
POLITECNICO DI MILANO

Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni

Dipartimento di Elettronica e Informazione

Network Coding for Dense

Cooperative Wireless Cloud Networks

Relatore:

Chiar.mo Prof. Umberto SPAGNOLINI

Correlatore:

Chiar.ma Prof.ssa Monica NICOLI

Tesi di Laurea di:

Marco VISIN

Matricola: 783444

Anno Accademico 2012-2013

Abstract

(Italian language)

Questo lavoro di tesi, dai contenuti sia teorici sia sperimentali, propone

una soluzione al crescente problema della congestione delle reti mobili. In-

fatti al giorno d’oggi la vasta diffusione di dispositivi personali, come smart-

phone, tablet e notebook, dotati tutti di connettività wireless, ha portato

ad un massiccio utilizzo delle attuali risorse offerte dalle reti radiomobili.

La ricerca si sta concentrando nella direzione di un miglioramento della

capacità delle reti radiomobili introducendo nuove tecnologie, come LTE,

che offrono prestazioni migliori agli utenti, con lo svantaggio per gli op-

eratori di dover adeguare gli attuali apparati radio disposti sul territorio.

Questo lavoro di tesi si inquadra in un ambito di ricerca differente, focaliz-

zato sull’ottimizzazione dei sistemi già esistenti.

L’idea è di utilizzare la teoria del Network Coding. In letteratura sono

presenti numerosi contributi a riguardo, che sono stati analizzati e riassunti in

una prima sezione del lavoro di tesi. Il contributo innovativo è rappresentato

dalla definizione di un algoritmo basato sulla teoria del Network Coding, che

presenta alcune variazioni che lo rendono particolarmente adatto per essere

implementato su dispositivi reali, anche di piccole dimensioni, dotati di bassa

potenza elaborativa e di stringenti limitazioni sull’energia a disposizione.

L’algoritmo proposto viene comparato con due algoritmi di riferimento in

un ambiente simulato numericamente. In questo modo si ottiene un limite

superiore alle prestazioni che possono essere offerte da una eventuale imple-

II

mentazione pratica dell’algoritmo, nonché un paragone con le performance

ottenibili con gli algoritmi attualmente a disposizione.

Una volta terminata la fase di validazione numerica, viene presentata

una applicazione basata su piattaforma Android che consente di valutare in

un ambiente reale il comportamento dell’algoritmo stesso. L’applicazione

consente ad un gruppo di utenti posti in prossimità di cooperare per lo scari-

camento di un contenuto remoto comune, quale può essere del materiale

informativo da utilizzare ad una conferenza. L’applicazione utilizza tecnolo-

gie innovative, quali Wi-Fi Direct, per creare una piattaforma di condivisione

sul quale vengono scambiati i contenuti richiesti, utilizzando appositi proto-

colli definiti in questa tesi che implementano l’algoritmo di Network Coding

proposto.

Dall’analisi dei risultati è possibile vedere come l’algoritmo porti sensibili

vantaggi e sia realmente applicabile nell’utilizzo quotidiano.

Contents

List of Figures VI

List of Tables VIII

Glossary IX

Introduction 1

1 Network Coding 4

1.1 Problem Formulation and Cloud Scenario 5

1.2 Network Coding Theory . 8

1.3 Applications . 11

1.3.1 Wireless NC for error recover 11

1.3.2 Wireless NC in meshed networks 12

1.4 NC Algorithms for Cloud Scenario 15

1.4.1 Simple Local Broadcast 15

1.4.2 2-by-2 XOR ”Bit-Torrent” 16

1.4.3 Global Linear Combination 17

2 NC Performance Analysis for Simulated Scenario 23

2.1 Scenario of Simulation . 23

2.1.1 Description of Scenario 23

2.1.2 Interface definition . 24

2.1.3 Simulation Parameters 24

2.2 Numerical Simulator Implementation 28

IV

2.2.1 Packet reception . 32

2.2.2 Simple Local Broadcast 33

2.2.3 2-by-2 XOR . 34

2.2.4 Global Linear Combination 35

2.2.5 Decoding . 36

2.2.6 Simulation Scenario Limitations 36

2.3 Numeric Results . 38

2.3.1 Parameters for Numeric Simulation 39

2.3.2 Remote Interface (RI) 39

2.3.3 Local Intra-Cloud Interface (LI) 39

2.3.4 Global Results . 43

3 Android Demonstrator 50

3.1 Technologies . 50

3.1.1 Why Android? . 51

3.1.2 Wi-Fi . 52

3.2 Network Coding Demonstrator App 55

3.2.1 Scenario . 55

3.2.2 Host side . 57

3.2.3 Android side . 57

3.2.4 Network Coding Protocol (NCP) 60

3.2.5 Cooperation Server Protocol 62

3.3 Running on Real Device . 64

3.3.1 Application Life-Cycle 65

3.4 Results Analysis . 73

3.4.1 The Real Case Scenario 73

3.4.2 Results . 74

3.4.3 Real-Case Issues . 76

4 Conclusions and Future Work. 80

Bibliography 98

V

List of Figures

1.1 Cloud network . 4

1.2 NC enabled router . 5

1.3 Cloud Scenario Representation 7

1.4 Comparison between forwarding vs NC 8

1.5 Kirchhoff network vs. NC. 10

1.6 NC in broadcast scenario. 11

1.7 Mesh network, without NC. 13

1.8 Mesh network, with NC. 13

1.9 Three nodes local distribution system 16

2.1 Remote Interface . 25

2.2 Local intra-cloud Interface . 26

2.3 Representation of the Global System 29

2.4 Representation of the Global System, without LI 31

2.5 Transmission reception in simulated environment 32

2.6 Throughput vs. RI loss probability 40

2.7 Throughput vs. LI loss probability 41

2.8 Throughput vs. number of devices 42

2.9 Throughput vs. Local Distribution Probability 43

2.10 Throughput vs. LI Loss Probability 44

2.11 Throughput vs. RI Loss Probability 44

2.12 Throughput vs. Number of Devices 45

2.13 File completion evolution . 46

2.14 Throughput vs. LI Speed . 47

VI

3.1 Android Market Share . 51

3.2 Wi-Fi configurations . 53

3.3 Cooperation server inserted into the general scenario. 56

3.4 Block diagram of the Android application. 58

3.5 Schematic representation of the NC core engine. 59

3.6 Network Coding Protocol (NCP) 60

3.7 The packet structure of the NCP 61

3.8 Cooperation Server Protocol 63

3.9 The packet structure. of the Cooperation Server Protocol. . . 64

3.10 The real test environment . 65

3.11 Android Application, main screen 66

3.12 Android Application, Wi-Fi Direct scan screen 67

3.13 Android Application, Wi-Fi Direct peer result screen 68

3.14 Android Application, transfer screen 70

3.15 Android Application transferring 71

3.16 Visual comparison between configuration with and without NC 72

3.17 The classic approach with two network adapter. 76

3.18 Dual Wi-Fi usage . 77

3.19 TCP sequence . 78

1 Android installing procedure 83

2 Android installing procedure 84

3 Application Life Cycle . 85

4 Application Options . 87

5 Transfer Progression . 89

6 Device class scheme . 91

7 FileSave class scheme . 92

8 Internet Receiver class scheme 93

9 BroadCast Receiver class scheme 94

10 Network Coding class scheme 95

11 Utils Class scheme . 96

12 Wi-Fi Direct class scheme . 97

VII

List of Tables

2.1 Simulation common parameters 27

2.2 Parameters used in numerical simulations 39

2.3 Numerical simulation with the parameters taken from the real

scenario. 48

3.1 NC Protocol commands. 61

3.2 Cooperation Server Protocol commands. 64

3.3 Parameters of the real environment. 74

3.4 Android application results . 75

1 Application permissions requirements. 86

VIII

Glossary

2-by-2 XOR 2-by-2 XOR algorithm. 2, 3, 34, 37, 41–43, 46, 48, 74–76,

80–82, 94

AP Access Point. 11, 52, 53

API Application Programming Interface. 51, 76

CRC Cyclic redundancy check. 57, 62, 69, 74, 77, 91

CSP Cooperation Server Protocol. 57

GLC Global Linear Combination algorithm. 16, 35, 37, 41–43, 46, 48, 49,

62, 81

IP Internet Protocol (IP). It is the principal communications protocol in the

Internet protocol suite for relaying datagrams across network boundaries.

Its routing function enables inter-networking, and essentially establishes the

Internet. 9, 60, 69, 90

LI Local Intra-Cloud Interface. 6, 7, 15, 24, 27, 28, 30, 33, 36, 41, 43, 45,

47, 52, 73, 74, 76

LITT Local Interface Transmission Time. 28, 30

MAC Media Access Control. In the seven-layer OSI model of computer

networking, it is a sublayer of the data link layer, which itself is layer 2

protocol.. 9, 14, 61, 63

MTU Maximum Transmission Unit. 27

NC Network Coding. 1–12, 14–18, 23, 24, 28, 33, 35, 36, 41–43, 45–48, 50,

55, 59, 73, 75, 76, 79–82, 86, 91, 93

IX

NCP Network Coding Protocol. 57, 61, 62

NIC Network Interface Controller. 76, 77, 79

OS Operating System. 51, 52, 60, 81

P2P GO Peer to Peer Group Owner. 54, 69

RI Remote Interface. 6, 7, 15, 24, 27, 28, 30, 32, 36, 39, 43, 45, 48, 57, 71,

73–77, 92

RITT Remote Interface Transmission Time. 28, 30, 32

RLB Random Local Broadcast algorithm. 33, 34, 41–43, 45–48, 74, 75, 81,

94

TCP Transmission Control Protocol. 57, 62, 63, 77

UDP User Datagram Protocol. 60–63, 77

X

Introduction

The widespread diffusion of low cost smart radio devices (i.e., smart-phone,

laptop, tablet), has fostered the diffusion of mobile networks in every loca-

tion. Mobile networks are nowadays an essential component of the mod-

ern life, necessary for every commercial purpose. They carry data to and

from personal devices, like smartphones and laptops, but also carry data

from sensors, remote control and many other applications. In the future the

machine-to-machine traffic will grow exponentially, leading to the collapse of

the existing network infrastructure. Wi-Fi networks, indeed, suffer from a

severe throughput limitation and do not scale to dense large networks.

The research is mainly focused on mobile network improvements in terms

of throughput offered to the users, of minor delay and obviously in terms of

costs for the equipments purchase and deployment. This is the case of the

LTE and the LTE Advanced technologies that will be widespreadly available

in the next future. Another research direction is also possible, exploiting the

idea of cooperation to improve the throughput offered to the user without

having to change the network infrastructure. The Network Coding (NC) has

been developed looking at the mobile wireless network limitations and taking

account of the cooperation possibilities offered by dense environments. The

goal is to propose a new routing scheme to improve the performance of routed

wireless networks.

Introduction 2

Thesis Contributions and Main Structure

This thesis is realized with the aim to go beyond the limits characterizing

the actual available mobile communication systems. It aims to provide both

theoretical and experimental contributions, presenting the design of a new

NC-based coding algorithm and the validation in both numerically simulated-

and real environments by experimental tests based on the Android Nexus 4

devices. The main characteristic of the proposed algorithm is the imple-

mentation ease: this means that the proposed algorithm - contrary to the

others present in literature that require a lot of computational resources -

can be implemented into small devices, like motes, since it will not require

high computational power.

To allow a real-device implementation, new protocols and new structures

are needed. In this thesis we present a complete environment, build over

standard UDP/IP and TCP/IP links, with custom defined protocols and

packets. All this definitions are used to develop an Android application that

is used for real environment experimental tests on Nexus 4 smart-phones.

The real-case test scenario is a cooperative download of a common content

by a number of personal devices. Each device runs the proposed application

to simultaneously download some segments of the required content from both

the Internet connection of the device and a local sharing platform based on

the proximity. The Android devices that will run the test application will

use innovative technologies, like Wi-Fi Direct, to join the cooperative peer-

to-peer sharing network where the proposed 2-by-2 XOR NC algorithm will

be used to exchange data and speed up the download procedure.

The structure of this thesis with the main contents of each chapter are

reported below:

Chapter 1 presents the NC approach and the difference between the

routing procedure that the NC theory proposes and the classical forwarding

scheme. Starting from an overview of the NC theory present up to now in

literature, we propose an alternative algorithm, based on the XOR opera-

Introduction 3

tions. Accordingly, we characterize the scenario of application and then we

summarize the key features that we can exploit into our original algorithm.

Focusing to the 2-by-2 XOR algorithm, we explain which are the benefits in

using the proposed algorithm and which are the key differences with respect

to the classic NC theory. The last section of this chapter is dedicated to the

definition of a set of two algorithms that will be compared with the proposed

2-by-2 XOR later in this thesis.

Chapter 2 introduces the numerical simulation for the proposed algo-

rithms. To proof the validity of the original 2-by-2 XOR algorithm, a refer-

ence scenario is defined. All the algorithms are then numerically simulated

into the specified scenario, to justify the implementation on real devices. The

numerical simulation will give us an upper bound to valuate the performance

of the implementation on real devices.

Chapter 3 presents an Android based application, developed with the

aim of proof the validity of the 2-by-2 XOR algorithm in real scenario. The

application permits, using innovative technologies like Wi-Fi Direct, to a

group of users to download a remote content using a proximity-based coop-

erative platform. In this chapter will be presented all the application features,

but also the new protocols and packet structures specifically developed for

this application. The results that will be collected from such an application,

with three Nexus 4 smart-phones, will be compared with the ones obtained

from the numerical simulations, to validate the algorithms in a real scenario.

The thesis concludes with the analysis of the results obtained from the

experimental tests conducted and with a quick review of the possible future

filed of application for the proposed algorithm.

Chapter 1

Network Coding

In this chapter we define the problem tackled in this thesis, the scenario of

applications and the related assumptions. We, then, present an overview

of the NC state of the art, that will be used in the rest of the thesis as

basis to develop and test new NC implementations. After a quick review

of the state of the art, in section 1.4 we will propose a set of three original

algorithms based on the NC theory tailored to be used in the specific cloud

scenario, described in the following section. The proposed algorithms will

be then compared to each other, analyzing the performance of the different

implementations.

Figure 1.1: Single-source and single-destination wireless dense cloud network

1.1. Problem Formulation and Cloud Scenario 5

1.1 Problem Formulation and Cloud Scenario

Consider a dense wireless peer-to-peer cloud meshed packet switching net-

work, as in figure 1.1, with a single source S and a single destination D.

The topology of the cloud network is unknown because the cloud has to be

fully transparent for the source as well as for the destination node. In this

scenario, every node that composes the meshed network is basically a router

(for this reason known as routing node), that relays the incoming packets

from source to the next hop, towards the destination. In a standard environ-

ment the network follows the Kirchhoff rule which states that all incoming

flows into a node will also leave the node untouched. The output bandwidth

of a routing node is, then, exactly the sum of the bandwidth from the single

input streams (see chapter 1.2). Differently from conventional relay systems,

in a NC enabled environment, each message sent on an output link by any

router is a function, or mixture, of messages that had earlier arrived on the

input links, as illustrated in figure 1.2, in such a way that the transmitted

messages can be unmixed (or decoded) at the final destination[1].

Figure 1.2: Router with NC functionalities

We define a set of three possible scenarios, depending on the number of

information flows, source and destinations involved. The unicast scenario

considered in the previous illustrative example, consists in a single informa-

tion flow, with one source node and a single destination node. The broadcast

scenario is an extension of the unicast scenario, with multiple different desti-

nation nodes for the same information flow, generated from a single source.

1.1. Problem Formulation and Cloud Scenario 6

The most complex scenario is the multicast one, defined as multiple broad-

cast transmissions, with many information flows, generated respectively by

many source nodes, each with multiple destination nodes.

In this thesis we focus on the broadcast scenario, where at a time a specific

random node in the cloud network is the source of the information flow and

the other nodes are the destinations.

Referring to the simplified scenario in figure 1.1, the problem we deal

with is the propagation of data, from source to destination, through a dense

wireless relay network, here referred as cloud network. In a cloud network

relay and routing - traditionally performed at upper layers and centrally

coordinated - are distributed over the nodes’ physical layer, by means of

NC techniques, making the cloud able to organize itself autonomously and

adapt in critical dynamic scenarios. The goal of our work is to find a way

to optimize the wireless medium usage to speed up the transmission in the

cloud network, reducing the delay the receiver has to wait before the content

is fully received.

The scenario is called cloud because the network between source and

destination is completely transparent for the two source- and destination

devices, and the nodes that belong to the cloud network do not require any

type of a-priori knowledge about each other. As a consequence the cloud

network is completely distributed without any coordination point and it is

fully independent from the surrounding world.

The cloud scenario requires the nodes to use two different modalities to re-

trieve the data. They are called Remote Interface (RI) and Local intra-cloud

Interface (LI) and are respectively a direct connection from every node to

the remote source of the information (see figure 1.3), and a broadcast-based

sharing platform with the neighbors that belong to the cloud network.

An illustrative example might be a conference room, where all the partic-

ipants have to grab the teaching material from a common remote host. The

scenario is composed by the two different activities, done by every device:

as remote interface there is a direct packet switched connection between the

1.1. Problem Formulation and Cloud Scenario 7

Figure 1.3: Schematic scenario representation, with the two Remote Interface and

Local intra-cloud Interface links represented respectively in red and blue.

content holder and the device, while as Local intra-cloud Interface (LI) there

is a wireless broadcast procedure to share information about the content with

the cloud network. The aim of the LI usage is to minimize the amount of

data transferred by the Remote Interface (RI) and maximize the global mean

throughput of the cloud. In this second broadcast cooperation procedure we

use the NC theory (see section 1.2) to optimize the wireless medium usage,

speeding up the transmission between nodes.

In chapter 3 a demonstrator is proposed, which running on real personal

mobile devices, is developed to validate the proposed methodology and to

evaluate it in a real world environment.

1.2. Network Coding Theory 8

Figure 1.4: Simple comparison between classical forwarding and an NC enabled routing

node.

1.2 Network Coding Theory

Mobile networks are nowadays an essential component of the modern life.

They carry data to and from personal devices, like smartphones and laptops,

but also carry data from sensors, remote control and many other applications.

Wi-Fi networks, however, suffer from a severe throughput limitation and do

not scale to dense large networks. The NC has been developed looking at

this limitations and the goal is to propose a new routing scheme to improve

the performance of routed wireless networks.

The NC advantages are many. The most important one is the network

throughput improvement. Consider the fairly simple example, represented in

figure 1.4, where two nodes A and B own a pair of packets to be exchanged,

through a relay node R. what normally happens is that A sends its packet

to the relay, which forwards to the destination, B. Then B does the same:

it sends its packet to the relay which, this time, forwards it to A. As a

consequence, each node obtains the right packet, otherwise this procedure

needs four transmissions.

With a NC approach, we can save one transmission. The first transmis-

sion will be performed from A to the relay node, then from B to the relay

R. At this point the relay can compute a XOR of the two packets and send

the result back to node A and B, it sends the same packet at the same time.

Node A can decode the packet sent by B applying another XOR operation

between the received packet and the one it owns. The same can be done by

node B to decode the packet sent by node A. This approach saves a transmis-

1.2. Network Coding Theory 9

sion slot, useful for another information flow, and reduces the global delay

the user has to wait to retrieve the information required, using in a better

way the available radio resources. In fact the packet returned from the relay

node will be:

a⊕ b (1.1)

So, node A can do

(a⊕ b)⊕ a = (a⊕ a)⊕ b = 0⊕ b = b (1.2)

and correctly recover the packet sent by B. The advantage, in therms of

time slots used by the transmission is 4/3, using such a simple NC scheme.

NC techniques exploit the shared nature of the wireless medium, in fact any

transmission is a broadcast one, in a spatial localized neighborhood.

There are other secondary benefits in using NC, such as the reduced

energy per bit used by the devices, or like the lower delay in the delivery

of the data to the destination (measured e.g. as the number of hops for a

packet to reach the receiver).

There are many technologies that already use NC theory, like COPE

(Coding OPportunistically) [2], that are new forwarding architectures that

focus on the throughput improvement. The idea is to insert a coding scheme

between the Internet Protocol (IP) and the Media Access Control (MAC)

layers, allowing to encapsulate multiple packets, into a single transmission.

This is done allowing the node to mix the messages it receives, in such a way

that they can be unmixed at the destination. The goal is to use the wireless

medium in a more efficient way, to guarantee more bandwidth to the devices

with the same infrastructure.

The principles of NC are moderately simple. In a nutshell the idea is

to allow the routing nodes to send as output a combination of the inputs.

This means the router has to execute some operations to the payload of the

incoming packets, in order to create a new packet to be transmitted. The key

point is that the result of the combination process gives as output a packet

with the same size of the incoming ones. This way it is possible to carry in

1.2. Network Coding Theory 10

Figure 1.5: Kirchhoff network vs. NC.

a single transmission the information about all the packets incoming in the

routing node.

There are many ways to put information about multiple incoming packets

into a single one. Generally linear operations are used to keep the receiver

simple. COPE [2], for example, uses XOR, while many other implementa-

tions use a generic linear combination of the packets, as shown in [3] and

[15].

The difference between the classic relay approach, Kirchhoff, and the NC

one, is that any router does not forward each received packet as it is, but

it forwards a function, i.e a linear combination, of all the received packets,

as shown in figure 1.5. As a consequence, in a NC environment, the data

outgoing from the node are not the same that enter the node itself.

Time saving is not the only advantage in transmission coding: channel

coding adds also redundancy to make the transmission over any medium

more robust against errors.

Other coding techniques, like channel coding or source coding, are con-

sidered to be end-to-end techniques as they are applied on a single commu-

nication hop between two communication nodes, e.g. mobile device and base

station. From a system point-of-view they are not limited to a specific layer,

1.3. Applications 11

Figure 1.6: NC in broadcast scenario.

but could be used at the application-, network-, or physical layer. In contrast

to source and channel coding, NC breaks with the end-to-end paradigm as

it enables coding on the fly at each node in the communication network.

With NC the order in which the nodes send is important. If the relay

node transmits a received packet right after reception, there is no coding

possibility. To exploit NC, the relay needs to accumulate two or more packets,

before it can start to send data.

1.3 Applications

NC theory has a large field of applications. Here is a list of the most inter-

esting ones in terms of possible economical revenue, for commercial mobile

platforms.

1.3.1 Wireless NC for error recover

Like in [25], we can use NC for error recovery purpose. Consider a typical

broadcast scenario, composed by a central station - an Access Point (AP)

or Base Station - that covers with his signal multiple devices. Every AP

transmission is broadcast, because of the broadcasting nature of the physical

1.3. Applications 12

layer. The devices have a set of packets to be exchanged. In case every device

looses a packet, i.e. because of a local interference that corrupts the received

packet, there should be a recovery algorithm to request a new transmission

of the packet. Consider the case where there are many devices, each loosing

a random packet. There would be many re-transmissions, which are always

broadcast, useful only for one device, or a little subset of devices. For all the

other devices, that already own the retransmitted packet, the retransmission

are useless; this problem is known as the collector’s problem.1

In this case a NC scheme can be very useful. In figure 1.6 is represented

an example with three devices. Every device sends a packet, the others will

receive it. They are connected to the same base station. In this scenario we

assume that each mobile device looses only one packet. Without NC, the

error pattern over the devices would have an impact on the number of the

retransmitted packets. If each device lost the same packet, the base station

would have to transmit just one packet. In the worst case - where each

device loses a different packet - three retransmissions would be needed. For

the given example, NC requires transmission of only a single coded packet.

In this case, the coded packet is a bitwise XOR combination of all packets.

After receiving the coded packet each mobile device could recreate its missing

one by combining the coded packet with the uncoded received packets.

1.3.2 Wireless NC in meshed networks

Let us consider a meshed scenario, with three mobile devices which are par-

tially connected, i.e. two mobile devices that are out of range of each other

and require the help of the third mobile device, as relay, to communicate.

Figure 1.7 shows the exchange of two packets of the outer devices using sim-

ple relaying mechanism. This transmission procedure requires 4 time-slots.

Figure 1.8 illustrates how a simple NC algorithm can improve the throughput

in this basic scenario: the relay node sends back to the two devices the result

of the XOR operation, applied to the two received packets. As a consequence

1inserire ref.

1.3. Applications 13

Figure 1.7: Mesh network, without NC.

Figure 1.8: Mesh network, with NC.

1.3. Applications 14

every device can recover the missing packet, and the total transmission time

is decreased by one. In IEEE 802.11, MAC assures that the capacity of the

wireless channel is fairly shared among all mobile devices. In case that the

outer devices send a large amount of packets, the relay node does not have

enough capacity to support the relaying as it needs to send twice as much as

the outer devices. NC is useful to ensure the relay sends the same amount

of packets as the other devices.

Car Communication

There are many interesting projects in the car communication sphere, mainly

based on [5]. They demonstrate how NC is suitable for meshed networks with

dynamic topologies and intermittent connectivity, exactly the conditions in

which people should work to bring mobile connectivity into cars. For example

there are projects based on many access points, distributed on an highway,

with many cars moving on it. Every car stays in range of a single access

point for a very short time, so it is impossible to detect which packets are

correctly received and which are not. In such a scenario NC is used to send

new generated packets to the car, until it has enough information to decode

the content.

Mobile Cooperation

The idea is to extend cellular links, as well in mobile phones as in base

stations. By connecting to neighboring devices, called cooperative clusters

are created, which guarantees to reduce energy costs, increase bandwidth

and augment the robustness of the network. An example can be found in [6]

and [7].

This is the idea, on which this thesis is based.

1.4. NC Algorithms for Cloud Scenario 15

Mobile P2P Communication

The main idea is to spread information we find in a device to many others,

using a local broadcast transmission. This is referred to as viral P2P com-

munication. The advantage of NC in this context is that the source devices

only need a minimal amount of knowledge about the targets received packets

and therefore only a minimal amount of feedback is needed to ensure reliable

data delivery.

1.4 NC Algorithms for Cloud Scenario

In this section we analyze three algorithms based on the NC theory, tailored

to solve the specific problem. As introduced in section 1.1, the LI is the wire-

less interface that implements the NC scheme. The objective of this interface

is to supply a platform where all the participants in the cloud network can

share information about the content.

We assume that the content is divided into packets called chunks, inspiring

from the infrastructure proposed in [12]. The idea is that all the devices

already own some chunks, that were acquired from the RI, but they are

not sufficient to decode the whole content. The devices have, therefore, to

exchange chunks, with some rules and some protocols, in order to acquire

enough information to decode the content. The goal is to minimize the

data exchanged, the time the process needs and the power used during the

execution.

In order to realize the cooperation procedures we consider three algo-

rithms.

1.4.1 Simple Local Broadcast

This algorithm is the simplest one. Every device, when enabled to transmit,

chooses one of the local saved chunk and transmits it, as it is, to the other

devices. Any other device, that is overhearing the channel, can retrieve it

1.4. NC Algorithms for Cloud Scenario 16

Figure 1.9: Three nodes local distribution system

and save it. The node only sends a header, indicating the index of the chunk

transmitted, followed by the chunk data. This solution is agnostic about any

network parameter and device status: it does not require any cooperation

between the devices but it does not guarantee any type of performance.

This algorithm is used as a reference for the others.

1.4.2 2-by-2 XOR ”Bit-Torrent”

This algorithm is not present in literature, it was developed within this thesis,

using a BitTorrent-like approach. The goal of this algorithm is to achieve

results comparable to the more complex NC pedantic implementation, called

Global Linear Combination (GLC) methodology. The key point of this new

method is the simplicity. In comparison to the GLC algorithm, this one

is much simpler and can be adopted even in scenarios where the devices

does not offer much computational power to execute complex finite field

operations. This algorithm extends the COPE [2] idea about the use of XOR

in transmissions. Because of the XOR operation, we need to select two chunks

to be transmitted, XORed together. At every chunk transmission, the node

has to send a header, containing the index of the two chunks transmitted,

followed by their XOR. Assuming that this rule is used at every transmission,

the client has to find the best combination of chunks that maximizes the profit

of the transmission. Here we propose to use the most common and the most

1.4. NC Algorithms for Cloud Scenario 17

rare chunk in the network. The most common chunk is defined as the chunk

that is owned by most of the devices. The most rare is defined as the chunk

that is missing by most of the devices. This particular metric is adopted

with the aim of the transmission benefit maximization; as a consequence,

using this rule we can maximize the number of devices that can obtain useful

information from the transmission. To do this, the client needs a list of all

the chunks owned by all the other clients, thus some information traffic is

necessary, to periodically inform the rest of the network about the chunks

every device owns. This information is exchanged periodically by all the

nodes, at a schedule that varies with the speed of the network on which the

devices belong: we need an accurate chunk distribution list, but the overhead

should not be significant. A trade-off is necessary: we need to select the right

time the node waits until it transmits its list of owning/missing chunks.

An example can be found in figure 1.9. We suppose, then, the network is

composed by only three nodes. The node 1 owns chunks A and B, while the

node 2 owns chunks A and C, the node 3 owns only chunk B. The first node

with permission to transmit, is node 1, that transmits the packet S = A⊕B,

the only one he owns. Now, node 2 and node 3 can recover useful information

doing respectively B = S ⊕ A and A = S ⊕ B. Subsequently, node 2 has

the chance to transmit and choses chunks A and C, because of the rule of

the most common and the most rare chunk. Consequently node 2 transmits

S = A⊕C. The node 1 decodes C = S⊕A and the node 3 makes the same,

C = S ⊕A.

1.4.3 Global Linear Combination

This is the pedantic implementation of the theoretical NC scheme, inspired

by [11] and by the model proposed in [19], here considered as benchmark for

performance evaluation. This algorithm is based on a particular NC imple-

mentation called Random NC, exposed in [10] and [13]. At every transmis-

sion, the node performs the encoding procedure showed in following section.

The result is a so called encoding vector g the data segment x, they are to

1.4. NC Algorithms for Cloud Scenario 18

be transmitted together in a single packet.

Supposing this is the kth correct reception for the node, every active node

that receives the transmission saves the data segment as xk and the relative

encoding vector as gk. Since all the nodes have information about the length

of the content, composed by n chunks, the node can evaluate the download

progression and terminate the procedure when it is finished.

Encoding

Assuming that we have n uncoded packets {m1, ...,mn}, defined in the finite

field F, generated from the same source S. In linear NC each packet x

propagated through the network is associated with a vector of coefficients

g = [g1, ..., gn]. All the coefficients and the packets are defined in the finite

field F. The packet x is defined as:

x =
n

∑

i=1

gi ·mi (1.3)

The summation has to be done at every position in the symbol, so, assuming

that k = 1, .., s we get:

xk =
n

∑

i=1

gi ·mi,k (1.4)

where mi,k, xk are the elements in position k of mi and x respectively.

The resulting packet to be sent will contain both the information vector,

namely the encoded data x defined in (1.3), and the encoding vector, that is

the coefficient array g. The encoding vector contains useful information that

will be used by the receiver node to decode the content when the transfer

is completed. Without the encoding vector, indeed, the receiver will be not

able to successfully decode the information.

The encoding vector carries information about the indexes of the packets

which are encoded into the transmission; for example, the encoding vector

gi = [0, ..., 0, 1, 0, ...0], where 1 is at the ith position, means that the informa-

tion vector is equal to the xi original packet, that means it is not encoded.

1.4. NC Algorithms for Cloud Scenario 19

It is possible to encode a previously encoded packet, in the same way

we encode an original uncoded packet. As a consequence, it is possible to

perform the encoding process recursively. We will consider a node that has

received and stored a set (g
1
,x1), ..., (gm,xm) of m encoded packets, where

gi = [gi,1, ..., gi,n] is the encoding vector associated to the ith packet xj . This

node may generate a new encoded packet (g′,x′) by picking a set of coeffi-

cients h1, ..., hm and computing the linear combination. The corresponding

encoding vector g′ is not simply equal to h, since the coefficients are with re-

spect to the original packets m1, ...,mn; in contrast, straightforward algebra

shows that it is given by:

x′ =

m
∑

i=1

hi · xi =

m
∑

i=1

hi ·

m
∑

j=1

gi,j ·mj (1.5)

Considering

g′i =

m
∑

j=1

hj · gi,j (1.6)

The result is:

g′ = [g′
1
, ..., g′n] (1.7)

where gi,j is as usual the jth element of array gi. The node will transmit g′

and x′.

Decoding

We will consider a node has received the set (g
1
,X1), ..., (gm,Xm) of m en-

coded packets. In order to decode the original uncoded packets, the node

has to solve the linear system composed by m equations:

X1 =
∑n

i=1
g1,i ·Mi

...

Xm =
∑n

i=1
gm,i ·Mi

(1.8)

1.4. NC Algorithms for Cloud Scenario 20

Where gk = [gk,1, ..., gk,n] and gk,i is the ith element of the gk vector. This

means:

x1 = g
1
·M

...

xm = gm ·M

(1.9)

The general model is:

X = G ·M (1.10)

where the G matrix is composed by all the g row vectors:

G =

g
1

...

gn

(1.11)

and the X matrix is composed by all the x row vectors:

X =

x1

...

xn

(1.12)

In the same way, the matrix M is composed by all the m row vectors:

M =

m1

...

mn

(1.13)

In this representation, unknowns are Mi, so we have a system with n un-

knowns and k equations:

x1

...

xk

=

g1,1 · · · g1,n
...

. . .
...

gk,1 · · · gk,n

·

m1

...

mk

(1.14)

that can be reversed in:

m1

...

mk

=

g1,1 · · · g1,n
...

. . .
...

gk,1 · · · gk,n

−1

·

x1

...

xk

(1.15)

1.4. NC Algorithms for Cloud Scenario 21

that is, in compact vectorial form:

M = G−1 ·X (1.16)

We need at least k ≥ n to solve the system, that means we need to store a

number of received packets (k) that are equal or greater than the number of

the packet to be decoded (n). It might happen that not all the equations are

linear independent, so the condition k ≥ n is not sufficient. Moreover, we

need to check for the existence of the inverse of the G matrix that gives us

another, more strict, constraint: rank(G) = n.

Numerical example:

We now suppose to have three devices, and the content is:

M =

m1 = 6

m2 = 7

m3 = 3

(1.17)

As explained before, the general model is:

X = G ·M (1.18)

We suppose the first device owns the second and the third chunk: m2 and

m3. It will broadcast to the second and third devices the following:

g
2
= [0, 3, 4] (1.19)

and

x2 = 6 · 0 + 7 · 3 + 4 · 4 = 33 (1.20)

The second device already owns the first and the second chunk, it saves the

received bytes and broadcasts the summation. We suppose he chooses g1 = 2

and g2 = 4, so:

G3 = [2 + 0, 4 + 3, 4 + 0] = [2, 7, 4] (1.21)

and

x3 = 33 + 2 · 6 + 4 · 7 = 73 (1.22)

1.4. NC Algorithms for Cloud Scenario 22

Thus, the last device, who already owns just the first chunk, has:

g =

0 0 1

0 3 4

2 7 4

(1.23)

and

X =

6

33

73

(1.24)

The rank of the G matrix is 3, equal to the number of the rows in M, so the

device can recover the original data doing:

M = G−1 ·X =

6

7

3

(1.25)

Chapter 2

NC Performance Analysis for

Simulated Scenario

In this chapter we present numerical simulation results obtained by a Matlab

numerical simulator, to show what could be the practical advantages in using

the NC theory. They will be also used as a reference for the validation by the

demonstrator based on mobile devices. Some limitations are present into the

simulated scenario (see section 2.2.6) to simplify the implementation of the

theoretical scenario. Thus the numerical results are considered as an upper

bound for the performance that the real application can not exceed.

2.1 Scenario of Simulation

The scenario of the simulation is slightly different from the theoretical one de-

scribed in section 1.1. The main difference is the topology used for numerical

simulations.

2.1.1 Description of Scenario

During the numerical simulations we assume that many nearby devices need

to access the same remote content. The content is itself divided into many

segments (chunks), each of the same length. The last assumption is that

23

2.1. Scenario of Simulation 24

the devices that belong to the cloud network are all in full visibility, meaning

that there is no need of relay nodes between the devices in the cloud network.

Under this assumptions, the interfaces described in section 1.1 are more

specifically defined, tailored for the simulation purpose. The two interfaces

work together simultaneously exchanging packets each with its own remote

party, with the goal of the throughput maximization.

2.1.2 Interface definition

Remote Interface (RI)

The RI, as you can see in figure 2.1, consists in a direct transport link be-

tween the content holder, the host, and the device. This is the representation

of a mobile data service provider, serving packet connectivity at every de-

vice. This interface is characterized by slow speed and medium packet loss

probability.

The goal is to minimize the amount of data received by this interface,

because of the metered nature of this service, of the slowness and, last but

not least, of the energy usage of this interface usually larger with respect to

the LI defined in the following section.

Local Intra-Cloud Interface (LI)

LI, represented in figure 2.2, acts as a sharing platform, where every device

makes available to the others in the network its downloaded chunks. This

interface enables direct peer to peer communication between all the devices,

without any centralized coordinator. LI is characterized by high data rate

and low packet loss probability, with respect to RI. The NC algorithms,

described in section 1.4, are logically implemented in this interface.

2.1.3 Simulation Parameters

The Matlab numeric simulation is designed to allow some important param-

eters to be easily tuned by the user, as the number of devices involved

2.1. Scenario of Simulation 25

Figure 2.1: Remote Interface

2.1. Scenario of Simulation 26

Figure 2.2: Local intra-cloud Interface

2.1. Scenario of Simulation 27

in the simulation, or the number of run the simulator has to evaluate for

each set of parameter to complete the simulation. The output given by the

numerical simulation is the mean value of the result of each run; this is useful

to increase the precision. It is also possible to modify the chunk size, allow-

ing the simulation of the Maximum Transmission Unit (MTU) of different

network types. The interfaces are configured with two parameters, the link

speed (expressed in kbps) and the loss probability, which is the probability

that a packet sent from the source does not reach the destination. Thus, all

network types can be simulated, varying this two parameters on both of the

RI and the LI. In table 2.1 are collected typical values to correctly configure

the interfaces. The represented values comes from many tests done by us

during the development at the simulation environment. We will use exactly

this values to get the results exposed in section 2.3. The user has to select

also the content to be transmitted: there are no limitations on the file for-

mat or size, but to speed up the simulation process file size less of 1 MB is

recommended.

Table 2.1: Common parameters used to simulate different transmission technologies.

Common Speed and Loss Probability parameters

Technology Speed Loss Prob.

Wi-Fi 802.11 B 5,5 Mbps 2%

Wi-Fi 802.11 G 27 Mbps 1%

Wi-Fi 802.11 N 150 Mbps 1%

GPRS 50 Kbps 13%

UMTS 370 Kbps 7%

HSPA 6 Mbps 3%

LTE 50 Mbps 1%

2.2. Numerical Simulator Implementation 28

2.2 Numerical Simulator Implementation

We have developed in Matlab code a NC simulator, with algorithms as plug-

in. This means that it is possible to add or remove NC schemes, only adding

or removing a simple Matlab code-file, without having to modify the core of

the simulator itself. This makes very easy to test new algorithms.

The first step is to choose the chunk size, L, in bytes. This will affect

all the numerical simulator parameters, so it is very important to choose it

correctly. Let the content be in matrix M, L bytes long. If the length is

not exactly a multiple of L it is tail-padded with zeros. This way we have a

matrix M[n×L] that is the same presented in section 1.4.3, with the contend

divided into n different chunks.

Each device involved in numerical simulation is represented by two tables:

the information matrix X[m×L] and the encoding matrix G[m× n], where

m is the number of the received chunks. The simulation process will fill row-

by-row the X and the G matrix, following the rule of the selected algorithm,

as if they were the memory of the devices. The matrices, used later to decode

the content, contains the data that comes from the two interfaces, RI and

LI. A coordination function is necessary, to give write priority to one of the

two: we have decided to give the priority to the RI.

The time quantization inside the numerical simulation environment let

us know ho many clock cycle the procedure uses to complete. To have a

temporal reference, we need to know how long last in real time one clock

cycle. We define the Local Interface Transmission Time (LITT) as the basic

time unit used by the simulator, this will be the real time duration of a single

simulated clock cycle.

LITT =
ChunkSize

LocalSpeed
(2.1)

The simulator has to calculate how many time-slots require the remote trans-

mission of a chunk, called Remote Interface Transmission Time (RITT), with

respect to the LI speed:

RITT =

⌈

LocalSpeed

RemoteSpeed

⌉

(2.2)

2.2. Numerical Simulator Implementation 29

Figure 2.3: Schematic representation of the Global System.

LITT and RITT are respectively Local Interface Transmission Time and Remote Inter-

face Transmission Time

2.2. Numerical Simulator Implementation 30

The general idea used to develop the numerical simulator is represented

in figure 2.3: at every clock cycle the program checks if it is time for a

RI reception and in positive case starts the relative procedure, explained in

the following section, to save the received chunk. In negative case, the RI

reception phase is skipped. Afterward the local sharing procedure on the LI

is started, to share or receive chunks from the cloud.

Every transmission, on both the RI and LI, has a reception failure prob-

ability: in numerical simulation this is represented with a test that returns a

negative response with the interface specific probability. In case of negative

response, the received packet is discarded by the specific device. Because of

the test procedure is executed independently by every device, others might

successfully receive the packet that has been discarded by another.

The download procedure is stopped into two different times, one for every

interface. The RI is stopped when the device detects to have enough infor-

mation to decode the content, i.e. when the G matrix is full rank. When the

RI has been stopped, the LI still active until the completion confirmation

from all the devices in the cloud network.

The parameters described in section 2.1.3, allow the numerical simulator

to be a platform that allows the simulation of any scenario. Referring to

the figure 2.3 it is easy to see how the parameters impacts on the structure.

There are some parameters that can be varied without any consequence to

the general scheme, such as the file size or the chunk size, as they only

change the number of chunks available n and the length of the M matrix

L respectively. Only the running time is affected to the variation of such

a parameter. There are some other parameters that can also change the

structure of the simulator itself. For example, when we simulate the RI

trend alone, we disable the LI by setting the LI loss probability equal to 1.

This way the structure is modified as in figure 2.4 and we can appreciate

the By changing, as another example, the speeds, the system will only add

or remove some LITT cycles into the RITT one. It is important to remark

that the simulator is created assuming LI faster than RI, so the numerical

2.2. Numerical Simulator Implementation 31

Figure 2.4: Schematic representation of the system where LI is disabled

2.2. Numerical Simulator Implementation 32

Figure 2.5: Schematic representation of the packet reception by a device in numerical

simulated environment.

simulator checks the correct selection of the parameters by the user.

2.2.1 Packet reception

At every packet reception event, the system has to save the received infor-

mation into the tables of the corresponding device. The packet reception

procedure is invoked by each of the two available interfaces. The procedure

acts differently, depending on the interface.

In case the procedure is called by the RI, that means we are ending an

RITT. The remote download returns the index i of the received chunk, as

well as the chunk itself x. A new vector g is created, full filled of zeros, with

2.2. Numerical Simulator Implementation 33

an 1 in position i, that is the index of the received chunk. This vector is

inserted into the G matrix. Then the received chunk x is inserted into the

X matrix.

When a packet is successfully received from the LI, the system gets two

vectors, called g and x respectively. The following operations are done for

every device. The first step is to check if the received information is useful

for the device. This is done by inspecting the G matrix, checking if the rank

increases after the insertion of the received g row. In case the rank increases,

the data are useful and are saved. The system will insert a new row at

the end of the G matrix with the encoding vector g received, consequently

the corresponding information vector x is inserted at the same row index in

matrix X.

There is also a service vector for every device, r[1× n], that is used only

in the numerical implementation. This vector is not mandatory from the

NC theory, and is used to track which chunks are known (we have received

information about it) and which are not. It is initialized to zeros, when the

node receipt a packet it will put an 1 at the index of the received chunks. In

case the packet contains more than one chunk, all the . This is very useful to

avoid the G matrix scan at every time-slot. This procedure is used to save

data from both of the interfaces, regardless of the NC techniques usage.

2.2.2 Simple Local Broadcast

The Random Local Broadcast (RLB) algorithm chooses, at every time-slot,

a random chunk from the known ones to be sent. The chunk is sent uncoded

to the other devices. The RLB algorithm produces as output an encoding

vector g′ composed as following:

g′ =
[

0 · · · 0 1 0 · · · 0
]

(2.3)

2.2. Numerical Simulator Implementation 34

with the 1 in the position i representing the index of the chunk chosen to be

transmitted. Assuming that the matrix M is composed by n row vectors m:

M =

m1

...

mn

(2.4)

the information vector x′ is the ith row of the M matrix:

x′ = Mi (2.5)

Every device that correctly receives this transmitted data checks for the

usefulness of this data and, in positive case, stores it with the procedure

described in section 2.2.1.

2.2.3 2-by-2 XOR

Differently from the RLB case, the 2-by-2 XOR algorithm chooses two chunks

to be transmitted. After the selection, the two packages will be sent as the

result of the XOR (⊕) operation.

The two chunks that the algorithm selects, are chosen as the most com-

mon and the most rare in the entire environment. As explained in the first

chapter, we define a new metric, that measures the availability of any chunk

across the network. This is done inspecting the G tables of all the devices

with the aim to find which chunks are owned by every device. As a conse-

quence, we can determine which is the most common and which is the most

rare chunk in the network. We will use this information as the chunk indexes

to be used in XOR function. The aim of this particular selection is to maxi-

mize the number of devices that can take benefit from the transmission. As

explained in section 2.2.6, this procedure is implemented in centralized mode

into the numerical simulator but the implementation running on real devices

is truly distributed across all the nodes.

The 2-by-2 XOR algorithm produces as output an encoding vector g′

composed as following:

g′ =
[

0 · · · 0 1 0 · · · 0 1 0 · · ·
]

(2.6)

2.2. Numerical Simulator Implementation 35

with the 1 in the positions i and j representing the indexes of the chunks

chosen to be transmitted. The information vector x′ is composed by the

result of XOR operation between the ith and the jth rows of the M matrix:

x′ = Mi ⊕Mj (2.7)

Every device that correctly receives this transmitted data can know which

chunks are present in the packet watching the encoding vector g. The node

checks for the usefulness of this data, checking the presence in the local

storage of one of the two XORed chunks. In case none or both are found,

the packet is discarded. In other case, the node use again the XOR operator

with the encoded packet and the one it owns, decoding the missing one.

Then it stores the resulting chunk with the correct index, using the procedure

described in section 2.2.1.

2.2.4 Global Linear Combination

The GLC[4] algorithm is the only one that does not choose any packet: with

this algorithm every device is sending all the packet it owns, at every trans-

mission time, as explained in section 1.4.3. The practical implementation of

the algorithm is inspired by [13], in which the authors present their experi-

ences with a P2P content distribution system that uses NC.

The algorithm extracts the kth row from the X and the corresponding

G matrix in two vectors, xk and gk respectively. Then it generates a new

random coefficient hk uniformly distributed across the finite field F = GF (2s)

with s = 16 in our case, used to generate the new vectors

x′

k = hk · xk (2.8)

and

g′

k = hk · gk (2.9)

This has to be done for every of the m packet the device owns, summing the

results:

x′ =
m
∑

k=0

hk · xk (2.10)

2.2. Numerical Simulator Implementation 36

and

g′ =
m
∑

k=0

hk · gk (2.11)

All the operations are done in the F finite field.

Every device that correctly receives this transmitted data checks for the

usefulness of this data and, in positive case, stores it with the procedure

described in section 2.2.1.

2.2.5 Decoding

When the download algorithm is finished, the decoding procedure can be

started. The RI determines when there is no chunk to be received, analyzing

the rank of the G matrix. During the execution of the decoding procedure,

the LI is still active, providing chunks to the neighbors, while the RI is torn

down.

The decoding algorithm is executed by every device on the received data

X and the corresponding encoding matrix G. The procedure, explained in

section 1.4.3, consists in the inversion of the G matrix to solve the system in

(1.16)

2.2.6 Simulation Scenario Limitations

To build the NC numerical simulator, we have to find a compromise between

the simulation speed and the environment variables, so we have chosen a

scenario with some limitations.

First of all the simulator assumes a perfect coordination between local

transmission, it is considered as an ideal token ring network (IEEE 802.5 1).

In a such network, indeed, only one device can transmit at a specific time.

The device allowed in transmission, owns a token, that is exchanged with

another node in the network after the end of the packet transmitted. This

way is impossible to have collisions. In the real implementation this is not

true, as we will use a different network type.

1inserire ref!

2.2. Numerical Simulator Implementation 37

The 2-by-2 XOR (see section 1.4.2) requires some control traffic between

nodes, to exchange information about the chunk availability of each node.

The numerical simulator neglects this traffic, allowing the nodes to access

directly to the memory of the other nodes by reading their matrices. Thus,

this signaling traffic does not contribute in channel usage. In the implemen-

tation for real devices, this information are exchanged as normal packets over

the network and this overhead increases the real network usage. As a con-

sequence, the numerical simulation only provides an upper bound value for

real systems.

The simulated version of the GLC algorithm (as explained in section 1.4.3)

is fully implemented, but in our numerical simulations we can not consider

the time the device needs for the final matrix inversion. We cannot take

account of this time because this operation is high resource expensive, even

in simulated environment, and therefore it is hardware dependent: numerical

simulations done on different machines will give completely different results.

Thus, in case of a GLC implementation on real device, the performance

will be affected by this heavy post-download processing required to decode

the content. The complexity of this operation depends also on the size of

the finite field. Indeed a large finite field guarantees larger space for every

possible combination of chunk coefficients and this means better performance

of the algorithm, but this also slows down every mathematical operation. In

fact the complexity of a square matrix inversion with size n, in a finite field

Fq is O(n3log3q), so we have to find the best trade off.

Regardless of the invertibility checks, the inversion of theG[m×n] matrix

requires that the matrix itself is full rank. Because of the possibility of non

linear independent rows, maybe m > n. In this case the G matrix is not

simply invertible, as the system is overdetermined. The solution of such an

overdetermined system of equations is extremely computationally expensive

and might be unsolvable by current available machines. This issue is present

only in the GLC scheme, because the others stores only the information

needed. The GLC scheme, indeed, stores every single transmission the node

2.3. Numeric Results 38

can receive, without any control over the usability of the information. To

overcome this issue we have decided to implement a check whenever a new

transmission is received, to know if it is an useful transmission or not. The

check is simple, if the new coefficient vector g increases the rank of the

G matrix, the information in the transmission are useful, otherwise they

are discarded. This way we are able to save only the useful information

needed to decode the content. This approach has another good side-effect:

it reduces the memory requirement for every simulation, up to the 50%.

Another requirement for fast numerical simulation is the usage of small files

as the content to be transmitted. This helps in keeping the dimensions of the

matrices as small as possible, allowing the numerical solution in reasonable

time.

2.3 Numeric Results

The simulations are done by varying one of the parameters at time, and

observing how the algorithms react to the change. The purpose of the nu-

merical simulation is not only to compare the encoding schemes, but also to

determine which are the conditions where the algorithms give out the best

performance. The benchmark step is divided into three parts, dedicated to

the remote, the local and the global system, meant as the combination of the

two interfaces. This is done to have an idea on how every interface interacts

with the other and contribute to the global result.

The output value of the simulator is the so called Mean Throughput,

which is defined as the mean of the transfer speed measured by the devices.

The transfer speed is calculated by every device independently on the two

interfaces and then summed. Thus we can obtain information about the two

interfaces separately.

2.3. Numeric Results 39

2.3.1 Parameters for Numeric Simulation

The configuration we have chosen is the same for all the numeric simulations,

to be coherent in measurements. In the following table 2.2 you can find the

values we use.

Table 2.2: The parameters we use to run the numerical simulator

Parameters

File Size 3, 82 KBytes

Number of Device 12

Number of run per simulation 30

Chunk Size 100 Bytes

RI Speed 0.8 Mbps

RI Loss Probability 3%

LI Speed 27 Mbps

LI Loss Probability 1%

2.3.2 Remote Interface (RI)

The first step is to numerically simulate the RI alone, without any type of

local cooperation. The result is used as reference for the valuation of the

other results. As there is no cooperation, the only meaningful test is the

global mean throughput versus the RI loss probability, as in figure 2.6. We

have noticed that, as expected, the performance linearly decrease starting

from the nominal 0.8Mbps, when there is no loss, approaching to zero, when

the loss probability approaches to one.

2.3.3 Local Intra-Cloud Interface (LI)

The test configuration is changed, because the content to be retrieved is

now pre-distributed across all the nodes in random manner. The procedure

2.3. Numeric Results 40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.8

0.88
Mean Throughput vs. RI Lost Probability [12 Devices, 3.82 Kbytes, Remote Speed= 0.80 Mbps]

RI Loss Probability

M
ea

n
T

hr
ou

gh
pu

t [
M

bp
s]

Without NC

Figure 2.6: Global Mean Throughput vs. RI loss probability, in RI.

used to distribute the content across the nodes is designed to let every node

to own a pre-defined quantity of random chunks. The chunk quantity is

common for all the nodes and is regulated by the so called Local Distribution

Probability, that is the probability for a chunk to be present at the node

before the sharing procedure is started. To successfully complete the sharing

procedure is necessary that at least one copy of every chunk is present in the

network, otherwise the content cannot be decoded. Thus, a check after the

chunk assignment is necessary, to correct invalid distributions.

Suppose that M is the content to be retrieved by a set of devices S, every

node has a set of chunks ms such that:

M =

m1

...

ms

(2.12)

The cardinality of M, because of the possibility of duplicated chunks across

many nodes, is:

|M| =
S
∑

k=1

|mk| −
∑

i,j

|(mi ∩mj)|, i 6= j (2.13)

2.3. Numeric Results 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

4

8

12

16

20
Mean Throughput vs. Local Loss Probability [12 Devices, 3.82 Kbytes, Remote Speed= 0.80 Mbps, Local speed= 27.00 Mbps, Local Distribution Probability= 30%]

Local Loss Probability

M
ea

n
T

hr
ou

gh
pu

t [
M

bp
s]

Random Local Broadcast
2−by−2 XOR
Global Linear Combination

Figure 2.7: Global Mean Throughput vs. Local Loss, in LI.

As default we set the Local Distribution Probability to 30%, this means every

node starts with the 30% of the chunks, randomly chosen.

In such a condition, a node by itself, cannot decode the entire content, but

there is enough information in the network, to allow a cooperation algorithm

to successfully share chunks and enable all the nodes to decode the content.

The comparison between the three algorithms let us see which one is the

most powerful by itself.

Throughput vs. LI Loss Probability

In figure 2.7 we have plotted the result of the simulation, where the variable

parameter is the LI loss probability. Here we can demonstrate how every NC

algorithm guarantees better performance in every loss condition with respect

to the RLB reference. The two NC algorithms are comparable at high loss

probability, but the GLC is roughly ≃ 17% faster than the 2-by-2 XOR at

small loss probability. The 2-by-2 XOR algorithm guarantees ∼ 14 times the

throughput of the RLB algorithm, and the GLC extends the gap up to ∼ 15

times.

2.3. Numeric Results 42

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
Mean Throughput vs. Number of Devices [3.81 Kbytes, Remote Speed= 0.80 Mbps, Local speed= 27.00 Mbps, Local Distribution Probability= 30%, Local Loss Probability= 1%]

Number of Devices

M
ea

n
T

hr
ou

gh
pu

t [
M

bp
s]

Local Broadcast
2−by−2 XOR
Global Linear Combination

Figure 2.8: Global Mean Throughput vs. Number of Devices, in LI.

Throughput vs. Number of Devices

In figure 2.8 we have plotted the result of the simulation, where the varying

parameter is the number of the devices. The larger is the number of devices

involved, the larger is the benefit the devices can take from the cooperation,

but a small set of 12 devices is enough to saturate the local network band-

width (27 Mbps this case). A greater number of devices is useless to increase

the global throughput, when using this network parameters. As before, the

reference RLB marks a very poor result. Regardless of the number of device

involved in the simulation the reference algorithm is 16 to 20 times slower

the others: 2-by-2 XOR and GLC

Throughput vs. Local Distribution Probability

In figure 2.9 we have plotted the result of the simulation, where the variable

parameter is the distribution probability of the chunks between nodes. This

test measure the behavior of the algorithms for different overlapping chunks.

We observe that, as usual, the difference is strong between the reference

technique and the NC approach, but also that the most effective working state

for all the two NC algorithms is around the 30% of overlapped information.

2.3. Numeric Results 43

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

4

8

12

16

20
Mean Throughput vs. Local Distribution Probability [12 Devices, 3.82 Kbytes, Remote Speed= 0.80 Mbps, Local speed= 27.00 Mbps, Local Loss= 1%]

Local Distribution Probability

M
ea

n
T

hr
ou

gh
pu

t [
M

bp
s]

Random Local Broadcast
2−by−2 XOR
Global Linear Combination

Figure 2.9: Global Mean Throughput vs. Local Distribution Probability, in LI.

2.3.4 Global Results

After all the single-interface numeric simulations, now we have enabled all

the two simulated interfaces the same time, to simulate the entire scenario.

All the configurations are the same as before.

Throughput vs. LI Loss Probability

In figure 2.10 is represented the relationship between the global mean through-

put and the LI loss probability. In perfect no-loss case, the amount of traffic

served by the combination of the two interfaces reaches the 7.2 Mbps value,

for the GLC algorithm, and to the 6 Mbps value for the 2-by-2 XOR algo-

rithm. The performance of the two NC enabled schemes are roughly 2 and

2.5 times the reference RLB one, but 9 and 7.5 times faster than the linear

remote download.

As expected, when the LI loss probability approaches to 1, the mean through-

put approaches to the 0.8 Mbps bound, which is the RI speed. In such a

situation, indeed, the system completely disables local cooperation.

2.3. Numeric Results 44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0
Mean Throughput vs. Local Loss Probability [12 Devices, 3.82 Kbytes, Remote Speed= 0.80 Mbps, Local speed= 27.00 Mbps, Remote Loss Probability = 3%]

Local Loss Probability

M
ea

n
T

hr
ou

gh
pu

t [
M

bp
s]

Without NC
Random Local Broadcast
2−by−2 XOR
Global Linear Combination

Figure 2.10: Mean Global Throughput vs. LI Loss Probability (Global system bench-

mark)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8
Mean Throughput vs. Remote Loss Probability [12 Devices, 3.82 Kbytes, Remote Speed= 0.80 Mbps, Local speed= 27.00 Mbps, Local Loss= 1%]

Remote Loss Probability

M
ea

n
T

hr
ou

gh
pu

t [
M

bp
s]

Without NC
Local Broadcast
2−by−2 XOR
Global Linear Combination

Figure 2.11: Mean Global Throughput vs. RI Loss Probability (Global system bench-

mark)

2.3. Numeric Results 45

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12
Mean Throughput vs. Number of Devices[3.81 Kbytes, Remote Speed= 0.80 Mbps, Local speed= 27.00 Mbps, Local Loss Probability= 1%]

 Number of Devices

M
ea

n
T

hr
ou

gh
pu

t [
M

bp
s]

Without NC
Random Local Broadcast
2−by−2 XOR
Global Linear Combination

Figure 2.12: Mean Global Throughput vs. Number of Devices (Global system bench-

mark)

Throughput vs. Remote Loss

In the figure 2.11 we have a fixed local loss probability of 1%. In this case

is more evident the relationship between the information flow incoming the

entire system and the mean global throughput, flowing between the devices.

The two NC algorithms are always 2 to 2.5 time faster than the RLB reference

algorithm, and from 7.5 up to 9 time faster than the linear remote download,

but the performance decreases linearly when the RI loss probability grows,

because of the leak of the less information available in the system.

Throughput vs. Number of Devices

In the figure 2.12 we have plotted the evolution of the mean global through-

put of the system, in relationship with the number of device involved in the

cloud network. Is possible to see how a larger number of devices can improve

the performance, up to the upper-bound represented by the LI capacity. In a

dense environment is supposed to work ever in the local network saturation

zone, because of the large number of devices involved. To limit the com-

putational power needed by the simulations we have chosen the number of

2.3. Numeric Results 46

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

%
 o

f c
hu

nk
s

do
w

nl
oa

de
d

Download progression over time

Without NC
Random Local Broadcast
2−by−2 XOR
Global Linear Combination

Figure 2.13: Average file completion evolution during time over all the nodes

12 devices, which is the slowest number of devices to saturate the 27 Mbps

local network connection. Every NC enabled algorithm take advantage from

a global major information in the system. As expected for 12 devices we can

found the same values, 7.2Mbps and 6Mbps we have seen in the figure 2.11

and 2.10.

Download Progression vs. Time

The simulated model gives us many information about throughput of the

system in many situations, but we have no information on how this speed

evolves during time. For this purpose we have done another benchmark (fig-

ure 2.13) where the download progression of the download is plotted against

the temporal evolution, for each algorithm. In figure 2.13 is possible to see

how the RLB reference algorithm, as the GLC one, is starting immediately,

marking an initial gap with the 2-by-2 XOR. The reason why the 2-by-2

XOR algorithm initially gives no help is that is necessary that a node owns

at least two chunks, to successfully execute the algorithm. After the initial

phase, however, the 2-by-2 XOR algorithm grows up faster than the others,

returning at a lever comparable with the complete implementation of the NC

theory (GLC).

2.3. Numeric Results 47

0 25 50 75 100 125 150
0

1

2

3

4

5

6

7

8
Mean Throughput vs. Local Network Speed [12 Devices, 3.81 Kbytes, Remote Speed= 0.80 Mbps, Remote Loss= 3%, Local Loss= 1%]

Local Speed [Mbps]

M
ea

n
T

hr
ou

gh
pu

t [
M

bp
s]

Without NC
Local Broadcast
2−by−2 XOR
Global Linear Combination

Figure 2.14: Mean Global System Throughput vs. LI Speed

Throughput vs. LI speed

In figure 2.14 the three algorithms are tested against the LI speed. The

number of devices is fixed at 12 and we already know that 12 is the minimum

number of devices for a 27 Mbps connection: the idea is to see how the

network resources are used by the three algorithms.

The figure shows how the two NC enabled algorithms uses the available

bandwidth much better the RLB algorithm, indeed RLB is the only that

take advantage when the available bandwidth exceed the 27 Mbps value,

offering in any case a worst mean throughput to the devices, with respect to

the NC algorithms.

Real Implementation Parameters

As summarized into table 3.3, the real scenario is characterized by different

values, with respect to the simulated ones (see table 2.2). The reason we does

not use the same parameters in the two numerical simulation and physical

scenario is that the simulator cannot handle in reasonable time the file that

is used by the real devices.

As reference, we have decided to run the Matlab simulator with the real

2.3. Numeric Results 48

parameters, with the following results grouped in the following table 2.3

Table 2.3: Numerical simulation with the parameters taken from the real scenario.

Simulated results

Internet NC Dup. Corr. Mean Speed

W/O NC 570 0 0 - 64 Kbps

RLB 392 178 1976 - 89 Kbps

2-by-2 XOR 213 357 1492 - 164 Kbps

GLC 209 361 1184 - 168 Kbps

Concluding Remarks

The RI speed impacts on every algorithms, limiting the amount of data

available to every single device, as you can see in figure 2.10. Indeed in

perfect case, without any packet loss, the amount of traffic served by the

combination of the two interfaces does not exceed the 7.2 Mbps value: this is

because of the RI speed of 0.8 Mbps is limiting the global system performance.

Because of the ”per device” nature of the RI max speed bound (Sr), in a

situation with N devices, we can reach an upper bound for the information

flow of:

St = N · Sr. (2.14)

In this case, this means an ideal speed of

St = 0.8 · 12 = 9.6 Mbps (2.15)

The difference between the ideal throughput and the real one, can be ex-

plained by two factors. The first is the 3% loss probability on the remote

network that can affect the performance globally: the less information going

into the system, the less throughput can be reached by the system itself.

The second factor is the casual selection of the remote chunks: maybe many

devices are requesting the same chunk to the remote host, this way there is

2.3. Numeric Results 49

redundancy in the chunks that flows into the global system. This means less

information going into the system and, as in previous case, less throughput.

Generally the second factor is more relevant than the first one in small sized

files. In case of large files, on the contrary, the first factor becomes dominant.

In numerical simulated environment, the implementation complexity of

the GLC is not balanced by a performance gain that could justify the imple-

mentation in a real scenario.

Chapter 3

Android Demonstrator

We have developed an application for commercial personal devices to show

the power of the NC theory, called Android Network Coding Demonstrator.

We have selected the Nexus 4 as the main development platform, even if

the application is usable on every modern Android smart-phone, but also

on any Android powered device, like tablets. In this chapter we illustrate

the technologies used, we present the application and then we compare the

results obtained with numerical simulations in chapter 2.

The main objective to be reached is to provide to a wider audience as

possible a tool that shows the benefits of of the NC theory usage.

3.1 Technologies

To develop a fully functional demonstrator that can run on commercial de-

vices, we have to find which are the technologies that can be used to obtain

the best performance, in terms of data throughput, usability, and availability

of this technologies by the end users.

In this section we present the platform on which the application will

run and the main transmission technologies that have been used for the

development.

50

3.1. Technologies 51

Figure 3.1: Android market share in August 2013, source: IDC Worldwide Mobile

Phone Tracker, 7 August 2013

3.1.1 Why Android?

As platform we need an Operating System (OS), available for the majority of

the devices, to let many people as possible to try out the NC demonstrator,

with the more different device as possible, so we have chosen the Android

platform.

Android is an OS based on the Linux kernel, and designed primarily for

touchscreen mobile devices such as smart-phones and tablet computers. Ini-

tially developed by Android, Inc., which Google backed financially and later

bought in 2005, Android was unveiled in 2007 along with the founding of the

Open Handset Alliance: a consortium of hardware, software, and telecommu-

nication companies devoted to advancing open standards for mobile devices.

As shown in figure 3.1 up to now the 80% of the world shipment of mobile

devices are Android powered.

Other key features that drives us to the Android platform are multiple:

• Android is fully open-source and provides free access to development

tools and Application Programming Interface (API) documentation,

allowing us to develop our demonstrator without any fee. It is very

useful to have a complete API description available to be able to use

3.1. Technologies 52

advanced device features like, the Wi-Fi interface, at their best. This

is also useful to everyone they may want to improve or extend the

functionalities of this demonstrator.

• Due to its open-source origin, all the aspects of the OS can be modified,

can be improved for a specific demand, and is possible to know exactly

how the OS manage the peripherals.

• Low budget development hardware: the Google reference board is the

LG Nexus 5, priced at e 350. As reference, Apple iPhone 5S costs at

least e 700.

• Android, like Apple’s iOS and the most of the mobile OS, has a web-

store to publish and download applications. Every Android device can

access the Play Store, this is the name of the Android web-store, to find

at any time new applications. Unlike other platforms, Android requires

a single-time fee of 25$ to publish applications, the others requires an

annual subscription.

So, why Android?

Simple, to reach as much people as possible. Our project has to be as most

available as possible, so that anyone anywhere in the world can take benefit

from the power of the NC theory.

3.1.2 Wi-Fi

Wi-Fi is a popular technology that allows electronic devices to exchange data

wirelessly using radio waves. This technology is present on-board in every

modern personal device. It is wide available, and this is the reason we have

chosen this technology to act as LI

Wi-Fi networks are, though, characterized by the presence of a central

device, called AP, that generates the wireless network and coordinates all

the client devices attached. This might be a problem, because of the cloud-

based non centralized infrastructure that we want to develop (defined in

3.1. Technologies 53

Figure 3.2: Wi-Fi Ad Hoc and Infrastructure mode.

section 1.1). Every Wi-Fi network, however, can support two configurations,

namely Infrastructure and Ad Hoc mode.

Wi-Fi: Infrastucture vs. Ad Hoc

Conventional Wi-Fi networks are typically based on the presence of con-

troller, the wireless AP. These devices normally combine three primary func-

tions:

• Physical support for wireless and wired networking

• Bridging and routing between devices on the network

• Service provisioning to add and remove devices from the network.

This network type is called Infrastructure network. Transmissions in infras-

tructure mode are allowed only from and to the APs, none of the connected

clients are authorized to transmit directly to another client. The AP, thereby,

has an amount of buffer memory to temporarily store the received packet

intended for other clients. The AP has to receive the whole packet in a

time-slot, and then has to transmit to the destination, in another time-slot.

In case an infrastructure network is not available, the devices can self

create a network, with features similar to the infrastructure mode. As shown

in figure 3.2 the ad-hoc mode does not expect an AP. In ad-hoc network,

each node participates in routing by forwarding data for other nodes, so the

3.1. Technologies 54

determination of which nodes forward data is made dynamically on the basis

of network connectivity. In addition to the classic routing, ad-hoc networks

can use flooding for forwarding data. The presence of dynamic and adaptive

routing protocols also enables ad-hoc networks to be formed quickly.

Wi-Fi ad-hoc mode is perfectly suitable for our purpose, but it is not

officially supported by the Android platform. There are many unofficial ways

to enable ad hoc Wi-Fi networking in Android releases, but because our goal

is to have an as wide as possible public, we cannot relay on this feature.

Wi-Fi Direct

Wi-Fi Direct [9], initially called Wi-Fi P2P, is a Wi-Fi standard that enables

devices to connect easily with each other without requiring a wireless AP

and to communicate at typical Wi-Fi speeds and is fully supported in the

4.0 and up Android release, as for the Nexus 4 device that we use.

Wi-Fi Direct devices, formally known as P2P Devices, communicate by

establishing P2P Groups, which are functionally equivalent to traditional

Wi-Fi infrastructure networks [9]. The device implementing AP-like func-

tionality in the P2P Group is referred to as the Peer to Peer Group Owner

(P2P GO), and devices acting as clients are known as P2P Clients. Given

that these roles are not static, when two P2P devices discover each other they

negotiate their roles (P2P Client and P2P GO) to establish a P2P Group.

Once the P2P Group is established, other P2P Clients can join the group as

in a traditional Wi-Fi network. Wi-Fi Direct does not allow transferring the

role of P2P GO within a P2P Group. In this way, if the P2P GO leaves the

P2P Group then the group is torn down, and has to be re-established using

some specific procedures. Into [26] you can find the precise definition of all

the roles that a device has to implement to be Wi-Fi Direct compatible.

3.2. Network Coding Demonstrator App 55

3.2 Network Coding Demonstrator App

In [8] is proposed an implementation of the network coding theory, based on

Nokia Symbian devices. This demonstrator is dated 2008, when smartphones

were not so cheap and so widely diffused. Nowadays Symbian smart-phones

are extinguished, computational power is exponentially increased and tech-

nologies like Wi-Fi Direct are widely available. Other papers like [14], [17],

[20], [23] and [18] also present mobile device based projects, implementing

only to the original NC algorithm.

Draw inspiration from the demonstrator proposed in [8] and in [21], using

a similar approach to implement the NC methods proposed in this thesis so

as to prove the practical benefits of these new methods. Our proposal is even

to exploit the fast global expansion of mobile devices to allow to as much

people as possible to test NC advantages on their personal device.

3.2.1 Scenario

Our application is designed to accomplish a simple task: allow a group of

in-proximity users to cooperate to grab a remote content on their personal

devices. The idea is to use a system based on the idea presented in [24]. The

scenario can be applied in many situations, like a conference room where

participants have to get conference material from a remote host, or public

areas in airports, train stations or stadium, where users can download data

about the schedule of flight or trains, or the last replay of a goal in soccer

game. The common factor, enabling cooperation, is the proximity, that is

the only requirement for the system to work. In-fact newly formed coop-

erative cluster, namely the group of devices that cooperates, can offer each

participating mobile device a better performance in terms of data rate, delay,

robustness, security, and energy consumption in contrast to any stand alone

device.

3.2. Network Coding Demonstrator App 56

Figure 3.3: Cooperation server inserted into the general scenario.

3.2. Network Coding Demonstrator App 57

3.2.2 Host side

A little overview of the server application is needed. In the model we suppose

the host can segment the content in equal-sized chunks and can send one-

by-one to the devices, on demand. The actual implementation of popular

protocols, like HTTP and FTP, can be used to do this behavior, with some

tricks: the idea is to use the resume function and to close the connection

when enough data to build a chunk is received. This procedure has to be

repeated for every chunk and is not really time efficient, because of the high

overhead in opening and closing data connection both in HTTP and in FTP

protocol.

This way a so called Cooperation Server is used, as shown in figure 3.3.

This simple application run host side and only take care of segmenting the

content and sending to the clients on demand in a secure and Cyclic re-

dundancy check (CRC) protected way, the same way it was developed by

Microsoft in [22]. Technically speaking, this is a simple shell application,

written in C#, waiting for connection on a specific Transmission Control

Protocol (TCP) port. The host side application only accepts direct unicast

transmissions, like any standard Internet host.

3.2.3 Android side

As you can expect, the application is divided into two main segments, the

same as the simulator:

• The Remote Interface (RI), used to get chunks directly from the co-

operation server, though an unicast connection, using the Cooperation

Server Protocol (CSP).

• The Local Intra-Cloud Interface (RI), used to share chunks across the

local network that covers all the device involved, using the Network

Coding Protocol (NCP).

The Android application can be summarized by the block scheme in figure

3.4, that indicates all the states that the application crosses during the execu-

3.2. Network Coding Demonstrator App 58

Figure 3.4: Block diagram of the Android application.

3.2. Network Coding Demonstrator App 59

Figure 3.5: Schematic representation of the NC core engine.

tion. The download procedure itself is composed by many functional blocks,

as shown in figure 3.5. As you can see, the NC Controller coordinates all the

networking functions. The Mobile Data block is responsible for the commu-

nication to the remote host, while the Local Network Communication logical

block represent the Wi-Fi card, in cooperation with the Network Broadcaster,

that is simply the broadcast socket. The most important things are in the

NC-Controller, where take place the real NC encorder and the decoder, which

implements the chosen NC algorithm. To support the couple of encoder and

3.2. Network Coding Demonstrator App 60

Figure 3.6: Network Coding Protocol (NCP)

decoder, there is the Local Storage block, which allow the application to save

the received data locally. The Output Queue block is a FIFO buffer allowing

the system to queue all the packages to be transmitted in the local network

until a valid time-slot is found. Finally the Peer Info block is responsible

to maintain updated information about all the clients composing the local

distribution network.

3.2.4 Network Coding Protocol (NCP)

To develop this application a new protocol has been created over the top of

the UDP/IP stack. Therefor the only level defined, in the ISO/OSI stack, is

level 5.

This protocol is used by every device in the local network, to exchange data

with the others. The definition of such a protocol allows to create compatible

applications for different device type and/or OS. As shown in figure 3.6,

physical, data link, routing and application layers are still the standard for

any User Datagram Protocol (UDP) over IP packet, this means that every NC

coded packet can flow freely in any existing routing network. Because of the

3.2. Network Coding Demonstrator App 61

Wi-Fi data link layer, MAC, is an evolution of the Ethernet MAC, it inherits

the maximum payload size of 1500 bytes. The routing layer (IP) introduces

an additional 20 to 60 bytes long header and the application layer, UDP,

adds another 8 bytes long header. Thus the max allowed payload length for

an UDP packet is 1500−60−8 = 1430 bytes. Our protocol generates a 1400

bytes long packet, thus it will perfectly fit the available space in the UDP

payload. The NCP packet structure is defined as in figure 3.7. The first

Figure 3.7: The packet structure of the NCP

field of the packet is the Command ID, a 32 bit long integer, indicating the

purpose of the packet. The general scheme is to use 100 − 999 commands,

divided as in table 3.1. A separation character is used to detect if the packet

Table 3.1: NC Protocol commands.

Commands

Query Response

100 Device Name Request 150 S/N(String), Phone Name(String)

110 Connection Info Request 160 Connection Info (String)

200 File Transfer init. Sequence 200 ACK (null)

201 File Size Request 251 File Size (long)

202 File Name Request 252 File Name (String)

249 Send Terminated

253 Missing Chunk Signalling

299 Reception Complete

300 Packet Request

500 Data Packet

3.2. Network Coding Demonstrator App 62

is correctly formatted: is necessary because the command header is not CRC

protected. We need a Chunk Indicator field, 8 bytes long, to let the other

devices know which is the chunk contained in the packet. In case the packet

contains the XOR version of two different chunks,a second 8 bytes long field

is available to specify the second Chunk ID. In the Android implementation

of the NCP, on the contrary of what happens into the numerical simulator,

chunks are indexed and only chunk index are transmitted, not the full g

vector as explained in section 1.4.3. The reason is that only GLC algorithm

really needs the entire g vector to be transmitted and because it is not

implemented in the Android demonstrator, it is useless to transmit such a

long information, chunk ID is enough. Another separator indicates the start

position of the data segment, containing a chunk. The data segment is 1347

bytes long and is protected against corruption by a CRC, which occupies

the last 8 bytes of the packet. The only command that requires a special

packet format is the Missing Chunk Signalling , because its payload consists

in an array of 32 bit integers, indicating the indexes of the blocks that are

missing to the sender. This way any device in the network can have a global

overview of the chunk distribution across the whole network. This feature is

exploited by the 2-by-2 XOR algorithm (see chapter 1.4.2) to maximize the

throughput.

3.2.5 Cooperation Server Protocol

As shown in 3.2.2, every device in the cooperation network, if is enabled to

perform remote connections, can retrieve chunks from the so called Cooper-

ation Server. To talk with the cooperation server, the Android application

use another protocol, called cooperation server protocol.

In figure 3.8 is represented the protocol stack, that is the same as for the

Network Coding Protocol shown in 3.2.4, but we are now using a TCP con-

nection, instead of the UDP one.

This difference is due to the unicast nature of this transmission. Because

this is a single source and single destination transmission, we can use TCP,

3.2. Network Coding Demonstrator App 63

Figure 3.8: Cooperation Server Protocol

which is, in contrast with UDP, a connection oriented protocol. This means

there are some control packets dedicated to open and to close the connection.

This initial overhead does not influence the throughput of the connection,

because it is an one-time fee to pay, but the TCP header is much larger than

the UDP one: 20 to 60 bytes for TCP when only 8 bytes are required for

UDP. Typically a TCP header is 20 bytes long, that is 16 bytes longer the

UDP one.

Despite this additional overhead, the chunk size has been calculated to allow

the cooperation server protocol to carry one chunk in a single packet: the

summation of all the length does not exceed the maximum size allowed by

the Wi-Fi MAC.

The TCP connection, however, guarantees the correct reception of packets

by the clients and this feature is much more important than the overhead

needed by this type of connection.

The packet format is changed too, as shown in figure 3.9, because the

optional field indicating the second chunk present in the packet is gone. This

means, a 4 Bytes lighter packet. In table 3.2 is reported the commands

3.3. Running on Real Device 64

Figure 3.9: The packet structure. of the Cooperation Server Protocol.

scheme used by the cooperation server protocol. It is a light version of

the network coding protocol (table 3.1), where are removed client specific

commands, useless in this case.

Table 3.2: Cooperation Server Protocol commands.

Commands

Query Response

201 File Size Request 251 File Size (long)

202 File Name Request 252 File Name (String)

249 Send Terminated

299 Reception Complete

300 Packet Request 500 Data Packet

Why CRC field in a TCP payload?

The response is a little bit strange and is widely discussed in section 3.4.3.

By the way, the problem is related to the way in which it is used the Wi-Fi

equipment.

3.3 Running on Real Device

After the technical introduction, we can present the application, running on

a real smart-phone, an LG Nexus 4, but the application runs fine on every

Android 4.0+ device.

The main aspect we focused on during the application development is the

3.3. Running on Real Device 65

Figure 3.10: The real test environment, with the three Nexus 4 phones ready to

transfer.

simplicity. The user has to be guided through the required steps starting from

the procedure to establish the connections up to the downloading phase. The

user is supposed to be completely unskilled about both Android phone and

the NC theory, the application has to be as much user friendly as possible.

The application requires the presence of a Wi-Fi Direct enabled network

card, generally present on every smart-phone equipped Android with version

4 or better. To connect to the remote cooperation server, an Internet connec-

tion is needed. In our experimental case we used a Wi-Fi network to provide

Internet connectivity to the devices. The use of a Wi-Fi network even to

provide connectivity involve some issues, as explained in section 3.4.3.

3.3.1 Application Life-Cycle

At the application startup, as in figure 3.11, the main screen is presented,

where the user can choose one of the two main functionalities: search for

neighbors or start directly the download procedure. Obviously in case the

user choose to start the transfer immediately, he will not use any NC feature.

3.3. Running on Real Device 66

Figure 3.11: Android Application, main screen

3.3. Running on Real Device 67

Figure 3.12: Android Application, Wi-Fi Direct scan screen

3.3. Running on Real Device 68

Figure 3.13: Android Application, Wi-Fi Direct peer result screen

3.3. Running on Real Device 69

The local neighbor scan, shown in figure 3.12 and 3.13, gives the user the

opportunity to select another device in proximity, to start a shared down-

load. As explained later in section 4, the selection of the local peers can

be automatized. After the peer selection, the application will show directly

the transfer screen, because this is the only required procedure, before the

download can take place.

When connecting to a P2P GO, the application shows information about

the P2P Group, such as the P2P GO IP address, the number of the group

participants and the IP subnet associated to the P2P Group. This informa-

tion is useless for normal users, but it is fundamental to a developer that

wants develop a compatible application for other platforms. With such an

information, the developer can check the correctness of the group join pro-

cedure he is developing This is the reason why they are showed during the

pairing procedure.

In figure 3.14 you can see what is the output from the application: the user

is informed about the global number of chunks to be transferred (depending

on the file size), the number of chunks received directly from the remote

host through Internet, the number of chunks received by NC technology, in

the local broadcasting network, the number of duplicated chunks received

and the number of corrupted chunks. In-fact maybe in some chunks CRC

check fails as they are not correctly received. That packets are discarded and

counted in this row. The user is also informed about the actual speed of the

information flowing into the personal device, regardless of the method used.

The application allow the user to measure in a precise manner how much

remote traffic that has been generated by the transfer and at the same time,

how much traffic has been spared.

One of the most interesting feature of this view is the real-time data

visualization: the user can indeed see in real time how much data is coming

from every source type, as shown in figure 3.15. As you can see, in the specific

case, we are transferring the lena image with cloud network composed by two

devices. The performance analysis are done in the following section, but you

3.3. Running on Real Device 70

Figure 3.14: Android Application, transfer screen

3.3. Running on Real Device 71

Figure 3.15: Android Application during a transfer with the 2-by-2 XOR algorithm and

a cloud network composed by only two Nexus 4 devices

can see even in such a small scenario, the number of the chunks obtained

from the remote interface is half than the total received. The figure also

shows that the actual speed can be much higher than the RI one which is in

this case 64 kbps = 8 kB/s

The application is designed to download the content into the mass mem-

ory of the phone, allowing the user to inspect the downloaded data with an

external application to check the correctness of the data. In case the data is

an image, is possible to open an image view, showing visually the download

progress as shown in figure 3.16.

3.3. Running on Real Device 72

(a) Device without NC enabled (b) Device with NC enabled

Figure 3.16: Android Application, image view screen during the ”Lenna” image trans-

fer.

The images are captured after the same time from the start of the transfer.

The cloud network is composed by 4 ”Nexus 4” devices, using the 2-by-2 XOR NC algorithm.

3.4. Results Analysis 73

3.4 Results Analysis

We expect to see an improvement on the mean throughput for every NC

enabled device, as much as a drastic reduction in the number of packets

obtained from the RI. We expect, for this reason, a minor download time,

with respect to the single non cooperative download.

3.4.1 The Real Case Scenario

The scenario in which the application is tested is the same that we have

simulated and is explained in section 2.1. In this case we put some smart-

phones side by side, connected to the same 802.11 G Wi-Fi network, acting

as RI. At the same Wi-Fi network we attach the cooperation server which

holds the content and prepare chunks. Then the devices will create another

Wi-Fi network, using Wi-Fi direct, to be used as LI. At this point the phones

are ready to start the download procedure, using all the same algorithm at

a time.

As already exposed in section 2.3.4, the real scenario is different from the

one we have used in numerical simulations. The reason is that to show a real

advantage in NC usage in the Android application, we need to use a larger file,

with respect to the one we have used into the numerical simulations. Another

difference between the two numerical simulated and real case scenario is that

due to the problem explained into section 3.4.3, the Cooperation Server has to

impose a transfer rate of few kbps. So the real Internet connection provided

to the devices is very slow, comparable to a GPRS one.

The application results are tested against the numerical simulated ones,

to check the correctness of the implementation. During comparison, we need

to remember the numerical simulation limitations, regarding the scenario and

the implementation itself, exposed in 2.2.6.

The parameters we have used in are summarized in the following table

3.3, to simplify the comparison with the numerical simulation.

3.4. Results Analysis 74

Table 3.3: Parameters of the real environment.

Parameters

File Size 768.05 KBytes

Number of ”Nexus 4” Devices 4

Number of Runs 10

Chunk Size 1378 Bytes

RI Speed 64 Kbps

RI Loss Probability Unknown

LI Speed 27 Mbps

LI Loss Probability Unknown

3.4.2 Results

The download procedure is executed 10 times for every algorithm, results are

averaged as in the numerical simulations. The results are grouped in table

3.4. You can see the number of chunks downloaded by the RI (Internet),

by the LI (NC), the number of duplicated- (Dup.) and of the corrupted

chunks (Corr.). The last column represents the mean throughput, i.e. the

mean of the transfer speed measured by the devices. The duplicated chunks

are calculated as the number of transmissions that are correctly received by

the node, but does not add any information to the node. For example the

node already owns the chunk contained into the specific transmission. The

corrupted chunks are calculated as the number of transmission in which the

CRC integrity check fails. In the table are grouped the results from the direct

linear download from the remote host (W/O NC), with the reference RLB

algorithm and with the proposed 2-by-2 XOR algorithm.

As you can see in table 3.4, the results are comparable to the numerical

simulated (see table 2.3). This means it is really possible to implement the

2-by-2 XOR algorithm into personal device with performance improvement

for the user. There is a 14 % difference between the theoretical simulated and

the practical implementation, this can be explained both with the aspects

3.4. Results Analysis 75

Table 3.4: Android application results, in real case scenario. Is summarized the number

of packets obtained by every interface, with the number of duplicated- (Dup.) and

corrupted packets.

Application results

Internet NC Dup. Corr. Mean Speed

W/O NC 570 0 1 0 63 Kbps

RLB 387 183 1786 254 90 Kbps

2-by-2 XOR 250 320 1552 124 140 Kbps

illustrated into section 3.4.3 , either with the limitation introduced by the

simulated scenario (see section 2.2.6). In a nutshell the difference is that the

signalling traffic is not present into the numerical simulator, thus the real

performance are poorest.

Regarding the performance of the other two modes, the direct non cooper-

ative mode reaches 63 Kbps, proofing that the cooperative server successfully

limits the bandwidth, and surprisingly, the RLB algorithm marks an iden-

tical (or slightly better) mean speed than the numerical simulated version.

The reason for this type of result is that the random choice of the chunk to

be transmitted generates a so poor throughput that the loss in performance

of the real implementation explained into the following section 3.4.3 is not

noticeable.

Generally speaking, the improved data rate, delay, and robustness comes

obviously by the global accumulated remote links with its inherent diversity.

Regarding the energy consumption [16], in a nutshell, as long as the energy

per bit ratio is better in the short range connection than the cellular link, the

cooperation will help in sparing energy on the devices. In fact the number of

chunks (and consequently the number of bits) transferred by the RI is less in

a NC enabled environment than in a typical one. Since the path loss is much

smaller on the short range communication (around 10 m) typical of local

environments than the cellular one (several 100 m), with the NC adoption

3.4. Results Analysis 76

Figure 3.17: The classic approach with two network adapter.

we will spare energy regardless of the local wireless transmission technique

used, in present as much as in future technologies. For cooperative wireless

networks the proposed 2-by-2 XOR NC algorithm seems a viable solution to

decrease the traffic within the short range cluster and with that to decrease

the delay and the energy consumed.

3.4.3 Real-Case Issues

As told before, the real Android implementation suffers of an issue. Normally

the application is used assigning the two RI and LI to different physical net-

work adapter on the device, as in figure 3.17. As the typical configuration,

the RI is the cellular data connection, while the LI is the Wi-Fi network

adapter. The problem is that we can use the wireless network into two dif-

ferent mode at the same time. The local Wi-Fi interface is used to generate,

or join, a Wi-Fi Direct P2P Group to exchange chunks with the neighbors,

and this is the key point of the application itself. The problem is that, as

in our scenario, the device can also be at the same time connected to an-

other Wi-Fi network (in infrastructure mode), to get Internet connectivity.

This is possible by setting the Network Interface Controller (NIC) to switch

at a fixed time rate, from the channel used by the P2P Group to the one

used by the Wi-Fi infrastructured network and vice versa, like in figure 3.18.

Even if the Android API documentation does not report any issue about this

configuration, our application reveals that the NIC suffers of some errors.

As result, the NIC switches the channel configuration even during the

reception of a packet. This results in packet corruption. This is the reason

of the high number of corrupted packet signaled by the application, because

3.4. Results Analysis 77

Figure 3.18: In case the RI and the LI are assigned to the same network adapter, the

Network Interface Controller has to switch between the two Wi-Fi channels, when it

is required.

all the UDP local messages are not a priori integrity-checked and thus the

application build-in CRC check fails. This is an issue that degrades the

throughput achievable by our application.

Into the RI side, however, this issue creates a very strange situation. In-

deed, the RI relays on a secure TCP connection through the Internet, to the

cooperation server. One of the most important and characteristic feature

of the TCP stack is to check for the integrity and for the sequentiality of

the received packets. This means that the packets are numerated and there

is a re-transmission system that can be used to retrieve lost packets. In

figure 3.19 is shown an example of a broken transmission. In this specific

case, the transmission of the packet number four fails. Since TCP packets

are numerated, the receiver notices the lack of the fourth packet and asks

for the retransmission. This process is completely transparent to the upper

ISO/OSI application layer, thus the application relaying on a TCP connec-

tion receives always all the transmitted packets, in the right order. In case

the Android NIC is forced to work over two different channels, like in our

case, this mechanism manifests some issues. Indeed the TCP transmission

acts exactly as an UDP one: there is no sequentiality control and, most im-

portant, there is no transmission error control. As a consequence we found

out of sequence packets and corrupted packets at the application layer; in

case of out-of-sequence packets, there is no problem, the algorithm does not

require a specific order in transmissions, but it is really important to detect

broken packets. This is the reason why, even into the cooperation server pro-

tocol, there is a CRC field to check integrity client side and discard broken

packets. Without this check, indeed, invalid chunks propagates across the

3.4. Results Analysis 78

Figure 3.19: TCP packet transmission sequence with transmission error. When the

receiver receives an out of sequence packet, it requests the retransmission of the lost

one.

In this example we suppose that the acknowledge (ACK) is sent every three transmis-

sion; the ACK packet confirms, as usual, the correct reception of all the packets until

the number it carries.

Selective Repeat is one of the automatic repeat-request (ARQ) techniques; with this

technique the receiver asks for the retransmission of a single specific packet.

3.4. Results Analysis 79

whole cloud network, compromising the decoded content on all the devices.

This issues can be simply avoided using a cellular network connection to

provide Internet connectivity to the device. Unfortunately this is not possible

at this moment as it would be necessary one SIM for each device. The way

we use to avoid this issue is to limit bandwidth into the cooperation server,

to let the NIC of the devices to stay as much time as possible into the P2P

Group channel, loosing the smallest number of packet that is possible. A

good compromise is to limit the cooperation server bandwidth to 64Kbps,

as in our case, simulating a GPRS cellular link. More bandwidth will result

in non coherent results: depending on the random time in which the NIC

switches channel, the application gives out the expected number of packets

obtained from NC, as well as a small number, which may also tend to zero.

Chapter 4

Conclusions and Future Work.

This thesis has been realized with the aim to go beyond the limits character-

izing the actual available mobile communication systems. Starting from the

NC theory present up to now in literature, we have proposed an alternative

approach, based on the XOR operation. Accordingly, we have characterized

the scenario of application. Then we have summarized the actual NC theory

to highlight the key points that we can use into our original algorithm. The

focus is then moved to the 2-by-2 XOR algorithm: it has been explained

which are the benefits in using the proposed algorithm and which are the

key differences with respect to the classic NC theory. The algorithms are

then numerically simulated into a specific scenario, to justify the implemen-

tation on real devices. We observed that the numerically simulated results

are coherent with what we expect, as a consequence the proposed algorithm

is deployed into real devices to test the performance in a real scenario. An

Android based application has been developed with this aim. Finally, the re-

sults collected from such an application are compared with the ones obtained

from numerical simulations, to validate the algorithms in a real scenario.

The analysis work conduct in this thesis has demonstrated how the pro-

posed NC algorithm, 2-by-2 XOR, is suitable to be deployed into real devices

for everyday usage. It offers more than the double of the throughput with

respect to the direct-, single device download. It is more than 1.5 times faster

80

Chapter 4. Conclusions and Future Work. 81

than the reference RLB approach. The advantage with respect to the GLC

algorithm, taken directly from the NC theory, is evident both in terms of

implementation complexity, and in the computational power requirements.

Although is requiring some additional signaling traffic, the proposed 2-by-2

XOR algorithm does not require any complex computation at the device.

Thus the downloaded content is immediately available to the device, when

the download is completed. This also compensates the minor throughput

offered with respect to the GLC algorithm.

Future Work

Here are some possible future field of application for the NC theory and in

particular for the proposed 2-by-2 XOR algorithm.

Automatic Peer Selection

The first idea to improve the proposed application is to implement the auto-

matic selection of nearby peers. As a consequence, the user has not to select

manually a nearby device to enter the cloud network, the system will do it.

This is the first step to create an OS based NC helper, that can provide NC

benefits on each transmission done by the device.

Pervasive Mobile Device

A possible future development direction for the proposed 2-by-2 XOR al-

gorithm is the adoption in many mobile device OS, like Android, Windows

phone and similar. This will guarantee an improvement over the current

network performance in downloading common contents, like OS and applica-

tion updates, generating at the same time less traffic to the server network.

Implementation into the device OS can allow all the applications to use the

NC technology in a transparent manner.

Chapter 4. Conclusions and Future Work. 82

Motes

By definition a mote is a sensor node in a wireless sensor network that is

capable of performing some processing, gathering sensory information and

communicating with other connected nodes in the network. Motes are char-

acterized by small size, poor computational power and low power consump-

tion. The 2-by-2 XOR approach is usable even on motes, in contrast with

other NC algorithms, because only requires that the mote can compute XOR

operations, which is typically a low power-demanding operation, often it is

hardware implemented. With this technique it is possible to give the new

generation sensor network the possibility to preserve energy, maintaining ac-

tive the radio interface less time.

Automotive

Another field of application for the proposed algorithm is the automotive

segment. In the future car-to-car communication system will be adopted by

every vehicle available in the market. They will be useful to share informa-

tion about the traffic situation as well as the road condition and many other

useful information for both the passenger and the car itself. An example

could be the satellite navigator that automatically adjusts the route to avoid

queues. Another example can be the automatic balance adjustment; the car

can share information about the road to allow the following cars to auto-

matically set some parameters into electronic controlled suspensions to let

the passengers to have the maximum comfort. All this information exchange

can benefit from the NC technique usage. In fact, the 2-by-2 XOR algorithm

improves the robustness of the transmissions in an environment with high

loss probability. As a consequence, the car-to-car communication is made

possible even if the communication links between cars are not reliable. The

less network latency in an 2-by-2 XOR enabled environment can be useful to

a faster propagation of the information across the cars, allowing a well-timed

change in route.

Appendix A

In this chapter we analyze the Android Network Coding Demonstrator ap-

plication installation and usage.

(a) File selection (b) Permissions request

Figure 1: Android Application installing procedure (Part 1)

83

(a) Application installing (b) Installation finished

Figure 2: Android Application installing procedure (Part 2)

The installation of the application is simple as any other installation on

an Android based device but until the application is published to the Android

Play Store, you have to manually download the application as an APK file.

In figures 1 and 2 you can see the installation process.

The installer remember us that the application require the permission to

use some features of the device. In table 1 is a short review of the permis-

sions required with the reason why we need that specific permission on our

application.

When the installation is complete, you can start the application as con-

ventional applications. In figure 3 is illustrate the main screen. The Start

Transfer Activity button skips the NC configuration and directly starts the

download procedure with an unicast connection. Alternatively, if you chose

(a) Main Screen (b) Peer Selection

(c) Application installing

Figure 3: Android Application Life Cycle

Table 1: Application permissions requirements.

Permissions required by the application

Permission

Full network access Required

Connecting and Disconnecting Wi-Fi networks Required

Network Connectivity Required

Check Network Connection Required

Check Wi-Fi Connection Required

Read Phone Identity Required

Read/Write External Storage Required

to scan for local neighbors, you have to select one peer from the list of the

available neighbors. You will be connected to that peer specified and the two

devices automatically negotiates the roles they will have in the P2P network.

In case the selected peer already belongs to a P2P network, you will be added

to such a network to share chunks with all the pre-existing nodes.

The transfer view presents the information the application outputs during

the download. In this view is indicated the total number of received chunks

and the division between locally obtained - by performing NC cooperation

techniques - and directly received chunks, from the cooperation server. Other

available information is the number of duplicated- and corrupted transmis-

sions received, as well as the total mean incoming speed.

In figure 4 is possible to see the options view, that is created to allow

the user to set some important parameters for the application execution.

It is possible to enable or disable the cooperation procedure. When the

cooperation procedure is enabled, it is required to select the algorithm to be

used. It is also required to insert the address of the cooperation server for

the remote interface. There is also an option to keep the screen active during

the transfer, to let the user to check the download progress without having

to unlock the phone.

Figure 4: Application Options View. Here you can specify if you want to use NC

and in case which algorithm you want to use. You have to specify the address of the

Cooperation Server

In figure 5 you can see the last screen available during the download:

the image view. In case the selected file to be transfered is an image, you

can select this view from the options menu and you can visually observe the

download progress. The image is composed while the chunks are correctly

downloaded by the device. When the transfer is complete, the downloaded

file is saved into the mass storage of the device, to let the user to check the

correctness of the transfer.

Figure 5: Visual transfer progression. The image is composed while the chunks are

downloaded.

Appendix B

In this section we illustrate the code analysis for the Android demonstrator.

The application is written in Java-code, as the only programming language

supported by the Android platform. The User Interface (UI) parts, not

analyzed in this quick review, are written as traditional XML code.

The Android application code is functionally divided in many class as this

is useful to logically divide the application structure into functional blocks,

that are working together. This type of structure is widespread because it

helps into errors preventing and correction, as it is possible to test all the

classes individually.

The key point of the presented structure is the NC class, which is an

abstract one. This means that in this class is only defined the structure of

the class itself. The practical implementation has to be done in a separate

class. As a consequence the developer can add any type of coding scheme,

extending this abstract NC class with proprietary code. The NC abstract

class defines also some functions that are common to all the NC algorithms.

The main classes of the project are analyzed in the following pages, pre-

senting also the relative UML diagram.

90

Device class

The first class we analyze is the Device class (Figure 6), which represent a de-

vice in the cloud network. The class contains all the useful information about

the specific device, like a name and S/N field, useful for device identification.

It is also present a field for the IP address assigned to the device, this is used

to identify the received transmissions. The Device class supplies functions

to set chunks that it owns, this means that when the application receives a

service transmission by this specific client which contains the list of the de-

vices’ missing chunks, this function will be used to update the chunk status.

The most important function that this class provides is the getMissing() that

returns the list of missing chunk for the device.

The Devices class manage the list of devices representing all the nodes

that belong the cloud network. The functions are an extension of the previous

ones and require the address of the specific device to query. The Timer

defined is used to actively ask for chunk status update to the neighbors.

Figure 6: Device class scheme

z

FileSave

The FileSave class (Figure 7) is the

Figure 7: FileSave class scheme

one designated to the local file manage-

ment. In this class we find all the func-

tion to segment the data into chunks,

read and write chunks and check the CRC.

This class is called whenever a function

needs to manage a chunk. The class also

present a linked list of all the chunk the

application owns. A specular list of all

the missing chunks is also provided. They

are used mainly by the NC algorithm,

but are also used by the application as

they has to be transmitted to the neigh-

bors periodically. A RandomChunk list

is compiled when the application starts:

the aim of this list is to provide ran-

dom chunk selection. The list is compiled

at the start time to improve the perfor-

mance during the execution.

Internet Receiver

The Internet Receiver class (Figure 8) is responsible of the Remote Interface

(RI) with the cooperation server. This class, in cooperation with the Inter-

net Downloader, manage the connection to the remote cooperation server,

the reception of the chunks through this interface and the acknowledging

process to the server. The Internet Receiver class is called by the Internet

Downloader every time it receives a packet from the cooperation server. The

Receiver class implements an interface of the Downloader to manage the re-

ceived content. Into the Receiver class is implemented the logical algorithm

to execute the received command, such as the call to the FileSave class to

save the received chunk or to check which chunk to require to the cooperation

server. A Timer instance is initialized to check for timeout errors. In case

a timeout happens, the connection with the cooperation server is closed and

re-initialized.

Figure 8: Internet Receiver class scheme

Broadcast Receiver

The Broadcast Receiver class (Figure 9) is developed following the same

scheme as for the Internet Receiver and the Internet Downloader classes.

The Broadcast class, in fact, defines a Receiver interface, implemented by

the BroadcastReceiver class. In this structure the Broadcast class is respon-

sible of the socket communication, since in this class are implemented the

communication routines. The receiver decodes the received messages and

make the action required by the received message. As a consequence, the

BroadcastReceiver class will interact with a number of other classes, like the

FileSave class with the aim of saving a received chunk, the Devices class

to update the chunk status for the all the devices that belong to the cloud

network. It also use the functions provided by the abstract NC class to

communicate with the other neighbors, in a NC enabled environment.

Figure 9: BroadCast Receiver class scheme

NC

This is the class (Figure 10) implementing the Network Coding algorithm.

The abstract class NC implements the basic procedures and defines the basic

functions. It contains a Timer instance to periodically publish updates about

the chunk status. This abstract class can be extended to implement every

algorithm. In this case we have implemented the two algorithms, RLB into

the LocalBroadcastNC class and the 2-by-2 XOR into the XORNC class.

Each of the two class extends the methods defined into the abstract NC

class, overriding the saveChunk and sendChunk functions. The XORNC class

adds also some useful proprieties, like the scoreMiss and scoreHave vectors,

that are used to count how many devices own any chunk, to find the best

chunks to be transmitted.

Figure 10: Network Coding class scheme

Utils

The Utils class (Figure 11) contains all the useful functions that are used

across the whole application. It is declared as statical, as a consequence in

any point of the application code is possible to access the functions contained

into the Utils class. In this class il also stored the global variables, like the

WifiP2PManager or the receivers for broadcast events.

The ByteUtils class, following the same concept, contains the functions

to convert all the used data types into bytes sequence, to be transmitted

over the network link. It also contains the inverse functions to decode byte

sequences into any of the used data types.

Figure 11: Utils Class scheme

WiFiDirectBroadcastReceiver

The WiFiDirectBroadcastReceiver class (Figure 12) is responsible of the P2P

communication system. Indeed, this class contains all the functions used to

search for Wi-Fi Direct enabled neighbors. The connection function and the

role negotiating procedures are also implemented into this class. This way,

accessing this class, is possible to control all the aspects of the P2P cloud

sharing platform. When a new transmission is received, it is forwarded to

the Broadcast class for managing.

Figure 12: Wi-Fi Direct class scheme

Bibliography

[1] P. Pakzad, C. Fragouli and A. Shokrollahi, Coding Schemes for Line Net-

works,Laboratoire d’algorithmique (ALGO),Ecole Polytechnique Fed-

erale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland

[2] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, Jon Crowcroft, XORs

in The Air: Practical Wireless Network Coding,MIT CSAIL Univ. of

Cambridge

[3] C. Fragouli,J. Le Boudec,J. Widmer, Network Coding: An Instant

Primer in ACM SIGCOMM Computer Communication Review Volume

36 Issue 1, January 2006 Pages 63 - 68, 2006

[4] F. Fitzek, Network Coding: Applications and Implementations on Mo-

bile Devices, Bodrum, Turkey. 2010.

[5] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, Code torrent: content

distribution using network coding in vanet, In MobiShare ’06: Proceed-

ings of the 1st international workshop on Decentralized resource sharing

in mobile computing and networking, pages 1-5, New York, NY, USA,

2006. ACM.

[6] F. Fitzek and M. Katz, Cooperation in Wireless Networks - Cooperation

in Nature and Wireless Communications,chapter 1, pages 1-27. Springer,

2006.

98

[7] F. Fitzek and M. Katz, Cognitive Wireless Networks: Concepts, Method-

ologies and Visions Inspiring the Age of Enlightenment of Wireless Com-

munications ,Springer, July 2007

[8] M. Pedersen, F. Fitzek and T. Larsen, Implementation and Performance

Evaluation of Network Coding for Cooperative Mobile Devices in Com-

munications Workshops, 2008. ICC Workshops ’08. IEEE International

Conference. Aalborg University, Denmark, 2008.

[9] D. Camps-Mur, A. Saavedra and P. Serrano, Device to device commu-

nications with WiFi Direct: overview and experimentation,Heidelberg,

Germany, 2012.

[10] T. Ho, R. Koetter, M. Médard, D. R. Karger and M. Effros, The Ben-

efits of Coding over Routing in a Randomized Setting,2003 IEEE Inter-

national Symposium on Information Theory

[11] P. A. Chou, Y. Wu, and K. Jain, Practical network coding,Allerton

Conference on Communication, Control, and Computing, Monticello,IL,

2003.

[12] S. Acedanski, S. Deb, M. Médard, R. Koetter, How Good is Random

Linear Coding Based Distributed Networked Storage?, paper published

during NetCod 2005

[13] C. Gkantsidis, J. Miller, P. Rodriguez, Anatomy of a P2P Content Dis-

tribution system with Network Coding, Microsoft Research, Cambridge.

[14] R. Jradi, L. Reedtz, Ad-hoc network on Android, Bachelor Thesis, Tech-

nical University of Denmark 2010.

[15] J. Ebrahimi and C. Fragouli, Combinatiorial Algorithms for Wireless

Information Flow, EPFL Lausanne, Switzerland.

[16] J. Jou, M. Gerla, M.Stehr, Content Network Coding on Androids: En-

ergy Considerations, DARPA CBMEN project

[17] L. Romera, Location Based Pre-caching and Network Coding in Smart

Content Distribution,Master’s Degree Project - January 2013

[18] L. Keller, A. Le, B. Cici, H. Seferoglu, C.Fragouli, A. Markopoulou, Mi-

croCast: Cooperative Video Streaming on Smartphones, School of I&C

EPFL, Lausanne, CH - 2012.

[19] M. Wang and B. Li, Random push with random network coding in live

Peer-to-Peer streaming,IEEE Journal on Selected Areas in Communica-

tions, 25(9):1655–1666, Dec. 2007.

[20] M. Pedersen, J. Heide, F. Fitzek, and T. Larsen, PictureViewer - a

mobile application using network coding In Proceedings of the 2009 Eu-

ropean Wireless Conference, pages 151–156, May 2009.

[21] G. Ananthanarayanan, V. N. Padmanabhan, L. Ravindranath and C.

A. Thekkath, COMBINE: leveraging the power of wireless peers through

collaborative downloading In Proceedings of the 5th International Con-

ference on Mobile Systems, Applications and Services (MobiSys), pages

286–298, 2007.

[22] R. Chandra, S. Karanth, T. Moscibroda, V. Navda, J. Padhye,R. Ram-

jee, and L. Ravindranath, DirCast: a practical and efficient Wi-Fi mul-

ticast system In Proceedings of the 17th IEEE International Conference

on Network Protocols (ICNP), pages 161–170, Oct. 2009.

[23] H. Shojania and B. Li, Random network coding on the iPhone: fact or

fiction? In Proceedings of the 18th International Workshop on Network

and Operating Systems Support for Digital Audio and Video (NOSS-

DAV), pages 37–42, 2009.

[24] M. Stiemerling and S. Kiesel, A system for peer-to-peer video streaming

in resource constrained mobile environments In Proceedings of the 1st

ACM Workshop on User-provided Networking: Challenges and Oppor-

tunities (U-NET), pages 25–30, 2009.

[25] S. Li and S. Chan, BOPPER: wireless video broadcasting with Peer-

to-Peer error recovery In Proceedings of the 2007 IEEE International

Conference on Multimedia and Expo,pages 392–395, July 2007.

[26] WiFi Alliance. Wi-Fi direct, http://www.wi-fi.org.

	List of Figures
	List of Tables
	Glossary
	Introduction
	Network Coding
	Problem Formulation and Cloud Scenario
	Network Coding Theory
	Applications
	Wireless NC for error recover
	Wireless NC in meshed networks

	NC Algorithms for Cloud Scenario
	Simple Local Broadcast
	2-by-2 XOR "Bit-Torrent"
	Global Linear Combination

	NC Performance Analysis for Simulated Scenario
	Scenario of Simulation
	Description of Scenario
	Interface definition
	Simulation Parameters

	Numerical Simulator Implementation
	Packet reception
	Simple Local Broadcast
	2-by-2 XOR
	Global Linear Combination
	Decoding
	Simulation Scenario Limitations

	Numeric Results
	Parameters for Numeric Simulation
	Remote Interface (RI)
	Local Intra-Cloud Interface (LI)
	Global Results

	Android Demonstrator
	Technologies
	Why Android?
	Wi-Fi

	Network Coding Demonstrator App
	Scenario
	Host side
	Android side
	Network Coding Protocol (NCP)
	Cooperation Server Protocol

	Running on Real Device
	Application Life-Cycle

	Results Analysis
	The Real Case Scenario
	Results
	Real-Case Issues

	Conclusions and Future Work.
	Bibliography

