con-
straints on the front or rear slip angles, pushed us to try to apply the nonlinear
controller. The advantages of the nonlinear controller are clear. We showed
that the predictions and therefore the control actions are much smoother
compared to the one of the linear case. The NMPC is capable of driving on
normal roads with corners and we have shown how that is made also taking
into account limits on the slip angles. We have also shown how the controller
is capable of improving the performances of the linear case. In fact the latter
requires 32 meters minimum to avoid the standard obstacle starting from
110km/h, while the nonlinear controller just needs 26 meters to accomplish
the same manoeuvre.

An extensive study of the obstacle shape and the optimizator algorithm
was carried out to show that even minor differences in the shape can cause
enormous differences in the behaviour of the controller, especially for what
regards the usage of the vehicle controls. We managed to understand that the
best combination of obstacle shape and optimizator algorithm is the circum-
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ference with the SQP algorithm, and we have shown how this combination
provide the desired usage of the brake pedal.

The NMPC is the only controller capable of dealing with moving obstacles.
We have challenged the controller both with an overtaking manoeuvre of a
moving vehicle and with an object crossing the road at constant speed. Both
the trials have been success and state the advantage of using this type of
control compared to the linear ones.

It is important to remember that there is also an important problem of
calculations time. Unfortunately the difficulties with this type of control are
all left to the optimization function that find itself doing a large number of
calculations and attempts. The calculation time is almost 9000 times the real
time. Thus a hard job is expected to obtain a realtime implementation. This
slowness is not due to scripts inefficiencies but directly to the fact that some
functions are called millions of times, and this, of course, requires a lot of
time.

The future of this controller depends largely on how will the speed of
calculations improve. In our work we have demonstrated how only the
nonlinear Model Predictive Control is capable of taking into account all
the challenges that the road proposes, especially for what regards moving
obstacles. Though it has the great limit of the calculation speed and therefore
its main issue is certainly that. The first necessary future development will be
to write the controller in another programming language, such as the much
faster C.

The controller also requires some more studies on how to obtain more
constant performances. The difficulties we have experienced due to the
sensitivity to the obstacle shape can be caused by the fact that, to avoid the
obstacle, the controller must move away far from the required reference. This
causes the minimization function J to increase a lot and this could bring
numerical problems. It is therefore possible to try to create another MPC unit
that, knowing the position of the obstacles, generates a feasible reference both
for the lateral position and the longitudinal speed. In this way the controller
could guide the vehicle following said references and still considering obstacles
and limits. This could give good results since our controller has proved great
performances while following paths, while the other unit will just need to
provide the trajectories.

This thesis only deals with the Motion Planner layer, but also the Mission
and Behavioural layer must be developed in order to consider all the tasks
an Autonomous vehicle must accomplish. On top of that also a unit that
manages measures is required. All our work was developed supposing of
knowing exactly the state of the vehicle model, but this is not possible if we
are dealing with a real vehicle. The same can be said for the prediction of the
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future behaviour of the obstacles. In this work we have supposed to know
exactly the future positions of the obstacles. Of course this is not true in
the real environment and a specific unit must be developed to deal with this
problem.

Another interesting future project for a Model Predictive guided vehicle
could be its usage in the race car world. In fact it is possible to change
the minimization function J to obtain the shortest time as possible. The
constraints will not include obstacles anymore, but just the limits of the road
that will describe a certain corner or even the complete circuit.



Appendix A

Linear MPC

This chapter was written to help understanding the basic operations that
are involved using the linear MPC. Controlling a vehicle is a complex job
since it involves dealing with a nonlinear system. Here we want to show how
a linear MPC works with a completely linear system. This is also the first
control that we have worked with since time and effort were required to both
understand and program the logic behind model predictive controls.

A.1 System model
The system that we will use is the classic two degree of freedom bogie system,
where the forces are directly applied to each bogie.

Figure A.1: Linear system model

Its equations are:
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m1ẍ1 + (c1 + c2)x1 − c2x2 + (k1 + k2)x1 − k2x2 = F1

m2ẍ2 + (c2 + c3)x2 − c2x1 + (k2 + k3)x2 − k2x1 = F2
(A.1)

From these we can obtain the state space form:

ẋ =


− c1+c2

m1
+ c2
m1

−k1+k2
m1

+ k2
m1

+ c2
m2

− c2+c3
m2

+ k2
m2

−k2+k3
m2

1 0 0 0
0 1 0 0

x+


1
m1

0
0 1

m2
0 0
0 0

F (A.2)

where x = (ẋ1, ẋ2, x1, x2)′ is the space vector and F = (F1, F2)′ is the
control force vector. Knowing that k1 = k2 = k3 = 1N/m, c1 = c2 = c3 =
0.01Ns/m and m1 = m2 = 0.011kg, we obtain:

ẋ =


−18.2 9.1 −1818.2 909.1

9.1 −18.2 909.1 −1818.2
1 0 0 0
0 1 0 0

x+


909.1 0

0 909.1
0 0
0 0

F (A.3)

For this system we have decided to use, for all the following tests, the same
parameters to show how adaptable is this control compared to the classic
PID control. The parameters are shown in table A.1.

ny nc ts [s]
20 10 0.01

Table A.1: Linear parameters

A.2 Collocated control
The first example is a displacement control for the first bogie while acting
directly on the bogie, therefore with the force F1. Starting from zero, we
want to impose to the first bogie a displacement of three meters.

As we can see from figure A.2 the control action starts before the step,
and therefore the control is capable of minimizing the error with respect to
the reference thanks to his prediction capabilities. This is something the PID
controller is not capable of doing.
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A.3 Non collocated control
Now we want to impose the same three meters step, but to the second bogie.
The force will be still on the first bogie and therefore this is defined as
non collocated control. We want to show that the model predictive control
is capable of taking into account many different situations with the same
parameters. The parameters in fact, as explained in the state of the art, are
dependant on the system characteristics, and not on the single task the control
has to perform. With the classic PID controller we would have changed the
gains, but here is not necessary.
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Figure A.4: Non collocated - Displacements

A.4 Multi input multi output
The examples above were single input, single output systems, but the model
predictive controller is capable of taking into account whatever requirements.
Of course for better performances it is required that we impose one reference
per each control force we want to apply, otherwise many different optimal
solution could exists and could cause problems to the minimization function.
Here we would like to impose a three meters step to the first bogie, while
wanting the second one to stand still. This, of course, will require the forces
to go in opposite directions. Since we are more interested in having the second
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Figure A.5: Non collocated - Force

bogie steady on zero, we weighted differently the errors for both boogies. The
weight for the first bogie will be 0.1, while the second one will be set at 1.

As we can see from figure A.6 the controller is capable of dealing with
both boogies nicely. Figure A.7 confirms that the forces must go in opposite
direction. Now we might want the second bogie steadier, 0.05m of displace-
ment could be too much. We are then trying to weight the first bogie even
less, for example 0.05.

As we can see from figure A.8 the change in the weights has worked. Now
the second bogie is moving a lot less than before, but this has required to
lower a little bit the performances for the first bogie. Figure A.9 shows how
this is obtained using the same amount of force, just with minor differences
difficult to spot in their trajectory.

With this brief part we have showed the basic functions that a model
predictive control can manage, and we have done that with a linear model
predictive control applied on a linear simple system. We have pointed out
that this type of control, opposed to the classic controls that can be used for
state space systems, does not require a setup per each situations but only one
since its parameters are dependant on the system characteristics. We have
also shown its sensitivity to changes in weights.
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Figure A.6: MIMO - Displacements
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Figure A.8: MIMO - Displacements 2
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Appendix B

Vehicle Model

Since we are studying an MPC controller we need an accurate model of the
system in the state-space form. Although it is important to obtain a trustful
model of the system, it is not fundamental for it to be exact since, thanks to
the receding strategy, the controller is capable of coping with model variances.
Typically, modelling a vehicle do not cause particular problems. The majority
of the vehicle parameters tend to remain constant for its whole lifespan, like
for example the stiffness of the springs. That value might vary a little bit, but
the overall behaviour will remain very close to the initial one. The damping
coefficient is one of the few parameters that is capable of varying a lot, but
on the common usage of the vehicle the dynamic behaviour remains similar.
Only on very hard dynamics, like hard cornering, a difference is noticeable.
For these reasons the biggest problem in modelling a vehicle is only due to the
difficulties in modelling the tyres. Their parameters are in fact able to change
a lot even through a single day thanks to change in weather conditions. We
will make for these reasons the strong hypothesis of knowing all the vehicle
parameters exactly, included the tyre parameters.

It is important to notice that two different vehicle models are required to
simulate our controller. The first one is the model that is used to actually
simulate the real vehicle, whom is kept as accurate as possible. We have
decided to use a 4 contact single track model to limit the computational effort
required for the simulations, but this can be kept as accurate and complicate
as needed. The second model is the vehicle model used by the controller
to calculate the prediction and therefore obtain the future trajectories of
the controls. This model is typically kept intentionally simpler, for example
a 2 contact single track model can be used, so that the controller is able
to execute the optimization faster. In the end what happens is that the
controller takes from the sophisticated model informations on the current
state of the system. Then, using the simplified model, it makes the prediction
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and therefore it obtains the future trajectory of the manipulated variables.
Afterwards those control actions are applied, but only for the first step, to
the sophisticated model. The possible discrepancies are taken into account
thanks to the receding strategy.

B.1 Chassis dynamic

B.1.1 Equations of motion
Here we will obtain the formulation for the 4 contact single model. The
simplified model will be obtained easily by reducing this one. The hypothesis
under which we are going to develop this model are:

• Rigid body

• Gauge effects neglected

• No elasto-kinematic effect considered

• Trailing arm neglected

• Rolling resistance neglected

Figure B.1: Vehicle Model
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For the state variables considered, that are lateral velocity Vy, longitudinal
velocity Vx and yaw angle σ, from simple equilibrium equations from figure
B.1 we obtain:



mV̇x = mσ̇Vy − (Ftfl + Ftfr) sin(δ) + (Flf l + Flfr) cos(δ) + (Flrl + Flrr)− Faero
mV̇y = −mσ̇Vx + (Ftfl + Ftfr) cos(δ) + (Ftrl + Ftrr) + (Flf l + Flfr) sin(δ)
Jzσ̈ = +(Ftfl + Ftfr) cos(δ)a− (Ftrl + Ftrr)b+ (Flf l + Flfr)a sin(δ)
ẋg = V cos(β + σ)
ẏg = V sin(β + σ)

(B.1)

with β = tan−1(Vy/Vx) and V =
√
V 2
y + V 2

x . δ is the angle imposed to
the wheel due to the steering, Flfr is the longitudinal force for the front right
tyre, Ftrl is the transversal force for the rear left tyre and Faero is the drag
force expressed as Faero = 1

2 ρ V
2
x CD A. Also note that xg and yg are the

displacements of the center of mass related to the absolute reference system.
For what regards the longitudinal tyre forces we have neglected the wheel
dynamic and therefore they can be easily expressed knowing the torque Cr
and Cf imposed by the transmission and braking system.



Flf l = Flfr = Cf/R

Flrl = Flrr = Cr/R

Ftfr = Ftfr(x, ẋ, y, ẏ, σ, σ̇, Flfr, Nfr)
Ftfl = Ftfl(x, ẋ, y, ẏ, σ, σ̇, Flf l, Nfl)
Ftrr = Ftrr(x, ẋ, y, ẏ, σ, σ̇, Flrr, Nrr)
Ftrl = Ftrl(x, ẋ, y, ẏ, σ, σ̇, Flrl, Nrl)

(B.2)

The longitudinal forces right and left are equal because the braking system
impose an equal torque on both wheels and the same can be said for the
transmission since we are using an open differential. As we can see the
transversal forces depend on the state of the vehicle and on the longitudinal
force applied to the same wheel. Another effect that modifies the force that
the wheel can apply transversally are the vertical loads like Nfr. Since we
are dealing with a 4 contact model we must include the load transfer, and
this is made considering only a steady-state load transfer.
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Nfl = mgb
2p + η ·∆N

Nfr = mgb
2p − η ·∆N

Nrl = mga
2p + (1− η) ·∆N

Nrr = mga
2p − (1− η) ·∆N

(B.3)

where mgb
2p and mgb

2p are the static loads and the rest is the load transfer.
∆N = mAyhg

c
is the global load transfer, with Ay = V̇y + Vxσ̇, and η =

kroll,f

kroll,f +kroll,r
, where kroll,f and kroll,r are the front and rear roll stiffness.

B.1.2 Tyre modelling
The model for lateral forces that a tyre is able to exchange is necessarily a
Pacejka formulation.

Fyfl = −Dfl sin(Cf tan−1(Bfαf − Ef (Bfαf − tan−1(Bfαf ))))
Fyfr = −Dfr sin(Cf tan−1(Bfαf − Ef (Bfαf − tan−1(Bfαf ))))
Fyrl = −Drl sin(Cr tan−1(Brαr − Er(Brαr − tan−1(Brαr))))
Fyrr = −Drr sin(Cr tan−1(Brαr − Er(Brαr − tan−1(Brαr))))

(B.4)

where everything depend on the front and rear slip angles αf and αr and
the constants Bi, Ci and Ei are characteristics of the tyre. Dij are expressed
as follows:


Dfl = µyfl(qf + sf dffl)Nfl

Dfr = µyfr(qf + sf dffr)Nfr

Drl = µyrl(qr + sr dfrl)Nrl

Drr = µyrr(qr + sr dfrr)Nrr

(B.5)

being dfij = Nij−N0
N0

, and N0 = 4000N . As we can see these are dependant
on the load transfer and in this way we can model the correlation that there
is between the lateral force and the variation in vertical load. The result of
all this brings to the behaviour of the lateral force, function of the slip angle,
that can be seen in figure B.2.

To take into account the effect of the combined friction effect, even though
we do not have the complete Pacejka model, we decided to make the µyfr,
µyfl, µyrr and µyrl coefficient dependant on the longitudinal forces that are
known from the vehicle inputs. Knowing both the longitudinal force and
the vertical force acting on the tyre, we can evaluate the engaged friction
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Figure B.2: Lateral force

µxij = Fxij/Nij and therefore we can reduce the maximum value of friction
available for the lateral force µyij. There is the hypothesis of µtot = 1.

µyfl =
√
µ2
tot − µ2

xfl

µyfr =
√
µ2
tot − µ2

xfr

µyrr =
√
µ2
tot − µ2

xrr

µyrl =
√
µ2
tot − µ2

xrl

(B.6)

We must then consider that the forces exchanged by a tyre have their
own dynamic and therefore a delay. In our case we are going to consider this
effect only for the lateral forces. Typically this behaviour is modelled with
a first order dynamic system that is forced by the value of the lateral force
that the tyre would exchange if considered in steady-state conditions.



Lf

V
Ḟyfl + Fyfl = F̄yfl

Lf

V
Ḟyfr + Fyfr = F̄yfr

Lr

V
Ḟyrl + Fyrl = F̄yrl

Lr

V
Ḟyrr + Fyrr = F̄yrr

(B.7)

where F̄yij are drawn from the Pacejka formulation described above, and
where Lf and Lr are constant characteristic of the tyre, known as relaxation
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ρ [kg/m3] CD [ ] A [m2] a [m] b [m] p [m]
1.225 0.33 2.59 1.235 1.465 2.7
R [m] m [kg] Jz [kgm2] hg [m] c [m] η [ ]
0.328 1880 2873 0.6 0.796 0.55
Bf [ ] Br [ ] Cf [ ] Cr [ ] Ef [ ] Er [ ]
-7.5 -10.078 1.503 1.503 -0.233 -0.059

Lf [m] Lr [m] qf [ ] qr [ ] sf [ ] sr [ ]
0.5 0.7 1 1.2075 -0.12 -0.12

Table B.1: Vehicle parameters

lengths. At this point we just need to obtain the relations between the slip
angles and the vehicle kinematics. The slip angles are considered equals
between left and right because we neglect the effect of the wheel track. They
are defined as the angle between the lateral Vti and the longitudinal Vli speed
of the rim.

αf = tan−1( (Vy+σ̇a) cos(δ)−Vx sin(δ)
Vx cos(δ)+(Vy+σ̇a) sin(δ))

αr = tan−1(Vy−σ̇b
−Vx

)
(B.8)

B.1.3 Validation

To certify the goodness of the model for what regards the lateral dynamic,
we decided to compare some experimental measurements done using an
Alfa Romeo 159 with our model. The experimentation consists of simple
manoeuvres like the double line change and the slalom. From those trials
measurements of the steering input, the side slip angle and the yaw rate
were taken. Then the steering trajectory was used as input in our model and
results were plotted and compared. The data for the 4 contact single track
model of the Alfa Romeo 159 are shown in table B.1.

As we can see from figure B.3, B.4, B.5, B.6, B.7, and B.8, even though
there is variance between the real vehicle and the simulated model, we can
state with absolute confidence that the model that we have used is a very
good representation of a typical road vehicle.
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Figure B.4: Slalom - side slip angle
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Figure B.5: Slalom - yaw rate
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Figure B.6: Double line change - lateral acceleration
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Figure B.7: Double line change - side slip angle
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Figure B.8: Double line change - yaw rate
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Figure B.9: Engine torque and power

B.2 Engine and drivetrain

B.2.1 Engine modelling
Of course, since we want to consider a controller capable of acting on the
vehicle through the common control that it has, it is necessary to model also
all the systems that are interested in the longitudinal dynamic. This consider
also modelling both the engine of the vehicle, that in our case is the 2.2Jts
made by Alfa Romeo, and the transmission with the brakes. Thanks to [14]
we managed to obtain an experimental measure of the power and torque that
that engine is capable of producing in full throttle. To the torque diagram we
added a segment from 0 to 1000rpm to model the usage of a clutch. This is
for when the speed of the vehicle is lower than the minimum speed allowed by
the idling speed of the engine in a certain gear. To model also the presence
of the engine brake, we introduced a value of torque equal to −10% of the
torque when full throttle, that brakes the vehicle when the accelerator is not
used.

B.2.2 Transmission and brake modelling
Also for what regards the transmission a research for the required parameters
was done, and that allowed us to obtain the values of the various gear ratios,
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τ1 τ2 τ3 τ4 τ5 τ6 τfin
1/3.818 1/2.353 1/1.571 1/1.146 1/0.943 1/0.861 1/4.176

Table B.2: Gearbox ratios
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Figure B.10: Acceleration test

final ratio included, that are shown in table B.2. It was also required to
program a basic gear change logic such that the vehicle was able on his own
to increase or decrease speed for more than what is allowed in one fixed gear.
This basic automatic gearbox allows us to not include the gear selection in
the outputs of the controller. This choice was made because a linear MPC
controller is not capable to deal with hybrid systems, but this can be done
while using a nonlinear MPC. The gear change logic is very simple: the
vehicle up shifts if the revs are higher than a bound set at 6000rpm, and
it down shifts when the revs are lower than another bound set at 2000rpm.
If the first gear is engaged, lowering the revs under the 2000rpm limit will
not, of course, produce a down shift, and if the revs will proceed getting even
lower than the engine idle speed, the torque diagram will be valid in any case
since we have introduced the clutch model. On the other hand, since the drag
force is introduced, the engine is not capable of getting to the rev limiter in
final gear, and therefore no further modifications are required.

The drag test from 0 to 100 km/h, figure B.10, ends up being totally
compliant with the same test made by the real Alfa Romeo 159JTs. The
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Figure B.11: Maximum speed

proclaimed figures are in fact 8.7s, absolutely comparable with our 8.5s.
For what regards the maximum speed obtainable, in figure B.11 we get

220km/h from our model, again comparable with the maximum speed of
224km/h proclaimed by Alfa Romeo.

The braking system is simply modelled as a torque applied to the wheel
that is regulated in amplitude by the brake input. We do not have particular
requirements for the braking system, thus the model was kept simple on
purpose. Two values of maximum braking torque are present to cope with
the common vehicle’s biased braking system. The torque for the front axle is
Cbf = 2700Nm and the torque for the rear axle is Cbr = 1800Nm.

As we can see from figure B.12 with full braking the vehicle is capable
of producing approximately −0.75G of longitudinal acceleration that is the
value that commonly a mid sized car can achieve. The deceleration is not
constant due to non linearity in the torque figure of the engine. We can also
see three down shifts.

Finally we can express the longitudinal forces applied at the wheel functions
of the accelerator α and of the brake γ.Flf l = Flfr = α(Cmax−Cmin

2Rτi
) + Cmin

2Rτi
− γ Cbf

2R
Flrl = Flrr = −γ Cbf

2R
(B.9)

where τi indicates the total transmission ratio that also considers the final
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Figure B.12: Deceleration test

ratio. As we have already explained, the longitudinal forces are equal on the
axle because the braking system applies the same torque on both wheels and
so does also the transmission since we have made the hypothesis of using an
open differential. For these reasons both the engine torque and the braking
torque are divided by 2.
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Acronym

ABS Antilock Braking System

ESP Electronic Stability Control

AFS Active Front Steering

DARPA Defense Advanced Research Projects Agency

MPC Model Predictive Control

NMPC Non linear Model Predictive Control

LTV Linear Time Variant

SQP Sequential Quadratic Programming

AGV Automated Guided Vehicle

MIMO Multi Input Multi Output
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