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Abstract 

Fault Detection and Isolation (FDI) has drawn during the last decades the 

attention of industries due to its effectiveness in enhancing system 

performances and safety. According to prior information and monitoring systems 

available fault detection techniques are divided into two main categories: data-

driven and model based methods. 

In this thesis work, with respect to data-driven method, a modification of the 

traditional Auto Associative Kernel Regression method which enhances the signal 

reconstruction robustness is propounded. The modification is based on the 

definition of a new procedure for the computation of the similarity between the 

present measurements and the historical patterns used to perform the signal 

reconstructions. The underlying conjecture for this is that malfunctions causing 

variations of a small number of signals are more frequent than those causing 

variations of a large number of signals. An application to the condition 

monitoring of real industrial components is shown to improve the early 

detection of the occurrence of abnormal conditions and the correct identification 

of the signals triggering the detection. 

With regard to model-based techniques, Particle Filtering (PF), a Bayesian filter-

based method, is pursued due to its applicability to nonlinear model with non-

additive non-Gaussian noise. In this thesis work, a PF approach, based on the 
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introduction of an augment discrete state pinpointing the particle evolution 

model, is propounded to tackle issues where Multiple Models (MM) are available 

for the description of the operation of an industrial component in normal and 

abnormal conditions. A smooth crack growth degradation problem has been 

considered to prove the effectiveness of the proposed method in the detection 

of the fault initiation and the identification of the degradation mechanism. The 

comparison of the obtained results with that of a literature method and an 

empirical statistical test has shown that the proposed method provides both an 

early detection of the fault initiation and an accurate identification of the 

degradation mechanism. A reduction of the computational cost is also achieved. 
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Sommario 

Lo sviluppo negli ultimi decenni di strumentazioni relativamente economiche per 

il monitoraggio continuo ha stimolato l’interesse verso piani di manutenzione per 

impianti industriali di tipo dinamico. Essi, anziché ricorrere a manutenzioni 

programmate, mirano a valutare le condizioni di degrado dei componenti 

monitorati e sulla base di quest’ultime decidere se sia utile condurre delle 

manutenzioni. L’arresto non necessario di un impianto per sostituire dei 

componenti o per eseguire delle manutenzioni può, infatti, comportare alti costi 

economici. Nell’affrontare tale tematica sono divenuti essenziali:  

 l’identificazione di condizioni di funzionamento anomalo; 

 l’isolamento delle cause del malfunzionamento.  

Il contributo che l’Identificazione e Isolamento di Anomalie (IIA) fornisce alle 

manutenzioni dinamiche è tale che nel corso degli ultimi decenni il mondo della 

ricerca e dell’ industria ha rivolto un elevato interesse verso lo sviluppo di 

tecniche sempre più efficaci. Una buona IIA è caratterizzata da una rapida 

individuazione delle anomalie e da un’accurata identificazione del processo e 

delle cause di degrado ad esse associate. Le tecniche di IIA si possono classificare 

in due categorie principali: 

 metodi basati su modelli espliciti del comportamento del componente. 

 metodi basati sulle osservazioni storiche (OS) del comportamento del 

componente. 

In questo lavoro di tesi sono stati sviluppati contributi innovativi in entrambe le 

categorie. Generalmente i metodi basati sulle osservazioni storiche identificano 

eventuali anomalie nel comportamento del componente ricorrendo a modelli 

empirici costruiti con dati storici disponibili. 
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Infatti data un’osservazione i modelli empirici permettono di indentificare un 

eventuale guasto. Tale processo si basa sul  confronto tra l’osservazione e il 

valore ricostruito dal modello, il quale corrispondente al corretto funzionamento 

del componente. La modalità con cui viene effettuata la ricostruzione è ciò che 

contraddistingue i diversi metodi. Questo lavoro di tesi si è focalizzato 

sull’AutoAssociative Kernel Regression (AAKR) che propone una ricostruzione 

come media pesata delle osservazioni già raccolte durante condizioni di normale 

funzionamento. I pesi possono essere considerati come un indice di similarità tra 

il comportamento osservato e l’osservazione storica. In questo studio viene 

proposta una modifica all’algoritmo utilizzato per il calcolo dei pesi al fin di 

ottenere delle ricostruzioni più robuste.  La modifica apportata si basa 

sull’introduzione di una proiezione delle osservazioni in un nuovo spazio degli 

stati in modo da considerare la maggior frequenza di accadimento di guasti che 

coinvolgono un numero ridotto di segnali rispetto a guasti che coinvolgono un 

numero maggiore di essi. Il procedimento è stato testato durante il monitoraggio 

delle condizioni di alcuni componenti di un impianto di produzione di energia 

elettrica. I risultati mostrano come il metodo introdotto sia in grado di 

identificare prima del AAKR tradizionale l’occorrenza di anomalie nei 

componenti. Inoltre esso è in grado di isolare i sensori che realmente 

monitorano l’anomalia del componente, consentendo di eseguire delle 

manutenzioni mirate. Infine i costi computazionali sono paragonabili a quelli del 

metodo tradizionale, questo permette la sua applicazione a sistemi di 

monitoraggio continui.. 

Per quanto riguarda i metodi basati su modelli espliciti questo lavoro è 

focalizzato sul Particle Filtering (PF) poiché consente di trattare modelli espliciti 

con un numero di restrizioni molto ridotto rispetto alle altre tecniche già 

proposte in letteratura, come il filtro di Kalman e le sue generalizzazioni. In 

particolare il PF è in grado di trattare modelli non lineari soggetti a rumori non 

additivi e non Gaussiani attraverso l’utilizzo di una distribuzione empirica. In 

molti casi il funzionamento o lo stato di degrado di un componente può essere 
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descritto da Modelli Multipli (MM). Generalmente un modello di riferimento è 

disponibile per descrivere le condizioni di normalità e diversi modelli per 

descrivere i possibili stati di guasto o di degrado. La fase di isolamento in questo 

ambito consiste nell’identificare quale sia il modello che maggiormente spiega le 

osservazioni raccolte. In letteratura questo problema è già stato affrontato 

utilizzando un diverso PF per ogni modello disponibile e andando a identificare a 

posteriori quale delle filtrazioni ottenute, quindi l’associato modello, sia la più 

adatta ai dati raccolti. D’altro canto tale strategia richiede un grosso sforzo 

computazionale dovuto all’elevato numero di particelle da simulare. Per evitare 

di simulare diversi gruppi di particelle è stato proposto di introdurre una variabile 

discreta indicante esplicitamente il modello secondo il quale esse evolvono. In 

questo modo è sufficiente utilizzare un unico PF riducendo quindi il costo 

computazionale. Inoltre il PF così ottenuto, durante la fase di aggiornamento 

della distribuzione empirica, è in grado di promuovere le particelle che evolvono 

secondo il modello più consono all’osservazione raccolta, rendendolo auto 

adattativo. Questo consente di isolare il modello più verosimile alle osservazioni 

mediante la marginalizzazione della distribuzione empirica sulla variabile discreta 

associata ai modelli. La validità di tale metodo è stata testata su un problema di 

degrado di un componente sotto sforzo. In particolare si è considerata la 

propagazione di una crepa al suo interno, descritta attraverso tre modelli di 

degrado non necessariamente lineari e altamente stocastici. Questo è il primo 

lavoro, per quanto ne sia a conoscenza l’autore, che tale tipo di approccio venga 

applicato ad un problema di diagnostica. I risultati ottenuti mostrano come tale 

metodo sia risultato efficace nel rapido riconoscimento del degrado del 

componente ed in particolare nel diagnosticare la fase di degrado associata. 
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1  

Introduction 

In recent years, the development of relatively affordable on-line monitoring 

technology has yielded a growing interest in dynamic maintenance paradigms 

such as Condition-Based Maintenance (CBM). This is based on tracking the health 

conditions of the monitored industrial component and, on this basis, making 

maintenance decisions. To do this, two fundamental issues are addressed: 

 detection, i.e., the recognition of a deviation from the normal operating 

conditions; 

 isolation or diagnostics, i.e., the characterization of the abnormal state of 

the component. 

In principle, an effective fault detection system is characterize by a prompt 

detection of the deviation of the component from the normal conditions of 

functioning: the earlier the detection time, the larger the time available to plan 

optimal maintenances intervention. This is particularly important for safety 

critical components whose failure and malfunctioning can lead to undesired 
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consequences to the environment and the humans. Thus, the adoption of a 

condition based maintenance policy is expected to increase the availability of the 

industrial component thank to the possibility of avoiding unnecessary downtime 

due to unnecessary maintenance interventions or to the possibility of preventing 

from the corrective maintenance due to unexpected failure. Furthermore the 

overall safety of the industrial plant is expected to be enhanced thanks to the 

capability of promptly detecting anomalous behavior of the industrial 

component and thus to avoid failures. 

The appealing potential of the CBM approach in improving the maintenance 

performance has boosted research and industry efforts in tackling FDI issues, as 

witnessed by the considerable amount of related literature (see ([7], [29], [43], 

[44], [45], [51] for surveys). FDI techniques can be divided into two main 

categories: data-driven methods, which resort to field data to build empirical 

models of the equipment behavior and model-based approaches, which utilize 

mathematical models to describe the behavior of the component. In both cases, 

the detection of a change in the component state is typically based on the 

comparison of the output of the model with the measurement acquired from the 

operating component. 

Data-driven (empirical) models are employed in those cases in which analytical 

models of the component behavior are not available and cannot be easily 

developed. A data-driven condition monitoring approach typically exploits an 

empirical model which reconstructs the values of the signals expected in normal 

conditions of the components. During operation, observed signal measurements 
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are compared with the reconstructions provided by the model: abnormal 

components conditions are detected when the reconstructions are remarkably 

different from the measurements. Several empirical reconstruction modeling 

technique have been applied for condition monitoring of industrial components 

such as AutoAssociative Kernel Regression (AAKR [3]), Principal Component 

Analysis (PCA [19],[24]), Evolving Clustering Method (ECM), Support Vector 

Machine (SVM, [28]) , AutoAssociative (AA) and Recurrent (R) Neural Networks 

(NN) ([8],[23],[38],[48]), Local Gaussian Regression (LGR, [35][41]). In this work, 

we consider AAKR which has been shown to provide more satisfactory 

performance in many cases, has often proven superior to other methods like, 

e.g., ECM and PCA [15] and is less computationally demanding than methods, 

e.g., AANN and RNN. Notice that small computational cost is an important 

desideratum for condition monitoring systems, since they are typically used 

online, during component operation and, thus the outcome of the FDI should be 

provided to the maintenance decision makers as soon as possible. Applications 

of the AAKR method to fault detection in industrial components have been 

proposed in [3], [4], [5], [15], [16], [20], [26] and [27]. They have shown the low 

robustness of the method in case of abnormal conditions, especially when the 

observed signals are highly correlated. By robustness, here we intend the 

property such that, in case abnormal or noisy measurements are collected, the 

reconstruction of the signal expected in normal condition provided by the 

empirical model, is not affected by errors or drift. Low robustness entails a delay 

in the detection time and an incorrect identification of the signal impacted by 
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abnormal conditions (Fault Isolation). In the first part of the thesis work, a novel 

modified AAKR method is presented to overtake these limitations of the 

traditional AAKR method. The modification of the AAKR method is based on the 

definition of a new procedure for the computation of the similarity between the 

present measurements and the historical patterns used to perform the signal 

reconstructions. The rationale behind this proposition of the modification is the 

attempt to privilege those abnormal conditions caused by the most frequently 

expected malfunctions and failures. The performance of the proposed method 

will be tested on real data collected from an industrial plant for energy 

production. 

In the second part of this thesis work, model-based methods which exploit 

mathematical models to describe the component behavior in normal and 

abnormal conditions, are considered. They usually estimate physical quantities 

which are related to the component health state or degradation level. For 

example, monitoring of structures can be based on the estimate of the length of 

cracks. In particular, a number of filtering algorithms have been successfully 

applied to FDI, which use discretized differential equations to describe the 

degradation evolution, and stochastic noises to take into account the associated 

aleatory uncertainty. For example, Kalman Filter (KF) has been adopted to detect 

incidents on freeways [47], and to set a CBM policy on turbine blades affected by 

creep [6]. However, KF suffers from a limited applicability, due to the stringent 

hypotheses of model linearity and Gaussian noise, which are required and are 

often not compatible with practical FDI issues. Thus, some generalizations of KF 
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such as Extended Kalman Filter (EKF [36], [37]) and Unscented Kalman Filter 

(UFK, [30]) have been proposed to relax the strictness of the KF’s hypotheses. 

Nonetheless, there are still situations where these filtering approaches fail, due 

to high non linearity or the presence of non-Gaussian noise. 

In this framework, Particle Filtering (PF) has drawn the attention of the 

researchers due to its wide range of applicability to nonlinear, non-Gaussian 

models ([2],[17],[46],[49] and [50]). In particular, PF has been adopted as a FDI 

tool within the Multi-Model (MM) systems framework, where the description of 

the possible component abnormal evolutions relies on a set of models [31]. In 

this setting, detection aims at identifying when the component starts to leave 

the nominal model, representing its behavior in normal condition, whereas 

diagnostics consists in selecting the model that best fits the current behavior of 

the component. The approaches in [1], [12] and [33] are based on the simulation 

of parallel swarms of particles according to each operating model and on the 

selection, via likelihood analysis between the simulated trajectories and the 

gathered measurements, of the model that best fits the observations. However, 

this entails an increasing computational cost due to the large number of particles 

that must be simulated. A promising approach introduced in ([39], [42]) 

propound to augment the state vector of the particle with a Boolean variable 

concerning the state of health of the component. This allows to take into account 

the evolution of the component state avoiding to increase the number of 

particles to be simulated. In this thesis work, this idea is applied for the first time, 

at the best of the author’s knowledge, to a nonlinear, highly non-Gaussian 
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smoothly degradation process of an industrial component subject to an high 

measurement error. The case study concerns a component subjected to fatigue 

crack growth, whose degradation process can be described by three different 

models. The performances obtained by the proposed approach will be compared 

with those obtained from a multiple swarms method [12] and from a statistical 

sequential test. Furthermore another novel contribution of this thesis work is to 

apply this approach for diagnostic, since it has never been exploited for 

monitoring components where different type of abnormal behavior can occur. 

The objective of the novel method is to provide, at a reduced computational 

cost, an early detection of the fault initiation and a prompt identification of the 

degradation phase. The remainder of the thesis work is organized as follow: in 

Chapter 2, the data-driven FDI is tackled according to the AAKR method. A novel 

modified AAKR method is  here proposed and applied to a real case study; in 

Chapter 3 the Bayesian Filter-Based FDI is proposed. Application to a crack 

degradation process and comparison of the results with those obtained from an 

MS method is also reported. Finally, Chapter 4 presents the conclusions and 

describes the potential future direction of research. In appendix an introduction 

to the PF algorithm is presented. 
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2  

AutoAssociative Kernel-Based 

Data-driven (empirical) models are employed in those cases in which analytical 

models of the component behavior are not available and cannot be easily 

developed. Data-driven models are built using historical data collected during 

operation and require a limited number of hypotheses ([27],[44],[45]). A data-

driven condition monitoring approach is typically based on an empirical model 

which reconstructs the values of the monitored signals expected in normal 

conditions of the components. During operation, signal measurements are 

compared with the reconstructions provided by the empirical model: abnormal 

conditions are detected when the reconstructions are remarkably different from 

the measurements. 

Several empirical reconstruction modeling technique have been applied for 

condition monitoring of industrial components ([3],[4],[5],[15],[19],[23] and 

[24]). These methods can provide accurate reconstructions of the measured 

signals under normal operations, but they often tend to be not robust. By 

robustness, here it is intended the property such that, in case abnormal or noisy 

measurements are collected, the reconstruction of the signal expected in normal 

condition provided by the empirical model, is not affected by error or drift. In [3], 

it has been shown that in case of abnormal conditions, empirical models may 
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provide reconstructions of the measured signals which are not estimating the 

expected values of the signals in normal conditions, especially when the 

measured signals are highly correlated. In particular, it has been shown that the 

reconstruction provided by AAKR of an anomalous transient characterized by a 

drift of one signal can be not satisfactory for two reasons: 1) the reconstruction 

of the signal affected by the drift tends to assume values in the middle between 

the drifted and the expected values of the signal in normal conditions 2) the 

reconstructions of other signals not affected by the drift tend, erroneously, to be 

different from the signal measurements, (this latter effect is usually referred to 

with the term ‘spill-over’). The consequence of 1) is a delay in the detection of 

abnormal conditions, whereas the consequence of 2) is that the condition 

monitoring system, although it correctly triggers an abnormal condition alarm, it 

is not able to correctly identify the signal that triggers the alarm. 

These limitations of reconstruction models have been already studied in ([3],[15] 

and [20]). Solution to these problems have been proposed, which amount to try 

to exclude the signals with abnormal behaviors from the set of input signals used 

to perform the reconstruction 

In ([3], [4] and [16]),the authors have propounded ensembles of reconstruction 

models handling different sets of input signals. In case of an anomaly impacting 

the behavior of a generic signal, only the few models fed by that signal provide 

non robust reconstructions, whereas all the other models provide correct 

reconstructions. Another solution has been embraced in [20] whereby a 

ponderation matrix iteratively modifies its elements to reduce the contribution 

of abnormal signals to the reconstruction but the convergence of the method to 

correct signal reconstructions has not been yet demonstrated. All these solution 

come at high computational costs. 

The objective of this chapter is to propose a robust signal reconstruction method 

with low computational cost and i) capable of early detection of abnormal 

conditions, ii) accurate in the reconstructions of the values of the signals 

impacted by the abnormal conditions and iii) resistant to the spill-over effect. 
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The proposed method is based on the modification of the measure of similarity 

used by the Auto-Associative Kernel Regression (AAKR) method. Whereas the 

traditional AAKR employs measures of similarity based on Euclidean or 

Mahalanobis distances, the proposed method introduces a penalty vector which 

reduces the contribution provided by those signals which are expected to be 

impacted by the abnormal conditions. The rationale behind this proposition of 

the modification is the attempt to privilege those abnormal conditions caused by 

the most frequently expected malfunctions and failures. The performance of the 

proposed method has been tested on real data collected from an industrial plant 

for energy production. The remainder of the chapter is organized as follows. 

In Section 2.1, the fault detection problem is introduced. In Section 2.2 the AAKR 

method is briefly recalled. Section 2.3 shows the limitation of the traditional 

AAKR approach to condition monitoring and states the objectives of the present 

chapter. In Section 2.4, the proposed modification of the traditional AAKR is 

described and discussed. In Section 2.5, the application of the proposed method 

to a real case study concerning the monitoring of 6 signals in an industrial plant 

for energy production is discussed. Finally, in Section 2.6 some conclusions are 

drawn. 
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2.1 Fault Detection with Empirical Model 

In this chapter condition monitoring scheme for fault detection as shown in Fig. 

2.1 is considered. 

The (empirical) model reproducing the plant behavior in normal conditions 

receives in input the vector,         , containing the actual observations of the J 

signals monitored at the present time, t, and produces in output the 

reconstructions,         , i.e. the values that the signals are expected to have in 

normal conditions. If the actual conditions at the time t are, instead, the 

residuals,                          i.e. the variations between the observation 

and the reconstructions, are larger and can be detected by exceedance of a 

prefixed thresholds by at least one signal. 

 

Fig. 2.1 Scheme of condition monitoring for fault detection 

2.2 AutoAssociative Kernel Regression (AAKR) 

The basic idea behind AAKR is to reconstruct at time t the values of the signals 

expected in normal conditions,         , on the basis of a comparison of the 

currently observed signals measurements (also referred to as test pattern), 

                                  , and of a set of historical signals 

measurements collected during normal condition of operation. In practice, AAKR 

performs a mapping from the space of the measurements of the signals          

to the space of the values of the signals expected in normal conditions,         : 

                                    (2.1) 
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where          indicates a     matrix containing N historical observations of 

the   signals performed in normal-conditions. Since the mapping is independent 

from the present time, t, at which the signals observations are performed, the 

present time t will be omitted from the notations. Thus,        ,  =1, …,    

indicates the value of signal   at the present time. The reconstruction of the 

expected values of the signals in normal conditions,                            , 

is performed as a weighted sum of the available historical observations; for the 

generic  -th element of      , this is: 

        
        

               

      
   

 (2.2) 

The weights,     , measure the similarity between the test pattern,      , and 

the  -th historical observation vector,            . They are evaluated through a 

kernel,    , i. e., a scalar function which can be written as a dot product. From 

the mathematical point of view, a Kernel is a function: 

                                                     (2.3) 

where   is a map from the observation space    in a (possibly countable infinite 

dimensional) Euclidean space   and       denots the dot product. Traditional 

AAKR adopts as     function the Gaussian Radial Basis Function (RBF) with 

bandwidth parameter  , i.e.: 

                            
 

     
 

 
                     

 

    (2.4) 

Notice that, according to Mercer’s theorem [10], eq. (2.4) can be seen as a dot 

product in a countable infinite dimensional Euclidean space: 

 
 

 
                     

 

 

   
       

            
 

  

 

   

  
 
         

 

 

 
 

 
              

 

 

 (2.5) 

In fault detection applications, Euclidean and Mahalanobis distances are typically 

used to compute the distance in the Gaussian RBF. In this work, in order to 
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account for differences in the scale and variability of the different signals, a 

Mahalanobis distance is used, defined by the covariance matrix, S, such that:  

                     
     

 

                       
 

                         

(2.6) 

Assuming independence between the signals,   is given by: 

    
  

   
   
    

 
  (2.7) 

where   
  indicates the estimated variance of signal j in the historical 

observations. Alternatively, instead of using (2.6) and (2.7), one can obtain the 

same results by mapping the data in a normalized space according to: 

     
       

  
 (2.8) 

where    is the mean value of signal   in the historical dataset, and by applying a 

Gaussian kernel with Euclidean distance in the normalized space. 

2.3 Limitations in the Use of AAKR for Signal 

Reconstruction 

The availability of relatively affordable monitoring technology typically leads to 

the installation of a great number of sensors, which are often monitoring signals 

characterized by high degrees of correlation. In this context of correlated signals, 

AAKR reconstructions performed in abnormal conditions have been shown to be 

not satisfactory from the point of view of the robustness: the obtained 

reconstructions are not accurately estimating the values of the signals expected 

in normal conditions [4]. This effect is well illustrated by the following case study 

concerning the monitoring of a component of a plant for the production of 

energy. A dataset containing the real evolution of 6 highly correlated signals 

(Table 2.1) for a period of 1 year with sampling frequency of 5200 
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measurements/year has been used to develop an AAKR reconstruction model. 

Then, in order to artificially simulate an abnormal condition, a linearly increasing 

drift has been added to the real values of one of the six signals for a period of 

600 time steps: these drifted data have not been used to develop the AAKR 

model. Fig. 2.2 (top) shows the drifted signal, whereas Fig. 2.2 bottom shows the 

residuals of the reconstruction of the drifted signal (left) and of another signal 

not affected by the abnormal condition (right). Notice that the obtained 

reconstructions are not robust: 1) the residuals of the drifted signal are not 

following the applied drift 2) the residuals of the other signal is erroneously 

deviating from 0. 

 

  S1 S2 S3 S4 S5 S6 

S1 1 0.97 0.98 0.98 0.99 0.98 

S2 0.97 1 0.95 0.99 0.98 0.96 

S3 0.98 0.95 1 0.96 0.99 0.99 

S4 0.98 0.99 0.96 1 0.98 0.97 

S5 0.99 0.98 0.99 0.98 1 0.99 

S6 0.98 0.96 0.99 0.97 0.99 1 

Table 2.1 degree of correlation between the signals 
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Fig. 2.2 Top (left): the continuous line represents signal 1 values in normal conditions, the dotted line the 
signal values in the simulated abnormal conditions; top (right): evolution of signal 3 (not affected by the 

abnormal conditions). Bottom: the continuous line represents the residuals obtained by applying the 
traditional AAKR reconstruction, the dotted line the residual which would be obtained by a model able to 

perfectly reconstruct the signal behavior in normal conditions. 

From the practical point of view of the fault detection, two problems arise in 

relation to the low robustness of the reconstruction: 

1) delay in the detection of the abnormal condition (an alarm is usually 

triggered when the residuals exceed prefixed thresholds). 

2) detection of abnormal conditions on signals different from those which 

are actually impacted by the abnormal behavior (spill-over). 

With regards to the latter, the identification of the signals which are affected by 

the abnormal conditions is critical since it can allow to identify the cause of 

abnormality and, thus, to properly plan the maintenance intervention. 
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2.4 Modified AAKR 

In order to enhance the AAKR robustness, it is propose to modify the 

computation of the weights as the traditional AAKR (eq. (2.4)). The basic ideas 

underling the proposed modification are (a) to identify the signals affected by 

abnormal behaviors and (b) to reduce their importance in the computation of 

the similarity between the test pattern and the historical observations. 

With respect to (a), it is assumed that the probability of occurrence of a fault 

causing variations on a large number of signals is lower than that of a fault 

causing variations on a small number of signals: 

                       if                     (2.9) 

where          and          indicate the sets of signals affected by variations due 

to the abnormal (faulty) conditions, and           and           their cardinality. If 

it is considered, for example, the problem of sensor failures, it is reasonable to 

assume that the probability of having N1  faulty sensors at the same time is lower 

than that of having an higher number of faulty sensors, N2 < N1, at the same 

time. This situation is outlined in Fig. 2.3, where the historical observations 

representing the component behavior in normal conditions are represented by 

dots and the abnormal condition test pattern by a square. According to the 

assumption in eq. (2.9), it is more probable that the abnormal condition is 

caused by a failure of a single component (for example, corresponding to normal 

conditions close to the pattern in B) than by a simultaneous failure of two 

components (corresponding to normal conditions close to the pattern in A). 
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Fig. 2.3 Set of high correlated historical observations (dots) and test pattern (square). A represents the 
possible reconstruction of the test pattern in the case in which only one component is faulty, B is the case 

in which 2 components are faulty. 

The proposed procedure computes the similarity measure between the 

observation,      , and the generic  -th historical observation,            , 

according to two steps: (a) a pre-processing step consisting in the projection of 

       and             in a new space defined by a penalization vector, 

                , with increasing entries, i.e.,             and (b) the 

application of the Gaussian RBF kernel in the new space. 

Step (a) is based on: 

 computing the vector of the absolute values of the normalized 

differences between       and            : 

                   
 

 

   
                      

  
     

                      

  
   

(2.10) 

 defining a permutation matrix,      , i.e. a matrix which, when 

multiplied to a vector, only modifies the order of the vector 

components; in our procedure, we define a matrix,      , such 

that when it is applied to the vector                     , the 

components of the obtained vector are the same of that of 

                    , but they appear in a decreasing order, i.e. 
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the first component is the one with the largest difference in 

                    ; 

 defining a diagonal matrix having decreasing entries on its 

diagonal: 

     
       

   

       

  (2.11) 

where the vector                          will be referred 

to as penalization vector; 

 projecting       and             in a new space defined by the 

transformation: 

          

                         

                               

(2.12) 

In step (b), we apply to          and             the Gaussian kernel with 

Euclidean distance: 

                               
 

     
 

 
                        

 

    (2.13) 

Notice that in this work it is not investigated whether the sequential application 

of steps (a) and (b) defines a kernel function according to eq. (2.3). Here, in order 

to show the effects of its application, two different historical patterns, 

             and             , are considered, which are characterized by similar 

Euclidean distance from a test pattern, but with              characterized by a 

lower number of signals remarkably different from that of the test pattern. In 

this case, the effect of the penalty vector is to assign to              an higher 

similarity measure than that assigned to             . Considering the case of 

Fig. 2.3, the similarity of       (square) with the pattern in B results higher than 

that with the pattern in A, whereas, according to the traditional AAKR pattern A 

is more similar than pattern B to the test pattern. 

Fig. 2.4 shows the locus of points characterized by the same similarity to the 

origin (0,0) in a 2-dimensional space using a penalty vector          . The 
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obtained surface is very different from the circle which would be obtained by 

using an Euclidean distance. As expected, such modification introduces a 

preference during the reconstruction of       for that points of          that have 

deviation on a lower number of components. 

 

Fig. 2.4 2D locus of points having similarity from the origin greater than a 
set value according to a penalty vector              

The application of the proposed method is also exemplified with reference to a 

numerical conceptual case study. Let us assume to have available an infinite 

dataset of historical data containing all the possible normal conditions of 3 

signals with degree of correlation equal to 1, i.e. (                       

        ) and to have a test pattern               containing the three signal 

measurements at the present time. According to the traditional AAKR procedure, 

the Euclidean distance between the test pattern and the  -th training patterns is: 

                  , which leads to identifying the historical pattern  

                
 

 
 
 

 
 
 

 
  as the nearest to the test pattern (see Fig. 2.5 and Fig. 

2.6). Thus,                 will be associated to the highest weight, and the signal 

reconstruction will be close to it. The reconstruction suggests that there is an 

abnormal condition impacting all three signals at the same time. Let us now 

consider the reconstruction performed by using the proposed method with a 

penalization vector              . In this case, the most similar pattern is 
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  and the signal reconstruction will be close to it. 

Hence, according to this approach, the only significant residual is detected on the 

first signal (Fig. 2.5 and Fig. 2.6). 

 

Fig. 2.5 Reconstruction of an abnormal condition 
(circle) performed with the Euclidean AAKR (star) and 
the penalty AAKR (squared). 

 

Fig. 2.6 Projection of the reconstruction on the 
plain described by two signals. 

Notice that the basic difference between the reconstructions provided by the 

traditional and the modified AAKR algorithm is the hypothesis of the latter that 

an abnormal condition involving few signals is more probable than an abnormal 

condition involving a lot of signals. Coherently with that hypothesis, the modified 

AAKR identifies an abnormal behavior only on one signal. 

2.5 Case Study: Industrial Components 

The data previously introduced in Section 2.3 are used to test the performance 

of the proposed modified AAKR method. The dataset which contains the 

measurements of 6 highly correlated signals in 5200 time steps has been divided 

into 3 subsets: 

 Training set        
                , used as historical dataset to perform 

the reconstruction; 

 Validation set      
                , used for the setting of the optimal 

parameter values; 
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 Test set,        
                , used for testing the performance of the 

method. 

In order to verify the performance of the proposed method in case of abnormal 

conditions, sensors failures have been simulated in the test set. In practice, 

assuming that sensor failures are independent events with probability,   (e.g. 

 =0.2), the following procedure has been applied: 

 for each signal and each test pattern, a random number,  , has been 

sampled from an uniform distribution in [0,1]. If   <  , the sensor is 

assumed to be failed and a deviation is simulated from a bimodal 

uniform distribution                    and added to the sensor 

measurement. 

Thus, the number of signals affected by a deviation in each test pattern is 

distributed according to a Binomial distribution       . The deviation intensity 

has been sampled from the uniform distribution                    in order 

to avoid to confuse the added deviations with the measurement noise which has 

been estimated to be a Gaussian noise with standard deviation equal to 1.5. 

The obtained test set,      , containing both normal and abnormal conditions 

patterns,         , has been used to verify the performance of the traditional 

AAKR method and the modified AAKR with different choices of penalization 

vector: 

 Linear                                       ; 

 Exponential                                     ; 

 Cliff Diving Competition ranking     8 20 50 90 160 350 . 

In all cases, the optimal bandwidth parameter,  , has been identified by 

minimizing the Mean Square Error (MSE) of the reconstructions on the validation 

set,      
      : 

        
                     

            
 

 
   

    
   

    
 (2.14) 
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Then, for each test pattern,         , of      , with           , the 

reconstruction          of the signals values expected in normal conditions has 

been performed, and the residuals        computed. Finally, if          , for 

         , an abnormal condition involving signal   is detected. 

In order to evaluate the performance in the reconstruction, notice that 4 

different possible cases for each test pattern are considered: 

1) presence of both false and missed alarms. There is at least one signal for 

which an abnormal condition is erroneously detected (         ) when 

no sensor failure has been simulated (false alarm) and, at the same time, 

at least one signal for which an abnormal condition is erroneously not 

detected (         ), when actually a sensor failure has been simulated 

(missed alarm); 

2) presence of only a false alarm. At least one false alarm, no missing 

alarms; 

3) presence of only a missed alarm. At least one missed alarm, no false 

alarms; 

4) correct identification (OK). Neither false nor missing alarms. 

Table 2.2 reports the performance of the traditional and modified AAKR 

reconstruction methods in terms of fraction of test patterns in which the 

application of the detection scheme leads to one of the four categories (1-4), 

considering different choices of the penalization vector. For the cases of 

exponential and linear penalization vectors, only the results obtained for  =10 

and  =8, which correspond to the best performance, are reported. 

 

 

PENALIZATION 

VECTOR 
OK 

MISSED 

ALARMS 

FALSE 

ALRAMS 

MISSED AND 

FALSE ALARMS 

MODIFIED AAKR EXPONENTIAL   = 10 0.885 0.089 0.008 0.018 

MODIFIED AAKR 
DIVING COMPETITION 

RANKING 
0.669 0.300 0.001 0.030 

MODIFIED AAKR LINEAR   = 8 0.585 0.375 0.001 0.039 
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TRADITIONAL AAKR EXPONENTIAL   = 1 0.500 0.446 0.003 0.051 

Table 2.2 Fraction of test patterns correctly identified (OK), missed, false and both missed and false 
alarms 

The most satisfactory method from the point of view of the highest fraction of 

correct identification and the lowest fraction of missed and false alarms is the 

modified AAKR with an exponential penalty vector, whereas the less satisfactory 

is the traditional AAKR. Furthermore, notice that the lowest total fraction of false 

alarms, which can be obtained from the sum of the false and false and missed 

alarms (columns 5 and 6 of Table 2.2), is obtained by the modified AAKR with 

exponential weight vector. 

The performance of the modified AAKR method with exponential penalty vector 

and  =10 has also been verified on the same case study considered in in Section 

2.3 (Fig. 2.2) characterized by a linearly increasing drift on one signal. Fig. 2.7 and 

Fig. 2.8 shows another signal not affected by failure. Notice that the modified 

AAKR provides an early detection of the abnormal conditions, with the obtained 

residuals almost overlapping the simulated drift. Furthermore, the 

reconstruction of the signal not affected by the drift is very accurate with 

residuals close to 0. Hence, the modified AAKR allows to reduce the time 

necessary for the sensor failure detection with respect to the traditional AAKR 

and is more resistant to the spill-over effect. 
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Fig. 2.7 Residual of the drifted signal 

 

 

Fig. 2.8 Residual of a signal not affected by any drift 

Further analyses have been performed in order to identify the sensitivity of the 

modified AAKR method to the setting of the exponential penalty vector 

parameter, to the number of simultaneous sensor failures and to the intensity of 

the failure. 
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With respect to the setting of the parameter   of the exponential penalty vector, 

Fig. 2.9 reports the fault detection performance obtained by varying its value. 

Notice that for  =1 the modified AAKR method becomes the traditional AAKR 

method, and, thus, its performance, as reported in Table 2.2, is less satisfactory. 

Values of    20 are associated to an increasing percentage of false and missing 

alarms since the method tends to identify failures on healthy sensors. It is, 

however, interesting to note that the performance is not very sensitive to 

variation of   in the range of          , where the percentage of correct 

detection remains larger than 90% and the percentage of false and false and 

missed alarms are subject to small variations. 

  

  

Fig. 2.9 Sensitivity to the parameter   defining the exponential penalty vector: top-left) correct detection; 
top-right) missed alarms; bottom-left) false alarms; bottom-right) missed and false alarms 

In order to assess the performance of the method considering different numbers 

of simultaneous sensor failures, we have simulated 2 new test datasets of 1000 

patterns each one obtained by adding deviations on 2 and 4 signals to the 
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normal condition measurements, respectively. The obtained results are reported 

in Table 2.3. The modified AAKR method tends to perform remarkably better 

than the traditional AAKR method in the cases of two simultaneous sensor 

failures. However, the performance of the two methods tends to decrease if the 

number of simultaneous sensor failures increases. In particular, in the case of 

four simultaneous sensor failures, the traditional AAKR method performance is 

slightly more satisfactory than that of the modified method. This is due to the 

consequences of the modified AAKR method hypothesis that signal behaviors 

characterized by several signals affected by abnormal conditions are expected to 

be rare and so the number of missed alarms increases. This can be explained by 

considering the same numerical conceptual case study discussed in Section 2.3. 

Let us assume that we have to reconstruct the test pattern               which 

is characterized by a failure of sensors 1 and 2 (normal condition measurements 

would be        ). Considering a training set made of patterns (            

                   ), the traditional AAKR reconstructs the test pattern in 

the neighborhood of  
 

 
 
 

 
 
 

 
 , which is the closest training pattern using an 

Euclidean distance, whereas the modified AAKR with penalty vector    

           reconstructs it in the neighborhood of  
   

   
 
   

   
 
   

   
 . Hence, the 

traditional AAKR method detects an anomaly on all the three sensors, providing 

a false alarm on sensor 3, whereas the modified AAKR detects a failure on sensor 

1, providing a false alarm on sensor 1 and missed alarms on sensors 2 and 3. In 

general, it seems that the performance of the modified AAKR is satisfactory 

when the total number of sensor failures is lower than half of the number of 

sensors          
      

 
]. 

 
2 Simultaneous Errors 

 
OK MISSED FALSE MISSED & FALSE 

Traditional AAKR 335 577 9 79 

Exponential   = 10 837 158 2 3 

Table 2.3 Quantitative results for 2 simultaneous error  
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4 Simultaneous Errors 

 
OK MISSED FALSE MISSED & FALSE 

Traditional AAKR 170 637 16 177 

Exponential   = 10 38 302 87 573 

Table 2.4 Quantitative results for 4 simultaneous error 

The sensitivity of the method to the intensity of the deviations has been 

investigated by adding to the signals of the dataset       deviations of intensity 

sampled uniformly in the interval [9,10] instead of [4,10]. The results reported in 

Table 2.5 shows that: 

 the number of correct detections performed by the traditional AAKR 

method increases due to the decrease of the number of missed alarms; 

 both the numbers of false alarms and missed and false alarms increase 

due to the spill-over effect on the remaining signals. 

With respect to the modified AAKR method, in case of higher intensity of the 

deviations, the number of missed alarms decreases, whereas the increase of the 

number of false alarm is lower than that of the traditional AAKR. This confirms 

that the modified AAKR is more resistant to spill-over than the traditional AAKR. 

  
OK MISSED FALSE MISSED & FALSE 

  = 10 
Ei  ~ U([4, 10]) 887 85 10 18 

Ei  ~ U([9, 10]) 936 2 26 36 

  = 1 
Ei  ~ U([4, 10]) 489 440 7 64 

Ei  ~ U([9, 10]) 757 64 70 109 

Table 2.5 Quantitative detection results with increasing deviation intensity for the Euclidean AAKR     
and for the penalized AAKR      
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2.6 Conclusion 

In this chapter, the condition monitoring of an industrial component has been 

considered within a data-driven setting. In order to obtain robust reconstructions 

of the values of the monitored signals expected in normal conditions, it has been 

proposed to modify the traditional AAKR method. The modification is based on a 

different procedure for the computation of the similarity between the present 

and the historical measurements collected in normal condition of operation. In 

particular, before the computation of the Kernel between the two vectors, which 

is performed as in the traditional AAKR method according to a Gaussian RBF 

function, the data are projected into a new signal space defined by using a 

penalization vector which reduces the contribution of signals affected by 

malfunctioning. The procedure is based on the hypothesis that the probability of 

occurrence of a fault causing variations on a large number of signals is lower than 

that of one causing variations on a small number of signals.  

The modified AAKR method has been applied to a real case study concerning the 

monitoring of 6 highly correlated signals in an industrial plant for energy 

production. The possibility of detecting sensor faults has been investigated. The 

obtained results have shown that the reconstructions provided by the modified 

AAKR are more robust than those obtained by using the traditional AAKR. This 

causes a reduction in the time necessary to detect abnormal conditions and in a 

more accurate identification of the signals actually affected by the abnormal 

conditions.  
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3  

Bayesian Filter-Based Fault Detection 

With regards to the model-based approaches, a number of filtering algorithms 

have been successfully applied to FDI, which use discretized differential 

equations to describe the state evolution, and stochastic noises to take into 

account the associated aleatory uncertainty([6], [30], [36], [37] and [47]). 

However the high complexity of real industrial system demand for method 

capable of manage nonlinear non-Gaussian models, since there are still 

situations where traditional filtering techniques fail. In this context, Particle 

Filtering (PF) has proven to be a robust technique ([2],[17]) which allows tackling 

more realistic FDI problems([46],[49] and [50]). In particular, PF has been 

adopted as a FDI tool within the Multi-Model (MM) systems framework, where 

the description of the possible abnormal evolutions of the component behavior 

relies on a set of models [31]. In this setting, detection aims at identifying when 

the behavior of the component starts to leave the nominal mode, whereas 

diagnostics consists in selecting the model that best fits in describing the current 

behavior of the component.  

Interesting applications of PF to FDI in MM systems have been proposed in [1] 

and [12], where multiple swarms of particles are contemporaneously simulated, 

according to all the possible alternative models. There, FDI are based on Log-
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Likelihood Ratio (LLR) tests, which exploit the gathered measures to estimate, for 

every swarm, the corresponding likelihood of being the right model to track the 

observed component behavior. However, these methods are computationally 

burdensome and memory demanding, as they require tracing a large number of 

particles.  

Alternatively, an approach based on the augmentation of the state vector with a 

variable representing the model to be selected to describe the current evolution 

has been propounded in [39] and [42]. This allows the filter to automatically 

convey the particles to follow the right model when the gathered measures force 

the state vector to modify the value of the added variable.  

In particular, such variable is chosen continuous in [32], which proposes an 

ensemble of Monte Carlo adaptive filters, and uses the LLR tests to make the FDI 

decision. On the contrary, it is a Boolean variable in [39] and [46], where explicit 

fault models with associated fault probabilities are supposed to be known. These 

are used to compel the particles to evolve according to the different models. 

Then, the measures acquired at the updating steps will favor the particles of the 

correct model, i.e., those associated to the correct value of the added variable, 

which are expected to be more close to the measured degradation value. 

On the other side, the works of the literature which investigate the potential of 

such algorithm ([39] and [46]) addressed case studies where only two models are 

available, the noise is Gaussian, and the occurrence of a fault reflects in a sharp 

jump of the traced degradation variable. These hypotheses may be unrealistic, 

especially for continuously degrading components [14]. In this context, the 

novelty introduced in this chapter, is to apply PF to FDI in MM systems where 

more than two models are available, the noise in the models is not Gaussian and 

the degradation process are smoothly evolving. The performances of the 

proposed approach are compared with those of both the LLR-based approach 

(e.g. [12]), and an intuitive approach based on the statistical hypothesis test 

technique. 
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To this aim, a non-linear crack growth degradation process is considered as case 

study, which is investigated in two different settings:  

1) There are only two models available, one for normal conditions and the 

other for degradation; hence, detection and diagnosis coincide. This is the 

same setting of other works of the literature (e.g. [39], [46]) 

2) A third degradation model is considered, in order to evaluate the 

diagnostic capability of the proposed approach in selecting the right 

model to describe the current evolution behavior.  

The remainder of the chapter is organized as follows. In Section 3.1, a general 

description of the Multi Model setting is presented, with a focus on the case 

study considered in this chapter. In Section 3.2, basics of Particle Filtering are 

recalled. Section 3.3 summarizes the characteristics of the PF-based techniques 

proposed in the literature to address FDI in Multi Model systems, and describes 

the FDI technique based on the augmented state vector. Section 3.4 shows the 

application of these FDI methods to the simulated realistic case study of the 

crack growth degradation process. Section 3.5 reports some conclusions. 
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3.1 Multi Model System 

The evolution of a Multi Model system cannot be described by the same model 

during its entire life cycle, but requires a set of M models, each one capturing 

different behaviors of the systems in different situations or phases. Thus, a set of 

M state equations are proposed to describe the possible system functioning 

conditions, which are usually divided into two main classes: 

N models for normal conditions    
       

: 

 

   
         

             
    

… 

   
         

             
    

(3.1) 

F models for fault conditions    
       

: 

   
         

             
    

… 

   
         

             
    

(3.1) 

where N+F=M,    represents the state vector at time   , and      is the noise 

at the previous time step,     , which defines the aleatory uncertainty in the 

evolution of the process. 

A further assumption made when MM systems are considered is that the state 

   cannot be precisely measured, and the knowledge about its value is affected 

by uncertainty, represented by the noise   . The measurement model:  

              (3.2) 

that links the state    to the measurement acquired    is supposed to be given.  

In this work, we consider a fatigue crack growth degradation process in a 

mechanical component (Fig. 3.1), which is a typical example of MM system, is 

considered. Degradation evolution is divided into three phases [22]:  

 Incubation; it is the short initial phase of the phenomenon, which is 

connected with plastic strains locally occurring in the most stressed parts 
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of the mechanical component subject to cyclic loads. At this stage, 

coalescence of dislocations and vacancies, as well as ruptures due to local 

stresses lead to the formation of sub-microcracks in the slip bands at the 

boundaries of blocks, grains and twins. From the practical point of view, 

this phase is modeled by a constant model in which the crack length is 

zero, being its exact value not measurable by traditional measurement 

instrumentation. 

 Crack initiation; it is characterized by the growth and coalescence of the 

sub-microcracks, which transform into micro-cracks. These start 

increasing under the cyclic loads, and form macro-cracks, which are 

typically detectable by measurement instrumentation. This gives rise to 

the third phase. The model describing this second phase is linear in time 

[9]. 

 Crack rapid-propagation; the crack grows under the cyclic loads, up 

reaching a critical threshold. A number of models have been proposed to 

describe this latter phase, such as the Paris-Erdogan exponential law [40], 

here considered. 

The measures gathered to monitor the degradation process are affected by 

errors, especially during the second phase or when the crack cannot be directly 

measured due to its position. In this setting, detection consists in the 

identification of the deviation from the first phase, while diagnostics consists in 

determining whether the growth is linear (i.e., the second phase) or exponential 

(i.e., the third phase). 
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Fig. 3.1 Schematic approximation of the crack propagation model. 

3.2 Particle Filtering 

Particle Filtering (PF) is a sequential Monte-Carlo method, which is made up of 

two subsequent steps: prediction and updating. At time     , the prediction of 

the equipment state    at the next time instant   , is performed by considering a 

set of    weighted particles, which evolve independently on each other, 

according to the given probabilistic degradation model (i.e., one out of those in 

Eqs. (3.1)). The underlying idea is that such group of weighted random samples 

provides an empirical discrete approximation of the true Probability Density 

Function (pdf)            of the system state    conditional on the last 

available measure. When a new measure    is acquired, it is used to update the 

proposed pdf in a Bayesian prospective, by adjusting the weights of the particles 

on the basis of their likelihood of being the correct value of the system state. For 

practical purpose, PF works as if the i-th particle, i=1, 2, …   were the real 

system state; then, the smaller the probability of observing the last collected 

measurement, the larger the reduction in the particle’s weight. On the contrary, 

when the acquired measure well matches with the particle position, then its 

importance is increased. Such updating step of the particle weights is driven by 

the probability distribution          (which is derived from Eq. (3.2)) of 

observing the sensors output    given the true degradation state   , and 

provides the distribution         . 
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The PF scheme used in this work is the Sequential Importance Resampling (SIR, , 

[2], [17]), which builds a new population of particles by sampling with 

replacement from the set of particles    
      

   ; the chance of a particle being 

picked is proportional to its weight. The final weight assigned to the particles of 

such new set is 
 

  
. The SIR algorithm allows avoiding the degeneracy 

phenomenon (i.e., after few iterations, all but few particles would have negligible 

weights), which is typical of the standard version of PF (i.e., Sequential 

Importance Sampling, SIS).  

Finally, the updated particle distribution is used to perform the successive 

prediction steps up to next measurement (for further theoretical details see [2], 

[17], [18] and [34]). 

3.3 Particle Filter for Fault Detection and Diagnosis in 

Multi Model System. 

PF has been already applied to tackle FDI issues in the framework of MM 

systems. For example, in [31] PF is used to simultaneously run swarms of 

particles evolving according to every possible model (Fig. 3.2). Then, a residual’s 

analysis or a Log-Likelihood Ratio (LLR) test is performed to identify the swarm 

that best matches with the gathered measure, and thus the corresponding 

model. For example, Fig. 3.2 shows the case in which three different swarms are 

traced by PF, according to three available models   ,     and    . Model    is 

the best model to represent the system evolution in its first phase, being very 

good the matching of the corresponding particle swarm and the measures 

acquired at time instants         . On the contrary at time    the model which 

best fits the measures becomes    . 

Enhancements of this approach have been proposed in [1] and [12]. In the 

former work, a new way to estimate the likelihood function is introduced to 

extend the applicability of the method to more complex particle distributions. In 
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the latter, a swarm of particles for every possible evolving model is created at 

every time step, and traced to detect the occurrence of a fault at any subsequent 

time instant. For example, Fig. 3.3 shows that two new swarms are created at 

every measurement step, which evolve according to models     and    , 

alternative to   . The presence of diverse swarms increases the promptness in 

detecting the change in the behavior of the system, which is again established by 

LLR tests. On the other side, this advantage is counterbalanced by the onerous 

computational time due to the large number of particles to be simultaneously 

traced. To partially overcome this problem, the authors in [12] proposed to 

consider an observation window, at whose end the swarms are no longer traced. 

Obviously, the width of such time window needs to be set large enough to allow 

the LLR to robustly detect model changes. Then, this approach is not effective 

when the models need a long transition time to significantly diverge, as this 

would require fixing wide observation windows. Furthermore, the number of 

particles to be drawn raises with the number of system’s models. 

 

Fig. 3.2 Parallel swarms of particles evolve according to the available models. At every   , particle 

weights are updated driven by         . 
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Fig. 3.3 At every time step, new swarms of particles start according to the alternative models. 

A different way to tackle the MM problems is that of augmenting the state 

vector with a new discrete variable, which represents the evolution model of the 

system. That is, the state vector becomes   
          , and the degradation 

models in eq. (3.1) are embedded in the model: 

  
          

           
                        

  (3.3) 

where    encodes also the probabilistic model governing the transitions among 

the different possible models, which is a first-order Markov [46]. 

This setting requires modifications to the PF algorithm. In details, the PF 

prediction step has to give due account to the possible alternative models 

according to which the particles are simulated: 

    
                

      
        

              
   

                                           

    

       

                                                        

    

 

(3.4) 

 

In the last equation, it has been assumed that the transition probabilities 

              do not depend on the current degradation state     , whereas the 

prediction of the state    depends on the added variable   , whose value is 

sampled at the current time instant     .  
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The successive updating step at time    acts on the distribution of    only, since 

the acquired measures concern the value of the degradation state   , and not 

that of the variable   . Nonetheless, favoring the particles positioned in the 

neighborhood of the measure    leads to the selection of the particles with the 

most likely value of   . 

For the sake of clarity, the transition probabilities              in (3.4) can be 

arranged in the matrix: 

        

          

    
   

        
 

   

 
 

 
   

                       (3.5) 

where the i-th element of the j-th column represents the probability that a 

particle which has been simulated according to model i, will be simulated at the 

next step according to model j.  

For example, in the case in which there are M=2 alternative models, model 1 

refers to the normal state (N=1), whereas model 2 to the failed state (F=1). Then, 

    is the probability that a particle which at the previous step has been 

simulated according to model 1, will be simulated again according to the same 

model 1, whereas     is the opposite case, i.e., the same particle will change its 

stochastic behavior. Fig. 3.4 gives a pictorial view of this dynamics.  

 

Fig. 3.4 Possible transitions among the operational models of the system. 

Notice that the transition from model   to model  ,    , may be physically 

meaningless when it is not possible that a system spontaneously recovers by 

itself. However, in the considered setting a positive value is always given to the 

corresponding probabilities. In fact, if these were set to zero, the system would 

be biased to follow the degraded models especially in case of outlier measure 
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values, as the trajectories of those particles that are erroneously following a 

failure model could no longer be corrected.  

For the sake of clarity, an example of the dynamic behaviors of the particles 

when the measures are gathered from the normal operating system is given in 

Fig. 3.5. At time   , some particles change their reference model according to 

      . In particular, some particles experienced a change of the variable    from 

   to   . These particles are strongly un-favored at the updating step, being the 

acquired measure far from their positions. Thus, among the particles with state 

parameter   , only few particles (one in Fig. 3.5) are re-sampled and still follow 

the wrong model at the next time step, whereas the others are reset to the 

starting point. The behavior of the augmented MM PF in the opposite case, i.e., 

when measurements are gathered from a failed system, is shown in Fig. 3.6. 

There, during the updating and re-sampling steps, the number of particles having 

   as augmented state increases. Hence, the measures acquired promote the 

particles associated to the correct model, i.e., those labeled with the correct 

value    of the added variable, which are more close to the measured 

degradation value. This allows the particles to auto-adapt their trajectories to 

the real evolution of the system, and thus selecting the correct model. 

 

Fig. 3.5 Evolution of a system as long as measurements support the normal model. 
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Fig. 3.6 Evolution of the system and correlated swap in the model parameter, due to measurement 
supporting the fault model. 

In this framework, the probability associated to each operational model can be 

estimated at every time step by marginalizing the updated particle distribution: 

  
                                    (3.6) 

From the practical point of view, this is equivalent to sum the updated 

probability masses of the particles simulated according to model   . On this 

basis, the probability of the system being in safe state is given by: 

  
    

                          
    

 

   

 (3.7) 

where                   
  is the set of all the normal active models. Fault 

detection can be based on the comparison of   
    

 with a proper threshold 

value    (e.g.,   =0.05). That is, if   
    

   , then it is reasonable to conclude 

that the system is in fault state.  

With regards to fault isolation, the Maximum A Posteriori (MAP) criterion can be 

used to such aim [46]. In details, the model, say D, corresponding to the 

maximum value of   
  is selected among all the possible models: 

  
     

       
  

  (3.8) 

If model D is different from that currently used to describe the system evolution, 

and   
  is considerably larger than the values   

  associated to all the other 
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models, then a change in the system state is diagnosed. In this respect, to make 

more robust decisions and reduce the number of false alarms, one can require 

that this criterion is fulfilled for a number of consecutive time steps.  

Finally notice that for the sake of generality, in the model considered in (3.3) the 

stochastic noise      
 depends not only on time, but also on the value of   , i.e., 

on the operating model; this allows giving due account to the different variability 

of the alternative models. For example, if the amount of information about the 

normal system functioning is larger than that about a failure model, then the 

corresponding noise    
,                         

  is expected to have 

higher variability than    
,                      

 . 

3.4 CASE STUDY: 

Crack Degradation Process 

As mentioned in Section 3.1, the case study considered in this work deals with 

the crack growth degradation process. The FDI performance of the method that 

relies on the augmented state (which is here labeled as IMM, according to the 

terminology used in [46]) is evaluated in two different settings:  

1) There are only two models available, one for normal conditions and the 

other for degradation; hence, detection and diagnosis coincide. This is the 

same setting of other works of the literature (e.g., [39], [42]). Then, the 

performance of the IMM method is compared with those of the LLR-

based method proposed in [12] (which is here referred to as Multiple 

Swarms (MS)) and of an intuitive, statistical approach. 

2) A third degradation model is considered, in order to evaluate the 

diagnostic capability of the proposed approach in selecting the right 

model to describe the current evolution behavior. 
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3.4.1 Two-Model Setting: Fault Detection 

3.4.1.1 Model Description 

The crack growth evolution is here described as a two phase process: 

1) crack incubation, which is modeled by a constant null value, since crack is 

too small to be measured: 

          (3.9) 

2) crack propagation, which is modeled by the Paris-Erdogan model [40]: 

                             
 

 (3.10) 

where              describes the uncertainty in the growth speed; 

        and        are parameters related to the component 

material, and     is an experimentally determined constant related to 

the characteristics of the load and the position of the crack. The values of 

these parameters are derived from [11], whereas the discretized time 

unit is here assumed to be expressed in arbitrary units of time. 

The measurement model is: 

      
                       
                

 (3.11) 

where                is an additive Gaussian measurement error. The 

measurement instrument is assumed to have a resolution       , 

which means that it is not capable of observing cracks with length 

     .  

To conclude, Fig. 3.7 shows a possible crack evolution and the associated 

measures. 
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Fig. 3.7 Crack growth simulation of a crack started at       h. 

3.4.1.2 Interacting Multiple Model (IMM) 

The transition probability matrix for the model parameter    has been chosen 

as: 

        
        
        

  
(3.12) 

where the probabilities of particles changing the reference model are set, at a 

first attempt, to very small values, i.e.,             . This is justified by the 

following considerations:  

a) with regards to    , the larger its value the larger the expected 

numbers of particles that start evolving according to the fault 

model. For example, if the number of particles is set to 

     
    , then on average at every time step a particle of the 

swarm is forced to swap model. This entails that when a measure 

is acquired from a safe system, the particles with augmented 

variable set to    are unlikely to be re-sampled, and the swarm 

continues evolving in the correct way. On the contrary, if the 

probability     were set to a larger value, e.g., 0.2, there would be 

20 particles evolving according to the fault model. This means that 

the probability of having a particle re-sampled from this set 
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becomes large, especially in the presence of an outlier 

measurement. Hence, large values of     make the filter too 

much sensitive to the measurement noise, with the consequent 

increment in the probability of having false alarms. 

b) With regards to    , it should be borne in mind that the speed of 

growth of the modeled crack, and thus of the particles evolving 

according to such model, is small. Furthermore, when the particles 

that are correctly associated to the variable         are forced 

to change the prediction model (i.e.,      ), their crack lengths 

are reset to 0; thus, they need a long time to re-catch the real 

crack length. This entails that if the transitions       occur too 

much frequently, then the distribution of the particles turns out to 

be non-conservatively biased, with the consequent delay in crack 

detection. Typically, the smaller the speed of growth, the smaller 

should be    , as it is confirmed by the analysis below. 

Fig. 3.8 shows the good filtering capability of the method, which emerges from 

the closeness of the filtered and simulated crack growth behaviors.  

Notice also that in the present case study there are only 2 models available; 

then, fault detection coincides with diagnostics, and the marginalized 

distribution in Eq. (3.6) is split only between two discrete states. Hence, the 

alarm threshold can be set at a large value (e.g.,         ) to guarantee a low 

probability of false alarm and a prompt detection. Fig. 3.9 shows an example of 

how the probability of being in a fault model has a steep increment and crosses 

the alarm threshold    (dashed horizontal line) a few time steps after the time 

instant when the real crack has reached the    threshold (dashed vertical line). 

In this respect, notice that as mentioned above, when the crack length is smaller 

than   , it cannot be detected (Eq. (3.11)). Then, the optimal time 

                   to detect the crack is necessarily larger than the time instant at 

which the second phase of the crack growth process starts (bold continuous 

vertical line).  
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Notice also that the spike highlighted in Fig. 3.9 is due to an outlier measure, 

which could be considered as an observation acquired from a system with no 

crack. Nevertheless, the method shows its robustness, being the spike not 

capable to force a change in the model identification. 

 

Fig. 3.8 Filtering crack’s length via IMM method 

 

 

Fig. 3.9 Marginal posterior probability associated to fault model 

3.4.1.3 Multiple Swarms (MS). 

In this paragraph, the method proposed [12] is applied to the considered the 

two-model case study. The number of particles for each swarm is set to      . 
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This guarantees that each swarm provides a robust statistics in support of the 

LLR test. The observation time window is set to      , which is large enough 

to take into account the slow initial speed of growth. The minimum number of 

successive swarms that must identify abnormal conditions to detect a fault, is set 

to    . This avoids possible false alarms induced by measurement outlier 

values.  

Fig. 3.10 shows an example of crack evolution, with the filtered state estimated 

by the   out of   swarms that give the detection alarm. There is a very good 

matching between the real crack evolution and the mean value of the new 

swarms  within the window             units of time. In particular, according 

to the MS approach, the extent of such matching between the observations and 

the particle distribution is evaluated by a function        (details about this 

function can be found in [12] and[31]). Roughly speaking the higher its value, the 

larger the likelihood that the observations come from the abnormal model.  

Fig. 3.11 reports the evolution of function   corresponding to the trial in Fig. 

3.10. Notice that there is a sharp increment in        when the 5 swarms start 

evolving very close to the real crack.  

The detection alarm is given when        crosses the threshold value  , which 

is here set to 8. In this respect, to avoid false alarms   must be such that when 

system evolves according to a normal model, possible consecutive measures 

larger than   , which entail large values of       , do not cause a change in the 

model. On the other side, setting   to very large values leads to a delay in 

detection. Thus,     is a compromise value between these two conflicting 

needs. 
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Fig. 3.10 Filtering crack length performed by the 5 swarms of particles giving alarm. 

 

 

Fig. 3.11 Function of the LLR used to set the alarm conditions 

3.4.1.4 Sequential Statistic Test (ST) 

The detection methods discussed above are compared with an intuitive 

approach based on the statistical hypothesis test technique. In details, the test 

performed is a trivial Z-test for mean with known standard deviation, since the 

standard deviation of                is assumed to be known. The null 

hypothesis    is that the mean value of the measures is    0, whereas the 
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alternative hypothesis    is that     . This entails that    is refused in favor of 

   when there is the evidence of the crack presence.  

To increase the robustness of the method, the alarm is given when    is refused 

for an established number         of consecutive observations. Thus, if the I 

type error of each independent test is set to       , the null hypothesis is 

refused according to a I type error       
          . In this respect, notice 

that if    is true, then the observations are independent and identically 

distributed random variable. 

3.4.1.5 Performance Indicators 

To assess the performance of the different approaches, 100 cracks have been 

simulated, and used for evaluating the following three performance indicators:  

 Detection Time Delay [51], i.e.,                                   , 

where                                    . This is an indicator of 

the promptness of the method in detecting the change in the model.  

 Crack On Noise, i.e.,     
           

  
  which gives an information about 

length of the crack upon detection, compared to the amplitude of the 

measure uncertainty. Small values of this indicator relate to an accurate 

detection.  

 False Alarms, i.e., the number of alarms given without that a crack has 

occurred. It is a wide spread index for the robustness of the method.  

Notice that false alarms are of primary importance in condition monitoring, 

being the unnecessary stops of a plant for maintenance operation generally 

highly expensive. Thus, the ‘work points’ of the parameters of the considered 

detection techniques have been set such that the number of false alarms is 

around the acceptability level of 5%. This is supposed to be the best initial setting 

to allow a comparison between the three method. 

Table 3.1 reports the average values of the three performance indicators, 

corresponding to the application of the three considered techniques to the 100 

simulated crack growth trials. From this table, it emerges that the two filtering 
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methods IMM and MS have better performances than ST, being the mean values 

of the corresponding indicators smaller than those of ST. Moreover, although the 

performance in detection of IMM seems not much better than the performance 

of MS (2 unit of time, only), it must be kept in mind that IMM has a lower 

computational cost than MS, since it needs to run      
     particles instead 

of                
                particles simultaneously simulated 

in the MS approach. Table 3.2 reports the computational time necessary for 

filtering the evolution of one simulated crack growth in seconds.  

Notice also that the IMM commits less False Alarms than MS, see Table 3.1. 

 

 ST IMM MS 

DTD 44.3 19.8 22.1 

CON 1.295 1.001 1.025 

False Alarms 6% 3% 6% 

Table 3.1 Detection Time Delay, Crack On Noise and Percentage of false alarms evaluated on a sample of 
100 simulated cracks, for the three methods. 

 IMM MS 

Computational Time (sec) 1.7 32 

Table 3.2 Computational time for filtering a crack growth according to the two PF method analyzed.  

Finally, sensitivity analyses have been performed to evaluate the dependencies 

of the performance from the transition probabilities and the variability of the 

measurement noise.  

In details, the sensitivity of the methods to the transition probability matrix has 

been investigated by varying both the extra-diagonal elements of the matrix 

       within the set                      , and correspondingly the values on 

its diagonal. Table 3.3 shows that the larger the probability of transition, the 

poorer the DTD and CON indicators. These results come from the fact that if 

transitions from a model to another are too frequent, then crack length is reset 

to null too often, thus preventing the particles from swapping to the correct 
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model. This suggest that when setting the transition matrix, both probability of 

occurrence and speed of growth of the crack must be taken into account. On the 

other side, if the probability of transition is very small, i.e.,    = 0.005, the 

method of augmenting the state space becomes useless, as on average we have 

1 out of 100 particles changing the reference model every two steps. This 

consideration explains the worsening of the performance corresponding to    = 

0.005.  

Table 3.3 Detection Time Delay, Crack On Noise and Percentage of false alarms evaluated on a sample of 
100 simulated cracks, for the three methods. 

A sensitivity analysis has been also carried out for the uncertainty in the 

measurement error. The three considered performance indicators have been 

evaluated according to different values of the standard deviation of the 

measurement noise       
 

 
 

 

 
 

 

 
                . This entails that    takes 

values of different magnitude with respect to the measurement resolution   : 

when              , then the precision in the measurement system is very 

low, whereas it is really high when    
 

 
        

 

  
. In Table 3.4 and Table 3.5 

the 90th percentile of every performance indicator is considered as a synthetic 

and conservative indicator of the promptness of the detection of the three 

methods. In this respect, other parameters to summarize the distribution such as 

the mean, the median, etc., would put emphasis on the performance of the 

detection methods in the best cases, whereas the 90th encompasses also the 

performance of the methods in the worst cases. 

From Table 3.4, it emerges that the DTD values of the three methods are similar 

for small values of   , whereas the IMM method is by far the most accurate 

when    is comparable with or higher than the measurement resolution   . 

A12 0.005 0.01 0.05 0.1 

DTD 20.1 18.6 25.1 38.6 

CON 1.017 0.9963 1.053 1.237 

False Alarms 0% 1% 0% 0% 
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That is, when the measurement error is very small, all the methods are capable 

of distinguishing the fault condition from the normal behavior. This result is also 

confirmed by Table 3.5, even though apparently it seems to confirm the opposite 

conclusion. In this respect, is must be considered that the larger CON values in 

correspondence of small values of    are due to the resolution of the 

measurement system which is fixed to    =0.4. That is, as long as the real crack 

is shorter than   , the measurement system cannot observe any variation, thus 

no detection can occur until it is long at least   . Hence also the optimal value of 

CON (the crack is detected exactly when it reaches   ) takes large value. For 

example, the optimal CON according to   =0.0675 is 
  

  
 

   

      
     . 

Notice that, the decreasing performances of the method proposed in [12] are 

related to its need of a larger window to catch the difference between the two 

models. This is confirmed by the ascending values of the 90th percentile of MS, 

         , for large value of   . However, even if   is set to its best value (i.e., 

 =300), its DTD is still worse than that of IMM (see Fig. 3.12), and also with 

higher computational costs (e.g. according to Table 3.2, the computational time 

is three times longer,  95 sec / crack). Finally, Table 3.6 reports the percentage 

of false alarms for the different values of   . This performance indicator is 

constant for ST; this is due to the fact that the value of the standard deviation 

enters directly the statistical tests, which have the same I type error value    . 

With respect to both the PF-based methods, the false alarm percentage is not-

null only if the standard deviation takes intermediate values, i.e., when    takes 

a value similar to   . This is due the fact that the smaller   , the more similar 

are the observations to the real crack length. Thus the reconstruction provide by 

the PF is more accurate. On the other side, the larger   , the larger the 

probability of acquiring observations having small values, i.e., observations which 

can avoid particles to grow or which can change the model parameter resetting 

the length of the crack associated (only for the IMM). Thus both the methods 

become more conservative. 
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Table 3.4 90
th

 percentiles of the DTD performance indicator for ST, IMM and MS, and for increasing 

values of the standard deviation of the measurement noise.  

Table 3.5 90
th

 percentiles of the CON performance indicator for ST, IMM and MS, and for increasing 

values of the standard deviation of the measurement noise. 

Table 3.6 Percentage of false alarms evaluated for different values of the standard deviation of the 
measurement noise. 

   0.0675 0.125 0.25 0.5 1 2 4 

ST           4 6 19,2 73,2 155 257 387,3 

IMM           3 5 12,6 29 71,6 151,6 248 

MS           1 3 10 36 123 275 569,5 

   0.0675 0.125 0.25 0.5 1 2 4 

ST           7,02 3,55 2,01 1,67 1,49 1,42 1,35 

IMM           6,88 3,54 1,88 1,11 0,83 0,74 0,68 

MS           6,76 3,46 1,85 1,21 1,24 1,59 2,74 

   0.0675 0.125 0.25 0.5 1 2 4 

ST False Alarms  6 6 6 6 6 6 6 

IMM  False Alarms 0 0 1 3 3 1 0 

MS  False Alarms 0 4 10 6 0 0 0 
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Fig. 3.12 DTD using       for the MS method. 

 

3.4.2 Three-Model Setting: Fault Detection and Diagnostic 

The objective of this case study is to evaluate the diagnostic capability of the 

IMM PF, i.e., the quickness and accuracy in identifying the model that better 

describes the evolution of the system. In this regard, the three-phases model for 

crack propagation introduced in Section 2 has been considered. The models 

available are: 

1)  incubation, which is described by a constant process, since crack is too 

small to be measured: 

          (3.13) 

2)  crack initiation, which is modeled by a linear process: 

                    
 
 (3.14) 
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where         is the speed of growth parameter, and 

  
                   modes the uncertainty in the speed; 

3)  crack rapid-propagation, which is again described by the Paris-Erdogan 

model: 

                     
 
         

 
 (3.15) 

where the parameter values are the same of the two model system. 

The measurement system is that in Eq. (3.11), with the same parameter values. 

Notice that the distribution of the noise in the initiating phase is different from 

that in the rapid-propagation phase. This gives due account to the fact that the 

evolution of an incipient crack is highly influenced by exogenous factors, and 

hardly measurable due to its small length. Hence, its uncertainty is expected to 

be larger. 

Fig. 3.13 reports the simulation of possible crack evolutions, whereas a possible 

measure of a crack degradation process is represented in Fig. 3.14. All the 

simulated crack growth processes start at            units of time, and follow 

the initiating linear model in Eq. (3.14) up to         units of time, when they 

switch to the Paris-Erdogan model in Eq. (3.15). In this respect, notice that the 

performance indicators are related to the identification delay time; then, the 

choice of setting a fixed swap time does not affect the generality of the results. 
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Fig. 3.13 Simulation of 30 cracks with the same starting time step            and same swicth time 
step to P-E model        . 

 

 

Fig. 3.14 Trajectory of a simulated crack and a respectively possible measurement process (dot line). 

Performances have been tested by simulating             crack growth 

processes, and evaluating the following performance indicators: 

 Detection Time Delay (DTD), which is the time span between the start of 

the initiating phase and its detection. 
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 Transition Time Delay (TTD), which is the time span between the start of 

the rapid-propagation phase and its detection.  

 Percentage of False alarms, which can concern both the two transitions.  

On the basis of considerations similar to those of the previous cases study, the 

transition probability matrix is set to: 

         
              
            
              

  (3.16) 

The number of particles is set to        as in the previous case study, and the 

detection threshold is set to       , with a number                of 

consecutive detections required to give the detection alarm.  

Fig. 3.15 shows that the IMM is able to detect the changes in the operational 

models on the basis of the marginal posterior probability in Eqs. (3.6) and (3.8), 

with good filtering performances, as confirmed by Fig. 3.16. Indeed, in the first 

phase (i.e.,             ) the marginal probability   
  associated to the 

incubation model takes by far the highest value; in the second phase (i.e., 

                   ) the probability   
  of the initiating model takes by 

far the highest value, whereas in the last phase the value   
  associated to the 

rapid-propagation model takes the highest value.  
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Fig. 3.15 Marginal posterior probability for every operating models. 

 

 

Fig. 3.16 IMM filtering of the real length of the crack. 

 

Notice that the identification of the transition between incubation and initiating 

model (i.e.,         is more accurate than that between the initiating and 

the rapid-propagation models (i.e.,        ), as it emerges from the large 
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time window in which there is high uncertainty in the  variable D to be associated 

to   
  (i.e. the high overlapping in  the time span             in Fig. 3.16) . In 

this respect, Fig. 3.17 and Fig. 3.18 show that the distribution of the DTD is 

centered on a smaller value and presents a sharper shape than that of the 

distribution of the TTD. This is due to the smooth transition between the 

propagation models in Eqs. (3.14) and (3.15), as confirmed by the percentage of 

false alarms reported in Table 3.7, which is smaller in the first transition. 

Different choices of    and              entail different performances. 

Intuitively, small values of              and    make the method sensitive to 

possible outliers related to measurement noise, as it is confirmed by the high 

percentage of false alarms, see Fig. 3.19. On the other side, large values of 

             and    make the method more conservative, as it is confirmed by 

the increased delay in DTD and TTD.  

Finally, Table 3.8 and Table 3.9 report the 90th percentile of the DDT and TTD for 

increasing values of              and   , respectively. As expected, the 

percentile take value in ascending order according to both increasing value of 

             and    
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Fig. 3.17 Histogram of the DTD from the incubation model to the initiating model. 

 

Fig. 3.18 Histogram of the TTD from the initiating model to the P-E model. 

  

Transition                

False Alarms 2.2% 5% 

Table 3.7 Percentage of false alarms evaluated on 500 simulated cracks. 

 

 

-20 0 20 40 60 80 100
0

20

40

60

80

100

120

140

Detection Time Delay  m
n
 to  m

f1

-20 0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

Transition Time Delay  m
f1

 to  m
f2



Bayesian Filter-Based Fault Detection 

72 
 

  

Fig. 3.19 percentage of false alarms: Left column sensitivity to             ; right column sensitivity to   .  

 

Table 3.8 90
th

 percentile of DTD and TTD for ascending values of consecutive detection. 

 

Table 3.9 90
th

 percentile of DTD and TTD for ascending values of the detection threshold. 

 

3.5 Conclusion 

This chapter has investigated the potential of a PF approach based on an 

augmented state vector for fault detection and isolation in nonlinear multi-
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model smooth degradation processes. By way of a case study concerning the 

crack growth degradation process, it has been shown that such approach, 

referred to as IMM, is capable of performing an accurate and prompt detection 

of the crack occurrence, and provides also a robust estimation of the real length 

of the crack. Furthermore, the diagnostic capability of this method has been 

confirmed even when the degradation process is modeled evolving among three 

phases, with smooth transitions from one phase to another. 

The performance of the IMM method have been compared to those of an 

already available PF technique of the literature, and of a statistical sequential 

test method by way of a two-phase crack degradation process. It has emerged 

that the FDI performance of the IMM techniques is better than those of the 

other two methods, regarding prompt detection and computational cost.. 

Moreover, the introduction of the augmented state which explicitly indicates the 

process phase, makes the FDI problem much more easily comprehensible. 

Indeed, the information provided by the method is the probability that the 

monitored component is in a specific degradation phase,. 
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4  

Conclusions 

In this work, fault detection of industrial components has been considered. Two 

novel contributes which aim at an early and accurate identification of the 

incipient abnormal condition of the component behavior, have been proposed. 

Respectively the former regarding data-driven methods, the latter model-based 

methods. With respect to data-driven methods, this work has focused on the 

AutoAssociative Kernel Regression (AAKR). In order to obtain more robust signal 

reconstructions of the expected values of the monitored signals in normal 

conditions, a modification of the traditional AAKR method has been proposed. 

The modification is based on a different procedure for the computation of the 

similarity between the present and the historical measurements. In particular, 

before the computation of the Kernel between the two vectors, which is 

performed as in the traditional AAKR method according to a Gaussian RBF 

function, the data are projected into a new signal space defined by using a 

penalization vector which reduces the contribution of signals affected by 

malfunctioning. The procedure is based on the hypothesis that the probability of 

occurrence of a fault causing variations on a large number of signals is lower than 

that of one causing variations on a small number of signals.  
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The modified AAKR method has been applied to a real case study concerning the 

monitoring of 6 highly correlated signals in an industrial plant for energy 

production. The possibility of detecting sensor faults has been investigated. The 

obtained results have shown that the reconstructions provided by the modified 

AAKR are more robust than those obtained by using the traditional AAKR. This 

causes a reduction in the time necessary to detect abnormal conditions and in a 

more accurate identification of the signals actually affected by the abnormal 

conditions. 

On the other side, with respect to model-based methods, this work has focused 

on a Particle Filtering PF approach based on an augmented state vector where 

the augmented state represents the possible behavior of the component. At the 

best of the author’s knowledge, this is the first time, that it has been applied for 

detection and diagnostic where more than two models are available, the noise in 

the model is non-Gaussian and the degradation process is smoothly evolving. By 

way of a case study concerning the crack growth degradation process, it has 

been shown that such approach, referred to as IMM, is capable of performing an 

accurate and prompt detection of the crack occurrence, and provides also a 

robust estimation of the real length of the crack. The performances of the IMM 

method have been compared to those of an already available PF technique of 

the literature, and of a statistical sequential test method by way of a two-phase 

crack degradation process. It has emerged that the FDI performances of the IMM 

techniques are better than those of the other two methods. Furthermore, the 

method has been capable of diagnosing the correct phase degradation even 

when the degradation process is modeled as evolving among three phases, with 

smooth transitions from one phase to another. Finally, the introduction of the 

augmented state which explicitly indicates the process phase, makes the results 

of FDI problem easily comprehensible since the information provided by the 

method is the probability of being in a specific degradation phase. 

To conclude, according to the data-driven method, future works will be devoted 

to the demonstration that the whole procedure proposed for the evaluation of 
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the weights, i.e. the pre-processing step and the application of a Gaussian kernel, 

is itself a kernel function. The application of the method to additional real case 

studies of degradation of components is also foreseen. 

On the other side the diagnostic ability of the model-based method provides a 

good framework for developing some decision-making criteria. In this respect, 

future works will focus on the introduction in the model of a risk function, which 

takes into account the costs associated to false alarms and to identification 

delays. This could give the opportunity of developing a risk-based FDI. 
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Appendix: 

Particle Filtering 

Particle Filtering (PF) has roots in the Bayesian framework and roughly speaking 

it consists in the approximation of the distribution of interest via a sequence of 

empirical distributions. To the best reader comprehension the appendix is 

structured as follow: section A.1 Nonlinear Bayesian Filtering presents the 

nonlinear bayesian filtering; section A.2 Monte Carlo Perfect Sampling 

reports monte carlo perfect sampling; in section A.3 Particle Filtering the 

Sequential Monte Carlo (SMC) method a.k.a. Particle Filtering is introduced; 

section A.4 Sequential Importance Resampling (SIR) present structure of the 

algorithm. An exhaustive dissertation could be found in [2], [13], [17], [18], [21]. 

A.1 Nonlinear Bayesian Filtering 

Nonlinear filtering is defined as the process of estimating the state vector 

governed by a nonlinear, non-Gaussian state-space model (A.1), using noisy 

observation (A.2). Although a continuous-time estimation procedure can be 

performed, usually a discrete-time implementation is used since the streaming 

measurements data is sent and received through digital devices in most of the 

application regarding fault detection and diagnostic. 
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(A.1) 

(A.2) 

Within a Bayesian general formulation, filtering consists in the estimation of the 

posterior probability density function (pdf) of the current state   , based on the 

set of received measurements. Since filtering is perform every time that a new 

observation arrived, to avoid an increasing computational cost and memory 

storage, a recursive strategy is pursued. Mathematically, let         be an 

unobserved process described by a Markov Chain on   described by its initial 

distribution       and the transition probability             .              is 

defined by the state equation (A.1) and the sequence of independent random 

variables        . Noisy measurements         are observable and assumed to 

be conditionally independents given the process        , equation (A.2) defines 

the pdf            where         is a sequence of independent random variable. 

Let                  and                  be, respectively, the state and 

the measurements up to time   ; typical quantity of interest are: the posterior 

distribution               , the marginal distribution              (a.k.a. filtering 

distribution) and the expectations: 

                                                            (A.3) 

for any function            integrable with respect to               . 

A recursive expression of the posterior distribution  can be found recurring to the 

prediction and update steps. The former 

                                                        (A.4) 

the latter according to the Bayes formula 

               
                          

              
 (A.5) 

Where 

                                               (A.6) 
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However this results are more conceptual than practical, since only in few cases 

the integral, thus the quantities of interest, admit solution in closed-form. 

Nevertheless the recursive expression lay the foundation for the Sequential 

Monte Carlo method. 

A.2 Monte Carlo Perfect Sampling 

Given a set of samples      
        

   , also named particle, i.i.d. from the pdf of 

interest                an empirical unbias estimation of the distribution and of 

the expectation (A.3) is given by: 

                 
 

  
              

  

  

 

 (A.7) 

    
    

 

  
        

  

  

 

 (A.8) 

Thanks to the strong Law of Large Number (LLN) if the second moment is finite 

  
                    

                  , then         
     

  
 

  
, thus both 

the approximations converge to the respective real value almost surely: 

               
    
                   

    
    

    
          

moreover, the central limit theorem is valid. Unfortunately it is usually almost 

impossible to sample efficiently from the desired distribution cause it is typically 

multivariate, non-standard and known up to a proportionality constant. A 

common approach is using Markov Chain Monte Carlo (MCMC) methods, 

however due to their iterative structure, they are not suitable for a recursive 

estimation problem. To avoid this problem importance sampling is a wide spread 

technique that allows to sample from a chosen distribution       
         

provided that weights   
           are added to the particles: 
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 (A.9) 

  
   

      
        

      
        

 (A.10) 

Or alternatively by normalizing the weights: 

   
    

  
 

   
   

   

 (A.11) 

                      
             

  

  

   

 (A.12) 

However even in this case a recursive approach is not feasible since every time a 

new measurement arrives, all the trajectories of the weights of the particles 

must be reevaluated, hence the computational cost increases proportionally to 

time. 

A.3 Particle Filtering 

To overcome the problem a sequential approach is pursue, i.e., only the last step 

is updated when a new observation becomes available. Importance function 

              is chosen such as: 

                                                       

                           

 

   

 
(A.13) 

Thus by decomposing the posterior as follow 

               
                                   

             

 
                     

             
                  

(A.14) 

A recursive formulation for the weights (A.10) is given by: 
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 (A.15) 

Analogously a recursive formulation for the normalized weights (A.11)is given by: 

    
        

  
        

      
      

  

    
        

        
 (A.16) 

A typical choice for the importance function is the prior distribution  

                       ,i.e.,                              . Thus the effort 

of the updating step of the weights consist just in the evaluation of the likelihood 

based on (A.2): 

    
        

          
   (A.17) 

 Although the theoretic framework seems well posed, since a finite number of 

particle is used during real application problem still occur. Degeneracy, i.e., when 

the empirical distribution collapses on a single particle, usually happens. To avoid  

this problem, a Resampling Step is add to the algorithm to pass from an empirical 

distribution of weighted particles, to an empirical distribution of particles with 

equal weights. Section A.4 Sequential Importance Resampling (SIR) reports a 

scheme of the Sequential Importance Resampling (SIR) algorithm. During the last 

decades  many improvements have been introduce to PF, such as Auxiliary 

Particle Filter (ASIR), Rao-Blackwellised Particle Filter (RBPF), Unscent Particle 

Filter (UPF) and Regularized Particle Filter (RPF) for specific kind of problem. For 

a better and complete description see (Arulampalam, et al., 2002) (Doucet, et al., 

2008). 

A.4 Sequential Importance Resampling (SIR) 

1. Initialization     

 Sample   
          for           set     

2. Importance sampling       
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For           

 Sample    
             

     

 Evaluate the weights     
            

    

 Normalized the importance weights 

3. Systematic Resampling      

 Sample          
 

  
  

 Define         
   

  
  

 Set   
       

 
       

    
             

  
              

 Fixed    
   

 

  
 

       and go to step 2. 

 

Fig. 0.1 Representation of a step of the SIR algorithm.  

 

 


