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Abstract

Abstract

This work summarizes the results of a research project involving a world-
leader producer of grinding systems for rolls to be used in hot and cold rolling.
The main aim of the research project was to develop an innovative software
aimed at controlling the grinding process to avoid vibrations (namely chatter)
occurrences, which result is a bad quality of the surface of the ground rolls.
In this project we proposed an in-process quality monitoring approach for
chatter identification to be used in the machine control software.

The traditional quality monitoring approach consists in the inspection of
the final product. However, in this way the identification of any problem
or deviation, that may occur during the process, takes place downstream
of the sampling of the produced parts, resulting in a consequent delay in
response to process errors. In recent years, the study of in-process SPC, i.e.
based on the analysis of sensor signals and data acquired during the process,
has received considerable attention. The analysis of in-process signals rather
than post-process measures gives the ability to quickly recognize deviations
from normal working conditions. However, this paradigm shift requires the
use of more sophisticated techniques rather the ones used in traditional SPC.

In this framework the SPC signals-based requires the adoption of mul-
tivariate techniques to summarize information content of the signals to quickly
detect a variation in the working conditions (i.e., a degradation in the quality
of the output). The idea of the work is to make use of different accelerometric
signals to identify the technological ‘signature’, which represents the process
behavior under normal working conditions. The approach to identify this
technological signature relies on the use of multivariate statistical analysis,
based on the principal component analysis technique (PCA).

Having defined the process signature, the control system reports alarms
when a change in the signature occurs, leading to a degradation of the output
quality. Great efforts have been done in finding an approach that is robust to
the variation of the process parameters (determined for example by the con-
trol parameters) which don’t affect the quality of the final product. Actually,
many techniques that ignore the robustness analysis as a key characteristics
of a quality control system, generate false alarms when process parameters
are varied, even if this variation doesn’t affect the output quality. The high
rate of false alarms, typical of these approaches, is the main cause of the
monitoring system’s deactivation. The thesis work is based on real industrial
data on which a comparison with different approaches has been conducted
to prove the effectiveness of the proposed approach.

ix



Abstract

Sommario

Questo lavoro riassume i risultati di un progetto di ricerca che ha coinvolto
un leader mondiale nella produzione di sistemi di rettifica per cilindri impie-
gati in laminazione a caldo e a freddo. Lo scopo del progetto consisteva nel
realizzare un software innovativo per controllare che, durante il processo di
rettifica, non si sviluppino vibrazioni (chatter) che causano una scarsa qualità
superficiale del cilindro rettificato. Abbiamo contribuito in questo progetto
proponendo un approccio di monitoraggio in-process da implementare nel
software di controllo della macchina per identificare il chatter.

L’approccio tradizionale del monitoraggio della qualità consiste, tipica-
mente, nell’ispezione del prodotto finale. Tuttavia, in questo modo l’identi-
ficazione di una variazione nel processo avviene a valle del campionamento
delle parti prodotte, che si traduce in un ritardo nella correzione dei pro-
blemi di processo. Recentemente lo studio dell’SPC applicato ai processi,
ovvero basato sull’analisi di segnali acquisiti durante il processo produttivo,
ha ottenuto notevole attenzione. L’analisi dei segnali durante il processo,
a differenza delle misure a valle, offre la possibilità di identificare più ve-
locemente variazioni nelle condizioni nominali di lavoro. Questo cambio di
approccio comporta una rapida e tempestiva risposta a situazioni di fuori
controllo ma chiede un salto di qualità nelle tecniche tradizionalmente usate
in ambito SPC. Implementare approcci SPC su segnali richiede tecniche mul-
tivariate che consentano di sintetizzare il contenuto informativo presente nei
segnali per individuare rapidamente condizioni di funzionamento degradato.

L’idea del lavoro è quindi partire da diversi segnali (provenienti da accele-
rometri) e identificare la firma tecnologica, cioè il comportamento sistematico
che caratterizza il processo in condizioni di funzionamento nominale. Que-
sta firma tecnologica nel lavoro è identificata attraverso l’uso di tecniche di
analisi statistica multivariate basate sull’analisi delle componenti principali.

Nota la firma tecnologica, il sistema identifica con allarmi i cambiamenti
della firma che comportano il peggioramento della qualità in uscita. Parti-
colare enfasi è data nel lavoro all’identificazione di un approccio robusto a
cambiamenti del processo (dovuti ad esempio a variazioni nei parametri di
controllo) che non inducono cambiamenti nella qualità del prodotto. Infatti,
molte tecniche che non considerano l’analisi di robustezza come aspetto ri-
levante di un sistema di controllo qualità, segnalano allarmi al variare delle
condizioni di processo anche quando questa variazione non si traduce in un
peggioramento della qualità. Il rischio di questi approcci è un eccessivo tasso
di falsi allarmi che porta alla disattivazione del sistema di monitoraggio.

La tesi si basa su dati reali e su un confronto di prestazioni con metodi
alternativi esistenti per dimostrare l’efficacia del metodo proposto.

x



Introduction

‘It is dark in front of the grinding grain’
Toenshoff & Grabner

The traditional quality control approach consists in the inspection of pro-
duced parts, typically sampled at regular intervals, evaluating the product’s
characteristics of interest. By monitoring the evolution of these character-
istics it is possible to verify if the process is actually in control. Monitoring
done in this way, is, however, focused on the inspection of the final product,
that is the final result of the production process, although the objective of
quality monitoring is to maintain the process itself under control.

This type of approach is commonly used in industry, but in some applic-
ations it may present some limitations. The identification of any problem or
deviation that may occur during the process only takes place downstream of
the sampling of the produced parts. The result is a consequent delay in the
response to process errors, which, in the meantime, has continued to pro-
duce parts that may not be acceptable. This delay leads to a waste of time
and materials, resulting in cost increase and productivity reduction for the
enterprise.

Statistical Process Control (SPC) has had a long history of successful
use in discrete parts manufacturing. Indeed in continuous processes, such as
those found in the chemical and process industries, or in long-run manufac-
turing processes, the Engineering Process Control approach (EPC) is often
used to reduce variability. This approach is based on process compensation
and regulation, in which some manipulatable process variable is adjusted
with the objective of keeping the process output on target.

In recent years, the study of in-process SPC, i.e. SPC procedures based
on the analysis of sensor signals and data acquired during the process, has re-
ceived considerable attention. This is mainly due to an important factor: be
more competitive. This, coupled with the advent of improved on-line sensor
technology and automation and the increase of on-board computational cap-
ability has led to a continuous growth of studies on the in-process monitoring
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and controlling.
The analysis of in-process signals rather than post-process measures gives

the ability to quickly recognize deviations from normal working conditions
which may result into lower costs and less wastes, thanks to possible auto-
mated corrective actions applied during the process.

Our works takes place in this frame of in-process monitoring of sensor
signals. The aim of this work is to monitor the surface quality in cylindrical
grinding process on rolls for hot rolling machines, by monitoring the signals
acquired during the process. The final characteristics that distinguish a good
roll from a not acceptable one include the surface roughness, the waviness,
the presence of burned areas, and the presence of other anomalous surface
patterns, in addition to large scale geometrical errors. Monitoring the sur-
face of the roll is crucial; in fact, a milled roll which presents noncompliant
values of roughness, is not suitable to be used in hot or cold roll milling. The
presence of chatter marks on the roll’s surface highly affects the performance
of the rolling machines not only producing several wastes but also damaging
the machine itself. The laminated parts, milled with a waved roll, present the
same geometry on their surface and might be affected by dangerous internal
stress that can be generated. These quality features are the result of the
roll grinding process, that is why it is strategic to monitor the stability of
the process itself. Currently, these quality characteristics are monitored by
means of qualitative approaches. Usually, the operator observes during the
grinding process the ripple of the current absorbed by the machine through
time and derives a subjective consideration about the ongoing process sta-
bility. The experience allows him to know if anomalous vibrations have been
established, however this monitoring approach is unreliable and stands only
on empirical basis. Indeed, the major standardized controls are done post-
process where a subjective analysis of the surface is coupled with a roughness
measurement on the worked roll. To overcome the subjective in-process qual-
ity supervision, we propose an approach for monitoring a grinding process
which, fusing informations from different process signals, detects variations
from good working conditions. The purpose is the identification of process
abnormalities, such as chatter development, that lead to rework a roll.

Chatter vibrations, Inasaki says [14], of the various difficulties, is one
of the most crucial ones because it hinders higher form accuracy as well as
better surface finish of the parts ground, which both are the main objectives
of grinding.

Chatter is a vibrational phenomenon which arises in machining grind-
ing processes for specific combinations of cutting parameters. It consists
of unstable, chaotic motions of the tool or of the workpiece and by strong

2
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anomalous fluctuations of cutting forces. The onset of chatter may cause ab-
normal tool wear or tool breakage, damage of both the tooling structure and
the spindle bearings, poor surface roughness and poor dimensional accuracy
of the workpiece [20].

According to Altintas, [2], the most common vibrations are due to self-
excited chatter vibrations, which grow until the tool jumps out of the cutting
zone or breaks because of the exponentially growing dynamic displacements
between the tool and workpiece. The presence of chatter vibrations is a very
important phenomenon because, when they are present, the process is very
unstable, producing large-amplitude, oscillating cutting forces, greatly affect-
ing the surface quality.

The chatter is of course an assignable cause-type disturbance which leads
to an increase of the variability of the products. Poor surface roughness and
poor dimensional accuracy mean wastes, which translates directly in costs.

The traditional SPC approach would have monitored the surface quality
of the roll downstream all the operations, measuring the roughness obtained,
building a control chart to monitor this quality characteristic. However, the
new trend is to use sensors to monitor its state during the operations and
our case study focuses in this area of interest. Specifically, our attention
is focused on the integration of a chatter detection system into the control
unit of machine tool. The integration of an SPC based approach, capable
of detecting the chatter phenomenon, with an EPC module, that controls
an intelligent grinding machine, leads to a great improvement in machining
precision.

We will propose a method for extracting informations from the grinding
machine, through the acquisition of the signals of the sensors mounted on
the machine: these signals allow the monitoring of the process variables of
interest that characterize both the behavior & the state of health of the
machine, and the stability & quality of the process. As several sources of
information will be used, we will face the problem of managing and organizing
large amounts of data provided by the sensors, and finding the best way to put
them together. The technique that helps to solve the problem of merging data
from multiple signals is known in literature as sensor fusion. We consider an
approach to integrate information from different sources, and, at the same
time, to achieve a synthetic characterization of the process. It consists of an
extension of Principal Component Analysis (PCA) that allows dealing with
multi-channel signals. It works by transforming a set of data from multiple
sources into a synthetic feature set that explains the correlation structure
of original data. These data come from the accelerometers placed on the
machine and from the CNC unit that controls it. Signals coming from a
manufacturing process can be sampled at high frequency leading to a big

3
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amount of data that has to be considered in the statistical analysis. For
this reason, the common approach is to conduct the analysis not on the raw
data but on a selected group of synthetic indicators that allow to catch and
identify some interesting features [27].

Monitoring techniques based on multivariate analysis and data fusion
allow to study the process, exploiting the relations between the characteristics
of the process itself and the various sources of information, thus making the
results of analysis more complete. It is known that process signals often
present characteristics of dependency between them, which in most cases
considerably affect the evolution of the overall system. For this reason it is
interesting to identify and monitor these features in order to estimate the
quality of the ongoing process.

An ‘in process’ monitoring system, based on the implementation of a
multivariate control chart on signals process, will be designed. The SPC
determines if any change occurs in the process or in the state of the machine.

The intent is then to provide a complete monitoring system, reliable and
robust to external disturbances and to dependency on operating conditions
of the process and, for this reason, we use different sources of information, i.e.
sensors positioned in different points of the machine, which detect different
characteristics.

One of the challenges that we faced during the monitoring system design
has been trying to isolate the effect of chattering vibration from new modes of
vibration induced by changing process input parameters. In fact varying pro-
cess parameters, such as wheel speed or infeed, can cause a different ways in
which the machine vibrates. A not sufficiently robust system could interpret
any on-line parameter modification as a deviation from in-control conditions,
leading to a large number of false alarms. To try to solve this problem, which
is crucial for an industrial application, we looked for a subset of indicators
that could be insensitive to the variation of process parameters but sensitive
to chatter vibrations. By designing an experimental campaign, that we run
on a grinding machine, we have been able to select a reasoned subset of in-
dicators, suitable to be implemented in the monitoring approach. Thanks to
the availability of real industrial data we actually tested and identified the
behavior of these indicators during working conditions.

Fusing these indicators together, by means of multivariate statistical ap-
proach, we investigated the design of a more robust monitoring system then
the one currently in use for chatter monitoring. It is cheaper because it
doesn’t require highly skilled human supervision and it is objective because
it is based on a statistical model. Furthermore this approach is not only
easier to be implemented, compared to what is currently proposed in the
specific literature, but it represents a competitiveness driver for the machine

4
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manufacturer and cost efficiency driver for the machine user. A machine
that is able to identify process instability is a machine that reduces wastes of
time and materials, then is a much valuable product to be sold on the market.

The document is organized according to the following structure:

Chapter 1 introduces the reader into the grinding process. Then a brief de-
scription of the chatter phenomenon and its origins is provided. Then, a
review of approaches used in literature for chatter detection in grinding
is proposed.

Chapter 2 explains the theoretical framework of the sensor fusion approach
on which this work is based, providing a review of the technique and
the assumptions adopted. Then, the development of the strategy used
to monitor the process is proposed.

Chapter 3 describes the main points of the industrial case; first the machine
set-up and the signals used for the process monitoring are explained;
then the focus moves on the role of the signal-based SPC approach in
the industrial application.

Chapter 4 discusses the strategy that is proposed to detect the development
of the chatter phenomenon. The experiments made on the machine
are explained and the assumption and methods used for the dataset
characterization are summarized. Then, synthetic indicators calculated
on the accelerometric signals are proposed.

Chapter 5 shows the results of the application of the proposed approach
on some tests.

Chapter 6 shows a further approach that could be used in the analysis, and
then it will be tested.

5



Chapter 1

A state of the art on chatter detection

in grinding

1.1 Grinding process

Before explaining the industrial case it is important to briefly focus on the
basics of the grind process and the specific issue for which the statistical
process control has been developed.

Grinding is a term used in modern manufacturing practice to describe
machining with abrasive wheels, pads, and belts. Grinding wheels come
in a wide variety of shapes, sizes, and types of abrasive [28]. Grinding is
essentially a chip-removal process where the cutting tool is the single abrasive
grain. Abrasive are generally the last operations conducted on a workpiece.
This type of process, however, is not only limited to the surface finishing or
to small material amount removal; in fact, it can be used for the removal of
relatively high quantity of materials. That is why it is important to separate
two kind of grinding: roughing and finishing.

The common grinding operations are:

- surface grinding;

- cylindrical grinding;

- internal grinding;

- centerless grinding.

The selection of a grinding process for a particular application depends
on the workpiece shape and features, size, ease of filtering, and production
rate required [17]. Each of these typologies can be furthermore classified by
the movement direction.

Surface grinding is one of the most common operations, generally in-
volving the grinding of flat surfaces. Typically, the workpiece is secured on a
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magnetic chuck attached to the worktable of the grinder. A straight wheel is
mounted on the horizontal spindle of the surface grinder. Traverse grinding
occurs as the table reciprocates longitudinally and is fed laterally (in the
direction of the spindle axis) after each stroke.

In cylindrical grinding, the external cylindrical surfaces and shoulders of
workpieces such as crankshaft bearings, spindles, pins, and bearing rings are
ground. The rotating cylindrical workpiece reciprocates laterally along its
axis to cover the width to be ground. In roll grinders used for large and long
workpieces such as rolls for rolling mills, the grinding wheel reciprocates. The
workpiece in cylindrical grinding is held between centers or in a chuck, or it
is mounted on a faceplate in the headstock of the grinder. For straight
cylindrical surfaces, the axes of rotation of the wheel and workpiece are
parallel. The wheel and workpiece are driven by separate motors at different
speeds. Long workpieces with two or more diameters can be ground on
cylindrical grinders [17].

In internal grinding, a small wheel is used to grind the internal surface
of the part. Centerless grinding is a high-production process for continu-
ously grinding cylindrical surfaces in which the workpiece is supported not
by centers or chucks, but by a blade.

In fig. 1.1 it is shown a scheme of surface grinding and cylindrical grind-
ing.

Workpiece

vw

Wheelv s

(a) Flat surface grinding

Workpiece Wheel

vw

vs

(b) Cylindrical grinding

Figure 1.1: Two types of grinding: surface and cylindrical.

In this study, we will focus on the roughing phase in cylindrical grinding
because this very first stage, that leads to the final product, may highly
affects its quality and it may be affected by process instability phenomena.
Grinding in fact is a strategic process for high-technology applications. It is
in use in all the manufacturing processes that require high surface quality.

Tab. 1.1 shows the main four categories of roughness in which the grinding

7
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Table 1.1: Surface roughness for grinding operations.

Precision Fine Medium Rough

[µm] [µm] [µm] [µm]

0.1 0.2 - 0.4 0.8 - 1.6 3.2 - 12.5

operations are divided. As it is possible to see, in this type of process the
roughness moves in a large range. The grinding process can reach different
levels of roughness, in function of the final application of the grinded piece.
In some applications the required roughness is obtained with simple roughing
passes, in other cases, when levels of roughness between 0.4 to 0.1 µm are
required, finishing passes are performed. In this study, as it will be explained
in chapter 3, the final roughness required is Ra = 0.6 µm ± 10%, that calls
for operations between the medium and fine range.

Roughness can be reduced down to mirror finishes and optical quality of
flatness. The achievement of this quality depends on the roughness of the
abrasive, the quality of the grinding machine and the removal rates employed.
Grinding can ensure good quality where other processes may have difficulty
meeting specifications. Quality is a term that includes all aspects required
for parts to function correctly, then accuracy of dimensions and surface finish
are obvious aspects of quality of a grinding process.

Despite all this, the grinding process is frequently considered as one of
the most complex and difficult to control manufacturing processes due to its
complex, nonlinear and stochastic nature. We will discuss this complexity in
the following section, focusing on the chatter phenomenon which is the main
issue of this work.

1.2 The chatter phenomenon

Vibrations represent a very important problem that afflicts the grinding pro-
cess, because they deteriorate the wheel conditions, decreasing its perform-
ance and directly affecting the surface finish. Many different factors can cause
vibrations, for example components of machinery or even external sources,
such as nearby machinery; moreover, the grinding operation itself can cause
vibrations from the process, and this specific phenomenon is called regener-
ative chatter [17]. In Figure 1.2, are shown the types of vibration involved
in this type of process. This kind of chatter is one of the most important
cause of vibrations, generated by an excitation of the system that grows, and
it occurs at the natural frequency of the spindle and workpiece.

Grinding chatter is one of the most critical errors in grinding operations

8
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workpiece

grinding wheel

self-excited

vibration

internal forced

vibration

external forced

vibration

Figure 1.2: Chatter vibrations in grinding processes.

and one that has a strong impact on the ultimate geometrical workpiece
accuracy [14]. In fact, chatter vibrations leads to poor surface quality, in-
creased wheel wear and additional time and costs, due to the grinding passes
aimed at removing the chatter marks on the part; moreover it can reduce
the accuracy and the productivity of the machinery. For all these reasons,
chatter continues to be a problem in grinding.

Vibrations generate chatter marks or waviness on the ground surfaces, as
a light wave of the surface. The waviness is the effect of process vibration
during grinding. When the system vibrates at a single frequency (as in the
usual case of forced or chatter vibration) the wheel and the roll oscillates
periodically in the radial direction modifying the actual depth of cut i.e. the
actual infeed. Periodic surface defects are then generated in the form of
waviness on the roll and, eventually, on the wheel surface. The theoretical
shape of the waviness is sinusoidal. In Figure 1.3, it is shown a cylinder
affected by waviness, where is visible that the cylindrical surface has alternate
light and dark streaks.

General guidelines have been established to reduce the tendency for chat-
ter in grinding, especially using soft-grade wheels, dressing the wheel fre-
quently, changing dressing techniques, reducing the material-removal rate,
and supporting the workpiece rigidly.

Generally, an experienced operator might detect, downstream of the pro-
cess, if the chatter phenomenon was generated during the grinding opera-
tions, looking at the final roll surface. However, this procedure is often diffi-
cult; in fact, some times the waviness on the cylinder is visible with the naked

9
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Figure 1.3: Chatter marks on a cylinder.

eye, while in other cases, observing the phenomenon requests the use of some
lamps, oriented in a specific way. This approach however can only be used
post-process. A second method currently used for chatter detection is the
observation of some signals acquired in-process, through the man-machine
interface. Despite this technical know-how developed by the single operator,
it is not always easy to detect the growth of this phenomenon, which some-
times may be detected only when the job has been completed. However,
both methods are subjective, qualitative and mainly unreliable. In any case,
these detection capability requests proper skills and knowledge that the op-
erator acquires during the time. Moreover, the show up of chatter marks on
a cylinder represents a direct cost for the manufacturer which has to rework
the workpiece leading to a waste of time and money. Recognizing as soon as
possible the growth of the phenomenon is essential.

The development of accelerometric and acoustic emission sensors, and
the continuous improvement of real-time computational capability offers the
possibility to adopt other innovative techniques, that use specific sensors, to
monitor the vibrations during the grinding process, helping the operator in
reducing the variability of the final product. This possibility has become of
great interest in many areas of manufacturing, and it has become a reality
in some processes. For what concerns the grinding process, due to its com-
plexity detailed before, this automatic monitoring and control is still on open
project.

In this frame, the aim of our study is to fuse the large amount of data
coming from a fully sensor-equipped grinding machine to try to achieve a
robust, reliable and synthetic characterization of the process.

10
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The goal is then to develop an SPC approach for the chatter monitoring
that might be part of an EPC for grinding machines acting, for example,
in hot rolling plants where the roll quality is mainly related to their surface
waviness. SPC and EPC have to work together, the first monitoring the
vibrations and the second suggesting or automatically adjusting, through a
direct connection with the machine numerical controller, process parameters
in order to maintain the waviness under a prescribed threshold.

1.3 State of art

In literature, it is possible to find a wide variety of studies that engage the
problem of monitoring a grinding process. Analyzing the literature regarding
these issues, different aspects can be distinguished with which to observe this
process.

There are some studies that are focused on monitoring techniques to make
the grinding process and the dressing process more reliable and economical.
In this context, studies are concentrated upon the signals monitoring, to ex-
tend the wheel life and to optimize the grinding operations cycle, such as
the works made by Inasaki [13], Tönshoff et al. [29] and Karpuschewski et
al. [18]. Other authors have instead focused their studies on the vibrations
monitoring during the grinding operations. Among these authors, the most
important contributions were made by Inasaki [14], Gradišek et al.[9] and
Gonzalez-Brambila et al. [8].

In the work of Tönshoff et al. [29] a review and classification of which
signals and quantities are most suitable to fulfill a monitoring task is pro-
posed. When choosing a suitable sensor, they advise that grinding process
variants such as internal, external or surface grinding, the kind of material to
be machined and its sensitivity to surface integrity, or the geometric quality
which has to be achieved, have to be taken into consideration. Furthermore
it is pointed out that monitoring the grinding process means generally that
one or several output signals are observed to follow different targets such as
optimizing the process with respect to machining costs or workpiece quality.
Then a classification of process signals and output values that can be used
for monitoring purposes is given in fig. 1.4a.

Moreover Tönshoff proposes a classification of the approaches that can
be followed in process monitoring for modeling output quantities related to
process quantities. As summarized in fig. 1.4b, models can be divided into
two origins, those developed based on physical relationships and those based
on empirical means. A physical model is developed from an understanding
of the fundamental physical principles underlying the process. With spe-
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cific objectives in mind, relevant physical processes are selected on the basis
of process knowledge and a qualitative model is worked out. Based on the
conformity to physical laws, the physical model is established using a math-
ematical function of the qualitative model. On the contrary, an empirical
model is established by the means of measured values which have been ob-
tained in grinding experiments. With respect to the objectives, relevant input
and output quantities of the grinding tests are registered. Subsequently, a
model type is chosen and the relationship between input and output of the
model are identified using experimental data. The work concludes that a
combination of physical and empirical models is of extremely high relevance
for grinding.

Measurable Signals

- forces

- grinding power

- surface temperature

- acoustic emission

- vibrations

- wheel topography

- ...

Process signals:

- dimensions, shapes

- microgeometry

- surface integrity

- wheel wear

- coolant properties

- ...

Output values:

(a) Signals and quantities for monitoring
purposes

Methods for process modeling

- F’n model

- Rz model

- hcu model

- ...

Mixed

models:

- correlations

- fuzzy logic

- neural nets

- ...

Empirical

models:

- first law

  thermodynamics

- Carslaw/Jaeger

  model

- FEM / FDM

- modular dynamics

Physical

models:

(b) Methods of process modeling

Figure 1.4: Signals & methods for monitoring purposes by Tönshoff [29].

Inasaki in 1999 [13], proposed an approach for minimizing the grinding
cycle time while meeting the requirements for the ground part quality, de-
tecteding the problems in the grinding process. To do this, in his work, an
approach to fuse two different types of sensors on the machine is carried out:
the acoustic emission sensor (AE) with a power one. An intelligent grinding
database, that makes use of Artificial Neural Networks (ANN), will auto-
matically optimize the grinding cycle. Inasaki claims that there are many
set-up parameters in addition to the grinding wheel and grinding fluid selec-
tion to be predetermined, such as wheel surface speed, workpiece speed and
infeed-rate. It is pointed out in the paper that, among those parameters,
the most influential on the grinding result is the infeed-rate. For these reas-
ons the simultaneous use of two different sensors is proposed: the AE one
will be used for the detection of contact between the grinding wheel and the
workpiece, and the chatter vibration, which must include the high-frequency
component of the signal, and the surface roughness deterioration. The other

12
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one will be used for detecting grinding burn.
Karpuschewski et al. [18] discussed a monitoring approach based on data

fusion from different sensors sources and artificial intelligence. They propose
to provide with sensor the machine, getting more information of the process.
They choose to implement an AE sensors and a power sensor. Monitoring
the wheel life is very important, because when a grinding wheel exceeds its
life time different kinds of disturbances, e.g. chatter or increased ground part
surface roughness, may occur. To do this, in this paper the FFT of the envel-
oped AE signal is analyzed. To minimize the idle time instead, a fuzzy based
system is used, built on power parameters and the low frequency component
of the AE signal. The AE signal and the power signal are effectively fused
for optimizing the grinding cycle. For example, the AE signal is used for
minimizing the time constant, while the power signal is used for maximizing
the infeed rate of the rough grinding process.

Until now, we have proposed a review of the literature that takes into
consideration many general aspects on the grinding monitoring; we will focus
now on a specific review of the works regarding the chatter detection and
monitoring.

Inasaki [14], shows in his work that there are many input parameters
that might affect the chatter generation; on the other hand, he illustrates
that there are many different measurement tools that can be used to detect
the chatter phenomenon. A distinction between different sensors is made:

- Sensors for process quantities : forces, power, acceleration, temperat-
ure or acoustic emission are quantities that, with dedicated sensors,
is possible to monitor during the grinding operations. For chatter de-
tection, the most appropriate to apply are accelerometer, force and
acoustic emission sensors. For these kind of three sensors usually a
FFT analysis of the recorded signals is conducted.

- Sensors for the grinding wheel : during the process, it is possible to
monitor the state of the wheel with a laser triangulation sensor. In
fact, the macro geometry of the grinding wheel plays a major part in
the occurrence of chatter.

- Sensors for the workpiece: to monitor the chatter generation, many ap-
proaches to directly measure the waviness on the roll during the process
are studied. However the detection of waviness in the circumference of
symmetrical rotation parts during grinding is more complex due to the
demand for a significantly higher scanning frequency. For this reason
some studies introduce innovative contact measurement methods, other
studies instead propose optical measurement approaches.

In 2003, Gradišek et al. [9] suggest a method to automatically detect
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chatter in grinding. In this study, they compare the performance of two
different indicators of chatter: the coarse-grained information rate (CIR)
indicator, calculated from fluctuations of the normal grinding force Fn, and
the entropy indicator, calculated from a power spectrum. In conclusion of the
work, Gradišek et al. show that the performance of the proposed indicators
is comparable, and they both are suitable for chatter detection. In contrast
with the calculation of the RMS acoustic emission signals, that indicate only
the cases of strong, fully developed chatter, CIR and entropy indicators detect
chatter already in its early, developing stage, even before the workpiece has
been damaged. However, this method, even if based on a threshold approach
and not a statistical one, it is not free of false alarms. This false alarms
are caused by harmonic vibrations in the measured signals which become
pronounced in the absence of chatter vibrations but are not associated with
them.

Another different approach, that has the same aim of chatter detection,
has been studied by Gonzalez-Brambila et al. [8]. In this work, a technique
for chatter detection by means of waviness on-line measuring is presented.
Waviness is measured with a mechanical stylus profiler featuring a diamond
tip; the output signal is later converted to digital form and transformed to
the time–frequency domain by means of the wavelet transform, allowing its
coefficients to grow as a function of surface defects and highlighting chatter
marks. The signal is analyzed with a Daubechies 4 wavelet. The fourth
level is used for chatter detection. The method was validated by extensive
experimentation with actual production parts, and the authors claim that it
can be easily integrated into the production process for manufacturing and
quality control. This approach is not process quantities oriented but feature
dimension oriented and then it doesn’t monitor the growth of chatter but
only the actual presence.

A second approach that uses the wavelet decomposition is used by Yao
et al. [31]. Differently from the previous work, in this case the identification
of chatter is based on accelerometric data and then is considered to be a
process quantities oriented model. The authors present an intelligent chat-
ter detection system based on signal analysis through wavelet decomposition
and chatter condition identification through Support Vector Machine (SVM).
After wavelet decomposition of the accelerometric data, two indicators are
calculated: standard deviation of wavelet transform and wavelet packet en-
ergy ratio. Making use of these two indicators, a method based on chatter
recognition with SVM is built. After that, a training phase is realized, which
is followed by a testing phase, which shows an accuracy rate of about 95%
for machining state recognition.
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Chapter 2

The PCA Approach: a theoretical

framework

2.1 PCA as a multi-sensor fusion approach

In the previous chapter we have seen some approaches followed in the chatter
monitoring literature. Many authors proposed the usage of multiple sensors
to detect the chatter phenomenon, but in most of the case empirical threshold
methods are considered to identify the growth of vibrations during the grind-
ing process. Thanks to the continuous evolution of integrated sensor equip-
ments, together with the increase of on-board computational capability, we
have achieved the possibility of in-process data analysis to monitor and con-
trol manufacturing processes evolution such as the development of chattering
in grinding. Machines are being equipped with different sensors capturing
various process features during working conditions, because making use of
a signal from a single drive might not be reliable. On the other hand the
sensitivity of signals from different drives may change depending on sev-
eral process factors; for these reasons the integrated monitoring of multiple
signals with multivariate techniques allows capturing correlation among dif-
ferent sources, leading to a more effective process monitoring during different
operative conditions.

The main goal of multi-sensor data fusion for process monitoring con-
sists, then, in extracting the knowledge about the working conditions of the
machine and the quality and stability of the process, which is somehow bet-
ter than the one which could be provided by a single signal, or by multiple
signals when no actual data integration is applied [10].

The integrations of these multi-sensor data, acquired during a roll grind-
ing process, will be based on an extension of the Principal Component Ana-
lysis (PCA) technique, called vectorized PCA. With PCA, informations com-
ing from machine sources will be fused to identify good working condition
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patterns. These patterns will be monitored through a multivariate control
chart with empirical control limits with the purpose of detecting a precise
process cause of variation: the chatter phenomenon.

Along this analysis important issues have to be faced with, such as the
time-varying nature of grinding processes, the modification of the wheel geo-
metry, the change of cutting conditions and other working parameters. PCA
can be an appropriate methodology to investigate correlations between sig-
nals pattern on which a robust monitoring process can be built.

Before explaining the industrial case on which this approach is intended to
be tested, we will briefly provide a review of the technique and its assumptions
adopted in this work. Hence the monitoring strategy, that has been applied
on real industrial data, is detailed.

2.2 The fundamentals of the PCA technique

Principal Component Analysis is probably the oldest and best known of the
techniques of multivariate analysis. It was first introduced by Pearson (1901),
and developed independently by Hotelling (1933). Even if we make use of an
extension of the traditional PCA, the basic technique remains the same. The
central idea of Principal Component Analysis is to reduce the dimensionality
of a data set in which there are a large number of interrelated variables,
while retaining as much as possible of the variation present in the data set
[16]. This reduction is achieved by transforming the data set to a new set
of variables, the principal components, which are uncorrelated, and which
are ordered so that the first few retain most of the variation present in all of
the original variables. Computation of the principal components reduces to
the solution of an eigenvalue-eigenvector problem for a positive-semidefinite
symmetric matrix.

This apparently simple technique has a wide variety of different applica-
tions, and it has been used even in many industrial applications as a support
for on-line monitoring of multivariate processes. For example Nomikos and
MacGregor in 1995 proposed an approach for monitoring batch processing
using an extension of the PCA called Multiway PCA [24]. In 2007, Colosimo
and Pacella proposed a method that uses Principal Component Analysis in-
stead of regression to identify patterns in geometric profile data [5]. Further
development of PCA are in the approach of Colosimo and Grasso where a
PCA-based multivariate SPC approach to auto-correlated data is proposed,
making use of a Moving PCA based on the “moving time window” concept
[11]. Recent works make still use of the PCA technique, extended to be used
in a multi-sensor based condition monitoring approach for tool breakage de-
tection in milling of hard-to-cut materials. [10].
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Despite the different extensions of the principal component analysis tech-
niques that are proposed in literature, they are based on the same idea of
making use of orthogonal linear transformations that transforms the data to
a new coordinate system such that the greatest variance by any projection
of the data comes to lie on the first coordinate, the second greatest variance
on the second coordinate, and so on. A complete description and further
developments of this technique can be in found in [16] and [15].

To introduce the basis of the PCA theory we refer to x as a vector of
p random variables. These variables are, in this case study, observations of
different signals sources. The variances of the p random variables and the
structure of the covariances or correlations between the p variables are of
interest and we want to monitor their evolution during the process.

We refer then to

X = [X1, X2, . . . , Xk, . . . , XN ]
T

as a matrix of N observations of multivariate vectors Xk collected during the
process where

Xk = [Xk,1, Xk,2, . . . , Xk,P ]
T

where p = 1, . . . , P is the number of monitored variables at the time k =
1 . . . N .

We make use of a portion of X that we define X{1:M} as (M × P ) matrix
of M < N in control observations that are used to generate the reference
PCA model:

X{1:M} =




X1,1 . . . X1,p . . . X1,P
...

. . .
...

. . .
...

Xk,1 . . . Xk,p . . . Xk,P

...
. . .

...
. . .

...
XM,1 . . . XM,p . . . XM,P




Dealing with different sources of informations to be analyzed with PCA,
it is a common practice, when columns of the X matrix are referred to
different quantities, to work with the standardized X̃ matrix that can be
easily calculated as follows:

X̃k,p =
Xk,p − X̄{1:M},p

σ{1:M},p

where X̄{1:M},p is the mean value of the pth variables and σ{1:M},p is the
standard deviation of the pth variables from the same data matrix.
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The first step after having standardize our values is to look for a linear
function α1

′
x, of the elements of x, having maximum variance, where α1 is

a vector of p constants α1,1, α1,2, . . . , α1,p so that:

α1
′
x = α1,1x1 + α1,2x2 + . . .+ α1,pxp =

p∑

k=1

α1,kxk

The procedure goes on looking for a linear function α2
′
x , uncorrelated

with α1
′
x having maximum variance, and so on, so that at the kth stage a

linear function αk
′
x is found that has maximum variance subject to being

uncorrelated with α1
′
x,α2

′
x, , . . . ,αk−1

′
x,. The kth derived variable, αk

′
x is

the kth PC. Up to p PCs could be found, but it is hoped, in general, that
most of the variation in x will be accounted for by m PCs, where m ≪ p.

In practice it is quite usual that the vector of random variables x has an
unknown covariance matrix Σ, for this reason it is replaced by the sample
covariance matrix S that can be calculated as follows:

S{1:M} =
1

M − 1
XT

{1:M}X{1:M}

For k = 1, 2, . . . , p then the kth PC is given by zk = αk
′
x where αk is an

eigenvector of S corresponding to its kth largest eigenvalue λk.
To derive the form of the kth PC αk

′
x, we have to find the vector αk that

maximizes var(αk
′
x) = α

′
kSαk. It is clear that the maximum can not be

achieved for finite αk so a normalization constraint must be imposed. The
constraint used in the derivation is α

′
kαk = 1, that is, the sum of squares of

elements of αk equals to 1.
As a result, in other words, the PCA consists then in performing a spectral

decomposition of the sample correlation matrix S{1:M} which means comput-
ing the (P × P ) diagonal eigenvalue matrix Λ and the (P × P ) eigenvector
matrix A satisfying the relationship:

A
T
S{1:M}A = Λ

where A =



α1,1 . . . α1,p
...

. . .
...

αp,1 . . . αp,p


 and diag(Λ) = [λ1, λ2, . . . , λp]

In this work we will use the term ‘principal components’ for the derived
variables zk = αk

′
x, and refer to αk as the vector of coefficients or loadings

for the kth PC.
The kth eigenvalue λk represents the variability described by the kth PC,

whereas the kth column of the eigenvector matrix A represents the unit vector
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of the kth PC bearing orthogonal directions in the transformed variable space.
Then, the kth PC is defined as follows:

Zk = A
TXk = [zk,1, . . . , zk,p, . . . , zk,P ]

T

The goal of this approach is to retain just the most important PCs in
order to reduce the dimensionality of our input channels and fuse them in
an appropriate way. This can be done selecting the m PCs associated with
larger variance. The selection of number is a key topic in literature dedicated
to PCA [16] [15], and several approaches have been proposed. Two simple
methods that will be followed and considered in this selection procedure are:

- Computing a Pareto chart on the eingenvalues and using a threshold
to select the m PCs;

- Kaiser’s rule which suggest to choose the number m by retaining the
PCs with corresponding eigenvalue larger than the overall eigenvalues
average.

Having selected m PCs, we can reconstruct the original standardized X̃k

vector by computing:

̂̃Xk =
m∑

p=1

zk,pαp

where αp is the pth eigenvector i.e. the pth column of the A matrix.

2.3 Development of the statistical monitoring strategy

The PCA allows to represent the correlation between the different signals
and to summarize the important informations that are captured in a limited
number of new features. A key factor of the PCA is that it provides the
possibility of results interpretations, since the results are linear combinations
of the original variables.

We believe that a multichannel extension of the PCA represents an ef-
ficient sensor fusion approach that is able to deal with different sources of
informations. We propose then to use an extension of the traditional PCA,
that is called vPCA, which, in this case, is based on the transformation of
multi-dimensional dataset in a two-dimensional matrix by concatenating the
variables associated to the channels.

The statistical techniques, which come from PCA and the control charts
that are based on it, request the hypothesis of temporal independence between
the observed samples. Of course in our application this hypothesis is viol-
ated due to the nature of the in-process approach. We still use this technique
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because in many industrial applications, such as the one we are working on,
there is the need of detecting unexpected changing in the process conditions
while long term oscillations are considered as normal working fluctuations.

The Principal Component Analysis is normally applied directly to raw
data channels, but, in this framework of vectorized PCA, we propose to pre-
process the signals, extracting synthetic indicators, so that they can identify
specific process features. Furthermore these indicators may reduce the prob-
lem of the outliers, typical of the signals data, and may represent a smart
summarization to deal with high frequency rates of information when build-
ing a control charting system. In general, the extraction of synthetic indic-
ators can lead to possible losses of information, in addition to requiring a
further step in pre-processing raw data. Despite this, in some situations of
practical interest, a good choice of indicators can provide acceptable per-
formance. For this reason we will discuss in section 4.5.1 the performance
of the indicators proposed in sections 4.4.1 and 4.4.2, because selecting an
inappropriate set of them may lead to detect sources of informations that
are not related to the purpose of the system. On the other hand, a reasoned
selection of indicators may resolve a typical issue faced during the design of a
statistical in-process control approach: the dependency of the process output
signals from the variation of the process input parameters.

The statistical monitoring strategy that we propose can be summarized
in fig. 2.1, where we present the sequential steps that bring from the grinding
operation data acquisition to the control charts that monitors the process.
These steps are performed in real time during the grinding operation.

Sensor 
Fusion
with
PCA 

approach

Control 
Chart

Grinding
operation

Computation 
of synthetic 
indicators

headstock
acc. signal

tailstock
acc. signal

wheel
acc. signal

signals indicators statistics

3
2raw synthetic

3 n.

Figure 2.1: Statistical monitoring approach.

In step one the accelerometers channels are acquired and stored in the
‘raw data matrix’. Every accelerometer’s channel is acquired and divided
in windows of amplitude w, each of them is constituted by p data points.
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During the grinding cycle, J windows of p data points are stored in the ‘raw
data matrix’. This matrix has a dimension of (N × p × J) where N is the
number of accelerometers channels, p is the number of data point of each
window, acquired for every single channel, J is the number of consecutive
windows acquired during a grinding cycle. Our approach suggests to divide
the original signal in overlapping windows to avoid spectral leakage during
the indicators calculation, where a typical value of overlap is 90%.

In step two, according to the framework of fig. 2.1, we calculate the
‘synthetic indicators matrix’ starting from the data stored in the raw data
matrix. The p data points constituting every window of the accelerometric
data are summarized by means of the chatter indicators developed in section
4.4.1 and 4.4.2. On each window, n different indicators can be calculated
for everyone of the N accelerometers channels. To clarify with an example,
if we have N = 3 accelerometers in the raw data matrix and we choose to
consider three synthetic indicators for every single accelerometer channel, we
then have N ′ = 3 · 3 = 9 indicators channels. The number of data points
that constitute every indicator channel is equal to the number w of windows
acquired. Every single point of the indicators channels summarizes the p
original data points that are part of every window. The results are organized
then in the ‘synthetic indicators matrix’ which has a dimension of (n × w)
where n is the number of indicators channel previously introduced and w
is the number of sequential windows. A diagram of the PCA input matrix
organization is shown in fig. 2.2.

In step three the extended version of the PCA, called vectorized PCA, is
performed on the synthetic indictors matrix; to refer to the theory we can call
it X matrix. The X matrix collects indicators values calculated on windows
of phase I and phase II working cycles. Only the {1 : M} samples of phase I
are used for the PCA model identification. As the columns of the X matrix
are referred to different quantities, it is better to work with the standardized
X̃ matrix where the sample mean on each X{1:M} column is subtracted to
the entire X matrix and then divided by the sample standard deviation. The
output of the PCA is then a matrix of m principal components that we call
PCs.

In step four the monitoring strategy requests the calculation of two stat-
istics on the first PCs that have been retained: the T 2 Hotelling and the Q
statistics.

- The Hotelling’s statistics is used to detect possible deviations along the
directions of the first m PCs [24, 5].

- The Q statistics is used to detect possible deviations in directions or-
thogonal to the ones associated to the first PCs.
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The PCA Approach: a theoretical framework

Figure 2.2: From raw data matrix to the vPCA input matrix.
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The Hotelling’s statistics is the sum of squared principal components
weighted on their explained variance:

T 2
k (m) =

z2k,1
λ1

+
z2k,2
λ2

+ . . .+
z2k,m
λm

while the Q statistics is the Sum of Squared Errors computed as:

Qk(m) =

(
X̃k − ̂̃Xk

)T

−
(
X̃k − ̂̃Xk

)

Each new observed Xk vector, constituted by the various indicators chan-
nels, is monitored by using the reference PCA model based on the X{1:M}

Phase I data set, then on the PCA estimates results T 2 and Q statistics are
calculated.

The two statistics are then monitored with an SPC control chart ap-
proach, performing two separate control charts. Two control limits have to
be defined, based on a selected αoverall type I error. On each chart a single
α value is considered according to the Bonferroni approach applied to type I
error which results in taking α = 1−

√
1− αoverall for every single chart.

Control limits typically used in multivariate analysis are all based on
the assumption of approximate multivariate normality. However, it is quite
common that working with variables coming from signals or indicators calcu-
lated on them, means dealing with non-normal distributions, which violated
the multi-normality assumption of the traditional control limits. Due to the
presence of time dependency and non-normality of the dataset of input, the
usage of empirical control limits has been suggested. This is a frequently en-
countered situation in practice and different authors have discussed available
solutions to face such an issue, for example calculating the percentile estim-
ating the Kernel Density distribution or making use of bootstrap techniques
to determinate statistics estimates when the population distribution is not
known.
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2.3.1 Boostrap methods for empirical limits calculation

In this framework we follow the bootstrap based approach for the estimation
of control limits, according to [25, 16]. The bootstrap is a method for estim-
ating the distribution of an estimator or test statistic by resampling one’s
data or a model estimated from the data. The bootstrap provides approx-
imations to distributions of statistics, coverage probabilities of confidence
intervals, and rejection probabilities of tests that are at least as accurate as
the approximations of first-order asymptotic distribution theory [12]. Dif-
ferent bootstrap techniques have been developed in literature, and there are
many different versions that can be used for empirical limits estimations.

Two approaches of empirical control limits estimation have been followed
so far:

- Moving Block Bootstrap control limit;

- Bootstrap T 2 & Q Percentile Approach control limit.

In the moving block bootstrap, introduced by Künsch [21], the original
matrix of input of the PCA X is split into n− b+1 overlapping blocks mat-
rix of length b. The observations 1 to b will be organized in block matrix
1, observations 2 to b+1 will be block 2 and so on. Then from these n-b+1
matrix blocks, n/b matrix blocks will be drawn at random with replacement
realizing a new matrix X̃. On this X̃ matrix a PCA analysis is conducted,
and T 2 and Q statistics are calculated. For both of this two statistics, two
upper control limits corresponding to the 100 · (1−α)th percentile are identi-
fied. This procedure is replicated B = 1000 times, identifying 1000 UCL for
T 2 and 1000 UCL for Q empirical limits. Then averaging the 1000 values,
one UCL for every single chart is defined. This approach is computationally
more intensive than the following one as it has to compute B PCA and then
average the empirical limits. The reason why we implemented this approach
is because this bootstrap works with dependent data and it capable of deal-
ing with time correlation better than the other bootstrap approaches.

The bootstrap percentile approach, proposed in the work of Phaladiganon
et al. [25], is based on the computation of the empirical limits starting
directly from the T 2 and Q statistics calculated on n observations from an
in-control dataset.

Then the approach suggests to select T
2(i)
(1) , T

2(i)
(2) , . . . T

2(i)
(n) as a set of n T 2

values from i-th bootstrap sample (i = 1, . . . B) randomly drawn from the
initial T 2 statistics with replacement. In each of B bootstrap samples, the
100 · (1 − α)th percentile value is determined, given a users-specified value
α with a range between 0 and 1. The control limit is defined by taking an
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average of B 100 · (1−α)th percentile values T̄ 2
100·(1−α). The same approach

is followed for the definition of the Q control limit. The established control
limits are then used to monitor new observations.

This approach is easier and computationally less intensive but relies the
definition of the control limits directly on the T 2 and Q statistics and might
be less robust than the moving block bootstrap approach.

After having explained the approach followed in the development of the
SPC method and its assumption, it is important to briefly describe the con-
figuration of the grinding machine and some details of the real industrial case.
The main problem that has to be tackled, is represented by detecting on-line
the growth of waviness on the roll surface generated by the process vibra-
tion; to do this it is very important to define what we mean by a chattered
cylinder and what is a good one. For this reason it will be of a crucial im-
portance identifying the machine vibration related to an ‘in control’ or an
‘out of control’ cylinder surface. To correctly identify the growth of this phe-
nomenon is important to know the machine dynamics and setup which will
be synthetically described in the next chapter.
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Chapter 3

Industrial Case

3.1 Machine Set-up

The case study takes part in developing an intelligent grinding machine that
will be acting in hot rolling plants. As mentioned before, to explain the
monitoring system proposed, it is better to understand the basic parts of the
machine on which it will be tested and the sources from where the SPC will
acquire data.

Four are the main parts that needs a brief overview: the structure of the
machine, the workpiece, the wheel and the sensors from which we will acquire
the data.

The principal components of the structure of this type of machinery are:

- headstock: the part of the machine that puts the roll in rotation;

- joined bed: part connected to the foundation of the machine where
the carriage moves and the lubrication flows. Stability and rigidity are
essential to maintain alignment and precision work;

- tailstock: opposite to the headstock, avoids backwards movement and
has other features not relevant for this analysis;

- wheel head: part essential for the transversal translation towards and
away from the roll and allows the wheel grinding the roll;

- hydrostatic spindle: part that generates the profile on the roll barrel
and it allows continuous infeed for the compensation of the wheel wear.

The machinery is completely controlled by a control system, that allows
an high level of automation. The CNC system is used, mainly, for:

- Regulation of the axes speeds and positions.

- Speed regulation of the spindles.
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Table 3.1: The range of the parameters in our case study.

Parameter Min.

value

Max.

value

Units Effects

Wheel speed 15 50 m/s Reduce forces, increase wheel
wear, increase burning risks.

Roll speed 20 50 rpm Increase forces, chatter tendency
productivity, decrease burining
risks.

End infeed 0.001 0.05 mm Increase power, forces, roughness,
wheel wear, productivity; chatter
tendency may be affected.

Continuous
infeed

0 0.05 mm/min Compensate wheel wear

Wheel width Slim
(about
60)

Large
(about
120)

mm Increase forces, productivity,
chatter tendency (if dynamic
nonlinearities can be neglected)

Wheel diameter Small Large mm Increase forces, productivity,
chatter tendency.

- Management and implementation of programs containing the com-
mands for sequential operations and movements of grinding cycles,
measuring and works.

Moreover the computer makes available in real time a large number of
input & output variables available to be used for the process control and for
the adjustment of the machine. These variables coming from the machine
will be part of our analysis to design a robust chatter monitoring system.

The workpiece considered in this project is a roll for hot rolling mills that
produce steel plates. Rolls size can vary significantly between 400− 600 mm
for the work roll; the roll’s width is spacing from 1800 to 2000 mm. Roll
materials are special alloyed steel or spheroidal graphite cast iron.

Roll quality is mainly linked to its surface waviness and the typical pre-
scribed roughness is Ra = 0.6µm± 10%.

Grinding wheels used during the process monitored are of three types:

- for cast iron rolls: silicon carbide;

- for steel rolls: aluminum oxide.

- for difficult cutting conditions: diamond grinding wheel.

The technological boundaries for the machine used in this case are sum-
maries in tab. 3.1.
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Table 3.2: Accelerometric sensors.

Signal Source Machine & Process Feature

Vibration Wheel head Chatter, waviness
Vibration Headstock Chatter, waviness
Vibration Tailstock Chatter, waviness
Vibration Joined bed Chatter, waviness
Acoustic Emission Wheel hub Process vibrations, wheel touch

Omitting the other technical details on the machine structure, it is im-
portant to focus on the specific hardware on which relies our project: sensors
attached to the grinding machine.

To perform an online process monitoring, it is necessary to have access
to a lot of data from the machine in real time so that we can have full
knowledge of the ongoing process. We can divide this class of data in three
main categories:

- accelerometric data: for vibration and wheel status monitoring;

- data of forces, speeds and current monitoring;

- data of input parameters monitoring.

The most important sensors are the accelerometers installed on the ma-
chine that can be analyzed to reconstruct the vibration state of the machine
which is directly connected to the scope of the project: detect the waviness
generation. The accelerometric data come from three tri-axial accelerometers
(see tab. 3.2), placed on the machine body, and one acoustic emission en-
coder, placed inside the grinding wheel. In fig. 3.1 is shown an accelerometer
placed on the machine, specifically the tailstock one. The sampling rate of
the accelerometers is 2000 Hz.

In fig. 3.2, it is possible to see the machine layout and the position of the
three accelerometers and the AE encoder.

In fig. 3.3, the orientation of the accelerometers axes is visible. The
wheel accelerometer x-axis is opposed to the headstock and tailstock ones.
The y-axis is oriented in the same direction for all accelerometers.

The acoustic emission sensor is placed in the wheel hub and it will be
mainly used to detect whether the wheel is touching the workpiece or not.
On the other hand the scope of the accelerometers is to monitor the growth of
vibration during the grinding process. These accelerometers have been placed
in the main three parts of the previously described machine structure, so that
we can acquire space variant data of the process.
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Figure 3.1: A detail of one of the accelerometers placed on the machine.

The wheel accelerometer is the ‘closest’ to the process source of data
and the one that should easily detect the bouncing of the wheel towards the
cylinder. This accelerometer follows the wheel axial movement differently
from the head and tail ones which will have a different intensity based on
the axial location of the grinding wheel on the cylinder. The headstock and
tailstock accelerometers will be sensible more to the vibrations of the body
and the workpiece adding informations about the whole structure dynamics.

There is also another accelerometer that is placed on the basement of
the machine that should detect the external vibrations, but as we will de-
tail in the next sections, this accelerometer is much less sensible to detect
the chattering and it is useful for other purpose that are not linked to our aim.

Together with the accelerometric data, we can get information directly
from the machine sensors. As listed before we have two main classes: the
high frequency data and the low frequency. The first class (Tab.3.3) contains
all the drives, speeds, forces and currents data which are sampled at 250 Hz
and represent an output source of the ongoing process.

The second class, with a sampling rate of only 2 Hz, collects the input
data of process that don’t change frequently during working conditions, such
as continuous infeed, end infeed, wheel and roll dimensions.

Designing the SPC monitoring approach is it very important to take a
look not only to the accelerometric data but also the machine sensors, to cor-
relate vibrations to the working conditions. The most important parameters
are the rotational speeds of the roll and the wheel, including the continu-
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Figure 3.2: Position of additional sensors on the machine.
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Figure 3.3: Axes of accelerometric sensors.
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Table 3.3: Machine sensors.

Signal Source Machine & Process

Feature

Current Headstock motor Cutting forces
Current Wheel motor Cutting forces
Current Micrometric infeed axis (U) Cutting forces
Current Infeed axis (X) Cutting forces
Displacement Infeed axis (U) Actual infeed
Displacement Infeed axis (X) Actual infeed
Displacement Carriage axis (Z) Axis positioning, cycle time

estimation
Velocity Headstock (HD) Grinding parameter, roll

speed variation, waviness
measure

Velocity Wheel head Wheel velocity, grinding
cycle

ous speed variation parameters. In fact they are directly related with the
waviness generation process and with the vibration frequency of the system
when chattered surface, both on the roll and the wheel, are present. Other
important parameters are the radial infeed (i.e. end infeed and continuous
infeed) since they are the main variables affecting the chip thickness and then
the cutting forces.

3.2 The role of the SPC into the EPC

Until now we have seen almost all the sensor that are available, where they
are placed and what do they measure; these sensors together with the ma-
chine and the workpiece itself, represent the input of our case study. In
this session we will clarify the integration of our work, the development of
an SPC monitoring approach into the Engineering process control, that has
been developed to adjust the process if it reaches unstable conditions.

First of all, thinking back to the introduction, it is necessary to distinguish
the roles of the SPC and the EPC (see fig.3.4). The Statistical Process
Control consists of set of tools that have the aim of detecting deviations from
good working conditions. The Engineering Process Control, on the other
hand, represent a tool that is able to adjust unstable working conditions to
get back to a new state of stability.

Briefly the SPC monitors the process and the ECP controls it. The joint
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Figure 3.4: Roles of SPC and EPC towards the process.

of this tools is a system that is able to recognize deviations from good working
conditions and suggest new process parameters to get back to stability. To
be more specific, the SPC is integrated into the EPC because, after receiving
the inputs, it analyzes the process with a specific statistical approach and
if it detects a process drift it provides an alarm. This alarm, coming from
the SPC, is the input of the EPC that will provide to change the process
parameters.

This has been a general overview of the cooperation between SPC and
EPC, but it shows how the SPC approach that we propose can be integrated
into an EPC to control the grinding process. In Figure 3.5 it is possible to
understand the connection between the machine and the Numeric Control
Unit that runs the EPC.

During a grinding process, the plant operator sets the process parameters
in the numerical control unit that is connected to grinding machine. The
machine then starts grinding with the parameters set up by the operator and,
as soon as the process gets out of the initial transient state, the SPC model
begins to make use of the data coming from the different sources. Combining
the accelerometric data and the output parameters, it is possible to verify if
the present working condition follows the in control model designed by means
of the SPC. The aim of the SPC is to detect the chatter phenomenon, which
can occur at different working conditions; for this reason the challenge of the
statistical model is to be robust to the process parameters and detect the
phenomenon without being influenced by the manipulation of the working
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Figure 3.5: Integration of the SPC chatter monitoring approach into the
EPC.
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condition. To be more specific, a ‘weak model’ that analyze vibrations may
incorrectly indicate the presence of chattering when the amount of vibration
is increased not due to the presence of chatter, but, for example, when the
operator has set different wheel speed which translates in more vibrations.

If the statistical model is robust and capable of detecting the chatter,
then the EPC can control and reduce the chatter, suggesting to the operator
or automatically changing the wheel and the workpiece speed.

What described before can be summarized in the flowchart of fig. 3.6
where the role of the chatter detector is underlined. By chatter detector we
mean the monitoring of the process conditions, and it is possible to see that
if the process remains in an in control state the loop brings to the grinding
cycle end. On the other hand, if the detector shows that the process has
gone out of control, the EPC strategy for controlling chatter comes in action.
After having detailed the role of our work into the EPC framework, is now
time to explain in a proper way the basis of the SPC approach on which the
chatter monitoring relies.
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3.3 Signal-based SPC

A statistical process control approach, as we have anticipated in the previous
section, is a statistical method for quality monitoring, and as any method,
it relies on some hypothesis. The main hypothesis of the SPC approach is
that it is impossible to inspect or test quality into a product without having
the product built right the first time. This implies that the manufacturing
process must be stable and that all individuals involved with the process
(including operators, engineers, quality-assurance personnel, and manage-
ment) must continuously seek to improve process performance and reduce
variability in key parameters [23].

The SPC approach permits to obtain this results and the control charts
are useful to define an on-line statistical process control procedure. In any
kind of production process, there are essentially two types of causes that
affect the output:

- a lot of small unremovable causes, always present, which cumulative
effect is the natural variability of the process;

- other kinds of variability that affect, when they are present, the finished
quality of the product. Examples could be operator errors, defective
raw materials or machinery not properly working

The first group of causes is called normal process variation or natural variab-
ility, the second group is known in literature as assignable causes of variation.
If a process is affected only by natural variability, the process is defined in
statistical control. When in the process there are the other sources of vari-
ability, the process is defined out of control, because generally this type of
causes lead to unacceptable levels of process performances.

Quality monitoring via statistical process control can be used for quickly
detecting any change from the in-control behavior in order to avoid deteri-
orated process performance. In traditional SPC, the quality characteristic
is usually off-line inspected (by using traditional measuring systems, as co-
ordinate measuring machines) without requiring on-line sensing [6].

Usually, a process that is in a in control state, produces acceptable work-
pieces with known quality variability. When an assignable cause of variation
affects the process, the workpieces produced will not be likely more accepted,
but they will be refused. To avoid to have many scraps, it is necessary to
quickly identify when a assignable cause occurs and set the process back to
an in control state. The control chart is an on-line tool, that relies on a
statistical model and allows to:

- monitor and control the process;
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- reduce the process variability.

Traditional SPC approaches based on control charts can easily deal with
quality characteristics that are related to dimensions. In our case the quality
of the manufactured product is related to surface texture (the waviness of
the cylinder) and not to a dimension. Furthermore this characteristic will
not be inspected offline, but the aim of the project is to find a proxy that is
related to cause of waviness so that it can be evaluated during the process.

For these reasons, the first step to do is to define, for the process we are
studying, what can be considered as ‘in control’ and what ‘out of control’.
Only after having clarified the in and out control states it is possible to design
the control chart with ‘in control’ operations and test it with both ‘out of
control’ and ‘in control’ operations.

As mentioned before, the SPC approach will focus on the identification
of the problems that cause waviness on the cylindrical surface. Until now, in
hot rolling plants, a workpiece is considered a production scrap if it presents
waviness on its surface, and can be considered a good one if the amount of
waviness is under a defined threshold. In fig. 3.7 is possible to see a portion
of a cylinder that doesn’t present waviness in the first half while is visible in
the second half. The first part of the roll has been milled with an ‘in control’
process while the second one with an ‘out of control’ one.

Figure 3.7: Example of a cylinder presenting chatter marks only on the right
side.

To relate chatter vibrations with the waviness on the cylinder’s surface,
it is important to understand which are the states that a grinding machine
can take on. During a grinding operation, the machinery can mainly assume
four different states of working conditions:
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- good or stable cutting;

- anomalous vibrations (for example external vibrations);

- chatter vibrations;

- lobed roll and wheel.

The first condition is the ideal one, and it produces a workpiece that
is likely to be considered in control and then accepted by the quality in-
spector. The other conditions may lead the production to an out of control
state. Our focus will be on two of these states: good or stable cutting and
chatter vibrations. In fact, anomalous vibrations are not related to wrong
process parameters but they are caused, for example, by the presence of
other machineries. Working with a lobed roll or wheel, on the other hand,
is a condition that should be avoided. The wheel and the roll present lobes
when, during the process, bad cutting parameters are used; these parameters
cause vibrations that generate lobes on the wheel or on the cylinder. For this
reason, monitoring the vibrations should avoid this phenomenon.

However, up today, it is difficult to link the waviness on the worked roll
perceived to naked eye with the process vibrations. There might be some
rare cases in which the process signals the presence of chatter vibrations, but
inspecting the worked roll the waviness is under the acceptability threshold.
On the other hand, there are some sporadic cases where the cylindric surface
presents chatter marks, but the process doesn’t signal vibrations. Luckily,
in most of the cases the existence of waviness on the cylinder is directly
connected with the vibrations during the grinding process.

The discriminating factor between an in control or out of control work-
piece is, so far, determined by the subjective judgment of the plant operator,
that varies according to his experience and attention. Judging a workpiece
of these dimensions as a scrap involves the need to rework it, which means
additional costs. On the other hand, reworking a roll that could be marked
as an acceptable one by an accurate skilled operator, causes extra-costs that
are not necessary.

Up today it is difficult, for the skilled operator, to define during the pro-
cess if the working cylinder will result acceptable or not, before viewing the
final output. A competent operator might rely on an empirical analysis of
the machine parameters and on his experience to estimate if the process will
produce a scrap roll. But today, there isn’t an objective and univocal frame-
work to evaluate working conditions.

This problem doesn’t result easily solvable with a traditional SPC ap-
proach, that expects the description of a quality’s characteristic in different
time instants [23]. The basic idea behind the traditional approach is in fact
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to sample the output of a productive process and to measure its quality char-
acteristic. If the measure is inside some defined control limits, the process
will result in an ‘in control state’; on the other hand, if the characteristic falls
outside the control limits, an alarm will tell that something has happened
in the process that modified the mean or the variance of the output. The
evolution of statistical methods in quality monitoring started with univariate
control charts on a single quality characteristic, has later moved to multivari-
ate approaches, that allow simultaneous monitoring of several variables and
characteristics, keeping the same efficiency of the univariate approach.

However, there are many industrial situation where the final quality of
a product or a process is characterized by two or more variable relation.
Sometimes these variables, that affect the quality of a product, are input
parameters in the process; sometimes instead the product quality might be
linked with the vibrations generated during the process. A further develop-
ment, that is still in research, is then to use these multivariate methodologies
not only on the characteristics of final product, but on the process character-
istics that impact on the quality of the output. For these reasons, it is useful
to monitor these specific signals, that can will be the base of the process
monitoring.

Our goal is to introduce a method that, during the process, will under-
stand if the machine is going in a ‘chatter vibration’ state. We will refers
to this approach as signal-based SPC. For all the reasons explained in this
section, the analysis of the available signals is linked to the roll evaluation by
a subjective judgment of an expert. Further researches might determine a
quantitative relation between the development of chatter vibrations and the
presence of waviness on the roll. In this way, it will be possible to improve
our approach, that would be based on a more objective characterization.
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Chatter monitoring strategy

4.1 Acquisition of industrial data

In this section we will detail the approach that we have followed in conducting
grinding tests on the machine. The purpose of our work is, as said before,
developing a statistical approach to identify the presence of chatter vibration
during the grinding process. To do this it is necessary to understand in which
conditions the phenomenon occurs and in which it doesn’t. Distinguishing
the states of in control and out of control by means of chatter presence it
is fundamental for any statistical method based on control charting. The
scope of the experiments is to obtain a dataset containing accelerometric
data and parameters of various grinding passes so that a phase I and phase
II for control charts can be defined. It is very important to have a dataset for
‘phase I passes’ that represents correct working conditions, where the roll is
considered acceptable with an eye inspection by a grinding expert. This set
will be used to train the model and test its behavior towards false alarms.
On the other hand a set of ‘phase II passes’ will be necessary to see if the
developed model correctly identifies the presence of chatter vibrations.

To set up an experimental plan which aim is to obtain the phase I & II
dataset it is important to isolate the main parameters that affect the presence
of chatter vibration. As seen in section 3.1 the most important parameters,
which have a direct effect on the chatter dynamics, are the rotational speeds
of the roll and the wheel. Other important parameters that can lead to the
growth of chatter are the end infeed and continuous infeed because they affect
the chip thickness and the cutting forces.

Selecting appropriate cutting parameters is strategic because, according
to literature, the chatter phenomenon arises for example when the wheel
speed is multiple to one of the machine mode shapes of vibrations.

For this reason the selection of cutting parameters has been based on
the stability analysis of the machine conducted by Engr. Leonesio, M. who
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Table 4.1: Main resonance of the system.

Structure Relevance Spindle Relevance

[Hz] [Hz]

43 minor 159 dominant
49 minor 168 important
57 minor 185 important
63 dominant
67 important

Table 4.2: Test for chatter frequency identification.

Test WH vel HD vel C.I. E.I.

[rpm] [rpm] [mm] [mm]

1 700 26 0.06 0.01
2 729 26 0.06 0.01
3 901 26 0.08 0.01
4 725 30 0.06 0.01
5 910 30 0.01 0.01
6 630 30 0.02 0.02
7 631 30 0.01 0.01
8 721 30 0.02 0.02
9 929 30 0.02 0.02
10 1201 30 0.01 0.01
11 1215 30 0.01 0.01

performed a complete modal analysis of the grinding machine in order to
evaluate the dynamic behavior of the system.

The impact testing technique has been used to excite the machine struc-
ture and the mode shapes have been extracted by the use of commercial SW
for modal analysis. The results show that the main resonance of the ma-
chine is around 60 Hz, which is due to the machine structure, and another
important compliance is found to be the one of the spindle system at around
200 Hz. In tab. 4.1 the main resonance of the system are identified.

The resonance at 63 Hz is strongly involved in the process vibration
and it is the main cause of the waviness. To prove this a pre test is run
with different wheel and roll speeds (see tab. 4.2) that may generate chatter
marks on the cylinder.

As an example, considering a chatter frequency of 63 Hz and a wheel
rotational frequency of 630 rpm (10.5 Hz) with a roll rotational frequency
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of 30 rpm (0.5 Hz) the waves on the wheel will be 63
10.5

= 6 while the ones
on the roll will be 63

0.5
= 126. The runs of tab. 4.2 have been carried out,

evaluating the roll conditions after few passes. In all the runs chatter marks
are visible on the roll, with different amount of waviness. A spectral analysis
of the pre test is shown in fig. 4.1 where the component around 60 Hz is the
dominant one and the main cause of chatter marks.

Figure 4.1: Spectrogram of runs in tab.4.2.

What comes out of the analysis is that chatter frequency is almost syn-
chronous with wheel frequency, as verified experimentally. Starting from dy-
namic measurements and process parameters, Engr. Leonesio M. developed
an experimental map indicating the unstable wheel velocities and the corres-
ponding chatter frequencies (fig. 4.2 and fig. 4.3).

In the upper graphic of fig. 4.2 on the y axis is the width of the grinding
wheel while on the x axis is the wheel speed expressed in rpm. This exper-
imental diagram shows at which wheel speeds and wheel width corresponds
the probability of lobes growth on the wheel which translates to possible
presence of chatter. The green line indicates the wheel width used during
the test conducted on this machine and will be a constant parameter which
is 75 mm. The lower part of fig. 4.2 shows which is the chatter frequency
known the number of the wheel lobes and the wheel speed. To make an
example of how to use this diagram, if we want to select a bad cutting condi-
tion with a 75 mm wheel we could set a speed of 900 rpm which most likely
generates 4 lobes on the wheel. This is know from the upper graph, where
the instability for a speed of 900 rpm is obtained with a wheel width much
lower than the one we have used for the experiments. From the lower part
of the graph we can then see the chatter frequency that occurs at 900 rpm
which is around 60 Hz. If, on the other hand, we would like to select a wheel
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Figure 4.2: Lobes diagram showing chatter frequency and number of wheel
lobes as a function of wheel speed and width of grinding. Courtesy of Engr.
Leonesio M., CNR-ITIA, 2013.

speed that probably can produce a good workpiece, we can select a speed
of 1050 rpm because for a wheel width of 75 mm the probability of lobes
formation is very low.

Of course this diagram is based on the measured machine dynamics and
it has still to be validated. The nature of this complex validation is that
in chatter-free operation the cutting force can be assumed as a wide-band
signal that excites the structure for a broad range of frequencies, including the
system resonances, but with little amount of energy for each band. A good
roundness of the roll and wheel assures limited variation of the force with the
wheel and roll rotation. On the other side in case of process vibration (due to
the wheel and roll wear), waviness on both surfaces are created influencing
the roundness of the roll and wheel and thus affecting the cutting. The
energy focalizes at the rotational frequency of the part that introduce more
energy into the system: a lobed wheel, for example, introduces most of its
energy at one of its harmonic. This energy, for wrong wheel speeds, can fall
into a system resonance and then being amplified intensifying the problem
of the waviness.

Even if still experimental, this diagram is a good starting point to design
an experimental plan for obtaining a dataset of good and bad cutting condi-
tions. To be sure to select runs for phase I that might not produce chatter
marks on the roll we made use of another graph, called Forced Maps (see
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fig. 4.3). Providing the system resonance measured with the modal analysis,
this graphs shows with colored horizontal and vertical bands the speeds that
make the wheel and roll harmonic to fall in a narrow band close to a ma-
chine resonance, thus increasing vibration and possibly leading to the chatter
phenomenon. The red lines in fig. 4.3 indicate the workpiece and wheel ve-
locities that are multiples: these values should be avoided in order to limit
the regeneration effects. In this case wheel speed is expressed in m/s2, and
the bands are ±4% of the unstable wheel speeds.

Figure 4.3: Forced Maps showing speeds that make the wheel and roll har-
monic to fall in a narrow band close to a machine resonance. Courtesy of
Engr. Leonesio M., CNR-ITIA, 2013.

It is worth to notice that this approach was used to help us in identifying
the sets of parameters to design the experiments. However, the complexity
of the machine dynamics characterization and the need for reliable validation
of such a method motivate the investigation of process monitoring solutions
that do not require such a complex and time-demanding pre-process charac-
terization.

Having defined the procedure used to identify phase I and phase II passes,
it’s now important to specify how the test have been performed.

- The tests have been conducted according to the technological range of
the machine which is smaller than the range showed in fig. 4.3.

- For an initial model identification and evaluation a set of run with
constant roll speed and two levels of end infeed is performed.

- The continuous infeed has been kept equal to the end infeed for all this
batch of tests.
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- The nominal wheel diameter is 700 mm with a width of 75 mm, while
the initial roll diameter is around 500 mm and its axial length is
1700 mm.

- Wheel, headstock, tailstock accelerometers data together with acoustic
emission and CNC unit parameters have been recorded at a sampling
rate of 2000 Hz.

- For every single wheel speed run which should not cause chatter vibra-
tions, 8 passes of roughing grinding without overlap have been conduc-
ted.

- For bad cutting conditions the number of passes have been stopped
just before the phenomenon reaches dangerous conditions.

- After every run conducted with bad cutting parameters the roll is set
back to good starting conditions milling it with known good cutting
parameters.

- The test for model identification and evaluation is shown in fig. 4.4.
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Figure 4.4: Experimental Plan designed on the basis of the Forced Maps.

One of the purpose of the monitoring approach is to be robust to process
parameters variations. For this reason, in this first batch of test, we have
kept the roll speed constant and varied only the wheel speed and the infeed
because they are supposed to be the most influencing factors connected to
chatter vibrations. The dependency of the monitoring approach towards
variations of wheel speed and infeed rate will be investigated. Unfortunately
running a DoE with different workpiece speed, wheel speed and infeed rate
would have requested too many hours of machining, which were not available.
For this reason we have decided to reduce the experimental plan, and pick
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up in a second run of test some working conditions with different values of
cutting parameters to be tested with the designed monitoring system.

The experimental plan parameters are shown in section 4.3.3 tab. 4.3.

4.2 Pre-processed data analysis

Before carrying out the tests scheduled in section 4.1, preliminary tests are
realized. In fact, due to the experimental nature of this project, we must
ensure that data are recorded correctly; then, on these data, preliminary
analysis will be made to understand the process behavior and how the accel-
erometers react.

Observing the accelerometric signals, the presence of peaks with random
intervals emerges; so it is necessary to investigate the cause that led to the
creation of those peaks, to see if they are caused by the process or by another
type of cause. A brief analysis led us to say that these peaks can be considered
true outliers, as they are due to electrical problems, related to the grounding
system of the devices which acquire the data.

For this reason, because they are definable as assignable causes, it is im-
portant to ‘delete’ them. However, we have chosen not to simply remove the
data outliers in order to perform an analysis in the frequency domain. We
have opted for a reduction of the energy content of these peaks, reducing
their level with a local smoothing. The peaks are weighted according to the
local variability. In fig. 4.5a an accelerometric signal with spikes is compared
with the same signal cleaned out. In fig. 4.5b instead a detail of the com-
parison between the signal with and without the spikes is shown.
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Figure 4.5: Comparison between data with and without electrical spikes.
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Using this approach, we noticed that there aren’t significant impacts in
the frequency domain after the reduction; in other words the signal spectrum
and its harmonics are not affected by these correction. In fig. 4.6 the com-
parison between the FFT calculated on a window of 1 s of a signal containing
a peak and the FFT with the data correction, is proposed. What is observed
is the presence of an initial decay in the signal with the spike, significantly
reduced in the same signal without the peak. The presence of the decay in
fact is precisely caused by the presence of a peak, which increases the noise
of the spectrum. The FFT are shown for velocity and displacement; in ac-
celeration FFT there isn’t a an initial decay, but there is a different level of
mean between the two spectra.

This approach will be applied to all signals that will be used in the fol-
lowing analysis; in this way, we eliminate the outliers that are not related to
the process and may lead to false conclusions.
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Figure 4.6: Comparison between decay of data with and without spikes.

The same preliminary tests are used to compare the sensibility to chatter
phenomenon of the x, y and z axis of each accelerometer and then to ana-
lyze the sensibility of each accelerometer, in relation to the position on the
machine.

Remember that the axes of the accelerometers, as shown in section 3.1
are the same of machine axes. In fig. 4.7, the signals of the four accelero-
meters for each axis have been plotted. These specific data were recorded
during a process that has caused waviness on the cylinder. Between the four
accelerometers, a first analysis displays that the basement one is less affected
by the chatter phenomenon; on the contrary, the other ones seem to detect
vibrations.
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A further comparison can be made towards the three axes of each acceler-
ometer. Indeed, it is possible to see that the x axis is strongly more sensitive
than y and z axes. This is in accordance to the assumption of the chatter
generation that, as has been said in section 1.2, arises when the grinding
wheel and the roll oscillate periodically in the radial direction modifying the
actual depth of cut. The main machining axis is exactly the x axis, which
consistently turns out to be the most sensitive.
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Figure 4.7: Accelerometric signal from four different points on the machine.
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4.3 Dataset characterization: in and out of control ex-

periments

Until now we have talked about the importance for control chart design of
defining phase I and phase II:

- phase I: requires a set of process data that are analyzed in a retro-
spective analysis, to build control limits. These data must come from
a process working under stable conditions and representative of good
process performance. To qualify this process, we must define and un-
derstand what can be considered a good final workpiece.

- phase II: is composed by a set of data on which the control chart is
tested.

The qualification of phase I data is made after the final product has been
produced. During the process the accelerometer and the CNC unit data are
acquired. To link the data recorded to the quality of the final product, three
approaches have been followed:

- By-eye inspection: a skilled operator evaluates by eye the surface qual-
ity of the roll making a go/no go judgment.

- Caliper measure: the roll is measured with a caliper installed on the
machine which can evaluate roundness, straightness and even rough-
ness.

- Spectral analysis : the signals from the machine are analyzed in the
frequency domain as an additional proof of the presence of anomalous
vibrations.

4.3.1 Caliper analysis

When the grinding process is completed and the skilled operator has ex-
pressed a judgment about the surface quality of the milled roll, the surface is
then analyzed by means of a caliper numerically controlled. The caliper is a
fork moving along the horizontal axis. The fork is constituted by two arms,
which can be moved independently on vertical axis. Each arm supports an
high resolution displacement sensor, identified by axes E and Q which meas-
ures the vertical displacement of a cylindrical probe tip, which is in contact
with either the upper or lower side of the roll. During measurement the fork
is placed on the roll, and axis C is moved until the output of sensors on
axes E and Q is equal to zero. Then the roll is rotated, and the two sensors
simultaneously measure two diametrically opposed points of the roll.
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As the purpose of these experiments is to acquire from the sensors a set
of ‘good process vibrations’, it is sufficient to discriminate between a good
quality surface and a bad one. No inference on the amount of waviness will
be done during this work, and different amount of vibrations will not be
connected to different levels of waviness. This link might be possible in a
future work, but not in this case, because the purpose is just to detect the
growth of anomalous vibrations which should lead to chatter phenomenon.

However, to discriminate between a good and a bad workpiece we have
followed a precise measurement procedure of the surface of the roll. Five
sections along the axial length of the roll has been acquired according to
the model of fig. 4.8. Each section has been replicated 10 times and then
averaged in order to smooth possible surface dirt or chip traces that can
affect the data acquired. The analysis is then conducted on the resulting 5
sections of the roll.
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Figure 4.8: Location of caliper measures on the roll.

Caliper measures are analyzed in the frequency domain, where it easier
to see the number of lobes that a bad cutting condition might have generated
on the roll. During the analysis is important to distinguish between shapes
feature and roughness. A common value for shapes feature is around 50 upr
and it is indicated in fig. 4.9 and 4.10 with a red line. To detect waviness we
should look in the range starting from the red line up to the end. If a spike
occurs it is possible that the roll is lobed and chatter marks are visible on
its surface. The number of lobes on the roll corresponds to the upr value of
the spike, in the case of fig. 4.10 the number of lobes on the roll is 126. The
number of lobes on the cylinder can be calculated if the chatter frequency
is known as shown in section 4.1 where with wheel rotational frequency of
10.5 Hz (630 rpm) and a roll rotational frequency of 0.5 Hz (30 rpm) the
waves on the roll will are 63/0.5=126, as it is in the case of fig. 4.10.

Even if used as a rough measure of the presence of lobes on the roll, this
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analysis is enough for determining the presence of waviness on the roll, adding
information about the number of marks present to the go/no go judgment
expressed by the operator.

As an example of this analysis in fig. 4.9 is a plot of a workpiece after
an in control roughing phase and in fig. 4.10 is a plot of an out of control
surface.
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Figure 4.9: Caliper Analysis of an in control condition.
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Figure 4.10: Caliper Analysis of an out of control condition.
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4.3.2 Spectral analysis

In addition to the caliper analysis, to qualify the performed test in terms of
in control or out of control, an analysis of the signals in the time-frequency
domain is proposed. The aim of this analysis is to verify if the classification
defined by the caliper is the same that is determined by the signals analysis.
For this reason, the analysis will focus on the same tests used in the previous
section. However, instead of using measures of the geometric shape of the
roll, we will analyze the signals acquired during the process.

(a) Spectrogram.
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(b) Contour plot.

Figure 4.11: Spectrogram analysis of an in control operation.
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(b) Contour plot.

Figure 4.12: Spectrogram analysis of an out of control operation.

In fig. 4.11 and 4.12 there are the spectrogram and the contour plot of
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two different operations: the first one is in a ‘in control state’ and the other
one is in a ‘out of control state’.

To realize the spectrogram and the contour plot, a Hamming window of
5 s with a 90% overlap is adopted. The spectrograms are limited at the
250 Hz frequency, in order to better visualize the behavior of the signals in
the frequency range of our interest, between 58 Hz and 64 Hz.

Comparing the two spectrograms (fig. 4.11a and 4.12a), it is possible
to notice the difference: in fact, if in the first one there is no frequency
that dominates the others, in the second one there is a particular frequency
that stands out compared to the others. To confirm that the predominant
frequencies are those of our interest, the contour plots of the interest range
frequency are shown, and they confirm that the more relevant frequency in
fig 4.12b is precisely within the interest range; at the contrary, in the other
contour plot (4.11b) there aren’t frequencies within the interest range.

4.3.3 Test qualification

As said in section 4.1 an experimental plan has been conducted with two
levels for the factor infeed and four levels for the factor wheel speed for the
parameters that we expected to be ‘in control’ and then we picked up some
test for out of controls parameters. It has been important to have a balanced
plan for the ‘in control’ conditions to estimate the robustness of the statistical
model that we want to use. At the end of every single test we evaluated the
quality of the roll with the three methods explained before and then we
divided them in tab. 4.3a and in tab. 4.3b according to their contitions.

4.4 Development of chatter indicators

The vibration signals usually present multiple harmonic components with
different frequencies and phases. The representation of the vibrations in the
time domain allows the estimation of some parameters in amplitude (Root
mean square, peak to peak, etc.); instead a frequency analysis is essential to
evaluate the contribution provided by different harmonic that compose the
signal.

There are many different synthetic indicators that summarize the inform-
ations coming from the accelerometric signals and parameters. In this work,
these synthetic indicators makes part of the ‘sensor fusion module’ of the
EPC and they are analyzed by the ‘machine & process diagnosis module’
to identify process and machine state, related with vibration problems, e.g.
identifying vibrations sources due to unbalance or other periodic excitations
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Table 4.3: Test for model identification.

(a) Tests marked as ‘in control’

Test n. WH vel Infeed

[rpm] [mm]

1 680 0.01
2 680 0.02
3 780 0.01
4 780 0.02
5 830 0.01
6 830 0.02
7 1000 0.01
8 1000 0.02
9 1100 0.01
10 1100 0.02

(b) Tests marked as ‘out of control’

Test n. WH vel Infeed

[rpm] [mm]

1 630 0.01
2 630 0.02
3 720 0.01
4 720 0.02
5 730 0.01
6 910 0.01
7 930 0.02
8 970 0.02
9 1200 0.01
10 1230 0.01

or due to the grinding process interaction with the machine structure com-
pliance.

Different synthetic indicators can be extracted from vibration signals to
characterize the machine and process vibration states in order to perform an
effective diagnostic and control. The most important condition that has to be
monitored during grinding is the chatter onset. The result of this condition,
the waviness, is generated by a single vibration component, that build up
and keep up at high level during the cycle.

Below, both of the indicators in time-domain and frequency-domain will
be proposed and analyzed.

4.4.1 Time-domain chatter indicators

The input for the calculation of chatter indicators in time-domain are only
the accelerometric signals. In tab. 4.4 there are the five indicators that we
propose to use, with the mathematical formula to calculate them.

- The RMS indicator is a standard measure that returns an evaluation
in amplitude directly related to the energy content of the vibration.

- The kurtosis is defined as the fourth statistical moment divided by
the square of the second statistical moment. This is done to remove
variability due to waveform amplitude from the measurement. It is a
compromise measurement between the insensitive lower moments and
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Table 4.4: Time-domain indicators.

N. Name Outputs Units

1 RMSa

√√√√ 1

N

n∑

i=1

|Xn|2 m/s2

2 Kurtosis
1
N

∑n

i=1 (Xi − X̄)4
(

1
N

∑n

i=1 (Xi − X̄)2
)2 -

3 Skewness
1
N

∑n

i=1 (Xi − X̄)3
(

1
N

∑n

i=1 (Xi − X̄)2
)3 -

4 Peak to peak |Xmax −Xmin| m/s2

5 Peak to RMS
||X||∞√
1
N
· |Xn|2

-

a RMS: Root Mean Square.

the over-sensitive higher moments. It is particularly useful in the de-
tection of bearing failure.

- The skewness indicator measures the relative energy above and below
the mean level.

- The peak to peak indicator indicates the maximum excursion of the
wave.

- The peak to RMS, or crest factor is the ratio between the peak value
and the RMS value. There are relevant crest factors in collisions.

4.4.2 Frequency-domain chatter indicators

Changing the point of view of the signal analysis from time-domain to frequency-
domain does not detract and does not add anything, but it is just a different
way to represent the data. The FFT algorithm operates on a time history
of finite length to calculate the Fourier transform. Fourier transform (FFT)
gives the spectral content of the vibration signals allowing the identification
of the dangerous vibration components.

Different synthetic features can be extracted by the spectrum of each
vibration signal allowing the determination of the most promising index for
the chatter monitoring. In tab. 4.5 is possible to see the frequency-domain
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Table 4.5: Frequency-domain indicators.

N. Name Outputs

6 Relative SEVb
total sync. energy

total energy
%

7 Relative maximum SEV
max. sync. energy

total energy
%

8 Absolute SEV total sync. energy m/s2

9 Absolute maximum SEV max. sync. harmonic energy m/s2

10 Relative maximum harmonic
SEV

max. sync. harmonic

total sync. energy
%

b SEV: Synchronous Excitation Value.

chatter indicators proposed by Engr. Parenti, P. and Engr. Cassinari, A,
who are working on the project to develop the EPC module.

The input for the calculation of chatter indicators in frequency-domain
are the accelerometric signals and the wheel velocity. Most of these indicators
refers to total energy as the integral of the FFT, while by synchronous energy
they refer only to the integral of the bands of fig. 4.13 which are defined as
multiple of the wheel speed expressed in Hz.

All the features captured by these indicators are important but some of
them seem most prone to a quick identification of the chatter onset. In par-
ticular the relative maximum SEV (SEV%) is very sensitive in respect to
chatter onset and it tends to increase rapidly when this condition is reached.
For this reasons this main index is used by the EPC to determine the ‘vibra-
tion process state’: stable conditions are represented by low values of SEV%
(< 20 %) while during chatter conditions this index increase significantly
(up to 90 %). If chatter condition is maintained in the grinding process the
waviness will certainly be present on the surface of the roll.

In fig. 4.13a the FFT synchronous bands for an in control pass is shown,
highlighting the Max synchronous band on which indicates such as Relative
Max SEV Absolute Max SEV and Relative Max harmonic SEV are based.
In fig. 4.13b is possible to see a FFT of an out of control run (wheel speed =
10.5 Hz) that has a spike at the chatter frequency of 63Hz correctly identified
by the band corresponding to 6times the wheel speed.
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Figure 4.13: Fourier Spectrum and the extracted features that compose the
synthetic indicators. Courtesy of Engr. Parenti, P. and Engr. Cassinari, A.

4.5 Data snooping of processed data

After having analyzed raw data of the test conducted, and calculated the
indicators developed in sections 4.4.1 and 4.4.2, an analysis of the indicators
is proposed. To develop a statistical process control on multiple indicators of
this process it’s important to identify if the proposed indicators are effectively
capable of detecting the chatter phenomenon or they capture other sort of
variations. The main issue is then to identify a set of these indicators that
are robust to the process parameters but then are able to detect anomalous
vibrations. A box plot analysis between the indicators calculated on the
passes marked ‘in control’ and the indicators on the one ‘out of control’
is conducted to prove that the indicators detect a difference between these
two groups. Then we will focus only on the ‘in control’ passes to see if the
indicators calculated on good process conditions are statistically influenced
by the modification of process parameters or not. This analysis is of great
importance because if we realize a control chart on indicators that are greatly
affected not only by the chatter presence but also by the variation of the
process conditions, we would have a chart with a great number of false alarms.

The problem of the false alarms is one of the main cause of not adoption
or dismiss of control charts for process monitoring because it would lead to a
great number of process stops which translates in the increase of production
costs. For this reason, one of the main issue that an SPC has to face is
the problem of ‘controlling’ false alarms, which are in the industrial world
of a great importance. An SPC built on indicators that changes mean or
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variance during an in control phase is an SPC model that would not be used
in industry; a much more appreciated model is one that is a little bit slower in
the identification of out of control but much more reliable and robust during
good process conditions.

4.5.1 Sensitivity of synthetic indicators to the chatter phenomenon

In this subsection we propose a preliminary analysis, carried out through the
use of box-plots, which represent a sufficiently complete and concise descrip-
tion of the frequency distribution of the available data.

To verify that the indicators are sensitive to the two states of the process
(‘in control’ and ‘out of control’), two box-plots are plotted, one for each state
of the process. This is done for each of the proposed indicators calculated
on the three accelerometers. The box-plots displayed in this way indicate
the relative variability of the entire sample defined ‘in control’ and ‘out of
control’.

The data used for this analysis are the results of the test described in tab.
4.3a and in tab. 4.3b. The fig. 4.14 shows the example for two time-domain
indicators and the fig. 4.15 for two frequency-domain ones. All the others
box-plots are shown in Appendix A.

This preliminary qualitative analysis shows a significant difference between
the two types of process states. The two populations, in fact, seem to show
significant qualitative differences for all five statistical values that the box-
plots summarize.

0

0.2

0.4

0.6

0.8

1

IC OOC

Wheel Acc.

R
M

S

0

0.2

0.4

0.6

0.8

1

IC OOC

Head. Acc.

0

0.2

0.4

0.6

0.8

1

IC OOC

Tail. Acc.

(a) RMS box-plot

1

1.5

2

2.5

3

3.5

4

4.5

5

IC OOC

Wheel Acc.

K
u
rt

o
s
is

1

1.5

2

2.5

3

3.5

4

4.5

5

IC OOC

Head. Acc.

1

1.5

2

2.5

3

3.5

4

4.5

5

IC OOC

Tail. Acc.

(b) KUR boxplot

Figure 4.14: Two examples of time-domain indicators box-plot
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Figure 4.15: Two examples of time-domain indicators box-plots

The main difference that is possible to see comparing the indicators is the
presence of outliers: there are some indicators in the ‘out of control’ state
that have many outliers points, and other indicators that do not present
them; RMS, P2P , Abs. SEV e Abs. Max SEV are the most sensitive
indicators to this phenomenon. The presence of outliers is probably due
to the chatter phenomenon that, during the process, grows and amplifies
exponentially with increasing of grinding operations. However, the other
indicators are not exempt from this problem, which are present in a lower
quantity and equally distributed in both states of the process. This could
be due to some grinding operation with a wheel velocity that is ‘border line’
in the stability map of fig. 4.2. Probably, during these operations, higher
vibration compared to the other ‘in control’ operations occurred, but the
surface of the roll was categorized as ‘in control’ because the roll does not
presented waviness on it. In the next subsection, we are going to investigate
these problems of variability.

4.5.2 Sensitivity of synthetic indicators to process parameters

In this section, a qualitative analysis of the sensitivity of the indicators to-
wards the process parameters is conducted. The test analysed are the one
of tab. 4.3a, which are the test marked as ‘in control’. It is important that
the indicators calculated on good process conditions are not affected by the
process parameters as said introduction of section 4.5. According to tab.
4.3a, the wheel speed and the infeeds have been changed while, as detailed in
section 4.1, the roll speed has been kept constant to reduce the experimental
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plan due to time constraints of machine availability. On empirical basis it has
been proved that the main issues derive from wheel and infeed, and the roll
speed affects the system stability in a much lower way. It will not be possible
to investigate with a proper DoE the influence of the roll on the indicators
but only wheel speed and indeed. As a qualitative analysis main effects plots
and individual value plots are conducted on all the indicators proposed, and
are included in Appendix B. The main effects plots show the sensitivity of
indicators to wheel speed, infeed and location of the accelerometers. The
individual value plots show the variability between and within the samples.

The first analysis that is proposed regards the comparison of the aver-
ages of each indicator calculated on the three accelerometers varying both
speed and infeed parameters. It is observed from a first graphical analysis
that all the indicators calculated on the wheel accelerometer are strongly
affected by the grinding wheel speed variation, on the contrary the other two
accelerometers are less affected by this parameter.

This is what we expected, and it is easy to explain: the wheel acceler-
ometer is positioned very close to the wheel, exactly on the wheel carriage
(see fig: 3.3) and therefore it is normal that most of the vibrations caused
by a change in wheel speed affect the indicators levels. The other two accel-
erometers are placed far from the wheel carriage, and for this reason they do
not seem to be very affected by this parameter. Moreover, as an additional
proof, the wheel accelerometer appears to be the most sensitive, in fact, ob-
serving the level of indicators RMS and P2P , which are the only ones that
share the measurement unit with the original signal, it is easy to see that it
is higher when calculated the wheel accelerometer.
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Figure 4.16: Main effects plots of RMS & Peak to Peak.
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Figure 4.17: Main effects plots of Relative SEV & Relative Max Harm. SEV.

Considering all the main effects plot is possible to see which are the
indicators that are most sensitive to speed and infeed variations and then
identify the most robust.

For the time-domain indicators (see fig. 4.16), it is possible to see that
RMS, P2P e P2RMS calculated both on headstock and tailstock acceler-
ometers seem to be the less sensitive to the process parameters and could
be good candidates for an SPC model. The frequency-domain indicators, on
the other hand, seem to be the most sensitive to process conditions, mainly
due to their construction which is focused only on a specific range of fre-
quencies. The frequency-domain indicators that are less affected by process
parameters are the Relative SEV and the Relative Maximum Harmonic SEV,
excluding the test with infeed 0.02 mm and wheel speed 780 rpm where the
indicators level has increased even if on the roll no signs of chattering have
been detected (see fig. 4.17). All the time-domain indicators, except from
the skewness, when calculated on the wheel accelerometers show a different
behavior whether the infeed is at 0.01 mm 0.02 mm. When the infeed is at
0.01 mm a dependency of the indicator towards the wheel speed is evident,
on the other hand at 0.02 mm of infeed this dependency is less visible. This
fact can be related to process, because when the infeed is at a low value, the
contact between the wheel and the roll could be so small that the shapes of
the vibrations change from speed to speed values. On the other hand the
shapes of the vibration of captured by the indicators when the infeed is at
0.02 mm are not so different even if the wheel speed changes.

Even the frequency-domain indicators show, in some cases, a sort of linear
dependency towards the wheel speed when the infeed is low and a different
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Figure 4.18: Individual value plots of RMS & Peak to Peak.

distribution when the infeed is high. Moreover with infeed 0.02 mm it is pos-
sible to see a strange behavior of all the indicators when the wheel speed is
set to 780 rpm which suggest that maybe the process was going out of control.

The second type of graphs, individual value plots, is useful to analyze the
variability of the samples at our disposal. In fig. 4.18, the individual value
plot of the indicators RMS and P2P are shown while fig. 4.19 displays the
individual value plot of two frequency-domain indicators. The variability
within the samples does not seem constant; however, from a brief analysis, it
is not easy to identify a model underneath the behavior of the indicators when
both speed and infeed are varied. In fact, for example, growth of variability,
when increasing the speed or the infeed factors, it is not observed; sometimes
the variability seems to grow with the infeed factor, sometimes the opposite
happens. A chaotic behavior seems to be common to all these datas.

One of the main problems emerged from the box-plot analysis is the
presence of numerous outliers, especially in some of the indicators calculated
on the data defined in the control. Analyzing the individual value plot, we
can identify the cause of what has been described.

The box-plot of the kurtosis indicator calculated on the wheel accelero-
meter shows many outliers relative to the lower tail of the box-plot. Looking
at the individual value plot of wheel accelerometer, it is easy to see that there
are two-speed wheel, with the same infeed, which have a mean value signific-
antly lower than the other tests. The same is observed, on the contrary, in
the box-plot of the RMS indicator (see fig. 4.18a) where the outliers are in
the upper tail of the box-plot. Taking a look at the individual value plots,
we can quickly see that the outliers are caused by the same tests that create
outliers in the box-plot of the Kurtosis indicator. On the same parameters,
a different phonemenon can be seen in the individual value plot of P2P in-
dicators in fig. 4.18b, where the variability of the indicator calculated on the
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Figure 4.19: Individual value plots of Relative SEV & Relative Max Harm.
SEV.

wheel accelerometer grows significantly only when the wheel speed is set to
1000 and 1100 rpm with an infeed of 0.01 mm. A second level of the speed
factor that appears to be problematic, is 780 rpm; in correspondence of this
level some indicators display outliers values which suggest that this test run
is probably affected by an increase of chattering.

In conclusion, what emerges from these qualitative analysis is a quite
strong dependance of the indicators from the wheel speed; instead the infeed
factor appears more problematic to define. In some cases in fact it seems
that the infeed affects the signals and sometimes it doesn’t. As it is critical
to select a subset of robust indicators we need to use an approach that is
capable of combining in a robust way all these indicators. Through the
vPCA approach we analyze the correlation between the different channels
to fuse them appropriately. Combining the indicators in an appropriate way
we should be able to design a control chart with control limits that are
not sensible to process parameters variations, but sensitive to changes in
acceleration caused by the chattering phenomenon.

Until now we have described in section 3.1 how we acquire the raw data
from the on-line process and in section 4.4 how we summarize raw accelero-
metric data into a set of synthetic indicators. In section 2.2 and 2.3 we have
detailed the statistical approach that we use to fuse the selected indicators
into two statistics that we will monitor during the process. In chapter 5 we
propose a selection of tests that show how the monitoring strategy has been
applied in identifying the chatter phenomenon. We will test the robustness of
the model against a phase II that includes both in & out of control samples.
If appropriately estimated the empirical limits should have a rate of false
alarms that is coherent to the target value with which they are designed,
but they should also detect the samples in which the process has produced
chatter marks on the roll.
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Chapter 5

Results Analysis

In this chapter the application of the PCA technique, described in chapter
2, will be shown, following the methodology detailed in section 2.3. The
available data are the accelerometric signals recorded during the grinding
operations, on which the synthetic indicators, explained in sections 4.4.1 and
4.4.2, are calculated.

5.1 Assumptions

In this section, the assumptions used to perform the examples are summar-
ized. All the examples are organized as follow:

1. system training on two ‘in control’ datasets;

2. system testing on two other datasets:

(a) first set: ‘in control’, where the surface of the roll has been judged
acceptable;

(b) second set: ‘out of control’, where chatter marks are visible on the
surface of the roll;

These examples are aimed at evaluating the control charts performances
in terms of true and false alarms. In subsection 5.1.1 we will explain the
input parameters for all the datasets used in Phase I and Phase II.

The previous analysis has shown, in section 4.5.2, that the time-domain
indicators are generally more robust to the parameters variation than the
frequency-domain ones. In spite of this, in order to perform a more complete
comparison between time-domain and frequency-domain synthetic indicators,
the same examples will be proposed performing the analysis with the use of
the most robust indicators of both categories. In tab. 5.1 are listed, for each
accelerometer, the indicators used to perform the PCA approach.



Results Analysis

Table 5.1: For each accelerometer, the indicators used for PCA are summar-
ized.

Accelerometer Time-domain ind. Frequency-domain

ind.

Wheel SKEW
Rel. Max. SEV
Rel. Max. Harm. SEV

Headstock
P2P Rel. Max. SEV
P2RMS Rel. Max. Harm. SEV

Tailstock
P2P Rel. Max. SEV
P2RMS Rel. Max. Harm. SEV

The choice is made after the analysis proposed in chapter 4. In fact,
the frequency-domain indicators that seem more stable are Rel. SEV and
Rel. Max Harm. SEV of all three accelerometers. Instead, as regards the
other group of indicators, these are not chosen equal for each indicator. For
the wheel accelerometer, we have chosen only the SKEW indicator, which
is the only insensitive to the variation of the wheel speed. For the other two,
the most robust indicators seem to be P2P and P2RMS.

The accelerometers that we use are the wheelstock, the headstock and
the tailstock ones, as they are the most sensitive to the process vibrations.
To avoid excessive number of signals that the system has to manage, we de-
cided to acquire only the x-axis signal because, as we have demonstrated in
section 4.2, it turned out to be the most capable of providing more inform-
ation about the ongoing process. All the indicators are calculated on a 5 s
window with a 90% overlap, in order to have a frequency of 1 value every
0.5s but still referring to 5 seconds of data points. For this reason, the input
matrix for vPCA method is composed by 5 indicators for the time-domain
examples while by 6 indicators in the frequency-domain examples. On this
matrix, the PCA will calculate the principal components (PC); then we will
choose the number of principal components to reduce the size of the input
matrix still explaining a good part of variability. These PC are then merged
to obtain two statistics: T 2 and Q that are used to build the control charts.
In the control charts, there will be two different control limits: the percentile
control limit and the moving block bootstrap one. To calculate the control
limits, we use αoverall = 1%. The procedure on which this analysis are based
is analytically explained in section 2.2 and 2.3.
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Table 5.2: Tests for phase I control charts.

Test 1 Test 2

WH vel. Infeed WH vel. Infeed

[rpm] [mm] [rpm] [mm]

Phase I
680 0.02 680 0.02
830 0.02 680 0.01

Table 5.3: Tests for phase II control charts.

Test A Test B

WH vel. Infeed WH vel. Infeed

[rpm] [mm] [rpm] [mm]

Phase II
830 0.01 1000 0.02
970 0.02 910 0.01

5.1.1 Phase I & II tests

To verify that the control charts approach based on PCA is robust, we test
two different phase I. As it is possible to see in tab. 5.2, every Test is com-
posed by two different datasets, characterized by different input parameters.
In fact, in Test 1 we have two different wheel speeds with the same infeed
rate while in Test 2 there are two datasets with the same wheel speed but
with a different infeed rate.

After calculating the control limits according to these two tests, the con-
trol charts are then evaluated on two other tests, which characteristics are
summarized in tab. 5.3 (Test A & B).

Also these two tests are composed by two grinding operations: in both
of them, the first is an operation with an in control wheel speed, while the
second one has an out of control speed. In this way, with the first operation we
can test if the system is robust to the variation of the input parameters while
with the second one we can test if this approach is sensitive and responsive
to the chatter phenomenon generation.

So, in the following sections we propose two examples with the use of the
time-domain and frequency-domain synthetic indicators:

Example 1 : training on Test 1 and testing on Test A & B (subsection 5.2.2
and 5.2.3);

Example 2 : training on Test 2 and testing on Test A & B (subsection 5.3.2
and 5.3.3).
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5.2 Testing the proposed approach on time-domain in-

dicators

In this section we will show the results of control charts trained on Test 1 & 2
and tested on Test A & B for the PCA approach with time-domain synthetic
indicators. Before showing the results, in the next subsection the two tests
used for phase I are analyzed and compared.

5.2.1 Phase I

Phase I determines the number of principal components to be selected, and
the coefficients of the A matrix; these are very important parameters that
affect all the following analysis. There are many different approaches that can
be used for the selection of the optimal number of components, e.g. Pareto
chart, Laplace method and Kaiser’s rule.

Joliffe [16] says that the most obvious criterion for choosing the number
of PCs is the selection of the PCs number that explain a certain cumulative
percentage of total variation of the PCs, usually between 70% and 90%. He
also says that there is another approach, Kaiser’s rule, which is based on
the idea that the PCs with variance less than a threshold are not worth
retaining. The threshold is the average value of the eigenvalues. In this
work, the adopted criterion for PC retaining is the Kaiser’s rule.

In tab. 5.4 are shown the variances for each PC. In these two tests, the
eigenvalues average is always 1. It is possible to see that only the first two
PCs have a variance > 1: in both cases the number of PCs chosen is 2.

Table 5.4: The variance explained for the two tests.

Test 1 Test 2

Var. Expl. Var. Expl.

PC 1 1.55 1.38
PC 2 1.07 1.15

PC 3 0.98 0.96
PC 4 0.74 0.78
PC 5 0.67 0.72

In fig. 5.1 the Pareto charts are displayed. The charts shows the cumu-
lative variance explained by the PCs. Choosing only two components means
to explain only about 50% of the total variability for both tests; this is an
important factor for the comparison between the tests. If we followed the
Pareto rule, we would have chosen 4 PCs, which means retaining an higher
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Figure 5.1: Time-domain indicators: Pareto charts of variance explained.

number of PCs that might lead to overfit the data. For these reasons, we use
the Kaisen’s rule, that retains always fewer components, remaining coherent
to the previous choices.

To investigate on the meaning of the selected PCs, the barplots in fig. 5.2
are used. For every test, the two PCs seem to assume different meanings. In
fact, in Test 1, the first PC averages the contribution of the five indicators.
Indeed in Test 2 it is mainly influenced by the 2nd, 3th and 4th indicator
(P2P on headstock and tailstock accelerometers and P2RMS on headstock
accelerometer). The second PC of Test 1 contrasts the indicators 2 and 5
with, mainly, the first one. In Test 2, the second PC contrasts the indicators
calculated on the wheel accelerometer with all the other ones.
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Figure 5.2: Time-domain indicators: barplots of main PCs.

After choosing the number of PCs, the control limits based on the per-
centile approach and the one on the moving block bootstrap approach are
calculated. Tab. 5.5 shows the results in terms of false alarms percentage for
Test 1 & 2. The results are divided in T 2 and Q. Then, an overall percent-
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Table 5.5: False alarms percentage on phase I

UCL type T2 Q Overall

[%] [%] [%]

Test 1
Percentile 0.57 0.57 1.14
Moving Block Bootstrap 0.00 1.56 1.56

Test 2
Percentile 0.57 0.57 0.99
Moving Block Bootstrap 0.00 0.43 0.43

age of false alarms is calculated, showing the number of samples identified as
out of control by one or both the control charts. The overall rate of alarms
indicates the performances of the charts.

Comparing the two control limits approaches, there is no evidence in
assuming that one method always better performs than the other. This
is due to the method used to calculate the moving block bootstrap limits.
Indeed, extrapolating random samples on which calculating the limits, these
will always be different, and never will be always lower or always higher than
the percentile limit. For this reason, in the following examples we will report
both the control limits to see how they behave varying the type of phase II
dataset.

In the next two subsections we will see how the trained control charts
behave with the two phase II example tests.

5.2.2 Phase II: example 1

In this first examples, we use Test 1 for training the control charts, that will
be test on Test A & B.

The final output of the PCA approach is the T 2 and Q statistics, that
are used to monitor the process. In fig. 5.3a and 5.3b there are the control
charts for the two tests.

The control chart in fig. 5.3 (and all the other ones that will follow) is
divided into three ‘section’: the first one is the phase I, where the Upper
Control Limits are calculated; the second one is the first part of phase II
(from now on, it will be called ‘in control’ phase II ), when a ‘in control’
wheel speed is used during the operation. In this section, we expect not to
have alarms, because they would be false. Then, in the third section (from
now on, it will be called ‘out of control’ phase II ), a grinding operation with
an ‘out of control’ wheel speed is tested. In this last phase, it is easy to see
that, after an initial stable phase, both T 2 and Q statistics begin to grow,
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Figure 5.3: Example 1: control charts.

exceeding the upper control limits, and continue to grow until the end of the
test. This growth of T 2 and Q statistics is due to the chatter phenomenon,
that, at the end of the test, has led to obtain waviness on the roll surface,
that could be verified through the previously detailed analysis of section 4.3.

Both control charts seem to be robust to the variation of input; in fact,
the chart is trained on two operations with 680 rpm and 830 rpm wheel
speed, and then is tested on 830 rpm with another infeed rate (in the Test 1-
A) and on 1000 rpm (in the Test 1-B). Fig. 5.3 shows that the control charts,
in both the examples, don’t have false alarms in the ‘in control’ phase II.

Moreover, both control charts seem to be sensitive to the chatter phe-
nomenon that cause waviness on the roll (see ‘out of control’ phase II in fig.
5.3); if the approach would have been sensitive only to the ‘bad’ wheel speed,
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Table 5.6: Percentage of alarms on ‘in control’ phase II based on percentile
and moving block bootstrap UCL.

UCL Type T2 Q Overall

[%] [%] [%]

Test 1-A
Percentile 0.00 0.00 0.00
Moving Block Boot. 0.00 0.00 0.00

Test 1-B
Percentile 2.84 0.85 3.69
Moving Block Boot. 2.84 1.42 4.26

the control chart had alarms since the beginning of the second part of phase
II. Indeed, initially the charts do not have alarms because no chattering phe-
nomenon has been developed yet. In fact chatter, as detailed in section 1.2,
is a phenomenon that is not always evident at certain speeds. In fact, a
single grinding pass at wheel speed categorized as ‘out of control’, it would
not create waviness on the cylinder because the analyzed phenomenon takes
time to develop, and only when the vibrations became significant, chatter
creates waviness on the roll.

What can not be verified in this approach is the reactivity of the system
as a function of the chatter creation. The grinding process is made on a
high number of consecutive passes, and only at the end of the pass it was
possible to verify the quality of the surface of the cylinder. On the other
hand, stopping the process after each machining pass could not have lead to
the waviness generation, because the vibrations would have been attenuated
each time.

Tab. 5.6 summarizes the percentage of alarms for the ‘in control’ phase
II of Test 1-A & 1-B. Test 1-A has a better performance than Test 1-B.
In fact, this first test has 0% alarms while the second one appears to have
a small percentage of alarms; this is lower in the percentile UCL than the
moving block bootstrap UCL. Probably, the 1-B test is more affected by the
high speed of the ‘in control’ phase II compared to the speed of phase I, and
therefore is more sensitive at the parameters variation.

Tab 5.7 sums up the behavior of the same charts, when there is a test with
a ‘bad’ wheel velocity as input. At the end of this operation, the roll surface
presented waviness and both tests and both limits indicate the presence of
chatter.

The first thing that is observed, analyzing the control charts, is a growing
trend that starts in the second part of the Phase II. This is congruent with the
chatter definition. In fact the chatter is defined as an increasing phenomenon,
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Table 5.7: Percentage of alarms on ‘out of control’ phase II based on
percentile and moving block bootstrap UCL.

UCL Type T2 Q Overall

[%] [%] [%]

Test 1-A
Percentile 47.35 64.77 64.77
Moving Block Boot. 42.05 66.29 66.29

Test 1-B
Percentile 60.47 80.23 80.23
Moving Block Boot. 54.07 84.30 84.30

which develops after a certain period. The trend begins smooth but then
grows faster both in Test 1-B than Test 1-A, where is visible observing the
‘out of control’ Phase II. The average time that the chatter phenomenon
takes to grow may vary from wheel speed to wheel speed, and this is visible
in the two proposed ‘out of control’ Phase II. The Test B takes less time to
get ‘out of control’ compared to the results of test A.
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Figure 5.4: Example 1: scatterplot of PC1 vs PC2.

In fig. 5.4 scatterplot of the PC1 vs. PC2 for each of the two tests is
shown. It is easy to see that there are some values in phase II that have a
completely different behavior compared to the phase I data. These data are
the last values that exceed the control limit in the charts.
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5.2.3 Phase II: example 2

The Example 2 is similar to the first one; compared with the previous one,
only the phase I changes. In fact, in this case two operations with the same
wheel speed (630 rpm) are used. This test might be more problematic than
the previous one because, as we have seen, the indicators are not fully robust
to the parameters variation. Training the phase I on a single speed could
cause more false alarms than in the previous example in the ‘in control’
phase II.
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Figure 5.5: Example 2: control charts.

The behavior of the two control charts, that is possible to see in fig. 5.5,
appears the same as in Example 1, the opposite of what we could expect.
In fact, both the charts work very well in the ‘in control’ phase II. The
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Table 5.8: Percentage of alarms on ‘in control’ phase II based on percentile
and moving block bootstrap UCL.

UCL Type T2 Q Overall

[%] [%] [%]

Test 2-A
Percentile 1.14 0.28 1.42
Moving Block Boot. 0.85 0.00 0.85

Test 2-B
Percentile 2.27 0.00 2.27
Moving Block Boot. 0.85 0.00 0.85

Table 5.9: Percentage of alarms on ‘out of control’ phase II based on
percentile and moving block bootstrap UCL.

UCL Type T2 Q Overall

[%] [%] [%]

Test 2-A
Percentile 35.98 63.26 64.39
Moving Block Boot. 34.09 63.26 64.02

Test 2-B
Percentile 34.30 75.58 75.58
Moving Block Boot. 31.40 75.58 75.58

confirmation is given in tab. 5.8, where the percentage of false alarms are
shown.

Compared to the previous case (Example 1 in subsection 5.2.2), false
alarms are evenly distributed on both tests. In fact, both of them present
alarms in a very low percentage. In this case, the moving block bootstrap
limits seem to better perform than the percentile limits. However, it is im-
portant to remember that this is due by the random nature of the limits
approach with which the moving block bootstrap one are calculated.

Observing the ‘out of control’ phase II, it is easy to see that even in this
case, the charts seems to perform well. Test 2-A reports 65% of alarms,
hoverer less than those indicated by Test 2-B (75%). Between T 2 and Q
statistics, the second one appears to give a great number of alarms. This
varies by the number of the few PCs which are chosen in the construction of
the charts. In fact, Q statistics monitors the residuals which are the process
features non included in the model.

At last, to make a total comparison, in fig. 5.6 the scatterplots of the
first PCs are shown. The values of the PCs behave differently than Example
1. In fact in the first example when PC1 increases its values, also the PCs
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Figure 5.6: Example 2: scatterplot of PC1 vs PC2.

does it; now we observe an opposite behavior. Moreover, there is not a linear
trend, especially in Example 1-B, but the values are divided in subgroups
instead of follow a trend line.
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5.3 Testing the proposed approach on frequency-domain

indicators

In this section we will show the results of control charts trained on Test 1&
2 and tested on Test A & B for the PCA approach with frequency-domain
synthetic indicators. As in the time-domain analysis, in the next subsection
the two tests used for phase I are analyzed and compared and then the results
are shown.

5.3.1 Phase I

To maintain the same setting used in the previous examples, for the choice
of the number of PCs, we will use Kaiser’s Rule even with frequency-domain
synthetic indicators. In tab. 5.10 the variances for each PC are shown.

Table 5.10: Frequency-domain indicators: Phase I. The variance explained
for the two tests.

Test 1 Test 2

Var. Expl. Var. Expl.

PC 1 2.97 4.44
PC 2 2.08 0.83

PC 3 0.60 0.39
PC 4 0.29 0.30
PC 5 0.04 0.02
PC 6 0.03 0.01

The eigenvalues average, for both tests, is 1. Kaiser’s rule suggest to
choose 2 PCs for Test 1, and only 1 PC for Test 2. In fig. 5.7 is possible to see
the percentage of explained variance, increasing the number of components.
To compare the number of false and true alarms, it should be better to have
a number of components that explain the same variability. For this reason,
also for Test 2, we choose 2 PCs.

Fig. 5.8 shows the barplots of the first two components. The first PC of
test 1 is more influenced by the last four indicators (calculated on headstock
and tailstock accelerometers), that are positively weighted than the others
(calculated on wheel accelerometer). In Test 2, the first PC averages the
contribution of the six indicators. In both tests, PC2 is mainly influenced by
the first two indicators.

To complete the analysis of phase I dataset, in tab. 5.11 the results in
terms of false alarms are shown. Even in this case, the results are divided
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Figure 5.7: Frequency-domain indicators: Pareto charts of variance ex-
plained.
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Figure 5.8: Frequency-domain indicators: barplots of main PCs.

into the two statistics T 2 and Q, and then summarized into the overall false
alarms percentage.

The behavior of the two test are very similar in phase I. In fact, the false
alarm rates are the same for the two test using the percentile approach to
build the limits, and very similar when the limits are based on the moving
block bootstrap approach. This again confirm the fact that the two limits
are almost equal. Before drawing any conclusions, let’s see how the control
charts conduct the analysis in phase II.

5.3.2 Phase II: example 1

The same Example 1 proposed in section 5.2.2 is now repeated with the use
of the PCA approach based on frequency-domain synthetic indicators. The
procedure is the same: the phase I (Test 1) is used to training the charts,
that are then tested on Test A & B. In fig. 5.9 the charts for these two
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Table 5.11: False alarms percentage on phase I: frequency-domain indicators.

UCL Type T2 Q Overall

[%] [%] [%]

Test 1
Percentile 0.57 0.57 1.14
Moving Block Bootstrap 0.00 0.57 0.57

Test 2
Percentile 0.57 0.57 1.14
Moving Block Bootstrap 0.00 0.14 0.14

Examples are shown.
It can be immediately seen several differences compared with the same

case in time-domain. The differences are both in the ‘in control’ phase II and
in the ‘out of control’ phase II.

Regarding to the ‘in control’ phase II, the Test 1-A doesn’t have false
alarms in the Q chart, but seems to have numerous false alarms in the T 2

statistics. This is confirmed by the alarms rates that are obtained, visible
in tab. 5.12. The situation that exists in Test 1-B is totally reversed, but
much more serious. The T 2 statistics has fewer false alarms compared to the
Q statistic, but both are greater than in the Test 1-A. Indeed, globally there
is a false alarms rate of 66%. These results are definitely influenced by the
input parameters of the machine. Furthermore, in the ‘in control’ phase II
of Test 1-B seems that the frequency-domain indicators assume a particular
behavior that the time-domain indicators do not capture.

Indeed, looking at the ‘out of control’ phase II, a more rapid reactivity of
the system than the same tests based on time-domain indicators is observed.
This, however, is most likely caused by frequency-domain indicators, that
have a higher sensitivity to the variation of the input parameters. However,
even in this second part the two tests shows different results. In fact, the
control charts of the Test 1-B have 100% of alarms for both statistics, in both
of the UCL types (see tab. 5.13). Indeed, the control charts based on Test
1-A display less alarms in the Q chart. However, the overall alarms are very
similar. This is due, at least in a part, to the sensitivity of the indicators to
the wheel speed variation, as previously observed. This phenomenon with the
frequency-based indicators is much stronger, but, according to the analysis
of section 4.5.2, we were expecting this behavior.

In fig. 5.10 the scatterplots of the two PCs are displayed. The main trend
of phase II data is the opposite than what it was observed in Example 1 with
the time-domain indicators. Moreover, the dispersion of the phase I data
appears to be very different. In fact, in the other case, the phase I data were
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Figure 5.9: Example 1: control charts.

uniformly spread around a value; in this case, two different components can
be observed, a vertical and a horizontal one.
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Table 5.12: Percentage of alarms on ‘in control’ phase II based on per-
centile and moving block bootstrap UCL.

UCL Type T2 Q Overall

[%] [%] [%]

Test 1-A
Percentile 12.50 0.00 12.50
Moving Block Boot. 8.24 0.00 8.24

Test 1-B
Percentile 10.23 65.34 65.91
Moving Block Boot. 6.53 67.61 68.18

Table 5.13: Percentage of alarms on ‘out of control’ phase II based on
percentile and moving block bootstrap UCL.

UCL Type T2 Q Overall

[%] [%] [%]

Test 1-A
Percentile 98.48 76.14 98.48
Moving Block Boot. 98.48 76.89 98.48

Test 1-B
Percentile 100.00 100.00 100.00
Moving Block Boot. 100.00 100.00 100.00
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Figure 5.10: Example 1: scatterplot of PC1 vs PC2.
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5.3.3 Phase II: example 2

In the previous example, it was observed that the PCA approach with the
frequency-domain synthetic indicators does not perform in a satisfactory way.
Now, we expect even worse performances, because, to follow the pattern used
for the time-domain indicators, the next control charts will be trained on a
single wheel speed, and then they will be tested on two different velocities.
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Figure 5.11: Example 2: control charts.

Fig. 5.11 displays the output of these tests in terms of control charts.
At first sight, the two control charts appear to behave very similar to the
previous test. In fact, both systems in the ‘in control’ phase II have numerous
alarms, which considerably increase in the ‘out of control’ phase II. Once
again, to compare in a quantitative way what has been said, tab. 5.14 and
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Table 5.14: Percentage of alarms on ‘in control’ phase II based on per-
centile and moving block bootstrap UCL.

UCL Type T2 Q Overall

[%] [%] [%]

Test 2-A
Percentile 16.48 19.32 33.24
Moving Block Boot. 12.22 15.06 26.14

Test 2-B
Percentile 0.28 82.95 82.95
Moving Block Boot. 0.00 82.10 82.10

Table 5.15: Percentage of alarms on ‘out of control’ phase II based on
percentile and moving block bootstrap UCL.

UCL Type T2 Q Overall

[%] [%] [%]

Test 2-A
Percentile 83.33 70.45 84.85
Moving Block Boot. 81.44 70.45 82.95

Test 2-B
Percentile 100.00 100.00 100.00
Moving Block Boot. 100.00 100.00 100.00

5.15 summarize the percentage of alarms obtained in the first part and the
second parts of phase II.

The performances of the control charts for the ‘in control’ phase II are
much worse than the previous example. In fact, in Test 1-A there is, on av-
erage, 10% of false alarms. Now the alarms are more than doubled, reaching
30%. The same increasing trend is observed in Test B, that passes from 66%
to 82% of false alarms.

Indeed, analyzing the ‘out of control’ phase II, it is possible to see that
Test 2-A, with 83%, on average, of alarms is less sensitive than Test 1-A
(98% of alarms). Test B performs equally varying the phase I test.

Fig. 5.12 shows the scatterplots for both tests. The main trend is always
the same, and shows how some of the data are correlated: increasing the PC
1 values, also the PC 2 values increase. In addition, we observe a particu-
lar tendency in the ‘in control’ phase II, which is divided into two different
components and does not appear to be uniformly distributed.
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Figure 5.12: Example 2: scatterplot of PC1 vs PC2.

In the proposed examples of the monitoring approach, we have observed
that the model, based on the fusion of time-domain indicators, is more robust
than the one constructed with the frequency-domain indicators. Frequency
domain indicators proved to be much more sensible both to the chatter phe-
nomenon and to the variation of process parameters. The sensitivity to the
chatter phenomenon makes them faster in recognizing process deviations,
but, on the other hand, their dependency on the process parameters produces
a great number of false alarms. For an industrial application we suggest then
the use of a set of indicators that might not produce an excessive number of
false alarms even if this mean a small delay in the process deviation detec-
tion. A further study that can be considered in future works might be an
approach that is able to discriminate whether the shift of the indicators is
due to the variation of the parameters or due to out of control conditions.
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Chapter 6

Final Remarks

In this chapter a brief review of a further approach which could be used in
the analysis of this type of data is proposed. The methodology being tested
is another different development of the traditional PCA approach, which is
called Multichannel Singular Spectrum Analysis. The MSSA is an approach
useful for data where the absence of autocorrelation hypothesis is violated.
In fact, the traditional PCA is based on the assumption of temporal inde-
pendence of the data, although it is often applied for the time series analysis.
The MSSA is the natural extension of the PCA to analyze temporally de-
pendent data streams (i.e. autocorrelated data). For this reason we believe
that it is interesting to apply it to out datasets.

The MSSA is the extension of the Singular Spectrum Analysis approach
to the multivariate case. The SSA is an approach useful to analyze the
autocorrelation in a series and the MSSA is used when there are several time
series to analyze. The basic idea in SSA is simple: a principal component
analysis is done with the variables analyzed being lagged versions of a single
time series variable [16].

Monitoring a signal means, most of the times, analyzing time series that
usually present autocorrelation phenomena and non stationary behavior.
Specifically in this work synthetic indicators with overlapped windows are
calculated on the raw accelerometric data, and this procedure creates fur-
ther correlation in the data. The MSSA method will consider not only the
covariance between the variables at the same time instant, but also the co-
variance in different time instances, thus it could be an appropriate tool for
this kind of application.

In the next section we will briefly explain the basis of the MSSA approach;
then, we will propose an example of its application on a dataset used in the
previous chapter.
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6.1 Theoretical framework

The idea of the SSA and then its multivariate extension MSSA is to lag
the variable observed and study the space-time correlation. If we have N
observations of p variables, the MSSA applies a technique similar to the
principal component analysis on a matrix of N ′ × p′ variables. This new
matrix is obtained reorganizing the input data, where N ′ = N −m + 1 and
p′ = mp. We refer to m as the maximum lag introduced constructing the
new input matrix.

The k-th row of the matrix will be:

Xk = [Xk,1, Xk+1,1, . . . , Xk+m−1,1, Xk,2, Xk+1,2, . . . , Xk+m−1,2, . . .

. . . , Xk,p, Xk+1,p, . . . , Xk+m−1,p]

where the first k+m−1 columns represents the values of the first variable
lagged m times; then there are the same values of the second variable and
so on, until the values for the last variable P. Essentially, what is done is a
vectorization and a time lagging of the input variables. Monitoring multi-
channel signals, MSSA approach can be seen as an extension of the vPCA,
to consider the time dependance of the monitored variables.

The variance-covariance matrix is larger then in the previous approach
and assumes the form of:

S =




S1,1 S1,2 . . . S1,p′

S2,1 S2,2 . . . S2,p′

...
...

. . .
...

Sp′,1 Sp′,2 . . . Sp′,p′




where Skk is a m×m variance-covariance matrix at different lag for the
k-th variable and Skl, with k 6= l has the (i, j)th element equivalent to the
covariance between the k-th and l-th variable at lag |i− j|.

For a more exhaustive description of the method, we refer to Joliffe [16]
for an introduction and to [26, 30] for specific literature.
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6.2 An example of the MSSA application

In this section we propose an example of the MSSA application, that could
be a future development for this kind of work. We choose to show one of
the examples tested for the vPCA, in particular the first one. The input
working parameter are summarized in tab 6.1. This choice is made in order
to compare the vPCA approach and the MSSA.

Table 6.1: Input parameters for Test 1-A.

WH vel. Infeed

[rpm] [mm]

Phase I
680 0.02
830 0.02

Phase II
830 0.01
970 0.02

We choose to use the same time-domain indicators with the same assump-
tions adopted in the Example 1 shown in subsection 5.2.2.

The MSSA method is suitable for modeling multivariate time series for
few variables. A common practice is to apply the MSSA only at the first PCs
of the multivariate process, as said in Joliffe [16] and described by Plaut and
Vautard [26].

The initial input matrix is constituted by 5 columns, each one for an
indicator. Peak to peak and Peak to RMS are calculated on the head and tail
stock channels, while Skewness is calculated on the wheel channel. On this
matrix, the PCA approach previously used is performed. Similarly, from 5
PCs we choose only the first two. The output form this first step is composed
by two series that are the linear combination of the 5 input indicators. Hence
these two series will be the input for the MSSA method which is the second
step of the analysis that considers time dependency.

The first thing to choose is the number m, that represent the maximum
lag introduced in the construction of the matrix. In this case, we set m = 44.
In fact 44 is the average number of points that we have for a singular pass
of a grinding operation. Consider m = 44 means that we can analyze the
autocorrelation of the indicators within the entire pass.

The variability explained by the first two PCs of the MSSA is shown in
fig. 6.1a. As it is possible to see, by choosing 4 PCs we can explain 70%
of variability and 6 PCs are needed to explain 80% of variability. Fig. 6.1b
displays the loadings for the first 4 PCs.
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Figure 6.1: Time-domain indicators: Pareto charts of variance explained.

For both series, it seems that the first two PCs capture a very low fre-
quency oscillations (almost constant), while, increasing the number of PCs,
more higher frequency are considered. The 3rd and 4th PCs, however, still
seem to capture long term behavior. For the next analysis, we choose 4 PCs,
to be able to explain 70% of total variability.

For each input series, the MSSA calculates its reconstruction through the
linear combination of the chosen PCs. In fig. 6.2 are displayed the output
of the MSSa approach compared with the input series. Both series seem to
capture an oscillating behavior between different passes, while filtering out
the oscillating components within each pass.
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Figure 6.2: Reconstructed series.

The T 2 and Q statistics for the Test 1-A are calculated on the first 4
PCs of the MSSA and are displayed in fig. 6.3. As we noted in the previ-
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Figure 6.3: Output of the MSSA approach.

ous graph, both statistics are smoothed and cyclical compared to the initial
series. In fact, by definition of the MSSA approach, the statistics are auto-
correlated.The violation of the hypothesis of autocorrelation absence does
not allow the application of traditional multivariate tools to monitor the
characteristic. Consequently, it is necessary to use a control chart robust to
this violation. An easy-to-use method that attempts to solves this problem
is the EWMA (Exponentially Weighted Moving Average) control chart for
autocorrelated data, as is proposed in [23].

The control chart follows this simple principle: the EWMA is the best
predictor for a first order process integrated and with a moving average:

xt = xt−1 + εt − θεt−1.

If we call λ = 1 − θ, where θ is a model parameter and εt is a random
component normally and independently distributed with mean and standard
deviation σ.

The prediction based on EWMA for the t+ 1 observation is given by:

x̂t+1 = zt = λxt + (1− λ)zt−1

The prediction error one-step-ahead will be:

et = xt − x̂t

that it will be independent and identically distributed if the below model is
correct.

In fig. 6.4 are displayed the control charts based on the et residuals of
the EWMA calculated with a λ = 0.2

Due to non-normality of the et statistics and still presence of autocorrel-
ation that the EWMA model has not been able to fully reduce, empirical
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Figure 6.4: EWMA residuals charts on T 2 and Q with empirical limits.

limits have been considered to deal with these problems. Even if the charts
seem to identify the development of chattering, there is still some research to
do in order to conduct these analysis in accordance to the model hypothesis.

89



Conclusions

This work summarized the results of the development of an in-process quality
monitoring approach for chatter identification. This study was part of a re-
search project that involved a world-leader producer of grinding systems for
rolls. The main aim of the research project was to develop an innovative soft-
ware aimed at controlling the grinding process to avoid chatter occurrences,
which result is a bad quality of the surface of the ground rolls.

Our assignment in this project involved the development of a methodo-
logy for monitoring process vibrations. The proposed framework consisted
in designing a multivariate control chart based on an extension of the prin-
cipal component analysis technique. For this purpose, a statistical approach
for multi-sensor data fusion, based on the use of PCA, has been proposed.
The idea of sensor fusion comes from the assumption that the sensitivity
of signals that are acquired from different drives may change depending on
several process factors. For this reason the integrated monitoring of multiple
signals with multivariate techniques allows capturing correlation among dif-
ferent sources, leading to a more effective process monitoring during different
operative conditions.

Along this analysis important issues have been faced with, such as the
big amount of data coming from the accelerometers, the time-varying nature
of grinding processes, the modification of the wheel geometry, the change of
cutting conditions and other working parameters.

To deal with the high frequency rate of the signals and their noisy nature,
it has been proposed to work with a set of indicators developed both in the
time and frequency domain. The use of a subset of indicators has helped
not only to reduce outliers in the raw data but also to capture different
features of the process. However great effort has been done in finding indic-
ators robust to the variation of process parameters but sensible to the chatter
phenomenon. An experimental plan has been used to investigate the depend-
ency of parameters, such as wheel speed and infeed rate, on the indicators
responsiveness.

PCA has proved to be an appropriate methodology to investigate correl-
ations between signals pattern on which a robust monitoring process can be
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built.
Furthermore to face the time-varying nature of the grinding process,

which involves the presence of autocorrelation and non-normality across the
data, empirical bootstrap-based limits has been used to conduct the analysis.
Further extensions of the proposed approach have been considered as future
developments in order to consider the oscillating nature and time depend-
ency of these kinds of process. Multichannel Singular Spectrum Analysis
(MSSA), coupled with the Principal Component Analysis (PCA) seems to
be a promising joint for a deeper and more complex analysis.

However, the developed framework has somehow reached the goal of
multi-sensor data fusion for process monitoring, extracting knowledge about
the working conditions of the machine and the quality and stability of the
process, performing better than what could be done with a single signal.

The use of statistical methods for data fusion and multivariate control
charts, adopted to monitor the process, consist in an improvement of the
monitoring approach currently used, which relies on subjective analysis of
process outputs and post-process inspection of the final workpiece. Presently
the quality of the final product depends on the ability of the operator to per-
form a correct analysis of the working conditions, understanding whether the
final product will meet its specifications or not. If the operator is not able
to detect the presence of process abnormalities, the final product’s charac-
teristics might result out of the specification limits thus meaning the rework
of the workpiece. We believe that keeping the process between control limits
by monitoring its behavior can reduce wastes of time and resources. The
benefits of our approach have to be found in the objective and quantitative
analysis performed and the lower request of skilled supervision.

Furthermore, the innovation of this work consists in using statistical
methods for the roll grinding process characterization, which don’t use neither
black box methods nor specific physical models that require proper training
or evaluation on the single machine as proposed in the reviewed literature.
The approach is not computationally intensive and the control charts for
monitoring require only a set of stable working conditions to perform further
analysis. For these reasons we believe that it can be easily integrated on-line
in the machine control unit without great efforts. Further improvements for
this framework can be represented by the adoption of new indicators that
are yet more robust and specific for the grinding process. Statistical tools,
such as the MSSA, may represent future developments to deal with space-
time correlation of the different machine signals which can lead to even more
robust analysis. An important challenge, that should be faced for an efficient
industrial application, is the reduction of false alarms while keeping the same
reactivity of the system to the process instability.
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Appendix A

Sensitivity of indicators to chatter

In this appendix we report all the box-plots used for the preliminary analysis
of synthetic indicators. The signals used for the box-plots calculations are
the same for all the indicators. In fig. 4.14 and 4.15 are shown the time-
domain indicators and in fig. A.3 the frequency-domain ones. A summary
analysis of these box-plots is described in subsection 4.5.1.
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Figure A.1: Box-plots of time-domain indicators: RMS & KUR.
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Figure A.2: Box-plots of time-domain indicators: SKEW, P2P & P2RMS.
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Figure A.3: Box-plots of frequency-domain indicators.
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Appendix B

Sensitivity of indicators to process

parameters

The main effects and individual value plots used for the preliminary analysis
of indicators (see subsection 4.5.2) are reported. In fig. B.1 and B.2 are
shown the time-domain indicators, in fig. B.3 and B.4 the frequency-domain
ones.
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Figure B.1: Datasnooping RMS & KUR.
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Figure B.2: Datasnooping SKEW, P2P & P2RMS.
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Data snooping of proposed indicators
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(a) Rel. SEV main effect plot
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(c) Rel. SEV individual value plot
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(e) Abs. SEV main effect plot
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Figure B.3: Datasnooping Rel. SEV, Rel. Max. SEV & Abs. SEV.
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Data snooping of proposed indicators
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