
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Scuola di Ingegneria Industriale e dell’Informazione

Specl:

An Assertion Language for

Service Data Objects

Relatore: Prof. Sam Guinea

Tesi di Laurea di:

Riccardo Brunetti, matricola 787293

Anno Accademico 2012-2013

A mio fratello, ai miei genitori, ai miei nonni, a parenti ed amici. A chi

mi ha supportato e sopportato in questi anni.

Contents

List of Figures . IV

List of Tables . VI

Listings . VIII

Abstract XI

0.1 English Version . XI

0.2 Italian Version . XI

1 Introduction 1

2 State of the Art 3

2.1 XPath . 4

2.2 XQuery . 6

2.3 JML . 8

2.4 OCL . 9

2.5 Spec# . 11

2.6 Requirements . 12

3 Specl Language 15

3.1 Data Types . 15

3.1.1 SDO . 16

3.1.1.1 Mapping Examples 16

3.1.1.2 Functions . 17

3.1.2 Array . 18

3.1.2.1 Functions . 18

3.1.3 Strings . 19

3.1.3.1 Functions . 19

3.1.4 Double . 20

3.1.4.1 Functions . 20

3.2 Other Lexical Elements . 21

3.2.1 Comments . 21

I

3.2.2 Keyword . 22

3.2.3 Operators . 22

3.3 Features . 22

3.3.1 Navigation and Query 23

3.3.2 Declarations . 23

3.3.3 Assertion . 24

3.3.3.1 Quantified Assertions and Aggreagated Func-

tions . 25

3.3.3.2 Numeric Expressions 27

4 Specl Interpreter 29

4.1 Features . 29

4.2 Specl Grammar . 30

4.3 API . 31

4.4 Errors . 32

4.4.1 Static Errors . 32

4.4.2 Runtime . 33

5 Examples 35

5.1 Didactic example: Bookstore 35

5.1.1 Book.xml . 35

5.1.2 First Assertion . 37

5.1.3 Second Assertion - Aggregated Functions 39

5.1.4 Third Assertion - Negated Assertion 40

5.1.5 Fourth Assertion - Numeric Aggregate Functions . . . 40

5.1.6 Fifth Assertion - Numeric Expressions 41

5.2 SOAP Handler Example . 42

5.2.1 SOAP . 42

5.2.2 Server Side . 43

5.2.2.1 Web Service Methods 43

5.2.2.2 Server SOAP Handler 43

5.2.3 Client Side . 45

5.2.3.1 Client SOAP Handler 45

5.2.4 Results . 46

5.3 Twitter API’s Example . 46

5.3.1 REST . 47

5.3.2 Twitter . 47

5.3.3 Code . 47

5.3.3.1 Authentication Process 47

5.3.3.2 Fetch Data 49

II

5.3.3.3 Result . 54

5.3.4 Web Site . 54

6 Conclusion 55

A XText 57

A.1 EMF . 58

A.2 ANTLR . 60

A.3 Google Guice . 60

A.4 XText Generator . 61

A.5 Interact with XText models programmatically 62

A.5.1 Loading and using a model 62

A.5.2 Create a ResourceSet 63

A.5.3 Loading a resource . 63

A.5.4 Referencing the root 64

A.5.5 Working with the Grammar 64

B Specl Grammar 65

Bibliografia 69

III

IV

List of Figures

2.1 OCL Example - Bank Account 10

2.2 Navigation Example . 10

5.1 SOAP Architecture . 42

A.1 Ecore Classes . 59

A.2 XGL-Ecore Mapping . 60

V

VI

List of Tables

3.1 Available Operands for each Type 24

3.2 Quanfied Assertions and Aggregated Functions 26

4.1 Runtime Errors and Examples 33

A.1 XGL Grammar - EMF Mappings 59

VII

VIII

Listings

2.1 XML Example File . 5

2.2 XQuery - Orders XML Example 7

2.3 XQuery - Query Example . 7

2.4 XQuery - Query Result . 7

2.5 XQuery - Quantified Expressions Examples 8

2.6 JML Specification Example 8

2.7 JML Quantifiers Examples . 9

2.8 Spec# Specification Example 12

3.1 SDO Mapping - Original XML Document 16

3.2 SDO Mapping - Original JSON Document 16

3.3 SDO Mapping - Derived SDO 17

3.4 Navigational Expression Example 23

3.5 Variable Declaration Examples 24

3.6 Assertion Examples . 25

3.7 Quantified Assertions and Aggregated Functions Examples . 26

4.1 Java Snippet for Retrieving Specl’s Model 30

4.2 Simplified Specl Grammar . 30

4.3 Specl Syntax Error Example 32

5.1 Main Example File Book.xml 35

5.2 SDO Tranformation - Book.xml 36

5.3 First Assertion . 38

5.4 First Assertion - Alternative 1 38

5.5 First Assertion - Alternative 2 38

5.6 First Assertion - Wrong Predicates 39

5.7 First Assertion - Alternative 3 39

5.8 Second Assertion . 39

5.9 Third Assertion . 40

5.10 Fourth Assertion . 40

5.11 Fifth Assertion . 41

5.12 BookstoreWS Handler Snippet 43

IX

5.13 BoostoreWS Client Handler - Conditions 45

5.14 Twitter’s Bearer Code Request Snippet 48

5.15 Getting Timelines Tweets Snippet 49

5.16 Tweets Search Snippet . 50

5.17 Trends in Milan Snippet . 51

5.18 Twitter’s API Limits Snippet 52

B.1 Specl Grammar . 65

X

Abstract

0.1 English Version

Service Oriented Architecture (SOA) is a modern approach to build dis-

tributed application and greatly reduce the time, effort and cost to develop

the software projects. SOA provides the dynamic paradigm for composing

distributed application even in heterogeneous environments. This is also

introducing challenges: due to its distributed nature, service-oriented appli-

cations does not give a direct control over each third-party service integrated

in the architecture (for example, they might change during time and be in-

correct with respect to their initial functionality, the one for which they were

chosen).

Starting from a language invented at Politecnico di Milano for facing the

problem of monitoring and recovery in specific situation of service coordina-

tion, we built a more general language for observing and asserting conditions

on system operation in a wider range of possible contexts, disconnecting it-

self from a sole framework.

In this text, we will explain the grammar and the features of the lan-

guage, and even its working environment. We also provide a series of exam-

ples and tutorials for support the understanding, and for showing its power

and flexibility.

0.2 Italian Version

Oggigiorno, l’approccio moderno e piú utilizzato per lo sviluppo di appli-

cazioni é denominato Service Oriented Architecture (SOA): i principali ben-

efici ottenuti sono la realizzazione di applicazioni distribuite in un minor

tempo e con minor sforzo, piú flessibili e facilmente integrabili. SOA for-

nisce un paradigma dinamico per la composizione di applicazioni distribuite

anche in ambienti eterogenei.

Questo porta con se anche delle difficoltá e introduce nuove problem-

XI

atiche: data la loro natura distribuita, le applicazioni service-oriented che

sfruttano e integrano servizi di terzi-parti non hanno ne garanzie, ne con-

trollo diretto su queste componenti esterne. La giurisdizione su ciascun

servizio é del fornitore, che, nell’arco del tempo, puó modificare o dismettere

il servizio; di conseguenza, questo puó causare malfunzionamenti e compli-

cazioni in tutte quelle architetture composte che sfruttano tale servizio.

All’interno del Politecnico di Milano é stato sviluppato un linguaggio

proprio per far fronte al problema del monitoraggio e del recupero da errori,

concentrandosi sull’ambito della coordinazione di web services.

In questa tesi, partendo dal linguaggio di cui sopra, andiamo a costruire

un linguaggio di piú generico uso, che fornisce funzioni di monitoraggio e

analisi di precise condizioni sul funzionamento del sistema. L’insieme dei

possibili contesti raggiungibili viene ampliato, slegandosi quindi dal solo

ambiente della composizione di web services.

Mostreremo e spiegheremo la grammatica del linguaggio, le sue carat-

teristiche e il funzionamento d’insieme. Tutto questo sará fatto seguendo un

approccio pragmatico: ogni passaggio sará chiarito con opportuni esempi e

casi d’uso che ne mostreranno le capacitá e la flessibilitá. Saranno anche

brevemente descritti dei tutorial, realizzati appositamente e resi disponibili

online, per mostrare come il linguaggio sia adattabile a diverse situazioni e

in diverse circostanze.

Tutto il materiale sará inoltre liberamente accessibile su un sito web

dedicato, nato proprio con l’idea di facilitare l’uso e l’apprendimento di

questo strumento.

XII

Chapter 1

Introduction

Modern applications are increasingly embracing the “everything-as-a-service”

paradigm. This allows them to offer complicated and flexible functionality

by composing different kind of services. One of the main peculiarities of

using service-based technology is that the services are provided by their

original developers over the Internet; when we decide to integrate them into

our applications we do so through remote invocation. This means they are

not under our jurisdiction, and that they are free to evolve according to the

service provider’s own business priorities.

There are many advantages to services, such as reduced amount of de-

sign work, separation of concerns, loose coupling and interoperability, the

downside is that this is leading to potentially critical dependencies between

services. A change in one service could cause side effects, faults, and er-

rors in the other services in the system. Moreover, this phenomenon can

be unpredictable; it could arise without any notice, and remain true for an

unknown amount of time.

One way to cope with these complications is to enable service adaption,

i.e. the services should be able to adapt to changes in their environment

or in the system’s requirements. One possible approach to self-adaptation

is to hard-code adaptation strategies that can be triggered when a known

fault occurs. This solution is limited since it requires that we known a priori

the problems that could occur. Nowadays, it is common to use probes to

get runtime information about a service’s execution and operation, so that

we can analyze its behavior, and launch a defined recovery or compensation

strategy that exploits actuators that have been deployed to the system. In

the analysis phase the runtime data are examined and filtered according to

conditions and rules imposed by developers.

The work we are doing in this thesis goes in this direction. We give

1

designers a means to define runtime data handling, querying, and analysis.

The work was inspired by previous work achieved at Politecnico di Milano

called WSCoL (Web Service Constraint Language) [9, 10, 11]. WSCoL was

a monitoring language for BPEL processes that was instrumental in the

development of self-supervising BPEL processes, i.e. �special-purpose com-

positions that assess their behavior and react through user-defined rules�.

Starting from WSCoL, we decided to extend its potential, and go beyond

the context of BPEL processes. We wanted to cover all the possible imple-

mentations of SOA, and therefore we developed Specl - a general purpose

specification language. To achieve our goals we used Service Data Objects

(SDOs) [16] as our main data representations. They provide the needed

level of abstraction on data, as well as a single interface for accessing it.

The Specl notation is simple and intuitive. Assertions cover the proposi-

tional logic constructs, and use a syntax inspired to XPath. Developers can

predicate over data using a navigational path notation, query the SDOs to

retrieve data, and then analyze them.

The interpreter of the language uses components that were built using

XText [5, 6], a framework for language development. The included tools are

a lexer, a parser, a validator and an AST builder. A proper API is offered,

so that designers can include Specl as easily as possible in their projects.

To foster the adoption of Specl we are supporting interested developers

with a vast set of examples that demonstrate all the language’s main fea-

tures. We also developed two complex real-world examples: a pre- and post-

condition validation tool for SOAP calls between web services and clients,

and a data extraction tool for JSON data such as that provided by Twit-

ter’s REST APIs. Both the language and its tutorials are provided through

a GitHub web site.

2

Chapter 2

State of the Art

Inside Specl could be identified two natures: the first is a great facility in

data handling, with simple navigation and query statements; and secondly

it is a monitoring language useful for analysis on retrieved data. In these

two areas, there is a lot of powerful tools and methods available, but none

of them as the abstraction level of our language (given by the use of SDOs)

and integrates both these skills.

The first capability of Specl is data individuation, manipulation and

extraction. In this dimension, it is competing with query and navigation

languages for XML documents and JSON. For the former set, exists many

powerful idioms as XPath (from which the navigation and queries form is

inspired), for search and obtain data from XML nodes, and XQuery for

query, transform and selectively extract data out of XML documents. For

the latter, we are in an early phase, but are raising many languages with

the objective to port an XPath-like syntax and abilities to JSON. Instead,

Specl gives a unique query form, homogeneous and independent from the

underling file to interrogate. The user could be completely unaware of the

type: he/she is using and retrieving data from an SDO without making any

distinction.

For what concern the monitoring and statements checking, an important

and notable approach (adopted by many general-purpose programming lan-

guages) is the design by contract paradigm introduced by C.A.R. Hoare,

which introduce the use of pre-conditions (statements that must be true

when a method is called) and post-conditions (conditions that must be true

at the end of a task) [14]. “By contract” means that if the operation is

correct and the pre-conditions met, then the post-conditions are guaranteed

to be true; otherwise, if pre-conditions are false, there is no assurance on

the result. Checking pre- and post-conditions of procedures is an important

3

technique for improving the reliability of software. It is available in many

languages, including Java (with JML) and C# (with Spec#) [17]. Sev-

eral languages, including in particular Eiffel [13], have supported runtime-

checked pre- and post-condition contracts since their inception. UML has

an associated language called OCL (Object Constraint Language) in which

constraints can be represented formally. OCL brought a language to de-

scribe additional constraints about the objects in the model, which are not

possible to describe in a graphic way.

In the next sections there will be an explanation of XPath and XQuery;

after those, will be concisely presented JML for Java, OCL and Spec#,

covering capabilities similar to the assertions validation of Specl.

2.1 XPath

XPath, also known as XML Path Language, is a query language for finding

information in an XML document. It is defined and maintained by the

World Wide Web Consortium (W3C) [20].

XPath use a syntax for defining parts of an XML document and uses

path expressions to navigate through it and select nodes or node-sets. The

language contains also a vast library of standard functions, which gives it

the ability to compute in certain way the values retrieved from documents.

XPath operates on a logical representation of the XML file that is mod-

eled to a tree structure and the language syntax for accessing to it. These

expressions took the name location path, but from version 2.0, are called

path expressions. Its expanded structure is axis::node-test[predicate]:

axis says the relationship between the target node and the current node;

node-test specify the type or the name of the target node; and predicate

contains zero or more filter (inside square brackets) for imposing selecting

conditions on the look up of the target node.

Main relationships in axis are:

• Ancestor : refers to each ancestor of the current node, i.e. each parent

node before it in the tree;

• Attribute: every attribute of actual node;

• Child : refers to each child node of the current node;

• Descendant : refers to every child node descending from the current

node and after it in the tree;

4

• Parent : refers to the node immediately before the current node, i.e.

its parent;

• Self : refers to the current node itself.

Exists also an abbreviated syntax for path expression, using a compact

notation with the list of the name of the nodes to access separated by a slash

character (/). This list describe the path to the target node.

XPath 2.0 (the actual recommended version by W3C) is larger than the

first version, and some concept is changed. Now, in particular, there is the

built-in support for querying XML documents, because the 2.0 version is a

subset of XQuery.

Given a sample XML document (taken from http://en.wikipedia.

org/wiki/XPath)

Listing 2.1: XML Example File

<?xml version="1.0" encoding="UTF-8"?>

<wikimedia>

<projects>

<project name="Wikipedia" launch="2001-01-05">

<editions>

<edition language="English">

en.wikipedia.org

</edition>

<edition language="German">

de.wikipedia.org

</edition>

<edition language="French">

fr.wikipedia.org

</edition>

<edition language="Polish">

pl.wikipedia.org

</edition>

<edition language="Spanish">

es.wikipedia.org

</edition>

</editions>

</project>

<project name="Wiktionary" launch="2002-12-12">

<editions>

<edition language="English">

en.wiktionary.org

</edition>

5

<edition language="French">

fr.wiktionary.org

</edition>

<edition language="Vietnamese">

vi.wiktionary.org

</edition>

<edition language="Turkish">

tr.wiktionary.org

</edition>

<edition language="Spanish">

es.wiktionary.org

</edition>

</editions>

</project>

</projects>

</wikimedia>

The XPath expression

/wikimedia/projects/project/@name

selects name attributes for all projects, and

/wikimedia//editions

selects all editions of all projects, and

/wikimedia/projects/project/editions/←↩
edition[@language="English"]/text()

selects addresses of all English Wikimedia projects (text of all edition ele-

ments where language attribute is equal to English). And the following

/wikimedia/projects/project[@name="Wikipedia"]/←↩
editions/edition/text()

selects addresses of all Wikipedias (text of all edition elements that exist

under project element with a name attribute of Wikipedia)

2.2 XQuery

XQuery (XML Query Language) is to XML what SQL is to database tables,

is a language for finding and extracting elements and attributes from XML

documents - not just XML files, but anything that can appear as XML,

including databases [21]. XQuery is the language for XML querying and is

built on XPath expressions. It was developed and recommended by W3C.

Notice that, as said in the previous section, XQuery 1.0 and XPath 2.0 share

the same data model and support the same functions and operators, so it is

easy to pass from one to the other.

6

XQuery’s expressions use XPath for the nodes identification then addi-

tional functions, peculiar of XQuery, for retrieve node’s information.

The main expressions used for making complex queries are called FLWR

expressions (For-Let-Where-Return), a generalization of the SELECT-FROM-

WHERE-HAVING constructs.

Image to have an XML document called orders.xml and containing in-

formation about orders with this base structure:

Listing 2.2: XQuery - Orders XML Example

<?xml version="1.0" encoding="UTF-8"?>

<order>

<date>...</date>

<product>...</product>

<size>...</size>

<color>...</color>

<quantity>...</quantity>

</order>

The following query search for <order> nodes where the quantity is

greater than 50 and sort the results according to the date of the order:

document("orders.xml")//order[quantity > 50] SORTBY (date)

Let us consider another example:

Listing 2.3: XQuery - Query Example

FOR $c IN document("orders.xml")//color

LET $o := document("orders.xml")//order[color=$c]

WHERE count($o) > 50

RETURN

<result>

{$c}

</result>

The first instruction creates a list (variable $c) holding all the colors in

the archive. The second line associates at each color, the orders containing

it, generating an ordered list of pairs color-order ($c, $o). Then, from

this list, are selected (WHERE) only the tuples respecting the imposed filter

i.e. appears in more than 50 orders. Finally, the RETURN instruction, the

resulting colors are printed inside the <result> element. For example:

Listing 2.4: XQuery - Query Result

<result>

<color>red</color>

<color>blue</color>

7

</result>

The count() function is one of the main functions offered by XQuery

for operating on elements and list of elements. The other ones are avg()

for the average, and operations on sets like union(), intersect() and

difference().

XQuery supports other constructs like IF-THEN-ELSE for conditional ex-

pressions, existential expressions with SOME-IN-SATISFIES and universal

with EVERY-IN-SATISFIES.

Listing 2.5: XQuery - Quantified Expressions Examples

some $product in doc("orders.xml")//product

satisfies ($product = "T-Shirt")

every $product in doc("orders.xml")//product

satisfies ($product = "T-Shirt")

The first one of previous queries check if exists at least one order with a

product “T-Shirt”, and the second if all of them are “T-Shirt”.

2.3 JML

The Java Modeling Language (JML) is �a behavioral interface specification

language that can be used to specify the behavior of Java modules �[2, 3]. It

is used as a design by contract (DBC) tool for Java. A contract in software

specify both duties and rights of clients and implementors.

JML specifications are written in special annotation comments that

starts with an at-sign (@), and uses the require clause for the client’s

obligations and ensure for implementor’s obligations. Considering the con-

tract, require specifies the method’s pre-conditions while ensure its post-

conditions. In JML, specifications are typically written just before the

header of the method they specify. The following is a known example for

the sqrt method:

Listing 2.6: JML Specification Example

/*@

requires

x >= 0.0;

ensures

JMLDouble.approximatelyEqualTo(x, \result * \result, eps);

@*/

public static double sqrt(double x) {

8

/*...*/

}

In this example pre-condition is that the argument x is a positive num-

ber, and the post-condition says that the client has the right to get a

square root approximation as the result (/result). The static method

approximatelyEqualTo of the class JMLDouble tests whether the relative

difference of the first two double arguments is within the given epsilon, the

third argument.

JML combines the practicality of DBC language like Eiffel with the ex-

pressiveness and formality of model-oriented specification languages. As in

Eiffel, JML uses Java’s expression syntax to write the predicates used in

assertions, such as pre- and post-conditions and invariants. The advantage

of using Java’s notation in assertions is that it is easier for programmers to

learn and less intimidating than languages that use special-purpose mathe-

matical notations. However, Java expressions lack some expressiveness that

makes more specialized assertion languages convenient for writing behavioral

specifications. JML solves this problem by extending Java’s expressions with

various specification constructs, such as quantifiers.

JML supports several forms of quantifiers: universal and existential

(\forall and \exists), general quantifiers (\sum, \product, \min, \max)

and numeric quantifier (\num of).

Listing 2.7: JML Quantifiers Examples

// says that a[] is sorted at indexes between 0 and 9

// (the second parameter, separated by ’;’, is range)

(\forall int i,j; 0 <= i && i < j && j < 10; a[i] < a[j])

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i) == 1 * 2 * 3 * 4

(\max int i; 0 <= i && i < 5; i) == 4

(\min int i; 0 <= i && i < 5; i-1) == -1

2.4 OCL

The Object Constraint Language (OCL) started as a complement of the

UML notation with the goal to overcome the limitations of UML (and in

general, any graphical notation) in terms of precisely specifying detailed as-

pects of a system design [12]. Since then, OCL has become a key component

of any model-driven engineering (MDE) technique as the default language

9

for expressing all kinds of (meta) model query, manipulation and specifica-

tion requirements. Among many other applications, OCL is frequently used

to express model transformations (as part of the source and target patterns

of transformation rules), well-formedness rules (as part of the definition of

new domain-specific languages), or code-generation templates (as a way to

express the generation patterns and rules)[7].

The following example (taken from “OCL for Java Tutorial” on Par-

lezUML - http://www.parlezuml.com/tutorials/umlforjava/java_ocl.

pdf) is referring to the common case of a bank account pre and post-

conditions verification:

Figure 2.1: OCL Example - Bank Account

Where context is used for the specification of the interested method

and its header; pre and post for the conditions to check before and after

the execution of the procedure.

OCL offers predefined mechanism for retrieving the values of an object,

navigating through a set of related objects and iterating over collections

(e.g., forAll, exists, select functions). Values from objects are obtained

using dot notation: for example, account.balance gives the balance value

of the account object.

Figure 2.2: Navigation Example

Even navigation is done through

the dot notation, according to the

cardinality of the relationships be-

tween objects: given the situation

in figure, account.holder evalu-

ates to a Customer object who is in

the role holder in that situation. In

the same way, costumer.accounts evaluates to a collection of Account ob-

10

jects in the role accounts of that relation.

Functions over Collection are many (see the specifications of the lan-

guage), but a little example could be: customer->exists(a:accounts |

a.balance=0).

OCL includes also a standard library with set of object type and oper-

ations on them. Types could be primitive (as String, Integer, Real and

Boolean) or collection (as Set, Bag, OrderedSet and Sequence).

Main advantages given by OCL are:

• A typed language: each expression evaluates to a type and conforms

to the rules and operations of that type

• A language for specification: does not include any implementation

details nor implementation guidelines

• A language for expressing necessary extra information about a model

• A precise and unambiguous language that can be read and understood

by developers and customers

• A language that is purely declarative, i.e. it has no side-effects (in

other words it describes what rather than how, OCL expressions can

query and constrain the state of the system but not modify it)

2.5 Spec#

Spec# (pronounced Spec Sharp) extends C# with contracts allowing pro-

grammers to document their design decisions in their code (with support

for non-null types, checked exceptions and throws clauses, method contracts

and object invariants) [15].

The Spec# system consists of:

• The Spec# programming language. Spec# is an extension of the

object-oriented language C#.

• The Spec# compiler. Integrated into the Microsoft Visual Studio de-

velopment environment for the .NET platform, the compiler statically

enforces non-null types, emits run-time checks for method contracts

and invariants, and records the contracts as metadata for consump-

tion by downstream tools.

• The Spec# static program verifier. This component generates logical

verification conditions from a Spec# program. Internally, it uses an

11

automatic theorem prover that analyzes the verification conditions to

prove the correctness of the program or find errors in it.

A unique feature of the Spec# programming system is its guarantee

of maintaining invariants in object-oriented programs in the presence of

callbacks, threads, and inter-object relationships.

Non-null types consists in declaring that an element is not null: type

T! contains only references to objects of type T (not null). This puts the

responsibility to make sure an argument is not null to the user. For example

int[]!xs means that the xs array must not be null, otherwise an error

message is sent.

Method contracts let the designer specify pre- and post-condition of a

method. The used keywords are requires and ensures. In the example

below a simple swap method is showed:

Listing 2.8: Spec# Specification Example

static void Swap(int[]! a, int i, int j)

requires 0 <= i && i < a.Length;

modifies a[i], a[j];

ensures a[j] == old(a[i]);

Where old refers to the initial passed value of the variable. The contract

could also have a statement signaling what variables are going to be modified

(with modifies keyword).

Inline assertion is another feature: while method contracts indicate con-

ditions that are expected to hold on method boundaries, the assert statement

can be used in code to indicate a condition that is expected to hold at that

program point. The statement assert r <= x; will cause the program

verifier to check that r is bounded by x.

Even expressions using quantifiers are possible in Spec#, are available

forall and exists quantifiers.

For example:

forall{int k in (0:a.Length); a[k] > 0};
exists{int k in (0:a.Length); a[k] > 0};

Exists also aggregated functions, using the same form as the previous: sum,

product, min, max and count.

2.6 Requirements

Summing up, Specl is built has a mixture of features presented above, pro-

viding a language able to

12

• Identify and isolate data with precision;

• Select a single value or a subset of whole data;

• Compute obtained information using different expressions;

• Evaluate conditions on certain data;

• Simple to use and understand;

• Easy to integrate in various use scenarios.

13

14

Chapter 3

Specl Language

The main strength of this language is that it relies on the concept of Service

Data Object (SDO). This gives the language a single consistent view of data

obtained from a variety of sources, and takes Specl to a more high level of

abstraction. Specl acquires power and flexibility thanks to SDOs, allowing

it to be used in various different contexts.

In this chapter, we will explain the language characteristics and features,

decorating explanations with little examples (extracts of the didactic exam-

ple at Chapter 5.1) for a better understanding. It would be useful at least

a basic knowledge of navigational path and XPath, if not see Section 3.3.1.

The presentation will be done in a bottom-up fashion, from the data

types to the whole grammar structure.

3.1 Data Types

The data types used inside the language are

• SDO

• Array

• String

• Double

• Boolean

Each of them as associated its own functions, that expands the power

of the language and that could be easily upgraded and extended. SDO, as

a containment object, could have values of each of the previously showed

type, even another SDO.

15

3.1.1 SDO

SDO was born for simplify and unify Service Oriented Architecture (SOA)

data access and code, i.e. its purpose is to facilitate communication and, for

this reason, are designed to deliver a uniform data access layer for heteroge-

neous data sources in a service-oriented architecture. Provides flexible data

structures that allow data to be organized as graphs of objects (called data

object) that are composed of properties. Properties can be single or many

valued and can have other data objects as their values.

3.1.1.1 Mapping Examples

The Specl interpreter, provided as final result of this thesis, gives the possi-

bility to translate XML documents and JSON objects to SDO. Furthermore,

thanks to the generality and abstraction of SDOs, developers could build

their own translator for any type of data.

For example, starting from the next XML and JSON code could be

obtained a simple SDO.

Listing 3.1: SDO Mapping - Original XML Document

<?xml version="1.0" encoding="UTF-8"?>

<container>

<elem1>String</elem1>

<elem2>1</elem2>

<elem3>A</elem3>

<elem3>B</elem3>

<elem3>C</elem3>

<elem4>true</elem4>

<elem5>

<sub-elem1>String</sub-elem1>

<sub-elem2>

<sub-sub-elem1>10</sub-sub-elem1>

</sub-elem2>

<sub-elem3>1</sub-elem3>

<sub-elem3>2</sub-elem3>

</elem5>

</container>

Listing 3.2: SDO Mapping - Original JSON Document

{

"elem1": "String",

"elem2": "1",

"elem3": [

16

"A",

"B",

"C"

],

"elem4": "true",

"elem5": {

"sub-elem1": "String",

"sub-elem2": [

"10"

],

"sub-elem3": [

"1",

"2"

]

}

}

Here is the structure of the SDO derived from the previous languages:

Listing 3.3: SDO Mapping - Derived SDO

{

container = {

elem1 = "String",

elem2 = 1,

elem3 = ["A", "B", "C"],

elem4 = true,

elem5 = {

sub-elem1 = "String",

sub-elem2 = {

sub-sub-elem1 = 10

},

sub-elem3 = [1, 2]

}

}

}

As you can see, the representation is pretty similar to JSON: sets of key-

value entry and ordered lists of values.

3.1.1.2 Functions

SDO’s functions let the designer to operate both on the whole object and

on the elements included into it (could be checked the presence of a certain

property or get its value).

17

The following is the list of available functions (plus a short example for

each one):

boolean contains(Object elem)

returns true if an object with elem value is contained (the research is

deep)

// search "Pocket" string in the first book of the inventory

/inventory/book[1].contains("Pocket")

Object get(int index)

returns the value of the index-th node (the first element of the array

has index equals to 1)

// returns the first book of the inventory

/inventory.get(1)

Object get(String node)

returns the value of the node with name node

// get the value of the key "name"

/inventory.get("name")

double cardinality()

returns the number of elements contained

// get the number of values contained

/inventory.cardinality();

3.1.2 Array

The used type coincide with the classical kind of array, containing a finite

number of elements. It is defined writing the elements of it inside square

brackets and separated by commas ([elem1, elem2, ...]).

3.1.2.1 Functions

Available functions for arrays covers the basic general-purpose language

functions for this kind of data type, working on elements or getting the

size of the array:

boolean contains(Object elem)

returns true if the passed elem object is contained

// check if the second book is written by a certain author

/inventory/book[2]/authors/author.contains("Larry Niven")

18

Object get(int index)

returns the index-th element of the array

// get the second author from an array of authors,

// from the second book

/inventory/book[2]/authors/author.get(2)

double cardinality()

returns the length of the array

// get the length of the authors array of the second book

/inventory/book[2]/authors/author.cardinality()

3.1.3 Strings

Represents a string constant obtained from a sequence of characters. Ev-

erything inside quotes is considered as string (double or single quote: "..."

or ’...’).

3.1.3.1 Functions

Even in this case, the functions are simple and common in many other

contexts:

String uppercase()

turns every character to uppercase

// inventory’s name to uppercase

/inventory/name.uppercase()

String lowercase()

turns every character to lowercase

// inventory’s name to lowercase

/inventory/name.lowercase()

double length()

returns the length of the string

// inventory’s name length

/inventory/name.length()

boolean startsWith(String prefix)

returns true if the string starts with prefix

19

// check inventory’s name prefix

/inventory/name.startsWith("Inv")

boolean endsWith(String suffix)

returns true if the string ends with suffix

// check inventory’s name suffix

/inventory/name.endsWith("YZ")

boolean contains(String s)

returns true if the string contains s

// check if inventory’s name contains "ABC"

/inventory/name.contains("ABC")

String concat(String s1, String s2, ...)

returns the concatenation of the string with s1, s2, etc...

// concatenate two strings to the title of the first book

/inventory/book[1]/title.concat("is", "the 1st Book")

String substring(int beginIndex, int endIndex)

extracts the characters, between two specified indexes, and returns the

new substring

// substring of the first book’s title

/inventory/book[1]/title.substring(0, 2)

String replace(String target, String replacement)

replace every occurrence of target with replacement

// substitutes blank spaces with underscores,

// in first book’s title

/inventory/book[1]/title.replace(" ", "_")

3.1.4 Double

The general representation of every number, which are parsed and used as

a signed double.

3.1.4.1 Functions

For numbers, the available functions can be used for manipulations and

rounding. The list is a subset of the functions offered by XPath.

20

double abs()

gives the absolute value of the number on which it is applied

// suppose variable $a is defined equals to -1

$a.abs() // result is 1.0

double ceiling()

returns the smallest integer that is greater than the number argument

// ceiling of the first book’s price (suppose 9.9)

/inventory/book[1]/price.ceiling() // result is 10.0

double floor()

returns the largest integer that is not greater than the number argu-

ment

// floor of the first book’s price (suppose 9.9)

/inventory/book[1]/price.floor() // result is 9.0

double round()

rounds the number argument to the nearest integer

// rounded price of the first book (suppose 9.9)

/inventory/book[1]/price.round() // result is 10.0

double roundHalfToEven()

rounds a number with .5 fraction to the nearest even integer

// rounded price of the first book (suppose 9.5)

/inventory/book[1]/price.roundHalfToEven() // result is 10.0

String toString()

returns the string representation of the number

// string representation of the first book’s price

/inventory/book[1]/price.toString() // result "15.0"

3.2 Other Lexical Elements

3.2.1 Comments

There are two type of comments:

• Line Comments start with the sequence // and stop at the end of

line

21

• General Comments start with the sequence /* and continue until

character sequence */ , it could contain more than one line

Comments do not nest.

3.2.2 Keyword

The following keywords are reserved and may not be used as identifiers

let max startsWith

in min endsWith

forall sum contains

exists avg

numOf product

3.2.3 Operators

The following character sequences represent operators, delimiters, and other

special tokens:

== + && , ()

!= - || ; []

< * ! .

> /

<= %

>=

=

3.3 Features

Specl structure present two main part: declaration part and assertions part.

Declarations part has the purpose to let the user define variables that

could be used later for making assertions. The use of variables is not manda-

tory for the grammar, but is useful for simpler and clearer usage of the

language.

Assertions part of the grammar contains the set of constraints and values

to check and keep controlled. It is the kernel of the language. Assertions

are composed by using logical operators: NOT (!), AND (&&), OR (||).

These have the usual priority: NOT>AND>OR. With brackets for change

the priority, depending on the user’s needs.

Each assertion consist of a comparison, using various operators, between

two expressions.

22

3.3.1 Navigation and Query

At first, we will discuss about one of the basic functionality of the language:

navigation path expressions and query. Those let the user querying and

retrieving data values from an SDO using a notation inspired by XPath.

The queries are built by steps, separated by a slash (/): at each step,

the specified element (conforming to a key property in the SDO) is selected

and the corresponding value is returned.

As in XPath, there are predicates used to restrict the node-set by se-

lecting only those nodes for which a specified condition is true; acceptable

predicates enable the selection of a node by its value or by its position:

Listing 3.4: Navigational Expression Example

// select the ’step1’ whose ’step2’ is greater or equal than 1

let $a = /step1[step2 >= 1];

// select the ’step1’ whose ’step3’ is equal to "String"

let $b = /step1[step3 == "String"];

// select the first of the nodes of ’step1’

let $c = /step1[1];

The form in the first two cases is

[node op value]

Where:

• node: the name of the node to test

• op: the operation to apply (note that only == and != has sense when

value is a String)

• value: the value to compare, could be a String, a number or a Variable

In the last example, the parentheses contain just a number, that number

refers to the index of the item to select.

3.3.2 Declarations

Allows you to assign a value to a variable. This variable can then be used

almost anywhere in the code that follows it, and there can no longer be

assigned a different value.

Declaration syntax:

let $var = value ;

Where:

23

• let: is the keyword for starting a declaration

• $var: is the name of the assigned variable

• value: is the value to store

• ’;’ : is the termination character

The value could be directly declared when it is a constant (a number, a

string, a Boolean or an array - see data types at Section 3.1), or it could be

the result of a statement (the value corresponding to a certain navigation

path or the result of an expression or a quantified assertion).

Here is some examples:

Listing 3.5: Variable Declaration Examples

// a number literal

let $price = 10.5;

// a string literal

let $string = "Snow Crash";

// an array

let $author = ["Larry Niven", "Jerry Pournelle"];

// a navigational path to resolve

let $a = /inventory/book/title;

// multiply 2 and (10.5 - 1)

// (note: $price is the variable previously defined, equal to 10.5)

let $expr = 2 * ($price - 1);

3.3.3 Assertion

With the term assertion, we intend true/false statement achieved with a

comparison between expressions. The comparison can be made with the use

of operations like equal (==), unequal (!=), greater (>), lower (<), greater or

equal (>=) and lower or equal (<=).

Each operation has sense with respect to the expressions type. The

numeric assertions are the only ones that has access to the whole set of

operands. In the next table, for each data type, are shown available opera-

tions and explained particular cases (see boolean expressions):

Table 3.1: Available Operands for each Type

24

Operation SDO Array Number String Boolean

== X X X X see ?

!= X X X X see ?

> X
< X
>= X
<= X

? in the case of a comparison between Boolean expressions, the operation and the

result expression becomes implicit (the default value is true) and must be removed (for

example the right one is $a.contains("string") and not $a.contains("string")

== true).

If the assertion checks false the expression is negated (!($a.contains("string"))).

The members of an assertion can be:

• query (see Section 3.3.1)

• constant (numeric or string)

• array

• quantified assertion (see Section 3.3.3.1)

• numeric expression (see Section 3.3.3.2)

• variable

Examples of few possible statements composition

Listing 3.6: Assertion Examples

// query == string constant

/inventory/name == "InventoryABCD";

// variable >= numeric constant

$price >= 2;

3.3.3.1 Quantified Assertions and Aggreagated Functions

These are assertions that iterate over a finite set of values and check every

contained element with respect to the conditions. The objective is to give the

possibility to express constraints using universal and existential quantifier

or aggregated functions.

The statement is in the following form:

name (alias in var, conditions)

Where:

25

• name: the name of the used quantifier/function (see the table below

for details)

• alias: a temp variable that will be used as parameter in the upcoming

conditions

• var: the variable to which the iteration is applied, it defines the range

of values that the alias can assume (var must be an array)

• conditions: the set of assertions to test at every iteration

List of functions and their characteristics:

Table 3.2: Quanfied Assertions and Aggregated Functions

Name Returns Description

forall Boolean True if, for every element, the conditions are

respected
exists Boolean True if, for at least one element, the conditions

are respected
numOf Double The number of elements that respects the con-

ditions
max Double Returns the maximum element that respects

the conditions
min Double Returns the minimum element that respects

the conditions
avg Double Returns the average of the elements that re-

spects the conditions
sum Double Returns the sum of elements that respects the

conditions
product Double Returns the product of elements that respects

the conditions

In next box an example, comprising a quantified assertions and an aggre-

gated function evaluated in AND (&&):

Listing 3.7: Quantified Assertions and Aggregated Functions Examples

// check if the maximum price is greater than 10

let $prices = /inventory/book/price; // an array with all the prices

max($elem in $prices, $elem > 0) > 10

&&

// check if all the prices are greater than 0

forall($elem in $prices, $elem > 0);

26

3.3.3.2 Numeric Expressions

Use and evaluate numeric expressions, using the canonical operands: sum

(+), subtraction (-), multiplication (*), division (/) and modulo (%). Expres-

sions has left associativity, and priorities between these operators is exactly

as they are listed before (%, / and * has greater priority than + and -). As

usual, precedence could be modified with brackets.

Expressions can also be calculated using navigation path and variables,

as long as they return numeric values.

Example:

// a simple expression using sum, multiplication and modulo

(1 + 1) * 1 % 1 == 0;

27

28

Chapter 4

Specl Interpreter

The Specl interpreter (also named Specl Analyzer) is developed in Java and

use the XText productions for parsing and modeling the assertions, and then

evaluates and offers a final result on the correctness of the statements.

This represents the result of the thesis work: offer a flexible and exten-

sible tool, with the proper APIs affording simple usability and integrability

for the developers’ needs.

In this chapter, we will make an overview of its characteristics, its APIs,

its fault messages.

4.1 Features

Specl Analyzer is the interpreter of Specl language: this includes, as a jar

library (Specl.jar), the artifacts generated by XText. In this way, we can

use programmatically the provided parser, obtain the EMF model corre-

sponding to the readed tokens and, throught this, evaluate the assertions in

Specl.

XText is a language development framework based on Eclipse and thought

for DSLs and general-purpose languages. The used internal parser is ob-

tained from the parser generator ANTLR, integrated inside the framework.

XText is also based on the EMF framework and let developers build an IDE

editor starting from the designed language, extensible and with features like

Eclipse. For an overview see AppendixA.

As said in the chapter where we described the Specl language (Chapter

3) we are going to work with SDO in our own implementation. The input

file (the one that is going to be interrogated with the language) is translated

to an SDO and then processed. The analyzer has already methods for

translating XML Document and JSON to SDO, but it is possible, for who

29

is interested, to develop other methods for mapping other kinds of file.

Now we can retrieve data from the model, declarations and assertions,

and pass them to DeclarationService and AssertionService that starts

checking them.

Listing 4.1: Java Snippet for Retrieving Specl’s Model

Model model = (Model) resource.getContents().get(0);

EList<Declaration> declarations = model.getDeclarations();

Assertions assertionSet = model.getAssertionSet();

Specl Analyzer uses Log4j as logging and tracing framework, with a

console appender for showing proper execution messages. We chose Log4j

because it is widely used and for give to the developers an easier integration

with their works. The severity level of the logger can be setted with an

appropriate method; it is also possible to stop log messages.

4.2 Specl Grammar

In this section we will present a simplified version of Specl grammar.

It is purely showed for giving an idea of the substrate upon which we are

working. A full version is available in the Appendix B and on the web site.

Listing 4.2: Simplified Specl Grammar

Model:

Declaration* Assertions ’;’

Declaration:

’let’ Variable ’in’ Assertion ’;’

Assertions:

PrimaryAssertions ((’&&’ | ’||’) PrimaryAssertions)*

PrimaryAssertions:

’(’ Assertions ’)’ | ’!(’ Assertions ’)’ | Assertion

Assertion:

Expression Rop Expression;

Expression:

Step+ (’.’ Function)* | NumericExpression | AssertionQuantified

| Array | Boolean

Step:

30

’/’ ID (’[’ Predicate ’]’)? | Variable

Predicate:

ID Rop (STRING|NUMBER|Variable) | NUMBER | Variable

Function:

ID ’(’ (Values)? ’)’

AssertionQuantified:

Quantifier ’(’ Variable ’in’ Variable, Assertions ’)’

Variable:

’$’ ID

Rop:

’==’ | ’!=’ | ’>’ | ’>=’ | ’<’ | ’<=’

4.3 API

Here we will show the offered API by the analyzer, with a brief description

void setXMLInput(Document doc)

read the passed XML Document doc and store its SDO translation;

void setJSONInput(String json)

reads the passed JSON and stores its SDO translation;

void setMapInput(LinkedHashMultimap map)

reads and stores an SDO;

void setSpeclFilePath(String path)

takes assertions from the file in the past path;

boolean evaluate(String assertions)

verifies the assertions, returns true if they are correct, false other-

wise;

boolean evaluate()

same as the previous, but to use in the case in which the assertions

are read from a file (requires that the setSpeclFilePath method is

previously used);

Object getVariable(String var)

returns the value of a variable used inside Specl assertions;

31

void putVariable(String name, Object value)

puts a variable in Specl assertions;

void removeVariable(String name)

removes a Specl variable;

DataObject getInput()

returns the used SDO (the representation of the initially past input

file);

void setLoggerLevel(String level)

sets the logger to the passed level (by default it is set to ’INFO’);

void shutdownLogger()

disables the logger;

The constructor method do the variable setup and initialization. The

Specl variable are stored in Map and use the singleton pattern, so they will

persist until the next new SpeclAnalyzer() call.

4.4 Errors

The analyzer lets the user know when errors has been found, in the asser-

tion’s syntax (static errors) or at runtime (for example a wrong comparison

between different data type). This kind of feedback will be really important

for the users of the language and the interpreter.

For spotting syntax errors, we exploits the validator that XText gives

us, which checks if the obtained model respects the Specl grammar. Differ-

ently, runtime errors are hard-coded and reported by throwing suitable Java

exceptions.

4.4.1 Static Errors

With the term static we intend those kind of errors related to misspelled

assertions in the language.

As just said, we use the validator provided with the other tools by XText

that gives accurate information on issues found during the syntax check.

For example, let us say we write the following (wrong) assertion:

Listing 4.3: Specl Syntax Error Example

let $a = 1 // note that the terminator is missing

$a == 1;

32

The analyzer understands that there is a ’;’ missing at the end of the first

line (the report says that it is expecting it before reading the second line)

and responds:

INFO - ***** Specl Analyser *****

ERROR - SYNTAX ERRORS: 1 found

ERROR - MSG: missing ’;’ at ’$’ - LINE: 2 - TOKEN:’$a’

The message format presents at first the logger severity level (ERROR),

followed by the error message (MSG), the line in which the error is found

(LINE) and the specific erroneous token (TOKEN).

The kinds of syntax errors identified spreads from missing characters to

unknown/extraneous tokens found.

4.4.2 Runtime

Runtime errors are the ones that are caused during the execution of the

interpreter, so during the evaluation of the assertions of Specl.

In the table below we list the existing errors and, for each of them, we

indicate the description and an example that cause it:

Table 4.1: Runtime Errors and Examples

Error Cause Example

Wrong comparison be-

tween the terms of an as-

sertion

1 == "String";

Null term 1 == null;

Wrong operation related

to the type of terms

// neither makes sense

"StringA" > "StringB";

true > false;

Undefined variable $a == 1;

//...and $a is not defined

Variable already in use let $a = 1;

let $a = "String";

Quantified assertion vari-

able not an array

// $a is a single number

let $a = 1;

forall($b in $a, $b.length() > 1);

Quantified assertion alias

variable already in use

let $a = 1;

forall($a in $array, $a == 1);

Incorrect function for a

certain data type

let $a = 1;

$a.length() > 1;

// unavailable for numbers

33

Wrong number of param-

eters for a function

$a.length("arg1",$arg2);

Key not found in a

DataObject

let $b = $a/non exist key;

Index out of bound in at-

tributes evaluation

$a/key[5];

//...where max index is 4

Error messages provide a textual description of the cause of the error as well

as report the wrong token.

When the error is due to a conflict between different types of data, in

addition to the information above, are also shown value and current state

of each token involved.

34

Chapter 5

Examples

As said, Specl is a very flexible language and for this reason, it could be used

in various contexts. In the following chapter, we continue our pragmatical

approach to understanding and shows up some nice application.

We start from a simple example based on an XML document representing

a bookstore’s books. It is going to be presented in a didactic way, with easy

statements and various alternatives; the goal is to show the elasticity of Specl

and the straightforward use.

Then we illustrate the use of the language with two real world exam-

ples: inside a SOAP Handler as pre- and post-conditions validator, and for

data management and data retrieval from response messages from a REST

service.

These two cases are well explained with dedicated tutorials, available on-

line at the site of Specl. Of course, projects’ source code is freely accessible.

The idea is to give all possible incentives and help to whom is approach-

ing Specl. We really encourage to following this opportunity and play with

tutorials and even with the language.

5.1 Didactic example: Bookstore

We use an imaginary small library described by the succeeding XML file,

book.xml. Then a list of examples, touching all the aspects and functionality

of the language, will show how to make declarations and assertions on the

SDO translation of this file.

5.1.1 Book.xml

Listing 5.1: Main Example File Book.xml

35

<inventory>

<name>InventoryABCD</name>

<book>

<year>2000</year>

<title>Snow Crash</title>

<authors>

<author>Neal Stephenson</author>

</authors>

<publisher>Spectra</publisher>

<isbn>0553380958</isbn>

<price>15</price>

</book>

<book>

<year>2005</year>

<title>Burning Tower</title>

<authors>

<author>Larry Niven</author>

<author>Jerry Pournelle</author>

</authors>

<publisher>Pocket</publisher>

<isbn>0743416910</isbn>

<price>6</price>

</book>

<book>

<year>1995</year>

<title>Zodiac</title>

<authors>

<author>Neal Stephenson</author>

</authors>

<publisher>Spectra</publisher>

<isbn>0871131811</isbn>

<price>7.50</price>

</book>

</inventory>

The previous file is acquired as SDO.

Listing 5.2: SDO Tranformation - Book.xml

{

Inventory =

{

name = InventoryABCD,

book=

[

{

36

year = 2000.0,

title = Snow Crash,

authors =

{

author = Neal Stephenson

}

publisher = Spectra,

isbn = 0553380958,

price = 15.0

},

{

year = 2005.0,

title = Burning Tower,

authors =

{

author =

[

Larry Niven,

Jerry Pournelle

]

},

publisher = Pocket,

isbn = 0743416910,

price = 6.0

},

{

year = 1995.0,

title = Zodiac,

authors =

{

author = Neal Stephenson

},

publisher = Spectra,

isbn = 0871131811,

price = 7.5

}

]

}

}

5.1.2 First Assertion

Now we have to predicate our Specl ’s assertions to verify certain conditions.

The first assertion is the next one:

37

Listing 5.3: First Assertion

/inventory/book[1]/title == "Snow Crash";

The assertion says that the title of the first book (note the use of the

predicate in square brackets) is equal to ”Snow Crash” and, obviously, the

result is true. The expression returns a string and correctly compare it with

the string on the right side that we have written. Due to the flexibility of

Specl, the same assertion can be written in different manners:

Listing 5.4: First Assertion - Alternative 1

/* Alternative 1 */

let $a = /inventory/book[1]/title;

let $b = "Snow Crash";

$a == $b;

In this case the result of the expression is stored in the variable $a, while

our string is in $b. Then the assertion simply test the equality of the two.

Listing 5.5: First Assertion - Alternative 2

/* Alternative 2 */

let $a = /inventory/book[1];

$a/title == "Snow Crash";

Instead, in the alternative two, the value assigned to the variable $a is an

SDO, i.e. an object containing other objects (as you can see from the XML

file, a book holds nodes like title, authors, publisher, etc...). A representation

of the SDO assigned to $a is

$a = {

year = 2000,

title = "Snow Crash",

authors = {

author = "Neal Stephenson"

},

publisher = "Spectra",

isbn = "0553380958",

price = 15

}

With the expression $a/title we get the string contained by the prop-

erty title.

Navigational expressions are useful and can be defined with a good flex-

ibility for reaching almost all the user’s needs.

However, there are some exceptions: for example, you cannot apply a

predicate to a variable or use a variable in steps that is not the first.

38

Just for example, the statement $a[key==1] is not allowed, because

predicates are syntax to use in the context of path expressions. The correct

way to resolve this is to use the predicate during the variable definition,

otherwise, another solution is to use the function get when the object is an

SDO or an array: $a.get("key").

An example of the second erroneous use of navigational expression could

be /inventory/$a: the variable could be used only in the first step (so when

it could be treated as an SDO, from which the navigation path could start),

but not in succeeding steps. Even in this situation, if the user wants to

extract a certain value given the key, the solution could be the get function

(/inventory.get($a)).

Note that the use of function get is possible when you apply it to an

SDO or to an array; it has no sense when the cardinality of the object is

one. The function is not intended to substitute the standard navigation, so

it has to be used properly.

Listing 5.6: First Assertion - Wrong Predicates

/* Wrong use of predicate */

let $a = /inventory/book;

$a[1]/title == "Snow Crash";

/* Correct way */

let $a = /inventory/book;

$a.get(1).get(’title’) == "Snow Crash";

Another possible alternative to the first assertion is the next one, this time

using the get function:

Listing 5.7: First Assertion - Alternative 3

/* Alternative 3 - Array */

let $a = /inventory/book/title;

$a.get(1) == "Snow Crash";

In this situation, the result of the declaration is an array with the titles of

all the books found: $a = ["Snow Crash", "Burning Tower" "Zodiac"].

Then, with the get function, you obtain the first element of the array:

"Snow Crash" .

5.1.3 Second Assertion - Aggregated Functions

Listing 5.8: Second Assertion

let $books = /inventory/book;

39

let $authors = $books/authors/author;

exists($author in $authors,

numOf($book in $books, $book/authors.contains($author)) > 1

);

In this case, we are looking for the authors that has written more than

one book. The declarations returns, respectively, the array containing all

books and the array with all the authors.

The assertion is the result of the nesting of two quantified assertions.

The exists assertion starts iterating over the elements of the $authors

array, and, for each author, checks the condition. The condition is a com-

parison between another quantified assertion (this time a numOf) which

returns a number that as to be greater than one to prove the condition of

the exists.

The numOf iterate over all the books, obtains the authors of each book

and, with the contains function, check if the actual author we are searching

is inside that book’s authors.

The external assertion has to be true; as already said, this is implicitly

deducted from the grammar.

5.1.4 Third Assertion - Negated Assertion

Listing 5.9: Third Assertion

/* Negated Assertion */

let $books = /inventory/book;

!(

exists($book in $books,

$book/title.startsWith($book/publisher.substring(0,1)))

);

This one assert that there is no books which title starts with the same

letter as its publisher.

As you can see, the exists assertion is negated (inside brackets and

preceded by the exclamation mark !(...)).

The startsWith function bears out the prefix of the book’s title us-

ing as parameter the result of another expression: after getting the book’s

publisher, it takes the first letter by the use of the substring function.

5.1.5 Fourth Assertion - Numeric Aggregate Functions

Listing 5.10: Fourth Assertion

40

/* Test for arithmetic expressions (min, max, avg...) */

let $prices = /inventory/book/price;

let $minimum = min($price in $prices, $price > 0);

let $maximum = max($price in $prices, $price > 0);

let $average = avg($price in $prices, $price > 0);

let $product = product($price in $prices, $price > 0);

let $summation = sum($price in $prices, $price > 0);

$minimum == 6.00 && $maximum == 15 && $average == 9.5 ||

$product > 675.0 && $summation < 28.5;

Here we declare many variables, each of them is containing a number,

related to the relative expression: for example, $minimum contains the mini-

mum price, in the range of the array $prices, that is greater than zero (this

condition is very weak, so the expression simply means ’search the lowest

price’). The same reasoning can be done for the other statements.

The assertions section presents logical operators AND (&&) and an OR

operator (||): according to the priorities, the AND operators comes first,

so the OR is applied as showed:

($min == 6.00 && $max == 15 && $avg == 9.5) || ($prod > 675.0 &&

$sum < 28.5)

Different orders are indicated with the use of bracket, as for example in

the next snippet:

$min == 6.00 && $max == 15 && ($avg == 9.5 || $prod > 675.0) &&

$sum < 28.5

5.1.6 Fifth Assertion - Numeric Expressions

Specl gives also the possibility to use and evaluate numeric expressions (see

section 3.3.3.2)

let $exp = 1 + 2 * 4 % 5;

exp == 4;

The next is an example upon the bookstore example:

Listing 5.11: Fifth Assertion

let $first_price = /inventory/book[1]/price;

$first_price + /inventory/book[2]/price > /inventory/book[3]/price;

41

5.2 SOAP Handler Example

In this part, we develop a simple web service based on the example explained

in the previous section, we named it BookstoreWS. In addition to this, we

will build a client communicating with the service.

We are going to use Specl for validating conditions on the operations

of the web service: on server side we check the incoming messages and

evaluate the methods’s preconditions; instead, on client side, we extract

and manipulate data from response messages sent by the web service.

This is one of the possible use of Specl language: predicating assertions

on a message inside a handler. A handler is an interceptor of SOAP mes-

sages, from which we can read and verify conditions over the content of the

passing messages.

At first, we make a short overview of SOAP, then we start with the

explanation of the example and of how utilize the language.

5.2.1 SOAP

SOAP stays for Simple Object Access Protocol and is the foundation of a web

service protocol stack, a specification for exchanging structured information.

It relies on XML. We introduce briefly, what a SOAP message and a handler

are.

A SOAP message is a one-way transmission from a sender to receiver, it is

composed as a mandatory extensible envelope expressing what features and

services are represented in the message. The envelope contains an optional

header and a required body (that, for instance, could be empty); the whole

message is sent via HTTP protocol [8].

Figure 5.1: SOAP Architecture

The SOAP message architecture allows for SOAP intermediaries, which

are nodes along the route from sender to receiver. An intermediary may in-

spect and even manipulate an incoming message before sending the message

on its way toward the ultimate receiver. Java API for XML Web Services

(JAX-WS a Java programming language API for creating web services in

42

XML format, i.e. SOAP) provides a handler framework that allows appli-

cation code to modify incoming and outgoing SOAP messages.

JAX-WS gives two Handler interfaces, the LogicalHandlers and the

SOAPHandler: former is protocol-neutral and has access only to the message

payload in SOAP body, the latter is SOAP-specific and access to the entire

SOAP message. Handlers are placed within a handler chain: a series of

interceptors that, in a certain sequence, manipulate the message. It could

be defined both on server side than on client side.

5.2.2 Server Side

5.2.2.1 Web Service Methods

It is a simple WS, offering information on books: title, authors, publisher,

isbn and price.

BookstoreWS ’s methods are the following; they will not be discussed

because their names are self-explanatory:

• getBooksByAuthor(String)

• getBookByIsbn(String)

• getBooksByIsbnList(List<String>)

• getAllBooksTitle()

• getBooksNumberPerAuthor()

• getBooksByPublisherAndYearRange(String, int, int)

5.2.2.2 Server SOAP Handler

The server side SOAP Handler we are building it is going to use Specl for

checking constraints on the parameters passed to BookstoreWS from ser-

vice’s clients, for every incoming message.

We declare and initialize the analyzer with SpeclAnalyzer analyzer =

new SpeclAnalyzer(); command, then we obtain the XML Document of

the SOAP message body and pass it to the analyzer that will use it as input

file and parse it as an SDO (analyzer.setXMLInput(soapBody.getOwner-

Document());).

Listing 5.12: BookstoreWS Handler Snippet

// handleMessage is a SOAPHandler interface method

// for accessing to the underlying message

43

@Override

public boolean handleMessage(SOAPMessageContext context) {

//...

SpeclAnalyzer analyzer = new SpeclAnalyzer();

SOAPMessage soapMsg = context.getMessage();

SOAPBody soapBody = soapMsg.getSOAPBody();

// the analyzer parse the body of the SOAP Msg to an SDO

analyzer.setXMLInput(soapBody.getOwnerDocument());

Node requestNode = soapBody.getFirstChild();

String name = requestNode.getLocalName();

if (name.equals("getBooksByAuthor")) {

//...

} else if(name.equals("getBookByIsbn")) {

// ...and we check the called method’s name and, for each

// of them, execute the corrensponding verifications

At this point, we check the called method and evaluate Specl assertions

on the passed arguments: this is equal to checking pre-conditions.

We tested every incoming message, for each method of the web service,

with the subsequent assertions:

getBooksByAuthor(String) :

let $author = /Envelope/Body/getBooksByAuthor/arg0;

$author.cardinality() == 0;

getBookByIsbn(String) :

let $isbn = /Envelope/Body/getBookByIsbn/arg0;

$isbn.length() == 10;

getBooksByIsbnList(List<String>) :

let $isbns = /Envelope/Body/getBooksByIsbnList/arg0;

forall($isbn in $isbns, $isbn.length() == 10);

getBooksByPublisherAndYearRange(String, int, int) :

let $publisher =

/Envelope/Body/getBooksByPublisherAndYearRange/arg0;

44

let $startYear =

/Envelope/Body/getBooksByPublisherAndYearRange/arg1;

let $endYear =

/Envelope/Body/getBooksByPublisherAndYearRange/arg2;

$publisher.cardinality() != 0 && $startYear > 1900

&& $endYear <= 2013;

Note that getAllBooksTitle and getBooksNumberPerAuthor methods

has no parameters to verify.

5.2.3 Client Side

We developed a web service client for accessing to the BookstoreWS, and

attached a handler for using Specl as post-condition validator and for ma-

nipulate SOAP messages.

5.2.3.1 Client SOAP Handler

The handler that we built, on the client side, has the task of intercept-

ing the getBooksNumberPerAuthorResponse web service response message

(that returns a Map with entries where keys are the authors name and values

the number of book in the store written by that author).

With Specl, we find the author with the maximum number of book and

we modify the SOAP message removing all entries of other authors, such

that the client will receive only the name and the books count of the author

with the greatest number of written book in the BookstoreWS.

The next piece of code contains the conditions we apply for obtaining

the result just explained above (it is wrapped inside an handler method with

a structure similar the one presented for the server side handler).

Listing 5.13: BoostoreWS Client Handler - Conditions

let $map_entries =

/Envelope/Body/getBooksNumberPerAuthorResponse/return/map;

let $values = $map_entries/entry/value;

let $maximum = max($num in $values, $num > 0);

let $author = $map_entries/entry[value==$maximum]/key;

1==1; // we are only interested in variables

After the evaluation is done by calling the evaluate(String) method

(where the passed argument is a string containing all the code in the previous

Listing 5.13), we obtain the name of the author, with the maximum number

of written book. Then, the command analyzer.getVariable("$author")

returns the value of the $author variable of Specl.

45

When the author’s name is retrieved, we can delete all the others from

the SOAP message and deliver the altered message to the final destination.

Node map = soapBody.getFirstChild().getFirstChild().getFirstChild();

for(int i=0; i < map.getChildNodes().getLength(); i++){

Node child = map.getChildNodes().item(i);

if(!child.getFirstChild().getTextContent().equals(author)){

map.removeChild(child);

i -= 1;

}

}

5.2.4 Results

SOAP Handler is a perfect context in which Specl could express its poten-

tiality:

• it allows to navigate and obtain data from the SOAP message in a

simpler way than getting lists of nodes, its children or siblings;

• handlers becomes easier to adopt and more useful;

• the user could predicate every assertion he/she wants, and verify the

correctness of the requests to the web service.

Another point of view is that web service performance could be improved:

handlers are exploited because, when Specl assess that a pre-condition is not

satisfied, the web service would not consume time for a bad request and the

requestor will receive a SOAP Fault message directly generated from the

handler.

5.3 Twitter API’s Example

The second real world example that we thought, it to use Specl for retrieving

data from the JSON obtained via Twitter’s REST API v1.1.

Data extraction and handling from JSON suffer lack of valid and suitable

tools: solutions are few and poor.

This is one of the situations in which the high-level abstraction and

general approach of Specl comes out: heterogeneous sources are mapped

to service data objects and their complexity will be hidden. The simple

navigation notation is the other advantage for reduce the effort.

As for the past example, we will introduce this case starting from an

overview of the context and technologies in which we are involved. Later

the example will be presented and explained.

46

5.3.1 REST

REST (Representation State Transfer) is �a style of software for distributed

hypermedia systems; that is, system in which resources (text, graphics, and

other media) are stored across a network and interconnected through hy-

perlink�[8]. Requests (from clients) and responses (from servers) are built

around the transfer of representations of resources. A representation of a re-

source is typically a document that captures the current or intended state of

a resource.A RESTful web API is a web API implemented using HTTP and

REST principles. It is a collection of resources, with four defined aspects:

• the base URI for the web API, such as http://example.com/resources/

• the Internet media type of the data supported by the web API. This is

often JSON but can be any other valid Internet media type provided

that it is a valid hypertext standard.

• the set of operations supported by the web API using HTTP methods

(e.g., GET, PUT, POST, or DELETE)

• the API must be hypertext driven

5.3.2 Twitter

Twitter is an on-line social networking and microblogging service that en-

ables users to send and read ”tweets”, which are short text messages. Twit-

ter offers REST API [19].

The example is based on an application-only authentication which does

not need a program to login as a specific user. In this way, the set of ac-

cessible information are the ones that are public (publicly accessible tweets,

lists or user information), in a read-only manner (for example is useful for

widgets and similar). For this sample it is enough, but for a deeper use of

Twitter’s capabilities is also offered access to OAuth signed requests. See

the developers site for more information [19].

5.3.3 Code

In this section, we illustrate portions of code related to the various aspects

covered.

5.3.3.1 Authentication Process

The procedure for Application-only authentication goes through the next

steps:

47

1. Register with Twitter a new application to get a consumer key and

consumer secret;

2. Combine the key and secret together and encode it with a base64

encoding;

3. Use that new encoded key to ask Twitter for a bearer token;

4. Get the token back from Twitter, save it and then supply it in the

headers of additional requests.

At this point, we can require a bearer token from Twitter using the

encoding keys inside encodedCredentials, obtained via a defined method

encKeys (this encodes the consumer key and secret to create the basic au-

thorization key).

This will be supplied in the Authorization header and passed in a SSL

connection to Twitter’s authentication URL. The token will be returned as

a JSON object.

Listing 5.14: Twitter’s Bearer Code Request Snippet

// Constructs the request for requesting a bearer token and

// returns that token as a string

private static String requestBearerToken(String endPointUrl)

throws IOException {

HttpsURLConnection connection = null;

String encodedCredentials = encKeys(consumerKey,consumerSecret);

try {

// ...

// connection and POST request to Twitter passing

// the encodedCredentials

// ...

// Specl Analyzer extracts data from the response

String response = readResponse(connection);

String assertion =

"let $token = /access_token;

$token.cardinality() != 0 && /token_type == \"bearer\";";

// ...

// we call the analyzer for the evaluation,

// then asks for $token variable

bearerToken = analyzer.getVariable("$token");

48

The assertions simply check the existence of the object containing the to-

ken and its type. Note that we have used Specl and SpeclAnalyzer for handle

the JSON and subsequently recall a Specl variable, using the getVariable

method.

5.3.3.2 Fetch Data

After getting the bearer token we could supply it in the header of additional

requests, according to our rights (remember that we use application-only

authentication, so not all the possible requests are available).

We selected four different API endpoints and wrote many methods to

make the appropriate calls to the service and to manage the returned data:

GET statuses/user timeline 1

�Returns a collection of the most recent Tweets posted by the user

indicated by the screen name or user id parameters.�.

In addition to screen name there’s another argument for the method

referring to the number of Tweets to analyze, count. Here is the

method.

Listing 5.15: Getting Timelines Tweets Snippet

private static Object fetchTimelineTweet(String screen_name,

int count) throws IOException {

HttpsURLConnection connection = null;

String baseURL = "https://api.twitter.com/1.1/statuses/

user_timeline.json";

String endPointUrl = baseURL + "?screen_name=" + screen_name

+ "&count=" + count;

try {

// connection and message sending

// Parse the JSON response into a JSON mapped object

// to fetch fields from.

String response = readResponse(connection);

String assertion =

"let $tweets = /root[text != \"\"]/text;

/root.cardinality() > 0;";

// ...

1Details at https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

49

Object texts = analyzer.getVariable("$tweets");

}

// ...

With the method readResponse we obtain the string containing the

response to the previously request, sent through the connection and

with the earned bearer token.

Then we write the Specl assertion we want to check: we get the text of

all the tweets that has non-empty text and store them in $tweets, veri-

fying that the response has at least one object (/root.cardinality()

> 0).

Looking more closely at the assertions we can see that there is the step

/root: this is introduced because the value reported by response is

a JSON array, in this cases Specl assign that array to a generic key,

precisely root, leading to the a default SDO. If the evaluation gives

positive result, the value corresponding to variable $tweets will be

assigned to texts (the obtained object is an array).

GET search/tweets 2

�Returns a collection of relevant Tweets matching a specified query�.

With this request, we are going to obtain some sort of tweets and

return the screen name of the authors of the tweet localized in Italy.

Listing 5.16: Tweets Search Snippet

private static Object fetchSearchedTweet(String query,

int count) throws IOException {

HttpsURLConnection connection = null;

String baseURL = "https://api.twitter.com/1.1/search/tweets.

json";

String endPointUrl = baseURL + "?q=" + URLEncoder.encode(

query, "UTF-8") + "&count=" + count;

try {

// connection and message sending

String response = readResponse(connection);

2Details at https://dev.twitter.com/docs/api/1.1/get/search/tweets

50

String assertion =

"let $italian_user = /statuses[lang==\"it\"]/user/

screen_name;

/statuses.cardinality() > 0;";

// ...

Object itu = analyzer.getVariable("$italian_user");

// ...

Note that the search is done according to the keywords passed as

method’s parameter query. Also the number of results could be set

with the parameter count.

The flow is as in the previous case: get the response, fetch data with

Specl and use them. The expressed assertions select the statuses where

the language is Italian (/statuses[lang=="it"]), then, for each sta-

tus, gets the screen name of its user. The result is an array with the

list of user’s names. The variable we extract is $italian user.

GET trends/place 3

�Returns the top 10 trending topics for a specific WOEID, if trending

information is available for it.�.

WOEID is the Yahoo! Where On Earth ID of the location to return

trending information for.

In the next snippet, we obtain the trending topics for a passed WOEID;

the program is expecting the one for Milan (it can be seen in the Specl

assertions).

Listing 5.17: Trends in Milan Snippet

private static Object fetchTrendsByWOEID(String woeid)

throws IOException {

HttpsURLConnection connection = null;

String baseURL = "https://api.twitter.com/1.1/trends

/place.json";

String endPointUrl = baseURL + "?id=" + woeid;

try {

// connection and message sending

3Details at https://dev.twitter.com/docs/api/1.1/get/trends/place

51

String response = readResponse(connection);

String assertion =

"let $trends = /root/trends/name;"

"exists($elem in $trends, $elem.startsWith(\"#\")) &&

/root/locations/name == \"Milan\";";

// ...

Object trends = analyzer.getVariable("$trends");

// ...

The assertions checks the existence of at least an hashtag (exists

($elem in $trends, $elem.startsWith("#"))) and that the name

of the city is ’Milan’ (/root/locations/name == "Milan").

As for the user timeline, the response is a JSON array, so the root

key will be generated. This method returns $trends array.

GET application/rate limit status 4

�Returns the current rate limits for methods belonging to the specified

resource families.�.

This GET method is related to the limitations of the use of APIs

applied by Twitter.

Here we retrieve the state of our limits and calculate the percentage

with respect to the thresholds.

Listing 5.18: Twitter’s API Limits Snippet

private static Map<String, Object> fetchRateLimitStatus()

throws IOException {

HttpsURLConnection connection = null;

String endPointUrl = "https://api.twitter.com/1.1/application

/rate_limit_status.json?resources=search,statuses,trends";

try {

// connection and message sending

// Parse the JSON response into a JSON mapped object

4Details at https://dev.twitter.com/docs/api/1.1/get/application/rate_limit_

status

52

// to fetch fields from.

String response = readResponse(connection);

String assertion =

"let $status_remain =

/resources/statuses/statusesuser_timeline/remaining;

let $status_limit =

/resources/statuses/statusesuser_timeline/limit;

let $status_available =

$status_remain / $status_limit * 100;

let $search_remain =

/resources/search/searchtweets/remaining;

let $search_limit =

/resources/search/searchtweets/limit;

let $search_available =

$search_remain / $search_limit * 100;

let $trends_place_remain =

/resources/trends/trendsplace/remaining;

let $trends_place_limit =

/resources/trends/trendsplace/limit;

let $trends_place_available =

$trends_place_remain / $trends_place_limit * 100;

!($status_available <= 0 || $search_available <= 0 ||

$trends_place_available <= 0);";

// ...

Object statusPercentage =

analyzer.getVariable("$status_available");

Object searchPercentage =

analyzer.getVariable("$search_available");

Object trendsPercentage =

analyzer.getVariable("$trends_place_available");

// ...

In this final case, we made simple arithmetic expressions for calculating

the percentage of use of each resource, after getting the data from the

JSON.

We calculate and assign to different variables the use percentage for

each resource family (statuses, friends, trends, help). At this

point, the assertions verifies that no limits has been exceeded.

!(\$status_available <= 0 || \$search_available <= 0 ||

\$trends_place_available <= 0)

53

There’s another little thing: the JSON returned by Twitter has some

keys with non-alphanumeric characters (for example the / character in

/statuses/user timeline, conflicting with the navigation steps), in

this situation Specl strips away not allowed characters and, in case of

blank spaces, replace them with a ’-’ (so /statuses/user timeline

has become statusesuser timeline).

The Specl interpreter tells, with a log message, the user when one of

the previous cases is observed and signals the result of the replacement,

but the developers has to keep this in mind when making assertions.

5.3.3.3 Result

Even in this context Specl express its value: the notation and the queries

are simple and gives back easily the result requested, as XPath and XQuery

does for XML.

This example supports the fact that Specl could be an optimal tool for

retrieving and manipulating data from different sources thanks to SDOs and

by using a simple and common syntax.

5.3.4 Web Site

We remember that all Specl sources are freely accessible at http://github.

com/samguinea/specl. The site is intended to be a starting point for the

language users. It presents Specl and its features, properly associated with

examples supporting the understanding, and a full didactic example covering

almost every aspect and capability.

The web site gives also references to the dedicated tutorials built and

quickly explained in this text. The SOAP Handler WS, SOAP Handler

Client and Twitter REST API projects’ code are fully available and viewable

on GitHub, at the links indicated on the main site. Each repository has also

a detailed tutorial, guiding developers through the growth of the work.

54

Chapter 6

Conclusion

This thesis work is born from the needs of restart and extend WSCoL (Web

Service Constrain Language).

The original version of the language was “web service-oriented”; with

this work, we enriched and generalized the language to a higher level of

abstraction. This gives to the language the capabilities for adaption in

many different contexts.

This result is mainly imputable to the use of service data objects, which

simplifies and unifies programming across different data sources and facili-

tates applications to handle and query data easily.

We have seen the flexibility of the language by applying it in examples

of different natures and by obtaining a positive result in each of them.

A special mention must be made to XText and its community: the com-

ponents generated using XText (like lexer, parser and validator) that were

put inside the interpreter during its building, are very simple to integrate

and configure. Furthermore, all the complexity and the produced tools used

are hidden by few lines of code, which lets you obtain the AST of the parsed

source file.

Specl and its interpreter could really be a convenient tool for developers,

and we tried to push its use through the website, which is not only a place

where you can find information about the language, but also a place where

you can find guided examples, real-world application tutorials and the all

source code of each project.

55

56

Appendix A

XText

XText is a highly configurable language development framework, i.e. a tech-

nology supporting the activity of developing language.

Given the XText grammar of the language, it provides for that language

• a parser

• an AST builder

• a validator

• a scoping and linking framework

• a code generator

• a serializer and code formatter

• an Eclipse editor with

– quick fixes

– template proposals

– outline

– hyper-linking

– syntax coloring

– project wizard

– content assistance

Due to its flexibility, these tools, generated for supporting the IDE, are

independent of Eclipse IDE or OSGi and can be used externally in any Java

environment, in a standalone-way; as done in this thesis. XText provides a

full implementation of a DSL running on the JVM.

We chose XText for these reasons:

57

• powerful: lets you build a simple DSL with few efforts (and also gives

you an Eclipse-based IDE almost for free);

• flexible and extensible: features like the quick-fix, content assist

and many others for the generated IDE, are all manageable and cus-

tomizable;

• reusable tools: produced tools for the IDE can be used outside an

Equinox configuration (called ’standalone’ setup), like parser, lexer

and AST builder;

• community: wide and active support community [22];

XText is based on EMF (Eclipse Modeling Framework), and use ANTLR

Parser Generator and Google Guice.

A.1 EMF

EMF is �a modeling framework and code generation facility for building

tools and other applications based on a structured data model�[18].

Starting from a defined model, this framework generates a set of the

corresponding Java classes. In XText it is widely used, but mainly for the

grammar representation and for the abstract syntax tree of the language.

An EMF model is in essence a UML class diagram, with similar ab-

stractions of classes and methods. The meta-model used for describe EMF

models is called Ecore, that is defined in itself (so it is a meta-meta-model

too). Exists four type of Ecore class:

• EClass: represents a class, with zero or more attributes and zero or

more references.

• EAttribute: represents an attribute which has a name and a type.

• EReference: represents one end of an association between two classes

• EDataType: represents the type of an attribute.

Summing up, an EMF model is an instance of an Ecore model (and

then called core model) and is made up of instances of EObjects which are

connected. A set of EClasses is contained in a so-called EPackage, and inside

EClasses there is a set of EAttribute, EReference and EDataTypes. All these

model elements (such as EPackage, EClasses, EDatatype, EReference. and

58

Figure A.1: Ecore Classes

EAttribute) extend EObject. EObject is the base of all model elements in

the same way that all java classes extend Object.

Core models use XMI (XML Metadata Interchange) for its representa-

tion, and could be defined using annotated Java, XML Schema or UML

class diagram. Once the EMF meta-model is specified you can generate the

corresponding Java implementations classes from this model. EMF provides

the possibility that the generated code can be safely extended by hand.

In XText the ECore model is generated from the user defined DSL as

a list of rules of the language. The grammar file is a plain text file with

.xtext filename extension, and the grammar within is defined with a BNF-

like syntax. The grammar file not only defines the syntax of a language, but

also how to map it to an ECore model and how to build the AST (the XGL

- XText Grammar Language - is used for this purpose). There are four type

of rules specified with XGL:

Table A.1: XGL Grammar - EMF Mappings

Rule type Returns Used by

Parser Rules EClass Parser

Enum Rules EEnum Parser

59

Datatype Rules EDatatype (EString is implied if none has

been explicitly declared)

Parser

Terminal Rules EDatatype Lexer

Each of them are mapped as follow

Figure A.2: XGL-Ecore Mapping

For a deeper explanation please read the XText Documentation.

A.2 ANTLR

ANTLR is used for generating the top-down LL(k) parser for the user’s

language [1].

During the generation phase of the language, the XText grammar (XGL)

is converted to an ANTLR grammar and then executed for achieve lexer

and parser to use into the framework. As previously said, in the grammar

conversion are also passed all the information for construct the AST with

EMF.

A.3 Google Guice

A dependency injection framework, that use code annotation for provide a

functionality from another component without resolve all its dependencies

[4].

XText use it for the composition of the various component of the lan-

guage, giving move flexibility, reuse of code and maintainability.

DI is at the base of the POJO “standalone” use of XText: with the

Setup-implementation of the language and its method createInjector-

AndDoEMFRegistration() the initialization of the infrastructure is done.

The setup method return an Injector, by which can be obtained the parser

60

and the components of the language; so it let use the EMF’s APIs for load

and store model of languages.

A.4 XText Generator

XText uses the MWE2 (Modeling Workflow Engine 2) DSL to configure the

generation of its artifacts and components; tweaking the default .mwe2 file,

provided by XText, could generate support for further features.

A workflow is a series of components that interact with each other (han-

dles EMF resource, and builds every artifact needed). During its execution,

will be generated artifacts related to the UI editor for the DSL but also, and

most important, derives an ANTLR specification from the user’s grammar,

including actions for the AST (the classes for its nodes will be produced

using the EMF framework).

The generator infrastructure relies on the Generation Gap Pattern which

deals with the problem of separating the code that can be customized from

the one generated. In XText the latter is placed in the src-gen folder, while

everything could be modified inside src folder.

The main component is Generator that contains a list of fragments, each

of them corresponds to a language element:

GrammarAccessFragment

the grammar file (Specl.xtext) is transformed in an EMF, from this will

be generated SpeclGrammarAccess.java that offers API for grammar

access, useful for the next fragments;

EcoreGeneratorFragment

the most important fragment, builds the grammar meta-model for the

construction of the AST;

ParseTreeConstructorFragment

used for the serialization process (the opposite of the parsing, from

AST to tokens);

ResourceFactoryFragment

generates a Factory of XTextResource (same concept of Resource

and ResourceSet of EMF) that gives APIs for using all the XText’s

functionality (it is fundamental for a in Standalone configuration, as

in this thesis);

XtextAntlrGeneratorFragment

produces the ANTLR grammar, lexer and parser of the language;

61

JavaValidatorFragment

the corresponding class allows to configure a model validator, that

signals warnings and errors in the model specification;

InportURIScopingFragment and SimpleNameFragment

generates components for the scope handling;

FormatterFragment

code formatter policy;

LabelProviderFragment

label provider (a stick and a name for each grammar element);

TransformerFragment

manage the outline visualization;

QuickfixProviderFragment

supports quickfixes in the IDE;

JavaBasedContentAssistFragment

generates provision for proposal provider and content assist in the IDE;

Etc...

(refer to XText Documentation for details)

The execution of the workflow produces the code of the components that

forms the infrastructure of the language and the tools for its IDE.

A.5 Interact with XText models programmatically

As said before in this thesis we are not interested in the generation of the

Eclipse-based IDE for our language, but to export the component of the

language architecture and use them in a standalone way inside a Java project

for make an interpreter.

EMF models can be persisted by the means of a so called Resource.

XText languages implement the Resource interface which is why you can

use the EMF APIs to load a model into memory (and also save them):

A.5.1 Loading and using a model

The first step initializes the language infrastructure to run in standalone

mode.

new SpeclStandaloneSetup().createInjectorAndDoEMFRegistration();

62

In fact, EMF is designed to work in Eclipse and therefore makes use

of Equinox extension points in order to register factories and the like. In

a vanilla Java project there is no Equinox, hence we do the registration

programmatically. The generated SpeclStandaloneSetup class does just

that. You do not have to do this kind of initialization when you run your

plug-ins within Eclipse, since in that case the extension point declarations

are used. The other thing the StandaloneSetup takes care of is creating a

Guice injector.

A.5.2 Create a ResourceSet

Now that the language infrastructure is initialized and the different contri-

butions to EMF are registered, we want to load a Resource. To do so we

first create a ResourceSet, which as the name suggests represents a set of

Resources. If one Resource references another Resource, EMF will auto-

matically load that other Resource into the same ResourceSet as soon as

the cross-reference is resolved. Resolution of cross-references is done lazy,

i.e. on first access.

ResourceSet rs = new ResourceSetImpl();

A.5.3 Loading a resource

The next step loads the Resource using the resource set. We pass in a URI

which points to the file in the file system.

Resource resource =

rs.getResource(URI.createURI("./test.specl"), true);

EMF’s URI is a powerful concept. It supports many different schemes

to load resources from file system, web sites, jars, OSGi bundles or even

from Java’s classpath. In addition, if that is not enough you can come

up with your own schemes. Also, a URI can not only point to a resource

but also to any EObject in a resource. This is done by appending a URI

fragment to the URI. The second parameter denotes whether the resource

should automatically be loaded if it was not already before. Alternatively,

we could have written:

Resource resource =

rs.getResource(URI.createURI("./test.specl"), false);

resource.load(null);

The load method optionally takes a map of properties, which allows

defining a contract between a client and the specific implementation. In

63

XText, for instance, we use the map to state whether cross-references should

be eagerly resolved. In order to find out what properties are supported, it is

usually best to look into the concrete implementations. That said, in most

cases you do not need to pass any properties at all.

A.5.4 Referencing the root

The last step assigns the root element of the model to a local variable.

EObject eobject = resource.getContents().get(0);

Actually, it is the first element from the contents list of a Resource, but

in XText a Resource always has just one root element.

A.5.5 Working with the Grammar

Furthermore, the grammar is represented as an EMF model and can be used

in Java. In fact, each node of the node model references the element from

the grammar which was responsible for parsing or lexing that node:

Model model = (Model) eObject;

CompositeNode node = NodeUtil.getNode(model);

ParserRule parserRule = (ParserRule) node.getGrammarElement();

assertEquals("Model", parserRule.getName());

64

Appendix B

Specl Grammar

In this appendix we present the whole grammar of Specl, written in XGL

(XText Grammar Language). XGL have a syntax similar to ANTLR, for

details on XText read the Appendix A or take a view of its documentation

[6].

Listing B.1: Specl Grammar

/***

Specl is a special-purpose monitoring language, by which it’s

possible to express directives on both functional and non-

functional properties; which are essentially pre- and post-

conditions on the interaction with external partner services.

It is suitable to express general dependability properties as

safety, integrity, availability and reliability.

***/

grammar it.polimi.specl.Specl with org.eclipse.xtext.common.

Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

generate Specl "http://www.polimi.it/specl/Specl"

Model:

declarations+=Declaration*

assertionSet=AssertionOr ’;’;

// Assign to the variable a value (a String, Double, Boolean or SDO)

Declaration:

’let’ var=Variable ’=’ assert=(Assertion |

AssertionQuantifiedBoolean) ’;’;

// Assertion results in logical operation OR

AssertionOr returns Assertions:

65

AssertionAnd ({AssertionOr.left=current} ’||’ right=AssertionAnd)

*;

// Assertion results in logical operation AND

AssertionAnd returns Assertions:

AssertionHP ({AssertionAnd.left=current} ’&&’ right=AssertionHP)*;

// Assertion results in logical operation with highest priority (NOT

and parentheses)

AssertionHP returns Assertions:

(=> AssertionForm | AssertionNot | AssertionBraced);

// Assertion with parentheses

AssertionBraced:

’(’ innerFormula=AssertionOr ’)’;

// Assertion with logical operator NOT

AssertionNot:

’!’ ’(’ innerFormula=AssertionOr ’)’;

// Kinds of Assertion: with comparison and without (2nd and 3rd case

are for boolean comparison and their result is implicitly ’true

’)

AssertionForm:

(=> AssertionStdCmp | AssertionQuantifiedBoolean |

AssertionBoolean);

// Assertions making a standard comparison between values

AssertionStdCmp:

leftAssert=Assertion op=Rop rightAssert=Assertion;

// Assertion

Assertion:

Expression | AssertionQuantifiedNumeric | ’[’ values=Values ’]’ |

boolean=BOOLEAN;

// Assertion with boolean result

AssertionBoolean returns Assertion:

steps+=Step+ (’.’ functions+=Function)* ’.’ functions+=

FunctionBoolean;

// Assertion with quantifiers for boolean results

AssertionQuantifiedBoolean returns AssertionQuantified:

quantifier=BoolQuantifier ’(’ alias=Variable ’in’ var=Variable ’,’

conditions=AssertionOr ’)’;

66

// Assertion with quantifiers for numeric results

AssertionQuantifiedNumeric returns AssertionQuantified:

quantifier=NumbQuantifier ’(’ alias=Variable ’in’ var=Variable ’,’

conditions=AssertionOr ’)’;

// Steps describing the navigation path through an SDO

Step:

’/’ name=ID (’[’ predicate=Predicate ’]’)? | placeholder=Variable;

// Attribute for SDO navigation: according to the operation checks

the searched value, if possible

Predicate:

property=ID (op=Rop numberValue=NUMBER | op=StringRop strValue=

STRING | op=Rop varValue=Variable) | number=NUMBER | var=

Variable;

// Function

Function:

name=ID ’(’ (params=Values)? ’)’;

// Function that gives boolean result

FunctionBoolean returns Function:

name=(’contains’|’startsWith’|’endsWith’) ’(’ (params=Values)? ’)

’;

Expression:

Addition;

Addition returns Expression:

Multiplication (({Plus.left=current} ’+’ | {Minus.left=current}

’-’) right=Multiplication)*;

Multiplication returns Expression:

PrimaryExpression (({Multi.left=current} ’*’ | {Div.left=current}

’/’ | {Rest.left=current} ’%’) right=PrimaryExpression)*;

PrimaryExpression returns Expression:

Value | ’(’ Addition ’)’;

// List of values

Values:

value+=Value (’,’ value+=Value)*;

// Value could be a constant (alphanumeric or numeric) or obtained

67

by an SDO’s property

Value:

Constant | steps+=Step+ (’.’ functions+=Function)*;

Constant:

number=NUMBER | string=STRING;

// Variable (NumbQuantifier is added for give the possibility to use

’max’, ’min’, etc. as variables name)

Variable:

’$’ ID;

BoolQuantifier:

’forall’ | ’exists’;

NumbQuantifier:

’numOf’ | ’sum’ | ’avg’ | ’min’ | ’max’ | ’product’;

// Relational Operation for Strings

StringRop:

’==’ | "!=";

// Relational Operation

Rop:

StringRop | ’<’ | ’<=’ | ’>’ | ’>=’;

terminal BOOLEAN returns ecore::EBoolean:

’true’ | ’false’ | ’TRUE’ | ’FALSE’;

terminal NUMBER returns ecore::EDouble:

(’-’)? (’0’..’9’)* (’.’ (’0’..’9’)+)?;

terminal INT returns ecore::EInt: // override of the default rule

’this one has been deactivated’;

68

Bibliography

[1] ANTLR. ANTLR. http://www.antlr.org/.

[2] Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML,

2004.

[3] Gary T. Leavens’s JML group. JML - Home Page. http://www.eecs.

ucf.edu/~leavens/JML//index.shtml.

[4] Google. Guice. http://code.google.com/p/google-guice/.

[5] Itemis. XText - Project Home Page. http://www.xtext.org/, Novem-

ber 2013.

[6] Itemis. XText 2.4.3 - Documentation, September 2013.

[7] Jordi Cabot and Martin Gogolla. M.: Object Constraint Language

(OCL): A Definitive Guide. In SFM 2012. LNCS, pages 58–90. Springer,

2012.

[8] Kalin, M. Java Web Services: Up and Running. O’Reilly Media, 2009.

[9] L.Baresi and S.Guinea. Toward Dynamic Monitoring of WS-BPEL Pro-

cesses. In Springer, editor, ICSOC 2005: 3rd International Conference

on Service Oriented Computing, volume 3826 of Lecture Notes in Com-

puter Science, pages 269–282. Springer, 2005.

[10] L.Baresi and S.Guinea. A Dynamic and Reactive Approach to the

Supervision of BPEL Processes. In ISEC 2008: 1st Indian Software

Engeneering Conference, pages 39–48, 2008.

[11] L.Baresi and S.Guinea. Self-Supervising BPEL Processes. IEEE Trans.

Software Eng., 37(2):247–263, 2011.

[12] Marlo Verdesca and Jaeson Munro and Michael Hoffman and Maria

Bauer and Dinesh Manocha. Object Management Group. Object Con-

straint Language Specification (in UML 1.4). In Interservice/Industry

69

Training, Simulation and Education Conference (IITSEC, page URL-

http://www.omg.or, 2005.

[13] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1991.

[14] Bertrand Meyer. Applying Design by Contract. IEEE Computer, 25:40–

51, 1992.

[15] Microsoft Research. Spec#. http://research.microsoft.com/

en-us/projects/specsharp/.

[16] OASIS Open CSA. OASIS Open CSA - SDO. http://www.

oasis-opencsa.org/sdo.

[17] Robert Bruce Findler and Matthias Felleisen. Contract Soundness for

Object-Oriented Languages. In OOPSLA ’01 Conference Proceedings,

Object-Oriented Programming, Systems, Languages, and Applications,

pages 1–15. ACM, 2001.

[18] The Eclipse Foundation. EMF - Home Page. http://www.eclipse.

org/modeling/emf.

[19] Twitter. Twitter - Dev Page. https://dev.twitter.com/.

[20] W3C. XPath - Documentation. http://www.w3.org/TR/xpath20/.

[21] W3C. XQuery. http://www.w3.org/TR/xpath20/.

[22] XText. XText - Community Forum. http://www.eclipse.org/

forums/index.php?t=thread&frm_id=27.

70

