
POLITECNICO DI MILANO
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Abstract

In this Thesis, we will discuss an high-level optimizer solving the problem of find-

ing optimal solutions for scheduling issues on a gravity-fed large-scale irrigation

network. Our aim will be the scheduling of the requests from the farmers fulfilling

given constraints on the water-level and minimizing the delivery delays in water

supply. In this regard, we will develop different optimization problems in order

to achieve our objective.

In particular, first of all, we will discuss a suitable model of an irrigation

network’s channel. Starting from the continuous-time model of a pool, we will

develop a state-space discrete-time model of a string of pools in the centralized

fashion. Secondly, to guarantee the water-level to fulfill given upper and lower

bounds among the entire prediction horizon, we will define a generic optimization

problem formulation whose dynamical constraints are included. Since our aim

is to minimize the delivery delays, we will choose the initial time of the water

supply as the decision variable. This will lead to a non-linear optimization prob-

lem. We will, then, turn into a {0, 1} integer linear formulation via change of

variables. Afterwards, we will reformulate it by relaxing the integer constraints.

We will, hence, obtain two relaxed problem formulations that do not guarantee

the preservation of the original shape of the requested profile. Consequently, we

will devise different possible objective functions for the problems. In particular,

regarding the relaxed formulations, one linear and two quadratic solutions will

be discussed and tested. Finally, we will apply two distributed algorithms on

the decomposed problem. On one hand, we will implement and test the Round

Robin algorithm. On the other hand, a Primal Decomposition method will be

applied. In the end, we will compare the results of both the distributed solutions

and we will remark the drawbacks and the advantages of both.





Sommario

La maggior parte delle risorse idriche, attualmente impiegate nelle attività agri-

cole, proviene dalla rete fluviale. A causa del continuo aumento della popolazione

globale, si stima che, in pochi anni, questa risorsa potrebbe arrivare gradualmente

a non coprire l’intero fabbisogno idrico necessario a questa attività produttiva.

Per questi motivi, una gestione attenta e lungimirante di questa fondamentale

risorsa naturale risulta essere essenziale, specialmente nelle aree geografiche carat-

terizzate da scarse precipitazioni, come alcune regioni dell’Australia, dove sono

attualmente presenti reti dedicate alla distribuzione dell’acqua per l’irrigazione

dei campi agricoli. In generale, i problemi di una rete di irrigazione di larga scala

sono legati a una inefficiente gestione della risorsa che ha come conseguenze lo

spreco o la mancanza dell’acqua durante certi periodi dell’anno. Una delle prin-

cipali cause è il controllo manuale delle chiuse dove ancora non è presente una

struttura automatizzata.

Una rete di irrigazione è costituita da serbatoi (laghi artificiali dove l’acqua

viene raccolta durante la stagione umida) e da canali che forniscono l’acqua alle

aziende agricole. Lungo questi canali, sono inserite delle chiuse che li dividono in

sezioni e ne regolano il flusso in modo da mantenerne il livello d’acqua a un dato

riferimento.

Per evitare le perdite e per garantire una sostenibilità a lungo termine, devono

essere implementati sistemi di controllo automatici che garantiscano lo sfrutta-

mento ottimale della risorsa idrica e minimizzino gli sprechi.

Fino ad ora, sono state realizzate alcune soluzioni centralizzate per la gestione

delle richieste (si veda Figura 1.(a)). Possibili sviluppi con schemi distribuiti sono

attualmente in fase di studio (si veda Figura 1.(b)).

In questa Tesi, il nostro scopo è quello di formulare un opportuno problema

di ottimizzazione di alto livello che risolva il problema della pianificazione delle



(a) Soluzione a due livelli centralizzata (b) Soluzione a due livelli distribuita

Figure 1: Due schemi per la gestione e pianificazione delle richieste effettuate dagli utenti di
una rete di irrigazione

richieste effettuate dagli utenti di una rete di irrigazione di larga scala. In partico-

lare, verranno formulati alcuni problemi di ottimizzazione allo scopo di minimiz-

zare i ritardi nel fornire servizi idrici agli utenti, rispettando vincoli sui massimi

e minimi livelli dell’acqua nelle singole piscine.

Per prima cosa costruiremo un modello di un canale della rete di irrigazione.

Partendo da un modello a tempo continuo di una singola piscina, arriveremo alla

definizione di un modello centralizzato a tempo discreto in spazio di stato. In

questo modello è stato inserito un sistema di controllo di basso livello decentra-

lizzato.

Successivamente, formuleremo un problema di ottimizzazione che permetterà

di esprimere in modo esplicito i vincoli massimi e minimi di livello dell’acqua che

devono essere rispettati lungo tutto l’orizzonte temporale indicato. Svilupperemo

quindi quattro problemi di ottimizzazione: un problema non lineare, uno lineare

intero e due ottenuti dal rilassamento dei vincoli di interezza. Quindi, saranno

discusse alcune possibili funzioni obiettivo. Verranno infine mostrati vantaggi e

svantaggi dei problemi di ottimizzazione descritti, anche con l’ausilio di simu-

lazioni e confronti.

Per ultimo, si procederà con la scomposizione del problema di ottimizzazione

in sotto-problemi di scala ridotta, con l’ausilio di tecniche da letteratura. Questa

fase sarà resa possibile grazie a un preventivo riordinamento degli elementi dei

vettori e delle matrici coinvolti nei vincoli. Quindi, verranno discussi due diversi

algoritmi distribuiti. In particolare, saranno presentati l’algoritmo Round Robin e



la scomposizione primale. Quest’ultima sarà valutata la soluzione più interessante

sia in termini di ottimalità della soluzione ottenuta, sia dal punto di vista di

possibili sviluppi futuri.





Chapter 1

Introduction

In this chapter, we will introduce some fundamental control problems related to

the management of large-scale irrigation networks and discuss the motivations of

our Thesis. Our goal is to provide the reader with basic knowledges regarding

the system and the solutions that are already implemented. Hence, first of all,

a general configuration of an irrigation network is described. Furthermore, the

problems related to such a large scale system are described. Also, we will outline

the original contribution of our work and, finally, the structure of the Thesis will

be shown.

1.1 Context and Motivations

Around 70% of the water diverted from rivers and groundwater worldwide goes

to irrigation and this underpins 40% of global food production. Since the world

population is always increasing, the amount of water will shortly not be able

to cope the water demand [8]. For these reasons, the water preservation is a

very important issue, especially in dry areas. A forward-looking and careful

management of this essential resource should be the most important matter,

especially in that areas. Thereby, it is crucial for the agriculture to implement

efficient irrigation management procedures [15].

Australia is a very dry continent and it is estimated that, not late, the water

demand for agriculture will not be entirely satisfied. In particular, the North of

Victoria is one of the most productive regions of Australia regarding the agri-

culture. It has been estimated that more than the 90% of the Australian fruit
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and vegetable is produced in that area. The majority of irrigation in that region

is developed through a civil infrastructure of reservoirs and open channels that

supplies fresh water to farms as sketched in Figure 1.1.

Reservoir

Farm Farm

Farm

Farm

Gate

Pool

Main Channel

Secondary

Channel

Figure 1.1: A sketch of an irrigation network, source [6]

1.1.1 General Structure of an Irrigation Network

During the winter, water is collected in the reservoirs, e.g., artificial lakes, and it

is distributed to the farms during the summer through a large-scale irrigation net-

work. The latter is composed by artificial open channels, i.e., main and secondary

channels. The channels are divided into sections, called pools, by over-shot gates

(e.g. FlumeGateTM, see Figure 1.2.(a)). The water flow along the irrigation

channels is regulated by the gates.

The water-level of each pool is monitored. The measure is transmitted from

a radio antenna, that is installed close to the downstream gates, to the regulator

of the upstream gate. The gate, in turn, is controlled in order to maintain the

variations of the water-level to a set-point reference by varying the water flow.

The implemented controller, by now, is simply PI regulator that guarantees the

satisfaction of given performances, e.g. stability, robustness, etc.

The regulation of the water-level is an important and non-trivial issue, partic-

ularly since the water distribution is powered only by gravity. If the water-level

decreases too much (e.g. with respect to a given threshold), the performances

of the regulation and management systems are hampered because the water flow
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(a) Automated over-shot gate in a main
channel

(b) Automated over-shot gate at off-take
point

Figure 1.2: Automated over-shot gates

travelling across a gate is proportional to the water-level, in view of the fact that

water, that is supplied to the farms, is distributed through over-shot gates (see

Figure 1.2.(b)).

The opening of gates on behalf of farmers causes a variation of the water-

level. In terms of quality of service, it is also important to avoid fluctuations

from set-points, which yields to fluctuations in flow at the off-take points, in view

of the fact that the irrigation is gravity-fed. In particular, some lower bounds on

the water-level are fixed in order to guarantee the gates to supply a certain water

flow, in any case.

1.1.2 Problems of the Irrigation Network

Analysing the structure of the demand-supply mechanism, we can outline some

problems that, presently, lead to inefficient water supply. The water distribution

efficiency in irrigation networks can be defined as the ratio between the volume

of water actually exploited for irrigation and the amount of water requested from

the available resources. In many cases, the efficiency is estimated to be less than

50% [10].
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Large scale distribution losses are mainly caused by the water oversupply [6].

This occurs, since present water management systems are designed to guarantee,

in an overly-conservative way, suitable flow in the entire network, in any possible

situations. However, the amount of water that is not requested by the users

of the network, is lost at the end of the channel, usually in the sea. On the

other hand, also under-supply conditions may cause serious consequences from

the ecological standpoint, concerning the aquatic ecosystem. Problems of this

type have occurred in the last years, during the dry season.

Performance losses can also occur since the openings of the gates at farms, in

most cases, are presently manually actuated, which brings about possible delays

and errors.

In conclusion, more efficient and automatic water managing systems are re-

quired, to reduce or avoid losses, to tackle under-supply problems, and to tame

fundamental long-term environmental and sustainability issues.

1.1.3 Case Study

In this Thesis the case study consists of a part of the “Goulburn-Murray Irrigation

District” that includes about 7000 km of irrigation channels (see Figure 1.4).

The water is collected in an artificial lake called “Nagambie Lake” obstructed

by the “Goulburn Weir” (see Figure 1.3). The irrigation network in this area is

Figure 1.3: Pictures of the irrigation network of “Goulburn-Murray Irrigation District”; from
left to right: the “Nagambie Lake”, the “Goulburn Weir”, gates of the main channel, a gate of
a secondary channel, a farm

managed by a privately held Australian company called Rubicon Water Pty Ltd.

Rubicon Water leads the irrigation industry all over the world and provides their

customers all the necessary components, both hardware and software.
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Figure 1.4: The Goulburne-Murray Irrigation District: the EMG Channel is represented by the
dashed line starting from the Goulburne Weir going to the right-side
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1.2 Statement of the Problem

In this section, we want to highlight the recent results towards the solution to

the problem of enhancing the efficiency in water distribution. The discussed solu-

tions have been developed by the Rubicon Water research group in collaboration

with the University of Melbourne. Their cooperation has led to many important

achievements in flow measurement and control. Today, they jointly own the intel-

lectual property of many patents and they have been recognised by governmental

and academic awards.

1.2.1 Management of the Requested Off-Takes

As discussed in the previous section, the losses in terms of water can be caused

by a bad timing in irrigation, as a consequence of manual water scheduling on

the supply canals. Moreover, as discussed, this undesirable situation reduces

the performances in terms of efficiency of the overall irrigation network. In the

last years, Rubicon Water, according to the Australian Government, is turning

the manual gates at farms’ connections into fully automated systems. In the

meanwhile, it is developing the software to control the opening and the closure of

the gates. On one hand, Rubicon’s ConfluentTM software enables the managers

of water to plan and manage the requests from the users. On the other hand,

the farmers are provided a web application named Rubicon’s FarmConnectR© (see

Figure 1.5). Through the web interface, the farmers can request the off-takes in

Figure 1.5: FarmConnect R© web interface
(http://www.rubiconwater.com)

terms of flow of water, supply time and starting time. All the requests are daily
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collected by Confluent software. In order to schedule the demands, following a

FIFO (first in first out) logic, the software checks that static constraints, in terms

of maximum predicted flow rate, are satisfied. If not, the off-take is delayed at

the first available time. These leads to non-optimal solutions in terms of delivery

delays in water supply. Moreover, this solution does not guarantee the fulfilment

of the lower and upper bound constraints on the water-level in the pools. In this

Thesis, an optimal scheduling managing system will be developed.

1.2.2 Optimization Issue

In collaboration with Rubicon Water, a research group of the University of Mel-

bourne has been active, in the last years, in studying control solutions for irriga-

tion channel regulation [18].

Among the possible control solutions currently proposed, a two-layer one,

discussed below, is particularly promising. This two-layer control architecture

is endowed with a lower-layer decentralized/distributed control scheme and an

higher-level off-take planner (see Figure 1.6).

Figure 1.6: Structure of a centralized optimization problem: all the demands are collected by
a centralized solver that sends back the off-takes scheduling

Concerning the first, it is designed to control water-levels at given set-point

and consists in a decentralized/distributed scheme where, for each pool, a local
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PI regulator is committed to the control of the local water-level. In view of its

simplicity, the application of this scheme can be critical when constraints are

likely to be violated.

To prevent critical situation, and to guarantee optimal water supply to the

users (both concerning the minimization of supply delays and in terms of maxi-

mization of supply efficiency), higher-level optimization-based off-take scheduler

is proposed. This Thesis will focus on the latter point.

1.3 Original Contributions of this Work

In [1] and [9], two optimization programs for off-take scheduling are already

discussed and tested in simulation. Our work will develop this solution in order

to obtain scalable and less computationally demanding algorithms. The scope

of this Thesis is the creation and the testing of different formulations solving

the scheduling problem. This result will be achieved through a linear relaxation

of the constraints related to the original integer problem. Furthermore, we will

implement and test decomposition methods on the main centralized optimization

problem, in order to obtain distributed solutions (see Figure 1.7).

Figure 1.7: Structure of a decomposed optimization problem: the demands are sent to local
computational units, solving their ‘local’ problems, according to information received from a
master problem
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These important and innovative solutions create the basis for negotiation

mechanisms between the farmers and the water managers. These results will

be implemented on the real system in the future.

1.4 Structure of the Thesis

In Chapter 2, we will develop the model of a channel. Starting from the continuous-

time model of a pool, we will work out the centralized discrete-time model of a

channel. A suitable decentralized control system, that is adopted in order to

guarantee given performances in terms of robustness and closed-loop bandwidth,

will be shown.

In Chapter 3, we will formalize the constraints of a generic optimization pro-

gram and we will devise different centralized solutions for the scheduling opti-

mization problem: 1) a non-linear formulation (NLP); 2) a {0, 1} integer linear

program (ILP); 3) an optimization program (RP1) obtained by relaxing the in-

teger linear constraints; 4) a completely new linear problem formulation (RP2).

Afterwards, we will devise some suitable objective functions for all the problems.

For NLP and ILP, two different linear objective functions will be suggested. Con-

cerning the relaxed programs, we will implement different solutions. We will,

thus, show some simulation tests for comparing all the obtained results, both

concerning their computational demand, and regarding the optimality properties

of their solutions.

In Chapter 4, we will apply two distributed algorithms to the decomposed

relaxed linear problem. We will solve the distributed problems applying the

Round Robin algorithm and the primal decomposition method. The simulation

tests of both the algorithms will be shown in Sections 4.2.2 and 4.3.5. We will,

then compare the solutions and we will highlight the advantages and drawbacks

of both.

Finally, in Chapter 5, we will draw some conclusions. Possible future devel-

opments of this work are discussed.





Chapter 2

A Discrete-Time Model of an

Irrigation Network

In this chapter, we will discuss some preliminary concepts, whose importance will

be cleared in the following of the Thesis. First of all, we will devise the model of

a channel: in this model the low-level controllers, that guarantee the robustness

and a good tracking level of the reference by the water-level, are included. In

particular, a decentralized system structure is highlighted. Secondly, an high-level

control strategy in the form of an optimization structure is described.

2.1 Continuous-Time Model of a Gravity-Fed Ir-

rigation Network

In this section, we will focus on a part of an irrigation network, but all the

considerations we make can be extended to larger-scale systems. As discussed,

(in the case of irrigation network we are dealing with) the water is distributed via

open channels under the power of gravity. Each channel is divided in sections by

two gates (i.e. upstream and downstream gates). The stretch of a channel, lying

between two gates, is called pool. Each channel is identified by some parameters

that we will illustrate later on. In order to manage the water in an appropriate

way, the gates are controlled via a decentralized control system. In Figure 2.1,

the section of two pools is represented.
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pool i

pool i+ 1

vi−1 = ui

vi = ui+1

vi+1 = ui+2

yi−1

yi

yi+1

d̄i−1

d̄i

d̄i+1

gate i− 1

gate i

gate i+ 1

ui

ui+1

yi

yi+1

Ci

Ci+1

ri

ri+1

Figure 2.1: Sketch of an open-water channel with gates

2.1.1 Continuous-Time Model of a Single Pool

We will now devise a suitable model for our analysis. Due to the mass-conservation

principle, we have to guarantee that the variation of amount of water in a pool

yi, must be equal to the difference between the input and output flows, called ui

and vi, respectively. We denote by yi the water-level in pool i. Note that the

variable ui acts at the i− 1-th gate, while yi is measured next to the gate i (see

Figure 2.1). Thereby, we call td,i the time that the water takes to travel from

gate i− 1 to gate i. The open-loop model of the i-th pool, described in [6], is:

ẏi(t) = cin,iui(t− td,i)− cout,ivi(t)− cout,id̄i(t) (2.1)

where:

• yi is the water-level of the i-th pool at the bottom of the pool.

• ui is the input water flow at gate i− 1.

• vi is the output water flow requested by the downstream pool. Moreover,

it is the water flow entering in the i + 1-th pool. Hence, the variable vi is

called the coupling variable of the system: in fact, it holds that vi = ui+1.

In other words, vi represents the information being sent by the downstream

pool i + 1 to the upstream one i in terms of requested water flow. The

importance of such a variable will be discussed later on.
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• d̄i is the water off-take affecting the pool i. It is supposed to effect closely

to the downstream gate i.

• cin,i and cout,i are parameters depending on the geometry (width, height,

etc.) of the upstream and downstream gates, respectively, and on the sur-

face of the pool [6].

• td,i, as revealed in advance, is the internal time delay that the water takes

to travel from gate i to gate i+ 1.

In model (2.1), we are neglecting the dominant wave phenomenon. This is a

very good approximation provided that each local control-loop bandwidth lies at

a frequency below it. Without this assumption, the model would be much more

complex and less prone to the optimization methods studied in this Thesis. The

controller structure Ci will be discussed in the following.

Structure of the Decentralized Control System

In a decentralized control system, each pool is controlled separately, without

taking into account of the dynamics of the other pools. Let the water level yi

be the controlled and measured variable for the i-th pool. The measure of yi is

detected by embedded sensors at the end of the pool, close to the downstream

gate. The control variable is the water flow ui coming from the upstream pool

i − 1 through the gate i − 1. For the sake of simplicity, in our case, we will

consider the actuator to have an instantaneous effect on the control variable: it

is considered as a simple gain already included in the model. This approximation

is made, assuming that the dynamics of the pool (td,i∼ minutes) is much slower

than the actuators’ one (time constants in the order of seconds).

C1 C2 CN

P1 P2 PN

r1 r2 rN−1 rN

u1 v1 u2

d̄1

y1 y2

v2 u3

d̄2

yN−1

uNvN−1 vN

yN

d̄N−1 d̄N

Figure 2.2: Scheme of the decentralized control system
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To control the water-level in each pool in a decentralized fashion, PI regulators

are used. The controllers are designed in order to guarantee that the controlled

variable yi follows the given water reference ri, rejecting disturbances associated

with changes in the load d̄i in the i-th pool. The transfer function of the regulator

is:

Ci(s) =
κi(1 + sφi)

s(1 + sρi)
(2.2)

where the constants κi, φi and ρi are tuned to ensure closed-loop stability and

robustness and to limit the closed-loop bandwidth. This regulator is already

implemented in the systems of the irrigation network we are working on. As

discussed in [17], this decentralized control system does not guarantee satisfactory

disturbance rejection properties in transient conditions. This property is denoted

string-instability and is defined in [17]. It is possible to reject the string-instability

by using a distributed control scheme, rather than a decentralized one, i.e., by

adding a feed-forward compensator for each pool. Nevertheless, the analysis of

such a distributed control system (PI regulator plus feed-forward compensator)

is not relevant for our Thesis. Indeed, the solutions, that we will achieve using

the decentralized control system, can be easily modified in order to suit also the

distributed control system. This can be done, just changing the predictor (see

Section 3.2) which is based on the model we want to use.

2.1.2 Continuous-Time Model of a Channel

In the previous section, a suitable model of a controlled single pool is described.

In this section, we are going to show the continuous-time model of an irrigation

channel, where the decentralized control system is embedded.

Combining N pools of a channel, we obtain the following continuous-time

model:

{
ẏi(t) = cin,iui(t− td,i)− cout,ivi(t)− cout,id̄i(t)

ui(t) = vi−1(t)
(2.3)

for i = 1, . . . , N

with the boundary condition vN = 0 (we assume that there is no flow out of

the last pool). Combining the equations of the single pool with the relative de-

centralized controller, we obtain the decentralized model of the channel. The
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water-levels yi, for i = 1, . . . , N , are the measured variables. The control vari-

ables ui, for i = 1, . . . , N , are the outputs of the controllers. In particular, as

anticipated in Section 2.1.1, ui is also the water flow exiting from the pool i− 1,

and named vi−1. We consider, hence, ui and yi as the outputs of the single

controlled pool i, while the inputs are ri, d̄i and vi.

An example of a controlled channel composed by four pools, endowed with

the decentralized control system, is shown in Figure 2.3.

PSfrag

r1

d̄1

v1

r2

d̄2

v2

r3

d̄3

v3

r4

d̄4

v4 = 0

u1

y1

u2

y2

u3

y3

u4

y4

pool 1

pool 4pool 2

pool 3

Figure 2.3: Sketch of a decentralized structure of a channel with N = 4 pools

The importance of the coupling variable vi becomes clear from Figure 2.3.

Focusing on pool N , and assuming that we start from steady state conditions,

supposing d̄i = 0 for i = 1, . . . , N − 1, we can see that a change of the relative

load d̄N effects directly the water-level yN , supposing the error eN = rN − yN

at steady-state to be equal to zero. In turn, an increase/decrease of yN , and,

consequently, of eN = rN − yN 6= 0, produces a variation of the control variable

uN (assumed to be equal to zero at steady-state due to the PI regulator). Since

uN must be equal to vN−1, due to the boundary condition vi = ui+1, a change

of vN−1 imposes a variation of yN−1, that, in turn, makes uN−1 vary. Thus,

iteratively, a change of the load d̄N affects all the water-levels in the upstream

pools from N − 1 to 1.

Generally speaking, a variation in the load d̄i affects the pools from i − 1 to

1, involving all the upstream control systems.

This is a particular structure that will be highlighted in the following, and

will be exploited for model decomposition purposes.
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2.2 Discrete-Time Model of a Gravity-Fed Irriga-

tion Network

In the previous section, a continuous-time model of a pool is devised and the

overall model of a channel is described. In this section, our scope is, starting

from the continuous-time model of the single controlled pool (2.1), to discretize

it and to build a centralized structure in order to obtain a suitable model for our

Thesis.

2.2.1 Discrete-Time Model of a Single Pool

To develop the discrete-time model, first of all, we are going to split (2.1) in two

equations: a storage equation and a transport equation. The latter represents

the delay, while the former contains the integrator term, i.e.:

{

ẏi(t) = cin,iu
′
i(t)− cout,ivi(t)− cout,id̄i(t)

u′
i(t) = ui(t− td,i)

(2.4)

The first equation in (2.4), can be easily discretized analytically, i.e.:

yi(k + 1) = yi(k) + Tycin,ix
D
i,1(k)− Tycout,ivi(k)− Tycout,id̄i(k) (2.5)

where Ty is the sampling time of the discrete-time model and xD
i,1(k) is obtained

by discretizing the second equation of (2.4). Indeed, in order to discretize the

delayed variable u′
i(t) = ui(t− td,i), we need nd =

td,i
Ty

discrete states representing

the delayed values of ui(t), i.e.:







xD
i,1(k + 1) = xD

i,2(k)

xD
i,2(k + 1) = xD

i,3(k)
...

xD
i,nd−1(k + 1) = xD

i,nd
(k)

xD
i,nd

(k + 1) = ui(k)

(2.6)

The latter is the discrete-time model of the i-th pool.

We will now show the model of the controller. As we have discussed in Section

2.1.1, each pool is controlled via a PI regulator whose transfer function is given
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in (2.2). In particular, we can write the control variable ui(t) as function of the

water-level error ri(t)− yi(t). In the Laplace domain:

Ui(s) = Ci(s)
(
Ri(s)− Yi(s)

)
(2.7)

We can easily transform equation (2.7) in a time domain state-space expres-

sion. In general, we obtain:

{

xK
i (k + 1) = AK

i x
K
i (k) + BK

i ri(k)− BK
i yi(k)

ui(k) = CK
i xK

i (k) +DK
i ri(k)−DK

i yi(k)
(2.8)

where xK
i (k) is the state variable vector of the i-th controller and (AK

i , BK
i , CK

i ,

DK
i ) represents the state-space model of the regulator.

Recalling that xD
i,nd

(k + 1) = ui(k), we can write the overall discrete-time

model for the controlled pool i as follows:







yi(k + 1) = yi(k) + Tycin,ix
D
i,1(k)− Tycout,ivi(k)− Tycout,id̄i(k)

xD
i,1(k + 1) = xD

i,2(k)

xD
i,2(k + 1) = xD

i,3(k)
...

xD
i,nd−1(k + 1) = xD

i,nd
(k)

xD
i,nd

(k + 1) = CK
i xK

i (k) +DK
i ri(k)−DK

i yi(k)

xK
i (k + 1) = AK

i x
K
i (k) +BK

i ri(k)−BK
i yi(k)

(2.9)

Note that the control variable ui(k) is, as a matter of fact, a state variable of

the controlled system model.
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We can now express (2.9) in a matrix form, i.e.:

















yi(k + 1)

xD
i,1(k + 1)

xD
i,2(k + 1)

...

xD
i,nd−1(k + 1)

xD
i,nd

(k + 1)

xK
i (k + 1)

















=

















1 Tycin,i 0 0 · · · 0 0

0 0 1 0 0 0

0 0 0 1 0 0
...

. . .
...

0 0 0 0 1 0

−DK
i 0 0 0 0 CK

i

−BK
i 0 0 0 · · · 0 AK

i

































yi(k)

xD
i,1(k)

xD
i,2(k)

xD
i,3(k)

...

xD
i,nd

(k)

xK
i (k)

















+

+

















0

0

0
...

0

DK
i

BK
i

















ri(k) +

















−Tycout,i

0

0
...

0

0

0

















d̄i(k) +

















−Tycout,i

0

0
...

0

0

0

















vi(k)

(2.10)

The output of this model is the measured water-level yi(k), so that the output

equation results to be the following::

yi(k) =
[

1 0 0 0 · · · 0 0
]

















yi(k)

xD
i,1(k)

xD
i,2(k)

xD
i,3(k)

...

xD
i,nd

(k)

xK
i (k)

















(2.11)

Renaming xi(k) =
[

yi(k) xD
i,1(k) xD

i,2(k) xD
i,3(k) · · · xD

i,nd
(k) xK

i (k)
T

]T

,

we obtain, from (2.10) and (2.11), the following expression:

{

xi(k + 1) = Aixi(k) +Br,iri(k) +Bd,id̄i(k) +Bv,ivi(k)

yi(k) = Cixi(k)
(2.12)

that is the discrete-time model of the controlled pool i (pool plus controller).
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2.2.2 Discrete-Time Centralized Model of the Channel

Our scope, in this section, is to create the centralized model of the channel that

we are going to apply in our Thesis. Let x(k), r(k) and d̄(k) be the state, the

reference and the load vectors of the centralized model, respectively, i.e.:

x(k) =









x1(k)

x2(k)
...

xN (k)









, r(k) =









r1(k)

r2(k)
...

rN(k)









, d̄(k) =









d̄1(k)

d̄2(k)
...

d̄N(k)









(2.13)

Focusing on the coupling variables vi(k), we know that ui(k) = vi−1(k) for all

i and vN(k) = 0 for all k. Hence, we can include the variables vi in the model,

stacking in the appropriate way the matrices we found in the previous section.

In particular, the state-space model of the centralized system, will be:












x1(k + 1)

x2(k + 1)

x3(k + 1)
...

xN(k + 1)












=












A1 Φ1 0 · · · 0

0 A2 Φ2 0

0 0 A3
. . . 0

...
. . .

0 0 0 AN























x1(k)

x2(k)

x3(k)
...

xN(k)












+









Br,1 0 · · · 0

0 Br,2 0
...

. . .

0 0 Br,N









r(k) +









Bd,1 0 · · · 0

0 Bd,2 0
...

. . .

0 0 Bd,N









d̄(k)

(2.14)

where Φi is a matrix stacking the vector Bv,i in the appropriate position. We can,

then, stack all the sub-matrices Ci, in order to obtain the matrix of the output

transformation C, in the following way:

C =









C1 0 · · · 0

0 C2 0
...

. . .

0 0 CN









(2.15)
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Figure 2.4: Centralized structure of the channel

Finally, the state-space model of the centralized system is:

{
x(k + 1) = Ax(k) +Brr(k) +Bdd̄(k)

y(k) = Cx(k)
(2.16)

After all this steps, the block-structure of the system has a triangular shape.

This follows from the cascade interconnection structure depicted in Figure 2.4. In

this figure, it is clear that the inputs of the decentralized model are the discretized

references ri and the loads d̄i and the outputs are the water-levels yi for all i.

This feature will be used in the decomposition of the optimization problem that

will be introduced in the following.

Initial Conditions

Once obtained the model (2.16), for simulation purposes, we may need to set the

initial condition x(0) of the states consistently with the model and in such a way

that the system is initialized in a steady-state condition. We have to proceed

through the following procedure, for each pool:

1. first of all, we have to set the water-level yi(0) equal to the relative reference

at time zero ri(0)
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2. secondly, we impose all the states, related to the delay, xD
i,j(k) for j =

1, . . . , nd to be equal to zero: xD
i,j(0) = 0 for j = 1, . . . , nd

3. finally, concerning all the other states (the ones related to the controller)

xK
i (k), we have to guarantee that there is no transients in absence of load,

even if the reference is non-zero:

x̄K
i

∣
∣
k=0

= AK
i x̄

K
i

∣
∣
k=0

+ BK
i (r̄i − ȳi)

∣
∣
k=0

= (I −AK
i )

−1(BK
i (r̄i − ȳi))

∣
∣
k=0

(2.17)

Since we imposed r̄i(0) = ȳi(0), then:

x̄K
i (0) = 0 (2.18)
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2.3 The Optimization Issue

As discussed in the previous section, we are dealing with a centralized discrete-

time model. The inputs are the water-level references ri and the loads d̄i. As

it has been detailed in Chapter 1, we will deal with the off-takes d̄i scheduling

problem, supposing the water-level references ri to be set. The latter can be fixed

and supposed decided a priori (based on past experience and knowledge on the

plant) or can be given as outputs of a further optimization problem. In our case,

we will assume that the water-references are not necessarily fixed at a certain

value, but, however, known for the period of time we are applying the scheduling

optimization problem.

The optimization problem we are dealing with, is an off-line one. Indeed,

given a prediction horizon among which the off-takes must be scheduled, given

the water-references in the prediction horizon and the demand of the farmers in

terms of water at time k, the optimizer solves, centrally or in distributed way,

a suitable optimization problem. After that, the optimal results, i.e., the water-

supply scheduling over the prediction horizon, are transmitted to the systems

that are devoted to water supply. In other words, a scheduling obtained at time

k is applied for the entire prediction horizon, denoted by ny, until time k + ny.

2.3.1 Centralized Optimization Problem

The centralized optimization program receives, as input, the known water-level

references ri of each pool and the requested off-takes d̄i from the users (farmers).

The scheduled off-takes di are the outputs of the optimization. The structure

of the centralized optimization problem is shown in Figure 2.5. The different

solutions, proposed to achieve our goal, i.e. the scheduling of the off-takes, are

described in Chapter 3.
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r

requested off-takes

Centralized Optimization

Program

P

scheduled off-takes

y

Figure 2.5: Centralized optimization scheme
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2.3.2 Distributed Formulations of the Centralized Opti-

mization Problem

Distributed solutions are very important especially in large-scale networks, where

the computation of a centralized solution may be too computationally demand-

ing. To obtain distributed solutions amounts to decomposing a given centralized

problem into a number of small-scale ones, to be solved in a distributed, possibly

recursive, fashion. In a decomposed structure, different and interconnected com-

puting units solve their specific problem based on different sub-sets of decisional

variables and use local information to achieve individual and global optimality.

These local algorithms, indeed, achieve a global objective in a collective way.

In our Thesis we will show and deal with two possible strategies:

1. Hierarchical strategies

This type of strategies includes two-layer optimization scheme (see Figure

2.6). The higher layer consists in a coordinator (i.e. the master problem

sub-problem 1 sub-problem N

Master

information

Figure 2.6: Hierarchical decomposition

solver) which provides (with a star-like connection topology) data to the

computing units at the lower layer, which, in turn, are devoted to solving

small-scale optimization problems. In turn, the information received by the

master is related to local optimal solution achieved by each sub-problem.

In a price-coordination framework, the master solves the “central problem”

and then sends back updated informations, in the form of limits in re-

source allocation or prices. The advantages of this technique are relative to

a computational simplicity: as expected, the computationally demanding

centralized optimization problem is decomposed into several sub-problems
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that are much more easy and fast to be solved by the distributed lower-layer

units. Moreover, the master solves a simple problem for the computational

perspective, even on a large-scale framework. This kind of decomposable

structure can be obtained with the primal decomposition that will be de-

scribed in Chapter 4

2. Completely distributed strategies

In the other case, sketched in Figure 2.7, a one-level structure is imple-

mented. It does not require a central coordinator, and, therefore, informa-

tion is sent, in a neighbour-to-neighbour fashion, by the local computing

units to the neighbouring ones. Such a decomposition method is suitable

for our scheduling problem in irrigation networks in view of the triangular

structure of the centralized model of a channel (see Section 2.2.2). As for

the variables to be exchanged among sub-systems, it is worth mentioning

that the information exchanged between the sub-problems is related to the

coupling variables vi introduced in Section 2.1.2. A suitable algorithm,

called Round Robin, is discussed in Chapter 4.

sub-problem 1 sub-problem 2 sub-problem N

information information

Figure 2.7: One-level decomposition
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2.4 Case Study

We studied the case of the last two pools of the East Goulburn Main (EGM)

channel, Victoria, Australia. It is composed by eleven pools and distributes

water from the Nagambie Lake through the Goulburn-Murray Irrigation District

(see Figure 1.4). The channels’ data have been collected in the last years through

identification methods. In Table 2.1 are shown the parameters cin,i, cout,i, τi, cin,i

of the last two pools of EMG and the relative controllers’ parameters ki, φi, ρi.

pool controller
name cin,i cout,i τi ki φi ρi

Campbells 0.055 0.036 5 min 0.74 71.83 8.52
Shifferlies 0.017 0.026 6 min 1.19 141.27 16.75

Table 2.1: Data of the last two pools of the EGM, source [9]



Chapter 3

Dynamical Centralized Problem

In this chapter our purpose is to describe the mathematical formulation of the

problem expressed in the centralized fashion and to propose some suitable solu-

tions to the problem. In particular, first of all, a non-linear problem is formulated

where the decision variables are the delays τi in the water supply to the user i.

Secondly, the problem is reformulated as an Integer {0, 1} Linear Program via

a change of variables. Thirdly a new optimization problem, obtained by a re-

laxation of the constraints, is described. Finally, a further problem formulation,

strictly related to the previous one, will be described.

3.1 Mathematical Formulation

Starting from the model described in the previous chapter, we want to formulate

a centralized optimization problem. Our scope is to illustrate the basic concepts

for the mathematical model and to build a general formulation employed ahead.

First of all we introduce some basic notation about the problem we are going

to deal with, similarly to [4]. A standard form optimization problem can be

expressed in the following way:

minimize
z

f0(z)

subject to fi(z) ≤ 0, i = 1, . . . , m

hi(z) = 0, i = 1, . . . , p

(3.1)

In (3.1) the problem is to select the value of variable z (called the optimization



44 Dynamical Centralized Problem

variable or decision variable) that minimizes the objective function f0(z) (f0 :

R
n 7→ R) among all z that satisfy the conditions fi(z) ≤ 0, i = 1, . . . , m, and

hi(z) = 0, i = 1, . . . , p called inequality and equality constraints, respectively.

The functions fi : R
n 7→ R are called the inequality constraint functions while

hi : R
n 7→ R are the equality constraint functions.

We can name the set of points for which both the objective and all constraint

functions are defined

D =

m⋂

i=0

dom fi ∩
p
⋂

i=0

domhi (3.2)

as the domain of the optimization problem (3.1).

A point z ∈ D is said to be feasible if the conditions fi(z) ≤ 0, i = 1, . . . , m,

and hi(z) = 0, i = 1, . . . , p are satisfied. Furthermore we say that the problem

(3.1) is feasible if we can find at least a feasible point z, otherwise it is said to

be infeasible. In particular, we call z⋆ the optimal solution of the problem (3.1),

such that:

p⋆ = f0(z
⋆) = inf{f0(z) | fi(z) ≤ 0, i = 1, . . . , m, hi(z) = 0, i = 1, . . . , p} (3.3)

The feasible point z⋆ is the solution to the optimization problem (3.1) and p⋆

is called optimal value.

The first step, we will deal with, is the formulation of the constraints of the

optimization problem starting from the discrete-time dynamical system and the

physical boundaries discussed in the previous chapter. Then, we have to formalize

an objective (cost) function, the minimization of which implies the optimization

of given performances (in terms of quality of service, i.e., satisfaction from the

users) that we will introduce later on.

3.2 Prediction of the Water-Level and Constraints

First of all we focus on the dynamics of the system described by the state-space

representation (A, Br, Bd, C):

[

x(k + 1)

y(k)

]

=

[

A Br Bd

C 0 0

]





x(k)

r(k)

d̄(k)




 (3.4)
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The distributed feedback controller, already embedded in model (3.4) is de-

signed in order to make the controlled system output y(k) ∈ R
p follow a set-point

reference r(k) ∈ R
p. The system is affected by disturbances associated with

changes in the load d̄(k) ∈ R
N and x(k) ∈ R

n is the state of the dynamical sys-

tem. Moreover the set-point reference r(k) is assumed to be given for all k ≥ 0.

Note that s(k) =
[

s1(k) s2(k) . . . sm(k)
]T

for a generic signal s(k) ∈ R
m.

Also, the notation s(a:b) stands for the vector
[

s(a)T s(a+ 1)T . . . s(b)T
]T

for

a discrete-time signal s(k) ∈ R
m.

Given Ty, the sampling time associated with the discretized model of the dy-

namical system, we can compute the prediction of the output over a finite horizon

of ny slots of duration Ty. In particular, we want to compute the prediction of y

from k+1 to k+ ny by writing the dynamic equation of the discrete-time model

(3.4) recursively:

ŷ(k+1:k+ny) =Γx(k) + Ωr(k:k+ny−1)+

+Ψ
(
d̃(k:k+ny−1) + d(k:k+ny−1)

)
(3.5)

where

Γ =









CA

CA2

...

CAny









, Ω =









CBr 0 · · · 0

CABr CBr · · · 0
...

...
. . .

...

CA(ny−1)Br CA(ny−2)Br · · · CBr









, (3.6)

Ψ =









CBd 0 · · · 0

CABd CBd · · · 0
...

...
. . .

...

CA(ny−1)Bd CA(ny−2)Bd · · · CBd









, (3.7)

Concerning the signal d̄, it is composed by two terms:

• d̃, representing the scheduled and known load

• d, representing the signal component of the load to be scheduled
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We can note that the output of the dynamical system depends on the cur-

rent state x(k), the history of the set-point r(k:k+ny−1) and of the applied load

d̃(k:k+ny−1). As discussed, we suppose the set-point and the already scheduled load

vectors known over the entire horizon as well as the current state. This means

that the output y(k+1:k+ny) is a linear transformation of the load to be applied

d(k:k+ny−1).

We have some constraint in terms of upper and lower bounds on the out-

put that must be fulfilled over the entire prediction horizon. The water-level

prediction must lie between those two given values because of physical reasons:

• the water is distributed via open water channels under the power of gravity.

This means that a certain amount of water is requested to be in the channel

in order not to loose performances in water distribution. Moreover a certain

amount of water is necessary in order to preserve the aquatic ecosystem.

• the upper bound has to be imposed because of the finite hight of the chan-

nels’ banks. This constraint is very important in order to avoid overflowing.

Formally, these constraints correspond to the following inequality:

y ≤ ŷ(k + 1 : k + ny) ≤ ȳ (3.8)

supposing the values of the bounds fixed for the reasons explained above and

y = [y
1
y
2
. . . y

p
]T , ȳ = [ȳ1 ȳ2 . . . ȳp]

T .
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3.3 Optimization Problem Formulation

As introduced in the previous section, the constraints of our optimization prob-

lem are related to the prediction of the water-level. We can then formulate our

optimization problem.

In general, as it will become clearer in the following, we describe the load to

be scheduled as a suitable function of the generic free variable z ∈ Z, used to

minimize a given performance function f(z). The generic optimization problem

so obtained is:

minimize
z

f(z) (3.9a)

subject to ŷ(k+1:k+ny) = Γx(k) + Ωr(k:k+ny−1)+

+Ψ
(
d̃(k:k+ny−1) + d(k:k+ny−1)(z)

)
(3.9b)

y ≤ ŷ(k+1:k+ny) ≤ ȳ (3.9c)

z ∈ Z (3.9d)

We will now focus on the objective function (3.9a) and the constraint (3.9b).

Specifically, we have to formulate the requested load-profiles in terms of a deci-

sional variable to be minimized in order to achieve some stated performances.

In the following sections, four different solutions are proposed.

3.3.1 Non-Linear Program NLP Formulation

The first approach to this generic formulation is a direct consequence of the

statement of the problem, as described in [1]. As discussed before, we aim to

minimize the delays in water supply to the users. Furthermore we introduce the

vector l(k:k+ny−1) representing the load that is requested by the users at time k.

Obviously d(k:k+ny−1) = l(k:k+ny−1) would be the optimal solution of the problem:

this would mean that all the users are supplied with water at the time they

demand it.

Let τi denote the delivery delay in water supply to the i-th request. Particu-

larly τi represents the interval between the time k+k−
i the load-profile l

(k+k
−

i :k+k
+

i )
i

is requested to start and the time it is eventually scheduled to start. The overall

objective is, hence, to minimize the sum of all the delivery delays in order to
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satisfy the users. The problem is, therefore, formulated as a non-linear one.

k k + k−
i

τi

k + k+
i t

l
(k:k+ny−1)
i

d
(k:k+ny−1)
i

Figure 3.1: Temporal representation of a requested load-profile (solid line) and the delayed
version (dashed line) over the horizon

As discussed, the delivery delays τi are decision variables: we can indeed

express the scheduled load di(k) as a delayed version of the requested profile

li(k). Particularly we can write di(k) = li(k − τi).

We now introduce the backward shift operator represented by J which is the

lower shift matrix:

J =










0 . . . . . . . 0

1 0
...

. . .
. . .

0 1 0










ny×ny

(3.10)

It is immediately clear that:

d
(k:k+ny−1)
i = Jτi l

(k:k+ny−1)
i (3.11)

We can generalize this result summing up all the requests. Let Πi be a map-

ping matrix stacking the variables in a appropriate way, so that:

d(k:k+ny−1) =







d
(k:k+ny−1)
1

...

d
(k:k+ny−1)
N






=

N∑

i=1

Πid
(k:k+ny−1)
i =

N∑

i=1

ΠiJ
τi l

(k:k+ny−1)
i (3.12)

Combined with the predictive model (3.5), this formulation provides a pre-

diction of the state as a function of the delays. Note that:
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• since the delay is a discrete variable (τi ∈ N0), like the predictive model, it

is a multiple of the sampling time Ty

• defined Tmax as the longest transient of the dynamical system to be subject

to the load schedule, it is necessary that:

τi ≤ ny − Tmax − k+
i (3.13)

for the load and the response transient to be entirely contained inside the

predictive horizon.

As we said above the performance we want to achieve, in terms of quality of

service, is the minimization of a measure of the overall delivery delays. Thus we

consider the following sum-separable cost function:

N∑

i=1

hi(τi) (3.14)

where hi : N0 7→ R for all i ∈ {1, . . . , N} is any function that penalizes the

corresponding delivery delay. For example, we can simply consider an increasing

linear function: hi(τi) = aiτi, where ai > 0 for all i. We will deal with this solution

ahead. In this formulation we will adapt the generic cost function (3.14).

The load scheduling task can now be formulated as the following mixed-integer

non-linear program:

minimize
τi

N∑

i=1

hi(τi) (3.15a)

subjet to ŷ(k+1:k+ny) = Γx(k) + Ωr(k:k+ny−1)+

+Ψd̃(k:k+ny−1) +Ψ

N∑

i=1

ΠiJ
τi l

(k:k+ny−1)
i (3.15b)

y ≤ ŷ(k+1:k+ny) ≤ ȳ (3.15c)

τi ≤ ny − Tmax − k+
i (3.15d)

τi ∈ N0 for i = {1, . . . , N} (3.15e)

Solving the problem (3.15) we obtain a vector of N deliver delays. This
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solution must belong to the set Sy defined by the constraint (3.15d). Note that

the set Sy is finite because the number of possible values for the delays is also

finite. This observation implies that the number of elements in the set Sy depends

on the upper bound given by (3.15d) and the number of loads N to be scheduled.

Since the upper bound for τi depends on the prediction horizon, the choice of ny

could directly influence the feasibility of the problem, if it makes the set Sy too

small.

Since the number of solution is finite, a way of solving this problem is to

compute the prediction (3.15b) for all the elements in the set Sy, check if (3.15c) is

violated or not, and in the case the solution fulfills the constraint (3.15c), compute

the associated cost (3.15a). An “optimal” solution would belong to the subset of

solutions with the smallest value of cost function. Obviously this approach is

time consuming and the computational complexity is an issue, especially because

the magnitude of Sy can be too large.

3.3.2 A {0, 1} Integer Linear Program ILP Formulation

We will now reformulate the problem stated in the previous chapter as a {0, 1}
linear program, via a suitable change of variables. To do this, we will focus

on the relationship between the requested load l
(k:k+ny−1)
i and the scheduled one

d
(k:k+ny−1)
i . Specifically, for the i-th load, we can choose a set of ni admissible

delivery delays and we call them {ω1
i , . . . ω

ni

i }. This means that the event “the

requested load-profile is delayed by ωt
i” is associated to a delivery delay of ωt

i ≥ 0.

This can be represented by a binary variable that assumes the value ‘1’ if the

events occurs and ‘0’ otherwise. Let zi ∈ {0, 1}ni be a vector of binary decisional

variables. We can build the matrix Mi ∈ R
ny×ni representing all the possible

delayed version of the requested profile l
(k:k+ny−1)
i , i.e.:

Mi =
[

Jω1
i l

(k:k+ny−1)
i Jω2

i l
(k:k+ny−1)
i · · · Jω

ni
i l

(k:k+ny−1)
i

]

(3.16)

We can see that the prediction constraint (3.15b) (in particular the expression

of the requested load) can be written as a linear function in the new decisional

variable zi, where:

Jτi l
(k:k+ny−1)
i = Mizi (3.17)
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It is very important that the vector of variables zi has only one element equal

to ‘1’ because we can choose only one profile among all the possible ones. Thus

the constraint
∑ni

j=1 zi,j = 1 must be added. The cost function becomes:

minimize
zi

N∑

i=1

CT
i zi (3.18)

where CT
i =

[

hi(ω
1
i ) hi(ω

2
i ) · · · hi(ω

ni

i )
]

. Here hi(ω
t
i) is the cost associated to

the water supply delayed of ωt
i . Thanks to this, we can state the new integer-linear

program as follows:

minimize
zi

N∑

i=1

CT
i zi (3.19a)

subject to ŷ(k+1:k+ny) = Γx(k) + Ωr(k:k+ny−1)+

+Ψd̃(k:k+ny−1) +Ψ

N∑

i=1

ΠiMizi (3.19b)

y ≤ ŷ(k+1:k+ny) ≤ ȳ (3.19c)
ni∑

j=1

zi,j = 1 (3.19d)

zi ∈ {0, 1}ni for i = {1, . . . , N} (3.19e)

The problem (3.19) is computationally easier to solve with respect to the non-

linear one (3.15) although the two are equivalent to each other. Indeed, let S̃y

be the set of ni admissible delays of all the requested profiles. If the condition

Sy = S̃y holds the problem (3.19) is equivalent to (3.15).

However, for large-scale irrigation networks and in the case of large prediction

horizons, the integer program formulated in this section is still too computation-

ally demanding. Therefore, our objective in the next sections, is to simplify it

introducing some approximations and new assumptions. In this way, the problem

will be reformulated as a more standard linear program.
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3.3.3 A Relaxed Program RP1 Formulation

In the previous section an integer-linear program is presented. This solution is

obtained by assuming a feasible set of possible delays and building the matrix Mi

having in its column all the feasible delayed version of the requested profile. In

this case the profile (i.e. the shape) of the requested load l
(k:k+ny−1)
i is preserved

due to the fact that the decision variable zi is binary. In this section, we start

relaxing the constraint (3.19e), and replacing the integer variable zi with the real

one ξi:

zi ∈ {0, 1}ni → 0 ≤ ξi,j ≤ 1 for j = {1, . . . , ni} (3.20)

such that the optimization program becomes:

minimize
ξi

N∑

i=1

fi(ξi) (3.21a)

subject to ŷ(k+1:k+ny) = Γx(k) + Ωr(k:k+ny−1)+

+Ψd̃(k:k+ny−1) +Ψ

N∑

i=1

ΠiMiξi (3.21b)

y ≤ ŷ(k+1:k+ny) ≤ ȳ (3.21c)
ni∑

j=1

ξi,j = 1 (3.21d)

0 ≤ ξi,j ≤ 1 for j = {1, . . . , ni}, i = {1, . . . , N} (3.21e)

In this way we do not take into account of the shape of the profile in the

constraints. Specifically, while zi plays the role of selector of the entire profile,

the new variable ξi chooses the amount of “load” taken by each possible delayed

profile.

Let us see a graphic example. Given a requested profile, and three admissible

delayed version (ni = 3), a feasible solution to the optimization problem (3.21)

could be ξi =
[

0.2 0 0.8
]T

We can notice from Figure 3.2 that the shape of the scheduled profile is

different from the original requested one. We have to build a new objective

function in order to penalize not only the delays in water supply, but also the
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k t

Figure 3.2: Graphical possible solution to the problem (3.21); the dashed lines represent the
three admissible delayed version of the requested profile, the red one is the feasible solution

shape of the scheduled profiles.

Section 3.4.3 will be devoted to this issue.
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3.3.4 A Second Relaxed Program RP2 Formulation

The solution shown in Section 3.3.3 is obtained developing the integer-linear prob-

lem described in [1]. In this section we express another formulation. Assuming

that the i-th farmer demands for water in terms of a constant flow-rate of ampli-

tude Ai for a time interval Ti, to be preferably scheduled at time k, we can easily

re-write the problem depending on a new decision variable ζ
(k:k+ny−1)
i . While ξi

chooses the amount of “load” taken by each admissible delayed profile, ζ
(k:k+ny−1)
i

(for the sake of simplicity we will use the reduced notation ζi) represents the

amount of water to be supplied at every sampling time. The problem becomes:

minimize
ζi

N∑

i=1

gi(ζi) (3.22a)

subject to ŷ(k+1:k+ny) = Γx(k) + Ωr(k:k+ny−1)+

+Ψd̃(k:k+ny−1) +Ψ
N∑

i=1

Πiζi (3.22b)

y ≤ ŷ(k+1:k+ny) ≤ ȳ (3.22c)

ny−Tmax∑

j=1

ζi,j = AiTi (3.22d)

0 ≤ ζi,j ≤ Ai for j = {1, . . . , ny − Tmax}, (3.22e)

i = {1, . . . , N}

Note that:

• in (3.22b) the predicted output is still a linear combination of the free

variable ζi,

• the constraint (3.22d) guarantees that the amount of provided water is equal

to the requested one,

• (3.22e) is necessary in order to fix Ai as the maximum supplied flow-rate,

• obviously, as discussed in Section 3.3.1, the longest transient Tmax of the

dynamical system must be entirely contained in the predictive horizon.
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Hence, the condition ζi,j = 0 for j = {ny − Tmax, . . . , ny} must hold. This

is imposed by the constraint (3.22d).

With this new approach the construction of the matrices Mi (containing all

the admissible delayed version of the requested profile) is not required. Anyway,

the problems of this strategy will devised later on.

3.4 Choices of the Objective Functions

As discussed in the previous sections, we want to minimize any index representing

a given performance in order to maximize the quality of service. Thus, our matter

is the construction of suitable objective functions leading to this attainment, for

all the problems discussed before.

3.4.1 Objective Function for Non-Linear Program

We have already suggested a formulation for the cost function in the non-linear

case in section 3.3.1. In this case, the only performance, we have to minimize,

is the delivery delay in water-supply. Due to the structure of the problem, the

functions to be minimized can be simply expressed as:

hi(τi) = aiτi (3.23)

where ai > 0 for all i.

Thus, the objective function will be the sum of (3.23) for i = 1, . . . , N , i.e.:

minimize
τi

N∑

i=1

aiτi (3.24)

In this way, we are minimizing the overall delivery delays among all the pools.

By the way, this strategy will be not contemplated in the simulation tests because

of the computational complexity of such a program. Moreover, in Section 3.3.2,

we demonstrated that the non-linear formulation is equivalent to the integer linear

one.
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3.4.2 Objective Function for Integer Linear Program

We can apply the same rationale adopted for the integer-linear program. As

shown in Section 3.3.2, the objective function can be represented by the sum of

the scalar product between a vector Ci (whose elements are functions hi of the

admissible delays ωt
i) and the vector of decisional variable zi. In particular, we

will use a vector Ci defined as Ci =
[

1 2 · · · ni

]T

. The objective function is:

minimize
zi

N∑

i=1

CT
i zi (3.25)

It penalizes the choice of a delayed admissible profile linearly with the supply

delay.

3.4.3 Objective Functions for Relaxed Programs

Concerning the relaxed formulations in Sections 3.3.3 and 3.3.4 the shape of

the scheduled profile is not guaranteed to be fixed, as explained in Section 3.3.3.

Consequently, in addition, the duration of the scheduled off-take is not guaranteed

to be equal to the duration of the profile requested by the user. Therefore, in

this section we propose to use an additional penalizing term to the cost function,

properly tailored for the problem. Specifically,

1. as in the previous strategies, we have to minimize the delivery delays in

terms of the time in which the amount of requested water is supplied. This

first term can be expressed as:

minimize
ξi

N∑

i=1

αiC
T
i ξi (3.26)

where Ci is the cost vector defined for the integer linear program.

2. we need to introduce a new term P (ξ) in the objective function minimizing

the variation of the load shape with respect to the one requested by the

user (a qualitative idea is given in Figure 3.3). In order to maximize the

quality of service, we should supply water with a duration of the scheduled

profile as similarly as possible to the requested one. Indeed, the little is

the variation, the minimal would be the difference between the interval
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(a) Requested profile and scheduled profile
with null spread

(b) Scheduled profile with small spread

(c) Scheduled profile with large spread

Figure 3.3: Example of spread in different scheduled profiles

[k + k−, k + k+] and the lapse of time among which the water is actually

supplied.

The entire objective function, hence, will be:

minimize
ξi

N∑

i=1

αiC
T
i ξi + βiP (ξ) (3.27)

where αi and βi are parameters to be chosen to give more importance to

one term rather than the other. In the next section, we will discuss two

suitable examples for P (ξ) addressing the problem.

First solution: Variance

As discussed, our scope is to find a function P (ξ) minimizing the variation

of the shape of the load profile with respect to the request.

Recall now that the variable ξi,j can be interpreted as the weight (i.e.,

ξi,j ∈ [0, 1]) associated to the j-th profile, and that, in view of constraint

(3.21d), i.e.:
ni∑

j=1

ξi,j = 1, (3.28)
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it can be interpreted as the probability of profile j. We now define with

µi (in the interval [1, ni]) the weighted mean value of index j, i.e., µi =
∑ni

j=1 ξi,jj. The latter can be viewed as the “average” profile (recall, how-

ever, that rational values are possible for µi).

Now define

vari(ξi) =

ni∑

j=1

ξi,j(j − µi)
2 (3.29)

the “variance” of index j. Remark that the latter is indeed equal to zero,

if ξi,j = 1, for some value of j, corresponding to the case where the shape

of the requested profile is preserved. On the other hand, it increases as

the number of non-zero values of ξi,j grows (or if the values of j for which

ξi,j 6= 0 span the whole set {1, ni}), which corresponds to the case where

the shape of the requested profile is modified, and the duration of the load

signal increases. For the above reasons, we set

Pi(ξi) = vari(ξi) (3.30)

We obtain that, in view of equation (3.29):

vari(ξi) =

ni∑

j=1

ξi,jj
2 +

ni∑

j=1

ξi,j

( ni∑

j=1

ξi,jj
)2

−2
ni∑

j=1

ξi,jj

ni∑

j=1

ξi,jj (3.31)

Applying (3.21d), the variance becomes:

vari(ξi) =

ni∑

j=1

ξi,jj
2 −

( ni∑

j=1

ξi,jj
)2

(3.32)

Remark: to better understand the rationale underlying the above idea, we

note that it has a clear mechanical interpretation. Let ξi,j be the j-th point

mass of a system composed of ni point masses. If we imagine the index j

to be the x-axis coordinate of the j-th mass ξi,j with respect to the origin

j = 0, we can calculate the centre of mass COG as:

COGi =
1

∑ni

j=1 ξi,j

ni∑

j=1

ξi,jj (3.33)
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From (3.21d), we know that
∑ni

j=1 ξi,j = 1 for all i. We can now calculate

the “moment of inertia” of the system with respect to the COG:

Ji =

ni∑

j=1

ξi,j

(

j −
ni∑

j=1

ξi,jj
)2

(3.34)

As we can see, (3.34) is identical to expression (3.29) of the variance. Devel-

oping (3.34), we obtain (3.32) that has been calculated from the definition

of variance.

Developing (3.32), we obtain the following quadratic equation as function

of the free variable ξi:

var(ξi) = F T
i ξi − ξTi Hiξi (3.35)

where:

Fi =
[

1 4 9 · · · n2
i

]

, Hi =












1 2 3 · · · ni

2 4 6
...

3 6 9
...

. . . n2
i − ni

ni · · · n2
i − ni n2

i












(3.36)

The new objective function, hence, will be:

minimize
ξi

N∑

i=1

(

αiC
T
i ξi

︸ ︷︷ ︸

(a)

+ βi

(
F T
i ξi − ξTi Hiξi

)

︸ ︷︷ ︸

(b)

)

(3.37)

This is a quadratic function in the free variable ξi, minimizing both the de-

lays (3.37a) and the spread (3.37b). However, we can see that the quadratic

term is indefinite. Therefore, the related optimization problem is rather

non-standard, in view of the fact that it is non-convex. This statement is

very important to note and its consequences will be dealt with later on. We

are going to show the results obtained with such an objective function in

Section 3.5.4.



60 Dynamical Centralized Problem

Second solution: a Customized Objective Function

We can build an alternative customized quadratic term in order to penalize

the dispersion of ξi around a central point.

We develop a generic symmetric quadratic term, i.e:

f(ξi) = ξTi










a1,1 a1,2 · · · a1,ni

a2,1 a2,2
...

...
. . .

ani,1 · · · ani,ni










ξi (3.38a)

= a1,1ξ
2
i,1 + 2a1,2ξi,1ξi,2 + a2,2ξ

2
i,2 + · · ·+ ani,ni

ξ2i,ni
(3.38b)

Thereby, in order to foster the solution ξi having only one element equal to

1 and all the remaining ones equal to 0, we give no weight to the addends

in the form aj,jξ
2
i,j: thus, we impose the elements on the principal diagonal

aj,j = 0. Concerning the other addends 2aj,j+j̄ξi,jξi,j+j̄, the weight must be

proportional to the difference j̄ between the indexes: we can simply thrust

upon aj,j+j̄ to be equal to j̄. Thus, the new matrix Hi will be:

Hi =












0 1 2 · · · ni

1 0 1
...

2 1 0
...

. . . 1

ni · · · 1 0












(3.39)

Also Hi is an indefinite quadratic form, and the same considerations of H

can be applied.
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3.5 Simulation Tests on the Centralized Problem

In this section the results obtained with the different strategies discussed in the

previous sections, are shown. As we explained in Chapter 2, our case of study is

the system composed by the two last pools of the East Goulburn Main channel.

3.5.1 Data

In the following simulations, the sampling time Ty is equal to 10 minutes and

the prediction horizon is ny = 480 periods of duration Ty. We suppose that the

off-takes l are demanded (and preferably scheduled) at time k = 0. According to

[9], we have:

pool 1 pool 2

y
i

9.4 9.5

ȳi 9.7 9.7

r
(k:k+ny−1)
i 9.5 if 0 ≤ t ≤ 3600 9.56 if 0 ≤ t ≤ 1200

9.6 if t > 3600 9.62 if t > 1200

d
(k:k+ny−1)
i 0 if 0 ≤ t ≤ 100 0 if 0 ≤ t ≤ 100

10 if 100 < t ≤ 700 10 if 100 < t ≤ 700
15 if 700 < t ≤ 1600 15 if 700 < t ≤ 1900
5 if 1600 < t ≤ 1900 5 if 1900 < t ≤ 3400
0 if t > 1900 0 if t > 3400

Table 3.1: Parameters for simulation tests, source [9]

Each off-take is defined in terms of the requested flow and duration. We will

use the following values:

pool 1 pool 2
off-take 1 2 3 1 2 3

Flow [Ml/day] 30 40 35 25 20 30
Duration [10min] 245 295 245 300 160 300

Table 3.2: Parameters of off-takes for simulation tests, source [9]

According to the parameters in Tables 3.1 and 3.2, the requested off-takes are

shown in Figure 3.4.
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Figure 3.4: Requested off-takes

Directly applying the requested profiles of Figure 3.4, i.e. d = l, on the

predictor, the predictions of the water-level in both pools are shown in Figure

3.5.

It now clearly appears the importance of scheduling the farmers’ demands

in order to guarantee the fulfillment of the constraints. Indeed, if the water is

supplied as requested (supposing at k = 0), the lower bounds of both the pools
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Figure 3.5: Predicted water-level response to not-scheduled profiles
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and the upper bound of the pool 2 are not fulfilled (i.e. at time k = 1 and

k = 303). This situation leads to the problems described in Section 3.2.

In the next section we will show the feasible results from the optimization

problems discussed in the previous sections. The objective functions, devised in

Section 3.4, will be adopted.

All the results are obtained by using a laptop with a new generation CPU

Intel CORE i7 3630QM (2.4GHz) and a 8Gb RAM.
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3.5.2 Simulation Test on ILP

In order to solve the ILP, we need to define the set S̃y corresponding to the

ni admissible delayed profiles. This value must be selected in order to guarantee

that the constraint (3.13) is fulfilled. From Table 3.2, we know that the maximum

duration of the off-takes is k+
max = 300 and we consider the longest dynamical

transient in the pools Tmax to be equal to 20 (see Figure 3.4). The maximum

admissible delivery delay, thus, will be:

τi,max = ni = 480− 300− 20 = 160 for i = 1, . . . , N (3.40)

Solving the integer linear program (using the function bintprog.m of the Opti-

mization Toolbox of MATLAB) for two pools and three off-takes from each pool

(see Table 2.1) with our laptop is intractable, since the computational cost related

to this strategy is very high. For this reason, in Figure 3.6 the results, as shown

in [1], are illustrated. Note that, in this case, the off-takes are not necessarily

requested at k = 0.

We can conclude that:

• both the upper and lower bounds of each pool are fulfilled (Figures 3.6.(c)

and 3.6.(d))

• the shape of the requested off-takes are not modified.
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(a) Scheduled off-takes in pool 1 (b) Scheduled off-takes in pool 2

(c) Predicted water-level in pool 1 (d) Predicted water-level in pool 2

Figure 3.6: Scheduled off-takes with integer-linear program ILP, source [1]
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3.5.3 Simulation Test on RP1 with the Linear Objective

Function LRP1

In this section, we show the results obtained solving RP1 with the linear objective

function developed in Section 3.4, i.e.:

minimize
ξi

N∑

i=1

αiC
T
i ξi (3.41)

We denote this problem LRP1.

As discussed in Section 3.4.3, LRP1 minimizes the delivery delays without

taking into account of the shape of the profiles. Using the function linprog.m of

the Optimization Toolbox of MATLAB, the results are illustrated in Figure 3.7.

Even if the scheduled profile shape is not preserved, we can calculate the

overall delay, as the sum of the time instants in which the off-takes start to be

delivered t̄i for i = 1, . . . , N , i.e.:

N∑

i=1

t̄i = 43 seconds (3.42)

The estimated computational time is about 42 seconds.
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Figure 3.7: Scheduled off-takes with linear relaxed program LRP1
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3.5.4 Simulation Test on RP1 with the Quadratic Objec-

tive Function QRP1

In this section, we show the solutions obtained by RP1 with the quadratic objec-

tive function coming from the variance, i.e.:

minimize
ξi

N∑

i=1

(

αiC
T
i ξi + βi

(
F T
i ξi − ξTi Hiξi

))

(3.43)

It is apparent that, if we set αi = 0, there is a number of equivalent optimal

solutions, and therefore the problem is not well-posed, as far as the cost function

is concerned. Therefore, this case is disregarded and we focus on the case where

αi 6= 0. In particular, if we test QRP1 with αi = 10 and βi = 1 for i = 1, . . . , N ,

using the function quadprog.m of the Optimization Toolbox of MATLAB, we

achieve the results shown in Figure 3.8.

In this case, the overall delay in water supply is 69 seconds. Moreover, in this

case, we can calculate the total variance, as previously illustrated, and defined as

the sum of the variance of each profile (3.35):

N∑

i

var(ξi) = 58.7 (3.44)

The computational time is almost 85 seconds.

These results show that the solutions, obtained optimizing the variance (in

addition to the delivery delays minimization), maintain a better profile shape.

Nevertheless, there are some problems, related to such a solution, that will be

discussed in Section 3.5.6.
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Figure 3.8: Scheduled off-takes with quadratic program QRP1
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3.5.5 Simulation Test on RP2 with the Linear Objective

Function LRP2

In this section, we test the solution RP2, focusing solely on the linear objective

function:

minimize
ζi

N∑

i=1

CT
i ζi (3.45)

As anticipated in Section 3.3.4, there are problems related to this formulation,

in terms of scheduled profile shape. In Figure 3.9, the solution of LRP2, using

the fuction linprog.m.

We can, immediately, note that the shape of the scheduled off-takes is much

more distorted than using the relaxed solutions shown in the previous section.

The computational time is about 38 seconds.
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Figure 3.9: Scheduled off-takes with linear relaxed program LRP2
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3.5.6 Comparison between the Different Formulations of

Centralized Optimization Problem

In this section, we want to compare the different solutions in order to discuss the

advantages and the drawbacks of the mentioned ones and, if possible, elect the

most suitable one for the future decomposition.

First of all, regarding the computational demand, it appears clear that the

ILP solution is unacceptable. Indeed, while the amount of computational time,

requested for solving LRP1, QRP1 and LRP2 is in the order of dozens of seconds,

our laptop was not either able to solve the ILP.

Furthermore, we discard the LRP2 solution in view of the unacceptable dis-

tortion in the scheduled profile shape. We recall that LRP1 has got an intrinsic

capability to cluster the profiles, while in LRP2 this is not true. To better un-

derstand, this point, it is necessary to think about how the two strategies has

been built: in the first one, the free variable ξi decides the contribution that each

profile gives to the scheduled off-take from a set of admissible delayed profiles

for the i-th pool; instead, in the latter, the decisional variable ζi represents the

amount of water to provide each time slot, separately.

Remarkably, the QRP1 formulation displays the most satisfactory solution, in

terms of quality of the service, for our problem: the minimization of the delivery

delays and the preservation of the original shape of the profiles. Nevertheless, in

the following, we discard it for decomposition purposes for the undermentioned

reasons:

• in QRP1 the computational time is almost doubled with respect to the

linear case.

• a non-convex optimization problem is not desirable for a future decompo-

sition.

Moreover, the scheduled profiles’ shape (the variance of the overall solution) can

be considered good also in the linear case: the total variance in LRP1 is equal to

116.4, while, with QRP1, it is about 59.

Given all these considerations, in the following, we will deal only with the

relaxed linear program LRP1.



Chapter 4

Decomposition Methods for a

Centralized Optimization Problem

In this chapter, our scope is to devise two distributed solutions, obtained from

the decomposition of the linear centralized formulation LRP1 discussed in Section

3.3.3. First of all, we will recast the centralized optimization problem in such a

way that suitable problem decompositions are allowed. As discussed in Section

2.1.2, this layout derives from the cascaded model structure and from the presence

of the coupling variables vi, included in the centralized model. Secondly, we

will discuss two different algorithms allowing for a distributed solution to the

centralized optimization problem: Round Robin (RR) and Primal Decomposition

(PD), as introduced in Section 2.3.2. Finally, we will display some simulation tests

where both the solutions are implemented and we will draw some conclusions

about the two methods.

4.1 Decomposable Structure of the Centralized Op-

timization Problem

In this section, we are going to decompose the centralized model, in order to

obtain a distributed model of the system. For this purpose, a suitable change of

variables will be used, concerning the predictor equations. This structure will be

useful to build the distributed algorithms that will be devised in the following

sections.
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Firstly, we recall the linear optimization program RP1 (3.21) solving the cen-

tralized problem. For reasons that will be clear soon, in this section some matri-

ces and vectors related to the centralized model (3.21) will be denoted using the

superscript (∗), i.e.:

minimize
ξi

N∑

i=1

Ciξi (4.1a)

subject to ŷ(k+1:k+ny)∗ = Γ∗x(k) + Ω∗r(k:k+ny−1)∗+

+Ψ∗d̃(k:k+ny−1)∗ +Ψ∗

N∑

i=1

ΠiMiξi (4.1b)

y∗ ≤ ŷ(k+1:k+ny)∗ ≤ ȳ∗ (4.1c)
ni∑

j=1

ξi,j = 1 (4.1d)

0 ≤ ξi,j ≤ 1 for j = {1, . . . , ni}, i = {1, . . . , N} (4.1e)

where the objective function (4.1a) is discussed in Section 3.4.3. We remark

that the objective function is a sum-separable cost function. The solution to this

centralized problem is discussed in Section 3.5.3.

We now focus on the equality constraint (4.1b), which is linear with respect

to the decision variables ξi, and the inequality constraints (4.1c). The constraint

(4.1b) can be arranged, isolating the term depending on the decisional variables,

i.e.:

Ψ∗

N∑

i=1

ΠiMiξi = ŷ(k+1:k+ny)∗ −
(
Γ∗x(k) + Ω∗r(k:k+ny−1)∗ +Ψ∗d̃(k:k+ny−1)∗

)
(4.2)

Concerning the term on the right side of the equation (4.2), we define the vector

b(k+1:k+ny)∗ as:

b(k+1:k+ny)∗ = ŷ(k+1:k+ny)∗ −
(
Γ∗x(k) + Ω∗r(k:k+ny−1)∗ +Ψ∗d̃(k:k+ny−1)∗

)
(4.3)

The vector b(k+1:k+ny)∗ is a linear combination of the initial state x(k), the pre-

dicted water-level ŷ(k+1:k+ny)∗, the references vector r(k:k+ny−1)∗ and the already

scheduled load d̃(k:k+ny−1)∗. Focusing on the last three vectors, we recall that the
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notation s(a:b)∗ stands for
[

s(a)T s(a+ 1)T . . . s(b)T
]T

for a discrete-time sig-

nal s(k) ∈ R
m and s(a) =

[

s1(a) s2(a) . . . sm(a)
]T

. We want now to sort the

elements of the vectors ŷ(k+1:k+ny)∗, r(k:k+ny−1)∗ and d̃(k:k+ny−1)∗ in such a way that

the first elements of these vectors are variables related to the pool 1 and, then,

the other elements correspond to the variables associated to the other pools in

ascending order. Let ŷ(k+1:k+ny), r(k:k+ny−1) and d̃(k:k+ny−1) be the sorted vectors,

i.e.:

ŷ(k+1:k+ny) =









ŷ
(k+1:k+ny)
1

ŷ
(k+1:k+ny)
2

...

ŷ
(k+1:k+ny)
N









, r(k+1:k+ny) =









r
(k+1:k+ny)
1

r
(k+1:k+ny)
2

...

r
(k+1:k+ny)
N









,

d̃(k+1:k+ny) =









d̃
(k+1:k+ny)
1

d̃
(k+1:k+ny)
2

...

d̃
(k+1:k+ny)
N









(4.4)

We define a suitable permutation matrix P ∈ R
Nny×Nny such that:

ŷ(k:k+ny−1)∗ = P ŷ(k:k+ny−1)

r(k:k+ny−1)∗ = Pr(k:k+ny−1)

d̃(k:k+ny−1)∗ = P d̃(k:k+ny−1)

(4.5)

Note that the elements in x(k) are already sorted in a desirable way, due to the

construction of the predictor, i.e. x(k) =
[

x
(k)T
1 x

(k)T
2 · · · x

(k)T
N

]

In the same way, we can sort the vector b(k+1:k+ny)∗, i.e.:

b(k:k+ny−1)∗ = Pb(k:k+ny−1) (4.6)

The equation (4.3), thus, becomes:

Pb(k+1:k+ny) = P ŷ(k+1:k+ny) −
(
Γ∗x(k) + Ω∗Pr(k:k+ny−1) +Ψ∗P d̃(k:k+ny−1)

)
(4.7)

Since P is a squared and non-singular matrix, we can multiply all the elements
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in (4.7) by P−1, i.e.:

P−1Pb(k+1:k+ny) = P−1P ŷ(k+1:k+ny) −
(
P−1Γ∗x(k) + P−1Ω∗Pr(k:k+ny−1)+

+P−1Ψ∗P d̃(k:k+ny−1)
) (4.8)

Defining the matrices Γ, Ω and Ψ as the “sorted” version of Γ∗, Ω∗ and Ψ∗,

i.e.:

Γ = P−1Γ∗P, Ω = P−1Ω∗P, Ψ = P−1Ψ∗P, (4.9)

and simplifying where possible, we obtain:

b(k+1:k+ny) = ŷ(k+1:k+ny) −
(
Γx(k) + Ωr(k:k+ny−1) +Ψd̃(k:k+ny−1)

)
(4.10)

By construction, the vectors appearing in (4.10) can be split into sub-vectors,

each one related to a single pool, according to (4.4): it follows that, in view of

the cascade structure of the channel and, according to its dynamical model (see

Figure 2.3), the matrices Γ, Ω and Ψ have an upper-triangular structure of the

type:

Γ =










Γ12 Γ11 · · · Γ1N

0 Γ22
...

...
. . .

0 · · · 0 ΓNN










Ω =










Ω12 Ω11 · · · Ω1N

0 Ω22
...

...
. . .

0 · · · 0 ΩNN










Ψ =










Ψ12 Ψ11 · · · Ψ1N

0 Ψ22
...

...
. . .

0 · · · 0 ΨNN










(4.11)

Renaming, for simplicity of notation, bi = b
(k+1:k+ny)
i , ŷi = ŷ

(k+1:k+ny)
i , ri =

r
(k+1:k+ny)
i , d̃i = d̃

(k+1:k+ny)
i and xi = x

(k)
i , we can express (4.10) in a decomposed

way, i.e., through N equations of the type:

bi = ŷi −
(

N∑

h=i

Γihxh +
N∑

h=i

Ωihrh +
N∑

h=i

Ψihd̃h
)

for i = 1, . . . , N (4.12)

Focusing on the left-hand side of the equation (4.2), note that it can be
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decomposed as the sum of N terms:

Ψ∗

N∑

i=1

ΠiMiξi = Ψ∗
(
Π1M1ξ1 +Π2M2ξ2 + · · ·+ΠNMNξN

)
=

= Ψ∗Π1M1ξ1 +Ψ∗Π2M2ξ2 + · · ·+Ψ∗ΠNMNξN

(4.13)

Let A∗
i = Ψ∗ΠiMi for all i. We recall that Πi is the matrix stacking the

off-takes to be scheduled for the centralized model. Similarly to the previous

equations, we comptute matrix Ai ∈ R
Nny×ni as:

Ai = P−1Ψ∗ΠiMi for i = 1, . . . , N (4.14)

It results that each matrix Ai, can be decomposed into N sub-matrices.

Specifically, in view of the cascade structure of the channel model, we obtain

that:

A1 =









A11

0
...

0









A2 =









A12

A22

...

0









· · · AN =









A1N

A2N

...

ANN









(4.15)

Recalling that b =
[

bT1 bT2 . . . bTN

]T

, the equation (4.2) can be, thus, di-

vided into N sub-equations of the type:

A11ξ1 + A12ξ2 + · · ·+ A1NξN = b1 (4.16a)

A22ξ2 + · · ·+ A2NξN = b2 (4.16b)

...

ANNξN = bN (4.16c)

Importantly, each equation is related to a single pool, i.e. (4.16a) is related to

pool 1, (4.16b) to pool 2, etc.

Now, we will focus on the water-level upper and lower bounds expressed in

inequality (4.1c). The latter inequality can be split into two inequalities in which
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the terms are sorted according to the ordering structure previously used:

{
ŷ∗ ≤ ȳ∗

ŷ∗ ≥ y∗
⇒

{
ŷ ≤ ȳ

ŷ ≥ y
(4.17)

Therefore, concerning the upper bound, we have that, for each pool i:

ŷi ≤ ȳi (4.18)

Now, accordingly to the decomposition which has been carried out, and recalling

that bi = ŷi−
(∑N

h=i Γihxh+
∑N

h=i Ωihrh+
∑N

h=i Ψihd̃h
)
, we can rewrite (4.18) as:

bi ≤ b̄i (4.19)

where

b̄i = ȳi −
(

N∑

h=i

Γihxh +

N∑

h=i

Ωihrh +

N∑

h=i

Ψihd̃h
)

(4.20)

From (4.20) and (4.19), we rewrite (4.18), as:

N∑

h=i

Aihξh ≤ b̄i for i = 1, . . . , N (4.21)

We apply the same reasoning to the lower bound inequality, and we obtain:

N∑

h=i

Aihξh ≥ bi for i = 1, . . . , N (4.22)

where bi = y
i
−

(∑N

h=i Γihxh +
∑N

h=i Ωihrh +
∑N

h=iΨihd̃h
)

For clarity, remark that the terms b̄i and bi are linearly dependent upon the

already scheduled off-takes d̃h for all i ≤ h ≤ N , i.e.:

b̄i = b̄i(d̃h)

bi = bi(d̃h)
(4.23)

and are given. Therefore, in (4.21) and (4.22), the decision variables are just ξi,

for i = 1, . . . , N .

Finally, we recall that the sum-separable objective function is already decom-
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posed into a sum of “local” terms CT
i ξi, each depending on the decision variable

ξi, related to the i-th pool solely.

From the above reasoning, we obtain that the centralized problem can be

recast as the following decomposable linear program:

minimize
ξ1,...,ξN

N∑

i=1

CT
i ξi

subject to

N∑

h=i

Aihξh ≤ ȳi −
(

N∑

h=i

Γihxh +

N∑

h=i

Ωihrh +

N∑

h=i

Ψihd̃h
)

N∑

h=i

Aihξh ≥ y
i
−

(
N∑

h=i

Γihxh +
N∑

h=i

Ωihrh +
N∑

h=i

Ψihd̃h
)

ni∑

j=1

ξi,j = 1

0 ≤ ξi,j ≤ 1 for j = {1, . . . , ni}
for all i = 1, . . . , N

(4.24)

Note that the sub-matrix Aih represents the effect of the h-th off-take on the

i-th pool. It is now clear what we introduced in Section 2.1.2, about the coupling

variables vi. Even though vi are not explicitly shown, because they are included

in the centralized model, they play the role of passing the information of the h-th

off-take to the upstream pools i for i = 1, . . . , h. Remark also that, as described

in Section 2.1.2, the off-take of the i-th pool (for i = 1, . . . , N) does not affect

the downstream pools, i.e. pools h, for all h > i.

Such a problem structure is suitable for applying proper problem decompo-

sition techniques, as discussed in details in the next sections. In view of this

techniques, it will be possible to formulate the optimization problem as a num-

ber of small-scale local problems, each accounting for “local” constraints (4.21)

and (4.22). Two different solutions will be discussed in the following, i.e.: the

primal decomposition algorithm [5] and the Round Robin algorithm [9]. The

effectiveness of these methods will be then tested in simulation.



80 Decomposition Methods for a Centralized Optimization Problem

4.2 Application of Round Robin Algorithm RR to

LRP1

Round Robin is largely used for scheduling purposes in the process industry. We

want to apply a similar idea to our case. In [9], a RR algorithm, adapted to

integer linear program, is shown.

pool 1 pool 2 pool 3 pool 4

M3ξ̃3

M2ξ̃2 M3ξ̃3 M4ξ̃4

M4ξ̃4

M4ξ̃4

Figure 4.1: Informations passing among 4 pools in terms of scheduled off-takes

In Figure 4.1, Miξ̃i are the scheduled off-takes of the i-th pool. As discussed,

the scheduled off-take in pool i-th does not affect all the downstream pools, but

only the upstream ones (included the i-th pool). Due to the particular cascaded

structure of our problem, it is natural to schedule the off-takes sequentially from

pool N to pool 1.

In [9], a decomposed structure (different from the one we have discussed in the

previous section) of the {0, 1} integer linear program discussed in Section 3.3.2 is

described and a solution is discussed. We recall that LRP1 and the integer linear

program are equally expressed save for the difference in the constraints (3.19e)

and (3.21e). The distributed structure we have obtained in Section 4.1 is, thus,

suitable for the ILP as well. Nevertheless, we will discuss only the application of

RR to the relaxed linear program LRP1.

4.2.1 Round Robin Algorithm

The algorithm considers the scheduling of off-takes one by one. Starting from

the last pool N , the N -th off-take MNξN is scheduled, paying attention that the

constraints of all upstream pools are fulfilled and assuming that ξi = 0 for all
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i = 1, . . . , N−1. Once we obtain the scheduled off-take d̃N = MN ξ̃N , it schedules

the N − 1-th off-take where d̃N is assumed given. We iterate this algorithm up

to the 1-st pool, taking always into account of the downstream already scheduled

off-takes.

Formally, the algorithm is the following:

Round Robin Algorithm

step 1 k ← N ;

step 2 calculate b̄i(d̃h) and bi(d̃h) for all i = 1, . . . , k, as shown in section 4.1 with

the already scheduled off-takes:

b̄i = ȳi −
(

N∑

h=i

Γihxh +

N∑

h=i

Ωihrh +

N∑

h=i

Ψihd̃h
)

bi = y
i
−
(

N∑

h=i

Γihxh +
N∑

h=i

Ωihrh +
N∑

h=i

Ψihd̃h
)

(4.25)

step 3 find optimal ξk satisfying

minimize
ξk

CT
k ξk

subject to for all i = 1, . . . , k

Aikξk ≤ b̄i

Aikξk ≥ bi
ni∑

j=1

ξi,j = 1

0 ≤ ξi,j ≤ 1 for j = {1, . . . , ni}

(4.26)

step 4 d̃k ← d̃k +Mkξk; k ← k − 1; if k = 0, then end; else go to step 2;

Applying RR on our decomposed two-pools problem, the algorithm can be

divided in two steps. At the first step, the off-takes of the pool 2, i.e. ξ2, are

scheduled, taking into account of the constraints of both the sub-problems. At the

second step, the algorithm schedules the off-takes related to the pool 1, including

d̃2 = M2ξ2 in the constraints.
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It is important to mention, at this point, that the previously-described method

does not guarantee any system-wide optimality property. However, it is particu-

larly suitable for a computationally-efficient application to cascaded systems.

4.2.2 Simulation Tests on LRP1, Decomposed using RR

In Figure 4.2, the results of a simulation test on LRP1, decomposed using the

Round Robin algorithm, are shown.

In terms of the computational demand, RR algorithm is very light. Indeed,

our laptop takes 22 seconds to solve the problem: almost halved with respect to

the centralized linear case. Note that the scheduling result in the case of two

pools is not so different from the centralized one (Section 3.5.3): in terms of

delays in water supply, indeed, the value of the overall delivery delay, with RR

solution, is:
N∑

i=1

t̄i = 50 seconds (4.27)

Nevertheless, we achieved such good results because, we applied RR algorithm

to the 2-pool case. In fact, in channel models with several pools, the obtained

results can be unsatisfactory. Note that RR algorithm gives priority to off-take

requests in the downstream pools. This implies that, as the number of pools

grows, the solution of the RR algorithm may differ from the centralized one.

We remark the fact that for a problem involving N pools, the algorithm solves

the sub-problems in N steps. Therefore, in case of a centralized implementation,

the computational demand scales linearly with respect to the number of pools N .

However, in case of a distributed implementation (i.e., the k-th problem (4.26)

is solved by a local computing station located with the k-th pool), it is worth

noticing that the computational demand depends just on the complexity of the

k-th optimization problem, which is limited and does not scale with the number

of pools. In the latter case, the exchange of useful information among the local

control stations is required, i.e., consisting of the optimal local solutions ξ̃k, which

must be broadcast as the solution is attained.
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Figure 4.2: Scheduled off-takes applying Round Robin on LRP1
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4.3 Primal Decomposition PD

In this section, our purpose is to show a more common distributed algorithm for

the solution of the decomposed problem. The primal decomposition is largely

discussed in literature [12] and employed in many applications [13], [7]

sub-problem 1 sub-problem 2 sub-problem 1

master

sub-problem 2

Figure 4.3: Primal Decomposition

4.3.1 Primal Decomposition Algorithm

Suppose our problem (for the sake of simplicity, we will consider only two pools,

which allows the decomposition of the problem into two sub-problems) has the

generic form:

minimize
xi

f1(x1) + f2(x2)

subject to x1 ∈ X1, x2 ∈ X2

h1(x1) + h2(x2) ≤ r

(4.28)

where x1 and x2 are decision variables and X1 and X2 are the local set of con-

straints related to variables x1 and x2, respectively, and described by linear equal-

ities and/or inequalities. The functions hi : R
n → R

p are assumed linear with

respect to their arguments (and therefore convex). Thereby, the sub-problems

are said to be coupled via the p constraints, that involve both x1 and x2 at the

same time. Such constraints are called complicating constraints, since without

them the sub-problems could be easily solved separately. In [5], a suitable way

to separate the complicating constraints is shown.

The problem can be seen as a resource allocation problem. The resource to

be shared is limited and it is represented by the vector r. There is a conflict



4.3 Primal Decomposition PD 85

between the sub-problems. Indeed, if we solve the sub-problems separately, i.e.:

minimize
x1

f1(x1) minimize
x2

f2(x2)

subject to x1 ∈ X1 subject to x2 ∈ X2

h1(x1) ≤ r h2(x2) ≤ r

(4.29)

each sub-problem will use the resource without taking into account of the resource

allocated by the other one. This situation will lead to a non-feasibility of the

global problem even if both the local ones are feasible. Moreover, even if we

halve the elements of the vector r among the sub-systems, the convergence to

global optimal solution is not guaranteed.

In order to avoid this, we introduce a new variable t ∈ R
p, such that 1/2r+ t

represents the amount of the resource allocated to the first sub-problem. Con-

sequently, 1/2r − t will be the part allocated to the second sub-problem. The

problem will be then split into two sub-problems, defined next:

minimize
x1

f1(x1)

subject to x1 ∈ X1

h1(x1) ≤
1

2
r + t

(4.30)

minimize
x2

f2(x2)

subject to x2 ∈ X2

h2(x2) ≤
1

2
r − t

(4.31)

These problems, (4.30) and (4.31), can be solved independently and simulta-

neously, when t is fixed. Let φ1(t) and φ1(t) denote the solutions, i.e. the optimal

values, of the sub-problems (4.30) and (4.31), respectively. The original problem

(4.28) is equivalent to the master problem of minimizing φ(t) = φ1(t) + φ2(t)

with respect to the “allocation vector” t. As described is [5], we can find a sub-

gradient for the optimal value of each sub-problem from an optimal dual variable

associated with the coupling constraint. For this purpose, define with p⋆(z) the
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optimal value of the convex optimization problem:

minimize
x

f(x)

subject to x ∈ X
h(x) ≤ z

(4.32)

and suppose z ∈ dom p. Let λ(z)⋆ be an optimal dual variable associated with

the constraint h(z) ≤ z1. Then, it is possible to demonstrate (see [4] and [5])

that −λ(z)⋆ is a sub-gradient of p at z.

Thus, coming back to our problem, to find a sub-gradient of φ, first we solve

the two sub-problems, where the vector t is fixed, to find the local optimal so-

lutions x⋆
1 and x⋆

2, as well as the optimal dual variables λ⋆
1 and λ⋆

2, associated to

the constraints h1(x1) ≤ 1/2r + t and h2(x2) ≤ 1/2r − t, respectively. Hence, a

sub-gradient of φ at t will be λ⋆
2 − λ⋆

1 ∈ ∂φ(t).

The master, thus, solves a simple problem in terms of updating the resource

allocation t aiming to minimize φ(t) with respect to t, using a standard sub-

gradient method.

The algorithm is, therefore, the following:

Primal Decomposition Algorithm

step 1 k ← 0; t(k) ← 0;

step 2 solve the sub-problems (possibly in parallel):

minimize
x1

f1(x1)

subject to x1 ∈ X1

h1(x1) ≤
1

2
r + t(k)

(4.34)

1Problem (4.32) can be recast as the following dual one:

maximize
λ≥0

g(λ) (4.33)

where g(λ) = inf
x∈X

(
f(x) + λT (h(x)− z)

)
. The solution of (4.33) is the pair (x⋆(z), λ⋆(z)) [4]
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and
minimize

x2

f2(x2)

subject to x2 ∈ X2

h2(x2) ≤
1

2
r − t(k)

(4.35)

to find an optimal x
(k)
1 = x⋆

1(t
(k)) and x

(k)
2 = x⋆

2(t
(k)), λ

(k)
1 = λ⋆

1(t
(k)) and

λ
(k)
2 = λ⋆

2(t
(k)), respectively;

step 3 calculate the optimal value at t(k):

φ(t(k)) = φ1(t
(k)) + φ2(t

(k)) = f1(x
(k)
1 ; t(k)) + f2(x

(k)
2 ; t(k)) = f(x(k); t(k))

(4.36)

step 4 if f(x(k); t(k)) fulfills a certain stopping criterion, then end; else update the

resource allocation:

t(k+1) = t(k) − α(k)(λ
(k)
2 − λ

(k)
1 ) (4.37)

k ← k + 1 and go to step 2

Here, α(k) is an appropriate step-size. The stopping criterion and the step-size

rules are discussed in the following.

4.3.2 Step-size Rules

In [16], a step-size rule, that can be used when the optimal value f ⋆ is known, is

suggested. The step size is:

α(k) =
f(x(k))− f ⋆

‖∂φ(t(k))‖2
(4.38)

This formulation would be optimal, but not suitable in our case. Indeed, we

assume to be f ⋆ not known. On this hand, in [3], several rules for suitably setting

the step-size α(k) are discussed. In the following we will list some solutions:

• Constant step-size: α(k) = α is a positive constant. Note that, in this case,

the step-size is independent of the iteration k.
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• Constant step length: α(k) = γ/
∥
∥∂φ(t(k))

∥
∥
2
, where γ > 0. This means that

∥
∥x(k+1) − x(k)

∥
∥
2
= γ.

• Square-summable but not summable: the step-size satisfy

α(k) ≥ 0,

∞∑

k=1

α(k)2 <∞,

∞∑

k=1

α(k) =∞ (4.39)

for example, α(k) = a/(b+ k), where a > 0 and b ≥ 0.

• Non-summable vanishing : the step-size satisfy

α(k) ≥ 0, lim
k→∞

α(k) = 0,

∞∑

k=1

α(k) =∞ (4.40)

In this case, the step-size that satisfies this conditions is called diminishing

step-size. A typical example is α(k) = a/
√
k, where a > 0.

• Non-summable diminishing step length: the step sizes are chosen as α(k) =

γ(k)/
∥
∥∂φ(t(k))

∥
∥
2
, where

γ(k) ≥ 0, lim
k→∞

γ(k) = 0,

∞∑

k=1

γ(k) =∞. (4.41)

4.3.3 Stopping Criterion

In [3] and [11], two stopping criterion are discussed: the former is based on

finding a lower bound of the global optimum of the centralized problem and stop

the algorithm as soon as the difference between the objective function and the

lower bound is smaller than a given threshold; the latter is based on the derivative

of the curve of the objective function. Nevertheless, in most practical cases, the

stopping criterion is just based on a limit for the number of iterations or the

number of steps without an improvement [2], [14].

4.3.4 Application of PD to LRP1

The distributed structure of our problem is particularly prone to be decomposed

using the primal decomposition method. Let the vectors b̄i and bi represent the
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resource that must be shared among the off-takes. We recall that bi is a linear

combination of the water-level upper and lower bounds. Thus, the resource, in

this case, is the amount of water that is available for the different pools. Focusing

on our case of study (the last two pools of the EGM channel), we can adapt the

generic problem (4.24), to the 2-pool case:

minimize
ξ1,ξ2

CT
1 ξ1 + CT

2 ξ2 (4.42a)

subject to A11ξ1 + A12ξ2 ≤ b̄1 (4.42b)

A22ξ2 ≤ b̄2 (4.42c)

A11ξ1 + A12ξ2 ≥ b1 (4.42d)

A22ξ2 ≥ b2 (4.42e)

x1 ∈ X1, x2 ∈ X2 (4.42f)

In (4.42), the inequalities (4.42b) and (4.42d) are the so-called complicating con-

straints. On the other hand, (4.42c), (4.42e) and (4.42f) are the local constraints.

The resource to be shared is represented, only, by the vectors b̄1 and b1. Indeed,

as largely discussed, the first off-take does not affect the pool 2.

As discussed in Section 4.3.1, we can apply the primal decomposition on

the problem (4.42), by splitting it into two sub-problems. Defining the matrix

Ãih =

[

Aih

−Aih

]

and the vector b̃i =

[

b̄i

−bi

]

, the complicating constraints (4.42b)

and (4.42d), thus, become:

Ã11ξ1 + Ã12ξ2 ≤ b̃1 (4.43)

The sub-problems 1 and 2, related to the 1-st and the 2-nd pools, are:

minimize
ξ1

CT
1 ξ1 minimize

ξ2
CT

2 ξ2

subject to x1 ∈ X1 subject to x2 ∈ X2

Ã11ξ1 ≤
1

2
b̃1 + t Ã12ξ2 ≤

1

2
b̃1 − t

Ã22ξ2 ≤ b̃2

(4.44)

Initializing t(k) = 02ny , we can solve the two sub-problems in parallel in order
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to obtain the optimal dual variable λ
(k)
1 and λ

(k)
2 . Then the master updates t,

according to the algorithm shown in Section 4.3.1.

Regarding the step-size, we choose an α(k) diminishing with respect to the

number of iteration. In particular, we use α(k) = a/
√
k. As discussed in Section

4.3.3, we define as the number of iteration K = 300.
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4.3.5 Simulation Tests on LRP1, Decomposed using PD

Testing the PD algorithm on LRP1, we obtain the results shown in Figure 4.4.
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Figure 4.4: Scheduled off-takes applying primal decomposition on LRP1

Comparing the results in Figure 4.4 with the simulation test on the centralized

LRP1 (see Figure 3.7), we notice that the solutions are almost equivalent. Indeed,

chosen an appropriate step-size, the primal decomposition methods achieves the

global optimum, represented by the solution of the centralized LRP1. Other

results, with different diminishing step-size choices, were obtain. Anyway, con-

cerning the convergence speed, the best choice is the adopted one. In principle,
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Figure 4.5: Convergence of the objective function to the global optimum

the primal decomposition method described in this section allows to decompose

the problem in small-scale sub-problems, with non-scalable computational de-

mand. Indeed, the overall computational time required for obtaining the solution

can be estimated as more than two hours.

Secondly, as it can be noticed from Figure 4.5, although we can conclude

that the objective function converges to global optimum, we also notice that the

optimum is not properly reached. This problem is related to numerical problems

in the solver, specifically, in the calculation of the dual variables.
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4.4 Round Robin vs Primal Decomposition: Ad-

vantages and Drawbacks

As discussed in Section 4.2.2 and 4.3.5, both the algorithms have advantages and

drawbacks. In this section, we are going to compare the results of PD and RR

applied on LRP1.

Concerning the computational cost, the gap is very broad. In RR, each sub-

problem is solved only once, starting from the N -th to the 1-st one. On the

contrary, PD needs K iterations to find a suitable solution, where K depends on

the adopted stopping criterion. In our case, for the sake of simplicity, K is fixed,

but in general it is not a priori known. Anyway, the computational time demand

in both the solutions proportionally depends on the number of sub-problems and,

in general, on the number of off-takes to be scheduled. Nevertheless, we recall

that, in the primal decomposition algorithm, the sub-problems can be solved in

parallel, while the master solves a very simple updating problem. If we consider

our case of study (N = 2), the computational time demand for solving the global

problem should be halved. Also, it should be noted that since the primal algo-

rithm is largely discussed in literature, more efficient and dedicated optimization

tools can be used to further reduce the computational cost.

If we consider the optimality of the solutions, we can notice that Round Robin

does not reach the global optimum (represented by the solution of the centralized

RP1), because the downstream pools do not take into account of the decisions

of the upstream ones. In primal decomposition, instead, each pool takes into

account of the decisions of all the other pools through the resource allocation

variable. This leads the overall system to achieve the global optimum. The gap,

in terms of achievement of the global optimum, between the solution obtained

with the Round Robin algorithm and the global optimum from the centralized

problem increases as the number of pools augments.

For this reasons the most suitable solution will be the primal decomposition.





Chapter 5

Conclusions and Future Work

In this Thesis, we have implemented an high-level optimizer solving the prob-

lem of finding optimal solutions for scheduling issues on a gravity-fed large-scale

irrigation network. Our aim has been the scheduling of the requested off-takes

fulfilling given constraints on the water-level and minimizing the delivery delays

in water supply. Concerning this point, we have developed different optimization

problems in order to achieve our objective.

In particular, first of all, we have discussed a suitable model of the irrigation

network. Since the entire system was too large and complex, we have focused our

attention on a part of the network. Starting from the continuous-time model of a

pool, we have developed a state-space discrete-time model of a string of pools in

the centralized fashion. The low-level decentralized control system, which guar-

anteed satisfactory performances in terms of robustness and closed-loop stability,

has been embedded.

Secondly, in order to guarantee the water-level to fulfill given upper and lower

bounds among the entire prediction horizon, we have defined a generic optimiza-

tion problem formulation whose dynamical constraints were explicitly accounted

for. Since our aim was to minimize the delivery delays, we have chosen the initial

time of the water supply as the decisional variable. This has led to a non-linear

optimization problem. We have, then, decided to turn into a {0, 1} integer linear

formulation via change of variables. Since such a program was too computa-

tionally demanding, we have reformulated it by relaxing the integer constraints.

We have, hence, obtained two relaxed problem formulations that did not guar-

antee the preservation of the original shape of the requested profile but, on the
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other hand, which lead to more computationally affordable optimization prob-

lems. Consequently, we have proposed different possible objective functions for

all the problems. In particular, for the relaxed formulation, a linear and two

quadratic solutions have been discussed and tested.

Finally, we have applied two distributed methods to decompose the relaxed

problem into smaller-scale ones. Regarding this, we have sorted the vectors of

variables and parameter and the matrices appearing in the constraints, in order

to highlight the decomposable structure of the problem. Then, we have imple-

mented and tested the Round Robin and the Primal Decomposition method.

Finally, we have compared the results of both the distributed solutions and we

have remarked the drawbacks and the advantages of both. As it has been thor-

oughly discussed, the more advisable implementation is the one obtained using

the Primal Decomposition in view of its optimality properties.

Future work includes the implementation and the testing of a more large

and complex problem, including more pools and more channels. Due to the

excessive computational demand of the discussed Primal Decomposition method,

new algorithms, dedicated to the analysed program should be implemented.

Concerning this, the Primal Decomposition solution is also suitable for further

decomposition: each sub-problem related to a pool, can be further divided into

single units solving the local problem of the single user (see Figure 5.1).

Master Problem

Secondary Master

Problem 1

Secondary Master

Problem 2

SP11 SP12 SP13 SP21 SP22 SP23

First Level

Second Level

Decomposition

Decomposition

Figure 5.1: Example of hierarchical primal decomposition of the problem: the first level de-
composition solves the problems related to the pools, the second one, the sub-problems of the
single user

The information passing from the second to the first levels decomposition,



97

and vice versa, can be led by negotiation mechanisms, based on Game Theory.

In the future, it will be possible to investigate also this structure.

Another problem, that should be further explored, is the decomposition of

problems with tailored quadratic non definite objective functions that have been

shown in this Thesis.
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