
POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di Laurea Magistrale in Ingegneria
Meccanica

A methodological approach to re-engineer the
experience of consumer products based on the use of

haptic devices

Relatore:

Ing. Francesco FERRISE

Correlatore:

Ing. Serena GRAZIOSI
Tesi di:

Guilherme PHILLIPS FURTADO

Matr. 764112

Anno Accademico 2012–2013

POLITECNICO DI MILANO

Sommario

Corso di Laurea Magistrale

A methodological approach to re-engineer the experience of

consumer products based on the use of haptic devices

by Guilherme PHILLIPS FURTADO

Matr. 764112

Oggigiorno non esiste una maniera sistematica per catturare le preferenze tattili

di un utente che interagisce con interfacce di prodotti di consumo quali cassetti,

porte o pulsanti, né un metodo per tradurre tali preferenze in un meccanismo

in grado di generarle. L’obiettivo del lavoro di tesi è di proporre un metodo che

permetta alle compagnie che operano nel settore dei prodotti di consumo di re-

ingegnerizzare il feedback tattile di tali prodotti sulla base delle preferenze degli

utenti. Questo metodo si basa sull’uso di prototipi virtuali interattivi con i quali

l’utente può interagire attraverso sistemi haptic a ritorno di forza. Tale ritorno di

forza può essere modificato in base alle preferenze dell’utente grazie ad un modello

di forze che controlla l’interfaccia haptic, completamente parametrizzato. Questo

permette di trasformare una serie di feedback percettivi puramente qualitativi in

specifiche quantitative. Attraverso algoritmi di ottimizzazione queste specifiche

quantitative sono successivamente tradotte in un meccanismo reale. La porta di

una lavastoviglie è stata utilizzata come caso di studio per dimostrare l’efficacia

del metodo e identificarne i limiti.

keywords: haptics, tecnologia haptic, user experience design, virtual prototype,

stima dei parametri

Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

POLITECNICO DI MILANO

Abstract

Corso di Laurea Magistrale

A methodological approach to re-engineer the experience of

consumer products based on the use of haptic devices

by Guilherme PHILLIPS FURTADO

Matr. 764112

Currently, there is no systematic way to evaluate users’ tactile preference when

interacting with parts of consumer’ products such drawers, doors or buttons

through the use of interactive virtual prototypes, nor a way to infer the spec-

ifications of the mechanism that would be responsible for the desired haptic feed-

back. The aim of this work is to describe a methodological approach that enables

companies, operating in the consumer goods market, to re-engineer the haptic

feedback from the interaction with such products according to users’ preferences,

by creating an easily modifiable virtual prototype that is interacted with through

a haptic interface. The haptic feedback provided by the virtual prototype is

readily modified at the user’s request through the use of a parametric model that

controls the haptic interface, responsible for transforming perceptual qualitative

feedbacks into quantitative specifications. These quantitative specifications are

transformed into the technical specifications of a real mechanism through the

solution of an optimization problem. A dishwasher door has been used as case

study in order demonstrate the effectiveness of the proposed methodology and to

identify the limits.

keywords: haptics, haptic technology, user experience customization, virtual

prototype, parameter estimation, mechanisms

Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Contents

Sommario i

Abstract ii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Technology Overview . 2

1.2 Related Works . 3

2 Methodological Approach 5

3 Physical System Modelling: Dishwasher Door 11

3.1 Simulation Software . 11

3.2 Description of the Dishwasher Door 12

3.3 Dynamic model in AMESim . 14

3.3.1 Articulated mechanism . 14

3.3.1.1 Subsystem DOOR 18

3.3.1.2 Subsystem PLATE 18

3.3.1.3 Subsystem RELATIVESPEED 20

3.3.1.4 Subsystem FRICTIONFORCE 24

3.3.2 Latch mechanism . 25

3.4 Measurements . 27

4 Haptic rendering 34

4.1 Haptic Device . 34

4.2 Coding language and API . 36

4.2.1 H3D API . 37

4.2.2 Python . 37

4.2.3 X3D . 37

4.3 Haptic Model . 37

4.3.1 Transformation of Coordinates 39

4.3.2 Constraining the end-effector 41

4.3.2.1 First method: Radial direction stiffness 41

Example: . 43

4.3.2.2 Second method: Restitution force based on dis-
tance minimization 43

iii

Contents iv

4.3.3 Haptic Behavior Modelling 49

4.3.3.1 Activation functions 50

4.3.3.2 Unlocking Phase 52

4.3.3.3 Locking phase . 53

4.3.3.4 Transition between locked and unlocked state . . . 54

4.3.3.5 Moving Phase . 54

4.4 Implementation . 57

Code Description . 59

X3D file . 59

Python file . 61

4.5 Experimental results . 63

5 Optimization 66

5.1 Designing the problem: Dynamic system parameter estimation . . 67

5.2 Solving the problem: Genetic Algorithm 69

Chromosomes or Individuals 69

Selection . 70

Recombination . 70

Mutation . 70

Methodology . 70

5.2.1 Parameter estimation of the system from measurements . . 71

5.2.2 Parameter estimation of the haptic model from measurements 72

5.2.3 From haptic model to technical specification 74

5.2.4 Redesigning the dishwasher mechanism 76

6 Conclusion 80

A Appendix A: X3D file for haptic rendering 82

B Appendix B: Python file for haptic rendering 89

Bibliography 103

List of Figures

2.1 Methodological Approach . 7

3.1 Description of components used from AMESim 13

3.2 Mechanical components of the Door 14

3.3 Sketch of the articulated mechanism 16

3.4 Dry friction as an hyperbolic tangent 17

3.5 Block diagram of the system . 17

3.6 Block diagram of the subsystem DOOR 19

3.7 Block diagram of the subsystem PLATE 20

3.8 Diagram of the plate . 21

3.9 Block diagram of the subsystem RELATIVESPEED 23

3.10 Block diagram of the subsystem FRICTIONFORCE 24

3.11 System representation of the latch mechanism 25

3.12 Block diagram for the latch mechanism 26

3.13 Force applied by the latch mechanism on AMESim model due to
the spring . 27

3.14 Stiffness of the latch mechanism in function of position on AMESim
model . 28

3.15 Sensor positioning for the measurements 30

3.16 Measured force when unlocking the door in function of time 31

3.17 Measured position when unlocking the door in function of time . . 31

3.18 Measured force when locking the door in function of time 32

3.19 Measured angular speed in function of time 33

3.20 Measured input force in function of time 33

4.1 Workspace of HapticMaster . 35

4.2 Model for the spring acting on the radial direction of a curve . . . 42

4.3 Elliptic trajectory theoretically followed by the end effector 44

4.4 Force applied by the user at the end effector for the elliptical tra-
jectory . 44

4.5 Force magnitude necessary to maintain the end effector on the
elliptic trajectory . 45

4.6 Circular trajectory followed by the system 50

4.7 Magnitude of the force required to maintain the end effect on the
circular trajectory . 51

4.8 Kinetic energy comparison . 51

4.9 Activation function . 52

4.10 Analysis of force required to unlock the door 53

4.11 Asymmetry of dry friction . 56

v

List of Figures vi

4.12 Variable dry friction . 57

4.13 Velocity of the haptic model and the actual device - no friction . . 64

4.14 Force applied at the end effector - no friction 65

5.1 Optimization model . 72

5.2 Comparison between the behavior of the system according on the
estimated parameters . 73

5.3 Optimization model for the haptic behavior 73

5.4 Haptic model in AMESim . 76

5.5 Comparison between the response of the system and haptic model
(const. friction) . 77

5.6 Value of the coefficient A(θ) according to the position of the door . 79

5.7 Comparison between the response of the system and haptic model
(var. friction) . 79

List of Tables

5.1 Genetic algorithm parameters . 74

5.2 Measured parameters . 74

5.3 Estimated parameters of the system 75

5.4 Technical specifications obtained from the chosen haptic behavior . 78

vii

Chapter 1

Introduction

There are numerous factors that influence the decision of people to

purchase a product. It has been argued by researchers that what a prod-

uct feels like can influence whether or not people will end up buying. For

that reason, the people who are responsible for taking strategic decisions

about new products, at the marketing division of companies, are urging de-

sign teams to give priority to the design the user experience, later focusing

at the functional and technical features. Touching a product, in particu-

lar, plays an important role in our evaluation and appreciation of different

products(Spence and Gallace [1]).

Currently, when designing the user experience of new products, com-

panies may perform comparative tests involving potential customers as well

as marketing experts, and taking as samples their own products or the

products of competitors (Bhutta and Huq [2]). The result of these tests

defines the expected behaviour of the new product, which becomes a sort

of combination of the most appealing features of the tested products. Once

the desired behaviour is defined, marketing experts must translate it into

project targets, and then into design specifications with the help of research

and development engineers. However, a methodological approach encom-

passing all these steps is yet to be implemented, being one of the issues

how to translate these design specifications, which are mainly qualitative,

into quantitative specifications that would allow engineers to recreate the

product envisioned by the marketing experts. Another issue that emerges

from this process is that the initial phase of testing is based only on prod-

ucts already available on the market, limiting the range of possible user

experiences that could be tested by the experts [3].

1

Introduction 2

1.1 Technology Overview

This work aims to address these issues on the process of designing the

user experience by taking advantage of current virtual reality technologies

that allow the interaction of users with virtual prototypes, focusing on the

tactile experience. This way, it becomes possible for end users and marketing

experts interact with the product on the initial phases of design, while

allowing engineers to assert their preferences into quantitative parameters

that govern the behaviour of the virtual prototype.

Virtual prototyping is a technique in the process of product de-

velopment that involves mainly the use computer-aided design (CAD) and

computer-aided engineering (CAE) software to simulate the behavior of the

product in the real world, validating the design before committing to making

a physical prototype. The flexibility offered by a virtual prototype allows

designers to more quickly evaluate and explore different design alternatives,

which can lead to improved quality and performance. They also allow the

reduction of development costs and time required to bring the product to

the market. It is possible for a person to physically interact with a virtual

prototype by the use of virtual reality technologies.

Virtual reality is a term referring to computer-simulated environ-

ments capable of simulating physical presence in places in the real world, as

well as in imaginary worlds. To create a believable experience, virtual real-

ity environments have to take advantage of our sensory capabilities, partic-

ularly by rendering visual, auditory and tactile sensory information through

the use of appropriate devices. Visual experiences are usually enabled by

computer screens or stereoscopic displays, while auditory experiences can

be created by sounds reproduced through speakers or headphones. Tactile

information, also known as force feedback, can be generated through the

use of haptic systems [4].

Haptic technology is a tactile feedback technology which takes

advantage of the sense of touch by applying forces, vibrations, or motions

to the user on a specified manner through the use of what is called haptic

interface or haptic device. This mechanical stimulation can be used to assist

in the creation of virtual objects in a computer simulation and to control

Introduction 3

such virtual objects. It can be said the relation of haptic systems with the

sense of touch is the equivalent of the relation between computer graphics

and vision and of audio speakers and headphones to the hearing senses.

By exploiting haptic system capabilities of interacting with virtual

prototypes, it is possible to facilitate the communication between collabo-

rators of different disciplinary backgrounds when designing a new product,

such as allowing engineers to quantify the physical sensations described by

marketing experts and end-users. It also allow a greater range of experiences

to be tested, as the characteristics of the virtual prototype do not need to

be limited by the characteristics of existing products.

This project will focus on developing a method to design a tactile

interactive virtual prototype, which behavior is defined by mathematical

equations that correspond to the forces that the real product would exert

when the user interacts with it, forces that can be changed in real time and

are rendered through a haptic interface, later translated into real technical

specifications of the mechanical system that would enable the desired be-

havior to be reproduced into the real world. A dishwasher door is used as

a case study, and the existing mechanism is re-designed to reproduce the

specified behavior defined by marketing experts on the virtual prototype.

1.2 Related Works

Numerous studies have explored the interface between research and

development teams and marketing teams and its role on the process of

developing new products. Among many issues, difficulties in communication

between these two tend to emerge due to difference on their working domains

and their different models for the product representation [5, 6]. Another

important issue is that customers’ requirements tend to be described into

imprecise and non-technical terms [7].

The design of multisensory aspects of traditional consumer products

is becoming a common practice in different product areas [1], such as food,

cars and domestic appliances and can help marketing people understand

Introduction 4

the demands of the customers, where the test of the perceptual feedback is

usually based on the use of physical prototypes.

The use of physical prototypes is necessary when tests require the

physical interaction with the product through the senses of touch and smell.

With the technological advances in virtual reality, it is possible to simu-

late both visual appearance and the sound emitted by products faithfully

through the use of virtual prototypes. The use of virtual prototypes is gain-

ing interest in industry, due to their flexibility and growing fidelity, aside

from the advantages brought by reduction of development cost and time.

Traditionally, most of the tests performed on Virtual Prototypes have been

purely visual, aiming at evaluating the aesthetic aspects of a new product.

More recently, a number of haptic devices have been developed to simulate

the haptic feedback with products and their components. Shin et al. [8], for

example, developed custom haptic devices to simulate the physical interac-

tion with refrigerator, while Strolz et al. [9] developed them to simulate car

doors. The aim of these haptic-based virtual prototypes is testing design

solutions concerning the haptic behavior, and eventually review the design

of the product.

In the works of Bordegoni and Ferrise [10][11] it has been demon-

strated the effective use of a multisensory environment based on touch,

hearing and vision to capture users’ preferences, already in the concept de-

sign phase. These initial studies have demonstrated the potentiality of Vir-

tual Prototyping in capturing users’ preferences, and have highlighted the

necessity to change the way new products are designed[12]. Their use can

improve the communication between marketing teams, engineering teams[3]

and customers, and is focused on the present study.

Chapter 2

Methodological Approach

In [12], the authors outline some advantages and requirements for an

interactive virtual prototype to become the digital substitute of the physical

prototype. The ones addressed on the present work are:

• It should be based on functional model for each technical

domain – that is, the virtual prototype is a functional model that

characterizes and simulates the domain (or the domains) of the real

product to evaluate and test. In this work, the domain addressed is

related to the force feedback the real product should give to the user.

• Sharable among different stakeholders – an advantage of using

virtual prototypes is that they can be shared over the network and

accessed by different stakeholders at the same time.

• Modifiable and parametric – one of the most important advantages

of Virtual Prototypes is that they can be easily modifiable and can be

even parametric. By using the physical prototype of an object, an

individual can generally only express an opinion as to whether he likes

or dislikes it, but cannot easily test variants of the object. By using a

parametric virtual model instead the user can ask to make changes of

the prototype until he is satisfied.

• Real-time feedback – The interactive virtual prototype should react

to user’s actions in real- time (from the user’s perception point of

view). The simulation algorithms should be fast enough to grant a

real-time feedback. If this is not feasible, simplified algorithms should

be used. The simplifications should still give an adequate perception

of the object. In that case, the problem moves from the simulation of

the ideal physics- based behavior, to the simulation of the faithfully

perceived physics- based behavior. In this work, we call such simplified

model the ”haptic model”, and will be discussed in greater detail on

5

Methodological Approach 6

the appropriate section. It is highlighted that the most important

aspect of the interactive Virtual Prototype is not the complexity of the

simulation of the product, but how the results of the overall simulation

is perceived by the humans.

• Sharable among different users located around the world –

Sometimes testing activities on the same product must be performed in

different cultural contexts or geographical regions. Interactive virtual

prototypes enable such testing without shipping or reconstructing a

physical prototype on these locations.

We describe the methodological approach that we believe enables a

company to re-engineer the haptic feedback of a door (in this case a dish-

washer door) on the basis of the optimization of the product experience,

described on [13]. The method is schematically illustrated in Fig. 2.1. To

this aim, virtual prototypes are adopted as means a user can adapt on the

basis of his preferences until he gets his favourite experience. In this work,

only the haptic feedback is adaptable, while the hearing and visual expe-

riences are maintained fixed, thus the multisensory experience is created.

The design of the multisensory product experience through interactive vir-

tual prototypes has some open issues:

• How similar is the virtual prototype to the real product?

• How it can be made adaptable to user preferences and how it is pos-

sible to correlate and easily translate those changes into new product

specifications?

To address these issues, we identify two stages that come respectively

before and after the testing of the multisensory product experience within

a virtual environment:

• An initial stage, where a parametric virtual replica of the tactile feed-

back of product in question is created and adjusted;

• A final stage to transform the desired behaviour of the virtual proto-

type (obtained by implementing the changes requested by the user)

Methodological Approach 7

into the technical/physical specifications required to create the prod-

uct in the real world.

Figure 2.1: The methodological approach described in this section [13].

The first stage starts with the analysis of the existing product (the

dishwasher door) and its components or sub-systems (e.g. the door opening

system) that affects the interaction. These components will be re-engineered

in order to meet the perception desired by the user. A mathematical model

of the door, with its sub-systems components, is derived, and its parameters

will be related to the technical specifications necessary to build the system

(the physical model). To create such a mathematical model, it is necessary

to analyse the mechanism responsible for locking the door, and also the

Methodological Approach 8

hinge mechanism that controls the door position (e.g. links, spring and

damping effects should be analysed). Therefore, the aim is to come out

with the list of variables that control and determine the behaviour of the

product. The resources necessary to perform this step can vary, depending

on the amount of information already available.

The original behaviour of the door (”AS IS”) is characterized by

• The sounds that the door emits, in particular, the opening and closing

sound, that can be recorded and reproduced by the interactive virtual

prototype;

• Its visual appearance, that can be represented by a CAD model and

displayed at a computer screen or a projector, for example;

• The force it applies to the user when interacting with it: the force

required to unlock/lock and to move along its trajectory. These can

be obtained through appropriate measures.

The last point can be addressed by creating another, simplified,

mathematical model, whose behaviour is similar to the physical system,

but it actually represents perceived physical behavior or the main charac-

teristics of the door (haptic model), not its physical components, which is

used to render the force feedback on a haptic interface. Such a step is fun-

damental in order to come out with an easy-adaptable representation of the

system behaviour on which is possible to carry out the simulation in real

time in a way that becomes easy to change the behaviour of the virtual

prototype.

While it is possible to make the haptic model exactly the same as

the physical model, certain problems might emerge:

• If the equations of the physical system are too complex, it becomes

difficult to know how each parameter translates into the final behavior

of the door, so proper real-time evaluation and testing in a user-friendly

manner might be compromised;

Methodological Approach 9

• If the physical system was modelled without using explicit equations,

such as block diagram environments, it will either have to be rewrit-

ten explicitly, or additional tools will have to be used or a computer

program will have to be developed to allow interaction between this

model and the haptic interface;

• The equations representing the physical system might be too complex

to be rendered in real time on the haptic interface. The stiffness of the

equations, or the necessity of solving them numerically might create

unacceptable delays.

For these reasons, the haptic model on this study is a simplified ver-

sion of the physical system that aims captures the main perceived sensations,

defined by the parameters of the equations.

By measuring the force applied by the user to lock/unlock/move the

door simultaneously with an appropriate state of the system, such the speed,

acceleration and/or displacement, in function of time, we can say that the

dynamical behavior of the original door is described. This behaviour is then

used to adjust the parameters that govern the haptic model, in order for its

behavior to become as close as possible to the one from original product.

The adjustment is made through the use of an optimization algorithm that

aims to minimize the difference between the output of the haptic model

and the measured states, given the measured force as an input. The same

procedure can be applied to tune the mathematical model of the physical

system and find the original technical specifications.

The next step is to test the virtual prototype, where its visual ap-

pearance, based on a CAD model, can be projected on a screen, and the

haptic model is rendered by a haptic interface, allowing user to interact with

the virtual prototype. The position of the end-effector of the haptic inter-

face is synchronized with the displacement of the model of the door. Then,

for example, the user can try to lock the virtual door and then request a

smaller effort, or he can move the door and request to it to be more soft.

Once the desired behaviour has been identified, the final stage of the

methodology can start. First, it is necessary to acquire the new (i.e. the “TO

Methodological Approach 10

BE”) behaviour of the door. This can be done by acquiring the behaviour of

the haptic interface, which is measured internally with logs being generated,

or registering the values of parameters governing the haptic model. While

the most convenient way is to register the values of the parameters governing

the haptic model, due to the lack of transparency of the haptic interface,

it might not truly represent the perceived effort of the user. The process

to obtain the technical specification consists on minimizing the difference

between the haptic model response and the physical system model response,

given the same input. This time, the parameters governing the physical

model will be adjusted to minimize that difference through the use of a

optimization algorithm.

Chapter 3

Physical System Modelling: Dishwasher

Door

The system that will be used to evaluate the proposed methodology

is the interaction with a dishwasher door. A mathematical model of the

mechanism that controls the rotation of the door of dishwasher and the

locking mechanism for closing is created, where the technical specifications

(such as the value of the spring stiffness) are parameters of the mathematical

model. Modelling the system enable us to estimate these parameters to

accomplish a desired behavior.

3.1 Simulation Software

The dynamic system is developed and solved by the use of the sim-

ulation software LMS-AMESim. AMESim is a commercial simulation soft-

ware for the modelling and analysis of multi-domain systems. The software

is a suite of tools used to model, analyze and predict the performance of

mechatronics systems. Models are described using time-dependent ana-

lytical equations that represent the system’s behaviour, which can be any

combination of hydraulic, pneumatic, thermal, electric or mechanical sys-

tems. To create a simulation model for a system, the set of standard libraries

available from the commercial version is used, they contain pre-defined com-

ponents for different physical domains. The icons in the system have to be

connected and for this purpose each icon has ports, which have several inputs

and outputs, according to the system they are representing[14]. The process

for designing the system is similar to other simulation tools for modelling

and analysing multidomain dynamic systems, such as the block diagrams

of Scicos/Scilab. AMESim also comes with tools for ease use optimization

algorithms such as genetic optimization and non-linear programming by

11

Physical System Modelling: Dishwasher Door 12

quadratic Lagrangian. The libraries used are Mechanical, Planar Mechani-

cal and Signal, Control, and a brief description of the main component used

for the model is given in Fig. 3.1.

3.2 Description of the Dishwasher Door

A dishwasher door provided by Indesit Company is used as the case

study. The movement of the door is defined by a planar semi-circular trajec-

tory, restricted to 90o. Depending on how the door and its opening mecha-

nism have been designed, the force required to open it can vary. To open the

door, typically, the user has to pull hard enough to unlock a spring-loaded

mechanism. The latch mechanism used to lock the door, and specifically the

component that clips into the locking mechanisms, is a plastic piece that

can be represented as a leaf spring.

Once the door is no longer locked, a mechanism is responsible to

maintain it stable, controlling the required force to move it. It consists of

an articulated mechanism with a plate connecting all joints, a spring, three

friction pieces, one rotating joint and one slotted link that allows vertical

translation and rotation 3.2. All movements occur at the same plane.

The door is attached to the front side of the cabinet by means of

a hinge placed at the bottom part of the door. The hinge provides an

opportune balancing force, generated by the cumulative effects of the spring

and of the frictions that interacts with the articulated mechanism, in order

to guarantee the stability of the doors during its movement from the vertical

to the horizontal position.

The plate has the purpose of transmitting a force, generated by the

compression of the spring and the reaction of the frictions, on a desired

manner, to the door, and also limiting its course to 90◦. It has 4 extremities,

denoted as A, B, C and H. The extremity A is connected at the door through

a rotating joint. Extremity B is connected to the cabinet by a slotted link,

where friction is also present, affecting the vertical displacement of the joint.

Extremity C is connected to the spring and another friction. The extremity

H has the sole purpose of stopping the door when it is fully open, by colliding

Physical System Modelling: Dishwasher Door 13

Figure 3.1: A brief description of the components used to develop the model
of the dishwasher door.

Physical System Modelling: Dishwasher Door 14

Figure 3.2: Mechanical components responsible for controlling the door’s mo-
tion

with the metal protuberance at the cabinet side. Also, at the cabinet, there

is a static friction piece where the plate rubs while moving, at point D (Fig.

3.2).

3.3 Dynamic model in AMESim

3.3.1 Articulated mechanism

Some hypothesis are made to derive the dynamic model of the system

without the latch mechanism, that is, only the door with the articulated

mechanism:

• all components are infinitely rigid (except the spring);

• the dissipative forces are only caused by dry friction purposefully

placed to interact with the articulated mechanism;

• only the door has significant mass and moment of Inertia;

• dry friction is assumed constant, unless the normal force is resulted

from the joint reactions, in which case the Coulomb model is adopted;

• the spring has constant stiffness;

Physical System Modelling: Dishwasher Door 15

• both kinetic and static friction coefficients are the same

• the forces due to friction are caused when there is relative speed be-

tween components that are in contact, acting at the geometrical center

of area where both surfaces are in contact.

A sketch of the dynamic model without the latch mechanism is dis-

played at Fig. 3.3. The bar OAE represents the door, the triangle ABC is

subject to the forces responsible for controlling the door, which are trans-

mitted via the revolute joint A. The user force is applied at point E. At

point B there is a sliding joint with friction, at point C there is friction ap-

plying a force on the vertical direction, where the spring is also connected.

The effect of the force due to the plate sliding at the fixed friction at point

D at the cabinet is transferred to point B, where it is transformed into an

external torque and a vertical force.

The model adopted for dry friction is in the shape of a hyperbolic

tangent, where both the static and dynamic coefficient are the same. The

friction torque/force developed at the contact has the value:

Ffr = Fmag tanh(a Vrel) (3.1)

where Fmag is the magnitude of the force, a is the sensitivity factor

and Vrel is the relative speed between the two surfaces, whose shape changes

according to the value of a (Fig. 3.4).

The block diagram of the system, resulted from the connection be-

tween each subsystem is represented at Fig. 3.5 where each subsystem is

connected.

Each of the blocks represent a subsystem of the model: the lock

mechanism (LOCK) the door (DOOR), the plate (PLATE), the block that

calculates the relative speed between the plate and the static friction at

point D, as a function of the vertical speed and rotation of point B (REL-

ATIVESPEED) and the resulting force transmitted at point B due to that

force plus the friction already acting at point B (FRICTIONFORCE). At

a point of the door, representing the handle, an input force is given by the

Physical System Modelling: Dishwasher Door 16

Figure 3.3: Sketch of the articulated mechanism

Physical System Modelling: Dishwasher Door 17

Figure 3.4: The higher the value of a, the closer Ffr is to the behavior of the
ideal dry friction

L
E

C

H

S
A

B

D

The baseline interface: the door Its kinematic model Its physics model

The latch
mechanism

The hinge
mechanism

O

A

C
B

E

D

S

H

L

K

DOOR

RELATIVE
SPEED

Figure 3.5: Block diagram connecting each subsystem, relating to the physical
system

Physical System Modelling: Dishwasher Door 18

user. The green line indicates mechanical linking (such as force application,

state constraints), while the red line indicates dimensionless signals (state

measures, numerical inputs, etc.) The door is linked to the plate, the fric-

tion applied at the plate while it slides is calculated and act as an external

force, along with the additional friction already present, at point B. The

parameters that define our system are the technical specifications of the

product, they include the dimensions and position of each relevant compo-

nent, the spring stiffness, the force required to lock or unlock the door and

the forces generated by each friction. The standard values for the variables

occurs when the door is fully opened.

3.3.1.1 Subsystem DOOR

The door is modelled as a rod connected to the ground by a revolute

joint. At the revolute joint, a constant dry friction is applied. At point 2,

user force is applied; at point 3 the forces from the lock mechanism are

applied, and at point 4 the angular position is measured and sent as an

output and at point 1 the door is linked with the plate (Fig. 3.6). The

important parameters are:

• L – length of the door;

• TatO – torque acting at joint O, due to friction;

• M – mass of the door;

• Iz – moment of inertia of the door at its barycentre;

• (Gx,Gy) – centre of mass of the door;

• (LOA) – distance between points A and O.

3.3.1.2 Subsystem PLATE

The plate is a body connected at the door (point 7) by a revolute joint

at point A, connected to the ground by a sliding joint at point B and to a

spring at point C (Fig. 3.7).

Physical System Modelling: Dishwasher Door 19

Figure 3.6: Block diagram of the subsystem DOOR

Points 1-5 measure the normal force acting on the cabinet the vertical

position, the rotation, the vertical speed and the rotational speed, respec-

tively. They are used to calculate the friction at B, which enters as a force

at 6.

At C a spring acts, along with friction, using only the vertical dis-

placement and speed of point C. The important parameters are:

• FatC – force acting at point C due to friction;

• TatA – torque acting at joint A, due to friction;

• LBx – horizontal position of point B;

• LBy – initial vertical position of point B;

• LCx – initial horizontal position of point C;

• LCy – initial vertical position of point C;

• K – spring stiffness.

• Fload – spring pre-load

Physical System Modelling: Dishwasher Door 20

3.3.1.3 Subsystem RELATIVESPEED

This subsystem uses the vertical position and rotation measurements

of the plate in relation to point B, and calculates the relative speed between

the plate and the fixed friction at point D of the cabinet, which is then

transformed into a torque and a force. It is denoted y the vertical position

of point B in relation to point D, dy/dt its vertical speed, Dx the horizontal

Figure 3.7: Block diagram of the subsystem PLATE

Physical System Modelling: Dishwasher Door 21

position of point B in relation to D (which remains constant), Dy the vertical

position of point B in relation to D at the initial state, θ the angular rotation

of the body, with an initial value of atan(Dy, Dx) and dθ/dt the angular

rotation and speed of the plate in relation to B. The relative speed VD

between point D and the plate can be thought as the vertical speed of point

B plus the distance R between D and B multiplied by the angular speed of

the plate. That is:

R =
√
y2 +D2

x (3.2)

VDx =
dθ

dt
R (−sin(θ)) (3.3)

VDy =
dθ

dt
R cos(θ) + dy/dt (3.4)

The angle formed between VD and the horizontal direction is

Figure 3.8: Diagram used to derive the effects of the fixed friction on point D

Physical System Modelling: Dishwasher Door 22

αVD = atan2(VDy , VDx) (3.5)

Once the relative speeds are computed, the forces applied due to the

friction at point D can be computed:

FDx = FatD tanh(a VDx) cos(αVD) (3.6)

FDy = FatD tanh(a VDy) sin(αVD) (3.7)

These forces can be transferred to point B, where they are trans-

formed into a vertical force and a torque acting at point B. Since point B

cannot move horizontally, the force at the horizontal direction is neglected.

The resulting torque is:

T = Dx FDy + y FDx (3.8)

On the diagram (Fig. 3.9), the points 1-6 correspond to the following

signals:

• Point 1 – dy/dt

• Point 2 – T

• Point 3 – Dy

• Point 4 – dθ/dt

• Point 5 – y

• Point 6 – θ

The most important parameters on this subsystem are:

• FatD – Friction force magnitude acting at the fixed point H from the

cabinet;

• (Dx, Dy) – The position of point B in relation to D at the initial state;

Physical System Modelling: Dishwasher Door 23

Figure 3.9: Block diagram of the subsystem RELATIVESPEED

Physical System Modelling: Dishwasher Door 24

3.3.1.4 Subsystem FRICTIONFORCE

This subsystem (3.10) transform the signals of the subsystem REL-

ATIVESPEED into a mechanical force and sums it with the friction already

present at point B.

At point 1 enters the force signal and at 4 enters the torque signal,

respectively, from the subsystem RELATIVESPEED. At point 2 enters the

normal force applied by the slotted link. The torques and forces are summed,

and then applied at the plate at the output 3.

The important parameters on this subsystem are:

Figure 3.10: Block diagram of the subsystem FRICTIONFORCE

Physical System Modelling: Dishwasher Door 25

Figure 3.11: System representation of the latch mechanism: the stiffness of
the spring depends whether the system is being opened or closed

• µ – coefficient for the force of the vertical friction;

• TatB – force acting at the slotted link, due to friction;

3.3.2 Latch mechanism

The latch mechanism resists to the force the user applies both when

the user is trying to open and when trying to close. The deformation cannot

be clearly felt by the user; instead, once a force threshold is crossed, the door

opens (or closes). It can be thought as a very stiff spring that goes under

compression, both during opening and closing. Therefore, we have a high

stiffness spring/damper system where the force changes direction depending

on whether the user is opening or closing the door.

The model is composed by 3 springs that are active only inside a

limited interval: one for the opening phase, another for the closing phase,

and another to represent the wall. The wall also has a damping term to

dissipate the kinetic energy once it is touched. The wall is active for θ < 0,

while the opening and closing phase are restricted at a custom range.

Physical System Modelling: Dishwasher Door 26

Figure 3.12: Block diagram for the latch mechanism

Physical System Modelling: Dishwasher Door 27

Figure 3.13: The force applied by the latch mechanism in function of the
position of the door due to the spring. The force changes direction depending

whether the user is trying to lock or unlock the door

Looking at the block diagram (Fig. 3.12, at point 1 the force is

applied at the door, while at point 2 the position of the door is used to

define the values for the stiffness and damping values. In Fig. 3.13 and Fig.

3.14, the graphics illustrate how the spring stiffness changes according to

the position and the force applied by the latch mechanism in function of the

position.

3.4 Measurements

The estimation of the relevant parameters of the dynamic model de-

veloped requires quantitative analysis of the dimensions and behavior of

the real system. The relevant distances were obtained by means of direct

measurement while the remaining parameters were estimated by an opti-

mization process that is explained on Chapter 5. The development of the

virtual replica of the product also takes into consideration the qualitative

behavior of the real product; simplifications and assumptions can be made

Physical System Modelling: Dishwasher Door 28

Figure 3.14: The stiffness of the latch mechanism changes according to the
position of the door, they are related to the force required to lock or unlock the

door

based on the measurements. If it is considered that the our dynamic system

has the following form:

ẋ(t) = f(x(t), p) + g(x(t), p) Fu(t)

x(0) = x0
(3.9)

where x is the state of the system, x0 is the initial condition, p = {p1, p2, ..., pi}
is the vector that contains the parameters to be estimated and Fu(t) the

input given by the user, the solution of the system can be written on the

following form:

x(t) = h(p, Fu(t), x0, t) (3.10)

If we can measure x(t) and Fu(t), knowing the initial condition x0, we

should be able to find a set p that satisfies Eq. 3.9 as x(t), Fu(t) and the

structure of f and g are known. Therefore, to estimate p, we measured and

estimated the state and the input Fu(t). It is important to note, however,

that there might be more than one set p that satisfies the imposed condition.

Physical System Modelling: Dishwasher Door 29

Therefore, while the set p found might not be equivalent to the real values

that characterize the system, it is a set that generates an equivalent system,

and satisfies the intended purpose.

The state x(t) is composed by the angular speed (θ̇) and angular

position (θ). The entire state x(t) does not need to be fully measured,

since:

θ(t) =

∫
θ̇(t)dt (3.11)

The measurement of the force applied by the user has been performed using

a compression donut load cell (FUTEK model LTH300, www.futek.com)

with a maximum detection load of 445N . The load cell has been mounted

between participants’ hand and the door handle (as illustrated in Fig. 3.15)

in order to measure the required opening force as a function of time. The

estimation of the force required to lock and unlock the door can be readily

obtained from the measured force: since no noticeable movement is per-

ceived, measuring the state becomes unnecessary. However, when the door

is locked, there is a range where some movement is allowed; it was measured

through an inclinometer (Columbia Research Laboratories model SI-701B),

with range of ±10◦. The estimation of the state of the system was per-

formed through measuring the velocity in function of time with a gyroscope

(British Aerospace Systems and Equipment unipolar gyroscope, able to de-

tect angular velocities in the range of ±100◦/s), simultaneously measured

with the force applied by the user. The signals have been acquired through

the National Instruments NI cDAQ-9172 and NI 9125 analog input modules

(www.ni.com) and processed through LabVIEW SignalExpress. All the sig-

nals have been acquired with a frequency of 1024Hz. Three users have been

asked to open the door by applying different forces with the sensors config-

uration showed in Fig. 3.15. Subsequently the load cell has been glued on

the external part of the door and the same users have been asked to close

the door by applying different forces.

The sensors have been coupled in the following ways: first the load

cell plus the inclinometer were used to detect what happened before the

door is opened (the zero corresponding to the door closed) and then the

Physical System Modelling: Dishwasher Door 30

Applies a force to a body due to a mechanical component

Sensors responible for measuring forces speed, velocity and
acceleration

Converts a signal input into force/torque to be applied at a me-
chanical component

Transform signal input into planar forces/torque to be applied
at a planar body

Figure 3.15: Location of sensors for the measurements performed on the com-
mercial dishwasher [13].

load cell plus the gyroscope to understand the dynamic behaviour of the

door. As it can be seen from Fig. 3.16 and Fig. 3.17, the is no detectable

movement after 0.5◦, when the door is locked, until a threshold of force is

crossed; the force required to unlock can be considered simply the peak of

the graphic.

The behavior when locking the door is identical; the peak is taken

as the force required to lock the door, the dynamic behavior is neglected.

When the door was fully open, an impulse is given and the angular

speed is measured by the gyroscope. By looking at the graphics (Fig. 3.19

and 3.20), that correspond to one trial, measured by the gyroscope and load

cell, it is possible to observe that the angular speed decreases at approx-

imately a constant rate once a force is no longer applied, thus it can be

inferred that the main factor responsible for the deceleration comes from a

constant dry friction.

It is noted that since the forces are by humans, the input of the sys-

tem will always be significantly different for every trial and as a consequence,

the output of the system will also be different for every trial. While the pair

input/output are changes every trial, both in magnitude and shape, they are

Physical System Modelling: Dishwasher Door 31

Figure 3.16: Measured force when unlocking the door in function of time: the
force required to unlock the door is characterized by the peak of the graphic

Figure 3.17: Measured position when unlocking the door in function of time:
no noticeable displacement until the force cross a threshold

Physical System Modelling: Dishwasher Door 32

Figure 3.18: Measured force when locking the door in function of time: the
peak of the graphic characterizes the force required to lock the door

still measuring the response of the same system, and so it is expected that

the estimation of the parameters of the system does change significantly

when done for each pair. The estimation is discussed in Chapter 5.

Physical System Modelling: Dishwasher Door 33

Figure 3.19: The measured angular speed in function of time shows that the
angular speed decreases linearly, which indicates dry friction is the predominant

dissipative force

Figure 3.20: Measured input force in function of time: an impulse is given
when the door is fully open

Chapter 4

Haptic rendering

In this chapter, it is described the process of creating the haptic

virtual prototype, detailing the device used, the adopted programming lan-

guage and the strategies to mimic the tactile sensations derived from the

dishwasher door.

4.1 Haptic Device

There are plenty of haptic interfaces commercially available today.

Commercially, haptic devices come in two distinct classes impedance con-

trolled devices, and admittance controlled devices [15]. A well-known ex-

ample of impedance control devices are the Phantom devices from Sensable.

The paradigm on impedance control is this: the user moves the haptic de-

vice, and the device will react with a force when the virtual object is met.

From the haptic device point of view, displacement becomes the input, and

the force is the output. The user will feel the mass and friction of the ac-

tual device, though they can be made reduced through mechanical design.

Impedance controlled devices tend to be naturally light and highly back-

drivable, typically cable driven by DC motors. In contrast with impedance

control, in admittance control the paradigm is this: the user exerts a force

on the haptic device, and the device will react with the proper displacement.

That is, force applied by the user becomes the input, while the displacement

is the output. Admittance control allows backlash and tip inertia to be elim-

inated, giving considerable freedom on the design of the device. This results

in increased robustness, where high stiffness and high forces are possible.

The device used for this work is based on the admittance control paradigm,

the MOOG’s HapticMaster. While impedance control device tends to be

lightweight, backlash free, but generally able to render low masses. Their

performance is lacking if high stiffness or higher forces are required to be

rendered. Admittance control devices, in contrast, are more suitable for

34

Haptic rendering 35

Figure 4.1: The workspace of the HapticMaster [16]

higher forces and stiffness, though they are not well-suitable for rendering

low mass. The choice of using an admittance control haptic device comes

due to the fact that our case study requires both high stiffness and higher

forces . The HapticMaster measures the force exerted by the user, and an

internal model calculates the position, velocity and acceleration which a

virtual object touched in space would get as a result of this force [16]. This

vector is commanded to the robot, which makes the movement by means

of a conventional control law, rendered at 2500Hz, and can apply a forces

up to 200N . A residual mass will always be present. The workspace of the

HapticMaster is depicted in Fig. 4.1. It allows one rotation around its base

and two translations, resulting in 3 degrees of freedom for the end effector,

spanning a volumetric workspace. The HapticMaster allows the end effector

to be changed for another, allowing us to mount the handle of the door at

the end of the robot arm [16].

Some important considerations must be mentioned. One of the main

Haptic rendering 36

problems encountered when using this haptic device in conjunction with

H3D API was related to its stability when higher stiffness was required to

be rendered with explicit stiff functions. Even though the haptic device

used for the application was designed for high stiffness, it still wasn’t able

to properly render the forces when the user tried to lock/unlock the virtual

door (when using explicit functions): the device became highly unstable

once a threshold of stiffness was crossed, fairly inferior to the required one

to properly reproduce the act of unlocking, and specially, locking the door.

Additionally, there was a limit on the stiffness used to constrain the end

effector to follow a specific trajectory the way we modelled. While it was not

as stiff as a real dishwasher door, it still allowed to reproduce the movement

with an acceptable fidelity. Regarding the smoothness, we detected that it

did not translate so well when we tried to render dry friction as an hyperbolic

tangent. Not only some background vibration could be sensed when moving

the device around, but higher friction values (above 10N) would render the

device highly unstable. Another limitation was related to the size of the

workspace: it was not large enough, therefore the door had to be scaled

down until it could fit entirely on the workspace. Unfortunately, none of

the devices available had a workspace large enough. Even though these

issues were present, and the virtual dishwasher door behavior did not fully

equate with the real dishwasher door, the concept proposed on this study

was successfully validated, and a better result would be obtained with a

haptic device developed for this purpose.

4.2 Coding language and API

In order to control the haptic manipulation and then propose to

the user different behaviors, the scripting language Python combined with

H3DAPI [17] has been used for developing the interaction model and to re-

trieve the values necessary to quantitatively describe the interaction phase

in terms of displacement, acceleration and velocity. The H3D API is used

as an interface to communicate the instructions from the computer to the

haptic device, while Python scripts are responsible for calculating the force

applied to the user by the end-effector. For contextualization, a brief de-

scription of H3D API and Python are given.

Haptic rendering 37

4.2.1 H3D API

SenseGraphics H3D API is an open source software development

platform for multi-sensory applications, using the open standards X3D,

OpenGL and SenseGraphics haptics in a unified scenegraph taking, where

both the haptic and graphic rendering are taken care of [17]. It consid-

erably accelerates the development time, and can use Python scripting or

C++ programming code for additional flexibility. It was chosen because

not only it is compatible with HapticMaster, but also because it combines

haptic-graphics into a single plataform.

4.2.2 Python

Python is a powerful dynamic, general-purpose, interpreted high-

level programming language that is used in a wide variety of application do-

mains [18]. Its design philosophy emphasizes code readability and allows the

expression of concepts in fewer lines of code than other lower level program-

ming languages, such as C. It supports multiple programming paradigms,

including object-oriented, imperative and functional programming styles.

4.2.3 X3D

X3D is a open standards file format and run-time architecture to

represent and communicate 3D scenes and objects using XML. It provides

a system for the storage, retrieval and playback of real time graphics content

embedded in applications [19].

4.3 Haptic Model

The haptic model is the mathematical model responsible for com-

puting the forces that the end-effector is subjected, the appropriate model

should effectively mimic the desired behaviour. The equations used have

Haptic rendering 38

the form:
X = [x, y, z]

Fh = (Fhx, Fhy, Fhz) = F (X, Ẋ)
(4.1)

where Fh is the vector representing the forces that are applied to the end-

effector, and X is the state of the system: the spatial coordinates of the

end-effector and Ẋ their derivatives.

In order to correspond the haptic model with the act of opening the

door, the following points are addressed:

1. Describe the position of the door both in Cartesian coordinates and po-

lar coordinates relating it with the description of internal coordinates

of the end-effector by H3D API;

2. Constrain the movement of the end-effector to the same trajectory

allowed by the door;

3. Evaluate what are the main effects influencing the tactile haptic sen-

sation and describe them into equations.

The first point is addressed simply by evaluating the Cartesian coor-

dinates displayed when the tracker position is requested, and then making

an appropriate translation. The second point is addressed by defining the

trajectory as an intersection between two surfaces, one in which the bound-

aries have a circular shape with the same radius defined by the movement

of the door (e.g. a sphere or a cylinder), and the other defined by a plane

that contains the trajectory. The intersection constrains the end-effector

by applying an attracting force proportional to a specified distance between

the end-effector and the surfaces. As the proportional force tends to create

undesired vibrations, damping was also applied.

In the third point, it should be noted that the main effects will

be tuned in real-time. Therefore it is important to describe them in an

”intuitive” way: functions should represent sensations, not the dynamic pa-

rameters from the real mechanism. Instead of using functions where the

parameters correspond to a distance between two pivots or the specific fric-

tion occurring on one of the sliding components, the effect perceived by the

Haptic rendering 39

user should be represented, i.e. the parameters should correspond to the

”easiness” or ”smoothness” of moving the door. This way, the operator can

more easily understand how modifying a value affects his perception, e.g. to

affect the ”smoothness”, the operator modifies the global friction, instead

of the distance between two pivots. To do so, the equations responsible for

calculating these forces were described directly in function of the angular

position, and the parameters are changed to alter the magnitude of these

functions.

4.3.1 Transformation of Coordinates

Since the trajectory traversed by the door is a semi-circumference, it

is convenient to describe the position of the end-effector in polar coordinates.

Since the force applied to the haptic device uses the state of the end-effector

in Cartesian coordinates, when programmed in x3d, and the forces used in

the model are described in cylindrical coordinates, a conversion becomes

convenient.

The internal coordinate system of H3D, that we call Oi, describing

the origin of the end-effector, is located at the geometrical center of the

workspace (Fig. 4.1). To avoid the use of an angular coordinate outside

the range of [0, π/2], the origin is translated one of the extremities of the

workspace, from (0, 0, 0)i to (0,−0.158,−0.138)i, which becomes the origin

of the new coordinate system, Om.

Denoting (posx, posy, posz)i the absolute position coordinates of the

device on Oi the internal coordinate system, read by the software, the co-

ordinates (x, y, z)m (whose index will from now on be suppressed) used for

the equations are:

x = posx

y = 0.158 + posy

z = 0.138 + posz

(4.2)

The linear speed is thus:

Haptic rendering 40

dx

dt
=
dposx
dt

dy

dt
=
dposy
dt

dz

dt
=
dposz
dt

(4.3)

The force vectors are described as (Fx, Fy, Fz) on Cartesian coor-

dinates.

The equivalent coordinates and their time derivatives on the cylin-

drical representation (x, r, θ) are:

r =
√
y2 + z2

dr

dt
=
y dy

dt
+ z dz

dt√
y2 + z2

(4.4)

θ = atan2(y, z)

dθ

dt
=

dy
dt
z − dz

dt
y

y2 + z2
(4.5)

On vectors, a rotation matrix operation is applied, being the matrix

of rotation:

Rot(θ) =

(
cos(θ) sin(θ)

−sin(θ) cos(θ)

)
(4.6)

The radial force Fr and the tangential force Fθ are:

[Fr, Fθ] = Rot(θ) [Fz, Fy] (4.7)

Conversely:

[Fz, Fy] = Rot(θ)T [Fr, Fθ] (4.8)

Haptic rendering 41

Note that the indexes y and z are inverted due to the way θ has been

defined and due to how the rotation matrix has been assembled. The door

is fully open when θ = 0 and fully closed when θ = π/2.

4.3.2 Constraining the end-effector

Here it is described generalized methods capable of describing the

forces necessary to be applied the end-effector to restrict its movement to

a given trajectory or surface. Two methods are developed: the first one for

2D curves described on polar coordinates, the second one for 3D continuous

surfaces with continuous first derivatives. Both methods are based on the

same idea: the end-effector is attached to a very stiff virtual spring-damper

couple which equilibrium point is any point of the surface/curve. So, when-

ever the end-effector position is outside the allowed region, a restitution

force will be applied to bring it back.

4.3.2.1 First method: Radial direction stiffness

The first method, applied to 2D curves described by polar coordi-

nates, consists on defining a spring on the radial direction, whose equilibrium

point is a function of the angular position (Fig. 4.2). We define:

• P (x, y) a point representing the position of the end effector (on Carte-

sian coordinates, though not necessarily the ones mentioned before);

• R(θ) the function representing the curve, in polar coordinates, where

the origin coincides with the Cartesian coordinate system;

• Q(r, θ) the closest point to P on the radial direction (on polar coordi-

nates);

• k the spring stiffness;

• c the damping value.

We then have:

Haptic rendering 42

Figure 4.2: Model for the spring acting on the radial direction of a curve:
the force will always be oriented in the radial direction, though the equilibrium

point can change according to the curve we want the end effector to follow

• the angle that aligns P with Q and Q with the origin of the system:

θ = atan2(y/x); (4.9)

• the distance on x direction between P and Q:

∆x = x− r cos(θ); (4.10)

• the distance on y direction between P and Q:

∆y = y − r sin(θ); (4.11)

Therefore, the forces that bring the end-effector from point P to Q

are

Fx = −k ∆x− c d∆x/dt

Fy = −k ∆y − c d∆y/dt
(4.12)

Haptic rendering 43

If end-effector possess has a virtual mass m, and the user applies a

force Fu = [Fux, Fuy], the differential equations that represents the move-

ment of the end-effector are:

mẍ = Fx + Fux
mÿ = Fy + Fuy

(4.13)

The following example illustrates the dynamic behaviour of the end-

effector numerically.

Example: Defining the trajectory as an ellipse on polar coordinates:

R(θ) =
ab

(
√
a2 cos(θ)2 + b2 sin(θ)2)

(4.14)

Where:

a = 0.2;

b = 0.1;

c = 20;

k = 200.

(4.15)

The end effector is set to have unitary mass and is set to begin at

point (0.3, 0.3, 0). Since the initial point does not belong to the trajectory,

the end effector is brought to it by the forces (Fx, Fy) (Fig. 4.3). At t = 3s

a vertical force is applied at the end effector by the user (Fig. 4.4).

It can be seen that the trajectory is followed satisfactorily, and the

absolute force applied by the haptic interface is acceptable (Fig. 4.5).

4.3.2.2 Second method: Restitution force based on distance mini-

mization

The second method consists on finding the closest point Q(a, b, c)

of a surface to P (x, y, z), and applying the a force at the direction Q − P

Haptic rendering 44

Figure 4.3: The end effector is brought to the trajectory from an initial posi-
tion that does not belong to the ellipse

Figure 4.4: Impulse theoretically applied by the user at the end effector for
the elliptical trajectory

Haptic rendering 45

Figure 4.5: Force magnitude that the haptic device should apply at the end
effector to maintain it on the elliptic trajectory

that brings P to Q, and is the method used on this work to constrain the

end-effector into the desired trajectory. Let us define a surface of class C2

on R3: g(a, b, c), and the distance d between Q(a, b, c) and P (x, y, z) as:

d(a, b, c)2 = (x− a)2 + (y − b)2 + (z − c)2 (4.16)

The problem becomes:

Minimize
(a,b,c)

d(a, b, c)2

subject to g(a, b, c) = 0
(4.17)

The optimization problem 4.17 can be solved by the Lagrangian

method. The Lagrangian function L and the Lagrangian multiplier λ are

introduced:

L = d2 − λ ∗ g(a, b, c) (4.18)

The minimum occurs when:

Haptic rendering 46

∂L

∂a
= 0

∂L

∂b
= 0

∂L

∂c
= 0

∂L

∂λ
= 0

(4.19)

The solution of the above system of equations gives us the coordi-

nates of Q in function of the coordinates of P. Unfortunately, it can’t always

be solved explicitly. In that case, it would have to be solved numerically,

which might or might not be possible to be done in real time. The force is:

F = −k∗(P−Q)−c∗(Ṗ−Q̇) = −k (∆x,∆y,∆z)−c (∆ẋ,∆ẏ,∆ż) (4.20)

In our case study, the trajectory that the door describes is very

simple; it can be represented by the intersection of a cylinder with a plane

perpendicular to its main axes. The equation of the plane is x = 0, and the

equation for the cylinder is y2 + z2 = R2 or r(θ) = R. The plane restricts

the trajectory to x = 0, while the cylinder restricts it to a constant radius

inside the plane.

It is evident that the minimum distance between a point and the

plane x = 0 is exactly the value of the x coordinate. Therefore, force

applied by the plane should be:

Fkx = −kx x− cx ẋ (4.21)

On the particular case of the cylinder, the radial distance coincides

with the minimum distance, so both methods become equivalent. The equiv-

alent physical example is a body connected to a spring attached to a revolute

joint.

Solving Eq. 4.17 and 4.19 for the cylinder g(a, b, c) = b2+c2−R2 = 0:

Haptic rendering 47

∂L

∂a
= −2(a− x) = 0

∂L

∂b
= −2bλ− 2(−b+ y) = 0

∂L

∂c
= −2cλ− 2(−c+ z) = 0

∂L

∂λ
= b2 + c2 −R2 = 0

(4.22)

The group of equations (4.22) forms a non-linear system of algebraic

equations. There are two solutions for this system in λ, a, b and c. The first

solution is:

λ = 1−
√
y2 + z2

R

a = x

b =
Ry√
y2 + z2

c =
Rz√
y2 + z2

(4.23)

The second solution is:

λ = 1 +

√
y2 + z2

R

a = x

b = − Ry√
y2 + z2

c = − Rz√
y2 + z2

(4.24)

Haptic rendering 48

If we define:

tan(θ) =
y

z
(4.25)

We can write:

b = R sin(θ)

c = R cos(θ)
(4.26)

where both solutions are contemplated. The angle θ can be seen as the

angle formed between the door and a horizontal plane.

The distance P −Q (in relation to the cylinder) is:

P −Q = (x, y, z)− (a, b, c) = (0, y −R sin(θ), z −R cos(θ)) (4.27)

If we define:

∆y = y −Rsin(θ) (4.28)

∆ẏ = ẏ − θ̇Rcos(θ) (4.29)

∆z = z −Rcos(θ) (4.30)

∆ż = ż + θ̇Rsin(θ) (4.31)

We have the forces acting on the end effector as:

Fky = −kr (∆y)− cr (∆ẏ) (4.32)

Fkz = −kr (∆z)− cr (∆ż) (4.33)

Haptic rendering 49

Due to the damping term cr, there will be dissipation of energy of

the system while the end effector moves around the trajectory, reducing

its speed over time, which should not happen. However, the effect can

be negligible for appropriate values of cr and kr, or, if it is not negligible,

energy can be added through a ”negative damping” coefficient ce creating

a force that acts tangent to the trajectory, removing or greatly minimizing

this effect.

In the case of a cylinder, the forces that compensates the dissipation

of energy has the following form (with ce > 0):

Fye = ceRcos(θ)θ̇ (4.34)

Fze = −ceRsin(θ)θ̇ (4.35)

In Fig. 4.6, it is shown that the end effector remains on the desired

trajectory, given an initial speed. In Fig. 4.7 we can see the force being

applied by the haptic device, and on Fig. 4.8 we compare the variation of

kinetic energy between using an appropriate coefficient ce and not using it.

4.3.3 Haptic Behavior Modelling

This section describes the models that calculate the force feedback

responsible for delivering the physical sensations during the act of opening

the door. We divided into 4 phases: the unlocking phase, locking phase, the

transition between the locked and unlocked state, and the phase where the

door freely moves, which then are linked together into a single continuous

equation. Part of the assessment of how the dominant forces behave has

been done on Chapter 3, and it will be shown how the haptic behavior can

be modelled after them.

Haptic rendering 50

Figure 4.6: Circular trajectory followed by the system given an initial speed

4.3.3.1 Activation functions

In order to join discrete behaviours into a continuous equation, the

use of activation functions was adopted, i.e. functions that assumes the

value of 1 or 0 depending on the input. A wide variety of sigmoid functions

(functions that have an ”S” shape) can be used as activation functions, e.g.

the hyperbolic tangent or the error function. The adopted function was

based on the hyperbolic tangent:

S(θ, θ0) = (tanh(a(θ − θ0)) + 1)/2, a > 0. (4.36)

Haptic rendering 51

Figure 4.7: Magnitude of the force required to constrain the movement of the
end effector inside the desired trajectory

Figure 4.8: Kinetic energy variation when the end effector traverses 90◦, which
depends on the value of ce

Haptic rendering 52

Figure 4.9: Effect of a coefficient on activation function

The above function tends to the step function as a increases. Therefore it

is assumed:

S(θ, θ0) ≈ 1 for θ > θ0; (4.37)

S(θ, θ0) ≈ 0 for θ < θ0. (4.38)

4.3.3.2 Unlocking Phase

The unlocking phase corresponds to the situation where the door is

being opened, where the force is applied by latch mechanism. The charac-

teristics deemed relevant to represent the sensation were the faint pulling

effect the door executes at the hand of the operator, on the region where

some looseness can be felt (red square on Fig. (4.10)), and the maximum

force necessary to unlock the door, on the rigid region (green circle on Fig.

(4.10)).

Haptic rendering 53

Figure 4.10: Analysis of force required to unlock the door

These distinctive behaviors were modelled as a spring: the red region

was modelled as a spring with low stiffness kl, while the green region was

modelled as a spring with very high stiffness k∞. The angle where the

stiffness change is called θ0, the angle where the door finally opens is called

θ1. The activation function S is used as a transition between those regions.

It should be remembered that the value of the angle when the door is closed

is at its maximum, π/2, and it decreases as the door opens, so θ0 > θ1. The

equation representing the force applied by the end-effector at the user is:

Fo = [kl(θ − π/2)− k1∞(θ − θ0) S(θ, θ0)] S(θ, θ1) (4.39)

4.3.3.3 Locking phase

The locking phase corresponds to the situation where the door is

being closed, where the force is being applied by the latch mechanism. The

behavior is identical to the yellow region on the unlocking phase, and thus

is modelled as a very rigid spring, though the force goes in the opposite

direction. For practical implementations, such as reducing vibrations or

eliminating elastic collisions, a viscous damping c∞ is also added:

Haptic rendering 54

Fc = k2∞(θ − θ3) [S(θ, θ3)− S(θ, θ2)]− c∞θ̇[S(θ, θ3)− S(θ, θ2)] (4.40)

Where Fc is the force the haptic device applies, while θ2 and θ3 is

the region where the locking phase is valid, being θ2 > θ3.

4.3.3.4 Transition between locked and unlocked state

Between the locked and unlocked state, there is a very small region

where the door does not stay: it will either go back to the region where it is

locked, or where it is unlocked. To force the haptic device to simulate that

region, a negative viscous damping cn is used: the system becomes unstable

at that region, and is forced to move away. Therefore:

Ft = cn θ̇ [S(θ, θ2)− S(θ, θ1)] (4.41)

Where Ft is the force the haptic device applies, while θ1 and θ2 is

the region where the transition phase is valid, being θ1 > θ2.

Since during the locking/unlocking phase theta is very small, the

only relevant component of the force is on z direction.

4.3.3.5 Moving Phase

The moving phase corresponds to the situation where the door can

move freely around its point of rotation. The analysis of the mechanism

that controls the door indicates that dry friction is the most relevant effect.

Measures confirm it: the velocity decays at an approximate constant rate,

which implies a constant force opposing the movement is at work (Fig. 3.19).

Therefore characteristic deemed most relevant was the friction, which should

correspond to degree of ”smoothness”. The equation tries capture different

kinds of ”smoothness”, in this case represented by dry friction and the

asymmetry of forces caused by whether the angle is decreasing or increasing

in value, at different positions. Forces responsible for returning the device

Haptic rendering 55

and viscous friction were also represented, even if they were not present on

the original product. A force responsible to make the door return to an

equilibrium position (such as automatically closing) is also present.

The term responsible for the viscous friction is:

Fv = −cv θ̇ (4.42)

A return force can be caused by a spring force, where the equilibrium

point is at an angle θk, and its equivalent stiffness can change in function of

position, if desired, and can be broken into different components arbitrarily,

and i defines which component is being referred. The magnitude would be:

Freti = −kreti(θ) (θ − θk) (4.43)

The dry friction is modelled as an hyperbolic tangent:

Fat = −cattanh(aθ̇) (4.44)

The coefficient a defines the slope of the curve (on the same way of the

activation function S) and cat corresponds to the friction force magnitude.

We impose two different friction force magnitudes: one value when

the door is closing (θ̇ > 0) and another when the door is opening (θ̇ < 0).

For θ̇ > 0:

F+
dryk

= −c+at tanh(a θ̇) (4.45)

For θ̇ < 0:

F−dryk = −c−at tanh(a θ̇) (4.46)

The dry friction force would become (Fig. 4.11):

Haptic rendering 56

Figure 4.11: The values of the friction can be different depending on whether
the door is being opened or closed. In this example, the value of the dry friction
is higher when the value of the angle is decreasing (more force required to fully

open)

Fdryk = F+
dryk

+ (−F+
dryk

+ F−dryk) S(θ̇, 0) (4.47)

Friction can also varies according to the angular position. In that

case, activation functions are used to make the transition. For n transitions,

we have:

Fdry(θ) =
n∑
k=1

Fdryk(S(θ, θ(k−1))− S(θ, θk)) (4.48)

Where friction remains approximately constant on the interval [θ(k−1) θk].

Exemplified on Fig. (4.12) is the case where n = 2 and the transition occurs

at approximately 45◦, with a modest coefficient a on the activation function.

The final dissipative force Fdis would be the sum of the one caused

by dry friction and the one caused by viscous damping:

Fdis(θ) = Fdry(θ) + Fv (4.49)

Haptic rendering 57

Figure 4.12: Variation of the dry friction magnitude according to the position
of the door for n = 2, selecting the intermediate point at 45◦

The vector of the force Fdis acts tangent to the trajectory, and can

be transformed into Cartesian coordinates by the application of the rotation

matrix (4.6):

(
Fdisz(θ)

Fdisy(θ)

)
= Rot(θ)T ∗

(
0

Fdis(θ)

)
(4.50)

4.4 Implementation

The final equation representing the haptic behavior is the sum of all

phases of the previous section, on Cartesian coordinates:

(
Fhbz(θ)

Fhby(θ)

)
=

(
Fdisz(θ)

Fdisy(θ)

)
+

(
Fretz(θ)

Frety

)
+

(
Fc(θ)

0

)
+

(
Fo(θ)

0

)
+

(
Ft(θ)

0

)
(4.51)

The force feedback is the sum of Fbh with the trajectory constraint forces:

Haptic rendering 58

Fhx(θ)

Fhy(θ)

Fhz(θ)

 =

 0

Fhby(θ)

Fhbz(θ)

+

Fxk(θ)

Fyk(θ)

Fzk(θ)

+

 0

Fye(θ)

Fze(θ)

 (4.52)

Some simplifications for practical implementation of the final code and real-

time adjustments:

• the forces Fye and Fze were not considered, as there wasn’t noticeable

loss of kinetic energy;

• only Fretz was acting as a return force;

• the viscous damping caused by Fv was also not considered

• the force Ft was also not considered and it was made θ2 = θ3;

• dry friction does not change with the angular position.

Even after these simplifications, Eq. (4.52) still has a total of 16

parameters controlling the characteristics of the force feedback. Also, some

issues were found when using those equations to calculate the output forces

at the end-effector: high stiffness constants and high damping can generate

undesirable vibrations, even making the device unstable. The same problem

was found when using very high slopes on the activation functions when the

forces were large. To deal with that problem, the combination of maximum

stiffness, damping and activation functions slopes that guarantee lack of

significant vibrations was found by trial-and-error. In the case of the force

required to open and close, the maximum stiffness did not guarantee large

forces on a very small region, therefore, the distance which the spring acts

was used to control the force, while the stiffness remained constant, with

the maximum value that guaranteed stability. Sometimes there could be

ambiguity between the dry friction when the speed is positive or negative at

very low speeds, if they had different values. The problem was dealt using

a threshold θ̇0 at the activation function S; instead of S(θ̇, 0), it was used

S(θ̇, θ̇0). The way the code was programmed, each parameter could increase

or decrease by pressing a key on the keyboard; therefore, each parameter is

Haptic rendering 59

assigned to 2 keys. For a matter of convenience, not all possible combina-

tions of variation between parameters were represented simultaneously; if

that was the case, not only it would be required to map 32 keys, but would

also make tests very time consuming, going beyond the scope of this work.

Code Description

While the codes used can be found on appendix A and B entirely,

some descriptions from its structure is described here. There are two main

files, one python script, responsible for doing the relevant mathematical

operations, and an X3D file, responsible to give the instruction to the haptic

interface, visual and auditory rendering. These codes are related only to

haptic rendering, not for the visual rendering.

X3D file

The forces are defined as xfun, yfun and zfun (force on x direction,

y direction and z direction, respectively):

<PositionFunctionEffect> <!--force applied on the device/-->

<GeneralFunction DEF="xfun" containerField="xFunction" function="0"

params="x,y,z"/>

<GeneralFunction DEF="yfun" containerField="yFunction" function="0"

params="x,y,z"/>

<GeneralFunction DEF="zfun" containerField="zFunction" function="0"

params="x,y,z"/>

</PositionFunctionEffect>

As the name implies (PositionFunctionEffect), they are, in theory,

a function of the position from the device (x, y, z). However, the python

script allows to circumvent that limitation by including on the function

other variable parameters that can include the speed of the tracker (end-

effector).

Haptic rendering 60

The tracker position is sent to the python script where it will be

subject to a mathematical transformation that will ultimately result on the

value of the force applied by the haptic interface:

<ROUTE fromNode=’HDEV’ fromField=’trackerPosition’

toNode=’Force’ toField=’Force_x’/>

<ROUTE fromNode=’HDEV’ fromField=’trackerPosition’

toNode=’Force’ toField=’Force_y’/>

<ROUTE fromNode=’HDEV’ fromField=’trackerPosition’

toNode=’Force’ toField=’Force_z’/>

The tracker velocity is also sent to the python script, where its value

is registered on global variables that can be used in other classes:

<ROUTE fromNode=’HDEV’ fromField=’trackerVelocity’

toNode=’Force’ toField=’Vel_y’/>

To update the value of the global variables in real time, the class

Vel y from the python file is called, where it returns an integer to a variable

that has no effect on the simulation:

<ROUTE fromNode="Force" fromField="Vel_y"

toNode="dummyspeed" toField="radius"/>

The forces calculated on the python script are sent to be used by the

haptic interface:

<ROUTE fromNode="Force" fromField="Force_x"

toNode="xfun" toField="function"/>

<ROUTE fromNode="Force" fromField="Force_y"

toNode="yfun" toField="function"/>

<ROUTE fromNode="Force" fromField="Force_z"

toNode="zfun" toField="function"/>

Key presses are also used to change the values of certain global vari-

ables on the python script:

Haptic rendering 61

<ROUTE fromNode="N" fromField="keyPress"

toNode="Force" toField="force_a_key" />

<ROUTE fromNode="N" fromField="controlKey"

toNode="Force" toField="force_ctrl_key" />

Python file

In python script, the functions that calculate the forces are inside

classes that return the value of the calculated force as a variable to X3D:

class Force_x(TypedField(SFString, SFVec3f)):

def update(self, trackerPosition):

global Posx

global Posy

global Posz

Posx=trackerPosition.getValue().x

Posy=trackerPosition.getValue().y

Posz=trackerPosition.getValue().z

x=Posx

#Initial force to bring the device to an equilibrium point

#when initializer=1

equilibriumx=(-50*Posx-50*Velx)*initializer

#F_x_k once initializer is set = 0

totalforcex=(1-initializer)*(-300*Posx-100*Velx)+equilibriumx

return str(totalforcex)

Force_x=Force_x()

Haptic rendering 62

There is also a class responsible for misc tasks: updating global vari-

ables with the value of the tracker velocity and creating text files that logs

the value of the variables that govern the haptic model equations:

class Vel_y(TypedField(SFFloat, SFVec3f)):

def update(self, trackerVelocity):

#Obtain velocities

global Vely

global Velx

global Velz

global dxdt

global dydt

global dzdt

Velx=trackerVelocity.getValue().x

Vely=trackerVelocity.getValue().y

Velz=trackerVelocity.getValue().z

dxdt=Velx

dydt=Vely

dzdt=Velz

#This section stores the time history and the values

#of the variables used to adjust the haptic behavior

file=open(’dump.txt’,’w’)

file.write(str(’frictionforceup=’)+ str(frictionforceup) +

str(’ frictionforcedown=’) + str(frictionforcedown) +

str(’ openforce=’) + str(openforce) + str(’ closeforce=’) +

str(closeforce))

file.close()

return 0

Vel_y=Vel_y()

Haptic rendering 63

Key presses are used to control the values for the global variables

that control the haptic model function, and for details on the coding, see

Appendix A.

4.5 Experimental results

On the experiment, we tested how the device acted and how close it

was to the expected behavior, and also how was the general performance of

the device. Unfortunately, there were significant vibration for high values

of stiffness. The device also had difficulty to render the dry friction the way

it was modelled when we desired higher values (above 10N). If we were

to improve performance, it would be necessary to have low level access to

the control algorithm of the device, where the feedback relationship could

change to improve the performance of representing the haptic behavior that

we wanted (for example, dry friction would have a specific control loop that

needed to be active). The device was not able to render so well certain

functions directly from X3D/Python because they demand high gains while

requiring stability.

The user moved the device according to his whim, while the operator

could increase or decrease the values of the parameters that affected the

force that the user should apply to move the device. For the purpose of

validating the haptic model, particularly how well friction was represented,

we retrieved the values for an experiment with constant friction, where the

friction for positive angular speed was c+ = 1.5N and for negative speed

c− = 1N , with an mass of 4kg .

Since the values of speed and the force applied by the user are mea-

sured in Cartesian coordinates, they needed to be transformed to polar

coordinates in order to compare obtained measurements with the ones esti-

mated by the haptic model. The transformations are present in Sec. 4.3.1.

The equivalent inertia of the system, in this case, is:

I = m R = 1.2kgm. (4.53)

Haptic rendering 64

Figure 4.13: Comparison between the angular velocity of the haptic model
and the actual device when friction is disabled

That inertia represents the resistance to the system to change its

angular speed when a force is applied ar the end effector. It is equivalent to

the moment of inertia divided by the radius of the trajectory. The response

to the input applied by the user (Fig. 4.14) by the haptic model and the

actual interface is displayed on Fig. 4.13. It can see that the behavior was

very close to the expected, and it demonstrates that the haptic model can

be use instead of the actual measurements made by the haptic device.

Haptic rendering 65

Figure 4.14: Time history of the force applied by the user at the end effector
when friction is disabled

Chapter 5

Optimization

A typical mathematical optimization problem consists of minimizing

(or maximizing) a (real) function by systematically choosing input values

from within a defined set and computing the value of the function with the

aim of finding the best solution among all feasible solutions. The standard

form for a continuous optimization is

minimize
x

F (x)

subject to G(x) ≤ 0

H(x) = 0

xl ≤ x ≤ xh

(5.1)

where:

• F (x): Rn− > R is the objective function to be minimized over the

bounded variable x;

• G(x) is a vector that describes the inequality constraints;

• H(x) is a vector that describes the equality constraints.

Solving a well-design optimization problem gives you the best solu-

tion to a given problem among a subset of possible solutions, that is, the

solutions that satisfies the constraints; because of this it becomes incredibly

useful when one wants to design a system where there are multiple solutions

satisfying it. The optimization method is adopted because:

1. there are multiple possible combinations of parameters that we must

estimate to validate the dynamic model;

66

Optimization 67

2. even if the haptic model and the dynamic model are different, we want

to find the parameters of the dynamic model that best fits it to the

behavior of the haptic model.

5.1 Designing the problem: Dynamic system param-

eter estimation

The objective function of our problem computes the maximum difference

squared (it also uses the integral of the square difference; sometimes one

works better than the other) between state of the dynamic system (θs) and

the state of the haptic model or physical measurements (θh) for a given

input force, on a bounded time interval. Defining:

fo(
dnθs(t)

dtn
,
dnθh(t)

dtn
) = (

dnθs(t)

dtn
− dnθs(t)

dtn
)2 (5.2)

The index n indicates which variable of the state is being used:

• n = 0 – angular position

• n = 1 – angular speed

• n = 2 – angular acceleration

The objective function is the maximum value of f on the interval

0 ≤ t ≤ T :

F (
dnθs(t)

dtn
,
dnθh(t)

dtn
) = max

0≤t≤T
fo(

dnθs(t)

dtn
,
dnθh(t)

dtn
); (5.3)

or, if the result is not satisfactory, one can try the integral over the interval

0 ≤ t ≤ T of the difference squared:

F (
dnθs(t)

dtn
,
dnθh(t)

dtn
) =

∫ T

0

fo(
dnθs(t)

dtn
,
dnθh(t)

dtn
)dt (5.4)

Optimization 68

Normally, the difference between using Eq. (5.3) and Eq. (5.4) is

negligible, though when one model response differs too much from the other,

Eq. (5.3) will minimize the maximum difference at the expense of reducing

the smaller differences, while Eq. (5.4) will take into consideration the

smaller differences even if that means that a point at the trajectory might

have very high inaccuracy. On the models that we used, Eq. (5.3) sufficed,

though on some initial models Eq. (5.4) produced better results.

For estimating the parameters of the dynamic system based on mea-

surements, the constraint equation is the differential equation of the dy-

namic system, solved on the interval 0 ≤ t ≤ T , where the parameters are

bounded:

ẋ(t)− f(x(t), p) + g(x(t), p)Fu(t) = 0

x(0) = x0
pmin ≤ p ≤ pmax;

(5.5)

where

x(t) = (θs(t),
dθs(t)

dt
)

dx(t)

dt
= (

dθs(t)

dt
,
d2θs(t)

dt2
).

(5.6)

We use the angular speed to find vector p (corresponding to the pa-

rameters of the system), so dθh(t)
dt

corresponds to the measurements obtained

from the gyroscope, with the force measured from the load cell as Fu(t). In

the case of estimating the parameters of the dynamic system based on the

behavior of the haptic model, there are two possible solutions:

1. log the data directly from the haptic interface (forces and state his-

tory);

2. apply an arbitrary input at the dynamic haptic equations to obtain

the time history of the state.

Optimization 69

The first solution circumvent the problem of transparency from the device

when rendering the forces, if the measures are accurate. The drawback of

this solution is that the data comes with noise that could have to be filtered

to be used on the optimization, and so information would be lost. The

second problem do not address the problem of transparency, but the data

comes without noise, and thus can be used directly on the optimization.

The simulations are also faster using the second option. In the case of the

haptic model, the parameters can be estimated using the same process for

their estimation on the dynamic model. The difference is that the constraint

equations are reflecting the haptic model (without the latch mechanism):

I θ̈s(t) = Fdis(θs(t), θ̇s(t)) + Fretz sin(θs) + Fu(t) (5.7)

where I is the inertia of end effector, whose value depends on the its equiva-

lent mass and the chosen value of radius. Note that we do not have to worry

about converting a force to a torque nor to take the radius into consideration

directly, because the value of I is already taking them into consideration,

as it is the moment of inertia in relation to the point of rotation divided by

the radius of the trajectory. In this case, if the force is in N , the unit of I

is Kg m.

5.2 Solving the problem: Genetic Algorithm

The simulation software AMESim offers two optimization algorithms: non-

linear programming by quadratic Lagrangian (NLPQL) and genetic algo-

rithm (GA). The genetic algorithm offered better results, and thus was

chosen to solve the optimization problem. A genetic algorithm (GA) is a

method for solving both constrained and unconstrained optimization prob-

lems inspired on the natural selection process of biological evolution. A brief

description of its terms and the general methodology is given.

Chromosomes or Individuals

Optimization 70

For the genetic algorithms, the chromosomes (also called individ-

uals) represent the set of properties (genes), which code the independent

variables. The chromosome represents a solution of the given problem and

is characterized by the vector of variables. A set of different chromosomes

(individuals) forms a generation. By means of evolutionary operators, like

selection, recombination and mutation the next generation is created.

Selection

The selection of the best individuals on each generation is based on

an evaluation of fitness function, which is also the objective function of the

problem. In the system, the fitness function is the sum of the square error

between the wanted system response and the real one: individuals with small

value of the fitness function will have bigger chances for recombination and

for generating offspring.

Recombination

The first step in the reproduction process is the recombination (crossover).

In it the genes of the parents are recombined to form an entirely new chro-

mosome.

Mutation

In the terms of genetic algorithm, mutation means random change

of the value of a gene in the population. The chromosome, which gene will

be changed and the gene itself are chosen by random.

Methodology

The evolution usually starts from a population of randomly gener-

ated candidate solutions (individuals or chromosomes) and is an iterative

Optimization 71

process, where the population in each iteration is called a generation. In

each generation, the fitness of every individual in the population is evalu-

ated by computing the value of a fitness function. The more fit individuals

are stochastically chosen from the current population, and each individual’s

set of genes is modified to form a new generation, either through recom-

bination (cross-over) or random variation (mutation). The new generation

of candidate solutions is then used in the next iteration of the algorithm;

the algorithm terminates when either a maximum number of generations

has been produced, or a satisfactory fitness level has been reached for the

population.

5.2.1 Parameter estimation of the system from measurements

The optimization allows us to estimate the parameters that could not be

directly measured, namely the ones that do not correspond to the spatial

dimensions of the mechanism: the mass, moment of inertia, spring stiffness,

spring pre-load and friction values. The measured force is used as an input

on the system, while the output is the state of the system. The output of

the system is then compared with the measured state through the objective

function. The software allows us to set the population size, the reproduction

ratio, the mutation probability, the mutation amplitude and the maximum

number of generations, along with the seed value. According to the manual

of AMESim, a population larger than 5 times the number of variables often

give good results, and the reproduction ratio could be between 50% and

85%. Table 5.1 displays the chosen values to configure the algorithm:

Table 5.2 displays the values that can be obtained through direct

measurement; these are the dimensions of the mechanism. For the estima-

tion of the remaining parameters, ten samples were used, and the ranges of

the values from the estimated variables can be found at Table 5.3. At figure

5.2, we compare the real behavior of the system with the behavior of model

obtained from the optimization of this specific signal, the minimum range

and the maximum range, with an maximum error of 0.22m/s. We assume

that the set found through the optimization are close to the true values,

though they can actually refer to an equivalent system.

Optimization 72

Figure 5.1: The output of the system is compared with the desired output
after an input

5.2.2 Parameter estimation of the haptic model from measure-

ments

It is possible to make an initial estimative of the parameters from the haptic

equation using the same optimization method. The estimation can be made

either directly from the measurements, or from the dynamic system model

with the estimated parameters. The advantage of using the dynamic system

model comes from the fact that the optimization is much faster and it is

allowed a greater range of inputs to be tested with different initial conditions.

The AMESim model responsible for comparing the haptic model and the

dynamic model is displayed on Fig. 5.3.

The block system of haptic model is composed by a block where

the angular acceleration is a function of the torque generated by the haptic

Optimization 73

Figure 5.2: Comparison between the behavior of the system according to the
estimated parameters

Figure 5.3: The haptic model behavior is compared with the system behavior
for the same input

Optimization 74

Table 5.1: Genetic algorithm parameters

Parameter Value

Population size 100

Max. number of generations 20

Reproduction ratio 60

Mutation probability 10

Mutation amplitude 0.8

Table 5.2: Measured parameters

Parameter Value

L 0.6m

LOA 0.03m

LBx -0.01

LBy 0.09

LCx -0.06

LCy 0.08

LDx -0.05

LDy 0.06

forces and the inertia of the system (Fig. 5.4). It is also where the objective

function is calculated.

5.2.3 From haptic model to technical specification

While the equivalent stiffness from the latch mechanism can be directly ob-

tained from the haptic model, the other parameters cannot. The remaining

Optimization 75

Table 5.3: Estimated parameters of the system

Parameter Minimum Value (SI) Maximum Value (SI)

Spring stiffness (K) 393.947 407.33

Spring pre-load (Fload) 96.820 106.081

Mass (M) 0.387 0.455

Moment of Inertia (Iz) 0.121 0.134

Torque at point O (TatO) 0.00534 0.00695

Torque at point A (TatA) 0.00846 0.00962

Torque at point B (TatB) 0.00476 0.00511

Friction coefficient in B (µ) 0.617 0.996

Force at point C (FatC) 25.971 31.868

Force at point D (FatD) 15.063 22.536

parameters, which are the technical specifications, are analogously obtained

using the same method for the initial estimation of the haptic model. This

time, however, the parameters of the haptic model are known, while the

parameters of the dynamic model are to be obtained. The estimation can

be done through the use of the measurements from the state of the haptic

device or by applying the same input on the haptic model and dynamic

model and minimizing the difference between the outputs. We opted to

use the haptic model output instead of the measurements from the haptic

device, as the simulation goes much faster.

Due to the amount of variables for the optimization, we decided to

maintain the lengths of the original mechanism, changing only the spring

stiffness, inertia and frictions, and the obtained result was satisfactory. The

comparison between the response of the system and of the haptic model

obtained from the experiment (Chapter 4) after the optimization is displayed

Optimization 76

Figure 5.4: The haptic model in AMESim

on Fig. 5.5. The parameters related to the technical specifications are

presented on table 5.4.

5.2.4 Redesigning the dishwasher mechanism

The haptic model used to obtain the technical specifications was rather

simple, which allowed the existing mechanism to accommodate it. However,

the great advantage of using virtual prototypes is that it is not necessary

to be restricted to existing mechanisms, and should they represent more

complex haptic behaviors, the mechanism would have to be redesigned.

This new design will be highly dependent on how the haptic model behaves.

Optimization 77

Figure 5.5: Comparison between the response of the system and the response
of the haptic model for the same input

As an example, if we did not consider the result from Fig. (5.5) satisfactory,

we could try to make the magnitude of the friction on point D to be variable

according to the position of the door. One way to accomplish this is to divide

the trajectory into n sections, and for each interval [θk−1θk], the magnitude

of the friction can be a fraction Ak, between 0 and 1, of a maximum value

Fat. We would have:

A(θ) =
n∑
k=1

Ak(S(θ, θk−1)− S(θ, θk)) (5.8)

The term (S(θ, θk−1)−S(θ, θk)) is a function whose value tends equals

1 if θk−1 ≤ θ ≤ θk and 0 otherwise. That means that the value of A(θ) will be

equal to Ak whenever θk−1 ≤ θ ≤ θk. If we divided the interval 0 ≤ θ ≤ π/2

into n intervals, we can set the value of A for each interval. The value of

friction on point D, in function of the position of the door would be:

FatD = Fat A(θ) (5.9)

Optimization 78

Table 5.4: Technical specifications obtained from the chosen haptic behavior

Parameter Value (SI)

Spring stiffness (K) 373.363

Spring stiffness (Fload) 85.472

Mass (M) 1.232

Moment of Inertia (Iz) 0.0343

Torque at point O (TatO) 0.00431

Torque at point A (TatA) 0.00821

Torque at point B (TatB) 0.00945

Friction coefficient in B (µ) 0.779

Force at point C (FatC) 55.992

Force at point D (FatD) 67.811

We run an example maintaining all the former values from the previ-

ous optimization, but we divided the trajectory into 8 sections, and we used

another optimization to find the value of A(θ), whose graphic representation

is in Fig 5.6. We compared the results between considering variable friction

and constant friction, and it is clear on Fig. 5.7 that using a variable friction

offer much better results.

Optimization 79

Figure 5.6: Value of the coefficent A(θ), responsible for adjusting the friction
at different positions of the door

Figure 5.7: Comparison between the response of the system and the response
of the haptic model for the same input when we use friction that changes with

the position of the door [20].

Chapter 6

Conclusion

The work developed has described a methodological approach that

enables companies to re-engineer the haptic feedback of the interaction with

a product according to users’ preferences, and parts of it have already been

published in two conferences ([3],[20]) and one journal ([13]). This feedback

is part of a more complete multisensory user experience that is becoming

important for the success on the market of new products. The methodology

proposes the use of haptic interactive Virtual Prototypes as a means to cap-

ture the product experience and describes a way to transform perceptual

qualitative feedbacks into quantitative design specification. Multisensory

interactive Virtual Prototypes are based on visual, auditory and haptic in-

terfaces. While haptic feedback can be adapted on user preferences, visual

and sound cues are used to complete the experience. A dishwasher door has

been used as case study in order to validate the methodology and to identify

the limits. These consisted mainly on the noticeable lack of transparency

of the device when using explicit functions that require large gains to be

emulated, the size of the workspace for the device used, and the possibil-

ity that the results of the optimization might convey a difference that is

above the threshold detectable to human senses. In the latter issue, these

parameters of the optimization would represent an initial estimation for the

technical specifications, and a physical prototype would be necessary to find

the adequate values and to tune better the physical sensation. In fact, even

with the lack of transparency for the device, the virtual model could still

be used as an initial estimation for what is the desired behavior: the order

of magnitude for the friction, how fast should the door automatically close,

the force to move it, and so on. A physical prototype would be made taking

these previously tested factors into consideration, offering a wide range of

tests before its commitment

In the case study, the door mechanism has been analysed and trans-

formed in two different models: one simplified and parametric that is used

80

Conclusions 81

to control the haptic device and allow an interactive design review, and

the other detailed used when the users’ preferences are captured to extract

the design specifications. Both the models, the simplified and the detailed

are tuned by means of optimization algorithms. Despite the fact that this

methodology has been used to re-engineer an existing door user experience,

it has demonstrated that it can be adapted to the design of new products.

Appendix A

Appendix A: X3D file for haptic ren-

dering

<X3D>

<Scene>

<IMPORT inlineDEF=’H3D_EXPORTS’ exportedDEF=’HDEV’ AS=’HDEV’ />

<NavigationInfo type="NONE"/>

<!-- Dummy variables/-->

<ViscosityEffect DEF=’dummyspeed’

enabled=’true’

viscosity=’0’

radius=’25’

dampingFactor=’0’

deviceIndex=’0’

/>

<ViscosityEffect DEF=’dummyscroll’

enabled=’true’

viscosity=’0’

radius=’25’

dampingFactor=’0’

deviceIndex=’0’

/>

<ViscosityEffect DEF=’dummyclick’

enabled=’true’

viscosity=’0.0’

radius=’25’

dampingFactor=’0.0’

deviceIndex=’0’

/>

<ViscosityEffect DEF=’dummykey’

enabled=’true’

viscosity=’0.0’

radius=’25’

dampingFactor=’0.0’

deviceIndex=’0’

82

Appendix A. X3D file for haptic rendering 83

/>

<!-- End Dummy variables/-->

<MouseSensor DEF=’M’/> <!-- Mouse: scrollUp,scrollDown,leftButton,rightButton/-->

<KeySensor DEF=’N’/>

<Viewpoint DEF=’VP1’

position=’0 0.6 2.5’

orientation=’1 0 0 0’

fieldOfView=’0.785398’

description="Front"

/> <!-- viewpoint for the CAD model/-->

<!--

<Viewpoint position=’0 -0.10 0.8’/> /--><!-- viewpoint for sphere/-->

<!--red sphere/-->

<!--

<Transform translation=’0 -0.158 -0.138’>

<Shape>

<Appearance>

<Material diffuseColor=’1 0 0’/>

</Appearance>

<Sphere DEF=’A’ radius=’0.3’

/>

</Shape>

</Transform>

/-->

<!--red sphere magnetic/-->

<!--

<Transform translation=’0 -0.158 -0.138’>

<MagneticGeometryEffect

enabled=’true’

startDistance=’0.05’

escapeDistance=’0.025’

springConstant=’0’>

<Sphere USE=’A’ />

</MagneticGeometryEffect>

</Transform>

Appendix A. X3D file for haptic rendering 84

/-->

<PositionFunctionEffect> <!--force applied on the device/-->

<GeneralFunction DEF="xfun" containerField="xFunction" function="0" params="x,y,z"/>

<GeneralFunction DEF="yfun" containerField="yFunction" function="0" params="x,y,z"/>

<GeneralFunction DEF="zfun" containerField="zFunction" function="0" params="x,y,z"/>

</PositionFunctionEffect>

<!--Text for trials/-->

<Transform translation=’0 0 0’>

<Shape>

<Text DEF="TESTO"

string=’"PROVA" ’

length=’’ maxExtent=’0’ solid=’true’>

<FontStyle DEF=’F’ size=’0.1’ spacing=’1.2’ justify=’MIDDLE’/>

</Text>

</Shape>

</Transform>

<!--end text for trials/-->

<PythonScript DEF="Force" url="motherdemo.py" />

<!-- Read device coordinate and speed and put in variables/-->

<ROUTE fromNode=’HDEV’ fromField=’trackerPosition’

toNode=’Force’ toField=’Force_x’/>

<ROUTE fromNode=’HDEV’ fromField=’trackerPosition’

toNode=’Force’ toField=’Force_y’/>

<ROUTE fromNode=’HDEV’ fromField=’trackerPosition’

toNode=’Force’ toField=’Force_z’/>

<ROUTE fromNode=’HDEV’ fromField=’trackerVelocity’

toNode=’Force’ toField=’Vel_y’/>

<!-- End Read device coordinate and speed /-->

<!-- Read and compute changes in mouse (scroll and click) /-->

<ROUTE fromNode="M" fromField="leftButton"

toNode="Force" toField="force_left_clk" />

<ROUTE fromNode="M" fromField="rightButton"

Appendix A. X3D file for haptic rendering 85

toNode="Force" toField="force_right_clk" />

<ROUTE fromNode="M" fromField="scrollUp"

toNode="Force" toField="force_scr_up" />

<ROUTE fromNode="M" fromField="scrollDown"

toNode="Force" toField="force_scr_down" />

<ROUTE fromNode="N" fromField="keyPress"

toNode="Force" toField="force_a_key" />

<ROUTE fromNode="N" fromField="controlKey"

toNode="Force" toField="force_ctrl_key" />

<!-- End Read and compute changes in mouse (scroll and click) /-->

<!--

<ROUTE fromNode="Force" fromField="PROD_UCT"

toNode="zfun" toField="function"/>/-->

<!-- Use of class to change global variable level, then return values to dummy variables /-->

<ROUTE fromNode="Force" fromField="Vel_y"

toNode="dummyspeed" toField="radius"/>

<ROUTE fromNode="Force" fromField="force_left_clk"

toNode="dummyclick" toField="radius"/>

<ROUTE fromNode="Force" fromField="force_right_clk"

toNode="dummyclick" toField="radius"/>

<ROUTE fromNode="Force" fromField="force_scr_up"

toNode="dummyscroll" toField="radius"/>

<ROUTE fromNode="Force" fromField="force_scr_down"

toNode="dummyscroll" toField="radius"/>

<ROUTE fromNode="Force" fromField="force_a_key"

toNode="dummykey" toField="radius"/>

<ROUTE fromNode="Force" fromField="force_ctrl_key"

toNode="dummykey" toField="radius"/>

<!-- End Use of class to change global variable level,

then return values to dummy variables /-->

<!-- Read variables with coordinates, and calculate the force.

Some of the variables got globally /-->

<ROUTE fromNode="Force" fromField="Force_x"

toNode="xfun" toField="function"/>

<ROUTE fromNode="Force" fromField="Force_y"

Appendix A. X3D file for haptic rendering 86

toNode="yfun" toField="function"/>

<ROUTE fromNode="Force" fromField="Force_z"

toNode="zfun" toField="function"/>

<!-- END Read variables with coordinates, and calculate the force.

Some of the variables got globally /-->

<!-- Display text for debugs /-->

<!--<ROUTE fromNode="zfun" fromField="function"

toNode="Force" toField="TESTO_1" />

<ROUTE fromNode="Force" fromField="TESTO_1"

toNode="TESTO" toField="string"/>/-->

<!-- End Display text for debugs /-->

<!-- cylinder magnetic surface /-->

<!--

<Transform translation="0.0 -0.15 -0.1" rotation="0 0 1 1.57" >

<Transform>

<Shape>

<Appearance>

<Material diffuseColor=’1 0 0’ />

</Appearance>

<Cylinder bottom=’false’ height=’0.0005’ radius=’0.3’

side=’true’ solid=’true’ top=’false’ DEF=’E’/>

</Shape>

<MagneticGeometryEffect

enabled=’true’

startDistance=’0.03’

escapeDistance=’0.020’

springConstant=’1000’>

<Cylinder USE=’E’ />

</MagneticGeometryEffect>

</Transform>

</Transform>

/-->

<!-- end cylinder magnetic surface /-->

<Sound intensity="1" DEF="SOUND" >

Appendix A. X3D file for haptic rendering 87

<AudioClip DEF="APERT" url="apertura.wav"/>

</Sound>

<Sound intensity="1" DEF="SOUND2" >

<AudioClip DEF="CHIUS" url="chiusura.wav"/>

</Sound>

<PythonScript DEF="PSound" url="sound.py" />

<ROUTE fromNode=’HDEV’ fromField="trackerPosition"

toNode="PSound" toField="possound_one"/>

<ROUTE fromNode=’HDEV’ fromField="trackerVelocity"

toNode="PSound" toField="velocsound_one"/>

<ROUTE fromNode="PSound" fromField="velocsound_one"

toNode="SOUND" toField="intensity"/>

<ROUTE fromNode="PSound" fromField="possound_one"

toNode="APERT" toField="startTime"/>

<ROUTE fromNode=’HDEV’ fromField="trackerPosition"

toNode="PSound" toField="possound_two"/>

<ROUTE fromNode=’HDEV’ fromField="trackerVelocity"

toNode="PSound" toField="velocsound_two"/>

<ROUTE fromNode="PSound" fromField="velocsound_two"

toNode="SOUND2" toField="intensity"/>

<ROUTE fromNode="PSound" fromField="possound_two"

toNode="CHIUS" toField="startTime"/>

<DeviceLog frequency="1000"> <!--force applied on the device/-->

</DeviceLog>

<!-- Dishwasher Model /-->

<Transform translation="0 0 0">

<Inline url=’GEOaperto.x3d’ />

</Transform>

<Transform DEF="C"

translation=’0 -0.09 0.28’ rotation=’0 0 0 0.0’>

<Transform translation=’0 0.09 -0.28’>

Appendix A. X3D file for haptic rendering 88

<Inline url=’GEOsportello.x3d’ />

</Transform>

</Transform>

<Transform translation=’0 -0.23 0’ rotation=’1 0 0 1.57’>

<Shape>

<Appearance>

<ImageTexture

repeatS=’true’

repeatT=’true’

url=’textures/parquet.jpg’ />

<TextureTransform

center=’0 0’

rotation=’1.57’

scale=’10 10’

translation=’-0.1 -0.1’ />

</Appearance>

<Rectangle2D size=’5.0 2.0’ />

</Shape>

</Transform>

<PythonScript DEF="PS" url="box_follow.py" />

<ROUTE fromNode="PS" fromField="changeRotation"

toNode="C" toField="rotation" />

</Scene>

</X3D>

Appendix B

Appendix B: Python file for haptic ren-

dering

w-r-w-y

w increases the spring force, q decrease

r reduces oscilations to a certain point, e increases

#(r increases radial damping, e decreases)

y actives some forces (x force to lock the device), t deactivates

z decreases the force to open, x increases

c decreases the friction. v increases

b decreases the force to close, n increases

from H3DInterface import *

from H3D import *

from H3DUtils import *

import math

import pickle

Mommy stuff

frictionforceup=0

frictionforcedown=0

Friction parameters

a1=0.7252/0.75 #mass

a2=(7.0-1.5) #global dry friction

a3=10.41 #global dry frction slope

a4=2.00 #viscous friction

a5=(-6.5+1.5) #second friction

a6=2*5 #second friction slope

a7=0.59 #angular position of friction change

a8=6.132/1.5 #slope of angular change

Eq Parameter change

89

Appendix B. Python file for haptic rendering 90

deltaa1=0

deltaa2=0.5

deltaa3=5

deltaa4=0.5

deltaa5=0.5

deltaa6=5

deltaa7=0.1

deltaa8=0.5

Other changing parameters

impulseforce=0

dthetadt0=0

openforce=-1.2

closeforce=-2.2

returnintensity=0

declaration of globals

Posx=0

Posy=0

Posz=0

Velx=0

Vely=0

Velz=0

dthetadt=0

theta=0

dydt=0

dxdt=0

dzdt=0

k=2000

deltak=2000

c=200

deltac=200

R=0.3

pi=3.1415926

Appendix B. Python file for haptic rendering 91

a=0

activators

hapticforce=0

frictionforce=0

lockforce=1

returnactive=0

initializer=1

#unused

click=0

clickdelta=0.3

scroll=0

scrolldelta=0.1

key=0

keydelta=0.5

hdev = None

di = getActiveDeviceInfo()

if(di and len(di.device.getValue()) > 0):

hdev=di.device.getValue()[0]

class Force_x(TypedField(SFString, SFVec3f)):

def update(self, trackerPosition):

global Posx

global Posy

global Posz

Posx=trackerPosition.getValue().x

Posy=trackerPosition.getValue().y

Posz=trackerPosition.getValue().z

x=Posx

equilibriumx=(-50*Posx-50*Velx)*initializer

Appendix B. Python file for haptic rendering 92

totalforcex=(1-initializer)*(-0*math.tanh(Velx*10)-300*Posx-100*Velx)+equilibriumx

file=open(’dump.txt’,’w’)

file.write(str(’frictionforceup=’)+ str(frictionforceup) +

str(’ frictionforcedown=’) + str(frictionforcedown) + str(’ openforce=’) +

str(openforce) + str(’ closeforce=’) + str(closeforce))

file.close()

return str(totalforcex)

Force_x=Force_x()

class Force_y(TypedField(SFString, SFVec3f)):

def update(self, trackerPosition):

global Posx

global Posy

global Posz

Posx=trackerPosition.getValue().x

Posy=trackerPosition.getValue().y

Posz=trackerPosition.getValue().z

y=0.158+Posy #absolute position y>=0

z=0.138+Posz #absolute position z>=0

theta=math.atan2(y,z) #angular position [0 90o], 0=bottom (fully open), 90o up (closed)

dthetadt=(dydt*z-dzdt*y)/(y*y+z*z) # angular speed

deltaz=z-R*math.cos(theta) #horizontal distance circ and pos

deltay=y-(R*math.sin(theta)) #vertical distance circ and pos

ddeltazdt=dzdt+dthetadt*R*math.sin(theta)

ddeltaydt=dydt-dthetadt*R*math.cos(theta)

Fy1=-k*deltay #circular trajectory spring

Appendix B. Python file for haptic rendering 93

Fy2=-c*ddeltaydt#circular trajectory friction

Fz1=-k*deltaz #circular trajectory spring

Fz2=-c*ddeltazdt#circular trajectory friction

if dthetadt>dthetadt0+0.1, eq=1, else eq=0

stepangularspeedpositivethreshold=(math.tanh(20*(dthetadt-(0.1+dthetadt0)))+1)/2

Friction Force

F3=-frictionforcedown*math.tanh(10*dthetadt)-stepangularspeedpositivethreshold*

(frictionforceup - frictionforcedown)

Fz3=-F3*math.sin(theta)

Fy3=F3*math.cos(theta)

Asymmetric forces equations

Force that brings the door back with inpulse

#asymmetricforcey=stepangularspeedpositivethreshold*(6.5+impulseforce)*

math.cos(theta)*impulseactive

equilibriumy=0.8*initializer

totalforcey=(Fy1+Fy2)*(1-initializer)+Fy3+equilibriumy

return str(totalforcey)

Force_y=Force_y()

class Force_z(TypedField(SFString, SFVec3f)):

def update(self, trackerPosition):

global Posx

global Posy

global Posz

global dthetadt

Appendix B. Python file for haptic rendering 94

global theta

Posx=trackerPosition.getValue().x

Posy=trackerPosition.getValue().y

Posz=trackerPosition.getValue().z

y=0.158+Posy #absolute position y>=0

z=0.138+Posz #absolute position z>=0

theta=math.atan2(y,z) #angular position [0 90o], 0=bottom (fully open), 90o up (closed)

dthetadt=(dydt*z-dzdt*y)/(y*y+z*z) # angular speed

deltaz=z-R*math.cos(theta) #horizontal distance circ and pos

deltay=y-(R*math.sin(theta)) #vertical distance circ and pos

ddeltazdt=dzdt+dthetadt*R*math.sin(theta)

ddeltaydt=dydt-dthetadt*R*math.cos(theta)

Fy1=-k*deltay #circular trajectory spring

Fy2=-c*ddeltaydt#circular trajectory friction

Fz1=-k*deltaz #circular trajectory spring

Fz2=-c*ddeltazdt#circular trajectory friction

Friction Force

if dthetadt>dthetadt0+0.1, eq=1, else eq=0

stepangularspeedpositivethreshold=(math.tanh(20*(dthetadt-(0.1+dthetadt0)))+1)/2

F3=-frictionforcedown*math.tanh(10*dthetadt)-stepangularspeedpositivethreshold*

(frictionforceup - frictionforcedown)

Fz3=-F3*math.sin(theta)

Fy3=F3*math.cos(theta)

Appendix B. Python file for haptic rendering 95

Spring position unlocking state [between 90 and theta1, no spring,

between theta 1 and theta 2, stiff spring]

theta1=pi/2-0.5*3.1415/180

theta2=pi/2-(1.7+openforce)*3.1415/180

Spring positionlocking state [between theta3 and theta4,

note that their position depends on the unlocked state]

theta3=pi/2-(1.7+openforce)*3.1415/180

theta4=pi/2-(5+openforce+closeforce)*3.1415/180

angular steps for unlocking state

step01=(math.tanh(1000*(theta-theta1))+1)/2;

step12=(math.tanh(1000*(theta-theta2))+1)/2-(math.tanh(1000*(theta-theta1))+1)/2;

angular step for locking state

step34=(math.tanh(1000*(theta-theta3))+1)/2-(math.tanh(1000*(theta-theta4))+1)/2;

Asymmetric forces equations

stepspeedznegative=(-math.tanh(20*dzdt)+1)/2 #if dzdt<0, eq=1, else eq=0

if dthetadt<0, eq=1, else eq=0

stepangularspeednegativethreshold=(-math.tanh(20*(dthetadt))+1)/2

if dthetadt>dthetadt0+0.1, eq=1, else eq=0

stepangularspeedpositivethreshold=(math.tanh(20*(dthetadt-(0.1+dthetadt0)))+1)/2

Return force

thetareturn=(45)*3.1415/180

1 if theta>thetareturn, else 0

stepreturnforce=(math.tanh(1000*(theta-thetareturn))+1)/2;

Appendix B. Python file for haptic rendering 96

returnforce=-1.5*stepreturnforce*returnactive*(1+returnintensity)

Unlocking and locking forces

ksoft=1000

springunlocking=-(pi/2-theta)*ksoft*step12+(dthetadt)*ksoft/10*step12

springlocking=((theta4-theta)*ksoft*step34-(dthetadt)*ksoft/100*step34)*

stepspeedznegative*lockforce

Force that brings the door back with inpulse

asymmetricforcez=-stepangularspeedpositivethreshold*(0.5+impulseforce)*

math.sin(theta)*impulseactive

equilibriumz=-0.8*initializer

Final force

totalforcez=(Fz1+Fz2)*(1-initializer)+Fz3+(springunlocking+springlocking)+equilibriumz

return str(totalforcez)

Force_z=Force_z()

class Vel_y(TypedField(SFFloat, SFVec3f)):

def update(self, trackerVelocity):

global Vely

global Velx

global Velz

global dxdt

global dydt

global dzdt

Velx=trackerVelocity.getValue().x

Vely=trackerVelocity.getValue().y

Velz=trackerVelocity.getValue().z

dxdt=Velx

dydt=Vely

Appendix B. Python file for haptic rendering 97

dzdt=Velz

return 0

Vel_y=Vel_y()

class testo(TypedField(MFString, SFString)):

def update(self, event):

global int_ervallo

routes_in1 = self.getRoutesIn()

TesTo = routes_in1[0].getValue()

return ["Intervallo: "+str(theta),"Legge forza:",TesTo]

TESTO_1=testo()

class left_clk(TypedField(SFFloat, SFBool)):

def update(self, leftButton):

global click

if leftButton :

click=click+clickdelta

return click

force_left_clk=left_clk()

class right_clk(TypedField(SFFloat, SFBool)):

def update(self, rightButton):

global click

if rightButton :

click=click-clickdelta

return click

Appendix B. Python file for haptic rendering 98

force_right_clk=right_clk()

class Scr_up(TypedField(SFFloat, SFBool)):

def update(self, scrollUp):

global scroll

if scrollUp :

scroll=scroll+scrolldelta

return scroll

force_scr_up=Scr_up()

class Scr_down(TypedField(SFFloat, SFBool)):

def update(self, scrollDown):

global scroll

if scrollDown :

scroll=scroll-scrolldelta

return scroll

force_scr_down=Scr_down()

class a_key(TypedField(SFFloat, SFString)):

def update(self, keyPress):

global k

global a

global c

global hapticforce

global a1

global a2

global a3

global a4

global a5

global a6

global a7

global a8

global frictionforce

global lockforce

global openforce

global closeforce

global returnactive

global initializer

Appendix B. Python file for haptic rendering 99

global returnintensity

global impulseforce

global frictionforceup

global frictionforcedown

a=keyPress.getValue()

if a == ’q’ :

initializer=1

return initializer

if a == ’w’ :

initializer=0

return initializer

#x force activator

if a == ’r’ :

frictionforceup=frictionforceup+0.5

return frictionforceup

if a == ’e’ :

frictionforceup=(frictionforceup-0.5)*(1+math.tanh(50*(frictionforceup-0.5)))/2

return frictionforceup

friction

if a == ’y’ :

frictionforcedown=frictionforcedown+0.5

return frictionforcedown

if a == ’t’ :

frictionforcedown=(frictionforcedown-0.5)*(1+math.tanh(50*(frictionforcedown-0.5)))/2

return frictionforcedown

if a == ’u’ :

openforce=(openforce-0.3)

return openforce

if a == ’i’ :

openforce=openforce+0.3

return openforce

close force value

Appendix B. Python file for haptic rendering 100

if a == ’o’ :

closeforce=(closeforce-0.3)

return closeforce

if a == ’p’ :

closeforce=closeforce+0.3

return closeforce

lock

if a == ’c’ :

lockforce=0

return lockforce

if a == ’v’ :

lockforce=1

return lockforce

returnforce activator

if a == ’b’ :

returnactive=0

return returnactive

if a == ’n’ :

returnactive=1

return returnactive

initializer

if a == ’m’ :

initializer=0

return initializer

if a == ’,’ :

initializer=1

return initializer

open force value

if a == ’a’ :

openforce=openforce-0.3

return openforce

Appendix B. Python file for haptic rendering 101

if a == ’s’ :

openforce=openforce+0.3

return openforce

close force value

if a == ’g’ :

closeforce=closeforce-0.3

return closeforce

if a == ’h’ :

closeforce=closeforce+0.3

return closeforce

return force intensity

if a == ’5’ :

returnintensity=returnintensity-0.5

return returnintensity

if a == ’6’ :

returnintensity=returnintensity+0.5

return returnintensity

impulse intensity

if a == ’3’ :

impulseforce=impulseforce-0.5

return impulseforce

if a == ’4’ :

impulseforce=impulseforce+0.5

return impulseforce

if a == ’d’ :

a2=a2-deltaa2

return a2

if a == ’f’ :

a2=a2+deltaa2

return a2

if a == ’j’ :

a4=a4-deltaa4

Appendix B. Python file for haptic rendering 102

return a4

if a == ’k’ :

a4=a4+deltaa4

return a4

if a == ’1’ :

a5=a5-deltaa5

return a5

if a == ’2’ :

a5=a5+deltaa5

return a5

return a7

if a == ’7’ :

a8=a8-deltaa8

return a8

if a == ’8’ :

a8=a8+deltaa8

return a8

force_a_key=a_key()

#class ctrl_key(TypedField(SFFloat, SFInt32, SFBool)):

def update(self, actionKeyPress, isActive):

global key

a=actionKeyPress

if a == 97 and isActive :

key=key+keydelta

return key

#

#force_ctrl_key=ctrl_key()

class ctrl_key(TypedField(SFFloat, SFBool)):

def update(self, controlKey):

global key

if controlKey :

key=key-keydelta

return key

force_ctrl_key=ctrl_key()

Bibliography

[1] C. Spence and A. Gallace. Multisensory design: Reaching out to touch

the consumer. Psychology & Marketing, 28(3):267–308, 2011.

[2] K. S. Bhutta and F. Huq. Benchmarking–best practices: an integrated

approach. Benchmarking: An International Journal, 6(1):254–268,

1999.

[3] Guilherme Phillips Furtado, Francesco Ferrise, Serena Graziosi, and

Monica Bordegoni. Optimization of the force feedback of a dishwasher

door putting the human in the design loop. In ICoRD’13, pages 939–

950. Springer, 2013.

[4] Encyclopaedia Britannica. Virtual reality (vr), Last accessed on Decem-

ber 2012. URL http://global.britannica.com/EBchecked/topic/

630181/virtual-reality-VR.

[5] M. A. Leenders and B. Wierenga. The effectiveness of different mecha-

nisms for integrating marketing and r&d. Journal of Product Innovation

Management, 19(4):305–317, 2002.

[6] Abbie Griffin and John R. Hauser. Integrating r&d and marketing: a

review and analysis of the literature. Journal of product innovation

management, 13(3):191–215, 1996.

[7] Jennifer A. Harding, K. Popplewell, Richard Y. K. Fung, and A. R.

Omar. An intelligent information framework relating customer require-

ments and product characteristics. Computers in Industry, 44(1):51–65,

2001.

[8] Sunghwan Shin, In Lee, Hojin Lee, Gabjong Han, Kyungpyo Hong,

Sunghoon Yim, Jongwon Lee, YoungJin Park, Byeong Ki Kang, Dae Ho

Ryoo, et al. Haptic simulation of refrigerator door. In Haptics Sympo-

sium (HAPTICS), 2012 IEEE, pages 147–154. IEEE, 2012.

103

http://global.britannica.com/EBchecked/topic/630181/virtual-reality-VR
http://global.britannica.com/EBchecked/topic/630181/virtual-reality-VR

Bibliography 104

[9] Michael Strolz, Raphaela Groten, Angelika Peer, and Martin Buss. De-

velopment and evaluation of a device for the haptic rendering of rota-

tory car doors. Industrial Electronics, IEEE Transactions on, 58(8):

3133–3140, 2011.

[10] Monica Bordegoni and Francesco Ferrise. Designing interaction with

consumer products in a multisensory virtual reality environment: This

paper shows how virtual reality technology can be used instead of phys-

ical artifacts or mock-ups for the new product and evaluation of its

usage. Virtual and Physical Prototyping, 8(1):51–64, 2013.

[11] Monica Bordegoni, Francesco Ferrise, and Joseba Lizaranzu. Use of

interactive virtual prototypes to define product design specifications: a

pilot study on consumer products. In VR Innovation (ISVRI), 2011

IEEE International Symposium on, pages 11–18. IEEE, 2011.

[12] Francesco Ferrise, Monica Bordegoni, and Umberto Cugini. Interac-

tive virtual prototypes for testing the interaction with new products.

Computer Aided Design Applications, 10(3):515–525, 2012.

[13] Francesco Ferrise, Serena Graziosi, Guilherme Phillips Furtado, Monica

Bordegoni, and Dino Bongini. Re-engineering of the haptic feedback

of a dishwasher door. Computer-Aided Design and Application, 10(6):

995–1006, 2013.

[14] LMS. Lms imagine.lab amesim - lms international, Last ac-

cessed on November 2012. URL http://www.lmsintl.com/

LMS-Imagine-Lab-AMESim.

[15] Vincent Hayward, Oliver R Astley, Manuel Cruz-Hernandez, Danny

Grant, and Gabriel Robles-De-La-Torre. Haptic interfaces and devices.

Sensor Review, 24(1):16–29, 2004.

[16] Richard Q Van der Linde, Piet Lammertse, Erwin Frederiksen, and

B Ruiter. The hapticmaster, a new high-performance haptic interface.

In Proc. Eurohaptics, pages 1–5, 2002.

http://www.lmsintl.com/LMS-Imagine-Lab-AMESim
http://www.lmsintl.com/LMS-Imagine-Lab-AMESim

Bibliography 105

[17] H3D API. H3d.org: Open source haptics, Last accessed on November

2012. URL http://www.h3dapi.org/.

[18] Python. Python programming language – official website, Last accessed

on November 2012. URL http://www.python.org/.

[19] Web3D Consortium. What is x3d, Last accessed on November 2012.

URL http://www.web3d.org/realtime-3d/x3d/what-x3d/.

[20] Guilherme Phillips Furtado, Francesco Ferrise, Serena Graziosi, and

Monica Bordegoni. Digitalizing and capturing haptic feedback in vir-

tual prototypes for user experience design. In IEEE DSP 2013. 2013.

http://www.h3dapi.org/
http://www.python.org/
http://www.web3d.org/realtime-3d/x3d/what-x3d/

	Sommario
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Technology Overview
	1.2 Related Works

	2 Methodological Approach
	3 Physical System Modelling: Dishwasher Door
	3.1 Simulation Software
	3.2 Description of the Dishwasher Door
	3.3 Dynamic model in AMESim
	3.3.1 Articulated mechanism
	3.3.1.1 Subsystem DOOR
	3.3.1.2 Subsystem PLATE
	3.3.1.3 Subsystem RELATIVESPEED
	3.3.1.4 Subsystem FRICTIONFORCE

	3.3.2 Latch mechanism

	3.4 Measurements

	4 Haptic rendering
	4.1 Haptic Device
	4.2 Coding language and API
	4.2.1 H3D API
	4.2.2 Python
	4.2.3 X3D

	4.3 Haptic Model
	4.3.1 Transformation of Coordinates
	4.3.2 Constraining the end-effector
	4.3.2.1 First method: Radial direction stiffness
	Example:

	4.3.2.2 Second method: Restitution force based on distance minimization

	4.3.3 Haptic Behavior Modelling
	4.3.3.1 Activation functions
	4.3.3.2 Unlocking Phase
	4.3.3.3 Locking phase
	4.3.3.4 Transition between locked and unlocked state
	4.3.3.5 Moving Phase

	4.4 Implementation
	Code Description
	X3D file
	Python file

	4.5 Experimental results

	5 Optimization
	5.1 Designing the problem: Dynamic system parameter estimation
	5.2 Solving the problem: Genetic Algorithm
	Chromosomes or Individuals
	Selection
	Recombination
	Mutation
	Methodology

	5.2.1 Parameter estimation of the system from measurements
	5.2.2 Parameter estimation of the haptic model from measurements

	5.2.3 From haptic model to technical specification
	5.2.4 Redesigning the dishwasher mechanism
	6 Conclusion
	A Appendix A: X3D file for haptic rendering
	B Appendix B: Python file for haptic rendering

	Bibliography

