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Abstract

This work is concerned with the numerical investigation of the stability
properties of two viscous, incompressible, coaxial jets. Starting from a
Finite Element base flow solver, the necessary tools for a linear analysis are
developed and thoroughly validated. A Hopf bifurcation point is located in
the parameter space, and its neutral curve is traced in the Reynolds number-
velocity ratio plane, thus allowing to compute the minimum values of the
parameters necessary for the onset of the linear instability. In the unstable
regime, for a unitary velocity ratio, a von Kármán vortex-street is originated
in the wake of the duct wall separating the two streams. In this condition
the eigenvectors and the structural sensitivity parameter associated with
the critical eigenvalue closely resemble those observed in flows around bluff
bodies. When the velocity ratio is increased, the vortex dynamics tends
more and more to the one produced by a Kelvin–Helmoltz instability. In
this configuration the shape of the unstable eigenmode is altered, and the
structural sensitivity parameter clearly highlights a modification of the region
where the ‘wavemaker’ is located. In addition, the results show that large
transient growth may occur in the subcritical regime, amplifying the kinetic
energy of perturbations by up to twelve orders of magnitude. This research is
completed by a study on the influence of domain truncation, a relevant issue
in weakly nonparallel flows, and by a comparison with the results obtained
by DNS.

Keywords: Coaxial jets, Navier–Stokes equations, Modal stability,
Hopf bifurcation, Nonmodal stability, Structural sensitivity.



Sommario

Questo lavoro si occupa dell’analisi numerica delle proprietà di stabilità di
una coppia di getti coassiali incomprimibili e viscosi in funzione del numero
di Reynolds associato al getto interno e del rapporto fra le velocità massime
nei due getti all’ingresso del dominio. Partendo da un solutore agli Elementi
Finiti per il calcolo del flusso base, vengono sviluppati e validati gli strumenti
necessari per un’analisi lineare della corrente. Viene individuato, nello spazio
dei parametri, un punto di biforcazione di Hopf, la cui curva neutra viene
tracciata nel piano numero di Reynolds-rapporto di velocità, permettendo
di calcolare i valori minimi dei parametri necessari per l’instabilità lineare.
In regime instabile, per un rapporto di velocità unitario, una scia di von
Kármán ha origine a valle del setto che separa i due condotti di ingresso. In
questa configurazione gli autovettori ed il parametro di sensitività strutturale
associati all’autovalore marginalmente stabile assomigliano a quelli osservati
nella scia di corpi tozzi. Quando il rapporto di velocità viene incrementato,
la dinamica degli anelli vorticosi tende a quella prodotta da un’instabilità
di Kelvin–Helmoltz, la forma dell’autovettore critico viene modificata ed il
parametro di sensitività strutturale evidenzia un sensibile mutamento della
regione ove ha sede il meccanismo di instabilità. Inoltre, i risultati mostrano
che un’ampia crescita transitoria può aver luogo in regime subcritico, e che
l’energia cinetica delle perturbazioni può essere amplificata fino a dodici ordini
di grandezza. L’indagine viene completata da uno studio sull’influenza del
troncamento del dominio, un aspetto importante per le correnti debolmente
non parallele, e da un confronto con i risultati ottenuti tramite DNS.

Keywords: Getti coassiali, Equazioni di Navier–Stokes, Stabilità
modale, Biforcazione di Hopf, Stabilità non modale, Sensitività
strutturale.
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Introduction

Ui

Uo

Figure 0.1 Flow visualization taken from [46]. The annular jet is seeded
with a fluorescent die, the velocity ratio is ru = Uo/Ui = 4 and the Reynolds
number based on the inner jet is Rei = 1 000.

Coaxial jets are generated when combining two streams: an inner one, origi-
nating from a circular pipe of diameter Di and flowing at velocity Ui, and an
outer one, issuing from an annular-section pipe of diameters Do,1 and Do,2

and flowing at velocity Uo. Annular jets correspond to the case when there is
no inner fluid stream, namely, Ui = 0, and, depending on the application, the
wall separating the jets may be reduced to a sharp edge so that Do,1 = Di,
as depicted in figure 0.1. The two streams need not have the same fluid
properties, however, the present investigation is restricted to the case of
identical fluids and uniform temperature.

Coaxial jet flows are often used in industrial applications as an effective
way of mixing two different fluid streams: important examples are found in
the fuel-air mixing process which takes place inside jet engines, as well as
in the gas assisted spray formation, known as airblast atomization. In fact,
the coaxial jets flow, operating with a large outer to inner momentum ratio
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Introduction

is used for its ability to destabilize, fragment and mix the central stream in
the outer, rapid stream [46]. Furthermore, much aeronautical interest lies in
the noise reduction characteristics achievable by coaxial jets. The effect of
noise reduction by the addition of a surrounding coaxial stream to a single
jet has been known for several years (see, for instance, [49]). In particular, it
has been suggested [31, 19] that the aerodynamic noise produced by coaxial
jets is related to the dynamics of large-scale vortical structures generated by
the instability of the shear layers; moreover, it is well known (see, e.g. [27])
that large scale mixing is controlled by coherent structures of relevant size.
It is therefore very important to understand the detailed dynamics of these
structures, even in simple flow configurations (i.e., constant density and low
Reynolds numbers).

Despite its relatively simple configuration, the coaxial jets flow is governed
by eleven independent quantities, which are functions of both nozzle geometry
and fluid properties. The present investigation is limited to the case of non-
swirling, viscous, incompressible jets separated by a duct wall of rectangular
geometry, and thus accounts for four parameters only, reported in table 0.1.
As a consequence of the noteworthy number of involved parameters, coaxial
jets allow to study the onset of turbulence beyond a description based on the
Reynolds number alone.

Rei =
U0iDi

ν
Reynolds number of the central jet

ru =
U0o

U0i

velocity ratio

β =
Do,2

Di

diameter ratio

s = Ro,1 −Ri height of the separation wall

Table 0.1 Governing parameters.

The stability properties of this class of flows have been investigated experi-
mentally by several authors [3, 37, 38, 39] in various geometrical configurations
and for different values of the aforementioned parameters. Based on experi-
mental measurements and analytical inviscid approximation [26, 41], these
authors have argued that, in the case of a thick wall separating the noz-
zles, coaxial jets present a locally absolutely unstable region immediately
downstream of this wall. This region is responsible for the oscillator-type
behaviour of the flow which is rather insensitive to external perturbations.
One of the objectives of the present investigation is to further contribute to
these assessments and to characterize the jets from the stability point of view.
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The existence of two shear layer regions, one between the inner jet and
the outer jet, and the other between the outer jet and the surrounding
quiescent medium, was highlighted by Ko and Kwan [20, 22]; these authors
measured two different frequency peaks, corresponding to the presence of
vortices originated from the inner and outer shear layers. They also observed
the formation of two potential cores1, separated by the inner shear layer.

The complex interaction of the instabilities originating from the shear
layers have been initially documented in [8] and [46]. These articles evidence
the importance of the outer to inner velocity ratio ru = Uo/Ui. In addition
Rehab et al. [30] have determined the existence of a critical value ruc, lying
in the range 5 < ruc < 8 and depending on the inflow velocity profiles, above
which a reverse flow region develops within the inner jet.

For ru � 1, the outer stream acts mainly as a “coflow”, without modifying
substantially the inner jet dynamics [10] nor the main instability, which is
driven by inner shear layer [37].

For larger, but still less than 1, velocity ratios (0.59 < ru < 0.71) the
outer shear layer instability rolls up into axisymmetric vortex rings that turn
further downstream into a helical-shaped structure. The inner shear layer,
on the other hand, has a lethargic behaviour and never rolls up into vortical
structures before being dominated by the outer helical vortices [7].

At ru ≈ 1 a pattern similar to that of the von Kármán vortex street
develops behind the wall separating the nozzles; the blunt-edge wake instability
is found to be the dominant mechanism affecting both the inner and the outer
shear layers [37].

For large velocity ratios (ru > 2.56) the inner shear layer also rolls up into
ring-shaped vortices which interact with the outer vortex structures. In this
case the outer shear layer dominates the dynamics of the flow by forcing the
inner shear layer and leading to a characteristic lock-in phenomenon [7].

For velocity ratios above the critical value, the inner potential core is
truncated and a large recirculating bubble, having a size of the order of the
inner jet diameter, is formed a few diameters downstream of the nozzles. A
characteristic feature of this backflow region is the fact that it oscillates and
rotates at the same frequency in a pure precession mode, this frequency is
fixed by Di and Ui [30].

The influence of the separation wall has been thoroughly studied in the
experiments performed by Segalini [37]. The wake produced by a wall of
relevant height (s ≈ Di/10) affects the flow for intermediate velocity ratios,
showing a maximum effect for ru ≈ 1. In this regime the wake instability is
responsible for the main fluctuations in the flow field.

1Here “potential” denotes a region of low turbulence, not irrotationality.
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Introduction

Based on the above cited experimental results, the present work is aimed at
investigating the coaxial jets flow by means of a global stability analysis. The
main purpose is indeed to provide useful information for the understanding of
the origin of the various documented regimes and of the underlying physical
mechanism of instability.

Different approaches, whose theoretical foundations are presented in Chap-
ter 1, have been adopted to tackle the problem. Details of their numerical
implementation are given in Chapter 2, while Chapter 3 is devoted to a
thorough validation of the developed software with different geometries and
flows. Finally, Chapter 4 presents the study of the behaviour and stability
characteristics of coaxial jets with respect to the parameters describing the
flow. The flow is approximated as incompressible and axisymmetric and, as
already mentioned, the fluid dynamic properties of the inner and annular
jets are considered identical. The assumption of axisymmetry is justified at
least in the initial jets region since it has been observed from the experiments
[8, 30] that the structures developing from the rollup of the two shear layers
remain axisymmetric over a distance of a few diameters.

The numerical tools employed in this thesis have been implemented in a
program written in Fortran 2003 and C programming languages starting from
a Finite Element code provided by Prof. Quartapelle. The most computational
intensive parts, i.e., the matrix operations and the solution of linear systems,
have been parallelized using the MPI and OpenMP libraries.

xii



CHAPTER 1

Problem formulation

This Chapter provides some basic elements of the theory of nonlinear dynami-
cal systems. Moreover, the abstract formulation of the mathematical problems
occurring in the present investigation is introduced, following, amongst many,
[21, 17, 44].

1.1 Dynamical system theory

Consider a dynamical system given by the triple {T,H,S(t)}, where T is
a time set, H is a phase (or state) space, and S(t) : H → H is a family
of evolution operators parametrized by t ∈ T and satisfying the following
semigroup properties:

S(0) = I
S(t+ s) = S(t) ◦ S(s) i.e., the system is autonomous.

In the continuous-time case, the action of the evolution operator S(t) on
a state x0 ∈ H can be described by the solution of a (partial) differential
equation with initial conditions of the form:





∂x

∂t
+N (x;λ) = 0,

x(r, 0) = x0(r).
(1.1)

The solution x = x(r, t) belongs to the phase space H, and N , which does
not explicitly depend on time, the system being autonomous, is a family of
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Chapter 1. Problem formulation

mappings of H into itself depending on the (vector) parameter λ; in all the
applications considered here, N represents the steady, incompressible Navier–
Stokes equations, to be presented in section 1.4.1. In infinite dimensions the
phase space H is a function space, for instance a Hilbert space, whilst in
finite dimensions H ⊂ Rd (d ∈ N).

When considering a deterministic system, i.e., a system that will always
lead to the same state when starting from a given initial condition, the
knowledge of x = x(r, t) allows a complete description of the state of the
system at any given time.

From the engineering point of view the interest lies in understanding the
behaviour of the system both as t→∞ as well as during a “small” transient
period.

As the observed phenomena depend on λ, in a very schematic way, and
considering as the sole parameter Re, the typical evolution of a fluid dynamic
system can be described as follows:

Step 1. For small Re, say Re < Re1, there exists a unique steady solution to
the equation

N (x; Re) = 0, (1.2)

i.e., a unique fixed point x = s1(r). This steady solution is stable and attracts
all the orbits, which means that

x(r, t)→ s1(r) as t→∞,

for any x0 ∈ H.

Step 2. For larger values of Re, say Re1 < Re < Re2, other solutions to
(1.2) appear, while s1 loses its stability. At this point there are two possible
scenarios:

(i) if other steady solutions s2, s3, . . . , appear, a steady state bifurcation
has occurred at Re = Re1. Typically, for t→∞, x will converge to one of
the steady solutions

x(r, t)→ si(r) for some i 6= 1, as t→∞,

with i depending on x0. Each steady solution possesses a basin of attraction,
i.e., the set of all initial conditions which evolve towards the considered steady
solution, and attracts all the solutions of (1.1) that start from within such a
set.

(ii) Otherwise a Hopf bifurcation can occur: in this case, the flow never
becomes steady. Instead, if the bifurcation is supercritical, the evolution of

2



1.2. Bifurcation theory

the system will be determined by

x− φ→ 0 as t→∞,

where φ = φ(r, t) is a time-periodic solution of (1.1), of period τ > 0




∂φ

∂t
+N (φ,Re) = 0, ∀t ∈ R+,

φ(r, t+ τ) = φ(r, t).
(1.3)

The value Re1 where the bifurcation has occurred is a priori unknown, as is
the solution φ of (1.3) and even the period τ . In every instance, a detailed
analysis is necessary to determine these quantities.

Indicating with x1 the value of x(r, t) for which Re = Re1, the couple
(x1,Re1) is called a bifurcation point. This is the first step that eventually
leads to turbulence when approached from the dynamical systems point of
view as pictured in the Ruelle–Takens route to chaos, [32]. Gallavotti [13]
suggests that:

“We can audaciously hope that in the future the phenomena that appear at
the onset of turbulence can become the blocks with which to construct the theory
of “strong” turbulence, with many degrees of freedom. The possibility of this
viewpoint emerged after the works of Ruelle–Takens and it seems supported
by a large amount of experimental and theoretical checks.”

This is an important motivation to the present investigation.

1.2 Bifurcation theory

As parameters are varied, changes, as the one depicted in the previous section,
may occur in the qualitative structure of the solutions. These changes are
called bifurcations and the parameter values at which they occur are called
bifurcation values ; in these points the system is said to be structurally unstable.
The phase portrait of the dynamical system qualitatively changes when passing
through a bifurcation point. More precisely the two phase portraits, separated
by the bifurcation, are not topologically equivalent ; this means that there is
no homeomorphism that can map the orbits of the phase portrait before the
bifurcation to those of the phase portrait after the bifurcation, preserving the
direction of time [21].

The codimension of a bifurcation is the smallest dimension of the parameter
space which contains the bifurcation in a persistent way, or, equivalently,
it is the difference between the dimension of the parameter space and the
dimension of the corresponding bifurcation boundary. There are four types
of codimension one bifurcations: three of them are characterized by a real

3



Chapter 1. Problem formulation

eigenvalue that vanishes at the bifurcation point, this kind of bifurcation
characterizes Step 2 i; the fourth type has two complex conjugate eigenvalues
which cross the imaginary axis, and it characterizes Step 2 ii.

ψ

x

ẋ = ψ − x2

(a) Saddle-node.

ψ

x

ẋ = ψx− x2

(b) Transcritical.

ψ

x

ẋ = ψx− x3

(c) Pitchfork.

x

ψ

y

ẋ = ψx− x3

(d) Supercritical Hopf.

Figure 1.1 Examples of codimension one bifurcation diagrams.

A well known example is the flow around a circular cylinder which exhibits
a Hopf bifurcation as first instability.
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1.3. Navier–Stokes equations

1.3 Navier–Stokes equations

Throughout this thesis the dynamical system of eq. (1.1) will be identified as
the Navier–Stokes equations for an incompressible fluid of uniform density
which can be written, in the standard convective form, as





∂u

∂t
+ (u ·∇)u− 1

Re
∇2u+∇p = 0,

∇·u = 0,
(1.4)

where u(r, t) is the velocity vector with components u = (ux, uy, uz), in
Cartesian coordinates, and u = (ur, uθ, uz) in cylindrical coordinates; the
(dimensionless) pressure has been rescaled dividing it by the Reynolds number
Re. The equations are made dimensionless by choosing a characteristic length
scale D∗ and a reference velocity U∗, depending on the flow being investigated,
which allow to define the Reynolds number

Re =
U∗D∗

ν∗
, (1.5)

where ν∗ is the kinematic viscosity of the fluid, assumed to be constant.

The problem is set on a finite domain Ω whose boundary is divided in
two parts, ∂Ω = ΓD ∪ ΓN , to assign different boundary conditions on each Γi,
as explained in the following section.

1.4 Linearized equations

The starting point of the linear stability analysis, whether modal or nonmodal,
is the linearization of the Navier–Stokes equations in the neighbourhood of a
fixed point X = (U , P ). The velocity and pressure fields are then considered
as the linear combination of two fields, i.e., u = U +u′ and p = P + p′ which,
substituted into the Navier–Stokes equations (1.4), lead to two systems of
equations: one that describes the fixed point and one for the perturbation
fields.

5



Chapter 1. Problem formulation

1.4.1 Base flow

The computation of the base flow, which is a fixed point for (1.4), involves the
numerical solution of the steady-state Navier–Stokes equations. The problem
can be stated in strong form as:

find a velocity field U(r) and a pressure field P (r), defined up to an
additive constant, such that:



(U ·∇)U − 1

Re
∇2U+∇P = 0,

∇·U = 0,

U = b, ∀r ∈ ΓD;

1

Re

∂U

∂n̂
− P n̂ = a, ∀r ∈ ΓN ;

(1.6)

where n̂ is the outward pointing normal, b(s) and a(s) are assigned vector
functions, and ΓD and ΓN are portions of the boundary ∂Ω such that ΓD ∪
ΓN = ∂Ω and Γ̊D ∩ Γ̊N = ∅, where the circle ·̊ indicates the inner portion of
a set.

The boundary condition on ΓD is of Dirichlet type and assigns all the
velocity components (but it does not involve the pressure); on the other hand,
the boundary condition on ΓN is of Neumann type and is equivalent to a
stress-free boundary condition only on still, solid surfaces.

The expression of the viscous stresses, relative to a surface with generic
normal, is in fact (see [29]):

sn̂(u) = µ̄[2(n̂ ·∇)u+ n̂×∇×u],

which, only in the case of a non moving, rigid body can be simplified to:

s|n.m.b. = µ̄(n̂ ·∇)u|n.m.b.,

which, in turn, means that the total stresses on a still, solid surface are:

t|n.m.b. = [µ̄(n̂ ·∇)u− pn̂]|n.m.b.,

but this expression is not valid on a generic border of the domain.

6



1.5. Modal stability

1.4.2 Direct and adjoint LNSE

After dropping nonlinear terms, the equations for the perturbation, known as
Linearized Navier–Stokes Equations (LNSE), read:

find a velocity field u′(r, t) and a pressure field p′(r, t), defined up to
an additive constant, such that:



∂u′

∂t
+ (U ·∇)u′ + (u′ ·∇)U − 1

Re
∇2u′ +∇p′ = 0,

∇·u′ = 0,

u′ = b, ∀r ∈ ΓD;

1

Re

∂u′

∂n̂
− p′n̂ = a, ∀r ∈ ΓN ;

(1.7)

supplemented by the initial condition u′(r, 0) = u′0(r). Typical boundary
conditions impose a null velocity perturbation on solid walls u′(r, t)|Γw = 0,
and decaying perturbations at infinity.

The adjoint linearized Navier–Stokes system of equations is obtained
from the direct one by multiplying it by two test functions, v′ and q′, and
integrating by parts. After standard mathematical manipulation, the adjoint
LNSE read:

find a velocity field v′(r, t) and a pressure field q′(r, t), defined up to
an additive constant, such that:



∂v′

∂t
+ (U ·∇)v′ − (∇U) ·v′ + 1

Re
∇2v′ +∇q′ = 0,

∇·v′ = 0,

v′ = b, ∀r ∈ ΓD;

1

Re

∂v′

∂n̂
− q′n̂ = a, ∀r ∈ ΓN ;

(1.8)

supplemented by the initial condition v′(r, 0) = v′0(r).

1.5 Modal stability

As a first step in the investigation of the behaviour of a dynamical system
in the neighbourhood of a fixed point, the study of the stability properties
of the linearized system allows the determination of its local characteristics.
Lyapunov’s theorem states that an equilibrium point X for equation (1.1)
is asymptotically stable if all the eigenvalues of the Jacobian matrix of the

7



Chapter 1. Problem formulation

system, i.e., J |X = ∇xN (X), have a strictly negative real part. This, though,
simply means that the system is stable to infinitesimal perturbations, and
does not account for finite amplitude perturbations which could render the
flow unstable.

The modal (or normal1) stability properties of the system are investigated
by computing the eigenfunctions of the linearized problem in the neighbour-
hood of the fixed point X. The objective of this analysis is to describe
the instability, the shape of the unstable modes and to find out where the
instability mechanism is located in the flow field (structural sensitivity analy-
sis, which will be explained in section 1.6). Moreover, after computing the
most unstable modes, the hyperbolicity of the fixed point can be ascertained2

and in the event of a bifurcation point, the kind of the bifurcation can be
determined.

The starting point of the modal stability analysis is the computation of
the fixed point X = (U , P ), whose stability is to be investigated. Once the
base flow has been computed, the second step consists in the solution of the
linearized problem (1.7); under the assumption of normal modes, the velocity
and pressure perturbations can be written as

u′(r, t) = eλtû(r), p′(r, t) = eλtp̂(r),

the direct LNSE result in the following non-symmetric generalized eigenvalue
problem in the unknowns λj, ûj and p̂j:




λjûj + (U ·∇)ûj + (ûj ·∇)U − 1

Re
∇2ûj +∇p̂j = 0,

∇· ûj = 0,
(1.9)

where λj is the eigenvalue and x̂j = (û, p̂)j is the eigenfunction of the direct
problem.

To perform the structural sensitivity analysis, the adjoint eigenfunctions
are also needed, therefore the adjoint eigenvalue problem is here introduced.
Starting from the adjoint linearized Navier–Stokes equations (1.8), and re-
peating the same steps used for the direct one, the corresponding eigenvalue
problem is easily obtained and reads:




−λjv̂j + (U ·∇)v̂j − (∇U ) · v̂j +

1

Re
∇2v̂j +∇q̂j = 0,

∇· v̂j = 0.
(1.10)

1As pointed out by Trefethen and Embree (see [44]) it was a mistake, during the past
century, to use the terms “linear stability analysis” and “eigenvalue analysis” with the
same meaning; confusing the two, in fact, leaves no room for nonnormal linear effects.

2An hyperbolic fixed point is a point where the system has no eigenvalues on the
imaginary axis.
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1.6. Structural sensitivity

where, again, λj is the eigenvalue and ŷj = (v̂, q̂)j is the eigenfunction of the
adjoint problem. As for the direct problem, the adjoint velocity eigenfunctions
satisfy homogeneous Dirichlet boundary conditions on solid walls, and decay
at infinity.

After the problem discretisation, the resulting finite dimensional linear
operators can be represented by matrices; the adjoint of a finite dimensional
linear operator is the Hermitian matrix (conjugate transposed matrix), a
property which greatly simplifies the computation of the adjoint modes; this
approach is illustrated in sections 2.1.2 and 2.3.

1.6 Structural sensitivity

The structural sensitivity analysis is a relatively new technique, first proposed
in 2007 [15]. What motivates it is that the region where the instability
mechanism acts cannot be identified from the study of the direct and adjoint
eigenfunctions separately. This is because, in general, there is quite a large
difference in the spatial structure of the direct and adjoint modes. The aim
of this analysis is thus to investigate in what region of the flow field the
‘wavemaker’ is located, more precisely, where in space a modification in the
structure of the problem, represented by a localized velocity feedback, is able
to produce the greatest drift of the least stable eigenvalue. This, in fact, is the
‘core’ of the instability mechanism. Note that the sensitivity of the eigenvalue
(and in general of the entire spectrum) depends on the level of non-normality
of the linear operator used for the discretization of the problem [5].

The idea is that, as the eigenvalue problem depends on the fixed point
X being investigated, the introduction of a perturbation to the base flow
modifies both eigenvalues and eigenvectors. The use of spatially localized
perturbations allows then to find the most sensitive region of the flow, simply
by studying how the eigenvalue problem is modified by the perturbation.

The mathematical steps, that lead to the definition of a measure function,
start from the knowledge of the base flow to be investigated, X = (U , P ),
and its direct and adjoint eigenvalue problems. By introducing a perturbation
to the base flow, i.e., U ← U + Ũ and P ← P + P̃ , the eigenvalue problem
has to be modified by substituting the perturbed quantities: λi + λ̃i, ûi + ˆ̃ui
and p̂i + ˆ̃pi. After a few manipulations and thanks to the adjoint eigenvalue
problem, the conclusion is that the linearized system is most sensitive to
perturbations represented by a spatially localized feedback located in the
maximum(a) of the function

s(r) =
‖v̂i(r)‖ ‖ûi(r)‖
|
∫
Ω
v̂i · ûi|

, (1.11)
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Chapter 1. Problem formulation

here referred to as structural sensitivity parameter [15].
(ûi and v̂i are the velocity parts of the eigenvectors of the direct and adjoint
eigenvalue problems presented in (1.9) and (1.10)).

1.7 Transient growth

The second kind of linear analysis adopted in the present investigation is the
study of transient growth of initial perturbations near the fixed point. This
technique may be necessary because sometimes, even for a modally stable
flow, some perturbations can take the flow out of the basin of attraction
of the fixed point [35]; or, more generally, because if a problem is far from
normal, conclusions based on eigenvalues may not be robust [44].

Hydrodynamic instability mechanisms have been investigated, for decades,
by linearizing the Navier–Stokes equations and testing for unstable eigenvalues
of the linearized problem. The results of such investigations, in many cases,
agree poorly with experiments. The usual simplification in these stability
calculations is the assumption of an exponential time dependence, also referred
to as the normal-mode approach. This ansatz allows the transformation of
the linear initial-value problem into a corresponding eigenvalue problem, as
seen in section 1.5. It is a fact of linear algebra, though, that even if all the
eigenvalues of a linear system are distinct and lie well inside the R− half-plane,
inputs to that system may be amplified by arbitrarily large factors if the
eigenfunctions are not orthogonal to one another; the amplification, then,
depends on how much the ε-pseudospectrum protrudes in the R+ half-plane.
These mechanisms may trigger an instability in a modally stable base flow
by exciting the nonlinear dynamics which have not been considered in the
linearized framework; in some cases they may also lead the system out of the
basin of attraction of said modally stable fixed point. This implies that the
time-asymptotic fate, as well as the shape of the least stable mode, may be
irrelevant to the overall perturbation dynamics, as this limit may never be
reached, or it could be reached only under artificial conditions.

For weakly nonparallel flows (see e.g. section 3.3) these limitations are
so severe that the normal-global mode theory is of little help. For certain
flows, then, the eigenvalue spectrum turns out to be a poor proxy for the
study of the disturbance behaviour as it only describes the asymptotic fate
of the perturbation and fails to capture the short-term characteristics that
determine the evolution of such flows.

These observations created the need to redefine stability in a broader
sense because eigenvalues do not always govern the transient behaviour
of a nonnormal system, nor the asymptotic behaviour in the presence of

10



1.7. Transient growth

nonlinear terms, inhomogeneous forcing data, or other complications [45,
44, 5, 35]. There exist three approaches to the study of nonnormality, i.e.,
pseudoresonance, destabilizing perturbations and transient growth, only the
latter will be here presented.

The transient growth analysis answers the questions of which is the initial
condition that produces the largest transient growth of perturbations, after
how long such a maximum is reached and how much the initial perturbation
has been amplified. To perform this analysis, a measure function has to be
chosen in order to compare the effects of different initial conditions. This
necessity does not stem only from physical considerations, as the mathematical
framework into which the analysis is cast also requires a measure. In this
thesis the norm induced by the L2 inner product has been chosen due to its
link with the kinetic energy of the perturbation. The measure function is
then defined as:

G(u′0, t) =
Ek(u

′(t))

Ek(u′0)
=

(u′(t),u′(t))

(u′0,u
′
0)

=

∫

Ω

|u′(t)|2 dΩ
∫

Ω

|u′0|2 dΩ
=
‖u′(t)‖2

L2

‖u′0‖2L2

.

(1.12)

Formally eliminating the pressure variable p from (1.7), the Linearized Navier–
Stokes Equations can be written in compact form as:

∂u′

∂t
= L

NS
u′, (1.13)

where L
NS

is a linear operator representing the LNSE. This allows to write
the solution to the initial value problem as:

u′(t) = etLNSu′0.

Substituting this relation in (1.12), the problem becomes:

Gmax(τ) = max
u′0

‖eτLNSu′0‖2L2

‖u′0‖2L2

, (1.14)

where both Gmax(τ) and u′0, such that G is maximized for a given τ , have to
be computed.

Obviously, the L
NS

operator has to be discretized; the numerical technique
adopted in this thesis is presented in section 2.4.
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Chapter 1. Problem formulation

1.8 Critique

As argued by Waleffe [47, 48], “the question of transition is really a question
of existence and basin of attraction of nonlinear self-sustaining solutions that
have little contact with the nonnormal linear problem.”

The proposed reason is that nonlinear effects unrelated to the transients
play a major role, at least at the moderate Reynolds numbers where transition
is observed, and that the linear transient amplification does not significantly
select a most amplified disturbance; this implies that a precise predictions
about the onset of turbulence cannot be achieved without detailed considera-
tion of the nonlinear effects.

With this in mind, the linear part of the analysis conducted on coaxial jets,
presented in Chapter 4, has been backed with Direct Numerical Simulations
and guided by the experimental results retrieved from the literature.
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CHAPTER 2

Numerical solution

This Chapter is devoted to a description of the strategies employed to discretize
the analysis methods employed in this work.

2.1 Galerkin method and Finite Elements

discretization

The exposition presented in this section is by no means exhaustive, excellent
books on the subject are, for example, [11, 16, 43]. Most importantly, the
notation used in the present and in the following chapters is here clearly
defined

Both the base flow and the linearized equations (1.6), (1.7) and (1.8),
have been discretized using the Finite Element Method. The discretization
procedure starts from the weak variational formulation of the respective
partial differential problems and leads to a system of algebraic equations.

The incompressible Navier–Stokes equations have been discretized using
triangular P2 − P1 (Taylor–Hood) Finite Elements, and a direct solver [1] has
been used to solve the algebraic linear systems. The unknowns u and p of
the original partial differential problem are approximated by their discrete
counterparts

uh(r, t) =

Nh∑

j=1

ϕj(r)uj(t) and ph(r, t) =

Mh∑

k=1

φk(r)pk(t), (2.1)
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Chapter 2. Numerical solution

where Nh = dim
(
H1

h(Ω)
)

and Mh = dim (L2
h(Ω)); ϕj(r) and φk(r) represent

the base functions defined on these spaces; u = [uj ] ∈ RNh and p = [pk] ∈ RMh

are the numerical vector unknowns.
The following bilinear and trilinear forms are also introduced here for

clarity:

a(u,v) =
1

Re

∫

Ω

∇v :∇u,

b(u, q) = −
∫

Ω

q∇·u, (2.2)

c(u,v,w) =

∫

Ω

w · (u ·∇)v,

n
BC

(a,v) =

∫

ΓN

v · a, ∀u,v,w ∈H1(Ω) and ∀q ∈ L2(Ω);

after the discretization of the unknowns, these linear forms will have a discrete
counterpart represented by the following matrices and vector:

Aij = a(ϕj,ϕi) ∈ RNh×Nh ,

Bkj = b(ϕj, φk) ∈ RMh×Nh ,

Cu
ij = c(ϕj, u,ϕi) ∈ RNh×Nh , (2.3)

Cu,ij = c(u,ϕj,ϕi) ∈ RNh×Nh ,

C = Cu + Cu ∈ RNh×Nh ,

n
BCi

= n
BC

(a,ϕi) ∈ RNh ,

the mass matrix will also be used:

Mij =
(
ϕj,ϕi

)
∈ RNh×Nh . (2.4)

14



2.1. Galerkin method and Finite Elements discretization

(a) Mass operator. (b) Linearized Navier–Stokes op-
erator.

Figure 2.1 Sparsity patterns for mass and LNS operators on a grid consisting
of 128 elements in the 2D Cartesian case. The 3D axisymmetric case presents
the same sparsity patterns, it simply has one more velocity component.

Attention must be paid to the difference between 2D Cartesian and 3D
cylindrical coordinates. In particular, the laplacian term, integrated by parts,
assumes two quite different formulations due to the difference in the expression
of the gradient of a vector field in the two reference systems:

∇u =
2D Cart.




∂ux
∂x

∂ux
∂y

∂uy
∂x

∂uy
∂y


 , (2.5)

∇̆u =
3D cyl.

∂ur
∂r
er ⊗ er +

1

r

(
∂ur
∂θ
− uθ

)
er ⊗ eθ +

∂ur
∂z
erez

+
∂uθ
∂r
eθ ⊗ er +

1

r

(
∂uθ
∂θ

+ ur

)
eθ ⊗ eθ +

∂uθ
∂z
eθez

+
∂uz
∂r
ez ⊗ er +

1

r

∂ur
∂θ
ez ⊗ eθ +

∂uz
∂z
ezez.

(2.6)

This difference does not influence the stiffness term very much:

∇v :∇u =
2D Cart.

∂vx
∂x

∂ux
∂x

+
∂vx
∂y

∂ux
∂y

+
∂vy
∂x

∂uy
∂x

+
∂vy
∂y

∂uy
∂y

,

(2.7)
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∇̆v : ∇̆u =
3D cyl.

∂vr
∂r

∂ur
∂r

+
1

r2

(
∂vr
∂θ
− vθ

)(
∂ur
∂θ
− uθ

)
+
∂vr
∂z

∂ur
∂z

+
∂vθ
∂r

∂uθ
∂r

+
1

r2

(
∂vθ
∂θ

+ vr

)(
∂uθ
∂θ

+ ur

)
+
∂vθ
∂z

∂uθ
∂z

+
∂vz
∂r

∂uz
∂r

+
1

r2
∂vz
∂θ

∂uz
∂θ

+
∂vz
∂z

∂uz
∂z

,

(2.8)

but makes the quasi stress-free boundary term
1

Re

∂u

∂n̂
− pn̂ (as

∂u

∂n̂
= n̂ ·∇u)

quite intricated as, in cylindrical coordinates, it depends on the position and
orientation of the boundary.

2.1.1 Base flow

Starting from the strong form presented in section 1.4.1 and after standard
mathematical manipulation, not reported here for conciseness, the weak for-
mulation for the base flow reads:

find U ∈H1(Ω) and P ∈ L2(Ω) such that:





∫

Ω

v · (U ·∇)U +
1

Re

∫

Ω

∇v :∇U −
∫

Ω

P∇·v =

∫

ΓN

v · a
∫

Ω

q∇·U = 0,

U = b, ∀r ∈ ΓD;

1

Re

∂U

∂n̂
− P n̂ = a, ∀r ∈ ΓN ;

(2.9)

∀v ∈H1
ΓD

(Ω) and ∀q ∈ L2(Ω); b ∈H1/2
ΓD

(Ω), a ∈ L2(ΓN).

These equations are nonlinear due to the presence of the convective term.
In order to compute the solution, Newton’s method has been employed, as
explained in the following pages. Newton’s method has been preferred to a
time marching procedure because of its efficiency: just a few iterations are
needed to reach convergence, provided the initial guess is chosen not too far
from the solution, while a time stepping technique may reach the steady state
only if it is asymptotically stable and the number of time steps increases as a
bifurcation point is approached.
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2.1. Galerkin method and Finite Elements discretization

Algebraic formulation After substituting the series expansions of the
unknowns (2.1), in the weak form of the problem (2.9), the discrete formulation
for the base flow reads:

[
A + Cu Bᵀ

B 0

][
u

p

]
=

[
n

BC

0

]
, (2.10)

which is a nonlinear system of equations in the unknowns uj and pj as the
matrix in the left hand side depends on the solution. This nonlinear system
has been solved by a Newton iterative method, as reported in the following
section.

The three formulations of Newton’s method This paragraph presents
the application of Newton’s method to the base flow equations written in
strong form for clarity. The same algorithm can be straightforwardly applied
also to the equations in weak form or to their discretization. An in-depth
analysis of this method applied to a FE discretization can be found, for
instance, in [16].

To start, it is useful to introduce a shorthand for the strong form of the
base flow equations (1.6):

N (x) = 0,

where x = (u, p), and N (x) is a nonlinear operator representing the steady
Navier–Stokes equations (see eq. (1.1)) which can be expressed as

N (x) = Q(x,x) + L(x) = 0,

where the bilinear quadratic form Q(x,x) has been separated from the linear
form L(x):

Q(x,y) =

(
(u ·∇)v 0

0 0

)
, L(x) =


−

1

Re
∇2u ∇p

∇·u 0


 ,

where y = (v, q).

To obtain Newton’s algorithm, N (x) needs to be expanded in Taylor
series, truncated at first order, in the neighbourhood of an approximate
solution xn:

N (x) ≈ N (xn) + J |xn(x− xn) = 0,
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Chapter 2. Numerical solution

where J |y represents the Jacobian matrix of the system computed in y:

J |y = ∇xN (y)

= Q(y, . . . ) +Q( . . . ,y) + L

=


(v ·∇) . . . + ( . . . ·∇)v − 1

Re
∇2 . . . ∇ . . .

∇· . . . 0


 .

After defining the increments as:

δxn+1 = xn+1 − xn and δxn = xn − xn−1,

three versions of Newton’s algorithm can be defined:

• non-incremental formulation: J |xn(xn+1) = Q(xn,xn),

• incremental formulation: J |xn(δxn+1) = −N (xn),

• bi-incremental formulation: J |xn(δxn+1) = −Q(δxn, δxn).

All of the above formulations have been implemented in the software but the
bi-incremental, being the most elegant and efficient, is the one actually used
in the iterations, while the other ones are used to start the algorithm when
an increment is missing. Newton’s algorithm is stopped when the residual,
computed as ‖N (xn)‖

L∞ = ‖Q(δxn, δxn)‖
L∞ , is found to be lower than a

chosen tolerance, usually set to 10−15.
Newton’s algorithm is started either from the solution of the Stokes

problem or from a previously computed solution for a different value of the
parameters characterizing the flow. In either cases, care must be paid to the
correct treatment of non-homogeneous boundary conditions on the velocity
field: if the incremental or bi-incremental formulations are being used the
boundary conditions have to be applied to the increment δxn or δxn+1. This
means that in the simple case of the computation of a steady state solution,
non-homogeneous boundary conditions will be applied to the solution of the
Stokes problem, i.e., x0, and the increments will only need homogeneous
boundary conditions. On the other hand, in the more complicated case of the
continuation of a previously computed solution, if the boundary conditions
are changed between the two base flows, incremental boundary conditions
need to be applied to the first step of Newton’s algorithm, only then the
program can proceed with homogeneous boundary conditions. An example
of the second case is the tracking of the bifurcations presented by the flow
around a circular rotating cylinder, see section 3.1.
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2.1. Galerkin method and Finite Elements discretization

2.1.2 Linearized equations

Starting from the strong form presented in section 1.4.2 and after simple alge-
braic manipulations, not reported here for conciseness, the weak formulation
of the direct LNSE reads:

find u′ ∈ L2
(
R+;H1(Ω)

)
and p′ ∈ L2(Ω) such that:





∫

Ω

v · ∂u
′

∂t
+

∫

Ω

v · (U ·∇)u′ +

∫

Ω

v · (u′ ·∇)U

+
1

Re

∫

Ω

∇v :∇u′ −
∫

Ω

p′∇·v =

∫

ΓN

v · a
∫

Ω

q∇·u′ = 0,

u′ = b, ∀r ∈ ΓD;

1

Re

∂u′

∂n̂
− p′n̂ = a, ∀r ∈ ΓN ;

(2.11)

∀v ∈H1
ΓD

(Ω) and ∀q ∈ L2(Ω); b ∈H1/2
ΓD

(Ω), a ∈ L2(ΓN).

The weak formulation of the adjoint LNSE (1.8) is obtained following the
same steps but it is not presented here because a discrete adjoint approach
has been used instead of discretizing the continuous adjoint equations, as
explained in the following.

Algebraic formulation As seen for the base flow equations, after substi-
tuting the series expansions of the unknowns (2.1) in the weak form of the
problem (2.11), the discrete formulation for the direct LNSE reads:

[
M 0

0 0

][
u̇′

ṗ′

]
+

[
A + C Bᵀ

B 0

][
u′

p′

]
=

[
n

BC

0

]
. (2.12)

Employing the definition of the discrete adjoint of a linear operator, i.e., the
complex conjugate of the discretized operator, the discrete formulation for
the adjoint LNSE is easily obtained:

[
M 0

0 0

][
v̇′

q̇′

]
+

[
A + Cᵀ Bᵀ

B 0

][
v′

q′

]
=

[
n

BC

0

]
. (2.13)

The discrete adjoint has been preferred over its continuous counterpart because
it warrants the orthogonality of its eigenvectors with respect to the ones
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of the direct operator, see sections 2.3 and 2.4, while the eigenvectors of
the discretized adjoint equations satisfy the orthogonality condition only
approximatively, with an error dependent on the truncation error.

To integrate in time these equations, the Implicit Euler and Crank–
Nicolson methods have been employed, as reported in the following formulas
in the case of the direct LNSE.

Implicit Euler

[
1
∆t
M + A + C Bᵀ

B 0

][
u′n+1

p′n+1

]
=

[
1
∆t
M 0

0 0

][
u′n

p′n

]
+

[
n

BC

0

]
, (2.14)

Crank–Nicolson
[

1
∆t
M + 1

2
(A + C) 1

2
Bᵀ

B 0

][
u′n+1

p′n+1

]
(2.15)

=

[
1
∆t
M− 1

2
(A + C) −1

2
Bᵀ

0 0

][
u′n

p′n

]
+

[
n

BC

0

]
.

It is useful to recall, in passing, that the Implicit Euler scheme is first order
accurate, while the Crank–Nicolson scheme is second order accurate.

2.2 Continuation of solutions and bifurcation

points

One useful feature implemented in the software developed during this work is
the possibility to perform the continuation of solutions and bifurcation points.

The continuation of steady state solutions allows to use, as initial guess
for Newton’s algorithm, a base flow computed for different values of the
parameters characterizing the flow. This point assures two fundamental
advantages: it reduces the number of iterations needed to reach convergence
with respect to those that are needed starting from the solution of the Stokes
problem, and allows to compute base flows for high Reynolds numbers, which
are impossible to converge upon if starting from the solution of the Stokes
problem.

The continuation of steady state solutions and bifurcation points has been
introduced in the code by interfacing it to the C library of continuation algo-
rithms LOCA [33]. LOCA allows tracking solution branches and bifurcation
points as a function of system parameters.
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The adopted approach consists in adding the equations describing the bifur-
cation to those that define the steady state. Newton’s method is then applied
to the augmented system; however, instead of loading the Jacobian matrix
for the entire augmented system, bordering algorithms are used to split the
solution of the complete linear system into the solution of a number of smaller
linear systems.

The aim of tracking bifurcation points is to identify the different regions
of the parameter space where the system displays qualitatively different be-
haviours. Although, in principle, it would be possible to map these regions
using only transient calculations, in practice it results unreliable: if, for
example, multiple steady state solutions coexist, it is not possible to math-
ematically determine how many trials are needed in order to calculate the
number of fixed points. Moreover, solving steady state equations is much more
computationally efficient than integrating until a steady state is reached.

2.3 Eigenvalues and eigenvectors

computation

The eigenvalues and eigenvectors, for both the direct and adjoint problems,
have been computed by means of an interface to the ARPACK library [23].
ARPACK, which stands for ARnoldi PACKage, is based on the Implicitly
Restarted Arnoldi procedure which is a technique for approximating a few
eigenvalues and eigenvectors of a general n× n matrix.

After discretization by the Finite Element Method (described in section
2.1), the generalized eigenvalue problem (1.9) is replaced by the following set
of algebraic equations:

λ

[
M 0

0 0

][
û

p̂

]
= −

[
A + C Bᵀ

B 0

][
û

p̂

]
, (2.16)

which can be conveniently rewritten as follows:

λDx̂ = Ex̂. (2.17)

The shift and invert spectral transformation is used to accelerate convergence
to the desired portion of the spectrum, and allows the computation of eigen-
values which would otherwise be out of reach. If (x̂, λ) is an eigen-pair for
(D,E) and σ 6= λ, then

(E− σD)−1Dx̂ = x̂ν where ν =
1

λ− σ . (2.18)
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For a given number of Lanczos basis vectors, ncv, the computational work
required is proportional to n · ncv2 FLOPs (where n is the dimension of E and
D). The results presented in this work have been computed setting ncv = 2
nev + 2 (where nev is the number of requested eigenvalues); the value of nev
and ncv leading to optimal performance depends very much on the problem
and is not completely understood, as the authors of ARPACK write.

2.4 Computing transient growth

As seen in section 1.7, the optimal condition u′0 with maximum transient
growth obeys the following relation:

Gmax(τ) = max
u′0

‖eτLNSu′0‖2L2

‖u′0‖2L2

, (2.19)

where L
NS

is the linear operator representing the Linearized Navier–Stokes
equations, (1.7) or (1.13).

After discretization by the Galerkin and Finite Element methods (see
section 2.1), the operators in (1.13) are substituted by matrices and the
unknowns by vector arrays, namely,

∂u′

∂t
= L

NS
u′ → Mu̇′ = Lu′, (2.20)

therefore, the solution of the discretized system is:

u′(τ) = eτM
−1Lu′0 = Lτu

′
0, (2.21)

where the matrix Lτ has been introduced here just for compactness and ease
of notation but is never assembled: it will, instead, be approximated by
integrating the linearized equations in time as explained later in this section.

Four basic notions are necessary to proceed:

• the Cholesky decomposition of the mass matrix, which is symmetric
positive-definite,

M = CᵀC, (2.22)

• the relation between L2 and Euclidean norms

‖x‖
L2 =

√
xᵀMx =

√
xᵀCᵀCx = ‖Cx‖2 , (2.23)
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• the definition of the norm induced on an m× n matrix by the norm of
a vector

‖A‖ = max

{‖Ax‖
‖x‖ : x ∈ Rn with x 6= 0

}
, (2.24)

which, in the case of the Euclidean norm and m = n, is the spectral
norm, i.e., the largest singular value of A,

• the definition of the discretized adjoint operator with respect to the L2

inner product

(v,Au) =
(
A†v,u

)
,

A† = M−1AᵀM. (2.25)

Now, starting from the definition of the energy function (2.19), and using
(2.21) and (2.23),

Gmax(τ) = max
u′0

‖Lτu′0‖2L2

‖u′0‖2L2

= max
Cu′0

‖CLτu′0‖22
‖Cu′0‖22

, (2.26)

and, by the definition of the identity matrix, modifying the numerator,

Gmax(τ) = max
Cu′0

‖CLτC−1Cu′0‖22
‖Cu′0‖22

, (2.27)

it is now possible to recognize definition (2.24) for the vector Cu′0 which
allows to write (also employing the definition of singular value and, again,
the Cholesky decomposition for the mass matrix),

Gmax(τ) = ‖CLτC−1‖22 = σ2
max

(
CLτC

−1) = λmax

(
C−ᵀLᵀτMLτC

−1) . (2.28)

This leads to a standard eigenvalue problem for the vector Cu′0

C−ᵀLᵀτMLτC
−1Cu′0 = λCu′0 (2.29)

that, after multiplying the previous equation on the left by C−1, is equivalent
to a standard eigenvalue problem for the vector u′0 in the form

M−1LᵀτMLτu
′
0 = λu′0, (2.30)

which, recalling the definition of the discretized adjoint operator (2.25), can
be rewritten as

L†τLτu
′
0 = λu′0. (2.31)

This is the eigenvalue problem to be solved to compute both the maximum
of the energy function Gmax(τ) and the initial condition u′0 that produces it.
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The matrix exponential and the adjoint operator As already men-
tioned, the matrix exponential is not actually assembled, instead it is approxi-
mated by advancing the linearized equations in time using the Crank–Nicolson
method (2.15). In fact, whichever algorithm is chosen for the solution of the
eigenvalue problem, only the action of the adjoint and direct operators on a
given vector has to be computed. This procedure requires to advance in time
the system whose transition matrix is

L†τ = M−1LᵀτM = M−1eτL
ᵀM−1

M, (2.32)

with the associated difficulty of creating a time stepper capable of using the
matrices in inverse order. In the particular case under investigation, though,
it can be demonstrated that

eτL
ᵀM−1

= MeτM
−1LᵀM−1,

which reduces (2.32) to

L†τ = M−1eL
ᵀM−1τM = eτM

−1Lᵀ . (2.33)

This not only simplifies the eigenvalue problem, eliminating the mass product
and linear solve, but also allows to use the same time stepper for both the
direct and the adjoint operators, by simply transposing one matrix.

As the eigenvalue problem (2.31) involves only the velocity vector and gets
rid of the pressure field, whilst the time steppers presented in section 2.1.2
act on both velocity and pressure fields, the first step of the time integration
employed to discretize the matrix exponential of eq. (2.21) has been performed
using the Implicit Euler scheme and a reduced ∆t, thus eliminating the need
for an initial pressure field but maintaining the second order accuracy of the
Crank–Nicolson scheme.

2.4.1 Initial guess

A random velocity field has been chosen as initial guess to assure the unbiased-
ness of the solution. Such a field, though, ought satisfy boundary conditions
and the incompressibility constraint.

To generate the random guess, a routine has been written which initializes
the Fortran 95 random seed generator using, as input parameters, the current
date and time of the machine on which the program is being run and a few
prime numbers. A random velocity value, with a normal distribution, is then
assigned on each P2 node.

After this procedure, boundary conditions and null divergence are imposed
on the field in the following way: let ur be the random field generated, to

24



2.4. Computing transient growth

find a solenoidal velocity field u which is as close as possible to ur in the L2

norm but satisfies the incompressibility constraint and boundary conditions,
the difference ‖u − ur‖L2 has to be minimized. The procedure consists in
defining a functional J , which also enforces the solenoidality of u by means
of a Lagrange multiplier λ, and minimizing it:

J =
1

2
‖u− ur‖L2 −

∫

Ω

λ∇·u.

The minimization is achieved by imposing a null variation of the functional
where the variations δu and δλ can be replaced with the corresponding test
functions v and q to obtain the weak form of the projection step:

find u ∈H1(Ω) and λ ∈ L2(Ω) such that:





∫

Ω

v ·u−
∫

Ω

λ∇·v =

∫

Ω

v ·ur
∫

Ω

q∇·u = 0

u = b, ∀r ∈ ΓD;

(2.34)

∀v ∈H1
ΓD

(Ω) and ∀q ∈ L2(Ω).

2.4.2 Remarks

It is important to keep in mind that the curve given by Gmax(τ) represents
the maximum possible energy amplification, which for each instant in time is
optimized over all possible initial conditions. Therefore, the initial condition
that optimizes the amplification factor might be different for different values
of τ ; this is why the curve Gmax(τ) should be thought of as the envelope of
the energy evolution of individual initial conditions. It should also be noted
that a given initial condition may reach higher energies after τ , but at time
τ it will be the initial disturbance among all disturbances that reaches the
maximum possible energy amplification [36].

25





CHAPTER 3

Validation cases

This chapter provides a complete validation of all of the parts of the code
developed in this work. Several geometries, both 2D and 3D axisymmetric,
and different reference flows have been used for the purpose.

The vortex shedding in the cylinder wake represents an example of
oscillator-type flow, where intrinsic flow oscillations, observed in the nonlin-
ear regime, are found to be linked to the presence of at least one unstable
normal-global mode, which sets in through a Hopf bifurcation. In open shear
flows, global instability is typically associated with the presence of a locally
absolutely unstable flow region [5, 18], although feedback mechanisms may
also be responsible for the flow destabilization.

By contrast, round viscous jets, unless sufficiently hot [25, 24], are promi-
nent examples of amplifier-type flows, characterized by a stable global eigen-
spectrum. Consistent with the notion of local convective instability, nonnormal
interaction of stable global modes may give rise to transient perturbation
growth [5].
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Chapter 3. Validation cases

3.1 Flow around a circular rotating cylinder
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rf αf

Re =
U∗D∗

ν∗

α =
Ω∗D∗

2U∗

Figure 3.1 Geometry and mesh structure of the flow around a circular
rotating cylinder. x−∞, x+∞ and y∞ are, respectively, the location of the inlet,
outlet and lateral boundaries. The dashed (blue) lines enclose the area where
the mesh has been refined; mesh data is reported in table 3.1.

This test case has been chosen because it is very well documented in the litera-
ture and allows the validation of nearly all of the parts of the code. It has been
used to validate the 2D base flow solver, the direct and adjoint eigenfunction
computation, the bifurcation tracking algorithms and the computation of
transient growth.

The boundary conditions used are: a uniform velocity profile, U∗ex, on
the inflow and quasi stress-free both at the outflow and on lateral borders.
Whilst in a DNS it would be impossible to impose Neumann type boundary
conditions on lateral borders, not only a steady simulation allows their use, but
also they render the flow a bit more representative of that around an isolated,
i.e., not confined, cylinder. Homogeneous Dirichlet boundary conditions for
the velocity have been used on the surface of the cylinder, imposing the
angular rotation Ω∗.

Base flow The capabilities of the 2D FEM solver have been tested by
measuring the length and separation angle of the recirculating bubble behind
the cylinder for α = 0. Good agreement has been found with both theoretical-
numerical and experimental results even when using a coarse mesh. The
measurements on the computed base flows have been compared with those
presented in [6] and are depicted in figure 3.2. This test has been performed
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3.1. Flow around a circular rotating cylinder

against experimental measures, not numerical computations, to verify how
well the FEM solver compared with experiments.

Mesh x−∞ x+∞ y∞ rf αf hc ne nd.o.f.

M1 −20 50 20 0.7 10◦ 0.05 62 369 281 213
M2 −60 200 30 1.5 1◦ 0.02 459 322 2 069 594
M3 −20 50 20 1.5 5◦ 0.02 465 847 2 097 524
M4 −45 125 45 0.2 1◦ 0.1 108 282 488 649

Table 3.1 Characteristics of the meshes used for the flow around a circular
rotating cylinder. x−∞, x+∞ and y∞ are, respectively, the location of the inlet,
outlet and lateral boundaries. rf and αf are the parameters used to define
the area of finer mesh (see figure 3.1). hc is the length of the sides of the
elements inside the refined area. ne and nd.o.f. are the number of elements and
the number of degrees of freedom of an unknown x = (ux, uy, p), respectively.

(a) Length of the recirculating
bubble.

(b) Separation angle.

Figure 3.2 Validation of the 2D steady FEM solver against the theoretical-
numerical and experimental results presented in [6]. The mesh used for these
computations is M1.

Eigenvalues and eigenvectors To validate the generalized non symmetric
eigensolver, the results by Sipp and Lebedev [40] have been reproduced and
are presented in figure 3.3. Sipp and Lebedev’s spectrum, as presented in
figure 3.3a, has been computed on a grid with the same spatial extents as those
of mesh M2, but only 864 514 degrees of freedom (nd.o.f.), whilst the grid used
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Chapter 3. Validation cases

to validate the code featured a much finer mesh with nd.o.f. = 2 069 594. The
relevant test was to verify the correct computation of the marginally stable
eigenvalue, highlighted in the plots, at the correct Reynolds number; as seen
in figure 3.3, the correspondence is nearly perfect, within 1.5% of relative error.
For what concerns the complete spectrum of the flow around the cylinder,
the fact that Sipp and Lebedev’s presents differences in the topology of the
branches may lie in the different refinement of the computational domain
used and in the different number of Lanczos vectors generated during the
computation of the eigenvalues. In fact, the spectrum computed with mesh
M1, not reported here, is characterized by having less eigenvalues, due both
to the fewer elements in the grid and the narrower boundaries, but presents
smoother branches. Moreover, the leftmost branch is formed only by spurious
modes, each group has the abscissa of the complex shift used when it was
generated (this fact hadn’t been pointed out in [40]).

(a) Eigenvalue spectrum com-
puted by Sipp and Lebedev,
as presented in [40], on a
coarser mesh.

-0.25 -0.20 -0.15 -0.10 -0.05 0 0.05
0

0.5

1

1.5

σ

ω

(b) Eigenvalue spectrum com-
puted with mesh M2.

Figure 3.3 Eigenvalues of the cylinder flow in the (σ, ω) plane at Re = 46.6,
α = 0. The different topology of the branches may be due to the more refined
mesh used during this thesis or to a difference in the number of Lanczos vectors
generated. The leftmost branch (the “dashed” one) contains only spurious
eigenvalues.

The computation of both direct and adjoint eigenvectors has been verified
by comparing the shape of the computed modes with those shown in [40],
see figure 3.4. Once again, apart from the different scaling used for the
eigenvectors, the results are in very good agreement with the reference ones.
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3.1. Flow around a circular rotating cylinder
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(a) Direct eigenvector associated
with the least stable eigenvec-
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(b) Adjoint eigenvector associ-
ated with the least stable
eigenvector.

Figure 3.4 Eigenvectors of the cylinder flow at Re = 46.6, α = 0. The plots
depict the real part of the vertical velocity component. The comparison has been
done with the results of Sipp and Lebedev (see [40]) which are not reported here.
Mesh M2, only the portion of domain presented in the cited article is shown.

Bifurcation tracking To test the bifurcation tracking capabilities of the
program, the results by Pralits, Brandt and Giannetti [28] have been re-
produced and are presented in figure 3.5. The bifurcation tracking analysis
allowed the validation of the interface to the LOCA library and was one of the
final checks to the code. It is well known that the flow around a nonrotating
circular cylinder becomes first unstable at a Reynolds number Re = 46.6
where it exhibits a Hopf bifurcation. When increasing the angular velocity of
the cylinder, the flow becomes stable again even for relatively high Reynolds
numbers.

Re

α

Figure 3.5 Neutral curve of the flow around a circular rotating cylinder.
The dashed (black) line is taken from [28], the diamonds (blue) are the present
results. The grid used for the comparison is M3, but even M1 worked perfectly
for Re ≤ 100. Only Mode I has been reproduced.
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(a) Structural sensitivity parameter computed
by Giannetti and Luchini [15] using finite
differences.
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(b) Structural sensitivity parameter computed
with mesh M3. Only the relevant portion
of domain is shown.

Figure 3.6 Structural sensitivity of the base flow at Re = 50, α = 0 computed
with the developed code.

Structural sensitivity To further validate the eigenvectors computation
and to test the structural sensitivity algorithm, the results by Giannetti and
Luchini [15], have been reproduced and are shown in figure 3.6 (only the
structural sensitivity parameter is shown). The grid used is M3 which features
the same spatial extents as the one used in [15]; in terms of the number of
elements, a direct comparison can not be made because the base flow solver
used by Giannetti and Luchini is based on a finite difference, structured
grid discretization of the problem; nevertheless, the results presented in their
article, and reported in figure 3.6a, were computed on a grid which featured 50
points on the cylinder diameter, nearly the same precision has been obtained
during this thesis using only 20 points for the FE discretization. Probably
due to these differences in the discretization, there is a 12.5 % difference in
the value of the maxima but the contours overlap perfectly.
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3.1. Flow around a circular rotating cylinder

Transient growth The nonrotating circular cylinder has also been used to
validate the algorithm for the computation of the optimal initial disturbance.
The results obtained with the developed program have been compared with
those presented by Cantwell and Barkley [4] and are depicted in figure 3.7.

The computations have been carried out on mesh M4, this mesh features
the exact same extension as the one used in [4] due to the high sensitivity of
quantitative results to domain size. Although M4 is quite coarse, the results
are in very good agreement with those computed by Cantwell and Barkley
who have used a spectral element discretization. The time stepper used in
this work employs the Crank–Nicolson method with a time step ∆t = 0.05.

Figure 3.7 Comparison of the optimal energy growth between the results
presented in [4] (black points) and those obtained during this thesis (blue
diamonds). Reynolds numbers are from Re = 5 to Re = 50 with increments of
Re = 5. Only the curves at Re = 20 and 40 have been reproduced using mesh
M4.
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Chapter 3. Validation cases

3.2 Flow produced in a cylindrical container

by a rotating endwall

This section presents the results obtained with the first axisymmetric geometry
used to verify the code. The comparison concerns the steady swirling flow
produced by rotating one end wall in a closed cylindrical container completely
filled with fluid. The flow behaviour is determined by two parameters: the
height-to-radius ratio H∗/R∗ and a rotation Reynolds number Re = Ω∗R∗2/ν∗;
H∗ being the cylinder height, R∗ its radius and Ω∗ the angular velocity of
the endwall. This test case has been chosen to validate the 3D axisymmetric
FEM solver (section 2.1.1) and the algorithm for the continuation of solutions
(section 2.2).

Base flow The configuration chosen is that with rotor-stator aspect ratio
H∗/R∗ = 2 at Re = 1 850 which is characterized by two recirculation bubbles,
located on the axis at z = 0 and z = 0.5.

(a) Streamlines of the ve-
locity field taken from
[2].

(b) Streamlines of the velocity
field computed by the 3D ax-
isymmetric FEM solver.
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3.2. Flow produced in a cylindrical container by a rotating endwall

(c) Axial velocity on the axis
of rotation as reported in
[2] (continuous line) and [9]
(empty circles).
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(d) Axial velocity on the axis of
rotation obtained by the 3D
axisymmetric FEM solver.

Figure 3.8 Comparison of the results obtained for the flow produced in a
cylindrical container by a rotating end wall. The physical parameters governing
the flow are: H∗/R∗ = 2 and Re = 1 850. The mesh used consisted of 46 742
uniformly distributed elements. The steady state at Re = 1 850 has been reached
thanks to the algorithm for the continuation of solutions.

The steady solution could not be reached by a Newton iteration employing
as initial guess the solution of the Stokes problem. The algorithm for the
continuation of solutions, instead, allowed to start from a low Reynolds
number (200 in this case) and proceed by steps in ∆Re until reaching the
desired value of 1 850. The comparisons have been done with the works
presented in [2] and [12] using a uniform mesh with 46 742 elements for a
total number of degrees of freedom nd.o.f. = 211 852.

The streamlines of the velocity field in the axial plane are shown in figure
3.8a and 3.8b, they compare very well with the results presented in [2] which
have been obtained by an unsteady spectral solver for the primitive variables.
A more quantitative comparison has been made by plotting the distribution
of the axial velocity uz on the cylinder axis, figures 3.8c and 3.8d; the plots
are not overlapped for clarity, in fact [2] also report the values obtained by
[9] (empty circles); as shown in the figure, there is a very good agreement
between the profiles of uz and, in particular, between the predicted position
of the two recirculation bubbles.
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3.3 Round viscous jet

Γi
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the velocity

on the axis at

z = −zi.

Figure 3.9 Geometry and mesh structure of the flow produced by a round
viscous jet. Γi represents the inflow boundary, located at z = −zi, the thick
line, Γw, is a solid wall where no-slip boundary conditions have been assigned;
Γt and Γo represent the far field and outflow boundaries, respectively, where
the quasi stress-free boundary conditions have been imposed. The dashed (blue)
lines enclose the area where the mesh has been refined.

The flow produced by a round, viscous, laminar jet has been chosen to further
test the program on axisymmetric geometries and to get acquainted with the
behaviour of nearly parallel flows. Since the 3D axisymmetric Finite Element
solver has already been tested (see previous section) the flow produced by the
jet has been used to verify the computation of eigenvalues and eigenvectors
and the transient growth algorithm for a problem in cylindrical coordinates.

Boundary conditions On the inflow, Γi, two different boundary conditions
have been tested to analyze the effects of the velocity profile on the stability
properties of the base flow. First, the same velocity profile used by Garnaud
et al. [14], has been used to reproduce the results presented in their article,

u = (U∗, 0, 0), where U∗(r) = tanh
(

5
(

1− r

R∗

))
; (3.1)

this velocity profile, though, presents an inflection point at r = R∗ which
could be at the origin of an instability, as shown in the next paragraph and
figure 3.11. Then, the exact solution to the Navier–Stokes equations for the
flow inside a round pipe (known as Poiseuille flow, see e.g. [29]) has been
used:

U∗(r) =
3

2

(
1− r2

R∗2

)
. (3.2)
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3.3. Round viscous jet

The pressure gradient that determines the amplitude of this velocity profile
has been chosen in order to have the bulk velocity Ū∗ = 1 and, in this case,
the Reynolds number has been based on this quantity, i.e., Re = Ū∗R∗/ν∗.
The comparison between the two velocity profiles is presented in figure 3.10.
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Figure 3.10 Different velocity profiles adopted for the inflow boundary Γi.
Dashed (green): velocity profile used in [14]; continuous line (red): exact
solution to the Navier–Stokes equations known as Poiseuille flow.

On Γw (thick lines), a no slip boundary condition has been assigned; on
Γt and Γo, on the contrary, quasi stress-free boundary conditions have been
assigned:

1

Re

∂u

∂n̂
− pn̂ = 0.

As already explained in section 1.4.1, these boundary conditions are “purely
mathematical” and derived from the weak variational formulation, they do
represent only approximately a stress-free boundary condition because they
are not applied on a surface with constant velocity. This type of boundary
condition is enforced on Γt since it allows to correctly simulate the entrainment
of fluid from infinity without having to impose an approximate velocity profile
on this border.

Eigenvalues and eigenvectors The eigenvalue spectrum computed by
Garnaud et al. [14] at Re = 1 000 has been reproduced. The spatial extent of
the computational domain has been chosen taking into account the sensitivity
of the problem to the length and width of the numerical domain studied in
the cited article. Thus, rmax has been set to 10, and zmax = 60; the mesh
used featured 317 406 elements, which correspond to 2 072 740 degrees of
freedom for each vector unknown x = (ur, uθ, uz, p).
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(a) Spectrum computed by Garnaud et al. [14].
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(b) Spectrum computed using (3.1) as velocity profile at
the inflow.
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(c) Spectrum computed using the Poiseuille velocity profile
at the inflow.

Figure 3.11 Eigenvalues of the round, viscous jet flow in the (σ, ω) plane at
Re = 1 000. As noted in the case of the flow around a circular rotating cylinder
(see section 3.1), the difference in the branches between (a) and (b) may be
due to the different refinement of the mesh. Note how much the higher branch
moves depending on the inflow velocity profile: (a) and (b) both use the velocity
profile described by eq. (3.1) whilst (c) uses eq. (3.2). All of the eigenvalues
with real part σ < −0.4 are spurious, i.e., they “move” when changing the shift.

38



3.3. Round viscous jet

Transient growth As the flow produced by a round viscous jet is linearly
stable (see, e.g. [14] and references therein) while experiments clearly show
that it is unstable, the cause of its transition to turbulence can be sought for
in transient growth. In fact, the transient amplification of perturbations, as
shown in figure 3.12, can reach three orders of magnitude.

The reference results are those presented by Garnaud et al. [14] and have
been obtained by a Finite Element discretization; the mesh used in the present
work features the same spatial extents of the reference one. Due to time
constraints, only the axisymmetric case has been reproduced.

τ

Gmax(τ)

Figure 3.12 Comparison of the optimal energy growth between the results
presented in [14] (black solid line) and those obtained during this thesis (blue
pluses). Note that, differently from the exposition in section 1.7, in this plot
Gmax(τ) is the square root of the ratio of kinetic energies. The Reynolds number
is Re = 1 000. Only the axisymmetric case has been reproduced.
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CHAPTER 4

Coaxial Jets

This Chapter describes the global stability properties of two incompressible
coaxial jets. This flow has been studied by several authors, e.g. [8, 46, 41, 37,
39] in the past, and the aim of the present investigation is to provide new
insight into the mechanisms at the origin of the observed behaviour. The
tools employed in the investigation, except for the DNSs, are illustrated in
Chapters 1 and 2, and have been implemented in a Fortran 2003/C code.

The exposition begins with a description of the adopted geometry and
boundary conditions; a characterization of the steady state solution follows.
The Hopf bifurcation encountered by the flow is discussed in section 4.3,
where the results obtained by a modal stability approach are presented. The
study of the bifurcation is developed in the following section, which is devoted
to a portrait of the flow dynamics along the neutral curve in the Reynolds
number-velocity ratio plane. The analysis of the structural sensitivity of the
critical eigenmode is presented in section 4.5. Lastly, the linearly stable flow
before the first bifurcation point is investigated in section 4.6 by means of
transient growth analysis. The Chapter ends with a comparison of the results
with DNSs and an study on the influence of domain truncation (sections 4.7,
4.8 resp.).
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Chapter 4. Coaxial Jets

4.1 Geometry and boundary conditions
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where U0i and U0o are the peak velocities at z = −zi

Figure 4.1 Geometry and definition of the parameters characterizing the
flow field. The dashed (blue) lines enclose the area where the mesh has been
refined; mesh data is reported in table 4.1.

The influence of the shape and thickness of the duct wall separating two
coaxial jets expanding into unconfined, quiescent fluid has been investigated
experimentally [3, 38, 39, 42], and by an inviscid analytical approximation
[26, 41], by several authors. In particular, both a sharp and several rectangular
walls have been tested and the difference between the two configurations
analysed [37]. In this work the case of a wall with rectangular geometry is
considered, since it provides better mixing efficiency and may lead the flow
to a local or global absolute instability [41].

Geometry and discretization The same geometry used by Talamelli,
Segalini et al. [38] has been employed for the computations, the only difference
being the presence of a wall perpendicular to the nozzles. The set up features
two converging nozzles that end in two straight pipes, the ratio between the
external diameter of the annular duct and the diameter of the internal duct
is fixed to β = 2, the separation wall has a thickness s = Di/10.

A relevant portion of the pipes has been modelled, since their exclusion
from the computational domain implies the incorrect computation of optimal
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4.1. Geometry and boundary conditions

perturbations and adjoint eigenvectors. As jets are naturally described in
cylindrical coordinates, only the flow field on a meridian semi-plane has been
simulated, thus allowing for greatly reduced computational costs. The dashed
(blue) lines in figure 4.1 enclose the area of higher mesh refinement. The
characteristics of the computational grids employed are reported in table 4.1;
all the meshes featured ten elements on the wall separating the two jets.

Mesh zi zmax rmax ne nd.o.f.

M1 5 40 5 196 530 1 287 172
M2 5 60 5 261 295 1 709 681
M3 5 80 5 326 344 2 134 043
M4 5 100 5 389 588 2 546 571
M5 5 120 5 454 746 2 971 638
M6 5 140 5 519 612 3 394 807
M7 5 160 5 584 999 3 821 366
M8 5 100 10 455 805 2 977 209
M9 5 100 15 529 701 3 457 757
M10 10 100 5 452 219 2 959 731
M11 15 100 5 515 040 3 374 126

Table 4.1 Properties of the meshes used in the present work. zi, zmax and
rmax are, respectively, the location of the inlet, outlet and lateral boundaries.
ne and nd.o.f. are the number of elements and the number of degrees of freedom
of an unknown x = (uz, ur, uθ, p), respectively.

Boundary conditions As for the single round jet, two velocity profiles
have been assigned at the inflow, to study their influence on the development
of the flow field.

The first one is a family of velocity profiles depending on two parameters,
bi and bo, determining the thickness of the boundary layer inside the pipes:

Ui(r) = tanh

(
bi

(
1− r

Ri

))
, (4.1a)

Uo(r) = tanh

(
bo

(
1−

∣∣∣∣
r − (Ro,1 +Ro,2)/2

(Ro,1 −Ro,2)/2

∣∣∣∣
))

. (4.1b)

These functions have been chosen in order to reproduce the profiles measured
in the experiments reported in [30, 37].

The second one is the exact solution of the Navier–Stokes equations known
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as Poiseuille flow. For the central jet it assumes the usual form:

Ui(r) =
3

2

(
1− r2

R2
i

)
Ūi, (4.2a)

which is the solution to the general equation with a single boundary condition
on Ri. For the annular jet, due to the presence of the logarithmic term in the
general equation and the need to impose no-slip boundary conditions both at
r = Ro,1 and r = Ro,2, the solution leads to a more complicated expression:

Uo(r) =
(Ro,2 −Ro,1)

[
r2 +

R2
o,2−R2

o,1

log (Ro,1/Ro,2)
log r

Ro,2
−R2

o,2

]

R2
o,2Ro,1 − 2

3
R3
o,2 −

R3
o,1

3
− R2

o,2−R2
o,1

log (Ro,1/Ro,2)
(Ro,2 −Ro,1 +Ro,1 log

Ro,1

Ro,2
)
Ūo.

(4.2b)

These velocity profiles have been adimensionalised with the bulk velocity
Ū =

∫ R
0
U(r) dr, which has consequently been used to define the Reynolds

number, i.e., Re = ŪR/ν. However, the results obtained with the Poiseuille
flow are still incomplete, therefore they are not included in this work.

The thick lines in figure 4.1, denoted by Γw, represent solid walls where
a no-slip boundary condition has been assigned. On the outflow and radial
borders (Γo and Γt respectively), the quasi stress-free boundary condition,
discussed in section 1.4, has been enforced, namely,

1

Re

∂u

∂n̂
− pn̂ = 0.

As the goal is to model jets expanding into free, quiescent air, assigning this
boundary condition on the radial border allows to simulate the entrainment
of air by the two jets without having to impose an analytical velocity profile
(see, e.g. [34]) as far-field boundary condition.

4.2 Base flow

When employing the hyperbolic tangent profile (4.1), the velocity profile at
the exit of the pipes is moderately different from the one imposed on Γin; in
particular, the peak velocities are increased by 10%-30% and the shape of the
profile tends to a parabola. This is due to the growth of the boundary layer
inside the pipes, which is especially relevant at the low Reynolds numbers
where the first instability is observed; this effect is depicted in figures 4.2a and
4.2b. Despite the substantial increase in peak velocity, the velocity ratio at the
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4.2. Base flow

nozzles is not significantly altered, as both jets are affected by a comparable
boundary layer growth.

The effect of the rectangular duct wall is maximum close to the jet exit
and it determines the presence of a backflow region typical of blunt bodies.
Differently from wake flows, though, this effect is lost at approximately 40-100
diameters (depending on the Reynolds number) downstream of the nozzles,
where the two jets merge and acquire the shape of a single jet.

The base flow is weakly nonparallel: the radial velocity component is
approximately three orders of magnitude lower than the axial one. However,
as shown in figure 4.2c, variations to the radial velocity profile are not as slow
as they are usually assumed to be (see, e.g. [41]), especially in the proximity
of the nozzles. This rapid variation is, of course, mainly due to the wake
generated behind the blunt wall separating the jets, but it is also influenced
by the entrainment of fluid caused by the faster jet.

The evolution of the base flow has been studied for different velocity ratios,
the case of ru = 1 is here briefly presented as an example. In this regime a
first vortex ring is formed for 300 < Rei < 350. This vortex ring is located in
the lower part of the rectangular wall and is indicated with a in figure 4.2d.
For higher Reynolds numbers (Rei ≈ 2 000) a second, slender ring appears
behind the upper part of the wall, at a distance comparable to the height
of the wall (indicated with b in figure 4.2d). When the Reynolds number is
further increased, the second vortex ring stretches and approaches the wall
but never reaches it, even for Rei as high as 10 000.
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(a) Inflow velocity profile (4.1).

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

uz

r

Rei = 500 Rei = 1000

Rei = 2000 Rei = 3000

Rei = 5000

(b) Velocity profile at z = 0.1 for
different Reynolds numbers.

45



Chapter 4. Coaxial Jets

10 20 30 40 50
0

0.5

1

1.5

2

1
.0
9

1
.0

0
.9
6

0
.9
4

0
.9
3

z

r

(c) Axial (continuous blue line) and radial (dotted red line) velocity
profiles at five axial positions. The magnitude of the radial
velocity profile is amplified by a factor of 125 to make it visible.
The Reynolds number is Rei = 1 000.
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(d) Velocity magnitude and streamlines at Rei = 2 000, ru = 1.
Two recirculating vortex rings are highlighted by a and b. The
entrainment of fluid from the surrounding, quiescent medium
can be observed.

Figure 4.2 Base flow properties for ru = 1. The entrainment of the annular
jet towards the central one can be observed by examining the radial velocity
profiles in (c) (for z ≤ 20) and the streamlines in (d). Mesh M11.
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4.3 Hopf bifurcation and modal stability

The calculation of the eigenvalues associated with the linearized Navier–Stokes
equations for Rei = 1 420 and ru = 1, revealed the presence of a marginally
stable eigenvalue and three main groups of eigenvalues. This eigenspectrum is
plotted in figure 4.3, where the critical eigenvalue, which in this configuration
has imaginary part ωc = 5.728, is evidenced by the dotted lines, and the
branches are labelled with bi.

A first branch, starting at the origin and indicated in the figure by b1,
corresponds to vortical structures located in the region surrounding the
jets. Eigenvalues of this kind are typical of nearly-parallel flows (see, e.g.
[36]), they usually represent a discrete approximation of a continuous branch
and are stable for any value of the parameters describing the flow field. A
second branch (b2) represents modes localized within the jets. This family
of eigenvalues is highly sensitive to domain truncation effects, which are
investigated in detail in section 4.8. Branches b1 and b2 are also present in
the spectrum of a single jet, see section 3.3, and their eigenvalues are always
fully resolved. The third branch (b3) contains poorly converged eigenvalues
which are not recovered when changing the shift.
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Figure 4.3 Eigenspectrum for Rei = 1 420 and ru = 1 (point A2 in figure
4.5). A marginally stable eigenvalue exists for ωc = 5.728 (highlighted by the
dotted lines). Mesh M2.

The frequency of the critical eigenvalue corresponds very well to the
frequency of vortex shedding determined by Direct Numerical Simulation, see
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Chapter 4. Coaxial Jets

section 4.7. Such an agreement is kept for quite a broad range of Reynolds
numbers, at least up to Rei = 2 000, since the frequency of the shedding
remains nearly constant when moderately increasing Rei while maintaining
ru constant, as shown in figure 4.14.

The velocity components corresponding to the real part of the direct
eigenmode are depicted in figures 4.4a and 4.4b. This eigenvector represents
an array of counter-rotating vortex rings which develop in the wake of the
separation wall, similarly to what is observed for the evolution of the optimal
disturbances, which will be presented in section 4.6. It can be observed that
the eigenmode is strongest in the near-wake of the wall and reaches a maximum
for z ≈ 11; downstream of this location, the eigenmode is attenuated and
slowly decays. This may be explained by considering the distribution of the
axial velocity of the base flow, which is represented by continuous (blue)
lines in figure 4.2c. In fact, it can be noticed that the counter-flow, which is
responsible for the instability, is maximum in the near-wake and then slowly
decreases due to viscous diffusion. A last observation is that the structure
of the direct eigenvector is qualitatively unchanged across its axial span,
even though the base flow velocity profile shifts from that of a coaxial jet
configuration to that of a single jet.

The adjoint eigenvector is represented in figures 4.4c and 4.4d. It is
localized in the z < 1 region and, in particular, inside the pipes. It reaches
maximum intensity in the proximity of the wall, displaying two lobes nearly
symmetrically distributed across the separation wall, then slowly decays in
the upstream region. For ru = 1, both direct and adjoint eigenvectors closely
resemble those observed in flows around bluff bodies, this similarity is most
certainly attributable to the rectangular geometry of the duct wall located in
between the jets.

As already mentioned in section 1.6, the large spatial separation of the
direct and adjoint eigenvectors is a consequence of the nonnormality of the
LNSE operator, evidenced for this regime in section 4.6.
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Figure 4.4 Real part of the direct ((a) and (b)) and adjoint ((c) and (d)) critical eigenvectors for Rei = 1 420, ru = 1.
Point A2 in figure 4.5. Mesh M11.
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4.4 Tracking the bifurcation: influence of the

velocity ratio

As illustrated in the previous section, coaxial jets undergo a Hopf bifurcation
at Rei = 1 420, ru = 1. This is just one point in the four-dimensional space
defined by the parameters characterizing the flow; to deeply understand the
behaviour of coaxial jets, the parameter space should be thoroughly explored.
This section describes the two-dimensional projection of the parameter space
onto the Rei − ru plane, depicted in figure 4.5. This plane contains a neutral
curve that separates the Stable semi-plane from the Unstable semi-plane.
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Figure 4.5 Neutral curve in the Rei − ru plane. The (nearly undistinguish-
able) points indicate the computed values. Labels Ai highlight the values at
which the analysis presented in this chapter have been performed. Triangles Di

indicate points where DNSs have been performed. Meshes M1, M2 and M4.

The lower (ru < 1) part of the neutral curve tends towards a horizontal
asymptote, located at ru ≈ 0.505, where the flow approaches the single jet
configuration. The presence of an asymptote agrees with the results obtained
for isothermal jets, which are known to be linearly stable for all Reynolds
numbers (see, e.g. [14] and the references therein). The eigenspectrum
computed at point A1 is depicted in figure 4.7, where the resemblance with
the spectrum of a single jet can be observed (see section 3.3). The structural
sensitivity of the critical eigenvalue computed in this configuration is presented
and discussed in section 4.5.
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Figure 4.6 Imaginary part of the marginally stable eigenvalue computed
along the neutral curve, here plotted as a function of the velocity ratio. The
trend is nearly linear, except for very low values of ru where it appears to
converge to ωc = 4.47.
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Figure 4.7 Eigenspectrum for Rei = 5 000 ru = 0.5 (point A1 in figure 4.5).
The imaginary part of the critical eigenvalue (highlighted by the dotted lines) is
ωc = 4.47. In this configuration the eigenspectrum closely resembles that of a
single jet, analysed in section 3.3. Mesh M2.
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On the other hand, the upper part of the neutral curve (ru > 1) presents
a minimum Reynolds number (Rei ≈ 1 356). Below this value no instability
occurs in the range of ru explored during this research. This region of the
neutral curve presents other characteristic features: as the velocity ratio is
increased, the eigenspectrum changes. In particular, branch b2 shifts towards
the imaginary axis, reaching it, when using mesh M2, for ru = 2, Rei = 1559
(see fig. 4.8). Note however that, as explained in more detail in section
4.8, branch b2 and its structural sensitivity are highly sensitive to domain
truncation effects. As a consequence, the point on the neutral curve where
branch b2 becomes unstable is highly mesh-dependent. These observations
suggest that the eigenvalues of branch b2 are not representative of physical
flow features and are probably a numerical artifact. At the moment of writing,
a DNS is being performed in order study the nonlinear behaviour of the flow
in this region of the neutral curve (point D4). A frame of this simulation is
depicted in figure 4.16.
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Figure 4.8 Eigenspectrum for Rei = 1 559 ru = 2 (point A4 in figure 4.5).
The marginally stable eigenvalue has shifted to ωc = 9.69 (highlighted by the
dotted lines) and branch b2 has also become unstable. Mesh M2.

Another qualitative difference that occurs between points A2 and A4 is the
change in the flow pattern originated by the instability behind the duct wall.
DNSs show that the wake gradually switches from a von Kármán vortex-street
to the pattern produced by a Kelvin–Helmoltz instability. In this configuration
the shape of the critical eigenvectors is modified (compare figures 4.9 and
4.4) and also the spatial distribution of the structural sensitivity parameter
is greatly altered (see fig. 4.10d).
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Figure 4.9 Real part of the direct ((a) and (b)) and adjoint ((c) and (d)) critical eigenvectors for Rei = 1 559, ru = 2.
Point A4 in figure 4.5. Mesh M11.
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4.5 Structural sensitivity of the critical

eigenmode

The large difference between the spatial structure of the direct and adjoint
eigenvectors, evidenced in the two previous sections, prevents to draw relevant
conclusions on the location of the core of the instability. Owing to these
observations, an analysis of the structural sensitivity of the unstable eigenvalue
to spatially localized velocity feedbacks is here presented. The objective of
this study is to identify the location of the ‘wavemaker’, i.e., the area of the
flow field where the instability mechanism is acting.

Figure 4.10 depicts the scalar field of the structural sensitivity parameter,
s(r) defined in (1.11), computed at different points in the Rei − ru plane.
The maxima of s(r) are attained in two lobes located behind the edges of
the separation wall. It can be observed that for ru = 1, fig. 4.10b, they are
disposed nearly symmetrically across the midline of the wall, similarly to what
happens for bluff bodies. The symmetry is not perfect because the velocity
profiles at the nozzles, and thus the boundary layers, are not symmetrical at
low Reynolds numbers, as highlighted in figure 4.2b. Note that, in any case,
the product of the direct and adjoint modes is small both in the pipes and far
from the nozzles, showing that these areas of the flow are of little importance
for the instability dynamics.

When varying the velocity ratio, the symmetry between the lobes is lost
and the maximum of the structural sensitivity parameter shifts towards the
jet flowing at higher speed. In these configurations the vortex dynamics
resembles more and more the one produced by a Kelvin–Helmoltz instability.
When the velocity ratio is increased above ru = 1.5, fig. 4.10d, the value of the
structural sensitivity parameter increases in the inner shear layer, highlighting
a modification of the region where the ‘wavemaker’ is located. The peculiarities
of this configuration have been highlighted in the previous section, where the
eigenspectrum and the critical eigenvectors are also presented.

An analysis of the robustness of the structural sensitivity analysis with
respect to the size of the computational domain has been performed studying
the influence of domain truncation, as presented in section 4.8. It has been
observed that the drift of the marginally stable eigenvalue is consistently
small across the range of zmax tested; this is expected since all the domains
used during this investigation entirely include the instability core.
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Figure 4.10 Structural sensitivity of the marginally stable eigenvalue to a
spatially localized feedback. Mesh M11. In order, points A1 to A4 in fig. 4.5.
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4.6 Subcritical behaviour: transient growth

analysis

The transient response of perturbations has been studied before the onset of
the global mode described in section 4.3. This section presents the results
attained for ru = 1, when the development of a von Kármán vortex-street is
observed in the wake of the separation wall for Rei > 1420.

Figure 4.11 depicts the optimal growth envelopes for three Reynolds
numbers. It is observed that large transient growth may occur in this regime,
in fact, the kinetic energy of infinitesimal perturbations is amplified by up
to twelve orders of magnitude for the higher Reynolds number investigated.
This substantial growth is representative of the amplifier nature of jet flows
but is much higher than that of a single jet (see section 3.3). Unfortunately,
no experimental observations for low Reynolds numbers have been found in
the literature; it would be important, to understand jet dynamics, to know
whether oscillations promoted by transient growth are observed before the
bifurcation, or if the flow is stable as predicted by the modal stability analysis.
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Figure 4.11 Optimal energy growth at Reynolds numbers Rei =
500, 750, 1 000 (dotted, dashed and continuous lines respectively). The velocity
ratio is ru = 1. The mesh used to compute these values is M11.

The spatio-temporal evolution of perturbations has also been analysed.
To do so, the optimal initial conditions calculated for maximum linear energy
growth have been evolved via the Linearized Navier–Stokes equations (1.7).
Even though, as was made clear in section 1.7, the initial condition and its
subsequent evolution depend on the time horizon τ , the transient dynamics
are qualitatively very similar in a substantial range of τ values, as can be
observed by comparing figures 4.12 and 4.13. This suggests that similar flow
dynamics are excited by initial conditions optimized across a large range of τ
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4.6. Subcritical behaviour: transient growth analysis

values, and that the spatial structure of the optimal initial condition is nearly
τ -independent.

Visualizations of the optimal condition and its evolution are reported
in figures 4.12 and 4.13. The plots depict the kinetic energy, |u|2/2, of
the initial condition and its evolution for Rei = 500, τ = 30 (figures 4.12a,
4.12b) and Rei = 1 000, τ = 60 (figures 4.13a, 4.13b). It is observed that
the initial condition is mainly localized on the outer edges of the nozzles of
both jets, while the inner edge of the annular jet plays only a minor role.
The perturbation evolves in a series of counter-rotating vortex rings which
are advected downstream by the base flow. The streamlines relative to the
superimposition of the base flow and of the perturbations are shown in figures
4.12c and 4.13c.

The importance of the outer annular edge, evidenced in figures 4.12a and
4.13a, is lost after the bifurcation, as explained in sections 4.3 and 4.5. It
could be argued that, before the onset of the instability, both shear layers play
a relevant role in the amplification of perturbations while, when the global
mode sets in, it dominates the dynamics of the flow by significantly increasing
the amplification characteristics of the wall wake and the inner shear layer.
This conjecture is supported by the observations allowed by DNSs that will
be presented in section 4.7.
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the base flow and of the optimal perturbation depicted in (b),
namely U + εu′, where ε = 8 · 10−1.

Figure 4.12 Optimal disturbance and its evolution for Rei = 500, ru = 1.
Mesh M11.
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Figure 4.13 Optimal disturbance and its evolution Rei = 1 000, ru = 1.
Mesh M11.
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4.7 Nonlinear simulations

Direct Numerical Simulations have been performed to assess the validity of
the results attained with linear theory. In particular, the critical value of the
parameters at which the bifurcation occurs and the dynamics of the unstable
flow have been investigated.

Good agreement has been found in both cases: the fixed point represented
by the steady state solution becomes unstable when crossing the neutral curve
(fig. 4.5) and a new invariant set of the Navier–Stokes equations appears in the
form of a stable limit cycle. This confirms the results of modal stability and
bifurcation theory, which predict a Hopf bifurcation, with a period related
to the imaginary part of the marginally stable couple of complex conjugate
eigenvalues. In fact, the measured vortex-shedding frequency, plotted in
figure 4.14 for ru = 1, Rei = 1 500, corresponds to an angular frequency
ωDNS = 5.84 which differs from the imaginary part of the critical eigenvalue
by only 1.85%.
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Figure 4.14 Time signal of the radial velocity component for different
Reynolds numbers measured at z = 0.4, r = 0.51 and related power spec-
tral density. ru = 1, points D1, D2, D3 in fig. 4.5.
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Moreover, the oscillating flow field at ru = 1, presents a pattern very
similar to the one of the von Kármán vortex street behind a circular cylinder,
see figure 4.15. This vortex dynamics is accurately captured by the shape
of the direct critical eigenvector, which present a series of counter-rotating
vortex rings.

On the other hand, in the DNS performed at Rei = 1 600, ru = 2, point
D4 in fig. 4.5, the von Kármán vortex-street is replaced by a flow pattern
more similar to the one produced by a Kelvin–Helmoltz instability. This
transition is associated with the modification of the direct eigenvector and of
the structural sensitivity parameter corresponding to the marginally stable
eigenvalue, as was evidenced in sections 4.4 and 4.5. Moreover, a recirculating
bubble forms a few diameters downstream the nozzles. The appearance of
this reverse flow region has been observed in experiments [30] for 5 < ru < 8.
It has been evidenced, though, that the bubble oscillates and rotates, leading
to the 3-dimensionality of the flow; ergo, an axisymmetric analysis might be
inappropriate in this regime.
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Figure 4.15 Magnitude of the vorticity field during a shedding period. Rei =
1500, ru = 1, point D2 in figure 4.5.
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4.8. Influence of domain truncation

Figure 4.16 Magnitude of the vorticity field, Rei = 1600, ru = 2, point D4

in figure 4.5 A large recirculation bubble is observable at z ≈ 4, the flow is
believed to be non-axisymmetric in this regime. At the moment of writing,
three-dimensional DNSs are still under way.

4.8 Influence of domain truncation

To investigate the impact of the spatial extent of the computational domain
on the results of the stability analysis, several studies have been performed
with domain lengths ranging from zmax = 40 to zmax = 160, for domain
heights ranging from rmax = 5 to rmax = 5 and for pipe lengths ranging from
zi = 5 to zi = 15. The size of the elements has been kept constant across
all the meshes used for these studies. Meshes with zmax ≥ 120 have proved
critical: the values of transient energy amplification computed using these
domains were not in line with the convergence trend shown by smaller meshes.
The cause of this behaviour is still unclear.
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Figure 4.17 Convergence of transient growth computations with respect to
domain size. Points indicate the computed values. Percentage errors are shown
relative to the calculations using zmax = 120, zi = 15 and rmax = 15. The
optimal growth is computed for τ = 12 (continuous lines), τ = 16 (dashed
lines), τ = 20 (dotted lines); Rei = 1 000, ru = 1.
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The length of the pipes, zi, is mainly relevant, as explained in [4], for the
correct computation of the optimal perturbations but is also of fundamental
importance to calculate the adjoint eigenvalues and thus the structural sensi-
tivity parameter. The value of Gmax(τ) results only marginally dependent on
rmax, since the perturbations are confined within the two jets. The domain
length and pipe lengths, instead, play a relevant role, especially for large τ .
The convergence results are depicted in figure 4.17

In figure 4.18 the dependence of branch b2 of the eigenspectrum on the
length of the domain is depicted. The direct eigenvectors corresponding to
this branch reach their maximum amplitude in the proximity of the outflow
boundary, and do not appear to represent a physical feature of the flow. A
strong dependence of these modes on the position of the boundary is therefore
to be expected.
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Figure 4.18 Eigenvalues in the branch b2 of figure 4.3 computed for different
domain lengths. The eigenspectrum has also been computed for zmax = 120, 140
but calculations are not reported here for clarity. Rei = 1 000, ru = 1.

Nevertheless, when employing meshes with zmax > 100, this branch seems
to eventually converge to an approximately stable position, and becomes
unstable when increasing the velocity ratio (as shown in figure 4.8). For this
reason, a structural sensitivity analysis has been performed on the least stable
eigenvalues of branch b2. The results have proved inconclusive, as even the
peaks of the structural sensitivity parameter result domain-dependent, see
figure 4.19.
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Figure 4.19 Structural sensitivity of the least stable eigenvalue of the useless branch.65





Summary and conclusions

Starting from a Finite Element solver designed for the computation of the
base flow, the necessary tools for a global linear stability analysis have been
developed and thoroughly validated.

The stability properties of two incompressible, coaxial jets have been
numerically investigated for the first time, using the code developed during this
thesis work. In addition, direct numerical simulations have been performed to
compare the results attained by the linear stability analysis with the nonlinear
behaviour of the flow, obtaining encouraging results. The dynamics of the jets
have been studied as a function of two of the main parameters describing the
flow, i.e., the Reynolds number based on the inner jet Rei, and the velocity
ratio between the two streams ru.

The geometry used during the investigation was characterized by the
presence of a rectangular duct wall separating the two streams. The neutral
curve corresponding to a Hopf bifurcation has been traced in the Rei − ru
plane; when crossing this curve the real part of a pair of complex-conjugate
eigenvalues becomes positive and the flow becomes linearly unstable. DNSs
confirm the values of the parameters necessary for the instability and present
flow patterns in agreement with those predicted by the modal stability
analysis.

In the unstable regime, for ru = 1, a von Kármán vortex-street is originated
in the wake of the separation wall. In this condition the direct and adjoint
critical eigenvectors are similar to those observed in the wake of a bluff body.
On the other hand, when the velocity ratio is increased the vortex dynamics
resembles more and more the one produced by a Kelvin–Helmoltz instability.
This phenomenon, which is clearly observable in the DNS, results in a change
of the shape of the unstable eigenmode and in a modification of the spatial
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distribution of the structural sensitivity parameter. These flow patterns are
also observed in experiments (see, e.g. [38]), however, the Reynolds number
being higher, a direct comparison of the frequencies involved cannot be made.

A structural sensitivity analysis has been carried out to locate the region
in the flowfield where the instability mechanism, associated with the critical
eigenmode, acts. The results show that the ‘wavemaker’ is located near the
rectangular separation wall, in the recirculation region, similarly to what
happens for bluff bodies. Differently from symmetrical flow configurations,
the maximum of the structural sensitivity parameter is biased towards the
faster streaming jet, indicating the leading role of the fast shear layer in the
instability mechanism. When the velocity ratio is raised above ru = 1.5, the
value of the structural sensitivity parameter increases in the inner shear layer,
highlighting a modification of the region where the ‘wavemaker’ is located.

In addition, the results show that considerable transient growth may occur
in the subcritical regime, amplifying the kinetic energy of perturbations by
up to twelve orders of magnitude. In the ru = 1 regime, the time evolution of
the optimal perturbation results in a spatial pattern which resembles that
of a von Kármán vortex-street. However, the lack of experiments at low
Reynolds numbers and the lack of time to investigate the effect of optimal
perturbations on the nonlinear flow prevents us from drawing conclusions on
whether jets are unstable before the onset of a global mode.

The present research has been completed by a study on the influence
of domain truncation, a relevant issue in weakly nonparallel flows. The
requirement of a proper modelling of the pipes generating the flow has been
highlighted in the context of modal and nonmodal stability, and the location
of the outflow boundary has proved to be critical for the eigenspectrum and
for the computation of transient dynamics at large time horizons.

Finally, a comment on the relevance of three-dimensional perturbations
for the instability of the flow is in order. Several authors [8, 30] have observed
experimentally the axisymmetry of the flow in the near field of the nozzles
even at high Reynolds numbers, but no measures have been performed in
the low Reynolds number regime. At the moment of writing, fully three-
dimensional DNSs, performed in order to investigate the axisymmetric nature
of the nonlinear flow, are still under way,

The computed results give new insight into the dynamics of incompressible,
viscous, coaxial jets, but do not conclude the investigation. Several other
points should be considered to fully understand the behaviour of coaxial jets
for low Reynolds numbers. Possible developments include:

• the analysis of the nonlinear response to optimal perturbations and the
computation of nonlinear optimal perturbations for subcritical values
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of the parameters. This investigation would shed new light onto the
linearly stable regime which would also need be observed experimentally,

• the study of the non-isothermal, compressible flow, which would high-
light the impact of pressure waves and of temperature and density
differences between the two jets on their stability properties,

• the extension of the present investigation to three-dimensional pertur-
bations which would highlight the importance of such perturbations
with respect to axisymmetric perturbations,

• an extension of the present investigation to the high velocity ratio
regime.
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APPENDIX A

Estratto in italiano

Ui

Uo

Figura A.1 Visualizzazione tratta da [46]. Il getto anulare è inseminato con
colorante fluorescente, il rapporto di velocità è ru = Uo/Ui = 4 e il numero di
Reynolds basato sul getto interno è Rei = 1 000.

Introduzione Una coppia di getti coassiali viene formata dall’unione di
due correnti: una interna, prodotta da un tubo di sezione circolare di diametro
Di e dotata di velocità Ui, e da una corrente esterna prodotta da un tubo a
sezione di corona circolare di diametri interno Do,1 ed esterno Do,2, e dotata
di velocità Uo.

I getti coassiali sono spesso utilizzati in applicazioni industriali in quanto
costituiscono un sistema efficace per il mescolamento di due fluidi. Alcuni
esempi sono il miscelamento di aria e combustibile nei motori a getto e la
formazione di spray ad alta velocità. La geometria a getti coassiali è infatti
sfruttata per la sua capacità di destabilizzare, frammentare e miscelare il
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getto centrale con quello anulare [46]. Inoltre, grande interesse in campo
aeronautico è volto all’efficace attenuazione del rumore ottenibile grazie a
getti coassiali, le cui proprietà di smorzamento delle onde acustiche sono note
da diversi anni (vedere, e.g. [49]).
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Figura A.2 Modulo della velocità e linee di corrente del flusso base. Rei =
2 000, ru = 1. Due anelli vorticosi sono evidenziati con a e b. Si può anche
osservare il trascinamento di fluido dalla regione esterna ai getti verso la
regione interna.

È stato ipotizzato [31, 19] che il rumore generato dai getti coassiali sia
legato alla dinamica delle strutture vorticose di grande scala, formatesi a
causa dell’instabilità degli shear layers. È inoltre noto (vedere, e.s. [27])
che il mescolamento di grande scala è controllato da strutture coerenti di
dimensioni rilevanti. È quindi importante capire nel dettaglio le dinamiche
di queste strutture, anche in configurazioni semplici (i.e., densità costante e
bassi numeri di Reynolds).

I getti coassiali sono anche un esempio di corrente relativamente sempli-
ce ma governata da un numero non indifferente di parametri, permettono
quindi uno studio del principio della turbolenza tramite una descrizione non
unicamente basata sul numero di Reynolds. Le caratteristiche di stabilità
di questa classe di correnti sono state studiate sperimentalmente da diversi
autori [3, 37, 38, 39] in varie configurazioni geometriche e per diversi valori
dei parametri menzionati. Tali autori hanno concluso, sia tramite esperimenti
sia sviluppi analitici nell’approssimazione parallela e non viscosa [26, 41], che,
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quando gli ugelli sono separati da un divisorio di geometria rettangolare, i
getti presentano una regione di instabilità assoluta immediatamente a valle
del divisorio.

Uno degli obiettivi di questa tesi è la verifica di questa affermazione e la
caratterizzazione dei getti dal punto di vista della stabilità. La corrente viene
approssimata come incomprimibile ed assialsimmetrica, inoltre le proprietà
fluidodinamiche dei due getti vengono considerate identiche, e la temperatura
è assunta uniforme.

Gli strumenti utilizzati per l’analisi di stabilità sono stati implementati in
un codice scritto in Fortran 2003 e C e le operazioni più costose dal punto di
vista computazionale sono state eseguite in parallelo utilizzando le librerie
MPI ed OpenMP.

Getti coassiali Le caratteristiche di stabilità della corrente sono state
studiate per la prima volta in questo lavoro per via numerica seguendo diversi
approcci. La dinamica dei getti è stata studiata in funzione di due dei più
importanti parametri che ne determinano il comportamento, i.e., il numero
di Reynolds ed il rapporto di velocità.

I risultati mostrano che un’ampia crescita transitoria può aver luogo
nel regime subcritico, l’energia cinetica delle perturbazioni, infatti, viene
amplificata di fattori che raggiungono 1012 per un numero di Reynolds pari a
1 000. La struttura delle perturbazioni assume la forma di una scia di von
Kármán quando il rapporto delle velocità in ingresso è ru = 1.

Tuttavia, la mancanza di esperimenti a bassi numeri di Reynolds e la
mancanza di tempo per investigare l’effetto delle perturbazioni ottime sulla
corrente non lineare, impedisce di concludere che i getti siano instabili prima
dell’instabilità lineare.
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Gmax(τ)

Figura A.3 Crescita transitoria ottima a numeri di Reynolds Rei =
500, 750, 1 000. Il rapporto di velocità è ru = 1.
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A fianco dell’analisi della crescita transitoria è stata tracciata la curva
neutra corrispondente ad una biforcazione di Hopf nel piano Rei − ru. At-
traversando questa curva la parte reale di due autovalori complessi coniugati
diventa positiva e la corrente diventa linearmente instabile. Per ru = 1 l’auto-
vettore diretto e l’autovettore aggiunto associati all’autovalore marginalmente
stabile presentano una struttura simile a quella osservata nella scia di un
corpo tozzo. Quando il rapporto di velocità viene incrementato, invece, le
strutture vorticose assumono un aspetto sempre più simile al campo di per-
turbazione associato a un’instabilità di Kelvin–Helmoltz. Questo fenomeno
è confermato da una variazione della forma dell’autovettore critico, da una
modifica della struttura spaziale del campo di sensitività strutturale, ed è
chiaramente osservabile nelle DNS.
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Figura A.4 Spettro a Rei = 1 420 e ru = 1 (punto A1 in figura A.5. Le linee
tratteggiate evidenziano un autovalore marginalmente stabile con ωc = 5.728, le
etichette bi indicano i principali gruppi di autovalori.

È inoltre stata svolta un’analisi di sensitività strutturale con lo scopo
di localizzare la regione del campo di moto in cui agisce il meccanismo di
instabilità. I risultati mostrano che il ‘wavemaker’ si trova in prossimità del
divisorio di geometria rettangolare, in particolare, nella regione ove il flusso
base presenta degli anelli vorticosi, similmente a quanto osservato per i corpi
tozzi in presenza di bolle di ricircolo. A differenza delle correnti simmetriche,
però, il massimo del parametro di sensitività strutturale è spostato verso
il getto dotato di maggior velocità, indicando una maggior rilevanza, per
il meccanismo di instabilità, dello shear layer dotato di maggior velocità.
Quando il rapporto di velocità supera la soglia di ru = 1.5, il valore del
parametro di sensitività strutturale aumenta notevolmente nello shear layer
interno, evidenziando una modifica della regione in cui ha sede il ‘wavemaker’.
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Figura A.5 Curva neutra nel piano Rei − ru. I punti (ove distinguibili)
corrispondono ai valori calcolati. Le etichette Ai evidenziano i valori a cui
sono stati calcolati i risultati principali presentati in questa tesi. I triangoli Di

indicano i punti in cui sono state eseguite le DNS.
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Figura A.6 Sensitività strutturale dell’autovalore marginalmente stabile a
retroazioni localizzate in spazio.
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Questa ricerca è stata affiancata da uno studio sull’influenza del tronca-
mento del dominio numerico, un aspetto importante nelle correnti debolmente
non parallele. Lo studio ha evidenziato la necessità di un’appropriata modella-
zione dei condotti che generano i getti, sia nel contesto della stabilità modale
sia in quello della stabilità non modale, e la posizione del bordo d’uscita si è
rivelata critica sia nei riguardi dello spettro degli autovalori sia per quanto
concerne il calcolo delle perturbazioni ottime per ampi orizzonti temporali.

Infine è necessario un commento sull’importanza di un’analisi del compor-
tamento in presenza di perturbazioni tridimensionali. Diversi autori [8, 30]
hanno osservato sperimentalmente un comportamento assialsimmetrico della
corrente nella prossimità degli ugelli, anche a numeri di Reynlds elevati. Per
verificare la validità dei risultati ottenuti nel caso assialsimmetrico, sono state
lanciate delle DNS tridimensionali estremamente onerose dal punto di vista
computazionale, sfortunatamente, al momento della stesura di questa tesi, i
risultati non sono ancora stati ottenuti.
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[10] T. Djeridane. Contribution à l’étude expérimentale de jets turbulents
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