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Abstract

In questo lavoro verrà presentato un modello bayesiano non parametrico per l’analisi di
dati di sopravvivenza di pazienti colpiti da infarto miocardico acuto con sopraslivella-
mento del tratto ST e sottoposti ad angioplastica in ospedali della regione Lombardia.
I dati sono stati resi disponibili tramite l’Archivio STEMI, un registro di osservazione
clinica creato all’interno del Programma Strategico della Regione Lombardia nel 2010,
che raccoglie le informazioni cliniche riguardanti i pazienti colpiti da infarto e curati negli
ospedali lombardi. Il registro è stato istituito per poter valutare i tempi e l’efficacia delle
cure e successivamente selezionare strategie ottimali per la terapia dell’infarto miocardico
acuto.

Il modello presentato è multivariato, in quanto la risposta è un vettore a tre com-
ponenti, corrispondenti alle tre variabili considerate di interesse in termini di efficienza
degli ospedali e di efficacia del percorso di cura: il tempo DB, cioè il tempo intercorso tra
l’ingresso in ospedale e l’angioplastica (risposta continua), la sopravvivenza alla dimis-
sione e la sopravvivenza dopo 60 giorni dall’ingresso in ospedale, entrambe risposte bina-
rie.

Lo scopo di questa tesi è stata la costruzione di un algoritmo di tipo MCMC per il
calcolo delle inferenze a posteriori. In particolare abbiamo calcolato la distribuzione finale
dei parametri del modello, compresa la partizione aleatoria ρ dei pazienti, utilizzando una
prior PPMx su ρ. Di conseguenza abbiamo stimato i parametri stessi con le statistiche
riassuntive della distribuzione finale. Inoltre, visto che uno degli obiettivi era quello
di identificare gruppi di pazienti in qualche modo accomunati da caratteristiche simili,
abbiamo fornito una stima della partizione aleatoria, che costituisce il raggruppamento
dei pazienti. Infine, abbiamo anche calcolato la distribuzione predittiva di pazienti con
determinate covariate.
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Abstract

In this work a nonparametric Bayesian model is fitted to study data related to patients
admitted to hospitals in Lombardy with ST-elevation myocardial infarction diagnosis
and treated with angioplasty. Data are collected in the STEMI dataset, an observational
clinical study planned within the Strategic Program of Regione Lombardia 2010, which
collect clinical informations on patients with myocardial infarction diagnosis and treated
in a hospital situated in Lombardy. The aim of the registry is to evaluate, with statistical
analysis of this data, times and effectiveness of treatment.

The introduced model is multivariate where the response is a vector of three com-
ponents, which are three variables considered important to evaluate the efficiency of the
hospitals and the effectiveness of the treatment: Door-to-Balloon time, that is the time
between the admission to the hospital and angioplasty (continuous response), in-hospital
survival and survival after 60 days from admission, both binary responses.

The aim of this work has been to construct an MCMC algorithm for the computation
of posterior inferences. In particular we have computed the final distribution of the
parameters of the model, including the random partition ρ of the patients using a PPMx
prior on ρ. Consequently, we have estimated the same parameters with the summary
statistics of the final distribution. Also, since one of the objectives was to identify groups
of patients somehow characterized by similar features, we have provided an estimate of
the random partition, which is the clustering of patients. Finally, we have also calculated
the predictive distribution of patients with given covariates.
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Introduzione

In questo lavoro viene presentato un modello bayesiano non parametrico per l’analisi
di dati relativi a pazienti colpiti da infarto miocardico acuto con sopraslivellamento del
tratto ST e sottoposti ad angioplastica in ospedali presenti nella regione Lombardia. I dati
provengono dall’Archivio STEMI, un registro di osservazione clinica creato all’interno del
Programma Strategico della Regione Lombardia nel 2010, istituito per poter valutare i
tempi e l’efficacia delle cure e, successivamente, selezionare strategie ottimali per la terapia
dell’infarto miocardico acuto. Si dispone di dati anagrafici (età, sesso), clinici (presenza
di patologie come l’ipertensione, il diabete, ecc.) e riguardanti l’ospedalizzazione (tempo
di insorgenza dei sintomi, mezzo di trasporto utilizzato per raggiungere l’ospedale, tempo
del primo elettrocardiogramma, ecc.).

Il modello considerato è caratterizzato da una risposta tridimensionale di tipo mista
le cui componenti corrispondono agli outcome ritenuti più importanti da un punto di
vista medico: il tempo DB intercorso tra l’ingresso in ospedale e l’angioplastica, la so-
pravvivenza alla dimissione e quella a 60 giorni dall’ingresso in ospedale. Si noti che il
tempo DB è una variabile continua mentre le altre due risposte sono binarie.

La struttura della verosimiglianza è della seguente forma: la prima componente è
rappresentata da un modello lineare che lega il valore atteso del logaritmo del tempo DB
a variabili riguardanti l’ospedalizzazione; la seconda e la terza sono rappresentate tramite
un modello lineare generalizzato nel quale le probabilità di sopravvivenza (rispettivamente
alla dimissione e a 60 giorni) sono messe in relazione con covariate legate alla situazione
clinica e allo stato di salute del paziente.

Il modello prevede inoltre una prior sulla partizione aleatoria delle unità statistiche
considerate. In particolare, il numero di clusters k è esso stesso sconosciuto e la presenza
della prior sulla partizione implica l’esistenza di una prior su tale numero di clusters.
Uno dei modelli presenti in letteratura che assegna una prior alla partizione aleatoria è il
Product Partition Model (PPM). Tale prior viene costruita introducendo una funzione di
coesione c(·) in grado di misurare quanto siano ben raggruppati tra loro gli elementi di un
dato insieme. Inoltre, se la funzione di coesione ha una certa espressione, il PPM coincide
esattamente con la prior indotta da un campione i.i.d. da un processo di Dirichlet (DP).
Tuttavia, la prior sulla partizione aleatoria nel modello considerato in questa tesi dipen-
derà anche dalle covariate: a partire dal PPM, viene introdotta un’opportuna funzione
g(·), detta funzione di similarità, in grado di formalizzare la similarità tra le covariate.
A grandi valori di g(·) corrispondono insiemi di covariate giudicati essere simili. Questa
prior, introdotta in Muller, Quintana, and Rosner (2011), costituiscee una prior PPM
con covariate e dunque verrà indicata con PPMx. Si distingueranno dunque covariate
presenti nella verosimiglianza e covariate presenti nella similarità.

Data la struttura di clustering definita, ciascuna delle tre variabili risposta dipen-
derà, all’interno di ogni cluster, da certi parametri, detti parametri specifici del cluster.
Per assegnare al vettore dei parametri una prior scambiabile, in modo tale che i di-
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versi parametri siano a priori dipendenti e quindi possano scambiarsi informazioni, tale
distribuzione viene assegnata come mistura rispetto ad altri parametri, detti parametri
globali.

L’inferenza bayesiana si basa sulla distribuzione finale, cioè la legge condizionale dei
"parametri" (partizione aleatoria, parametri specifici del cluster e parametri comuni). Per
il calcolo di tale inferenza è necessario costruire un algoritmo di Markov Chain Monte
Carlo (MCMC) che simula una catena markoviana aperiodica e irriducibile, la cui dis-
tribuzione limite è la posterior del modello considerato. In particolare, è stato implemen-
tato in C un algoritmo di tipo Gibbs sampler basato sul campionamento di ciascuno dei
parametri di interesse θi a partire dalle loro distribuzioni full conditionals, cioè dalle dis-
tribuzioni a posteriori condizionali L(θi|θ−i) dati tutti gli altri parametri e le osservazioni.
Per l’analisi degli output forniti da C è stato utilizzato il software R (R Development Core
Team, 2012).

Ad ogni iterazione del Gibbs sampler viene generata una partizione dei dati, dove
l’intera successione delle partizioni simulate rappresenta, al limite, la legge a posteriori
della partizione aleatoria. Nella tesi abbiamo utilizzato una stima di tale distribuzione
finale per rappresentare il clustering dei pazienti cioè per scoprire gruppi significativi di
pazienti che in qualche modo sono accomunati da caratteristiche simili. Infine, attraverso
la legge predittiva, abbiamo fatto previsione per nuove unità. A tal fine, in questo lavoro
sono stati considerati sia i pazienti presenti nel dataset considerato, sia pazienti non
presenti nel dataset ma con una combinazione di covariate di interesse.

Nel Capitolo 1, dopo una breve introduzione all’approccio bayesiano nonparametrico,
vengono presentate le principali proprietà del processo di Dirichlet. Successivamente,
dopo aver richiamato brevemente la struttura del PPM, si procede con la descrizione del
PPMx; vengono forniti dettagli sulla forma generica della funzione di similarità e vengono
introdotti i parametri specifici del cluster unitamente ai parametri globali con il fine di
completare il modello.

Il Capitolo 2 presenta il problema medico riguardante la patologia in esame e descrive
brevemente l’Archivio STEMI. Segue la descrizione del dataset originale e un’analisi
statistica preliminare. A partire da tale dataset, vengono poi attuate delle modifiche
(standardizzazione o dicotomizzazione) su alcune variabili in modo da ottenere il dataset
effettivamente analizzato col modello bayesiano. Abbiamo quindi effettuato un’ulteriore
analisi statistica preliminare sul nuovo dataset.

Nel Capitolo 3 viene definito il modello adottato. In primo luogo si definisce la legge
generica dell’i-esimo vettore risposta all’interno del j-esimo cluster, per poi in seguito
specificare le prior adottate sui parametri specifici del cluster e sui parametri globali. In
secondo luogo si procede alla definizione dettagliata della prior adottata sulla partizione,
esplicitando dunque la forma della funzione di similarità e tenendo conto delle covariate
utilizzate per definire tale prior (in questo lavoro di tipo binario o categorico). Segue la
descrizione dell’algoritmo utilizzato per implementare il Gibbs sampler, tenendo conto
dell’aggiornamento sia dei parametri specifici del cluster, sia dei parametri comuni.

Nel Capitolo 4 vengono presentati i risultati ottenuti applicando il modello PPMx
all’Archivio STEMI. Vengono fornite le stime a posteriori dei parametri globali con rel-
ativi intervalli di credibilità. Particolare enfasi viene data alla previsione e al clustering.
Infine, viene fatto un confronto con il modello PPM. Dall’analisi effettuata è emerso che
all’aumentare del tempo in cui viene effettuato il primo elettrocardiogramma si ha un
aumento del tempo DB. Inoltre, variabili quali l’età, la gravità dell’infarto, l’efficienza del
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trattamento o la frazione di eiezione (così come l’essere operati in un ospedale a Milano
oppure no) hanno un impatto significativo sulla sopravvivenza del paziente.

L’Appendice A richiama brevemente il modello lineare bayesiano con varianza incog-
nita. Tale modello servirà infatti nell’aggiornamento dei parametri specifici del cluster
per il primo livello. L’Appendice B riporta le espressioni analitiche delle full-conditionals
dei parametri globali per tutti e tre i livelli, distinguendo tra il primo livello e gli altri
due. L’Appendice C riporta le espressioni analitiche della media e della varianza a priori
dei parametri specifici del cluster.

Questo lavoro costituisce un primo tentativo di costruzione di un modello bayesiano in
cui la prior sulla partizione aleatoria dipende dalle covariate, per l’applicazione al dataset
sui pazienti affetti da STEMI. Le covariate che sono state incluse nella distribuzione
condizionale dei dati, dati i parametri, sembrano quasi tutte significative. Sviluppi fu-
turi potrebbero prevedere un nuovo modello in cui considerare covariate diverse nella
verosimiglianza (e tutte le rimanenti nella funzione di similarità), oppure fornire una
diversa stima di clustering sotto il modello qui considerato.



Chapter 1

Bayesian Nonparametrics

1.1 Exchangeability assumption
Classical statistics is based on a framework where observations X1, X2, . . . are assumed
independent and identical distributed (i.i.d.) from a unknown probability distribution P .
We say that we are considering a parametric framework when P belongs to a parametric
family, otherwise we are considering a non-parametric framework when P lies in the space
of all probability distributions P(R).

It is possible to distinguish the two cases also in the Bayesian setting. In the paramet-
ric case we have a prior π on a finite dimensional space Θ and, given θ, the observations
are assumed i.i.d. from Pθ. In the non-parametric case, we have a prior π on the space
P(R) of all probability distributions on (R,B(R)) and, given P , the observations are
assumed i.i.d. from P.

Under the assumption of exchangeability, de Finetti’s Representation Theorem gives
a validation of the Bayesian setting.

Let consider an infinite sequence of observations (Xn)n≥1 defined on some probability
space (Ω,F ,P), with each Xi taking values on R endowed with the Borel σ-algebra B(R).
This last hypothesis can be relaxed and we could consider observations which take values
in a complete metric and separable space X. In this chapter it is enough to consider
X = R.

Definition 1.1 (Finite exchangeability). The random quantities y1, . . . , yn are finitely
exchangeable if their joint probability density is such that

p(y1, . . . , yn) = p(yz(1), . . . , yz(n))

for all permutations z of the indices of the yi, {1, . . . , n}.

Roughly speaking, y1, . . . , yn are exchangeable if the subscript labels convey no infor-
mation about the outcomes. There are several types of dependence among a sequence of
observations (Xn)n≥1. Under the exchangeability assumption, the information that the
observations Xis provide is independent of the order in which they are collected. For
instance, if we sample without replacement from an urn with infinite marbles of different
colors, the sequence of colors that we obtain is exchangeable.

Remark. An infinite sequence of random quantities y1, y2, . . . is infinitely exchangeable
if every finite subsequence is finitely exchangeable.

12
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Definition 1.1 formalizes a symmetry condition between variables: in many cases, the
order in which observations are received does not matter. Permuting the order, we would
have the same informations.
To enunciate de Finetti’s theorem (see for instance Ghosh and Ramamoorthi, 2003, for
the proof) we need to define random probability measures. To do this we give formal
definitions of the Borel σ-algebra on P(R) introducing the topology of weak convergence.
The space P(R) is equipped with the topology of the weak convergence which makes it
a complete and separable metric space.

Definition 1.2 (Weakly convergence). A sequence of probability measures (Pn)n≥1 defined
on P(R) converges weakly to a probability measure P if for all bounded continuous function
f : P → R ∫

R
f dPn −→

∫
R
f dP , as n −→ +∞.

We write Pn ⇀ P .
For any P0 a neighbourhood base consist of sets of the form

n⋂
i=1

{
P :

∣∣∣ ∫ fi dP0 −
∫
fi dP

∣∣∣ < ε
}

where fi, i = 1, . . . , k, are bounded continuous function on R, k ≥ 1 and ε > 0. The
Borel σ-algebra on P(R) is the smallest σ-algebra generated by the open sets in the weak
topology.

Definition 1.3 (Random probability measure). A random element defined on (Ω,F ,P)
with values in P(R) is called random probability measure (r.p.m).

The two main desirable properties for the class of r.p.m are a large support and a
posterior distribution that is analytically tractable. A prior with a large support is an
obvious requirement, and a tractable posterior reduces the computational complexity. In
fact computational heaviness is still one limitation of Bayesian nonparametrics. The most
popular r.p.m.s in literature are Dirichlet Process, Polya Trees and Bernstein Polynomials.

Theorem 1.1 (de Finetti). The sequence (Xn)n≥1 is exchangeable if, and only if, there
exists a unique probability measure q on P(R) such that, for any n ≥ 1 and any Borel
sets B1, B2, . . . , Bn,

P(X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) =

∫
P(R)

n∏
i=1

p(Bi)q(dp).

Equivalently, the theorem implies that if (Xn)n≥1 is exchangeable, then

X1, . . . , Xn|P
i.i.d∼ P

P ∼ q(·).
In the parametric case q is concentrated on a parametric family, i.e.

X1, . . . , Xn|θ
i.i.d∼ fθ(·)

θ ∼ π(·),
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where Xi|θ and θ are absolutely continuous (with respect to the Lebesgue measure) or
discrete probability distributions, for i = 1, . . . , n, fθ and π(·) are the probability density
functions of Xi|θ and θ respectively. By Bayes’ Theorem, in this case the posterior prob-
ability distribution of θ, i.e the conditional probability distribution of θ given X1, . . . , Xn,
has probability density function

π(θ|X1 = x1, . . . , Xn = xn) =

∏n
i=1 fθ(xi)π(θ)∫

Θ

∏n
i=1 fθ(xi)π(θ)

.

The predictive distribution of a new observation Xn+1 = x has probability density
function

f(x|X1 = x1, . . . , Xn = xn) =

∫
Θ

fθ(x)π(dθ|X1 = x1, . . . , Xn = xn).

Similarly we can make inference and prediction in the nonparametric setting. In this
case q is a probability measure on P(R) and the posterior distribution can be derived by

L(Xn+1|X1, . . . , Xn) =

∫
P(R)

L(Xn+1|P )L(dP |X1, . . . , Xn).

1.2 The Dirichlet process
The Dirichlet process is a useful family of prior distributions on P(R) introduced by
Ferguson (1973). The Dirichlet prior is easy to elicit, has a manageable posterior and
other nice properties. It can be viewed as an infinite-dimensional generalization of the
finite-dimensional Dirichlet distribution.

Definition 1.4 (Dirichlet distribution). Let α = (α1, α2, . . . , αk), with αi > 0 for
i = 1, 2, . . . , k. The random vector P = (P1, P2, . . . , Pk),

∑k
i=1 Pi = 1, has Dirichlet

distribution with parameter α if (P1, P2, . . . , Pk−1) is absolutely continuous with respect
to the Lebesgue measure on Rk−1 with density

f(p1, p2, . . . , pk−1) =
Γ(
∑k

i=1 αi)

Γ(α1)Γ(α2) · · ·Γ(αk)
pα1−1

1 pα2−1
2 · · · pαk−1−1

k−1

(
1−

k−1∑
i=1

pi

)αk−1

,

where 0 ≤ pi ≤ 1 ∀i, 0 ≤ p1 + · · ·+ pk−1 ≤ 1, 0 otherwise.

We write P ∼ D(α).

Definition 1.5 (Dirichlet process). Let α be a finite measure on R, a = α(R); let α0(·) =
α(·)/a. A r.p.m. P with values in P(R) is a Dirichlet process on R with parameter α if,
for a finite measurable partition B1, . . . , Bk of R,

(P (B1), . . . , P (Bk)) ∼ D(α(B1), . . . , α(Bk)).

We write P ∼ DP (α) for short. It can be proved that such process exist (see Ferguson,
1973). If P ∼ DP (α), it follows that E[P (A)] = α0(A) for any Borel set A, and thus we
say that α0 is the prior expectation of P .

The Dirichlet prior is a conjugate prior on P(R); in fact, let (X1, X2, . . . , Xn) be a
sample from a Dirichlet process P , i.e.
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X1, X2, . . . , Xn|P
i.i.d∼ P

P ∼ DP (α).

Then the posterior distribution of P given X1, X2, . . . , Xn, is

P |X1, X2, . . . , Xn ∼ DP
(
α +

n∑
i=1

δXi

)
.

In this case the distribution of Xn+1 can be described as follows:

X1 ∼ α0

Xn+1|X1, . . . , Xn ∼
a

a+ n
α0 +

n

a+ n

(∑n
i=1 δXi
n

)
.

(1.1)

Notice that the predictive distribution in (1.1), called Blackwell-MacQueen Urn Scheme,
is a mixture of the baseline measure α0 and the empirical distribution on the previous
observations. This means that there is a positive probability of coincident values for any
finite and positive a. Moreover if α0 is an absolutely continuous probability measure, then
Xn+1 will assume a different distinct value with probability a

a+n
. Formula (1.1) allows us

to sample (marginally) from P without simulating any trajectory of the Dirichlet process.
Let (X1, X2, . . . , Xn) be a sample from P , where P ∼ DP (α) and let Kn denote

the random variable representing the number of distinct values among (X1, X2, . . . , Xn).
Antoniak (1974) proved that the distribution of Kn is the following:

P(Kn = k) = cn(k)n!ak
Γ(a)

Γ(a+ n)
, k = 1, 2, . . . , n, (1.2)

where cn(k) is the absolute value of Stirling number of the first kind, which can be
tabulated or computed by a software. From (1.2) it is clear that the mass parameter
a influences the prior on the number of clusters. Larger a gives rise to a higher prior
number of components.

Sethuraman (1994) provided a useful representation of the Dirichlet process. Its con-
struction gives an insight on the structure of the process and provides an easy way to
simulate its trajectories. Let consider two independent sequences of random variables
(θi)i≥1 and (τi)i≥1 such that θi

i.i.d∼ Beta(1, a) and τi
i.i.d∼ α0 defined on some probability

space (Ω,F ,P), and define the following weights:{
p1 = θ1

pn = θn
∏n−1

i=1 (1− θi), n ≥ 2

It is straightforward to see that 0 ≤ pn ≤ 1, n = 1, 2, . . . and
∑∞

n=1 pn = 1 a.s.. This
construction is called stick-breaking. In fact p1 represents a piece of a unit-length stick,
p2 represents a piece of the remainder of the stick and so on, where each piece is inde-
pendently modelled as a Beta(1, a) random variable scaled down to the length of the
remainder of the stick. Now we can define a random variable P on P(R):

P (A) =
∞∑
n=1

pnδτn(A), A ∈ B(R).
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Sethuraman proved that P has a Dirichlet prior distribution, i.e. P is a Dirichlet
process with parameter α. From this construction it is clear that a Dirichlet process has
discrete trajectories, i.e. if P ∼ DP (α), P(ω : P (ω) is discrete) = 1.

As mentioned in Section 1.1, P(R) is a separable metric space, and hence it is possible
to define the support of any probability measure π on P(R) as the smallest closed set of
measure 1. Let E be the support of the finite measure α on R. Then it can be shown
that Mα = {P : support of P ⊂ E} is the weak support of DP (α), i.e. the set of all the
probability distributions with support contained in the support of the measure α is the
weak support of DP (α) (see Ferguson, 1973).

1.3 The PPMx Model
Recall that if (X1, X2, . . . , Xn) is a sample from a Dirichlet process P , then, by the
expression of the posterior distribution (1.1), we deduce that there is a positive probability
of having ties in the {Xn} sequence for any finite and positive a. This means that this
model induce a probability distribution on the space of partitions of a finite set of objects
S = {1, . . . , n}, say.

As described in Muller, Quintana, and Rosner (2011), we want to develop a probability
model for partitioning a set of experimental units, where the probability of any particular
partition is allowed to depend on covariates.
Let i = 1, . . . , n index experimental units and let ρn = {S1, . . . , Sk} denote a partition
of the n experimental units into k subsets Sj. Let xi and yi denote the covariates and
response reported for the ith unit. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) denote the
entire set of recorded covariates and response data and let x∗j = (xi, i ∈ Sj) and y∗j =
(yi, i ∈ Sj) denote covariates and response data arranged by clusters. It is convenient
to introduce cluster membership indicators ei ∈ {1, . . . , k} with ei = j if i ∈ Sj, and
use (k, e1, . . . , en) to describe the partition. We call probability model p(ρn) a clustering
model. In particular, the number of cluster k is itself unknown. The clustering model
p (ρn) implies a prior model p (kn). Many clustering models include a sampling model
p (y|x, ρn). We are interested in adding a regression to replace p (ρn) with p (ρn|x).

The PPM (Hartigan, 1990) constructs p (ρn) by introducing cohesion functions c (A) ≥
0 for A ⊆ {1, . . . , n} that measure how tightly grouped the elements in A are thought to
be, and defines a probability model for a partition ρn and data y as

p (ρn) ∝
k∏
j=1

c (Sj) and p (y|ρn) =
k∏
j=1

pj
(
y∗j
)
. (1.3)

Model (1.3) is conjugate: the posterior p (ρn|y) is again in the same product form.
The Dirichlet Process (DP) model is related with the PPM. In fact, the marginal distri-

bution that a DP induces on partition is also a PPM with cohesions c (Sj) = α (|Sj| − 1)!
(Quintana and Iglesias, 2003). Here α denotes the total mass parameter of the DP prior.

The model proposed in Muller, Quintana, and Rosner (2011) is built from the PPM
(1.3) modifying the cohesion function c (Sj) with an additional factor that achieves the
desired regression. Let g

(
x∗j
)
denote a nonnegative function of x∗j that formalize similarity

of the xi with larger values of g
(
x∗j
)
for sets of covariates that are judged to be similar.

The model is defined as
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p (ρn|x) ∝
k∏
j=1

g
(
x∗j
)
c (Sj) (1.4)

with the normalization constant gn (x) =
∑

ρn

∏kn
j=1 g

(
x∗j
)
c (Sj). As a default choice we

propose to define g (·) as the marginal probability in an auxiliary probability model q,
even if xi are not considered random,

g
(
x∗j
)

=

∫ ∏
i∈Sj

q (xi|ξj) q (ξj) dξj. (1.5)

There is no notion of the xi being random variables. But the use of a probability
density q (·) for the construction of g (·) is convenient since it allows for easy calculus.
The correlation that is induced by the cluster specific ξj in (1.5) leads to higher values
of g

(
x∗j
)
for tightly clustered, similar xi, as desired. Furthermore, under some minimal

assumptions a similarity function g (·) necessarily is of the form (1.5). The function
(1.5) satisfies the following two properties that are desirable for a similarity function in
(1.4). First, symmetry with respect to permutations of the sample indices j is required.
The probability model must not depend on the order of introducing the experimental
units. This implies that the similarity function g (·) must be symmetric in its arguments.
Second, we require that the similarity function scales across sample size, in the sense
that g (x∗) =

∫
g (x∗, x) dx. In words, the similarity of any cluster is the average of any

augmented cluster.
Under these two requirements (1.5) is the only possible similarity function that satisfies
these two constraints (see Muller, Quintana, and Rosner, 2011).

The definition of the similarity function with the auxiliary model q (·) also implies
another important property. The random partition model (1.4) is coherent across sample
sizes. The model for the first n experimental units follows from the model for (n + 1)
observations by appropriate marginalization.

The random partition model (1.4) is completed with a sampling model that defines
independence across cluster and exchangeability within each cluster. We include cluster
specific parameters θj and common hyperparameters η:

p (y|ρn,θ,η,x) =
k∏
j=1

∏
i∈Sj

p (yi|xi,θj,η) and p (θ|η) =
k∏
j=1

p (θj|η) , (1.6)

where θ = (θ1, . . . ,θk) . We refer to (1.4) together with (1.6) as a PPM with covariates,
and write PPMx for short, as introduced in Muller, Quintana, and Rosner (2011).



Chapter 2

Dataset and medical issue description

2.1 The acute myocardial infarction
As described in Ieva (2013) and Prandoni (2012), the Acute Myocardial Infarction (AMI),
one of the Coronary Artery Diseases (CAD), is a pathological condition in which a pro-
longed ischemia, i.e. a reduced perfusion of the heart muscle leading to a decreased supply
of oxygen, causes the death of the heart cells. The most frequent cause of myocardial
infarction is the stenosis (constriction) of one or more coronary arteries caused by the oc-
clusion of the blood vessel by a thrombus. Symptoms of this pathology are sudden chest
pain, shortness of breath, sweating, nausea, vomit. Via the electrocardiogram (ECG)
printout, AMI can be classified into two types: AMI with elevation of the ST section
(STEMI) and AMI without elevation of the ST section (see Rugarli, 2010, Chapter 5).
The former represents the typical expression of an infarction. Unlike the infarction with-
out elevation of the ST section, STEMI is caused by a serious and prolonged failure of
oxygen in the whole depth of a region of the myocardium. In physiological conditions,
ECG presents a characteristic pattern of positive and negative waves that is repeated
each cardiac cycle. ST segment of the ECG is the section that separates wave S and
wave T. It is placed on the base of the trace (Figure 2.1) and it is characterized by the
absence of electrical movements. In the case of STEMI this line raises with respect to
the physiological level.

AMI diagnosis is mainly based, besides on symptoms (intense and prolonged chest
pain with radiation to the left arm), on ECG analysis and on the evaluation of specific
markers of myocardial necrosis. The reopening of the occluded coronary vessel could
block the necrosis process and preserve at least one part of the myocardium from cellular
death, improving the prognosis of the patient. Moreover, the therapeutic intervention of
revascularization must be done as early as possible after symptoms. Indeed, therapeutic
efficacy is much greater if the reperfusion therapy is implemented within the next two
hours after the infarction, it is pretty large within the first 6 and 12 hours and it is
lower after 12 hours. For this reason it is very important that patients who suspect to
have an infarction go to the hospital as soon as possible, so that the electrocardiographic
diagnosis of AMI and the reperfusion therapy are implemented as quickly as possible.
Currently, coronary reperfusion can be obtained with a pharmacological or mechanical
treatment. The first treatment, called thrombolysis, is based on the assumption of drugs
that produce the lysis of the fibrin ties of the thrombus, disintegrating it. The second one
is called angioplasty (PTCA - Percutaneous Transluminal Coronary Angioplasty). It is a
surgical technique that dilates the stenotic artery by means of a inflatable balloon. PTCA

18
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Figure 2.1: Outline of the characteristics wave of the electrocardiogram trace.

very often is associated to the installation of an expandable little tube which constitutes
a sort of scaffold capable to maintain dilated the artery and which remain permanently
in the vessel. In this way, the cells of the arterial wall grow around the device, fixing it
even more. PTCA constitutes nowadays the treatment of choice to restore the coronary
reperfusion. It presents some advantages with respect to the thromobolysis: it allows
the recanalization in almost all cases, regardless of the elapsed time of onset infarction.
Thrombolysis instead achieves this result by a maximum of 75% of the cases and the
success probability is reduced with the passage of time. Moreover in PTCA there is no
risk of intracranial hemorrhage, while for thrombolysis this risk is 0.5-1%. Disadvantages
of such procedure with respect to thrombolysis are that it can be implemented only in
centers provided of hemodynamic with expert operators, and it requires a proper organi-
zation of the medical and nursing staff to ensure 24 hours availability; finally it requires
longer time to be carried out.

2.1.1 The STEMI dataset

Data that will be used come from the STEMI dataset (Ieva, 2013), a register of clinical
observation created within the Strategic Program of the Lombardy Region in 2010, which
collects clinical informations about patients affected by AMI and treated in hospitals in
Lombardy. The purpose is to evaluate timing and effectiveness of the treatment in order
to select an optimal path for AMI therapy. In particular, statistical analysis is useful
to provide an efficiency framework of the treatment protocols and to find solutions to
enhance the quality of the offered services.

Data can be divided into four categories:

• Demographic data: fiscal code, date of birth, gender, age, hospital where the patient
was treated.

• Pre-hospital data: presence of diseases like diabetes, high blood pressure, hyperc-
holesterolemia, cardiac pathologies.
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• Admission data: time of onset of symptoms and typology, time of first contact of
the patient with the medical staff, type of rescue vehicle sent, time of the first ECG,
Killip class (i.e. the severity of the infarction), blood pressure and heart rate.

• Therapeutic data: elapsed time between the entrance into hospital and thrombolysis
or angioplasty treatment, ejection fraction.

More details are given in the next Section.
In this work we will consider as the outcome of interest the time between the entrance

into hospital and angioplasty, the in-hospital survival and the survival after 60 days. The
first term is an important indicator of the hospitals efficiency and it is crucial in the
success of therapy; the second term is the outcome that indicates the therapy success or
failure; the last term is the most significant indicator because treatment efficacy, in terms
of survival and quality of life, is evaluated on the mid-term.

2.2 Variables
The dataset contains data on 697 patients undergoing angioplasty after an episode of
acute myocardial infarction in 33 hospitals in Lombardia. The response variables of
interest are:

• DB (door balloon time): it is the time between hospital admission and the arrival
time on the operating table where angioplasty can be performed.

• ALIVEIN: survival to discharge from hospital. It is equal to 1 if the patient is alive,
0 otherwise.

• ALIVE60: survival to 60 days from entrance into hospital. It is equal to 1 if the
patient is alive, 0 otherwise.

Available covariates are continuous, binary and categorical. The continuous ones are:

• AGE: patient age in years.

• EF: ejection fraction at the entrance into hospital, i.e. volume of blood that the
heart ejects from the left ventricle within each heartbeat with respect to the phys-
iological condition.

• ECG: elapsed time, in minutes, between the entrance into hospital and the first elec-
trocardiogram. It can assumes negative values since for some patients it has been
possible to carry out the electrocardiogram during the transport in the ambulance
thanks to TeleECG.

Binary covariates are:

• GENDER: 1 if the patient is a male, 0 if female.

• STres: it is the efficacy of the treatment, quantified by the reduction (at least 70%)
of the gap of the ST section of the electrocardiogram within one hour. It is equal
to 1 if there was no efficacy, 0 otherwise.
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• COMPLICATION: it assumes the value 1 if, after the operation, there were com-
plications, 0 otherwise.

• WEEKEND: it is equal to 1 if the patient was admitted to the hospital in a non-
working day (saturday, sunday or festivity) or between 6:00 pm and 8:00 am, 0
otherwise.

• MILAN: it denotes the geographical location of the hospital, it is equal to 1 if the
hospital is in Milan, 0 otherwise.

Other available binary variables are risk factors as DIABETES, SMOKING, HY-
PERTENSION, CHOLESTEROL, VASCULOPATIA, CKD (Chronic Kidney Disease),
preAMI (previous infarction): they assume the value 1 if the patient has them, 0 other-
wise.

Finally, the categorical covariates are:

• KILLIP: it is the severity of the infarction. It assumes values from 1 to 4, with
increasing severity of the infarction

• AMBULANCE TYPE (MA): it is the modality of access into the hospital. It as-
sumes the value 1 if an advanced ambulance (MSA), i.e. equipped of TeleECG
capable of performing the electrocardiogram and send it to the doctor in the op-
eration center, has been used. The value 2 indicates that it has been used a basic
ambulance (MSB), i.e. the ambulance without TeleECG, whereas 3 indicates a
nursing ambulance (MSI): there is nursing stuff on the ambulance but no doctors
and it is not possible to send the electrocardiogram. Finally, the value 4 means
that the patient has reached the hospital by his own.

• HOSPITAL: it is an integer index, from 1 to 33, denoting the hospital the patient
was admitted to and treated.

2.3 Preliminary analysis of the dataset
The original dataset is larger than the one we have considered for our Bayesian analysis.
Some patients from the original dataset were removed. In particular hospitals with a
number of patient lower than 5 were not considered. Moreover, 3 patients with a time
of discharge greater than 60 days (for whom, then, the variable survival to discharge no
longer makes sense) were removed and also 60 patients whose the variable DB is not
available, so that the number of patient is 1201. Finally, patients with missing values in
the covariates used in the likelihood were also removed.
On the whole, the final dataset contains 697 patients and 33 hospitals: of these, 12
(36.36%) are in Milan (44.48% of treated patients) and 21 (63.64%) outside Milan (55.52%
of treated patients). Frequencies of patients in each hospital are shown in Figure 2.2.
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Figure 2.2: Number of patients for hospitals.

The final dataset still contains missing data (NA). The following table shows the
percentages of missing data for each variable that presents them.

Table 2.1: Percentages of missing data.

Variable % NA
DIABETES 0.29
SMOKING 1.00
CHOLESTEROL 11.48
VASCULOPATIA 1.00

The dataset is highly unbalanced, since patients discharged alive from the hospital
are 675 (96.8%), while the ones alive at 60 days are 664 (that is, the 98.4% of patients
alive at discharge). Table 2.2 shows the percentages of survived patients, distinguishing
between those treated in Milan and outside Milan.

Table 2.2: Percentage of survived patients.

(a) discharged alive from hospital

Milan outside Milan
44.15% 55.85%

(b) alive at 60 days

Milan outside Milan
44.13% 55.87%
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The age varies from a minimum of 34 years to a maximum of 99 years (the histogram
is in figure 2.3). Men are the 77.62% of patients and women 22.38%.
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Figure 2.3: Histogram of the ages.

Figure 2.4 shows the boxplots of patients age divided by gender: women are older
than men.
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Figure 2.4: Boxplot of the ages with respect to gender.

Previous analysis on the original dataset (Prandoni, 2012) or on a similar dataset (see
Guglielmi et al., 2012) have shown that the gender is not a significant covariate, being
strongly correlated with age in this type of data.
To understand dependence between gender and age, the Fisher independence test was
performed, discretizing data according to Table 2.3: the p-value was 1.05 · 10−7, showing
strong evidence against the null hypothesis of independence.



CHAPTER 2. DATASET AND MEDICAL ISSUE DESCRIPTION 24

Table 2.3: Contingency table, age vs gender.

Men Women
age≤65 308 51
age>65 233 105

For the variable MA and KILLIP Table 2.4 shows the distribution of patients in the
respective categories:

Table 2.4: Percentage of patient respect to ambulance type and killip.

Modality %
MSA 19.66
MSB 18.36
MSI 2.30

Spontaneous 59.68

Killip %
1 84.22
2 9.76
3 3.01
4 3.01

As far as the only one continuous response variable, the DB time, is concerned, Fig-
ure 2.5 and Figure 2.6 show the boxplots stratified by modality of access (to see if there
are some differences depending on the ambulance type used to arrive to the hospital) and
by arrival time (working or no working day), respectively:
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Figure 2.5: Boxplot of DB time respect to the modality of access.

In particular, Figure 2.5 shows no significant difference between DB times related to
the different modality of access. We have also performed the nonparametric Kruskal-
Wallis test: this is useful when normality assumption can not be assumed, like in this
case, and the null hypothesis is that group means are equal. The p-value of the test
is equal to 0.5336, showing that there is no evidence against the hypothesis of equality
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of all the means. Also comparing the day and the arrival time (Figure 2.6) DB time
distributions seem very similar (Kruskal-Wallis test provided a p-value of 0.3907).
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Figure 2.6: Boxplot of DB time with respect to the arrival time: working hours from 8:00
am to 6:00 pm, from Monday to Friday.

2.4 A primary frequentist covariates selection
An analysis for the selection of significant covariates for the responses was performed in
Prandoni (2012); we will use it as preliminary analysis, considering covariates that are
been evidenced as significant in that work. Moreover, we use now the frequentist analysis
of the corresponding univariate models like benchmark for our future choices.
We considered three different univariate regression models, one for every response vari-
able: door to balloon time (DB), survival to discharge (ALIVEIN) and survival to 60
days (ALIVE60). For every model a linear regression will be performed, using frequentist
statistical techniques.

The first model relates the response variable DB to the covariates ECG, WEEKEND
and MA, considered significant thanks to the analysis in Prandoni (2012). For every
patient i = 1, . . . , n it is assumed that

log(DB)i = β0 + β1ECGi + β2WEEKENDi + β3MAi + εi, εi
i.i.d∼ N (0, τ−1),

where N (0, τ−1) denotes the normal distribution with mean 0 and precision τ .
The analysis was carried out using the lm function of the MASS package of R for the
frequentist approach. Variable MA, which is categorical, has been transformed in a
3 dimensional dummy vector, considering the class "Spontaneo" as reference, so the
intercept represents the mean of the logarithmic of DB for those patients who have
reached the hospital by their own.



CHAPTER 2. DATASET AND MEDICAL ISSUE DESCRIPTION 26

Call:
lm(formula = log(DB) ~ ECG + WEEKEND + MSA + MSB + MSI)

Residuals:
Min 1Q Median 3Q Max

-2.20390 -0.33703 -0.02079 0.30915 1.47673

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.302971 0.049247 87.376 < 2e-16 ***
ECG 0.007508 0.001116 6.730 3.57e-11 ***
WEEKEND 0.038416 0.040589 0.946 0.344
MSA 0.083135 0.066082 1.258 0.209
MSB 0.006035 0.141062 0.043 0.966
MSI 0.071983 0.052989 1.358 0.175
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5333 on 691 degrees of freedom
Multiple R-squared: 0.06983,Adjusted R-squared: 0.0631
F-statistic: 10.38 on 5 and 691 DF, p-value: 1.304e-09

The only one covariate that seems to be significant is ECG. The DB time increases if the
elapsed time for the first electrocardiogram is high.

Concerning the survival to discharge a logistic regression model has been considered.
For every patient i = 1, . . . , n, Yi is the Bernoulli random variable of mean pi that
describes if the patient is alive to discharge. Then we assume

Yi|pi
i.i.d∼ Be(pi),

logit(pi) = β0 + β1log(DB)i + β2AGEi + β3MILANi + β4KILLIPi

As well as MA, also KILLIP is a categorical covariate and it has been transformed onto
a 3 dimensional dummy vector, considering the class 1 as reference. The glm function of
the MASS package of R gives:

Call:
glm(formula = ALIVEIN ~ log(DB) + AGE + MILAN + Killip2 + Killip3 +

Killip4, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.1731 0.1004 0.1317 0.1863 1.9069

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 10.05412 2.50948 4.006 6.16e-05 ***
log(DB) -0.50340 0.47452 -1.061 0.2887
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AGE -0.04012 0.02055 -1.953 0.0508 .
MILAN -0.88339 0.53882 -1.639 0.1011
Killip2 -1.74644 0.69233 -2.523 0.0117 *
Killip3 -1.74396 1.13844 -1.532 0.1256
Killip4 -4.80502 0.65111 -7.380 1.59e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 195.35 on 696 degrees of freedom
Residual deviance: 125.45 on 690 degrees of freedom
AIC: 139.45

Number of Fisher Scoring iterations: 7

The analysis shows that the KILLIP variable is very significant if the severity of the
infarction is high, a little less significant if the severity is not high. In particular, in both
cases the probability of survival to discharge decreases. AGE is quite significant, less
than KILLIP variable.

For those patients survived to discharge we have considered the survival to 60 days
using one more time the logistic regression model. For every patient i = 1, . . . , nalive,
Yi is the Bernoulli random variable of mean ri that describes if the patient is alive to
discharge. Then we assume

Yi|pi
i.i.d∼ Be(ri),

logit(ri) = β0 + β1EFi + β2STresi + β3CKDi + β4MILANi

We got:

Call:
glm(formula = ALIVE60 ~ EF + STres + CKD + MILAN, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.3223 0.0978 0.1239 0.1912 0.7575

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.18657 1.34812 0.138 0.88993
EF 0.09515 0.03025 3.145 0.00166 **
STres -0.46494 0.66268 -0.702 0.48293
CKD -0.90928 0.81444 -1.116 0.26423
MILAN -0.07838 0.62419 -0.126 0.90007
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 112.390 on 674 degrees of freedom
Residual deviance: 99.622 on 670 degrees of freedom
AIC: 109.62

Number of Fisher Scoring iterations: 7

EF is a significant covariate. In particular, an high value of the ejection fraction gives a
positive contribution to the probability of survival to 60 days.

2.5 Standardization and dichotomization of the vari-
ables

In this work we will standardize all the continuous variables, i.e. log(DB), AGE, ECG
and EF. Furthermore, we dichotomize the variables MA and KILLIP. The reason of this
choice is to improve the convergence (in particular the mixing) of the Markov chain
MCMC that we will construct. Moreover, in this way it will be possible to make a
comparison with the results obtained in Prandoni (2012).

In particular, for the modality of access we distinguish between the class "Spontaneo"
(MA = 1) and the other classes (MA = 0). Similarly, KILLIP will assume the value 0
if the severity of the infarction is medium-low (class 1 and 2), or 1 if the severity of the
infarction is most serious (class 3 and 4). Table 2.5 shows the frequencies of patients in
the new categories:

Table 2.5: Percentage of patients with respect to modality of access and killip (now
dichotomized).

Modality %
Means 40.32

Spontaneous 59.68

Killip %
0 93.97
1 6.03
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Figure 2.7 shows the boxplot of log(DB) with respect to the new modality of access.

1 2

3
4

5

Means

Spontaneous

Figure 2.7: Boxplot of log(DB) with respect to the modality of access.

A slight difference in terms of the modality of access can be appreciated. This does not
happen if we don’t use the logarithm of DB. Using the nonparametric Kruskal-Wallis test
as in Section 2.3 we obtain a p-value equal to 0.3499. There is no evidence that the two
groups have different means.

2.5.1 Preliminary frequentist analysis of the modified dataset

We are going to repeat the analysis reported in Section 2.4, but now considering the
standardized and dichotomized covariates as explained above.

For the first level, since this time MA = 1 if the patient reached the hospital by his
own means, the intercept represents the mean of the (standardized) logarithmic of the
DB time for those patients who have reached the hospital with an ambulance. Using the
lm function we obtain the following output:

Call:
lm(formula = logDB ~ ECG + WEEKEND + MA)

Residuals:
Min 1Q Median 3Q Max

-3.9924 -0.6016 -0.0397 0.5487 2.6341

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.12737 0.10217 -1.247 0.213
ECG 0.25265 0.03688 6.851 1.62e-11 ***
WEEKEND 0.07536 0.07345 1.026 0.305
MA 0.03047 0.02943 1.035 0.301
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Residual standard error: 0.9674 on 693 degrees of freedom
Multiple R-squared: 0.06818,Adjusted R-squared: 0.06415
F-statistic: 16.9 on 3 and 693 DF, p-value: 1.323e-10

Again, the only one covariate that seems to be significant is ECG: DB time increases if
the elapsed time for the first electrocardiogram increases.

For the second level, using the glm function we obtain the following output:

Call:
glm(formula = ALIVEIN ~ logDB + AGE + MILAN + KILLIP, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.1718 0.0978 0.1284 0.1825 1.7944

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.8295 0.7015 9.735 < 2e-16 ***
logDB -0.2230 0.2604 -0.856 0.3919
AGE -0.5671 0.2577 -2.201 0.0277 *
MILAN -0.9357 0.5255 -1.781 0.0750 .
KILLIP -1.5399 0.2143 -7.185 6.74e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 195.35 on 696 degrees of freedom
Residual deviance: 128.11 on 692 degrees of freedom
AIC: 138.11

Number of Fisher Scoring iterations: 7

The KILLIP variable results strongly significant again, confirming as before that if the
severity of the infarction is high the probability of survival to discharge is low. Also AGE
and MILAN are significant and both of them contribute negatively to the survival to
discharge.

Finally, for the third level the result of the analysis is the following:

Call:
glm(formula = ALIVE60 ~ EF + STres + CKD + MILAN, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.3223 0.0978 0.1239 0.1912 0.7575
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.74007 0.53962 8.784 < 2e-16 ***
EF 0.91937 0.29233 3.145 0.00166 **
STres -0.46494 0.66268 -0.702 0.48293
CKD -0.90928 0.81444 -1.116 0.26423
MILAN -0.07838 0.62419 -0.126 0.90007
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 112.390 on 674 degrees of freedom
Residual deviance: 99.622 on 670 degrees of freedom
AIC: 109.62

Number of Fisher Scoring iterations: 7

Also in this case it seems that an high value of the ejection fraction gives a positive
contribution to the probability of survival to 60 days.



Chapter 3

The Bayesian model

We have to construct a Bayesian model where the response vector has three components:
the DB time (in logarithmic scale), the survival to discharge and the survival to 60 days.
Also, we want to consider the clustering structure induced by the Dirichlet process, as
described in Chapter 1.

For every patient i = 1, . . . , n, we consider the vector

Yi := (Yi1, Yi2, Yi3) := (log(DB)i, V IV OINi, V IV O60i).

Keeping the same notation as in Section 1.3, let ρn = {S1, . . . , Sk} denote a partition
of the n experimental units into k subsets Sj and let ei indicate which "latent class" is
associated with observation yi, i.e. which group in the partition is associated with obser-
vation yi with ei = j if i ∈ Sj. Recall that θj, j = 1, . . . , k, and η indicate respectively
clusters specific parameters and common hyperparameters, respectively (where k is the
number of clusters).
Moreover, in the sequel we will refer to data y1, . . . , yn as part of an indefinite exchangeable
sequence. For each class, e, the parameters φe determine the distribution of observations
from that class. α and G0 are, respectively, the concentration parameter and the base
distribution of a Dirichlet process (i.e., with base measure αG0). Finally, if yi belongs to
the class e, the likelihood will be denoted by F (yi, φe).

Conditionally to the partition, the data are independent between each cluster and,
within clusters, depend of cluster specific parameters and covariates; see (1.6) for the
general expression of the conditional distribution of the data. Moreover, for each i =
1, . . . , n we have

L(Yi|θj, ei = j,xi) = L(Yi1|θj1, ei = j,xi1)L(Yi2|θj2, Yi1,xi2)L(Yi3|θj3, Yi2,xi3), (3.1)

where xil denotes the set of covariates associated to the ith patient relatively to the level
l (l = 1, 2, 3). In particular, the covariates are

xi1 ={ECGi,WEEKENDi,MAi},
xi2 ={AGEi,MILANi, KILLIPi},
xi3 ={EFi, STresi, CKDi,MILANi}.

32
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3.1 Construction of the model

3.1.1 Likelihood and prior

The conditional distributions of each variable Yi is defined in (3.1). Each block there is
so defined:

Yi1|µij, τj
ind∼ N (µij, τ

−1
j ),

µij = β1
0j + β1

1jECGi + β1
2jWEEKENDi + β1

3jMAi,
(3.2)

Yi2|pijYi1
ind∼ Be(pij),

logit(pij) = β2
0j + β2

1jlog(DB)i + β2
2jAGEi + β2

3jMILANi + β2
3jKILLIPi,

(3.3)

Yi3|rijYi2
ind∼ Be(rijI{1}Yi2),

logit(rij) = β3
0j + β3

1jEFi + β3
2jSTresi + β3

3jCKDi + β3
4jMILANi.

(3.4)

so that the law of the ith response vector in the jth cluster is

L(Yi|β1
j ,β

2
j ,β

3
j , τj,xi) = L(Yi1|β1

j , τj,xi1)L(Yi2|Yi1,β2
j ,xi2)L(Yi3|Yi2,β3

j ,xi3), (3.5)

where β1
j = (β1

j0, . . . , β
1
j3), β2

j = (β2
j0, . . . , β

2
4j), β3

j = (β3
j0, . . . , β

3
j4) denote the regression

coefficients for the cluster j, whereas τ−1
j represents the variance of Yi1. Here (β1

j , τj)
constitutes the first set of cluster specific parameters, β2

j the second and β3
j the third. In

particular, θj = (β1
j , τj,β

2
j ,β

3
j ) is the parameters vector of dimension 15.

As far as the prior distribution p(θ1, . . . ,θk|η) in (1.6) is concerned, we assign it as
follows: each p(θj|η), where η = (b,β1

0,β
2
0,β

3
0), is given as the product of three blocks:

p(β1
j , τj,β

2
j ,β

3
j ) = p(β1

j |τj)p(τj)p(β2
j )p(β

3
j ) (3.6)

where

β1
j |τj ∼ N4

(
β1

0,
1

k1
0τj

I

)
, τj ∼ G(a, b), (3.7)

β2
j ∼ N5

(
β2

0,
1

k2
0

I

)
, (3.8)

β3
j ∼ N5

(
β3

0,
1

k3
0

I

)
. (3.9)

We are going to complete the prior specification assigning a prior distribution for the
common parameters η = (b,β1

0,β
2
0,β

3
0), so that the prior is specified as follows:
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θj|η
i.i.d∼ π(θj|η),

η ∼ π(η).

In particular, for any j = 1, . . . , k, we assume:

β1
0 ∼ N4(m1, B1), b ∼ G(a1, a2), (3.10)

β2
0 ∼ N5(m2, B2), (3.11)

β3
0 ∼ N5(m3, B3), (3.12)

where, for l = 1, 2, 3, ml, are fixed and Bl = gl(X
T
l Xl)

−1, being Xl the design matrix of
the level l. That is, we put a Zellner g-prior on the three common means.
An important result related to the structure of the Gibbs sampler that we will implement
is that the upgrade of the common parameters does not depends directly on the data but
only on the clusters specific parameters .
Therefore, the law of θj can be factorized as follows:

L (θj|η) = L
(
β1
j , τj,β

2
j ,β

3
j |b,β1

0,β
2
0,β

3
0

)
(3.13)

= L
(
β1
j , τj|β1

0, b
)
L
(
β2
j |β2

0

)
L
(
β3
j |β3

0

)
In conclusion our model has the following structure:

Y i|θei
ind∼ p(yi|θei) i = 1, . . . , k (3.14)

θi|η ∼ π(θi|η) i = 1, . . . , k

η ∼ π(η)

(e1, . . . , en) ↔ ρ ∼ π(ρ|x) ∝
k∏
j=1

c(Sj)g(x∗j).

We have just described the first 3 blocks, the only left is π(ρ).

3.2 Similarity functions in the PPMx model
We have to describe the prior π(ρ|xS) as in (1.4). Let’s denote with xL and xS the
covariates in the likelihood and similarity, respectively. Remember that, by definition
(1.5), g(·) is the marginal probability in an auxiliary model q:

g(x∗j) =

∫ ∏
i∈Sj

q (xi|ξj) q (ξj) dξj,

where x∗j = (xi, i ∈ Sj). Observing that the argument of the integral is the product
between a likelihood and a prior, we obtain the general expression of the similarity using
the Bayes’ theorem in the following way:
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∫
q(x|λ)q(λ)dλ = q(x|θ) q(θ)

q(θ|x)
= likelihood× prior

posterior
, (3.15)

and this expression is independent of θ. As pointed out in Muller, Quintana, and Rosner
(2011), an appropriate choice of the auxiliary model q implies computational simplicity.

In this work, covariates considered in the similarity functions are of categorical and
binary type. The following table summarizes which covariates are in the likelihood and
which in the similarity.

Table 3.1: Variables in the likelihood and similarity, distinguishing between continuous,
categorical and binary case.

xL xS

ECG
Continuous AGE

EF
WEEKEND CHOLESTEROL

MA COMPLICATIONS
MILAN DIABETES

Binary KILLIP SMOKING
STres HYPERTENSION
CKD preAMI

GENDER
VASCULOPATIA

Categorical HOSPITAL

3.2.1 Similarity, categorical covariates

When constructing a similarity function for categorical covariates, a default choice is
based on Dirichlet prior. Assume xi is a categorical covariate, xi ∈ {1, . . . , C}, with
x = (x1, . . . , xC). Let X = (X1, . . . , XC) be the vector of the observed numerosities for
every category and let nj be the size of the cluster. Then, X|p ∼Multinomial(nj, p):

π(x|p) =
nj!

x1! · · ·xC !
px11 · · · p

xC
C ,

C∑
i=1

xi = nj,

A priori p ∼ Dirichlet(γ):

π(p) =
1

B(γ)
pγ1−1

1 · · · pγC−1
C ,

M∑
i=1

pi = 1,

where 1
B(γ)

= Γ(γ1+···+γC)
Γ(γ1)···Γ(γC)

.
Given the data, it is straightforward to see that p|x ∼ Dirichlet(γ + x). Therefore,

using (3.15), the similarity in the categorical case is

g(x∗j) = π(x|p)× π(p)

π(p|x)
=

nj!

x1! · · ·xC !

B(γ + x)

B(γ)
. (3.16)
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This is a Dirichlet-Multinomial model without the multinomial coefficient. For binary
covariates the similarity function becomes a Beta-Binomial probability without the Bi-
nomial coefficient. We choose γ = (γ1, . . . , γC) such that γi = t ∀i ∈ {1, . . . , C}. It is
recommended to choose γi < 1. This is to facilitate the formation of clusters that are
characterized by the categorical covariates. For example, for C = 2, the bimodal nature
of a Beta distribution with such parameters assigns high probability to binomial success
probabilities close to 0 or 1. Similarly, the Dirichlet distribution with parameters γi < 1
favours clusters corresponding to specific levels of covariates (see Muller, Quintana, and
Rosner, 2011).
Also, if γi = 1 it results

g(x∗j) =
nj!

x1! · · ·xC !
Γ(C)

Γ(x1 + 1) · · ·Γ(xC + 1)

Γ(nj + C)
= nj!

Γ(C)

Γ(nj + C)
,

and so, in this case, the numerosities xi would not be considered.

3.3 Neal’s Algorithm
Use of Dirichlet process mixture models has become computationally feasible with the
development of Markov chain methods for sampling from the posterior distribution of
the parameters of the component distributions. Methods based on Gibbs sampling can
easily be implemented for model based on conjugate prior distributions, but when non-
conjugated priors are used, as is appropriate in many contexts, straightforward Gibbs
sampling requires that an often difficult numerical integration be performed.

As resumed in Neal (2000), West, Muller, and Escobar (1994), used a Monte Carlo
approximation to this integral, but the error from using such an approximation is likely
to be large in many contexts. MacEachern and Muller (1998) devised an exact approach
for handling non-conjugate priors that uses a mapping from a set of auxiliary parameters
to the set of parameters currently in use. Their algorithms based on this approach are
widely applicable, but somehow inefficient.

Neal (2000) reviews this past work and presents a new approach to Markov chain sam-
pling. A wide class of methods for handling non-conjugated priors uses Gibbs sampling
in a space with auxiliary parameters. This approach yields an algorithm that resembles
use of a Monte Carlo approximation to the necessary integrals, but which does not suffer
from any approximation error. The basic idea of auxiliary variable methods is that we
can sample from a distribution πx for x by sampling from some distribution πxy for (x, y),
with respect to which the marginal distribution of x is πx. The permanent state of the
Markov chain will be x, but a variable y will be introduced temporarily during an update
of the following form:

1. Draw a value for y from its conditional distribution given x, as defined by the joint
distribution πxy.

2. Perform some update of (x, y) that leaves πxy invariant.

3. Discard y, leaving only the value of x.

It is easy to see that this update for x will leave πx invariant as long as πx is the marginal
distribution of x under πxy.
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We can use this technique to update the ei for a Dirichlet process mixture model
without having to integrate with respect to G0. The permanent state of the Markov
chain will consist of the ei and the φe and when ei is updated we will introduce temporary
auxiliary variables that represent possible values for the parameters of components that
are not associated with any other observations. We than update ei by Gibbs sampling
with respect to the distribution that includes these auxiliary parameters.

Since observations yi are exchangeable and the component labels ei are arbitrary,
we can assume that we are updating ei for the last observation, and that ej for other
observations have value in the set {1, . . . , k−}, where k− is the number of distinct ej for
j 6= i. We can now visualize the conditional prior distribution for ei given the other ej
in terms of m auxiliary components and their associated parameters. The probability of
ei being equal to a e in {1, . . . , k−} will be n−i,e/(n− 1 + α), where n−i,e is the number
of times e occurs among the ej for j 6= i. The probability of ei having some other value
will be α/(n− 1 + α), which we will split equally among the m auxiliary components we
have introduced (see Neal, 2000 for details). In our case it will be m = 1. The algorithm
can be summarized as follows:

Algorithm 8. Let the state of the Markov chain consist of e = (e1, . . . , en) and
φ = (φe : e ∈ {e1, . . . , en}). Repeatedly sample as follow:

• For i = 1, . . . , n: Let k− be the number of distinct ej for j 6= i, and let h = k−+m.
Labels these ej with values in {1, . . . , k−} . If ei = ej for some j 6= i, draw values
independently from G0 for those φe for which k− < e ≤ h. If ei 6= ej for all j 6= i,
let ei have the label k−+ 1, and draw values independently from G0 for those φe for
which k− + 1 < e ≤ h. Draw a new value for ei from {1, . . . , h} using the following
probabilities:

P (ei = e| e−i, yi, φ1, . . . , φh) ∝

{
n−i,eF (yi, φe) for 1 ≤ e ≤ k−

α/mF (yi, φe) for k− < e ≤ h
(3.17)

where n−i,e is the number of cej for j 6= i that are equal to e. Change the state to
contain only those φe that are now associated with one or more observations.

• For all e ∈ {e1, . . . , en}: Draw a new value from φe|yi such that ei = e, or perform
some other update to φe that leaves this distribution invariant.

• Perform the update of all common parameters.

Note that the relabellings of the ej above are conceptual; they may or may not require
any actual computation, depending on the data structures used.

First step of Neal’s algorithm concerns the formation of the clusters. For any data,
the basic idea is to see how likely the data itself can be added to an existing cluster
or, otherwise, form a new cluster between m possible ones. We fix m = 1. A colourful
description of this partition structure is given by the Chinese restaurant process (Arra-
tia, Barbour, and Tavaré, 1992). Imagine that n − 1 customers are seated in k− tables.
The nth customer (that we label with i) will either choose an empty table with proba-
bility proportional to αF (yi, φe) for some α > 0, or an occupied table with probability
proportional to the number of occupants at the given table.
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In our case yi = (yi1, yi2, yi3), where, for i = 1, . . . , n, yi1, yi2 and yi3 are independently
drawn respectively from a Normal and two Bernoulli distributions. Remembering the
expression of the law of the response vector (3.5), for a fixed class c, F (yi, φe), has the
following expression:

F (yi, φe) =
( τj

2π

)1/2

exp
{
− τj

2
(yi1 − µij)2

}
× pyi2ij (1− pij)1−yi2

× ryi3ij (1− rij)1−yi3I{yi2=1},

where µij, τj, logit(pij) and logit(rij) are defined in Section 3.1.
As said in Section 1.3, the marginal distribution that a DP induces on partitions is

also a PPM with cohesion c(Sj) = α(|Sj| − 1)!. Indeed, an equivalent way to write (3.17)
is the following:

P (ei = e| e−i, yi, φ1, . . . , φh) ∝

{
c(Sj∪{yi})
c(Sj)

F (yi, φe) for 1 ≤ e ≤ k−

c({yi})/mF (yi, φe) for k− < e ≤ h

since c(Sj ∪ {yi})/c(Sj) = |Sj| = n−i,c, and c({yi}) = α.
To implement the PPMx we have to consider the similarity function in addiction to
cohesion, modifying the probabilities in the following way:

P (ei = e| e−i, yi, φ1, . . . , φh) ∝

{
c(Sj∪{yi})
c(Sj)

g(x∗j∪{xi})
g({x∗j})

F (yi, φe) for 1 ≤ e ≤ k−

c({yi})g({xi})/mF (yi, φe) for k− < e ≤ h
(3.18)

where x∗j = (xi, i ∈ Sj) represents the set of covariates in the cluster Sj as introduced in
Section 1.3.

3.3.1 Updates for cluster specific parameters

The second step of the algorithm is related to parameters actualization that appear in
the likelihood, i.e. β1

j , τj, β2
j and β3

j , for j = 1, . . . , k. The law of these parameters is
factorized as in (3.6).

It is clear that such update concerns every cluster created in the current iteration.
For this reason and to simplify notation we will write β, τ , β0 and k0 instead of βlj, τj,
βl0, kl0 for j = 1, . . . , k and l = 1, 2, 3, depending on the level, and consider only those
statistical units i belonging to cluster j; that is, the set {i : c(i) = j} whose cardinality
will be denoted with nj.

First level

Notice that the first factor in (3.5) is the final law of a Bayesian linear model with unknown
variance (as described in Appendix A). Indeed, let’s consider the variables Yi1 = log(DB)i
and remember the expression of the likelihood in (3.2). Define wi = log(DB)i and let
w = (w1, . . . , wnj). Then, it results:

w ∼ N (Xβ, τ−1Inj),
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where X is the design matrix and Inj represents the identity matrix of dimension nj.
The prior on the βs and τ is written in (3.10):

β|τ,β0 ∼ N4

(
β0,

1

τ
B0

)
, τ |b ∼ G(a, b),

with B0 = Inj/k0.
We label this distribution Normal-Gamma and write β, τ ∼ NG(β0, B0, a, b) for short.
It can be shown (see Appendix A) that the posterior distribution is still Normal-Gamma:

β, τ |w ∼ NG (β∗, B∗, a∗, b∗) ,

where

B∗ =
(
B−1

0 Inj +XTX
)−1

β∗ = B∗
(
B−1

0 β0 +XTw
)

a∗ = a+ nj/2

b∗ = b+
1

2

(
βT0 B

−1
0 β0 +wTw − (β∗)T (B∗)−1 (β∗)

)
.

Second and third level

Let’s consider the binary variables Yi2 = ALIV EINi and Yi3 = ALIV E60i.
The logit appears in the expression of the likelihoods defined in (3.3) and (3.4). Hence,

in this case, unlike the previous one, it is impossible to find a conjugated prior. For this
reason, a Random Walk Metropolis Hastings algorithm will be performed to sampling
from the unknown posterior distribution (see for instance Chib and Greenberg, 1995).
Let z ∼ N (0,Σ) and βprop = βold + z. We accept to upgrade the value of β from
βold to βprop with probability α = min

{
1, π (βprop) /π

(
βold

)}
, where π (β) is the target

distribution proportional to the product between the likelihood and the prior:

π (β) ∝
nj∏
i=1

{(
ex

T
i β

1 + ex
T
i β

)yi (
1

1 + ex
T
i β

)1−yi
}
exp

{
−k0

2
(β − β0)T (β − β0)

}
,

where xi is the ith row of the appropriate design matrix. We try to obtain an acceptance
rate between 30% and 40% fixing Σ proportional to the identity matrix: Σ = sI. The
choice of s is quite important to achieve the desired acceptance rate. The value of this
parameter may change if other hyperparameters change.

3.3.2 Updates for common parameters

We want now calculate the full conditionals distributions of the hyperparameters η =
(b,β1

0,β
2
0,β

3
0) introduced in Section 3.1. As already mentioned, the upgrade of these

common hyperparameters does not depends directly on the data but only on the cluster
specific parameters. That is, once θj have been updated for any j = 1, . . . , k, being k the
number of clusters in the current iteration, it is possible to proceed to such upgrade. Let
τ denote the entire vector of τj: τ = (τ1, . . . , τk). It results
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π (η|θ1, . . . ,θk) = π
(
b,β1

0,β
2
0,β

3
0|β1

1, . . . ,β
1
k, τ ,β

2
1, . . . ,β

2
k,β

3
1, . . . ,β

3
k

)
(3.19)

= π
(
β1

0, b|β1
1, . . . ,β

1
k, τ
)
π
(
β2

0|β2
1, . . . ,β

2
k

)
π
(
β3

0|β3
1, . . . ,β

3
k

)
We distinguish between the first, second and third level. Indeed, these last two levels

have the same functional form. Also, the index l that identifies the level will be understood
by the context.

First level

Remember that π (βj, τj|β0, b) = π (βj|τjβ0) π (τj|b). We have to upgrade β0 and b given
βj and τj, j ∈ {1, . . . , k}. As described before we have

π (β1, . . . ,βk, τ |β0, b) ∝ π (β1, . . . ,βk|β0, τ )π (τ |b) (3.20)

=
k∏
j=1

π (βj|β0, τj) π (τj|b) .

Hyperparameters upgrade is given by the Bayes’ rule:

π (β0, b|β1, . . . ,βk, τ ) ∝ π (β1, . . . ,βk, τ |β0, b) π (β0, b) , (3.21)

being π (β0, b) = π (β0) π (b), since there are no β0 and b in the likelihood.
After some calculations (see Appendix B) we obtain

b|τ1, . . . , τk ∼ G

(
a1 + ak, a2 +

k∑
j=1

τj

)
,

β0|β1, . . . ,βk, τ1, . . . , τk ∼ N4 (mk, Bk) ,

where

mk =

(
1

g

(
XTX

)
+ k0

k∑
j=1

τjI

)−1(
1

g

(
XTX

)
m+ k0

k∑
j=1

τjβj

)
,

Bk =

(
1

g

(
XTX

)
+ k0

k∑
j=1

τjI

)−1

.

Second and third level

In this case the structure of the full conditionals is simpler than before because of the
absence of τj in the covariance. We only have a prior on the mean vector β0, that is:

π (β1, . . . ,βk|β0) ∝
k∏
j=1

π (βj|β0) . (3.22)
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Using Bayes’ rule, the upgrade of β0 is given by the following expression:

π (β0|β1, . . . ,βk) ∝ π (β1, . . . ,βk|β0) π (β0) . (3.23)

After some calculations (see Appendix B) we obtain:

β0|β1, . . . ,βk ∼ N5 (mk, Bk) ,

where

mk =

(
1

g

(
XTX

)
+ k0kI

)−1
(

1

g

(
XTX

)
m+ k0

k∑
j=1

βj

)
,

Bk =

(
1

g

(
XTX

)
+ k0kI

)−1

.

This results holds for βi = βli, l = 2, 3.

3.4 Summary of the hyperparameters
In order to give greater clarity, we briefly summarize the hyperparameters of the model
described so far:

α denotes the total mass parameter of the DP prior.

kl0 are constants proportional to the inverse of the covariance of βlj, l = 1, 2, 3.

a is the shape parameter of the Gamma distribution that models the precision τj.

a1 is the shape parameter of the Gamma distribution on b.

a2 is the rate of the Gamma distribution on b.

ml are the means of the Normal distributions on βl0, l = 1, 2, 3.

gl are the constants in the Zellner g-priors on βl0, l = 1, 2, 3.



Chapter 4

Application to the STEMI dataset

In this chapter we analyze the Bayesian inference of the model described in Chapter 3 to
the data in Chapter 2. A posterior estimates relate the number of clusters Kn and the
global parameters η = (b,β1

0,β
2
0,β

3
0).

We have to fix the value of all the hyperparameters summarized in Section 3.4. Re-
member that α denotes the total mass parameter of the DP prior. It is known that the
number of clusters Kn depends on it. Specifically, from Antoniak (1974), when the prior
is the PPM with no covariates, a priori we have:

E [Kn] =
n∑
i=1

α

α + i− 1
.

Here n = 697; Table 4.1 shows E [Kn] as a function of some values of α.

Table 4.1: A priori values of the mean of Kn for some value of α.

α 0.1 1 10
E [Kn] 1.70 7.13 43.09

Moreover, we have observed that, under the PPMx model, the number of clusters is
smaller than that under the PPM model. For this reason we fixed α = 10.
A priori the expression of the mean and variance of cluster specific parameters θj, for
j = 1, . . . , k, is

E [τj] =
aa2

a1 − 1
and V ar(τj) =

aa2
2(a+ a1 − 1)

(a1 − 1)2(a1 − 2)
.

Note that (see Appendix C), from (3.7), it results that b = E(τj|b)/V ar(τj|b).
Moreover, it is straightforward to see that the prior marginal mean of βlj is equal to ml,
for l = 1, 2, 3, whereas the expression of the prior marginal covariance matrix changes
between the first level and the other two (see Appendix C):

Cov
[
β1
j

]
=

a1

a2(a− 1)

1

k1
0

I + g1

(
XT

1 X1

)−1
, Cov(βlj) =

1

kl0
I + gl

(
XT
l Xl

)−1
, l = 2, 3.

As a default choice, we have fixed kl0 = 1/10 and gl = 10 in order to have, a priori,
an "average" value for the variances within the clusters. Finally, we set a = 2, a1 = 2,

42
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a2 = 1, so that the precision τj has finite mean equal to 1 and infinite variance.
Concerning the values of ml, we set them equal to the frequentist estimates obtained in
Section 2.5.1.

In conclusion, we consider the model (3.14) under the following "benchmark" prior:

β1
j |τj ∼ N4

(
β1

0,
10

τj
I

)
, τj ∼ G(2, b), β1

0 ∼ N4

(
m1, 10

(
XT

1 X1

)−1
)
, b ∼ G(2, 1), (4.1)

β2
j ∼ N5

(
β2

0, 10I
)
, β2

0 ∼ N5

(
m2, 10

(
XT

2 X2

)−1
)
, (4.2)

β3
j ∼ N5

(
β3

0, 10I
)
, β3

0 ∼ N5

(
m3, 10

(
XT

3 X3

)−1
)
. (4.3)

Posterior and predictive estimates have been obtained implementing in C the Gibbs
sampler algorithm described in Section 3.3. We run the algorithm for 1,050,000 iterations
with a burn-in of 50,000 iterations and a thinning of 100 to reduce the autocorrelation
of the Markov chain (in particular of Kn, that seems to be highly correlated). The final
sample size is 10,000.
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4.1 The PPMx model

4.1.1 Posterior estimates of global parameters

Concerning the number of clusters Kn, Figure 4.1 shows some details about the conver-
gence of the Markov chain approximating the marginal posterior distribution.
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Figure 4.1: Markov chain sample of the number of clusters Kn.

We get E [Kn] = 2.33 and V ar (Kn) = 0.29. From Figure 4.1c it is clear that there
is convergence but that it is quite slow. Actually, this behaviour is related only to the
variable Kn. All the other global parameters converge more quickly, as we are going to
show now.
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Figure 4.2 shows the trace plot, the density estimation and the auto correlation func-
tion of the component of the MC posterior of the parameter b.
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Figure 4.2: Markov chain sample of b.

The posterior mean and variance of b are E [b] = 1.58 and V ar (b) = 0.47, respectively.
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Concerning the first component, the logarithm of DB, Figure 4.3 and 4.4 show the
trace plots and the density estimation of the β1

0 components, whereas the values of the
posterior means and 95% credible regions are shown in Table 4.2.
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Figure 4.3: Traces of β1
0 components.
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Figure 4.4: Posterior kernel density estimation of β1
0 components.
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Table 4.2: Posterior means and credible regions for β1
0 components.

variable parameter mean 2.5% 50% 97.5%
Intercept β1

00 -0.08 -0.50 -0.08 0.34
ECG β1

01 0.25 0.02 0.25 0.49
WEEKEND β1

02 0.08 -0.39 0.08 0.54
MA β1

03 0.07 -0.41 0.07 0.53

From these results we note that the values of the parameter corresponding to ECG
are centered on positive numbers. We deduce that the DB time increases if the elapsed
time for the first electrocardiogram is high. WEEKEND and MA variable do not seem
to be particularly significant, since they are centered around zero.

Concerning the second component, the the survival to discharge, Figure 4.5 and 4.6
shows the trace plots and the density estimation of the β2

0 components, whereas the
values of the posterior means and 95% credible regions are shown in Table 4.3.
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Figure 4.5: Traces of β2
0 components.
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Figure 4.6: Posterior kernel density estimation of β2
0 components.

Table 4.3: Posterior means and credible regions for β1
0 components.

variable parameter mean 2.5% 50% 97.5%
Intercept β2

00 4.85 4.53 4.85 5.17
log(DB) β2

01 -0.20 -0.44 -0.20 0.03
AGE β2

02 -0.65 -0.88 -0.65 -0.41
MILAN β2

03 -0.84 -1.32 -0.84 -0.36
KILLIP β2

04 -3.48 -4.46 -3.48 -2.49

All the variables we have considered are significant. From Figure 4.6 we have that all
parameters are centered on negative values. The DB time gives a negative contribution
to the survival to discharge. Moreover, with increasing age, the probability of survival
to discharge decreases. Also the severity of the infarction has a strong impact on the
survival to discharge: if the severity is high the probability of survival to discharge is
low. Finally, it seems that if the patient is treated in an hospital in Milan the survival
probability to discharge is lower.



CHAPTER 4. APPLICATION TO THE STEMI DATASET 49

Concerning the third component, the survival to 60 days, Figure 4.7 and 4.8 shows
the trace plots and the density estimation of the β3

0 components, whereas the values of
the posterior means and 95% credible regions are shown in Table 4.4.
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Figure 4.7: Traces of β3
0 components.
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Figure 4.8: Posterior kernel density estimation of β3
0 components.
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Table 4.4: Posterior means and credible regions for β1
0 components.

variable parameter mean 2.5% 50% 97.5%
Intercept β3

00 4.46 4.11 4.46 4.81
EF β3

01 1.36 1.12 1.36 1.60
STres β3

02 -0.58 -1.20 -0.57 0.02
CKD β3

03 -1.65 -2.50 -1.65 -0.78
MILAN β3

04 -0.22 -0.69 -0.22 0.26

Also in this case all the variables in the likelihood are significant. The parameter
corresponding to EF is the only one centered on positive numbers. This means that there
are more probabilities of survival to 60 days if the value of the ejection fraction increases.
STres variable contributes negatively to the survival to 60 days. This is reasonable: if the
treatment is not efficient there are less probabilities that the patient survives. Also CKD
gives a negative contribution. Finally, observe that, as for the second component, the
variable MILAN seems to give a negative contribution to the survival at 60 days, even if
the evidence is stronger for the survival to discharge.

This effect has already been underlined in Guglielmi et al. (2013): epidemiologists
confirmed that epidemiology is different between Milan and his neighbourhoods.

4.1.2 Robustness analysis

We have performed a sensitivity analysis with respect to the hyperparameters.

0 2000 4000 6000 8000 10000

2
4

6
8

(a) Traces of Kn

0
.0

0
.1

0
.2

0
.3

0
.4

D
e

n
s
it
y

1 2 3 4 5 6 7 8 9

(b) Posterior number of clusters

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(c) ACF of Kn

Figure 4.9: Markov chain sample of the number of clusters Kn (α = 100).
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We run several iterations changing the values of the constants kl0, the total mass parameter
α and the parameters of the Gammas a, a1 and a2. All the posterior estimates are very
robust, since the estimated values are very similar. Some changes appear for the only Kn.
Specifically, if α = 100 it seems that Kn converges more quickly, as shown in Figure 4.9.
In this case we get E (Kn) = 3.56 and V ar (Kn) = 1.09. As expected, both mean
and variance of Kn are larger than before. A possible reason for which we have faster
convergence is that the chain explores the space of the states by varying more frequently,
since the variance is larger.

In this Subsection we assume that k2
0 = k3

0 = 1/2, keeping k1
0 = 1/10 as before. In

particular, for the βl0 components we report the trace plots and the tables of the credible
regions.

Concerning the number of clusters Kn, Figure 4.10 shows some detail about the
posterior estimate and convergence of the Markov chain.
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Figure 4.10: Markov chain sample of the number of clusters Kn (k2
0 = k3

0 = 1/2).

In this case it is E [Kn] = 2.76 and V ar (Kn) = 0.37.
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Figure 4.11 shows the trace plot, the density estimation and the auto correlation
function of the parameter b.
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Figure 4.11: Markov chain sample of b (k2
0 = k03 = 1/2).

The posterior mean and variance of b are E [b] = 1.42 and V ar (b) = 0.39
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Concerning the first component, the logarithm of DB, Figure 4.12 shows the trace
plots of the β1

0 components.
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Figure 4.12: Traces of β1
0 components (k2

0 = k3
0 = 1/2).

Table 4.5 shows the values of the a posterior means and 95% credible regions of β1
0

components.

Table 4.5: Posterior means and credible regions for β1
0 components (k2

0 = k03 = 1/2).

variable parameter mean 2.5% 50% 97.5%
Intercept β1

00 -0.08 -0.49 -0.08 0.34
ECG β1

01 0.25 0.02 0.25 0.49
WEEKEND β1

02 0.07 -0.40 0.07 0.53
MA β1

03 0.07 -0.39 0.07 0.54
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Concerning the second component, the survival to discharge, Figure 4.13 shows the
trace plots of the β2

0 components.
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Figure 4.13: Traces of β2
0 components (k2

0 = k3
0 = 1/2).

Table 4.6 shows the values of the a posterior means and 95% credible regions of β2
0

components.

Table 4.6: Posterior means and credible regions for β1
0 components (k2

0 = k03 = 1/2).

variable parameter mean 2.5% 50% 97.5%
Intercept β2

00 4.86 4.54 4.86 5.18
log(DB) β2

01 -0.20 -0.43 -0.20 0.03
AGE β2

02 -0.64 -0.88 -0.64 -0.41
MILAN β2

03 -0.85 -1.32 -0.85 -0.39
KILLIP β2

04 -3.51 -4.44 -3.52 -2.60
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Concerning the third component, the survival to 60 days, Figure 4.14 shows the trace
plots of the β3

0 components.
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Figure 4.14: Traces of β3
0 components (k2

0 = k03 = 1/2).

Table 4.7 shows the values of the a posterior means and 95% credible regions of β3
0

components.

Table 4.7: Posterior means and credible regions for β1
0 components (k2

0 = k03 = 1/2).

variable parameter mean 2.5% 50% 97.5%
Intercept β3

00 4.47 4.14 4.47 4.81
EF β3

01 1.36 1.13 1.36 1.59
STres β3

02 -0.57 -1.15 -0.58 0.01
CKD β3

03 -1.64 -2.46 -1.64 -0.83
MILAN β3

04 -0.22 -0.69 -0.22 0.24

As mentioned before, we notice that all the posterior estimates are very robust. The
only different thing that can be observed is the behaviour of Kn. Mean and variance are
slightly higher than before and the mode is equal to 3 instead of 2.
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4.1.3 Prediction

With reference to the hyperparameters fixed in the "benchmark" prior at the beginning
of the Chapter, we are interested in making prediction for the response of a new unit
that presents some combination of covariates of interest. This can be done in the same
Gibbs sampler and the idea is very similar to what we do in the first step of Neal’s
algorithm (see equation (3.18)): let xn+1 denote the vector of covariate values where we
want prediction (could be an observed or unobserved combination). Keeping the same
notations of Chapter 3, proceed to allocate this new individual to a new cluster or in an
existing one with the following probabilities:

P (en+1 = j|φ1, . . . , φh) ∝

{
c(Sj∪{n+1})

c(Sj)

g(x∗j∪{xn+1})
g({x∗j})

for 1 ≤ j ≤ k−

c({n+ 1})g({xn+1}) for k− < c ≤ h
(4.4)

Note that only the cohesion and similarity functions c(·) and g(·) contribute in giving a
label to the new unit. Once assigned the new individual to the cluster j, we associate to
him cluster specific parameters θj. We repeat this for all the iterations. Therefore, it is
possible generate the three dimensional response Yn+1 from a Normal and two Bernoulli
distributions with appropriate parameters (as described in Section 3.1.1).

In this way, the probabilities of survival to discharge and at 60 days of the (n+ 1)th
unit (denoted with pn+1 and rn+1), can be estimated by the ergodic means.
Concerning the first response variable, an alternative way of displaying the prediction
is to compute the predictive density of the first response. That is, we can compute, on
an appropriate grid, the values that the Normal distribution with actualized parameters
assumes.

Prediction for patients in the dataset

We first consider the 697 units in the dataset (i.e. we used the data twice). In this case,
concerning the variable log(DB) we calculated the Bayesian p-values for every unit. This
is possible since the true values of the variable Yi1 are available for every i. Later we will do
prediction for unobserved units. In this case the values of Yi1 are not available, so that we
will proceed calculating the predictive density for every unit of interest. Figure 4.15 shows
the Bayesian p-values together with the predictive probabilities of survival to discharge
and at 60 days for every patient in the dataset.
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Figure 4.15: Bayesian p-values for Yi1 and predictive survival probabilities for Yi2 and Yi3.

The number of units with Bayesian p-value lesser than 0.05 is 204 (29.3%). We observe
that the predictive probabilities of survival for every patient are all high and near to 1.

Prediction for patients with a combination of covariates of interest

We want now to predict the behaviour of unobserved units. In order to do this, we have
to create a dataset with units presenting covariates of interest. In particular, we choose
to fix some covariate in the likelihood, assuming as missing all the other ones in the
similarity. We select the most significant covariates of interest based on the results that
we get in the previous section, i.e. all continuous (and standardized) covariates (ECG,
AGE and EF) and some binary one (KILLIP, MILAN, CKD and STres). All selected
binary covariates assume the value 0 or 1. We let ECG assume values in {−4, 0, 4},
whereas AGE and EF assume values in {−2, 0, 2}. So the number of (unobserved) units
in the new dataset generated is equal to 33 × 42 = 432.

Concerning the log(DB), as mentioned above, we are going to calculate the predictive
densities for every unit i = 1, . . . , 432 on an appropriate grid of values. The problem that
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we have to solve is to find a common range of values for which all the densities are
considerably larger than 0. A good choice seems to be the interval [−4, 4]. Figure 4.16
shows the predictive densities, distinguishing by the three different values of ECG variable
established before.
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.5 ECG=−4

ECG=0

ECG=4

Figure 4.16: Predictive posterior densities of log(DB) for the 432 units generated.

It is clear that the variable ECG explains perfectly the three groups in evidence in
the above figure. Indeed, the numerosities of each group are exactly 432/3=144.
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Concerning the survival to discharge and at 60 days, Figure 4.17 shows the predictive
probabilities, distinguishing by patients for which the severity of the infarction is high
(KILLIP=1) or low (KILLIP=0).
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(a) Predictive probabilities of survival to
discharge.
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(b) Predictive probabilities of survival at 60
days.

Figure 4.17: Predictive probabilities of survival for the 432 units generated (divided by
KILLIP).

From Figure 4.17a we can clearly identify separated groups of units with higher or
lower probability of survival to discharge. The same holds for Figure 4.17b relatively
to the probability of survival at 60 days, even if with less evidence. As expected, the
variable KILLIP explains correctly these groups. In practice, the strong significance of
the KILLIP variable with respect to the survival to discharge is confirmed. We observe
that the units with the highest probabilities of survival to discharge are those for which
the severity of the infarction is not high (Figure 4.17a).

4.1.4 Clustering

Each iteration of the Markov chain yields a clustering of the patients. We want now to
find a method by which we can get a cluster estimate of the data. Let’s denote with
e1, . . . , eB the posterior clustering distribution obtained using MCMC, where B is the
number of sampled clusterings (i.e. B is the final sample size). Every ei is a vector
of labels of dimension n. Usually, for every clustering e ∈ {e1, . . . , eB}, an association
matrix δ(e) of dimension n × n can be formed whose (i, j) element is δi,j(e), an indi-
cator of whether element i is clustered with element j. Element-wise averaging of these
associations matrices yields the pairwise probability matrix of clustering, denoted with
π̂.

In the literature one can find various approaches. As summarized in Dahl (2006),
Medvedovic and Sivaganesan (2002) suggest forming a clustering estimate by using the
pairwise probability matrix π̂ as a distance matrix in hierarchical agglomerative cluster-
ing. It seems counterintuitive, however, to apply an ad hoc clustering method on top of
a model which itself produces clustering.
Perhaps the simplest method is to select the observed clustering that maximizes the den-
sity of the posterior clustering distribution. This is known as the maximum a posteriori
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(MAP) clustering. Unfortunately, the MAP clustering may only be slightly more probable
than the next best alternative, yet represent a very different allocation of observations.

Dahl (2006) introduces the least-square model-based clustering, a new method for es-
timating the clustering of observations using draws from a posterior clustering distribu-
tions. The method is based on the pairwise probability matrix π̂ that units are clustered
together, but, unlike in Medvedovic and Sivaganesan (2002), here it selects one of the
observed clusterings in the Markov chain as the point estimate. Specifically, the last
square clustering els is the observed clustering e which minimizes the sum of squared
deviations of its association matrix δ(e) from the pairwise probability matrix π̂:

eLS = arg min
e∈{e1,...,eB}

n∑
i=1

n∑
j=1

(δi,j(e)− π̂i,j)2 . (4.5)

The least square clustering has the advantage that it uses information from all the clus-
terings (via the pairwise probability matrix) and is intuitively appealing because it selects
the "average" clustering, instead of forming a clustering via an external, ad hoc clustering
algorithm.

We computed the least-square model-based cluster estimate as in (4.5): we obtained
3 groups as reported in Table 4.8. In order to display the estimated clusters, we plot
the points in the plane (the same color means units in the same cluster) defined by
two continuous covariates. Available continuous variable are ECG, AGE, EF and DB
(in logarithmic scale, even if it is not a covariate), so that all possible combinations of
plots are

(
4
2

)
= 6. However we consider only the 3 plots where the variable DB appears,

since it seems that we get a good clustering. Figure 4.18 shows this three plots (with
appropriate scales), distinguishing between patients deceased to discharge, at 60 days
and the remaining survived, whereas Table 4.8 shows the frequencies in the groups.
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Figure 4.18: Plots of AGE, ECG and EF with respect to log(DB) highlighting the
clusters.

Table 4.8: Numerosities of the groups.

Labels 1 2 3
Numerosities 641 45 11
Color Black Red Green

It is clear that it is the response DB that drives the clusters. Moreover, it does not
seems to be a relationship between the clustering and patients survival.

In order to make some comparison, we are now going to show the same plot but
for different values of the hyperparameters. Figure 4.19 and 4.20 show the clustering
obtained when k2

0 = k3
0 = 1/2 and α = 100, respectively, whereas Tables 4.9 and 4.10

show the respective groups numerosities.
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Figure 4.19: Plots of AGE, ECG and EF with respect to log(DB) highlighting the clusters
(k2

0 = k3
0 = 1/2).

Table 4.9: Numerosities of the groups (k2
0 = k3

0 = 1/2).

Labels 1 2 3
Numerosities 600 75 22
Color Black Red Green
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Figure 4.20: Plots of AGE, ECG and EF with respect to log(DB) highlighting the clusters
(α = 100).

Table 4.10: Numerosities of the groups (α = 100).

Labels 1 2 3
Numerosities 632 10 55
Color Black Red Green

It seems that increasing the values of k2
0 and k3

0 (i.e. decreasing the a priori variance
of cluster specific parameters β2

j and β3
j ) the numerosities of the detected groups by

Dahl’s algorithm increase too. The same result holds with increasing the value of the
total mass parameter α: increasing α seems to create larger clusters, but not more of
them. Apparently, the choice of this parameter is not strongly relevant.
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4.2 Comparison with the PPM model
Finally, we are interested in comparing the PPMx model with the PPM model, i.e. to
understand what inference we get if we do not assume a prior depending on covariates.
As mentioned in Section 1.3, the PPM coincides exactly with a DP in the sense that the
marginal distribution that a DP induces on partition is also a PPM with cohesions c(Sj) =
α(|Sj|−1)!, as in our case. Roughly speaking, we do not consider the similarity functions
in equation (3.18). In such a way we consider only the covariates in the likelihood, and
the same number n = 697 of patients.
To make comparison we keep the same values of hyperparameters fixed at the begin of
the chapter in the "benchmark" prior.

4.2.1 Posterior estimates of global parameters

Concerning the number of clusters Kn, Figure 4.21 shows some detail about the posterior
estimate and convergence of the Markov chain.
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Figure 4.21: Markov chain sample of the number of clusters Kn in the PPM.

We get E [Kn] = 19.24 and V ar (Kn) = 16.08. It is clear that the Markov chain
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converges. If we get rid of the covariates in the prior for the partition parameter, the
convergence is faster. Also, posterior mean and variance are pretty different and larger.
This is related to the value of the total mass parameter α that, as we will see later, here
seems to be more relevant.

Figure 4.22 shows the trace plot, the density estimation and the auto correlation
function of the parameter b.
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Figure 4.22: Markov chain sample of b in the PPM.

The posterior mean and variance of b are E [b] = 0.49 and V ar (b) = 0.05. These
values are quite different from those obtained in the PPMx model.
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Concerning the first component, the logarithm of DB, Figure 4.23 and 4.24 shows the
trace plots and the density estimation of the β1

0 components, whereas Table 4.11 shows
the values of the posterior means and 95% credible regions distinguishing between the
PPM and the PPMx model.
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Figure 4.23: Traces of β1
0 components in the PPM.
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Figure 4.24: Posterior kernel density estimation of β1
0 components in the PPM.
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Table 4.11: Posterior means and credible regions for β1
0 components, comparison between

PPMx and PPM.

PPMx PPM
variable parameter mean 2.5% 50% 97.5% mean 2.5% 50% 97.5%
Intercept β1

00 -0.08 -0.50 -0.08 0.34 -0.04 -0.45 -0.04 0.37
ECG β1

01 0.25 0.02 0.25 0.49 0.26 0.03 0.26 0.50
WEEKEND β1

02 0.08 -0.39 0.08 0.54 0.04 -0.39 0.04 0.49
MA β1

03 0.07 -0.41 0.07 0.53 0.03 -0.41 0.03 0.49

Concerning the second component, the the survival to discharge, Figure 4.25 and 4.26
shows the trace plots and the density estimation of the β2

0 components, whereas Table 4.12
shows the values of the posterior means and 95% credible regions distinguishing between
the PPM and the PPMx model.
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Figure 4.25: Traces of β2
0 components in the PPM.
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Figure 4.26: Posterior kernel density estimation of β2
0 components in the PPM.

Table 4.12: Posterior means and credible regions for β2
0 components, comparison between

PPMx and PPM.

PPMx PPM
variable parameter mean 2.5% 50% 97.5% mean 2.5% 50% 97.5%
Intercept β2

00 4.85 4.53 4.85 5.17 4.87 4.55 4.87 5.19
log(DB) β2

01 -0.20 -0.44 -0.20 0.03 -0.20 -0.44 -0.20 0.03
AGE β2

02 -0.65 -0.88 -0.65 -0.41 -0.65 -0.89 -0.65 -0.41
MILAN β2

03 -0.84 -1.32 -0.84 -0.36 -0.85 -1.33 -0.85 -0.37
KILLIP β2

04 -3.48 -4.46 -3.48 -2.49 -3.55 -4.53 -3.55 -2.57

Concerning the third component, the the survival to 60 days, Figure 4.27 and 4.28
shows the trace plots and the density estimation of the β3

0 components, whereas Table 4.13
shows the values of the posterior means and 95% credible regions distinguishing between
the PPM and the PPMx model.
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Figure 4.27: Traces of β3
0 components in the PPM.
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Figure 4.28: Posterior kernel density estimation of β3
0 components in the PPM.
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Table 4.13: Posterior means and credible regions for β3
0 components, comparison between

PPMx and PPM.

PPMx PPM
variable parameter mean 2.5% 50% 97.5% mean 2.5% 50% 97.5%
Intercept β2

00 4.46 4.11 4.46 4.81 4.48 4.14 4.48 4.81
EF β2

01 1.36 1.12 1.36 1.60 1.37 1.13 1.37 1.61
STres β2

02 -0.58 -1.20 -0.57 0.02 -0.58 -1.17 -0.58 0.03
CKD β2

03 -1.65 -2.50 -1.65 -0.78 -1.65 -2.50 -1.65 -0.77
MILAN β2

04 -0.22 -0.69 -0.22 0.26 -0.22 -0.69 -0.22 0.24

From Tables 4.11, 4.12 and 4.13, we get that posterior estimates of the global param-
eters obtained under the PPM are very similar to those obtained under the PPMx. In
particular, concerning the posterior means and quantiles, for each variable the signs are
the same in both models and the values are strongly similar.

As mentioned before, the PPM model is less robust wit respect to the value of α, the
total mass parameter. Indeed the posterior distribution of Kn can be rather different.
Let α = 1. Figure 4.29 shows the posterior estimate of the number of clusters and the
convergence of the Markov chain.
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Figure 4.29: Markov chain sample of the number of clusters Kn in the PPM (α = 1).

In this case it is E [Kn] = 4.09 and V ar (Kn) = 2.17 and we observe that Kn is very
sensitive to changes of α.
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4.2.2 Prediction

Concerning the prediction, in order to make comparison between the two models we
proceed like in Section 4.1.3 but considering only patients in the dataset. In this way, for
every patient we obtained the predictive probabilities of survival to discharge and at 60
days and the Bayesian p-values, as showed in Figure 4.30
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Figure 4.30: Bayesian p-values for Yi1 and predictive survival probabilities for Yi2 and Yi3.

Also in this the number of units with Bayesian p-value lesser than 0.05 is quite high
(208 units, corresponding to 29.8%) and the predictive probabilities of survival for every
patient are all high and near to 1.

4.2.3 Clustering

In order to see what change in clustering units implementing the PPM, we computed
the least-square cluster estimate. It is clear that the number of clusters of the optimal
partition will be larger than before; as can be noticed observing the density of the posterior
number of clusters in Figure 4.21c, the minimum is 5.
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Figure 4.31 shows the same three plots of Section 4.1.4, distinguishing between pa-
tients deceased to discharge, at 60 days and the remaining survived, whereas Table 4.14
shows the groups numerosities.
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Figure 4.31: Plots of AGE, ECG and EF with respect to log(DB) highlighting the clusters
in the the PPM.
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Table 4.14: Numerosities of the groups.

Labels Numerosities Color
1 612 Black
2 61 Red
3 1 Green
4 6 Blue
5 1 Yellow
6 9 Gray
7 1 Magenta
8 2 Orange
9 1 Purple
10 1 Cyan
11 2 Coral

As expected, the number of groups identified by Dahl’s algorithm is larger than before.
However, there is always a group containing a large percentage of units (those with the
label 1, whose numerosity is 612). In general the clustering seems to make sense. In
particular we can observe that all the 6 units labelled with 4 (and plotted with the color
Blue) correspond to deceased patients.

4.3 Conclusion and further work
This work constitutes a first attempt of construction of a Bayesian model where the prior
on the random partition depends on covariates, for the application to the dataset on
patients affected by STEMI described in Chapter 2. Almost all included covariates on
the conditional distribution of the data, given the parameters, seem to be significant.
Conversely, no covariate seems to be able to explain the computed cluster estimates,
which instead are well interpreted by the outcome response DB.

Further work could include assuming a new model where different covariates are set in
the likelihood (while all the remaining ones go into the similarity function), or to provide
a different cluster estimate under the model we have considered so far.



Appendix A

The Bayesian linear model with
unknown variance

Let y = (y1, . . . , yn) be a vector of n response variables and

X =

1 x12 · · · x1p
...

...
...

1 xn2 · · · xnp

 ,

the design matrix of n×p covariates. A common structure for the model of the relationship
between the response variable y and the covariates X is the standard linear regression
model given by

y = Xβ + ε,

where β is a vector of unknown coefficients and ε is a vector of disturbance term with
mean zero. Equally the model can be written asy1

...
yn

 =

1 x12 · · · x1p
...

...
...

1 xn2 · · · xnp


β1

...
βp


ε1...
εn

 .
The Bayesian approach to fitting the linear model consists of three steps:

1. assign priors to all unknown parameters.

2. write down the likelihood of the data given the parameters;

3. determine the posterior distribution of the parameters given the data using Bayes’
theorem.

Step 1: Prior selection

The unknown parameters in the model are the vector of coefficients β and the regres-
sion variance τ−1. On both priors are applied to represent the knowledge about the
distribution of the parameters. It is reasonable to choose the prior distribution in a way
that the posterior distribution belongs to a know family. In particular, we choose the
Normal-Gamma distribution that is a conjugate prior for the Bayes linear model:

β, τ ∼ NG(β0, B0, a, b).
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Specifically, β0 corresponds to the location parameter and B0 to the covariance matrix of
the normal distribution and a, b denote the parameters of the Gamma distribution. The
density function of the prior is then given by:

f(β, τ) = f(β|τ)f(τ) (A.1)
= N (β|β0, τ

−1B0)G(τ |a, b)

∝ τa+p/2−1exp
{
−τ

2
[(β − β0)TB−1

0 (β − β0) + 2b]
}
.

Step 2: Likelihood

Given the normal distribution of the error the likelihood function of the model is

f(Y |β, τ) = N (Y |Xβ, τ−1I) (A.2)

=
( τ

2π

)n
2
exp

{
−(Y −Xβ)T (τ−1I)−1(Y −Xβ)

2

}
.

That is, Y follows a Normal distribution with mean Xβ and precision τI.

Step 3: Posterior distribution

Finally, the posterior distribution is derived by multiplying (A.1) with (A.2):

f(β, τ |y) ∝ f(β, τ)f(y|β, τ)

∝ τa+p/2−1 × exp
{
−τ

2
[(Y −Xβ)T (Y −Xβ) + (β − β0)TB−1

0 (β − β0) + 2b]
} (A.3)

Applying the identity

(Y −Xβ)T (Y −Xβ) + (β − β0)TB−1
0 (β − β0) + 2b

= (β − β∗)T (B∗)−1(β − β∗) + 2b∗

to (A.3) yields

f(β, τ |y) ∝ τa
∗+p/2−1exp

{
−τ

2
[(β − β∗)T (B∗)−1(β − β∗) + 2b∗]

}
, (A.4)

where

B∗ =
(
B−1

0 In +XTX
)−1

β∗ = B∗
(
B−1

0 β0 +XTy
)

a∗ = a+ n/2

b∗ = b+
1

2

(
βT0 B

−1
0 β0 + yTy − (β∗)T (B∗)−1 (β∗)

)
.
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Full-conditionals of the global
parameters

Here we compute the full-conditionals of the hyperparameters η = (b,β1
0,β

2
0,β

3
0) in the

Gibbs-sampler; we distinguish between the first level and the other two.
It will be useful remember that if ψ (x) = xTAx− 2pTx+ c is a quadratic form, then

ψ (x) =
(
x− A−1p

)T
A
(
x− A−1p

)
+ c (B.1)

=
∥∥x− A−1p

∥∥2

A
+ c′

B.1 First level
From equation (3.10), for j = 1, . . . , k, we have:

βj|τj,β0 ∼ N
(
β0,

1

k0τj
I

)
, τj|b ∼ G(a, b),

β0 ∼ N (m, B), b ∼ G(a1, a2),

being B = g
(
XTX

)−1. Using equation (3.20) and (3.21) we obtain:

π (β0, b|β1, . . . ,βk, τ ) ∝ π (β0) π (b)
k∏
j=1

π (βj|β0, τj) π (τj|b) (B.2)

∝ e−
1
2

(β0−m)TB−1(β0−m) × ba1−1e−a2b
k∏
j=1

e−
k0τj
2

(βj−β0)T (βj−β0)τa−1
j bae−bτj

= e−
1
2

(β0−m)TB−1(β0−m) × ba1−1e−a2be−
k0
2

∑k
j=1 τj(βj−β0)T (βj−β0)

(
k∏
j=1

τj

)a−1

bake−b
∑k
j=1 τj

∝ ba1+ak−1e−(a2+
∑k
j=1 τj)b × e−

1
2
C(β0).

Using the identity (B.1) we obtain:
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C (β0) = (β0 −m)T B−1 (β0 −m) + k0

k∑
j=1

τj (β0 − βj)T (β0 − βj)

= βT0 B
−1β0 − 2mTB−1β0 + k0

k∑
j=1

τjβ
T
0 β0 − 2k0

(
k∑
j=1

τjβj

)T

β0 + const

= βT0

(
B−1 + k0

k∑
j=1

τjI

)
β0 − 2

(
B−1m+ k0

k∑
j=1

τjβj

)T

β0 + const′

=

∥∥∥∥∥∥β0 −

(
B−1 + k0

k∑
j=1

τjI

)−1(
B−1m+ k0

k∑
j=1

τjβj

)∥∥∥∥∥∥
2

(B−1+k0
∑k
j=1 τjI)

+ const′

= ‖β0 −mk‖2
B−1
k

+ const′,

being mk and Bk the posterior mean and covariance matrix of β0, respectively. In (B.2)
we recognize the kernel of a Normal distribution, so that

b|τ1, . . . , τk ∼ G

(
a1 + ak, a2 +

k∑
j=1

τj

)
,

β0|β1, . . . ,βk, τ1, . . . , τk ∼ N4 (mk, Bk) .

B.2 Second and third level
From equations (3.11) and (3.12), for j = 1, . . . , k, we have:

βj|β0 ∼ N
(
β0,

1

k0

I

)
,β0 ∼ N (m, B),

being B = g
(
XTX

)−1. Using equation (3.22) and (3.23), we obtain:

π (β0|β1, . . . ,βk) ∝ π (β0)
k∏
j=1

π (βj|β0) (B.3)

∝ e−
1
2

(β0−m)TB−1(β0−m)

k∏
j=1

e−
k0
2

(βj−β0)T (βj−β0)

= e−
1
2
C(β0).

Using the identity (B.1) we get:
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C (β0) = (β0 −m)T B−1 (β0 −m) + k0

k∑
j=1

(β0 − βj)T (β0 − βj)

= βT0 B
−1β0 − 2mTB−1β0 + k0kβ

T
0 β0 − 2k0

(
k∑
j=1

βj

)T

β0 + const

= βT0
(
B−1 + k0kI

)
β0 − 2

(
B−1m+ k0

k∑
j=1

βj

)T

β0 + const′

=

∥∥∥∥∥β0 −
(
B−1 + k0kI

)−1

(
B−1m+ k0

k∑
j=1

βj

)∥∥∥∥∥
2

(B−1+k0kI)

+ const′

= ‖β0 −mk‖2
B−1
k

+ const′,

beingmk and Bk the posterior mean and covariance matrix of β0, respectively. As before,
in (B.3) we recognize the kernel of a Normal distribution, so that

β0|β1, . . . ,βk ∼ N5 (mk, Bk) .

Note that the two full-conditionals just computed have the same functional form. The
only difference is given by the presence of a prior in the covariance structure (on the τjs
in this case). Indeed, the expression

∑k
j=1 τj that appears both in the posterior mean

and in the posterior covariance in the first level is replaced in the other two levels by k,
the number of clusters.
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A priori mean and variance of θjs

We say that X follows a Gamma distribution of shape parameter α and rate parameter
β (and write X ∼ Gamma(α, β)) if

fX(x) =
βα

Γ(α)
xα−1e−βx,

and it results
E [X] =

α

β
and V ar(X) =

α

β2
.

Moreover, if X ∼ Gamma(α, β), then 1
X

follows an Inverse-Gamma distribution ( 1
X
∼

Inv −Gamma(α, β)). It results

E
[

1

X

]
=

β

α− 1
and V ar

(
1

X

)
=

β2

(α− 1)2(α− 2)
.

A priori mean and variance for the first level

Suppose that

β|β0, τ ∼ N
(
β0,

1

k0τ
I

)
, τ |b ∼ G(a, b), β0 ∼ N (m, g

(
XTX

)−1
, b ∼ G(a1, a2).

Then the mean of β is

E[β] = E[E[β|β0, τ ]] = E[β0] = m,

and the variance is

V ar(β) = E[V ar(β|β0, τ)] + V ar(E[β|β0, τ ])

= E[
1

k0τ
I] + V ar(β0)

=
I

k0

E[E[
1

τ
|b]] + g(XTX)−1

=
I

k0

E[
b

a− 1
] + g(XTX)−1

=
a1

a2(a− 1)

1

k0

I + g(XTX)−1.
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The mean of τ is

E[τ ] = E[E[τ |b]] = E[
a

b
] =

aa2

a1 − 1
,

and the variance is

V ar(τ) = E[V ar(τ |b)] + V ar(E[τ |b])
= E[

a

b2
] + V ar(

a

b
)

= a(V ar(
1

b
) + E[

1

b
]2) + a2V ar(

1

b
)

= a(a+ 1)V ar(
1

b
) + aE[

1

b
]2

= a(a+ 1)
a2

2

(a1 − 1)2(a1 − 2)
+ a

a2
2

(a1 − 1)2

=
a2

2(a+ a1 − 1)

(a1 − 1)2(a1 − 2)
.

A priori mean and variance for the second and third level

Suppose that

β|β0 ∼ N
(
β0,

1

k0

I

)
, β0 ∼ N (m, g

(
XTX

)−1
.

Then the mean of β is

E[β] = E[E[β|β0]] = E[β0] = m,

and the variance is

V ar(β) = E[V ar(β|β0)] + V ar(E[β|β0, ])

= E[
1

k0

I] + V ar(β0)

=
I

k0

+ g(XTX)−1.
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