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Abstract

In recent years we have witnessed a dramatic growth in the availability of mo-

bile devices with wireless communication and sensing capabilities, such as wireless

sensor nodes and smartphones. These are often resource constrained, above all in

terms of power supply. Innovative usages can be envisioned, from medical mon-

itoring to entertainment, if these devices become seamlessly interconnected in a

so-called Web of Things. Interacting via sensors to the physical world means that

applications often have strict real-time and delay requirements. In the context of

smartphones, low-delay communication is made possible by latest cellular tech-

nologies. This work focuses on developing a live streaming service of sensor data

from a mobile source to a generic client on the Web, supporting also synchroniza-

tion to other media types. It aims to serve as a proof of concept on the suitability

for this class of services of the Constrained Application Protocol (CoAP), a new

protocol under standardization designed to be a key enabler of the Web of Things.
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Sommario

Negli ultimi anni si è assistito ad una rapida crescita nella disponibilità di dispositi-

vi mobili in grado di comunicare in modalità wireless ed equipaggiati con numerosi

sensori, ad esempio i nodi sensore e gli smartphones. Questi normalmente dispon-

gono di risorse limitate, specialmente in termini di consumo di potenza. Molte

applicazioni innovative possono essere concepite, anche in campi molto diversi

tra loro come la telemedicina e l’intrattenimento, se questi dispositivi vengono

interconnessi nel cosiddetto Web degli Oggetti (Web of Things). L’interazione

con l’ambiente per mezzo di sensori porta queste applicazioni ad avere in molti

casi dei requisiti di ritardo e di esecuzione in tempo reale. Nel contesto degli

smartphones, la comunicazione a basso ritardo è resa possibile dalle moderne reti

di accesso cellulare. Questo lavoro è incentrato sullo sviluppo di un servizio di

diffusione in diretta verso il Web di misurazioni effettuate dai sensori di un dispo-

sitivo mobile, supportando la sincronizzazione del flusso con altri generici formati

multimediali. Si pone l’obiettivo di dimostrare la validità per questa tipologia di

servizio del Constrained Application Protocol (CoAP), un protocollo in fase di

standardizzazione che mira ad essere un fattore abilitante allo sviluppo del Web

of Things.
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Chapter 1

Introduction

Nowadays a number of enabling technologies are coming together. Above all is

the progressive reduction of the cost and scale of computing devices equipped

with wireless communication and sensing capabilities. Sensing capabilities in-

clude cameras, microphones, GPS receivers and many different scalar sensors.

Open-sourced, general-purpose and easily programmable operating systems such

as Android are spreading as a result of market forces. These factors create a mul-

titude of devices interconnected on a global scale by the Internet. Wireless access

to the Internet is becoming more and more powerful. Long Term Evolution, which

at time of writing is being deployed in major cities, brings significant performance

advancements especially in terms of transmission delay. The Internet itself, with

the deployment of IPv6, is adapting to this scenario.

This ecosystem enables so-called context-aware services. These are applica-

tions that make use of the device’s physical context, possibly sending it in real-

time to the Web. Examples of context-aware applications can be found in e-

health, gaming and multimedia entertainment. E-health applications give doctors

the ability to remotely monitor heath conditions using the patient’s smartphone

as a platform for collecting medical data. In the gaming and entertainment field,

new creative concepts are possible if the players can insert reality in the game

simply by means of their smartphone.

A common denominator of live applications is the need for timeliness. On top

1



Chapter 1. Introduction

of that, Quality of Experience can be declined in different ways. The focus of med-

ical monitoring systems, for instance, might be the reliability of the transmission.

Communication continuity might instead be the key quality aspect of an highly

interactive gaming session. Despite the differences, it is clear that service designs

should take Quality of Experience as their paramount goal and should provide a

platform for its maximization.

The foundation of this class of applications borrows from heterogeneous do-

mains: constrained environments, the Web and real-time multimedia systems.

Constrained environments are made of embedded devices that have scarce re-

sources in terms of processing power, memory and energy, interconnected by low-

power and lossy networks. Wireless Sensor Networks are a typical example. Soft-

ware must keep the computational and communication load to a minimum in or-

der to enhance the device’s lifetime. An handheld device, being battery-powered,

has similar needs. Even though users are adapted to charging mobile phones on

a daily basis, persistent sensing and wireless transmission may drain lifetime of

the device below reasonable levels. Another important aspect is the integration

with the existing Web. Clients access Web services using an established set of

paradigms, such as Representational State Transfer. New services, also those on

embedded devices, should expose the same interfaces if they want to leverage the

existing infrastructure and designers know-how. Furthermore, applications that

deal with evolving physical phenomena often have real-time needs. This is the

case of multimedia streaming, in which the processing of information must keep up

with the natural evolution of events. Such systems also need stream synchroniza-

tion, that is the maintenance of the real-world temporal relation among events.

Unfortunately, generally available technologies like Android and the Internet are

not real-time friendly, so countermeasures must be taken.

The Constrained Application Protocol (CoAP) was created to match both

the needs of constrained environments and to integrate well with the existing

2



Chapter 1. Introduction

Web. CoAP includes functionalities of the ubiquitous HTTP protocol, which have

been re-designed accounting the low processing power and energy consumption

constraints of embedded devices. At a closer inspection, CoAP is also based on

the same networking layers used by current multimedia applications on the Web.

In the first phase of the work we reviewed the literature in search of suitable

technologies for live, context-aware services. We investigated the different types

of synchronization and challenges of real-time transport over unreliable networks,

using the Real-time Transport Protocol (RTP) as reference point. We analyzed

different application protocols, focusing on CoAP in particular. We motivate the

choice by discussing its strengths and shortcomings by drawing a parallel with

RTP. The second phase aimed at building a proof of concept on the suitability

of CoAP for this type of services. We suggest a possible usage of CoAP for real-

time systems that need stream synchronization. We implement a prototype to

stream sensor data from an Android source to a client on the Web. It includes a

CoAP streaming server developed with Android Native Development Kit (NDK)

and a CoAP client written in Java. We implement an algorithm to synchronize

the presentation a generic set of multimedia streams at the client, and try to

characterize sender-originated asynchrony due to the non-real-time nature of data

sampling. In the third phase we tried to leverage error correction mechanisms

to improve Quality of Experience. We identify a set of performance metrics to

compare different mechanisms, testing the prototype on a simulated network with

Internet characteristics.

3



Chapter 2

Synchronization and Real-time
Transport

2.1 Multimedia Synchronization

A multimedia system typically captures, transmits and plays a set of media

streams. A stream is a temporal sequence of media information. Media informa-

tion is for example audio or video or, as in this work, scalar sensor measurements.

A stream is created by capturing a physical phenomenon over time via sensors,

for instance a microphone or an accelerometer sensor, at a source node. There is

often the need to transmit the stream over a network to a sink node for analysis or

presentation. The stream semantic is preserved only if the presentation is correct

according to the time domain [3].

A stream can be subdivided in information units. A continuous media object

SOURCE SINK

Figure 2.1: Live multimedia system with no intermediate long-term storage.
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Chapter 2. Synchronization and Real-time Transport

like audio or video is presented reproducing the sequence of information units. The

temporal relations between units of a stream originate during capture and they

must be preserved when the stream is presented or analyzed. Each information

unit is assigned a playout time that should reflect the relative position of the unit

within the stream. An information unit has the characteristic that each of its

sub-components share a common playout time [27]. In this work an information

unit corresponds to a sensor sample, so we will use the two words interchangeably.

A synchronization unit consists of two or more information units that, as a

group, share a common interval between generation and playout of each part of

the group [25]. In our context, a stream corresponds to a synchronization unit.

The synchronization problem consists in recreating on the playout side the

temporal organization of information units occurring at the time of their capture

or creation. In other words, the objective is to correctly specify and transfer

information units capture times and to assign playout times accordingly [34].

In this work we will consider the so-called live synchronization problem, which

implies no intermediate long-term storage between source and sink.

Asynchrony is caused by the variable processing delays that information units

experience along the chain from the source to the sink nodes. The amount of

variation in processing time is called jitter. Jitter destroys the initial temporal

organization of information units. If all information units experienced the same

processing delay, the stream arriving at the sink would be identical to the one at

the source, only shifted forward in time.

In fact, regardless of jitter, the multimedia processing chain introduces an

end-to-end delay (alternatively end-to-end latency). In this work, the system that

generates most of the end-to-end delay and jitter is the Internet. The acceptable

upper bound for end-to-end delay from capture to playout strictly depends on the

application domain. For example the acceptable delay for interactive sessions such

as video conferencing is much lower than that of one-way multimedia streaming,

5
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t

Frame 
period

Figure 2.2: Intra-stream synchronization between frames of a video sequence showing a jumping
ball [3].

despite being both live application. The International Telecommunication Union

states that an end-to-end delay below 150 ms guarantees high quality of experience

for most applications [32].

In a complex system, synchronization can be established at different levels:

intra-stream synchronization refers to the time relations existing among the units

of one media stream. In the simplest case, units have a fixed time validity and shall

be presented one after the other in the correct order, as exemplified in Figure 2.2.

Inter-stream synchronization instead refers to synchronization of a set of con-

tinuous medias that are to be presented together. The need for inter-stream syn-

chronization arises when the content of two media streams is related. An example

is the so called lip-sync problem, where voice audio must be played synchronously

to the movement of the person’s lips in the video [6]. To perform inter-stream

synchronization it is useful to refer to a master stream, which can be thought of as

an orchestra director. The playout progress of the master stream is independent.

The progress of all other streams in the synchronization domain, which are called

slave streams, depends on the master. In case of lip-sync it is common to select

audio as the master stream. Note that the master stream need not be an actual

media stream, as an orchestra director is indeed not. It can be any independent

time base. Selecting an actual stream as the master is similar to an orchestra that,

instead of following the director, follows the concertmaster (“first” violin player).

Synchronization can be established at any point of the system, not necessarily

6
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at the endpoints. This is the case, for example, of video conferencing intermediary

systems that are in charge of mixing many video and audio streams into a single

one. However, the best place to perform synchronization is right before the media

playout at the sink node, in order to minimize the remaining jitter sources.

2.1.1 Streams and Sampling Frequency

In the simplest case, all information units in a stream have the same temporal

validity. An example is a sensor that measures temperature at 1 Hz. In other cases

information units have a variable temporal validity, either because the sampling

frequency changes over time or because the content of a unit influences also other

units. Examples are many of the common video encoders, where interframes may

depend on information from other video frames [6]. An interframe is normally

needed to correctly decode more than one normal frame. A stream for which the

duration of each information unit is known in advance is called a known-frequency

stream.

It may also happen that the duration of an information unit is unknown. These

create an unknown-frequency stream, which is essentially a sequence of random

events. An example is a free-spot parking counter. Consider information units to

be the updates on the number of free parking spots. The latest free spot count

shall be displayed until a new car enters the parking, thus for an unknown period.

The main difference between the two classes is that in known-frequency streams

both the capture start time and the capture end time are known, while in unknown-

frequency streams only the capture start time is known. As a consequence, a

device presenting an unknown-frequency stream is able to assign a playout start

time to every information unit but not a playout end time. After an unknown-

duration unit has been sent to playout, it is not possible to tell whether it is still

valid or not until a newer one arrives. This prevents, for instance, the insertion of

silence periods when information units are lost or arrive late. It can be argued that

any unknown-frequency stream can be converted into a known-frequency stream

7
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by issuing replicas of the latest sample at a constant rate. In the following, the

analysis is restricted to known-frequency streams.

2.1.2 Synchronization Metrics

Measuring intra-stream synchronization means quantifying how much jitter is

reflected in the presentation of samples. Tolerance to jitter in sample presentation

is determined by several factors, including the sample rate, encoding and target

application. For example, TV quality video is generally unaffected by up to 10 ms

jitter [30]. Other metrics proposed in the literature assume that jitter only causes

presentation gaps by preventing samples to be available before their playout time.

They assess intra-stream synchronization by gap probability or gap frequency

measures [18].

In the context of inter-stream synchronization, there exist an objective qual-

ity metric called skew. The skew is the presentation time difference between two

information units that occurred at the same instant in the real world. Limits of

acceptable skew in the case of lip-sync have been measured interviewing humans

watching video clips. Acceptable skew for this setup is ±160ms [31]. Note that

presentation might not just happen to human eyes. In machine-to-machine con-

texts the “presentation” is consumed by a controller that has potentially much

higher time sensitivity than human eyes. The stream content might even be the

basis of a control loop for a safety critical system. Thus the maximum acceptable

skew depends on the application domain. In our setting the stream information

units are sensor samples. We seek to transmit more than one sensor stream, so

both intra-stream synchronization and inter-stream synchronization are required.

To our knowledge, there is no study on the skew upper bounds for presentation

of context information, and this aspect is out of the scope of this work.

8



Chapter 2. Synchronization and Real-time Transport

Figure 2.3: Audio and video skew accumulation [6].

2.1.3 Poor-man Synchronization

The simplest method that a sink node can use to synchronize a multimedia stream

is to assume that information units arrive at the exact instant in which they are

to be played. An information unit is played as soon as it is available at the

presentation node. This technique is called poor-man synchronization [6]. It

basically assumes “perfect” underlying systems that do not introduce processing

jitter.

However naive this approach may seem, it is viable in services where the un-

derlying technologies guarantee a certain Quality of Service (QoS) in terms of

processing time. Because processing at any subsystem completes in a guaranteed

maximum interval, the offset between capture and presentation of every infor-

mation unit is the same. Therefore services built on hard-real time operating

9
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Figure 2.4: Late information unit arrival [30].

systems and circuit-switched networks need not take particular care to the media

synchronization problem. What can still be minimized in such services to obtain

even higher QoE is the end-to-end delay, which is an important requirement for

interactive real-time applications (e.g. video conferencing).

However, we require our service to work on QoS-unaware systems. We as-

sume that the software at the endpoints in charge of capturing, transmitting and

playing the streams executes non-deterministically. Furthermore the Internet is

by design a best-effort network. In our setting any point between the source and

sink node may cause synchronization loss. This is expressed in Figure 2.4, where

the third information unit experiences an unpredictable processing delay that pre-

vents correct stream presentation. If all packets had the same delay, or at least a

guaranteed upper bound, by introducing proper buffering we could ensure intra-

stream synchronization simply with the poor-man mechanism, without resorting

to synchronization metadata.

2.1.4 Metadata-based Synchronization

A more ingenious approach to synchronization consists in specifying the temporal

relations between each information unit. The resulting metadata is called stream

specification. To minimize the chances of asynchrony, the best place to originate

the stream specification is as close as possible to the capturing hardware. Simi-

10
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larly, the best place to interpret the stream specification is as close as possible to

the presentation hardware. If the units are to be transmitted to another machine

for presentation, the stream specification must be transmitted as well. For sim-

plicity from now on we consider a stream to be self-describing i.e. embodying both

the media content and the metadata needed for intra-stream synchronization.

Metadata-based synchronization must be used when dealing with temporally

unreliable systems, as in this work. Therefore we need tools to formalize and

transport timing metadata. The source must express the temporal relation be-

tween samples in a formal way, the channel must transport it to the sink node

along with the media content and the sink node must interpret and enforce it

during playout.

From the point of view of intra-stream synchronization, this is accomplished

using timestamps. Each sample is assigned a timestamp that represents its sam-

pling instant. Ideally, the process of timestamping is instantaneous or takes a

fixed amount of time. The timestamp is sent to the sink along with the sample.

The task of the sink node is to correctly interpret timestamps to reconstruct the

stream timing.

For known-frequency streams, assuming that the synchronizer is aware of the

sampling frequency, the timestamp can be a simple sequence number. On the

other hand, samples in unknown-frequency streams can take any position in time,

so the timestamp must be a clock reading. The timestamp clock rate depends on

the required resolution. The lower the timestamp clock frequency, the higher the

error in identifying real time instants.

Regarding inter-stream synchronization, two approaches are viable: mixing all

streams into one stream through recoding at the source; ensuring that timestamps

across different streams refer to a common time reference. The first approach ba-

sically simplifies the problem to an intra-stream one. It has the relevant drawback

of creating stream interdependence. Data loss or errors in the elaboration of one

11



Chapter 2. Synchronization and Real-time Transport

Clock b

Clock a

t0,b

t0,a

t1,b

t1,a

Wall 
clockΔ t0,w

Figure 2.5: The concept of wall clock. t0,a is the same instant as t0,b, while t1,b is ∆ seconds before
t1,a

stream or in its transmission infect also the other mixed streams. Furthermore,

intermediaries that wish to insert a media source into the synchronization domain

need to perform, in most cases, complex recoding. While this may seem accept-

able in case of audio-video as usually one is meaningless without the other, in the

case of sensor data each stream has its own distinguished meaning (for example

it is meaningful to know acceleration even if the temperature stream is faulty).

A better approach is to keep streams isolated and let them specify their own

intra-stream timing. In general, each stream can have an independent timestamp

reference. This means that two samples captured at the same time in two dif-

ferent streams might have different timestamps. Thus there is the need to relate

independent timestamps to a common reference, called the wall clock. There is

exactly one wall clock in each synchronization domain. The concept is shown in

Figure 2.5.

Regardless of its offset in time or frequency, the wall clock is actually a “copy”

of real time at the source. The wall clock timestamp is a valid timestamp for

the sample (instantaneously assigned at time of capture), and events that happen

simultaneously are mapped to the same wall clock time. Note that the intra-

stream ordering of samples according to original timestamps holds also in wall

12
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Stream A

arrival time

tw = 7

tw = 7

tw = 7

tw = 7

playout time

tw = 7

tw = 7

Stream B

Stream C

Stream A

Stream B

Stream C

Figure 2.6: Inter-stream synchronization. The sink aligns samples for playout based on their wall
clock timestamp tw. Shaded samples are generated at the same instant in real time,
thus have the same tw.

clock terms. Therefore the sink can perform inter-stream synchronization by

sending to playout simultaneously all the samples with equal wall clock timestamp,

as shown in Figure 2.6.

A relevant drawback of the wall clock method arises in multi-source scenarios

because the wall clock must be synchronized across source devices. A common

solution is the use of clock synchronization protocols such as NTP or GPS for

higher precision.

When using timestamp-based synchronization it is possible to divide the prob-

lem in two sub-problems. One part is the operations that occur in the end systems,

from capture of the physical quantity to timestamping and from the playout deci-

sion to the actual appearance to the consumer. The other part is the operations,

such as transmission over a channel, that occur while a sample is assigned a times-

tamp. We refer to the latter part as timestamp zone. Its distinguishing factor is

that, within this zone, the sample position in time is uniquely identified by the

timestamp, which is a simple numerical value.
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Figure 2.7: The timestamp zone. Square boxes are operating system tasks on the same device.
Total skew = ∆DR + ∆PO.

Once a sample is timestamped, optimal algorithms can perform any kind of

synchronization. It becomes clear that the origin of playout skew is to be found

in the operations outside the timestamp zone, such as the scheduling of the tasks

that handle sensor hardware or playout hardware. Moreover, this concepts suggest

an architectural separation of concerns: algorithms used within the timestamp

zone are platform independent, while management of capture and playout devices

depends on the characteristics of the hardware and the operating systems on the

endpoints.

This work focuses on synchronization on the timestamp boundary. This is

driven by two facts: sample loss and jitter is much higher within the times-

tamp zone than outside, so this problem shall be solved first; being platform-

independent, the solution can be applied to a variety of systems and platforms.

2.2 Real-time Transport over a Network

A real-time system is a system that provides guarantees or makes effort to com-

plete certain tasks before a deadline. Multimedia systems are often real-time

because of the evolving nature of physical phenomena.

14
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This work attempts to build a real-time service. The task is the delivery of

sensor samples to the sink node for presentation. The deadline is their playout

time. The ideal result is that all samples be delivered to the sink node before

their scheduled playout time. To measure the success rate of the system a proper

metric is the Delay Constrained Reliability (DCR) [9]:

Delay Constrained Reliability (DCR) =
samples arrived before deadline

total samples sent

This metric differs from conventional reliability metrics because it accounts for the

deadline. In a real-time system, a sample that misses the deadline is as useless as

a lost one. DCR as it is here defined treats all the samples as equally important.

Although it is appropriate for this work, it might not always be so, for example

in a prioritized real-time system where the timely arrival of some class of samples

is more important than others.

An hard real-time system guarantees DCR=1, meaning that all samples sent

arrive at destination before the deadline. In this work, the main impediment to

the ideal DCR=1 is posed by the communication channel used, the Internet. The

Internet is a best-effort network which does not guarantee delivery within an end-

to-end delay bound. Travel time variations and packet loss are caused by route

changes, network congestion etc. Therefore a service built on top of the Internet

can only be soft real-time, that is to use mechanisms aimed at maximizing DCR

[1]. In this work we use three mechanisms: UDP as transport layer protocol,

elastic buffers and error correction.

2.2.1 Delivery Deadline

In the context of this work, it is useful to characterize the performance of the

network in terms of three indicators:

packet loss greater than zero in best-effort networks like the Internet

average one-way transmission delay (network delay) dN assuming a sym-

metric link, the round-trip time is RTT = 2 dN .
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jitter (network delay variation) unpredictable and unbounded

Note that network throughput is not meaningful here because the amount of

data to transmit is low. It only consists of scalar sensor measurements and their

metadata, so we assume that even a low-capacity channel does not pose additional

challenges. In a complete multimedia system, network throughput should instead

be taken into account as video and audio streams generate significant traffic.

The delivery deadline must comply to the maximum end-to-end delay con-

straint. On the other hand, it is meaningless to push the deadline below the

average one-way transmission delay, otherwise no samples could respect it:

tc + dN ≤ delivery deadline ≤ tc + dEE

where dEE is the maximum end-to-end delay and tc the sample capture time.

Intuitively, the later the deadline, the higher are the chances to perform the task

before its expiration. The optimal choice within the constraints is therefore:

delivery deadline = playout time = tc + dEE

Note that this definition does not account for the sample duration. Alterna-

tively, one could consider a sample anyway “useful” if it arrives before its playout

end time, because it would be played for at least a fraction of its period.

2.2.2 Elastic Buffer

Thus each sample can take at most dEE to arrive at destination. If dN < dEE,

than there is some spare time that can be exploited by efforts to maximize DCR.

This spare time is called buffering delay db, because in this interval samples are

stored by the sink in an elastic buffer (or jitter buffer) [30].

dN + db = dEE

Buffering is useful for two reasons. First, it absorbs network jitter. The actual

network delay can deviate up to db and still deliver a sample on time for playout.
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Figure 2.8: Elastic buffer principle [30].

Second, it opens a window of opportunity for error correction mechanisms to

operate. In fact, even in an ideal case where jitter is absent, some packets could

still be lost. Buffering may occur at any point along the transmission and the

total buffered time is given by the sum of its parts. The optimal choice is to keep

all buffering at the sink, where any subsequent jitter source prior to presentation

is at a minimum [30].

2.2.3 UDP Transport

When designing a real-time service over a distributed system, one is faced with the

choice of a transport protocol. The task of a real-time friendly transport protocol

in the Internet is to maximize the on-time delivery effort. This implies a tradeoff

between timely delivery and successful delivery. Similarly, there is also a tradeoff

between overhead and successful delivery.

The two most common transport protocols in the Internet are the User Data-

gram Protocol (UDP) and the Transmission Control Protocol (TCP). Both pro-

vide multiplexing to applications on the same IP endpoint. Besides multiplexing,

UDP adds little more to the raw IP service. Packets can be lost, reordered and

duplicated. UDP ensures that each packet experiences the minimum one-way

transmission delay offered by the network, with no attempts to recover errors.

17
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On the other hand, TCP guarantees in-order successful delivery. If an error

occurs on a data chunk, the delivery of following data chunks is delayed until the

error is recovered. The result is an actual end-to-end transmission delay higher

than the minimum. For real-time services this is a significant weakness because

loss or jitter of one information unit reflects on the following ones, potentially

causing a chain of deadline misses.

The balance between timeliness and reliability is largely dependent on the

application needs. Non-real-time applications such as file transfer must achieve

full end-to-end reliability but do not impose any completion deadline, so they

typically use TCP. On the other hand multimedia streaming like VoIP or video

conferencing accept some degree of error rate if this improves quick delivery of the

media stream. UDP is the protocol of choice for these applications. UDP is also

the basis of the standard Real-time Transport Protocol (RTP) [27]. Flexibility

is enhanced because upper layers are free to build custom reliability services on

top of UDP, for instance without imposing in-order delivery or applying error

correction only to selected packets. An example is the Constrained Application

Protocol (CoAP) which is described and used in the next chapters.

2.2.4 Error Correction

Sender-based error correction in unreliable networks implies the use of redundancy

against errors caused by packet loss or excessive jitter. Techniques may be split in

two major classes: active retransmission (or backward error correction, BEC) and

forward error correction (FEC) [21]. Active retransmission is a reactive approach

that consists in expecting an acknowledgment of reception of the packets. For

any packet received, the destination must send an acknowledgment back to the

sender. If the acknowledgment is not received within a retransmission timeout

tRTO then the respective packet is retransmitted.

FEC uses redundancy proactively instead of reactively. Information, however

encoded, is always sent more than once to the receiver. This increases the chance
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Figure 2.9: Forward Error Correction by repetition [21].

of receiving data. Moreover it does not require feedback from the receiver. FEC

can be employed at various levels, notably at the packet level and at bit level

(channel coding). We focus our attention at the packet level, as it is the layer

directly under our control. A simple technique is that of repetition, which belongs

to media-specific FEC [21]. It consists in transmitting each sample in multiple

packets. If a packet is lost, another packet containing the same sample will be

able to cover the loss, as illustrated in Figure 2.9.

The main difference between FEC and BEC lies in the selectivity. In general

FEC performs better than retransmission in high loss environments because of the

higher utilization of the redundant information, which is sent in any case. Also,

it does not adapt to changing network conditions. On the contrary, the selective

nature of BEC makes it suitable for low loss environments [21].

In a real-time service, both techniques must account for the delivery deadline.

As shown in Figure 2.10, it is meaningless to send redundant information too late

after the original capture because it will not arrive to destination on time.

In BEC, it is not efficient to retransmit information before tc +RTT because

even success acknowledgments can not return by that time. However, pushing

tRTO below this threshold does increase the effectiveness of the technique because
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Figure 2.10: Error correction window of opportunity.

retransmissions tolerate more jitter. This behavior appears evident from the mea-

surements described in later chapters. However, the retransmission timeout has

an upper bound:

tRTO ≤ tc + db

In repetition, the benefit of the scheme depends on the sampling frequency

λ = 1
τ
. A packet is issued every time a new sample appears and contains the

current sample plus the last one’s duplicate. The upper bound of the sampling

period to operate within the window of opportunity is:

τ ≤ db

Similarly to retransmission, the higher the sampling frequency the higher the

tolerance to jitter of the duplicate sample.
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Application Protocols

The goal of this work is to send in real-time a set of sensor measurement streams

over the Internet and to synchronize them temporally at the receiver. In order

to accomplish this task, one is faced with the choice of a suitable application

protocol. Three possible alternatives are identified that may suit these needs:

the Real-time Transport Protocol (RTP), the Constrained Application Protocol

(CoAP) and the Message Queue Telemetry Transport protocol (MQTT). They

conceptually span from the session to the application layers of the ISO/OSI model.

RTP is included because it is the reference standard for real-time applications.

CoAP is interesting because it has the same transport layer as RTP but it is a rich

application protocol that targets constrained, machine-to-machine environments.

MQTT is interesting because it proposes an alternative approach to both the

transport layer and application layer of RTP and CoAP.

Following is an overview of the three protocols. Chapter 4 hosts a comparative

analysis according to a series of requirements peculiar to this work.

3.1 Real-time Transport Protocol (RTP)

The Real-time Transport Protocol (RTP) [27] is currently the reference standard

for real-time multimedia transport over IP networks. VoIP and video conferencing

are the most natural applications of RTP. It is an IETF and ITU standard, first
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published in 1996 and it is employed in most commercial systems. A thorough

inspection of the relevant services offered by RTP is given in Section 4.3.1.

RTP is made of two parts: the RTP data transfer protocol and the RTP control

protocol (RTCP). RTP provides delivery of data and strictly related metadata.

RTCP runs alongside RTP and conveys overall session information and statistics.

Figure 3.1 shows the RTP header.

Figure 3.1: RTP header format.

As a quick overview of relevant fields, the payload type (PT) identifies the

format of the payload. The sequence number is useful to restore the packet se-

quence and to detect losses. The timestamp reflects the sampling instant of the

first media byte in the payload. Synchronization and contributing sources divide

data chunks into groups.

RTP is deliberately not complete because it assumes that different multimedia

applications have different requirements [27]. A profile defines an interpretation

of the generic fields within the RTP specification according to the needs of an

application domain. For example, a profile may define a static mapping of payload

type codes to specific payload formats. The first and most common profile is the

“RTP Profile for Audio and Video Conferences with Minimal Control” published

in RFC3551 [26].

RTP is intended to be used in association with other signaling protocols for
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Figure 3.2: IETF multimedia protocol stack [22].

session discovery and negotiation. Figure 3.2 outlines the IETF protocol suite for

multimedia. For example the Session Initiation Protocol (SIP) is used to mark

session participants, negotiate media parameters and to eventually start an RTP

streaming session.

RTP is based on UDP. It does not provide full services but rather a frame-

work where application-specific algorithms can run. This assumption, called

application-level framing, comes from the recognition that multimedia applica-

tions are diverse in their requirements, so implementation of additional services is

left as their choice [22]. For example each RTP packet contains a sequence number

and each RTCP Sender Report packet contains the total number of octets sent

up to that instant. Depending on their needs and complexity, receivers can use

the sequence number to simply perform packet reordering or they can combine

sequence numbers and the octet count to estimate packet loss and run congestion

control algorithms.

RTP configures an end-to-end architecture. Intelligence resides at the end sys-

tems. Two entities are key: senders and receivers. Senders capture the media

and specify its characteristics, while receivers synchronize and present the media,

optionally trying to recover delivery errors. Translators and mixers are intermedi-

aries that act as both receiver and sender. They perform tasks like stream mixing

(audio and video, for example), media transcoding or protocol translation at lower

layers.
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3.2 Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) is a web service transfer protocol

that tries to merge the interoperability of current Web service paradigms with the

need for lightweight processing and communication in constrained environments.

It is currently under draft at IETF [29]. At the application layer it can be thought

as a compression of HTTP, as it offers the same RESTful application paradigm.

However CoAP is built on assumptions typical of Internet of Things and Machine-

to-machine applications: slow, unstable network and resource-constrained end

systems. It aims to enable a new set of applications called Embedded Web Services

[28].

CoAP is made of two sub-layers: a transaction sub-layer and an applica-

tion sub-layer. CoAP is based on UDP. The transaction sub-layer adds relia-

bility to UDP. In contrast to TCP, the reliabilty unit in CoAP is a message

and not a stream, thus it simpler and more discretionary. Messages can be of

four types: Confirmable, Non-confirmable, Acknowledgment and Reset. Non-

confirmable messages do not imply an acknowledgment, instead Confirmable mes-

sages must be acked upon successful reception. If an ack is not received by a

retransmission timeout, the message is retransmitted.

The application sub-layer implements RESTful Web services using a request/re-

sponse pattern. The central idea of REST revolves around the notion of resource

as any component of an application that needs to be used or addressed [8]. A

resource is uniquely addressed by a URI. Resources can be parameterized by the

URI-query portion of the URI. For example:

/temperature/livingroom?unit=c

might identify a temperature sensor in a living room that comes in Celsius degrees.

In advanced interfaces even application algorithms may be modeled as parame-

terizable resources enabling a sort of remote programmability of the server.

24



Chapter 3. Application Protocols

Messages can be requests or responses. Requests access resources on the server

in the way dictated by the request method. For example the GET method asks the

server for a one-time resource representation. Responses carry the representation

back to the client. An example of interaction is given in Figure 3.3 (a).

GET request   /temperature

Response 18°C

SERVER CLIENT

GET observe   /temperature

Response 18°C

SERVER CLIENT

Response 19°C

Response 20°C

GET request    /temperature

Response 19°C

(a) (b)

Figure 3.3: Examples of a CoAP exchange. Classic request/response (a), observe extended (b).

The CoAP message format is shown in Figure 3.4. The type (T) field indicates

the message type. The code field indicates whether the message carries a request

or a response. The message ID is used to match Confirmable messages with

their ack and to detect deduplication. The variable-length Options field normally

carries the resource URI, a Token used to match requests with their responses

and the Content-Format to identify the payload type.

Figure 3.4: CoAP message format.

Standard CoAP is pull-based: to one client request corresponds only one server

response. A request/response protocol is unsuitable for streaming applications.
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CoAP Observe [10] extends CoAP with push notifications, so that a server can

update a set of clients about a changing resource without the need of further

requests, as illustrated in Figure 3.3 (b). This capability comes at a price with

respect to traditional REST services: servers cannot be stateless because they

must keep the observe registration state; interoperability with HTTP is no longer

straightforward.

Another interesting feature of CoAP is resource discovery. Humans discover re-

sources on the Web using hyperlinks, but this can be done by machines if standard

interfaces and resource descriptions are available. CoAP servers are encouraged to

provide a resource behind a well-known URI (/.well-known/core) that describes

available resources on the server. The format is also an IETF standard, called

CoRE Link Format. An example of resource discovery is given in Figure 3.5.

The server informs the client in a formal way about the available video formats.

The client automatically chooses the format and observes the resource with an

URI-query parametrized accordingly. Thus CoAP offers an interesting set of tools

to streaming applications: means for a client to request a stream from a server,

capability of the server to provide the stream and the real-time friendly UDP layer

underneath.

At the time of writing CoAP is being very actively researched. Most of the pro-

tocol appeal lies in the interoperability with the existing Web, since CoAP-HTTP

proxing is natural (except for Observe sessions), and in the flexibility of the REST

paradigm. An instructive example is given in [15]. The authors propose an Inter-

net of Things architecture called “Thin-server Architecture”. Embedded devices

run Web servers based on CoAP. They only expose their sensors and actuators

as a Web API and move the control firmware out from internal microcontrollers

to the Web, as in Figure 3.6. Commercial products such as Cisco smart grid

solutions already use CoAP 1.

1http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols/
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SERVER CLIENT
GET

/.well-known/core

Resource: /video

Formats:

video/x-flv   H264 

640x360

video/webm  VP8  
640x360

response

GET obs

/video?for=x-flv&cod=h264&res=640x360

video content

video content

Figure 3.5: Example of CoAP discovery useful to negotiate streaming parameters.

3.3 Message Queue Telemetry Transport Proto-

col (MQTT)

The Message Queue Telemetry Transport [12] is a lightweight messaging protocol

developed for telemetry data reporting. It was designed to be supported by con-

strained environments where resources are scarce in terms of network bandwidth,

processing and power. MQTT clients footprint is roughly 30KB for a C imple-

mentation or 100KB for a Java implementation. The smallest packet size for a

message is 2 bytes [17]. MQTT is open and royalty-free, born in 1999 at IBM

and currently under standardization at OASIS. It is used in diverse commercial

systems, notably the Facebook Messenger mobile app 2.

MQTT relies on TCP/IP for point-to-point, session oriented, auto-segmenting

transport with in-order delivery [11], thus the simplicity of the protocol is com-

pensated by a relatively complex underlying stack. It defines Quality of Service

2http://mqtt.org/2011/08/mqtt-used-by-facebook-messenger
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Figure 3.6: Thin-server Architecture. A washing machine controlled from the Cloud [15].

classes to ensure at-most-once, at-least-once or exactly-once message delivery to

the destination making use of acks and controlled retransmissions.

MQTT features a publish/subscribe model. Three architectural elements are

defined: publishers, subscribers and message brokers. Publications are organized

in topics. Each publication made by a publisher refers to a particular topic. Sub-

scribers simply request a subscription to a topic and then start receiving messages

that belong to it. Message brokers serve as intermediaries, effectively making the

participating entities loosely coupled. In a similar fashion as REST architectures,

publishers do not need to know who are its subscribers and vice versa. The ab-

straction of REST resources is analogous to publish/subscribe topics.

The publish/subscribe paradigm is essentially push-based. Clients have no

means to control publishers since they cannot make explicit requests. They can

only decide what to receive among the available topics. In our case this is a down-

side in that clients who want to receive a sensor stream either accept the stream pa-

rameters or negotiate in advance via signaling mechanisms beyond MQTT scope.

MQTT defines several message types. The key ones are the PUBLISH and

SUBSCRIBE messages. Other message types are used to establish the client-

28



Chapter 3. Application Protocols

broker connection, to acknowledge message reception or unsubscribe. Publishers

use PUBLISH messages to push telemetry data to the network. PUBLISH mes-

sages are relayed to all subscribers who have previously shown interest to that topic

via a SUBSCRIBE message. Figure 3.7 shows an example of MQTT PUBLISH

message. The first two bytes are the fixed header. The message type indicates a

PUBLISH message. To be properly handled a PUBLISH message must carry the

topic name encoded in UTF-8. Application-specific content goes in the payload.

Message Type
QoS 
level

Remaining length

Topic name
...

0 8 bit
DUP 
flag RET

Topic length MSB

Topic length LSB

Payload
...

Figure 3.7: MQTT PUBLISH message format.

MQTT offers no support for synchronization metadata in the packet header

nor it identifies the payload content type. Synchronization metadata must be

included in the payload and its format must be agreed with out-of-band means.

Despite not being standardized, MQTT is quite mature. There exist free im-

plementations for a variety of platforms and MQTT systems are sold by major

vendors. However most existing services in the Web do not use MQTT. Transla-

tion is needed if one wants to connect an MQTT system to the existing Web.
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Design Choices and
Implementation

4.1 Measuring Quality of Experience

Drawing from the discussion in Section 2.1.2, we propose a combined metric called

Playout Reliability:

Playout Reliability (PR) =
samples played at their playout time

total samples sent

An ideal service keeps PR = 1. By splitting PR in two different components

it is possible to highlight synchronization performance and real-time transport

performance:

PR =
samples played at their playout time

samples arrived before deadline
× samples arrived before deadline

total samples sent

The first component is named SYNC:

SYNC =
samples played at their playout time

samples arrived before deadline

SYNC captures synchronization performance. It measures the ability of the syn-

chronizer to play at the proper time the samples that have arrived on time. If

taken across a whole synchronization domain, it characterizes both intra and inter-

stream synchronization. Note that if poor-man synchronization is used, network

jitter drives SYNC<1. Using metadata-based synchronization and restricting the
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analysis within the timetamp zone it is possible to achieve “perfect” SYNC=1,

meaning that both presentation jitter and skew are absent.

The second component has been already defined in Section 2.2 under the name

Delay Constrained Reliability (DCR). It captures real-time delivery performance

in the form of gap probability. As mentioned, due to the unreliable nature of the

communication channel, it is impossible to obtain DCR=1. It can only be max-

imized. Note that SYNC and DCR are totally independent. Efforts to improve

one do not impair the other.

Two other meaningful QoE metrics are:

Network Load =
bytes exchanged

total samples sent

Packets per Sample (PPS) =
packets exchanged

total samples sent

Bytes and packets exchanged are measured on the source network interface. They

account for UDP payload bytes and UDP packets respectively.

This set of metrics is significant and comprehensive because it captures the

two main aspects of QoE. While PR measures the effectiveness of synchronization

and transmission strategies, network load and PPS measure their efficiency. Also,

many other QoE features that are beyond the scope of this analysis are in tight

relation with network load and PPS. For example, it is well-know that battery

power consumption of a mobile device mainly depends on the load of the radio

circuits, both in terms of total active time (network load) and in terms of activity

cycles (PPS) [5]. Note that these metrics are application-independent. They give

a QoE overview for many application classes at the expense of accuracy for a

specific class.

4.2 Synchronization Algorithm

This section gives a formal description of the synchronization algorithm that has

been implemented at the sink device. It tackles both intra and inter-stream syn-
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Figure 4.1: Mapping clock instant t1b on clock a. Knowledge of the clock mapping tuple is required.

chronization. It achieves SYNC=1 on the timestamp boundary.

We define clock mapping as the tuple (ta, fa, tb, fb), where ta, tb are values

of clocks a and b and represent the same real time instant. fa and fb are the

frequencies of clocks a and b. The function cmap(ty, x) specifies how to obtain

the corresponding time instant on clock x knowing an instant on clock y, as

illustrated in Figure 4.1:

t1a = cmap(t1b , a) = ta +

(
fa
fb

)(
t1b − tb

)
Note that if fa = fb the mapping represents two clocks that are in offset

ta− tb, as for example the clock of two machines that express time in nanosecond

precision. If both fa = fb and ta = tb then a and b are in fact the same clock.

Let us consider a sequence of samples and their associated timestamps:

{(Sx, TSx)} = {(S0, TS0) , (S1, TS1) , (S2, TS2) . . .}

Timestamps are derived by the timestamp clock according to this policy:

� TS0 is chosen randomly

� fTS = 1 kHz

� TSx+1 = TSx + fTS

λ
(where λ is the sampling frequency)

thus it holds TS0 < TS1 . . . < TSx. At the sink, TSx is converted to a wall clock

time WTSx and then to a playout time px. Received samples are inserted into an
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ordered queue based on TS since it indicates the playout order, independent on

the playout time that will result. The queue head holds the sample with lowest

TS. The playout process is modeled as an output device that generates playout

requests for a sample at a constant rate fPRQ = 1
τPRQ

.

Introducing inter-stream synchronization, the objective is to assign the same

playout time to samples that have the same wall clock timestamp. We name

WTSx the wall clock timestamp of sample Sx. Assuming that the sink knows the

mapping between the timestamp clock and the wall clock in the form (WTS0,

fWC , TS0, fTS), then it can use cmap() for the conversion:

WTSx = cmap(TSx, wall clock) = WTS0 +

(
fWC

fTS

)
(TSx − TS0)

The next step is to assign to each sample a presentation time in the receiver

system clock terms. In other words:

px = p (WTSx)

To compute the playout time in presence of inter-stream synchronization we use

the notion of master stream and blind delay. The master is the stream that sets

deadlines. This algorithm does not include a policy to alter the master stream time

i.e. when it is appropriate to postpone or anticipate playout, but slave streams

do follow any master time alteration.

The blind delay method [25] assumes that the first packet in a stream ex-

periences the average one-way transmission delay. The playout time of the first

sample in a stream is determined by adding a fixed offset to the sample arrival

time a. The fixed offset is called blind delay db. We accept the average delay

assumption. A better algorithm could estimate dN using the first k packets and

update db on-the-fly. This algorithm is already robust to changes in db. Thus the

blind delay corresponds to the elastic buffer length. The playout time of the first

sample of the master stream becomes:

pm0 = am0 + db
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where m indicates samples of the master stream. Let us assume for the moment

that there is not going to be any pause or skip in the presentation of the master

stream. Let us also assume that the rate of the receiver system clock is the same

as the wall clock, fw = frx. Then the playout time of any other sample is decided:

px = pm0 + (WTSx −WTSm0 ) = WTSx + (pm0 −WTSm0 )

We define the quantity (pm0 −WTSm0 ) as the Master Playout Offset (MPO). In

other words:

MPO = pm0 −WTSm0 = (am0 + db)−WTSm0

defines a mapping between the wall clock and the receiver clock. MPO can

simply be added to WTS of any sample to directly obtain its playout time. If

fw 6= frx this simplification is no longer valid, but the mapping still holds using

the full cmap() function. Note that MPO embodies the relation between two

unsynchronized clocks: the streams’ wall clock and the receiver system clock.

Under these assumptions, synchronization is performed by Algorithm 1, which is

executed at τPRQ intervals.

Algorithm 1 Playout algorithm, static version

t = now()
if t− τPRQ

2
< px < t+

τPRQ

2
then

play Sx
x=x+1

else if px < t− τPRQ

2
then

x=x+1
end if

If we allow the playout of the master stream to pause or skip as illustrated

in Figure 4.3, then MPO changes over time. In case a sample of the master

stream is late, for example, the policy could be to pause the master stream (and

consequently all the slave streams) until the sample has arrived. The playout time
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Streams 
Wall clock

Arrival time
Receiver Clock

Playout time
Receiver Clock

MPO

buffering 
delay

Actual
   delivery MPO

Actual 
delivery
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arrival

Instantaneous
               delivery

Network delay first packet

Maximum allowed delay
(maximum jitter)

Instantaneous
               delivery

Stream B
Timestamp clock BSample B

Sample A

Stream A
Timestamp clock A

Figure 4.2: Synchronization example. All clocks are unsynchronized. Sample A is the first received
in the session.

is shifted forward in time, and MPO must follow this behavior. Let us define the

functions:

pause (t) counts total paused time from playout start

skip (t) counts total skipped time from playout start

The playout time of sample Sx, which now varies over time, is given by:

px (t,WTSx) = pm0 + (WTSx −WTSm0 ) + pause (t)− skip (t)

and the Master Playout Offset is redefined as:

MPO = pm0 −WTSm0 + pause (t)− skip (t)

Because in case of a pause MPO increases (decreases in case of a skip), the buffer

average occupancy will also increase (decrease). A possible online algorithm that
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Figure 4.3: Alterations to the presentation of the master stream, which is allowed to pause or skip
samples.

enforces inter-stream synchronization in the complete scenario is Algorithm 2. It

is heavier than the previous one in that px must be recomputed at every iteration.

Algorithm 2 Playout algorithm, online version

t = now()
if t− τPRQ

2
< px (t) < t+

τPRQ

2
then

play Sx
x=x+1

else if px (t) < t− τPRQ

2
then

x=x+1
end if

4.3 CoAP as Application Protocol

Four major requirements are identified for the choice of an application protocol,

all aimed at maximizing the QoE metrics given in Section 4.1.

UDP-based The protocol should be based on UDP, following the discussion in

Section 2.2, in order to keep network latency to the minimum.
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RTP CoAP MQTT

UDP-based yes yes no
Stream-friendly yes yes (Observe extension) yes
Synchronization support yes no no
Reliability support no yes yes

Table 4.1: Protocol comparison.

Stream-friendly The protocol messaging pattern should naturally accommo-

date a directed flow of messages from one endpoint to another without ex-

cessive overhead.

Synchronization support The protocol should transport synchronization meta-

data in order perform synchronization at the sink.

Reliability support The protocol should support selective backward error cor-

rection as well as forward error correction in order to maximize successful

delivery.

Table 4.1 shows a comparison between the protocols according to our require-

ments. The most influencing factor is perhaps the underlying transport protocol.

It is theoretically possible to run MQTT on UDP provided that messages do not

exceed one UDP packet in length and implementations do not rely on underlying

layers for QoS classes. RTP and CoAP are native on UDP. CoAP has even an

extension to support messages longer than one UDP payload [4].

All three are stream-friendly protocols. They include information in the head-

ers to identify to which context the payload belongs. Even the impractical pull

operation typical of request/response paradigms is spared in CoAP with the Ob-

serve extension.

Another important factor is the support for reliability. Forward error correc-

tion is always possible since it travels as data in the payload. Both MQTT and

CoAP provide a native retransmission service. It is possible to build such service
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on RTP but it is error prone and uncommon in current practice because video

and audio encodings use forward error correction and are somewhat loss-tolerant.

Synchronization semantics is native in RTP but can be added in CoAP and

MQTT with a proper payload format (or in other ways detailed below). At the

extreme case, RTP packets may be encapsulated in CoAP or MQTT payloads.

We chose CoAP for our service. The only significant drawback is that it lacks

synchronization fields in the header. A softer drawback is the higher complexity

with respect to RTP, but it is traded for a comprehensive architectural setup

plus a set of features that can largely substitute session negotiation protocols and

integrate well with the existing Web. Furthermore nowadays reasearch on CoAP

is very active and, coupled with the standardization efforts at IETF, it suggests

a widespread penetration in real systems. Last but not least, the transport of

real-time media over CoAP is a novel application with no examples found in the

literature at the time of writing.

4.3.1 Introducing Synchronization Semantics in CoAP

In this chapter it is identified the essential synchronization information that a

real-time protocol should carry. The analysis is bound to one use case, that is the

transport of one or more streams of context information, so that non-fundamental

aspects (such as fragmentation of large media chunks) are not considered. RTP

is taken as the reference due to its on-purpose design for this matter and its

widespread acceptance. The following analysis reflects the minimal subset of RTP

semantics.

Stream identification

It is conveyed by the SSRC field in RTP packets. All packets with the same

SSRC form part of a timing and sequence number space. A receiver can

group these packets together for intra-stream synchronization.
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Participant identification

This information is conveyed by the CNAME field in RTCP SDES packets.

It provides a unique name for each endpoint. A participant identifier can

be used to associate multiple media streams (SSRCs) from the same source

endpoint, thus making possible inter-stream synchronization [22].

Sequence conservation

Represented by means of a monotonically increasing sequence number in

RTP packets. It is used to identify packets and to recognize if packets are

received out-of-order or get lost. It does not express timing information.

Timing conservation

RTP uses for this purpose two timestamps: a timestamp associated to each

RTP packet which denotes the sampling instant of packet’s media content.

It is used to establish intra-stream synchronization. Timestamps of differ-

ent streams are not synchronized. Another timestamp is included in RTCP

Sender Report packets to convey the clock mapping between RTP times-

tamps of different SSRCs and the wall clock. The latter is useful to establish

inter-stream synchronization.

Receiver feedbacks

To aid in fault isolation and performance monitoring, quality-of-service mea-

surement support is useful. Measures of interest are packet loss, packet delay

variation, clock drift et. Some of these measurements can be conducted only

by the receiver endpoint and can be acted upon only by the sender. Thus a

real-time protocol should support a flow of messages from receiver to sender.

In RTP/RTCP, Receiver Report messages serve this purpose.

We now try to draw a parallel between standard CoAP features and the nec-

essary synchronization semantics identified previously.
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Stream identification

In a request/response protocol, a client needs to match responses it receives

to the requests it had sent. To achieve this in CoAP, the server is required

to replay in the response same Token value of the request. A client should

choose the token randomly at each request. The Observe extension of CoAP

states that the same Token must be replayed in every notification. Notifica-

tions that have the same Token belong to the same original request. From

the CoAP server’s viewpoint, i.e. the stream source, also the pair [client’s

IP/port, resource] identifies a stream. The cause is that there can be only

one active Observe relation per resource per client. However, these two

pieces of information do not identify a stream for the client, because noti-

fications do not explicitly include the URI of the resource they represent.

The notification-resource matching task is left to the client, indeed using

the Token. We argue that CoAP’s Token possesses equivalent semantics as

the SSRC field in RTP and can thus be used for stream identification.

Participant identification

In principle, participant identification could simply be performed by look-

ing at the message’s source IP address. However [22] details a series of

reasons why such approach should be avoided in the case of media stream-

ing. In fact media streams could pass through intermediaries, thus hiding

the original IP address. RTP uses SSRCs and CSRCs for this reason. We

note that standard CoAP provides no participant identification semantics

beyond what emerges from the UDP/IP layers. Let us assume that a client

is unaware of the source network address of incoming messages. Then it

cannot tell whether two messages that bear the same Token have originated

in two different endpoints (message IDs are not helpful in this case). Due to

this lack, we have to add participant identification semantics to CoAP by

other means.
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Sequence conservation

The Observe extension of CoAP states that the value of the Observe option,

to be carried in every notification, must increment as a notification sequence

number. Thus the Observe option provides sequence conservation.

Timing conservation

There is no concept of time in CoAP or its standard extensions. This infor-

mation must be properly added.

Receiver feedbacks

Observe interactions in CoAP do not envisage a message flow from client to

server. To overcome this problem in CoAP, two approaches may be consid-

ered. Both involve making a request to the server and using its payload (or

header options) to host the Receiver Report semantics. The two approaches

are:

Observe GET this approach consist in making a new Observe GET re-

quest to the resource that is already being observed. It is viable be-

cause a GET Observe request received when an equivalent observation

is active causes the server to seamlessly replace the old one with the

new one. Thus all equivalent Observe requests after the first one are,

in practice, interpreted as one-time client-to-server messages. How-

ever this approach has a major drawback: it triggers the change of the

Token (the true stream identifier), which should not change until the

stream entity as a whole is destroyed.

POST this method consists in sending a POST request on the resource

that is being observed. Since POST is a totally unrelated request with

respect to the stream (i.e. it has a different Token), we must add the

Token of the Observe relation it refers to. Since the stream’s Token

is untouched, the stream entity continues to exist. Of course a POST
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request implies a response, which is not really needed (or at least is not

envisaged by RTP), but can be useful for future extensions.

We find the POST method more suitable, both because it does not change a

fundamental piece of information such as the stream identifier and because

it offers a platform to carry information not yet thought of (for example,

the client asking to change the sampling frequency of a sensor on-the-fly).

We outline three strategies to accommodate synchronization metadata in CoAP.

Of course the use of CoAP incurs some overhead with respect to simple RTP. How-

ever this overhead might be useful to accomplish other (related) tasks.

Full RTP encapsulation

Full encapsulation is a valid strategy because one CoAP message can map

to one UDP packet. The goal is to turn the CoAP layer into a simple mes-

saging provider (as UDP would be). A possible encapsulation pattern is the

following: consider two endpoints, S and C, with S being the media source.

S might expose a dummy CoAP resource representing the RTP protocol

entry point. They might open an Observe “channel” to associate C with

the RTP resource, and use notifications to convey RTP packets from S to C.

Notifications might be Non-confirmable messages, so that the only overhead

incurred with respect to bare RTP is the CoAP header itself. Backwards

messages from C to S might be implemented in the ways described above.

The Observe GET approach is probably more suitable in this case because

the Observe Token needs not distinguish streams. The encapsulation strat-

egy has the drawback that header fields with the same meaning appear

twice, so useless overhead increases. Other caveats might arise if a closer

inspection of the encapsulation strategy is conducted, which is beyond the

scope of this work.
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CoAP header options

The CoAP standard provides a mechanism to extend the protocol with

further header fields. A CoAP message header may include a list of options.

An option is defined by an Option Number and an Option Value. The

semantics of some option numbers is defined in the standard. A user can

customarily use the non-assigned option numbers to augment the header

with more information. As an example, the Observe extension to CoAP

defines a new option to distinguish normal requests from Observe requests.

The value of the Observe option is a sequence number that increases at each

response to the client. Within this framework the desired synchronization

metadata can be added to CoAP by defining new options. This approach

basically makes the minimal RTP header a subset of the CoAP header.

Payload format

This approach similar to what RTP foresees. From the RTP standard: “un-

like conventional protocols in which additional functions might be accommo-

dated by making the protocol more general or by adding an option mechanism

that would require parsing, RTP is intended to be tailored through modifica-

tion and or additions to the headers as needed”. Following this rationale, all

the information missing in the CoAP header shall be carried in the payload.

The latter is the solution selected for the prototype, as illustrated in Figure 4.4.

This choice privileges flexibility and separation of concerns. Media specification

needs are very diverse and it is difficult to identify information common to all

specifications. For example, consider a likely scenario where we want to bundle

more than one sample per packet, then packet must carry as many timestamps

as the samples. To achieve this, even if we had a header field for one timestamp,

we would anyway need a payload format to layout the remaining timestamps.

An instructive example of payload format defined for RTP to transport MPEG4

elementary streams can be found in [33]. Whether our choice is also the optimal
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CoAP Header

Payload Header

sample1 TS1 sample2 TS2 ...

Figure 4.4: Encapsulation of information in our CoAP extension.

in terms of overhead should be the object of further study.

Let us follow a CoAP-based streaming session to illustrate exactly our exten-

sion. Our extension consists of: the definition of a payload format; the definition

of three message types, orthogonal to CoAP’s requests and responses. Our ex-

tension can be seen as a new layer above CoAP. We remark that we did not seek

to optimize overhead and we targeted the extension specifically to the objective

of sending sensor data. The layout of the fields and the expressiveness of our

extension may not be optimal.

Observe request

Untouched

Observe notification

They form the essential part of the media stream. They include the Observe

option and the Token in the CoAP header. The payload of every notification

follows a well-defined format. It starts with a 4-byte header. The first byte

indicates the Packet Type (PT). The semantics of all other bytes in the

payload depends on PT. If the PT=1, the payload of this notification carries

pure media data, equivalent to a RTP packet. If PT=2, the notification is

a Sender Report (SR), mirroring the concepts of a RTCP Sender Report

packet.

Data packets carry the media data (in our case the sensor measurements)

along with the corresponding timestamps, which are the only piece of in-
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PT = 1
Sensor

type
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Timestamp 1

Data 1

...

Data n

...

Timestamp n

...

0 15 31 0

PT = 2 Undefined Length
(CNAME)

Wallclock timestamp
(most significant word)

Wallclock timestamp
(least significant word)

Octect count

Packet count

15 31

...
CNAME (sender)

0

PT = 2 Undefined Length
(CNAME)

Cumulative number of packets lost

Extended highest sequence 
number received

Last SR

Interarrival jitter

15 31

...
CNAME (receiver)

Fraction 
lost

Delay since last SR

Stream Token

(a) (b) (c)

Timestamp

Figure 4.5: CoAP extension payload format. Figure (a) represents Data payload, Figure (b) repre-
sents Sender Reports payload, Figure (c) represents Receiver Reports payload.

formation missing in the CoAP header in this case. The format of sensor

measurements is defined by the Sensor Type field. More than one sample of

the same Sensor Type can be included in each Data packet by concatenating

them and updating the length field accordingly. The payload structure for

PT=1 is shown in Figure 4.5 (a).

Sender Reports are useful for inter-stream synchronization. The payload

structure of a Sender Report is shown in Figure 4.5 (b). The clock map-

ping is given by the Wall clock timestamp and Timestamp fields. Bits that

correspond to the Sensor Type field in Data packets are undefined because

the format of Sender Reports is independent of the sensor. The sequence

number should be increased also when sending a SR, because it is part of

the Observe session. This fact however prevents the client from detecting

loss in the actual media stream, as Sender Reports are not sent at regular

intervals. In our implementation we chose to keep the sequence number

steady in Sender Report notifications, so that the sequence number space of

the actual data packets is continuous.
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Receiver Feedbacks

As stated above, we have chosen to implement receiver feedbacks by means of

POST requests. They are addressed to the resource generating the stream.

The payload of a Receiver Report is outlined in Figure 4.5 (c) and draws

from RTCP Receiver Report messages. To perform stream identification, it

includes the Token of the Observe session it refers to.

4.4 System Architecture

The choice of CoAP for this service implies a specific application architecture.

CoAP identifies a client and a server. In this work the server is the mobile device

because it is the provider of sensor readings. The client is any machine that

connects to the Internet. The architecture is depicted in Figure 4.6.

Source
(Server)

Sink 
(Client)

Sensor
measurements

coap://host:5683/temperature

IP

UDP

CoAP

IP

UDP

CoAPJitter Loss Duplication

end-to-end delay
(network and end-systems)

Playout

WAN

Figure 4.6: System architecture.

The fact that an embedded server has constrained resources shall drive the

separation of functionalities between client and server. On one extreme there is

a so-called fat client, in which much of the Web application logic resides. On the
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other, thin clients are very simple and need a fat server in order to accomplish their

tasks. In our case the basic idea is to have a thin-server architecture [15]. The

server only acts as a sensor data source and provides lower-layer functionalities

such as packet retransmission. Analysis and decision-making is left to the client,

which may in turn send commands to the server. Receiver feedbacks identified in

Section 4.3.1 serve exactly this purpose.

The server interface allows both read and write operations on resources. We

use two of the four CoAP request methods: GET and POST. The GET method

is used to ask a resource representation to the server, either one-time or by es-

tablishing an Observe relationship. Resource representations are carried in the

body of GET responses. The client sends a POST request whenever it wants

to update the status of a resource. As explained in Section 4.3.1, we use POST

to report statistics in the context of an active Observe session. More advanced

services might use it to modify on-the-fly parameters of the session (for instance

the stream sampling frequency) or to issue generic commands to the server.

A typical exchange runs as illustrated in Figure 4.7. The clients subscribes

with a GET Observe request. If the server accepts, it starts sending the re-

source representation (temperature readings in Figure 4.7) whenever it changes.

Resources may change at regular intervals if they represent a known-frequency

stream or at random intervals if they represent an unknown-frequency stream. At

regular intervals the server sends a Sender Report. Also at regular intervals the

client sends a Receiver Report. Each POST triggers a response, whose semantics

depends on the application. Since we only send statistics via Receiver Reports,

our server always replies with a positive 2.04 “Changed” code. Tokens are used

by CoAP to match request and responses.

We model each sensor as a CoAP resource. Available resources are built-in

in our server and reflect which sensors are installed on the device. The concept

is very flexible so many other entities can be modeled as resources, for example
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GET observe Token:k1   /temperature

Response k1 <18°C>

SERVER CLIENT

Response k1 <19°C>

Response k1 < ..sender report.. >

POST   Token:k2 /temperature  < ..receiver report.. >

Response k1 <20°C>

Response k1 <20°C>

Response k1 <20°C>

POST Token:k3 /temperature  < ..receiver report.. >

Response k1 < ..sender report.. >

Response k2 2.04 Changed

Response k3 2.04 Changed

Figure 4.7: CoAP exchange as implemented in this work.
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Figure 4.8: View of modules that form the system.

audio, video or sensor fusions created by the server. As an example:

/temperature/critical?above=45

may identify a temperature sensor which should notifiy interested observers when

the temperature reaches 45 degrees.

The CoAP server runs on the Android device, is written in C and is based

on libcoap [2] [16]. We extended libcoap to support CoAP Observe and to be

robust against UDP packet duplication. The CoAP client is meant to run on a

normal machine, is written in Java and is based on the Californium framework

[14]. Server and client are both open-sourced 1 2 3. A global view of the modules

that form our system is given in Figure 4.8, where it is possible to follow the path

of a sensor reading from capture to playout.

1https://github.com/mzavatta/ZeSenseServer
2https://github.com/mzavatta/libcoap-zesense
3https://github.com/mzavatta/ZeSenseClient
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Figure 4.9: View of modules that form the server. Reg blocks represent active Observe registrations.

4.5 Server Implementation

The server architecture is composed of three main modules: the Android sensor

framework (AS), the Streaming Manager (SM) and the CoAP Manager (CM).

Each layer acts as an asynchronous service provider. The Android sensor frame-

work is part of the Android platoform. It supplies sensor measurements to Android

applications. The Streaming Manager is concerned with the creation, specifica-

tion and packaging of sensor streams. It has been developed from scratch. The

CoAP Manager is concerned with both levels of the CoAP protocol and acts as

the server for the remote CoAP client. It is based on our extended version of

libcoap. An overview of the server system is given in Figure 4.9.

The server is multi-threaded. Each module runs in its own thread. This

was chosen to keep the CoAP protocol logic isolated from the interaction with
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other potentially blocking interfaces. In this way CoAP transaction management

can run concurrently to the retrieval of resource representations, which might be

blocking and in streaming applications happens very frequently. Message passing

was chosen to implement thread communication in order to minimize the sources

of deadlocks.

4.5.1 Sensors in Android

The Android operating system is based on a Linux kernel. Applications in Android

are usually written on the Java API and run within a modified version of the Java

virtual machine called Dalvik. Processes and threads created in Java by user

applications are mapped by Dalvik to their native Linux counterparts.

Linux implements many scheduling policies. Tasks usually start in the “nor-

mal” class. Normal-class tasks are scheduled by the Completely Fair Scheduler

(CFS), used by Android as well. Within this class it is possible to escalate the task

priority by modifying the niceness value, although the effectiveness of a higher

niceness in practice is not a priori quantifiable. Mainstream Linux also has a

Real-Time scheduling class, whose tasks get the highest priority. When ready,

RT tasks can preempt others belonging to lower classes. It is not possible for

Android applications to escalate a specific task to real-time priority, as this re-

quires root privileges, although it is possible to change the niceness value. As a

consequence, regular Android applications are not given temporal guarantees on

execution. This influences the stability of the sampling rate of sensors.

Dalvik supports the Java Native Interface. This allows Java applications to call

into code written and compiled in native language. Google releases a compilation

toolchain and a set of native APIs called the Native Development Kit (NDK) to

ease developers in writing native Android applications. The NDK API includes

a version of the standard C library, OpenGL, a sensor library and many more.

Native applications still run in a Dalvik instance but are not affected by the virtual

machine management overhead. For example, an app thread that is running
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Figure 4.10: The Android sensor stack [13].

native code and that is not referencing any Java object does not need to stop

when the garbage collector operates. Garbage collector activity is a major source

of execution latency and jitter for interpreted languages like Java. Despite being

less intuitive then Java development, native development is encouraged for real-

time applications and facilities like OpenSL low-latency audio are available to

developers. For these reasons we implemented our prototype with NDK.

Mobile devices are equipped with many sensors. For instance the Samsung GT-

i9300 embeds the following sensors: accelerometer, gyroscope, proximity, light,

pressure. The GPS can be considered a sensor as well. Sensor hardware is han-

dled by Android according to Figure 4.10. The lowest level software module is

the sensor driver. The driver is responsible for writing and reading signals and

registers to control the hardware logic and fetch sensor measurements. When

a measurement is ready, it is pushed by the driver into Linux’s Input Subsys-

tem. The Input Subsystem assigns a timestamp to each sample, which we call

OS timestamp (OST), that corresponds to a reading of the system clock at the

time of insertion. The Input Subsystem is the boundary between kernel-space

and user-space. User-space applications can eventually fetch measurements and
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their OST either directly via the Input Subsystem interface or via native or Java

libraries.

Generic Sampling Model

Let us take a real example to dissect the sampling process. We look at the driver

of the gyroscope inside Samsung Galaxy GT-i9300. The sensor is manufactured

by ST Microelectronics, product code LSM330DLC. This example can be ex-

tended to most sensors as design principles of Analog-to-Digital conversion and

I/O operations are similar.

Listing 4.1: Excerpt of the LSM330DLC gyroscope driver implementation in Samsung Galaxy GT-
i9300

if (data ->client ->irq >= 0) { /* interrupt */

...

err = request_threaded_irq(data ->client ->irq , NULL ,

lsm330dlc_gyro_interrupt_thread\

, IRQF_TRIGGER_RISING | IRQF_ONESHOT ,\

"lsm330dlc_gyro", data);

...

} else {

...

hrtimer_init (&data ->timer , CLOCK_MONOTONIC , HRTIMER_MODE_REL);

data ->timer.function = lsm330dlc_gyro_timer_func;

...

data ->lsm330dlc_gyro_wq \

= create_singlethread_workqueue("lsm330dlc_gyro_wq");

...

INIT_WORK (&data ->work , lsm330dlc_gyro_work_func);

}

static enum hrtimer_restart lsm330dlc_gyro_timer_func(struct

hrtimer *timer)

{

...

queue_work(gyro_data ->lsm330dlc_gyro_wq , &gyro_data ->work);

hrtimer_forward_now (&gyro_data ->timer , gyro_data ->polling_delay

);

...

}

static void lsm330dlc_gyro_work_func(struct work_struct *work) {

...

res = lsm330dlc_gyro_read_values(data ->client ,
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&data ->xyz_data , 0);

...

input_report_rel(data ->input_dev , REL_RX , gyro_adjusted [0]);

input_report_rel(data ->input_dev , REL_RY , gyro_adjusted [1]);

input_report_rel(data ->input_dev , REL_RZ , gyro_adjusted [2]);

input_sync(data ->input_dev);

...

}

static irqreturn_t lsm330dlc_gyro_interrupt_thread(int irq\

, void *lsm330dlc_gyro_data_p) {

...

struct lsm330dlc_gyro_data *data = lsm330dlc_gyro_data_p;

...

res = lsm330dlc_gyro_report_values(data);

...

}

static int lsm330dlc_gyro_report_values\

(struct lsm330dlc_gyro_data *data) {

...

res = lsm330dlc_gyro_read_values(data ->client ,

&data ->xyz_data , data ->entries);

...

input_report_rel(data ->input_dev , REL_RX , gyro_adjusted [0]);

input_report_rel(data ->input_dev , REL_RY , gyro_adjusted [1]);

input_report_rel(data ->input_dev , REL_RZ , gyro_adjusted [2]);

input_sync(data ->input_dev);

...

}

Management of the sensor can be configured to be interrupt-based or polling

based. In case of interrupts, the interrupt service routine (ISR) bottom half is

implemented via threaded interrupt handlers. In case of polling, at each timer

expiration (high resolution timer, hrt) the driver instantiates a workqueue.

Since workqueues and threaded IRQs run in kernel threads, the data read (DR)

of the sensor registers happens inside fully schedulable tasks. These are subjected

to CFS so the task scheduling latency is variable. At the lowest level, the data

read corresponds to a reading of the sensor hardware internal register via an I2C

bus. The rate and the policy with which the internal register is filled with samples

varies across different manufacturers and drivers. The LSM330DLC itself allows

many internal buffering and replacement policies. Furthermore, variable bus com-
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Figure 4.11: Generic sensor sampling model. Intervals between tIRQ\hrt, tDR and tOST are unpre-
dictable.

munication delays may exist. Thus it is difficult to know when the measurement

fetched by lsm330dlc gyro read values() was actually performed. Even if the

IRQ rate or the timer firing rate is perfectly stable, there can be variance on the

DR rate.

When the data is read, it is pushed to the input subsystem and assigned an

OST within the body of input sync(). The execution might be preempted for

whatever reason, for example by an ISR’s top half. Thus the time between DR

and OST assignment is variable, too.

In order to formally characterize the sampling mechanism, we define a model

that abstracts these low level, platform-dependent details. We assume that IRQs

or timer events do not exhibit any jitter. In case of interrupts, we assume that

the top half simply acknowledges the IRQ and defers I/O to a threaded bottom

half. We assume that the data read instruction instantaneously reads the physical

quantity as seen by the sensor. Due to uncertainty in scheduling and preempt-

ability of the ISR/workqueue, the interval between these actions is unknown, as

illustrated in Figure 4.11. According to this model the sampling rate is randomly

variable. Moreover, since there is a random delay between the sample’s actual

data read and the system clock reading, we cannot rely on OST to identify the

data read instant, as shown in Figure 4.12.

55



Chapter 4. Design Choices and Implementation

DR OST

IRQ/hrt

DR

IRQ/hrt

DR

IRQ/hrt

DR

IRQ/hrt

DR

IRQ/hrt

DR

IRQ/hrt

DR

IRQ/hrt

t

OST OST OST OST OSTOST

Figure 4.12: Sampling random variability. Possible outcome of sampling and timestamping over
time.
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Figure 4.13: Simplified sensor sampling model. Data read and timestamp assignment happen si-
multaneously.

Simplified Sampling Model

Aware of making a simplification, we assume DR and OST to happen simultane-

ously (or, equivalently, in offset of a fixed period). The advantage of this model is

that user-space applications become aware of data read times even though they

can only observe OST. The disadvantage is that it introduces a synchronization

error. The error can be reduced without changing the non-real-time nature of the

operating system with sensor synchronization algorithms found in the literature,

for example [20].

With this model in mind, we attempted to quantitatively characterize the

sampling (data read) jitter on our device. That is, referring to Figure 2.7, the

source-side portion outside the timestamp zone. We activate sampling of a sensor
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at a certain rate and collect samples in user-space via NDK APIs. When a sample

is collected we register the system time in a variable named collection timestamp

(CLT). Each sample also carries the OST assigned by lower layers. We therefore

have a sequence of pairs of timestamps:

(OST1, CLT1) , (OST2, CLT2) , (OST3, CLT3) . . .

We take average and standard deviation of three datasets:

Generation Periods

OST2 −OST1 , OST3 −OST2, . . .

Collection Periods

CLT2− CLT1 , CLT3 − CLT2, . . .

Travel Times

CLT1 −OST1, CLT2 −OST2, CLT3 −OST3, . . .

Sampling is run for 30s. We measure activate the accelerometer and light sensors

varying, one at a time: sampling rate, niceness of the collection task and overall

system load. Results are shown in Figure 4.14.

The accelerometer data set shows two important features: for low sampling

frequencies, the system is able to provide an actual sampling frequency very close

to the requested one. For higher frequencies the sensor saturates. Indeed when

we request 150 Hz, the actual arrival rate is close to 100 Hz. We believe that

this correction is platform dependent. Also, as showed in the last row, a niceness

value of -20 (highest priority) has been used for the user-space collection task.

Beneficial effects on the speed and stability of the collection process are evident,

even though the real benefits for user experience will likely be unnoticeable.

The light sensor data set shows the effect of system load. The load condition

“camera preview” means that, during the 30s of sampling, in the display of the

phone was shown the real-time video captured by the camera. We selected this
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Figure 4.14: Sampling results.

58



Chapter 4. Design Choices and Implementation

load condition because it follows our use case and it is, as well as sampling, another

I/O-intensive operation. For every requested frequency, performance of sampling

decreases with respect to the unloaded case. Finally, also for the light sensor the

system is not able to provide exactly the requested rate.

The Android documentation suggests 50 Hz as a sampling rate suitable for

gaming applications. We consider rates ≤ 50 Hz as appropriate for our use case.

The generation period coefficient of variation does not exceed 13% in the worst

case, which corresponds to 2.6 ms over a nominal period of 20 ms. Also, in both

datasets, the coefficient of variation improves as the frequency becomes lower.

The discrepancy between nominal and real sampling period is a source-side com-

ponent that adds to end-to-end presentation jitter and skew. It was mentioned in

Section 2.1.2 that upper bounds for presentation jitter and skew are 10 ms and

160 ms respectively. Although these studies target audiovisual experience and not

presentation of scalar values, they are the most suitable thresholds that have been

found in the literature. Facing 10 ms jitter and 160 ms skew upper bounds, 2.6

ms worst-case standard deviation is considered acceptable. We postpone a final

assessment eventually on the visual performance of our prototype. Note that such

results would not provide meaningful insights within the generic sampling model

because generation periods would not actually correspond to data read periods.

No conclusion on the sampling performance could be drawn in such a case.

Most of the sensors in our Samsung GT-i9300 are sampling based. The appli-

cation specifies a desired sampling rate, the Android system instructs the sensor

and tries to push data at the desired rate. However the proximity sensor is event

based. It is activated by the same commands as the other sensors in the platform,

although samples become available to the application only upon relevant changes

in the observed physical phenomenon, regardless of the requested rate. We are

unaware if the driver is sampling based and operates some kind of filtering or it

is really the hardware that behaves in this fashion. This random event behavior
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Class Axes Max Frequency

Accelerometer sampling based 3 100 Hz
Gyroscope sampling based 3 200 Hz
Light sampling based 1 over 600 Hz
Proximity event based 1 -

Table 4.2: Sensors used in this work and their main characteristics.

is, by the way, also a well-known characteristic of the GPS “sensor”. Thus the

proximity sensor creates an unknown-frequency stream.

Android Sensor Framework Interface

The main operations offered by the Android NDK sensor API are:

� Enable and disable a sensor

� Change sensor frequency

� Create and destroy an event queue

� Fetch samples from the event queue

It is possible to specify an initial sampling frequency for the sensor and later

change it on-the-fly. For event-based sensors, the sampling frequency parameter

is ignored. The service is asynchronous. Clients, such as our Streaming Manager,

fetch samples from a FIFO event queue. The data structure that represents the

sample mainly contains the physical quantity measurement and its OST. Since

there is no indication of the sampling frequency in the data structure, if the sam-

pling frequency is changed on-the-fly, it is not trivial to recognize the first sample

generated with the new sampling frequency. It can only be done by inspecting

the difference between the OST of two consecutive samples.
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Figure 4.15: Timestamp assignment in this work.

4.5.2 Timestamp Assignment

As by RTP guidelines, timestamps should be assigned from a fictitious timestamp

clock by incrementing an initial random timestamp of a fixed amount, knowing

the timestamp clock frequency fTS and the sampling frequency λ. Each stream

should have its own, independent timestamp clock. We employ this technique in

assigning TSs that are transmitted to the sink for intra-stream synchronization.

However, OSTs are still useful for inter-stream synchronization, as they provide

the most accurate sample position on a time reference uniform across different

streams. Therefore, the notion of wall clock is naturally implemented by the

source host system clock. Note that, regardless of the timestamp convention used,

both intra-stream synchronization and inter-stream synchronization will suffer an

error due to the DR rate uncertainty explained above.

4.5.3 Streaming Manager

The Streaming Manager is a server of sensor streams. It produces well-defined

and specified streams starting from single measurements.

The first task of SM is to collaborate with AS in order to collect measurements

that make up a stream, so SM uses the AS interface to enable sensors and collect

samples. As described previously, it is desirable to have known-frequency sensor

streams. Issues arise when dealing with event-based sensors such as proximity.

61



Chapter 4. Design Choices and Implementation
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Figure 4.16: Carrier stream creation.

For this class the Streaming Manager creates a carrier stream. When SM is asked

to stream an event-based sensor, it performs two actions: it enables the sensor

in AS and it spawns a new thread. Measurements are not directly sent to the

client but are stored in a one-slot cache that holds the last-known measurement.

The thread issues fake samples at a constant rate. Each fake sample bears the

last known measurement, which is found in the cache. The process is outlined in

Figure 4.16. This method is simple and effective but it has some disadvantages.

First, an event might need to wait some time, at most τ , before being reflected

in a carrier sample. This causes a slight loss of synchronization (outside the

timestamp zone). Also, if a newer measurement replaces an old one soon after, no

carrier sample might be able to transport the old one. Events are guaranteed to

be reflected on the carrier if they are at most as frequent as λ. The choice of the

carrier frequency should take into account the characteristics of the phenomenon

that is being measured.

The Streaming Manager is also in charge of generating the stream specifica-

tion. For every sample, it generates a timestamp TS to be used for intra-stream

synchronization, using the mechanism described in previous sections. It also maps

TS to a wall clock instant. Since all OSTs refer to the same time reference, the
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choice of OSTs for inter-stream synchronization becomes natural. Their time

source is the internal Android system clock, given by:

clock_gettime(CLOCK_MONOTONIC, &t);

We take this clock source as the wall clock. This clock is monotonic across a

system uptime and does not depend on external factors such as NTP or GPS

clock updates, processor sleep or standby sessions, so it perfectly fits our needs.

It runs at 1 GHz. The clock mapping between timestamps and wall clock finally

becomes (TS, fTS, OST, fWC) where fWC = 1GHz.

The Streaming Manager serves also as samples encoder. In principle a network

packet could contain many samples from different sensors. Various patterns are

adopted to packetize samples, but it is intentionally avoided to mix samples from

different streams in the same packet. Against potential bandwidth savings is the

fact that mixing different streams in one packet multiplies the effect of packet

loss or excessive delay. On the other hand we do aggregate in one packet samples

belonging to the same stream.

Each stream might use its own reliability policy based on the intrinsic char-

acteristics of the media or the client requests. The SM controls reliability on a

per-stream basis. It takes care of forward error correction directly by buffering

old samples and repeating them in future packets. It instructs CS to use CoAP

Confirmable Messages for backward error correction.

SM’s key data entity is the stream. The structure is shown in Listing 4.2. The

event buffer aids in sample packaging. retransmit and repeat flags define the

reliability policy. The stream specification is derived from the stream frequency

and the timing records.

Listing 4.2: Data structure that represents a stream in Streaming Manager

typedef struct ze_stream_t {

struct ze_stream_t *next;
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/* Stream ticket. */

ticket_t reg;

/* Event buffer. */

ASensorEvent event_buffer[SOURCE_BUFFER_SIZE ];

int event_rtpts_buffer[SOURCE_BUFFER_SIZE ];

int event_buffer_level;

/* Reliability policy. */

int retransmit;

int repeat;

/* Stream frequency. */

int freq;

/* Timing records. */

uint64_t last_wts; //Last wallclock timestamp

int last_rtpts; //Last timestamp

} ze_stream_t;

The Streaming Manager also keeps a register of the sensors available on the An-

droid platform. Important sensor attributes are the current sampling frequency,

a cache to quickly retrieve the last-know measurement and a reference to the

carrier thread interface, if applicable. More than one stream can be associated

to each sensor. In fact many observers can register for updates from the same

sensor and each might require different streaming parameters e.g. sampling rate,

packetization, reliability etc.

The Streaming Manager service invocation interface follows a well-known pat-

tern called Asynchronous Completion Token [24]. It resembles a classic request/re-

sponse protocol, not different from the concepts used in CoAP itself. This pattern

allows a client to request asynchronous services. Our version is designed to be

used on lossless, FIFO communication channels.

In our implementation of the pattern, SM Requests are of three types: START

STREAM, STOP STREAM, ONESHOT. START STREAM asks the server to

start a new sensor stream. ONESHOT simply asks for one sensor measurement.

A stream stays active indefinitely until a STOP STREAM request arrives. Every

request carries a ticket, and every response relative to that request will carry the
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same ticket. The ticket is useful to clients to demultiplex the response to the

proper handler.

SM Responses are of type STREAM UPDATE, ONESHOT and STREAM

STOPPED. STREAM UPDATE responses carry sensor samples and stream meta-

data. ONESHOT responses simply carry one sensor sample. The STREAM

STOPPED response is issued after a STOP STREAM request to guarantee ticket

expiration i.e. that it will no longer appear in responses. The SM Response data

structure shown in Listing 4.3.

Listing 4.3: Data structure that represents a Streaming Manager response

typedef struct ze_sm_response_t {

/* Response header. */

int rtype; // Response type

ticket_t ticket; // Response ticket

/* Application -specific payload. */

unsigned char *pk;

} ze_sm_response_t;

It is made of a header and a payload. The header is independent of the ap-

plication and only includes the response type and the ticket. pk points to the

application-specific response payload. When rtype is STREAM STOPPED, there

is no payload. When rtype is either STREAM UPDATE or ONESHOT, pk has

the structure outlined in Listing 4.4.

Listing 4.4: Data structure that represents a Streaming Manager response payload

typedef struct {

/* Timing parameters. */

int64_t ntpts;

int rtpts;

/* Reliability policy. */

int conf;

/* CoAP payload formatted according to our CoAP extension. */
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unsigned char *data;

int length;

} ze_sm_packet_t;

*data contains the CoAP payload, formatted according to our CoAP extension

(Figure 4.5), that CM should send to CoAP clients. conf dictates the reliability

policy that CM should use. Timing parameters are useful for CM to create Sender

Reports.

Due to this well-defined and decoupled interface, the SM is a general pur-

pose module. It can be used with any other underlying transport protocol, not

necessarily our CoAP implementation.

To summarize, SM listens for requests from CM, in turn using Android as the

server for bare sensor measurements. Whenever a measurement is ready, the SM

maps it to a stream. When a packet is complete, it is passed to CM for remote

delivery.

4.5.4 CoAP Manager

The CoAP Manager mainly performs the algorithms of the CoAP protocol. It

shares its processor time between listening to CoAP messages, acting on CoAP re-

quests, sending responses and retransmitting failed Confirmable messages. CoAP

requests are dispatched according to a resource register. Retransmissions and

message duplication is controlled according to a transaction register.

It relies on the Streaming Manager to provide resource representations i.e.

sensor measurements. The service invocation is asynchronous so that CM can

still serve CoAP requests while SM is working. There is a close correspondence

between a CoAP Observe registration and a stream as intended by the Streaming

Manager, but the concepts are totally decoupled. A possible CM-SM exchange is

given in Figure 4.17. It is evident the asynchronous nature of the communication.

Messages are stored in buffers and their collection depends on the read frequency

of the receiving thread.
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SM CM

STREAM UPDATE t1 : A
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START STREAM t1

STREAM UPDATE t1 : A
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STREAM UPDATE t1 : C

STREAM UPDATE t1 : C

STREAM UPDATE t1 : D

STREAM UPDATE t1 : D

STOP STREAM Ticket: t1

STOP STREAM t1

STREAM STOPPED t1

STREAM STOPPED t1

CoAP 
Observe

Figure 4.17: Possible outcome of the Streaming Manager service invocation by CoAP Manager.

In our implementation the ticket takes the form of the memory address of the

Observe registration record. In this way, every time the CM gets a response from

SM, it can dereference the ticket received in the response and get instant access to

all the state information regarding the Observe registration. This avoids searching

the record in the registration register every time a SM response arrives, which in

a streaming application can happen hundreds of times per second. Thus demul-

tiplexing overhead is very limited. Using a reference counter we make sure that

the Observation record memory area is not deallocated or reallocated before a

STREAM STOPPED response has arrived. This is consistent because the proto-

col guarantees no other response bearing the ticket after a STREAM STOPPED

response has been received, and because our buffers ensure no message loss.
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4.5.5 Message Buffers

The message buffers are the communication channel between SM and CM. They

address a producer/consumer problem. CM and SM share two buffers: the request

buffer and the response buffer. CM is the producer of the request buffer while

SM is the producer of the response buffer. Producer-consumer synchronization

is required because threads do not operate exactly at the same speed [23]. Since

buffers are shared memory it is important to use synchronization primitives to

ensure state consistency.

Our buffers are bounded and work in a FIFO manner. They are not circu-

lar, meaning that the oldest item is not overwritten if the buffer is full. Two

functions are provided, put() and get() that are able to write and read one item.

put request() implements a blocking write and get request() a non-blocking

read. put response() implements a timed blocking write and get response()

a non-blocking read. POSIX mutexes and condition variables implement mutual

exclusion and blocking.

Listing 4.5: get() and put() implementation of the response buffer. put blocks for a maximum time.
get is non-blocking.

ze_sm_response_t get_response_buf_item(ze_sm_response_buf_t *buf)

{

ze_sm_response_t temp;

/* Synchronize with producer. */

pthread_mutex_lock (&(buf ->mtx));

if (buf ->counter <= 0) {

/* Buffer empty , return invalid item. */

temp.rtype = INVALID_COMMAND;

}

else {

/* Copy item from buffer head. */

temp = buf ->rbuf[buf ->gethere ];

/* Advance buffer head. */

buf ->gethere = ((buf ->gethere)+1) % COAP_RBUF_SIZE;

/* Decrease item count. */
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buf ->counter --;

/* No longer full. */

pthread_cond_signal (&(buf ->notfull));

}

pthread_mutex_unlock (&(buf ->mtx));

return temp;

}

int put_response_buf_item(ze_sm_response_buf_t *buf , int rtype ,

ticket_t ticket , int conf , unsigned char *pk) {

int timeout = 0;

struct timespec abstimeout;

/* Synchronize with consumer. */

pthread_mutex_lock (&(buf ->mtx));

if (buf ->counter >= COAP_RBUF_SIZE) {

/* Buffer full , wait for some time. */

clock_gettime(CLOCK_REALTIME , &abstimeout);

abstimeout.tv_sec = abstimeout.tv_sec + 2;

timeout = pthread_cond_timedwait (&(buf ->notfull), &(buf ->

mtx), &abstimeout);

}

if ( !timeout ) {

/* Insert item in buffer tail. */

buf ->rbuf[buf ->puthere ]. rtype = rtype;

buf ->rbuf[buf ->puthere ]. ticket = ticket;

buf ->rbuf[buf ->puthere ].pk = pk;

/* Advance buffer tail. */

buf ->puthere = ((buf ->puthere)+1) % COAP_RBUF_SIZE;

/* Increase item count. */

buf ->counter ++;

}

pthread_mutex_unlock (&(buf ->mtx));

return timeout;

}

The timeout in put response() prevents the occurrence of a deadlock. It

would occur when both buffers are full and both threads attempt a write operation.

When put response() times out, SM reads some items from the request buffer

before retrying the put. Reading unblocks CM and thus resolves the deadlock.
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put

Figure 4.18: Client class diagram.

4.6 Client Implementation

The client is written in Java. It is based on the Californium CoAP library. The

task of the client is to play sensor streams. A simplified class diagram is given in

Figure 4.18.

We assume to have nonmalleable playout devices [6]. A nonmalleable device

consumes data at a constant rate, which we call fPRQ, typically issuing an in-

terrupt request to the processor. We assume the playout interrupt rate to be an

integer multiple of the sensor sampling rate to avoid complex resampling issues.

This assumption is realistic as both Android sensor sampling and PC-monitor

display are flexible with respect to frequency. Each playout device is simulated

by a Java Thread (DisplayDevice) that calls a method at a constant rate.

For each sensor stream that the client wishes to play:

� A CoAP Observe request is sent

� An object of classes Stream and SlavePlayoutManager is instantiated
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� A DisplayDevice is started

� Incoming CoAP samples are first mapped in Stream then inserted in

SlavePlayoutManager

The class Stream represents a slave stream. It holds information such as

the clock mapping timestamp-wall clock. The client runs the synchronization

algorithm described in Section 4.2. The elastic buffer is implemented by the

class SlavePlayoutManager. It extends the Java class TreeSet that implements

an ordered set of elements. SlavePlayoutManager’s get() method is called

at fPRQ by the DisplayDevice and it runs Algorithm 2 at every call. The

class MasterPlayoutManager is a singleton that represents the master stream

state. The Master Playout Offset is an attribute of this class. Every instance

of SlavePlayoutManager is connected to MasterPlayoutManager because the

get() method uses MPO at every call.

MPO is set by the first sample of any stream that arrives to the client. The

master stream is fictitious, it is simply summarized to the external world by MPO.

In order to simulate presentation pauses or skips it is enough to vary MPO and

all slaves will follow. The clock mapping is conveyed by CoAP sender reports.
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Experimental Evaluation

Metrics of the evaluation are those described in Section 4.1. SYNC is kept optimal

by the synchronization algorithm, so the Playout Reliability coincides with the

Delay Constrained Reliability. Note that PR (DCR) denominator refers to original

samples. Also, DCR numerator counts unique samples. Since the layout and

field length of the payload format is not optimal, network load is significant as a

comparison metric and not as absolute value.

5.1 Experiment Variables

Different delivery strategies are compared for different values of packet loss rate:

Default

In the default scenario each Data packet carries one sample. They are sent

in Non-confirmable messages. As advised by the standard, one every five

Data packets is sent as Confirmable in order to confirm the client interest.

Sender and Receiver Reports are Confirmable messages. This is the simplest

strategy. It has the minimal features of a streaming service, similar to

a simple use of RTP. It is possible to reduce the number of packets by

aggregating more samples into one packet. The number of active CoAP

transactions at any time is modest. Since error correction is absent, losing a

packet means losing an entire information unit with no chance of recovery.
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Figure 5.1: Aggregation strategy with AF=2.

Bandwidth-saving

In this strategy each packet contains more than one sample. We call Ag-

gregation Factor (AF) the number of samples per packet. Figure 5.1 shows

packetization for an AF=2. A buffer of AF − 1 cells is needed to store

samples. This strategy allows to reduce header overhead. The impact is

quite significant. Limiting the analysis to the UDP layer, for AF=2 and a

one-axis sensor, savings are as much as 27%. In fact 1:

� Two separate packets:

(8 byte UDP header + 16 byte CoAP header + 4 byte Payload Header

+ 4 byte TS + 20 byte data) * 2 packets = 104 bytes

� One packet: 8 byte UDP header + 16 byte CoAP header + 4 byte

Payload Header + (4 byte TS + 20 byte data) * 2 samples = 76 bytes

The drawback of aggregation is that the effect of packet loss and jitter is

going to affect more than one sample at a time.

Reliability

To improve PR we can leverage backward error correction and forward error

correction (or both simultaneously):

� Retransmission: every Data, Sender and Receiver Report is a Con-

firmable message. Data packets contain one sample. The number of

1The CoAP header figure accounts for 4 bytes fixed header, 8 bytes Token option, 2 bytes
Observe option, 2 bytes Content-format option. It neglects option deltas. 20 bytes data accounts
for an ASCII-encoded floating-point number.

73



Chapter 5. Experimental Evaluation

packets flowing is at least twice the number of issued samples, because

each message triggers at least an ack or a retransmission.

� Repetition: every packet contains two samples: the current one and a

copy of a number of previous samples. The number is called Repetition

Factor (RF). The case with RF=1 is shown in Figure 2.9. Messaging

mimics the default strategy.

5.2 Parameter Setting

The device under test is the Samsung Galaxy GT-i9300 with Android 4.1.2. Three

sensors are enabled: gyroscope, light and proximity. For example, the full URI

for the proximity resource becomes:

coap://192.168.43.1:5683/proximity

Other settings:

� sampling frequency λ = 10 Hz

� retransmission timeout random within [ack timeout, ack timeout * 1,33] (as

suggested by CoAP standard)

� playout request frequency fPRQ = 20 Hz

The client runs on a virtualized Linux machine. The physical link is established

via Wi-fi (Android device in hotspot mode). By running ping trials it can be seen

that client-server RTT ≈ 6 ms. The Internet is simulated using netem (iproute2-

ss130716). netem is a simulator common in Linux distributions that is able to

recreate WAN characteristics: packet loss, network delay and jitter. We use the

command:

netem delay 110ms 80ms distribution pareto loss x%
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to simulate a pareto-distributed one-way delay and a packet loss of x%. However,

the meaning of the delay values is not well documented. The packet loss figure is

instead reliable. The above command applied to incoming and outgoing packets

gives approximately the following results, observed using ping (thus include also

the Wi-fi delay):

� dN ≈ 75 ms, RTT ≈ 150 ms

� dN peaks of ≈ 50 ms to ≈ 400 ms, pareto distributed

� identical characteristics in both directions

The pareto distribution is suggested by [7]. 75ms as network delay is suggested by

experiments over LTE networks conducted in [19]. The QoE parameters become:

� maximum end-to-end delay dEE = 300 ms

� buffering delay db = 225 ms

In order to comply to the assumption of the synchronization algorithm, we make

sure that the first packet sent by the server gets exactly dN by using an on-purpose

netem policy for it: netem delay 75ms

The service executes for 2 minutes, which gives about 3600 samples sent. Re-

garding delivery strategies, settings are AF=2 and RF=1.

5.3 Results

For clarity, some terminology is given:

� duplicate: refers to a sample copy that is sent after the original one. Re-

transmission generates a duplicate for each retransmitted message whereas

repetition generates a duplicate for every sample.

� useful duplicate: duplicates received before deadline and before the original
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� false useful duplicate: useful duplicates whose original arrived before dead-

line

� true useful duplicate: useful duplicates whose original was lost or late

� duplicate utilization:

DU =
true useful duplicates

total duplicates sent

The retransmission strategy impact is a function of the retransmission timeout

(ack timeout). The first experiment was aimed at finding its optimal value. The

results are shown in Figure 5.2. DCR improves linearly as the timeout decreases.

This is expected since duplicates sent earlier have more chances to arrive at des-

tination before deadline. On the other hand, the amount of data exchanged by

the server increases. Thus, there is the need of finding a tradeoff between quality

and resource usage. The criteria used to choose the optimal ack timeout is the

duplicate utilization defined above. It measures the success rate of the mecha-

nism, that is the fraction of duplicates that actually recover an original sample.

The higher DU, the lower is the waste of retransmissions. As shown in Figure 5.2,

utilization hits a maximum at 150 ms, which is close to the network round-trip

time. Below 150 ms more retransmissions are useless because acks are not given

enough time to arrive. Above 150 ms, more retransmissions are useless because

they are sent too late and miss the delivery deadline. Note that this heuristic is

application-specific, as it indeed depends on the deadline setting and it considers

all samples as equally important.

Figure 5.3 shows the metrics varying delivery strategy and packet loss. The

default strategy reaches a Delay Constrained Reliability of about 90% at 10% loss.

It may seem that jitter has no negative effect, as the slack from perfect DCR is

exactly as much as packet loss. However, some samples do miss the deadline by

taking more than 300 ms network delay. A possible explanation is that a similar
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Figure 5.2: Performance and load metrics for the retransmission strategy varying the retransmission
timeout (ack timeout). The network behaves according to netem delay 110ms 80ms

distribution pareto loss 10%. True duplicate utilization refers to the metric as
defined previously. Generic duplicate utilization refers to both true and false useful
duplicates.
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Figure 5.3: Performance and load metrics for different delivery strategies and packet loss.
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number of samples is recovered by Confirmable messages, which are sent once

every five Non-confirmables.

As expected the aggregation strategy reduces DCR considerably because a

lost or late packet impacts on two samples rather than one. On the other hand,

network load is not reduced significantly because savings amount only to the

fixed header portions. It is interesting to notice the similarity between the default

strategy and the aggregation strategy with retransmissions, both in DCR and

in network traffic. Clearly aggregation with retransmission is more complex and

computationally heavier.

Forward error correction and retransmission have similar benefits i.e. they

recover the same amount of samples. Also the amount of redundancy needed

for this achievement is similar (as indicated by the network load), so we might

argue that the two techniques are equivalent. However, according to expectations,

retransmission uses many more packets than repetition to send the same amount

of data. Thus packets used by retransmission are smaller but more frequent. From

a power consumption perspective, this may or may not be a desirable behavior

depending on the underlying medium access mechanisms e.g. contention-based

or scheduled. Note that retransmission and repetition can be used together to

achieve even higher DCR at the expense of a considerable network load.

Clearly as the network becomes more and more reliable, the effects of error

recovery techniques become less evident. The activation of error correction is able

to increase ≈ 4.5% DCR with respect to the default case at 10% loss. At 4% loss,

the positive effect decreases to 2.5%. As well, the benefit of retransmission on

aggregation grows from 5% at 4% loss to 9% at 10% loss.

It is interesting to note the behavior of the retransmission strategy varying

the packet loss. As the error probability grows, one would expect the packet flow

to increase because retransmissions happen more frequently. On the contrary, in

Figure 5.3, there is no evidence of such behavior. As illustrated in Figure 5.4,
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packets/sample actually decrease. The behavior is correct. Recall that the packet

count includes incoming and outgoing UDP packets at the server interface. As

packet loss increases, the outgoing UDP packets in the form of retransmissions

increase. However the incoming UDP packets, carrying ACKs, decrease due to

higher packet loss. As a confirmation, network load as observed by the server

increases, since retransmission messages carry more data than acks. The dis-

crepancy in Figure 5.4 from the expected 2 packets/sample 2 in perfect network

condition is caused by two factors: Sender/Receiver Reports and retransmissions.

Sender and Receiver Reports are included in the packet count but do not carry

any sample. A small fraction of retransmissions occur even in this case because of

a modeling simplification. ack timeout is set exactly on the netem policy round-

trip time (150 ms), assuming zero the Wi-fi delay jitter. When some packets

(Data or the corresponding ack) get a relevant Wi-fi delay, the exchange misses

ack timeout and a retransmission is triggered. Also, the discrepancy in Figure 5.4

from DCR=1 in perfect network condition 3 is due to loss at the client (in fact

in the experiment all samples do arrive at the sink before deadline). Loss in the

client happens because the playout request rate is not perfectly stable, thus some

playout times are not correctly requested (refer to Algorithm 2).

Finally, a word on visual Quality of Experience. In the prototype we display

sensor readings on dial meters in a console on a laptop monitor. When a sample

is displayed on time, the needle is colored for the whole sample period. When a

sample is missing, the needle is turned light grey for one period. As an example,

consider a smartphone moving from inside a room to the outside in a person’s

hand. The visual quality of experience depends on many factors: high sampling

frequency and high DCR give a feeling of stream continuity. In this setting, 10 Hz

offers an acceptably continuous view of the person movement in terms of changing

light conditions, acceleration and deceleration of walking and corner turns. The

2One Data packet whose ack always returns by RTT.
3All samples arrive at the sink before deadline.
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Figure 5.4: Retransmission strategy at various packet error rates. The first coloumn is taken with no
packet loss and no jitter according to the rule netem delay 75ms. All other columns
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visual benefit of DCR increasing from 80% to 95% is evident. Playout at 80%

DCR looks much more discontinuous, even though the general behavior of the

subject is very clear anyhow. A tradeoff must be found also regarding power

consumption. Higher sampling frequency and higher DCR imply a shorter device

lifetime.

It is difficult to visually judge intra-stream synchronization. However, inter-

stream synchronization is satisfactory. This is clear if one tries to drop the smart-

phone with the light and proximity sensors pointing to the target surface, so that

they are fully covered after the impact. Vertical acceleration spikes at the same

time as the proximity sensor becomes true and the light sensor reads zero lux. The

simultaneous nature of the impact is very well represented, at least to a human

eye.
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Conclusions

The outcome of this work consists of three main aspects (i) a demonstration by

example that CoAP can fulfill requirements of real-time embedded Web services

(ii) an open-source prototype as platform for future developments (iii) a demon-

stration that error correction techniques, in part offered by CoAP, are able to

increment a set of application-independent Quality of Experience metrics.

The first point is based on the recognition of RTP as the state-of-the-art

protocol for real-time multimedia applications. On this assumption, it is defined

a precise mapping of the minimal set of RTP features to CoAP. The mapping is

then successfully used in the prototype.

Considerable effort was invested in the server development. With the goal of

optimizing the performance-footprint tradeoff, native Android development was

chosen. The libcoap library needed additions to support CoAP Observe and to

protect against packet duplication. The resulting implementation depends only on

a standard POSIX-compliant C library so it is easy to port to less powerful nodes.

It features a layered architecture to be easily extensible. The Streaming Manager

can indeed be seen as an abstraction layer between stream physical sources and

the communication protocol.

As mentioned, the concept of Quality of Experience depends on the applica-

tion. In order to keep the analysis general it was devised a set of application-

agnostic indicators: Playout Reliability to catch presentation quality and network
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load to catch quality cost. The end-to-end delay upper bound for interactive ap-

plication is included as a design constraint. In this regard, the synchronization al-

gorithm is particularly important, because it sets meaningful deadlines accounting

for inter-stream dependencies. In other words, it is the measurement instrument

by which it is possible to assess QoE.

The practical tests have been performed on real devices connected by a simu-

lated network able to reproduce worldwide area network characteristics. It consists

of an Android phone connected via Wi-fi to a Linux host. QoS parameters such as

network delay, jitter and packet loss are simulated by netem running on the Linux

host. Despite slight modeling-induced errors, the results match expectations in

all cases, thus proving the correctness of the implementation. They put in clear

evidence the cost/performance tradeoff. Playout Reliability monotonically grows

if error correction is turned on and if the network QoS improves. On the other

hand, network load monotonically increases if error correction is turned off and

the network turns unreliable. Thus, in an actual service deployment, given a set

of fixed network QoS parameters, the designer can reach a certain QoE target by

leveraging error correction mechanisms.

Future betterments may start by dropping the assumptions made here. For

example, an algorithm to estimate the one-way average network delay would be

useful to modify the buffering time upon changing network conditions. Also, this

work achieves synchronization on the timestamp boundary. Adding sampling and

playout hardware synchronization, i.e. outside the timestamp zone, would be

beneficial.

In the context of constrained environments, a smartphone connected via LTE is

a relatively powerful system. Further studies could concentrate on the challenges

of porting this service to less powerful technologies.

At the application level, an important aspect is scalability. On the Web there

could be potentially many clients interested in a device’s stream. Also, these
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clients could not be humans but machines. The best architecture, whether to

use intermediary caches and brokers, and their influence on the timeliness of the

communication could be object of further study.
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[16] K. Kuladinithi, O. Bergmann, T. Pötsch, M. Becker, and C. Görg. Imple-

mentation of CoAP and its application in transport logistics. In Workshop

on Extending the Internet to Low power and Lossy Networks (IP+SN 2011),

2011.

87

http://processors.wiki.ti.com/index.php/Android_Sensor_PortingGuide
http://processors.wiki.ti.com/index.php/Android_Sensor_PortingGuide
http://people.inf.ethz.ch/mkovatsc/californium.php


Bibliography

[17] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N. Subrahmanyam, and

R. Xiang. Building Smarter Planet Solutions with MQTT and IBM Web-

Sphere MQ Telemetry. IBM Redbooks, 2012.

[18] N. Laoutaris and I. Stavrakakis. Intrastream synchronization for continuous

media streams: a survey of playout schedulers. Network, IEEE, 16(3):30–40,

2002.

[19] Navid Nikaein and Srdjan Krea. Latency for real-time machine-to-machine

communication in LTE-based system architecture. In Wireless Conference

2011 - Sustainable Wireless Technologies (European Wireless), 11th Euro-

pean, pages 1–6, 2011.

[20] E. Olson. A passive solution to the sensor synchronization problem. In Intelli-

gent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference

on, pages 1059–1064, 2010.

[21] C. Perkins, O. Hodson, and V. Hardman. A survey of packet-loss recovery

techniques for streaming audio. IEEE Network, 12:40–48, 1998.

[22] Colin Perkins. Rtp: Audio and Video for the Internet. Addison-Wesley

Professional, first edition, 2003.

[23] Steve Robbins. Unix Systems Programming: Communication, Concurrency

and Threads. Prentice Hall Professional Technical Reference, 2 edition, 2003.

[24] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.

Pattern-Oriented Software Architecture: Patterns for Concurrent and Net-

worked Objects. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition,

2000.

[25] H. Schulzrinne. Issues in designing a transport protocol for audio and video

conferences and other multiparticipant real-time applications. Internet Draft

draft-ietf-avt-issues-02, May 1994.

88



Bibliography

[26] H. Schulzrinne and S. Casner. RTP profile for audio and video conferences

with minimal control. Internet RFC 3551, July 2003.

[27] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport

protocol for real-time applications. Internet RFC 3550, July 2003.

[28] Z. Shelby. Embedded web services. Wireless Communications, IEEE,

17(6):52–57, 2010.

[29] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained Application

Protocol (CoAP). Internet Draft draft-ietf-core-coap-12, 2012.

[30] C. J. Sreenan. Synchronisation Services for Digital Continuous Media. PhD

thesis, University of Cambridge, 1992.

[31] R. Steinmetz. Human perception of jitter and media synchronization. Selected

Areas in Communications, IEEE Journal on, 14(1):61–72, 1996.

[32] International Telecommunication Union. G.114 One way transmission time.

ITU-T recommendation, 1993.

[33] J. Van der Meer, D. Mackie, V. Swaminathan, D. Singer, and P. Gentric.

RTP payload format for transport of MPEG-4 elementary streams. Internet

RFC 3640, November 2003.

[34] H. Wehbe, A. Bouabdallah, B. Stevant, and U. Mir. Analysis of synchroniza-

tion issues for live video-context transmission service. In Consumer Commu-

nications and Networking Conference (CCNC), 2013 IEEE, pages 203–209,

2013.

89


	Abstract
	Sommario
	List of Figures
	List of Tables
	Introduction
	Synchronization and Real-time Transport
	Multimedia Synchronization
	Streams and Sampling Frequency
	Synchronization Metrics
	Poor-man Synchronization
	Metadata-based Synchronization

	Real-time Transport over a Network
	Delivery Deadline
	Elastic Buffer
	UDP Transport
	Error Correction


	Application Protocols
	Real-time Transport Protocol (RTP)
	Constrained Application Protocol (CoAP)
	Message Queue Telemetry Transport Protocol (MQTT)

	Design Choices and Implementation
	Measuring Quality of Experience
	Synchronization Algorithm
	CoAP as Application Protocol
	Introducing Synchronization Semantics in CoAP

	System Architecture
	Server Implementation
	Sensors in Android
	Timestamp Assignment
	Streaming Manager
	CoAP Manager
	Message Buffers

	Client Implementation

	Experimental Evaluation
	Experiment Variables
	Parameter Setting
	Results

	Conclusions
	Bibliography

