
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

DROIDSAGE: AN AUTOMATED

ANDROID SANDBOX GENERATOR

Relatore:

Prof. Stefano ZANERO

Correlatore:

Prof. Federico MAGGI

Tesi di Laurea Magistrale di:

Eros LEVER, matr. 766022

Anno Accademico 2012–2013

Abstract

Since its public release in 2008, the Android operating system had an ex-
plosive growth in market share. This fact, coupled with the openness with
respect to third party applications made it the perfect target platform for mo-
bile malware, that is malicious software targeting mobile platforms. Mobile
malware is typically disguised as applications with hidden functions that aim
to steal sensitive data from a user’s device. Mobile devices are in fact rich in
sensitive data, such as personal contacts, messages, emails and geographical
coordinates that are very common to find on smartphones.

The ever-increasing number of applications that are published everyday
make it challenging for security experts to protect Android users verifying the
behaviour of unknown applications and identify new malware threats. In this
scenario, the need of an automated analysis platform has always been present.
Techniques for automated analysis are mainly divided in two categories, static
and dynamic approaches. Static analysis is performed searching the applica-
tion’s code for known patterns that may correspond to malicious behaviours.
Dynamic analysis is instead the process of executing the application and trace
specific behaviours as they happen at runtime.

Currently existing solutions that allow tracing the behaviour of a generic
application at runtime, thus offering a blackbox dynamic analysis environ-
ment, are still limited in terms of compatibility with Android versions. Some
of these solutions furthermore employ deep modifications to the underlying
system that narrow the target reach only to very specific device versions,
requiring a new environment to be compiled and built from source.

Creating a new environment compiling it from the source code is not always
possible, for instance, it is common for hardware manufacturer to only release
prebuilt binaries without distributing the sources.

In this scenario we propose a system able to generate blackbox dynamic

i

ii

analysis platforms for Android applications obtained altering existing envi-
ronments rather than creating new ones. The modifications applied by the
system target solely the Dalvik bytecode, allowing compatibility across mul-
tiple Android versions.

Behaviours are traced by means of instrumentation of Application Pro-
gramming Interfaces (APIs) that are declared or invoked in the Dalvik byte-
code present in the original environments. Instrumentation of the APIs is
performed modifying the Dalvik bytecode and injecting instructions that will
be executed at runtime when the target APIs are invoked. Those instructions
have then to take actions such as logging each invocation.

The environments to alter are supplied as Android system images, which
represent the disk image for the partition that held system specific applications
and libraries. A system image may also contain optimised Dalvik bytecode.
To instrument this variant of bytecode, it will first be converted to regular
bytecode translating optimised instructions in their unoptimised equivalent.
The resulting instrumented system image can then be used with the Android
emulator or flashed on physical devices.

The developed system has been compared to existing state of the art so-
lutions with a series of tests performed on a dataset of sample applications
composed of both malware and benign applications.

The main contributions of this work are: an automated instrumentation of
Dalvik bytecode and its optimised variant, compatibility with possibly every
Android version including physical devices, highly configurable customisation
of the generated analysis platform and avoiding breaking the signature verifi-
cation despite the bytecode modification.

Sommario

Dal rilascio del primo dispositivo con sistema operativo Android ad oggi, questi
dispositivi sono riusciti a raggiungere un’alta diffusione, spopolando come pi-
attaforme mobili per smartphone e tablet. Questo fatto insieme all’apertura
del sistema operativo verso applicazioni di terze parti, lo ha reso l’obiettivo
perfetto per applicazioni malevole, note come mobile malware. L’elevatissi-
mo numero di applicazioni rilasciate ogni giorno per questa piattaforma sta
rendendo complicato il compito di proteggere l’utente del dispositivo da ap-
plicazioni malevole, volte ad esempio a rubare dati personali di cui questi
dispositivi sono particolamente ricchi.

Per gestire tali volumi di applicazioni, esperti di sicurezza informatica
si devono necessariamente avvalere di tecniche si analisi automatizzata. Tale
analisi deve essere in grado di esaminare applicazioni sconosciute, a questo fine
non si prestano tecniche di analisi white-box (a scatola aperta) che necessitano
di informazioni pregresse, tipicamente il codice sorgente dell’applicazione.

Gli approcci black-box (a scatola chiusa) disponibili si dividono tipicamente
in tecniche statice e dinamiche, anche se esistono approcci ibridi. Analisi
statica è un processo che analizza il solo codice dell’applicazione senza di
fatto eseguirlo, cercando di individuare schemi noti che potrebbero ricondurre
a comportamenti malevoli da parte dell’applicazione. Le tecniche di analisi
dinamica prevedono invece l’esecuzione dell’applicazione in un ambiente, sia
esso reale o virtualizzato, dove specifici comportamenti vengono individuati
durante l’esecuzione stessa.

Il contesto in cui questo lavoro si pone è la realizzazione un sistema black-
box di analisi dinamica in grado di tracciare comportamenti come ad esem-
pio l’invio di un SMS durante l’esecuzione di una o più applicazioni in un
dispositivo Android, reale o emulato.

Le soluzioni ora disponibili in questo contesto sono molteplici, ma spesso

iii

iv

limitate a specifiche versioni del sistema operativo Android, o a specifici dis-
positivi. Inoltre, molti degli approcci presenti nello stato dell’arte richiedono la
compilazione da sorgente del sistema Android. Questo può non essere sempre
possibile, si veda d’esempio il fatto che è consuetudine per le case produttri-
ci di componenti hardware non rilasciare il codice sorgente, ma solo i binari
compilati. Questo lavoro si propone come sistema di generazione automa-
tizzata di ambienti di analisi black-box che si avvalgano di tecniche di anal-
isi dinamica per tracciare determinati comportamenti durante l’esecuzione di
un’applicazione Android.

Il nostro sistema analizza intere immagini di sistema Android, andando
ad instrumentarne il codice affinché un set personalizzabile di Application
Program Interface (API) sia monitorato durante l’esecuzione. Comportamenti
possono essere poi identificati da singole invocazioni di API o da gruppi di
esse.

Le API da monitorare devono essere individuate dal sistema nel bytecode
Dalvik, ovvero il codice che verrà eseguito dalla macchina virtuale Dalvik
presente in Android. Questa macchina virtuale ha lo scopo di astrarre il
codice da eseguire rispetto all’hardware presente sulla macchina. Per questo
motivo, modificando il bytecode è possibile mantenere la compatibilità con
potenzialmente tutte le versioni di Android.

E’ possibile che una immagine di sistema contenga anche del bytecode
Dalvik ottimizzato. Per instrumentare le API in questa variante del bytecode
Dalvik è stato necessario introdurre al sistema un ulteriore fuzionalità, ovvero
la conversione del bytecode ottimizzato nella sua versione non ottimizzata,
andando a tradurre ogni istruzione ottimizzata nel suo equivalente. Il nostro
sistema effettua una mappatura del codice in tutta l’immagine di sistema, cre-
ando un grafo delle classi ed un grafo delle invocazioni. Questi due grafi verran-
no poi utilizzati sia in fase di de-ottimizazione, sia in fase di instrumentazione
delle API da tracciare.

Il sistema da noi realizzato è stato poi utilizzato per generare un set di
ambienti di analisi, che sono poi stati confrontati con soluzioni esistenti nello
stato dell’arte. Abbiamo eseguito i confronti rispetto ad un set di applicazioni
composto sia da applicazioni malevole, sia da applicazioni non malevole. Il
confronto ha inoltre richiesto sia lo sviluppo di funzioni richiamate quando le
API instrumentate vengono invocate, sia di un sistema di test automatico. Le
funzioni realizzate hanno lo scopo di aggiungere qualora necessario al registro

v

di log il fatto che una determinata API sia stata invocata.
Il sistema di test automatico realizzato prevede l’avvio automatico di un

set di emulatori Android, ciascuno dei quali esegue un’istanza di un ambiente
instrumentato su cui viene installata ed eseguita un’applicazione. Per garan-
tire l’uso di un sistema pulito, sono stati creati degli snapshot, ovvero delle
istantanee di sistema da cui far partire un test.

Per rendere i test più realistici, si è cercato di riprodurre l’interazione di
un utente con il sistema su cui viene eseguito il test. L’interazione generata
è stata resa deterministica a scopo di ripetibilità, e composta sia da eventi
touch sullo schermo, sia da tasti premuti.

I test effettuati hanno dimostrato che, seppur con differenze più o meno
elevate dovute a variabili nell’ambiente sia interno che esterno, che gli ambi-
enti instrumentati generati hanno un funzionamento simile a quello di sistemi
presenti nello stato dell’arte.

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background and motivation 5
2.1 Android malware . 5
2.2 State of the art . 6

2.2.1 TaintDroid . 6
2.2.2 DroidBox . 7
2.2.3 Andrubis . 9
2.2.4 DroidScope . 9
2.2.5 CopperDroid . 10
2.2.6 API Monitor . 11
2.2.7 Apps Playground . 12

2.3 Goals and challenges . 12

3 The Android runtime 15
3.1 The Dalvik Virtual Machine . 15
3.2 Comparison with the Java Virtual Machine 16
3.3 Structure of a DEX file . 18
3.4 Structure of an ODEX file . 19
3.5 Signature verification in Android 22

4 Approach 25
4.1 System image generation . 25

vii

viii CONTENTS

4.2 Application analysis . 27
4.3 Instrumentation hooks . 28
4.4 Comparison with other state of the art solutions 30

4.4.1 Comparison with API Monitor 30
4.4.2 Comparison with TaintDroid 31
4.4.3 Comparison with DroidBox 31
4.4.4 Comparison with Andrubis 32

5 Implementation 33
5.1 Bytecode injection . 33

5.1.1 Reasons to inject bytecode 33
5.1.2 Injection technique . 34
5.1.3 Bytecode adaptation . 34

5.2 Bytecode instrumentation . 35
5.2.1 Instrumentation points 36
5.2.2 Internal instrumentation of a method 37
5.2.3 External instrumentation of a method 37

5.3 Instrumentation hooks . 38
5.3.1 The Payload class . 38
5.3.2 Call stack inspection . 39
5.3.3 Serialisation of objects to JSON 41
5.3.4 Logging of APIs . 42

5.4 System image generation . 44
5.4.1 Image extraction . 46
5.4.2 Dalvik bytecode identification 46
5.4.3 Conversion of ODEX into DEX 47
5.4.4 Class graph and call graph generation 50
5.4.5 User decision of target APIs 52
5.4.6 Instrumentation . 53
5.4.7 Bytecode optimisation 54
5.4.8 Image creation . 54

6 Experimental validation 57
6.1 Testbed environments . 58

6.1.1 System images . 58
6.1.2 Stimulation of a single application 60
6.1.3 Automatic stimulation of multiple applications at once . 62

CONTENTS ix

6.2 Dataset . 63
6.2.1 Normal applications . 63
6.2.2 Malware applications . 63

6.3 Test description . 64
6.3.1 No stimulation . 64
6.3.2 Stimulation with random events 65

6.4 Test results . 66
6.4.1 Comparison of DroidBox and instrumented GingerBread 66
6.4.2 Comparison of DroidBox and GingerBread with GSF . 67
6.4.3 Comparison of DroidBox and ICS 68
6.4.4 Impact of stimulation on test results 69
6.4.5 Impact of the Google Services Framework 71
6.4.6 Comparison of API usage in malicious and benign ap-

plications . 72
6.5 Discussion . 73
6.6 Other experiments . 75

7 Limitations and future works 77

8 Conclusions 79

A List of Dalvik VM instructions 81

Bibliography 91

List of Figures

2.1 Taint propagation in TaintDroid 7
2.2 Droidbox post-processing . 8
2.3 DroidScope system architecture . 10
2.4 CopperDroid architecture . 11

3.1 Android processes startup . 16
3.2 Bytecode comparison between Java VM and Dalvik VM 17
3.3 Comparison of Java JAR and Dalvik DEX file 18
3.4 Internal structures in a DEX file 19
3.5 Structure of an ODEX file . 21

4.1 System image instrumentation . 26
4.2 Application analysis schema . 27
4.3 Instrumentation hook . 28
4.4 Object pointers with taint labels in TaintDroid 31

5.1 Increased number of registers in a method 34
5.2 Register shifting . 35
5.3 Instrumentation points . 36
5.4 Internal instrumentation of a method 37
5.5 External instrumentation of a method 38
5.6 Registers usage comparison . 39
5.7 Example of instrumented bytcode 40
5.8 Stack trace acquisition . 40
5.9 List of white-listed package names 41
5.10 Depth awareness and field filtering in objects serialization 43
5.11 Runtime configuration file example 43
5.12 Example of logs with serialisation 45

xi

xii List of Figures

5.13 Example of logs without serialisation 45
5.14 Structure of a try-catch in Dalvik bytecode 49
5.15 Class and call graph database schema 52
5.16 Navigable graph of classes and methods 53
5.17 Error message when running dexopt 54

6.1 Interaction between Android components 60
6.2 Excerpt of generated Monkey events 66
6.3 Comparison of DroidBox and GingerBread without stimulation . . 67
6.4 Comparison of DroidBox and GingerBread with stimulation 67
6.5 Comparison of DroidBox and GingerBread GSF without stimulation 68
6.6 Comparison of DroidBox and GingerBread GSF with stimulation . 68
6.7 Comparison of DroidBox and ICS without stimulation 69
6.8 Comparison of DroidBox and ICS with stimulation 69
6.9 Comparison of DroidBox with and without stimulation 70
6.10 Comparison of GingerBread with and without stimulation 70
6.11 Comparison of GingerBread GSF with and without stimulation . 71
6.12 Comparison of the systems with no stimulation 71
6.13 Comparison of the systems with input stimulation 72
6.14 Impact of the Google Services Framework with no stimulation . . . 72
6.15 Impact of the Google Services Framework with input stimulation . 73
6.16 Comparison of DroidBox and GingerBread on malware samples . . 73
6.17 Comparison of DroidBox and GingerBread on benign samples . . . 74

List of Tables

5.1 List of optimised instructions . 51
5.2 Example of configuration file listing the APIs to instrument 53

6.1 Malware samples . 64

A.1 Dalvik instruction set . 82

xiii

Chapter 1

Introduction

In recent years smartphones had an explosive growth, with Android as their
leading operating system[Fortune Tech(2011)]. The coupling of this fact and
the sensitivity of the data a smartphone usually holds attracted interest of
malicious software authors[US Computer Emergency Readiness Team(2011)].

Protecting users from malicious applications is not an easy task, because
it typically involves different analysis techniques, aimed at detecting malicious
behaviours in unknown applications. One of these techniques is dynamic anal-
ysis, the process of running an application in a specifically crafted environment
that traces the execution and detects given behaviours.

We refer to behaviour as sequence of one or more of events that lead to
a specific action. A simple example of behaviour is when an SMS gets sent,
a more complicated one may be the combination of actions such as reading
data from a file and sending it over the network representing a data transfer.
Dynamic analysis even being a powerful approach suffers a major problem:
limited code coverage, this is due to the fact that for an application to trig-
ger a behaviour it may require specific input and environment characteristics
that are difficult to generate automatically[Egele et al.(2008)]. While there
exist previous works trying to address the problem of the input to feed to
an application in order to trigger a behaviour, it is not common for Android
dynamic analysis environments to be customisable with respect to system con-
figuration. A customisable environment makes it more difficult for malware
to detect whether it is being run in an analysis environment or not. Such a
detection is typically part of malware evasion techniques that may be adopted
by malicious applications to hide malicious behaviours when they are executed

1

2 CHAPTER 1. INTRODUCTION

in analysis environments.
Dynamic analysis environments, also known as sandboxes, that are present

in state of the art of Android application analysis, still do not focus on an
easy configuration of the environment. As a matter of fact, while some of
the existing approaches would allow a customisation of the environment, their
implementation usually lacks in it, being limited in terms of Android version
support, platform architecture target and they typically run only in emulated
environments with just a few exceptions.

This work describes DroidSaGe, a system able to generate dynamic anal-
ysis environments, starting from the system image of a generic Android device
or emulator, which is a snapshot of the device hard disk containing the core
files used by the Android operating system.

Android applications are executed by means of the Dalvik virtual ma-
chine[Bornstein(2008)], which provides functionality comparable to the Java
Virtual Machine but it has been designed specifically for low powered de-
vices. Similarly to the Java VM, the Dalvik VM interprets instructions
in the form of bytecode and it also able to interact with libraries containing
native assembly code specific to the device through a JNI1 interface.

In order to give the system image the ability to trace specific APIs in-
vocation so that it would be possible to detect given behaviours, we analyse
the Dalvik bytecode2 of all the included applications and libraries. Then we
modify the bytecode injecting instrumentation code, that means inserting an
invocation before or after an API is triggered that may notify the fact that a
behaviour has been triggered.

Since Android 2.3 Gingerbread in 2010, Android system images started
shipping their core applications in a format known as ODEX (Optimised
DEX). This optimised bytecode version brings a new challenge in the instru-
mentation of Android applications and its framework. The instrumentation of
ODEX files allows to deal with real world Android versions such as physical
devices for which is not available the whole source code, but only the base
system image.

The instrumentation is performed in such a way to avoid breaking the sig-
nature verification mechanism of both the applications and the base system.
To this end we take advantage of an Android design pitfall that involves op-

1http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
2http://milk.com/kodebase/dalvik-docs-mirror/docs/dalvik-bytecode.html

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://milk.com/kodebase/dalvik-docs-mirror/docs/dalvik-bytecode.html

3

timised bytecode: we generate instrumented ODEX files that are assumed by
the Android operating system to be trusted and are not subject to a proper
signature validation.

Differently from other existing approaches, DroidSaGe also has the unique
feature of being able not only to monitor API invocations in third party ap-
plications installed, but also to trace applications and libraries shipped with
the system image itself in the case only the ODEX is available.

In summary, the contributions of our work are:

• Generation of Android sandboxes by means of instrumentation Dalvik
bytecode in generic system images.

• Compatibility with potentially every Android version and device run-
ning it, since we modify already working environments. Resilience to
malware evasion techniques also benefits from this fact since a differ-
ent environment is generated for each system image, thus with different
characteristics.

• Ability to instrument optimised Dalvik bytecode present in ODEX files.

• Ease of customisation, it is in fact just matter of changing or adding a
single line in a configuration file to instrument and monitor a new API.

Chapter 2

Background and motivation

2.1 Android malware

The amount of Android operating system devices and apps has been sky-
rocketing since 2008 when it was first released and in 2011 the number of
smartphones sold surpassed the one of personal computers[Fortune Tech(2011)].
The computing power of mobile devices is also getting every month more pow-
erful as proven by devices such as quad-core smartphones. In this scenario, the
openness of Android system with regard to ease of apps distribution com-
pared to other mobile operating systems has been a playground for malicious
software authors aiming to harvest data and steal information from unaware
users. The Android permission model, which asks for coarse-grained per-
missions only at application install time, might also be considered one of the
reasons behind the Android malware problem[Felt et al.(2011)]. In fact it is
easy to fool a user into accepting broad permissions for an unknown applica-
tion while it is being installed.

Existing approaches employed by security experts to analyse Android ap-
plications and detect malicious behaviours have to cope with huge numbers
of applications. It is in fact practically impossible to inspect each application
manually, raising the need of mechanisms to automate the analysis process.
White-box approaches, those that require prior knowledge for the analysed
application, are not suitable in this scenario, that instead requires black-box
techniques to analyse a generic unknown application. Black-box analysis of
an application can be further divided in two main categories, static analysis
and dynamic analysis. The first analyses the application code searching for

5

6 CHAPTER 2. BACKGROUND AND MOTIVATION

specific patterns as an evidence of possible malicious behaviours without ac-
tually running it. The second instead executes the application and detects at
runtime malicious behaviours when they are triggered.

Static analysis has two main problems: susceptibility to code obfuscation
techniques and lack of information only available at runtime that therefore can
not be analysed (i.e. remotely downloaded code)[Egele et al.(2008)]. Dynamic
analysis, on the other hand has a global view of the system while analysing the
application, but it may suffer in terms of code coverage. This is particularly
true when speaking of mobile applications that usually require high amounts
of user input in order to trigger specific behaviours.

Dynamic analysis, executing the application, has the great advantage of
actually proving that an event has happened, while with static analysis it is
only possible to pinpoint execution flows that may lead to an event.

Since dynamic analysis requires a specifically crafted environment to per-
form the analysis, it has to be taken into account that the executed application
may try to detect whether it is being run in such an environment by looking
for specific characteristics. This process typically known as “fingerprinting”
ranges from checking environment variables, to enumeration of device hard-
ware, to network properties and finally to detection of virtual machines.

2.2 State of the art

In this section current existing works in black-box application analysis for the
Android operating system are be presented.

2.2.1 TaintDroid

The first most relevant work in Android black-box application security anal-
ysis can be considered TaintDroid[Enck et al.(2010)], a dynamic analysis
platform focusing on taint tracking of sensitive information. Taint tracking is
a methodology typically used to follow information flow as it propagates dur-
ing execution, this is done by “tainting” object references with specific marks.

The implementation of TaintDroid consists of a set of patches to a very
limited set of specific Android versions (currently Android 2.3 and 4.1), these
patches add taint tracking functionality to follow information flow of SMSes,
contacts, file contents and other PII (personal identifiable information). The

2.2. STATE OF THE ART 7

Image taken from [Enck et al.(2010)].

Figure 2.1: Taint propagation in TaintDroid

way TaintDroid is actually implemented built makes it difficult to modify
or port it to other Android versions.

Another issue of TaintDroid is the fact that taint tracking adds a sig-
nificant overhead, increasing the time required to perform an analysis. The
authors tried to address this problem using taint tracking only in specific code
locations, which resulted in lower detection rate.

Nonetheless TaintDroid suffers the typical issue of taint tracking, that
is indirect information flow[Cavallaro et al.(2008)].

2.2.2 DroidBox

DroidBox 1 is a variant of TaintDroid that adds logging not only in case of
taint tracking, but also when specific APIs (Application Program Interfaces)
are invoked. Post-processing tools are also part of the project, such as a
graphical representation of performed activities.

The key feature of DroidBox is ease of use, it is in fact ready to be
used once downloaded, it comes with a prebuilt system image for the Android

1https://code.google.com/p/droidbox/

https://code.google.com/p/droidbox/

8 CHAPTER 2. BACKGROUND AND MOTIVATION

Figure 2.2: Droidbox post-processing

emulator and scripts to automatise the emulator start, application installation
and input generation to stimulate the application under test.

Being based on TaintDroid, DroidBox suffers the same limitations:
it is limited to the only Android 2.3 and it is difficult to be extended and
modified.

Between its added features, DroidBox offers a prebuilt system image,
that is an image of the system built from the Android original source code
with the TaintDroid patches applied and the added logging. The image is
then obtained as a result of the source code compilation, and that is offered
to end users ready to be downloaded and run with the Android emulator.

The usage of this prebuilt image is pretty straightforward for a user, but
on the other hand it is has drawbacks such as being easy to fingerprint. In fact
the same image could be downloaded and analysed by a malware author and
specific details could be used to detect if an application runs in DroidBox.

With regard to the input generation, DroidBox uses Monkey, a tool
part of the Android SDK (Software Development Kit) that generates random

2.2. STATE OF THE ART 9

input events.

2.2.3 Andrubis

Andrubis2 is the Android subproject of Anubis[Bayer et al.(2009)], the on-
line available sandbox realised by Technical University of Wien. Being an
online sandbox means that a user just needs to browse the website, upload
an application to analyse and wait for a report to be generated. Andrubis
takes advantage of both static and dynamic analysis. The static analysis part
is performed by means of AndroGuard3, an open source tool that provides
automated static analysis of Android applications, while the dynamic analysis
is backed by a modified version of DroidBox.

Since it is based on DroidBox, Andrubis performs analysis only on an
emulated Android 2.3 platform.

Being accessible only through the website, Andrubis is very useful for end
users interested in having a general analysis of an application, but it is not so
useful when it comes to security experts interested in specific behaviours. In
fact Andrubis does not permit to customise the analysis process.

2.2.4 DroidScope

DroidScope [Yan and Yin(2012)] is the first Android sandbox that per-
forms virtual machine introspection. This means that while the application is
being run in an emulated environment, the analysis is performed within the
emulator itself. The application being run has no access to emulator internals
and thus it is not able to tell whether the system is under analysis or not.

As said, the analysis is performed outside the execution environment, this
allows the analysis process to be completely external with respect to the exe-
cution environment2.3.

DroidScope is meant to be extended with plugins, its base system in fact
only allows obtaining the list of each executed Dalvik VM instruction.

While this choice makes it potentially a good platform to perform black-
box application analysis, it is also true that the complete absence of available
plugins makes it really difficult to use in practice.

2http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-
applications-2/

3https://code.google.com/p/androguard/

http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
https://code.google.com/p/androguard/

10 CHAPTER 2. BACKGROUND AND MOTIVATION

Image taken from [Yan and Yin(2012)].

Figure 2.3: DroidScope system architecture

Another important limitation of DroidScope is that it is currently com-
patible only with Android 2.3 and that it requires a custom system image to
be built from source. It is not possible to use an existing system image as
execution environment instead.

2.2.5 CopperDroid

CopperDroid [Reina et al.(2013)] has an approach similar to DroidScope
in the sense that it also employs virtual machine introspection, but instead
of monitoring the whole system it focuses on the Android binder compo-
nent (Figure 2.4), that is responsible for dispatching Intents. An Intent is a
serialisable object representing a message that is used for IPC (interprocess
communication) in Android.

This sandbox also tries to increase code coverage searching for Intent re-
ceivers, that are the components receiving IPC messages, and generating In-
tents trying to exercise the receiver functionalities.

CopperDroid is a lightweight and effective black-box analysis platform,
but it is not open source and it is only known to run on Android 2.3.

Similarly to Andrubis, CopperDroid is available as a web service and
thus freely accessible for non technical users.

2.2. STATE OF THE ART 11

Image taken from [Reina et al.(2013)].

Figure 2.4: CopperDroid architecture

2.2.6 API Monitor

API Monitor 4 has a completely different approach compared to the previ-
ously described application analysis platforms. It does not require a custom
built system image, it focuses instead on the application itself. API Moni-
tor performs static analysis on an application looking for specific APIs invo-
cations, then it modifies the bytecode of the application injecting instructions
to log activity.

API Monitor has a very flexible approach, but it also has very strong
limitations. First and foremost it modifies the application which means that
signature verification will fail for the new modified code, this is partially solved
by re-signing the application but if an application performs a simple check it
will detect the modification.

A second issue of API Monitor is that it relies on static analysis to
modify the application, which means that it is susceptible to code obfuscation
techniques that hide API invocations as well as to dynamically loaded code
(i.e. downloaded at runtime).

4https://code.google.com/p/droidbox/wiki/APIMonitor

https://code.google.com/p/droidbox/wiki/APIMonitor

12 CHAPTER 2. BACKGROUND AND MOTIVATION

2.2.7 Apps Playground

Playground [Rastogi et al.(2013)] is a full featured black-box analysis
platform for Android, it performs taint tracking using TaintDroid, it moni-
tors sensitive APIs similarly to DroidBox, it also performs signature checking
against known kernel exploits. Playground differently from all the other ap-
proaches hereby described includes an advanced input generation system that
is window-aware, it in fact requires the Android debug service ViewServer
to be enabled and this is used to detect graphic components such as buttons
and text fields. The system also performs window-equivalence checks to infer
a graph of windows that represent the path between a window and the next.

However, while this work looks promising, the system has not been made
available, and it is thus not usable by researchers.

2.3 Goals and challenges

Given the limitations highlighted in Section 2.2, our work aims to improve
current dynamic analysis state of the art for the Android operating system
proposing an approach that allows to generate customisable Android sand-
boxes targeting multiple versions of the operating system and not limited to
emulated environments.

What we are interested in building is an Android black-box dynamic anal-
ysis sandbox. The target of this system is a generic unknown application,
for which no prior knowledge is available. This requirement excludes white-
box analysis approaches from the scope of this research. The system can be
configured to trace specific behaviours, allowing a user to trace only the be-
haviour he or she is interested into. These behaviours are detected by means
of dynamic analysis techniques when they are triggered at runtime.

DroidSaGe aims to propose a very flexible approach, generating dynamic
analysis environments in which a configurable set of API are monitored and
instrumented. Specifically targeting only Dalvik bytecode it is possible for
our approach to keep compatibility with potentially every Android version.
For the same reason, it is also possible for DroidSaGe to target different
platform architecture.

Differently from other approaches, which typically force to build a new
system from source, this work permits to modify existing system images. Dy-
namic analysis techniques are thus introduced in pre-existing systems through

2.3. GOALS AND CHALLENGES 13

instrumentation of the Dalvik bytecode. Real devices can also be targeted
starting from their system image.

Currently, most of the Android devices run on ARM processors, but x86
and MIPS Android variants are also available. Our work aims at being com-
patible with each of these versions, this is possible since instrumentation only
happens at bytecode level.

With this high compatibility, it is possible to use our system to test the
same application on multiple environments, allowing to spot differences be-
tween the different executions that may be due to the underlying system.
This may be useful when detecting which are the target platforms for specific
applications, such as defining the target user base of a specific malware appli-
cation. Furthermore, allowing such a flexible environment implies a decreased
detectability of the analysis platform, thus being more resilient to malware
evasion techniques, that try to masquerade malicious behaviours from being
triggered in analysis environment.

Instrumented bytecode is optimised before being deployed in the end envi-
ronment. This step allows avoiding to break signature verification for applica-
tions and libraries present. As described in Section 3.5 signature verification
only happens on an application or library original content, and not on the op-
timised version of its bytecode, which only contains a hash sum which refers
to its unoptimised original form. Even parsing the instrumented bytecode, it
would be difficult to detect the presence of the injected bytecode.

Chapter 3

The Android runtime

In this section a brief description of the Android runtime components is given,
with information relative to the Dalvik virtual machine and its bytecode, as
well as a quick explanation of the signature verification mechanism.

3.1 The Dalvik Virtual Machine

The Dalvik virtual machine allows running applications in the Android oper-
ating system. Similarly to the most known Java virtual machine, it offers a set
of predefined instructions that allows applications to perform more complex
tasks and computation.

The Dalvik instructions are designed to be used in an object oriented
scenario, exposing instructions that interacts with objects fields and methods.

The sequence of instructions that compose a method are described by a
series of bytes representing the equivalent Dalvik bytecode for each instruction.
In the bytecode format, references to object classes, methods and fields occur
by index for performance and space reasons. These indexes represent the entry
number in the respective method table, field table or class table.

Those tables, together with the encoded instructions and additional data
are stored in a Dalvik EXecutable file (DEX) as shown in Section 3.3.

DEX files represent the core of each Android application, in fact the
classes.dex file contained in an Android application is loaded by the Dalvik
virtual machine when starting the application.

The Dalvik VM has a peculiar way to start a new application, in fact only
one process is started at boot time loading the VM, then for each application to

15

16 CHAPTER 3. THE ANDROID RUNTIME

Figure 3.1: Android processes startup

run, that process forks, switches its user and group id and loads the additional
application bytecode to be run (Figure 3.1).

Other than Dalvik bytecode, the Dalvik VM also interacts with native
libraries through Java Native Interface (JNI). In this case such libraries are
Executable and Linkable Format (ELF) files, containing native assembly for
the specific architecture underlying the Android operating system.

Those libraries expose functions that will be invoked by the Dalvik VM as if
they were normal class methods, passing Java objects references as parameters.

Native libraries code has then the ability to invoke regular bytecode meth-
ods using the JNI architecture.

3.2 Comparison with the Java Virtual Machine

The Dalvik virtual machine can be considered similar to the Java virtual
machine in the sense that they both offer a way to execute bytecode that allows
invoking methods on objects, access their fields and offering computation such
as arithmetic instructions.

The underlying structure of the interpreter is instead very different. The
most important difference is the fact that the Java VM is stack based, while
the Dalvik one is register based (Figure 3.2).

The Java VM extensively uses instructions such as pop and push to place
and get values from the stack, the instructions are in fact required to mainly
use values placed on the stack and return an operation result on the stack too.

3.2. COMPARISON WITH THE JAVA VIRTUAL MACHINE 17

Figure 3.2: Bytecode comparison between Java VM and Dalvik VM

A simplification allows the definition of local variables, which still have to
be pushed on the stack each time before being used.

What happens with the Dalvik VM is instead very different, it has no
stack at all. This VM statically defines how many registers each method will
use, those registers can be considered as local variables that can be directly
accessed both for reading and writing values.

Both the approaches have pros and cons, what is generally described com-
paring the two virtual machine is that the Java VM requires a high number
of single instructions to achieve a result, this is due to continuously having to
read and write values to and from the stack. The Dalvik VM instead does not
have to perform pop and push operations since there is no stack at all.

On the other hand, the Dalvik VM pays the price in terms of code size,
in fact each instruction in the Dalvik VM is typically wider since it has to
specify which registers to use.

Another interesting difference is the fact that the Java VM keeps the byte-
code of each class in a separate file, grouping them together multiple classes in
a single JAR file. The Dalvik VM instead groups together classes in a single
bytecode file, minimising the space required by the constant pools, which is
then shared by the classes (Figure 3.3).

18 CHAPTER 3. THE ANDROID RUNTIME

Figure 3.3: Comparison of Java JAR and Dalvik DEX file

3.3 Structure of a DEX file

A DEX file contains bytecode loaded by the Dalvik virtual machine. In this
format a single file is composed of a set of sections, each one tightly connected
to the others.

The core element in this file is the bytecode representing each of the in-
structions in the sequence specified by the method code that will be executed
by the Dalvik VM.

In order to represent the bytecode for a specific instruction, other refer-
ences have first to be defined. First of all, each instruction is identified by
an opcode, then depending on the parameters the instruction has to specify,
different instruction formats have been defined in the Dalvik VM.

Typically an instruction can refer to a class, a method or a field in a class,
or a value which may be embedded in the bytecode itself or obtained from a
register at runtime.

Classes, methods and fields are referred by index in the respective table,
each one contained in a different section of the DEX file (Figure 3.4).

There are two different classes tables, one listing all the classes referred
(used), while another table only contains the classes defined in the current
DEX file. This second table for each entry has the list of the methods and
fields the class defines.

With respect to objects and fields values, these may be represented in the

3.4. STRUCTURE OF AN ODEX FILE 19

Figure 3.4: Internal structures in a DEX file

bytecode itself. For instance when initialising a boolean variable or an integer
one, their values can be embedded in the bytecode as a raw value expressed
in the instructions parameters. Something different happens when dealing
with string values, DEX files in fact have a specific section dedicated to string
values, this is referred not only by values to assign to string objects in the
bytecode, but it is also used to declare values such as class names, method
names or field names that will be referred in the others sections of the DEX
file.

A highly indexed structure as the one here described strongly reduces the
size of the constant pool the instructions have to refer to. This is an important
feature for low powered devices, where the memory footprint has to be low
(Figure 3.3).

3.4 Structure of an ODEX file

An ODEX file is obtained through the process of optimisation of a DEX file.
The optimisation is performed by the dexopt binary that comes with the
Android operating system.

The most significant changes that this phase brings to the bytecode are
that methods and fields will be accessed by index in the method and field
tables which are already available at runtime, avoiding the lookup by method
or field index in the respective section of the DEX file.

To ensure that indexes are correct, a hierarchy of ODEX files is used,

20 CHAPTER 3. THE ANDROID RUNTIME

specifically the Android operating systems uses and environment variable,
defined as BOOTCLASSPATH. This variable contains a list of paths separated
by a colon mark, each one referring to an ODEX file.

There is a strict ordering in the entries listed, so that an ODEX file declares
which are its dependencies, declaring their absolute path and their sha-1 sig-
nature. This way allows detecting whether one of the referenced dependency
has been modified and avoid loading tampered code.

The structure of an ODEX file (Figure 3.5) is composed of a header, a
section containing an embedded DEX file, and three other sections: one rep-
resenting a class hash table to speed up access to class definitions, another
section holding the references to the dependencies, and a last section con-
taining register maps that are used to ease the garbage collection at runtime.

The embedded DEX file is basically the original DEX file with a few
changes: instructions used to access object methods or fields are optimised
wherever possible. Some other differences may apply in the case the underly-
ing architecture does not use little-endian as byte encoding.

The optimised index of a method refers to the index of the method in the
virtual table of the object that is referred as runtime.

This virtual table is built starting from the one inherited by the parent
class, then all virtual methods are added, in the order they appear in the
method table for that class in the DEX file.

Virtual methods are those methods that are not static, private or con-
structors 1.

Regarding to field index, a field table for the object is kept at runtime by
the Dalvik VM, this first includes the field table of the parent class, then all
the instance fields of the local class are added. None of the static fields reaches
the field table.

The fields added to the table are subject to a particular sorting algorithm,
the idea is to first list object types (non native types) fields, then wide fields
(double or long values) and then all the remaining instance fields.

The way the field list is rearranged starting from the original one in the
DEX file, tries to minimise the number of shifts or swaps needed to build the
final list.

1http://milk.com/kodebase/dalvik-docs-mirror/docs/dex-format.html

http://milk.com/kodebase/dalvik-docs-mirror/docs/dex-format.html

3.4. STRUCTURE OF AN ODEX FILE 21

Figure 3.5: Structure of an ODEX file

22 CHAPTER 3. THE ANDROID RUNTIME

A first step is done in order to first list all the object types fields: a first
index is used starting from the first entry in the list. If it is an object type
reference, it is left there, otherwise a second index is used, starting from the
last entry and decreasing the index, if it is an object reference then a swap
occurs, the first index increased and the second one decreased. Otherwise just
the second one is decreased.

When the two indexes reach the same value, the iteration is stopped.
Wide fields, such as double or long values have to be 64 bit aligned, thus

depending on the underlying architecture, a non wide field might be used as
filler to perform the alignment.

A similar process to the one described for sorting object references first is
then applied on the remaining sublist for wide fields.

The hereby described method virtual table and field table is then referred
by the optimised instructions, such as using invoke-virtual-quick instead of
the regular invoke-virtual.

For what concerns the other sections in the ODEX file, a list of the ODEX
dependencies is present in a separate section, including absolute path and
sha-1 hash of the referred file.

Two other sections are present one containing a hash table to speed up the
access to a class definition in the embedded DEX file, and another one used
by the garbage collector to optimise the memory management.

3.5 Signature verification in Android

Android applications are shipped as ZIP files containing at least an Android-
Manifest.xml file and a classes.dex. To be able to install an application on an
Android system it is also required that the application has been signed with
a valid certificate.

The signing process is based on the S/MIME standard [Ramsdell(2010)],
that permits authentication and integrity to be verified.

The signed ZIP file contains a META-INF folder, with the following files
inside:

MANIFEST.MF Contains the list of the other files in the ZIP archive except
the ones in the META-INF folder. For each of the files its hash is
computed, encoded using base64 algorithm and added to the list
together with the relative path in the archive.

3.5. SIGNATURE VERIFICATION IN ANDROID 23

Algorithm 3.1 Manual verification of an APK S/MIME signature
$ openssl asn1parse -inform DER -in cert.rsa -i -dump

0:d=0 hl=4 l= 772 cons: SEQUENCE
4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData

...
77:d=7 hl=2 l= 9 prim: OBJECT :sha1WithRSAEncryption

...
$ openssl smime -verify -noverify -inform DER -content cert.sf -in cert.rsa
-out /dev/null
Verification successful

CERT.SF This file is similar to MANIFEST.MF, it also contains the list
of the files with a hash for each of them, but the hash is com-
puted differently: instead of being computed on the file itself, it is
computed by hashing the strings of the respective file lines in the
MANIFEST.SF.

CERT.RSA This is the actual digital signature of the package. It is in fact
an S/MIME signature of the CERT.SF file, with information on
the certificate used to sign it, that typically is self signed.

The certificate used to sign the application is then used to allow inter-application
permissions, for example allowing interaction only between the applications
signed with the same certificate. This last feature may be enabled in the
AndroidManifest.xml file with the protectionLevel attribute 2.

A manual way to verify an application signature is to first verify the
CERT.SF against the CERT.RSA digital signature (Algorithm 3.1). If they
match, proceed verifying the hashes between MANIFEST.MF ans CERT.SF.
If they match as well, the sha1 hash sum of the real files can be computed
and verified.

Once verified the digital signature of the application, the installation phase
may proceed. This includes the copy of the APK package to /data/app when
installing in the internal storage or /mnt/asec when installing on external
drives such as SD cards. Extraction of resources files from the application
package is then performed to the /data/data folder.

At this point optimisation of the Dalvik bytecode included in the appli-
cation is performed by means of dexopt. The resulting optimised bytecode is

2https://developer.android.com/guide/topics/manifest/permission-
element.html#plevel

https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel

24 CHAPTER 3. THE ANDROID RUNTIME

then stored in the /data/dalvik-cache folder until the application is uninstalled
or an update of the system may execute the wiping of the cache.

Verification of the optimised bytecode is performed at load time by the
Dalvik virtual machine before the application is actually run. This validation
phase does not include digital signature verification, but only a checksum
comparison.

The ODEX file with the optimised bytecode contains a list of dependencies
with the respective path and sha-1 hash to verify the dependency files have
not been modified and an Adler32 checksum of the ODEX sections after the
embedded DEX in placed in the ODEX header. The embedded DEX on its
own has both an Adler32 checksum and sha-1 hash in the DEX header.

It is worth to notice that bytecode in an ODEX file is not properly verified
against the original DEX bytecode to ensure the code logic has not been
changed. This is even impossible to be performed in the case the ODEX file
fully substitutes the unoptimised version, that is what normally happens in
Android system images. Such a phenomenon is normally justified by disk
space constraints, in order to avoid wasting space carrying the original DEX
file if it will not be used to actually run the applications.

The approach described in this work takes advantage of this glitch to
bypass signature verification of the instrumented bytecode.

Chapter 4

Approach

In this chapter insights of the realised system are described in Section 4.1,
along with a description of the usage of the instrumented system image to
analyse an application (Section 4.2) and an example of actions to be performed
when the instrumented APIs are invoked at runtime (Section 4.3). Finally a
comparison with some of the other currently existing solutions is presented.

4.1 System image generation

Our approach allows the generation of Android system images to be used as
black-box dynamic analysis platforms, this is done executing a series of tasks
(Figure 4.1) that can be summarised as follows:

1) File extraction The provided system image is read and its content is
extracted in order to be processed (Subsection 5.4.1).

2) Bytecode identification Application and libraries containing Dalvik byte-
code are identified inspecting the content of the system image (Subsec-
tion 5.4.2).

3) ODEX conversion Once the optimised Dalvik executables are localised,
they are processed and optimised instructions are replaced with their
non optimised equivalent (Subsection 5.4.3) with the aim of identifying
the invoked methods.

4) Bytecode analysis A call graph has to be generated in order to locate
instrumentation points. This is done parsing the bytecode and keeping
track of invocations (Subsection 5.4.4).

25

26 CHAPTER 4. APPROACH

Figure 4.1: System image instrumentation

5) Instrumentation The Dalvik bytecode is instrumented. The set of in-
strumented APIs can be fully customised (Subsection 5.4.5), then for
each API to instrument there are two possible situations: if the API is
directly instrumentable then it is instrumented in its own code, other-
wise if it is not directly instrumentable (i.e. interfaces, abstract methods,
native methods) invocations are instrumented before or after they are
executed (Section 5.2).

6) Hooks merge Instrumentation hooks (Section 4.3) are merged in the core
library to ensure their reachability from other libraries or applications.

4.2. APPLICATION ANALYSIS 27

Figure 4.2: Application analysis schema

7) Re-optimisation The bytecode is re-optimised to avoid breaking the sig-
nature verification (Subsection 5.4.7).

8) Image creation The resulting system image is built with the instru-
mented bytecode (Subsection 5.4.8).

Each of the listed phases will be described more precisely in the following
sections, while their implementation details will be presented in Chapter 5.

4.2 Application analysis

In order to analyse an application (Figure 4.2), this must be installed in the
instrumented system image (Section 4.1). This can be performed manually
or through ADB. The second option can be used for automated analysis plat-
forms since no manual interaction is needed.

It is then necessary to generate input in order to stimulate the application
to trigger each of its behaviours. Although it is not a key feature in our work,
an input generation system had to be developed in order to test the system
(Subsection 6.1.2).

While being executed in the instrumented environment, the application
might reach an instrumented API, and in the case the invocation is found not
to be generated from the system itself, then it is logged.

28 CHAPTER 4. APPROACH

Figure 4.3: Instrumentation hook

This notification process happens through logging functionality built-in in
the Android system, the reason behind this choice is ease of use and the fact
that it does not require special permissions to be used. The same logging
APIs are used in similar works such as TaintDroid and DroidBox.

The resulting notification sent externally through a log entry can then be
used to perform behaviour detection, but this is not in the scope of this work.

4.3 Instrumentation hooks

When an instrumented API is reached, multiple tasks have to be performed.
To this end, we added instrumentation hooks, implemented as a set of classes
and methods that handle API invocations. This is performed as follows:

Status check The hooks regularly check if status flags have been updated.

4.3. INSTRUMENTATION HOOKS 29

Flags are on/off switches that enable or disable specific features at run-
time. Currently three flags are configurable: enabled flag, stack trace
inspection, serialization to JSON. A package name white-list is also used
to tell apart system packages from external applications. Both flags and
package names white-list are configurable at runtime.

Stack trace inspection If the corresponding flag is enabled, a stack trace
inspection is performed starting from the most recent entry. Each entry
can be recognised either as being part of the instrumentation framework
itself, part of the system framework, or part of an external application.
In the first case the stack trace inspection stops, and the API is not
logged since originating from code that is part of the instrumentation
framework. In the second case, the stack trace inspection continue to
the next entry. Alternatively, in the last case, the stack inspection stops
and the API is logged since originating neither from the instrumentation
nor the system frameworks, thus it is assumed to be part of an external
application.

Serialization Differently from other approaches, since the instrumentation
is performed automatically and the target APIs are customisable, it is
quite difficult to automatically infer what information has to be logged,
this normally depends on the semantic of the single API. To address this
problem, it has been decided to keep a generic approach and serialize to
plain text both the API parameters and the object on which the API has
been invoked (reference to this object). Different serialization libraries
have been tested and for readability purposes JSON has been chosen
as the preferred serialization output format. The API invocation, with
its parameters or return value and the eventual this object reference,
before being logged has first to be serialised. Depending on the JSON
serialisation flag, the corresponding objects are serialised either in JSON
or using the Object.toString() method which Java offers.

Logging The serialised API invocation is then outputted using the Log class
in a synchronised fashion, to avoid overlapping between log entries. A
further consideration is made when logging: the standard Log APIs only
logs up to 4096 bytes. To overcome this limit, multiple invocations to
the Log method are performed.

30 CHAPTER 4. APPROACH

4.4 Comparison with other state of the art
solutions

In this section further details about the proposed approach will be given with
respect to existing solutions described in Section 2.2.

4.4.1 Comparison with API Monitor

The approach technically most similar is API Monitor, described in Sub-
section 2.2.6. Bytecode analysis and modification is in fact the core of both
these approaches.

API Monitor directly targets the content of Android applications, and
it does not require any special execution environment.

To analyse an application, API Monitor first disassembles the Dalvik
bytecode contained in the application, then the obtained text representation
of the bytecode is instrumented injecting log calls. The result of this step
is then re-compiled, re-packaged and re-signed in another application. The
instrumented application can then be installed and run on a target system.

The process of re-signing the application invalidates the original digital
signature distributed with the application [Barrera et al.(2012)], which in turn
may cause the application to not behave correctly.

Differently from API Monitor our work does not target the application
bytecode, that instead is left unmodified in order to guarantee signature veri-
fication and avoid side issues deriving from its modification. The real target of
bytecode analysis and modification in this work is the set of Android system
APIs that are instrumented directly in the system image rather than in the
application.

Another benefit of our approach is given by having a system wide view,
not only limited on the application code.

While it is common practice to use code obfuscation techniques in appli-
cations that therefore may cause issues with static analysis, it not common at
all to obfuscate the core libraries that come with a system image: in a set of
20 system images analysed none of them has been found having core libraries
obfuscated. This ensures higher reliability of the static analysis performed
before the instrumentation.

4.4. COMPARISON WITH OTHER STATE OF THE ART SOLUTIONS31

Figure 4.4: Object pointers with taint labels in TaintDroid

4.4.2 Comparison with TaintDroid

TaintDroid is a milestone in Android security, it is in fact the first known
information-flow tracking system aiming to detect privacy leaks in Android
applications.

The approach used by TaintDroid can be considered orthogonal to the
one described here. In fact, a TaintDroid environment’s system image can
be instrumented with our approach, adding taint tracking functionality in the
proposed solution at no cost.

The instrumentation of a TaintDroid environment has only required to
consider altered method and field indexes caused by the modified Dalvik vir-
tual machine that TaintDroid brings. To keep track of object taints it
doubles the object reference size in order to have an extra value for the object
taint (Figure 4.4). This is further described in Subsection 5.4.3.

4.4.3 Comparison with DroidBox

Both DroidBox and our approach perform instrumentation of APIs. How-
ever, while DroidBox patches the Android source code before it is compiled,
our approach directly modifies the Dalvik bytecode of a generic system image,
without requiring a new system image to be built from source.

32 CHAPTER 4. APPROACH

This is a great advantage when it is not possible to generate custom system
images, that is particularly true when speaking of real devices since hardware
manufacturers tend not to release open source drivers.

Although the instrumentation performed by DroidBox has the advantage
of being manually verified, this is also a limitation when the number of APIs
to track becomes significant. Manual instrumentation has also an important
downside when a patch has to be ported between two different Android version,
which may be one of the motivations for DroidBox being still limited to
Android 2.3.

4.4.4 Comparison with Andrubis

Since Andrubis is based on DroidBox, the considerations in Subsection
4.4.3 apply. Specific comparison may be added stating that Andrubis being
an online platform which performs its analysis using always the same system
image for every test, it may be an easy target for malware evasion techniques.
It is in fact quite straightforward to fingerprint the environment and trigger
(or not) behaviours on that basis.

The proposed approach makes fingerprinting of the environment a more
difficult task, and thus it is more resilient to malware evasion techniques.

Chapter 5

Implementation

In this chapter we present a bottom-up description of the implementation
details of our system, ranging from injection of bytecode instructions up to
the instrumentation of a whole system image.

5.1 Bytecode injection

This section describes the technique used to inject bytecode in an existing
method to perform method instrumentation.

5.1.1 Reasons to inject bytecode

Instrumentation of a method in Dalvik bytecode requires the injection of ad-
ditional instructions in order to invoke the instrumentation hooks with infor-
mation relative to the traced API passed as parameters. Such information
has to specify at least an identifier of the target API invoked and its parame-
ters or return value. While parameters or return value are already available in
registers at instrumentation point in the bytecode, no reference to the method
name or class name is present, so this information has to be added.

Since the Dalvik virtual machine is register based, we need to use registers
to store this data. The number of registers a method will use is declared in the
method definition and can not be modified at runtime. To address this, we
can either increase the number of register in the method definition, or backup
and restore the register values.

33

34 CHAPTER 5. IMPLEMENTATION

#5 : (in Llibcore/io/IoBridge;)
name : 'closeSocket'
type : '(Ljava/io/FileDescriptor;)V'
access : 0x0009 (PUBLIC STATIC)
code -
registers : 4
ins : 1
outs : 2

#5 : (in Llibcore/io/IoBridge;)
name : 'closeSocket'
type : '(Ljava/io/FileDescriptor;)V'
access : 0x0009 (PUBLIC STATIC)
code -
registers : 6
ins : 1
outs : 2

Figure 5.1: Increased number of registers in a method

5.1.2 Injection technique

While backing up and restoring registers could be seen as an easy and effective
solution, it can not always be applied. Since the Dalvik virtual machine allows
multi-threading, it is necessary to keep an additional reference in order to
restore the correct registers and values. One can think of this scenario as a
surveilled wardrobe: when someone deposits a coat a ticket is given him in
order to allow him to get back the same coat he left. Similarly if the backup
manager has to deal with multiple threads, it is necessary to keep references
to pair the saved object to their owners.

In order to use a non-free register it is required to first make a back-up
copy of it, but in order to back it up another register holding an identifier has
to be used. This causes a loop that does not allow this methodology to be
applied when no free registers are available.

A better approach is to increase the number of registers used by the method
(Figure 5.1), this can avoid the need to save and restore register values but
on the other sides it introduces a new challenge described in the next para-
graph. The number of additional registers used in this work has been kept
minimal, employing just two additional registers, which is due to the size of
wide variables, used to hold long and double values.

5.1.3 Bytecode adaptation

The registers used by a method are automatically filled with parameters and
eventually the reference to this object by the Dalvik virtual machine when
the method is invoked. The registers holding these values are the ones with
highest index number, so that in a method with 10 registers and 3 parameters,
the registers holding the parameters will be registers r7, r8 and r9 (counting
from r0).

Adding new registers in this scenario implies the introduction of regis-

5.2. BYTECODE INSTRUMENTATION 35

Figure 5.2: Register shifting

ter renaming or register shifting, since the existent bytecode will try to use
different registers from the ones that hold the parameters.

Register renaming is a technique used in computer architecture that basi-
cally remaps registers names or indexes without changing the semantics in the
flow of operations; this is typically used to increase data locality and minimise
the number of assignments to registers [Sima(2000)].

In this case register renaming is not meant to improve the performances,
but merely to adapt already optimised bytecode to use different register in-
dexes.

Even renaming all registers indexes in bytecode instructions, would not
suffice to make it work properly. This is because most of the instructions
available for the Dalvik virtual machine only allow a 4-bit addressing, which
means that those instructions only work with registers from 0 to 15, this is
also described in Section 3.1. When a register index is changed it may be the
case that the new index is not addressable with only 4 bits. Although in some
cases alternative instructions are available, it is not a viable solution.

The remaining and actually used approach is register shifting, this consists
in shifting the registers with the goal of restoring an environment in which
the pre-existent bytecode is able to run with no further modification. To
this end when an instrumented method starts, the number of registers used
is incremented and a prologue of instructions that shifts registers downside
for an amount of registers correspondent to the number of added registers is
injected. A graphic representation of this prologue is shown in Figure 5.2.

5.2 Bytecode instrumentation

Once the method that is going to be instrumented has been prepared increas-
ing the number of registers and the prologue providing register shifting has

36 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Instrumentation points

been injected, the next step is to inject the actual invocation of the instru-
mentation hook that will notify that an API of interest has been reached.

5.2.1 Instrumentation points

The invocation can occur in four different places as shown in Figure 5.3. ,
which are:

1. Ahead of the method invocation.

2. Inside the method, just when it starts.

3. Before a return inside the method.

4. After the method invocation.

Depending on the characteristics of the API to trace, it may not be possible
to instrument it directly (points 2 and 3), this happens with methods which
do not have bytecode whether because they are abstract or because they are
native, thus implemented using JNI ; in those cases external instrumentation
has to be used (points 1 and 4).

Furthermore one could be interested only in the return value of the API to
trace or only in the parameters it has been invoked with. This is quite typical
when reading from a stream, in such cases, it is in fact only interesting to be
notified on the return value, which is what has been read from the stream.

DroidSaGe instrumentation keeps track of method parameters when in-
strumenting at point 1 and 2, while tracks the return value when instrumenting
in points 3 and 4.

5.2. BYTECODE INSTRUMENTATION 37

Figure 5.4: Internal instrumentation of a method

5.2.2 Internal instrumentation of a method

A method directly instrumentable is a method which comes with its own
bytecode, thus not abstract or native. When a directly instrumentable method
has to be instrumented, this happens in its own bytecode, specifically this
happens at the beginning of the method or before a return instruction (Figure
5.4), depending on the target of instrumentation being the parameters or the
return value. In the first case the parameters will be in the highest registers,
while in the second case the return value will be the register used as parameter
of the return instruction.

In the case of non-static method, the register holding the reference to the
this object will be the first register before the parameters. This is always
available when instrumenting at method start, but it might be overwritten
with other values when the method is about to return. This also applies to
method parameters, which might be overwritten as well.

5.2.3 External instrumentation of a method

When a method is not directly instrumentable, its invocations from directly
instrumentable methods are instrumented. This means that whenever an in-
vocation of a target API which is not directly instrumentable is found in the
bytecode of another method, the invocation itself is instrumented.

The instrumentation can happen before or after the invocation, depending
on the target of instrumentation being the parameters or the return value
respectively (Figure 5.5). When instrumenting before the invocation, the reg-
isters used as parameters for the invocation instructions will hold the method
parameters, and in case of a non-static method, the reference to this object.

When instrumenting after the invocation, method parameters and the
eventual reference to this object will still be available, but the return value is

38 CHAPTER 5. IMPLEMENTATION

Figure 5.5: External instrumentation of a method

not directly available. In order to obtain the return value, one of a specific
set of instructions has to be invoked, namely move-result, move-result-object
or move-result-wide.

Once read the return value in one of the added registers, this, together
with a reference of the this object are passed to the instrumentation hooks.

If the original bytecode tries to perform another move-result instruction
after the injected instrumentation, this will result in an error because those
instructions are only valid if placed right after an invocation. To this end
the last instruction of the instrumentation has to be a specifically crafted
invocation whose return value has to be the same of the one that has been read
when performing the instrumentation. A solution to this problem is obtained
using Java generics. In fact, for the return type of the crafted invocation to
be whichever object type was the original return value, it is possible to use
Java generics to force the return type to be the same as the original.

5.3 Instrumentation hooks

Instrumentation hooks are classes and methods specifically introduced to be
easily referenced and invoked by the instrumented bytecode.

Those classes actually consists of a class used to store information, thus
called Payload, and a set of other static methods that will be presented in this
section.

5.3.1 The Payload class

The Payload class offers a set of methods to add parameters, setters in order
to set the API identifier that has been triggered, a set of getters used to re-
trieve data from the Payload object, among which the eventual return value as

5.3. INSTRUMENTATION HOOKS 39

Figure 5.6: Registers usage comparison

described in Subsection 5.2.3, and a log method that performs the notification
through logging.

The class does not offer public constructors, instances can instead be gen-
erated with a factory design pattern, this choice has been pondered in order
to minimise the usage of registers in the injected bytecode (Figure 5.6). Two
instance generators are available, one specifically created for instrumentation
of method parameters at method start, and one for the return value. Both of
them receive two parameters, this is because the number of added registers is
two.

The first instance generator receives the reference to this object and the
API identifier, and then adds each of the method parameters, whilst the
second receives the this reference and the return value and requires the API
identifier to be set afterwards.

An example of bytecode instrumented at the beginning of a method is
shown in Figure 5.7. It is possible to notice the preamble of register shifting,
followed by the the creation of the Payload object, with the API identifier and
a zero value which represents null as reference to this object since the method
is static. A series of pushParam follows, one for each parameter of the method,
preceded by an eventual conversion to object of native types. Finally there is
the invocation of the log, what happens during the invocation is described in
the next subsections.

5.3.2 Call stack inspection

Once the injected bytecode has properly set the Payload containing all the
needed information and its log method has been invoked, call stack inspection
can be enabled in order to filter out legitimate invocations originated from the
framework itself from the ones originated by other applications.

40 CHAPTER 5. IMPLEMENTATION

[1631ec] libcore.io.IoBridge.sendto:(Ljava/io/FileDescriptor;Ljava/nio/ByteBuffer;ILjava/net/InetAddress;I)I
0000: move-object v9, v11
0001: move-object v10, v12
0002: move v11, v13
0003: move-object v12, v14
0004: move v13, v15
0005: const/4 v14, #int 0 // #0
0006: const-string v15, "Llibcore/io/IoBridge;->sendto(Ljava/io/FileDescriptor;Ljava/nio/ByteBuffer;ILjava/net/InetAddress;I)I"
0008: invoke-static {v14, v15}, Lit/polimi/elet/necst/droidsage/Payload;.newCallPayload:

(Ljava/lang/Object;Ljava/lang/String;)Lit/polimi/elet/necst/droidsage/Payload;
000b: move-result-object v14
000c: move-object v15, v9
000d: invoke-virtual {v14, v15}, Lit/polimi/elet/necst/droidsage/Payload;.pushParam:(Ljava/lang/Object;)V
0010: move-object v15, v10
0011: invoke-virtual {v14, v15}, Lit/polimi/elet/necst/droidsage/Payload;.pushParam:(Ljava/lang/Object;)V
0014: invoke-static {v11}, Ljava/lang/Integer;.valueOf:(I)Ljava/lang/Integer; // method@0874
0017: move-result-object v15
0018: invoke-virtual {v14, v15}, Lit/polimi/elet/necst/droidsage/Payload;.pushParam:(Ljava/lang/Object;)V
001b: move-object v15, v12
001c: invoke-virtual {v14, v15}, Lit/polimi/elet/necst/droidsage/Payload;.pushParam:(Ljava/lang/Object;)V
001f: invoke-static {v13}, Ljava/lang/Integer;.valueOf:(I)Ljava/lang/Integer;
0022: move-result-object v15
0023: invoke-virtual {v14, v15}, Lit/polimi/elet/necst/droidsage/Payload;.pushParam:(Ljava/lang/Object;)V
0026: invoke-virtual {v14}, Lit/polimi/elet/necst/droidsage/Payload;.log:()V

Figure 5.7: Example of instrumented bytcode

Number of iterations: 100000
Simple empty loop took 12 ms
Getting Thread stack trace took 24410 ms
Getting Throwable stack trace took 14677 ms

Figure 5.8: Stack trace acquisition

In order to perform call stack inspection the Android operating system
offers two possible solutions through Java APIs. A first proposed solution
takes advantage of the proper getStackTrace method in the class Thread, but
this approach is known to be slower; an optimised alternative leverages the
exception handler instantiating a Throwable object and using its getStackTrace
method. The final result is the same, just the second approach is more efficient,
as also proven by empirical tests run on Android 2.3 GingerBread (Figure 5.8).

The call stack, composed of an array of StackTraceElement objects is then
analysed using a set of white-lists containing the most used package names
offered by Java and Android, and the package names referred belonging to
the instrumentation code itself (Figure 5.9).

If an entry in the call stack does not match any of package names the
white-lists, the API called that triggered the instrumentation is marked as
originated by an external application.

The white-list is saved in an HashMap allowing constant time access and
thus improving the overall performances.

5.3. INSTRUMENTATION HOOKS 41

android.*
java.*
libcore.*
dalvik.*
com.android.internal.*
com.android.server.*
com.android.providers.*
org.apache.harmony.luni.platform.*
org.apache.harmony.luni.net.*
com.android.defcontainer.*
com.android.commands.monkey.*
org.objenesis.*
org.objectweb.asm.*
flexjson.*
com.fasterxml.*

Figure 5.9: List of white-listed package names

5.3.3 Serialisation of objects to JSON

Serialisation of objects to JSON is optionally sused to obtain a more meaning-
ful output. This feature is enabled switching the appropriate flag at runtime.
Being data-centric, JSON typically improves the readability compared to al-
ternatives such as XML.

Multiple serialisation software libraries have been tested:

GSON 1This a software library developed by Google, the tested version was
2.2.3, GSON was found not able to correctly handle objects with circular
references, this happens when structures such as doubly linked list are
used. This is a known bug of the project, reported as Issue 1372 on the
project bug tracker.

FlexJSON 3FlexJSON is another software library to convert objects in JSON
and vice versa, this project has the property of being very lightweight in
terms of code base but still effective when compared to its competitors.
FlexJSON performs deep serialisation of an object, and its computa-
tion time explodes when serialising highly nested objects resulting in
stack overflow or memory exhaustion. The used version is 2.1 which was
released in 2010.

1https://code.google.com/p/google-gson/
2https://code.google.com/p/google-gson/issues/detail?id=137
3http://flexjson.sourceforge.net/

https://code.google.com/p/google-gson/
https://code.google.com/p/google-gson/issues/detail?id=137
http://flexjson.sourceforge.net/

42 CHAPTER 5. IMPLEMENTATION

JackSON 4JackSON is considered more advanced compared to the previ-
ously described projects, this is because it allows further customisation
of the serialisation process with tens of available plugins. Even though
more customisable, similarly to FlexJSON it easily resulted in stack over-
flow exceptions and memory exhaustion when serialising highly nested
objects.

While the idea to use GSON has been abandoned, FlexJSON and JackSON
have been kept and are actually used one as fallback for the other.

JackSON has been further patched to reduce stack overflow errors and
memory exhaustion, this was achieved introducing depth awareness in the
serialiser, which means that the serialiser will stop serialising internal objects
when a given depth (currently set as three) is reached (Figure 5.10).

Even solving stack overflow errors, in multiple occasions the serialisation
has been found to be very slow, this was due to object containing high numbers
of fields, an example is the class android.view.View.

To further limit time spent serialising objects, when the number of fields
in a class is higher than a customisable number (currently fifteen), static fields
are not serialised.

Another improvement was to avoid serialisation of fields inherited from
classes whose distance, in terms of hops for the relation child-of from a sub-
class to a superclass, is higher than a given number (currently two), this
filtering is only applied when the number of fields is higher than a custom
number (currently twenty).

5.3.4 Logging of APIs

The logging functionality offered by this work may include, if enabled, call
stack filtering and serialisation of objects to JSON, as described in previous
sections, furthermore it is also possible to enable or disable the whole logging
functionality. All these features can be enabled or disabled at runtime using
a configuration file (Figure 5.11).

The logging methods are invoked by the log method in the Payload class,
and they are log_call and log_return depending if the target of instrumenta-
tion were the API parameters or return value respectively.

The log entry is composed of a JSON object, whose fields are:
4http://jackson.codehaus.org/

http://jackson.codehaus.org/

5.3. INSTRUMENTATION HOOKS 43

Figure 5.10: Depth awareness and field filtering in objects serialization

serialize=false
stacktrace=true
whitelist=org.apache.harmony.luni.platform
whitelist=com.android.defcontainer
whitelist=it.polimi.elet.necst.appfuzzer
whitelist=com.android.commands.monkey
whitelist=org.apache.harmony.luni.net

Figure 5.11: Runtime configuration file example

44 CHAPTER 5. IMPLEMENTATION

API signature This is a string representing the traced API who generated
the log entry, it is obtained from the API identifier described in Section
5.1.

Callee object The serialisation of the object on which the API has been
invoked, this is obtained from the reference to this object if the API is
not a static method.

Parameters This is a JSON list containing the serialisation of the parameters
used to invoke the API, it is only present in log_call method where the
target of the instrumentation are parameters.

Return value Obtained as the JSON serialisation of the return value, this
is only present in log_return method.

Call stack Obtained as described in Subsection 5.3.2, it is a list of Stack-
TraceElement each of them indicating class and method name of the
invoked method in the call stack.

The composed string is then logged using the Android logging functionality
android.util.Log. The reasons behind this choice is ease of use and the fact
that, differently from using network sockets, it does not require specific per-
missions to produce log entries.

The default android logging class, has been found having issues with long
texts, specifically when the length of text and log header is higher than 4096
characters, this has been circumvented invoking the logging APIs once every
4096 characters of output.

Since this small fix may introduce thread synchronization issues, causing
logging entries to be potentially mixed, both log_call and log_return will
invoke a single method set as statically synchronized. This should ensure a
thread synchronization when generating the log as output.

Some examples of output logs are show in Figure 5.12 and Figure 5.13, the
first with serialisation of parameters and callee object enabled and the second
with it disabled respectively.

5.4 System image generation

This section describes how the system image, which will be used as black-box
dynamic analysis platform, is created starting from an existing user supplied

5.4. SYSTEM IMAGE GENERATION 45

I/DRSAGE (2223): { "api_sign" : Ldalvik/system/DexClassLoader;-><init >(Ljava/
lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/ClassLoader ;)V, "
caller" : {" parent ":null}, "stack_trace" : ["com.facebook.base.app.
DelegatingApplication ->attachBaseContext", "com.facebook.base.app.
DelegatingApplication ->f", "com.facebook.katana.app.FacebookApplication ->a", "
com.facebook.katana.app.FacebookApplication ->f", "com.facebook.common.
dextricks.DexLibLoader ->ensureDexsLoaded", "com.facebook.common.dextricks.
DexLibLoader ->c", "com.facebook.common.dextricks.DexLibLoader ->a", "com.
facebook.common.dextricks.DexLibLoader ->a"], "params" : [["/ data/data/com.
facebook.katana/app_secondary_program_dex/program -8074103
ff6245f68be39e8b1b5401f1d08ec3707f1783aa9.dex.jar","/data/data/com.facebook.
katana/app_secondary_program_dex_opt",null ,{" parent ":{" parent "}}]] }

I/DRSAGE (1618): { "api_sign" : Llibcore/io/Os;->connect(Ljava/io/FileDescriptor
;Ljava/net/InetAddress;I)V, "caller" : {"egid ":10021 ," euid ":10021 ," gid
":10021 ," pid ":1618 ," ppid ":85,"uid ":10021} , "stack_trace" : ["com.google.
android.gms.playlog.uploader.UploaderIntentService ->onHandleIntent", "dbe ->e",
"dbe ->a", "dbe ->a", "fni ->execute", "fni ->execute", "fni ->a", "fnd ->execute",
"org.apache.http.impl.client.AbstractHttpClient ->execute", "org.apache.http.

impl.client.AbstractHttpClient ->execute", "org.apache.http.impl.client.
DefaultRequestDirector ->execute", "org.apache.http.impl.conn.
AbstractPooledConnAdapter ->open", "org.apache.http.impl.conn.AbstractPoolEntry
->open", "org.apache.http.impl.conn.DefaultClientConnectionOperator ->
openConnection", "org.apache.http.conn.scheme.PlainSocketFactory ->
connectSocket"], "params" : [[{" int$ ":47} ,"173.194.70.95" ,443]] }

Figure 5.12: Example of logs with serialisation

I/DRSAGE (1510): { "api_sign" : Llibcore/io/Os;->connect(Ljava/io/FileDescriptor
;Ljava/net/InetAddress;I)V, "caller" : "libcore.io.Posix@410573a0", "
stack_trace" : ["com.lookout.security.InstallReceiverService ->onHandleIntent
", "com.lookout.c.c.a->a", "com.lookout.c.c.a->a", "com.lookout.c.c.n->a", "
com.lookout.c.d.b->a", "com.lookout.c.d.b->a", "com.lookout.c.c.f->a", "com.
lookout.n.k->a", "com.lookout.security.j->a", "com.lookout.s.k->a", "com.
lookout.utils.HttpUtils ->executeWithAuth", "org.apache.http.impl.client.
AbstractHttpClient ->execute", "org.apache.http.impl.client.AbstractHttpClient
->execute", "org.apache.http.impl.client.AbstractHttpClient ->execute", "org.
apache.http.impl.client.DefaultRequestDirector ->execute", "org.apache.http.
impl.conn.AbstractPooledConnAdapter ->open", "org.apache.http.impl.conn.
AbstractPoolEntry ->open", "org.apache.http.impl.conn.
DefaultClientConnectionOperator ->openConnection", "org.apache.http.conn.scheme
.PlainSocketFactory ->connectSocket"], "params" : ["[FileDescriptor [72],
/184.169.142.1

I/DRSAGE (1510): 40, 443]"] }

I/DRSAGE (1618): { "api_sign" : Landroid/content/ContextWrapper;->startService(
Landroid/content/Intent ;) Landroid/content/ComponentName;, "caller" : "com.
google.android.gms.common.app.GmsApplication@413daca0", "stack_trace" : ["com
.google.android.gms.gcm.PushMessagingRegistrarProxy ->onHandleIntent"], "
params" : ["[Intent { act=com.google.android.c2dm.intent.REGISTER cmp=com.
google.android.gms/.gcm.GcmRegisterService (has extras) }]"] }

Figure 5.13: Example of logs without serialisation

46 CHAPTER 5. IMPLEMENTATION

and thus fully customisable system image.

5.4.1 Image extraction

The given system image has to be extracted in order to access the files it comes
with. This is required since Android disk partitions normally use YAFFS25

as file system. This kind of file system is optimised to work with block de-
vices such as NAND chips typically used for smartphones internal non-volatile
memory.

The only software found to perform the extraction are unyaffs6 and un-
yaffs2 7. These two tools parse the raw image of the YAFFS file system and
recreate every file and folder it contains in another destination file system sup-
ported by the host. While both software have been found working, Droid-
SaGe currently uses unyaffs.

Particular attention has to be made to preserve file attributes such as owner
and group, the extracted files will in fact may have owner and group of the
user who performed the extraction. This problem is addressed in DroidSaGe
when rebuilding the final instrumented image.

5.4.2 Dalvik bytecode identification

Once extracted the user-supplied image as described in the previous Subsec-
tion 5.4.1 all the bytecode has to be located in order to be instrumented where
necessary.

A simple yet effective approach consists in walking the folder of the ex-
tracted image in order to locate APK (Android PacKage) files, JAR (Java
ARchive) files, DEX files and ODEX files.

Depending on their extension, the files are further processed:

JAR These files in an Android system image might contain Dalvik bytecode
depending whether it has been optimised or not. If the JAR file has
not been optimised, a classes.dex file is present containing the bytecode,
otherwise the bytecode is removed from the archive and placed in a
separate ODEX file. Thus if a classes.dex file is present, it is extracted
and further processed.

5http://www.yaffs.net/
6https://code.google.com/p/unyaffs/
7https://code.google.com/p/yaffs2utils/

http://www.yaffs.net/
https://code.google.com/p/unyaffs/
https://code.google.com/p/yaffs2utils/

5.4. SYSTEM IMAGE GENERATION 47

APK Similarly to what happens with JAR archives, APK files may contain
Dalvik bytecode in the case they have not been optimised.

DEX Dalvik executable files contain various sections as described in Section
3.3, one of which lists all the classes defined in the file. For each class in
this section is then defined the list of attributes, fields and methods it
has. Finally for each method defined in a class the bytecode representing
its instructions is present, as long as it is not an abstract or native
method. Abstract methods are present in abstract classes and interfaces
which are typical in Java language, while native methods are methods
that can be invoked as regular methods, but whose definition is not in
the form of Dalvik bytecode. Native methods are in fact defined in ELF
binaries, normally obtained as a result of compiled C or C++ code, these
binaries interact with the Dalvik virtual machine using JNI (Java Native
Interface). These native methods as described in Subsection 5.2.3 are
not directly instrumentable by our system whose target is only Dalvik
bytecode.

ODEX ODEX files can be considered as an extension of DEX files, they in
fact embed the structure of a DEX file internally. ODEX files while being
optimised in terms of instructions over time, they are not optimised in
terms of space requirements, they in fact add other contents to the one
of the originating DEX.

5.4.3 Conversion of ODEX into DEX

This step is necessary to keep the work-flow more generic, to allow further
customisation of the approach and to simplify the rest of the process.

The one and only known software tool able to convert ODEX into DEX
is baksmali8. Every other software claiming to perform conversion of ODEX
files to DEX was actually found to be using Baksmali. This software tool
disassembles Dalvik bytecode in a text representation that can be manually
modified and then rebuilt. Multiple attempts in taking advantage of Baks-
mali have been performed, but several crashes of the software forced looking
for alternative solutions. The version used was the latest available when the
attempts were made, namely version 1.4.2. Another reason to prefer avoiding

8https://code.google.com/p/smali/

https://code.google.com/p/smali/

48 CHAPTER 5. IMPLEMENTATION

Algorithm 5.1 Division in basic blocks
create basic block at 0
for each instr:

currentBB = getBasicBlock(instr)
if jumps(instr):

afterBB = create new basic block after instr;
dest = destination(instr)
oldBB = getBasicBlock(dest)
if not exists(basic block starting at dest):

destBB = create new basic block at dest;
if backwardJump(instr):

link(oldBB -> destBB)
link(currentBB -> destBB)
if conditionalJump(instr):

link(currentBB -> afterBB)
if terminates(instr):

afterBB = create new basic block after instr;

for each tryCatch:
tryStart = getTryStart(tryCatch)
tryEnd = getTryEnd(tryCatch)
tryBlocks = getBasicBlocksInRange(tryStart, tryEnd)
catchHandlers = getCatchHandlers(tryCatch)
for each tryBlock:

for each catchHandler:
handlerAddr = getHandlerAddress(catchHandler)
handlerBB = getBasicBlock(handlerAddr)
link(tryBlock -> catchHandler)

the usage of Baksmali is the fact that when rebuilding disassembled byte-
code some optimisation is applied. This causes an alteration of the bytecode
that will then differ respect to the original even when no instrumentation is
performed as described in the following.

To solve this issue our system introduces extra steps when parsing the
bytecode. The content of an ODEX file is analysed and accordingly to the
details reported in Section 3.4 the embedded DEX is located and processed.

The process first locates each method definition in the embedded DEX file,
then the bytecode of each method is parsed in three steps:

Division in basic blocks A first step is necessary in order to determine the
basic blocks present in the bytecode (Algorithm 5.1). This is achieved
creating a new basic block after every conditional or unconditional jump,
to this end instructions such as return and throw will be considered un-
conditional jump instructions. The target of the jump will also deter-
mine the start of another basic block. Lastly, each catch block present
in the bytecode also starts a new basic block .
During this phase a bidirectional graph representing the CFG (control
flow graph) is built accordingly to basic blocks reachability[Theiling(2000)];

5.4. SYSTEM IMAGE GENERATION 49

Figure 5.14: Structure of a try-catch in Dalvik bytecode

A catch block is considered reachable from all of the basic blocks in the
try block.
Another important phase of this step is keeping track of register as-
signments, more precisely keeping track for every assignment the object
types a register can hold. This assignment can be fixed or inferred.
Fixed assignments are given by fixed type instructions, such as arith-
metic operation instructions, new instance generation instruction or con-
stant values instructions. Inferred assignments depend on the value of
other registers. These are kept unresolved during this step since a global
view of the control flow graph is not yet available.

Register type propagation According to the CFG, a map of the types of
objects each register can assume is created [Cytron et al.(1991)]. This
does not require the bytecode to be parsed again, but it requires knowl-
edge of the control flow graph and register assignments, thus can be
computed only after the previous step.
Each basic block inherits object types from its predecessors in the con-
trol flow graph, except for the first basic block whose inherited register
types are considered to be the method parameters and the reference to
this in the case of non-static methods.
The map of registers to object types is built using the register assign-
ments traced in the first step. In particular, register types have to be
computed for the end of each basic block and these are added as inher-
ited types for the next basic blocks in the control flow graph.
When multiple assignments are performed to the same register in a basic
block, only the last one is propagated as inherited register type.
As shown in Figure 5.14 special attention has to be taken for try-catch

50 CHAPTER 5. IMPLEMENTATION

blocks since a catch block could be reached from each instruction in the
try blocks. To this end, inherited register types have to be computed
differently for each block belonging to the address range of the try.
For the first block in the try, register types are computed at the be-
ginning of the try (possibly after the start of the block itself), then for
each register assignment until the end of the try or the block, its value is
added to the inherited types. This is repeated for the rest of the blocks
in the try, starting from their beginning.
The algorithm used for register type propagation is a breadth first ex-
ploration of the basic blocks, with the exception of catch blocks, that
will be processed only after all the basic blocks in the correspondent try
have been processed.
Since inherited types can assume multiple values depending on the basic
block it has been inherited from, values are automatically updated when
new values are found.

De-optimisation The bytecode is then parsed a second time, this time reg-
ular DEX bytecode can be generated as output replacing optimised in-
structions with their un-optimised equivalent, as specified in Table 5.1 .
There have been a few cases in which it was not possible to substitute
optimised instruction. After manual inspection of more than twenty in-
stances, this has always been caused by dead code, especially duplicated
code in finally statements, for which no valid register types were found.
In those cases bytecode instructions that will raise an exception are in-
jected. This allows to easily track any error in the case it was not dead
code. As a matter of fact, no exceptions have been raised by the in-
jected instructions in the tests performed, which empirically confirm it
was dead code.

5.4.4 Class graph and call graph generation

Once converted the ODEX files to regular DEX files, these and the other DEX
files in the system image are analysed with the goal of creating a global call
graph and class graph of all the bytecode in the image itself.

To this end a relational database will be created and used: for ease of use a

5.4. SYSTEM IMAGE GENERATION 51

Optimised instruction Un-optimised equivalent Description

invoke-virtual-quick invoke-virtual Invokes a virtual method

invoke-super-quick invoke-super Invokes a virtual method of the parent class

invoke-direct-empty invoke-direct Invokes a direct method

execute-inline invoke-(direct|virtual|static) Invokes a method in a set of predefined ones

iget-quick iget(-(boolean|byte|char|short))? Gets a native type from an object field

iget-object-quick iget-object Gets an object type from an object field

iget-wide-quick iget-wide Gets a native wide type from an object field

iget-volatile iget(-(boolean|byte|char|short))? Gets a native type from a volatile object field

iget-object-volatile iget-object Gets an object type from a volatile object field

iget-wide-volatile iget-wide Gets a native wide type from a volatile object field

iput-quick iput(-(boolean|byte|char|short))? Sets an object field from a native type

iput-object-quick iput-object Sets an object field from an object type

iput-wide-quick iput-wide Sets an object field from a native wide type

iput-volatile iput(-(boolean|byte|char|short))? Sets a volatile object field from a native type

iput-object-volatile iput-object Sets a volatile object field from an object type

iput-wide-volatile iput-wide Sets a volatile object field from a native wide type

sget-volatile sget(-(boolean|byte|char|short))? Gets a native type from a static field

sget-object-volatile sget-object Gets an object type from a static field

sget-wide-volatile sget-wide Gets a native wide type from a static field

sput-volatile sput(-(boolean|byte|char|short))? Sets a static volatile field from a native type

sput-object-volatile sput-object Sets a static volatile field from an object type

sput-wide-volatile sput-wide Sets a static volatile field from a native wide type

return-void-barrier return-void Similar to return-void, specific for Symmetric MultiProcessing

Table 5.1: List of optimised instructions

SQLite database has been chosen. The schema of this database is represented
in Figure 5.15.

The call graph is stored as a list of entries in the invocations table, each
entry composed of a reference to the caller method and a reference to the
callee method. The class graph is represented by the two tables class and
implements, the first stores information regarding a class, while the second is
used to track interfaces that a class implements.

Each method has also information regarding the class in which it is defined
and attributes to determine if it is directly instrumentable or not, namely if
it is not abstract or native as described in Subsection 5.4.6.

The two graphs are created parsing the bytecode of the DEX files and
looking for class definitions, method definitions and method invocation in-
structions inside each method (see Appendix A), for each of those instructions
an entry is inserted in the call graph.

Information stored in the database will be used in the next steps to detect
when and where to instrument a given method.

52 CHAPTER 5. IMPLEMENTATION

Figure 5.15: Class and call graph database schema

5.4.5 User decision of target APIs

Both class graph and call graph obtained in the previous step could be used
to determine which API to trace and thus to instrument, this is particularly
useful when the system image that is going to be instrumented is not well
known to who has to decide the APIs to trace.

To this end, this work includes a graphical representation in HTML and
AJAX that offers a navigable graph of classes and methods, easy to use for
an end user in order to identify the most suitable APIs to be instrumented.
A screenshot picturing this graphic tool is shown in Figure 5.16.

Once decided the APIs to be traced, these have to be written in a CSV
(comma separated values) file containing for each API the class name and
method name it refers to. It is possible to further specify a method descrip-
tion with parameters and return type of the method to resolve ambiguous
situations. Lastly it is also possible to specify whether to track the method
when it is going to be invoked with its parameters or to track it when it
is about to return to the caller, thus with its return value. This last cus-
tomisation is particularly useful when instrumenting methods which perform
operations such as reading from a stream, in those cases is typically more
significant to track their return value rather than the method parameters.

An example configuration file is shown in Table 5.2 .

5.4. SYSTEM IMAGE GENERATION 53

Figure 5.16: Navigable graph of classes and methods

API signature log call log return
Ljavax/crypto/Cipher;->doFinal([B)[B true false

Landroid/app/Activity;->startActivity true false

Landroid/telephony/SmsManager;->sendTextMessage true false

Landroid/telephony/TelephonyManager;->getDeviceId true false

Table 5.2: Example of configuration file listing the APIs to instrument

5.4.6 Instrumentation

The analysed DEX files are instrumented on the basis of the call graph gen-
erated in Subsection 5.4.4, for each DEX file its bytecode is parsed and for
each method it is detected whether to instrument its bytecode or not.

The bytecode of a method has to be instrumented in the case it appears
in the target API list or if it contains an invocation of a non-directly instru-
mentable method which is also listed as an API to track.

Details on how the instrumentation is performed are available in Section
5.1.

54 CHAPTER 5. IMPLEMENTATION

$ dexopt
Usage:

Short version: Don’t use this.

Slightly longer version: This system-internal tool is used to

produce optimized dex files. See the source code for details.

Figure 5.17: Error message when running dexopt

5.4.7 Bytecode optimisation

Once the bytecode has been instrumented, it is optimised into ODEX for-
mat. This has the main advantage of allowing the modified bytecode to be
run without performing the signature verification that if otherwise performed
would result in a wrong signature.

The optimisation process uses the dexopt binary which is the official tool
to generate ODEX bytecode.

Dexopt is available in two versions, the host and the target version. The
target version is the one included in the system image that is directly run from
a device running the Android operating system, the host version is instead
used when building a system image from source code, in these cases a pre-
optimisation can be performed from the host system that is building the image.
The two versions are basically the same binary cross-compiled for different
platforms and architectures.

Dexopt is meant to be automatically invoked, either by the make command
when building a new image, or directly from Android when installing a new
application, it does not offer in fact a simple interface to invoke it manually as
shown in Figure 5.17, it has in fact been necessary to inspect its source code
to understand its configuration and its available parameters.

When dexopt fails an optimisation it often requires manual and in depth
analysis of both the binary and the bytecode, normally using hexadecimal
editors, to find the reason behind the failure.

5.4.8 Image creation

As a last step, the instrumented system image is built using mkyaffs2image,
an official tool used when building an Android system image. As described in
Subsection 5.4.1 it is necessary to preserve file attributes such as owners and

5.4. SYSTEM IMAGE GENERATION 55

groups, to this end mkyaffs2image offers a “-f” command line switch to set file
owner and group appropriately.

The resulting image can either be run in an emulator or installed on a
physical device.

Chapter 6

Experimental validation

The realised system has been tested with multiple configurations that will be
described in this chapter.

First of all, in order to compare different configurations, several system
images have been prepared. Each system image differs from the others at
least in one characteristic, such as Android version or installed applications,
allowing us to estimate which factors most infer on test results.

The testing process then involves samples of Android applications, which
have been chosen including malware as well as known good applications. Each
of these samples is installed in clean Android platforms that run instances of
the prepared system images.

Once installed, each application sample gets stimulated through the An-
droid Debug Bridge, this includes starting each of the activities, services and
broadcast receivers that the application contains. Each activity is further
stimulated using the monkey tool that sends events to the Android system.
Monkey has been configured to run predefined scripts, this helps highlight-
ing differences in application behaviours which might be due to the underlying
environment in which the application is being run. If during the stimulation
other applications are installed on the system, these are added to an appli-
cation queue, so that when the test of the current application ends, another
test of the newly installed one will be started on the same system. This last
detail allows to correctly analyse even complex malware that ask the instal-
lation of a second application that contains malicious code. An example of
this behaviour can be found in the well known Android trojan application

57

58 CHAPTER 6. EXPERIMENTAL VALIDATION

SMSZombie1 that carries a hidden APK file disguised as a JPEG image.
Throughout all the stimulation phase, APIs invocations are logged. This

allows to post-process them with the aim of comparing how the different con-
figurations impact on applications’ behaviour.

Behaviours are compared in terms of different APIs invoked and amount
of invocations each of those APIs has reached in a test.

To compare our approach with existing ones, DroidBox has also been cho-
sen as one of the system images on which to run the tests.

6.1 Testbed environments

Multiple Android platform versions have been chosen as environments on
which to perform the tests. A single Android version could then be further
distinguished by the applications it comes with. Particular interest may be
given to the presence (or absence) of the Google Apps, in fact their presence
could enable an application to interact with services such as Google Maps,
Google Plus or Youtube which may enable (or disable) specific behaviours in
the application.

In this section a list of the prepared system images will be introduced, then
details about the stimulation of applications will be given and an automated
testing framework will be presented.

6.1.1 System images

DroidBox has been chosen as the system to compare with since it can be con-
sidered the most known and currently widespread Android dynamic analysis
sandbox platform.

As described in Subsection 2.2.2 the system image used by DroidBox is
based on TaintDroid, and has added instrumentation for specific APIs. The
instrumentation of those APIs is mainly aimed at logging the usage of given
methods, but the logic behind whether to log or not an API invocation could
be complex.

By manually inspecting the source code of DroidBox a set of APIs that
always perform logging has been identified. Those APIs have been chosen to
be instrumented with our system on different Android platforms.

1http://blog.fortinet.com/uninstallable-androidsmszombie/

http://blog.fortinet.com/uninstallable-androidsmszombie/

6.1. TESTBED ENVIRONMENTS 59

Algorithm 6.1 List of APIs instrumented for Android 2.3 GingerBread
Ldalvik/system/DexClassLoader;

-><init>(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/ClassLoader;)
Ljavax/crypto/spec/SecretKeySpec;

-><init>
Landroid/content/ContextWrapper;

->startService(Landroid/content/Intent;)
Lorg/apache/harmony/luni/platform/OSNetworkSystem;

->connect(Ljava/io/FileDescriptor;Ljava/net/InetAddress;II)
->connectNonBlocking(Ljava/io/FileDescriptor;Ljava/net/InetAddress;I)
->close(Ljava/io/FileDescriptor;)
->send(Ljava/io/FileDescriptor;[BIIILjava/net/InetAddress;)
->sendUrgentData(Ljava/io/FileDescriptor;B)
->write(Ljava/io/FileDescriptor;[BII)
->readDirect
->recvDirect

Landroid/telephony/SmsManager;
->sendTextMessage

Given that TaintDroid is based on Android 2.3 GingerBread, an instru-
mented image has been generated from the stock Android 2.3 GingerBread
system image shipped with the Android SDK.

In order to see how different behaviours happen depending on the envi-
ronment, other two system images have been prepared: one based on Android
4.0 IceCreamSandwich, and one based on Android 2.3 GingerBread, but with
the entire Google Service Framework installed.

Here follows a list of the prepared system images:

Baseline (DroidBox 2.3) This system image is taken from the DroidBox
project 2and can be freely downloaded from the official download
page3. The image has been used as is without further customisa-
tion.

Our system (GingerBread 2.3) The stock Android 2.3 Gingerbread sys-
tem image from the Android SDK has been instrumented with our
system. The list of instrumented APIs is shown in Algorithm 6.1.

Our system (GingerBread 2.3 + GSF) The original GingerBread 2.3 sys-
tem image has been first modified including the Google Service
Framework, obtained from Goo.im4. The resulting system image
has then been instrumented with our system. The list of APIs
instrumented coincides with the ones shown in Algorithm 6.1 for
the previous system image.

2https://code.google.com/p/droidbox/
3https://droidbox.googlecode.com/files/DroidBox23.tar.gz
4http://goo.im/gapps

https://code.google.com/p/droidbox/
https://droidbox.googlecode.com/files/DroidBox23.tar.gz
http://goo.im/gapps

60 CHAPTER 6. EXPERIMENTAL VALIDATION

Algorithm 6.2 List of APIs instrumented for Android 4.0 ICS
Ldalvik/system/DexClassLoader;

-><init>(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/ClassLoader;)
Ljavax/crypto/spec/SecretKeySpec;

-><init>
Landroid/content/ContextWrapper;

->startService(Landroid/content/Intent;)
Llibcore/io/IoBridge;

->connect(Ljava/io/FileDescriptor;Ljava/net/InetAddress;II)
->closeSocket(Ljava/io/FileDescriptor;)
->sendto(Ljava/io/FileDescriptor;Ljava/nio/ByteBuffer;ILjava/net/InetAddress;I)
->recvFromBytes(Ljava/io/FileDescriptor;Ljava/lang/Object;IIILjava/net/InetSocketAddress;)

Landroid/telephony/SmsManager;
->sendTextMessage

Figure 6.1: Interaction between Android components

Our system (IceCreamSandwich 4.0) This version is obtained from the
original Android 4.0 Ice Cream Sandwich (ICS) system image
present in the Android SDK. Not all the APIs that DroidBox
references are available in this system image since the underlying
platform differs, thus custom instrumentation has been performed.
The instrumented APIs are shown in Figure 6.2.

6.1.2 Stimulation of a single application

Although application stimulation is not the primary goal of our approach, we
needed a mechanism to streamline the experiments in a repeatable manner.
For this, we adopted the approach described in the following.

Android applications have common components that will be invoked by
the system when dispatching Intents. These components, whose interaction is
shown in Figure 6.1, are typically divided in four main categories5:

Activities An activity represents a single screen with a user interface. Al-
though the activities work together to form a cohesive user experience
in an application, each one is independent of the others. In fact it may
be possible for an Activity to be started from an external application.

5https://developer.android.com/guide/components/fundamentals.html

https://developer.android.com/guide/components/fundamentals.html

6.1. TESTBED ENVIRONMENTS 61

Services Services run in the background typically performing long-running
tasks or interacting with input/output such as network connections or
files. Differently from Activities, a Service does not have any graphical
part.

Receivers A broadcast receiver is a component that responds to system-wide
broadcast announcements. Intents carrying those announcements can
both be started by the application itself or from other applications. Some
of the Intents are also broadcasted by the operating system, announcing
global events.

Providers ContentProviders allow storing data that has to be persisted.
Stored data can also be accessed as well as modified, accordingly with
the implementation of the ContentProvider. This kind of component
can both be kept private or exposed to other applications depending on
the configuration of the ContentProvider.

The invocation of these components can be forced sending custom Intents,
but this requires root access to the Android system. Intent generation hap-
pens by means of ADB and the AM (Activity Manager)6 component which
is available in Android system images. The realised system images have been
prepared with root access enabled in order to allow forcing the invocation of
the available components. This process, even if sometime causes the applica-
tion to crash, normally allows to significantly increase code coverage of the
tested application. When an activity under test is successfully displayed, the
input generation tool monkey7 is started. Monkey has been configured so
that it will generate and execute a predefined list of events, with a fixed tim-
ing between them. This is particularly useful to detect different behaviours
that appear when running the same activity, of the same application, with
the same input. Any eventual difference in this scenario has a good chance of
being due to the environment setup.

The events that monkey generates may cause the application to exit from
the test scope, this typically happens when the home button is pressed, or
when a series of back button is executed. In the first case, the home launcher
activity is displayed, while in the second case the activity that was executing
before the test was started is displayed.

6https://developer.android.com/tools/help/adb.html#am
7https://developer.android.com/tools/help/monkey.html

https://developer.android.com/tools/help/adb.html#am
https://developer.android.com/tools/help/monkey.html

62 CHAPTER 6. EXPERIMENTAL VALIDATION

To address the first problem, a custom home launcher application has
been developed so that every time the custom home screen is reached, a log
entry is generated. This log entry being processed allows to recognise what
happened and restart the activity under test. An additional trick has to
be used to properly handle home button events, that is setting the custom
launcher application as the default one.

Back to the case of a series of back button events, to address it, the home
screen is displayed before starting the test of an activity. This ensures the
previous running activity is under our control.

The list of events that monkey will execute is generated by a custom
python script. This script is able to generate either typing events or touch
events.

Each of these events is composed of sub-events, and each sub-event is
interleaved by a randomly chosen small amount of time.

Touch events are composed by at least a touch down event and a touch up
event, additionally other touch move events can be randomly generated.

The randomness of these events is described by a Poisson process, gener-
ated using the python API random.expovariate. The mean values have been
chosen empirically trying to reproduce a real user behaviour.

The list of activities, services and broadcast receivers to test in each appli-
cation is obtained though static analysis on the application itself. In particular
the classes.dex file containing the Dalvik bytecode part of the application is
parsed and a class hierarchy graph is built. On the basis of this graph, all
descendants of Activity, Service and BroadcastReceiver are located.

The obtained list is then used to fulfil the testing of the application, forcing
to start each component in the list.

6.1.3 Automatic stimulation of multiple applications at once

The tests have been run on a high number of samples, this fact required to
generate an automated analysis environment. Given a running Android plat-
form, an application, and a list of monkey events, the automated environment
automatically installs the application in the Android system, then starts its
stimulation forcing each activity, service and broadcast receiver to start.

When an activity is started, the list of input events is executed using the
monkey command.

6.2. DATASET 63

Throughout all the test, a log is kept in order to allow postprocessing the
collected data.

In order to ensure each test being run in a clean system, snapshots are
created. As a matter of fact this also reduces the application start time,
avoiding to boot a clean system each time. On the other hand, this restricts
the testing scope to emulated environments only.

6.2 Dataset

The application samples the tests have been run with were obtained both from
known good sources, and from known Android malware datasets. More de-
tailed information about the application samples can be found in this chapter.

6.2.1 Normal applications

The top ten Android application from five categories of the Google Play Store8

have been downloaded on the 25th/09/2013. The chosen categories are: edu-
cation, entertainment, game, lifestyle and weather.

An important fact has to be considered, that is not all applications were
actually able to run on all the test environments, which were created on the
system images used to run the tests. This is because some of the applications
may require the underlying environment to have specific configurations that
might include the Google Services Framework, other specific applications such
as Google Maps installed, or simply because of incompatible Android APIs
versions. Generally speaking, applications compatibility may be influenced
also by the presence (or absence) of hardware components, such as sensors
such as GPS or GSM. Specifically, in our dataset two applications were incom-
patible with Android 2.3, and three applications required the Google Services
Framework.

6.2.2 Malware applications

With respect to Android malware, 20 samples were chosen in the ones belong-
ing to the Malgenome project9, and these are listed in Table 6.1 .

8https://play.google.com/store/apps
9http://www.malgenomeproject.org/

https://play.google.com/store/apps
http://www.malgenomeproject.org/

64 CHAPTER 6. EXPERIMENTAL VALIDATION

Malware MD5 Date

DroidKungFu3 ca4a8e620f5ed94abf8232c59404dead 2011-09-01

BaseBridge eba8c1fb8ce65a4c738eb2e1fc00d0dc 2011-06-14

Geinimi 50d85dc895a9ffe66c809416ad2cba91 2010-09-25

PjApps cae2169f4706e8be514d9967152590c4 2010-12-17

KMin e0dd14720e4fef02d29a4b027536d273 2011-04-11

GoldDream fb019daccaa3631e64861c814f01584e 2011-09-12

DroidDreamLight 3ae28cbf5a92e8e7a06db4b9ab0a55ab 2011-04-15

ADRD 839c37f3a2c8d31561d28f619a2a712e 2011-01-04

jSMSHider cc2a186f466431570109251f1d46cc36 2009-06-10

Zsone de7e432e5ac86c34f315695a34ab8b6b 2011-01-12

FakeLookOut 65baecf1fe1ec7b074a5255dc5014beb 2012-10-06

RootSmart f70664bb0d45665e79ba9113c5e4d0f4 2011-10-09

Walkinwat c3a0f5d584cc2c3221bbd79486578208 2011-02-02

zHash 5beae5543a3f085080c26de48a811da6 2011-01-21

FakePlayer 46a53f4a6637e2807d79102a6a937c2e 2010-10-12

Spitmo cfa9edb8c9648ae2757a85e6066f6515 2011-07-22

HippySMS 1a4fb41b95c3cbab05636ee966043c9e 2010-09-15

LoveTrap f3497516eab17c642c5ede5ad1e55a15 2011-06-20

SmsSend 1385a0ebd5865b3e20456bfd97ac3a17 2011-05-24

FakeAlert 084a7b576f5df438abba3131a90af493 2013-01-17

Table 6.1: Malware samples

The reasons that leaded to choose the Malgenome project were mainly
due to the fact that is the most known and acknowledged Android malware
dataset in the scientific community [Zhou and Jiang(2012)].

6.3 Test description

Two types of tests have been run on the system images listed in Subsection
6.1.1, these will be described in the details in this section as well as their
results.

6.3.1 No stimulation

A first test has been performed with no input events. This test included a
simple monkey script with a UserWait action which leads the system to wait
for a specified amount of time.

6.3. TEST DESCRIPTION 65

This test has been performed on all the system images described in Sub-
section 6.1.1.

The logs obtained from the tests have been post processed and for each
logged API, its invocations on the different combinations of system images
and applications have been isolated.

The idea is to show how many invocations of a single API a system inter-
cept respect to other systems for a generic application. So we first group the
logged API invocations by system, application and API name.

Starting from the number of invocations of an API in a system image
running a given applications, a comparison between the amount of API invo-
cations logged by the different systems has been computed.

In first place, a label has been applied to each of the logged APIs. This
process has the goal of normalising the API name with the correspondent ac-
tion to allow cross-system comparison. To give an example, the API logged
by DroidBox as “OpenNet” is labelled as “socket-connect”, while the API that our
system logs as “Ljavax/crypto/spec/SecretKeySpec;-><init>” is labelled as “crypto-key”.

For each couple of tested application and label assigned, the total of logged
API invocations with that label is computed, as well as the relative amount for
each system. The computed amount is a number between 0 and 1, indicating
the ratio of labelled invocations that a given system has logged over the total
amount of logged invocations for that label and application.

In the case of no logged API invocations with a given label for an appli-
cation, the ratio assigned to each system is equal to one over the number of
compared systems.

For each system, mean and standard deviation are then computed with
respect to the described ratio across the different applications.

The computed results for each label give an idea of the effectiveness of a
system in logging a behaviour when compared to the others, or more specif-
ically, how many invocations of a single API a system intercepted respect to
other systems for a generic application.

6.3.2 Stimulation with random events

A second test has been performed with a list of random input events. As de-
scribed in Subsection 6.1.2, the same input was supplied to all tested activities
on all the tested applications.

66 CHAPTER 6. EXPERIMENTAL VALIDATION

start data >�>
DispatchPointer(0, 0, 0, 282, 421, 0,0,0,0,0,0,0)
DispatchPointer(20, 0, 1, 254, 467, 0,0,0,0,0,0,0)
DispatchPointer(0, 0, 0, 4, 89, 0,0,0,0,0,0,0)
DispatchPointer(0, 0, 2, 0, 20, 0,0,0,0,0,0,0)
......
DispatchKey(20,0,0,62,0,0,0,0)
DispatchKey(20,0,1,62,0,0,0,0)
DispatchKey(20,0,0,39,0,0,0,0)
DispatchKey(20,0,1,39,0,0,0,0)
DispatchPointer(0, 0, 0, 233, 300, 0,0,0,0,0,0,0)
......

Figure 6.2: Excerpt of generated Monkey events

A list of 210 monkey events has been generated using the monkey event
generator python script referred in Subsection 6.1.2. This list, composed of
both touch events and key strokes, has then been used for the test hereby
described. An excerpt of the script can be found in 6.2.

Test results are collected and processed in the same way as described in
Subsection 6.3.1.

6.4 Test results

In this section test results will be presented, trying to propose a comparison of
the generated system images as described in Subsection 6.3.1 and Subsection
6.3.2.

6.4.1 Comparison of DroidBox and instrumented
GingerBread

A first test with the vanilla system image for Android 2.3 GingerBread directly
from the Android SDK has been performed. The system image has been
instrumented using the list shown in Algorithm 6.1.

A test with no stimulation has been executed on both the instrumented
system image and DroidBox. The results have been collected and are shown
in Figure 6.3. It is easy to notice that APIs related to network activity have
a higher variance (as shown by the black bar which represents the standard
deviation), this is generally due to advertisement libraries included in the
applications that easily change their behaviour from an execution to another.

The same test has been repeated with input stimulation, as described in
Subsection 6.3.2, the results are shown in Figure 6.4. Differently from the

6.4. TEST RESULTS 67

Figure 6.3: Comparison of DroidBox and GingerBread without stimulation

Figure 6.4: Comparison of DroidBox and GingerBread with stimulation

previous test GingerBread collected slightly more API invocations compared
to DroidBox.

6.4.2 Comparison of DroidBox and GingerBread with GSF

The tests with and without stimulation have been run on the instrumented
Android 2.3 GingerBread system image with the Google Services Framework
installed. Test results comparing the system with DroidBox are shown in
Figure 6.5 and Figure 6.6, corresponding to without and with stimulation
respectively. It is possible to notice a growth, especially with respect to the
service-start label, of the ratio of logged API by our system. This fact is
justified by the presence of the Google Service Framework which offers several
services that may be available at runtime. The two charts with and without
stimulation are very similar, this may be a sign that the stimulation itself is
not influencing API invocations as much as the presence of the Google Service

68 CHAPTER 6. EXPERIMENTAL VALIDATION

Figure 6.5: Comparison of DroidBox and GingerBread GSF without stimula-
tion

Figure 6.6: Comparison of DroidBox and GingerBread GSF with stimulation

Framework.

6.4.3 Comparison of DroidBox and ICS

The Android 4.0 Ice Cream Sandwich system image from the Android SDK
has been instrumented using the API list shown in Figure 6.2. In this case
different APIs have been instrumented, this is due to the fact that some of
the APIs instrumented by DroidBox are no longer available in Android
4.0 Ice Cream Sandwich. An analysis of the class and call graph in the
target system has been performed using the tool developed and described
in Subsection 5.4.5. As a result, most of the APIs previously belonging
to Lorg/apache/harmony/luni/platform/OSNetworkSystem; are now offered by the
Llibcore/io/IoBridge; class.

Similarly to the previous section both tests with and without stimulation

6.4. TEST RESULTS 69

Figure 6.7: Comparison of DroidBox and ICS without stimulation

Figure 6.8: Comparison of DroidBox and ICS with stimulation

have been performed on this system and the results have been compared to
the DroidBox ones, as shown in Figure 6.7 and Figure 6.8. The charts show
that the two systems are balanced in terms of amount of logged API, apart
from the socket-send label. This may be due to the different instrumented
APIs, in fact the API instrumented in IceCreamSandwich 4.0 seems to not be
equivalent to the one instrumented by DroidBox.

6.4.4 Impact of stimulation on test results

An interesting comparison is obtained estimating how the input stimulation
affected the test results. This can show how effective the stimulation is with
respect to the sample applications.

A first comparison was made with DroidBox, shown in Figure 6.9, in
this case the stimulation mainly affected only network operations. A simple
explanation for this phenomena may be that new content is retrieved from

70 CHAPTER 6. EXPERIMENTAL VALIDATION

Figure 6.9: Comparison of DroidBox with and without stimulation

Figure 6.10: Comparison of GingerBread with and without stimulation

the web when touching UI elements, but this generally depends on the single
application.

A second comparison was performed with the instrumented Android 2.3
GingerBread system: its test results with and without stimulation are shown
in Figure 6.11. Similarly to DroidBox, network operations are increased,
another rise is present in cryptography usage, this may be due to network
communications over SSL such as HTTPS.

A third comparison was made using the GingerBread system image en-
riched with the Google Services Framework. Test results are shown in Figure
6.11, the trend shown is very similar to the one obtained with DroidBox.

A global view comparing all the systems is shown in Figure 6.13 and Figure
6.12 with and without stimulation respectively.

In both charts it is possible to notice how the systems behave similarly
in APIs labelled as crypto-key, dex-classloader and sms-send. There is instead a

6.4. TEST RESULTS 71

Figure 6.11: Comparison of GingerBread GSF with and without stimulation

Figure 6.12: Comparison of the systems with no stimulation

prevalence of the GingerBread system with the Google Service Framework
on the other APIs, which is due to invocations originating from services that
comes with the framework.

6.4.5 Impact of the Google Services Framework

Here we will show how results differ when executing the same applications
with or without the Google Services Framework installed.

This framework is used in Android devices when interacting with Google
services such as Google Maps, Youtube or the Google Play Store.

Although real devices usually include these services, in the Android emula-
tor they are not available. An attempt to create a more realistic environment
has been made realising a system image that includes the Google Services
Framework.

In Figure 6.14 are shown test results obtained with no input stimulation

72 CHAPTER 6. EXPERIMENTAL VALIDATION

Figure 6.13: Comparison of the systems with input stimulation

Figure 6.14: Impact of the Google Services Framework with no stimulation

that compare the instrumented Android 2.3 GingerBread without Google Ser-
vices Framework with the one enriched with it.

The same procedure has been repeated with input stimulation, the results
are shown in Figure 6.15.

In both charts a strong growth in services started is noticeable, this is
probably due to applications invoking services belonging to the Google Ser-
vices Framework.

6.4.6 Comparison of API usage in malicious and benign
applications

As a last comparison test, the application samples have been partitioned in
malicious and benign applications, a first test has been performed between
DroidBox and the instrumented Android 2.3 GingerBread system image only

6.5. DISCUSSION 73

Figure 6.15: Impact of the Google Services Framework with input stimulation

Figure 6.16: Comparison of DroidBox and GingerBread on malware samples

using malware application, and a second test using only benign applications.
The results of the first test, with malware applications, are shown in Figure

6.16, while results from the same test executed on benign samples is shown
in 6.17. The comparison of the two systems does not differ much even if the
two sample dataset are completely different, this means that the performance
of the two systems in terms of logged APIs is not significantly affected by the
type of application under test.

6.5 Discussion

In the previous section we presented the results obtained from the test that
have been performed to evaluate our system. The evaluation considered four
different system images, one of which is DroidBox. DroidBox is assumed
as baseline system to compare the other system images, which are obtained

74 CHAPTER 6. EXPERIMENTAL VALIDATION

Figure 6.17: Comparison of DroidBox and GingerBread on benign samples

from the instrumentation of system images based on the stock Android version
that comes with the Android SDK.

The main goal of the tests was to show how efficient our instrumented
systems are in logging API calls while analysing a generic application. Since
it is not possible to obtain an absolute measure, we run the tests on multiple
systems and then compared each of the systems generated with our approach
to current existing solutions to obtain an indicative measure.

The results showed that our system globally behave similarly to Droid-
Box, with some differences mainly on API related to network traffic. This is
normally due to the fact that network data may vary from test to test since
it is retrieved from external locations.

Other comparison are aimed to show differences from tests run on the
same system with or without input stimulation described in Subsection 6.3.2.
Results of these comparison showed a growth in network operations, probably
due to network requests performed on input events, such as pressing a button
or images loaded when changing screen.

A final comparison is made between a base system and a system on which
the Google Services Framework have been installed. This framework includes
functions specific to Google products such as Google Maps, Google Plus or
Youtube, which may enable additional functions on some applications. The
results of the comparison, shown in Figure 6.14 and Figure 6.15, demonstrates
that the presence of the Google Services Framework slightly enhances the
usage of some APIs, with a peak on the APIs representing the start of Services.

6.6. OTHER EXPERIMENTS 75

6.6 Other experiments

Other experiments have been performed just as proof of concept, without
running the full set of tests described in the previous sections. Specifically
DroidSaGe correctly instrumented:

Physical device An Acer Iconia Tab A500 tablet running CyanogenMod
10 10, which is based on Android 4.1.2 JellyBean, was correctly
instrumented using our approach. The tablet has been used for
several hours for activities such as web browsing or playing re-
source intensive applications such as videogames without experi-
encing crashes.

x86 architecture Our system was able to perform instrumentation of an
X86 version of Android. The instrumented device is a virtual
machine running Android 4.1.1 JellyBean.
The virtual device was obtained from the AndroVM 11 project, and
the version that has been instrumented was the phone with Google
Apps and other extras12. It has to be noticed that no ODEX file
was present in this system image, thus no conversion of ODEX
files happened while generating the instrumented environment.

TaintDroid We successfully instrumented two system images obtained com-
piling Android sources with patches from the TaintDroid project.
The two images differ in the Android version, namely Android 2.3
GingerBread and Android 4.1 JellyBean. The generation of these
system images proves that our approach can be considered orthog-
onal with respect to TaintDroid, in fact the two systems coexist
without interfering each other.

10http://www.cyanogenmod.org/
11http://androvm.org/blog/
12http://androvm.org/Download/androVM_vbox86p_4.1.1_r6.1-20130222-gapps-

houdini-flash.ova

http://www.cyanogenmod.org/
http://androvm.org/blog/
http://androvm.org/Download/androVM_vbox86p_4.1.1_r6.1-20130222-gapps-houdini-flash.ova
http://androvm.org/Download/androVM_vbox86p_4.1.1_r6.1-20130222-gapps-houdini-flash.ova

Chapter 7

Limitations and future works

This section presents the known limitations of the approach, as well as sug-
gestions on possible extensions that have not been implemented for time con-
straints or because they were loosely related with the scope of this work.

Although the described approach has several interesting characteristics,
some limitations apply. First of all the fact that it only targets and analyses
Dalvik bytecode. While most of the APIs that interacts with the system force
the application to perform invocations at bytecode level, there might exist
cases in which the analyst is interested in monitoring native functions that
are invoked by native libraries. In this scenario our approach can not be
applied and therefore it can not fulfil the expected task.

Another minor limitation is the fact that only generic instrumentation
hooks have been developed. In fact only logging hooks have been made avail-
able. A user interested in custom processing of the APIs has to develop his
own hooks. This limitation has been accepted given that it is not possible to
know in advance what a generic user requirements may be, thus customisation
of the instrumentation hooks seems an acceptable limitation for the current
work.

A further limit is the fact that this approach is strictly related to the
Dalvik virtual machine and the current format of its bytecode. If newer ver-
sion of both the virtual machine or the format of the bytecode will introduce
significant changes, these would have to be taken into account and the existing
code would have to be updated accordingly.

We acknowledge also the fact that the current approach transmits the exe-
cution trace of the hooked APIs through logging, this could be easily detected

77

78 CHAPTER 7. LIMITATIONS AND FUTURE WORKS

by an application having the android.permission.READ_LOGS1 permission set
in its manifest file. Alternative approaches would require the ability to di-
rectly write files, transmit over the network or interacting with an application
with such privileges.

Time constraints limited the testing of the instrumentation to tens of sys-
tem images, an extensive test could be performed in order to find possible
bugs in the instrumentation phase.

Another limit is the fact that even if the system can potentially run on
multiple architectures with just minor changes, the conversion of ODEX files
in their DEX equivalent currently works only on ARM architectures. This is
because it would have required an additional effort in modifying the library
used to parse and generate Dalvik bytecode.

As a last issue, our system may suffer code obfuscation techniques. More
specifically our approach modifies the bytecode only in the places where in-
strumentation has to be performed, thus we transparently support obfuscation
where no instrumentation is performed, but it may be a problem instrument-
ing a method whose name or hierarchy has been obfuscated.

1https://developer.android.com/reference/android/Manifest.permission.html#READ_LOGS

https://developer.android.com/reference/android/Manifest.permission.html#READ_LOGS

Chapter 8

Conclusions

In this work we presented an automated system that generates dynamic analy-
sis environment for the Android operating system. The resulting environments
are suitable for blackbox analysis of unknown applications. The generation
process of the environment is highly configurable, starting from a user supplied
Android system image. The system image is then analysed and the Dalvik
bytecode that is run by the Android operating system is instrumented. The
instrumentation targets a customisable set of APIs whose bytecode is mod-
ified injecting code that will perform the tracing of invocations at runtime.
Customisation can thus be applied both on the system images, provided as
input to the system, and in terms of APIs that have to be instrumented.
Furthermore, the resulting system image is resilient to signature verification.
This happens by means of optimisation of the instrumented bytecode, in fact
optimised bytecode present in ODEX files is not verified through signature
verification, but just with the computation of an hash checksum.

Optimised bytecode is not only generated as output for the resulting en-
vironment, but also analysed if already present in the original system image.
The analysis of optimised bytecode is a multi-step procedure described in Sub-
section 5.4.3 that aims to translate the optimised bytecode in its not optimised
equivalent.

When the injected bytecode gets executed, instrumentation hooks are in-
voked. These are customisable methods that currently offer serialization to
log of API name, parameters passed and stack trace at runtime invocation.

The system has been compared to the current de facto standard in An-
droid applications blackbox dynamic analysis which is DroidBox (Subsection

79

80 CHAPTER 8. CONCLUSIONS

2.2.2). Since our approach differs from the DroidBox one, the comparison
has been performed only on the overlapping functions, namely logging of in-
voked APIs without taint tracking.

Further tests have been performed on different Android platforms in or-
der to show how the underlying environment may impact on application be-
haviour.

Finally, we plan to release DroidSaGe as an open source project. This
choice aims to attract the scientific community, in which other projects may
benefit by taking advantage of our work.

Appendix A

List of Dalvik VM
instructions

The Dalvik virtual machine currently supports 246 different opcodes, each
of them corresponding to a specific instruction. Every opcode belongs to a
format, identified by a sequence of letters and numbers. The format identifier
combines at least two numbers and a letter, the first number corresponds to
the number of words (two bytes) which represent the instruction, the second
one represents the number of parameters the instruction receives. A few in-
structions do not have a fixed number of registers as parameters, a range is
used instead, in this case the letter “r” is used instead of the number of param-
eters. After these two numbers, a sequence of letters describes the parameter
types:

b immediate signed byte

c constant pool index

f interface constants

h immediate signed hat (topmost 32 bits of a 64 bit value)

i immediate signed int or float

l immediate signed long or double

m method constants

n immediate signed nibble (4 bits)

81

82 APPENDIX A. LIST OF DALVIK VM INSTRUCTIONS

s immediate signed short value

t branch target

x no additional data

The most common instructions refer to registers only using nibbles, this fact
limits the addressing of registers to only 4-bits.

A 4 bit addressing limits the register usage to only the first 16 registers,
requiring to copy values from higher register numbers in order for them to be
used. The same issue, with just different numbers, would apply when using
an 8-bit addressing and more than 256 registers, it is just not common since
methods normally do not use more than 20 registers.

Here follows a list of the opcodes supported by the Dalvik virtual machine.

Table A.1: Dalvik instruction set

00 10x nop

01 12x move vA, vB

02 22x move/from16 vAA, vBBBB

03 32x move/16 vAAAA, vBBBB

04 12x move-wide vA, vB

08 22x move-object/from16 vAA, vBBBB

09 32x move-object/16 vAAAA, vBBBB

0a 11x move-result vAA

0b 11x move-result-wide vAA

0c 11x move-result-object vAA

0d 11x move-exception vAA

0e 10x return-void

0f 11x return vAA

10 11x return-wide vAA

11 11x return-object vAA

12 11n const/4 vA, #+B

13 21s const/16 vAA, #+BBBB

14 31i const vAA, #+BBBBBBBB

83

Opcode Format Name

05 22x move-wide/from16 vAA, vBBBB

06 32x move-wide/16 vAAAA, vBBBB

07 12x move-object vA, vB

15 21h const/high16 vAA, #+BBBB0000

16 21s const-wide/16 vAA, #+BBBB

17 31i const-wide/32 vAA, #+BBBBBBBB

18 51l const-wide vAA, #+BBBBBBBBBBBBBBBB

19 21h const-wide/high16 vAA, #+BBBB000000000000

1a 21c const-string vAA, string@BBBB

1b 31c const-string/jumbo vAA, string@BBBBBBBB

1c 21c const-class vAA, type@BBBB

1d 11x monitor-enter vAA

1e 11x monitor-exit vAA

1f 21c check-cast vAA, type@BBBB

20 22c instance-of vA, vB, type@CCCC

21 12x array-length vA, vB

22 21c new-instance vAA, type@BBBB

23 22c new-array vA, vB, type@CCCC

24 35c filled-new-array {vD, vE, vF, vG, vA}, type@CCCC

25 3rc filled-new-array/range {vCCCC .. vNNNN}, type@BBBB

26 31t fill-array-data vAA, +BBBBBBBB

27 11x throw vAA

28 10t goto +AA

29 20t goto/16 +AAAA

2a 30t goto/32 +AAAAAAAA

2b 31t packed-switch vAA, +BBBBBBBB

2c 31t sparse-switch vAA, +BBBBBBBB

2d 23x cmpl-float

2e 23x cmpg-float

2f 23x cmpl-double

30 23x cmpg-double

31 23x cmp-long

32 22t if-eq

33 22t if-ne

84 APPENDIX A. LIST OF DALVIK VM INSTRUCTIONS

Opcode Format Name

05 22x move-wide/from16 vAA, vBBBB

06 32x move-wide/16 vAAAA, vBBBB

07 12x move-object vA, vB

34 22t if-lt

35 22t if-ge

36 22t if-gt

37 22t if-le

38 21t if-eqz

39 21t if-nez

3a 21t if-ltz

3b 21t if-gez

3c 21t if-gtz

3d 21t if-lez

44 23x aget

45 23x aget-wide

46 23x aget-object

47 23x aget-boolean

48 23x aget-byte

49 23x aget-char

4a 23x aget-short

4b 23x aput

4c 23x aput-wide

4d 23x aput-object

4e 23x aput-boolean

4f 23x aput-byte

50 23x aput-char

51 23x aput-short

52 22c iget

53 22c iget-wide

54 22c iget-object

55 22c iget-boolean

56 22c iget-byte

57 22c iget-char

58 22c iget-short

85

Opcode Format Name

05 22x move-wide/from16 vAA, vBBBB

06 32x move-wide/16 vAAAA, vBBBB

07 12x move-object vA, vB

59 22c iput

5a 22c iput-wide

5b 22c iput-object

5c 22c iput-boolean

5d 22c iput-byte

5e 22c iput-char

5f 22c iput-short

60 21c sget

61 21c sget-wide

62 21c sget-object

63 21c sget-boolean

64 21c sget-byte

65 21c sget-char

66 21c sget-short

67 21c sput

68 21c sput-wide

69 21c sput-object

6a 21c sput-boolean

6b 21c sput-byte

6c 21c sput-char

6d 21c sput-short

6e 35c invoke-virtual

6f 35c invoke-super

70 35c invoke-direct

71 35c invoke-static

72 35c invoke-interface

74 3rc invoke-virtual/range

75 3rc invoke-super/range

76 3rc invoke-direct/range

77 3rc invoke-static/range

78 3rc invoke-interface/range

86 APPENDIX A. LIST OF DALVIK VM INSTRUCTIONS

Opcode Format Name

05 22x move-wide/from16 vAA, vBBBB

06 32x move-wide/16 vAAAA, vBBBB

07 12x move-object vA, vB

7b 12x neg-int

7c 12x not-int

7d 12x neg-long

7e 12x not-long

7f 12x neg-float

80 12x neg-double

81 12x int-to-long

82 12x int-to-float

83 12x int-to-double

84 12x long-to-int

85 12x long-to-float

86 12x long-to-double

87 12x float-to-int

88 12x float-to-long

89 12x float-to-double

8a 12x double-to-int

8b 12x double-to-long

8c 12x double-to-float

8d 12x int-to-byte

8e 12x int-to-char

8f 12x int-to-short

90 23x add-int

91 23x sub-int

92 23x mul-int

93 23x div-int

94 23x rem-int

95 23x and-int

96 23x or-int

97 23x xor-int

98 23x shl-int

99 23x shr-int

87

Opcode Format Name

05 22x move-wide/from16 vAA, vBBBB

06 32x move-wide/16 vAAAA, vBBBB

07 12x move-object vA, vB

9a 23x ushr-int

9b 23x add-long

9c 23x sub-long

9d 23x mul-long

9e 23x div-long

9f 23x rem-long

a0 23x and-long

a1 23x or-long

a2 23x xor-long

a3 23x shl-long

a4 23x shr-long

a5 23x ushr-long

a6 23x add-float

a7 23x sub-float

a8 23x mul-float

a9 23x div-float

aa 23x rem-float

ab 23x add-double

ac 23x sub-double

ad 23x mul-double

ae 23x div-double

af 23x rem-double

b0 12x add-int/2addr

b1 12x sub-int/2addr

b2 12x mul-int/2addr

b3 12x div-int/2addr

b4 12x rem-int/2addr

b5 12x and-int/2addr

b6 12x or-int/2addr

b7 12x xor-int/2addr

b8 12x shl-int/2addr

88 APPENDIX A. LIST OF DALVIK VM INSTRUCTIONS

Opcode Format Name

05 22x move-wide/from16 vAA, vBBBB

06 32x move-wide/16 vAAAA, vBBBB

07 12x move-object vA, vB

b9 12x shr-int/2addr

ba 12x ushr-int/2addr

bb 12x add-long/2addr

bc 12x sub-long/2addr

bd 12x mul-long/2addr

be 12x div-long/2addr

bf 12x rem-long/2addr

c0 12x and-long/2addr

c1 12x or-long/2addr

c2 12x xor-long/2addr

c3 12x shl-long/2addr

c4 12x shr-long/2addr

c5 12x ushr-long/2addr

c6 12x add-float/2addr

c7 12x sub-float/2addr

c8 12x mul-float/2addr

c9 12x div-float/2addr

ca 12x rem-float/2addr

cb 12x add-double/2addr

cc 12x sub-double/2addr

cd 12x mul-double/2addr

ce 12x div-double/2addr

cf 12x rem-double/2addr

d0 22s add-int/lit16

d1 22s rsub-int (reverse subtract)

d2 22s mul-int/lit16

d3 22s div-int/lit16

d4 22s rem-int/lit16

d5 22s and-int/lit16

d6 22s or-int/lit16

d7 22s xor-int/lit16

89

Opcode Format Name

05 22x move-wide/from16 vAA, vBBBB

06 32x move-wide/16 vAAAA, vBBBB

07 12x move-object vA, vB

d8 22b add-int/lit8

d9 22b rsub-int/lit8

da 22b mul-int/lit8

db 22b div-int/lit8

dc 22b rem-int/lit8

dd 22b and-int/lit8

de 22b or-int/lit8

df 22b xor-int/lit8

e0 22b shl-int/lit8

e1 22b shr-int/lit8

e2 22b ushr-int/lit8

e3 22c +iget-volatile

e4 22c +iput-volatile

e5 21c +sget-volatile

e6 21c +sput-volatile

e7 22c +iget-object-volatile

e8 22c +iget-wide-volatile

e9 22c +iput-wide-volatile

ea 21c +sget-wide-volatile

eb 21c +sput-wide-volatile

ec 00x ^breakpoint

ed 20bc ^throw-verification-error

ee 35mi +execute-inline

ef 3rmi +execute-inline/range

f0 35c +invoke-direct-empty

f1 10x +return-void-barrier

f2 22cs +iget-quick

f3 22cs +iget-wide-quick

f4 22cs +iget-object-quick

f5 22cs +iput-quick

f6 22cs +iput-wide-quick

90 APPENDIX A. LIST OF DALVIK VM INSTRUCTIONS

Opcode Format Name

05 22x move-wide/from16 vAA, vBBBB

06 32x move-wide/16 vAAAA, vBBBB

07 12x move-object vA, vB

f7 22cs +iput-object-quick

f8 35ms +invoke-virtual-quick

f9 3rms +invoke-virtual-quick/range

fa 35ms +invoke-super-quick

fb 3rms +invoke-super-quick/range

fc 22c +iput-object-volatile

fd 21c +sget-object-volatile

fe 21c +sput-object-volatile

Bibliography

[Fortune Tech(2011)] Fortune Tech. Industry first: Smartphones pass PCs in
sales[M].[S.l.]: [s.n.] , 2011. http://tech.fortune.cnn.com/2011/02/

07/idc-smartphone-shipment-numbers-passed-pc-in-q4-2010/.

[US Computer Emergency Readiness Team(2011)] US Computer Emergency
Readiness Team. Cyber Threats to Mobile Phones[R].[S.l.]:
[s.n.] , 2011. https://www.us-cert.gov/sites/default/files/

publications/cyber_threats-to_mobile_phones.pdf.

[Egele et al.(2008)] Egele M, Scholte T, Kirda E, et al. A survey on automated
dynamic malware-analysis techniques and tools[J]. ACM Comput. Surv.,
2008, 44(2):6:1–6:42. http://iseclab.org/papers/malware_survey.

pdf.

[Bornstein(2008)] Bornstein D. Dalvik vm internals[C]. In: Google I/O Devel-
oper Conference. 2008. 23:17–30. http://fiona.dmcs.pl/podyplomowe_

smtm/smob3/Presentation-Of-Dalvik-VM-Internals.pdf.

[Felt et al.(2011)] Felt A P, Chin E, Hanna S, et al. Android permissions
demystified[C]. In: Proceedings of the 18th ACM conference on Computer
and communications security. 2011. 627–638. http://www.cs.berkeley.

edu/~daw/papers/androidperm-ccs11.pdf.

[Enck et al.(2010)] Enck W, Gilbert P, Chun B G, et al. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones.[C]. In: OSDI. 2010. 10:255–270. http://static.usenix.

org/events/osdi10/tech/full_papers/Enck.pdf.

[Cavallaro et al.(2008)] Cavallaro L, Saxena P, Sekar R. On the limits of in-
formation flow techniques for malware analysis and containment[M]//.

91

http://tech.fortune.cnn.com/2011/02/07/idc-smartphone-shipment-numbers-passed-pc-in-q4-2010/
http://tech.fortune.cnn.com/2011/02/07/idc-smartphone-shipment-numbers-passed-pc-in-q4-2010/
https://www.us-cert.gov/sites/default/files/publications/cyber_threats-to_mobile_phones.pdf
https://www.us-cert.gov/sites/default/files/publications/cyber_threats-to_mobile_phones.pdf
http://iseclab.org/papers/malware_survey.pdf
http://iseclab.org/papers/malware_survey.pdf
http://fiona.dmcs.pl/podyplomowe_smtm/smob3/Presentation-Of-Dalvik-VM-Internals.pdf
http://fiona.dmcs.pl/podyplomowe_smtm/smob3/Presentation-Of-Dalvik-VM-Internals.pdf
http://www.cs.berkeley.edu/~daw/papers/androidperm-ccs11.pdf
http://www.cs.berkeley.edu/~daw/papers/androidperm-ccs11.pdf
http://static.usenix.org/events/osdi10/tech/full_papers/Enck.pdf
http://static.usenix.org/events/osdi10/tech/full_papers/Enck.pdf

92 BIBLIOGRAPHY

In: Detection of Intrusions and Malware, and Vulnerability Assess-
ment.[S.l.]: Springer, 2008. 143–163. http://seclab.cs.sunysb.edu/

seclab1/pubs/antitaint.pdf.

[Bayer et al.(2009)] Bayer U, Habibi I, Balzarotti D, et al. A view on current
malware behaviors[C]. In: USENIX workshop on large-scale exploits and
emergent threats (LEET). 2009. https://www.usenix.org/legacy/

event/leet09/tech/full_papers/bayer/bayer_html/.

[Yan and Yin(2012)] Yan L K, Yin H. Droidscope: seamlessly reconstruct-
ing the os and dalvik semantic views for dynamic android malware
analysis[C]. In: Proceedings of the 21st USENIX Security Sympo-
sium. 2012. https://www.usenix.org/system/files/conference/

usenixsecurity12/sec12-final107.pdf.

[Reina et al.(2013)] Reina A, Fattori A, Cavallaro L. A system call-centric
analysis and stimulation technique to automatically reconstruct android
malware behaviors[J]. EUROSEC, Prague, Czech Republic, 2013. http:

//security.dico.unimi.it/~joystick/pubs/eurosec13.pdf.

[Rastogi et al.(2013)] Rastogi V, Chen Y, Enck W. AppsPlayground: auto-
matic security analysis of smartphone applications[C]. In: Proceedings of
the third ACM conference on Data and application security and privacy.
2013. 209–220. http://www.enck.org/pubs/codaspy13.pdf.

[Ramsdell(2010)] Ramsdell T. S/MIME version 3.2 message specification[J].
2010. http://xml2rfc.tools.ietf.org/pdf/rfc5751.pdf.

[Barrera et al.(2012)] Barrera D, Clark J, McCarney D, et al. Understanding
and Improving App Installation Security Mechanisms Through Empirical
Analysis of Android[C]. In: Proceedings of the Second ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices. 2012. SPSM
’12. http://doi.acm.org/10.1145/2381934.2381949.

[Sima(2000)] Sima D. The design space of register renaming techniques[J].
Micro, IEEE, 2000, 20(5):70–83. http://classes.soe.ucsc.edu/

cmpe202/Fall10/papers/rat.pdf.

[Theiling(2000)] Theiling H. Extracting safe and precise control flow from
binaries[C]. In: Real-Time Computing Systems and Applications,

http://seclab.cs.sunysb.edu/seclab1/pubs/antitaint.pdf
http://seclab.cs.sunysb.edu/seclab1/pubs/antitaint.pdf
https://www.usenix.org/legacy/event/leet09/tech/full_papers/bayer/bayer_html/
https://www.usenix.org/legacy/event/leet09/tech/full_papers/bayer/bayer_html/
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final107.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final107.pdf
http://security.dico.unimi.it/~joystick/pubs/eurosec13.pdf
http://security.dico.unimi.it/~joystick/pubs/eurosec13.pdf
http://www.enck.org/pubs/codaspy13.pdf
http://xml2rfc.tools.ietf.org/pdf/rfc5751.pdf
http://doi.acm.org/10.1145/2381934.2381949
http://classes.soe.ucsc.edu/cmpe202/Fall10/papers/rat.pdf
http://classes.soe.ucsc.edu/cmpe202/Fall10/papers/rat.pdf

BIBLIOGRAPHY 93

2000. Proceedings. Seventh International Conference on. 2000. 23–
30. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

25.279&rep=rep1&type=pdf.

[Cytron et al.(1991)] Cytron R, Ferrante J, Rosen B K, et al. Efficiently
computing static single assignment form and the control dependence
graph[J]. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1991, 13(4):451–490. https://www.cs.cmu.edu/afs/cs/

academic/class/15745-s07/www/papers/cytron-efficientSSA.pdf.

[Zhou and Jiang(2012)] Zhou Y, Jiang X. Dissecting android malware: Char-
acterization and evolution[C]. In: Security and Privacy (SP), 2012 IEEE
Symposium on. 2012. 95–109. http://web1.cs.columbia.edu/~nieh/

teaching/e6998/papers/OAKLAND12.pdf.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.279&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.279&rep=rep1&type=pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15745-s07/www/papers/cytron-efficientSSA.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15745-s07/www/papers/cytron-efficientSSA.pdf
http://web1.cs.columbia.edu/~nieh/teaching/e6998/papers/OAKLAND12.pdf
http://web1.cs.columbia.edu/~nieh/teaching/e6998/papers/OAKLAND12.pdf

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Android malware
	State of the art
	TaintDroid
	DroidBox
	Andrubis
	DroidScope
	CopperDroid
	API Monitor
	Apps Playground

	Goals and challenges

	The Android runtime
	The Dalvik Virtual Machine
	Comparison with the Java Virtual Machine
	Structure of a DEX file
	Structure of an ODEX file
	Signature verification in Android

	Approach
	System image generation
	Application analysis
	Instrumentation hooks
	Comparison with other state of the art solutions
	Comparison with API Monitor
	Comparison with TaintDroid
	Comparison with DroidBox
	Comparison with Andrubis

	Implementation
	Bytecode injection
	Reasons to inject bytecode
	Injection technique
	Bytecode adaptation

	Bytecode instrumentation
	Instrumentation points
	Internal instrumentation of a method
	External instrumentation of a method

	Instrumentation hooks
	The Payload class
	Call stack inspection
	Serialisation of objects to JSON
	Logging of APIs

	System image generation
	Image extraction
	Dalvik bytecode identification
	Conversion of ODEX into DEX
	Class graph and call graph generation
	User decision of target APIs
	Instrumentation
	Bytecode optimisation
	Image creation

	Experimental validation
	Testbed environments
	System images
	Stimulation of a single application
	Automatic stimulation of multiple applications at once

	Dataset
	Normal applications
	Malware applications

	Test description
	No stimulation
	Stimulation with random events

	Test results
	Comparison of DroidBox and instrumented GingerBread
	Comparison of DroidBox and GingerBread with GSF
	Comparison of DroidBox and ICS
	Impact of stimulation on test results
	Impact of the Google Services Framework
	Comparison of API usage in malicious and benign applications

	Discussion
	Other experiments

	Limitations and future works
	Conclusions
	List of Dalvik VM instructions
	Bibliography

