
POLITECNICO DI MILANO

SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

MASTER OF SCIENCE IN

ELECTRONIC SYSTEMS ENGINEERING

DESIGN AND DEVELOPMENT OF A SOFTWARE TOOL
FOR THE MANAGEMENT OF ABB'S EKIP

CONTROLLERS

Prof. Francesco Castelli Dezza

Julio Wladimir Torres Tello

Mat. 780320

December, 2013

Acknowledgments 2

Acknowledgments

First of all, I would like to thank Prof. Enrico Ragaini for giving
me the opportunity to develop this project, for all his support,
advise, patience and dedication to this work; because without his
guidance and knowledge I could have never gone through it. Also, I
would like to thank Prof. Francesco Castelli Dezza for agreeing to be
my advisor, for his time and advice. Likewise I am very thankful with
ABB company for giving me the chance of elaborating this work, as
well as facilitating me its equipments, information and installations;
and to the two people in the company who got involved in this
project and have collaborated to its realization with time, ideas and
support: Luca Omati and Enrico Amistadi.

Furthermore, I would like to thank Politecnico di Milano and its
staff for making it possible for me to complete this Masters degree. I
am grateful for the knowledge and experience that I have gained
this semesters studying here. And of course my sincere thanks to
Italy, the country which opened its doors to me in the best way,
providing me support and motivation.

Finally I would like to thank to all the ones who contributed in
some way to the achievement of this degree and not only in the
academic aspects. Thanks to my family for all the emotional and
financial support and to my friends in Ecuador for encouraging me
even if it has been from far away; and of course big thanks to my
friends in this country, who have become my family and have made
my time in here remarkable.

A mis padres Julio y Adita,

a mi abuela Dolores

y a mi hermano Juan Carlos.

Table of contents 4

Table of contents
► Acknowledgments..2

► Table of contents...4

► Index of figures..6

► Index of tables...7

► Abstract...8

► Riassunto..9

►1 ..The Energy Efficiency Problem
..1

►1.1 The Electric Power Systems...1
►1.2 Environmental Concerns..3

► Energy consumption:...4
►1.3 Renewable Energies...6
►1.4 Economic Concerns...10
►1.5 Smart Power..11
►1.6 The Market...14

► Consumption forecast:..16
► Consumption peaks:..18

►2 ...Power Management
..19

►2.1 ABB Company..19
►2.2 The Ekip Controller..20

► Physical connections:..21
► The load control algorithm:...24

►2.3 Management of multiple Ekip Controllers................................27

►3 ..The Ekip Management Software
..29

►3.1 General Description...29
►3.2 Software Tools..32
►3.3 The Modbus Protocol..35

► Modbus TCP:..40
► Implementation in the EMS tool:...41

►3.4 Main Workflow...42
► Configuration file:..44

►3.5 The ECACT Module...45
► The function: (lists, defaults, hours, nodes, j):...................................51

►3.6 The ECLGT Module...52
► XML file:...55
► Spreadsheet (.xls) file:...58
► Both formats:...62

►3.7 Description of the functions ..62
► systemsCal(ip):..63
► writeTimePeriods(input_list, day_initial, day_final):...........................63
► daylyPowers(a, lim, multi_lists, times):..64
► writeDefPowers(def_power, ip):...64

Table of contents 5

► hourlyPowers(hour, pow_info, h_info, bias):......................................65
► fillBlanks(val_list, defa):...65
► writeMaximumPowers(prof, ip, day_pow):...66
► xmlLog(ip, i):...66
► xlsLog(sheet, i, ip):..67
► def restart():..67

►3.8 How to use...68

►4 ...Tests & Results
..70

►4.1 Tests...70
►4.2 Results...73
►4.3 Future work..74
►4.4 Conclusions..75

► Appendix A..78

► Appendix B..81

► Appendix C..83

► Appendix D..86

► Appendix E..91

► Appendix F..95

► Glossary of terms and abbreviations...............................1

► Bibliography...2

Index of figures 6

Index of figures

Figure 1.1: World total energy consumption...5

Figure 1.2: World CO2 emissions...6

Figure 1.3: Electricity prices calculated day-ahead.....................................17

Figure 2.1: Ekip controller and some of its basic connections.....................21

Figure 2.2: Energy consumption curve and limits.......................................25

Figure 3.1: General working process of the EMS tool..................................30

Figure 3.2: Setup file used to generate an executable file from the Python
script containing the EMS code..35

Figure 3.3: General MODBUS frame [Modbus, p.3]The Modbus Organization,
“Modbus Application Protocol.”..36

Figure 3.4: General EMS workflow diagram...42

Figure 3.5: Initial window of the EMS tool, where it is possible to choose
which of the two modules is going to be used..43

Figure 3.6: Workflow diagram of the ECACT module...................................47

Figure 3.7: Time periods, Power limits and their correspondence in the Ekip
controller..49

Figure 3.8: Workflow diagram of the ECLGT module - configuration process
...52

Figure 3.9: XML files generation procedure...55

Figure 3.10: Resulting XML log file example..57

Figure 3.11: Spreadsheet file generation procedure...................................59

Figure 3.12: Resulting spreadsheet log file example...................................60

Figure 3.13: Example of the result messages shown by the EMS tool.........68

Figure 4.1: EMS software development - Testing process............................70

Figure 4.2: Example of the final tests, using the Ekip Connect software.....72

Index of tables 7

Index of tables

Table 3.1: Modbus data types...37

Table 3.2: Request and Response details (FC 4)..38

Table 3.3: Request and Response details (FC 16)..39

Abstract 8

Abstract

This work is motivated mainly by the the worldwide growing
energy demand which is an issue that governments, industry and
research institutions have to face constantly, making mandatory for
them to adopt strategies that provide a more efficient use of electric
energy instead of just increasing the generation capacity. In that sense,
ABB, a world leading company in power systems solutions, has found an
economic and effective answer for the management of electric loads, by
using the Ekip controller, which makes use of a patented algorithm to
decide whether a load in an electric system must be powered or not at a
defined time instant, according to given power limits. Moreover, ABB
has the capability of calculating recommended power limits for an
electric installation, based on the generation schemes and the prices of
electricity at a given moment.

However, these controllers require a lot of manual intervention
and they have a limited number of power limits (four per day – that can
remain unchanged for many days) that can be assigned to an electric
installation. Therefore this project is focused in the management of
these controllers using the software tool here developed. In fact, the
goal of the project is to develop an interface between the information
available at ABB about power limits and the Ekip controllers, specially
the way in which they act over the electric installation; providing a
power limit profile that would have now a higher level of granularity in
time and an adaptive behavior, since the power limits would be now
updated every fifteen minutes and based in the constantly updated
input information.

This software tool, called Ekip Management Software (EMS) is
the final product of this project, and it is a program developed in Python
which reads the power limits information from XML files, processes the
data and configures the controllers over an IP network; and also reads
information about the status of the controllers in order to generate log
files. This allows a user to manage a number of controllers at the same
time by only keeping the software running having as a result a more
accurate power limit profile that the one that could be achieved by
manually configuring the controllers.

Riassunto 9

Riassunto

Questo lavoro è motivato principalmente dalla continua
crescita del bisogno di energia a livello mondiale: un problema che
le istituzioni dei governi, dell'industria e della ricerca devono
affrontare costantemente rendendo obbligatoria l’adozione di
strategie che prevedono un uso più efficiente dell'energia elettrica
invece del semplice aumento della capacità di generazione. In
questo senso ABB, leader mondiale nelle soluzioni per Sistemi di
Potenza, ha trovato una risposta economica ed efficace per la
gestione dei carichi elettrici utilizzando il controller Ekip. Esso
utilizza un algoritmo brevettato per decidere se un carico di un certo
sistema elettrico debba essere connesso o no alla rete in un istante
di tempo definito seguendo determinati limiti di potenza. Inoltre ABB
ha la capacità di calcolare i limiti di potenza consigliati per un
impianto elettrico sulla base degli schemi di generazione e dei
prezzi dell’energia elettrica in un momento dato.

Tuttavia questi controller richiedono di un certo grado di
intervento manuale e hanno un numero ristretto di limiti di potenza
assegnabili ad un impianto elettrico (quattro al giorno con possibilità
di rimanere immutati per molti giorni). Il progetto è quindi
focalizzato sulla gestione di questi controller utilizzando lo
strumento software sviluppato. Lo scopo finale è infatti lo sviluppo di
un'interfaccia tra le informazioni disponibili ad ABB sui limiti di
potenza e i controller Ekip, specialmente il modo in cui agiscono
sull'impianto elettrico fornendo un nuovo profilo limite di potenza
con maggiore livello di granularità nel tempo e comportamento
adattativo. I limiti di potenza saranno ora aggiornati ogni quindici
minuti in funzione dell’informazione in entrata costantemente
aggiornata.

Questo strumento software, denominato Ekip Management
Software (EMS), é il prodotto finale del progetto. E’ un programma
sviluppato in Python che legge l’informazione sui limiti di potenza da
un file XML, ordina i dati e configura i controllori su una rete IP;
legge inoltre l’informazione sullo stato dei controller per generare
dei log files. Questo consente all'utente di gestire un certo numero
di controller allo stesso tempo solamente mantenendo il software in
esecuzione: il risultato è un profilo di limite di potenza più accurato
di quello che potrebbe essere realizzato configurando manualmente
i controller.

The Energy Efficiency Problem 1

1 The Energy Efficiency Problem

“We can’t have an energy strategy for the

last century that traps us in the past. We

need an energy strategy for the future – an

all-of-the-above strategy for the 21st century

that develops every source of

American-made energy.” -

<Barack Obama> ►[The White House,

March 15, 2012]

Summary. <The continuously-growing energy demand is a

worldwide problem that governments, industry and research

institutions have to face day by day, making mandatory to adopt

strategies that provide a most efficient use of energy (electric in our

specific case), instead of just increasing the generation capacity.

These new strategies are possible thanks to the new technologies

available nowadays.>

1.1 The Electric Power Systems

We can trace back the origins of the electric power systems to

1882 when Thomas Edison put into operation the steam-electric

plant of “Pearl Street Station” in New York; station that managed to

serve five hundred customers using more that ten thousand electric

lamps. In the same year, the first DC transmission line was built in

Germany over a distance of around sixty kilometers. [Casazza, p.1,

2]i. Initiating in this way the history of a new energy system so

successful that started a second industrial revolution in the world; a

revolution that has not yet stopped and has been supporting the

economic growth in Europe and the US since then, and other new

economies in more recent years. However, given that this

file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Energy Efficiency Problem 2

technology has been so effective in satisfying all the industry needs

for decades, it hasn't changed so much since its beginnings and

most of the same basic principles are still applied now.

However, more recently, the word “efficiency” is taking a

stronger meaning in the electric energy filed, given the new

considerations that arise from many points of view such as

environmental, economical, political, etc. Efficiency is often defined

as the ratio of a system's “output” to its “input”, and so it

determines the quantity of resources (input) that are being unused

or “wasted” and that have the potential to be also transformed into

the mentioned output, or electric energy.

In electric systems, since the “input” or let's say the fuel, has

been not a limitation because it has always been available,

inexpensive and environmental issues haven't been really

considered; the systems' efficiency has not been a real concern for a

while. But now, the time has come when the world needs to change

this scheme, making it more efficient; now we have environmental

and economic concerns that are urging the governments and

industries to change their conceptions about the electric systems; in

that sense many institutions are working in the development of new

strategies, policies and technological solutions that can make it

happen. Regarding these considerations, there are some key factors

that are necessary to remember, because they can limit these new

developments, or they can be seen as opportunities for making this

change possible; these are:

■ Transformation. Electric energy can be transformed from

and to other energy forms, giving it multiple uses but also

many alternatives for its production.

The Energy Efficiency Problem 3

■ Storing energy. Despite all the current efforts and new

technologies, nowadays it is still not possible to store big

amounts of electric energy. In general, it must be used at the

instant that it's produced.

■ Transmission. One of the main advantages of electric energy

is that it can be produced in one location, and instantaneously

transmitted to another one.

■ Interconnection. There are economic and technical benefits

when we interconnect electric systems to provide mutual

assistance, because in this way we reduce the number of

backup plants that we need and improve the overall response

to failures.

■ New technology. In the last decades, there has been a great

development in electronics, automation, informatics, and

telecommunications, providing a lot of new options for the

management and control of electric power systems.

1.2 Environmental Concerns

In the past few decades, we have watched, read and herd

more and more news about unusual and unexpected meteorological

phenomena around all over the world, from stronger droughts and

floods, to the biggest hurricanes in history; and also how pollution

affects life on Earth, both human and wild life. In the last days I have

read news about studies showing that human life span drops in

areas where air pollution is higher, even for the same kind of

population, in the same country [NYTimes.com]ii; and also how

endangered wildlife is, when I read in another study, how evolution

is thousands of times slower that it should in order to adjust to

file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Energy Efficiency Problem 4

climate changes, predicting that we will see extinct many species by

the end of the century, especially in tropical areas (the most

biodiverse) [Awescience.com]iii.

And although scientific community has been saying for many

years that the cause of these already occurring phenomena, and the

ones to come is the pollution caused by us, due to our consuming

habits that demand every time more and more energy to pursue our

daily activities, most people related to the energy sector have not

accepted this issue until recently. Now we see that global warming

has become one of the biggest concerns for the energy sector

(among others), including government, industry, and the society in

general. Examples of this change are for example when we saw in

June this year that the US government, which has always been

reluctant to reduce carbon emissions, released a plan to cut carbon

pollution saying that they also have the responsibility of leaving a

cleaner and less damaged planet for future generations. In addition,

many institutions including universities, the private sector and

government agencies (especially in Europe) have been working in

wide-range solutions, in order to reduce the energy consumption,

not only by limiting its usage, but also by using this energy in the

most efficient way. We say that these are “wide-range” solutions

because they imply not only the technical aspects, but also a strong

regulatory support, an effective business strategy and a change in

the consumer mentality towards the environment.

Energy consumption :

The main problem here arises from the fact that the world

keeps increasing its energy consumption no matter what, as we can

see in the International Energy Agency Statistics1 graphics (figures

1 https://www.iea.org/

file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Energy Efficiency Problem 5

1.1 and 1.2) [IEA, p.32, 47]iv . For the last decades, the fuel

(needed to produce this energy) consumption has been increasing

constantly, especially in the developing countries in Asia, such as

China or India, impulsed by an accelerated economic growth that

demands more energy for the industries and for the increasing

consuming habits of the society that enjoys this new economic

capability. The problem with this new habits and growing energy

demands is that also the CO2 emissions are growing fast, affecting

every time more and more the already fragile environment.

One of the challenges of this century is to reduce at maximum

these carbon emissions, by reducing the consumption of energy that

is produced by burning fuel, using environmentally friendly energy

generation methods (most renewable energies), but also by using

the available energy in the most efficient way.

Figure 1.1: World total energy consumption

file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Energy Efficiency Problem 6

1.3 Renewable Energies

With the current model of human development, reducing the

consumption of energy is basically impossible, but what we can do

is to reduce the kind of generation that affects the most to us and to

the environment, which is the one produced by burning fossil fuels.

But if we do it so, in order to satisfy what the world demands

everyday we need to replace the source of energy generation by the

usage of alternative methods that can be considered as

“environmentally friendly”2, which are most of the “renewable

energies”3. Here we should note that renewable doesn't necessarily

mean environmentally friendly, since for example we can say that

wood is a renewable source given that we can always plant more

trees and replenish our energy source, but it doesn't mean that this

2 Meant to reduce, or to cause minimum or no harm at all to the environment.

3 Also called “sustainable”; it means that it is generated using resources that
can be constantly replenished.

Figure 1.2: World CO2 emissions

The Energy Efficiency Problem 7

is an environmentally friendly solution mainly because it will anyway

discharge big amounts of CO2 into the atmosphere in the process,

but also by means of using it there could be a devastation of a

primary forest, affections to the local flora and fauna, to the human

health and so on. Therefore, we should consider using some

alternatives that have been proving effective results, such as:

■ Hydro-power. This is one of the most popular options in

terms of electric generation, and has been in massive use for

many decades. This kind of generation works under the

principle that potential energy is stored in the water, that is

usually trapped by building dams in large rivers, where the

water is released according to the generation needs, in order

to move turbines that will produce electricity in the

generators. The cost of producing hydroelectricity is relatively

low, making it a very competitive alternative to fossil fuels.

■ Thermal Solar. Solar radiation is another renewable, free

source of energy that can be used in different ways and that

has been used since ancient ages. The principle of modern

thermal solar electric generation is that the radiation from the

sun heats a fluid (water or oil) which flows inside pipes, to get

and storage the energy. Among its advantages we have that in

its simplest form4, there is no need for hi-tech systems, and it

can be used to heat water or for climatization in small,

isolated and/or poor regions.

■ PV Solar. Photovoltaic Solar generation is another, more

sophisticated way to use solar radiation. In this case, radiation

4 In its simplest way, this source of energy can be used as thermal itself, without
converting it in to electricity. Actually, it is being used in that way in
developing countries such as Brazil. You can read an article about it in The
Ecologist:“How to Make a Solar Water Heater from Plastic Bottles.”

The Energy Efficiency Problem 8

from the sun is transformed into electric energy by means of

semiconductor PV panels that exploit the photovoltaic effect.

This is a technology that hasn't been fully adopted so far

because there are still some doubts about its efficiency, costs,

and lack of knowledge about its duration, and how to deal with

the disposals from the PV panels after their service life

concludes. Most critics focus on the fact that the source (solar

radiation) is not always available, so PV is characterized by an

intermittent service, and hence it needs connection to the

grid, or storage systems (expensive) and that it represents a

high initial investment. On the other hand, we can say that it

is available at daytime and stronger around noon and

afternoon (industry pick hours) when electricity is usually

more expensive, and that by means of storage systems (EV

cars, thermal systems, batteries) this stored energy can be

sold back to the utilities when it is the most expensive,

reducing costs. Also it's a long term investment that will pay

back after some time, considering that the “fuel” is free and

they require little maintenance.

■ Wind Power. This is another old source of energy, with a

history that comes from the Dutch windmills. Nowadays the

same principle is applied but not to mill grains, but to produce

electricity; where the wind is used to drive a turbine that

drives a generator. As a disadvantage we can mention that

since the wind is not constant anywhere, the rotational speed

is not constant either. However, being this a very mature

technology, good solutions have been found using appropriate

generators as well as advanced control systems. These

automatic systems can calibrate the angle at which the

generator faces the wind and the angle of each blade in the

generator, increasing the efficiency. This is a very popular

The Energy Efficiency Problem 9

technology since it is economic and has proven good results,

and in recent years it has been moving also to the sea, where

new wind farms are being installed off shore.

■ Biomass. In this case, just like petroleum or coal, we use

another carbon-based fuel, but the main difference is that in

this case the fuel is renewable. Biomass can come from

fisheries, farms, as well as from industries and municipal

waste. It can be of different types: Solid (nutshells, chips,

etc), biofuel (animal fats, vegetable oils, etc), biogas (manure,

sewage, etc.). Usually the costs of implementing this kind of

plants is not high, and there can be small implementations,

which makes it a good option in rural areas, and good for

distributed generation5 schemes. However, we should

consider that this system of producing electric energy has

some problems like a smaller but still present CO2 emissions,

deforestation and food-energy competition6.

■ Geothermal energy. The first geothermal power plant to

work and show the industrial value of this kind of energy was

installed in Larderello, Tuscany in 1904 [UGI7]v. A power plant

of this kind works just like a fossil fuel plant, in the sense that

it uses steam to move a turbine; but in this case the steam is

got directly from down the ground. This is a good alternative

in regions where there is volcanic activity, and the best

5 Unlike most traditional solutions that use large centralized power plants along
with enormous transmission systems; in distributed generation schemes, the
power plants are widespread around the places where energy can be
generated and probably used. The last are usually smaller and use renewable
energies.

6 Food-energy competition arises from the fact that some of these biomass fuels
are produced by harvesting potential food, like soy, sugar cane or corn; and if
it is the case that fuel production is more profitable than food, it could threated
the food provisioning of the population in that area.

7 UGI: Unione Geotermica Italiana.

file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Energy Efficiency Problem 10

example is Iceland, where geothermal energy generation has

increased significantly in recent years and now it provides

25% of the country's total electricity [NEA8]vi.

Although there are many options regarding renewable and/or

environmentally friendly solutions, there are still a lot of questions

about performance and costs; and the combined usage of these new

solutions along with the traditional systems bring new problems and

concerns, where coordination in both design and operation is

fundamental, as well as the optimization of these systems, to

mitigate congestion, minimize effects of periods of unavailability,

and storage limitations.

1.4 Economic Concerns

The increase in the oil prices contributes to the economic

crisis, especially in the developed countries that depend on this

resource to keep their life standards; this because the profit margins

for the companies are lower and lower and people invest more

money in heating and mobility, making them spend less in other

goods. All of this contributes (along with many other issues) to the

major economies to grow slowly or enter into recessions, as we have

seen in recent years. This situation doesn't find a relieve if we

consider that electric energy prices increase constantly; in Italy for

instance, the electricity prices have been increasing in the last

years. If we consider the domestic context for example, they show

and increasing tendency since 2004.[Napolitano, p.20]vii

This situation makes urgent the need for finding alternatives

to the dependency on petroleum and coal, but also the need of

making electric systems more efficient. If energy becomes so costly,

we cannot afford wasting it at all levels. There are campaigns

8 NEA: National Energy Authority, Iceland.

file:///home/julio/Desktop/POLIMI/THESIS/Writing/
file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Energy Efficiency Problem 11

focused on the users trying to push them to use electricity in a

better way, but that is not the only solution, and considering all the

technology available nowadays, it becomes obvious to have

automatic systems that can be programmed to control the electric

consumption in such a way that the resources are efficiently used,

with the final goal of having a sustainable economy9.

1.5 Smart Power

As mentioned before, one of the challenges of this century is

to reduce at maximum the carbon emissions; and another way to do

this besides the use of renewable, environmentally friendly energy

sources, is by using the available energy in the most efficient or let's

say “smart” way, what can be denominated “smart power” since its

application can lead to very promising results in terms of saving

both pure power, and money; and as an example here it's quoted

the following paragraph from an on-line professional forum: “On

average power plants consume up to 7% of the electricity they generate, while

industrial sites account for around 33% of global energy use and buildings

account for nearly 40% of energy consumed. These figures could be cut by 10%

to 30% by optimizing the various processes and systems that run the plants”

[Ferrera]viii.

This optimization in the electric system that is the key factor

of what here is called “smart power”, is currently related to the

concepts of “smart grids” and “virtual power plants”, and so it is

useful to develop a little bit more these concepts:

• Virtual Power Plants. A Virtual Power Plant (VPP) is an

arrangement of distributed generation installations, where the

electric power can be generated by different means, such as

9 An economy in which the resources are not spent faster that they can be
renewed.

file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Energy Efficiency Problem 12

wind, solar, traditional means, etc., that is managed by a

centralized control entity. This arrangement usually shows

economical and technical benefits. As an example, it's quoted

a comment in a previous thesis work in this topic: “In previous

studies (mentioned in that work) we can see how using VPP's with the right

amount of energy dealt, it can lead to profit margins that can justify the

usage of this kind of solutions”. [Napolitano, p.55]ix

• Smart Grid. As a general concept it can be said that a smart

grid is defined by: “Combing time-based prices with the technologies

that can be set by users to automatically control their use and

self-production, lowering their power costs and offering other benefits such

as increased reliability to the system as a whole”. [Fox-Penner, p.34]x

As stated in the definition, there are two main points in the

development of smart grids, which are the time-based prices

scheme and the new technologies. As for the first, prices are used to

motivate the customers to keep their power use below certain

margins preventing the whole system to exceed the installed

capacity, especially during the most critical hours. On the other

hand, when talking about technologies there are many key

components that have been developed following different trends,

and that have now allowed us to make a more efficient

management of the electric networks, among which we can

mention:

• Smart meters. These kind of meters are able to work with

smart appliances that can be configured to make a more

efficient use of the energy, according to price changes, given

that the cost per kilowatt-hour varies at various times of the

day.

• Storage. A key component that is still in early stages, very

file:///home/julio/Desktop/POLIMI/THESIS/Writing/
file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Energy Efficiency Problem 13

important since it would allow us to change the generation –

usage ties, giving us more freedom in terms of when we can

generate energy is not necessarily when we have to use it.

Thermal, compressed air, flywheels are the current

technologies in this area, and new developments like electric

vehicles (EV) with incorporated energy storage units are

increasing the electric network storage capacity.

• Information, communications and control networks.

These are a fundamental component of smart grids, allowing

real time calculations and management of the entire systems

(now cheap and ubiquitous, most systems are already or in

the process to become digital, so easier to integrate in these

networks) . They introduce the possibility of having a duplex

communication, in which the electric company should know

not only the total amount of power used by all its customers,

but a more detailed information of quantity and quality of this

usage.

Besides this, there are other concepts that should be

introduced here, to have a better understanding of the topic:

• Demand response. The new technologies, such as sensors

and telecommunication networks bring the possibility of

managing the customer power demands in terms of the

available supply conditions, where the electric supply to some

services that might not be so critical10 can be reduced or

eliminated for certain amounts of time, according to

pre-planned schemes if the situation reaches a critical

10 Usually the ones related with temperature status (refrigeration, cooling,
heating) since these conditions can remain practically unchanged for small
amounts of time even if no power is applied, unlike the management of lights
or motors that require a permanent supply.

The Energy Efficiency Problem 14

condition.

• Load aggregation. Referred to either final users or actual

electric loads which are joined together in order to make a

more efficient use of the available power and/or to reach a

better economical agreement with the upper level in the

electric market scheme (see 1.6 The Market). Aggregation

usually decreases the costs involved in dealing with energy

suppliers, but it does not necessarily result in lower costs for

the energy itself.

• The Smart Integrator. It is a utility that operates the power

grid and its information and control systems but does not

actually own or sell the power delivered by the grid. Its

mission will be to deliver electricity with superb reliability from

a wide variety of sources, from upstream plants to in-home

solar cells, all at prices set by regulator-approved market

mechanisms. [Fox-Penner, p.175]

In the end, the smart grid will give customers much more

control over their own power use and make dynamic pricing a

universal condition in electric systems.

1.6 The Market

In order to find the most viable solutions, we have to

understand how the electric market works, and which part of it is

the one we have to focus on.

In the Italian case, there was a process called “deregulation or

liberalization”11 that took place 10 to 15 years ago and was similar

11 Process that stimulates a free market concept when it refers to the purchasing

The Energy Efficiency Problem 15

to other processes happening all around Europe. As a result, this

deregulation divided the electric system into four separate actors:

■ Generation. Involves the electric generation systems, no

matter by which means, here there can be included fossil fuels

burning plants, renewable energies, nuclear power, hydro

power, etc.

■ Transmission. The process of transmitting the electric energy

generated from the power plants towards a closer point to the

final customer. It comprises the transmission lines, DC or AC,

for long or short distances.

■ Distribution. This is the most “technical” part, and covers

the process of receiving the energy from the transmission

lines (HV), convert (transform) it into a lower voltage that is

going to be sold to the final customers. The distribution

system is controlled and operated by a SCADA (System

Control And Distribution Automation) system at the dispatch

center.

■ Retail. Constitutes the process of selling the electric energy

to the final user. It is basically an intermediary. They are also

called utilities.

This concept is widely applied in Europe consenting small

variations in each specific case; and especially for the last two

aspects, there are some variations in the models in some countries

such as Germany and Turkey.

of electric energy among the four different actors. Officially started in 1999.

The Energy Efficiency Problem 16

Consumption forecast :

Given this model, “consumption forecast” becomes the most

important factor since the energy prices are not fixed, and they vary

according to a wide range of factors, including the geopolitical

situation, the weather, reliability of the systems, seasonality, and of

course demand. In the case of this project, there is more interest in

the especial case of this situation when it is happening in the last

two parts of our market model (distribution and retail).

Going backwards, the retailer is the first one to enter into

action. It has to forecast the consumption of energy or better, the

future demand of electric energy from its users; and it has to be

done for a variety of time periods, going from months (3, 6, 12)

down to seconds. What is done here is that the retailer creates a

“price band” with the expected maximum and minimum values that

it will need during a certain period (as long as possible), in order to

satisfy its customers demand, using this information to buy energy

from the distribution company at a good price. Later, this forecast

will be adjusted and the retailer will buy (or sell if possible) more

energy if needed in week-ahead, day-ahead plans, or even in

shorter times. The former has to be avoided as much as possible,

since in those cases, the energy is usually much more expensive;

and that is why a precise forecast is wanted.

The Energy Efficiency Problem 17

Those last minute acquisitions are much more expensive,

mainly because of the generators limitations: One cannot turn on

and off easily a power plant in short times. In that case, the market

has been divided according to the response times, in three:

■ Primary. The most expensive, but it could respond in

seconds.

■ Secondary. Also expensive. These generators would be able

to respond in a relatively short term (around 2 to 5 minutes).

■ Tertiary. The cheapest one. It should take around half an

hour to respond.

Now, if we consider the limitations in the side of the

distribution, we can say that they are almost the same that for the

retailer (the ability of the generators to respond fast), but also we

have to consider here that the transmission company can establish

some limitations in the sense that transmission lines are not able to

support an infinite power, and they limit the maximum power that

“GME - Gestore Dei Mercati Energetici SpA.”
Figure 1.3: Electricity prices calculated day-ahead.

The Energy Efficiency Problem 18

can be carried towards each sub-station (distribution).

Consumption peaks :

In both cases (retail and distribution), besides consumption

forecast, there is another solution to avoid these unexpected,

expensive, last-minute energy purchases, and this is saving the

last-minute required energy. And one especial strategy is to cut (or

shave) the consumption peaks.

Here, we also have to take into account the fact that the rates

at which the customers consume the electric power is not usually

measured instantaneously, but are calculated as an average level of

usage during certain amounts of time; being 15, 30 and 60 minutes

the most common used time intervals. [Casazza, p.44]xi

There are studies showing how this peak-shaving strategy can

affect the final performance of the electric power system as a whole.

For example, the top 6% of the electric capacity in France is used for

only 1% of the time during one year, as a clear display of an

overestimation of the system that could be avoided by means of a

peak-shaving strategy. Also, studies show that customers could pay

less if they can use this technology; for example, there is an

average 23% reduction in pilots conducted in the US. [Amistadi,

p.41, 43, 45]xii

file:///home/julio/Desktop/POLIMI/THESIS/Writing/
file:///home/julio/Desktop/POLIMI/THESIS/Writing/

Power Management 19

2 Power Management

“As members of the European Community,

we have the commitment to fulfill the overall

20/20/20 targets: they are referred to as the

reduction of 20% in energy consumption

thanks to energy efficiency techniques, to

the reduction of 20% in carbon footprint

emissions, to the increasing of 20% of the

energy generated from renewable sources.” -

< Flavio Ferrera> ►[ABB Conversations,

July 13, 2013]xiii

Summary. <ABB, a world leading company in power systems

solutions, has found an economic and effective answer to the need

for an efficient management of electric loads, by using an

“absorbed-power” based controller that utilizes a patented

algorithm to decide whether a load must be powered or not at a

defined time instant. In the presented project, the goal is to manage

some of these controllers using the software tool here developed, in

order to make them work in such a way that the power limits profile

would be closer to the information available at ABB, based on the

always changing electricity prices.>

2.1 ABB Company12

ABB is a world leading company in power and automation

technologies. Based in Switzerland, the company employed 145,000

people in 2012 and currently operates in approximately 100

countries. The company resulted form the merge of ASEA (Sweden)

and BBC (Switzerland) in 1998, companies with a rich and successful

12 All the information about the company was taken from the official website:
http://new.abb.com/about

file:///home/julio/Desktop/POLIMI/THESIS/Writing/

Power Management 20

history in the implementation of innovative solutions in power

systems and automation, success driven particularly by a strong

focus on research and development. Nowadays, the company

maintains seven corporate research centers around the world and

has continued to invest in R+D through all market conditions. All

these characteristics make of ABB the largest supplier of industrial

motors and drives, the largest provider of generators to the wind

industry, and the largest supplier of power grids in the planet.

ABB’s business comprises five divisions that are focused on

particular industries and product categories; these are: Power

products, power systems, discrete automation and motion, low

voltage products, and process automation.

In the specific case of the Power Systems division13, the one

that is interested in the realization of the project developed in this

work, ABB offers solutions for traditional and renewable energy

based power generation plants, transmission grids and distribution

networks; solutions that play a very important role in the

optimization of electric generation and the evolution of more

flexible, reliable and smarter grids, which has been stated as one of

the main goal of this project.

2.2 The Ekip Controller

Considering the current efforts of all the involved actors for

the optimization of electric systems and the evolution of more

flexible, reliable and smarter grids, and given the derived need for a

more efficient management of the loads in an electric system, ABB

has found an economic and effective solution to this

13 For more information:
http://new.abb.com/about/our-businesses/power-systems-division

Power Management 21

load-management problem by means of the already in place

electronic trip unit used for protection against overcurrents, as an

“absorbed-power” based controller (so called Ekip) that uses

a patented algorithm to decide if a given load must be powered or

not at a defined time instant. As one can infer from this short

description of the Ekip controller, there are two main concepts

involved in its operation, which are the physical connections and the

used algorithm; concepts that are described in the following

subsections.

Physical connections :

As it was mentioned before, the Ekip controller needs one

circuit breaker (used as overcurrent protection) that has the

capability of acting over a number of electric loads by connecting

or disconnecting one or many of them at a given time (based

Figure 2.1: Ekip controller and some of its basic connections

Power Management 22

on the patented algorithm that will be described later). This one has

to be the main circuit breaker on the LV plant of the user.

In order to accomplish its tasks, the Ekip controller must

constantly measure the energy absorbed by the whole installation,

and with this information (energy / power) and the proper settings

that the user has introduced in the system configuration, it will be

able to remotely connect or disconnect a given load. At this point, it

has to be said that the controller will not only manage the passive

loads that are “consuming” energy, but it can also connect the

reserve generation device, that will be understood as a “negative

load”.

To obtain the information about the consumed energy, the

controller uses the voltage and current measurements that the trip

unit must keep in track (even to accomplish its primary function as a

protection device). As for the other part of the required information,

the content given by the user can be set directly on the device

through the interface that it has and that can be different according

to the specific model of the Ekip controller (i.e. touch screen, or keys

and simple screen), otherwise it can be entered through a computer

(using USB communication)14 or by means of serial or Ethernet

ports. In the last cases, the user should know the communication

procedures for reading and/or writing the data, and the registers

that have to be modified in the Ekip controller (all defined by the

manufacturer). This situation (Ethernet communication)15 is the one

that has been used in order to develop the software tool that is the

main product of the project here presented.

14 In this case, there is a software tool developed by ABB, that will help the user
to configure the controller, but the user could also send Modbus commands to
the device, in order to configure it. The situation will be similar to the one
when using serial or Ethernet connections.

15 Defined by the Modbus TCP standard.

Power Management 23

After the information has been collected, and the algorithm

has made the decision (procedure that will be fully described in the

next subsection) about the state of the loads, the Ekip controller has

to remotely manage the loads, and to perform this task, there are

two options that can be used:

 By means of a wired solution, in which the electric loads

would be directly controlled by acting on the

opening/closing shunts or on the motor operators of a

given load.

 Through a dedicated communication system.

To summarize, in a LV installation where there's the need to

apply this kind of control, there have to be the following elements:

 The Ekip controller, that will be acting as the main circuit

breaker. It includes the devices to measure the power

consumption.

 The human-device interface, that will allow the user to

configure the controller.

 Up to 15 loads (maximum for this controller) that will have

each one a connection/disconnection mechanism.

 The “communication” network, either intrinsic wired or

dedicated.

Power Management 24

The load control algorithm :

As the second main concept, we have the patented load

control algorithm, the “brain” of this system; since it is the one that

makes possible the data processing (both measured and configured

by the user), providing a real-time, power-absorption based control

scheme. This algorithm is based in the following four-step

procedure:

1. Measurement. As previously mentioned, the Ekip controller

needs to collect data as a first step, in which the circuit

breaker measures the total power through it and integrates

this power in one time period (which has been previously

defined by the user and it is usually 15 to 30 minutes – as a

part of the other component of the required data), obtaining

the value of the energy used during that period. This

measurement is reset to zero every time interval, so that one

can obtain the energy for each one of this time slots.

2. Synchronization. Since the variable time plays a key role in

the calculations made by the algorithm, there is the need for a

synchronization mechanism that handles this variable. For this

purpose the Ekip controller has an internal clock that will

administrate the configuration and usage of the mentioned

time periods (defined by the user). As an alternative, there's

also the option of using an external signal that provides

synchronization to the controller, usually provided by the

utilities.

3. Evaluation. The most important “step” in this procedure is

the evaluation of the scenario in which the controller operates

at a given time instant and the possible actions that it could

perform, providing to it the capability of an efficient

Power Management 25

management of the electric loads. In this situation, the

algorithm calculates the current scenario and predicts whether

the total mean power will overcome the preset limits or not.

This prediction is done by dividing the plane t, E into three

sectors (scenarios) limited by the curves Emax and Emin, as

shown in the graphic [ABB SACE, p.8]xiv:

The calculation is performed by measuring the instant

power through the circuit breaker and obtaining the

scenario (region in the plane) where the power (or energy)

consumption is located, and depending on the location,

there are three alternatives:

 If the consumed energy is within the two lines (limits)

Emin and Emax, the decision will be to maintain the

actual load configuration.

 If the consumed energy is remarkably below the

Figure 2.2: Energy consumption curve and limits.

file:///home/julio/Desktop/POLIMI/THESIS/Writing/

Power Management 26

curve Emin, the decision will be to increase the number

of loads that are connected.

 And finally, if the consumed energy is over the curve

Emax, the decision will be to decrease the load

configuration, it means to disconnect some of the loads.

This is the mos critical situation, since it's the one that

leads towards the savings of electric energy

consumption.

4. Load Management. After evaluation and as a result of that

step, we have some decisions that were made about the

future scenarios and now those decisions have to be somehow

applied to the electric system. This happens by means of the

connection/disconnection mechanisms in the power lines of

each load, and following some rules. This process involves

another level of decision, in which the loads are connected or

disconnected according to three criteria, which are:

 Priority. After the next scenario has been defined, and

when there's the need for connection or disconnection

of electric loads, if there are two or more possible loads

over which the controller can act; in order to decide

which one it will connect or disconnect there's a priority

table defined by the user that will help to the controller

to choose the next load to be connected/disconnected.

However, this decision must take into account also the

other two criteria, which are useful in the case when

there are different loads with the same priority.

 Respect times. There are some loads, that given their

nature, cannot be powered and unpowered (or vice

Power Management 27

versa) instantaneously16 or on the other hand, the

affectation of these loads when they are not working for

some time is minimum17, and they can be kept for

certain margin of time in one state before they are taken

to the other one. In this case, there's the possibility of

adding a certain minimum “respect time” that will be

followed by the controller when choosing the next load

to be connected or disconnected.

 Reordering. Strictly related to the previous criterion. If

a load becomes available again, after finishing its

respect time, it takes its original position in the priority

list.

All these characteristics make of the Ekip controller an ideal

component in a LV installation if one wants to achieve energy

efficiency.

2.3 Management of multiple Ekip Controllers

As it was already mentioned, one of the characteristics of the

Ekip controller is that it can be remotely configured using Ethernet

connections, which means that we can create communication

networks in which some Ekip controllers can be connected to a

unique central device that could manage some or all of the

functions of the controller. In the precise case of this project, this

“unique central device” is a computer that will run the software tool

that has been developed to control a bunch of functions.

16 i.e. motors, generators.

17 i.e. Temperature control devices (heating systems, refrigeration, water
temperature control in swimming pools, etc.)

Power Management 28

Given the current development of technology and since one of

the main goals of energy efficiency is also the automation of the

processes; in this case, this automation comes from the fact that we

can use the information about energy prices that the market

analyses can provide to have power limits that are defined in a

day-ahead scheme. This power limits could be automatically loaded

to the controllers, as done in this project and that will be shown in

the next chapter.

Taking into account the autonomous process of loading

information into the controllers, and that this will contain basically

power limits information, there was the necessity of defining which

parameters would be configured in the controllers18 by the software

tool; since there are some other parameters that would be specific

for each case and need to be set by its own user, it means that the

last couldn't (or it would be useless to) be automatically got from

the general information available to the software tool; for example

the load priorities table. All the parameters under configuration by

the software tool here implemented will be indicated in the next

chapter.

18 This means, the definition of which registers will be read or written (modified).

The Ekip Management Software 29

3 The Ekip Management Software

“A billion saved is a billion earned” -

< Norman Ralph Augustine >

Summary. <In this chapter, it is described the process for

creating the Ekip Management Software, which is the final goal of

this project; as well as the used tools, concepts involved, and the

working process of the EMS. Moreover, it is explained the little 'trick'

used in order to get a more accurate power limit profile by treating

the settings of the Ekip controller in a slightly different way. After the

concepts given in the first two chapters, here it is basically shown

how the full project has been developed.>

3.1 General Description

Provided the need for an improvement in the energy efficiency

schemes, and given the characteristics of the Ekip controller, which

is used as the main control device in this work, it came up the

opportunity of developing a software tool that could use the

previous concepts in order to try to provide a more accurate and

precise method of saving electric energy and of course money in

one or more low voltage installations. The Ekip Management

Software (EMS) is the final product of this project; and it's a tool

developed in Python that makes it possible to configure multiple

Ekip controllers at a time remotely by means of an IP network. The

figure 3.1 provides a general understanding of the working

principles used by the EMS tool to accomplish its main tasks.

The Ekip Management Software 30

In the above figure, the first thing that becomes evident is

that there are two kinds of inputs to the system; on one side there is

the input information that the EMS will have from an external

system (power limits, nodes identification, timestamps), and on the

other side, the parameters that are directly set by the

administrator of the EMS into the system's initial configuration

settings. As for the first, it refers to the power limit information

(along with other useful data that gives a meaning to these power

limits) that is generated in another process, independent from this

one, and it is contained in XML files.

It is also worth to note that there are some other parameters

(unrelated to this specific work) that must be given directly by the

user of each Ekip controller, since they depend on the internal

electric arrangement of the LV installation. Here there is the

information about the electric loads, priorities, protections and

others. Anyhow, these parameters are the only ones that could be

manually programmed into the Ekip controllers in any of the ways

that were mentioned in the second chapter (serial, USB).

Figure 3.1: General working process of the EMS tool

The Ekip Management Software 31

Finally, once all this information is available, the EMS tool can

process it and generate the corresponding configuration commands

that will remotely program the controllers through an IP network. For

this process, it is important to have well defined the IP addresses for

all the nodes (Ekip controllers); since these could be either static or

dynamic (provided by a DHCP19 server). These addresses are

previously known by the system that generates the configuration

information, and they will be included in the input XML file.

Moreover, all the nodes have to be set in order to work connected to

remote networks and with the appropriate addressing scheme.

Another important part of the EMS tool, besides writing the

configuration information, is that it will constantly read some

registers inside the controllers, in order to generate log files. This

log file generation mechanism is periodic and continuous, and the

output files can be created in a couple of different formats.

In general terms, this is how the EMS tool works and these are

the basic tasks that it performs. In order to achieve these

functionalities EMS uses some software tools (related to Python),

and it's communication system is designed over the standard

Modbus TCP. All of these components are going to be described in

the following pages.

19 DHCP protocol allows client nodes to request an IP address form an IP pool that
is defined in the DHCP server; taking out the need for a manual configuration
of static IP addresses in each node. The addresses are constantly renewed,
making an efficient use of this resource.

The Ekip Management Software 32

3.2 Software Tools

The EMS tool has been developed completely using the

programming language Python 2.720, mainly because it runs on

Windows, Linux/Unix, Mac OS X, and has been ported to the Java

and .NET virtual machines; and it is free to use, even for commercial

products, because of its OSI-approved open source license (PSF)21,

according to its official information. Besides that, Python has some

external libraries that have been very helpful in order to implement

the functions of the EMS tool. These libraries are:

 Pymodbus as described in the project webpage

(http://code.google.com/p/pymodbus/) “(it) is a full Modbus

protocol22 implementation using twisted23 for its asynchronous

communications core. It can also be used without any third party

dependencies (aside from pyserial24) if a more lightweight project is

needed. Furthermore, it should work fine under any python version > 2.3

with a python 3.0 branch currently being maintained as well”. In the

case of this project, the Pymodbus library provides the

communication capability to the EMS software with the Ekip

controllers, for both reading and writing the registers of

interest. Here it is not used the asynchronous communication

mode, since the EMS will only operate via IP networks.

20 www.python.org

21 Python Software Foundation license, which is compatible with GPL (GNU
General Public License), which is a reference license for open software
instances.

22 The Modbus protocol will be described in the next subsection.

23 Twisted is an event-driven networking engine written in Python and licensed
under the open source. Please refer to: http://twistedmatrix.com/trac/

24 Pyserial provides access to the serial port. Please refer to:
http://pyserial.sourceforge.net/

http://pyserial.sourceforge.net/
http://www.python.org/

The Ekip Management Software 33

 LXML25 is a Python library that provides an easy to use

processing of XML and HTML files. In the case of this project,

as depicted in the figure 3.1, the files containing the power

limits information (which consist in the main input for the EMS

tool) store their information in XML format. Therefore there is

a need for a library to process the XML tags and obtain the

stored information in order to be able to process the data that

will be set into the Ekip controllers. For it's simplicity and

abundance of examples and documentation, LXML has been

chosen to perform this task. Also here it is interesting to

mention that the parsing techniques for XML files can be done

by two methods: line by line or the whole file at once. The

second method is preferred for this project, because of the

need for information about different nodes at the same time,

as it will become evident later.

 XLWT26 is a library used to create spreadsheet files complying

with the formats of Microsoft Excel 97/2000/XP/2003 XLS files,

on any platform, with Python 2.3 to 2.7. As for this project, it is

useful in order to generate the log files (figure 3.1). These log

files can be created in either XML or XLS formats, or both; as it

will be shown later in this chapter. The XML files have a simple

structure and can be easily generated from a Python script;

however the spreadsheets have a more complicated structure

that cannot be natively handled by the Python language, so

there is the need for this additional library; and even with this,

some considerations have to be taken into account when

creating the XLS files.

25 http://lxml.de/index.html

26 https://pypi.python.org/pypi/xlwt

https://pypi.python.org/pypi/xlwt
http://lxml.de/index.html

The Ekip Management Software 34

These libraries can be directly downloaded from the official

websites of the respective projects, or they can be installed by using

Python installation tools, such as pip27 or easy_install28.

Here I have to mention that all the development of the

software, including the installation of these libraries, the programing

of the code for the EMS tool, and all the tests were done under

GNU/Linux environment (Ubuntu 13.0429). However, the final tests in

ABB laboratories were done in a Microsoft Windows environment,

creating the need of porting the EMS tool to an executable file (EXE)

that can be used under the mentioned environment. To accomplish

this task, there was the need of installing the mentioned software (a

full description of this process is given in the Appendix A) and

generating the EXE file, by using the tool py2exe30. The generation

of the executable file is quite simple when following the directions in

the mentioned appendix, and the instructions in the web page of

'py2exe'. In this case, it is useful to read the tutorials about how to

generate the EXE files, and to take care of the dependencies

(external libraries used by the EMS software). Pyserial and XLWT

were the ones causing some trouble, but in the tutorials it is

mentioned how to include those libraries in the generation of the

executable file; this is also shown in figure 3.2.

27 https://pypi.python.org/pypi/pip

28 http://pythonhosted.org/distribute/easy_install.html

29 http://www.ubuntu.com/

30 http://www.py2exe.org/

http://www.py2exe.org/
http://www.ubuntu.com/
http://pythonhosted.org/distribute/easy_install.html
https://pypi.python.org/pypi/pip

The Ekip Management Software 35

As it can be seen, the inclusion of these libraries in the final

code is just a matter of declaration in the setup file. There are some

tools that can be used to perform this task, but py2exe was chosen

mainly due to its degree of maturity, for it's simplicity and

abundance of examples and documentation.

3.3 The Modbus Protocol

The Modbus31 protocol is the core of the communication

process of the EMS tool, and here it has been implemented using

the Pymodbus library already mentioned in the previous subsection.

As officially defined, “MODBUS is an application layer messaging

protocol, positioned at level 7 of the OSI model32, which provides client/server

communication between devices connected on different types of buses or

networks” [Modbus, p.2]xv.

31 http://www.modbus.org/

32 The Open Systems Interconnection (OSI) model is a conceptual, 7-layer model
developed by a project at the International Organization for Standardization
(ISO), that characterizes and standardizes the internal functions of a
communication system.

Figure 3.2: Setup file used to generate an executable file from the Python script
containing the EMS code

http://www.modbus.org/
file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Ekip Management Software 36

Modbus is a protocol that has been used for serial

communications in automation devices since 1979, and that today it

still provides with communication to new devices, since it is

continuously updating its functionalities according to the new

available technologies, such is the case of the Modbus TCP

implementation. The Modbus standard is based in a series of

function codes that allow the devices to write and/or read registers

in the connected devices, for both serial and TCP implementations.

Also, by means of a connector device, called gateway, needed for

compatibility, these two implementations can become inter

operable. This gateway also allows to have different bus types in

one unique Modbus network.

The general Modbus protocol defines a simple protocol data

unit (PDU) independent of the layers below; and depending of the

kind of implementation of the protocol it can include some

additional fields in the application data unit (ADU) that would be

needed for addressing and error checking. The PDU and ADU

formats can be seen in the following graphic:

As for the 'Additional address' and 'Error check' fields, they are

used for serial implementations, which are outside the scope of this

work. These functionalities are already implemented by the

underlying protocols in the case of the TCP implementation.

Figure 3.3: General MODBUS frame [Modbus, p.3]The Modbus Organization,
“Modbus Application Protocol.”

The Ekip Management Software 37

The protocol data unit, as defined by the standard, consists of

two fields, data and function code, both of interest for this project.

 Data: Is the payload itself, containing the information that will

be read or written into the internal registers of the device in a

big-endian33 representation. The Modbus data model consists

of four data types for which the protocol allows up to 65536

data items for an individual selection as described in the table

below:

DATA TYPE WORD LENGHT READ - WRITE

Discretes Input Single bit Read only

Coils Single bit Read & Write

Input Registers 16 bits Read only

Holding Registers 16 bits Read & Write

Table 3.1: Modbus data types

These four groups of data types mean that depending on the

needs of the manufacturer and the user, there are situations

in which there is the need to access these registers at a bit

level or byte level, where the information can only be read or

also modified. These different types of data will cause that

some functions have to be defined in order to manage

them accordingly; and these functions will be specified by

means of the so called function codes.

 Function Codes (FC): The second field of the PDU

corresponds to the function codes which characterize the type

of data that will be handled and the kind of operation that will

33 It means that the most significant byte is transmitted first.

The Ekip Management Software 38

take place upon them. Function Codes are characterized by a

number called descriptor that will go from 1 to 127. The

Modbus protocol defines three kinds of function codes, which

are: public, user-defined and reserved. The public Modbus

function codes are well defined, validated by the Modbus

Organization and publicly documented. In the case of the

user-defined function codes, the user can assign and

implement them according to his/her own needs, but there's

no warranty that the FC will be unique. At last, the reserved

function codes are not in use anymore and are there just to

support legacy products by some vendors. In the case of the

current work, only public FC's will be used, and among

them only the following:

• 04 (0x04) Read Input Registers (implemented in

Pymodbus as read_input_registers(address, count)).

Request Response

FC 1 byte 04 1 byte 04

Starting Address /
Byte count

2 bytes 0 to 65535 1 byte 2 x N

Registers 2 bytes 1 to 125 N x 2 bytes

Table 3.2: Request and Response details (FC 4)

Where N = Quantity of registers.

• 16 (0x10) Write Multiple Registers (implemented in

Pymodbus as write_registers(address, values))

The Ekip Management Software 39

Request Response

FC 1 byte 16 1 byte 16

Starting Address 2 bytes 0 to 65535 2 bytes 0 to 65535

Registers 2 bytes 1 to 123 2 bytes 1 to 123

Byte count 1 byte 2 x N

Registers value N x 2 bytes value

Table 3.3: Request and Response details (FC 16)

Where N = Quantity of registers.

The values in the tables 3.2 and 3.3 are useful as a

reference34, to take into account when using the Pymodbus

commands that are the ones that will actually implement the

reading and writing functions in the EMS tool. Also, it is useful

to know that in case of an exception response, it will have

the same PDU, but with its most significant bit set to 1. These

exception responses can be of three classes:

• Communication error; in this case the response will

be a “timeout”.

• Error in the frame, including parity, CRC, etc. Also in

this case the response will be a “timeout”.

• The request cannot be processed, in which case the

response will contain an exception code defined in the

protocol.

34 This because in the case of this project, raw PDU's will never be used in the
final implementation of the software. These were mainly useful for testing
during the different stages of development of the project.

The Ekip Management Software 40

Modbus TCP :

In the beginning, the Modbus protocol was designed to

operate over serial interfaces, but given the technological

development of communication networks and the advance of TCP/IP

networks in all environments (home, industry, etc.) it had to adapt

to the new situation in order to survive in those conditions and

that's how the TCP implementation of the Modbus protocol became

a reality. Called Modbus TCP35, it operates in a similar way as its

predecessor for serial interfaces, only considering that the

addressing and error check schemes are already implemented in

lower layers of the OSI stack (Modbus operates at application level),

making them no more necessary in this version; and that's why in

this case the complete ADU shown in figure 3.3 is not needed, but

only the PDU shown in the same figure, whose two components

(function code and data) are the same that were already described

in the previous subsection. Therefore, as it was already mentioned,

there is the possibility of integration for this Modbus TCP networks

with the serial version of Modbus, by using gateways.

Implementation in the EMS tool :

All the functions of the Modbus TCP protocol that were used in

this work were implemented through the Pymodbus library in

Python; which can be installed downloading it directly from the

project website36 (recommended option), or it can be installed by

using the Python tools pip or easy_install. The library works well

under Python 2.7 when reading and writing registers from or to

generic Modbus devices; however when trying to make this library

35 For documentation and tools: http://www.modbus.org/toolkit.php

36 http://code.google.com/p/pymodbus/downloads/list

http://code.google.com/p/pymodbus/downloads/list
http://www.modbus.org/toolkit.php

The Ekip Management Software 41

work with the Ekip controllers37 there was a special situation. In

order to be able to read registers, the default unit identifier38

value implemented in the Pymodbus library was set to '0' (0x00),

which usually means that all connected devices should respond to

that request; but due to the implementation of the standard that

was done by ABB in the Ekip controllers, it had to be changed to '1'

(0x01). In order to do this, the 'constants.py' file included within the

library had to be modified as stated in the Pymodbus tutorial

[Collins, p.126]xvi. This had to be done before installation.

The Pymodbus commands that were used for the

communication processes of the EMS tool were only two:

 read_input_registers(address, count); where:

address is the starting address to read from,

count is the number of registers to read.

 write_registers(address, values); where:

address is the starting address to write to,

values are the values to write to the specified address.

Both instructions are part of the class client.sync [Collins,

p.98]xvii and they handle numbers only in decimal system; also they

should give responses according to the mentioned request/response

scheme (tables 3.2 and 3.3).

37 Previous tests with Modbus TCP simulators didn't cause any trouble. The used
simulator was 'Modbus slave'

 (http://www.modbustools.com/modbus_slave.asp)

38 UnitId: Modbus slave address, used mainly for serial communications.

http://www.modbustools.com/modbus_slave.asp
file:///home/julio/Desktop/POLIMI/THESIS/Writing/
file:///home/julio/Desktop/POLIMI/THESIS/Writing/

The Ekip Management Software 42

3.4 Main Workflow

The Ekip Management Software has been designed in order to

accomplish two main tasks: an automatic configuration process and

the generation of log files; tasks that have produced two

independent modules that work together inside the primary

program. The main workflow of the EMS tool can be seen in the

figure 3.4, where it is shown how these two modules, the Ekip

Controller Automatic Configuration Tool (ECACT) and the Ekip

Controller Logs Generation Tool (ECLGT) interact; so far the

mentioned modules are estated only as predefined processes, and

they will be clearly described in the following sections of this

chapter.

Figure 3.4: General EMS workflow diagram

The Ekip Management Software 43

In the figures 3.4 and 3.5 it is possible to observe that when

using EMS there's the chance to select which one of the modules is

going to be used, being also possible to use both of them, if the user

chooses to generate the log files of the already configured39 nodes.

This selection of the modules is not performed in the program itself,

but they are already programmed in the configuration file.

In the figure 3.4 there are also two blue lines that indicate that

the program can go back to the beginning from any of the two

modules. This situation happens when a new XML input file is found.

EMS is constantly checking for new information; and when it arrives,

it starts over the configuration/log generation process, according to

the settings in the configuration file.

Once the EMS software has been started, it can keep running

39 By “configured” I mean the nodes that have been pointed as recipients of the
configuration information that would be loaded by the ECACT module.

Figure 3.5: Initial window of the EMS tool, where it is possible to choose which of
the two modules is going to be used

The Ekip Management Software 44

without the need for any kind of intervention, as long as it has new

input files, at least once a day.

Configuration file :

There is a text file (config.txt) that contains the basic initial

information that EMS will use in order to operate. This file has been

created in order to make the software tool as independent as

possible. There are five parameters specified in this file, which are:

• The directory where to look for new input XML files.

• The directory where to save the old input XML files.

• Which modules (ECACT, ECLGT or both) will be used.

• The directory where the log files are going to be stored.

• The format of those log files.

These parameters can be modified only before the program

starts or before a new XML input file arrives. Otherwise, if there is a

need for changing the parameters, the EMS tool has to be restarted.

An example of this configuration file is shown in Appendix B.

3.5 The ECACT Module

The Ekip Controller Automatic Configuration Tool, here

called ECACT module, has the main goal of retrieving data from XML

files that contain information about the maximum powers for the

different nodes (Ekip controllers) in a time based scheme; in order to

automatically configure those nodes in an iterative process,

assigning the maximum powers to the nodes, and updating the

information in the controllers for every time slot (which has been

defined in fifteen minutes, according to the information available

in the XML files).

The Ekip Management Software 45

The first task that this module has to realize is the retrieval of

the information contained in those XML files (it is possible to find a

complete XML file as an example, in Appendix C) that are the input

of the system. This information is organized according to some

'tags', being the most important, the following:

• <sg:externalSystemIdent>: It corresponds to the ID of

system which has to receive the message section.

• <sg:programIdent>: It's the name of the virtual power

plant.

• <sg:participantCount>: It says how many nodes will have

to be considered in the message section. By default this value

is set to '1', which means that all the nodes will be configured.

• <sg:schedule>: Shows that the time based power limits

section for a specific node starts.

• <sg:scheduleItem>: Relates the two following tags (amount

and date-time).

• <sg:amount>: It is the setpoint for the single node, which

means the value of the power limit for the corresponding time

slot. The value is expressed in MW.

• <sg:dateTime>: It corresponds to the timestamp for the

above setpoint.

• <sg:defaultValues>: Marks the section where there are the

default power limits for the four time periods in a day.

The Ekip Management Software 46

• <sg:value_X>: Where X can be 1 to 4; is the default power

limit for a time period. It is also expressed in MW and it is used

when there is no specific power information for a fifteen

minute time slot.

• <sg:periodStart_X>: Where X can be 1 to 4; it indicates

where a time period starts.

• <sg:periodStop_X>: Where X can be 1 to 4; it indicates

where a time period finishes.

• <sg:sectionIdent>: It is the serial number (ID) of the site.

• <sg:ipAddress>: Corresponds to the IP address of a given

node.

Once this information has been extracted from the input XML

file and somehow processed (stored, standardized, organized and

matched), the ECACT module will generate configuration commands

that will be sent periodically to all the involved nodes, in order to

keep their power limits set to the values stated in the input XML file.

Although the management of the information will be better

explained later, the general process can be understood in a better

way by looking at the figure 3.6, which corresponds to the workflow

diagram of the ECACT tool.

In the mentioned figure it is easy to see how the ECACT and

ECLGT40 modules are related and can coexist, but it also shows the

parsing method of the XML input file, which consists in extracting

the useful information into lists, storing the information that will be

then used by the ECACT function in order to perform the required

40 Please refer to the next section (3.6).

The Ekip Management Software 47

tasks. This ECACT function has been created given the iterative

nature of the process involving the configuration of the Ekip

controllers. It is also clear how the program waits for a new XML file

and in case of finding it, it will start over; otherwise it just waits for

fifteen minutes.

What happens here is that for each node, the values for the

time periods are first defined and loaded into the controllers. This is

Figure 3.6: Workflow diagram of the ECACT module

The Ekip Management Software 48

a simple process since the same information that is available in the

XML files can be written in the corresponding Ekip controller. After

that, the values for the power limits have to be programmed and

constantly updated in the controllers. For this process, there is the

need of 'tricking' the functions of the Ekip. As it can be seen in

figure 3.7, the Ekip controller has four power limits defined for the

corresponding four time periods; and from the XML file there are

four power limits available per hour. So the trick consists in updating

these power limit values every hour, and choosing as default power

limit value the one that corresponds to the current quarter hour (i.e.

P1 for HH:00 to HH:15, P2 for HH:15 to HH:30, etc.). In this way, the

power limits are not related to the time periods (as it is in the

original operation of an Ekip controller), but to each quarter hour.

This procedure allows the controller to have a more accurate control

over the electric energy usage in the LV installation, with a higher

level of granularity and fitting in a closer way the power limits

profile that has been defined by the company, with more efficiency

in order to reduce the expenses and make a better use of the

generation processes and sources. However, there is no information

available for each fifteen minute time slot along the whole day; and

in this case what happens is that there are default power limits

(included in the XML input file) that would be used to fill those

spaces.

The Ekip Management Software 49

The function: (lists, defaults, hours, nodes, j):

Where 'lists' is the main list of lists, containing all the useful

information (power limits for the fifteen minute time slots) extracted

from the XML input file, 'defaults' corresponds to the default power

limits for the four time periods defined for a day, 'hours' is the list

with the values of those time periods, 'nodes' corresponds to the

number of nodes from which there is available configuration

information, and 'j' is the counter of the number of iterations of the

process. Returns 'ip_list', which is a list containing the IP addresses

of the configured nodes.

This function performs the main task in the ECACT module,

and makes use of the other functions that will be described in the

Figure 3.7: Time periods, Power limits and their correspondence in the Ekip
controller.

The Ekip Management Software 50

section 3.7 of this chapter. It takes all the data from the input lists

and after processing them, it will load the configuration values into

the corresponding controllers. Here are included all the functions for

writing the time periods, power limits and the relationship among

them; but also some other auxiliary tasks, such as calculating date

and time according to the information in the controllers, so the tool

would know when to write the values into them. There are also

functions for standardizing the information in order to fit the

requirements of the controllers, because there are some defined

values that the registers can take (e.g. the power limits have to be

specified in steps of tens); and functions for “filling the blanks” with

default power limits when there's no information available for a

certain time period. The full code of the function can be found in

Appendix D.

3.6 The ECLGT Module

The second module, called ECLGT, which stands for Ekip

Controller Logs Generation Tool; as its name indicates is the one

in charge of the generation of log files for the nodes (Ekip

controllers) of interest. The nodes for which the log files will be

generated are defined by their IP addresses, being these either

directly gotten from the input XML file (in case that only this module

is being used), or obtained from the ECACT module in case that it

has been used first. The log files are updated with new information

about the status of all the involved nodes every minute, and stored

every 15 and/or 60 minutes, depending on the kind of log files that

are being generated (these could be in either XML format or as a

spreadsheet, or both). In the figure 3.8, there is a general scheme of

the main procedure for this module.

The Ekip Management Software 51

In this diagram it is possible to see that there is a short

configuration process that changes depending on whether the

ECACT module has been executed before or not, since in the last

case the relevant information for the ECLGT module wouldn't be

read from the XML file but from the lists of information created by

that module. This process, along with the information in the

configuration file, stipulate the general rules that the ECLGT module

Figure 3.8: Workflow diagram of the ECLGT module -
configuration process

The Ekip Management Software 52

will follow in the generation of the log files, being these the number

of nodes involved in the process, the IP addresses of these nodes,

and the directory and format in which the user wants the

information to be saved. It is visible again the 'blue loop' indicating

that the program could restart at any time, if a new input file is

found.

Once the format of the log files is chosen, and the module

enters the so called “iterative part”, there are three possible paths

that the software could follow, being all of them different in their

working procedure as well as in their results. However there are

points that the three options have in common, such as the stored

information and the time intervals in which it is updated. As for the

collected data, these are:

• Measurement time, which is the timestamp taken from the

controller itself, in order to have a time register accurate to

the measurements of the other fields.

• Active Power Total, measured in watts [W]. Is one of the

power measurements in the Ekip controller, and it indicates

the total active power.

• Active Energy Total, measured in kilowatts-hour [kWh].

Corresponds to another measurement, the total active energy.

• Default Power Limit, measured in kilowatts [kW].

Corresponds to the actual value of the power limit that the

controller has to keep.

• Evaluation Window, measured in minutes [min]. It

corresponds to the “measurement time” defined for the Ekip

The Ekip Management Software 53

controller, and it's the regulation window that was explained in

the working principles of the controller (section 2.2). By

default it is used the value of fifteen minutes.

• Elapsed Time, measured in minutes [min]. It refers to the

amount of time that has passed since the evaluation window

started.

• Mean Power, measured in kilowatts [kW]. It is the actual

power consumption measured by the power controller.

• Energy Log Index, that indicates which one of the following

indexes is being used at a certain time.

• Energy logs (0 to 15), measured in kilowatts [kW]. They

correspond to the mean power that has been measured during

a time window; and they takes place sequentially, according

to the position indicated by the “energy log index” value.

All these data are updated in the log files every minute.

Now, the differences are both in procedure and results,

depending on which type of output file the user chooses to

generate, XML and/or spreadsheet.

XML file :

This is the most simple of the two generation processes,

because the Python language makes possible the generation and

edition of simple text files; characteristic that is used by the ECLGT

module in order to create the XML log file by simply building text

files to which it can add the appropriate tags, header and the .xml

The Ekip Management Software 54

extension. The workflow for this procedure is shown in the figure

3.9.

As it is visible in the above diagram, the generation of this

kind of files is an iterative process that updates the information in

the generated log files every minute for each one of the involved

nodes; process that happens sixty times, which means that there

Figure 3.9: XML files generation procedure

The Ekip Management Software 55

will be one log file per node per hour. Due to the reason that at

some point the ECLGT and ECACT modules might have to operate

both at the same time, the loops have been divided into smaller

loops of quarter hours. It was clear in the previous section that the

ECACT module repeats the configuration process every fifteen

minutes.

An important component of this module is the function

xmlLog(ip, i), that will be also mentioned in the next section. This

function is the one in charge of the Modbus TCP communication

procedure through which the workstation communicates with all the

nodes in order to read their registers which contain the useful

information, process these data and write them into the XML log

files. As the final result the user will have a file with the structure

shown in figure 3.10 (a full example can be found in the Appendix

E), where it is visible: a small header, the read values (information in

the controller) and their corresponding tags as it was previously

indicated. It is also clear that the information is presented in a tree

structure typical in XML formats, where the main tag corresponds to

the 'time', and for each one of these timestamps there will be

included all the information about that specific node. This kind of file

will be generated for each one of the nodes of interest. As it was

already said, one log file per node per hour.

The Ekip Management Software 56

Spreadsheet (.xls) file :

The case of the spreadsheet file generation is not as

straightforward as the previous situation since Python doesn't have

an integrated function that could accomplish this task, and also the

structure of this kind of files is much more complex than the one of

a plain text file. That is why there is the need for an additional

module and some considerations that had to be taken into account

in order to be able to create and store the data in this format.

The additional module used was the “XLWT”, that was already

described in the section 3.2 of this chapter; and one of the main

issues is that once a spreadsheet file is created, there can only be

Figure 3.10: Resulting XML log file example.

The Ekip Management Software 57

added new sheets and data into the empty cells, but it is impossible

to edit them. Once the information is added, the file has to be

closed and saved. These things had a great impact in the procedure

followed in the generation of this kind of files. This procedure can

be seen in figure 3.11.

From that workflow diagram, it is possible to see that this is

also an iterative process that depends on the number of nodes from

which the information is being obtained, as well as the time

variable. As it was previously mentioned, in this case the log files

cannot be edited, making it mandatory to generate and save a new

log file every fifteen minutes, but this is also convenient in the sense

that the user will have a complete register of the system every

quarter hour; and in this case these files will contain information

about all the nodes connected to the system. The main component

of this procedure is also its corresponding function, xlsLog(sheet,

i, ip), that will be described in the next section.

The Ekip Management Software 58

In the end, the user of the EMS tool would have the same

Figure 3.11: Spreadsheet file generation
procedure

The Ekip Management Software 59

information as in the previous case of XML log files, but organized in

a different way and in a different format, that would be chosen by

the user according to its own needs, by modifying the configuration

file.

When talking about the results, the main difference with the

previous case is that the log files are generated every fifteen

Figure 3.12: Resulting spreadsheet log file
example.

The Ekip Management Software 60

minutes (instead of every hour); but in this case, each log file

contains information regarding all the involved controllers (a

different sheet per every controller), while in the XML case, there

was one file per node. In the figure 3.12 it is shown an example of a

resulting spreadsheet log file.

Both formats :

The final and obvious possibility is to have both formats at

once; which results from the combination of the previous

procedures, because the iterations will respect the same time

intervals and they would be constrained to use the same nodes. The

results obtained in this case are exactly the same as in the

independent cases, but having both kind of files at the same time. It

has been defined as the default and recommended option, since in

this way the user would have the advantages of both methods, such

as complete log files every fifteen and sixty minutes, information for

the nodes in separate files and combined within one, and the

benefits of storing and managing information in both formats.

For any of the three previous cases, if there is a new input

XML file, the process would be interrupted and the current log files

would be saved as they are (i.e. most likely they wouldn't contain

the information for the mentioned fifteen or sixty minutes): However

the information for the available time would be complete; and new

log files would start to be created.

3.7 Description of the functions

Due to scalability and flexibility reasons, both of the modules

previously described make use of functions, in fact the modules

themselves are also defined as functions, as a part of the main EMS

The Ekip Management Software 61

tool. Each of these functions has a specific task in the execution of

the program, and thats why it is useful to have a brief description of

them.

systemsCal(ip) :

Where 'ip' is the IP address of the node. Returns 'date_info',

which is a list containing the values for: day of the week, actual date

(day and month) and actual time (hour, minute and second) in the

controller.

The function reads the two registers (32 bits) of the Ekip

controller that contain the information of a counter with a value in

milliseconds, where t=0 means 00:00:00.000 of December 31st,

1999; and by performing some calculations, it determines the

values that are later saved in the resulting 'date_info' list. It is worth

to note that in order to calculate the current month, given the issues

of leap years and the variations in the number of days for every

month, the calculations in that case are not so straightforward, and

there was the need of using well known algorithms41 for

accomplishing this task.

writeTimePeriods(input_list, day_initial, day_final) :

Where 'input_list' is the list with the time periods (resulting

from timePeriods(nodeID) but with the IP address of the node

instead of the nodeID); 'day_initial' and 'day_final' are the

registers' addresses of the time windows, according to the day of

41 There is useful information in the following websites:

- http://www.millersville.edu/~bikenaga/number-theory/calendar/calendar.html
- http://alcor.concordia.ca/~gpkatch/gdate-method.html
- http://alcor.concordia.ca/~gpkatch/gdate-algorithm.html

http://alcor.concordia.ca/~gpkatch/gdate-algorithm.html
http://alcor.concordia.ca/~gpkatch/gdate-method.html
http://www.millersville.edu/~bikenaga/number-theory/calendar/calendar.html

The Ekip Management Software 62

the week42. Returns nothing.

The aim of this function is to write the time periods that have

already been obtained from the input XML file, into the controller. It

has to handle the specific writing mechanism defined by the

developers of the Ekip controller, and write into the assigned

registers, according to the day of the week.

daylyPowers(a, lim, multi_lists, times) :

Where 'a' is the number of nodes to be configured (got from

the XML file with the power limits information); 'lim' is the length of

'multi_lists'; 'multi_lists' is the list of lists, with all the configuration

information for all the nodes; and 'times' is the list with the time

periods. Returns 'powers', which is a list containing two values, the

hour and its corresponding power limit, regarding each timestamp in

the XML configuration file.

This function simply relates each hour value in the mentioned

XML file with its corresponding power limit, when also making the

conversion of units, since the values given in the XML files are in

MW, and the ones required for the Ekip controllers have to be in kW,

and in steps of tens.

writeDefPowers(def_power, ip) :

Where 'def_power' is the list with the four values of the

default powers; and 'ip' is the IP address of the node to be

configured. Returns nothing.

42 The time windows have different registers assigned according to the day of the
week, classified as: week (monday to friday), saturday and sunday.

The Ekip Management Software 63

This function simply writes the four values of the power limits

for each hour, as the default power values of the controller; always

following the writing procedure of the Ekip controllers. Here there is

the need for clarification: The “default powers” that are being

written are the four values defined by EMS for each hour

(interpreted as default power values for a whole day by the Ekip

controller), and not the real default powers in the input XML file. The

'trick' applied to the controller has to be taken into account.

hourlyPowers(hour, pow_info, h_info, bias) :

Where 'hour' corresponds to the current time (only the hour

value) in the controller; 'pow_info' is the list with the power values

of the day for that controller; 'h_info' is the list with the hour data of

the day for that controller and 'bias' indicates from which quarter

hour there is available information in that specific time of the day.

Returns 'ekip_powers', which is a list containing the power limits

for the current hour.

This function obtains into a list the power limit values that

may exist for the current hour, taking as reference the controller's

time. Considering that the power limits information in the XML files

is given at most each 15 minutes, there might be up to four values

in the 'ekip_powers' list.

fillBlanks(val_list, defa) :

Where 'val_list' is the list of values to be processed and

'defa' is the default power limit for the hour at which the

configuration process of the Ekip controller is taking place. Returns

'powers_list', which is a list containing the same number of

elements as the original list, but where the zeros have been

The Ekip Management Software 64

replaced for the default power limits, while keeping unchanged

(value and position in the list) those non-zero values.

writeMaximumPowers(prof, ip, day_pow) :

Where 'prof' is the profile to be assigned, depending on which

quarter hour is currently happening; 'ip' is the IP address of the

node under configuration; and 'day_pow' is the register in which

the power values are written, according to the day of the week43.

Returns nothing.

What this function does is to relate the maximum power

values to the 'profiles', by writing the right value of the profile into

the corresponding registers, as defined in the scheduling scheme of

the Ekip controllers. There are four values of the maximum power

for each hour, and by means of this function, these values are

correctly set by modifying the profile every fifteen minutes. This

function is essential in the 'trick' that has been used for updating

the power limits in the controller every quarter hour; since through

it the EMS will periodically rotate the default power limit from P1 to

P4; where P1 will correspond to the first quarter hour, P2 to the

second and so on.

xmlLog(ip, i) :

Where 'ip' is the IP address of the node from which the EMS

(more specifically the ECLGT module) is getting the information; and

'i' is the number of the same node, considering only the nodes from

where the information for the log files is being retrieved. Returns

nothing.

43 Same concept as with the function “writeTimePeriods”.

The Ekip Management Software 65

This function reads the registers that contain the information

useful for the construction of the log files, gives them format, put

the data in the XML files, and also it creates the repetitive tags and

parts of them that are defined in the generation of the log files in

XML format.

xlsLog(sheet, i, ip) :

Where 'sheet' is the sheet where the tool is currently storing

the log information for the created spreadsheet; 'i' is the number of

the node from which the software tool is getting the information,

considering only the nodes from where the information for the log

files is being retrieved; and 'ip' is the IP address of the same node.

Returns nothing.

Just like with the 'xmlLog' function, this one reads the registers

that contain the information useful for the construction of the log

files, gives them format, put the data into the current sheet, and

also it creates the repetitive headers that are defined in the

generation of the log files in XLS format (Spreadsheet).

def restart() :

This function is used in the case where a new XML input file is

found. What it does is to restart the program from the beginning.

Since with the new file comes new information, restarting the

program deletes all previously saved data, making everything ready

for the new incoming content and that's also why the modifications

done to the configuration file will take place after this happens.

Appendix F shows the detailed code of the functions here

described.

The Ekip Management Software 66

3.8 How to use

The EMS tool has been created as a python script that after

installing the corresponding dependencies, could be directly

executed in Linux-based systems, however it has also been “ported”

to Windows systems by means of the generation of an executable

file (.exe). After running or executing the corresponding file, the user

doesn't have to interact with the program because it will keep

running independently as far as it is fed with new XML input files at

least once a day. However, the EMS tool requires a configuration file

that has to be stored in a specific location, and that will follow a

certain format, as seen in Appendix B.

To summarize, the procedure to make EMS work properly is

the following:

• Copy the configuration file (config.txt) in the directory:

“/home/username/EMS/Config” for Linux systems or

“C:\EMS\Config\” for Windows. In the first case, the directory

could be easily modified before running the Python script.

• Modify the values in the configuration file, according the

requirements of each case.

• Be sure that there is one and only one input XML file in the

specified directory for this purpose. This file will be removed

after being read by the software tool while waiting for a new

one.

• Be sure that there is communication between the workstation

and the Ekip controller(s).

After that, the EMS tool will show some results: either the

The Ekip Management Software 67

values loaded into the controllers or the generation of log files, or

both along with time stamps, as in the example of figure 3.13.

Figure 3.13: Example of the result messages shown by the EMS
tool

Tests & Results 68

4 Tests & Results

“"... before you start planning a project, you

have to understand why you need to carry

out the project. Without understanding why

you need the project, how will you be able to

tell if you have succeeded?” -

< Kent Beck, Martin Fowler> ►[Planning

Extreme Programming, 2001]

Summary. <In this chapter are presented the results of the

project; how the EMS software works, and how it was tested during

the design and development stages. Also there are

recommendations for future work and conclusions about the

project.>

4.1 Tests

The realization of tests has been an essential part of the

design and development processes, from the first steps until the

final release of the EMS tool. How the testing procedure has been

evolving is just like a pyramid, where the wider approach happens in

the first steps and the last ones are just for some adjustments. In

this case every step is related to a specific activity and software

tool, as depicted in figure 4.1.

Tests & Results 69

In the base of this pyramid, the tests where initially done by

using a Modbus TCP simulator44 software, in order to understand the

basic communication process with a Modbus capable device, how to

read and write registers and modifying the preset values in a

generic device. This part was also important in order to have a

better understanding of how a Modbus device and the Pymodbus

library work, and in order to create a strategy for the development

of the software tool. At this point it was hard to conceive the full

scheme that was going to be adopted and all the information gotten

here was used to see the strengths and weaknesses of the available

tools.

When the basics were set up correctly, there was the need to

go to the upper step in the pyramid, i.e. perform the tests with a

real Ekip controller. At that stage, a packet analyzer was another

44 The used simulator was 'Modbus Slave'
(http://www.modbustools.com/modbus_slave.asp)

Figure 4.1: EMS software development - Testing
process

http://www.modbustools.com/modbus_slave.asp

Tests & Results 70

very useful tool45, in order to have a complete understanding of the

commands that were being both sent and received between the

workstation and the controller. It was specially useful in order to

'tune' the communications scheme, providing the security that the

commands can be sent and received with no trouble, leaving only

the issues related to whether the controllers would respond in the

way they were supposed to or not.

Finally, on top of the pyramid of the testing (and

development) process it was needed to ensure that the

configurations were being loaded and correctly used by the Ekip

controller, and in other to do that it was required a tool that would

communicate in parallel with the controller used for testing while

the commands were being sent and received by the development

workstation. To perform this task, there is a software called Ekip

Connect, developed by ABB that can link to the Ekip controller

via serial port or USB (the last one was used for tests) and display

the configuration information. Ekip Connect can be used also to

configure the controller, specially in the cases when the manual

input of information is required, according to what has been

mentioned in this work.

45 In the case of this project, 'Wireshark' (http://www.wireshark.org/) was the
packet analyzer used for the tests.

Tests & Results 71

4.2 Results

The main result of this project is the management software for

Ekip controllers that has been developed. The goal of the project

was to develop an interface between the information about power

limits and how they change during the day and the Ekip controllers

that would have now a higher level of granularity (updated values

every fifteen minutes) and an adaptive behavior (the power limits

will constantly change). Originally the controllers define only four

time ranges with their correspondent power limits and these values

are kept fixed in time (with only three different schemes per week);

which was changed by the adoption of the EMS tool, as it has been

fully described in here.

As a result the EMS tool will make it possible to have a more

precise management of the electric energy consumption, which will

represent a more efficient usage of the resources and savings when

paying the electric bills.

Figure 4.2: Example of the final tests, using the Ekip Connect software

Tests & Results 72

Another benefit that results from using the EMS tool is that the

user doesn't have to worry about keeping a constant track of the

information about the possible power limits for his/her installation,

and also since it provides automatic configuration of some values,

the user will have a smaller level of interaction with the controller or

controllers.

Given that the communication with the controllers takes place

via an IP network, it takes out the need of physically going to each

node to perform the configuration processes, since this can be done

remotely from one unique workstation towards a number of

controllers from which the user only needs to know their IP

addresses. So, it could performed even through the Internet.

The other important result of this work is that there will be log

files stored in different ways and for all the nodes, which brings the

possibility of generating statistic charts, tables, records, etc. that

will be useful to improve the electric energy saving schemes and the

functioning of the EMS tool.

4.3 Future work

Since it is the first work of this kind using the Ekip controller,

there are many possibilities for future works. The first ones that

come to mind are the determination of the precise amounts of

electric energy and money that could be saved by using the EMS

tool. In other words, the analysis of the economic and technical

benefits of using this solution in a real life installation.

Also, there might be possibilities in the addition of new

functions to the tool. Probably by having at disposition more

information as input, the configuration of the controllers could reach

Tests & Results 73

a higher level of independence from the user. It would require

additions and/or modifications to the source code of the EMS, and it

is here that it would be obvious the benefits of having the main

functionalities of the program defined as independent functions.

In the case of the logs generation, it would be useful to

determine if the fields that have been included are actually useful

for the user and whether there are some other fields that should be

included in those files or the ones now included are enough. For this,

it might be necessary also a statistical analysis of the results, which

would provide a better idea of the behavior of the system and would

justify or not the presence of those fields.

It would also be interesting to study the security issues that

could come from the fact that all the configuration process happens

over an IP network (which could even have public access). There

might be vulnerabilities that could risk the stability of the whole

electric installation, if they are found by hackers or computer

criminals.

But of course the main field of study would be the contribution

of this kind of tools in the area of energy efficiency, and in the

development of better virtual power plant operation schemes.

4.4 Conclusions

From the personal point of view, this works has been very

useful in order to increase my knowledge, mainly in three areas:

networking, electric energy generation and programming. In the

relative to networking, I had the need to review IP addressing

schemes, the OSI model and perform tests where I had to analyze

the structure of the IP packets that were being sent and received by

Tests & Results 74

the workstation, besides the need for understanding the way in

which the Modbus standard operates. The electric energy

generation was another main point, mainly because due to my

background I had almost no knowledge about this topic, which has a

great relevance nowadays given the need of the world to change

the energy generation methods into more efficient and

environmentally friendly ones. It happens to be a very interesting

topic with many opportunities for research and development. Finally,

another important knowledge that I've gained by means of this work

is programming in Python language. So far I had limited

opportunities for programming and they were mainly in C++, so this

work might open a new door for me by giving me experience in a

very useful and widely used programming language.

As for the work itself, it leaves clear the tendency of the world

to move towards an scheme were the electricity is generated mainly

by means of renewable sources, trying to adopt mechanisms that

are environmentally friendly and also trying to implement solutions

that make a more efficient use of this energy in order to satisfy the

always growing needs for electricity in a cheaper way and wasting

the fewer possible resources. This is also the reason why terms such

as 'smart grids', 'energy efficiency', 'virtual power plants', etc. are

becoming more and more common in publications, research

projects, forums, etc.

The current technological development allows us to come up

with interesting mechanisms for saving energy, produce it in a more

environmentally friendly way and use it more efficiently; but also it

causes a grow in the demand for that energy; and the challenge is

to make the former move faster that the last.

This technology brings also a changing economic environment

Tests & Results 75

in which the pricing models in all the components of the electric

market are always trying to adapt to the new situations, and the

developers of new systems for energy efficiency have to adapt to

them, too. This happens not only in Italy, but in most places.

From that situation it derives the fact that as well as many

other companies, ABB is contributing to those kind of solutions that

fit in the “energy efficiency” concept by developing new devices,

creating statistical and mathematical models, software tools, etc.

such as the ones used and referred in this project.

This is a fast changing environment in which there is the need

for improvement in the systems, devices and all kind of solutions

involved, bringing a lot of opportunities for studies, analysis,

research and new implementations. And in that way, there are many

future developments that could be derived from the situations

analyzed in this work, and from its product and results.

Appendix A 76

Appendix A

Generation of the executable file. Here it is fully described
the process followed in order to have a full executable file, that
won't need the installation of any dependencies in order to work.
This procedure is done in order to make the EMS tool work in a
generic Windows machine.

Generation of an executable file in windows (running the tool
in Windows):

1. Download Python 2.7 from here:

http://www.python.org/download/

2. Install easy_install. For that you need to install the setuptools that
you will find here:

https://pypi.python.org/packages/2.7/s/setuptools/

After that, you will get the file easy_install.exe in the folder
C:\Python27\Scripts.

Run the installer.

Otherwise, you can install pip, downloading it from here:

https://sites.google.com/site/pydatalog/python/pip-for-windows

3. Install Pymodbus.

There is a special situation occurring here. In order to be able to
read registers, the default unit identifier value (0x00) has to be
changed to '1' (0x01), because that is the way it is used in the Ekip
controller. In order to do this, you have to modify the 'constants.py'
file, as stated in the pymodbus tutorial. This has to be done BEFORE
installation. So, the only way of installing pymodbus is by
downloading it from the website:

http://code.google.com/p/pymodbus/downloads/list

Appendix A 77

During installation, it is possible that you find the following error:

Setup script exited with error: Unable to find vcvarsall.bat

In which case, you might need to install Microsoft Visual Studio.

4. Install LXML, from here:

http://lxml.de/index.html

Or you can try:

easy_install -U lxml
pip install -U lxml

5. Install XLWT, from here:

https://pypi.python.org/pypi/xlwt

Or you can try:

easy_install -U xlwt
pip install -U xlwt

At this point, you have finished installing all the dependencies, and
the script containing the code of the EMS tool should work when run
from a Python console.

Generation of the executable (standalone) file:

There are some software tools that can be used for this task, but in
this case py2exe has been used; which can be downloaded from the
site:

http://www.py2exe.org/

It is useful to follow the tutorials about how to generate the .exe
files, and to take care of the dependencies. During the tests,
pyserial and xlwt were the ones causing some trouble.

At this point, you will have the executable file that can be used in

Appendix A 78

other machines, without doing all the process mentioned in this
appendix. One has to take care of the files that will be needed in
order to port the EMS software to other computers (it has to be kept
in the same folder with those files).

Appendix B 79

Appendix B

Full example of the configuration file. This is the complete
'config.txt' file that the EMS tool uses for its operation.

##
#Configuration file for the EMS tool
##
#
#Please, respect the format and the order of the elements in this
#file.
#All the lines with comments or no information must begin with '#'.
#All the other lines include relevant parameters for the operation
#of
#this software, so they have to be modified carefully.
#
#####First parameter:
#This is the full path of the directory where EMS will look for the
#XML
#input file:
#
/home/julio/Desktop/EMS/Info
#You can specify any directory, according to your needs.
#
#
#####Second parameter:
#This is used to choose which modules are going to be used:
#
#1. Ekip Controller Automatic Configuration Tool (ECACT)
#2. Ekip Controller Logs Generation Tool (ECLGT)
#3. Both, one after the other (recommended option)
#
2
#Please, use only the numbers 1, 2 or 3.
#
#
#####Third parameter:
#This is the full path of the directory where the log files will be
#stored:
#
/home/julio/Desktop/EMS/Logs
#You can specify any directory, according to your needs.
#
#
#####Fourth parameter:
#This is used to choose the format of the log files to be generated:
#
#1. XML file
#2. Spreadsheet (.xls file)
#3. Both (recommended option)
#
3

Appendix B 80

#Please, use only the numbers 1, 2 or 3.
#
#
#####Fifth parameter:
#This is the full path of the directory where EMS will save (move)
#the
#old input XML files:
/home/julio/Desktop/EMS/Old
#You can specify any directory, according to your needs.
#
#

Appendix C 81

Appendix C

Full example of the input file. This is the complete XML file
that the EMS tool (more precisely the ECACT module) will use as
input file. It contains all the configuration information for all the
involved nodes.

<SOAP­ENV:Envelope
xmlns:SOAP­ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP­ENV
:Header/><SOAP­ENV:Body><sg:CreateEvent
xmlns:sg="http://services.gridpoint.com/">
<sg:schedule>

<sg:eventIdent>140220121200</sg:eventIdent>
<sg:externalSystemIdent>Smart Grid</sg:externalSystemIdent>
<sg:identifiedBy/>
<sg:programIdent>TWF_Pilot</sg:programIdent>
<sg:sections>

<sg:sectionSchedule>
<sg:participantCount>1</sg:participantCount>
<sg:schedule>

<sg:scheduleItem><sg:amount>.4812</sg:amount
><sg:dateTime>2012­02­14T01:15:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>.3888</sg:amount
><sg:dateTime>2012­02­14T01:30:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.8</sg:amount><
sg:dateTime>2012­02­14T11:45:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.2</sg:amount><
sg:dateTime>2012­02­14T13:00:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.5</sg:amount><
sg:dateTime>2012­02­14T13:15:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.8</sg:amount><
sg:dateTime>2012­02­14T14:00:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.5</sg:amount><
sg:dateTime>2012­02­14T14:45:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.8</sg:amount><
sg:dateTime>2012­02­14T19:30:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.8</sg:amount><
sg:dateTime>2012­02­14T20:45:00Z</sg:dateTime></sg:scheduleItem>

</sg:schedule>
<sg:defaultValues>

<sg:value_1>.4812</sg:value_1><sg:periodStar
t_1>00:00:00</sg:periodStart_1><sg:periodStop_1>08:00:00</sg:periodS
top_1>

<sg:value_2>1</sg:value_2><sg:periodStart_2>
08:00:00</sg:periodStart_2><sg:periodStop_2>13:00:00</sg:periodStop_
2>

<sg:value_3>1.753</sg:value_3><sg:periodStar
t_3>13:00:00</sg:periodStart_3><sg:periodStop_3>18:00:00</sg:periodS
top_3>

<sg:value_4>1.583</sg:value_4><sg:periodStar
t_4>18:00:00</sg:periodStart_4><sg:periodStop_4>24:00:00</sg:periodS
top_4>

</sg:defaultValues>

Appendix C 82

<sg:sectionIdent>FS1.1</sg:sectionIdent>
<sg:ipAddress>192.168.1.100</sg:ipAddress>
<sg:sectionLatitude>45.0685163</sg:sectionLatitude

>
<sg:sectionLongitude>7.6761308</sg:sectionLongitud

e>
</sg:sectionSchedule>
<sg:sectionSchedule>

<sg:participantCount />
<sg:schedule />
<sg:defaultValues />
<sg:sectionIdent>FS1.3</sg:sectionIdent>
<sg:ipAddress>192.168.1.100</sg:ipAddress>
<sg:sectionLatitude>45.073408</sg:sectionLatitude>
<sg:sectionLongitude>7.660646</sg:sectionLongitude

>
</sg:sectionSchedule>
<sg:sectionSchedule>

<sg:participantCount>1</sg:participantCount>
<sg:schedule>

<sg:scheduleItem><sg:amount>.26</sg:amount><
sg:dateTime>2012­02­14T18:45:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>.26</sg:amount><
sg:dateTime>2012­02­14T19:00:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>.26</sg:amount><
sg:dateTime>2012­02­14T19:30:00Z</sg:dateTime></sg:scheduleItem>

</sg:schedule>
<sg:defaultValues>

<sg:value_1>.9</sg:value_1><sg:periodStart_1
>00:00:00</sg:periodStart_1><sg:periodStop_1>09:00:00</sg:periodStop
_1>

<sg:value_2>1.8901</sg:value_2><sg:periodSta
rt_2>09:00:00</sg:periodStart_2><sg:periodStop_2>14:00:00</sg:period
Stop_2>

<sg:value_3>.3</sg:value_3><sg:periodStart_3
>14:00:00</sg:periodStart_3><sg:periodStop_3>19:00:00</sg:periodStop
_3>

<sg:value_4>.56</sg:value_4><sg:periodStart_
4>19:00:00</sg:periodStart_4><sg:periodStop_4>24:00:00</sg:periodSto
p_4>

</sg:defaultValues>
<sg:sectionIdent>FS1.5</sg:sectionIdent>
<sg:ipAddress>192.168.1.100</sg:ipAddress>
<sg:sectionLatitude>45.068295</sg:sectionLatitude>
<sg:sectionLongitude>7.683305</sg:sectionLongitude

>
</sg:sectionSchedule>
<sg:sectionSchedule>

<sg:participantCount>1</sg:participantCount>
<sg:schedule>

<sg:scheduleItem><sg:amount>1.0752</sg:amoun
t><sg:dateTime>2012­02­14T08:45:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>.744</sg:amount>
<sg:dateTime>2012­02­14T09:00:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>2.6</sg:amount><
sg:dateTime>2012­02­14T11:15:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>2.6</sg:amount><
sg:dateTime>2012­02­14T11:30:00Z</sg:dateTime></sg:scheduleItem>

Appendix C 83

<sg:scheduleItem><sg:amount>2.6</sg:amount><
sg:dateTime>2012­02­14T11:45:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>2.6</sg:amount><
sg:dateTime>2012­02­14T12:00:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>2.6</sg:amount><
sg:dateTime>2012­02­14T13:45:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>2.6</sg:amount><
sg:dateTime>2012­02­14T14:15:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>.4696</sg:amount
><sg:dateTime>2012­02­14T15:45:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.2408</sg:amoun
t><sg:dateTime>2012­02­14T16:00:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.6</sg:amount><
sg:dateTime>2012­02­14T18:15:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>2.6</sg:amount><
sg:dateTime>2012­02­14T18:30:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>3.6</sg:amount><
sg:dateTime>2012­02­14T23:00:00Z</sg:dateTime></sg:scheduleItem>

<sg:scheduleItem><sg:amount>1.8348</sg:amoun
t><sg:dateTime>2012­02­14T23:30:00Z</sg:dateTime></sg:scheduleItem>

</sg:schedule>
<sg:defaultValues>

<sg:value_1>.8</sg:value_1><sg:periodStart_1
>00:00:00</sg:periodStart_1><sg:periodStop_1>06:00:00</sg:periodStop
_1>

<sg:value_2>1.1</sg:value_2><sg:periodStart_
2>06:00:00</sg:periodStart_2><sg:periodStop_2>12:00:00</sg:periodSto
p_2>

<sg:value_3>2</sg:value_3><sg:periodStart_3>
12:00:00</sg:periodStart_3><sg:periodStop_3>20:00:00</sg:periodStop_
3>

<sg:value_4>.236</sg:value_4><sg:periodStart
_4>20:00:00</sg:periodStart_4><sg:periodStop_4>24:00:00</sg:periodSt
op_4>

</sg:defaultValues>
<sg:sectionIdent>FS1.8</sg:sectionIdent>
<sg:ipAddress>192.168.1.100</sg:ipAddress>
<sg:sectionLatitude>45.062225</sg:sectionLatitude>
<sg:sectionLongitude>7.688407</sg:sectionLongitude

>
</sg:sectionSchedule>

</sg:sections>
<sg:startTime>2012­02­14T10:30:00Z</sg:startTime><sg:stopTime>

2012­02­14T19:00:00Z</sg:stopTime>
</sg:schedule>
</sg:CreateEvent></SOAP­ENV:Body></SOAP­ENV:Envelope>

Appendix D 84

Appendix D

ECACT function. In this appendix, it is possible to see the code
written in Python for the ECACT function used in the homonym
module, as part of the EMS code.

def ecact(lists, defaults, hours, nodes, j):
(lists = list with the lists of info from the config
file, defaults = default power
values for each time period, hours = time periods, nodes
= number of nodes to configure, j = each of the up to 96
iterations)

len_lists = []
all_info = [0]*96*2 #### The one with the power & hour values
power_info = [0]*96 #### The one with the power values
hour_info = [0]*96 #### The one with the hours
hourly_powers = [0]*4
i = 0 ### Initialize the node counter every iteration

print ('\n***CONFIGURATION OF THE EKIP CONTROLLERS IN FUNCTION
OF THE LOADED FILE***\n')

for i in range (0, nodes):

period_powers = [0]*50 ### Initialize for each node
(powers is a time period)

Information about the node
print'\n\n\n\n\n**
***********\nNode ID:',lists[i][0],'\nIP
Address:',lists[i][1]

if lists[i][0] != None: #### Checking valid nodes
print '\n\n\nTHE CONFIGURATION SECTION STARTS

NOW!!!\n\n\n'

################## GETS THE USEFUL INFO INTO LISTS
#############

ip_list[i] = lists[i][1]
ip_add = ip_list[i]

if len(lists[i]) >= 3: #### Checking nodes that
have information

#################### WRITING THE TIME
PERIODS ##################

time_period = hours[i]
writeTimePeriods (time_period, day_ini,
day_fin)

Appendix D 85

##################### DEFINITION OF PROFILES

profiles = [4369, ### bin 0001000100010001 ­
P1 applied for all the time periods
8738, ### bin 0010001000100010 ­ P2 applied
for all the time periods
17476, ### bin 0100010001000100 ­ P3
applied for all the time periods
34952] ### bin 1000100010001000 ­ P4
applied for all the time periods

system_time_ecact = systemsCal(ip_add)

Iterations of 0,1,2,3
mins = system_time_ecact[4] #### mm
quarter = mins/15

profile_conf = profiles[quarter]
print '\nCurrent quarter:', quarter+1

Writing the registers
writeMaximumPowers (profile_conf, ip_add,
day_power)
time.sleep (3) ### Pause ­ Time in seconds

(visualization)

############## AUTOMATIC UPDATE OF THE POWER
LIMITS

len_list = len(lists[i])
all_info = daylyPowers (i, len_list, lists,

time_periods)
power_info = all_info[1] #### Only the lists
of powers
hour_info = all_info[0] #### Only the lists
of hours
sys_time = system_time_ecact[3] ### HH
count = len (hour_info)
default_power = 0
bias = [0]*4

for x in range (0, count):
The case when we DO have info
for the current hour
if hour_info[x] == sys_time: ### Only
the powers in the current hour

bias_aux_1 = list (lists[i]
[(x*2)+3]) ### To convert the
timestamps into lists, so I can
extract the hour info easily
bias_1 = (int (bias_aux_1[14] +
bias_aux_1[15]))/15 #### In
which quarter there's the first
info
bias[0] = bias_1

if len(lists[i]) >= ((x+1)*2)+3:

Appendix D 86

bias_aux_2 = list
(lists[i][((x+1)*2)+3])
To convert the
timestamps into lists, so
I can extract the hour
info easily
bias_2 = (int
(bias_aux_2[14] +
bias_aux_2[15]))/15 ##
In which quarter
there's info
bias[1] = bias_2

if len(lists[i]) >= ((x+2)*2)+3:
bias_aux_3 = list
(lists[i][((x+2)*2)+3])
To convert the
timestamps into lists, so
I can extract the hour
info easily
bias_3 = (int
(bias_aux_3[14] +
bias_aux_3[15]))/15 ##
In which quarter
there's info
bias[2] = bias_3

if len(lists[i]) >= ((x+3)*2)+3:
bias_aux_4 = list
(lists[i][((x+3)*2)+3])
To convert the
timestamps into lists, so
I can extract the hour
info easily
bias_4 = (int
(bias_aux_4[14] +
bias_aux_4[15]))/15 ##
In which quarter
there's info
bias[3] = bias_4

hourly_powers = hourlyPowers
(sys_time, power_info,
hour_info, bias)

Assings the default value
for m in range (1, 5):

a = time_period[m]
hour ini
b = time_period[m+1]
hour fin
if sys_time >= a and
sys_time <= b:

wildcard = float
(defaults[i][m])

Extracting the needed value

default_power = fillBlanks

Appendix D 87

(hourly_powers, wildcard)

################ WRITING THE
DEFAULT POWER
VALUES ###############

writeDefPowers (default_power,
ip_add)
break

The case when we DON'T have info for
the current hour, but we do for the time
period
if default_power == 0:

for x in range (0, count):
if hour_info[x] != sys_time:

for m in range (1, 5):
a = time_period[m]
hour ini
b = time_period[m+1]
hour fin
if sys_time >= a and
sys_time <= b:

wildcard =
float
(defaults[i]
[m]) ###

Extracting the
needed value

default_power = fillBlanks
([0]*4, wildcard)

################ WRITING
THE DEFAULT POWER
VALUES ###############

writeDefPowers(default_pow
er, ip_add)
break

#################### DATE / TIME CHECKING

system_time_ecact = systemsCal(ip_add)
print '\n\nConfiguration date in the
controller was :',
system_time_ecact[0],',',system_time_ecact[1
],'of',system_time_ecact[2]

hh = '%02d' % system_time_ecact[3] #### To
have a 2 digit format
mm = '%02d' % system_time_ecact[4]
ss = '%02d' % system_time_ecact[5]
sys_timestamp = str (hh+':'+mm+':'+ss)

print '\nConfiguration time in the
controller was :', sys_timestamp
time.sleep (2) ### Pause ­ Time in seconds

Appendix D 88

(visualization)

##
No node messages

else:
print '\n\n***NO INFORMATION FOR THIS NODE***\n\n'
time_periods.append(0)
time.sleep (2) ### Pause ­ Time in seconds

(visualization)

return ip_list

Appendix E 89

Appendix E

Part of an example of the generated log files. This is (a part
of) the text information contained inside any XML log file generated
by the ECLGT module. Information regarding most minutes has been
deleted, however it remains clear the format and information
contained in the file.

<?xml version="1.0" encoding="utf­8"?>
<LOG>

<Technical_info>
<Time>13:38:01

<Active_power_total>­­­­</Active_power_total>
<Unit_Power>[W]</Unit_Power>
<Active_energy_total>0</Active_energy_total>
<Unit_Energy>[kWh]</Unit_Energy>
<Default_power_limit>0.0</Default_power_limit>
<Unit_Default_power>[kW]</Unit_Default_power>
<Evaluation_window>45</Evaluation_window>
<Unit_evaluation_window>[min]</Unit_evaluation_window>
<Elapsed_time>3</Elapsed_time>
<Unit_Elapsed_time>[min]</Unit_Elapsed_time>
<Mean_power>0.0</Mean_power>
<Unit_Mean_power>[kW]</Unit_Mean_power>
<Energy_log_index>0</Energy_log_index>
<Unit_Energy_log_index>index</Unit_Energy_log_index>
<Energy_log_0>­­­­</Energy_log_0>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_1>­­­­</Energy_log_1>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_2>­­­­</Energy_log_2>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_3>­­­­</Energy_log_3>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_4>­­­­</Energy_log_4>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_5>­­­­</Energy_log_5>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_6>­­­­</Energy_log_6>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_7>­­­­</Energy_log_7>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_8>­­­­</Energy_log_8>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_9>­­­­</Energy_log_9>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_10>­­­­</Energy_log_10>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_11>­­­­</Energy_log_11>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_12>­­­­</Energy_log_12>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_13>­­­­</Energy_log_13>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_14>­­­­</Energy_log_14>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_15>­­­­</Energy_log_15>
<Unit_Energy_log>[kW]</Unit_Energy_log>

Appendix E 90

</Time>
<Time>13:39:01

<Active_power_total>­­­­</Active_power_total>
<Unit_Power>[W]</Unit_Power>
<Active_energy_total>0</Active_energy_total>
<Unit_Energy>[kWh]</Unit_Energy>
<Default_power_limit>0.0</Default_power_limit>
<Unit_Default_power>[kW]</Unit_Default_power>
<Evaluation_window>45</Evaluation_window>
<Unit_evaluation_window>[min]</Unit_evaluation_window>
<Elapsed_time>3</Elapsed_time>
<Unit_Elapsed_time>[min]</Unit_Elapsed_time>
<Mean_power>0.0</Mean_power>
<Unit_Mean_power>[kW]</Unit_Mean_power>
<Energy_log_index>0</Energy_log_index>
<Unit_Energy_log_index>index</Unit_Energy_log_index>
<Energy_log_0>­­­­</Energy_log_0>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_1>­­­­</Energy_log_1>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_2>­­­­</Energy_log_2>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_3>­­­­</Energy_log_3>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_4>­­­­</Energy_log_4>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_5>­­­­</Energy_log_5>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_6>­­­­</Energy_log_6>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_7>­­­­</Energy_log_7>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_8>­­­­</Energy_log_8>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_9>­­­­</Energy_log_9>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_10>­­­­</Energy_log_10>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_11>­­­­</Energy_log_11>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_12>­­­­</Energy_log_12>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_13>­­­­</Energy_log_13>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_14>­­­­</Energy_log_14>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_15>­­­­</Energy_log_15>
<Unit_Energy_log>[kW]</Unit_Energy_log>

</Time>
<Time>13:40:01

<Active_power_total>­­­­</Active_power_total>
<Unit_Power>[W]</Unit_Power>
<Active_energy_total>0</Active_energy_total>
<Unit_Energy>[kWh]</Unit_Energy>
<Default_power_limit>0.0</Default_power_limit>
<Unit_Default_power>[kW]</Unit_Default_power>
<Evaluation_window>45</Evaluation_window>
<Unit_evaluation_window>[min]</Unit_evaluation_window>
<Elapsed_time>3</Elapsed_time>
<Unit_Elapsed_time>[min]</Unit_Elapsed_time>
<Mean_power>0.0</Mean_power>
<Unit_Mean_power>[kW]</Unit_Mean_power>
<Energy_log_index>0</Energy_log_index>
<Unit_Energy_log_index>index</Unit_Energy_log_index>
<Energy_log_0>­­­­</Energy_log_0>

Appendix E 91

<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_1>­­­­</Energy_log_1>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_2>­­­­</Energy_log_2>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_3>­­­­</Energy_log_3>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_4>­­­­</Energy_log_4>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_5>­­­­</Energy_log_5>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_6>­­­­</Energy_log_6>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_7>­­­­</Energy_log_7>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_8>­­­­</Energy_log_8>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_9>­­­­</Energy_log_9>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_10>­­­­</Energy_log_10>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_11>­­­­</Energy_log_11>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_12>­­­­</Energy_log_12>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_13>­­­­</Energy_log_13>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_14>­­­­</Energy_log_14>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_15>­­­­</Energy_log_15>
<Unit_Energy_log>[kW]</Unit_Energy_log>

</Time>
<Time>13:41:01

<Active_power_total>­­­­</Active_power_total>
<Unit_Power>[W]</Unit_Power>
<Active_energy_total>0</Active_energy_total>
<Unit_Energy>[kWh]</Unit_Energy>
<Default_power_limit>0.0</Default_power_limit>
<Unit_Default_power>[kW]</Unit_Default_power>
<Evaluation_window>45</Evaluation_window>
<Unit_evaluation_window>[min]</Unit_evaluation_window>
<Elapsed_time>3</Elapsed_time>
<Unit_Elapsed_time>[min]</Unit_Elapsed_time>
<Mean_power>0.0</Mean_power>
<Unit_Mean_power>[kW]</Unit_Mean_power>
<Energy_log_index>0</Energy_log_index>
<Unit_Energy_log_index>index</Unit_Energy_log_index>
<Energy_log_0>­­­­</Energy_log_0>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_1>­­­­</Energy_log_1>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_2>­­­­</Energy_log_2>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_3>­­­­</Energy_log_3>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_4>­­­­</Energy_log_4>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_5>­­­­</Energy_log_5>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_6>­­­­</Energy_log_6>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_7>­­­­</Energy_log_7>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_8>­­­­</Energy_log_8>
<Unit_Energy_log>[kW]</Unit_Energy_log>

Appendix E 92

<Energy_log_9>­­­­</Energy_log_9>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_10>­­­­</Energy_log_10>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_11>­­­­</Energy_log_11>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_12>­­­­</Energy_log_12>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_13>­­­­</Energy_log_13>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_14>­­­­</Energy_log_14>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_15>­­­­</Energy_log_15>
<Unit_Energy_log>[kW]</Unit_Energy_log>

</Time>
<Time>13:42:01

<Active_power_total>­­­­</Active_power_total>
<Unit_Power>[W]</Unit_Power>
<Active_energy_total>0</Active_energy_total>
<Unit_Energy>[kWh]</Unit_Energy>
<Default_power_limit>0.0</Default_power_limit>
<Unit_Default_power>[kW]</Unit_Default_power>
<Evaluation_window>45</Evaluation_window>
<Unit_evaluation_window>[min]</Unit_evaluation_window>
<Elapsed_time>3</Elapsed_time>
<Unit_Elapsed_time>[min]</Unit_Elapsed_time>
<Mean_power>0.0</Mean_power>
<Unit_Mean_power>[kW]</Unit_Mean_power>
<Energy_log_index>0</Energy_log_index>
<Unit_Energy_log_index>index</Unit_Energy_log_index>
<Energy_log_0>­­­­</Energy_log_0>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_1>­­­­</Energy_log_1>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_2>­­­­</Energy_log_2>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_3>­­­­</Energy_log_3>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_4>­­­­</Energy_log_4>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_5>­­­­</Energy_log_5>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_6>­­­­</Energy_log_6>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_7>­­­­</Energy_log_7>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_8>­­­­</Energy_log_8>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_9>­­­­</Energy_log_9>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_10>­­­­</Energy_log_10>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_11>­­­­</Energy_log_11>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_12>­­­­</Energy_log_12>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_13>­­­­</Energy_log_13>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_14>­­­­</Energy_log_14>
<Unit_Energy_log>[kW]</Unit_Energy_log>
<Energy_log_15>­­­­</Energy_log_15>
<Unit_Energy_log>[kW]</Unit_Energy_log>

</Time>
</Technical_info>

</LOG>

Appendix F 93

Appendix F

Functions used in the EMS tool. In this appendix, it is possible
to see the code written in Python for all the functions used in the
ECACT and ECLGT modules, as part of the EMS code.

systemsCal(ip):

def systemsCal(ip):
(ip = ip addreess of the node)

Starting connection
client = ModbusTcpClient(ip)

read_time = client.read_input_registers(3,2) ## Time counter in
seconds
###(address, count)

###To manage the 2­bit, 2­register format used by the controller
time1 = '{0:016b}'.format(read_time.registers [0])
time2 = '{0:016b}'.format(read_time.registers [1])
time_bin = time2 + time1 #### Total counter in binary

Closing connection
client.close()

###
###
Process the counter info
86400 seconds in one day

time_tot = int (time_bin, 2)
time_2012 = 378691200 #### 2012, 00:00 ### Min time for the
controller

time_count = time_tot ­ time_2012#### Counter in the interval of
interest

days_count = time_count/86400 #### Counter converted into days since
2012

years_count = (days_count/365.2425)+2012 #### Starts in the min year
(2012)
actual_year = int (years_count)

actual_day_count = (years_count ­ actual_year) * 365.2425 ### Days in
a year

##
Values that I need (time)

actual_hour = (time_count ­ (days_count * 86400)) / 3600

actual_min = (time_count ­ ((days_count * 86400) + actual_hour *
3600)) / 60

actual_sec = time_count ­ ((days_count * 86400) + (actual_hour *

Appendix F 94

3600) + (actual_min * 60))

##
Values that I need (date)

day_aux = int (actual_day_count)

###
MONTH
Corrections for the year to start in march

if actual_year == 2012 or actual_year == 2016 or actual_year == 2020:
leap year

if day_aux <= 60: #### January and February sum 60 days in a
leap year

day_in_year = day_aux + 366
else:

day_in_year = day_aux

print day_in_year
day_new = day_in_year ­ 61 #### compensates the correction

else:
if day_aux <= 59: #### January and February sum 60 days in a
leap year

day_in_year = day_aux + 365
else:

day_in_year = day_aux

day_new = day_in_year ­ 60 #### compensates the correction

month = ((100*day_new) + 52)/3060### As indicated in the web page

dic_month = {0 : 'March',
1 : 'April',
2 : 'May',
3 : 'June',
4 : 'July',
5 : 'August',
6 : 'September',
7 : 'October',
8 : 'November',
9 : 'December',
10: 'January',
11: 'February'
}

mm = dic_month[month]

###
DATE

actual_date = day_new ­ ((month*306 + 5)/10) + 1 ### As indicated
in the web page

###
DAY OF THE WEEK

weekday_aux = days_count % 7 #### Day of the week repeats every 7
days
Considering that the first possibe day (2012­01­01) was a Sunday

dic_day = {1 : 'Sunday',
2 : 'Monday',
3 : 'Tuesday',

Appendix F 95

4 : 'Wednesday',
5 : 'Thursday',
6 : 'Friday',
0 : 'Saturday'
}

dd = dic_day[weekday_aux]

date_info = [dd, actual_date, mm, actual_hour, actual_min,
actual_sec] #### Generates a list with the system's date and time

return date_info

writeTimePeriods (input_list, day_initial, day_final):

def writeTimePeriods (input_list, day_initial, day_final):
(input_list = time periods list; day_initial, day_final =
register
addresses for the days of the week)

##############################Establish connection with the client
client = ModbusTcpClient(input_list[0])
print "\n\nStarting connection!!!!"

####################################### Write the desired registers

####### Writing the time periods ­­ It always starts at 00:00
###End of the first and second time windows

###To convert the hours into the 2­bit
###format managed by the controller
window1 = '{0:08b}'.format(input_list[2])
window2 = '{0:08b}'.format(input_list[3])
w1and2 = window2 + window1
write_1 = int(w1and2, 2)

############### WE START THE "WRITING COMMAND" #####################

Start to write (4 in address 0)
client.write_registers(0,[4,0])
####(address, [value1, value2]*number of registers) ## There are 2
bits in one register
time.sleep (0.5) ### Pause ­ Time in seconds

############## Here we write the desired values ####################

print '\nWriting... T1 = ', input_list[2], ' hours'
print '\nWriting... T2 = ', input_list[3], ' hours'
day_ini is the number of the register for time windows
client.write_registers(day_initial, [write_1])
(address, [value1, value2]*number of registers)

##
###End of the third and fourth time windows

###To convert the hours into the 2­bit format managed by the
controller
window3 = '{0:08b}'.format(input_list[4])
window4 = '{0:08b}'.format(input_list[5])
w3and4 = window4 + window3
write_2 = int(w3and4, 2)

Appendix F 96

print '\nWriting... T3 = ', input_list[4], ' hours'
print '\nWriting... T4 = ', input_list[5], ' hours'
day_fin is the number of the register for time windows
client.write_registers(day_final, [write_2])
####(address, [value1, value2]*number of registers)

############### WE FINISH THE "WRITING COMMAND" ####################

time.sleep (0.5) ### Pause ­ Time in seconds
Close the writing session (6 in adress 0)
client.write_registers(0,[6,0])
####(address, [value1, value2]*number of registers) ## There are 2
bits in one register
time.sleep (0.5) ### Pause ­ Time in seconds

print '\n\nTime windows have been written succesfully!'

############# close the client
client.close()

return

daylyPowers(a, lim, multi_lists, times):

def daylyPowers(a, lim, multi_lists, times):
(a=node; lim=lenght of 'lists'; multi_lists = 'lists';
times=time periods)

config_hour = [0]*96
config_power = [0]*96
powers = [0]*2
aux_1 = aux_2 = 0 #### Initialize

for x in range (2, lim):
if x % 2 != 0: #### Odd values (hours)

###
Analizing the time periods

hour_aux = list (multi_lists[a][x]) ### To convert the
timestamps into lists, so I can extract the hour info
easily
hour_str = hour_aux[11] + hour_aux[12]
config_hour[x] = int (hour_str) ### I have the hour
info as integer

###
Analizing the power information

power_aux = float (multi_lists[a][x­1]) ### To convert
the amounts
into floats, so I can extract the info easily

config_power[x] = ((int(power_aux*100))*100)/10 ### To
compensate MW to kW
To get the value in multiples of 10 (as used in the

controller)

aux_1 = filter(lambda a: a != 0, config_hour)
aux_2 = filter(lambda a: a != 0, config_power) ### Deletes all the

Appendix F 97

zeros

powers = [aux_1, aux_2]

return powers

writeDefPowers (def_power, ip):

def writeDefPowers (def_power, ip):
(def_power = the 4 default powers, ip = ip address)

#################################Establish connection with the client
client = ModbusTcpClient(ip)
print '\n\nEntering default powers... '

for x in range (0,4):
############### WE START THE "WRITING COMMAND"

Start to write (4 in address 0)
client.write_registers(0,[4,0])
####(address, [value1, value2]*number of registers) ## There
are 2 bits in one register
time.sleep (0.5) ### Pause ­ Time in seconds

############## Here we write the desired values
reg = 4702 + x
4702 is the number of the first register for power limits
write_power = def_power [x] ### aux variable

if write_power != 0:
client.write_registers(reg,[write_power])
(address, [value1, value2]*number of registers)
print '\nWriting... P',[x+1], write_power, '[kW]'

else:
print '\nOld power values are being mantained for: P',
[x+1]
This should never happen

############### WE FINISH THE "WRITING COMMAND"

time.sleep (0.5) ### Pause ­ Time in seconds
Close the writing session (6 in adress 0)
client.write_registers(0,[6,0])
####(address, [value1, value2]*number of registers) ## There
are 2 bits in one register
time.sleep (0.5) ### Pause ­ Time in seconds

print '\n\nDefaul power values have been written succesfully!'

close the client
client.close()

return

Appendix F 98

hourlyPowers (hour, pow_info, h_info, bias):

def hourlyPowers (hour, pow_info, h_info, bias):
(hour = time in the controller, power_info = lists with powers
for the day,
h_info = lists with hours for the day; bias = from which quarter
hour to start)

a = 0
ekip_powers = [0]*4

count = len (h_info)
for x in range (0, count):

if h_info[x] == hour: ### checks valid data for one hour
ind = bias[a]
ekip_powers[ind] = pow_info[x] #### saving those values
into lists
a=a+1

return ekip_powers

fillBlanks (val_list, defa):

def fillBlanks (val_list, defa):
(val_list = the list with the values to ve averaged; defa =
default power value)

powers_list = [0]*4
write_def = ((int(defa*100))*100)/10 ### To compensate MW to kW

To get the value in multiples of 10 (as used in the
controller)

for x in range (0, 4):
if val_list[x] != 0: #### the final list keep the values
that aren't 0

powers_list[x] = val_list[x]

else:
powers_list[x] = write_def

return powers_list

writeMaximumPowers (prof, ip, day_pow):

def writeMaximumPowers (prof, ip, day_pow):
(prof = profile according to which quarter of hour, ip = ip
address, day_pow =
register for the powers according to the day)

################################Establish connection with the client
client = ModbusTcpClient(ip)
print '\nLoading information!!!!'

############### WE START THE "WRITING COMMAND" #####################

Appendix F 99

Start to write (4 in address 0)
client.write_registers(0,[4,0])
####(address, [value1, value2]*number of registers) ## There are 2
bits in one register
time.sleep (0.5) ### Pause ­ Time in seconds

############## Here we write the desired values ####################
client.write_registers(day_pow,[prof])
(address, [value1, value2]*number of registers)
day_pow is the register for power limits according to the day

############### WE FINISH THE "WRITING COMMAND" ####################

time.sleep (0.5) ### Pause ­ Time in seconds
Close the writing session (6 in adress 0)
client.write_registers(0,[6,0])
####(address, [value1, value2]*number of registers) ## There are 2
bits in one register
time.sleep (0.5) ### Pause ­ Time in seconds

print '\n\nTime profiles have been written succesfully!'

close the client
client.close()

return

xmlLog(ip, i):

def xmlLog(ip, i):
(ip address, node counter)

Time stamps
###Prints the date
timestamp_aux = systemsCal(ip)

hh = '%02d' % timestamp_aux[3] #### To have a 2 digit format
mm = '%02d' % timestamp_aux[4]
ss = '%02d' % timestamp_aux[5]
sys_timestamp = str (hh+':'+mm+':'+ss)

print '\nCurrent time for node:', [i+1],'is:\n', sys_timestamp
logfile[i].write('\n\t\t<Time>')
logfile[i].write(sys_timestamp) ### Writes the info in the created
file

###
Start Connection
client = ModbusTcpClient(ip)

###
Active Power Total
Reads the value for the total active power

read_val = client.read_input_registers(206,2) ## Active Power total
206,2
###(address, count)

###To manage the 2­bit, 2­register format used by the controller
val1 = '{0:016b}'.format(read_val.registers [0])
val2 = '{0:016b}'.format(read_val.registers [1])

Appendix F 100

val = val2 + val1
power = int (val, 2)

if power != 2147483647: #### 7FFFFFFF hex
total_power = power * 0.1 ### As defined for the controller
tot_pow = str (total_power) ### The information has to be

writen as a string

else:
tot_pow = '­­­­' #### No info available

logfile[i].write('\n\t\t\t<Active_power_total>')
logfile[i].write(tot_pow) ### Writes the info in the created file
logfile[i].write('</Active_power_total>')

logfile[i].write('\n\t\t\t<Unit_Power>')
logfile[i].write('[W]') ### Writes the info in the created file
logfile[i].write('</Unit_Power>')

###
Active Energy Total

Reads the value for the total active energy

read_ener = client.read_input_registers(304,2) ## Active Energy total
304,2
###(address, count)

###To manage the 2­bit, 2­register format used by the controller
ener1 = '{0:016b}'.format(read_ener.registers [0])
ener2 = '{0:016b}'.format(read_ener.registers [1])
ener = ener2 + ener1

energy = int (ener, 2)
tot_ener = str (energy) ### The information has to be writen as a
string

logfile[i].write('\n\t\t\t<Active_energy_total>')
logfile[i].write(tot_ener) ### Writes the info in the created file
logfile[i].write('</Active_energy_total>')

logfile[i].write('\n\t\t\t<Unit_Energy>')
logfile[i].write('[kWh]') ### Writes the info in the created file
logfile[i].write('</Unit_Energy>')

###
Default Power Limit

Reads the value for the default power limit, according to the
current time period
read_actualpwr = client.read_input_registers(4751,1)
Actual Power Limit ## 4751,1

actual_power = str (read_actualpwr.registers[0] * 0.1) ### The
information has to be writen as a string

logfile[i].write('\n\t\t\t<Default_power_limit>')
logfile[i].write(actual_power) ### Writes the info in the created
file
logfile[i].write('</Default_power_limit>')

logfile[i].write('\n\t\t\t<Unit_Default_power>')
logfile[i].write('[kW]') ### Writes the info in the created file
logfile[i].write('</Unit_Default_power>')

Appendix F 101

###
Evaluation Window

Reads the value for the evaluation window
read_window = client.read_input_registers(4709,1)
Measurement time ## 4709,1

The info about measurement time is given as a table of possible
values
dic_eval = {0 : '5',
1 : '10',
2 : '15',
3 : '20',
4 : '30',
5 : '40',
6 : '45',
7 : '60',
8 : '90',
9 : '120',
10: '180',
11: '240'
}

eval_window = dic_eval[read_window.registers[0]] ### The information
has to be writen in minutes

logfile[i].write('\n\t\t\t<Evaluation_window>')
logfile[i].write(eval_window) ### Writes the info in the created file
logfile[i].write('</Evaluation_window>')

logfile[i].write('\n\t\t\t<Unit_evaluation_window>')
logfile[i].write('[min]') ### Writes the info in the created file
logfile[i].write('</Unit_evaluation_window>')

###
Elapsed Time
Reads the value for the elapsed time

read_elapsed = client.read_input_registers(4753,1)
Time elapsed inside the measurement window ## 4753,1

elapsed_time = str (read_elapsed.registers[0]) ### The information
has to be writen as a string

logfile[i].write('\n\t\t\t<Elapsed_time>')
logfile[i].write(elapsed_time) ### Writes the info in the created
file
logfile[i].write('</Elapsed_time>')

logfile[i].write('\n\t\t\t<Unit_Elapsed_time>')
logfile[i].write('[min]') ### Writes the info in the created file
logfile[i].write('</Unit_Elapsed_time>')

###
Log Registers

##
Reads the value for all the remaining registers (they are in one
block)

log_registers = client.read_input_registers(4764,18)
Time elapsed inside the measurement window ## 4764,18; 18
registers

client.close()

Appendix F 102

###
Mean Power
mean_pow = log_registers.registers[0] * 0.1 ### As indicated in the
Modbus map
mean_power = str (mean_pow) ### The information has to be writen as
a string

logfile[i].write('\n\t\t\t<Mean_power>')
logfile[i].write(mean_power) ### Writes the info in the created file
logfile[i].write('</Mean_power>')

logfile[i].write('\n\t\t\t<Unit_Mean_power>')
logfile[i].write('[kW]') ### Writes the info in the created file
logfile[i].write('</Unit_Mean_power>')

###
Energy Log Index

energy_log = log_registers.registers[1] ### The value indicates
which index is active
energy_log_index = str (energy_log) ### The information has to be
writen as a string

logfile[i].write('\n\t\t\t<Energy_log_index>')
logfile[i].write(energy_log_index) ### Writes the info in the created
file
logfile[i].write('</Energy_log_index>')

logfile[i].write('\n\t\t\t<Unit_Energy_log_index>')
logfile[i].write('index') ### Doesn't have a physical unit
logfile[i].write('</Unit_Energy_log_index>')

###
Energy LogS

for x in range (0,16): #### 16 log registers

if log_registers.registers[2+x] != 65535: #### FFFF hex
logs = log_registers.registers[2+x] * 0.1 ### The next
register
log_index = str (logs) ### The information has to be
writen as a string

else:
log_index = '­­­­' #### No info available

Generates the tag names
count = str (x)
ini_tag = '\n\t\t\t<Energy_log_'+count+'>'
log_tag1 = str (ini_tag)
fin_tag = '</Energy_log_'+count+'>'
log_tag2 = str (fin_tag)

logfile[i].write(log_tag1)
logfile[i].write(log_index) ### Writes the info in the created
file
logfile[i].write(log_tag2)

logfile[i].write('\n\t\t\t<Unit_Energy_log>')
logfile[i].write('[kW]') ### Writes the info in the created
file
logfile[i].write('</Unit_Energy_log>')

return

Appendix F 103

xlsLog(sheet, i, ip):

def xlsLog(sheet, i, ip):
(generated sheet, cell counter, ip address)

Time stamps and headers
###Writes the header
sheet.write(0, i+2, 'VALUE', style)

###Writes the date
timestamp_aux = systemsCal(ip)

hh = '%02d' % timestamp_aux[3] #### To have a 2 digit format
mm = '%02d' % timestamp_aux[4]
ss = '%02d' % timestamp_aux[5]
sys_timestamp = str (hh+':'+mm+':'+ss)

sheet.write(1, i+2, sys_timestamp, style_data)

###
Start Connection
client = ModbusTcpClient(ip)

###
Active Power Total
Reads the value for the total active power

read_val = client.read_input_registers(206,2) ## Active Power total
206,2

###To manage the 2­bit, 2­register format used by the controller
val1 = '{0:016b}'.format(read_val.registers [0])
val2 = '{0:016b}'.format(read_val.registers [1])
val = val2 + val1
power = int (val, 2)

if power != 2147483647: #### 7FFFFFFF hex
total_power = power * 0.1 ### As defined for the controller
tot_pow = str (total_power) ### The information has to be

writen as a string

else:
tot_pow = '­­­­' #### No info available

###Writes the info
sheet.write(2, i+2, tot_pow, style_data)

###
Active Energy Total

##
Reads the value for the total active energy

read_ener = client.read_input_registers(304,2) ## Active Energy total
304,2

###To manage the 2­bit, 2­register format used by the controller
ener1 = '{0:016b}'.format(read_ener.registers [0])
ener2 = '{0:016b}'.format(read_ener.registers [1])
ener = ener2 + ener1

energy = int (ener, 2)

Appendix F 104

tot_ener = str (energy) ### The information has to be writen as a
string

###Writes the info
sheet.write(3, i+2, tot_ener, style_data)

###
Default Power Limit

Reads the value for the default power limit, according to the
current time period

read_actualpwr = client.read_input_registers(4751,1)
Actual Power Limit ## 4751,1

actual_power = str (read_actualpwr.registers[0] * 0.1) ### The
information has to be writen as a string

###Writes the info
sheet.write(4, i+2, actual_power, style_data)

###
Evaluation Window
Reads the value for the evaluation window

read_window = client.read_input_registers(4709,1)
Measurement time ## 4709,1

The info about measurement time is given as a table of possible
values
dic_eval = {0 : '5',
1 : '10',
2 : '15',
3 : '20',
4 : '30',
5 : '40',
6 : '45',
7 : '60',
8 : '90',
9 : '120',
10: '180',
11: '240'
}

eval_window = dic_eval[read_window.registers[0]] ### The information
has to be writen in minutes

###Writes the info
sheet.write(5, i+2, eval_window, style_data)

###
Elapsed Time
Reads the value for the elapsed time

read_elapsed = client.read_input_registers(4753,1)
Time elapsed inside the measurement window ## 4753,1

elapsed_time = str (read_elapsed.registers[0]) ### The information
has to be writen as a string

###Writes the info
sheet.write(6, i+2, elapsed_time, style_data)

###
Log Registers

Appendix F 105

Reads the value for all the remaining registers (they are in one
block)

log_registers = client.read_input_registers(4764,18)
Time elapsed inside the measurement window ## 4764,18; 18
registers

client.close()

###
Mean Power

mean_pow = log_registers.registers[0] * 0.1 ### As indicated in the
Modbus map
mean_power = str (mean_pow) ### The information has to be writen as
a string

###Writes the info
sheet.write(7, i+2, mean_power, style_data)

###
Energy Log Index

energy_log = log_registers.registers[1] ### The value indicates
which index is active
energy_log_index = str (energy_log) ### The information has to be
writen as a string

###Writes the info
sheet.write(8, i+2, energy_log_index, style_data)

###
Energy LogS

for x in range (0,16): #### 16 log registers

if log_registers.registers[2+x] != 65535: #### FFFF hex

logs = log_registers.registers[2+x] * 0.1 ### The next
register
log_index = str (logs) ### The information has to be
writen as a string

else:

log_index = '­­­­' #### No info available

###Writes the info
sheet.write(9+x, i+2, log_index, style_data)

return

restart():

def restart():

ems = sys.executable
ems = current programm being executed
os.execl(ems, ems, * sys.argv)

Glossary of terms and abbreviations 1

Glossary of terms and abbreviations

AC: Alternating Current.

ADU: Application Data Unit.

DC: Direct Current.

DHCP: Dynamic Host Configuration Protocol.

EMS: Ekip Management Software.

EV: Electric vehicle.

FC: Function Code.

HV: High Voltage.

IP: Internet Protocol.

OSI: Open Systems Interconnection.

PDU: Protocol Data Unit.

PV: Photovoltaic.

SCADA: System Control And Distribution Automation.

TCP: Transmission Control Protocol.

USB: Universal Serial Bus.

VPP: Virtual Power Plant.

Bibliography 2

Bibliography

ABB SACE. “Load Management with Ekip Power Controller for SACE
Emax 2,” 2012. [xiv]

Amistadi, Enrico. “An off-the-Shell Solution for Virtual Power Plants.”
VENTYX, 2012. [xii]

Casazza, John. Understanding Electric Power Systems: An Overview
of the Technology and the Marketplace. Vol. 13. Wiley. Com,
2003. [i] [xi]

Collins, Galen. “Pymodbus Documentation,” June 18, 2013. [xvi]
[xvii]

“Energy Efficiency as a Key Enabler - ABB Conversations.” Accessed
July 11, 2013.
http://www.abb-conversations.com/2013/07/energy-efficiency-
as-a-key-enabler/. [viii] [xiii]

Fox-Penner, Peter. Smart Power: Climate Chage, the Smart Grid, and
the Future of Electric Utilities. Washington, DC: Island Press,
2010. [x]

“Geothermal | National Energy Authority of Iceland.” NEA. Accessed
July 12, 2013. http://www.nea.is/geothermal/. [vi]

“GME - Gestore Dei Mercati Energetici SpA.” Accessed July 10, 2013.
http://www.mercatoelettrico.org/EN/.

“How to Make a Solar Water Heater from Plastic Bottles.” The
Ecologist. Accessed July 12, 2013.
http://www.theecologist.org/how_to_make_a_difference/climat
e_change_and_energy/477574/how_to_make_a_solar_water_h
eater_from_plastic_bottles.html.

International Energy Agency (IEA). “Key World Energy Statistics—
2012.” IEA Paris, France, 2012. [iv]

http://www.theecologist.org/how_to_make_a_difference/climate_change_and_energy/477574/how_to_make_a_solar_water_heater_from_plastic_bottles.html
http://www.theecologist.org/how_to_make_a_difference/climate_change_and_energy/477574/how_to_make_a_solar_water_heater_from_plastic_bottles.html
http://www.theecologist.org/how_to_make_a_difference/climate_change_and_energy/477574/how_to_make_a_solar_water_heater_from_plastic_bottles.html
http://www.mercatoelettrico.org/EN/
http://www.nea.is/geothermal/
http://www.abb-conversations.com/2013/07/energy-efficiency-as-a-key-enabler/
http://www.abb-conversations.com/2013/07/energy-efficiency-as-a-key-enabler/

Bibliography 3

“Learning Sciences Research – Evolution Too Slow to Keep up with
Climate Change, Study Finds.” Awescience. Accessed July 12,
2013.
http://awescience.com/2013/07/10/evolution-too-slow-to-keep-
up-with-climate-change-study-finds/. [iii]

Napolitano, Sergio. “A Market, Experimental and Business Analysis
for the Commercialization of an Energy Demand Response
Management System.” Università della Svizzera Italiana,
2012. [vii] [ix]

“Pollution Leads to Drop in Life Span in Northern China, Research
Finds.” NYTimes.com. Accessed July 12, 2013.
http://www.nytimes.com/2013/07/09/world/asia/pollution-leads
-to-drop-in-life-span-in-northern-china-study-finds.html?_r=4&.
[ii]

The Modbus Organization. “Modbus Application Protocol,” April 26,
2012. [xv]

“Unione Geotermica Italiana, UGI | Geotermia, Energia Geotermica.”
UGI. Accessed July 12, 2013. http://www.unionegeotermica.it/.
[v]

http://www.unionegeotermica.it/
http://www.nytimes.com/2013/07/09/world/asia/pollution-leads-to-drop-in-life-span-in-northern-china-study-finds.html?_r=4&
http://www.nytimes.com/2013/07/09/world/asia/pollution-leads-to-drop-in-life-span-in-northern-china-study-finds.html?_r=4&
http://awescience.com/2013/07/10/evolution-too-slow-to-keep-up-with-climate-change-study-finds/
http://awescience.com/2013/07/10/evolution-too-slow-to-keep-up-with-climate-change-study-finds/

	“GME - Gestore Dei Mercati Energetici SpA.”
	Acknowledgments
	First of all, I would like to thank Prof. Enrico Ragaini for giving me the opportunity to develop this project, for all his support, advise, patience and dedication to this work; because without his guidance and knowledge I could have never gone through it. Also, I would like to thank Prof. Francesco Castelli Dezza for agreeing to be my advisor, for his time and advice. Likewise I am very thankful with ABB company for giving me the chance of elaborating this work, as well as facilitating me its equipments, information and installations; and to the two people in the company who got involved in this project and have collaborated to its realization with time, ideas and support: Luca Omati and Enrico Amistadi.
	Furthermore, I would like to thank Politecnico di Milano and its staff for making it possible for me to complete this Masters degree. I am grateful for the knowledge and experience that I have gained this semesters studying here. And of course my sincere thanks to Italy, the country which opened its doors to me in the best way, providing me support and motivation.
	Finally I would like to thank to all the ones who contributed in some way to the achievement of this degree and not only in the academic aspects. Thanks to my family for all the emotional and financial support and to my friends in Ecuador for encouraging me even if it has been from far away; and of course big thanks to my friends in this country, who have become my family and have made my time in here remarkable.
	A mis padres Julio y Adita,
	a mi abuela Dolores
	y a mi hermano Juan Carlos.
	Table of contents
	Index of figures
	Index of tables
	Abstract
	Riassunto
	1 The Energy Efficiency Problem
	1.1 The Electric Power Systems
	1.2 Environmental Concerns
	Energy consumption:

	1.3 Renewable Energies
	1.4 Economic Concerns
	1.5 Smart Power
	1.6 The Market
	Consumption forecast:
	Consumption peaks:

	2 Power Management
	2.1 ABB Company12
	2.2 The Ekip Controller
	Physical connections:
	The load control algorithm:

	2.3 Management of multiple Ekip Controllers

	3 The Ekip Management Software
	3.1 General Description
	3.2 Software Tools
	3.3 The Modbus Protocol
	Modbus TCP:
	Implementation in the EMS tool:

	3.4 Main Workflow
	Configuration file:

	3.5 The ECACT Module
	The function: (lists, defaults, hours, nodes, j):

	3.6 The ECLGT Module
	XML file:
	Spreadsheet (.xls) file:
	Both formats:

	3.7 Description of the functions
	systemsCal(ip):
	writeTimePeriods(input_list, day_initial, day_final):
	daylyPowers(a, lim, multi_lists, times):
	writeDefPowers(def_power, ip):
	hourlyPowers(hour, pow_info, h_info, bias):
	fillBlanks(val_list, defa):
	writeMaximumPowers(prof, ip, day_pow):
	xmlLog(ip, i):
	xlsLog(sheet, i, ip):
	def restart():

	3.8 How to use

	4 Tests & Results
	4.1 Tests
	4.2 Results
	4.3 Future work
	4.4 Conclusions

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Glossary of terms and abbreviations
	AC: Alternating Current.
	ADU: Application Data Unit.
	DC: Direct Current.
	DHCP: Dynamic Host Configuration Protocol.
	EMS: Ekip Management Software.
	EV: Electric vehicle.
	FC: Function Code.
	HV: High Voltage.
	IP: Internet Protocol.
	OSI: Open Systems Interconnection.
	PDU: Protocol Data Unit.
	PV: Photovoltaic.
	SCADA: System Control And Distribution Automation.
	TCP: Transmission Control Protocol.
	USB: Universal Serial Bus.
	VPP: Virtual Power Plant.

	Bibliography
	ABB SACE. “Load Management with Ekip Power Controller for SACE Emax 2,” 2012. [xiv]
	Amistadi, Enrico. “An off-the-Shell Solution for Virtual Power Plants.” VENTYX, 2012. [xii]
	Casazza, John. Understanding Electric Power Systems: An Overview of the Technology and the Marketplace. Vol. 13. Wiley. Com, 2003. [i] [xi]
	Collins, Galen. “Pymodbus Documentation,” June 18, 2013. [xvi] [xvii]
	“Energy Efficiency as a Key Enabler - ABB Conversations.” Accessed July 11, 2013. http://www.abb-conversations.com/2013/07/energy-efficiency-as-a-key-enabler/. [viii] [xiii]
	Fox-Penner, Peter. Smart Power: Climate Chage, the Smart Grid, and the Future of Electric Utilities. Washington, DC: Island Press, 2010. [x]
	“Geothermal | National Energy Authority of Iceland.” NEA. Accessed July 12, 2013. http://www.nea.is/geothermal/. [vi]
	“GME - Gestore Dei Mercati Energetici SpA.” Accessed July 10, 2013. http://www.mercatoelettrico.org/EN/.
	“How to Make a Solar Water Heater from Plastic Bottles.” The Ecologist. Accessed July 12, 2013. http://www.theecologist.org/how_to_make_a_difference/climate_change_and_energy/477574/how_to_make_a_solar_water_heater_from_plastic_bottles.html.
	International Energy Agency (IEA). “Key World Energy Statistics—2012.” IEA Paris, France, 2012. [iv]
	“Learning Sciences Research – Evolution Too Slow to Keep up with Climate Change, Study Finds.” Awescience. Accessed July 12, 2013. http://awescience.com/2013/07/10/evolution-too-slow-to-keep-up-with-climate-change-study-finds/. [iii]
	Napolitano, Sergio. “A Market, Experimental and Business Analysis for the Commercialization of an Energy Demand Response Management System.” Università della Svizzera Italiana, 2012. [vii] [ix]
	“Pollution Leads to Drop in Life Span in Northern China, Research Finds.” NYTimes.com. Accessed July 12, 2013. http://www.nytimes.com/2013/07/09/world/asia/pollution-leads-to-drop-in-life-span-in-northern-china-study-finds.html?_r=4&. [ii]
	The Modbus Organization. “Modbus Application Protocol,” April 26, 2012. [xv]
	“Unione Geotermica Italiana, UGI | Geotermia, Energia Geotermica.” UGI. Accessed July 12, 2013. http://www.unionegeotermica.it/. [v]

