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Abstract 

Digital terrain models (DTM) have been used in many applications since they 

came into application in the late 1950s. It is a fundamental tool for applications such 

as hydrology, cartography, geology, geomorphology, landscape architecture and so on. 

Accuracy of DTM is quite important when putting it into applications. Based on the 

research on DTM, there are several factors related to the quality of DTM and the 

interpolation method is one of them. In this study, we focused on the interpolation 

methods for different terrain surface on the accuracy of interpolated heights. 

Starting from a review of digital terrain modeling, in which interpolation is 

significant section. Data structure and visualization were also introduced since they 

related to our following study as well. In this study, comparisons were performed 

between Inverse Distance Weighted (IDW) and Radial Basis Functions (RBFs) to test 

their performances on different terrain surface such as mountainous, flat and 

real-world. A comprehensive comparison was also implemented not only on the 

aspect of Root Mean Square Error (RMSE), but also on the interpolation error and 

time consumption of each selected interpolation methods. Inverse multiquadric 

(IMQF) performed the best in all basis functions on the mountainous terrain surface 

also with the best time consumption. However, IMQF obtained a worst result in flat 

terrain compared to other basis functions. IDW was proved to be the poorest 

interpolators for all the terrain we tested. 

The results obtained in this study allow us to observe the characteristics of each 

selected interpolation methods when they are applied to different terrain surface, 

which can show how the accuracy of digital terrain model is related to interpolation 

method and topography. 

 

Keywords: digital terrain models, automation terrain generation, interpolation 

methods.   
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Abstract 

I modelli digitali di terreno (DTM), inventati nel 1950, vengono utilizzati in 

molte applicazioni. Essi sono, infatti, uno strumento fondamentale per l'idrologia, la 

cartografia, la geologia e geomorfologia, etc. L'accuratezza delle DTM è una 

caratteristica spesso importante nelle applicazioni, per questa ragione sono stati 

sviluppati vari metodi che permettono di interpolare tali modelli di terreno al fine di 

aumentarne la qualità. In questo lavoro, vengono presentati e confrontati alcuni di 

questi metodi. 

Il lavoro parte dall'analisi della letteratura relativa ai modelli digitali di terreno, 

alla loro interpolazione, visualizzazione e rappresentazione in termini di strutture dati. 

Vengono poi introdotti e confrontati, su tipologie differenti di terreni (pianura, 

montagna, etc.), due metodi di interpolazione: Inverse Distance Weighted (IDW) e 

Radial Basis Functions (RBFs). Detti metodi sono stati confrontati sia a livello 

dell'errore quadratico medio valutato sui dati ricostruiti che del tempo di calcolo 

necessario per eseguirli. 

Dai risultati conseguiti si osserva che il metodo RBF basato su funzioni "inverse 

multiquadric" è il migliore, sia a livello di errore di interpolazione che di tempo di 

computazione, su terreni montani. Su terreni pianeggianti, invece, sono stati ottenuti 

risultati migliori con funzioni a base radiale differenti. Il metodo IDW, invece, è 

risultato il peggiore in tutte le tipologie di terreno provate. 

In conclusione, quindi, i risultati mostrati in questo lavoro permettono di 

illustrare l'accuratezza di ciascun metodo di interpolazione in funzione della 

topografia del terreno considerato. 

 

Keywords: modelli digitali di terreno, generatore automatic di terreno, metodi di 

interpolazione. 
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Chapter 1 

Introduction 

Topography is one of the most important landscape controls acting on the terrain 

surface. It is a field of planetary science comprising the study of surface features of 

the earth, which allows us to see and study the shapes and landforms on a 

two-dimensional map. Topography maps can examine the geological environment, 

and how organisms, climate, soil, water, and landforms produce and interact. One of 

the most widely used data structures employed to store and analyze information on 

the topography in a Geographic Information System (GIS) environment is Digital 

Terrain Model (DTM). A DTM is a numerical data file which contains the elevation of 

the topography over a specified area. Different data collection techniques can be 

applied to generate DTMs such as satellite-based techniques, photogrammetric 

methods and laser scanning. Meanwhile, DTMs can be generated by contouring 

digitized from topographic maps. However, the generated DTMs is an approximation 

of the real world [4]. There will be errors in the process of generation. And since 

DTMs has a lot of applications, the quality of DTMs is particular significant. 

The factors that have influence on the quality of the DTM can be separated into 

three classes [6]: The first factor is morphology such as flat, hilly or mountainous 

which can be seen as a matter of uncertainty [5] [7]. The second one is the data 

collection techniques, the accuracy of source data varies with techniques such as 

satellite-based techniques, photogrammetric methods and laser scanning. The 

remaining factor is interpolation methods which allow us to convert scatter data points 

to a continuous surface. 

A series of researches was conducted on the relation between DTM accuracy and 

interpolation methods. Research of El Hassan [8] on the quality comparison of some 

spline interpolation methods and the test areas is in Cairo (Egypt) and Riyadh (Saudi 

Arabia). It shows that the pseudo-quintic spline algorithm gives the best accuracy of 
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DTM. 

Chaplot [7] et al used some interpolation methods like kriging, inverse distance 

weighted, multiqudratic radial basis function and spline for generating DEM in 

various regions of France. The author has presented that for a high density of sample 

points, all of the interpolation methods perform similarly; and for a low density of 

sample points, Kriging and inverse distance weighted interpolation methods perform 

better than the others. However, the research carried out by Peralvo in the two 

watersheds of Eastern Andean Cordillera of Ecuador presents that the inverse distance 

weighted interpolation method produced the worst quality of DTM. 

The goal of the study our study was to compare the quality of different 

interpolation methods on the derived DTMs with different terrain surface including 

flat, mountainous and a real-world terrain surface. The interpolation methods 

compared were Inverse Distance Weighted (IDW), Radial basis functions (RBF) with 

five basis functions, such as multiquadric function (MQF), Multilog (MLF), inverse 

multiquadric (IMQF), natural cubic splines (NCSF), and thin plate splines (TPSF). 

The accuracy of each interpolation method was quantified using the Root Mean 

Square Deviation (RMSE). 

With respect to thr goald of our study, the whole work has been organized with 

the following structure: 

Chapter 2 presents a broad technical background of DTM, it also briefly 

discusses the steps taken in digital terrain modeling. We also gave a detailed 

description on especially on the data structure and visualization techniques since they 

play a role in the following chapters. 

Chapter 3 provides a description of the automation terrain generation, since two 

DTMs we used in the study were derived from automation terrain generation. It also 

describes in detail the process of generating a DTM based on different methods and 

parameter determination in each methods. 

Chapter 4 and Chapter 5 introduce the principles of each selected interpolation 

methods , and the process of implementation in Matlab. 
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Chapter 6 describes the evaluation of the interpolation methods which includes 

the description of the study area, assessment method of the comparison, the results 

and the final conclusions. 
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Chapter 2 

Digital terrain models and maps 

2.1 Introduction  

A digital terrain model (DTM) is a topographic model of the bare ground that can 

be manipulated by the computer programs, usually for earth, moon, or asteroid. DTMs 

have been used in the applications of geosciences since 1950s [10] and since then they 

have become a major constituent part in geographical information processing. 

There are two general ways to represent a surface, one is from the Mathematic 

function: Z(X,Y)=f(X,Y, Coefficients).the other is the Image :Z(X,Y) for a given set 

of points. A DTM may be understood as a digital representation of a portion of the 

terrain surface, since overhanging cliffs are relatively rare on earth, topographic 

surfaces are often represented as „fields‟, which means for the surface models, they 

have the unique Z-values over X and Y coordinates. Application-specific systems are 

provided to model cliffs when they are very crucially important. 

Another digital model that should be mentioned is the digital elevation model，

which stores continuously varying variables such elevation, groundwater depth or the 

buildings on earth. In contrast to digital elevation model (DEM), DTM is often used 

as a generic term for DTMs and only representing elevation information without any 

further definitions of the surface.  

DTM provides a basis for a great number of applications in the earth and the 

engineering sciences. Compared to traditional representation of the terrain, the DTM 

has the following specific advantages: 

 Greater feasibility of real-time processing. Data modification and updating are 

very flexible in digital form. 

 DTM keeps its precision as time goes by. 

 Terrain can be represented in a variety of forms such as topographic maps, cross 
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or vertical section when using DTM. 

The process of the construction of a DTM surface is called digital terrain 

modeling, different techniques for the generation of DTMs have been developed since 

their inception more than fifty years ago [10] [24], the digital terrain modeling is 

introduced as following. 

2.2 Digital Terrain Modeling  

2.2.1 Structure of Digital Terrain Modeling  

In this process of digital terrain modeling, the sampling points are obtained from 

the terrain, and the model is created with a certain density and distribution .In order to 

estimate elevations in the regions where data exist, an interpolation is applied to refine 

the surface. In general, digital terrain modeling encompasses the following tasks [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DTM application 

DTM visualization 

DTM interpretation 

DTM manipulation 

DTM generation 

Data 

capture 

Figure2.1. The framework of a digital terrain modeling  
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As shown in Figure2.1, five tasks are defined in digital terrain modeling: 

 DTM generation: Sampling of the original terrain data and model construction. 

 DTM manipulation: Modification and refinement of the DTMs, and the 

derivation of intermediate models. 

 DTM interpolation: Analysis of DTMs, information extraction from DTMs. 

 DTM visualization: Display of elements and the derived information of DTMs. 

 DTM application: Development of appropriate models for specific fields. 

2.2.2 Data structure for digital terrain models 

The original data must be structured in a form in order to handle the subsequent 

operations of terrain modeling. Today, there are two main structures for representing 

DTMS, one is rectangular grid, the other one is called triangular irregular network 

(TIN) [12], as shown in Figure2.2. 

Rectangular grid is one of the simplest ways of representing the DTM, the terrain 

surface is represented as a set of elevations for points regularly distributed on the x 

and y coordinates. The simplicity of algorithms is the advantage of the grid structure. 

Besides, it will lead to memory saving. However, regular grids cannot be adapted to 

the complexity of the terrain surface. Thus, an excessive number of data points are 

needed to represent the terrain by interpolating to acquire a certain level of accuracy 

of the terrain.  

TIN is a vector-based representation of the physical terrain surface, made up of 

irregularly distributed points and lines with three-dimensional coordinates that are 

arranged in a network of non overlapping triangles. Compared with rectangular grid, 

TIN needs larger storage and since the topological relations have to be computed or 

recorded, TIN is more complex and more difficult to handle than rectangular grid. But 

TIN can be more accurate to display the detail of the terrain [12] [15]. 

Considering the advantages and disadvantages of rectangular grids, TINs, It is 

clearly to note that no data structure is superior for all tasks of digital terrain modeling. 
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In our experiment, we prefer to use the rectangular grid since it is easier to handle and 

the evenly distributed points can be used to perform the evaluation better. 

 

 

 

 

2.2.3 Visualization of the digital terrain models 

In order to display DTMs in graphical form, visualization plays a vital role in the 

digital terrain modeling. It has a close relation with interpolation since results of 

interpolation steps need to be displayed, the interpolation operation may also make 

improvements in visualization. 

Visualization mainly pursues two goals: one is interactive visualization, which 

helps the researcher explore models and refine hypotheses; the other is static 

visualization, which is used to compare the results and the concepts. Some traditional 

forms of visualization are: 

 Contours 

Contour lines are used to represent the elevation of the terrain surfaces, as shown 

in Figure2.3. At present, it is one of the most widely used techniques for displaying 

relief. However, the major drawback of contours is that they could not directly show a 

visual impression of topographic forms. 

Figure2.2 The structures of triangular irregular network (on the right) 

and rectangular grid (on the left) 
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 Hill shading 

It displays the hypothetical illumination of a terrain surface according to a 

specified azimuth and altitude for the sun and gives maps a richly textured appearance 

(Figure2.4) .It provides a convenient way to qualitative cartographic relief depiction. 

The application of this method for cartographic purposes was first automated by Yoeli 

[13][14], and since that it has become a standard terrain display technique. 

Nevertheness, such maps may also have similar appearances, and generally it is hard 

to highlight the areas in which we are interested. 

 

Figure2.3 Visualization of contour lines 

Figure2.4 Visualization of hill shading 
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 Perspective views 

Since the advantage of hill shading (Figure2.5) and contours is that all parts of 

the terrain surface are visible. On the other hand, perspective views can provide more 

immediate visualization results. The main issues that to be carried out in the 

perspective display are the projection of the 3-D surface on to a 2-D medium, and the 

elimination of hidden sections from the display. 

 

 

2.3 The accuracy of the digital terrain models 

In fact, the quality of DTMs is characterized by several issues, such as variables 

as, terrain ruggedness, sampling density and the interpolation method. In order to 

obtain a good DTM, we need to treat two phases with great care. The first phase is the 

technology employed to obtain sampling points. At present, several data sources are 

popular for digital terrain modeling: 

 Contours digitized from topographic maps are a relatively cheap data source; 

 Analytical photogrammetry is another technology that allows the measurement of 

selected points from a series of aerial images. However, it could not be applied to 

Figure2.5 Visualization of perspective views 
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wooded areas, for the reason that the visibility of the terrain surface is poor. 

 Digital photogrammetery perform a regular data grid that consists of data points 

from automated selection. 

 Laser scanning is relatively a new technique which can collect very dense terrain 

datasets, and it can also be used in wooded areas. 

 

In this chapter, we paid much attention to the data structure and visualization in 

digital terrain modeling since the two sections related to our following experiment 

closely. Certainly, the interpolation process in digital terrain modeling is also the key 

point, because it could considerably affect the quality of the DTM generated, and we 

will explain this process in detail in the chapter 4 and chapter 5. 
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Chapter 3 

Automatic Terrain Generation 

3.1 Introduction 

In our study, our researches on the interpolation methods are tested on the terrain 

generated by Automatic Terrain Generation [1]. The tool is a process which creates 

elevation values throughout a two dimensional grid and capable of producing an 

approximately realistic-looking terrain. To have a better understanding and 

application of the Automatic Terrain Generation, we prefer to introduce the algorithms 

in the following sections. 

3.2 Outline of the Algorithms 

Three basic algorithms are shown in the Automatic Terrain Generation tool 

package which includes algorithms, such as Generate_brownian_mesh, 

Generate_brownian_tri, Generate_terrain. Three of them are based on different 

principles, however ,the function of F=TriScatteredInterp (X, Y, V) is used in all of 

the algorithms, the function creates an interpolator F that fits a surface of the form 

V=F (X,Y) to the scattered data in (X, Y, V ).In the process, three different principles 

are implemented to produce three dataset of scattered points, then the interpolator is 

applied to each of them in order to generate the data points distribute regularly on the 

mesh grids. All of the generated mesh grids can be predefined at the beginning except 

for the algorithm of Generate_terrain. Besides, a number of parameters can be set as 

the inputs to help the user control the terrain generated. For example, the parameter n 

is used in all algorithms, it defines how many iterations that the process will run. As a 

result, a big n will make the terrain surface become more complex, and 

correspondingly, a small n sometimes could not reflect a realistic-looking terrain that 

we expect. The details of the three algorithms are shown as following: 
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1. Generate_brownian_mesh. 

The method（Figure 3.1）is also known as the midpoint displacement method. It 

can generate a mesh of points exhibiting „‟fractal Brownian motion”, a random mesh 

that looks like terrain. The output “ height ‟‟mesh maps over[0,0] to [1,1] with 2^n+1 

points along each axis for(2^n+1)^2 total data points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function: 

 [zm,xm,ym]=generate_brownian_mesh(n,zm) 

Inputs: 

 n  -Number of iterations 

 zm  -Initial heights 

Outputs:  

 hm  -“z” data corresponding to mesh 

Load inputs  

 

Load inputs  

Make new mesh and 

update x and y meshes 

Interpolate and add 

new heights to new 

mesh 

N iterations 

Make initial x and y 

meshes 

Output xm, ym, 

hm 

Figure3.1 The flow chart of the algorithm of generate_brownian_mesh 
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 xm  -“x” data corresponding to mesh 

 ym  -“y” data corresponding to mesh 

 

2. Generate_brownian_tri 

It generates a random mesh that more-or-less looks like terrain using a Brownian 

fractal method.(Figure3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Load inputs 

Initial values 

of x, y, h, r 

Generate arrays of 

x, y, h, r  

Interpolator 
Generate new ranges 

for x and y 

Interpolate to get new 

range of h and r  

Generate mesh 

grid of xm,ym 

based on the 

resolution   

Final arrays of x, y, 

h, r 

Mesh output xm, 

ym, hm 

Figure3.2 The flow chart of the algorithm of generate_brownian_tri 

N iterations 
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Function: 

 [hm,xm,ym,rm]=generate_brownian_tri (ni, nm, r0, el, rr) 

Inputs: 

 n  -Number of iterations 

 nm  -Resolution of final map 

 r0  -Initial roughness of terrain 

 el  -Initial elevation of terrain 

 rr  -Roughness of roughness over terrain(how much roughness changes) 

Outputs: 

 hm  -Height mesh 

 xm  -“x” data corresponding to mesh 

 ym  -“y” data corresponding to mesh 

 

3. Generate_terrain 

This function generates a series of points that approximate terrain according to a 

simple algorithm and very few parameters (Figure3.3). 

Function:  

[x, y, h, hm, xm, ym]=generate_terrain(n, mesh_size, h0, r0, rr) 

Inputs: 

 n  --Number of iterations of algorithm to perform. 

 mesh_size-Size of the output mesh 

 h0  -Initial elevation 

 r0  -Initial roughness (how much terrain can vary in a step) 

 rr  -Roughness roughness(how much roughness can very in a step) 

Outputs: 

 x, y, and h  -Vectors of the points comprising terrain 

 hm  -Height mesh 

 xm  -“x” data corresponding to mesh 
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 ym  -“y” data corresponding to mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Comparison and Our option  

The characteristics of the three algorithms are compared: 

 Generate_brownian_mesh:Fastest, varies more along grid lines 

Figure3.3 The flow chart of the algorithm of generate_terrain 

Load inputs 

Initial values of 

x, y, h, r 

Generate arrays of 

x, y, h, r  

Interpolator 
Generate new points 

from old points 

Update the arrays of 

x,y,h,r 

Normalization 
Final arrays of x, y, 

h ,r 

Output x, y, h Mesh output xm, 

ym, hm 

N iterations 

 



16 

 

 Generate_brownian_tri :Slower, but grid less 

 Generate_terrain:Slowest, but best for terrain in particular 

According to the comparison above, and in our experiment we want to generate 

the terrain surface with a good user control in the size of the mesh grid. Therefore, we 

selected the algorithm of Generate_brownian_tri and the meansurement unit for 

length was based on meter for all the terrain that used in the experiment. A example of 

this algorithm shows in Figure 3.4. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure3.4 A terrain generated by Generate_brownian_tr 

Unit :( m ) 
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Chapter 4 

Inverse Distance Weighted (IDW) 

4.1 Introduction 

Interpolation is the process of predicting the value of elevations at un-sampled 

sites from measurements made at point locations on the same terrain. It is used to 

convert data from the point observations to the continuous surface so that the sampled 

spatial patterns by the measurements can be compared with the spatial patterns of 

other spatial entities. The principle behind spatial interpolation is that, on average, 

values at points close together have more correlations and similarities than the points 

further apart. In the following chapters, we will introduce two of the most popular 

interpolation methods. One is Inverse Distance Weighted (IDW), the other is Radial 

Basis Functions (RBF). The IDW interpolation is based on the concept of Tobler‟s 

first law from 1970.The IDW was developed by U.S. National Weather Service In 

1972 and is classified as deterministic method. This is because of the lack of 

requirement in the calculation to get specific statistical assumptions, thus IDW differs 

from stochastic method like Kriging.  

4.2 Method 

4.2.1 Basis principle of IDW 

Inverse Distance Weighted is an exact local deterministic interpolation technique, 

which is one of the most widely used methods for scattered data [16]. IDW assumes 

that the value at the interpolation location is a distance-weighted average of the values 

at sample points within a defined neighborhood surrounding the interpolation point 

[17], that means the closest observations must carry more weight in determining the 

interpolated value in one point. It estimates the value of variable Z in a non-sampling 
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point 
0x  from the following expression (4.1), which is called Shepard method [23] : 

                
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Where: 

  iw d : is the weight function on the n sampling points which is used in the 

calculation. The general form of w equals to ud 

. 

  iz x : is the elevation of every one of these n points. 

   : shows the distance between each point and    . 

 n: is the number of measured sample points within the neighborhood defined for 

0x . 

 

4.2.2 Power parameter 

u  in the weight function is called power parameter, it shows the significance of 

the surrounding points upon the interpolated value in the IDW. When the distance 

between the measured sample point and the interpolated point increases, the weight 

that the measured sample point has on the interpolated point will decrease, which 

means, a higher power will result in less influence from distant points. Generally, the 

typical value of power parameter is 2, and in our study, we find the interpolation 

method were not sensitive to the parameter when we moved in a 1 to 3 interval, 

finally we set the value to 2 for all of the experiments in our study. 

4.2.3 The search neighborhood 

(4.1) 

0xid
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In fact, the larger the relevant neighborhood is selected, the large the number of 

scattered frequency samples may be incorporated into the interpolation, and the more 

accurate interpolation results could be expected [27]. However, on the one hand, a 

large number of sample neighbors means also a higher computational expense, which 

will correspondingly slow down the reconstruction speed .One the other hand, the 

locations of sample points get farther away from the interpolation point, the measured 

values will have little influence with the value of the interpolation point, to improve 

the computational time, a trade-off between the reconstruction time and the 

interpolation accuracy has to be made. Therefore, it is practical to limit the number of 

measured values that are used to do the interpolation by specifying a search 

neighborhood. The following Figure4.1 shows a typical description of the search 

neighborhood, where R indicates the search radius and the sample points around the 

interpolation point within R will be selected [17]. 

 

 

 

4.3 Implementation in Matlab 

 

Figure4.1 The display of the search neighborhood 

in IDW 
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The IDW interpolation method was implemented in Matlab on the basis of a set 

of sample points data from a given terrain to produce more interpolation points .The 

Implementation flow is shown in Figure 4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure4.2 Implementation flow of IDW 
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Chapter 5 

Radial Basis Functions (RBF)  

5.1Introduction to Radial Basis Functions 

The history of Radial Basis Functions (RBF) approximations goes back to 

1968,when multiquadric (MQ) RBFs were first used by Hardy to show topographical 

surfaces with sets of sparse scattered measurements [18]. Before the MQ, 

trigonometric and algebraic polynomials were used. The MQ is important because it 

allows for scattered data to be converted into a very accurate fit model of a graph or 

surface [20]. 

The next significant time in RBF history was in 1986 when an IBM 

mathematician Charles Micchelli proved that the system matrix for the MQ method 

was invertible [21]. After four years, physicist Edward Kansa first used MQ method 

to solve different equations [22] and since Kansa‟s discovery, research in RBF 

methods has grown rapidly. The RBF interpolation has become a powerful tool in 

nonlinear multivariate approximation theory through scattered data due to its great 

approximation properties [19]. 

5.2Method 

5.2.1 Basis principle of RBF 

Radial Basis Functions are a series of exact deterministic interpolators that 

include different basis functions dependent on the distance between the interpolated 

point and the sampling points. A Radial Basis Function is a function of form: 

 

 

 
   

1

( )
n

i i

i

s x p x x x


   (5.1) 
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Where: 

  s is the radius basis function. 

    is a low degree polynomial, typically linear. 

   is a real valued function also called the basis function. 

 
i ‟s are the RBF coefficients. 

 
cx ‟s are the RBF central points. 

The RBF consists of a weighted sum of radial basis function   located at the 

centre is 
ix and a low degree polynomial p .Given a set of n points 

ix  and values
if , 

the process of finding an RBF, such that, 

 i is x f , i =1,2,….n 

Is called fitting. The fitted RBF is defined by the coefficients of the basis function in a 

summation 
i and the coefficients of the polynomial  p x . 

With respect to (5.1), we choose a linear function to represent the polynomial 

term   where, for the two-dimensional case, 0k R and 

2 2

1k R  , 0k and 1k  represent the constant and linear terms of the polynomial  p x , 

so we can rewrite the RBF expression as it follows:  

 

 

 

To solve the unknown coefficients 0k , 1k  and i , we implemented the process 

of “real” interpolation on a terrain . In this way, defining the locations of the sample 

points  2

1,[ ...... n

nx x x R   and the elevations of the sampling points 

 2

1,[ ...... n

nh h h R   , put them into the equation (5.3) and we can get: 

( ) , 1,......i is x h i n      

In order to calculate the unknown coefficients in (5.4), the following additional 

constraints are imposed, which can represent the conservation of total force, such that: 

     0 1

1

n

i i

i

s x k k x x x


   

   0 1p x k k x 

(5.2) 

(5.3) 

(5.4) 

p
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The unknown coefficients are than determined from the additional constraints (5.5), 

which leads to the following symmetric linear expression: 

0

1

1

1 0 0 0

0 0 0

C

T T

C

T T

A x h

k

x k

     
     


     
          

 

Where n nA R  represents the interpolation matrix  ,i j i jA x x  , and 
11 n

C R 

represents a unit vector. The unknown coefficients can be obtained by solving the 

equation (5.6).We can obtain a final interpolator after putting the coefficients back 

into the equation (5.3), which could be applied to the interpolation in the terrain. 

5.2.2 Basis Functions 

basis functions is the form    2
=   , where +  ： .Some of The 

the most commonly used basis functions are: 

1.Multilog Functions:

 

   2 2logr c r  
    

 

2.Inverse Multiquadric Functions: 

 
 2 2

1
r

c r
 

   

 



(5.5) 

(5.6) 
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3.Natural Cubic Splines Functions: 

   
3

2 2 2r c r  
  

  

4. Multiquadric Functions: 

   2 2r c r  
 

 

5.Thin Plate Splines: 

 

 

 

The choice of basis functions will determine which methods are available for 

solving equation (5.6), and whether such a solution even exists. If the interpolation 

matrix A  is symmetric positive definite [19] then RBF interpolation problem always 

admits a unique solution. One property of a positive definite matrix is that all its 

eigenvalues are positive. Therefore, equation (5.6) can be solved since a positive 

definite matrix A  is invertible. This could be guaranteed by making that every basis 

function are centered on each sample points, this results in i j j ix x x x   , which 

means ij jiA A . 

5.2.3 Selecting the smoothing factor c 

Adding a smoothing factor c in the basis function was proposed by Hardy, since 

he found that it was an good method for approximating a topographic surface from 

sparse, scattered measurement. Besides, it was able to account for rapid variations of 

the topographic surface. Obviously, the smoothing factor c can have a marked 

influence on the interpolation results obtained. 

Figure5.1 five pictures show the response of each selected basis function basis on 

     2 2 2 2logr c r c r   
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different smoothing factors. As we can see, a small smoothing factor corresponds to a 

„‟sharp‟‟ basis function, and a bigger c corresponds to a „‟flatter‟‟ basis functions. 

However, for Natural Cubic Splines function (NCSF), a small c leads to a 

corresponding to a „‟flatter‟‟ response. 

 

 

 

 

 

 

 

 

(c) 

(a) (b) 

(d) 
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The characteristic feature of basis functions is that their response decreases or 

increases monotonically with the distance from a central point. For the selected basis 

functions, as shown in Figure5.1, all the response of each selected basis function are 

plotted, NCSF and Thin Plate Splines function (TPSF) have a global response, 

Multiquadric function(MQF) shows a smooth response for variation of the distance , 

the Multilog function (MLF) and Inverse Multiquadric function(IMQF) give a 

significant response only in the neighborhood near the central point, the difference is 

IMQF shows a positive response and MLF shows the opposite, a negative response. 

Different smoothing factors correspond to different approximation resulting from 

RBF interpolation. Finding the optimal smoothing factor that will produce the most 

accurate approximation is a topic of current research, and selecting the constant value 

depends fundamentally on the number, elevation, and spatial distribution of the 

sampling points. There are various empirical type approximations, as those proposed 

by Hardy [18], together with others like recursive algorithms which try to work out 

the value of c which minimizes the global error of the interpolated surface [25]. In our 

study, we prefer to find a optimized smoothing factor by using Optimization Toolbox 

[2], and this will be presented in chapter6.  

Figure5.1 Response of each selected basis function based on different 

smoothing factors. (a) MLF, (b) IMQF, (c) MQF, (d) NCSF, (e) TPSF 

(e) 
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5.2.4 Radial Basis Function Networks 

Basis functions are simply a class of functions which can be implemented in any 

sort of model (linear or nonlinear) and any sort of network (single-layer or 

multi-layer). However, radial basis function networks (RBF networks) have been 

assocated with basis functions in a single-layer network (Figure5.3) since Broomhead 

and Lowe‟s 1988 seminal paper [26].  

 Output layer 

 

 

   

 .  .  . .  .  .   

 Hidden layer  

 

 

 

 .  .  .  .  Input layer 

 

 

 The input layer serves as input distributor to hidden layer. 

 The node in the hidden layer is a basis function 
ix x   which is represented 

as ( )h x in Figure5.3. Then the hidden layer calculates the distance between the 

center and the network input vector and transfer the result to the radial basis 

function. 

 The output is calculated by a linear combination weighted sum of the radial basis 

function plus the bias      
1

n

i i

i

s x p x x x


   . 

S(x) 

Figure5.2 The traditional radial basis function network 
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5.3.Implementation in Matlab 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Figure5.3 Implementation flow of IDW  
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Chapter 6 

 Evaluation of the interpolation methods 

6.1 Materials and Methods. 

6.1.1 Data collection 

It can be seen obviously that the inclusion of more check points to do the 

evaluation will lead to a more reliable results. However, it will be costly to include a 

large number of check points in a lot of practical applications. Therefore, in our study, 

we employed three terrain surfaces, the first two pre-defined terrain surfaces for 

testing and comparing selected interpolation methods were generated by using the 

tool of Automatic Terrain Generation, namely a flat surface and a mountainous 

surface, which are shown in Figure6.1.1. Both areas were 1*1, and 11*11 data points 

in total. Table 6.1 presents the values we selected for generating the terrains in the 

Automatic Terrain Generation. 

 

 

 

Unit: (m)  

Figure6.1.1 Flat terrain (on the left) and mountainous terrain (on the right) 
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Type of 

relief 

Number of 

iterations 

Initial 

roughness 

Initial 

elevation 

Resolution 

of map 

Roughness of 

roughness 

Mountainous 5 0.3 1 11 0.9 

Flat 5 0.1 0.5 11 0.2 

 

 

The „‟true‟‟ data of the third DEM was derived from Salisbury, Maryland in the 

United States (Figure6.1.2), which is in a USGS 1-degree native format and 

downloaded from WebGIS website. The DEM of Salisbury provides coverage in 1 by 

1-degree block and consists of 401*401 data points located in a mesh grid, the 

elevation ranges from 0 to 30 meters. Since the experiment scope of the district is big,  

 

 

Table6.1 Parameter determination in Automatic Terrain Generation 

Figure6.1.2 The third study area 

Evaluation 

(m) 
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and not easy to present the difference of the interpolation results on the screen of 

computer, so we pick a part in the district, as shown in figure 6.1.2 and marked as 

surface3, which is a area consists of 41*41 data points. The area was chosen because 

it allows the evaluation of the interpolation methods under different topography 

conditions changing in relatively small distances. Besides, one should be mentioned 

that using of DEM has little difference with using of DEM in our experiment. 

6.1.2 Data processing. 

We divided the original data into two subsets in order to carry out the accurate 

assessment of the interpolation results. One subset is used to do the interpolation, the 

other is used to do the evaluation, since the interpolation results should reflect the 

closeness between the original data and the reconstructed data, which means the 

interpolated surface should as far as possible keep the characteristic of the original 

one  

In figure6.1.3, we can observe the flowchart of the scheme that we employed for 

the Data processing. There are three main steps as following: 

 Step one: The data points were divided into two subsets, which were named as 

subset1 and subset2. The subset1 took the first, the third …data points both in x 

and y directions, which consisted of 6*6 data points with a step of 0.2 between 

each point on the x and y coordinates, the subset2 took the rest data points 

which were used as the check points in the step three. 

 

 Step two: Implement IDW and RBFs interpolation methods respectively in 

subset1 to reconstruct the data points which have same x and y locations 

corresponding to the data points in subset2  

 

 Step three: Compare the elevations of between the data points in subset2 and 

the reconstructed data points in step two, and finally obtain the corresponding 

Root Mean Square Error value. 
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6.1.3 Organization of the comparison  

In order to have a better understanding of the characteristics and the performance 

of IDW and RBF interpolation methods on different terrain, we organized the 

comparison by following this process (Figure6.1.4). There are three topographic 

Original dataset 

Take the first, third, 

fifth,…points both in x 

and y directions to 

extract a subset1 

Extract another 

subset2 with the rest 

data as the check 

points 

Implement IDW and RBF 

methods on the subset1 to 

reconstruct the points 

corresponding to those in 

subset2 

Comparison between the subset2 

and the interpolation points 

Obtain Root Mean Square Error 

value 

Figure6.1.3 Flowchart of scheme used to evaluate the interpolation accuracy 
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surfaces using in our experiment, two of them were generated by the Automatic 

Terrain Generation, another was derived from WebGIS. At the beginning, the 

interpolation process was carried out using the methods of IDW and RBF respectively. 

And before implementing interpolation methods, we computed the optimal value of 

the smoothing factor by implementing the Optimization Toolbox and also set the 

optimal search radius. Then these values were applied to RBF and IDW to obtain the 

corresponding results of the interpolation. After it, we did a comparison to show how 

are the accuracies of the two interpolation methods on the same topographic surface. 

Finally, we gave a comprehensive comparison on all the results we obtained, in order 

to show the performance of the selected interpolation methods on different terrain. 
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Figure6.1.4 Organization of the comparison 
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6.1.4 Assessment methods 

The test of accuracy of the interpolation methods was based a measure, namely 

the Root Mean Square Error(RMSE) which is the mostly widely used global accuracy 

measure for evaluating the performance of DTM.The form of RMSE is as followed. 

2

1

( )
n

estimated real

i i

i

Z Z

RMSE
n








 

Where: 

 i  is the number of each elevation. 

 estimated

iZ  is the altitude value of interpolation point. 

 real

iZ is the altitude value of the original point. 

 n  is the total number of points in the evaluation. 

 

The error is derived by squaring the differences between real and estimated 

points, adding those together, dividing that by the number of test points, and then 

taking the square root of that result. The RMSE expresses an extent to which an 

interpolation value differs from a valid value. A higher value corresponds to a greater 

difference between two datasets.  

In order to get the best performance of each basis functions in RBF, we 

introduced Optimization Toolbox and optimize the smoothing factor in each basis 

functions. 

6.2 Results. 

6.2.1 Optimization of the parameters 

To achieve a best interpolation results, the smoothing factor was optimized by 

employing the Optimization Toolbox. After selecting solver of the constrained 

(6.1) 
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nonlinear minimization and setting the bounds between 0 and 2, and also a start point 

of 0.1, the minimum RMSE with the optimal smoothing factors was obtained, as 

shown in Table6.2.1. 

We can also observe that when the topographic surface become rolling, the 

optimized smoothing factor trend to be smaller, since .the optimal smoothing factors 

on mountainous terrain are smaller than those on flat terrain, and the smoothing 

factors applied in NCSF basis function are always the smallest, with the values of 

0.074 ,0.164 and 0.01 respectively on the three terrain. By contrast, the smoothing 

factors in IMQF are the biggest, which are 0.284, 0.512 and 0.046 on mountainous, 

flat and real-world terrain respectively.  

 

Basis function IMQF MLF MQF NCSF TPSF 

Smoothing 

factor on 

mountainous 

0.284 0.244 0.2 0.074 0.148 

Smoothing 

factor on flat 
0.512 0.445 0.369 0.164 0.281 

Smoothing 

factor on a 

real-world 

0.046 0.038 0.028 0.01 0.011 

 

 

 

 

 

Table6.2.1 Optimization of the smoothing factor in each basis functions 

In our study on the IDW interpolation, it is also noticed that different search 

radius also have influence on the interpolation accuracy, in Figure6.2.2, we selected a 

range of the search radius from 0.2 to 0.9 since the resolution is 0.1 and the area is 

1*1.For the mountainous terrain surface, the RMSE can reach its minimum value of 

0.1605 when the search radius is set at 0.2 and 0.3. As the search radius increasing, 

this will also lead to observably increase in the RMSE value. The search radius raises 
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to 0.9 where the maximum RMSE value exceeds 0.2, at 0.219. 

 

 

 

 

 

 

 

Figure6.2.2 Relationship between search radius and RMSE (m) on 

mountainous terrain (a) and on flat terrain (b) 

(b) 

(a) 



37 

 

A similar tendency can be observed on the flat terrain surface Moreover, as 

presented on Figure6.2.2 (b), we can see a more significant increase on RMSE value 

when a larger search radius is selected. The influence of the variation of search radius 

will have more effect on the flat terrain. Nonetheless, the RMSE value still keeps at a 

very low level on flat terrain surface, with a minimum value of 0.014 and a maximum 

value of 0.0199.  

We also applied different search radius to the real-world terrain to see the changes 

on the topographic surface. As we can see in Figure6.2.3, when the search radius 

increases, the features of the terrain become smoother, the unsampled peaks within 

the maximal value can also not be reconstructed. Because of this property, some 

features like valleys or ridges are obscured. 

 

 

 

 

 

The solution to this drawback is to consider only data within a certain distance 

about the interpolation point. In our experiment, the search radius within double of the 

distance between the sampling points can lead to an optimal RMSE value. 

 

Figure6.2.3 Effect of different search radius(r=0.05 on the left and 

r=0.2 on the right) 

Unit :( m ) 
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6.2.2 Analysis on the mountainous terrain surface 

We can see the capability of reconstruction of each selected interpolation method 

from Figure 6.2.4  

Figure6.2.4 Comparison of the interpolation errors between selected interpolation 

methods on mountainous for (a) IDW, (b)IMQF, (c)MLF, (d)MQF, (e)NCSF, (f)TPSF 

 

 

 

 

 

 

(a) 

 Altitude: (m) 
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(b) 
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(c) 

(d) 
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(e) 
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It has been demonstrated that interpolation accuracy can vary to a certain degree 

with different interpolation algorithms. The level of this error is important for various 

specific applications. Therefore, six of the most widely used interpolation algorithms 

were compared with different terrain surfaces. 

Figure6.2.5 (a) presents the comparison on the mountainous terrain surface. From 

the tracking performance of the interpolation dataset on the original dataset, we can 

see all the interpolation algorithms can perform well on the points with corresponding  

(f) 

(a) 
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low rate of change of the slope, and it shows the distortion specifically on the tip of 

the terrain with a high rate of change of the slope. Besides, on the figures of the 

absolute elevation error, It can be noticed that there is a corresponding higher absolute 

error in the IDW interpolation, even on some sample points, all the methods have 

higher absolute error. This was verified when we compared the RMSE value of each 

interpolation algorithms. 

As we can see in Figure6.2.5 (b), from the comparison, the IDW algorithm 

provided the worst interpolation and produced the greatest RMSE value of all the 

methods, other five basis functions in RBF performed a corresponding lower RMSE, 

smaller than 0.145.The details of the comparison among five selected basis functions 

are shown in Figure 6.2.5(b). The MQF, IMQF, TPSF had nearly similar results, 

NCSF was the best interpolator with the smallest RMSE value for the mountainous 

terrain surface, and MLF was the second suitable interpolator for the mountainous 

terrain. 

Figure6.2.5 (a) Comparison between IDW and RBFs on mountainous terrain 

 (b) Comparison among different basis functions on mountainous terrain 

(a) 
(b) 

Unit: (m)  
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6.2.3 Analysis on the flat terrain surface 

After a comparison on the mountainous terrain, we started to implement the 

evaluation on the flat terrain. The process was the same as before. 

 

Figure 6.2.6 Comparison of the interpolation errors between selected interpolation 

methods on flat for (a) IDW, (b)IMQF, (c)MLF, (d)MQF, (e)NCSF, (f)TPSF. 

 

 

 

 (a) 

Altitude: (m)  
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 (b) 
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(c) 

 

(d) 
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(e) 
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From Figure 6.2.6, we can find when it comes to the flat terrain surface, all the 

selected interpolation methods have dramatic improvements on the control of the 

interpolation errors, IDW have a better tracking on with small slopes, but it presents 

unexpectedly discrepancies between some of the check points elevations and the 

elevations interpolated from the sampling points datasets, especially for the points on 

the bottom. For the other four basis functions in RBF, all of them have a 

corresponding good performance on estimating the elevations of the tips and bottom, 

however, they also show a tendency to over-exaggerate the elevations on some check 

points. 

In Figure6.2.7,we can observe there are the significant decrease on the values of 

RMSE for all the selected interpolation methods.IDW is still the poorest interpolator, 

with the highest RMSE about 0.014.The other interpolators, such as MQF, 

MLF,IMQF,NCSF and TPSF, keep at a corresponding lower level of the RMSE, 

around 0.0125.  

Furthermore, when comparing the RMSE values among the five basis functions 

in RBFs, we can find they have different characteristics on flat terrain surface. The 

RMSE values of MQF, MLF, IMQF are smaller, and from the comparison, NCSF and 

TPSF are relatively larger, with the minimum belonging to IMQF and the maximum 

belonging to NCSF. 

(f) 
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6.2.3 Analysis on the real-world terrain surface 

 

 

 

 

Figure6.2.8 Comparison between the original terrain surface (a) and the terrain 

reconstructed by (b) IDW, (c) IMQF, (d) MLF, (e) MQF, (f) NCSF, (g) TPSF. 

(a) (b) 

Figure6.2.7 Comparison between IDW and RBFs on flat terrain 

Unit: (m)  
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(g) 

Evaluation (m) 
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In the real-world terrain surface, our study area reaches to a 41*41 squares, 

bigger than the terrain we used before. It is not easy to comparison the difference 

among the interpolation errors in a figure since the sample points increases. So in 

Figure6.2.8, we presented the results on a two-dimensional view from the top. 

Overall, from Figure6.2.8, IDW produced the poorest result mainly in same small 

areas with big variation of slopes, which means IDW can predict the gentler or regular 

change of the slope, but steep changes of the slopes in small areas may be ignored by 

IDW interpolation. It is also a problem for the five basis functions in RBF from the 

comparison, but obviously, the terrain obtained from RBFs coincided better with the 

original terrain, especially for the ridge in the selected terrain surface. However, for 

all the methods there are some evident discrepancies on the shape of the mountain 

along the valley when we focus on the back contour line in the figure. 

A more intuitive result of the interpolation accuracy is presented in Figure6.2.9. 

IDW is the worst interpolator as we observed in this figure. All the selected basis 

Figure6.2.9 Comparison between IDW and RBFs on the real-world terrain 

Unit: (m)  
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functions in RBF provided the similar result. NCSF shows the best interpolation 

accuracy with the lowest RMSE value, and then followed by TPSF, MQF and MLF. 

The biggest RMSE value belongs to IMQF whose interpolation accuracy is the worst 

among the four selected basis functions. 

6.2.4 Comprehensive evaluation 

 

 

IDW MQF MLF IMQF NCSF TPSF 

RMSE(m) 

Mountainous 0.1605 0.14096 0.14094 0.14097 0.14087 0.14097 

Flat 0.014 0.012581 0.012541 0.012512 0.012719 0.012637 

Real 0.9348 0.8368 0.84 0.8418 0.8275 0.831 

 

 

In table 6.2.2, we can see the comparison of RMSE for the selected interpolation 

methods working on mountainous, flat, and real-world terrain surface. IDW performs 

the worst in all the selected terrain surface, NCSF have the best performance on the 

mountainous and real-world terrain, however, it shows a worse result in the flat terrain 

among all the selected basis functions. For the flat terrain surface, IMQF is the most 

suitable one. It is also observed the RMSE values in real-world terrain are higher than 

those in mountainous and flat terrain. This is because the mean elevation in the 

real-world terrain is 13.8, higher than the mean values in mountainous and flat terrain 

which are 0.826 and 0.502 respectively. 

 

 Error(m) Mountainous Flat  Real 

Table 6.2.2 Comparison of the RMSEs in all selected terrain surface 
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IDW 
Z min -0.3651 0.0207 -3.75 

Z max 0.3796 -0.0386 5.25 

MQF 
Z min -0.4058 -0.0322 -2.94 

Z max 0.2909 0.0179 5.1193 

MLF 
Z min -0.4101 -0.0324 -3.0097 

Z max 0.2898 0.0168 5.1138 

IMQF 
Z min -0.4129 -0.0323 -3.04 

Z max 0.2890 0.0174 5.1065 

NCSF 
Z min -0.3905 -0.0302 -2.64 

Z max 0.2930 0.0179 5.03 

TPSF 
Z min -0.3995 -0.0315 -2.84 

Z max 0.2921 0.0182 5.1065 

 

 

In table 6.2.3, we can find all basis functions have the problem of overestimating 

the elevation since absolute value of Z min is higher than that of Z max, but this 

phenomenon is reversed in the selected real-world terrain. 

 

IDW MQF MLF IMQF NCSF TPSF 

Time consumption of the interpolation on real-world terrain (s) 

0.059 0.098 0.128 0.048 0.1185 0.1564 

 

 

Table 6.2.4 shows the time consumption of the interpolation on the selected 

real-world terrain, as we can see IMQF take the shortest time, only 0.048s, and the 

longest time belongs to TPSF, over three times the value of IMQF. IDW also takes a 

short time and one principal reason for this is we selected a small search radius. 

Table 6.2.3 Comparison of the interpolation errors in all selected terrain 

surface 

Table 6.2.4 Time consumption of the interpolation  
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6.3 Conclusions 

The aim of our study was to compare the quality of different interpolation 

methods on the derived DTMs with different terrain surface. In Chapter 2 we gave a 

detailed description on especially on the data structure and visualization techniques 

since they play a role in the automatic terrain generation shown in Chapter 3 and the 

display of the results. In Chapter 4 and Chapter 5, we detailed the interpolation 

methods such as Inverse Distance Weighting, Multiquadric function, Multilog, 

Inverse Multiquadric, Natural Cubic Splines and Thin Plate Splines on three different 

terrain surfaces to give an overview of them . In Chapter 6,The data derived from 

each DTMs are divided into two subsets, the interpolation methods are applied in the 

first subset, and validation are done for the second subset. we also found the optimal 

smoothing factor in RBFs by means of Optimization Toolbox and decided a 

appropriate search radius in IDW from comparison, which means the obtained RMSE 

values that we compared were the best of each single interpolation method. 

In the comparison, we have tested the interpolation methods on different terrain 

such as, a flat, a mountainous, and a real-world terrain respectively. .Furthermore, we 

have done a comprehensive comparison in order to find the performance of each 

single interpolation method on different terrain surface. According to the results, on 

the one hand, the results revealed that the magnitude and distribution of errors in a 

DEM were strongly related to the varying characteristics of the terrain, since with the 

variation of the elevations on one terrain surface, the errors of the interpolation points 

are varying. Besides, three selected terrain surface have big variations of the 

elevations and slopes among them, which corresponds to a significant variation on the 

RMSE values.   

On the other hand, as we can see from the results, interpolation by NCSF proved 

to be more accurate than the other radial basis functions on mountainous terrain 

surface. On the contrary, NCSF performed the worst and IMQF performed the best on 

the flat terrain among all selected basis functions and IMQF also have corresponding 

best time consumption in the interpolation. From the comprehensive analysis, the 
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classic Inverse Distance Weighted method proved to be less appropriate than all 

selected radial basis functions on the three terrain surface. MQF, MLF and TPSF have 

similar performance on three terrain surface. 

The results obtained in this study allow us to observe the quality of the 

interpolation on DTM is related to such variables as terrain ruggedness and 

interpolation method, which can help us choose a appropriate interpolation method in 

order to obtain a good quality in the interpolation applied in digital terrain modeling. 

Concerning the future developments this works, further studies will be focused on the 

random sampling, and variation of sampling density, since in the process of data 

capture in digital terrain modeling, most of the data points are scattered and in this 

work the our data points were regularly distributed on a mesh grid. In addition, we 

were mainly focussed on the relationship between interpolation methods and 

morphology. With our further developments, the other factors related to the 

interpolation accuracy could be found which will lead to a better performance of the 

interpolation on DTMs. 
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Appendix A 

List of Symbols 

 

Chapter 3: 

 

Symbol Description Unite of measure 

n Number of iterations - 

zm Initial heights [m] 

xm “x” data corresponding to mesh [m] 

ym “y” data corresponding to mesh [m] 

r0 Initial roughness of terrain - 

el    Initial elevation of terrain [m] 

rr Roughness of roughness over terrai - 

hm Height mesh [m] 

 

 

Chapter 4: 

 

Symbol Description Unite of measure 

 iw d  Weight function - 

 iz x  The elevation of all the points [m] 

id
 

The distance between each point and the 

interpolation point 
[m] 

n Number of points within search radius [m] 

u Power parameter - 

R Search radius [m] 

 Interpolation point [m] 

i  Number of sampling point. - 

 

0x
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Chapter 5: 

 

Symbol Description Unite of measure 

s
 

Radius basis function - 

 A low degree linear ploynomial - 

  Basis function - 

i  The RBF coefficients - 

cx  The RBF central points [m] 

0k ,
1k  Constant and linear terms of polynomial    - 

h     Elevations of sampling points [m] 

i      Number of sampling point. - 

A  The interpolation matrix - 

c Smoothing factor - 

 

 

Chapter 6: 

 

Symbol Description Unite of measure 

i  Number of each elevation - 

estimated

iZ  The altitude of interpolation point [m] 

real

iZ  The altitude of original point [m] 

n  Total number of points - 

cx  The RBF central points [m] 

Z min Minimum error in the interpolation [m] 

Z max Maximum error in the interpolation [m] 

 

 

p
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Appendix B 

List of Acronyms 

 

Acronym Meaning 

DTM Digital Terrain Model 

GIS Geographic Information System 

DEM Digital Elevation Model 

IDW Inverse Distance Weighted 

RBF Radial Basis Function 

MQF Multiquadric Function 

IMQF Inverse Multiquadric Function 

MLF Multilog Function 

NCSF Natura Cubic Splines Function 

TPSF Thin Plate Splines Function 

 

 

 

 

 

 

 

 

 

 

 

 

 


