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Abstract 

 

     This work investigates the indirect and online estimation of the cutting 

forces from spindle integrated displacement sensor (SIDS) in addition to 

current of feed drive by two approaches. In the first approach, an FEM 

model of the spindle integrated sensor is used to measure relative 

displacement between the sensor head and the rotating spindle shaft 

under cutting load. In order to increase the bandwidth of the indirect 

force measurement and compensation for the spindle dynamics, the 

design of a state estimator, namely “Kalman filter” scheme, has been 

used. 

     The second approach is the indirect estimation of cutting forces from 

feed drive of servo motors. Current of the machine tool feed drive has 

direct contributes to the torque generated by the motor and the external 

resistant loads. The total external load torque to the servo motor consists 

of the torque induced from the cutting force and that from the friction 

force in the guide way. The main idea is to estimate the disturbance load 

which is exerted to the feed drive system due to the cutting force. Hence, 

a Kalman filter is implemented as a model based disturbance observer 

for indirect estimation of cutting forces in milling process.   

 

      The estimation of cutting forces is performed based on 

Matlab/Simulink software.  The simulation results of the spindle 

integrated displacement sensor model are reported by applying step and 

simulated real cutting forces to the system. Nevertheless, the simulation 

results of the feed drive models are presented based on closed loop and 

open loop systems model, applying step force input. 

 

 

Keywords: Smart machine tools, State estimation, Monitoring, 

Machining process, Cutting force, Kalman filter, Spindle integrated 

displacement sensor, Feed drive, Productivity  
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1 Introduction 
 

1.1 Machining process monitoring and machine tools 

 

     Manufacturing technology has undergone significant developments 

over the last decades aiming at improving precision and productivity. The 

development of numerical control (NC) technology in 1952 made a 

significant contribution to meeting these requirements. Today, thanks to 

the significant developments in sensor and computer technologies, it can 

be said that the necessary tools are available for achieving the adaptive 

control of manufacturing processes, assisted by monitoring systems, 

which was a dream in the 1950’s. 

     For the following reasons, monitoring technology with reliable sensors 

is becoming more and more important in modern manufacturing systems 

[1]: 

 Machine tools operate with speeds that do not allow manual 

intervention. However, process failures may cause significant 

damage. 

 Increase of labor costs and the shortage of skilled operators call 

for operation of the manufacturing system with minimum human 

intervention; this requires the introduction of advanced monitoring 

systems. 

 Ultra-precision manufacturing can only be achieved with the aid of 

advanced metrology and process monitoring technology. 

1.1.1 CNC machine tools and adaptive control 

 

    Given the importance of machining to most industries, machine tools 

have often led the way in the development of automation technology. A 

significant development in machine tool automation was the introduction 

of Computer Numerical Control (CNC) in the early 1970s where a 

dedicated computer replaced most of the electronic hardware and punch 

cards of the NC machines. Increased processor speed, user-friendly 

programming tools, and increased sensor resolution have all contributed 

to the great strides in the areas of servomechanism control and 

interpolation.  



Indirect Estimation of Cutting Force in Milling Machine Tools 

 

 

2 
 

     However, process control, which is not commonly integrated into 

today’s machine tools, is the automatic adjustment of process 

parameters e.g., feeds, speeds in order to increase operation 

productivity and part quality [2].  

     Machining process control strategies are classified into two main 

groups, namely adaptive control constraint (ACC) and adaptive control 

optimization (ACO).  

In the former, ACC strategies, a process variable (as an example the 

cutting force) is kept constant and under control through the real-time, in-

process regulation of a process parameter (as an example the feed rate), 

with the aim of cutting force control and self exited vibration suppression 

[3]. 

 
Figure 1-1: Schematic set-ups of adaptive control systems [1] 

1.1.2 New generation of NC machine tools 

 

     Machining process monitoring and control is a core concept on which 

to build up the new generation of flexible self-optimizing intelligent NC 

machines. In-process measurement and processing of the information 

provided by dedicated sensors installed in the machine, enables 

autonomous decision making based on the on-line diagnosis of the 

correct machine, workpiece, tool and machining process condition, 

leading to increase machine reliability towards zero defects, together 

with higher productivity and efficiency. 
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     The expected characteristics of the next generation of machine 

centres are described as follows [4] 

 Integration: development of an integrated machine tool being 

capable of performing both conventional and non-conventional 

processes in one platform.  

 Process control loop: development and CNC integration of robust 

and reliable real-time strategies for the in-process tool, part, and 

process condition monitoring and control. 

 Autonomous optimization: development of a self-configuring and 

self-optimizing control system for autonomous manufacturing, 

based on the in-process monitoring, characterization and 

management of process knowledge.  

 

1.1.3 Intelligent Systems for machining Processes 

 

     There is no clear definition of an intelligent system. Many authors 

have used this term to describe an unattended machining process, 

where the tool cuts the workpiece while the process is monitored and 

controlled by the aid of suitable sensors. Also, ‘intelligent tools’ have 

been presented which consist of a specific sensor as an integral part of 

the tool design. Furthermore, authors sometimes refer to ‘intelligent 

machining operations, which means a model-based cutting simulation for 

pre-process cutting parameter optimization, followed by an adaptive 

controlled machining operation [1]. 

     Here in Figure 1-2, Hierarchical order of machining control loops in 

intelligent machine tools, including, Internal control loop, post process 

control loop, and superior control loops are going to be explained.  
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Figure 1-2: Hierarchical order of control loops in manufacturing [1] 

     Sensors for measuring process quantities and sensors for any kind of 

in-process measurement are related to the machine internal control loop. 

     However, Sensors which are not installed in the working space of the 

machine tool or which only measure in auxiliary times belong to the post-

process control loop.  

In the superior control loop, the direct use of sensors is not required. 

In this highest level, any kind of intelligent information system is used 

either to download control tasks to the sensor systems or to collect 

measuring data for further processing.  

Although the sensor application is effected at a lower level according 

to the hierarchy of the control loops, it can still be regarded as an 

essential part of a whole so-called intelligent system. The major task is to 

obtain as much information as possible from the current process. With 

single-phenomenon monitoring this aim often cannot be met, so the 

application of multiple sensors in one process is part of many activities to 

achieve an intelligent system [1].  
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1.1.4 Machining process monitoring (direct and indirect method) 

 

     Process monitoring is the measurement and estimation of process 

variables. A broad spectrum of on-line sensors has been implemented 

that use acoustic, optical, electrical, thermal, magnetic, etc. sensing 

systems. In the recent decades, there were special attention on 

monitoring strategies for part condition monitoring (surface roughness, 

surface integrity and dimensional accuracy), tool condition monitoring 

(the so-called TCM for wear and breakage detection), process condition 

monitoring (chatter onset and collision detection).  

     The measuring techniques for the monitoring of machining operations 

have traditionally been categorized into two approaches: direct and 

indirect [Figure 1-3].  

 
Figure 1-3: Placement of position sensors [1] 

 

     Direct and in-process measurement is not generally possible due to 

the aggressive environment in the cutting zone. The main research effort 

over the last decades for part and tool monitoring has been focused on 

indirect measurement techniques (process condition-based) in which 

cutting process characteristics (i.e. cutting forces and power, vibrations, 

cutting temperature, acoustic emission, etc.) are measured in order to 

indirectly infer the part and tool condition [4]. Indirect sensing in general 
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has the advantage that there is no need for cost-effective measuring 

devices so that simple and reliable seals can be used. 

     It has the disadvantage that errors of the transmission system are 

introduced in the measured quantity. These can be, for instance, thermal 

or elastic deformations of the ball screw or geometric and kinematical 

aberrations of the transmission system in robots. Figure 1-4 depicts the 

sensors that are commonly used for online measurement [5]. 

 

   
Figure 1-4: Measurable phenomena for online sensor monitoring [5]. 

 

1.1.5 Monitoring and estimation of cutting force 

 

     Torque and force are widely used for detection of tool and monitoring 

purpose. This is due to the high sensitivity and rapid response of force 

signals to changes in cutting states. Torque is similarly to the force 

consist but in this case the applied load is torsional. Force and torque 

sensors (as example piezoelectric sensors) generally employ sensing 

elements that convert the applied force or torsional load into deformation 

of very rigid element that is the quartz itself [5].   
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1.2 State of art 

 

     Here in this sub-chapter, the cutting force monitoring, estimation and 

measurement compensation by external and internal sensors has been 

reviewed.   

 

1.2.1 Cutting force monitoring by internal sensors 

 

     Power and current measurement are an economical monitoring 

solution for many machining operations. Motor current sensing uses the 

motor itself as an indirect sensor of cutting forces. Thus, when using 

sensor systems based on motor current, it is crucial that the relationship 

between input current and output force is linear and understood [5].  

     The performance of indirect sensors, such as motor current/power, 

can be improved by developing a model of the distortion introduced by 

the sensor within the mechanical/electro-mechanical system. A number 

of studies provided a better understanding of signal features for various 

spindles and drive systems [6].  

     Commercial numerically-controlled machine tools use current sensors 

for the motoring control of servo motors for both axis and spindle. The 

current have direct contributes to the torque generated by the motor and 

the external resistant loads. The total external load torque to the servo 

motor consists of the torque induced from the cutting force and that from 

the friction force in the guide way. The main idea is to estimate the 

disturbance load which is exerted to the feed drive system due to the 

cutting force. so cutting torque or force calculated from a motor’s 

armature current is probably the cheapest way to monitor cutting loads 

because no extra sensors are needed [6]. 

     Altintas [7] discussed tool breakage detection based on cutting force 

calculation by servo motor current. Armature current is influenced by 

dynamic characteristics of the drive system. In a feed drive, particularly, 

the compensation of the dynamics of the moving mass is important for 

the separation of the cutting force influence. A disturbance estimator for 

a feed drive can be applied for this purpose [8],[9]. 
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     Jeong and Cho [10] estimated cutting force from rotating and 

stationary feed motor currents in milling process, while increasing the  

bandwidth dramatically.  

     M. Dolen et al. [11] presented a cutting force estimator topology for 

feed drives of CNC vertical machining centers to compute the machining 

forces. They developed an accurate (and high-bandwidth) force 

estimator for CNC machine tools with the utilization of advanced FD 

physical models that includes the major nonlinearities of such systems. 

     Kim et al. [8] studied indirect cutting force measurement method in 

contour NC milling processes by using current signals of servo motors. 

     Z. Jamaludin et al. [12] studied accurate motion control of xy high-

speed linear drives using friction model feedforward and cutting forces 

estimation. They discussed design and experimental validation of friction 

and cutting force compensation for a linear drive xy table. 

 

1.2.2 Cutting force monitoring by external sensors 

 

     Commercially available dynamometers measure cutting force using 

quartz piezoelectric transducers [13]. Table and spindle dynamometers 

are commercially available. These dynamometers have sufficient 

resolution to be used in micro machining using a non-rotating tool or a 

miniature rotating tool up to several dozen microns in the diameter [6]. 

Despite the accuracy and reliability of commercial dynamometers, their 

high cost may limit their use in machining process control [14]. Moreover, 

they suffer from limited workpiece sizes and mounting constraints. 

     Developments like the integration of force sensors into the machine 

structure have taken place over the last 10 years with concepts 

developed for milling. S.S Park and Altintas[14] , [15] used Piezo-electric 

force sensors that are integrated into the stationary spindle housing, 

named Spindle Integrated Force Sensor (SIFS), to measure cutting 

forces, [Figure 1-5] They also presented a method for measuring cutting 

forces from the displacements of rotating spindle shafts using 

capacitance displacement sensors [16]. 
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Figure 1-5: Integrated force sensor in motor spindle [5] 

 

     Kim and Chang [17] used Cylindrical Capacitive Displacement sensor 

(CCDS) to estimate cutting forces by Measuring Spindle Displacement. 

They used CCDS and non-contact magnetic to identify the dynamic 

characteristic of the spindle tool system during spindle rotation. 

     Sarhan et al. made cutting force calculation using spindle-integrated 

displacement sensors [18],[19]. They used four inexpensive, 

contamination-resistant eddy-current displacement sensors (S1-S4). 

Calculating cutting force from spindle displacement, however, involves 

two major issues, thermal influence and spindle stiffness. 

 

1.2.3 Methods for online compensation of the measured force 

 

     A potentially critical issue with sensors integrated in spindles is the 

heat generated by the spindle motor. Jun et al. [20] studied the subject 

suggesting that temperature compensation was needed to reliably 

monitor torque. Motor heat may critically deform or displace a rotating 

spindle, which must be separated from displacement caused by cutting 

force.  
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     Sarhan et al. [18] used multiple thermocouples installed in the spindle 

to calculate thermal displacement. The thermal growth increases bearing 

preload that shifts modal frequencies. Many studies have reported 

thermal-mechanical spindle modeling [21], [22].  

     Another potential problem is the spindle stiffness. The dynamic 

stiffness differs significantly from static stiffness. If the cutting frequency 

is within the natural modes or higher the measured forces will be 

distorted. 

     Rantatalo et al. [23] developed a magnetic exciter to laterally vibrate a 

spindle to measure its dynamic response. Park et al [15] has 

compensated the dynamic stiffness problem by model based state 

estimator. 

     Armature current is influenced by dynamic characteristics of drive 

system. In feed drive particularly compensating for the dynamics of 

moving mass is important in separating out the influence of cutting force. 

A disturbance estimator for a feed drive can be applied for this purpose 

[8]. 

     An important outcome of the models developed by researchers is the 

quantification of the sensitivity and dynamic bandwidth of the motor 

power/current sensing loop. Stein and Wang [24] related the sensitivity of 

the current measured from the spindle and feed drive motors to the 

cutting forces and noted that the currents were very sensitive to the 

presence of Coulomb and viscous friction. The bandwidth of the spindle 

drive was between 2 and 18 Hz. Kim et al [5] has reported the bandwidth 

for the feed drive up to 130 Hz [5]. The dynamic characteristics of the 

current feedback control loop of the feed drive system determine the 

bandwidth of the current sensing system for indirect cutting force 

measurements [2], [6].  

 

1.3 Thesis objectives and structure 

 

To extend the previous discussion (state of art), there should be 

particular attention to estimate the cutting forces based on the numerical 

model of the systems before performing the experimental tests. Thereby, 

we have implemented the state estimator Kalman filter (will be introduce 
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in Chapter 2.3.1) in combination with two above-mentioned models 

(external sensor: spindle integrated displacement sensors and internal 

sensor: current of feed drive servomotors), described as follows. 

 

1.3.1  Thesis structure 

 

     This master thesis describes estimation of cutting force used for 

detecting of machining process anomalies such as self exited vibration in 

machining process, cutting tool failure, and surface roughness, etc. In 

the conventional method, the mentioned machining failures were 

detected and compensated by a machine tool operator which cause 

interruption in production process and have an adverse effect of 

productivity of operations. Hence, it is necessary to develop autonomous 

smart machine tools to conduct feedback control while minimizing human 

intervention [Figure 1-6]. In this context, the measurement of cutting 

forces is the key information needed to monitor, troubleshoot, or control 

the machining operations.  

 
Figure 1-6: Schematic  concept  of  monitoring  and  adaptive  control  

system  in  machine  tools 

     In order to measure the cutting force the force dynamometers are 

commonly used. They consist of piezoelectric sensors, mounted on the 
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machine tools axes. Although  table  dynamometers  provide  accurate  

and effective  force  measurements,  they  are  more  suitable  for 

laboratory  use and  have  limited applications  on  production machines  

due  to  the  workpiece  size  and  mounting constraints, etc. Therefore, 

there have been strong interests in developing a force-sensing 

mechanism built into a machine tool structure or cutting tool in order to 

measure the force indirectly.  

     In the chapter 3, a method of estimation of cutting forces from the 

displacements of rotating spindle shafts has been studied. In this 

scenario, the FEM model of the spindle has been utilized to find the 

modal parameters. Moreover, the dynamic model of the displacement 

sensor to the applied force to the tool tip has been developed. 

Additionally, a state estimator namely Kalman filter have been utilized to 

estimate the cutting force. Finally, the results of the simulation were 

reported based on continuous and discrete time domains. 

     In the chapter 4, indirect estimation of the cutting force from the 

current of feed drive has been studied. In this method, the idealized 

closed loop model of the feed drive was considered as a plant model. 

Additionally, the state estimator Kalman filter was used in order to 

estimate the cutting force. Finally, the results of the simulation were 

reported based on continuous and discrete time domains.  
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2 State and Disturbance Observer 
 

     Observers or estimators can be used to augment or replace 

sensors in a control system. Observers are algorithms that combine 

sensed signals with other knowledge of the control system to 

produce observed signals. 

2.1   Observers overview  

 

     Control systems are used to regulate an enormous variety of 

machines, products, and processes. They control quantities such as 

motion, temperature, heat flow, fluid flow, fluid pressure, tension, voltage, 

and current. Most concepts in control theory are based on having 

sensors to measure the quantity under control. In fact, control theory is 

often taught assuming the availability of near-perfect feedback signals. 

Unfortunately, such an assumption is often invalid. Physical sensors 

have shortcomings that can degrade a control system. 

     There are at least four common problems caused by sensors [25].   

1. Sensors are expensive.  

2. Sensors and their associated wiring reduce the reliability of control 

systems. 

3. Some signals are impractical to measure.  

4. Sensors usually induce significant errors such as stochastic noise, 

cyclical errors, and limited responsiveness.  

     These observed signals can be more accurate, less expensive to 

produce and more reliable than sensed signals [Figure 2-1]. 
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Figure 2-1: Role of an observer in a control system [25] 

   

2.1.1 Roles of observers in Control Systems  

 

     Here are given some common roles of observers in control systems, 

explained as follows [25]: 

 

 Competitively Priced: Control systems, like almost all products 

in the industrial market, must be delivered at competitive prices. 

Arguments for observer-based methods can be at either end of 

the cost–value spectrum. For example, if an observer is used to 

help replace an existing sensor with one that is less expensive, 

the argument may be that for a modest investment in 

computational resources, sensor cost can be reduced. In other 

cases, it can be argued that observers increase value; for 

example, value could be increased by providing a more reliable 

feedback signal. 

 

 Highly reliable: Control systems must be reliable. A proven way 

to enhance reliability is by reducing component count, especially 

connectorized cables. Electrical contacts are among the least 

reliable components in many systems. Observers can increase 

reliability when they are used to eliminate sensors and their 

cables. Since observers combine the sensed signals (which may 

have high noise content) with the model signals (which are nearly 
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noise free), they can remove noise from the calculated output, 

greatly extending the range of sensorless operation. 

 

 Stability:  Observers can improve stability by reducing the phase 

lag within the control loop. For example, the process of converting 

a sensor signal often involves filtering or other sources of phase 

lag. In the motion-control industry, it is common to use the simple 

difference of two position samples to create a velocity signal. 

Such a process is well known to inject a time delay of half the 

sample time. By using an observer this phase delay can be 

removed. 

 

 Disturbance Rejection: Disturbance rejection is a measure of 

how well a control system resists the effect of disturbances. As 

with command response, higher gains help the system reject 

disturbances, but they reduce margins of stability. Observers can 

help disturbance rejection in two ways. As with command 

response, disturbance response can be improved incrementally 

through higher control-law gains when the observer allows the 

removal of phase lag. Second, as discussed in Section 2.1.3, 

observers can be used to observe disturbances, allowing the use 

of disturbance decoupling where it otherwise might be impractical. 

 

 Robustness: Robustness is a measure of how well a system 

maintains its performance when system parameters vary. The 

most common variations occur in the plant. The control system 

must remain stable and should maintain consistent performance 

through these changes. One challenge of observer-based 

techniques is that robustness can be reduced by their use. This is 

because observers rely on a model; when the plant changes 

substantially and the model is not changed accordingly, instability 

can result. Thus, robustness should be a significant concern any 

time observers are employed. 
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2.2   A historical review of observers design  

 

     Radke and Gao [26] presented unified and historical review of 

observer design for the benefit of users. A critical question that is 

concerned with the practitioners is selecting among many candidates, an 

appropriate observer for a particular problem. For this purpose, 

observers have been reviewed in terms of the applicable dynamic 

structure of the plant, required sensors, plant knowledge, and 

implementation. 

     Without a doubt, “observers”, also known as “estimators” or “filters” 

are indispensable tools for engineering. Over the years, two classes of 

design methods for observers have emerged. One is concerned with 

state estimation based on a mathematical plant model; the other is 

concerned with disturbance estimation based on input/output data. Here 

are introduced some of the observers classified based on their evolution 

in history. The following sections use the:   

1) Plant description,  

2) Input and estimate, and  

3) Implementation characteristics, to survey the early, modern, and 

disturbance estimation based observers, respectively. 

 

2.2.1 Early Estimators 

 

     Early on engineers discovered internal values, could be extracted 

from input output data. The mechanism used for this purpose is known 

as a state estimator. Unmeasured internal values can be extracted from 

input, output and plant dynamic information. The following discusses the 

development of early estimators as a popular and important base set. 

 

2.2.1.1 Plant Output Based Estimator (OBE) 

 

     This estimator simply extracts information from the output of a plant or 

signal; for this reason, it is called an Output Based Estimator (OBE). 

Some common types of OBE’s are the low pass noise filter, approximate 

differentiator [26] and αβγ filter [27]. The OBE represented in terms of 

(1), (2) and (3) is: 
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 ̇     2.1 

      

    {     }
      
→     { ̂} 

2.2 

 ̇̂    ̂        ̂  2.3 

 

     Where, K is chosen such that the estimation error is driven to zero.  

This filter is useful for common applications that only have an output. 

Although simple, the information is often delayed and corrupted by 

disturbances and sensor noise. 

  

2.2.1.2 Alpha Beta Gamma Filter 

 

     A special case of the OBE is the Alpha Beta Gamma (αβγ) filter since 

the output is the only information used for estimation. The (αβγ) filter 

[28], [29] was a very early sampled data filter used as a practical radar 

estimation algorithm for velocity and acceleration when only position is 

available. 

 

      (      )  

       ̇              2.4 
 

    {   }
      
→     { ̂} 

2.5 

     {

    

      
        

                    

 

2.6 

 ̂    Φ   ̂        ̂     2.7 

 

     Here T is the discrete time sampling period. Design is simplified since 

(2.4) requires a specified structure that is a special case of the famous 

Kalman filter [27] and other equivalent forms. Although design is 

simplified, the problem of all OBE’s still exists for plants with excessive 

noise, delay, and output disturbances. 

2.2.1.3 Plant Input Based Estimator (IBE) 

     One way to get around sensor noise and output disturbances is not 

using them. 
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 ̇        2.8 

     
 

 

    {        }
      
→     { ̂} 

2.9 
 

 ̇̂    ̂     2.10 
 

 

     If the plant model in the observer is accurate, inputs, and initial 

conditions, x0, are available then internal system states can be 

determined from inputs alone. This can be thought as attempting to 

estimate internal plant information by running a simulated plant in 

parallel.  

     However, initial conditions must be given. For example, to estimate 

velocity a noisy position output could be differentiated using the OBE or 

acceleration input could be integrated with the IBE. This method is also 

applicable if y is not measurable. 

2.2.1.4 Input and Output Based Observer (IOBO): Luenberger 

Observer 

     The real workhorse began with the IOBO, popularly known as the 

Luenberger Observer [25]. 

 

 ̇        2.11 

      

     {          }
      
→     { ̂}  

2.12 

 ̇̂    ̂           ̂  2.13 

 

     This is a simple combination of the OBE (2.3) and IBE (2.9). By 

feeding back the estimated state along with measured data, it eliminates 

the IBE requirement for accurate initial conditions [27]. Since the 

estimate is fed back through the estimator it is also often called a Closed 

Loop Observer. The key advantage of the IOBO is the ability to use both 

the input and output data along with plant information to reduce noise 

and phase lag without the knowledge of initial conditions.  
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     The Luenberger observer established the structure on which most 

estimators are based today. The difference lies in the method of 

choosing K. 

 

2.2.2 Modern estimators 

 

     From this base set of observers, there have been a few key 

advances. The advance in modern control theory has been made by 

formulating the problem with disturbances in mind. These methods 

minimize a cost function based on mathematical assumptions about 

disturbances [27]. However, the design complexity has substantially 

increased. 

2.2.2.1 Kalman filter (KF) 

     The Kalman filter [27] was one of the first estimators to include the 

formulation of disturbances and provide optimal solutions. 

 

 ̇                2.14 
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→     { ̂}           ‖   ̂‖  

2.15 

 ̇                                    2.16 

                 

 ̇̂    ̂           ̂   

 

     In order to derive an optimal estimator, a few mathematical 

assumptions are made about the unknown disturbance. First, the model 

must be “sufficiently accurate” [27]. Secondly, disturbances are 

stochastic, zero mean and Gaussian (no time correlation) with known 

input and output noise covariance Q=E [w wT]>0, R=E [v vT] >0 and    

E[w vT]=0.                  

     The KF can be viewed as an optimal balance between the IBE and 

OBE [27]since the final equation of (2.11) is an IOBO with a time varying 

K. Since the 1960 seminal paper [30], many KF variations have been 

made. It was originally defined in discrete time and has been extended to 

continuous time [27]. It has also been formulated for non-Gaussian 

noise, and applications have spread to parameter estimation. The KF 
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has not been widely applied to industrial applications, probably, due to 

the complexity of the implementation. 

2.2.2.2 Extended Kalman filter (EKF) 

     The EKF was the first major effort to adapt the Kalman filter for 

nonlinear systems [27]. 

 

 ̇   (             ) 2.17 
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→     { ̂} 
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   2.20 

 ̇                                    2.21 

                 

 ̇̂     ̂                  ̂        

 

     At each point in time, f and h are linearized to A(t) and C(t) to then be 

used in the standard Kalman filter. One of the most recent Kalman filter 

modifications for nonlinear systems is the Unscented Kalman Filter 

(UKF). It moves beyond the EKF by additionally passing intermediate 

values through the known nonlinear equations [27]. Although the UKF is 

derived for an algorithmic implementation, the complexity and model 

information required make it impractical for the majority of practical 

applications. 

 

 ̇   (               2.22 

                  

    {
        

                
}

      
→     { ̂} 

2.23 

 

(The UKF implementation is too involved to include in this survey, 

however it is an important recent modern extension to include for 

historical reference.) 
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2.2.2.3 H∞ estimator 

     Another significant tool in the modern direction is the H∞ estimator. 
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2.27 
 

             2.28 
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     This also optimizes a cost function based on an assumption about the 

disturbance. This formulation is significant because it uses a unique 

characterization of the disturbance. Kalman minimizes the minimum 

squared error because it is a mathematically manageable optimization 

problem. Using infinity norms, the H∞ estimator is able to minimize the 

maximum or worst case disturbance [27]. In (2.25), WF, is unknown but 

not necessarily random or stochastic. The estimator is guaranteed to be 

optimal under a user defined upper bound γ. 

     Figure 2-2 depicts a summary of observer’s techniques, complexities, 

and evolution through the history. 

 

 
Figure 2-2: A summary of observers’ techniques [26] 
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2.3 Kalman Filter 

 

     In this sub-chapter, there are short descriptions to the Kalman filter 

characteristics and follows with an introduction to the concepts. 

Generally, Kalman filter, 

 Estimates states and disturbances based on input, output, and 

dynamic model of the plant,  

 Is computationally efficient due to its recursive structure, 

 Incorporates all information that can be provided to it, 

 Copes with variable A, C, Q and R matrices, 

 Copes with the large uncertainty of the initialization phase, 

 Needs only the latest best estimate (not a history of states), 

 Provides a convenient measure of estimation accuracy (via the 

covariance matrix P), 

 Fuses information from multiple-sensors, 

 Minimize a cost function based on mathematical assumptions 

about disturbances.  

2.3.1 An introduction to concepts  

 

     A Kalman filter is simply an optimal recursive data processing 

algorithm. One aspect of this optimality is that the Kalman filter 

incorporates all information that can be provided to it. It processes all 

available measurements, regardless of their precision, to estimate the 

current value of the variables of interest, with use of [31], 

 Knowledge  of  the  system  and  measurement  device 

dynamics,  

 The statistical description of the system noises, measurement 

errors, and uncertainty in the dynamics models, and  

 Any available information about initial conditions of the variables 

of interest. 

     The word recursive in the previous description means that, unlike 

certain data processing concepts, the Kalman filter does not require all 

previous data to be kept in storage and reprocessed every time a new 

measurement is taken. This will be of vital importance to the practicality 
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of filter implementation. The “filter” is actually a data processing 

algorithm. 

     A Kalman filter combines all available measurement data, plus prior 

knowledge about the system and measuring devices, to produce an 

estimate of the desired variables in such a manner that the error is 

minimized statistically.  

     The Kalman filter was derived as the solution to the Wiener filtering 

problem using state space model for dynamic and random processes. It 

can estimate the state of a linear dynamic system, perturbed by 

Gaussian white noise using measurements that are linear factions of the 

system state but corrupted by additive Gaussian white noise.  

     A Kalman filter performs based on conditional probability density 

propagation for problems in which the system can be described through 

a linear model and measurement noises are white and Gaussian. Under 

these conditions, the mean, mode, median, and virtually any reasonable 

choice for an “optimal” estimate all coincide, so there is in fact a unique 

“best” estimate of the value of states. Under these three restrictions, the 

Kalman filter can be shown to be the best filter of any conceivable form 

[31]. 

2.3.2 The discrete-time Kalman filter  

 

     Here we present the discrete-time Kalman filter in the following steps 

[27]. 

a) The dynamic system is given by the following equations: 

 

                     2.30 

           

 

b) The Kalman filter is initialized as follows: 

 

 ̂ 
         2.31 

  
         ̂ 

       ̂ 
      2.32 

 

c) The Kalman filter is given by the following equations, which are 

computed for each time step, k = 1, 2, ...: 
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       2.33 

 

      
          

           2.34 

 ̂ 
     ̂   

                                 2.35 

 ̂ 
   ̂ 

           ̂ 
                              2.36 

  
           

    2.37 

 

Figure 2-3 depicts the discrete-time recursive Kalman filter operation, 

considering the above mentioned algorithms. 

 

Figure 2-3: A complete picture of the operation of the discrete-time 
Kalman filter [27] 
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3 Cutting force estimation by Spindle 

Integrated Displacement Sensor 

(SIDS) 
 

     This chapter presents a method of estimation of cutting forces from 

the displacements of rotating spindle shafts under cutting load. In this 

way, the displacement sensor is utilized as an indirect force sensor.  

      In order to overcome the experimental issues, the instrumental 

hammer tests are emulated by FEM software. The Frequency Response 

Fucntion (FRF) of relative displacement/force is achieved on a spindle-

machine FEM model [32] (Figure 3-1). 

  

 

 

 

Figure 3-1: Spindle FEM model 

     In this technique, the bandwidth of FRF of relative displacement/force 

is limited by the natural modes of the spindle structure. If cutting force 

frequency content is within the range of the natural modes of the spindle 

Spindle XEVO 

model 
Structure that emulates 

the machine 

 machine 

Eddy-current sensor position (node 10 (shaft) and 44)  

(housing) ) 
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structure or higher, the measurements will be distorted due to the 

dynamic characteristics of the spindle system. In order to increase the 

bandwidth of the indirect force sensor, the design of a Kalman filter 

scheme is used for compensating the spindle dynamics. Figure 3-2 

shows the graphical representation of spindle integrated displacement 

sensors [15]. 

 

Figure 3-2: Graphical representation of spindle integrated displacement 

sensors [16] 

3.1 Identifying the modal parameters 

 

     Figure 3-3 shows the FRFs of displacements of spindle shaft and 

flange (point 10 and 44) due to the force applied to the tool tip. Here, 

according to the figure, the first two modes are related to the low-

frequency machine tool behaviour. 
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Figure 3-3: Displacement (point 10 and 44)/tool tip force FRFs 

 

     It is possible to make a FRF representation of relative displacement to 

the applied force by making the difference between the two FRFs the 

spindle shaft and the spindle flange as is depicted in the Figure 3-4. 

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

m
/N

FRF

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-200

-100

0

100

200

d
e
g

hz

 

 

XEVO 14 fresa 80 macchina disp sensors 10

XEVO 14 fresa 80 macchina disp sensors 44

The first two modes  

 



Indirect Estimation of Cutting Force in Milling Machine Tools 

 

 

28 
 

 
Figure 3-4: Relative displacement/tool tip force 

Starting from the above mentioned FEM model the modal parameters of 

the spindle have been obtained, and tabulated in Table1.  

Table 1: Modal parameters of the spindle FEM model 

k Fn (Hz) ζ α (1/kg) 

1 753 0.0297 25.756
 

2 965 0.0288 130.369 

3 1168 0.0303 6.284 
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3.2 Dynamic compliance of the spindle structure as 

system plant  

 

     After finding the modal parameters, it is necessary to represent the 

dynamic compliance of the spindle structure in transfer function form 

using the three natural modes indicated in Figure 3-4. The process is 

performed by a modal curve fitting technique as, 

Φ    
  

  
 ∑

  

                
 

 

   

 

 ∑
  

                         

 

   

 

3.1 

 

       Where k is the number of modes, Φ(s) are the displacements 

measured by the spindle integrated sensor, and Fa is the actual force 

acting on the tool tip. The modal equation can be expanded in 

polynomial form as: 

     
  

  
  

    
      

      
          

       
      

        
        

           
 

 

3.2 

3.3 Model representation in state space form 

      

     In order to design the Kalman filter, the transfer function of the spindle 

dynamics given in Eq. (3.2) is mapped into state space form that yields 

to: 

 ̇          3.3 
        
 

     Where x is the state vector; u = Fa is the input vector or the actual 

force applied to the tool; and, y = δF is the measurement vector or the 

displacement sensor reading.  

    The observability matrix W is found to be full rank, which guarantees 

the observability of the system: 



Indirect Estimation of Cutting Force in Milling Machine Tools 

 

 

30 
 

 

      
    

    
     

        
    3.4 

 
 

3.4 Disturbance model expansion for Kalman filter 
 

     The aim of dynamic compensation is to reconstruct the actual force, 

Fa, exerted on the tool, which is the system input, u, in Eqs. (3.3). Since 

the Kalman filter only yields estimates for state vector  ̂ and output, 

 ̂   ̂ , the balanced system in Eq. (3.3) is expanded with the actual 

force, Fa, as an additional unknown state in the state vector. It is 

assumed that the cutting force signals are piece-wise constant and both 

the actual force and the displacement signal are contaminated with 

system noise, w, and measurement noise, v, yielding, 

 

 ̇      
              

               3.5 

              
       

          

 

 

     Where G is the system noise matrix. The expanded state vector is 

depicted as below; the former input vector u(1x1) has disappeared. 

           
          

              3.6 

 

     The expanded and noise contaminated state space model (denoted 

by e) given by Eq. (3.6) can be rewritten as: 

 

[
 ̇      

 ̇      

]  [
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]                3.7 

                      [
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     In this form, the cutting force can be estimated through a disturbance 

Kalman filter designed for the expanded model of the spindle integrated 

force sensor system as, 

 

 ̇̂     ̂       ̂  
     ̂         ̂            ̂     

3.8 
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     For digital signal processing, Eq. (2.13) is transformed into an 

equivalent discrete transfer function using continuous-to-discrete 

transformation and zero-order-hold: 

 

 ̂          {          } ̂      

(∫    {          }   
  

 
)        

3.9 
 
 
 

Where, in this application, the discrete sampling time is td = 0.1 ms. 

 

3.5 Kalman filter implementation 

 

     The Kalman filter gain matrix is identified by minimizing the state 

estimation error covariance matrix     ̃   ̃  . Based on the assumption 

that system and measurement noise are uncorrelated zero-mean white 

noise signals,  the covariance matrices are Q = E [w wT]>0, R = E [v 

vT]>0, E [w vT]=0. The noise covariance matrix Q is tuned to 

accommodate the compensations. For this case R, Q, and G are: 

 

  [        ]        [        ]                       

 

3.10 

3.5.1 Continuous-time Kalman filter gain 

 

     The minimum covariance matrix P for the state estimation error is 

evaluated by solving the following time variant Riccati equation 

 

 ̇         
          

          3.11 

  

Using the solution of Eq. (3.11), the optimal Kalman filter gain matrix is 

obtained as: 

 

     
      3.12 
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3.6 Model representation in Simulink for SIDS 

 

     Figure 3-5 shows the Simulink model of cutting force estimation by 

spindle integrated displacement sensor (SIDS). In this model Kalman 

filter estimator is utilized to estimate the cutting force based on 

continuous-time state space models.   

 

 

Figure 3-5: Simulink model of cutting force estimation from SIDS 

     Figure 3-6 depicts the Input-Plant-Output model of spindle integrated 

displacement sensor (SIDS) in state space representation. The 

expanded matrices, Ae, Be, Ce, De have been utilized in defining of our 

plant model. The step force input Fa and the measurement (as 

displacements) are contaminated by process and measurement white 

Gaussian noises as represented in the figure. 

 

Figure 3-6: Input-Plant-Output model of SIDS 
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     Figure 3-7 represents the Kalman filter implementation in the system. 

The inputs to the Kalman filter are displacements and the white 

Gaussian noise, and the outputs are estimation of displacements and 

cutting force. According to the figure, the measured and estimated 

values of the displacement as well as the applied and the estimated 

cutting forces have been compared with each other to evaluate the 

estimation accuracy. 

 

 
Figure 3-7: Model representation of Kalman filter implementation 

The same procedure is utilized for the discrete-time system after 

discretizing of the plant and of the Kalman filter state space matrices. 

 

3.7 Results of Cutting force estimation by SIDS 

 

   In this chapter the results of the force estimation by Kalman filter for 

SIDS is going to be presented base on two approaches, in continuous-

time and discrete-time forms. In the first approach, the results applying 

input step force and the simulated real force considering the dynamics of 

the milling process are going to be taken to the account.  The simulated 

real force is explained in the sub chapter 3.7.1. 



Indirect Estimation of Cutting Force in Milling Machine Tools 

 

 

34 
 

In the meanwhile, the second approach (discrete-time Kalman filter) has 

been implemented considering the real condition of the milling process in 

which the plant and Kalman filter model must be discretized.  

 

3.7.1 Simulated real force 

 

Figure 3-8 shows the milling model which has been prepared by CNR 

ITIA, explained in [33]. According to the figure, the blue box represents 

the kinematics of the milling process, while, the orange box deals with 

the dynamics of the cutting. The milling model is applied as an input 

force to the spindle integrated displacement sensor system. Then we 

have estimated the force by help of Kalman filter. 

 

 

Figure 3-8: Milling model [courtesy to CNR ITIA] 

 

3.7.2 Continuous-time Kalman filter 

 

3.7.2.1 Simulation of continuous-time Kalman filter to input step 
force 

Figure 3-9 shows the Estimation of cutting force by Kalman filter for 

SIDS. According to the figure, the input true force (in red color) to the 

system is a step force and the amplitude is 100 N. The estimated force 

(in blue color) precisely follows the true value of the force after tuning the 

process and measurement covariance noise matrices, Q and R 

respectively. The estimated value is contaminated by the white Gaussian 

process noise, w and measurement noise v.  
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Figure 3-9: Estimation of cutting force by Kalman filter for SIDS 

 

3.7.2.2 Simulation of continuous-time Kalman filter to simulated 
real force 

Figure 3-10 and Figure 3-11 show the Cutting force estimation as a 

result of the simulated real input force in machine tool X and Y axes. The 

process parameters which have been selected for this study have been 

tabulated in the Table 2. 

 

Table 2: Process parameters of simulated real milling process 

 

Values Units 

Workpiece Material C40 steel  - 

Kre 5 N/mm 

Krc 1309 Mpa 

Kte 9 N/mm 

Ktc 2598 Mpa 

Milling Operation 
Half immersion, 

Down Milling 
 - 

Dept of Cut 0.1-0.2 mm 

Cutting tool Dia. 80 mm 

Feed per Tooth 0.25 mm/rev 

Spindle Speed 650 rpm 

Simulation Time 5 s 

No. Of teeth 5 - 
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According to Figure 3-10 and Figure 3-11, the estimated force (in blue 

color) precisely follows the true value of the force (in red color) after 

tuning the process and measurement covariance noise matrices, Q, and 

R, respectively. The estimated value is contaminated by the white 

Gaussian process noise, w and measurement noise v.  

 

 

 

 

Figure 3-10: Cutting force estimation to the simulated real input force in 

machine tool X axis 
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Figure 3-11: Cutting force estimation to the simulated real input force in 

machine tool Y axis 

 

 

3.7.3 Discrete-time Kalman filter 

 

     In order to implement the Kalman filter in the real application of 

cutting force estimation, the model must be discretized based on the 

sampling time. The sample time in this work was selected td = 1 ms. 

     Figure 3-12 shows the cutting force estimation by discrete time 

Kalman filter for SIDS. According to the figure, the estimated cutting 

force (in blue color) follows the true value of the cutting force (in red 

color). 
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Figure 3-12: Cutting force estimation by discrete time Kalman filter for 

SIDS 
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4 Cutting force estimation from feed 

drive current 
 

     In-process cutting force measurement is one of the most important 

sensor systems for cutting condition monitoring and control in machining. 

CNC machine tools servomotors have current sensors for motion control. 

The current have direct contributes to the torque generated by the motor 

and the external resistant loads. 

The total external torque to the servo motor consists of the torque 

induced from the cutting force and that from the friction force in the guide 

way. Here in this chapter, the main idea is to estimate the disturbance 

load which is exerted to the feed drive system due to the cutting force. 

Hence, a Kalman filter is implemented as a model based disturbance 

observer for indirect measurement of cutting forces in milling process 

through the current.  

 

4.1 Closed loop and open loop model of feed drive (plant 

model) 

 

Figure 4-1 represents the simplified closed loop control model of the feed 

drive. In this figure, the model can be dived in two parts: electrical and 

mechanical. In the electrical part, the velocity and current regulators are 

present, while the mechanical part consists of global inertial Jeq and 

integrators to achieve angular velocity ω and angular position 𝜃. 

   The inputs to the closed loop system are angular position 𝜃 as well as 

the disturbance cutting force Fc as a disturbance. In addition, the outputs 

are velocity ω and angular position 𝜃. 
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Figure 4-1: Simplified closed loop control model of the feed drive 

 

Figure 4-2 shows the mechanical part of the feed drive along with the 

current regulator, as an open loop model. The inputs to the model are 

the current and the disturbance cutting force whereas the outputs are 

angular velocity ω and angular position 𝜃.  

 

Figure 4-2: Mechanical part of the feed drive along with the current 

regulator 

 

4.1.1 Closed loop model verification 

 

In order to verify the closed loop model whther it reacts to the input step 

force properly or not, we emulate the feed drive condition when it is in a 

stationary situation. Thus, the angular reference position is set to zero, 

whereas, we apply a step cutting force as input.   

From the Figure 4-3, Figure 4-4, and Figure 4-5, it can be seen that the 

system response to the step cutting force yields to the reference position 

value after few seconds.  
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Figure 4-3: Angular acceleration response to the step force 

 

Figure 4-4: Angular velocity response to the step force 

 

Figure 4-5: Angular position response to step force 
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4.2 Implementation of Kalman filter into the feed drive 

models 

 

     The closed loop plant model of feed drive in combined with the 

Kalman filter (Figure 4-6) in order to estimate the cutting forces. In this 

scheme, the inputs to the Kalman filter are the output of the plant model 

(Figure 4-7) current i, angular position 𝜃, and angular velocity ω. The 

output of the Kalman filter is the estimated cutting force compared with 

the “disturbance” cutting force Fc. 

 

Figure 4-6: Feed drive model combined with the Kalman filter 

 

Figure 4-7: Plant closed loop model 
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      In addition, Figure 4-8 represents the open loop plant model of feed 

drive combined with the Kalman filter. In this figure, the inputs to the 

plant are the current i and the cutting force Fc, whereas the outputs from 

the plant are the angular position 𝜃 and the angular velocity ω. Moreover 

the inputs to the Kalman filter are current i, angular position 𝜃 and 

angular velocity ω, while the output of the Kalman filter is the estimated 

cutting force to be compared with the true one.  

 

Figure 4-8: Open loop plant model of feed drive combined with the 

Kalman filter 

4.3 Design of the Kalman filter 

 

     Figure 4-9 shows the Kalman filter scheme in the Simulink model of 

the cutting force estimation from feed drive. The filter is designed in 

state-space representation, where the A, B, C, and D matrices have 

been obtained from the mechanical part of the feed drive model (open 

loop model) Figure 4-2. 

     Furthermore, we assume that the current (input) and the angular 

velocity and position (outputs) are contaminated by the system noise w 

and measurement noise v. Both w and v are assumed zero-mean white 

Gaussian noise inputs whilst Q and R are their covariance matrices, 

respectively. G, w and v can be written as: 

          4.1 

             𝜃                                                                              4.2 

    
                                                                                           4.3 

    
                                                                                            4.4 
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Figure 4-9: Kalman filter scheme 

4.4 Results of cutting force estimation from feed drive 

 

     In this chapter the results of the force estimation by Kalman filter from 

feed drive is going to be presented base on two approaches, open loop 

and closed loop plants. In the first approach, the results are shown 

applying step force and current as inputs.  

The second approach (closed loop plant) is implemented considering the 

cutting force as the only input whereas the angular position is set to zero.  

 

4.4.1 Kalman filter for closed loop plant  

 

      Figure 3-9 shows the estimation of cutting force by Kalman filter from 

feed drive closed loop model. According to the figure, the input true force 

(in blue color) to the system is a step force and the amplitude is100 N. 

the estimated force (in red color) precisely follows the true value of the 

force after tuning the process Q and measurement R covariance noise 

matrices. The estimated value is contaminated by the white Gaussian 

process noise w and measurement noise v.  
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Figure 4-10: Cutting force estimation from feed drive for closed loop 

model 

 

     Figure 4-11and Figure 4-12 show the estimation of angular position 

and velocity by Kalman filter for the closed loop model. According to the 

figures the estimated values exactly follow the true values of the angular 

position and the velocity.  

 

 
Figure 4-11: Estimation of angular position 
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Figure 4-12: Estimation of angular velocity 

 

4.4.2 Kalman filter for open loop plant  

 

     Figure 4-13 depicts the cutting force estimation by Kalman filter from 

open loop plant model. According to the figure, the input true force (in 

blue color) to the system is a step force and the amplitude is 100 N. the 

estimated force (in red color) precisely follows the true value of the force 

after tuning the process Q and measurement R covariance noise 

matrices. The estimated value is contaminated by the white Gaussian 

process noise w and measurement noise v.  

 
Figure 4-13: Cutting force estimation by Kalman filter from open loop 

plant model 
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4.4.3 Comparison between the results of the closed loop and open 

loop model 

 

     By making comparison between the closed loop and open loop 

systems results (Figure 4-10 and Figure 4-13), it can be seen that the 

estimated cutting forces by Kalman filter have same values.  
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5 Conclusion and Future Work 

5.1 Completed work 

 

     In the present work, the estimation of cutting force is performed from 

the model of the spindle integrated displacement sensors in addition to 

the one of the current of the feed drive. The approaches that are used for 

the estimation were based on numerical methods in Matlab/Simulink 

software in order to replicate the experimental tests.  

     In the chapter 3, a method for the estimation of the cutting forces from 

the displacements of rotating spindle shafts is studied. In this scenario, 

the FEM model of the spindle is utilized to find the modal parameters. 

Moreover, dynamic relationship between the displacement and the force 

at the tool tip has been modeled. Additionally, a state estimator, namely 

Kalman filter, is utilized to estimate the cutting force. Finally, the results 

of the simulation are reported based on continuous and discrete time 

domains. In this approach the applied force to the system is selected 

based on two levels. The first level is step input force, since its response 

has a lot of dynamic content and is simple to study. The second level of 

the force is based on the simulated real force that has considered the 

dynamics and kinematics of the milling process. The obtained results 

show that the estimated force well predicts the real one. 

     In the chapter 4, indirect estimation of the cutting forces from the 

current of feed drive has been studied. In this method, the idealized 

closed loop and open loop models of the feed drive are considered as 

plant models. Additionally, the state estimator Kalman filter is used in 

order to estimate the cutting force. Finally, the results of the simulation 

are reported based on open loop and closed loop plant model in 

continuous time domain. The outcome results depict that the estimated 

force follows the applied force properly. 
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5.2 Sensor fusion as future works 

 

5.2.1 Sensor fusion- overview 

 

     With a specific focus to monitoring, researchers have developed over 

the years a wide variety of sensors and sensing strategies, each 

attempting to predict or detect a specific phenomenon during the 

operation of the process and in the presence of noise and other 

environmental contaminants. Although able to accomplish the task for a 

narrow set of conditions, these specific techniques have almost uniformly 

failed to be reliable enough to work over the range of operating 

conditions and environments commonly available in manufacturing 

facilities.  

     Therefore, researchers have begun to look at ways to collect the 

maximum amount of information about the state of a process from a 

number of different sensors (each of which is able to provide an output 

related to the phenomenon of interest although at varying reliability) [1]. 

The strategy of integrating the information from a variety of sensors with 

the expectation that this will ‘increase the accuracy and ... resolve 

ambiguities in the knowledge about the environment’ is called sensor 

fusion. 

     Sensor fusion is able to provide data for the decision-making process 

that has a low uncertainty owing to the inherent randomness or noise in 

the sensor signals, includes significant features covering a broader range 

of operating conditions and accommodates changes in the operating 

characteristics of the individual sensors (due to calibration, drift, etc.) 

because of redundancy.  

     The most advantageous aspect of sensor fusion is the richness of 

information available to the signal processing/feature extraction and 

decision-making methodologies employed as part of the sensor system. 

Sensor fusion is best defined in terms of the ‘intelligent’ sensor as 

introduced in [34] since that sensor system is structured to utilize many 

of the same elements needed for sensor fusion. 
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5.2.2 Centralized and decentralized Kalman filter 

 

     Current advances in sensor technology enable the design of small-

scale low-cost sensing devices (sensor nodes) endowed with embedded 

computing and communication capabilities. A number of these sensor 

nodes can be connected to each other following a certain topology. The 

collection of such connected sensors is called a sensor network. 

There are numerous applications of sensor networks, for instance, in 

military, health care, or agriculture [35]. An example of the use of sensor 

networks in the control field is networked control [36]. The use of 

wireless sensors for feedback has also been reported [37]. An attractive 

feature of sensor networks is their capability to perform sensing and 

state estimation in environments with spatially distributed parameters. In 

this case, sensor nodes are placed at specified locations of the 

environment to collect measurements that serve as inputs to the filter. 

     To this end, decentralized variants of Kalman filter can be used. One 

approach for using the measurements is treating them as one 

measurement matrix. The measurements from the nodes are then sent 

to a central processor in which global estimates are computed. In this 

case the sensor nodes do not have an active role. This approach is 

called centralized Kalman filter. 

     As opposed to the centralized approach, the estimate computations 

can be decentralized to the nodes where local estimates are computed. 

The local estimates can subsequently be transmitted to a central 

processor to get global estimates.  

     Alternatively, local estimates are communicated between two or more 

nodes using an algorithm to get the estimates of the global state. In this 

case the sensor nodes have an active role to estimate the states. There 

are several decentralized Kalman filter methods that have been 

proposed in the literature. The most representative methods are: parallel 

information filter [38], distributed information filter [39], distributed 

Kalman filter with consensus filter, and distributed Kalman filter with 

weighted averaging [40].  
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Figure 5-1: Centralized integration architecture [40] 

 
Figure 5-2: Decentralized integration architecture[40] 

5.2.2.1 Centralized Kalman filter 

     The Kalman filter equations consist of two parts: time update 

equations and measurement update equations. The following time 

update equations compute estimates at time step, k, based on the 

process model and the previous estimates to get a priori estimates: 

 

                     5.1 

 ̂        ̂               
                        

5.2 

 

     Where P-(k) is the estimation error covariance matrix, and the 

superscripts “−” and “+” respectively indicate the a priori and a posteriori 

estimates and the error covariance matrix. This step is also referred to as 

the prediction step. 

     Once the measurements at time step, k, are available, the 

measurement update corrects the a priori estimates to get a posteriori 

estimates: 

 

                                5.3 

 ̂      ̂         (     ̂    ) 5.4 
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                     5.5 

 ̂ 
         

         ̂ 
       ̂ 

     5.6 

 

     Where K(k) is the Kalman gain matrix. The initial conditions are 

 ̂        and         , where x0 and P0 are respectively the initial 

guesses of the estimate and estimation error covariance matrix. 

The above mentioned Kalman filter is called centralized Kalman filter. It 

is because the measurements are treated in one measurement matrix. 

The estimates from the centralized Kalman filter are called global 

estimates. 

     Besides the form in (5.1) to (5.7), there is another form of the Kalman 

filter that uses the inverse of the estimation error covariance matrix that 

is called information matrix, denoted by I and defined as I= P-1. The filter 

that uses this information matrix is called the information filter. The a 

priori estimate equations of the information filter are equal to (5.1) and 

(5.2). The measurement update computations are the following: 

 

                   5.7 

            5.8 

 ̂      ̂           5.9 

               5.10 

 

     Where Δs and ΔI are respectively the information vector and matrix 

update. The information filter avoids the need of matrix inverse 

computation that is preferable from a numerical point of view. 

     In the application of the decentralized Kalman filter with sensor 

networks for distributed parameter systems, each node, i, has a 

capability to compute its own estimates  ̂     and the corresponding 

estimation error covariance matrix      . The estimate and/or the error 

covariance matrix are communicated to other nodes based on the 

network topology. In our case, consider a sensor network consisting of N 

sensor nodes.  

     The nodes are connected to each other, following a specified network 

topology. In the network, nodes, i, and j, are neighbors if there is a direct 

link between them. The set of neighbors of node, i, and including node, i, 

itself is denoted by the set Ni. We assume each node has an identical 

process model (2.26) and the corresponding process noise Q, but a 

different measurement matrix. Since each node measures one or more 
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state components of the system and since no state component is 

measured by two or more nodes, we can assume that each local 

measurement matrix Hi is one block row of the global measurement 

matrix H. In other words, the global measurement matrix H is the stack of 

all local measurement matrices Hi.  

 

  [
  

 
  

]  
5.11 

 

So the local measurement in node, i, is expressed as 

 

                    5.12 

 

     It is assumed that measurement noise between node i and j is 

uncorrelated. In this work, measurement updates and the resulting 

estimates in each node are called local updates and local estimates 

respectively. 

5.2.2.2 Parallel information filter (PIF) 

     The parallel information filter computes local a posteriori estimates 

 ̂ 
     and the corresponding estimation error covariance matrix    

     

in parallel in each node. Then  ̂ 
      and    

     are sent to a central 

processor in which the estimates are combined to get the global estimate 

 ̂    [41].The time and measurement update equations for node, i, are: 

 The local time update: 

 

  
         

            5.13 

 ̂ 
        ̂ 

                5.14 

 

 And the local measurement:  

 

         
       

      
   5.15 

   
           

           
   

     5.16 

                    5.17 

 

     In the central processor, estimates from all nodes are combined into 

one estimate. It is desired that the estimate is as certain as possible, or 
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in other words, an estimate with a low uncertainty is preferable. In case 

of estimates and uncertainties from N measurements, where the 

measurement of node, i, is independent to that of node j for, i ≠ j, 

estimates with lower uncertainty should be given larger weights. With 

such consideration, the weight for each measurement can be calculated 

as [41].  

     Once the weights have been determined, the global a posteriori 

estimate and its estimate error covariance matrix can be expressed as 

follows, 

 

  
     ∑     

 

   

   
        

5.18 

 ̂    ∑     

 

   

        
         ̂ 

     
5.19 

 

      This method relies on the central processor to get the global 

estimates. Hence, it is necessary that all sensor nodes are neighbors of 

the central processor to assure that all local measurements can be 

combined into global ones. 

5.2.2.3 Distributed information Kalman filter (DIF) 

     The decentralized information filter was proposed by Rao and 

Durrant-Whyte [39] to eliminate the need of a central processor in the 

decentralized Kalman filter. Using a central processor creates a 

hierarchy in the network. 

     Furthermore, the network is highly dependent on the central 

processor. Eliminating the central processor makes that all nodes are at 

the same level and removes dependency on a single component. The 

key idea of this method is expressed in the relation between information 

vectors and matrix updates, respectively, for the global estimates of the 

centralized method and local estimates in each node i. 

 

                   ∑  
     

        

 

   

 
5.20 
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             ∑  
     

     

 

   

 
5.21 

 

     Local updates are computed in each node and sent to the 

neighboring nodes. Node, i, adds all information updates from its 

neighbors to its own updates and then computes the updated 

estimations and error covariance matrix. 

     Estimates after the communications of the nodes are called 

communication update estimates. The time and measurement update 

equations for node i are 

 The local time update equations 

 

  
         

            5.22 

 ̂ 
        ̂ 

                5.23 

 

 The information vector and matrix update 

 

         
     

         5.24 

      
     

       5.25 

 

 The communication update 

 

 

 ̂ 
       

        
        ̂ 

     ∑           
   5.26 

   
           

        ∑    
    

 5.27 

 

     This method decentralizes the computations of global estimates to 

every node without the need of a central processor. 

If all nodes are fully connected, then (5.20) shows that the performance 

of this method is equal to that of the centralized Kalman filter.  

 

 

 

5.2.2.4 Distributed Kalman filter with consensus filter (DKFCF) 



Indirect Estimation of Cutting Force in Milling Machine Tools 

 

 

57 
 

     The distributed Kalman filter with consensus filter is proposed by 

Olfati-Saber [40]. The main feature of this method is the use of the 

consensus algorithm to obtain the communication update estimates. The 

consensus algorithm at node   is performed as follows: for each 

consensus step, node   receives estimates from its neighbors. 

      Node, i, subtracts its estimate from the estimate of each of its 

neighbors, weights the result with factor γ and adds the obtained value to 

its estimate. Another function of this method is availability of stability 

analysis. Olfati-Saber et al. in [40] presented stability analysis of the 

consensus algorithm using algebraic graph theory. The time and 

measurement update equations for node   are: 

 The local time update equations: 

 

  
         

            5.28 

 ̂ 
        ̂ 

                5.29 

 

 The information vector and matrix update 

 

         
     

         5.30 

      
     

      5.31 

 

 The measurement update 

 

 ̂ 
       

        
        ̂ 

     ∑           
   5.32 

   
           

        ∑    
    

 5.33 

 Consensus step, iterated S times 

 

 ̂   
       ̂     

      ∑  ̂     
    

    

  ̂     
       5.34 

 

     For l= 1,…,s where s is the number of iterations. 

Up to the consensus step, this method is identical to the distributed 

information filter. 

 

 

5.2.2.5 Distributed Kalman filter with weighted averaging (DKFWA) 
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     The distributed Kalman filter with weighted averaging has been 

proposed in [42], [43]. A feature of this method is the reduction of 

computation and communication load. The reduction is because the 

nodes only compute and send the estimates, without the error estimation 

covariance matrix.  

     Different from the previous methods, this method consists of two 

parts: on-line and off-line. The on-line part computes and communicates 

estimates. In the off-line part, Kalman gains and weights are computed 

for each node. In this method, the Kalman gain and the weight W are 

computed once and used during the entire operation. 

     The idea of this method is as follows: node i receives estimates from 

its neighbors and weights them with a weight matrix w. Then the 

weighted estimates are added to the estimate of node i. The on-line 

steps of the distributed Kalman filter with weighted averaging at node   

are as follows: 

 The time update equation: 

 ̂ 
         ̂ 

                 5.35 

 

where  ̂ 
     denotes the local estimates at node i.  

 The measurement update equation 

 

 ̂ 
       ̂ 

         (         ̂ 
     )  5.36 

 

 The information exchange equation 

 

 ̂ 
     ∑      ̂ 

     

    

 5.37 

 

Where wi,j is the weight of the estimate of node j that is used to compute 

the global estimates in node i. The value of wi,j   is zero if node i is not 

connected to node j. 

The off-line computations are performed to minimize the trace of 

estimation error covariance matrix       that is defined as: 

 

               ̂            ̂        5.38 

                               ̂      5.39 

   ̂ 
           ̂ 

                           5.40 
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∑           
                                                                                 5.41 

 

To get unbiased estimates, we obtain the following relation, 

 

       (      ̂ 
     ) (      ̂ 

     )
 
              

5.42 

 

 

The covariance        in the last equation can be written as  

 

       (      ̃)    (      ̃)  5.43 

 

With 

 

      (
 

  ̃
)     (

 

  ̃
)
 

   (
 

 

  

  
) 

5.44 

 

And  

 

 ̃                       5.45 

 ̃                      5.46 

 

It should be noted that for this method, it is possible to have a non-

diagonal measurement covariance matrix R. In order to get an 

optimal filter, it is necessary to find the values of   and  ̃ that 

minimize (5.42). Instead of direct minimization of (5.42), the Kalman 

gain k and weight w are computed by solving the following 

optimization problem: 

 

    ̃    [ (      ̃)    (      ̃)     5.47 

 

Wi,j = 0 if node i and j are not connected and (5.40)  
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Table 3: Characteristic comparison of different filters 

 

 

     The obtained gain  ̃ and weight w are employed in the on-line 

computation of the states. Details on how to solve the optimization 

problem (3.43) are given in [41]. Basically, this method is a consensus 

filter but with only one information exchange. The characteristics 

comparison of the Kalman filter methods presented in this section is 

shown in Table 1. 

 
CKF PIF DIF DKFCF DKFWA 

Central processing yes yes no no no 

Connectivity full  full partial partial partial 

Communication single single single multi single 

Global estimates yes yes no no no 
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