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Chapter 1

Introduction

This chapter gives an historical perspective to the design of interplanetary tra-

jectories, presenting the state of art regarding this problem.

The necessity of interplanetary trajectories is of course strictly related to the

desire to explore the Solar System. The ever-present human curiosity for the sky

led to the development of sophisticated observation devices, and since Galileo

in 17th century, our knowledge of the space around Earth increased thanks to

telescopes.

In 1903, Konstantin Tsiolkovsky was the first one to propose a way to travel

in space to watch from a close distance our neighbors, by the means of rocket

motors. Little more than fifty years had to pass before the first Earth orbiter,

the Sputnik 1, was launched in 1959. During the second half of the 20th century,

the development of the space industry has been essentially propelled by political

reasons: soon after the Sputnik, the Moon and Venus were the target of a number

of spacecrafts, notably Luna 1 (1959) which performed the first flyby of the

Moon, and the first successful Venus encounter from Mariner 2 (1962). Three

years later, Mariner 4 achieved the same result on Mars, approaching the planet

during July 1965.

During the late sixties, while the United States managed to make a success

of the program Apollo, culminating in the landing on the Moon in 1969, the

interest in Venus and Mars did not fade: Venera 5, 6 and 7 have been launched

in 1969-70 by the Soviet Union, whereas USA sent Mariner 6 and 7 towards

Mars. The other American exploration program, Pioneer, was aimed at Jupiter

and Saturn, which were visited in 1972 and 1973 respectively. Further progress

was obtained during the 70s, with Mariner 10 meeting Venus and Mercury in

1974 (three flybys of Mercury), Viking 1 and 2 landing on Mars (1975), and the

outstanding missions Voyager 1 and 2 returning invaluable information about

6



CHAPTER 1. INTRODUCTION 7

Jupiter, Saturn, Uranus and Neptune.

While the USSR kept focusing on Venus (Venera 11-16 and Vega 1-2), the

80s saw the Japanese and European spacecrafts addressed to the Halley comet

(actually encountered also by Vega 1 and 2); in 1989 the United States finally

launched Galileo, which has been delayed because of the Space Shuttle Chal-

lenger disaster. The mission, featuring a Jupiter orbiter and an atmospheric

probe equipped with a heavy heat shield, had to perform several gravity assists

to reach its destination.

Even if the political drive was reduced after the end of the Cold War, a

number of exploration missions were launched during the next decade: among

them, NEAR Shoemaker (rendezvous and landing on the near-Earth asteroid

Eros), Mars Surveyor and Pathfinder (with a planetary rover on the latter)

and Cassini-Huygens (Saturn orbiter with lander on Titan) certainly deserve a

mention for their impressive achievements.

In the new millennium Japan managed to bring back samples from small

Itokawa asteroid; the Mars Exploration Rovers operated on the red planet; the

Rosetta spacecraft was launched in 2004 to eventually meet the comet Churyu-

mov–Gerasimenko. Many scientific spacecrafts are now operational and still pro-

viding useful data, and more of them are constantly designed for future imple-

mentation.

One of the few things all of those endeavors have in common is the huge

amount of energy necessary to achieve the desired trajectory. If traditional high

thrust propulsion is used, the required propellant mass fraction reduces substan-

tially the room for the payload. A very common technique to obtain significant

energy variations, using little to none propellant, is to exchange momentum with

massive bodies, so that great variations of the spacecraft inertial velocity can be

achieved almost for free. This technique is known as Gravity Assist Maneuver ,

or Gravitational Slingshot, and its efficiency (regarding the mission goals) can

be improved either with help from the autonomous propulsion system (Powered

Gravity Assist, PGA) or exploiting atmospheric interaction (Aerogravity Assist,

AGA). Furthermore, this approach allows to visit several celestial bodies in a

single mission, increasing considerably the expected scientific return.

This is the rationale for this work: in order to find the cheapest solutions for

the interplanetary transfer problem, a tool for the design of Multiple Gravity

Assist (MGA) trajectories has been developed.
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1.1 Multiple Gravity Assist trajectory design:

state of the art

The opportunity offered by planetary gravity assists has been acknowledged

even before the beginning of the actual exploration (from Tsiolkovsky); how-

ever the design of such trajectories presents great challenges, because the rela-

tion between the parameters of the trajectory (such as launch date, planetary

encounter dates, closest approach distances, correction maneuvers and many

others) and the objectives of the mission is often very complicated, so that it is

quite difficult to identify the optimal trajectory. Furthermore, the compliance to

strict constraints (most notably regarding the required autonomous propulsion

and the total duration of the transfer) is usually instrumental to the success of

the mission.

During the early days of the Solar System exploration, many interplanetary

missions have been designed and implemented; the trajectory design process

often relied on crude approximations, empiric reasoning and verification tools.

One of the most famous simplified models is commonly associated with the Tis-

serand’s plane: by neglecting the eccentricity and the inclination of the planets

heliocentric orbits, and ignoring the actual phasing of the planetary encounter,

the problem is greatly simplified, reducing to two the number of parameters

necessary to identify an interplanetary transfer leg (pericenter radius and pe-

riod) [1]. This allows to examine a large interval of feasible solutions, in order

to identify a reduced set of suitable solutions to be used as a starting point

for subsequent local refinement. Since the cost function multimodality for such

problems increase rapidly with the number of required GAM, it is clear that the

possibility to find the global minimum is bound to the ability to start with at

least an initial guess located inside its basin of attraction.

The analysis of Tisserand’s plane can be very effective, but it is not well

suited for automated search: thus the necessity for a global search analysis tool.

During the last decades, many global algorithms were implemented; they can

be classified as:

♢ deterministic methods: they are based on the exhaustive research of the

solution space; one of the most famous in this category is STOUR [2],

originally developed in 1983 and subsequently extended to investigate the

gravity assist possibilities to reach Jupiter and Pluto [3]; other examples

of this class of methods are DIRECT ([4]), MCS ([5]) and more recently

GASP ([6]).
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♢ Monte-Carlo methods: they are characterized by random generation of

parameters, according to some probability distribution function. For the

Cross Entropy algorithm [7], Gaussian distributions are used: their mean

values and their variances are updated each iteration to follow the best

individuals. The method PGSL, presented in [8], represents instead the

probability distributions as an histograms.

♢ Evolutionary algorithms: an initial population of solutions is generated by

sampling (often with uniform probability distribution) the search space.

This population is then modified by recombination of the best individ-

uals (cross-over) and/or the local variation of a sub-set of the solutions

(mutation). Some examples for this class are GAOT [9], GATBX [10] and

FEP [11]. Swarm intelligence methods are usually labeled as evolutionary

algorithms as well, even if the improvement of the population happens by

“movement” instead of by evolution: the velocity of each particle is eval-

uated every iteration, combining the attraction toward the present best

individual (swarm attractor) and the best position retained in the past by

each particle (particle attractor). The classic formulation from Kennedy

[12] is inherently suited for scalar optimization, whereas multiple swarms

are more appropriate for multi-objective problems. The first (and probably

most famous) example of swarm intelligence algorithms is PSO [12].

An extensive analysis of the effectiveness of such methods for space trajectory

optimization problems has been carried out in two remarkable works, developed

as a project of ESA’s Ariadna initiative ([13], [14]). Several algorithms have

been tested on a number of significant test cases (planet to planet, multiple

gravity assist, low thrust and weak stability boundary), and their results have

been compared.

In order to better understand which tools are more suitable for the MGA

problem, it is always useful to test different optimization techniques. For this

reason, a global search tool for MGA trajectories has been developed as part of

STA, an astrodynamics suite (see §2.1). The performances of two methods have

been analyzed: DG-MOPSO and NSGA-II, both falling under the category of

evolutionary algorithms. The main reason for this choice is the availability of

these methods under said software suite (STA), thanks to the work of Francesco

Castellini [15]; besides, in [14] it is concluded that a fairly basic MOPSO algo-

rithm (as described in [16]) performs very well for MGA optimization. Hence, it

is appealing to assess the performance of the optimizer developed by Francesco

Castellini (which is a modified version of the Coello formulation [17]) on a MGA

problem. For what concerns NSGA-II, it has been integrated into the global op-
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timization tool GOSpel (see [18]), and its effectiveness makes it appealing for

this study.

1.2 Document structure

The subsequent part of this document is organized as follows:

♢ chapter 2 describes how the new tool has been characterized, deriving its

main features from the analysis of the requirements;

♢ in chapter 3, the formulation of the objective function is detailed, along

with the testing of the most critical parts;

♢ the last chapter contains the performance analysis of new tool for a selected

number of study cases, and the overall conclusions.



Chapter 2

STA Interplanetary Module

The new design tool has been conceived inside the framework of Space Tra-

jectory Analysis (STA), a composite software suite which has been initially

developed as an open source program under the aegis of the European Space

Agency (ESA), and is currently reserved for internal use. The multi-gravity-

assist design tool has been labeled Interplanetary Module (IM), and this

work is aimed to describe the structure, the functioning and the results of the

said module.

2.1 STA: brief description of the software suite

STA began at the European Space Agency in 2005 as an internal activity to

develop an open source software suite, involving the universities and the research

institutions of many countries. Its purpose is to support the analysis phase of a

space mission, providing the tools necessary to estimate the relevant information

about a wide range of trajectories (orbits around the planets of the Solar System,

atmospheric entry and descent paths, rendezvous and others).

The functionalities of STA are organized into modules, which perform dif-

ferent tasks; however, they share the graphic environment (VESTA, an open-

source graphical 3D engine for animation of space scenarios and visualization of

mission analysis results) and a common core of astrodynamic functions (mostly

for dates and coordinates management/conversions, orbit propagation and ce-

lestial bodies ephemerides).

The software language is C++, and the development framework is Qt: this

allows a multi-platform deployment of the software. STA computation capabili-

ties are based on Eigen, an high-level C++ library of template headers for linear

algebra, matrix and vector operations, numerical solvers and related algorithms.

11
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2.2 The Interplanetary Module

The Interplanetary Module is a tool for preliminary design of an interplane-

tary trajectory. It is aimed to high thrust propulsion missions, namely those

where the maneuvering capabilities of the spacecraft are ensured by a propul-

sion system able to provide thrust levels above 100N (but usually higher) for

a short amount of time (impulsive maneuvers). The IM allows the end user to

provide a quick solution for an interplanetary transfer problem, alongside with

the assessment of the costs, in terms of ∆V and time of flight (TOF).

The work here described refers to the third version of the Interplanetary

Module: the first version (developed by G. Schouten in 2006 [19]) was actually

just a cost evaluation tool, where the user had to provide the planetary sequence,

the launch/encounter dates and the pericenter radius for each passage. The

second version (developed by B. Naessens in 2007 [20]) was much more complex,

comprising features such as pork chop analysis, numerical simulation and flyby

optimization; however it was never integrated into the software suite (being

basically a stand-alone tool), and does not make use of the Eigen library features.

2.3 Requirements

The requirements for the IM have been defined in accordance with the STA

Project Plan [21] and the IM Task Description Form [22]. Following the direc-

tives from the appropriate ECSS standard (Space engineering - Software, [23]),

a detailed System Requirements Document has been issued [24]. The following

paragraphs summarize the requirements breakdown, separating the top level

drivers from the corresponding derived requirements.

2.3.1 Top level requirements

The top level requirements define the main drivers for the software development,

describing at high level the problem to be addressed.

Tag STA-IM-F-0000: high thrust interplanetary trajec-

tory optimization

Description The IM shall be able to assist the user in the process of design

and optimization of an interplanetary trajectory.

Derived from Project Plan of STA 4.0 “Ordovician” [21]
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Tag STA-IM-F-1000: high thrust interplanetary trajec-

tory visualization

Description The IM must provide a way to visualize the optimal trajec-

tory.

Derived from Task Description Form Interplanetary “Ordovician” [22]

Tag STA-IM-I-000: input

Description The module shall be able to run an optimization on the basis

of input data derived from the dedicated GUI.

Derived from Task Description Form Interplanetary “Ordovician” [22]

2.3.2 Functional requirements

Tag STA-IM-F-0100: Quick Optimizer

Description The IM shall allow the user to run a quick optimization of

an interplanetary transfer problem.

Derived from High thrust interplanetary trajectory optimization (STA-IM-

F-0000)

Tag STA-IM-F-0110: Objective Function for Quick Opti-

mizer

Description The Quick Optimizer shall be able to evaluate the cost of

an interplanetary transfer (in term of ∆V and TOF) given a

sequence of planets (including departing and arrival planets)

and the TOF between each planet.

Derived from Quick Optimizer (STA-IM-F-0100)

Tag STA-IM-F-0111: planets ephemerides for Quick Op-

timizer

Description The Quick Optimizer must able to retrieve the state vector

of a given planet at any specified time between January 1st

2000 and December 31th 2200.

Derived from Objective Function for Quick Optimizer (STA-IM-F-0110)
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Tag STA-IM-F-0112: Lambert Solver for Quick Optimizer

Description The Quick Optimizer must implement a Lambert solver, i.e.

a routine which takes as input the TOF, initial and final

position (expressed as 3D position vectors); the output shall

be the shortest trajectory that meet the requirements.

Derived from Objective Function for Quick Optimizer (STA-IM-F-0110)

Tag STA-IM-F-0113: ∆V computation for Quick Opti-

mizer

Description Given a sequence of Lambert arcs, the Quick Optimizer shall

be able to compute the total ∆V to be provided by propulsion

systems (including the launcher ∆V ).

Derived from Objective Function for Quick Optimizer (STA-IM-F-0110)

Tag STA-IM-F-0114: TOF computation for Quick Opti-

mizer

Description The Quick Optimizer shall be able to compute the total TOF.

Derived from Objective Function for Quick Optimizer (STA-IM-F-0110)

Tag STA-IM-F-0120: Optimization for Quick Optimizer

Description The Quick Optimizer shall be able to find the Pareto front

of the cost function (as defined in STA-IM-F-0110).

Derived from Quick Optimizer (STA-IM-F-0100)

Tag STA-IM-F-0121: Global Optimizer for Quick Opti-

mizer

Description The Global Optimizer shall be able to explore a broad search

space, in order to quickly find non-dominated solutions to the

problem.

Derived from Optimization for Quick Optimizer (STA-IM-F-0120)

Tag STA-IM-F-0122: Local Optimizer for Quick Opti-

mizer

Description The Local Optimizer shall be able to refine the solutions

which have been computed by the Global Optimizer, with

a numerical targeting procedure.

Derived from Optimization for Quick Optimizer (STA-IM-F-0120)
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Tag STA-IM-F-0200: Custom Optimizer

Description The IM shall allow the user to customize the features of

the optimization, such as choosing whether the planet se-

quence is free or constrained, the possibility of including

multi-revolution Lambert arcs and DSM.

Derived from High thrust interplanetary trajectory optimization (STA-IM-

F-0000)

Tag STA-IM-F-1100: trajectory visualization

Description The IM must be able to show the trajectory into STA graphic

environment.

Derived from High thrust interplanetary trajectory visualization (STA-IM-

F-1000)

Tag STA-IM-F-1200: trajectory exporting

Description The IM must be able to produce a detailed report of the op-

timal trajectory, using a standard message format if possible.

Derived from High thrust interplanetary trajectory visualization (STA-IM-

F-1000)

2.3.3 Interface requirements

Tag STA-IM-I-010: departure date boundaries selection

Description The user must be able to select the boundaries for the depar-

ture date.

Derived from Input (STA-IM-I-000)

Tag STA-IM-I-020: planetary sequence selection

Description The user must be able to select the planetary sequence, i.e.

the departure planet, the gravity assist planets and the des-

tination planet.

Derived from Input (STA-IM-I-000)
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Tag STA-IM-I-030: orbit closure selection

Description The user must be able to choose whether or not the optimiza-

tion process must take in account the closure ∆V around the

destination planet.

Derived from Input (STA-IM-I-000)

Tag STA-IM-I-040: scalar figure of merit

Description The user must be able to choose a scalar figure of merit in

order to single out one “optimal” trajectory.

Derived from Input (STA-IM-I-000)

2.4 Program structure

From the analysis of the requirements, the structure of the module is derived.

Two complexity levels should be implemented (Quick Optimizer and Custom

Optimizer): it has been decided to focus this work on the simpler formulation,

meaning that the only three classes of supported thrusting maneuvers are:

♢ launch phase from the departing planet, usually provided by an expendable

launch vehicle;

♢ connection impulses at the pericenter of each gravity assist hyperbola

(see §3.3.3);

♢ orbital insertion at the arrival planet (if required).

As a consequence, no correction burns are allowed during the coasting phases:

they are usually referred as Deep Space Maneuvers (DSM), and their inclusion

into the problem formulation would increase the number of parameters for a

fixed number of gravity assists (thus boosting the multimodality of the objective

function). The development of the Custom Optimizer is postponed to future

implementations. As clarified in chapter 3, by excluding the possibility of DSM,

the solution parametrization reduces to

x “ rtdep,TOFarc 1,TOFarc 2, ...,TOFarcN`1s

i.e. the departing date (tdep) and the time duration of each interplanetary arc

(TOFarc i); N is the number of required Gravity Assist Maneuvers.
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The planetary sequence is inserted into the optimization problem as an input

from the user. There are two main reasons for this choice: first of all, the diffi-

culty in handling a mixed set of discrete and continuous variables is not easily

overcame by most optimization algorithms; in addition, the fly-by of specified

celestial bodies could be a mission requirement, and this program structure

allows the compliance to this kind of condition.

It is inferred from STA-IM-F-0110 (Objective Function for Quick Opti-

mizer) that multi-objective optimization is required; the minimization goals are

the total ∆V (defined as the total velocity change to be provided by the au-

tonomous propulsion system) and the overall duration of the interplanetary

transfer TOFtot. The evaluation of “the best” solution is subsequently ad-

dressed, according to a scalar figure of merit.

The functioning diagram of a program adopting said formulation is illus-

trated in figure 2.1, and it reflects the structure of the Interplanetary Module.

The input block functions are carried out thanks to the Interplanetary Di-

alog, which is represented in figure 2.2. The output is delivered as a group of

files containing detailed data about the evolution of the population, the final

Pareto front, and the .OEM ephemeris of the optimal trajectory (according to

the scalar figure of merit selected from the GUI). The latter complies to the

standard CCSDS for the Orbit Ephemeris Message (OEM), and the other files

are easily loaded into any work environment for post-processing purposes. Every

other block will be described in the following chapters.
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Figure 2.1: Workflow diagram of the Interplanetary Module
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Figure 2.2: Interplanetary module input dialog



Chapter 3

Problem formulation

This chapter deals with the cost evaluation of an interplanetary trajectory: this

feature importance is paramount, since it enables the selection of one optimal

solution among the virtually infinite set of feasible trajectories. However, the

cost computations procedure is not unique, and it is strongly dependent on the

mathematical model adopted to describe the trajectory.

3.1 Coordinate systems

The determination of a gravity-assisted interplanetary trajectory requires dif-

ferent coordinate systems. Most of the trajectory is made by heliocentric arcs,

thus the primary concern is to define a frame centered on the Sun; on the other

hand, during any planetary fly-by it is convenient to express the state vector of

the spacecraft into a planetocentric reference frame. No planetary-fixed frames

will be used (meaning any frame fixed with a reference on the planet), since any

celestial body is always assumed spherical, and no superficial feature is deemed

as important during early design phases.

In order to keep as simple as possible the mathematical modeling, all the

coordinate systems are rectangular and right handed, all sharing the same ref-

erence plane and preferred direction (Earth mean equator and vernal equinox

at the standard epoch J2000); the only difference is the center of the reference

frame, which corresponds with the current main attractor. From now on, when

a coordinate system is referred to, only the center will be specified.

The above-mentioned coordinate systems all represent a reasonable approx-

imation for an inertial reference frame, and will be treated as such.

20
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3.1.1 Nomenclature

Heliocentric vectors will be represented with a capital letter, whereas planeto-

centric vectors will be denoted by lower case letters. Referring to planetocentric

vectors, no ambiguity is present, since the obvious subject is always the space-

craft (for instance, v is the velocity of the spacecraft with respect to the planet).

If the reference frame is heliocentric, it is necessary to distinguish when a vec-

tor refers to a planet or the spacecraft: this will be accomplished by placing

a superscript, so that Rs is the heliocentric position of the spacecraft and V p

is the heliocentric velocity of a generic planet. If a specific planet must be la-

beled, the corresponding astronomical symbol will be adopted: for instance, the

heliocentric position of Venus is RB.

3.2 Trajectory models

The trajectory of a spacecraft moving into the Solar System can be estimated

with different degrees of accuracy. Neglecting both the spacecraft spatial exten-

sion (point mass approximation) and its effects over the celestial bodies, the

most precise solution would arise from the integration of Newton’s second law

of motion:

m
d2x

dt2
“ Ftot (3.1)

where x is the position of the point mass, and Ftot is the vector sum of all

forces acting on the point mass, both expressed in an inertial reference frame.

The components of Ftot originate from gravitational sources and electromagnetic

sources (i.e. solar radiation pressure); they are difficult to express as functions of

time, preventing the possibility to obtain a closed-form solution for equation 3.1.

If all forces must be taken in account (high precision applications) some numeric

integration technique must be used.

Of course the numeric approach is not suitable for orbital design purposes,

since the evaluation of the ∆V and the time of flight associated with a single

trajectory requires a substantial computing effort; this is unacceptable because

the optimization process requires the evaluation of several thousands (if not mil-

lions) interplanetary trajectory. It is clear that further simplification is needed.

3.2.1 Patched conics model

If all forces save for the main gravitational pull are neglected, the model becomes

what is widely known as the restricted two body problem (“restricted” refers to

the assumption of negligible attraction of the spacecraft on the celestial bodies),
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and therefore can be solved in closed-form. When the journey takes place into

the Solar System, it can be assumed that the main attractor is always the Sun,

save for the regions in close proximity of massive bodies (only planets will be

considered in this work).

The surface over which the solar and the planetary attraction are equal is

approximately a spheric surface, and the region within is often referred as the

planetary Sphere of Influence (SOI) . Its center is the same as the planet, and

according for instance to Curtis ([25]), its radius can be computed as

rSOI “ R

ˆ

mp

ms

˙2{5

(3.2)

where R is the distance between the Sun and the planet; the numeric value for

each Solar System planet is listed in table 3.1, along with other relevant physical

and astronomical data.

Body r [km] µ [km3s´2] a [km] rSOI [km]

Sun 6.960 ˆ 105 1.327 ˆ 1011

Mercury 2.240 ˆ 103 2.203 ˆ 104 5.791 ˆ 107 1.12 ˆ 105

Venus 6.052 ˆ 103 3.249 ˆ 105 1.082 ˆ 108 6.16 ˆ 105

Earth 6.378 ˆ 103 3.986 ˆ 105 1.496 ˆ 108 9.25 ˆ 105

Mars 3.396 ˆ 103 4.283 ˆ 105 2.279 ˆ 108 5.77 ˆ 105

Jupiter 7.149 ˆ 104 1.267 ˆ 108 7.786 ˆ 108 4.82 ˆ 107

Saturn 6.027 ˆ 104 3.793 ˆ 107 1.433 ˆ 109 5.48 ˆ 107

Uranus 2.556 ˆ 104 5.794 ˆ 106 2.872 ˆ 109 5.18 ˆ 107

Neptune 2.476 ˆ 104 6.835 ˆ 106 4.495 ˆ 109 8.66 ˆ 107

Table 3.1: Relevant physical and astronomical data for the Sun and the planets
of the Solar System (source: [25]).

The patched conics model of an interplanetary ballistic flight leads therefore

to a composite trajectory; the simplest example could be an Earth-Mars transfer,

where the first leg is an hyperbola about the Earth, followed by an heliocentric

orbit and finally an hyperbola about Mars. Each SOI crossing corresponds to

a smooth connection between two keplerian conics, thus the name “patched

conics”.

3.2.2 Linked conics model

Further reduction of the model is possible: since the Sun mass is three orders

of magnitude greater than the mass of the largest planet (Jupiter), the size of

each SOI is negligible with respect to the length of the heliocentric ballistic arcs.

If each planetary SOI is assumed to be zero-dimensional, the whole fly-by can
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be represented as an impulsive maneuver; as a consequence, the gravity assist

becomes a sharp point in the trajectory.

The convenience of this model resides in the possibility to decouple the de-

sign of the heliocentric arcs from the analysis of the gravity assist. The velocity

variation cost is associated with the impulsive events (departure, gravity as-

sists and arrival), whereas the cost in terms of time of flight depends on the

heliocentric arcs.

3.3 Cost evaluation algorithm

The fundamental task of any interplanetary trajectory design tool is the estima-

tion of some cost associated with a specific trajectory, according to the mission

requirements. Cost computation can involve multiple factors, for instance the

heat flux towards the spacecraft, the distance from the Sun, the necessity to

avoid dangerous zones, and many others; however, most of these factors are

very specific and their relative importance can vary significantly among differ-

ent missions.

In order to keep the tool as general as possible, only two figures of merit

will be taken in account: the total velocity variation provided by the propulsion

systems (including the launch vehicle) and the total time of flight, since virtually

any mission will benefit from the minimization of both ∆V and TOF.

Using the linked conics model, the evaluation of the trajectory cost is straight-

forward; the number of parameters involved is conveniently low, being reduced

basically to a sequence of planets (departure, gravity assist(s) and arrival) and

the time of flight of each heliocentric arc.

The cost evaluation algorithm can be summarized as follows:

♢ collect trajectory parameters (sequence of planets and arcs TOF). From

the TOF sequence, each event date (departure, gravity assist(s) and ar-

rival) can be evaluated;

♢ evaluate the appropriate planetary state vector at each event (ephemerides

interpolation in tdep, tga1, tga2, ..., tarr);

♢ compute Nga ` 1 ballistic heliocentric arcs, where Nga is the number of

gravity assists to be performed. This action is fulfilled by a Lambert solver,

since the boundary positions and the TOF are known for each arc;

♢ evaluate the ∆V necessary for each impulsive event (can be null for non-

powered gravity assists).
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The minimization objectives are thus ∆Vtot “ ∆Vdep `
ř

i ∆Vga i ` ∆Varr and

TOFtot “
ř

i TOFarc i.

The components of the algorithm are illustrated in the following paragraphs.

3.3.1 Planetary ephemerides

The first task of the validation process concerns the planetary ephemerides.

The state vector of each major celestial body at any given time (within the

range of applicability) can be computed inside the simulation suite from the

file of Chebyshev polynomials coefficients named DE406, made available by Jet

Propulsion Laboratory (JPL). These ephemerides result from high precision

numeric integration of the N-body problem, taking in account every significant

physical effect on all the celestial bodies of the Solar System; the initial condition

is a least-squares fit of a large set of observations. The detailed description of

the observations and other relevant information can be found in [26].

It is necessary to note that DE406 is a reduced version of the full preci-

sion version DE405, which in turn has been outdated by more recent versions

(DE421); however, the accuracy level achieved by DE406 is more than enough

for the purpose of this work. The implementation of the interpolation has been

checked against the results of JPL Horizon on-line service over a one year pe-

riod (from January 1st to December 31st 2012); the comparison is shown in

figure 3.1, and it clearly shows that precision level is completely satisfactory.

3.3.2 Lambert solver

The Lambert solver addresses what is widely known as the Lambert’s problem.

One possible formulation of the problem states: given two sorted position vectors

inside a central gravitational field and the corresponding flight duration, compute

a keplerian trajectory which satisfies said constraints. In other words, it is the

boundary value problem
$

’

’

’

’

&

’

’

’

’

%

d2r

dt2
“ ´

µ

r3
r

rpt1q “ r1

rpt2q “ r2

with t1 ă t2. If the solution is a closed conic, two solution would be feasible,

and they are sometimes labeled as short way and long way. In this work, this

ambiguity is resolved by specifying in advance the direction of the angular mo-

mentum vector: it is assumed that the z component of h is always positive. This

choice seems pretty obvious since otherwise a great amount of energy would be
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Figure 3.1: Comparison between DE406 planetary ephemerides and Horizon
on-line service.
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ϑ

Figure 3.2: Lambert’s problem nomenclature.

necessary during the departure phase in order to reverse the angular momentum

already associated with the vehicle because of Earth rotation.

The number of solutions can be determined as a function of the non-dimensional

time:

T “

c

8µ

s3
pt2 ´ t1q

where the semi-perimeter is s “ 1
2 pr1 ` r2 ` cq. If T ď 2π there is only one

solution (parabolic if T “ 2π), otherwise two new solutions will arise for each

2π increment of T , as summarized in table 3.2. If more than one solution is

T N

0 ă T ď 2π 1
2π ă T ă 4π 3
T “ 4π 4
4π ă T ă 6π 5
T “ 6π 6
... ...

Table 3.2: Number of solutions to the Lambert’s problem as a function of the
non-dimensional TOF.

available, at least one of them is a multi-revolution elliptic path (meaning that

ϑ ą 2π).

The Lambert problem must be solved iteratively, and a lot of formulations

have been proposed over the centuries. At the time of writing, the most popular

solvers are from Battin [27] and from Lancaster and Blanchard [28] (improved

by Gooding, [29]). Both are based on the transformation of known data into aux-

iliary variables, so that convergence is assured in a few iterations; the auxiliary
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variables are:

x “

c

1 ´
s

2a

q “

?
r1r2
s

cos
ϑ

2

Since q2 “ s´c
s , q is always in the range p´1, 1q; it is also apparent that it does

not depend on the TOF, and therefore, once the geometry is defined, it can

be considered a fixed parameter (it is not involved into the iteration process).

The actual iteration variable is x, and its most useful feature is the universality

(meaning it is univocally defined for any conic). The value of x identifies the

type of conic:

´1 ă x ă 1 Ñ elliptic orbit

x “ 1 Ñ parabolic orbit

1 ă x ă 8 Ñ hyperbolic orbit

x ă ´1 is not possible because it would imply ∆t ă 0, whereas it is greater than

zero by definition. The relation between x and T for some values of q is depicted

in figure 3.3; m identifies the number of full revolutions for the associated multi-

revolutions solution. Figure 3.3 has been obtained from data generated by the

T evaluation routine (i.e. the objective function for the Lambert solver); it

matches the corresponding figures found in [28] and [29], so that said routine is

considered validated.

Given T , for each value of m (always integer by definition), no more than

two solutions exist. In this work only “open paths” will be considered, meaning

that m is always set to zero, resulting in a bijective relation between T and

x. However, it would be easy to modify the input for the solver, so that m

could become an optimization parameter, allowing multi-revolutions paths to

be considered during the optimization process.

Essentially, Battin solver and Lancaster/Blanchad/Gooding solver differ for

the iteration process: Newton’s method with hyper-geometric series expansion

in Battin’s work, Halley’s method for Lancaster and Blanchard (with great

convergence improvements thanks to Gooding’s starter formulas). Both have

been implemented for the interplanetary module, in order to compare their

performances and because they have different strengths. The comparison results

are shown in the next paragraph.

Once x is found, the terminal velocities can be computed with small com-

putational expense.
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Figure 3.3: Non-dimensional transfer time (T ) as a function of the iteration
variable x.

Validation

The Lambert solver has been validated with a simple coherence test. Several

thousands of input sets (r1, r2 and TOF) were generated starting from the

following random parameters (all of them are uniformly distributed over the

respective range): The actual solver input requires two position vector and one

Parameter Range

Starting date Jan 1st 1950 to Dec 31th 2100
TOF [days] 10 to 4000
Departing planet Mercury to Neptune
Destination planet Mercury to Neptune

Table 3.3: Generating parameters set for Lambert testing input.

time interval: r1 and r2 are evaluated thanks to the planetary ephemerides (the

planetary positions are evaluated at the starting date and at starting date +

TOF respectively), whereas the TOF do not need any modification.

These input vectors are then fed to both solvers (Battin’s and Gooding’s),

which in turn compute the required arcs, in particular the terminal velocities.

At this point, the full state vector of both starting point and terminal points are
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Figure 3.4: Lambert solver error.

known, so it is possible to propagate (the “propagation” is actually analytical,

since the reference dynamic model is the Two Bodies model) the initial state

vector for the prescribed TOF: the resulting position is eventually compared to

r2 (the terminal position for the input set). Of course they should be identical,

but the two algorithms actually fail in a number of occasions. The difference

between the input r2 and the propagated one is depicted in figure 3.4

Although the error is never large (little more than 1000 km), it is clear

that Battin’s formulation is much more robust, since it fails in just a few cases,

whereas Gooding algorithm is less precise. For this reason, Battin’s solver has

been constantly used for the subsequent development of this work.

3.3.3 ∆V computation

Once the sequence of heliocentric arcs is computed, it is necessary to evaluate

the total ∆V associated with the mission.

Departure

The initial phase of the mission requires the spacecraft to escape the SOI of the

departing planet with a defined hyperbolic excess velocity v8. The heliocentric
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velocity at the SOI crossing must match the starting velocity for the first helio-

centric arc (V s
0 ), which has already been computed. Since v8 is a planetocentric

velocity, it must be summed to the velocity of the planet V p (evaluated at the

time of departure) in order to obtain V s
0 , as depicted in figure 3.5. It is easy

then to compute the first contribution to the total ∆V :

∆Vdep “ v8 “ ∥V s
0 ´ V p∥ (3.3)

Since the only relevant information regarding the launch phase is v8, it does not

matter how that velocity is obtained: it can be achieved with single launch phase

(direct injection into heliocentric orbit), multiple phases (launch into parking

orbit followed by a subsequent maneuver), or any suitable strategy. For this

reason, most of the parameters about the launch phase are effectively decoupled

from the interplanetary trajectory, increasing the design flexibility.

In case of direct injection, the maximum v8 (or the equivalent parameter

C3 “ v28) is usually available in the launcher manual as a function of the

spacecraft mass and the escape orbit declination.

Gravity assist

The impulsive velocity change needed to connect two arcs is obtained through a

gravity assist; it is stated as “impulsive” because under the linked conics model,

the SOI is assumed to be zero-dimensional. The heliocentric velocities V s
arci and

V s
arci`1

are known (they are the final velocity of the i-th arc and the initial

velocity of the i+1-th arc respectively), so it is easy, referring to figure 3.6, to
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evaluate the velocity variation required to connect said arcs:

∆V “ V s
arci`1

pti`1 “ 0q ´ V s
arcipti “ TOFiq

since the time interval associated with the i-th arc is defined as ti “ r0,TOFis.

It is desirable that most of the energy associated with this velocity change is

gathered through a momentum exchange with the planet (because the remaining

part must be supplied by the spacecraft autonomous propulsion system). In

order to assess how much firing will be needed, the heliocentric point of view is

not sufficient: it is necessary to expand the SOI and to analyze the trajectory

around the planet. Observing figure 3.6, it is apparent that the planetocentric

velocities at the SOI crossing can be calculated as:

v´
8 “ V s

arcipti “ TOFiq ´ V p

v´
8 “ V s

arci`1
pti`1 “ 0q ´ V p

where V p is the same in both cases, and it is evaluated ad the instant of the

gravity assist. The direction of these vectors identify the asymptotes of the

hyperbola, as shown in figure 3.7. Since v´
8 and v`

8 depend on the terminal ve-

locities of two different Lambert arcs, in the general case their magnitudes are

different: for this reason, every gravity assist is assumed to be “powered”, mean-

ing that a pericentric maneuver ∆Vp is always evaluated (if the non-powered

gravity assist is possible the magnitude of said maneuver will be null).

The total bending angle δtot can be easily evaluated as

δtot “ arccos
v´

8 ¨ v`
8

v´
8v`

8

(3.4)

As depicted in figure 3.7, δtot is the sum of two contributions, one associated

with v´
8 (and thus labeled as δ´) and the other associated with v`

8 (δ`).

The plane of the flyby trajectory is known: it contains the center of the

attractor and its normal direction is simply

n̂ “
v´

8 ˆ v`
8

v´
8v`

8

hence, in order to completely define both the ingoing and the outgoing hyperbola

leg, two additional parameters each are needed. The magnitudes of v´
8 and

v`
8 provide one each, whereas the pericenter radius (clearly the same for both

legs) serve as the last parameter. Unfortunately, the relation among rp, v´
8

and v`
8 cannot be solved explicitly; instead, some iterative method must be
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implemented. Following a slightly modified procedure from Labunsky [1], the

constraint to be enforced is δtot “ δ´ ` δ`; the relation between each deflection

angle (δ´ and δ`) and the pericenter radius can be computed with the following

procedure:

v28 “ lim
rÑ8

„

µ

ˆ

2

r
´

1

a

˙ȷ

“ ´
µ

a
ñ a “ ´

µ

v28

rp “ ap1 ´ eq “
µ

v28
pe ´ 1q

e “
1

sin δ
“ 1 ` rp

v28
µ

ñ sin δ “
µ

µ ` rpv28

and therefore the expression to be evaluated by the iterative method is

F prpq “ δtot ´ δ´ ´ δ` “

“ δtot ´ arcsin
µ

µ ` rpv
´
8

2 ´ arcsin
µ

µ ` rpv
`
8

2 “ 0

“ δtot ´ arcsin
´a´

´a´ ` rp
´ arcsin

´a`

´a` ` rp
“ 0

Its first derivative with respect to the pericenter radius is:

dF

drp
“

´a´

p´a´ ` rpq2

c

1 ´

´

´a´

´a´`rp

¯2
`

´a`

p´a` ` rpq2

c

1 ´

´

´a`

´a``rp

¯2

Remembering that the semi-major axis is negative, it is clear that dF
drp

ą 0 @rp.

Since F prp “ 0q “ δtot ´ π ď 0 (from equation 3.4 it is apparent that δtot

belongs to the interval r0, πs), F prpq is a monotonically growing, single-rooted

function in the range rp “ r0,`8q. Moreover, its second derivative is always

negative, hence F prpq is convex upwards. This suggests to use the minimum

admissible value for rp as a starting point, so that the convergence is quick and

certain; moreover, if F prpminq ą 0 the process can be stopped at once, since it

would converge on a value smaller than the allowed minimum pericenter radius

(maneuver not feasible).

In figure 3.8, F prpq is diagrammed as a function of rp, for a gravity assist

around the Earth with v´
8 “ v`

8 “ 5 km/s. F prpq is computed for different values

of total bending angle, and the minimum approach distance allowed (min(rp) =

1.1 RC) is highlighted. It is possible to observe how δtot “ π would be feasible

only if rp “ 0 were acceptable (it would imply that the attractor is a point

mass).
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8 “
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8 “ 5 km/s.

Orbital insertion burn

The user is allowed to choose whether or not the orbit must be closed around

the arrival planet. If the closure is not required, the last planetary passage

closest approach remains undefined (according to the linked conics model the

insertion point is not specified); otherwise it is assumed that the spacecraft is

inserted in a highly elliptical planetocentric orbit (a quite common for scientific

exploration missions). This orbit has pericentric radius rp “ 1.1rp (i.e. 110% of

the planetary radius) and its apocenter is rp “ 30rp; since this setting is the

same for every cost evaluations it is not expected to weight much on the overall

performance analysis.

The planetocentric orbit is assumed to have the same inclination of the

incoming hyperbola (which is however undefined according to the linked conics

model), so that the only required maneuver is a pericentric tangent burn. Its

magnitude can be calculated as the difference of the pericentric velocity of the
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incoming hyperbola and the corresponding velocity of the desired ellipse:

vhypp “

d

2µ

rp
` v28

vellp “

d

2µ

ˆ

1

rp
´

1

rp ` ra

˙

∆Vclo “
ˇ

ˇvhypp ´ vellp

ˇ

ˇ



Chapter 4

Results

In this chapter the Interplanetary Module performances have been evaluated

over a small set of real missions. The actual trajectory plan will be regarded as

a good estimate of the global optimum, even if it is designed according to precise

force models, and it can be driven by requisites unrelated to the minimization

of ∆V and TOF.

The optimization algorithms must be initialized with the population size

and the number of generations/iterations (both optimizers stopping criterion is

based on the number of the iterations). It has been decided, following [14], to

bind the population size and the number of iterations to the complexity of the

function. The relation between the number of variables and the optimization

parameters are summarized in table 4.1.

Variables n “ NGA ` 2
Population n ˆ 100
Iterations n ˆ 100

Table 4.1: Population size and number of iterations as a function of the problem
complexity.

The results will be presented with two main plots:

♢ the time history plot shows the objectives for each individual on the

Pareto front, at selected instants of the optimization process;

♢ in the distance plot the abscissa of each individual is the departure date,

whereas the ordinate is a distance from the actual departure date. This

is computed simply as d “
ř

i

ˇ

ˇxact
i ´ xopt

i

ˇ

ˇ, where xact
i and xopt

i represent

the i-th element of the actual and the optimized solutions respectively.

36
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The distance d can be regarded as an indication about the goodness of a solution,

but it must be kept in mind that the actual solution can be influenced by a

variety of factors (which have been neglected in this analysis).

All the results have been obtained running the program on a laptop com-

puter; its features are listed in table 4.2.

CPU Intel i5M430
Cores 2
Clock frequency 2.27 GHz
Memory 4 Gb

Operating system Linux (Kubuntu v12.10)
Word size 64 bit

Table 4.2: Characteristics of the machine where the tests have been run.

4.1 Direct transfer: Venus Express

The first benchmark mission is Venus Express because its interplanetary trajec-

tory represents an effective example of an high thrust direct transfer between

two planets.

Venus Express is the first ESA mission aimed to Venus exploration: it has

been built reusing the design of Mars Express with some important modifications

(mostly related to the increased solar and radiation fluxes). Its main goal is the

thorough analysis of the Venusian atmosphere and superficial temperature. The

relevant data about the spacecraft interplanetary trajectory are listed in 4.3.

Departure

Launch date November 9th, 2005
Launch site Baikonur
mlaunch 1270 kg
C3 (Soyuz + Fregat) 8.5 km2/s2

Arrival

Arrival date April 11th, 2006
Capture orbit type Highly elliptical
Capture orbit hp 400 km
Capture orbit ha 33 000 km
Main closure burn 1.251 km/s

Table 4.3: Venus Express interplanetary trajectory data (sources: [30], [31], [32]).

The ∆V associated with the transfer has been computed using the IM ob-

jective function (see §3.3.3), with an exhaustive search spanning one year for
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Figure 4.1: Venus Express pork chop, as evaluated from the IM objective func-
tion.

the departure date and from 50 to 300 transfer days; the step sizes is 1 day for

both departure date and time of flight. The results are shown in figure 4.1.

As illustrated, the optimal departure date, the launch C3 and the closure

∆V are close to the actual values. The actual departure date does not coincide

with the optimal solution: as a matter of fact, the launch was postponed due to

particulate contamination (insulating material detached from the Fregat upper

stage) found in the launcher fairing [33]. This result proves only that the Lam-

bert solver and the terminal ∆V evaluation work correctly (no gravity assist is

performed).

In order to test the optimizers capabilities, the problem has been fed to

the IM module, using the parameters listed in table 4.4. The departure date

boundaries have been chosen to cover a three year period around the actual

departure date; it has been verified that further enlargement of the departing

interval would lead to better solutions (for instance, departing on May 25th

2007 the total ∆V would have been about 3 km/s), which are confirmed to be

local minima via exhaustive search. The maximum C3 has been derived from

the launcher manual [32], given the spacecraft launch mass. Of course no gravity

assists have been requested.
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Figure 4.2: Venus Express, DG-MOPSO: population time history.

The optimization has been run with both optimizers, using the input pa-

rameters listed in table 4.4 and the results are shown in figures 4.2, 4.3, 4.4 and

4.5. It is apparent that in this case DG-MOPSO has found a larger set of non-

dominated solutions, even if both have found a solution very close to the global

optima. From the history plot of DG-MOPSO (figure 4.2) it can be observed

that the starting iteration is empty: this is because the DG-MOPSO algorithm

populates the Pareto front during the process, as soon as non-dominated solu-

tions are found among the population. On the other hand, NSGA-II keeps track

of the full population into the output file, henceforth the plot is “full” from the

starting iteration.

Departure date lower boundary May 1st, 2004
Departure date upper boundary April 1st, 2007
Maximum C3 8.5 km2/s2

Gravity assist sequence None
Orbit insertion required Yes

Population 200
Generations 200

Table 4.4: Input parameters for Venus Express trajectory optimization.
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Figure 4.3: Venus Express, DG-MOPSO: non-dominated solutions at the last
iteration (departure date vs distance from actual trajectory).
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Figure 4.4: Venus Express, NSGA-II: population time history.
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Figure 4.5: Venus Express, NSGA-II: non-dominated solutions at the last iter-
ation (departure date vs distance from actual trajectory).

In order to find a single “best solution” a scalar figure of merit must be

chosen: since the resulting TOF magnitude does not pose any technical issue,

the total ∆V has been selected. According to this criterion, the optimal solutions

found by the two test algorithms are listed in table 4.5. It is useful to remark that

they have been singled out in the post-processing phase, hence this operation

does not affect the optimization process in any way (the optimizers output is

always a Pareto front).

It can be observed that the in both cases the optimization effectively stag-

nates very close to the aforementioned solution: the difference can be ascribed to

the trajectory numeric refinement and to the presence of trajectory correction

maneuvers during the coasting phase. The main features of the selected solution

(cheapest in terms of ∆V ) are summarized in table 4.5). It must be noted that

the optimal solution, or a solution close enough to it, has been found during

the early generations (for both cases); the subsequent offspring bring marginal

improvement, and therefore could be avoided. However, since the whole process

takes less than a minute (on the machine described in the beginning of this

chapter), this is not regarded as an issue.
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DG-MOPSO NSGA-II

Departure date November 4th, 2005 November 3rd, 2005
Total time of flight 157 days 157 days
Arrival date April 10th, 2006 April 9th, 2006
C3 8.41 km2/s2 8.41 km2/s2

Total ∆V 4.1 km/s 4.1 km/s

Computation time 26.8 s 43.4 s

Table 4.5: Optimal solutions for Venus Express interplanetary trajectory.

4.2 One gravity assist: Pioneer 11

The next test case comprises one single gravity assist: the mission Pioneer 11

represents an excellent example to this regard, and therefore has been used as

a comparison term for the optimization results.

Pioneer 11 is part of the NASA Pioneer Program, and along with its twin

Pioneer 10, was designed to explore the asteroid belt and the outer Solar System.

Its interplanetary trajectory is composed by two legs: from Earth to Jupiter and

from Jupiter to Saturn. The subsequent arc has not been taken in account, since

it escapes the Solar System and no reliable information is available about it.

This mission is interesting from the point of view of this work, since it offers

the opportunity to test the reliability of the gravity assist evaluation.

Departure

Launch date April 6th, 1973
Launch site Kennedy Space Center
mlaunch 259 kg
C3 (Atlas Centaur) 89.0 km2/s2

Jupiter passage

Closest approach date December 3rd, 1974
Closest approach distance 1.60rE “ 114 000 km

Saturn passage

Closest approach date September 1st, 1979
Closest approach distance 1.36rF “ 81 670 km

Table 4.6: Pioneer 11 interplanetary trajectory data (sources: [34], [35], [36]).

Even if the global optimization tool is fairly handy, a preliminary analysis of

the problem with some approximated method is strongly advised: in this case,

the periodicity of the launch windows is clearly the same as the synodic period

of Jupiter with respect to the Earth (almost 400 days). For this reason, the
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Figure 4.6: Pioneer 11, DG-MOPSO: population time history.

boundaries for the departing date are quite narrow, as it can be observed in

table 4.7, otherwise the optimization would converge on better solutions.

Departure date lower boundary January 1st 1973
Departure date upper boundary December 31st 1973
Maximum C3 90 km2/s2

Gravity assist sequence J
Orbit insertion required No

Population 300
Generations 300

Table 4.7: Input parameters for Pioneer 11 trajectory optimization.

The results of the optimization are shown in figures 4.6, 4.7, 4.8 and 4.8:

both optimizers are able to find many solutions very close to the actual mission

data. The optimal solutions (associated with minimum ∆V ) are summarized in

table 4.8. The optimal solutions are close to the real mission data, apart from

the closest approach distance. Also for this mission, the actual pericenter radius

has been adjusted via DSM, prior to Jupiter orbital insertion (see [34]).

Under the current dynamic model, the pericenter radius for the Saturn pas-

sage is undefined: in fact, according to the linked conics model, the SOI of
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Figure 4.7: Pioneer 11, DG-MOPSO: non-dominated solutions at the last iter-
ation (departure date vs distance from actual trajectory).
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Figure 4.8: Pioneer 11, NSGA-II: population time history.



CHAPTER 4. RESULTS 45

0 2 4 6 8 10 12 14
Departure date [MJD] `4.178ˆ104

0

200

400

600

800

1000

1200

1400

1600

1800
D
is
ta
n
ce

[d
ay
s]

NSGA-II final generation

Figure 4.9: Pioneer 11, NSGA-II: non-dominated solutions at the last iteration
(departure date vs distance from actual trajectory).

Saturn is non-dimensional. To calculate the closest approach distance it would

be necessary to define a subsequent heliocentric arc or the characteristics of a

closure orbit; this is not very important during early design stages, as the B-

plane targeting can be accomplished with a few inexpensive trajectory correction

maneuvers.

DG-MOPSO NSGA-II

Departure date April 11th, 1973 April 9th, 1973
Total time of flight 2831 days 2781 days
C3 84.64 km2/s2 84.64 km2/s2

Total ∆V 9.2 km/s 9.2 km/s

Jupiter passage

Date March 15th 1975 February 27th, 1975
Closest approach 3.86rE 3.47rE

∆V 0.357m/s 0.015m/s

Arrival date January 10th, 1981 November 19th, 1980

Computation time 9.7 s 26.8 s

Table 4.8: Optimal solutions for Pioneer 11 interplanetary trajectory.
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4.3 Multiple gravity assists: Voyager 2

In order to assess the performances of the optimizers on a true multi-gravity-

assist trajectory, the mission Voyager 2 has been analyzed. This probe has been

launched before its twin sister Voyager 1, but it had the chance to visited more

planets. The relevant data about the trajectory are listed in table 4.9.

Departure

Launch date August 20th 1977
Launch site Kennedy Space Center
mlaunch 722 kg
C3 (Titan IIIE) 102.4 km2/s2

Jupiter GA

Closest approach date July 9th, 1979
Closest approach distance 8.97rE “ 641 500 km

Saturn GA

Closest approach date August 25th, 1981
Closest approach distance 2.68rF “ 161 270 km

Uranus GA

Closest approach date January 24, 1986
Closest approach distance 4.19rG “ 107 060 km

Neptune GA

Closest approach date August 25, 1989
Closest approach distance 1.20rH “ 29 710 km

Table 4.9: Voyager 2 interplanetary trajectory data (source: [37]).

Departure date lower boundary January 1st 1974
Departure date upper boundary December 31st 1980
Maximum C3 105 km2/s2

Gravity assist sequence JSUN
Orbit insertion required No

Population 500
Generations 500

Table 4.10: Input parameters for Voyager 2 trajectory optimization.

The optimization has been run with the parameters illustrated in table 4.10:

the search window for the departure time is fairly large, and nevertheless very

good results have been achieved; they are depicted in in figures 4.10, 4.11, 4.12

and 4.12. It must be noted that DG-MOPSO has converged on a single launch

window (around July 1976), whereas NSGA-II preserved a larger diversity, as
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Figure 4.10: Voyager 2, DG-MOPSO: population time history.

can be observed in particular in figure 4.13; again, these groups of solutions are

separated by a time interval almost equal to Jupiter synodic period. The global

solution is almost the same for both optimizers: it is better than the actual

trajectory, in fact the total ∆V would have been reduced by launching in 1976.

4.4 Conclusions and recommendations

The objective of this work was the development the 3rd version of STA Inter-

planetary Module: the software has been implemented according to the require-

ments listed in §2.3, and its capabilities were tested with respect to three past

successfully interplanetary missions. The results are very good, but this is con-

nected to the kind of missions selected. In fact the adopted formulation is well

suited for the design of missions directly targeted to the outer Solar System,

which typically have large C3 values (and in turn a smaller launch mass allowed

for the probe). Many interesting missions, like Galileo and Cassini-Huygens,

are much heavier than the Pioneer or the Voyager probes. The trajectory im-

plemented for these spacecrafts foresee a few gravity assists around Venus and

Earth, and to obtain the maximum energy increase it is crucial to correct some

of the coasting arcs with a few not-so-negligible DSMs (not feasible under the
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Figure 4.11: Voyager 2, DG-MOPSO: non-dominated solutions at the last iter-
ation (departure date vs distance from actual trajectory).
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Figure 4.12: Voyager 2, NSGA-II: population time history.
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Figure 4.13: Voyager 2, NSGA-II: non-dominated solutions at the last iteration
(departure date vs distance from actual trajectory).

current trajectory parametrization).

It would be desirable to implement a different formulation for the dynamic

model, in order to augment the design flexibility, even if the complexity of the

model will increase.

Most of the requirements have been implemented and tested; those which

have not been satisfied are listed here, along with the reasons for the missing

feature:

♢ STA-IM-F-0122: Local Optimizer for Quick Optimizer: the local

optimizer is not believed necessary for a preliminary design tool. The nu-

merical targeting becomes useful during the advanced phases of the design,

in order to refine the trajectory and define small correction maneuvers;

♢ STA-IM-F-0200: Custom Optimizer: the custom optimizer is asso-

ciated with advanced features which have not been integrated yet due

to lack of time. Some of them (like the multi-revolution capability) are

already implemented, but are not used by any part of the module.
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DG-MOPSO NSGA-II

Departure date July 28th 1976 July 29th 1976
Total time of flight 4888 days 4848 days
C3 82.8 km2/s2 82.8 km2/s2

Total ∆V 9.1 km/s 9.1 km/s

Jupiter passage

Date September 12th 1978 September 2nd 1978
Closest approach 1.82rE 1.80rE

∆V 3.03m/s 6.4m/s

Saturn passage

Date May 3rd 1981 May 12th 1981
Closest approach 2.81rF 2.70rF

∆V 10.1m/s 1.02m/s

Uranus passage

Date March 6th 1986 May 2nd, 1986
Closest approach 4.72rG 4.53rG

∆V 0.1m/s 0.765m/s

Arrival date December 16th, 1989 November 6th, 1989

Computation time 34.2 s 141.7 s

Table 4.11: Optimal solutions for Pioneer 11 interplanetary trajectory.
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