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Nomenclature

α convective heat transfer coe�cient [W/m2K]

β convective mass transfer coe�cient [s/m]

η small eddies characteristic length [m]

γ generic convective �ux [1/m2s]

µ vapour resistance factor [−]

νw dynamic viscosity of water [kg/m3]

φ material porosity [−]

ρv vapour density [kg/m3]

ρw water density [kg/m3]

ρg total gas density [kg/m3]

σ water surface tension [N/m]

θc contact angle [rad]

ϕ relative humidity [−]

Au unscaled absolute tolerance [−]

Cm moisture content [kg/m3]

cp thermal capacity at constant pressure [J/kgK]

Dav binary di�usion coe�cient for water vapour in air [m2/s]

Deϕa relative humidity driven heat transfer coe�cient in air
[W/m]

Deϕp relative humidity driven heat transfer coe�cient in porous material
[W/m]

DeTa temperature driven heat transfer coe�cient in air
[W/mK]

DeTp temperature driven heat transfer coe�cient in porous material
[W/mK]

Dmϕa relative humidity driven mass transfer coe�cient in air
[kg/ms]

Dmϕp relative humidity driven mass transfer coe�cient in porous media
[kg/ms]
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DmTa temperature driven mass transfer coe�cient in air
[kg/msK]

DmTp temperature driven mass transfer coe�cient in porous media
[kg/msK]

ETCrv equivalent thermal conductivity relative variation [−]

Gr Grashof number [−]

H volumetric enthalpy [kJ/m3]

hl liquid enthalpy [kJ/kg]

hv vapour enthalpy [kJ/kg]

Hev enthalpy of evaporization [kJ/kg]

J total mass �ux [kg/m2s]

Ja advective mass �ux [kg/m2s]

Jc capillary mass �ux [kg/m2s]

Jd di�usive mass �ux [kg/m2s]

Kl capillar conductivity [s]

keff e�ective thermal conductivity [W/mK]

L characteristic length [m]

L0 big eddies characteristic length [m]

M molar mass [kg/kmol]

Mf number of �elds [−]

mv vapour mass fraction [kgv/kgg]

N number of degree of freedom [−]

P error of convergence [−]

p pressure [Pa]

pc capillary pressure [Pa]

ps saturation pressure [Pa]

pw water pressure [Pa]

q convective heat �ux [W/m2]

qc conductive heat �ux [W/m2]
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qe enthalpy �ux [W/m2]

R universal gas constant [J/molK]

rc capillary radius [m]

Rh relative normalized error [−]

Rt relative tolerance [−]

Rv gas constant for water vapour [J/kgK]

Re Reynolds number [−]

Ri Richardson number [−]

U characteristic velocity [m/s]

V average velocity [m/s]

v′ velocity �uctuation [m/s]

w phase content [kg/m3
pm]

w water content [kg/m3]

wcs water content at capillary saturation [kg/m3]

xw molar fraction of water in liquid [mol/molliquid]

yw molar fraction of water in air [mol/molair]

v velocity [m/s]

ETC equivalent thermal conductivity [W/mK]

Subscripts
a air
fm �uid media
l liquid
m dry porous material
pm porous material
s solid matrix
v vapour

vi



List of Figures

1 Balance of forces over a meniscus, and values of pressure along a
vertical capillary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The �gure shows the radius up to with the pores are �lled with
water, under equilibrium assumption, for increasing values of rel-
ative humidity. The radius value is plotted in logarithmic scale. . 7

3 Water storage function for a brick. On the y axes the water
content normalized with respect to the water content at capil-
lary saturation, on a logarithmic scale, is plotted. The two main
regions of interest for building physics simulations are plotted. . 8

4 Mechanisms of water transfer in capillary pores for increasing
values of relative humidity a) Vapour di�usion and surface dif-
fusion b) Capillary transport, with position of the meniscus for
increasing values of relative humidity up to 1, when no more wa-
ter transport is observed [33]. . . . . . . . . . . . . . . . . . . . . 12

5 Development of the velocity and thermal boundary layers along a
vertical plate. The heat �ux can be found knowing that tg(α) =
∂T/∂x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Representative elementary volume. The di�erent phase interfaces
can be distinguished, but the material properties can be assumed
as homogeneous, since no macroscopic variations of the geometry
are present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 continuity balance on an in�nitesimal volume element . . . . . . 28
8 Schematic representation of the 1D test problem. . . . . . . . . . 31
9 Temporal development of temperature and relative humidity cal-

culated at the right boundary, with di�erent number of elements
and with ϕ(x, 0) = 0.9999. Comparison of Delphin and COM-
SOL simulations. There is no signi�cant deviation between the
Delphin solutions for the mesh with 50 and 100 elements. . . . . 34

10 Temporal development of temperature and relative humidity cal-
culated at the right boundary, with di�erent number of elements
and with ϕ(x, 0) = 1. Comparison of Delphin and COMSOL sim-
ulations. There is no signi�cant deviation between the Delphin
solutions for the mesh with 50 and 100 elements. . . . . . . . . . 35

11 Geometry and boundary conditions for the study . . . . . . . . . 39
12 Temporal development of relative humidity and temperature cal-

culated at the point 1 in �gure 11. Comparison of conjugate
approach and line-source approach with experimental data and
benchmark solutions. . . . . . . . . . . . . . . . . . . . . . . . . 41

13 Temporal development of relative humidity and temperature cal-
culated at the point 1 in �gure 11. Comparison of conjugate
model with constant and time dependent inlet �ow boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

14 Geometry and boundary conditions for case A and B. . . . . . . 46

vii



15 Temporal development of temperature and relative humidity cal-
culated at at point 1 and 2 in �gure 14. Comparison of line source
approach and conjugate approach. Case A. . . . . . . . . . . . . 48

16 Temporal development of temperature and relative humidity cal-
culated at at point 1 and 2 in �gure 14. Comparison of line source
approach and conjugate approach. Case B. . . . . . . . . . . . . 49

17 Values of temperature, water vapour density and relative humid-
ity along the x coordinate taken in the middle of the air channel,
at t=5s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

18 Relative humidity and temperature distributions for case A, after
1 h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

19 Relative humidity and temperature distributions for case B, after
1 h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

20 Relative di�erences between the conjugate and the line source
approach, for temperature and relative humidity after 1 and 4
hours. Case A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

21 Relative di�erences between the conjugate and the line source
approach, for temperature and relative humidity after 1 and 4
hours. Case A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

22 Geometry and boundary conditions for case C . . . . . . . . . . . 56
23 Relative humidity and temperature distributions for case C, after

1 h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
24 Relative di�erences between the conjugate and the line source

approach, for temperature and relative humidity after 1 and 4
hours. Case C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

25 Temporal development of the relative error for T e ϕ in point 1
and 2 (see image 22) . . . . . . . . . . . . . . . . . . . . . . . . . 59

26 Geometry and boundary conditions for the �rst preliminary study 61
27 Isothermal lines for the preliminary study. The result show good

agreement with the reference study [4] . . . . . . . . . . . . . . . 62
28 Relative increment of ETC due to the presence of humidity, for

various combinations of relative humidity boundary conditions.
Case A: Text = 35◦C, Tin = 25◦C. . . . . . . . . . . . . . . . . . 65

29 Relative increment of ETC due to the presence of humidity, for
various combinations of relative humidity boundary conditions.
Case B: Text = 10◦C, Tin = 20◦C. . . . . . . . . . . . . . . . . . 66

30 Relative increment of ETC caused by considering the in�uence of
water concentration on gas density, rather than ignoring it. Up:
case A Text = 35◦C, Tin = 25◦C, down: case B Text = 10◦C,
Tin = 20◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



List of Tables

1 Mechanisms of water transport that can occur inside a porous
material and the relative driving potentials.
10

2 Mechanisms of heat transport that can occur inside a porous ma-
terial and the relative driving potentials.
13

3 Relative normalized errors and assessment of the convergence in-
dex for various discretizations. Time mediated values.
37

4 Initial conditions and in�ow conditions for temperature and rel-
ative humidity.
38

5 Initial values (left) and air inlet values (right) of temperature and
relative humidity for the cases A and B.
45

6 Number of elements, degree of freedom, parameter r, convergence
order assessment and relative normalized errors for relative hu-
midity and temperature for di�erent grids. Time mediated val-
ues.
47

7 Initial values (left) and air inlet values (right) of temperature and
relative humidity for case C.
55

8 Geometric parameters and material properties of the hollow brick.
61

9 Temperature and relative humidity boundary conditions for case
A and case B.
63

ix



Acknowledgment

This thesis was written at the Leopold-Franzens-Universität Innsbruck as
part of the 3encult project for the energy retro�t of historic buildings.

I wish to express special thanks to Ing. Michele Bianchi Janetti for his
availability and his endless patience being my assistant thesis supervisor, and
to Dr.-Ing Luigi P.M. Colombo for being my supervisor and for his advices. I
also wish to thank Dr.-Ing. Fabian Ochs for making this thesis possible, Prof.
Ra�aella Pavani for helping me in the numerical part of the thesis, and Thijs
Defraeye for his availability.

I thank the members of the Energy E�cient Buildings unit, whom I shared
the o�ce with, for their advices and for the games they taught me during lunch
time.

Finally I would like to thank my family and my friends for their support
during the writing of this thesis.

x



Abstract

This work presents a numerical analysis of heat and moisture transfer
in building components in presence of a convective �ow. Numerical sim-
ulation can supply important information for a correct design and for the
choice of proper materials. At present, speci�c software for hygrothermal
simulation in building-physics application, based on the works of Künzel
[33] and Grunewald [19], are available [54],[55] . This software enables
HAM (Heat, Air, Moisture) modeling in porous media; however CFD
(computational �uid dynamic) and 3D modeling are not yet included.

A coupling approach for the equations of transport in the porous and
�uid media is used, avoiding previous calculation of convective heat and
mass transfer coe�cients. The coupled di�erential equations are solved
using �nite element procedure for both gas phase and solid. Since CFD
may present high complexity and signi�cant computational e�ort, also a
simpli�ed approach, convenient for long-period simulation, is derived. In
the �rst part of the thesis the mathematical model is described. In the
second part both the approaches are validated through comparison with
experimental data taken from the literature. Following, the plausibility of
the results is investigated for various case studies and comparisons with
other simulation programs is performed.
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Sommario

Lo studio del contenuto di umidità all'interno degli elementi strutturali di
un edi�cio è importante dal punto di vista energetico, sanitario e strutturale.
La presenza di umidità all'interno delle pareti di un edi�cio può compromettere
signi�cativamente le sue capacità isolanti, aumentando la conduttività termica
equivalente (ETC) delle pareti. Se i valori di umidità relativa sulla super�cie
di una parete sono superiori all'80% vi è un elevato rischio di formazione di
mu�e, con potenziali danni sulla salute degli abitanti della casa. Se i valori di
umidità relativa sono prossimi all'unità, si può veri�care condensa del vapore
acqueo all'interno delle pareti. La condensazione interstiziale su tali elementi
può portare al degrado dei materiali e a una conseguente diminuzione delle
prestazioni e della durabilità dei materiali.

Le simulazioni numeriche sono uno strumento essenziale per il design di un
isolamento che possa garantire la massima e�cienza energetica, ed evitare la
formazione di condensa.

Queste simulazioni sono particolarmente utili negli studi di energy retro�t
su edi�ci storici. Tali edi�ci sono spesso di grandi dimensioni, e una corretta
coibentazione rappresenta un risparmio in termini energetici ed economici. A
causa della rilevanza storica e/o artistica delle pareti esterne, è spesso impos-
sibile applicare un isolamento esterno. Applicare un isolamento interno au-
menta i rischi di condense interstiziali fra lo strato isolante e la parete interna
dell'edi�cio. L'applicazione corretta di un isolante termico è particolarmente
di�cile nel caso in cui siano presenti delle travi passanti in metallo o in legno
all'interno delle pareti. In questo caso è sempre presente un intercapedine fra
travi e parete, che consente il passaggio di aria umida. Poiché le travi agiscono
come ponti termici, in questi punti vi sarà una temperatura più bassa rispetto
al resto della parete, rendendo possibile la condensa.

I principali software attualmente disponibili in commercio per analisi igroter-
miche, consentono di tener conto dell'in�uenza della convezione tramite un co-
e�ciente globale di scambio termico e di massa. Questo approccio risulta essere
poco accurato rispetto a un modello che consideri l'interazione fra aria e parete
con un calcolo �uidodinamico (CFD). Gli studi igrotermici che sfruttano calcoli
�uidodinamici per risolvere il campo di moto sono comunemente chiamati co-
niugati o accoppiati. Attraverso questo approccio, è possibile tener conto dello
scambio termico e di umidità senza una conoscenza pregressa dei coe�cienti di
scambio convettivo.

In questa tesi si è sviluppato un modello computazionale che permetta di
studiare l'in�uenza dei fenomeni convettivi che avvengono all'interno delle in-
tercapedini, sulla distribuzione di umidità e temperatura all'interno dei materiali
strutturali, utilizzando un modello coniugato.

Nella prima parte del lavoro, vengono esposti gli attuali metodi di model-
lazione dello scambio termico e di umidità all'interno dei materiali porosi. Suc-
cessivamente vengono introdotti e descritti i principali meccanismi di trasporto
termico e di massa usati nel modello matematico.

Nel capitolo 3 viene discussa la necessità di utilizzare una modellazione Low
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Reynolds nel caso in cui si debba considerare un �usso d'aria turbolento.
Nel capitolo 4 viene esposto lo stato dell'arte nella modellazione dello scam-

bio termico e di umidità fra �uidi e mezzi porosi. Successivamente vengono
introdotte le equazioni di bilancio di massa e di energia per il mezzo poroso e
per l'aria umida, con le relative assunzioni e restrizioni.

Poiché lo scopo della maggior parte delle simulazioni igrotermiche è quello
di indagare gli e�etti dell'umidità nel lungo periodo, e poiché le condizioni al
contorno di queste simulazioni sono tipicamente tempo varianti, utilizzare una
simulazione CFD può portare a un elevato tempo di calcolo. Per questo motivo,
in questo capitolo si introducono anche le equazioni di un modello sempli�cato
(approccio line source) . Questo approccio utilizza coe�cienti di scambio ter-
mico e di massa ricavati dalla letteratura o da simulazioni CFD stazionarie, e
consente di tener conto della dipendenza temporale dei valori di bulk di tem-
peratura e umidità all'interno dell'intercapedine.

Nella seconda parte della tesi, i risultati del modello coniugato e del modello
line source sono comparati con simulazioni svolte da software commerciali e con
dati sperimentali ottenuti dalla letteratura. Nei casi testati, entrambi i modelli
restituiscono dei risultati in accordo coi dati disponibili.

Nell'ultima parte del capitolo 5, i risultati dei due modelli vengono con-
frontati fra loro in un caso in cui un intercapedine subisce una curvatura ad
angolo retto, per evidenziare la di�erenza fra approccio coniugato e line source
in presenza di distacco di vena �uida.

Nel capitolo 6 si mostra come il modello coniugato possa essere usato in
altre simulazioni di interesse ingegneristico in ambito edilizio. In particolare
viene considerata l'in�uenza dell'umidità sul calcolo dell'ETC di un mattone
forato, in presenza di convezione naturale interna.

Lo studio parametrico svolto, evidenzia la notevole in�uenza dell'umidità
sulla stima dell' ETC, e quindi la necessità di svolgere una simulazione igroter-
mica per la valutazione di questo parametro.
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1 Introduction and Motivation

Heat and mass transfer in porous material is a subject of great interest for a
wide range of engineering applications, from drying processes to fuel cell design
, most of which are related to high energy consumption.

An accurate calculation of heat and mass distribution is therefore required
in order to lower energy consumption and optimize industrial processes. We can
speak of heat and moisture transfer in those problems in which we are mainly
interested in the transport of water inside a porous media . A list of heat and
moisture transfer applications, which is by no means exhaustive can include
among others: oil extraction, drying of wood, food, granular materials and fab-
rics,pollutants in�ltration, heat exchangers, transport in composite membrane
and thermal insulation.

For what concerns building physics, the combined heat, air and moisture
transfer in building elements is of paramount importance for accurate energy
consumption prediction, thermal comfort evaluation, mould growth risk assess-
ment and material deterioration analysis.

Humidity can a�ect energy consumptions increasing both heating and cool-
ing energy demand. During winter, the presence of humidity in the external
walls can signi�cantly reduce thermal insulation of a building [21, 16], leading
to increasing heat losses and to extra energy consumption. During summer,
energy demand is in�uenced by the amount of water condensing inside the �rst
layer of internal walls. In most of the cases latent heat of condensation repre-
sent a large amount of the overall cooling energy demand [62]. It is possible
to reduce cooling and heating energy consumption through moisture bu�ering
provided by the use of hygroscopic materials inside the building [47].

The presence of water inside building components can leads to mould growth.
In particular, if the surface moisture on internal walls reaches an equilibrium
moisture of 80%, mould formation can be expected [3]. This is an important
hygienic issue, since the presence of mould can have a detrimental e�ect on the
healt of the occupants.

Among the problems caused by the presence of water inside building ma-
terial, structural damage is the most important in terms of economic impact.
Corrosion and material deterioration caused by moisture runs into billions in
Germany alone every year [33]. A list of failure caused by humidity , and the
ones that can be detected through hygrothermal simulations can be found in
[42]. Structural damaged due to humidity is very common in historical build-
ings, because they have been exposed to the e�ect of water for a long time.
Moreover, for historical buildings an external insulation is not always possible,
since the exterior appearance of the facade has to be mainteined. This result
in placing the required insulation in the interior of the building, which can re-
duce the overall drying potential of the wall, leading to internal condensation.
In such a situation a high quality energy retro�t must be studied, in order to
guarantee a long term preservation of the building.

Numerical simulation can supply important information for a correct design
and the choice of proper materials; however a realistic modeling may present
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high complexity.
The vast majority of building physics hygrothermal applications concerns

interaction between a porous and a �uid media. The �ow �eld requires a �ner
discretization of the domain to be solved appropriately, especially in the case of
development of turbulence, and this results in a high increase of computational
e�ort and simulation time. For those reasons, the e�ect of the �uid �ow is of-
ten taken in account through the use of convective transfer coe�cients (CTCs).
It has been shown anyway, that this simpli�cation can leads to errors in mass
and tempertature distribution [14]. This is the reason of the increasing inter-
est among researchers in modeling heat and mass transfer using a conjugate
approach.

A conjugate approach does not require to choose a CTCs to be applied at
the porous media boundary conditions, since the mass �ux and heat �ux are
directly calculated during the simulation, resolving the balance equations for
the �uid media. Even if many authors have studied the subject, very often the
balance equations are resolved using constant CTCs.

During this decade a large number of heat, air and moisture (HAM) trans-
fer simulation tools have been created by researchers to investigate particular
problems concerning energy e�ciency and material preservation.

Two of the most known available commercial HAM softwares exhibit a lack
in 3D and CFD modeling. This fact undergoes them to a big constraint in the
cases that can be studied with these softwares.

The �rst part of this work concerns the study and development of a general
and �exible model for hygrothermal analysis. In order to do so, a coupled
approach is followed, since no previous knowledge of the CTCs is needed.

On the one hand, this approach allows the simulation of a larger number of
problems. On the other hand this approach requires great computational e�ort
if applyed to building physics problems.

This can be explained considering some common characteristics in building
physics hygrothermal simulations:

1. Time dependent simulations: in hygrothermal simulations, boundary con-
ditions like temperature and humidity, are typically time dependent. This
imply that the simulations have to be time-dependent, since steady state
conditions are not reached. Even in the case of constant boundary condi-
tions, a time dependent simulation is likely to be the subject of the study,
since in most of the study the focus is on the dynamic behavior of porous
materials, e.g.: investigation of dry time.

2. Long period simulations: moisture transfer di�usive coe�cients are in gen-
eral several order of magnitude smaller than the energy transfer di�usive
coe�cients, as shown in 5.3.3. For this reason, humidity transport equa-
tion presents greater time constant. This means that the e�ect of hu-
midity boundary conditions takes a longer time to be transported inside
the porous domain than temperature boundary conditions. Long period
simulations are therefore required in order to see the dynamic behavior of

2



porous material. Moreover, longer simulations, typically in order of years,
are often necessary, when the purpose of the study is to investigate water
accumulation inside building materials, which is often the case.

3. Parametric study : results of numerical simulations are highly dependent
on boundary conditions and material properties. In the vast majority of
building physics studies, is common practice to carry on sensitivity studies
and parametric studies, investigating the in�uences in the solution.

Taking into account these considerations, avoiding a coupling approach can be
convenient in terms of computational time. This is surely the case of retro�tting
of ancient buildings. One of the most critical elements in energy retro�tting,
are the structural elements, which can be severely damaged by high contents of
moisture over a prolonged period of time. Thermal bridges represent a critical
case (e.g: timber beams when an internal insulation has been applied). For this
reason the second part of this thesis introduce a simpli�ed approach that can
be applied in the case of air cavities between the wall and the beam ends.
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2 Modeling of heat and moisture transfer in porous

materials

In this chapter a brief explanation of the physical mechanisms of heat and
moisture transfer in porous materials and air is exposed. The physics of heat
and mass transfer in porous media has been largely studied in the last century,
and a review of the most widely used methods is presented. Despite being
a relatively recent approach, the conjugate model have been the subject of a
great number of publications in the last few decades. This was possible mainly
due to both the increase in computational power and to the optimization of
computational �uid dynamics algorithms. A brief overview of the methods
proposed by various authors for taking into account the e�ect of a �uid �ow
over the heat and mass transfer in a porous media is presented at the end of
the chapter.

2.1 Modeling approaches: state of the art

Most of the building materials are porous media. One of the �rst analysis of
moisture transfer in porous media, was a work by Lewis [37], and the idea that
drying was essentially a di�usion problem was lately picked up by Sherwood
[53, 52]. These �rst works were based on the idea that water transfer was well
described by a di�usion equation, in the form of:

∂Cm

∂t
= D∇2Cm (2.1)

where Cm represents the moisture content and D was a experimentally deter-
mined parameter. Neither the capillary transport nor the di�usion in the vapour
phase was considered to be signi�cant. Later works pointed out how the water
transfer was strictly in�uenced by surface tension forces, resulting in a transport
due to capillary action [51, 15]. On the basis of these works, other authors [22]
studied the limitations that apply to a description of water transfer based on
equation 2.1.

When a certain amount of water is present inside a porous material, it can
move inside the porous structure by means of several di�erent transportation
mechanisms, which will be later analyzed. Along with mass transport, moving
water cause a heat transport inside the material, through his enthalpy. This
means that the equations of heat and mass transfer are strongly coupled.

Krischer was the �rst author to consider the in�uence of energy transport
in drying processes non negligible [30]. Phillip and DeVries included capillary
water transport, vapour and energy transport into the governing equations that
described their model of drying process [50]. Similar equations was derived by
Luikov [38], using an approach based on irreversible thermodynamics. Using
volume-averaging and the mass and energy balance equations for a continuous
media, assuming local thermal equilibrium, Whitaker derived a similar system
of equations [64].
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From these models, many others were developed, great part of which are
based on the following approach:

� Macroscopic models: this approach is based on balance equations applied
to a macroscopic region. The material is considered to be homogeneous,
and its properties isotropic. Two main di�erent approach exist: 1) phe-
nomenological approach: is based on the driving forces of transport, that
is, the potentials that cause the water transport inside the porous body.
The models from Phillip and DeVries and Luikov belongs to this cate-
gory, as well as WUFI and Delphine. 2) averaging or continuum model

approach: this is basically the approach used by Whitaker. Since at the
microscopic scale the complex pore structure is involved, a description of
the transport mechanisms based on the microscopic level remains rather
di�cult. Nevertheless, some authors take this level as a starting point for
the description of the heat and moisture transfer mechanisms [7]. The
microscopic balance equations are written for a representative elemen-
tary volume (REV) and the macroscopic balance equations are derived
through volume-averaging. The major advantage of the continuum model
approach is that for large enough volume of the REV, the property of the
porous body can be considered constant in space. In fact, for big REV,
the averaged properties of the REV approaches the mean properties of
the corresponding homogeneous porous material. This means that there
is a minimum dimension of the REV which permits to obtain meaningful
results. This dimension is strictly related to the mean pore dimension in
the material. Assuming an average pore dimension of 10−5 the spatial
resolution of the model should be bigger than 1mm [45]. Some authors
have shown how the transport equations derived by this two approaches
are essentially the same [9]. The averaging technique gives anyway more
insight in the required assumptions.

� Pore-network models: they take the microscopic structure into account,
representing the material as a network of pores. They use micro tomogra-
phy images to extract the pore network. This kind of approach is mainly
use to determine the transport properties of the porous materials. An
historical overview can be found in [8]

A more detailed classi�cation of the heat and moisture transfer methods in
porous materials can be found in [14].

2.2 Moisture storage in porous materials

Building materials like concrete, bricks, sandstone, are hygroscopic and capillary
active. This means that if they are in presence of moist air, they absorb water
until reaching an equilibrium with the humidity of surrounding air, and if they
are in contact with liquid air, they will pick up water by the action of capillary
forces.
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Inside porous materials, the chemical equilibrium between air and liquid wa-
ter is modi�ed by the presence of viscous forces inside the capillary. Considering
humid water as an ideal mixing, the chemical equilibrium between air and liquid
water can be described, applying the laws of thermodynamics, as:

ywp = ps(T ) exp

(
xw(pw − p)

RT

)
(2.2)

also known as Kelvin's formula. In equation 2.2, yw is the molar fraction of
liquid water in air, ps(T ) is the saturation pressure at the given temperature,
xw is the molar volume of liquid water, R is the universal gas constant, and pw
is the water pressure. If the interface between water and air has no curvature,
pw is equal to p, and equation 2.2 simpli�es into the well known Raoult's law.
Inside a capillary, viscous forces cause a curvature of the water-air interface.
Doing a balance of the various forces, assuming a spherical meniscus as in �gure
1 , we can see that a di�erence between the water pressure pw right over the
meniscus and the air pressure is created:

pπr2
c = pwφr

2
c + 2πrcσcos(θc) (2.3)

p− pw =
2σcos(θc)

rc
(2.4)

where σ is the water surface tension, θc is the contact angle between the
meniscus and the capillary wall, and rc in the radius of the capillary.

p

pw

Fσ Fσ
r

y

Pressureppw

ϑ

Figure 1: Balance of forces over a meniscus, and values of pressure along a
vertical capillary.

If we de�ne the capillary pressure pc as: pc = p−pw, we can rewrite equation
2.2 as

ϕ = exp

(
− Pc

ρwRvT

)
(2.5)

where ϕ is the relative humidity, ρw is the water density and Rv is the gas
constant of water vapour. The porous material can be thought as a network of
interconnecting pores, where the water is free to move freely. In particular, when
equilibrium is being reached, water will �ow from bigger pore to the smallest
one, due to the greater suction pressure. Thus, combining now equation 2.5
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with 2.4, we can �nd the values of the radius up to with the capillary are �lled
with water, under equilibrium assumption:

rc = − 2σcos(θc)

ρwRvT ln(ϕ)
(2.6)

This means that, if the porous material is surrounded by air with a given
value of relative humidity, we can expect that all the pores with radius smaller
than the value given by equation 2.6, will be �lled with water if equilibrium is
reached. In �gure 2, the relation between porous radii and relative humidity is
shown, assuming contact angle θc ≈ 0.
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Figure 2: The �gure shows the radius up to with the pores are �lled with water,
under equilibrium assumption, for increasing values of relative humidity. The
radius value is plotted in logarithmic scale.

As we can see, for values of relative humidity higher than 0.95, the curve be-
comes steep. Figure 2 can be used to explain the relation between water content
in porous material and relative humidity. The curve that gives the total water
content iside a porous material with respect to the relative humidity, is called
water retention curve, or water storage function. This curve is shown in �gure
3. In the last part of the water storage function, the content of water inside
the porous material increases steeply with respect to the relative humidity. As-
suming the validity of capillary model, this can be explained through the �lling
of pores with increasingly bigger radii, which has been shown to have a similar
behavior in �gure 2. Therefore, even if the water storage function is highly
material speci�c, and is always obtained through experimental measurements,
we can expect a common behavior in the last part of the curve for all porous
materials.

7



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-4

10
-3

10
-2

10
-1

10
0

sorption	
equilibrium	
at	φ=0.95

capillary	
saturation

HYGROSCOPIC	REGION

CAPILLARY	REGION

φ	[-]

w
		/

		w
cs

			
[-

]

Figure 3: Water storage function for a brick. On the y axes the water content
normalized with respect to the water content at capillary saturation, on a log-
arithmic scale, is plotted. The two main regions of interest for building physics
simulations are plotted.

The main mechanisms of transport of vapour and liquid water inside a hy-
groscopic and capillary active porous material, can be divided on the base of
the range of relative humidity values in which they are predominant.

In particular, for building physics applications, two regions of interest can
be described.

1) Hygroscopic region: this region is characterized by vapour di�usion and
e�usion transport (see chapter 2.3.2) . The vapour can condense inside the
porous surface, creating a water �lm directly above the pore surface. This �lm
is initially monomolecular up to a value of ϕ of 15% [31], and with rising values
of relative humidity becomes increasingly thick. As the water layer grows, onset
of liquid transport take place, through surface di�usion. In this region capillary
transport is also present, but it does not play a major role in the total water
transport.

2) Capillary water region or super-hygroscopic region: as the relative humid-
ity increases, pores are �lled with water. At a value of relative humidity above
95% capillary transport becomes predominant over vapour di�usion transport.
The water content can increase until reaching its maximum value at capillary
saturation condition, wcs, which is the water content at the equilibrium when
the porous material is wetted by liquid water. In this condition, some air is still
trapped inside the pores of the material.

When a water content equal to wcs is reached, no more water transport is
possible inside the porous material. The only way to increase the water content
is to replace the trapped air with water. This can be done through suction under
pressure [33], as done in mercury porosimetry [31], or applying temperature
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gradient. This will increase the water content, reaching the maximum saturation
possible. Since this situation is practically unlikely in almost building physics
case of study, this thesis will consider the capillary saturation water content wcs

as the maximum water content possible.
The water storage function is determined experimentally. Two di�erent ex-

perimental procedures must be used for hygroscopic region and capillary water
region [31]: the �rst part of the curve is usually obtained with a universally used
procedure. A porous material specimen is placed in environment regulated by
means of salt solutions and the content of water at the equilibrium is calculated
by weighing it. The relative humidity is regulated using di�erent concentrations
of salts in the solution, up to a value of 95% relative humidity. In this region
the curve become very steep, and the use of this kind of procedure would lead to
very inaccurate results. In the super-hygroscopic region di�erent methods must
be used, such as mercury porosimetry or centrifugal tests. One of the most ac-
curate is the use of a pressure plate, in which suction pressure is controlled, and
the water content is determined after reaching of equilibrium. Than, through
equation 2.5, it is possible to calculate the relation between ϕ and the water
content w. Despite the use of two di�erent analytic methods, the curves present
no discontinuity or derivative change for the value of ϕ in which the method of
inspection is changed. The fact that the water retention curve as a function of
ϕ is continuous and has a continue �rst derivative, tells that ϕ can be used as a
true potential over both the hygroscopic and the capillary water regions [33, 31].
Moreover, capillary pressure pc does not play any role in water transport in non
capillary-active materials , thus there would be no physical meaning in using it
as potential.

In the range of 20 to 70 ◦C the in�uence of temperature over the water re-
tention curve can be disregarded [33]. The moisture retention curve can present
hysteresis phenomena. This hysteresis behavior, �rstly explained by means of
capillary transport in [40], was implemented in the study some authors [56],
based on the model developed in[43]. In most building materials anyway, the
hysteresis between absorption and desorption isotherms is not remarkable, and
when it is, a su�cient accurate result can be obtained averaging the absorption
and desorption curve [33]. In the case of gypsum, it has been shown that the
in�uence of including hysteresis is not as large as the in�uence of the uncertainty
of sorption and vapour permeability [24].

2.3 Mechanisms of water transport in porous materials

The various mechanism of water transfer that can occur in the porous material
are listed in table 1. Some of these transport mechanisms can be safely disre-
garded for most building physics studies. This is the case of electrokinesis and
seepage �ow [33]. In this thesis liquid and vapour transfer caused by a gradient
of total gas pressure won't be considered, since the di�erences in total pressure
(equal to the atmospheric pressure) over the porous bodies are considered to be
negligible. Moreover, the gaseous permeability is much higher than the liquid
permeability, resulting in a quick equalization of possible pressure di�erences
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in the gaseous phase [13]. Thermodi�usion, also known as Soret e�ect, can be
disregarded for temperatures below 50◦C [59, 33].

Table 1: Mechanisms of water transport that can occur inside a porous material
and the relative driving potentials.

LIQUID TRANSPORT

MECHANISM POTENTIAL
capillary conductivity capillary pressure

surface di�usion relative humidity
hydraulic �ow total pressure
seepage �ow quote
electrokinesis electric potential

GASEOUS TRANSPORT

MECHANISM POTENTIAL
vapour di�usion vapour density
vapour e�usion vapour density
thermodi�usion temperature

gas �ow total pressure

2.3.1 Capillary conduction and surface di�usion

Capillary transport was historically taken into account using water content as
potential, of the form

Jc = −Dw(w)∇w (2.7)

where w is the water content. Even if this choice can lead to good ap-
proximations of the physical process, the coe�cient Dw(w) depends strongly
on the boundary conditions [33]. A more physically meaningful relation can be
found using the Hagen-Poiseuille equation describing the liquid �ow through a
cylindrical pore under assumption of Newtonian laminar �ow

Jc(r) = − πr
4

8νw

∂pc
∂x

(2.8)

where νw is the dynamic viscosity of the �uid. Through pressure plate or mer-
cury porosimetry tests and the use of equation 2.4 it is possible to �nd the
correlation between the liquid volume and the pore size. Assuming that the
length of the pores is only dependent on the dimension of the radius, the num-
ber of the pores with a given radius f(r), also known as pore size distribution,
can be obtained. Assuming that all capillaries are parallels, multiplying equa-
tion 2.8 with f(r) and integrating for the radius, it is possible to obtain the
total capillary �ow, in the form of

Jc = Kl∇pc (2.9)

where Kl is the capillary conductivity. Equation 2.9 takes the form of
Darcy's equation of hydraulic �ows. Since the real geometry of the pores can
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be di�erent from the assumed one, correction through comparison with the ex-
perimental results of the capillary conductivity must be applied. Moreover, for
a certain value of relative humidity, capillary conduction and surface di�usion
can coexist. Surface di�usion is the transport of liquid water that occur inside a
condensate �lm over the porous surface. While surface di�usion take place into
those pore that are not jet saturated, for a certain value of ϕ, capillary conduc-
tion can be present in smaller pores, according to 2.6. Since the two mechanisms
take place simultaneously, they can only be measured simultaneously. The coef-
�cientKl is further modi�ed to take surface di�usion into account. The capillary
conductivity can be considered a function of the relative humidity. This function
is obtained by means of experiments and is material-speci�c.

2.3.2 Vapour di�usion and vapour e�usion

These two mechanisms of water transfer are strictly related. Vapour di�usion is
the transport of vapour due to a gradient of vapour partial pressure. Thermod-
i�usion, also known as Soret e�ect, is the vapour transport due to a temperature
gradient. Both can be described by the Fick's law of di�usion. According to
[23], Fick's law of di�usion for water vapour in air can be written as

Jd = −ρgDav∇mv (2.10)

where Dav is the binary di�usion coe�cient of water vapour in air, ρg is the
total density of the gas phase and mv is the vapour mass fraction, equal to

mv =
ρv
ρg

(2.11)

where ρv is the vapour density. Writing the Fick's law in terms of densities is
only valid if the total density of the gaseous phase ρg is constant [6]. This can
be safely assumed for temperatures under 50◦C [13]. Combining equations 2.10
and 2.11, we obtain

Jd = −Dav∇ρv (2.12)

.
When di�usion inside a porous material is considered, additional resistance

to the di�usion must be taken into account. This resistance is due to pore
tortuosity, pore obstruction by water capillary condensation and open porosity
of the material. This is done introducing the resistance factor of the porous
material µ. The resulting equation becomes

Jd
v = −Dav

µ
∇ρv (2.13)

where Jd
v is the di�usive �ux of water vapour.

Together with vapour di�usion, vapour e�usion can occur. Vapour di�usion,
or Knudsen di�usion, occurs when the collisions between vapour molecules and
the pore wall are more frequent than the collisions between themselves. This
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e�ect can be taken into account using the density gradient as driving potential.
Even if the dependence from pressure and temperature of this e�ect are di�erent
from the dependencies of vapour di�usion in porous material, in building physics
vapour e�usion is considered adjusting the resistance factor µ. In this thesis µ
is considered to be function of the relative humidity. This function is obtained
by means of experiments and is material-speci�c.

In �gure 2.3.2 is shown how these processes can coexist in various ranges
of relative humidity. In �gure 2.3.2 a, vapour di�usion transfers water vapour
accordingly to vapour density gradient, while surface di�usion moves liquid
water by means of capillary suction pressure. If relative humidity increase, the
capillary can be saturated with liquid water. In �gure 2.3.2 b, vapour di�usion is
not present anymore, and capillary transport take place. According to equation
2.6, for increasing values of ϕ up to 1, the maximum value of the radius of
capillaries that are saturated under equilibrium condition increases. In �gure
2.3.2 c an external suction pressure have been applied, until all capillaries are
completely saturated.

vapour	diffusiona)

b)

surface	diffusion

capillary	transport

Figure 4: Mechanisms of water transfer in capillary pores for increasing values
of relative humidity a) Vapour di�usion and surface di�usion b) Capillary trans-
port, with position of the meniscus for increasing values of relative humidity up
to 1, when no more water transport is observed [33].
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2.4 Mechanisms of heat transport in porous materials

In table 2 the mechanisms of heat transport in porous material are listed. The
air enthalpy �ow is not considered due to the previous assumption of constant
value of total pressure. The remaining mechanisms of water and heat transport
will be now brie�y explained.

Table 2: Mechanisms of heat transport that can occur inside a porous material
and the relative driving potentials.

HEAT TRANSPORT

MECHANISM POTENTIAL
conduction temperature
radiation 4th power of temperature

water enthalpy �ows capillary pressure, vapour density
air enthalpy �ows total pressure

2.4.1 Heat conduction and radiation

The conductive heat �ux in the porous media can be described by Fourier's law:

qc = keff∇T (2.14)

where keff is the e�ective thermal conductivity. The e�ective thermal con-
ductivity should be obtained through volume average, as in [64]. Anyway, the
thermal conductivity of the porous material is in�uenced mainly by the water
content. Thus it is possible to consider keff as function of the water content,
as in [13].

When the porous material is dry, the e�ective thermal conductivity is equal
to the thermal conductivity of the dry porous solid matrix, ks. Since ks is
determined experimentally applying a measured heat �ux to a specimen of the
porous material and monitoring the temperature on both sides of the specimen,
the e�ect of internal radition is included in ks. This in�uence depends on the
temperature. Anyway, since the temperature investigated in this thesis are all
below 40◦C, this dependence is not considered.

2.4.2 Enthalpy �ows

The water and air enthalpy �ows are taken into account multiplying the air �ux
and the water �ux for their speci�c enthalpies:

qe = Jghg + Jlhl (2.15)
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where Jg and Jl are the total gas �ux and the liquid �ux inside the porous
media. We can further simplify this considering negligible the total enthalpy
transferred by air. This can be done considering that we have assumed a neg-
ligible total pressure gradient over the porous domain, and that the speci�c
enthalpies of liquid water and vapour are big compered with the speci�c en-
thalpy of air. We can write

qe = Jvhv + Jlhl (2.16)

where
hv = cp,vT +Hev

and
hl = cp,lT

.
The complete system of energy and mass balance equations for the porous

material, and the assumptions made, are explained in appendix 4.2.
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3 Considerations on turbulent �ow

The Navier-Stokes equation for incompressible �ow describe correctly the be-
havior of the �uid in both the laminar and turbulent regime. Anyway, if the
�ux becomes turbulent, random �uctuations start to occur in the velocity �eld.
These �uctuations generate instability in the �ow. Even if the original lam-
inar �ow presented a two dimensional nature, turbulent �uctuations give to
the �ow a more complex three dimensional spatial character. The �uctuations
generate the so-called turbulent eddies, which are coherent structures with a
wide range of length scale. The smallest vortices cause a energy dissipation
inside the �ow, transferring kinetic energy into thermal energy. In particular,
when the characteristic Reynolds number for small eddies approach unity, that
means that viscous forces have the same strength of inertial e�ects, the vorteces
reaches their maximum dissipation capabilities. At this scale, also called the
Kolmogorov's scale [39], the lenght of these small vortices can be correlated to
the dimension of the big eddies through an order of magnitude estimate:

η ≈ L0Re
−3/4
l (3.1)

where η is the scale of the small eddies, L0 is the scale of the big eddies and
Rel is the Reynolds number for the problem. Considering a typical Reynolds
number of 105, the ratio of η/L0 assume a value with an order of magnitude
of 10−4. Thus, for typical �ow problems, a very high spatial resolution would
be necessary in order to see the actual scale in which energy dissipation occurs.
This approach of solving the Navier-Stokes equations is called direct numerical
simulation DNS, and can be practically realizable only in small domains. A
more computationally economical is to model the dissipation phenomena that
occurs under a certain scale length. The most used approach is doing a Raynolds
average of the Navier-Stokes equations (RANS). This method uses the Reynolds
decomposition to split the velocity components into a steady mean value V , and
in a component that represents the statistical �uctuations v′

v(t) = V + v′(t) (3.2)

For steady mean �ow, time average is de�ned as

V =

∫ ∆t

0

v(t) dt (3.3)

where ∆t is a period of time bigger than the one associated with the slowest
variations of the �ow properties. For time-dependent �ows, the time-average is
replaced by the so called 'esemble average, that is de�ned as the average of the
instantaneous value over a big number of repeated identical simulations [39]

V = lim
n→∞

∑n
1 vn(x, t)

n
(3.4)

This averaging process modify the Navier-Stokes equation, resulting in the
Reynolds averaged Navier-Stokes equation:
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∂(ρgVg)

∂t
+∇·(ρgVg⊗Vg) = ∇·(−pI + µ∇Vg)−∇·(ρgvg

′ ⊗ vg
′)+gρg (3.5)

where ρgvg
′ ⊗ vg

′ are the so called Reynolds stresses, or turbulent shear
stresses, caused by the enhanced momentum exchange due to turbulence.

These additional stresses must be modeled, on the basis of some assumptions,
like the isotropy of the turbulent kinetic energy. Various closure models are
available in the literature, most of which uses more than one additional transport
equation to obtain the local Reynolds stresses. Even if in the current thesis all
the �ow regime have been chosen to be laminar, turbulent �ow can be easily
taken into account through the built-in CFDmodules in COMSOLMultiphysics.
At the moment, the Spalart-Allmaras, k−ε, k−ω and Low Reynolds number
k−ε are available. Nevertheless, some considerations must be done about the
models.

In �gure 5, the development of the velocity and thermal boundary layer
are shown along a vertical plate. Since in this case Tw is higher than T∞ and
no heat transfer mechanisms are considered other than convection, the solid is
being cooled, and the heat �ux is directed as the normal to the surface. The heat
transfer can be considered through a heat transfer coe�cient, α, as in equation

qw = α (Tw(y)− T∞) (3.6)

This convective heat transfer coe�cient (CHTC) is normally obtained through
experimental correlations, or in some cases, through the heat and momentum
transfer analogy and analytically solving the velocity boundary layer equations.
Even if CHTCs are used in great part of building physics analysis, it is not always
possible to �nd in literature a CHTC for the speci�c geometry and boundary
conditions that are being considered.
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Figure 5: Development of the velocity and thermal boundary layers along a
vertical plate. The heat �ux can be found knowing that tg(α) = ∂T/∂x

Another way to obtain the heat �ux at the interface is by resolving directly
the velocity and thermal boundary layers, in a numerical simulation. In almost
all practical cases, the no-slip condition on velocity �eld can be assumed, namely

v|x=0 = 0 (3.7)

This means that heat transfer in the �uid media occurs only due to conduc-
tion. The heat �ux at the wall can thus be expressed with Fourier's law

qw = −k∂T
∂x

∣∣∣∣
x=0

= tg(α) (3.8)

This means that the an error in the computation of the temperature deriva-
tives at the wall will directly in�uence the heat transfer. For minimizing the
error on the heat �ux, a good spatial resolution is requested in the �uid domain
near the wall. While this request can be easily accomplished for a laminar �ow,
it is far more problematic for a turbulent �ow. In the k−ε and k−ω closure
models, the velocity and thermal boundary layers are modeled through the use
of the standard wall functions [2]. These are analytical expressions, which are
derived for equilibrium boundary layers, and will therefore produce less accu-
rate results for complex �ows and should be avoided when the main purpose
is to study the heat �ux at the wall [44]. In this situation, the Low Reynolds
number k−ε model should be used, which resolve directly the boundary layers,
providing a good enough spatial resolution in the proximity of the wall. This
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model could not always be feasible for the study of complete building geometry,
due to the increase of computational costs, as shown in [13].
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4 Mathematical model

4.1 Coupling approaches: state of the art

In almost all hygrothermal simulations, the in�uence of a �uid media, commonly
humid air, over heat and moisture transfer must be taken into account. For doing
this, several di�erent approaches exist, which couple the equations of heat and
moisture transfer in porous media with the transport equations of air. The most
common are here described:

� Non-conjugate: convective transfer coe�cients (CTCs) are used. CTCs
account for heat and moisture transfer in a simpli�ed way, for di�erent
reasons. CTCs are often estimated through experiments that uses very
simpli�ed geometry, but heat and mass transfer are highly dependent on
the geometry of the problem, so their use for geometry other than the
one used during their computation is not recommended. Often convective
mass transfer coe�cients are derived from the convective heat transfer
coe�cients through the Cilton-Colburn analogy [23], which can not always
be applied (namely, no radiation must be present, no coupling between and
mass transfer, analogous boundary conditions). Moreover, the temporal
and spatial variation of CTCs is often not taken into account.

� Semi-conjugate: the spatial or temporal variations of the CTCs is taken
into account. The spatial variation can be considered if the CTCs are
obtained analytically, solving the boundary layer equations, and applying
the heat and momentum transfer analogy, which relates velocity gradients
to thermal gradients. Another method is to determine the CTCs with a
CFD simulation, and apply them later on the porous domain [29]. The
temporal variation of the CTCs can be applied considering the CTCs
dependence on temperature and concentration [48]

� Conjugate: the heat and moisture transfer in the porous material is com-
puted simultaneously with the equations of heat and mass transfer in the
�uid media. In this way it is possible to compute the solution avoiding
the previous knowledge of the CTCs. In some cases of forced convection,
it is possible to consider the �ow �eld as quasi steady-state, computing in
a transient way only the equations of heat and mass transfer but not the
momentum equation. In other cases, also the momentum equation must
be computed simultaneously.

An accurate review of heat and mass transfer modeling at air-porous material
interfaces can be found in [14].

4.2 Conjugate model balance equations

In this thesis a continuum approach is used in order to �nd the mass and energy
balance equations, as done in [45, 64, 13]. A porous media is a combination of
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three di�erent phases, liquid, gaseous and solid. Representing the actual geom-
etry of the pores, and phases interfaces on a microscopic level is not possible
when operating at the scale of typical building physics problems. In this case it is
advantageous to use a homogenization technique on a representative portion of
the porous material, in order to describe the phases distributions on the basis of
averaged microscopic properties. To do this, it is necessary to operate at a scale
between the mesoscopic and the macroscopic scale. The mesoscopic scale is the
scale where the separations of the di�erent phases can be distinguished clearly,
but their properties appear as homogeneous. At the macroscopic scale, the
separations of di�erent phases can not be distinguished anymore. The represen-
tative elementary volume represented in �gure 4.2, or REV, must be big enough
to avoid spatial oscillations of material properties [45], but small enough to ig-
nore the macroscopic variations in the material, e.g. brick separations, macro
cracks. As already mentioned, the dimension of the REV are strictly related
to the maximum dimension of the pore in the material considered. In general,
the REV should be one or two order of magnitude larger than this value. For
most common porous material this means that the REV should be large at least
10−3m [45].

solid	phase

liquid	phase

gaseous	phase

REV

mesoscopic	scale

Figure 6: Representative elementary volume. The di�erent phase interfaces can
be distinguished, but the material properties can be assumed as homogeneous,
since no macroscopic variations of the geometry are present.
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The averaging process results in the need of using phase contents instead of
phase densities in the balance equations. While phase densities ρi are given in[

kg
m3

i

]
, where m3

i denote the volume of the ith phase, phase contents wi are given

in
[

kg
m3

pm

]
, where m3

pm is the volume of the porous material. Denoting with φ

the material porosity, and with φl the porosity occupied by liquid water, the
phase content for the solid, liquid water, air and vapour can be written as:

ws = (1− φ)ρs (4.1)

wl = φlρl (4.2)

wa = (φ− φl)ρa (4.3)

wv = (φ− φl)ρv (4.4)

Where ρs is the density of the solid matrix. We can further simplify these
relations, considering that the mass contribution of the vapour is negligible with
respect to the liquid water content. Under this assumption, the total water

content w
[

kgw
m3

pm

]
, de�ned as

w = wl + wv

results equal to wl. Thus, using equation 4.2, we can �nd that φl can be written
as

φl =
w

ρl
(4.5)

Moreover, φ can be considered equal to the volume occupied by liquid water at
capillary saturation, wcs.

The general balance equations for the porous media are obtained as in [13],
doing the following assumptions:

1. Air, liquid and solid material matrix are assumed incompressible.

2. Pressure variations are small so they do not a�ect thermodynamic prop-
erties.

3. Local thermal equilibrium between the phases is assumed.

4. Potential and kinetic energy changes are assumed to be small compared
to thermal energy changes and are neglected in the gaseous phase.

5. Pressure work and viscous heating/dissipation are neglected.

6. Heat source terms other than evaporation or condensation of liquid water
are not taken into account.
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4.2.1 Mass balance in porous media

The mass balance for the ith phase can be written as:

∂wi

∂t
= −∇ · (Ji) +

∑
j

∂wi,j

∂t
(4.6)

where wi,j is the mass exchanged between the ith and the jth phase. Since
no chemical reactions are considered, is evident that∑

i

∑
j

∂wi,j

∂t
= 0 (4.7)

In a hygrothermal simulation we are interested only in the mass balance for
the water content. We can sum the liquid and vapour phase mass balances to
obtain the total water balance inside porous media:

∂ (wl + wv)

∂t
=
∂w

∂t
= −∇ · (Jv + Jl) +

∂ww,v

∂t
+
∂wv,w

∂t
(4.8)

where w
[

kg
m3

pm

]
is the water content, Jv is the vapour �ux and Jl is the

liquid �ux.
Using equation 4.7, equation 4.9 can be written as

∂ (wl + wv)

∂t
=
∂w

∂t
= −∇ · (Jv + Jl) (4.9)

4.2.2 Energy balance in porous media

The energy balance for porous media can be written as:

∂Hpm

∂t
= −∇ · (Jvhv + Jlhl + qc) (4.10)

Where Hpm

[
kJ

m3
pm

]
is the total enthalpy of the porous media, qc is the con-

ductive heat �ux,hv and hl are the vapour and liquid water enthalpies, in
[
kJ
kg

]
.

The total enthalpy can be written as the sum of the enthalpies of the various
phases:

Hpm = hsws + hlwl + hawa + hvwv (4.11)

where hs is the enthalpy of the solid matrix expressed in
[
kJ
kg

]
. Consider

that ws is function of ρs, which is usually an unknown property of the porous

material. The density of the dry porous material, ρm

[
kg

kgpm

]
, can be de�ned as

ρm = (1− φ)ρs + φρa (4.12)

The speci�c enthalpy hm of the dry porous material is the weighted average
of the speci�c enthalpy of the solid phase and gaseous phase, when only air is
present:
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hm =
ρshs(1− φ) + φρaha

ρm
(4.13)

Using equation 4.13,4.1 and 4.3, we can write

wshs + waha = (1− φ)ρshs + (φ− φl)ρaha = ρmhm − φlhaρa (4.14)

Thus, Hpm becomes

Hpm = ρmhm − φlρaha + wlhl + wvhv (4.15)

and using equations 4.5,4.2 and 4.4

Hpm = ρmhm − w
ρa
ρl
ha + whl + (wcs − w)

ρv
ρl
hv (4.16)

4.2.3 Total mass balance in �uid media

In additions to the assumptions needed for the derivation of the balance equa-
tions for the porous media, the following further assumptions will be done in
this thesis:

1. Moist air is a mixture of two ideal gases, dry air and water vapour

2. There is no condensation in moist air. This means that there are no
droplets, and only one phase, gaseous phase, can be recognized.

3. Moist air is considered to be incompressible, even if density variations can
occur through the variation of concentration and temperature.

4. Momentum source are not taken into account

Assumptions 1 and 2 allow us not to take into account for a water-air interface.
If we call ρg the density of the total gas phase, we can write the density of

water vapour and dry air, in
[

kg
m3

g

]
, using Dalton's law of partial pressures

ρv =
pvMv

RT
=
ywpg
RvT

(4.17)

ρa =
paMa

RT
=
yapg
RaT

(4.18)

where pg is the total pressure, that in this thesis is equal to 101325 Pa,
Mv,Ma, yw and ya are the molar masses and the mole fractions of water and
dry air, and R is the universal gas constant.

The total gas density can be written as

ρg = ρa + ρv =
Mapa
RT

+
Mvpv
RT

=
pg
RT

(Maxa +Mvxv) =
pgMg

RT
(4.19)
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This means that even if the total gas pressure is considered constant, gas
density can change due to a temperature or concentration variation. Anyway,
in order to simplify the balance equations, we will assume the total density as
constant, with the only exception of the gravitational term in the momentum
equation.

The total gas �ux can be written as

Jg = ρgvg = (ρa + ρv)vg = ρava + ρvvv = Ja + Jv (4.20)

where va and vv are the air and vapour velocity. We can consider these velocity
as absolute velocity, composed by the gas velocity and a relative velocity:

Ja = ρava = ρa(vg + vr,a) = Ja
a + Jd

a (4.21)

Jv = ρvvv = ρv(vg + vr,v) = Ja
v + Jd

v (4.22)

where Ji are the convective �uxes, that can be described as the combined
action of the advective �uxes Ja

i and di�usive �uxes Jd
i .

The di�usive �uxes can be written as in 2.12, since the overall gaseous density
is considered constant.

The total mass balance for the humid air can be written as:

∂ρg
∂t

= −∇ · (Jg) (4.23)

Where ρg is the total density of the humid air.

4.2.4 Vapour balance in �uid media

The vapour balance in the �uid can be written as:

∂ρv
∂t

= −∇ · (Jv) (4.24)

Where ρv is the vapour density and Jv is the convective vapour �ux.

4.2.5 Energy balance in �uid media

The considered mechanisms of heat transfer are enthalpy �ows and conduction,
thus the energy balance in the �uid can be written as:

∂Hg

∂t
= −∇ · (qe + qc) (4.25)

Where Hg

[
kJ
m3

]
is the total enthalpy of the �uid media; qe and qc are th

enthalpy and the conductive heat �uxes respectively.
Conduction is predominant near the porous material walls and can be taken

into account through Fourier's law:

qc = −kg∇T (4.26)

24



where kg is the humid air thermal conductivity thermal conductivity.
The enthalpy heat �ux qe can be modeled considering the convective mass

�uxes multiplied by the speci�c enthalpy of air and vapour, in
[
kJ
kg

]
qe = Jghg = Jaha + Jvhv (4.27)

where Ja and Jv can be replaced by equations 4.21 and 4.22.

4.2.6 Momentum balance in �uid media

The velocity �eld of the gaseous phase can be found through the use of the
Navier-Stokes equation for a Newtonian and incompressible �ows:

∂(ρgvg)

∂t
+∇ · (ρgvg ⊗ vg) = ∇ · (−pI + µ∇vg) + gρg (4.28)

where⊗ denotes the dyadic product, p is the pressure, I is the identity matrix
and µ is the gas dynamic viscosity. With no further assumptions, equation 4.28
can be also written as

ρg
∂vg

∂t
+ ρgvg∇vg = ∇ · (−pI + µ∇vg) + gρg (4.29)

In some building physics simulations, like the computation or the total ther-
mal resistance of a wall of hollow bricks, a natural convection �ow must be con-
sidered. In this thesis, the buoyancy-driven �ow is taken into account through
the Boussinesq approximation. The buoyancy force is caused by a density dif-
ference in the gaseous phase, in the presence of the gravitational �eld. Even if
the gaseous phase is considered as incompressible, we can still take into account
small density changes considering the ideal gas law. Considering the total pres-
sure pg as constant and equal to 101325 Pa, the ρg depends on temperature and
vapour concentration, as can be seen from 4.19. Therefore, choosing an initial
reference state, we can write the gas density through a �rst order truncated
Taylor series as

ρg = ρg,0 +
∂ρg
∂T

∣∣∣∣
0

∆T +
∂ρg
∂xv

∣∣∣∣
0

∆xv = ρg,0 + ∆ρg (4.30)

where the subscript 0 denotes the reference state, and the ∆ operates between
the actual state and the reference state. For simplifying the equations, we can
notice that if velocity goes to zero, the gradient of the resulting static pressure
will be equal to ρg,0g

∇ps = ρg,0g (4.31)

Assuming that the total pressure can be written by the sum of the static pressure
and a dynamic pressure due to the velocity �eld,

p = ps + pd (4.32)
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thus the total pressure gradient can be written as

∇p = ∇pd + ρg,0g (4.33)

Replacing now 4.30 and 4.33 into 4.28, the momentum balance equation
becomes

∂(ρgvg)

∂t
+∇ · (ρgvg ⊗ vg) = ∇ · (−pdI + µ∇vg) + g∆ρg (4.34)

The change in the pressure reference, from the absolute pressure p to the dy-
namic pressure pd can be ignored when pressure is not speci�ed on boundary
conditions, according to [2].

If the total pressure is considered constant, the variation in gas density are
due to changes in temperature and in vapour concentration. The in�uence of
these two variables on gas density is the following:

∆ρg =
∂ρg
∂T

∣∣∣∣
0

∆T +
∂ρg
∂xv

∣∣∣∣
0

∆xv (4.35)

where the subscript 0 stands for the conditions in the reference state.
Considering that the gas density can be written as:

ρg =
pgMg

RT
=
pg (Mvxv +Maxa)

RT
=
pg (xv (Mv −Ma) +Ma)

RT
(4.36)

using equation 4.36 in combination with 4.35, we can write

∆ρg = −pgMg

T 2R

∣∣∣∣
0

∆T +
(Mv −Ma) pg

RT

∣∣∣∣
0

∆xv (4.37)

4.3 Balance equations with temperature and relative hu-

midity as potentials

In this thesis, the balance equations are written assuming temperature and
relaive humidity as potentials. While relative humidity can be replaced by
capillary pressure, as already mentioned in chapter 2.2, pc is not de�ned in non
capillary-active materials, and there will be no physical meaning in using it.
Chosing relative humidity as a potential results in a non-conservative form of
the di�erential equation for water balance in the porous media, as showed in
[11] and [27], since the derivative of ϕ with respect to time is multiplyed by the
water storage function, which depends on ϕ. Anyway, with small enough time
steps, the mass conservation error a�ecting the solution is not signi�cant, as
investigated in [26].

The following equations are derived from equations 4.9, 4.10, 4.24, 4.25 in
appendix A.
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Mass balance in porous media

∂w

∂ϕ

∂ϕ

∂t
= −∇ · (−Dmϕp∇ϕ−DmTp∇T ) (4.38)

Energy balance in porous media

dT
∂T

∂t
+∇ · (−Deϕp∇ϕ−DeTp∇T ) = −dϕ

∂ϕ

∂t
(4.39)

Vapour balance in �uid media

F
∂ϕ

∂t
+∇·(−Dmϕa∇ϕ−DmTa∇T )+ϕ

(
∂F

∂t
+ v

∂F

∂T
∇T
)

+Fv∇ϕ = 0 (4.40)

Energy balance in �uid media

∂ϕ

∂t
F (hv − ha) +

∂T

∂t

[
ϕ
∂F

∂T
(hv − ha) + Fϕ(cp,v − cp,a) + ρgcp,a

]
=

−v(Aϕ∇ϕ+AT∇T )−∇ · (−Deϕa∇ϕ−DeTa∇T ) (4.41)

4.3.1 Line source model equations

The line source model equations are obtained through a mass and energy balance
for an in�nitesimal control volume.

We'll consider the case of a inde�nite channel which can exchange mass and
energy from the upper face, and with a adiabatic and impermeable lower face.

We can write a generic balance for the transported quantity u, and obtain
the speci�c transport equations.

If we call A the cross section area of the channel, S the lateral surface,and δV
the in�nitesimal control volume, we can write the balance of a generic quantity
u, transported ny the air streaming, as:

δV
∂u

∂t
= A(Γ(x)− Γ(x+ δx)) + φS (4.42)
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Figure 7: continuity balance on an in�nitesimal volume element

If the channel was open to mass and energy �ux also from the lower face, S
should have been multiplied by 2.

We can write Γ(x+ δx) as a truncated Taylor series:

Γ(x+ δx) = Γ(x) +
∂Γ(x)

∂x
δx (4.43)

substituting 4.43 in 4.42 rewriting the surfaces we obtain:

HLδx
∂u

∂t
= −HL∂Γ

∂x
δx+ Lφδx (4.44)

that leads to:

δx
∂u

∂t
= −∂Γ

∂x
δx+

φδx

H
(4.45)

We can now write the conservation of vapour density and energy, substituting
the quantity u with the vapour density ρv and the enthalpy h, Γ with the
�uxes of water vapour and enthalpy and φ with the mass and energy quantities
exchanged with the wall, we obtain:

∂ρv
∂t

= −v∂ρv
∂x

+
β(pwall

v − pv)

H
(4.46)

∂h

∂t
= −v∂h

∂x
+
α(Twall − T )

H
+
β(pwall

v − pv)hv
H

(4.47)

where
h = Tρacp,a + hv
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and
hv = (Tcp,v +Hev)ρv

note that pv represents the bulk partial pressure of the vapour and T repre-
sents be the bulk temperature.
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5 Case studies

5.1 Isothermal drying

The purpose of this �rst simulation is to compare our model for heat and mass
transfer inside a porous media with the one used by Delphin. For doing this we
have chosen a particularly challenging case from the numerical point of view, as
explained in 5.1.1

Delphin is a commercial numerical simulation tool for combined heat, mois-
ture, air and salt transport in porous building materials [54]. It is mostly ap-
plied to calculate transient processes in building envelopes in order to predict
the moisture risk and the durability of the construction. The software is de-
veloped using �nite-voloume technique, which is considered for some aspects to
be numerically inferior to �nite-element technique [27]. This is due to the fact
that the �nite-element technique explicitly assumes a variation of the indepen-
dent variables over the domain. Moreover, the values on the surfaces of the
discretized elements for the variables and the �uxes have to be calculated if the
�nite-volume technique is used, leading to additional approximations (see ap-
pendix C.1). Anyway, has been shown that for the heat and moisture transfer,
the �nite volume approach seems to provide more stable solutions [45].

Delphin is limited to two-dimensional cases. Moreover, Delphin does not
allow �uid dynamics modeling inside air gaps between the building components.
Convection is taken into account applying third-type boundary conditions with
constant transfer coe�cients.

Delphin was testing according to HAMSTAD Benchmarks 1 to 5, EN 15026:2007.
The software was also validated to conform with both two-dimensional cases of
ISO 10211:2007, Annex A.

5.1.1 Simulation setup

As a test case we consider the drying process of a moist porous material (brick)
as described in [26].

The simulation is mono dimensional for the sake of simplicity.
The material is dried from the right side, which is open to mass and energy

transfer, while the left side is open to energy transfer but considered close for
mass transfer (see �gure 8). The �uid conditions outside the boundary layer are
constant in time.

The boundary conditions are described by equations 5.1,5.2,5.3,5.4:

q(0, t) = −α(T (0, t)− T∞) (5.1)

Jv(0, t) = 0 (5.2)

q(l, t) = −α(T (l, t)− T∞) + Jv(l, t)(Hev + cp,vT ) (5.3)

30



Jv(l, t) = −β(pv(l, t)− pv,∞) (5.4)

where q is the heat �ux and Jv represents the vapour �ux; α and β are the
convective heat and mass transfer coe�cients respectively. Hev is the enthalpy of
vaporization and cp,v is the thermal capacity at constant pressure of the water
vapour. Using temperature and relative humidity as potentials, the partial
pressure of water vapour is de�ned by equation 5.5

pv = ϕps(T ) (5.5)

The initial conditions and the air conditions outside the boundary layer are
shown in �gure 8.

x0 L=0.01	m

T(x,0)=308.15	K

φ(x,0)

T				=308.15	K

φ				=0.5

∞

∞

Porous	material Air

vapour	tight
wall

Figure 8: Schematic representation of the 1D test problem.

In this study two cases are considered.
In the �st case the initial relative humidity is considered to be 0.9999, as

previously done in [26].
In that study the author employ an initial relative humidity slightly under

the unity, since a complete saturation leads to higher numerical di�culties. At
100% relative humidity small oscillations can occur during calculations, even if
a implicit temporal method is used and even with a high absolute tolerance.
In the second case the initial relative humidity is equal to 1. In order to avoid
errors due to the water storage function derivative, the procedure described in
appendix C.3 is used.

At the beginning of this experiment, the brick and the bordering air are
isotherm (see �gure 8). The temperature inside the brick changes only due to
convective drying. This case is particularly interesting since equation terms
which are in general negligible, have to be taken in account in order to see the
drop in temperature. Those terms are:

1. energy transport due to evaporation at the surface

Jv(Hev + cp,vT ) (5.6)
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2. energy transport due to capillary liquid conductivity

−Kl
∂pc
∂ϕ

cp,lT (5.7)

The energy transport due to evaporation is considered in equation 5.3. The
capillary transport is signi�cant only above 0.5 relative humidity [31] and is
taken into account through an experimental function as is done for the wa-
ter storage function (see equation A.4). The total enthalpy is considered by
equation A.20.

This particular set up is particularly challenging from a numerical point of
view for two reasons:

1. Steep gradients of the system variables. During the simulations, very steep
gradient of temperature and relative humidity are present, as explained in
chapter 5.1.3. These steep gradients can lead to numerical di�culties.

2. Saturation condition inside the material. The transport equations A.9 and
A.21 are highly non linear. This non linearity is mainly due to the shape
of the water storage function (see �gure 3) . When the relative humidity
approaches unity, the derivative of the water storage function becomes
very high. For this reason under saturation conditions, numerical errors
are ampli�ed.

5.1.2 Numerical setup

In COMSOL the default time-dependent solver for the pde equations is the
IDA solver, which uses variable-order varible-step-size backward di�erentiation
formulas (BDF).

The order of the BDF can vary from one (that is backward Euler) to 5. There
is also a second solver called the Generalized-α solver, which has properties
similar to the second-order BDF solver. Through the parameter α it is possible
to control the degree of damping of high frequencies. Compared to BDF (with
maximum order two), Generalized-α causes much less damping and is thereby
more accurate, but it is also less stable.

For this simulation we have chosen the BDF solver, with a variable order
from 1 to 5 in order to better predict the steep gradient that appears near the
40th hour (for the simulation which starts at saturation).

The time step is also kept variable in order to increase the accuracy during
the transition zone, without increasing too much the computational time. This
can be done, since COMSOL automatically chooses the time step through a
constraint on the relative and absolute tolerance.

More speci�cally, the absolute and relative tolerance control the error with
the following formula: 1

Mf

∑
j

1

Nj

∑
i

(
|EiUi|

Au,i +Rt|Ui|

)2
 1

2

< 1 (5.8)
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whereMf is the number of �elds, Nj is the number of degree of freedom in
the �eld j. U is the solution vector corresponding to the solution at a certain
time step and E is the solver estimate of the local error during the time step.
Au,i is the unscaled absolute tolerance for the degree of freedom i, Rt is the
relative tolerance.

In general, it is advantageous to choose a di�erent value of the absolute
tolerance for di�erent system variables. For example, for this speci�c case, the
absolute error for temperature should be di�erent from the absolute error for
relative humidity, since temperature is typically in the order of 102K, while
relative humidity is always under unity.

In order to have more control on the constraint, we have chosen a very
low absolute error for all the variables ( in the order of 10−10). This makes the
relative tolerance the ruling criterion for the error control, according to equation
5.8. The relative tolerance has been set to the value of 10−5, since it is the same
used by the Delphin solver.

5.1.3 Results

Error and uncertainty are unavoidable in numerical simulations. It is therefore
necessary to develop a rigorous method to quantify the quality of the results.
Two main aspects are widely recognized in order to provide trustable results:

1. Veri�cation: this is the process of determining if the solution of the sim-
ulation accurately represents the model written by the developers. This
process quantify the errors that occurs in the process of discretizing and
solving the mathematical model.

2. Validation: this is the process of investigating the accuracy of the model in
predicting the experimental data. This process quantify the uncertainties.

The validation process in this study is obtained through comparison of the
results with Delphin software, which has been validated itself with experimental
results [1]. The veri�cation process is considered in chapter 5.1.4.

The accuracy of the solution is investigated using three grid levels, which
are re�ned sequentially by slicing the spatial step in half. The �rst level uses 50
elements, the second one 100 and the third 200.

In �gure 9 and 10 are plotted the results of COMSOL and Delphin. The
�gure shows the temporal development of temperature and relative humidity
calculated at the right boundary. Only the results with 50 and 100 elements
have been plotted, since the last mesh did not show signi�cant improvement
in the accuracy of the solution in both COMSOL and Delphin. In the case of
Delphin, the di�erences are negligible even between the results obtained with a
100 elements and a 50 elements mesh. In this case Delphin seems to be more
stable on coarser meshes.

The simulation studies the transition between the two main phases of a dry-
ing process. During the �rst phase, also called the constant dry rate period, the
water transport is mainly due to capillary conductivity. The water transported
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from the inside of the domain to the right boundary evaporates at the external
surface so that the temperature decreases due to evaporation cooling (see �gure
9 and 10). In this �rst phase the relative humidity maintains his value close to
1. In the second phase, known as the decreasing dry rate period, a steep gra-
dient of relative humidity appears at the surface of the porous material. This
leads to a rise of surface temperature, since the cooling e�ect of evaporation is
drastically reduced. For these reasons we have a very steep gradients of relative
humidity and temperature during the simulation.

From the results we can see the in�uence of the initial values of the relative
humidity. In the case in which initial relative humidity has been chosen equal
to 0.9999, the transition between the two main phases of the drying process
appears during the 11th hour. In the case with 100% initial relative humidity
the transition appears during the 40th hour, so we can see how a very small
di�erence in the initial condition of relative humidity, can bring to relative
di�erences of 250% in the time of appearance of the drying front. This is due to
the shape of the water retention curve (see �gure 3): at relative humidity near
unity the curve increase steeply, leading to a very high water storage capacity
in the porous material.
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Figure 9: Temporal development of temperature and relative humidity cal-
culated at the right boundary, with di�erent number of elements and with
ϕ(x, 0) = 0.9999. Comparison of Delphin and COMSOL simulations. There
is no signi�cant deviation between the Delphin solutions for the mesh with 50
and 100 elements.
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Figure 10: Temporal development of temperature and relative humidity cal-
culated at the right boundary, with di�erent number of elements and with
ϕ(x, 0) = 1. Comparison of Delphin and COMSOL simulations. There is no
signi�cant deviation between the Delphin solutions for the mesh with 50 and
100 elements.

Comparing the results of COMSOL with those obtained with Delphin, we
observe that both softwares capture correctly the main evolution of the drying
process. However, the COMSOL solution presents non physical oscillations.
These irregularities can be reduced using cubic shape functions instead of linear,
as was further investigated in [26], or increasing the number of elements near
the right boundary.

5.1.4 Numerical quality of the solution

Various errors can be investigated in the veri�cation process. Amongst them
there are computer coding errors and users errors, which we are not able to
quantify. Round o� errors can be assessed by comparing results obtained using
di�erent levels of machine accuracy, which is not possible in general for com-
mercial codes. One of the main errors in numerical computation are due to
discretization errors. Those are due to the fact that the solution can be ob-
tained only in a �nite number of points in space and time.The easiest way to
investigate discretization errors is to obtain a series of solutions of the same
problem with progressively re�ned meshes. In this way it is possible, under
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certain conditions, to approximately calculate the discretization error.
According to [39, 18] this is possible if the solution satis�es the following

conditions:

� The solution is smooth enough to justify the use of Taylor series expan-
sions.This means that any discontinuity should be avoided.

� The convergence is monotonic, which means that if the quantity of interest
reduces upon going from a coarse mesh to a �ner mesh, its value should
again reduces if the mesh is re�ned again.

If we denote with u the exact solution of the mathematical equations, the esti-
mates of the discretization errors are in the form

||u− uh|| ≤ ChP (5.9)

where uh is the solution obtained with a mesh with elements of size h, P is
the order of convergence as the mesh spacing h decreases and C is a constant.

The norm used in 5.9 is the L2 norm, that is an appropriate norm for in-
vestigating �nite element method errors, according to [17, 18, 61, 10], and is
de�ned as:

||u|| =
(∫

u2 dx

) 1
2

(5.10)

It is common practice to use a reference solution as exact solution if the
last is not known for the problem that is being investigated. We have obtained
the reference solution on a grid of 400 elements, with an absolute and relative
tolerance of 10−12. This method can be used as well in transient problems
to obtain an approximation of the discretization error due to �nite time step
size. Since COMSOL automatically changes the time step in order to satisfy the
convergence constrain of the absolute and relative tolerance, we only investigate
spatial discretization errors, as done in [60]. The procedure described in [61] for
computing the L2 norm has been applied.

The assessment of the convergence error is performed considering that the
error of the �rst mesh is given by equation 5.11

||u− uh|| ≤ ChP (5.11)

The error of the next �ner mesh with mesh spacing h
2 is

||u− uh
2
|| ≤ C(

h

2
)P (5.12)

and their ratio is
||u− uh||
||u− uh

2
||
≤ ChP

C(h
2 )P

(5.13)

.
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For a re�nement that halves the size of the mesh elements, an estimation of
the convergence error can be therefore written as

P = log2

(
||u− uh||
||u− uh

2
||

)
= log2

(
E1

E2

)
= ln

(
E1

E2
− 2

)
(5.14)

where E1 is the norm of the di�erence between the correct solution and the
solution of the coarse grid and E2 is the norm of the di�erence between the
correct solution and the solution of the �ner grid.

Since the smoothness of the solution is required, the boundary conditions
for humidity of the air outside the boundary layer (see �gure 8) are modi�ed.
Initially the relative humidity of the surrounding air is taken equal to the relative
humidity inside the porous material (0.9999). The condition is then changed
applying a smooth ramp to this value that brings the boundary condition for
air humidity to the value of 0.5, as in the previous study. The ramp is chosen
to have continuous second derivative and with a transition zone of 10% of the
total simulation time.

For the convergence study four grids have been considered, with uniform
element size and linear Lagrange elements. The absolute tolerance has been set
to 10−10 and the relative tolerance to 10−7. The order of convergence has been
estimated on both the values of temperature and relative humidity. In table
3 the relative normalized error and the assessment for the convergence error is
reported. The relative normalized error has been calculated as:

Rh =
||u− uh||
||u||

(5.15)

where u is the reference solution. All the values of table 3 are mean values
in time.

Table 3: Relative normalized errors and assessment of the convergence index
for various discretizations. Time mediated values.

Grid Elements Rh(ϕ) Rh(T ) p (ϕ) p (T )

1 25 6.05e-2 7.1e-3
2 50 2.47e-2 3.5e-3 1.04 1.011
3 100 1.47e-2 1.74e-3 1.004 1.047
4 200 6.61e-3 7.7e-4 1.14 1.175
5 400

notice that, as expected, the relative normalized errors decrease as the el-
ement size decrease. For Lagrange elements with linear shape functions, the
theory predicts P = 2, that is, quadratic convergence of the norm of the solu-
tion error. However, especially in case of complex equations, this is not always
true, as investigated in [10].
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This study reveals that the convergence order for this problem seems to be
linear, that is, we can expect a linear decrease of the error with the size of the
mesh.

5.2 Comparison of the conjugate model and line source

model with experimental data

In this chapter the numerical solution from the conjugate and from the line
source approach are compared with the experimental and the benchmark data
from [24].

The benchmark data is provided by eight di�erent models that have been
developed by the following universities:

� Katholieke Universiteit Leuven, Belgium [27]

� Slovak Academy of Science, Slovakia [32]

� Concordia University, Canada [59]

� IRC-NRC, Canada [58]

� Technical University of Dresden, Germany [49]

� Chalmers University of Technology, Sweden [28]

� Thermal Science Centre of Lyon, France [35]

� University of Saskatchewan, Canada [46]

In this study, an element composed by three overlapped gypsum boards, is �rstly
humidify and than dried by a fully developed laminar �ow (see image 11) . The
inlet conditions of the �ow and initial conditions for temperature and relative
humidity are listed in table 4.

Table 4: Initial conditions and in�ow conditions for temperature and relative
humidity.

t 0 24h 48h
θ [oC] 23.3 23.8 22.5
ϕ [−] 0.3 0.719 0.296

Must be pointed out that all conditions in table 4 are an approximation
of the real conditions. In particular, the initial values for relative humidity is
known to be between 0.3 and 0.35, and the values of temperature and relative
humidity for the inlet �ow are assumed constant even if the measured values are
time dependent (see [24] for further details). In order to compare the conjugate
model with the results from the other eight models , the constant values of Table
4 are employed, as done by the other authors. All the material properties, as well
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as the moisture storage function, were provided by the author in [24]. Capillary
conduction has not been taken into account, since the author did not provide a
capillary conduction curve. Moreover, water transport due to capillary suction
should be negligible compared to water transport due to vapour di�usion, since
the value of relative humidity does not exceed 75% for all the simulation time
in all the domain.

Air

No-slip	wall

fully	developed	
laminar	flow

Adiabatic	and	water	tight

Porous	material

Zero	static	pressure

H=20.5	mm

-5	H 0 L x

y

Tφ
0 , 0

Tφ
in , in

U			=1.25	m/s

1

Figure 11: Geometry and boundary conditions for the study

In �gure 12, the temporal development of relative humidity and temperature
from the conjugate model and line-source model are compared with the experi-
mental data and with the results from the other models. The values refers to a
depth of 12.5 mm, and with x = L

2 (point 1 in �gure 11); anyway, the problem
can be considered mono-dimensional, so relative humidity and temperature at a
certain depth does not show a signi�cant variation along the x coordinate. The
dashed lines represent the maximal and minimal solution from the other au-
thors. For all the models, for both temperature and relative humidity, the curve
of the experimental data is steeper than the one obtained with the simulations.
For example, at the beginning of the simulation, derivatives in respect to time of
relative humidity and temperature are lower than the one of the experimental
data. A similar response can be seen after 24 hours, when the values of the
boundary conditions changes. Minor deviations concerning the relative humid-
ity are present between the various numerical results. Also the deviation in the
temperature development is acceptable, considering that the absolute variation
of temperature is rather small. The di�erences between the line source model
and the conjugate model are small in this case, since we are considering a fully
developed �ow in forced convection.

In �gure 13 the measured temperature and relative humidity values for the
inlet �ow have been taken as inputs, instead of the average temporal values.
The di�erences in relative humidity values are not signi�cant while are those
concerning temperature values. This is mainly due to the fact that the variance
of the measured inlet temperature values is bigger than the variance of measured
inlet relative humidity values.

For both the variables, taking the inlet data as time dependent, results in a
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more similar shape of the temporal simulated values curve with respect to the
experimental data.
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Figure 12: Temporal development of relative humidity and temperature cal-
culated at the point 1 in �gure 11. Comparison of conjugate approach and
line-source approach with experimental data and benchmark solutions.
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Figure 13: Temporal development of relative humidity and temperature calcu-
lated at the point 1 in �gure 11. Comparison of conjugate model with constant
and time dependent inlet �ow boundary conditions.
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5.3 Comparison of the conjugate model with the line source

approach

The line source approach is a way to couple the transfer mechanism which occurs
inside a porous domain with those that occurs in a free �uid �ow. The �uid
�ow occurs inside a thin channel and is considered to be mono dimensional.
His e�ects on the porous domain are taken into account through convective
transfer coe�cients, that are taken as inputs of the model. This approach cannot
compute the temperature and humidity distribution inside the �uid phase, but
only the bulk quantities along the channel axis (equation 5.32).

As previously said in chapter 1, a particularly important case for moisture
risk analysis, is the one of wooden beam ends, since if condensation is present,
it can leads to a structural damage to the wood. Including �uid dynamics in
long period hygrotermal simulation increase numerical e�ort and computational
time. Even in the case of laminar non-turbulent forced �ow, the di�erences in
term of computational time are signi�cant. Thus, it is meaningful to investigate
the di�erences between the solutions obtained with the conjugate model and a
simpli�ed model.

In this section, three di�erent cases are considered. In all the cases the
porous material is gypsum, and the boundary conditions for the �uid in the line
source model can be summarized as follows:

T (xin, y, t) = Tin (5.16)

ρv(xin, y, t) =
ϕinPs(Tin)

RvTin
(5.17)

for the in�ow boundary conditions, where the subscript in stands for inlet,
and:

∇T (xout, y, t) = 0 (5.18)

∇ρv(xout, y, t) = 0 (5.19)

for the out�ow boundary conditions, where the subscript out stands for
outlet. This condition imposes a fully developed �ow outlet condition, in therms
of T and ρv distributions.

For the case A and B the upper part of the channel is considered to be
adiabatic (see �gure 14).

The porous material in case A and B is considered to be closed to the heat
and mass transfer with the only exception of the upper boundary, for which the
following boundary conditions apply in the line source approach:

J(x, t) = −β(pv − pv,bulk) (5.20)

q(x, t) = −α(T − Tbulk) + J(x, t)hv (5.21)
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where α and β are the convective transfer coe�cients for the heat and the
mass respectively, and the subscript bulk stands for the bulk quantity. For the
3 cases, α and β are assumed constant and respectively equal to 46.2

[
W

m2K

]
and 3e-8

[
s
m

]
.

For the conjugate model we can use equations 5.16, 5.17, 5.18, 5.19 ,with
the di�erence that we can use the value of ϕ directly in equation 5.17 and 5.19,
since the equations of the conjugate model uses ϕ instead of ρv as variable.

Boundary conditions for the air �ow �eld are of fully developed velocity
pro�le at the inlet and zero static pressure at the outlet. A no-slip wall condition
is imposed for the upper and lower boundaries, that is:

vint = 0 (5.22)

where int stands for interface.
The velocity �eld in this simulation is considered to be stationary, since

the momentum and continuity equations of the air are not dependent from the
temperature and relative humidity distributions.

For the temperature and humidity �elds, only continuity conditions are
needed at the interface, since the heat and mass transfer are automatically
computed without the need of a convective transfer coe�cient. This imply that
the total heat and mass �ux, as well as temperature and relative humidity, have
to be continuous at the interface between the porous material and the �uid.

J int
pm = J int

fm (5.23)

qintpm = qintfm (5.24)

T int
pm = T int

fm (5.25)

ϕint
pm = ϕint

fm (5.26)

where the subscript pm stands for porous media and fm for �uid media.
From equations A.9, A.27, A.21, A.42 we have:

J int
p = −Dmϕp∇ϕ−DmTp∇T (5.27)

J int
f = −Dmϕa∇ϕ−DmTa∇T (5.28)

Qint
p = −Deϕp∇ϕ−DeTp∇T (5.29)

Qint
f = −Deϕa∇ϕ−DeTa∇T (5.30)

44



In a typical approach the heat and humidity transfer at the boundary is
taken into account through a third type boundary condition of the type:

γ = −hu(ub − u∞) (5.31)

where γ is the inward �ux of the quantity u, and hu, ub e u∞ are the convective
transfer coe�cient, the boundary value of u and the value of u outside the
boundary layer respectively.

Considering a thin channel, we can not identify a value for u∞, since the
thickness of the channel is inferior to the boundary layer thickness. Supposing
to work in a two-dimensional problem, instead of u∞, it is therefore necessary
to apply the boundary condition using the bulk quantity in the channel, ubulk,
which is de�ned as follows :

ubulk =

∫ L

0
J(y) dy∫ L

0
f(y) dy

(5.32)

The line source approach balance equations are derived in appendix 4.3.1

5.3.1 Simulation setup

In this section a two-dimensional fully developed laminar channel �ow is con-
sidered. Forced convection and incompressible �uid are assumed.

In the �rst two cases, a straight channel along the x direction is modeled (see
�gure 14). The upper part of the channel is insulated to the heat and moisture
transfer. In the third case a di�erent geometry is considered, with a channel
between two porous domains. In this last case the channel vary his direction,
so that in�uences of vortexes can be investigated (see �gure 22) .

For the �rst two cases temperature and relative humidity of the air at the
channel inlet and initial conditions in the �uid and porous domains, are sum-
marized in table 5

Table 5: Initial values (left) and air inlet values (right) of temperature and
relative humidity for the cases A and B.

case ϕ0 [-] T0 [°C] ϕin [-] Tin [°C]

A 0.5 10 0.7 22
B 0.7 22 0.5 10

The equations for the �uid phase in the line source model are expressed
with respect to vapour density only to keep the original formulation of the
balance (see appendix 4.3.1); we can still keep the variable ϕ for the balance
in the porous media since the equations are virtually uncoupled thanks to the
convective transport coe�cients.
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Figure 14: Geometry and boundary conditions for case A and B.

5.3.2 Study of the convergence order

The study of the order of convergence has been carried out for the porous
material with four di�erent meshes in winch the elements have been gradually
re�ned. For the re�nement, every element has been divided in both x and y
directions. All the elements have the same size. The relative tolerance for
this preliminary test was 10−5 for all the variables and 10−10 for the absolute
tolerance. For the reference solution (grid 5) the relative tolerance was 10−6.

For this case the order of convergence has been investigated. Notice that for
dimension higher than one the convergence error estimates can be written as:

P =

ln

(
Rh

Rh
2

)
ln(r)

(5.33)

where the parameter r is de�ned as follows:

r =

(
DOF2

DOF1

) 1
D

(5.34)

where DOF1 are the degrees of freedom of the coarse mesh, DOF2 are the
degrees of freedom of the �ner mesh and D is the number of dimensions of the
problem.

The number of elements, degree of freedom and the relative normalized error
of the grids are shown in table 6.
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Table 6: Number of elements, degree of freedom, parameter r, convergence
order assessment and relative normalized errors for relative humidity and
temperature for di�erent grids. Time mediated values.

Grid Elements DOF r Rh(ϕ) Rh(T ) p (ϕ) p (T )

1 200 492 2.54e-1 3.71e-2
2 800 1782 1.903 1.19e-1 1.83e-2 1.23 1.07
3 3200 6762 1.947 6.03e-2 9.24e-3 1.03 1.02
4 12800 26322 1.972 2.98e-2 4.72e-3 1.01 0.97
5 51200 103842

Even in this case we can conclude that the problem presents a linear con-
vergence with the element size.

5.3.3 Results

Cases A and B The simulation has been computed with a relative tolerance
of 10−5 and an absolute tolerance of 10−10 for both humidity and temperature.
The stationary solution for the boundary �eld was calculated with a relative
tolerance of 10−10 for all the variables. The shape functions are Lagrange linear.
As stated in chapter 5.3.1, fully developed �ow is assumed in the air gap . This
is necessary, since the reference convective heat and mass transfer coe�cients
used for the line source equations refers to a fully developed �ow, and would be
incorrect in presence of a non-full developed velocity boundary layer.

The temporal development of the values of relative humidity and tempera-
ture at the interface have been plotted in the graphs of �gure15 and 16, at point
1 and 2 in �gure 14. The relative di�erences of the solutions after one and after
eight hour are shown in �gure 20.
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Figure 15: Temporal development of temperature and relative humidity calcu-
lated at at point 1 and 2 in �gure 14. Comparison of line source approach and
conjugate approach. Case A.
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Figure 16: Temporal development of temperature and relative humidity calcu-
lated at at point 1 and 2 in �gure 14. Comparison of line source approach and
conjugate approach. Case B.

For better explaining the physical behavior of temperature and relative hu-
midity in case A and B, the following considerations must be taken into account:

� Relative velocity of mass and heat transfer in porous media: the propa-
gation of temperature di�erences are in general more rapid than a prop-
agation in relative humidity di�erences inside the porous material. This
can be explained considering the coe�cients in equation A.9 and A.21:
the typical orders of magnitude of Dmϕp and DmTp are 10−9 and 10−11

respectively, while the typical order of magnitude of Deϕp and DeTp are
10−3 and 101 respectively. A similar analysis can be carried out also for
the di�usive transport of temperature and mass in the air; typical order
of magnitude of the coe�cient in equations A.27 and A.42 are: for Dmϕa

and DmTa, 10−7 and 10−8, for Deϕa and DeTa, 100 and 101.

� Changes in relative humidity does not imply changes in water content:

relative humidity is de�ned as ϕ = Pv

Ps
; we can use this de�nition to write

the water vapour density, considered as an ideal gas, as

ρv =
Psϕ

RvT
(5.35)
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where Rv is the gas constant for water vapour and Ps is the saturation
pressure for water. The dependence of Ps from temperature is exponential
(see equation A.8). This means that if temperature increases, we have an
increase in vapour density, since the function Ps

T is still an exponential.
In the air, water content is only in�uenced by vapour density, so it is
clear that increasing of relative humidity does not imply that also water
content increases. In the porous media the water content includes both
water vapour and liquid water, condensed inside the pores under the action
of capillary pressure.

In case A, the air at the inlet is warmer and presents a higher relative humidity
than the porous material. At the beginning of the simulation, since the air
channel has limited thermal inertia, it decreases its temperature rapidly. For
the reasons explained before, temperature variation in the air is faster than the
variation of the vapour density, as can be seen in �gure 17. Considering vapour
density as written in equation 5.35 , and considering this value approximately
constant along the x coordinate inside the channel, we can see that the change
in relative humidity in the air is mainly due to the change in temperature. This
cause a steep increment of the relative humidity at the interface, as shown in
�gure 15. After this �rst phase, the heat transfer from the air to the porous
material causes the temperature inside the porous material to increase. In this
way, the temperature of air along the channel gradually increases. If we consider
again the vapour density as approximately constant inside the channel, equation
5.35 explains the decrease in relative humidity inside the porous material during
the �rst hour (see �gure 15 ). As the solution reaches stationary conditions, the
surface temperature of the specimen reaches the air temperature values at the
inlet and the value of the relative humidity inside the air decreases to the air
inlet values.
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Figure 17: Values of temperature, water vapour density and relative humidity
along the x coordinate taken in the middle of the air channel, at t=5s.

Similar considerations can be done in order to explain the behavior of tem-
perature and relative humidity in case B.

The temperature and relative humidity distributions after 1 and 4 hours are
shown in �gure 18 for case A and in �gure 19 for case B.

The relative di�erence between the two models is shown in �gure 20 and 21
at di�erent times. This relative di�erence has been calculated as

ucon − uline
ucon

(5.36)

where ucon is the solution from the conjugate approach and uline is the solution
from the line source approach.
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Figure 18: Relative humidity and temperature distributions for case A, after 1
h
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Figure 19: Relative humidity and temperature distributions for case B, after 1
h
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Figure 20: Relative di�erences between the conjugate and the line source ap-
proach, for temperature and relative humidity after 1 and 4 hours. Case A.
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Figure 21: Relative di�erences between the conjugate and the line source ap-
proach, for temperature and relative humidity after 1 and 4 hours. Case A.

Case C In case C we have considered a gypsum square of 10 cm side, with a
thin air channel, bending in the y direction (see �gure 22). At the corner, the
velocity �eld is no longer fully developed nor similar to the one that develops
in a classic entry region. Therefore we can expect a discrepancy of the results
from the two models at this position.

In this case, both the upper and the lower boundary of the channel interface
with the porous material.

In table 7 are summarized temperature and relative humidity of the air at
the channel inlet and initial conditions in the �uid and porous domains.

Table 7: Initial values (left) and air inlet values (right) of temperature and
relative humidity for case C.

case ϕ0 [-] T0 [°C] ϕin [-] Tin [°C]

C 0.5 10 0.7 22
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Figure 22: Geometry and boundary conditions for case C

In �gure 23 the relative humidity and temperature distributions after one
hour are shown. Figure 24 shows the relative di�erence between the two models
at di�erent times, calculated with equation 5.36. Consider that the relative
di�erence of relative humidity after one hour can be as high as 15%, while at
the same time, in cases A and B the absolute value of this di�erence was at
maximum 7.1%. In �gure 25 the temporal development of the relative error
for relative humidity and temperature has been plotted out point 1 and 2 (see
image 22).
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Figure 23: Relative humidity and temperature distributions for case C, after 1
h
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Figure 24: Relative di�erences between the conjugate and the line source ap-
proach, for temperature and relative humidity after 1 and 4 hours. Case C.
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Figure 25: Temporal development of the relative error for T e ϕ in point 1 and
2 (see image 22)
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6 Assessment of the equivalent thermal conduc-

tivity of an hollow brick

The model presented in this thesis can be applied in various building physics
problems. A typical subject in building physics numerical simulations is to
estimate the equivalent thermal conductivity (ETC), of a building material.
This is particularly important for whole building heat analysis, in which the
heat �ux is calculated in simpli�ed ways, since the main purpose is to analyze
the dynamic thermal behavior of the building. An important case is the one
of hollow bricks. Hollow bricks are widely used in constructions presenting goo
thermal insulation and economical manufacturing. Inside the hollow bricks, a
convective motion takes place due to the temperature di�erences on the side
of the brick. This motion reduces the overall thermal insulation of the brick,
leading to a decrease in the ETC.

As in [57] the ETC can be calculated as

ETC =
qW

|Tin − Text|
(6.1)

where q is the total heat �ux through the hollow brick, W , Tin and Text are
the width of the hollow brick and the temperature on the internal and external
surfaces. Even if the computation of hollow brick is a well studied problem, in
most of the studies the in�uence of moisture is not considered [5, 4, 57]. For
this reason, in the following simulations the in�uence of moisture over the ETC
value will be investigated. Moisture can in�uence ETC esteem in two main
ways:

1. Velocity �eld: since no total pressure gradients are considered, the air mo-
tion inside of the hollow brick is entirely generated by means of buoyancy
forces. These buoyancy forces are generated by air density di�erences.
Considering humid air as a mixture of ideal gases, these changes can be
due to pressure, temperature and concentration variations. Since the pres-
sure is considered to be constant inside the brick, only temperature and
vapour concentration can cause buoyancy forces. In appendix 4.2, the
in�uence of concentration and temperature on the �uid density is derived.

2. Enthalpy �ow: the total heat transfer can be in�uenced by the enthalpy
carried out by the outgoing vapour �ux.

6.1 Preliminary study

For the following simulations, the same geometry and the same material prop-
erties proposed in [4] will be used. A �rst preliminary study, which does not
take moisture transfer into account, is done in order to compare the tempera-
ture distribution presented in [4]. In �gure 26, the geometry and the boundary
conditions for this preliminary study are shown. Since the lack of information
about the pressure inside the cavities makes it di�cult to achieve convergence,
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pressure at a point is arbitrary �xed to achieve faster computation [2]. In table
8, the geometric values and material properties of the brick are given.

y

xW

H

s

Text=50°C

Adiabatic

Adiabatic

no-slip

L

Tin=20°C

p=1atm

Figure 26: Geometry and boundary conditions for the �rst preliminary study

Table 8: Geometric parameters and material properties of the hollow brick.

L[m] H[m] s[m] Density
[

kg
m3

]
cm

[
J

kgK

]
km

[
W
mK

]
0.05 0.19 0.01 1800 840 1

Due to the small dimensions, the resulting Grashof number is in the order
of 105, which is small enough for excluding the instauration of a turbulent �ow
regime inside the brick. Thus it is possible to consider the problem as two-
dimensional, as done in [5],[63],[4] and [20]. Two di�erent grid independence
tests has been performed, the �rst considering heat transfer alone and the second
with both heat and mass transfer equations. Three di�erent grids has been
used, with structured quadrilateral elements in the hollow parts of the brick,
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and with free structured triangular mesh in the solid domain. In the second grid
the elements have been halved and the free triangular mesh has been re�ned.
The same procedure has been applied for the third grid. In both tests the L2

norm for both temperature and humidity show a relative di�erence in the order
of 10−4 between the second grid and the third grid results. Thus the second grid
composed by 1220 quadrilateral elements and 2206 triangular elements has been
used. The time-independent simulation is obtained with a relative tolerance of
10−4, using a fully coupled solver, which solves the equations of momentum,
heat and continuity simultaneously.

In �gure 27 the isothermal lines for the �rst preliminary study are plotted,
showing good agreement with the results of the reference study. The resulting
value of the ETC is 0.91

[
W
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]
.

Temperature contour,°C
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Figure 27: Isothermal lines for the preliminary study. The result show good
agreement with the reference study [4]
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6.2 Moisture in�uence

Using the conjugate model, the in�uence of moisture over total heat transfer is
investigated. Dirichlet boundary conditions for relative humidity are imposed
on the internal and external walls of the brick. The upper and lower parts
of the brick are considered to be water-tight. Two cases are considered, with
di�erent temperature boundary conditions. In case A, a summer-like scenario
is considered, with higher external temperature, while in case B a winter-like
scenario is considered, with a lower external temperature. In both cases, the
varying parameter are the internal and the external relative humidity boundary
condition, which increases from 0.5 to 0.8 with a step of 0.1 . The temperature
and relative humidity boundary conditions are shown in table 9.

Table 9: Temperature and relative humidity boundary conditions for case A
and case B.

Text[
◦C] Tin[◦C] ϕext[−] ϕin[−]

CASE A 35 25 0.5,0.6,0.7,0.8 0.5,0.6,0.7,0.8
CASE B 10 20 0.5,0.6,0.7,0.8 0.5,0.6,0.7,0.8

For each case, 16 simulations are performed, one for each combinations
of internal and external relative humidity boundary conditions. The time-
independent solver uses a relative tolerance of 10−4. Since the equations of
momentum, heat and moisture transfer produce a strong nonlinear problem,
solve them simultaneously is particularly challenging. Moreover, since the ve-
locity �eld is caused by buoyancy forces, the problem represent a di�cult con-
vergence task for most nonlinear solvers. Therefore, the solution is achieved
gradually increasing the value of gravity. When the value of gravity is setted
to zero, the equations converge easily since momentum and temperature equa-
tions are uncoupled. Than the value of gravity is increased, and the solution of
the previous step is used as initial guess for the next, until a value of 9.81 m

s2

is reached. This is done activating a parametric sweep and choosing a scaling
method of the independent variables based on their initial values. The indepen-
dent variables are solved in a segregated way. The equations of heat and mass
transfer are solved �rst, and than the velocity and pressure �eld are computed.

In each simulation, the heat �ux is computed with three di�erent models:

� Model 1: only heat transfer is taken into account. Buoyancy forces are
only due to temperature di�erences.

� Model 2: heat and moisture transfer are computed, using the HAM model.
Buoyancy forces are only due to temperature di�erences.

� Model 3: heat and moisture transfer are computed, using the HAM model.
Buoyancy forces are due to temperature and moisture di�erences.

The parametric study can be easily performed interfacing Matlab with a COM-
SOL server [2]. A Matlab routine with a nested for loop is than needed for
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varying the internal and external relative humidity boundary conditions. In
this way the parametric simulation is automatically computed. In the same
routine, the ETC values obtained with the three di�erent models are compared.
Since the wall temperatures in cases A and B are �xed, the only varying pa-
rameter in equation 6.1 is the heat �ux, hence the relative ETC variation with
respect to the third model, , is computed as

ETCrv,i =
ETC3 − ETCi

ETCi
=
q3 − qi
qi

(6.2)

where q is the average value of the heat �ux, the subscript i refers to the model
considered, either 1 or 2, and subscript 3 refers to the third model.

In �gure 28 and 29 the relative ETC variations between the third and the
�rst model are plotted, for cases A and B. For case A, the total increment of heat
transfer due to considering moisture in�uence rather than ignoring it, can reach
the maximum value of 19%. For case B the maximum increment is smaller, equal
to 8.45%. In both the cases, the increment in ETC shows a similar behaviour.
Firstly, the ETC relative di�erence increases for increasing di�erences of rela-
tive humidity boundary values. Secondly, it is more in�uenced by the relative
humidity boundary value of the hotter side than it is by the relative humidity
value on the colder side of the brick. These two e�ects can be explained con-
sidering that for the chosen range of boundary relative humidity (under 90%),
capillary conductivity plays a minor role in the total humidity transfer. Most
of the water transfer is caused by vapour di�usion inside the brick, that is due
to concentration di�erences. The concentration of water vapour can be written
as

xv =
ϕps(T )

pg
(6.3)

Considering pg as constant, the concentration is in�uenced only by T and
ϕ, and we can write

xv,c − xv,h =
ϕhPs(Th)− ϕcPs(Tc)

pg
(6.4)

where the subscript h and c stands for the hot and cold side of the brick.
Since the saturation pressure is an exponential function of T , the concentration
di�erence is mostly in�uenced by the value assumed by ϕh.

In �gure 30, the ETCrv between the third and the second model are shown.
The minor in�uence of ϕc on the ETCrv is underlined, plotting the results in a
two-dimensional graph. The maximum ETC relative increment for both cases
A and B is of 0.1%, so the in�uence of vapour concentration on the velocity
�eld can be neglected in this case.
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Figure 28: Relative increment of ETC due to the presence of humidity, for
various combinations of relative humidity boundary conditions. Case A: Text =
35◦C, Tin = 25◦C.
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Figure 29: Relative increment of ETC due to the presence of humidity, for
various combinations of relative humidity boundary conditions. Case B: Text =
10◦C, Tin = 20◦C.
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Figure 30: Relative increment of ETC caused by considering the in�uence of
water concentration on gas density, rather than ignoring it. Up: case A Text =
35◦C, Tin = 25◦C, down: case B Text = 10◦C, Tin = 20◦C
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7 Conclusions

7.1 Main results and conclusions

The main objective of this work was to implement in COMSOL an accurate
model for heat and moisture analysis in porous building materials. For doing so,
a conjugate model to describe the in�uence of air �ow has been chosen, avoiding
previous knowledge of CTCs. Validation of the model has been achieved by
means of comparison with experimental data and with other numerical models.

The conjugate model has been used as a benchmark for the more simpli�ed
line-source model, which does not use CFD. Two cases have been studied in
order to investigate the di�erences between the two models. In the �rst case
a straight channel with laminar forced air �ow has been simulated. After one
hour, the relative di�erences in relative humidity between the conjugate and the
line-source models assume a maximum value of 7%, while the maximum value
of the relative di�erence of temperature is under 1% . In the second case, in
which the channel vary his direction, the relative di�erences in relative humidity
reach a maximum value of 15% after one hour. As expected, in this second case,
the two models show higher discrepancies, since the constant CTCs used by the
line source equations are obtained with fully-developed boundary layers.

In chapter 6, the conjugate model has been used to investigate the in�uence
of moisture over the equivalent thermal conductivity of an hollow brick. Using
a Matlab routine, a parametric study with changing relative humidity boundary
conditions, comparing three di�erent models, has been performed. The results
show that the in�uence of moisture over buoyancy forces can be neglected, while
the increase of heat transfer by means of enthalpy �ow can be relevant. For the
chosen range of temperature and relative humidity boundary conditions, the
relative variation of the ETC can reach a value of 19%.

7.2 Further research

The comparison between the line-source and the conjugate model showed a
signi�cant discrepancy in the case of a bending channel. This discrepancy must
be further investigated. In both simulations, the relative di�erences of the
driving potentials between the two models decreases with time, as stationary
conditions are being reached. In real hygrothermal simulations the steady state
is never reached, since boundary conditions are typically time-dependent. A
more complete study on the discrepancies between the models, can be achieved
applying time-dependent boundary conditions, and computing the di�erence in
total water content at the end of the simulation.

The high-level programming language of COMSOL allow to integrate addi-
tional physical phenomena and transport mechanisms that could be signi�cant
in problems other than the ones considered in this thesis. For example, heat
transfer with the atmospheric air and with the ground due to radiation can be
added using models for assessment of sky temperature, as in [27]. The direct and
di�use solar radiation can be considered as done in [58, 59] or [27]. In complex
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geometry, surface-to surface radiation can be easily added, using a COMSOL
pre-built module for the computation of view factors. Wind-driven rain e�ect
can be considered by means of historical data as in [7, 42].

The results presented in this thesis concern laminar �ow. Further work on
the modeling of turbulent �ow in air cavities will be performed, using a Low
Reynolds number k−ε model, for the reason exposed in chapter 3.

In chapter 6, a laminar �ow in natural convection has been studied, as-
suming stationary state. In real hygrothermal analysis the stationary state is
never reached, since the boundary conditions constantly change. Further anal-
ysis could use time-dependent simulations to take into account the dynamic
behaviour of the porous material.
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8 Appendices

A Balance equations with T and ϕ as potentials

In order to simplify the balance equations, we assume the overall �uid as in-
compressible, that is:

∂ρg
∂t

= 0 (A.1)

which leads to ∇ · v = 0 and ∇ρg = 0.
In addition we use ideal gas equation for the vapour.

A.1 Mass balance in porous media

∂w

∂t
= −∇ · (Jv + Jl) (A.2)

Using Fick's law for the di�usive vapour, and the law used by Künzel in [33]
for di�usive liquid �ux, we can write:

Jv = −ρg
Dav

µ
∇ρv
ρg

(A.3)

Jl = Kl
∂pc
∂ϕ
∇ϕ (A.4)

Assuming incompressible �ow, the �rst one can be written as:

Jv = −Dav

µ
∇ρv (A.5)

We can now write ρv as a function of the potential ϕ, using the ideal gas
equation and the de�nition of relative humidity.

ρv =
pv
RvT

=
psϕ

RvT
= Fϕ (A.6)

This leads to:

Jv = −Dav

µ
(F∇ϕ+ ϕ∇F ) (A.7)

Note that F = Ps
RvT

is introduced in order to simplify notation. Note also
that the saturation pressure is a function of temperature only. In this work we'll
use the following formula

ps = 610exp

(
17.08085

θ

234.175 + θ

)
(A.8)

with the temperature θ expressed in Celsius.
Applying the chain rule for the time derivative, substituting equations A.4

and A.7 in equation A.2, we can write:
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∂w

∂ϕ

∂ϕ

∂t
= −∇ · (−Dmϕp∇ϕ−DmTp∇T ) (A.9)

where w is the water content as a function of ϕ and with:

Dmϕp =
DavF

µ
−Kl

∂pc
∂ϕ

(A.10)

DmTp = ϕ
Dav

µ

∂F

∂T
(A.11)

A.1.1 Energy balance in porous media

The energy balance is described by equation A.12

∂Hpm

∂t
= −∇ · (Jvhv + Jlhl + qc) (A.12)

where
hv = cp,vT +Hev (A.13)

hl = cp,lT (A.14)

and
qc = −keff∇T (A.15)

Substituting equations A.4 and A.7 in equation A.12 , we obtain

∂Hpm

∂t
= −∇ · (−Deϕp∇ϕ−DeTp∇T ) (A.16)

where

Deϕp =
Dav

µ
Fhv −Kl

∂Pc

∂ϕ
cp,lT (A.17)

DeTp =
Dv

µ
ϕ
∂F

∂T
hv +K (A.18)

Applying the chain rule to the left hand term of A.16 we can write:

∂Hpm

∂t
=
∂Hpm

∂T

∂T

∂t
+
∂Hpm

∂ϕ

∂ϕ

∂t
(A.19)

Replacing the total enthalpy of the porous material with equation 4.16:

Hpm =

(
ρmcp,m − wcp,a

ρa
ρl

+ wcp,l + (wcp,s − w)cp,v
ρv
ρl

)
T + (wcs − w)Hev

ρv
ρl

(A.20)
where wcs is the water content at capillary saturation. Note that the con-

servation equations for this model are not valid if the water content is above
capillary saturation. Under such condition, moisture content is above critical
moisture content for air transport, and the gaseous pressure cannot be assumed
to be equal to the atmospheric pressure anymore.
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Equation A.16 can be reformulated as:

dT
∂T

∂t
+∇ · (−Deϕp∇ϕ−DeTp∇T ) = −dϕ

∂ϕ

∂t
(A.21)

where

dT = ρmcp,m+w

(
cp,l − cp,a

ρa
ρl
− cp,v

ρv
ρl

)
+wcscp,v

ρv
ρl

+(wcs−w)(cp,vT+Hev)
∂F

∂T

ϕ

ρl
(A.22)

dϕ =
∂w

∂ϕ

[
cp,lT −

ρv
ρl

(cp,vT +Hev)− ρa
ρl
cp,aT

]
+

(wcs − w)

ρl
(cp,vT +Hev)F

(A.23)

A.1.2 Vapour balance in �uid media

∂ρv
∂t

= −∇ · (Jv) (A.24)

where the convective vapour �ux is de�ned as Jv = ρvvv. Considering the
relative velocity of the vapour, due to di�usive e�ect, we can split the overall
convective �ux in the advective and di�usive �ux, as:

Jv = ρvvv = ρv(v + vr,v) = ρvv − ρDav∇
ρv
ρ

(A.25)

which can be simpli�ed as before, under assumption of incompressible �uid
�ow as follows:

Jc
v = ρvv −Dav∇ρv (A.26)

The total velocity must be taken out from the divergence, in order to easily
apply a fully developed �ow condition. Using ρv = Fϕ

we obtain:

F
∂ϕ

∂t
+∇·(−Dmϕa∇ϕ−DmTa∇T )+ϕ

(
∂F

∂t
+ v

∂F

∂T
∇T
)

+Fv∇ϕ = 0 (A.27)

with
Dmfa = DavF

DmTa = Davϕ
∂F

∂T
(A.28)

A.1.3 Energy balance in �uid media

∂Hg

∂t
= −∇ · (qe + qc) (A.29)

where
qe = Jvhv + Jaha (A.30)
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We can replace the expression for the convective �uxes:

Jv = vρv − ρgDav∇
ρv
ρg

(A.31)

Ja = vρa − ρgDav∇
ρa
ρg

(A.32)

we obtain:

∂Hg

∂t
= −∇ ·

[(
vρv − ρgDav∇

ρv
ρg

)
hv +

(
vρa − ρgDav∇

ρa
ρg

)
ha − kg∇T

]
(A.33)

Reordering the right hand side , using the relation ρg = ρv + ρa, and con-
sidering a constant ρg:

∂Hg

∂t
= −∇ · [v(ρv(hv − ha) + ρgha)−Dav(∇ρv(hv − ha) + ha∇ρg)− kg∇T ]

(A.34)
The air and vapour enthalpy are respectively de�ned as:

ha = cp,aT

and
hv = cp,vT +Hev

Taking out the velocity term from the divergence, replacing ρv = Fϕ and
assuming incompressible �ow, the right hand side can be rewritten as:

−v(Aϕ∇ϕ+AT∇T )−∇ · (−Deϕa∇ϕ−DeTa∇T ) (A.35)

where
Aϕ = (hv − ha)F (A.36)

AT = ϕ
∂F

∂T
(hv − ha) + ϕF (cp,v − cp,a) + ρcp,a (A.37)

Deϕa = Dav(hv − ha)F

DeTa = Dav(hv − ha)ϕ
∂F

∂T
+ kg (A.38)

Using the mass fraction introduced in 2.11 , we can write the total gas
enthalpy as

Hg = ρghg = ρg (mvhv +maha) (A.39)

where
ma =

ρa
ρg

and
mv =

ρv
ρg

, the left hand term of equation A.34 can be rewritten as:
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∂Hg

∂t
=
∂(ρvhv + ρaha)

∂t
(A.40)

Using ρg = ρa + ρv, assuming incompressible �ow and replacing ρv = Fϕ
we get:

∂Hg

∂t
=
∂ϕ

∂t
F (hv − ha) +

∂T

∂t

[
ϕ
∂F

∂T
(hv − ha) + Fϕ(cp,v − cp,a) + ρgcp,a

]
(A.41)

Using equation A.41 and A.42, equation A.34 becomes :

∂ϕ

∂t
F (hv − ha) +

∂T

∂t

[
ϕ
∂F

∂T
(hv − ha) + Fϕ(cp,v − cp,a) + ρgcp,a

]
=

−v(Aϕ∇ϕ+AT∇T )−∇ · (−Deϕa∇ϕ−DeTa∇T ) (A.42)

B Additional considerations on natural convec-

tion in presence of moisture

Additional considerations can be done using the nondimensional form of the
momentum equation. To do this, we can de�ne a nondimensional velocity

V =
vg

U
(B.1)

where U is a characteristic velocity, and a nondimensional spatial vector

X =
x

L
(B.2)

where L is a characteristic length scale. Using equation B.1 and B.2 along with
4.28 the nondimensionalization process leads to

1

U

∂(V)

∂t
+∇ · (V ⊗V) = ∇ ·

(
− pdI

ρgU2
+

µ

ρgLU
∇V

)
+

gρgL

ρgU2
(B.3)

where the last term can be rewritten as

Gr

Re2
= Ri

where Gr is the Grashof number, Re is the Reynolds number and Ri is the
Richardson number, which is the ratio of buoyancy forces over inertial forces.
When Ri � 1, the buoyancy e�ect can be neglected, and the problem can be
considered to be of pure convection. Even if density di�erences are usually taken
into account through a temperature di�erence, the �nal nondimensionalized
equations are exactly the same. This means that transition from laminar to
turbulent �ow occurs for the same critical Grashof number. In the case of a
vertical plate the critical Grashof number is between 108 and 109 according to
[41].
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C Space and time numerical discretization

C.1 Numerical di�usionsection

The system of coupled partial di�erential equations (A.9 and A.21 inside the
porous domains and 4.23 ,4.28,A.27 and A.42 inside the �uid domains) has to
be solved using a numerical schema which introduces approximation errors.

These approximation errors in the computed solutions are also known as
numerical di�usion or truncation errors [36].

For a simple example, we can consider the �rst order wave equation:

∂u

∂t
+ c

∂u

∂x
= 0 (C.1)

Where c is the velocity.
For the sake of notation simplicity we can use subscripts to indicate partial

derivatives:

ut + cux = 0 (C.2)

We can now choose to use the explicit Euler method for time di�erentiation,
which leads to:

u1 − u0 + c∆tu1
x = 0 (C.3)

with the superscript indicating the time step in which the solution is calcu-
lated.

We have not done any assumption on the spatial discretization so far, since
the e�ect of time and spatial discretization on the solution can be

discussed separately.
Equation C.3 is used by the numerical solver to �nd a solution. It can be

shown that this discretized equation introduces an error that depends on the
time step. Let's consider the second order Taylor series with respect to time

step:

u1 = u0 + ut∆t+ u0
tt

(∆t)2

2
(C.4)

and the �rst order Taylor series for ux:

u1
x = u0

x + u0
xt∆t (C.5)

Substituting in equation C.3, we have:

u0
t + u0

tt

∆t

2
+ cu0

x + c∆tu0
xt = 0 (C.6)

We can now obtain u0
xt and u

0
tt as function of u

0
xx. Di�erentiating the analytic

equation once in respect to x and once in respect to t, we can �nd:

utt = −cuxt (C.7)
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utx = −cuxx (C.8)

utt = c2uxx (C.9)

Substituting in the previous equation, we have:

u0
t + cu0

x = c2
∆t

2
u0
xx (C.10)

This shown that discretizing with a explicit Euler method introduces a
di�usion-like term in the discretized equation.

c2
∆t

2
(C.11)

is called numerical di�usivity. It's easy to see that this term will reduce linearly
with the time step, so equation C.10 reduces to equation C.2 for very small
time steps.

A similar procedure can be used for the spatial discretization, which intro-
duces

ch

2
u0
xx (C.12)

in the discretized equation, where h is the discretization length. If a �nite
volume method is used, additional approximations are necessary in order to
obtain the values of the variables and �uxes at cell boundaries. This additional
passage is not necessary using a �nite element method, in which only the values
at the nodes are used to compute the solution.

It is well known that a modi�cation of the discretized equation is possible in
order to achieve a smaller truncation error [36] (pg.117). However this can not
be easily done for non linear equations, or when a non �xed time-step algorithm
is used, as in the case of COMSOL.

C.2 Stabilization techniques

The energy and mass conservation equations are written in the form of a generic
scalar-convection transport equation

∂u

∂t
+ v · ∇u = ∇ · (c∇u) + F

The Péclet number, de�ned as

Pe =
vh

2c
(C.13)

where h is the mesh size, is a measure of the relative importance of the convective
e�ects compared to the di�usive e�ects; a large Péclet number indicates that
the convective e�ects dominate over the di�usive e�ects [39] .

As long as di�usion is present there is always a theorical mesh resolution
for which the discretization is stable. This means that oscillations due to steep
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gradient or space dependent initial conditions that the mesh does not resolve
can be removed re�ning the mesh.

In practice this method could require a very dense mesh, and for this reason
it is common practice to use stabilization methods. COMSOL uses various
stabilization methods by default in many pre-built physics interfaces, as well as
the laminar and turbulent �ow interfaces, but the general form, weak form and
coe�cient form interfaces lack a pre-built stabilization.

If the equations show an unstable behaviour, is therefore necessary to include
such a technique by adding a weak form contribution.

In the simulations performed in this thesis, even if the Péclet number largely
exceeded unity, the transport equations show a stable behaviour. The implemen-
tation of a subgrid scale method as described in [34, 12], showed little in�uence
over the results, thus it was omitted in this thesis.

C.3 Numerical in�uence of the material properties

Is widely recognized that the numerical quality of the solution is in�uenced by
the material properties since the non linearity of the problem. For example,
uncertainties in material property are identi�ed to be the main cause in the
discrepancy between simulations and experimental data in a study carried out
for IEA/ECBCS Annex 41(International Energy Agency/Energy Conservation
in Building and Community Systems) [24],[25]. Is indeed possible to show this
in�uence with a sensitivity study.

Since the equations uses material properties that are moisture-dependent,
it is important to ensure the limitations of those quantities, in case of little
oscillations of the relative humidity over the unity value or below zero.

This is particularly evident in the case of the water storage function. The wa-
ter storage function is a property of the porous material and is obtain by means
of experiments. Is therefore used as an interpolated function of discrete values.
However, is necessary to extrapolate this function, since if the value of φ slightly
exceeds unity during the computation, convergence could not be reached. This
is done keeping the same derivative with respect to relative humidity in ϕ = 1.

Another case in which is important to have a control over the value of relative
humidity is related to capillary pressure. The capillary pressure is expressed as
a function of ϕ through the Kelvin's formula:

pc = −ρwRvT ln(ϕ) (C.14)

Since for negative values of the variable ϕ equation C.14 loses physical mean-
ing, it is important to ensure the non negativity of ϕ.

For this reason, an additional variable C is introduced, de�ned as follows:

C(ϕ) =

{
eps, ifϕ < eps

ϕ, ifϕ > eps
(C.15)

where eps is the smallest number that can be used in calculations by the
computer. This is a pre-de�ned constant in COMSOL. Instead of equation
C.14, the following equation is employed in the model:
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pc = −ρwRvT ln(C) (C.16)
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