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(ABSTRACT) 

 

The purpose of this thesis is to present the approach method to generate human path 

which based on inverse optimal control problem. The main aim is to simulate human 

locomotion and build optimal control models that can be used to control robot motion. 

To determine the optimization criterion by solving inverse optimal control problem for 

a given dynamic process and an observed solution, we here use a dual-level approach 

and estimate parameters to guarantee a match between experimental measurement 

and optimal control problem. We apply this approach to both simulated and 

experimental data to obtain a simple model of human walking trajectories. The 

performance of the approached methods and generated path were tested in MALTAB 

simulation and V-REP simulation, which include the reference paths generation, 

parameters estimation and approached paths certification. The approach methods 

were based on Least Square and Fréchet Distance. 
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(ABSTRACT) 

 

 

L'obiettivo di questo lavoro è di presentare un metodo, basato sulla soluzione di un 

problema di controllo ottimo, per la generazione di percorsi di cammino il più possibile 

simili a quelli pianificati da un essere umano. Lo scopo del lavoro riguarda sia la 

simulazione del movimento di un essere umano che la pianificazione di percorsi per 

robot umanoidi il più possibile simili a quelli di un essere umano. 

 

Il metodo studiato parte dall'ipotesi che gli esseri umani pianifichino il loro moto 

ottimizzando un funzionale di costo. Ciò può essere facilmente tradotto in un 

problema di controllo ottimo basato su un modello dinamico semplificato e su una 

cifra di merito di cui si suppone nota la struttura e incogniti i parametri. Il problema 

affrontato riguarda quindi l'implementazione di un algoritmo per la stima di tali 

parametri, a partire da un insieme di traiettorie di moto ottenute sperimentalmente. 

Una volta stimati i parametri della funzione di costo è stato risolto il problema di 

controllo ottimo, utilizzando MATLAB, in modo da rigenerare al calcolatore le 

traiettorie e confrontarle con quelle sperimentali. Tale confronto è stato eseguito 

utilizzando sia la distanza euclidea che la distanza di Fréchet. 

 

E' stato infine utilizzato l'ambiente di simulazione V-REP per mostrare la differenza tra 

la camminata registrata sperimentalmente e quella ricreata al calcolatore. 

 

 

 

Keywords: problema di controllo ottimo inverso, inseguimento di percorso, analisi del 

movimento umano 
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Chapter 1  

Introduction 

The simulation of human motion and the performance evaluation of human in virtual 

environments is becoming increasingly important in computer animation, mechanical 

engineering, medical, military and space exploration applications. The pioneers have 

developed several methods to generate locomotion of human beings [1-4]. Goal-

directed locomotion in humans has mainly been investigated with respect to how 

different sensory inputs are dynamically integrated. Visual, vestibular, and 

proprioceptive inputs were analyzed during both normal and blindfolded locomotion 

in order to study how humans could continuously control their trajectories [5]. 

However the estimation of the human intention tout court is obviously impossible, in 

the case of walking of a human being it is possible to try to predict her/his trajectory 

in a Goal-directed motion, based on the known model of motion or instead, on a 

model of the way human beings plans their path [6]. 

 

The general hypothesis is that locomotion of animals and humans is optimal which the 

experts have done a lot of research of [7]-[12]. According to this assumption, if we 

have some specific optimization criterion as an observed solution to such dynamic 

process, we can easily find an approach to the real trajectories. As before the 

optimization criterion is unknown in such condition, but the new trend leads us to 

solve this optimal control problem based on an inverse optimal control problem. 

Recently, it has been observed that for predefined paths, an inverse relationship 

between the path geometry (curvature profile) and body kinematics (walking speed) 

exists [13],[22]. From the biomechanics or the neuroscience point of view, by given an 

end position and orientation, human will select a very specific path out of numerical 
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possibilities. There are different perspectives from which human and humanoid 

locomotion can be investigated—the biomechanics or the neuroscience point of view. 

Most researchers in biomechanics study locomotion on joint level along a given 

straight or bent overall path on the floor to be followed. The study of the selection and 

optimal generation of this overall path has however been widely neglected in 

humanoid robotics and also in biomechanics so far. If humans are asked to walk 

towards a given end position and orientation in an empty space with no obstacles, 

they will select a very specific path, out of an infinity number of possibilities. This 

choice is not so much influenced by biomechanical properties but rather by 

neuroscience aspects. In the attempt to control humanoids in a biologically inspired 

manner, it would be desirable to understand and imitate that behavior of human. In 

the problem of optimal control we are asked to find input and state trajectories that 

minimize a given cost function. In the problem of inverse optimal control, we are asked 

to find a cost function with respect to which observed input and state trajectories are 

optimal [14]. These methods are used to predict optimal movements by searching the 

control law according to some performance criterion.  

 

As these method based on numerical experiments also, however, inverse optimal 

control is the problem of computing a cost function that would have resulted in an 

observed sequence of decisions. The standard formulation of this problem assumes 

that decisions are optimal and tries to minimize the difference between what was 

observed and what would have been observed given a candidate cost function [15]. 

We assume instead that decisions are only approximately optimal and try to minimize 

the extent to which observed decisions violate first-order necessary conditions for 

optimality. For a discrete-time optimal control system with a cost function that is a 

linear combination of known basis functions, this formulation leads to an efficient 

method of solution as an unconstrained least-squares problem. We apply this 

approach to both simulated and experimental data to obtain a simple model of human 
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walking trajectories. This model might subsequently be used either for control of a 

humanoid robot or for predicting human motion when moving a robot through 

crowded areas. We see the understanding of the optimality principles of human 

locomotion as one of the keys to generate biologically inspired locomotion on 

autonomous robots. If the human optimization criterion of locomotion can correctly 

be formulated in mathematical terms, it is straightforward to mimic this optimization 

approach on a humanoid robot. 

 

The method presented in this thesis is inspired from [16]. This new formulation of 

inverse optimal control assumes that the observations are perfect, while the system is 

considered to be only approximately optimal. This change in assumption allows us to 

define residual functions based on the Karush Kuhn-Tucker (KKT) necessary conditions 

for optimality [17], [18]. The inverse optimal control problem then simplifies to 

minimizing these residual functions in order to recover the parameters that govern the 

cost function. As a result, the inverse optimal control problem reduces to a simple 

Least Squares minimization or Fréchet Distance minimization, which can be solved 

very efficiently. In [17], the authors restrict their attention to convex optimization 

problems, so in this thesis, we apply a similar approach to solve an optimal control 

problem of that. Our approach can be extended to a wide range of discrete-time 

nonlinear problems, with the assumption that the unknown parameter vector needs 

to enter the cost function linearly. This technique of approximating a cost function 

using linear combinations of basic functions is common to most inverse optimal 

control methods. 

 

The outline of this thesis is as following: In Chapter 2 you can find the basic 

methodology of the inverse optimal control problem which will cover the path 

following formulation, the unicycle time model and the basic background of two 

approach methods. In Chapter 3 we will discuss how the approach methods 
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implemented in simulation environment which is following the outline discussed in 

Chapter 2, it will also describe the representation of the problem and the processing 

of solving problem and how we solve it. The simulation results of each simulation and 

the comparison of reference paths and approached paths will be presented in Chapter 

4 and we will also analysis and discuss these results to give an overall conclusion then 

implant these methods. Finally, in Chapter 5, we will conclude the main achievement, 

prime result and re-call the thesis topic. Finally give some possible improvement in the 

future. 
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Chapter 2  

Methodology 

2.1 Problem statement  

As the Goal-directed locomotion in humans, we still try to model this problem based 

on such goals and orientations of trajectories. The frame of this problem is two-

dimension in space which is fixed on ground floor, whose axes are redefined as 𝜑𝑖 =

(𝑥𝑖, 𝑦𝑖 ,  𝜃𝑖), the random point on such trajectory, which stand for North, East and 

rotation angle. Assuming that human starts at orientation point 𝜑0 = (𝑥0, 𝑦0, 𝜃0) and 

ends at 𝜑𝑇 = (𝑥𝑇, 𝑦𝑇 , 𝜃𝑇), which means as the experiments those have done by the 

researchers are the fundamental data used to rebuild the criterion. Considering 𝑣(𝑡) 

as the forward speed of human and 𝜔(𝑡)  as the angular speed of human, these two 

we called inputs as 𝑢(𝑡) =( 𝑣(𝑡),𝜔(𝑡)). These all is presented in Figure 2.1.  

 

To determine the formulation of an optimal control problem, in our case is the cost 

function of human locomotion, which is according to the experiments we have done, 

in each time, human will always choose the lowest potential energy cost path for 

Y 

y 

v 

θ 
x 

X 

(𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖) 

Figure 2.1 Problem Frame 
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himself. Where the unicycle time kinematic model can be described as following, 

 

{
�̇� = 𝑣 ∙ cos 𝜃
�̇� = 𝑣 ∙ sin 𝜃

�̇� = 𝜔

                        (2.1) 

 

Former survey proof that locomotion trajectories are the optimal solutions of a 

dynamic extension of a simple unicycle control model. The validation method consists 

in comparing the optimal trajectories of the system with the trajectories of the data 

basis. The locomotion trajectories minimize the time derivative of the curvature, and 

the locomotion trajectories are well approximated by clothoid arcs. However, the 

number of concatenated arcs of switching points are under study [15], this is a very 

good approach algorithm right now. But in our case the optimal control problem is 

replaced by the corresponding first order optimality conditions which become 

constraints of the parameter estimation problem. 

 

The problem of determining the “best” of cost function 𝐽 thus is transformed into the 

problem of determining the best weight factor. In a combined objective function the 

relative size of the weight factors is crucial since they determine the influence of the 

respective term on the overall sum: the larger the weight, the more the corresponding 

term is punished and therefore is likely to be reduced in the overall context. The 

inverse optimal control problem reduces to a simple least-squares minimization, which 

can be solved very efficiently. We here introduce J  as the energy cost during the 

whole time in continuous as our objective function in formula 2.2  

 

𝐽 =
1

2
∫ 𝑐1 ∙ 𝑣2(𝑡) + 𝜔2(𝑡)𝑑𝑡

𝑇

0
                   (2.2) 

 

In order to apply optimal control techniques on this model, a discrete version is 
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adopted. In the following we consider the Explicit Euler discretization method. We 

here re-present the dynamic model as, 

 

{

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝜏 ∙ 𝑣(𝑘) ∙ cos(𝜃(𝑘))

y(𝑘 + 1) = 𝑦(𝑘) + 𝜏 ∙ 𝑣(𝑘) ∙ sin(𝜃 (𝑘))

𝜃(𝑘 + 1) = 𝜃(𝑘) + τ ∙ 𝜔(𝑘)

             (2.3) 

 

where τ is the sampling time and 𝑘 is the discrete-time index. 

 

The inverse optimal control problem becomes, 

 

min
𝑢(𝑘),𝜑(𝑘)

1

2
𝜏 ∑(𝑐1 ∙ 𝑣2(𝑘) + 𝜔2(𝑘))

𝑁−1

𝑘=0

 

                        s. t.                           𝜑(0) −  𝜑0 = 0 

 𝜑(𝑁 − 1) −  𝜑𝑇 = 0                                  (2.4) 

𝑥(𝑘 + 1) − 𝑥(𝑘) + 𝜏 ∙ 𝑣(𝑘) ∙ cos(𝜃(𝑘)) = 0 

y(𝑘 + 1) − 𝑦(𝑘) + 𝜏 ∙ 𝑣(𝑘) ∙ sin(𝜃 (𝑘)) = 0 

  𝜃(𝑘 + 1) − 𝜃(𝑘) + τ ∙ 𝜔(𝑘) = 0 

∀𝑘 = 0, ⋯ , 𝑁 − 1 

 

As the dynamic model and initial and final conditions are given, here we are interested 

in two different cases: the optimal solution 𝑢∗(𝑘), 𝜑∗(𝑘) is known when weight 

parameters 𝑐1 fixed and the optimal duration 𝑇∗ is known. Only some components 

of the optimal states and controls are known at 𝑘 discrete points. The inverse optimal 

control problem now consists in determining the exact objective function 𝜑∗(∙) that 

produces the best fit to the measurements in the least squares sense. 

 

For a given 𝑐1,  assuming that 𝜒∗ = [𝑢∗(𝑘)𝑇  𝜑∗(𝑘)𝑇]𝑇 is a local minimum of the 

problem and is regular, the cost function 𝑓(𝜒; 𝑐1) ∈  and the set of 
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constraints 𝑔(𝜒) ∈ m, there exist unique Lagrange multiplier vectors 𝜆∗ ∈  m so 

that, 

{
∇𝑥𝑓(𝜒∗; 𝑐𝑖) + ∑ 𝜆𝑗

∗𝑇
∇𝑥𝑔𝑗(𝜒∗) = 0

𝑚

𝑗=1

𝑔(𝜒∗) = 0

 

 

assuming that 𝑓(∙) and 𝑔(∙) are continuously differentiable functions which known 

as the KKT necessary and sufficient conditions for quality constraint optimization 

problems: the first one is the stationary condition and the second equation ensures 

primal feasibility, so that the KKT conditions for the Lagrangian of the problem can be 

described as 

 

∇(𝑥,𝜆)𝛬(𝜒, 𝜆, 𝑐1) = ∇(𝑥,𝜆) (𝑓(𝜒; 𝑐1) + ∑ 𝜆𝑗
𝑇𝑔𝑗(𝜒) = 0

𝑚

𝑗=1

) 

 

The inverse optimal control problem can be solved by minimizing the residual function 

 

min
𝜆,𝑐

1

2
‖∇(𝑥,𝜆)𝛬(𝜒, 𝜆, 𝑐1)‖

2
= min

𝜆,𝑐

1

2
‖𝐽∗(𝑧)‖2 

 

where 𝑧 = [𝑐1  𝜆 ]𝑇  and 𝐽∗  is the identification criterion where we can implant 

approach methods. So this problem becomes a convex unconstrained least-squares 

optimization or a discrete distance minimizing problem which are easier to solve than 

the initial constrained optimization one. 

 

As the consideration of the geometry of the walking path only, we here can implant a 

space method instead of the complete trajectory as a function of time, where we have 

an assumption that along the path human only walk forward without back velocity. So 

we need to rewrite the dynamic model with natural coordinate s as the independent 

(2.5) 

(2.6) 

(2.7) 
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variable. By this method we will reduce our input control variance to angular speed 

only and check the optimization problem again. As well we can find the relationship 

between the distance and the forward speed as 𝑠 = ∫ 𝑣(𝜏)𝑑𝜏
𝑡

0
 which inverted 

defined as 𝑡 = 𝑡(𝑠). So the time variance can be represented as a function of 𝑠 

where the derivative of path in time 𝜑(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡) will be as,  

d𝜑

dt
=

d𝜑

ds
∙

d𝑠

dt
 

Without the time variance but only considering the natural coordinate, the unicycle 

model in (2.1) can be rewritten as following, 

 

{

𝑥′(𝑠) = cos(𝜃(𝑠))

𝑦′(𝑠) = sin(𝜃(𝑠))

𝜃′(𝑠) = 𝜔(𝑠)

 

 

And (2.3) can be,  

 

{

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝜎(𝑘) ∙ cos(𝜃(𝑘))

y(𝑘 + 1) = 𝑦(𝑘) + 𝜎(𝑘) ∙ sin(𝜃 (𝑘))

𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝜎(𝑘) ∙ 𝜔(𝑘)

 

 

Where 𝜎(𝑘) = 𝑠(𝑘) − 𝑠(𝑘 − 1)  and 𝑘  is the space index. So that here we only 

considering the angular speed as the unique input. After analysis of such model we 

give another weight parameter to angular speed, so formula (2.2) can be, 

 

𝐽 =
1

2
∫ 𝑐1 ∙ 𝑣2(𝑡) + 𝑐2𝜔2(𝑡)𝑑𝑡

𝑇

0

 

 

The general idea of how to solve the inverse optimal control problem is divided into 

two levels. The upper level is minimizing the cost function of the statement from 

experimental data by Least Square or Fréchet Distance method to estimate such 

weight factors 𝑐𝑖. The lower level is to solve the optimal control problem with such 

(2.8) 

(2.9) 
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specified weight factors 𝑐𝑖 and direct boundary conditions as the orientations, goals 

and speed. 

 

Figure 2.2 Structure of solution 

 

According to method we used, we also need to define the differential criterion 𝐽∗ 

which stands for the differential value or the distance between the generated paths 

and the reference ones. This criterion is a function of the weight parameters whenever 

the weight values minimized this criterion then return such values as the estimated 

weight value from the Upper Level, so here 𝐽∗ will be described as 𝐽∗(𝑐𝑖). 

 

First, we should consider the Lower level how to solve the optimal problem, before 

that we do have a clarification that the locomotion of human being is optimal and then 

we can generally plot this graph of how human being intended their paths. Based on 

the survey that human’s locomotion only related to the speed of motion and energy 

consumed, we can generate such statement from the goal directed motion problem 

as an optimal problem and the criterion in such problem. So here we do not discuss 

how to generate such energy cost function from normal method, because we do not 

know it now. It can be approached through a lot of numerical methods [20]. Since our 

Upper Level 

Minimized deviation of computed path from 

measurements. 

Lower Level 

Solve the optimal problem with specified 

weight parameters which in such boundary 

conditions. 

𝑐𝑖 𝑝𝑎𝑡ℎ  
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approach method is based on inverse optimal control, we now consider the criterion 

only depends on the human walking speed and rotation speed with such specified 

weight values. The Lower level solution is not the first calculated part, it is only a 

calculation level after we estimate the weight value for such criterion.  

 

As here if we save this path as our reference trajectory for it is same as experimental 

one, by using inverse optimal method, we only need to identify the weight factors 𝑐𝑖. 

If our algorithm estimates the correct values of 𝑐𝑖 , then we can find the proper 

objective function. After compare these data with approached ones we can examine 

the approached method and then by given experimental date, the approach method 

would work as well as with the simulated ones, this will save the experimental data 

sheet and time. It won’t deal with numerical experiments to estimate different weight 

values for such certain criterion, only boundary conditions needed. 

Figure 2.3 Completed Construction 

 

Measurements of human locomotion. 

Collecting experimental data. 

Identification of optimal control problem 

underlying human locomotion. 

Autonomous generation of human-like 

locomotion on humanoid robot which based 

on the cost function generated. 

Inverse optimal control 

Forward optimal control 
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For in our case we need to discuss with single weight parameter and double weight 

parameter, to be compared with these two approach method and find the most 

suitable numerical parameters for the cost function which is much more approached 

to the realistic ones. Other more discussion will be presented in the next chapter and 

also in the chapter of results. After we build such Lower level, the next step is to discuss 

the approach methods. As there are a lot of minimizing and approach algorithms, we 

here choose Least Squares approach and Fréchet Distance approach for our inverse 

optimal control problem and estimate weight parameters suitable for the optimal 

control problem identified criterion. 

 

Our final goal is to control the human-like locomotion humanoid robot, in this thesis 

we only use the human walking model in V-rep software to simulate the humanoid 

robot and check these approached paths with the experimental ones. The V-rep allows 

users to setup the human walking model with nature coordinates and supply various 

control scheme and also with user interface modification. This process will looks like 

the forward optimal control part where we solve the optimal control problem and 

implant the time variant control values to mimic human locomotion. So even if we 

change the simulated human walking model to a real humanoid robot, the results will 

be the same. How to build the environment and how to simulate such human walking 

model will be introduced in Chapter 3. 
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2.2 Approach methods 

The basic idea to apply such approach methods based on the differential value 

between the experimental data and the generated path data, which is satisfied 

minimum value of the criterion with specified weight parameters. To estimate such 

weight parameters, we here introduce two minimize approach methods, one is based 

on Least Squares approach and the other is Fréchet Distance approach. For these two 

method we both defined an identification criterion 𝐽∗, which is the differential value 

and a function of weight parameters. 

 

The identification criterion is different from the cost function in optimal control 

problem. The basic idea of how to build such criterion is based on the minimum value 

point of view. How to define such minimum value is different in two approach method. 

However the same thing is to compare the approached paths with the reference one, 

which gives us the idea of both in nature coordinates and curve distance. 

 

The processing of these two approach methods are the same. Here we firstly use 

random values of weight parameters in optimal problem criterion and generate a 

reference path which based on the optimal problem solution and then set a serial of 

weight values in a random range. It is like a fitting experiment where we give such 

serial values of weight parameters into the optimal problem criterion function each 

time and generate a path contrast to such parameters, then compare such path to the 

reference path which generated at beginning to specify which weight values are 

minimized the identification criterion then estimate such weight values. If we instead 

the first generated reference path of the realistic experimental data, this method will 

also work and estimate the weight values which are satisfied the optimal problem 

solution and return the certain criterion for the optimal problem that will be the 

general criterion for goal-directed human locomotion in such specified goal and 
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orientation. The flow chart is described in figure 2.4. 

Figure 2.4 Flow Chart of processing 

 

After we gained such weight parameter, return them the optimal control problem and 

rebuild the cost function of human walking, then solve the forward optimal control 

problem to find the mostly human-like path generated. By inputting such paths and 

control parameters to V-rep software we can easily check the walking model based on 

our approach methods. If this simulation is also well done, we can implant such paths 

to the real humanoid robots and the processing program will be also embedded in 

such robot to control it walking like human beings which is our final goal. 

2.3.1 Least Squares method. 

Here we introduce the Least Squares method to be one of our approach methods. The 

basic idea is to minimizing the sum of each generated point compared with the ones 

on the reference path which is time variant. A mathematical procedure for finding the 

Optimal Control Problem Solving 

Minimized? 

Random Weight Value Selecting 

Approach Method Processing  Experiment Data Collected 

Goal-directed Human Locomotion 

Estimated Weight Parameter NO  

YES 
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best-fitting curve to a given set of points by minimizing the sum of the squares of the 

offsets or the residuals of the points from the curve. The sum of the squares of the 

offsets is used instead of the offset absolute values because this allows the residuals 

to be treated as a continuous differentiable quantity. The linear least squares fitting 

technique is the simplest and most commonly applied form of linear regression and 

provides a solution to the problem of finding the best fitting straight line through a set 

of points. However in our case the weight value is not fixed which we should run 

around a specified range and in each time and use Least Squares approach to estimate 

the weight value to gain the minimum of the identification criterion. At each fixed time 

point we can generate an approach point based on the weight parameter in the Lower 

level which we defined as ( x𝑖
∗, y𝑖

∗ )  . So the deviations which here we called 

identification criterion 𝐽∗ in Least Squares approach case is described as following in 

our case. 

 

min
𝑐

𝐽∗ (𝑐𝑗) = ‖
𝑥∗ − 𝑥
𝑦∗ − 𝑦

‖
2

2

=
1

2
∑ 𝑟𝑖

2𝑀
𝑖=0                 

 

For the identification criterion 𝐽∗ is a function of 𝑐𝑗  which is also the sum of squared 

residuals, we express the relationship between each weight value and the criterion 

and then we can find the minimum value of 𝐽∗ contrasted to a certain 𝑐𝑗 which can 

be estimated. The squared residual which we defined as 

 

𝑟𝑖 = 𝑓(𝑥, 𝑦) − 𝑔(𝑥∗, 𝑦∗; 𝑐𝑗) 

 

where 𝑓(𝑥, 𝑦) is the reference path and 𝑔(𝑥∗, 𝑦∗; 𝑐𝑗) is the approached path with 

different 𝑐𝑗. To solve such Least Squares problem, we can gain that: 

 

 ∂𝐽∗

𝜕𝑐𝑗
= 2 ∑ 𝑟𝑖

𝑖

∙
 ∂𝑟𝑖

𝜕𝑐𝑗
= 0, 𝑗 = 1, ⋯ , 𝑚 

(2.10) 

(2.11) 

(2.12) 

http://mathworld.wolfram.com/LinearRegression.html
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𝑟𝑖 = 𝑓(𝑥∗, 𝑦∗) − 𝑔(𝑥, 𝑦, 𝑐𝑗) 

−2 ∑ 𝑟𝑖

𝑖

∙
 ∂𝑔

𝜕𝑐𝑗
= 0 

𝑓(𝑥, 𝑦) =  𝑔(𝑥∗, 𝑦∗; 𝑐𝑗) 

               𝑔(𝑥∗, 𝑦∗; 𝑐𝑗) = ∑ 𝑐𝑗𝛷(𝑥∗, 𝑦∗)

𝑚

𝑗=1

 

�̂� = (𝛷T ∙ 𝛷)−1 ∙ 𝛷T ∙  𝑓(𝑥, 𝑦) 

 

From this equation we can apparently find the minimum point of 𝐽∗ and the weight 

value of �̂� where c is unique, so that we can return such weight value c back to the 

criterion of optimal control problem and then solve the forward control problem in 

such goal-directed orientation.  

 

However, at sometimes, the minimum is not apparent which looks like a bottom of the 

curve and the curve cannot even converge. Because some weight values can be fitted 

to that reference path and some of which are near the minimum which cannot be 

observed and discriminated in such situation. But in fact the minimum is unique and 

by here we also ignore the effect of the turning angle. So at contra pose we here 

introduce another approach method to examine whether the minimum point is unique 

or not.  

 

2.3.2 Fréchet distance approach. 

The Fréchet distance is a measure of similarity between two curves, in our case is the 

distance between the reference path which based on the experience and the path 

which generated from different weight parameters. The Fréchet distance of these two 

curves is the minimal length of any leash necessary for the dog and the handler to 

(2.13) 
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move from the starting points of the two curves to their respective endpoints. The 

Fréchet distance and its variants have been widely used in many applications such as 

dynamic time-warping, speech recognition, signature, verification, and matching of 

time series in databases. 

 

Formally, the Fréchet distance is defined as follows. A parameterized curve in 𝑅𝑑 can 

be represented as a continuous function: 𝑓 ∶ [0, 1] → 𝑑 . A monotone 

reparametrization α  is a continuous non-decreasing function: α ∶ [0, 1] →  [0, 1] 

with α(0)=0 and α(1)=1. Given two curves 𝑓, 𝑔: [0, 1] → 𝑑, their Fréchet distance, 

𝛿𝐹(𝑓, 𝑔), is defined as 

 

 𝛿𝐹(𝑓, 𝑔) ≔ inf
𝛼,𝛽

max d
𝑡∈[0,1]

(𝑓(𝛼(𝑡)), 𝑔(𝛽(𝑡))) 

 

where d(x, y) denotes the Euclidean distance between points 𝑥 and 𝑦, and α and 𝛽 

range over all monotone reparametrizations. 

 

And the Discrete Fréchet distance is defined as following: A simpler variant of the 

Fréchet distance for two polygonal curves π = 〈𝑝1, 𝑝2, ⋯ , 𝑝𝑛〉  and  σ =

〈𝑞1, 𝑞2, ⋯ , 𝑞𝑛〉  is the discrete Fréchet distance, denoted by 𝛿𝐷(𝜋, 𝜎). The discrete 

Fréchet distance is defined as the minimal leash necessary at these discrete moments. 

To formally define the discrete Fréchet distance, we first consider a discrete analog of 

(α, β), i.e., the correspondences between continuous reparametrizations. In particular, 

an order-preserving complete correspondence between π and σ is a set 𝑀 ⊆

{(𝑝, 𝑞) | 𝑝 ∈ 𝜋, 𝑞 ∈ 𝜎}  of pairs of vertices which is one case order-preserving: if 

(𝑝𝑖, 𝑞𝑖) ∈ 𝑀, then no (𝑝𝑠, 𝑞𝑡) ∈ 𝑀 for 𝑠 < 𝑖 and 𝑡 > 𝑗, nor 𝑠 > 𝑖 and 𝑡 < 𝑗; and 

the other case complete: for any 𝑝 ∈ 𝜋 (respectively  𝑞 ∈ 𝜎) there exists some pair 

involving 𝑝  (respectively, 𝑞 ) in 𝑀 . The discrete Fréchet distance between  π 

(2.14) 
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and σ, 𝛿𝐷(𝜋, 𝜎), is then 

 

𝛿𝐷(𝑓, 𝑔) ≔ min
𝑀

max d
(𝑝,𝑞)∈𝑀

(𝑝. 𝑞) 

 

where 𝑀  range over all order-preserving complete correspondences between  π 

and σ. It is well known that discrete and continuous versions of the Fréchet distance 

relate to each other as follows: 

 

𝛿𝐹(𝑓, 𝑔) ≤ 𝛿𝐷(𝑓, 𝑔) ≤ 𝛿𝐹(𝑓, 𝑔) + max{𝑙1, 𝑙2} 

 

where 𝑙1 and 𝑙2 are the lengths of the longest edges in π and σ, respectively. This 

suggests using  𝛿𝐷 to approximate 𝛿𝐹. So the identification criterion becomes,  

 

𝛿𝐹(𝑓, 𝑔; 𝑐𝑖) = 𝐽𝐹
∗(𝑐𝑖) 

 

Based on the discrete Fréchet distance we can find a minimum of this value which is 

also a function of weight parameter in such case. So the identification criterion 

becomes the Fréchet distance that is much similar to the one in Least Squares 

approach. But why we introduce Fréchet distance is because in some conditions, 

especially with a very large weight value, the convergence of the Least Squares 

approach is not so much apparent. There is a flat area on the minimum curve which 

will return weight parameters incorrectly. In fact the minimum point should be unique, 

however in Least Squares approach since the error during calculation and toolbox we 

used will cause such problem, which is main reason we introduce Fréchet Distance 

approach to verify the minimum point we gain in Least Square approach. 

 

 

(2.15) 

(2.16) 

(2.17) 
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Chapter 3  

Parameter Processing and Estimation 

In this chapter we will discuss how to use our simulator and how to estimate our 

parameters. The general idea is based on the experimental paths which are collected 

through dataset of human walking experiments. The simulator is program which can 

simulate the human walking trajectories with our cost function and can be implanted 

with our approach methods to estimate weight parameters which can be return to 

solve the optimal control problem. The approach methods and basic idea of 

parameters estimation have been introduced in the chapter before. By following such 

methods we can check whether the simulator works or not. We will also introduce to 

basic idea of how to achieve the approach paths in such environment. 

3.1 Path Generation 

The generation of the path is divided into two parts, one is how to implant 

experimental protocol which we can collect realistic case data from. The other method 

is to simulate such paths with MATLAB environment and compare them with the 

experimental ones. If we can simulate these experimental data in programming, to 

implant our approach methods will be much easier. We can only use the simulated 

trajectories to verify these approached paths and then be checked with the 

experimental paths which will save a lot of time and experimental data. 

3.1.1 Experimental Path Setup 

As mentioned before our based reference paths are all from experiments, so here we 

describe the experimental setup which used to collect a dataset of human walking 
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trajectories. There are about one thousand paths were recorded which using a 6 

cameras motion capture system (SMART system by BTS S.p.A.). Each subject was 

equipped with 3 light reflective markers, two located on the hips, anterior superior 

iliac spine (asis), and one located on the sacrum which we can see from Figure 3.1. 

 

Figure 3.1 Maker positions and barycenter 

 

The experimental protocol was inspired to the one adopted in [5]. More specifically, 

we restrict the study to the “natural” forward locomotion, excluding goals located 

behind the starting position and goals requiring side-walk steps. Goals are defined 

both in position and orientation, and in order to cover at best the accessibility region, 

the space for the experiments, a 4m×6m rectangle corresponding to the calibrated 

volume, was sampled with 144 points defined by 12 positions on a 2D grid and 12 

orientations each. The final orientation varied from 0 to 2π in intervals of π/6 at each 

final position which is described in Figure 3.2. The starting position was always the 

same.   

 

Figure 3.2 Final porch positions (left) and orientations (right) 
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Locomotion trajectories of seven normal healthy people (both males and females), 

who volunteered for participation in the experiments, were recorded. Their ages, 

heights, and weights ranged from 24 to 50 years, from 1.60 to 1.85m, and from 50 to 

90kg, respectively. Each subject performed all the 144 trajectories. Subjects walked 

from the same initial configuration to a randomly selected final configuration. The 

target consisted of a porch that could be rotated around a fixed position in order to 

show the desired final orientation which is shown in Figure 3.3.  

Figure 3.3 Example of the experiment 

 

The subjects were instructed to freely cross over this porch without any spatial 

constraint relative to the path they might take. Further, they were allowed to choose 

their natural walking speed to perform the task. 

 

A pre-processing phase on the paths collected by the optoelectronic system was 

required in order to remove the outliers, fill in the missing data and smooth the curves, 

and the path of each marker was interpolated with a smoothing spline. Then, 

considering the triangle that the three markers form, the path of a unique “virtual” 

marker representing the human walking path was computed as the barycenter of the 

triangle. 
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3.1.2 Reference Path Simulation 

Since the experimental trajectories cannot be easily used in MATLAB environment so 

that we introduced a simulated method to generate reference paths which can be 

compared with the paths which generated with estimated parameters. The simulated 

trajectories are based on specified parameters and which are also the solution of the 

optimal control problem. So the basic idea of such simulation is to solve the optimal 

control problem with specified parameter. If such parameter are given, the solution of 

the optimal control problem is fixed and the solutions can be restored in a database. 

To solve this optimal control problem, here we used the optimal tool box Acado for 

Matlab which developed by David Ariens at al. This tool box can be easily used in 

Matlab environment. By given certain criterion parameter value, the solution of the 

optimal control problem will be present as a set of data which contrast to the 

generated path. The change of the weight parameters can be inputted outside of each 

optimal problem solution to deal with numerical calculation and returned values, 

which will be used in the Upper Level and return such specified weight values to the 

Lower Level to fix the criterion.  

 

As for easily describing such level, we give a simple example of single weight value 

express, If we consider the optimal control problem as following which is with single 

weight c, and the boundary conditions are fixed. Recall the optimal control problem 

which can be presented as following in continuous:  

 

min
𝑣(𝑡),𝜔(𝑡)

𝐽 =
1

2
∫ 𝑐 ∙ 𝑣2(𝑡) + 𝜔2(𝑡)𝑑𝑡

𝑇

0
   

s.t    x(0) = 0, y(0) = 0 

                       x(T) = 2.25, y(T) = 2.5 

               θ(0) =
𝜋

2
, θ(T) =

𝜋

4
 

(3.1) 
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          0 < v < 1.37 

     −π < θ < π 

 

Where )(),( ttv   are the two control variables, The differential states are ( ,, yx ) , 

which are the characters of each point on generated path.  

 

From some surveys concluded that human will walk at an average speed around 1.37 

meters per second, so in our assumption the input speed value will be in a range from 

0 to 1.37 which considered the starting speed and final boundary. The rotation angle 

should be also limited that in realistic that human will only turn from left to right or 

inverse, so that the limited rotation angle would be from -180° to 180°. These would 

be the boundary of the input values in the optimal problem solving. 

 

It is obliviously that if we have given a value to the certain weight factor, this problem 

becomes a known criterion optimal control problem and the solution can be easily 

found. That is the normal method which have done by pioneers of goal-oriented 

locomotion researches. So that our conditions now are, first optimal solution is known 

which is based on collected experimental data, and second the initial and final 

boundaries are given for such experiment. So to complete the objective function we 

still need to determine the best value of weight factor c. With different c we can 

suspect that each time we can solve the optimal control problem by giving such fix 

weight factor. If with certain c, a generated trajectory is completely approached to the 

experimental one, we have found the correct objective function for such conditions. 

Here we assume c equals to 3.7 and the generated trajectory is as the one in Figure 

3.4. According to such figure we can easily simulate the human locomotion and check 

the walking speed and rotation speed which are based on goal-directed and discuss 

why human being will choose such path and walking manner.  
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Figure 3.4. Generated data with single parameter 

However we should also discuss the model is correct or not. To demonstrate such 

assumption we can change the orientations and goals to identify such model is suitable 

for the real case, also the dual parameters model. So here we changed some boundary 

conditions in the optimal control problem to check our simulation results which can 

be seen from figure 3.5 and figure 3.6. These are different orientation paths and the 

generated path which compared with the experimental data based on dual parameters 

model. By seen from these generated reference paths and compared with the 

experimental dataset, it can be easily demonstrated this reference model can be used 

to implant approach method and define the energy cost function of human walking 
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which based on the two controllable input parameter, the walking speed and the 

rotation speed.  

  

Figure 3.5 Simulation of Different goals 

 

Figure 3.6 Simulation path 

So the next step is estimate such weight value to build the real case of cost function 

and return such values to verify the approach methods. 
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3.2 Parameter Estimation 

Although we have obtain the reference paths and demonstrated the model is near the 

real case, even if we have known such specified weight parameter, however, in real 

case the parameter is still unknown. According to the method we described in Chapter 

2, to generate an approached trajectory should be based on the parameter estimation 

and then return such parameter into the optimal control problem to gain the solution. 

So here we should check the approach methods which are suitable or not. To check 

and demonstrate these method we should first generate numeral paths with random 

weight value and compare such paths with the reference one and estimate the 

parameter which is fitted the minimum criterion.  

3.2.1 Single Weight Parameter Estimation 

3.2.1.1 Single Weight Parameter with Least Square Approach 

To test the first approach method Least Square we should find the relationship 

between the minimum criterion and the estimate value. Recall the minimum criterion 

and re-define it as following: 

 

min
𝑐

𝐽∗ (𝑐𝑖) = ‖
𝑥∗ − 𝑥
𝑦∗ − 𝑦
𝜃∗ − 𝜃

‖

2

=
1

2
∑ √(𝑥𝑖

∗ − 𝑥𝑖)2 + (𝑦𝑖
∗ − 𝑦𝑖)2 + (𝜃𝑖

∗ − 𝜃𝑖)2𝑀
𝑖=0   

  

The ideally result would be only one minimum value of 𝐽∗ estimated and since the 

estimated 𝑐𝑖 is unknown at beginning so that we should try a range of random value 

of 𝑐𝑖 to find which one is fitted the minimum value of 𝐽∗.  

 

The basic approach tool is Linear Least Squares function in MATLAB, by given the 

reference path, we can build a path corelate to the weigthing parameter 𝑐𝑖 and by 

(3.2) 
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comparing each point betwenn the reference one and the generated one to calculate 

the difference in natrual coordinates. As we have already built the simulate to generate 

reference path, the same tool can be used to generate the appoached paths too. Based 

on the method we metioned in last chapter, the minimun point of the indentify 

criterion becomes the nearest generated path with specified 𝑐𝑖. So our first test is to 

recurve all possible 𝑐𝑖 value to generate a serial of paths and compare these paths 

with the reference one and find the minimum value of 𝐽∗ then return the 𝑐𝑖 which 

one cause the minimum value. 

 

Figure 3.7 Relationship between weight value and criterion 

 

Follow such test method we fixed the range as 0 to 100 for 𝑐𝑖, and we can see the 

simulated relationship between 𝐽∗  and 𝑐𝑖  in figure 3.7. Apparently the minimum 

point of 𝐽∗  can be easily found, in this example is c = 3.7. After this, we should 

return the value of 𝑐𝑖 back to the optimal control problem to solve it and find the 

estimated path. Compared to the experimental path we generated before, the new 

path which based on the estimated parameter value 𝑐𝑖  fits the experimental path 
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very well.  When we return such estimated parameter to the cost function and re-

generate the approached path, by comparing to the reference one we can easily see 

that this kind of approach However the experimental path is based on a very small 

value of c, where the approximated range of 𝑐𝑖 is known in such case, but in fact we 

do neither know the range and the value of the parameter. So our new problem is if c 

is large or in a very large range, what kind of relationship will be appeared in such 

approach method and how can solve this problem? 

 

Figure 3.8 Simulation result of approached path 

 

So we changed the experimental path which based on a very large c, the relationship 

between 𝐽∗ and 𝑐𝑖 becomes as in figure 3.9. 
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Figure 3.9 Relationship between weight value and criterion when ci=55 

 

Apparently, this Least Squares algorithm works, we can find the minimum point of 𝐽∗, 

but not as well when c is small.  

 

After we finished the finding minimum part we should estimate such weight value out 

and return it to the optimal control solution part. So we store all the possible value of 

𝐽∗ in a column, by finding the minimum element of the column return its row value to 
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the column of 𝑐𝑖. As we followed ascending sequence of 𝑐𝑖 where the returned row 

value points to a 𝑐𝑖 value that is the one we need to estimate out. By giving such value 

to the weight parameter in the energy cost function in optimal control problem and 

solving it, the solution which we described as 𝜑𝑐(𝑘) = (𝑥𝑐(𝑘), 𝑦𝑐(𝑘), 𝜃𝑐(𝑘)) and this 

solution is our approached path. 

 

However, after several generation of such approached path and analysis of the 

relationship between generated path and weight value, the curve described the 

criterion, we found that there is always a flat area near the minimum point so that the 

simulation result cannot tell which one is minimum and the estimated c is not correct 

as before and this difference causes the approached path has a little distance with the 

experimental path which we can see from figure 3.10. 

 

Figure 3.10 Generated path with large weight value 

 

To avoid such difference in this kind approach method there are two attempts, first 

one is only use this method in small value range of c, this kind of attempt is a little 

tricky which will lose a large serial numbers of c  but works perfect. The second 

attempt is to change the algorithm to Fréchet Approach which we will discuss in the 
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following. 

3.2.1.2 Single Weight Parameter with Fréchet Approach 

For the Least Squares method does not work well when c is too large, we try another 

approach method to estimate c  as Fréchet Distance method. This method only 

calculates the distance between two paths and find the closet estimated path to the 

reference one.  

 

The basic idea of generation of the path is the same as Least Square method, by giving 

a range value of c and simulate each weighted cost function to gain a serial of paths 

and find the closest path to the reference one. It is defined as the minimum cord-

length sufficient to join a point traveling forward along the reference path P and one 

traveling forward along generated path Q, although the rate of travel for either point 

may not necessarily be uniform. 

 

The Fréchet distance is not in general computable for any given continuous P and Q. 

However, the discrete Fréchet Distance, also called the coupling measure, where we 

define cm as a metric that acts on the endpoints of curves represented as polygonal 

chains. The magnitude of the coupling measure is bounded by Fréchet Distance plus 

the length of the longest segment in either P or Q, and approaches Fréchet Distance 

in the limit of sampling P and Q 

 

Calculates the discrete Fréchet distance between curves P  and Q  in program is 

expressed as following,  

[cm, csq]  =  DiscreteFréchetDist(P, Q) 

 

where P and Q are two sets of points that define polygonal curves with rows of 

(3.3) 
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vertices or data points and columns of dimensionality. The points along the curves are 

taken to be in the order as they appear in the experimental data and the generated 

data which mentioned before. 

 

Returned in cm is the discrete Fréchet distance, also known as the coupling measure, 

which is zero when P equals Q and grows positively as the curves become more 

dissimilar. The secondary output csq is the coupling sequence, which is the sequence 

of steps along each curve that must be followed to achieve the minimum coupling 

distance cm. The output is returned in the form of a matrix with column 1 being the 

index of each point in P and column 2 being the index of each point in Q, although 

the coupling sequence is not unique in general. 

 

By using such returned discrete Fréchet distance we easily find the relationship 

between the weight parameter and the minimum value of such distance. When we 

achieved the minimum point which means the generated path is the closet one to the 

reference one, we can estimate the parameter value contrast to that minimum point. 

So we stored all the possible value of weight parameter in 𝑐(𝑖) and all the returned 

discrete Fréchet distance in cm(𝑖), where 𝑐(𝑖) and cm(𝑖) have a linear relationship 

between each other. If there is a minimum value in cm(𝑖) which we noted as cm(𝐾) 

and the corresponding 𝑐(𝐾) will be the weight value which caused such minimum 

value of cm(𝐾). When we return such 𝑐(𝐾) to the optimal control problem and 

obtain the solution, we gained an approached path 𝜑𝑐(𝑘) = (𝑥𝑐(𝑘), 𝑦𝑐(𝑘), 𝜃𝑐(𝑘)) in 

such approached method. 
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Figure 3.11 Large weight value relationship with criterion  
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approach algorithm can be much more fitted to the reference paths even the path is 

strange which we can check from the figure 3.12. In this figure, the simulated reference 

path is generated by random value of weight value and we do not know such value. So 

we toured all the possible weight value from 0 to 100 to find a possible minimum point 

of criterion cm  and apparently the value is found and perfect approached even 

though the generated path is strange which was caused by large weight parameter.   

 

Figure 3.12 Approached path with large weight 

 

Although the reference model generates strange paths, the approach methods are 

demonstrated work in such conditions. So the next improvement will be the cost 

function itself. Since at the beginning, we set the cost function with only one 

parameter which only effect the forwarding speed, we here try to effect the angular 

speed also. This cost function model we call it dual weight parameters model. 
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3.2.2 Dual Weight Parameters Estimation 

Since the single weight parameter model will cause a ‘straight’ curve shape which is 

not good compared to the realistic case when c  is large. So how to modify and 

remove it and present more preciously become our new goal. The basic idea is to 

modify the cost function. However rebuild a new cost function which is also based on 

velocity and rotation through energy minimized theory can be much similar to the 

model what we have done. So that we are trying to introduce two weight parameters 

which gives the rotation speed a weight value also so that the weight of forward speed 

and rotation speed become balanced. We changed our optimal control problem as 

following, 

 

min
𝑣(𝑡),𝜔(𝑡)

𝐽 =
1

2
∫ 𝑐1 ∙ 𝑣2(𝑡) + 𝑐2 ∙ 𝜔2(𝑡)𝑑𝑡

𝑇

0

 

 

By here the weight parameter 𝑐1 is as the same as the single parameter model which 

only effect the forward speed and 𝑐2 is the new introduced parameter.  

 

The figure 3.14 here is generated based on same goal and orientation in experiments. 

The much more ‘straight’ line is the single parameter, and the much more curve line is 

the double parameters. We can easily see from that double parameter will avoid the 

strange linear part of the generated path where double parameter will be more like 

the realistic one.  

 

(3.4) 
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Figure 3.13 Compare between single and dual 

 

To implant such cost function with our approach methods, the basic idea is to fix one 

parameter’s value and go through all the possible value of the other parameter then 

change the first parameter’s value to re-tour all the possible value of the other 

parameter which is like a recursive method. 

 

Although this kind of cost function will cause a long time to estimate two parameters 

which mostly cost a lot of times that is much longer than the previously one but the 

results are better than single parameter which seems more realistic. So that we should 

try again these two approach methods in such situation to check this assumption 

works or not. For the first step is still the single parameter estimation which we have  

introduced before and the second step of the Least Square approach method is the 

same as the Fréchet distance approach, so we here only discuss one of them for 

example which is Fréchet distance approach. 
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In dual parameters estimation, we re-define the returned discrete Fréchet distances 

as in matrix cm(𝑖, 𝑗), where corresponding to 𝑐1(𝑖) and 𝑐2(𝑗) which are the two 

weigh parameter. If there is a minimum value in cm(𝑖, 𝑗) which we noted as cm(𝑟, 𝑠) 

and the corresponding 𝑐1(𝑟) and 𝑐2(𝑠) will be the weight values which caused such 

minimum value of cm(𝑟, 𝑠). When we return such 𝑐1(𝑟) and 𝑐2(𝑠) to the optimal 

control problem and obtain the solution, we gained an approached path 𝜑𝑐𝑖
(𝑘) = 

(𝑥𝑐𝑖
(𝑘), 𝑦𝑐𝑖

(𝑘), 𝜃𝑐𝑖
(𝑘)) in such approached method. 

 

 

Figure 3.14 Dual parameters with FD 

 

In figure 3.14 which is based on dual parameters model and Fréchet distance approach, 

we can find the approached path which is in dashed line is extremely close to the 

reference one. This dual parameters model and the method of Fréchet distance 

approach works very well. 
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criterion in figure 3.15 where we follow the trend of the values and find each minimum 

point of the criterion in such figures. When the two minimum points in each figure join 

together where the unique minimum point for two relationship has found and these 

two values of parameters are the ones which should be estimated and returned to the 

optimal control problem.    

 

 

Figure 3.15 Full relationship between weight parameters and criterion  
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orientations and goals, the two control valuable walking speed and angular speed can 

be obtain with solving such problem. If we transfer these data to the control interface 

of the humanoid robots, the robot will follow the path as expected, further more by 

giving such approach method, the robot can calculate its own path through such steps. 

That would be our expect result.  

3.3 V-REP Environment 

V-REP's path planning module allows handling path planning tasks in 3D-space, and in 

2D-space for dummy models. In V-REP environment, a path has a position and 

orientation component (or channel), and can additionally also have a component that 

describes a velocity profile. A path is defined by control points that describe the path 

as a succession of linked segments. However the human model in V-REP is not dynamic 

and path planning is just based on the algorithm what they have. But the simulation 

can be implanted based on imported data files, which is called remote API. But the 

path following model will ignore the effect of obstacles when only bonded with 

imported data. For such reasons we here only use the V-REP software to demonstrate 

our final approached paths and compare them to the algorithm in V-REP and 

experimental ones. 

 

As we have obtained the approached path 𝜑𝑐𝑖
(𝑘) = (𝑥𝑐𝑖

(𝑘), 𝑦𝑐𝑖
(𝑘), 𝜃𝑐𝑖

(𝑘)) and the 

control values 𝑢(𝑡) =( 𝑣(𝑡),𝜔(𝑡)), we store such path and control parameters in a 

data file path.csv. Such file can be implant into V-rep software and automatically 

related to the path which the dummy will follow by. The control values will control the 

dummy at each point on the path and simulate how human being walking. . The goal 

directed model which is the original model in V-rep, but the algorithm of how to 

generate the path is not good enough.  

 

http://www.coppeliarobotics.com/helpFiles/en/paths.htm
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The algorithm in V-rep is based on the minimum distance between two points on the 

path and the path is divided into several parts. By calculating each part of the path 

points, it gains the minimum curve which re-construct the following path. This kind of 

approach is simple but efficiency which is similar to some goal-directed approach 

method others done before. So we choose this algorithm as a contrast example to the 

ones which we generated. 

 

 

Figure 3.16 V-rep presentation of approached path 

 

In figure 3.16, the path following dummy who follows the approached path generated 

from MATLAB simulated data. We can also use this software to compare the 

approached paths and the experimental ones. 
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Chapter 4  

Results and Analysis 

In this chapter we will analysis the simulation results we have obtain through these 

two approach methods and verify them with the experimental data. For the simulation 

results are based on the methodology and simulation method mentioned before, we 

here only compare the generated paths with reference ones and experimental ones. 

4.1 Generation of Reference Paths 

To identify the cost function of our inverse optimal control problem, we here settle 

down four goal points and four orientations to test these two cost function model. The 

four points and identity are given in table 4.1. These four points are randomly selected 

and we do not know the exact weight values which can help us to solve the optimal 

control problem. When we finished the experimental part we only collect the discrete 

time data points from which we can simply draw an experimental path and the control 

values also. After this we now can simulate such paths with random weight values and 

compare these paths with the experimental ones and then set them to be the 

reference paths. Then we can implant our approach methods to approach such 

reference paths and verify these methods works or not. 

Table 4.1 Experimental Points 

POINTS A B C D 

X -3 2 1 -5.25 

Y 4.5 2 -3 -1 

THETA π/2 7π/4 2π/3 7π/6 

ORIGIN (0,0,0) (0,0,0) (0,0,0) (0,0,0) 
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They can also be presented in figure 4.1 as example. 

 

Figure 4.1 Positions of experimental points  

 

As these points are fixed, we can collect these data from the experiments and the 

simulation of the reference can be done and collected in MATLAB environment. Then 

we can compare these with each other to verify our cost function and our simulation 

methods. So we collected the experimental data of these points and the results are 

shown in figure 4.2 and figure 4.3 where the dashed lines are the experimental data. 

The generated paths is not fixed with weight parameters so that there are some 

difference between the simulation results and the experimental data. Furthermore, 

we here only present the time method results which has some orientation problem, 

for the time method based on the time variance not the natural coordinates, as the 

time differential will affect the control valuable forward speed and rotation speed 

which two we defined can be negative. That would be also simulated and compare 

with the experimental data. For choosing other reference points and orientations, the 

analysis of space method will be discussed in next part. 
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Point A 

 

Point B 
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Point D 

 

Point C 

Figure 4.2 Single parameter model compared with experimental data 
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In figure 4.3 are the results of reference paths with single parameter model. 

Apparently the results are not smooth enough for human being would not walk 

straightly like this. However, in real forward speed which along the path should be only 

positive. That is the reason why in these simulated paths human will turn first then 

start to walk but not as turning as walking. We can check the forward speed and 

angular speed in figure 4.4 compared with the experimental data in discrete time index 

and there is problem we can find from this. 

 

 

Figure 4.3 Generated control value compared with experimental data 

 

In Figure 4.5 the bold lines are from the collect experimental data and the thin line is 

our simulation results in single parameter model. Apparently the simulation of the 

control valuables are so different from the realistic ones although the approached path 

is so close to the real one. There are two reasons cause this problem in single 

parameter model, one is the velocity which we set in the optimal control problem has 
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a boundary from 0 to 1.36 which means we allow the simulated human can walk at a 

very small velocity but not always constant. And we ignored the effect of the starting 

acceleration of human at the orientation which we only set the starting velocity as zero. 

However in this thesis we only consider the approached methods as well but not the 

control values in different path points. The other reason is we only concerned about 

the discrete time variance not the natural space coordinates of how human walks 

following such path.  

 

Compared with the generated path in figure 4.4 which are the results of reference 

paths with dual parameter model, we can see clearly that the two parameters model 

is much smoother and more like human being’s walking paths for these generated 

paths will consider the effect of the angular speed as more important especially at the 

starting point. If the orientation is different the discrete time model will only turn at 

origin then walk but the space model will as turning as walking. We can also check the 

difference between the discrete time and space model in figure 4.6. 

 

Point A 
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Point B 

 

Point D 
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Point C 

Figure 4.4 Dual parameters model compared with experimental data 

Figure 4.5 Generated reference path compared with experimental data 
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4.2 Least Square approach 

With Least Square approach, we first need to test different value of weight parameters 

to find the relationship with the criterion. The value of weight values are in table 4.2 

and 4.3 which are the random selected weight values for test. As we have two models 

of the energy cost function, so we should test these two separately. 

 

Table 4.2 Random value of C1 

Parameter Value 

C1(1) 0.3 

C12) 4.8 

C1(3) 45 

C1(4) 98 

 

Table 4.3 Random value of C2 

Parameter Value 

C2(1) 2.2 

C22) 3.5 

C2(3) 58 

C2(4) 89 

 

After we settled these random parameter values, we can go back to solve the optimal 

control problem with these values and compare the simulation results of the approach 

method with these reference paths. Before that we now analysis the relationship 

between the criterion and parameters first. With the single parameter model we only 

consider the c1 as the only parameter and check the relationship with Least Square 

criterion based on B point character. 
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Figure 4.6 different weight parameter at A point 

 

From figure 4.6 we can apparently obtain that the different value of weight parameter 

will affect the shape of the generated path at same goal and orientation, which means 

as the larger of the weight value, the generated path will be straighter from the overall 

point of view. This can be a problem but not an advantage for in real the human beings 

walking not that straightly in verse has some little curve which caused by the angle 

turning on specified points. For instance as c equals to 98 which is large in such case, 

the simulated path shows us that human turned so fast at beginning and then walk 

straightly to a point near goal then turn again. He cannot walk as adjusting the angle 

as forwarding. So the single parameter model which only affect the forward speed 

gives the forward speed more weight along such path which means we give a very 

large effect only on forward speed and ignore the effect of the angular speed. That is 

the reason why we reconsider the effect of the angular speed and give another weight 

parameter to it.  
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 Figure 4.7(a) c1=0.3 

 

Figure 4.7(b) c1=4.8 
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Figure 4.7(c) c1=48 

 

Figure 4.7(d) c1=98 

Figure 4.7 Single parameters and criterion in LSQ 
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From figure 4.7, the relationship between the weight parameter’s value and the 

criterion in Least Square approach, the minimum point of the curve can be easily found 

from such figure when weight value is small then 5. However when the weight value 

is large, we can also find the minimum value of the criterion but which one is not so 

much obvious in such situation. The reason that cause such problem is when the 

weight value is large, the generated path is become more flat than before, in another 

word, the weight of the forward speed is so large that the effect of the angular speed 

becomes smaller and smaller. So the path following becomes straight forward going 

motion in such condition. That is also the reason why we try to arise the effect of the 

angular speed. In such assumption, as the curves no longer convex, the minimum point 

will be lost and we only gain a similar approached path to the reference one but not 

exactly the closest one. However, even such problem exists, even the path no longer 

convex, we still found the approached path in fact. 
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Point B 

 

Point D 
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Point C 

Figure 4.8 Single parameter in LSQ 

According to such approach method we can see the obtained results in Figure 4.8. The 

approach method works very well with comparing to the reference paths and 

experimental paths. From this point of view, the Least Square in single parameter 

model can approach to such reference paths. 
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Figure 4.9(a) c2=3.5 

 

Figure 4.9 (b) c1=4.8 
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Figure 4.9 (b) c2=2.2 

Figure 4.9 Dual parameters and criterion in LSQ 

 

Figure 4.9 presented the relationship between dual parameters and criterion in Least 

Square approach. From the added difference of each point on reference paths and the 

generated paths, there is a minimum value of the criterion that both weight value suit 

for such minimum and in our case the minimum value is zero. The difference is 

described as diff (row, column) and the unique minimum point is diff( pth, qth) which 

means the pth value of c1 and the qth value of c2 cause the minimum value of diff (·), so 

that we return such values of parameter and solve the optimal control problem and 

find the approached paths which are present in figure 4.10. From this figure we can 

obtain that the Least Square method can approach the reference paths very well in 

such dual parameters model. 
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Point D 

 

Point C 

Figure 4.10 Dual parameter LSQ 
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4.3 Fréchet approach 

The result analysis of Fréchet distance approach is the same as the Least Square 

approach method. We can check the relationship between single weight parameter 

and distance criterion for figure 4.11. In such figure we can conclude the difference 

between Least Square method and Fréchet distance approach. When the weight value 

is small the minimum value point of the distance can be obliviously found. However at 

the same condition even when the weight value is smaller than 10, the Least Square 

criterion becomes unclear and without such program it is hard to tell which value is 

the minimum which only happen when weight is very large in Fréchet distance. 

 

Figure 4.11 (a) c1=0.3 
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Figure 4.11 (b) c1=4.8 

 

Figure 4.11 (c) c1=45 
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Figure 4.11 (d) c1=98 

Figure 4.11 Single parameter and criterion FD 
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Least Square approach criterion. But the results are the same, Fréchet distance 
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Figure 4.12 (a) c1=4.8 

 

Figure 4.12 (a) c2=3.5 
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Figure 4.12 (b) c1=35 

 

Figure 4.12 (a) c2=58 

Figure 4.12 Dual parameter and criterion FD 
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Point D 

 

Point C 

Figure 4.13 Single parameter approach in FD 
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Point D 

 

Point C 

Figure 4.14 Dual parameter approach in FD 
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4.4 V-rep simulation 

 

Figure 4.15 V-rep simulation Result 

 

The simulation result of V-rep software is a movie file which present the processing of 

human locomotion which based on following the approached path obtained from the 

simulation in MATLAB. By comparing with the original approach method in the 

software, we can see the difference between these two algorithms. The former one 

which based on minimization of simple two-point-distance is not so realistic and the 

approached path we obtained can be more smooth and convex.  
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4.5 Summary of the results 

It is apparent that the Least Square and the Fréchet distance methods can approach 

the reference paths very well. It is difficult, however, to draw direct and definitive 

comparisons, and as such, the conclusions are based on the specific problem 

formulations. After this the inverse optimal control problem can be solved and the 

results is apparent, that we can generate the approached paths close to the human 

walking paths according to such methods. 

 

However, in some aspect, we can find the Fréchet distance method can be better than 

Least Square and the inverse optimal problem is solved effectively when the generated 

path is not convex. So based on this point of view, the assumption mention in Chapter 

1 can be re-write that this kind of approach method which based on inverse optimal 

control could also work on non-convex path generation. 

 

Additionally, the discrete time model of problem is not good enough for a lot of 

problems, especially when at the assumption of human forward walking speed is 

always along the path. That is why we need to improve the cost function into a space 

one. 

 

There are still some dissatisfactory problem with such approach methods. For the 

inverse optimal control will cost a lot time during calculation which means this kind of 

method is not so much efficient compared to other method like only solve forward 

optimal control problem, because it is a method which solved the forward optimal 

control problem with random parameters and find the most proper one to the ideal 

case, so the accuracy is very good but not so much efficiency. 
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Chapter 5  

Conclusions and Future Work 

In this thesis, we have presented an inverse optimal control approach which allows us 

to identify optimization criterions of processes such as human locomotion from 

measured data. A flexible numerical technique has been described which allows the 

solution of a large class of problems. By using such method we can obtain the ideal 

model to solve the optimal control problem in goal-directed locomotion. So we gain 

the conclusion through all experimental results and simulation results that using 

inverse optimal control, it was possible to establish a simple and unique optimal 

control model that seems to represent a good approximation of the collected data. 

 

Current efforts are focused on implementing the previously described Least Square 

approach method and Fréchet distance approach method. Maybe more minimization 

approach methods can be applied to such path following problem. However, the 

inverse optimal control method would be the optimal solving method for such human 

path generation problem which will give us a new numerical algorithm direction to 

handle similar problems.   

 

The results in Chapter 4 presented within are in no way intended to be general, and 

are highly dependent on the system being analyzed. They are even more highly 

dependent on the control designer, and other choices of outputs to penalize or penalty 

weight formulations may prove to produce better results for one or several of the 

controllers or methods presented within which would be my future work to do. 
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