
POLITECNICO DI MILANO

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

ELIoT:
A Programming Framework for the

Internet of Things

Doctoral Dissertation of:
Alessandro Sivieri

Advisor:
Prof. Gianpaolo Cugola

Tutor:
Prof. Luciano Baresi

Supervisor of the Doctoral Program:
Prof. Carlo Fiorini

2013 – XXVI

A B S T R A C T

The world of embedded, communication-oriented devices has never been

richer than in these last few years. While on one hand Wireless Sensor Net-

works are known and have been used for several years to monitor the en-

vironment, buildings or historical sites, the proliferation of devices such as

smartphones, tablets, smart watches or music players, filled with sensors mea-

suring and aggregating data about the user behavior or the environment in

which she moves are quite new and have opened the possibility of developing

applications in novel scenarios, such as air quality monitoring, energy distri-

bution measurements, NFC payments, Machine-2-Machine interactions and

so on.

The spectrum of devices that enable this behavior goes from the tiniest

microcontrollers, such as WSN motes with 8/10 KBytes of memory, to smart-

phones and tablets with multicore processors and GBytes of disk and RAM.

Application development methodologies for these devices have some com-

mon characteristics: from the use of particular languages and programming

paradigms to the difficulties of testing and debugging applications before de-

ployment.

There are also profound differences: Wireless Sensor Network research fo-

cuses on the development of algorithms, applications and power-saving pro-

tocols, where only localized interactions between the devices (sensors/actua-

tors) are conceived, with small or no communication with the external world

(e.g., Internet, cloud systems, remote computers); frameworks for more pow-

erful devices focus on the ease of development and deployment of applica-

tions, with rich interactions with the Internet and with remote systems in

charge of elaborating the collected data, often neglecting possible local in-

teractions between devices located within communication range with each

other.

iii

Aim of this thesis is to show that a different route is possibile, which allows

the development of applications covering a significant part of the spectrum

described above, allowing localized and remote interactions, using high-level

languages apt to manipulate data and protocols, offering powerful tools to

debug, test and verify applications before their deployment.

This thesis will present a new framework called ELIoT (ErLang for the

Internet of Things), that follows this new route by adapting the Erlang pro-

gramming language to the requirements described above, providing a Virtual

Machine and language constructs apt to the development of distributed mo-

bile applications on embedded devices.

ELIoT also provides tools to the developers, in particular a simulator and

a model checker, to debug and verify the applications before deployment, a

necessary step in these scenarios, where a live monitoring/debugging of the

functionality in the environment can be difficult and expensive.

This thesis will show the impact of using ELIoT in terms of productivity for

developers and performance of applications developed in typical “Internet of

Things” scenarios.

iv

S O M M A R I O

Il mondo dei dispositivi integrati in grado di comunicare tramite reti wireless

non è mai stato così ricco come in questi ultimi anni. Mentre da un lato le

Reti di Sensori Wireless (Wireless Sensor Networks) sono ormai note e sono

state usate per diversi anni per monitorare l’ambiente, gli edifici ed i loro im-

pianti o siti di rilevanza storica, dall’altro è piuttosto recente la proliferazione

di dispositivi come smartphone, tablet, orologi “intelligenti” o riproduttori

musicali, ciascuno contenente numerosi sensori che continuamente misura-

no ed aggregano dati riguardo il comportamento dell’utente o dell’ambiente

in cui si muove; questo ha aperto nuove possibilità ed introdotto nuovi sce-

nari in cui sviluppare applicazioni, come ad esempio la misurazione della

qualità dell’aria a basso costo nelle città, il monitoraggio della distribuzione

di energia, il pagamento elettronico con qualunque dispositivo (e.g., NFC),

interazioni automatizzate tra macchine (Machine-2-Machine) e molto altro.

Lo spettro di dispositivi che permettono questo è molto ampio e va dai più

piccoli microcontrollori, come i nodi wireless da 8/10 KByte di memoria, agli

smartphone e tablet con processori multicore e diversi GByte di memoria. Lo

sviluppo di applicazioni per questi dispositivi ha alcune caratteristiche comu-

ni: dall’uso di linguaggi e paradigmi di programmazione specifici alle diffi-

coltà nel provare e risolvere eventuali errori prima di installare l’applicazione

nel suo contesto reale.

Allo stesso tempo ci sono anche profonde differenze: la ricerca nell’ambito

delle reti di sensori si concentra sullo sviluppo di protocolli che permettano

un risparmio energetico significativo, su algoritmi ed applicazioni dove le co-

municazioni rilevanti sono essenzialmente locali (verso sensori ed attuatori),

e la comunicazione verso il mondo esterno (e.g., Internet, sistemi cloud, com-

puter remoti) è pressochè inesistente; i framework per dispositivi più potenti

si concentrano invece sulla facilità nello sviluppo e nell’installazione di ap-

plicazioni aventi ricche e frequenti interazioni con Internet e sistemi remoti, i

v

quali si occupano di elaborare i dati raccolti, spesso ignorando le interazioni

locali tra dispositivi.

Scopo di questa tesi è mostrare come sia possibile perseguire un modello

differente, che permetta lo sviluppo di applicazioni per un’ampia parte dello

spettro descritto in precedenza, e che faciliti la realizzazione di comunicazioni

sia locali che remote, che utilizzi linguaggi di programmazione ad alto livello

in grado di manipolare facilmente dati e protocolli, che offra utili strumenti

di debug, test e verifica di applicazioni prima del loro rilascio.

Questa tesi introduce un nuovo framework chiamato ELIoT (ErLang for the

Internet of Things), che implementa questo modello adattando il linguaggio

di programmazione Erlang ai requisiti descritti in precedenza, fornendo una

macchina virtuale e costrutti del linguaggio atti allo sviluppo di applicazioni

distribuite per dispositivi mobili.

ELIoT inoltre fornisce strumenti agli sviluppatori, in particolare un simu-

latore ed un model checker, per verificare l’applicazione prima del suo rila-

scio, una funzionalità essenziale in questi scenari, dove il monitoraggio o il

debugging dell’applicazione una volta operativa può essere difficile e costoso.

Questa tesi mostrerà l’impatto dell’usare ELIoT in termini di produttività

per gli sviluppatori e di prestazioni dei programmi sviluppati in scenari tipici

della cosiddetta “Internet delle Cose” (“Internet of Things”).

vi

R I N G R A Z I A M E N T I

include < t r i e n n a l e / r ing r aziament i . h>

include < s p e c i a l i s t i c a /r ing r aziament i . h>

Ammetto di averci pensato un po’ su, questa volta, prima di accingermi

a scrivere queste poche pagine intitolate, come sempre, “Ringraziamenti”. E’

stato più un pensiero che si aggirava in fondo alla testa, e non qualcosa di ve-

ramente cosciente, e la struttura finale di questa sezione, che state leggendo

ora, è un’idea che credo di aver avuto questa primavera (per intenderci: inizio

a scrivere tutto ciò a fine giugno...). In sostanza, trovavo abbastanza inutile

star lì a riempire tre pagine con nomi e cognomi di tutte le persone che ho

conosciuto in questi tre anni, per non parlare naturalmente di chi conosco

da 10 o da 20 o da una vita intera: ognuno ha avuto un proprio ruolo in

questo mio percorso, ed ognuno avrebbe diritto ad essere ricordato ad un

certo punto. Ho incluso (pun intended) i ringraziamenti delle tesi passate, e

devo comunque ringraziare da un lato la mia famiglia, che ha sempre sup-

portato ogni mia decisione, e dall’altro il Prof. Carlo Ghezzi, che mi ha dato

la possibilità di fare questo dottorato, il Prof. Gianpaolo Cugola, mio advisor,

ed il Prof. Luca Mottola, co-autore di tanti articoli in questi tre anni: tutti e

tre sono stati punti di riferimento per la loro amicizia ed i loro consigli.

Preferirei invece passare il resto di queste poche pagine a parlare del dot-

torato in sé: mi piacerebbe infatti dare un parere conclusivo, per così dire, a

questa mia esperienza, e questo perchè ogni esperienza di dottorato è molto

diversa dalle altre, dipende da moltissimi fattori collegati tra loro (Sei una

persona autonoma? I tuoi collaboratori preferiscono una persona autonoma?

La tua tesi ha senso per la comunità in cui lavori? Qualcun altro sta provando

le tue stesse teorie? Etc etc etc), e di conseguenza vale la pena sentire tante

campane diverse, semmai si stesse pensando se affrontare questo percorso

oppure per avere un’idea di che cosa questa esperienza può dare.

vii

Se dovessi riassumere tutto in una frase, direi: “sì, lo rifarei tutta la vita”,

e per tanti motivi. Il primo è dovuto alle persone incontrate: il gruppo in cui

mi sono trovato è un gruppo di persone in gamba, in grado di coinvolgere

gli altri nel proprio lavoro e con una grande voglia di provare cose nuove,

sperimentare idee e tecnologie, senza in alcun modo farti sentire “l’ultimo ar-

rivato” nel tuo ambito di ricerca. Da un lato mi rendo conto, forse, di trovarmi

in un’università che sembra risentire di meno della situazione a dir poco ridi-

cola della ricerca in questo Paese, e che riesce ad offrire ai suoi studenti op-

portunità sicuramente notevoli, dall’altro ogni nuova “categoria” di persone

che incontro in questi anni al Politecnico riesce sempre a stupirmi positiva-

mente, ed a farmi amare questa università. La possibilità di sentirti ingegnere

fino in fondo, collaborando con persone che hanno una preparazione comple-

tamente diversa dalla tua ed in cui ciascuno mette a disposizione il proprio

sapere per ottenere un risultato concreto. Il secondo motivo è legato al fatto

che, come mi era già accaduto in passato, mi sono ritrovato a fare cose che

non avrei mai pensato di fare, e che mi sono tutto sommato piaciute: tre anni

fa mi ero detto che mai avrei messo le mani in una macchina virtuale esistente

(paginate e paginate di codice C), ed invece l’ho fatto, con risultati tutto som-

mato positivi, come potrete leggere nei capitoli successivi. Altre cose fatte in

questi anni in realtà hanno riflettuto passioni che sono nate nel tempo, ad es-

empio questa ripresa del lato “elettronico” della vita, che credevo fosse stato

archiviato in un cassetto una volta finita la laurea. Un altro motivo è il fatto

che, in questi tre anni, credo di essere diventato un informatico migliore. Si

dice, ed è vero, che il dottorato ti spinge in una direzione ben precisa, nello

sfondare quella sfera di conoscenze (ricordando una bella metafora visiva che

era descritta in un blog qualche tempo fa) e nel “creare” qualcosa di nuovo.

Ebbene, il dottorato permette anche di allargare la propria conoscenza in al-

tri campi della tua materia, e permette di apprezzare cose che in precedenza

non si apprezzavano allo stesso modo. Ora, non so se questo sia legato al fatto

che si iniziano ad usare “sul serio” gli strumenti che si possiedono, o al fatto

che la laurea non insegna o non trasmette con sufficienza questo tipo di mes-

saggi (e temo vivamente che questa seconda idea non sia così lontana dalla

viii

realtà), ma ho dovuto aspettare dieci anni per apprezzare il C e la sua gestione

manuale della memoria e dei tipi; ho dovuto aspettare dieci anni per capire

come (solo?) l’immutabilità dei dati abbia un senso nell’informatica odierna;

ho dovuto aspettare dieci anni per sentire la mancanza di quell’esame di elet-

tronica che mi ha fatto penare non poco a suo tempo. Un altro motivo sono le

opportunità internazionali offerte, di cui io ammetto di aver approfittato poco

(qualcuno ha detto conferenze solo in Svizzera?), ma che sono lì e aprono

tutto un mondo diverso in cui però ti senti sempre a casa (tutta l’università è

paese). La possibilità di conoscere ed incontrare persone di cui hai letto libri,

visto filmati e che improvvisamente sono lì davanti a te a discutere di argo-

menti che capisci veramente; il poter visitare realtà diverse dalla tua; il poter

presentare il tuo lavoro ad altri e scambiare idee ed opinioni con persone che

si occupano esattamente degli stessi problemi di cui ti stai occupando anche

tu.

Potrei continuare e scrivere altre motivazioni, ma direi che queste sono le

principali che mi hanno fatto apprezzare a fondo questi tre anni di esperienza,

che rifarei da capo a piedi, magari non proprio uguali ma sicuramente con lo

stesso spirito e la stessa voglia di apprendere cose nuove, sperimentare cose

nuove, magari trovare un’idea che possa, in un modo o nell’altro, cambiare il

mondo.

Siv

ix

C O N T E N T S

1 introduction 1

1.1 The device revolution . 1

1.2 Programming frameworks . 3

1.3 ELIoT: the third route . 4

1.4 Structure of the Thesis . 5

2 foundations 7

2.1 Erlang and the actor model . 7

2.2 REST interfaces and Computational REST 14

2.2.1 REST . 14

2.2.2 Computational REST . 15

2.2.3 CREST-Erlang . 17

2.2.4 CREST-Erlang performances 21

3 the scenario 27

3.1 The smart grid . 27

3.2 The implemented scenario . 28

4 the eliot framework 33

4.1 The ELIoT language . 35

4.2 The ELIoT Virtual Machine . 40

4.2.1 The network stack . 41

4.2.2 Supported platforms . 50

4.3 Hardware interfaces . 52

4.4 Dynamic RESTful interfaces in ELIoT 54

4.4.1 REST interfaces . 54

4.4.2 Dynamic reconfiguration 56

4.5 Constrained Application Protocol 57

xi

xii list of figures

5 the eliot framework: developer’s tools 61

5.1 The simulator . 61

5.2 Model checker . 67

5.2.1 McErlang . 67

5.2.2 McErlang in ELIoT . 71

6 evaluation 83

6.1 Qualitative evaluation . 83

6.1.1 Benefits to IoT Software Development 83

6.2 Quantitative evaluation . 88

6.2.1 System Performance . 88

6.2.2 RESTful interfaces performances 95

7 related works 99

7.1 Sensor network programming and pervasive computing 99

7.2 IoT architectures and application frameworks 102

7.3 Application scenarios . 104

7.4 Computational REST . 104

7.5 Model checking . 106

8 conclusions 111

8.1 Future work . 114

8.2 Final remarks . 116

bibliography 117

L I S T O F F I G U R E S

Figure 1 Spawn processes and pattern match messages. 8

Figure 2 Binary pattern matching. 10

Figure 3 Server behavior. 12

Figure 4 Process monitoring. 13

Figure 5 Server structure . 18

Figure 6 Spawn a new service. 20

Figure 7 CREST-Scheme demo . 22

Figure 8 Test application . 24

Figure 9 Smart-home application. 29

Figure 10 Scenario A and B. 30

Figure 11 Scenario C. 30

Figure 12 Excerpt of control panel code. 34

Figure 13 Failure handling triggered by a failed message send. . 36

Figure 14 Scoping filters. 39

Figure 15 ELIoT structure . 41

Figure 16 Erlang host intercommunication 43

Figure 17 ELIoT host intercommunication 44

Figure 18 Path of a send call in the VM 47

Figure 19 Network message in ELIoT 49

Figure 20 SPI example: collecting data from sensors. 52

Figure 21 Get location on an Android device. 53

Figure 22 CREST code example. 55

Figure 23 CREST ping code. 57

Figure 24 CREST Web form . 57

Figure 25 CREST Web manager . 58

Figure 26 Deployment. 62

Figure 27 Simulated environment. 63

Figure 28 ELIoT simulator workflow. 64

xiii

xiv list of tables

Figure 29 Mixed environment. 65

Figure 30 Erlang debugging tools using ELIoT simulator. 66

Figure 31 McErlang workflow (from the McErlang manual). . . . 68

Figure 32 Correct code. 70

Figure 33 Error code. 71

Figure 34 Sample code to be verified. 73

Figure 35 CPDFs . 74

Figure 36 Non-burst plot with p1 = 0.5 75

Figure 37 Non-reliable operator model. 75

Figure 38 Reliable operator model. 76

Figure 39 Simple channel model. 79

Figure 40 Send trees . 80

Figure 41 Models for the smart home example 81

Figure 42 A - B exchange. 82

Figure 43 Excerpt of code from Figure 12 (shown here for reader’s

convenience). 85

Figure 44 C implementation. 86

Figure 45 ELIoT implementation. 86

Figure 46 C code for sending beacon messages in the smart-home

application—functionally equivalent to lines 7 and 10

in Figure 43. 87

Figure 47 Memory consumption (pmap). 89

Figure 48 CPU times. 91

Figure 49 Power consumption. (The idle power consumption is

factored out.) . 92

Figure 50 Total power consumption, with Kindle. 93

Figure 51 Network delay (LAN and Internet). 94

Figure 52 Spawn time . 96

Figure 53 Function spawn absolute timings on Raspberry Pi . . . 97

Figure 54 REST spawn time with respect to ELIoT spawn time . 98

L I S T O F TA B L E S

Table 1 CREST implementations line code comparison 21

Table 2 ELIoT API. 41

Table 3 Hardware list . 51

Table 4 CREST local API. 55

Table 5 CREST remote API. 56

Table 6 Simulator API. 62

Table 7 Home scenario application line code comparison. . . . 84

Table 8 Network traffic. 94

xv

1
I N T R O D U C T I O N

The world of embedded, communication-oriented devices has dramatically

changed in the last few years, bringing new challenges and opportunities to

researchers and developers of embedded, distributed and integrated systems:

from messaging protocols to tools and facilities for the developers, to com-

pletely new scenarios enabled by this device revolution.

1.1 the device revolution

Ten years ago, this world was dominated by Wireless Sensor Networks (WSNs):

networks of very simple and low power devices, able to communicate with

each other and to interface with sensors and actuators to collect data from the

environment and interact with it accordingly. If a user needed a sensing ap-

plication, she had to design her own hardware board with microcontrollers

and integrated circuits, and to develop the application from scratch, using

low level frameworks accessing the hardware almost without abstractions.

In these ten years, several key technological and methodological changes

started a revolution in the consumer embedded world:

• microprocessors have become cheaper and more power efficient such

that they can easily be integrated in mobile devices, which in turn have

become more powerful and able to run applications that were once re-

served for standard computers

• Web technologies have improved greatly (the so-called “Web 2.0” be-

fore, and cloud computing now), and new applications able to collect,

analyze and show data dynamically (“online” with respect to “offline”

visualization) are now possible and can be run on any browser, regard-

less of the capabilities of the underlying hardware

1

2 introduction

• as a consequence of the previous two innovations, the market has been

flooded by a whole new world of mobile devices, able to run complex

applications, collect data from a variety of integrated sensors, and com-

bine these data to produce actions and to try to understand the environ-

ment in which they are located and the behavior of their owners

• the embedded world has also changed: the “Open Source Hardware”

movement allows the exchange of projects and schematics of electronic

devices and boards and the software that runs them, and projects such

as the Raspberry Pi have lowered the barrier of putting together micro-

processors, sensors and actuators and allowed hobbyists to build appli-

cations that collect data from the environment and react to it, at a much

lower cost with respect to the ten years ago world

• the so-called “Internet of Things” phenomenon started building up, as

a consequence of availability of sensing and actuating devices powerful

enough to be programmed as standard computers and to be integrated

into the Internet, and to interact with the users through intuitive and

dynamic interfaces

• finally, research in the WSN and embedded fields have produced reli-

able algorithms to be used in these applications, enabling low powered,

wireless and distributed scenarios.

For example, the Apple iPod Nano, a small commercial music player de-

signed to be used while doing physical exercises, is able to collect data from

an accelerometer (and other sensors) and trace the distance and speed that

the owner is travelling, and send these data to a Web site that will aggregate

it and show several statistics to the user. Another example is the OpenEn-

ergyMonitor [1] initiative, which aims at creating a completely open source

(software and hardware) platform that measures the energy consumption of

domestic or industrial machinery and buildings, which is needed to make

people aware of the energy sustainability problem. The hardware can be ad-

hoc or rely on boards such as the Raspberry Pi, and the software comprises a

1.2 programming frameworks 3

Web application collecting and aggregating data, and showing it to the user

in a very intuitive way, using the technologies mentioned before.

1.2 programming frameworks

As software engineers, we are interested in how these devices can be pro-

grammed, which tools are given to the developers to write applications that

can comprise a wide variety of hardware, from the tiniest boards used in

Wireless Sensor Networks, with 8/10 KBytes of memory and usually pow-

ered by small batteries, to smartphones and tablets, with powerful processors

and GBytes of memory, powered by bigger batteries or (in some cases) power

supplies.

The programming frameworks that can be used in these applications have

some common characteristics: they target a usually small part of the device

spectrum; in the case of WSN the hardware abstractions typical of the most

famous operating systems, TinyOS [2] and Contiki [3], have been conceived

to support the boards available today, where a profound knowledge of the

harware is needed by the developer in order to port an application to a dif-

ferent platform; the situation is similar for hobbyist platforms such as Ar-

duino. Smartphone and tablet frameworks may use the same programming

languages used for computer applications, but there can be differences in

how the same API behaves on these devices, and the control flow of the ap-

plication is quite different than a computer application, essentially due to the

multitasking peculiarities of such devices. Boards such as the Raspberry Pi are

the most similar to a computer from the developer’s point of view, and only

the low level hardware interfaces are platform specific.

Difficulties in testing and debugging the applications are also common for

these scenarios: this is often due to the unpredictability of at least part of

the interactions within the environment, that will be discovered only when

the application is actually deployed; smartphone applications also rely quite

heavily on Internet connections, and their behavior can become erratic if the

connection is faulty, condition that can happen in several situations.

4 introduction

At the same time, there are profound differences: on the one hand, WSN

research focuses on algorithms to collect data efficiently and to save as much

energy as possible, giving the developer the programming tools to strongly

tailor the application to her specific requirements (e.g., need for more com-

munication reliability). These frameworks also consider interactions between

devices to be local: data is exchanged inside the same network and decisions

are taken locally. Interactions with the Internet are not common, since these

devices have such low capabilities that it becomes quite difficult to add data

exchange with the external world, and often the only external link is made

by the sink, which is usually a computer or a more powerful device.

On the other hand, frameworks for more powerful devices focus on the ease

of programming, to keep the barrier low to new developers, and the devices

are usually in charge of collecting data and sending it to remote servers, often

located in today’s cloud systems, which will elaborate these data and show it

to the user, usually through a Web site (e.g., the music player example cited

before). Local interactions are usually neglected and devices rarely communi-

cate with each other, even if they are in communication range and integrate

more powerful communication capabilities, different communication media,

and more energy and power capabilities than, for example, WSN.

1.3 eliot : the third route

The aim of this thesis is to show that a different route is indeed possible: pro-

vide a framework that allows developing applications including both local and

remote interactions, using a high level language with respect to some existing

frameworks, offering tools that allow testing and debugging the applications

before deployment, simulating tens or hundreds of devices and at least some

of the characteristics of the environment. At the same time, such a framework

would cover a great part of the device spectrum, at worst with acceptable

compromises for the less powerful devices.

This thesis will present such new framework called ELIoT (ErLang for the

Internet of Things) [4] [5] that follows this route, adapting an existing pro-

1.4 structure of the thesis 5

gramming language (Erlang) to the requirements and needs of the embedded

communication-oriented world, leveraging the existing capabilities of the lan-

guage and virtual machine, providing an abstraction over the hardware on

which the applications will be executed, introducing new language constructs

apt to the so-called “Internet of Things” world.

The framework will also provide developers with tools for testing, debug-

ging and verifying their code: a simulator that allows executing the applica-

tion on a simulated environment without changing a single line of code, static

analysis tools already provided with the Erlang libraries and compatible with

ELIoT, and a model checker that verifies properties of the application being

developed. Other virtual machine capabilities are leveraged to allow hot swap

of code and live interactions with the running system.

This thesis will then present a possible scenario where the framework can

be applied, and it will show the impact of using ELIoT in terms of produc-

tivity and performances, precisely identifying the trade-offs between ease of

development, access to low level hardware and choices left to the developer,

based on her experience and application requirements.

1.4 structure of the thesis

This thesis is structured as follows:

• Chapter 2 will describe the foundations of the ELIoT framework, in par-

ticular the Erlang programming language and the REST framework that

is offered by ELIoT to access devices and sensors through the Internet

• Chapter 3 will introduce the scenario that we used for evaluating our

platform: it will be used as a running example when showing the ELIoT

features, and it will be a reference for performance comparison in the

later chapters

• Chapter 4 will show the ELIoT architecture, the syntax and semantics

differences with respect to Erlang, the changes that have been made to

the virtual machine and their implementation details

6 introduction

• Chapter 5 will describe the the simulator and the model checker

• Chapter 6 will show the variety of hardware devices that have been

tested and the qualitative and quantitative evaluations of ELIoT com-

pared to different solutions for embedded applications

• Chapter 7 will describe in detail the existing frameworks and solutions

that today’s developers can use for embedded communication-oriented

applications, and different choices that have been made in terms of hard-

ware access, programming languages and patterns

• Chapter 8 will summarize the contribution described in the thesis and

will present the conclusions of this work.

2
F O U N D AT I O N S

This chapter will describe the foundations on which the ELIoT framework

is built upon: Section 2.1 will introduce the Erlang programming language,

with several examples showing the main features that prompted us to base

our work on this language and platform; Section 2.2 will describe the REST

and Computational REST architectural styles, which have been integrated in

Erlang and then used as a starting point to introduce similar features in ELIoT

(see Section 4.4).

2.1 erlang and the actor model

Erlang is an industrial-strength functional language, which includes specific

constructs to ease the development of communication protocols, data manip-

ulation algorithms, and reliable distributed applications.

As a functional language, it contains the well known primitives and con-

structs that help manipulate data and write very compact code; it also sup-

ports single assignment variables and immutable data, thus avoiding side

effects. As for other functional languages, there is no concept of loops: recur-

sive functions (in particular, tail recursive functions) are used to “emulate”

loops and cycle through lists or other similar data types. Even though these

characteristics are important, and in Chapter 6 we will see how they impact

the readability of the code, the main reason we decided to use Erlang was its

support for parallel and distributed computations.

Erlang implements the actor model [6] for concurrency support: language

primitives allow developers to easily spawn new processes that execute func-

tions, and these are lightweight processes handled by the Virtual Machine,

that do not correspond directly to system processes or threads; the VM sched-

7

8 foundations

1 % Initial function to be executed

2 start() ->

3 % Create a new process, which will execute the loop function (below)

4 Pid = spawn(fun() -> loop() end),

5 % Register its identifier, so that he can be reached by name

6 register(somename, Pid),

7 MyNumbers = [1, 2, 3, 4, 5],

8 % Send a message to that process, containing the type and the identifier

9 % of the sender ("self()")

10 somename ! {message_type_1, self(), MyNumbers},

11 % Receive the result and print it

12 receive

13 Result ->

14 io:format("~p~n", [Result])

15 end.

16
17 % Simple function returning the double of the input

18 double(Number) ->

19 2 * Number.

20
21 % Receive messages, process them, and return results to the original sender

22 loop() ->

23 % Extract the first message from the queue (blocking)

24 receive

25 % Pattern match the content of the message

26 {message_type_1, SenderPID, ListOfNumbers} ->

27 % Apply function Double to the whole list, element by element

28 Result = lists:map(double, ListOfNumbers),

29 % Send the result back to the original sender

30 SenderPID ! Result;

31 % A different content for the message

32 {message_type_2, SenderPID, Content} ->

33 [...]

34 end,

35 % Recursive call to parse next message in queue (or wait for a new message to arrive)

36 loop()

37 end.

Figure 1: Spawn processes and pattern match messages.

ules these processes on the different cores of the computer depending on its

architecture and capabilities. Processes can share data only by communicat-

ing with each other using messages: each process has a mailbox associated

with it, which receives messages coming from other processes, and the send

command is a primitive of the language (as the spawn command is).

The example code in Figure 1 shows these characteristics: the idea is to have

a process that receives a list of elements and applies a particular function

to each of these elements (in the example, a simple doubling function on

line 18). This process executes the loop function on line 22 recursively, and

in each iteration it extracts the topmost message from its mailbox (or blocks

2.1 erlang and the actor model 9

until a message is received) by using the receive primitive on line 24; the

corresponding code to send messages is shown on line 10: the ! operator

takes the receiver name or identifier and sends him the message. Notably,

the syntax for inter-process communication is independent of whether the

communicating processes are local or remote, which simplifies distributed

programming by blurring the boundary between local and remote context1.

The command to spawn new processes is shown on line 4: the spawn func-

tion takes the function to be executed as a parameter, and it starts a new

parallel process doing exactly that. The register function on line 6 takes the

identifier returned in the previous line and associates a name to it, so that the

spawned process can be addressed by name and not only by its identifier.

Distinguishing between message types is specified declaratively using pat-

tern matching, namely, by stating constraints on the message format, as in

line 26 and 32. Erlang’s pattern matching also allows parsing and filtering of

binary data, such as message payloads, using very compact code. This is an

asset for implementing low-level communication protocols, as often required

in IoT applications.

The example in Figure 2 shows how it works: lines 11-12 show how a stream

of bytes is matched, and its different bits are taken apart and put into vari-

ables; in particular, the variable Type will contain the first 4 bits of the stream,

variable N will take the next 12, variable IP takes the next 32 (an IPv4 address),

and the rest of the stream is put inside a single variable that will be decoded

later on; at this point, Erlang will treat all the previously mentioned variables

as integers, and it will allow their manipulation.

The rest of the stream is decoded from line 34 on: in this example, we

consider that a (possibly complex) Erlang term has been encoded to binary

data, by using a functionality provided by the standard library, and here it

is decoded and then interpreted using, again, pattern matching, this time on

tuples instead of bytes.

1 An important definition, that will be used also in the next chapters, is the concept of node: a
node in Erlang is an instance of the Erlang VM, and multiple nodes can be located on the same
machine, and in different devices connected through a network.

10 foundations

1 % Define some constant values specifying the type of the message

2 -define(MSG_WITH_ACK, 1).

3 -define(MSG_WO_ACK, 2).

4 -define(ACK, 3).

5
6 receiver() ->

7 % This process receives messages from a network socket

8 receive

9 % Bitstream: it carries the type and progressive number

10 % of the message, the sender address and some content

11 <<Type:4/bitstring, N:12/bitstring, IP:32/bitstring,

12 Content/binary>> ->

13 % Type can be immediately evaluated as an integer

14 case Type of

15 ?ACK ->

16 ok;

17 ?MSG_WITH_ACK ->

18 send_ack(N, IP),

19 decode(Content);

20 ?MSG_WO_ACK ->

21 decode(Content)

22 end

23 end.

24
25 % Send the ack: build the message with correct type and number,

26 % then send to the originating IP

27 send_ack(N, IP) ->

28 Msg = <<ACK:4/bitstring, N:12/bitstring>>,

29 send_to_ip(IP, Msg).

30
31 % Decode the content: here we are not using other binary fields

32 % (you can, if you really want), we are decoding the binary as an

33 % Erlang term, then we pattern match as before

34 decode(Content) ->

35 case binary_to_term(Content) of

36 {message_type_1, Some, Variables} ->

37 perform_some_operation(Some, Variables);

38 {message_type_2, Other} ->

39 [...]

40 end.

Figure 2: Binary pattern matching.

Erlang code is compiled into a bytecode, which is interpreted (or compiled

just-in-time) by the Erlang Virtual Machine (VM). This provides great flexi-

bility, allowing processes to be dynamically spawned, also across hosts, with

nodes exchanging code over the network. This feature eases the dynamic

(re)deployment of distributed applications: spawning a process remotely uses

the same primitives as in a local setting, while the message-passing function-

ality remains the same because of Erlang’s implementation of an overlay net-

work of nodes, which will be described in more details later. Thus, developers

2.1 erlang and the actor model 11

may start writing an application in a local context and then move to a dis-

tributed setting with (almost) no changes to the code. This model nicely fits

massively distributed scenarios characterized by transient interactions, such

as the IoT, easing software reconfiguration.

Finally, the Open Telecom Platform (OTP), part of Erlang’s libraries, pro-

vides useful mechanisms to design robust distributed applications. In partic-

ular, the platform introduces several architectural/design patterns, called be-

haviors, which provide the non-functional parts of a typical architecture (such

as a server process, handling requests) and allowing the developer to take care

of the functional parts only.

Figure 3 shows a brief example of the server behavior: the developer is

required to create an Erlang module implementing some specific methods

(a sort of interface implementation), in particular an initialization function

(line 12), which can initialize the state of the server (e.g., open database con-

nections, open files, create data structures. . .), a termination function (line 17),

which is called when the server is stopped, and can react to the specific rea-

son (the server may have been stopped correctly or it may have crashed for

some reason), and the functions handling the requests (lines 22 and 27), being

them request-response or request-only (a peculiarity of Erlang servers) 2.

Another very important behavior is called supervisor, whose job is to mon-

itor the execution of child processes and to implement the necessary failure-

handling mechanisms. Supervisor processes can be hierarchically composed

to structure fault-tolerant implementations according to application-specific

requirements, which may come in handy for dealing with localized control

loops. It is important to use behaviors whenever possible, because they inte-

grate well with the supervisor and allow a correct failure-handling, restart of

processes and hot code updates (more on this later).

The supervisor behavior is based on an Erlang mechanism called process

linking: a process is able to spawn another process and link to it, thus receiving

information (as messages) when the latter terminates its execution (whether

it stops correctly or because of an error). Figure 4 shows exactly this: line 3

2 There are also another couple of functions that have to be implemented, regarding code updates
and handling of extra informations, which have been omitted here for clarity.

12 foundations

1 % Specify the design pattern to be used by this module

2 -behavior(gen_server).

3 % Define a record (a named tuple) with a single field, to be

4 % the state of this server

5 -record(state, {list = []}).

6
7 % Standard call to start the server

8 start_link() ->

9 gen_server:start_link({local, ?MODULE}, ?MODULE, []).

10
11 % Initialization function

12 init([]) ->

13 {ok, #state{}}.

14
15 % Termination function for this server, called when the server

16 % is stopped or crashes

17 terminate(Reason, State) ->

18 ok.

19
20 % Handle a request that does not need a reply (the caller returns

21 % immediately)

22 handle_cast({add, Element}, State#state{list = List}) ->

23 {noreply, #state{list = [Element|List]}}.

24
25 % Handle a request that needs a reply (the caller is blocked

26 % until he gets an answer)

27 handle_call({get, head}, From, State#state{list = [Head|Tail]}) ->

28 {reply, Head, #state{list = Tail}}.

29
30 [...]

Figure 3: Server behavior.

allows the process to receive exit messages, line 5 spawns a new process and

links to it, and line 16 matches an exit message coming from a linked process.

The supervisor behavior enhances this mechanism allowing an easy creation

of trees of processes, with each monitored process registered with a specific

restart behavior (e.g., a process which terminates will be restarted, or it will

in turn terminate its supervisor, in a chain reaction mechanism that will stop

the entire application).

One last feature of Erlang is the possibility of hot code swap: the code can

be changed on the fly, without having to stop a running application and

allowing the parts executing the old code to terminate their job gracefully.

This mechanism has some limitations, but it is useful at least for two reasons:

it allows application updates with the application still running, and it allows

2.1 erlang and the actor model 13

1 start() ->

2 % Receive a message when monitored processes die

3 process_flag(trap_exit, true),

4 % Spawn a new process and link to it (monitoring)

5 Pid = spawn_link(fun() -> loop() end),

6 register(somename, Pid),

7 {ok, Pid}.

8
9 request(Value) ->

10 somename ! {request, self(), Value},

11 receive

12 {result, Result} ->

13 Result;

14 % This message is received if a monitored process dies

15 % with the reason Reason

16 {’EXIT’, Pid, Reason} ->

17 {error, Reason}

18 end.

19
20 loop() ->

21 receive

22 {request, Sender, Value} ->

23 % Assuming a hardware SPI interface is present

24 % in the platform, this function may fail

25 Res = spi:send(Value),

26 Sender ! {result, Res},

27 loop()

28 end.

Figure 4: Process monitoring.

the load and execution of new modules and functions dynamically, a feature

that we leverage in Computational REST, as shown in the next section.

Erlang provides a stepping stone to enable development of IoT applications.

On the other hand, the original Erlang’s syntax, semantics, and system sup-

port are not straightforwardly applicable in IoT scenarios. The IoT commu-

nication patterns and resulting communication guarantees differ from those

of traditional Erlang networks. Moreover, mainstream Erlang VMs demand

hardware resources rarely found in IoT settings, whereas debugging and test-

ing IoT applications cannot be oblivious to the real-world interactions IoT

systems are exposed to. ELIoT tackles these issues as decribed in the next

chapters.

14 foundations

2.2 rest interfaces and computational rest

This section will introduce the Computational REST architectural style [7], the

differences and enhancements with respect to the REST style, and the Erlang

implementation that we did [8]; this implementation will then be the starting

point to introduce dynamic RESTful interfaces in ELIoT (see Section 4.4).

2.2.1 REST

Defined by R.T. Fielding (one of the main authors of the HTTP protocol), the

REpresentational State Transfer (REST) style provides an a posteriori model of

the Web, the way Web application operates, and the technical reasons behind

the Web success.

Fielding’s Ph.D. thesis [9] defines the set of constraints that every REST

application should satisfy: the structure of the application has to be client-

server, communication has to be stateless, caching has to be possible, the

interface of servers has to be standard and generic, layering is encouraged,

and each single layer has to be independent from the others. An optional

constraint suggests using code-on-demand [10] approaches to dynamically

extend the client’s capabilities.

These constrains are coupled with a set of foundation principles:

• the key abstraction of information is a resource, named by a uniform

resource identification scheme (e.g., URLs);

• the representation of a resource is a sequence of bytes, plus representa-

tion metadata to describe those bytes;

• all interactions are context-free;

• only a few primitive operations are available;

• idempotent operations and representation metadata are encouraged in

support of caching;

• the presence of intermediaries is promoted.

2.2 rest interfaces and computational rest 15

While these principles allowed REST to be scalable and supported the cur-

rent Web dimensions, at the same time not all the Web applications followed

these design guidelines; for example, they might require stateful communica-

tions or they might create problems to caching devices components.

The main limitation of REST is the generic interface constraint: it improves

independence of applications on specific services, because all the components

are able to handle any data, but at the same time it hampers the efficiency

of communication, since all data must be coded in a standard way to pass

through standard, application independent interfaces; something not easy to

do especially when there is more than pure “content” to be sent between

peers.

The CREST authors identified this and other REST weaknesses in [11] and

decided to address them by moving the focus of the communication from data

to computations. If the former is the only subject of an interaction, then a client

receiving a message through a generic interface could not be able to interpret

it correctly. The REST optional constraint of code-on-demand is too weak to

solve the issue, since the same client could not be able to use that code.

2.2.2 Computational REST

The result of this paradigm shift was the Computational REST (CREST) [7]

style, which let peers exchange computations as their primary message, usually

implementing them through continuations. These are instances of computa-

tions suspended at a certain point and encapsulated in a single entity to be re-

sumed later. They are offered as a basic construct by some languages, usually

functional ones like Scheme, which also allow continuations to be serialized

and transmitted along a network connection to allow the computation to be

resumed on a different node.

Whenever a language does not offer the continuation mechanism, a closure

can be used instead: it is a function with free variables declared within its

scope, and since the extent of these variables is at least as long as the lifetime

16 foundations

of the closure, they can be used for saving a state between different calls of

the function.

Also notice that in the definitions above we used the term “peer” instead of

“client” or “server”. This is not by accident, since CREST does not distinguish

between clients and servers but rather between weak peers that support a min-

imal subset of the CREST operations and usually operate as initiators of the

interaction, and strong peers that support the whole set of CREST operations

and characteristics and may fully interact with other peers, be they strong or

weak.

CREST draws on the REST principles to define a new set of architectural

guidelines:

• a resource is a locus of computations, named by a URL;

• the representation of a computation is an expression plus metadata to

describe the expression;

• all computations are context-free;

• the presence of intermediaries is promoted;

• only a few primitive operations are always available, but additional per-

resource and per-computation operations are also encouraged.

As for the last point, CREST defines two primitive operations: the spawn

operation requires the creation of a process executing the computation; this

process is associated to a unique URL and when this URL is invoked the

computation itself is resumed and the results it produces are returned to the

caller; thus, new services can be installed in a (strong) peer and then accessed

by any client. The remote operation installs a computation and resumes it

immediately, returning any result to the caller and destroying it when it ends,

so that it cannot be accessed again.

In [11, 12] the authors further detail the CREST principles:

• any computation has to be included into HTTP operations, so that the

new paradigm could be made compatible with the current Internet in-

2.2 rest interfaces and computational rest 17

frastructure. To keep up with such compatibility, the authors also dis-

tinguish between machine URLs and human-readable URLs, where the

former may contain the computation itself, while the latter can be used

by users;

• computations may produce different results, based on any received pa-

rameter, server load or any other factor that changes during time; they

can also maintain a state between calls, for example for accumulating

intermediate results;

• computations have to support independency between different calls,

and avoid data corruption between parallel invocations using synchro-

nization mechanisms offered by the languages of choice;

• computations can be composed, creating mashups: a computation may

refer to other computations on the same peer or on different peers, and

an execution snapshot should include the whole state of the computa-

tion;

• intermediaries must be transparent to the users;

• peers should be able to distribute computations, to support scaling and

lowering latency, also checking temporal intervals between executions

of the same computation and specifying some sort of expiration date

when necessary.

Finally, in [12] a new feature has been introduced: spawned processes

should act as so-called subpeers, with their own spawn and remote capabili-

ties, inheriting security policies by their ancestors in the process tree, where

the root node is the peer itself. This way a hierarchy of processes is created

in a CREST peer, where each node is limited by its ancestors and limits its

successors.

18 foundations

Figure 5: Server structure

2.2.3 CREST-Erlang

In this section we illustrate how the CREST style can be implemented in Er-

lang. The resulting framework is called CREST-Erlang, as opposed to CREST-

Scheme, which denotes the original framework presented in [11]. Figure 5

shows the structure of a CREST peer written in Erlang. At the bottom are

the computations running into the peer, which have been installed there by

invoking the spawn or remote CREST primitives. They are managed by an ad-

hoc component, the CompMgr, which installs new computations, keeps a list of

those running inside the peer, and dispatches incoming invocations.

As we mentioned, one of the main reasons to choose Erlang was the sup-

port offered by the language to let (distributed) processes communicate. On

the other hand, to be CREST compliant, the communication among peers has

to use the HTTP protocol. Accordingly, our peer embeds a Web server, which

2.2 rest interfaces and computational rest 19

waits for incoming HTTP requests, unmarshals them, and uses the standard

Erlang communication facilities to dispatch them to the CompMgr. More pre-

cisely, Figure 5 shows two Web servers, one answers HTTPS requests and is

meant to handle spawn and remote operations, which we choose to securely

transfer on top of SSL (more on this later). The other serves standard invo-

cations and static pages, a trivial but required functionality for a Web frame-

work.

As for the adopted protocol we chose, it is worth mentioning here that

we decided to send computations using the HTTP POST operation, while

the original CREST approach suggests embedding them into the URL of the

spawn request. This choice seems more in line with the expected usage of

HTTP. Indeed, the POST operation has been designed for those requests that

are expected to alter the internal state of the receiving server, and this is

the case for the installation of a new service. Moreover, the POST payload

may include a large body of data, as it happens in the case of the state of a

computation and the associated bytecode.

As shown in Figure 5, our framework also includes the CRESTLib, which

provides a set of facilities to invoke local and remote services without having

to bother with the underlying communication details. This is used by peer

clients, but it can also be used to implement the services themselves, when

they have to communicate with other peers.

Finally, to improve fault tolerance each peer is organized in a supervision

tree, with a high level supervisor (not shown in figure) in charge of all the

fundamental modules including the two Web servers and the CompMgr, and

a low level one, the CompSup, to which all the spawned computations are

attached. The former is able to monitor and restart each of its children, while

the latter, at the current state, just logs any error or exception happening to

computations, unlinking them from the CompMgr when this happens.

Listing 6 shows the template of an Erlang service to be spawned or remotely

executed on a peer. It receives from the CompMgr the invocation parameters

originally coming from the client, uses them to perform its computation, and

finishes by invoking itself with the new state calculated during execution,

20 foundations

1 my_service(State) ->

2 receive

3 {Pid, [{"par1", P1}, {"par2", P2}, ...]} ->

4 %% Do your job accessing par1, ... parN

5 %% eventually create a new state NewState

6
7 %% If necessary, spawn myself on peer Hostname

8 invoke_spawn(Hostname, ?MODULE,

9 fun() -> my_service(NewState) end),

10 %% Finish with a tail recursion (or just end this

11 %% computation)

12 my_service(NewState)

13 end.

Figure 6: Spawn a new service.

using the typical approach of functional programming based on tail recursion.

Lines 8-9 show how the service may spawn a copy of itself (i.e., a copy of the

computation) on a different node, if necessary.

Notice that what is transferred to the other peer through the invoke_spawn

primitive is the closure of the running service, not the continuation, as required

by CREST. Indeed, as we mentioned in the previous section, this is the only

primitive offered by Erlang. On the other hand, the need to transfer compu-

tation while it is executing statements in the middle of the service’s code is

very uncommon. The typical service pattern is the one shown by our template,

which transfers the computation just before recursing. If this is the case, trans-

ferring the closure obtains the same result as transferring the continuation of

the computation.

The only point not covered by our CREST-Erlang framework is the concept

of subpeer, which has been described by the CREST authors in a subsequent

article [12], so it was not included in the current prototype.

Technologies involved and details about security

For the Web server part, we analyzed several different platforms developed

in the last few years for handling HTTP communications in Erlang. Each

has its pros and cons, and in the end we chose MochiWeb [13], because of

its support to JSON (which we used to effectively serialize parameters and

2.2 rest interfaces and computational rest 21

Table 1: CREST implementations line code comparison

Framework Framework source code Demo source code

CREST-Scheme 5938 817

CREST-Erlang 2957 768

return values passed among peers and clients) and RESTful services, and for

its performance.

The MochiWeb library and the OTP modules together provide the main

skeleton of our peer: the supervising system, the logging system (not shown

in Figure 5), and the two Web servers. This allowed us to focus on developing

the functional parts of the framework.

As for security, Erlang does not offer many facilities. Indeed, it was born

as a language for handling telephony devices, a domain in which security is

usually guaranteed by directly controlling the network itself. Now that Erlang

is being used outside its target domain, this weakness has been identified and

the first security facilities are being added to the language. On the other hand,

we are far from having ad-hoc facilities to manage security in general and the

security of mobile code in particular. To address this issue we decided to

adopt a strategy based on mutual authentication among peers. This way we

bypass the specific problem of protecting the incoming computation from the

peer and the peer from the computation, building a trusted network on top of

which computations may roam freely. This is clearly a sub-optimal solution,

which we plan to overcome in future versions of our prototype.

2.2.4 CREST-Erlang performances

Qualitative evaluation

To compare the effort in implementing the two framework, and so to indi-

rectly compare the choice of the two languages used, i.e., Scheme vs. Erlang,

we counted the lines of code of the main library and of the implemented case

studies, not counting the external dependencies. The results are illustrated in

22 foundations

Table 1 and show that our code is about a half of the original one. This fact

confirms our initial idea that Erlang more easily and naturally supports the

CREST mechanisms.

Quantitative evaluation

To compare the two frameworks in terms of performance, we re-built part

of the implementation of the original case study, in particular we used the

same Web client application (with its graphical widgets) and recreated some

of the corresponding CREST services. We also implemented this case study

as a standard Web application using MochiWeb alone, to use as a reference.

This was possible since the original case study, unless the client duplicates its

session, does not exploit any advanced CREST functionality; all computations

are installed during system startup, and they are only invoked at the demo.

To actually measure the performance of these three applications, we used a

dual core laptop with 4GB of RAM as a server, and we launched several sim-

ulated users from a different computer, a 6 core desktop with 8GB of RAM.

Notice that we choose the machine running the clients to be more power-

ful than the server to be sure the values we measured were not influenced

by some limitation on the client side. The two machines are connected by a

100Mbit LAN. The whole test is run by using a client application, written in

Erlang, which measures the average response time for each request and the

throughput in term of KBytes per second sent to the clients. We used a nav-

igation sample recorded during a browser session through the demo site to

simulate the behavior of a standard user. Through our script we simulated

the arrival of one of such users every second, each repeating the same session

with a delay of one second at the end, for 4 minutes in total.

Figure 7 shows the results we measured in terms of response time and

throughput. The CREST-Scheme framework has the worst performances, serv-

ing a very low number of pages per second with a response time peaking at

more than 30 seconds; Mochiweb performs better than CREST-Erlang in terms

of response time, because of the overhead introduced internally by the latter,

and it is also able to answer more requests per second in the last minute of the

2.2 rest interfaces and computational rest 23

(a) Response time

(b) Throughput

Figure 7: CREST-Scheme demo

24 foundations

test, because its usage of the server resources is lower than the CREST-Erlang

one, especially in terms of CPU usage.

To test the overhead introduced by using the spawn and remote CREST op-

erations, we compared our prototype against MochiWeb in running a Web

application based on a simple CREST service. Each client starts by asking a

front-end peer to spawn a new instance of this simple service on a different

peer, located on the same machine, and from then on it invokes this new ser-

vice repeatedly, with one second delay among each invocation; the MochiWeb

version has the same service pre-installed, which the client invokes repeatedly

as before. As in the previous case, we start one client every second for the 4

minutes of the test. Figure 8 illustrates the results we gathered in terms of

response time and throughput. We notice that MochiWeb is able to answer

more requests per second, and this explains the higher throughput, while the

response time is similar and it remains almost constant while the number of

clients increases.

2.2 rest interfaces and computational rest 25

(a) Response time

(b) Throughput

Figure 8: Test application

3
T H E S C E N A R I O

This chapter will introduce the scenario we will use throughout the thesis to

illustrate, validate and evaluate ELIoT.

3.1 the smart grid

One of the most popular and analyzed technologies that have been under

development in the last few years is the so-called smart grid:

The smart grid is the collection of all technologies, concepts,

topologies, and approaches that allow the silo hierarchies of gener-

ation, transmission and distribution to be replaced with an end-to-

end, organically intelligent, fully integrated environment where

the business processes, objectives, and needs of all stakeholders

are supported by the efficient exchange of data, services and trans-

actions. [14]

In particular, it is aimed to provide several improvements in terms of effi-

ciency, reliability, sustainability:

• reliability gathered informations can be used to detect faults in the

grid, and solutions can be found without the immediate intervention of

technicians (e.g.,, multiple routes)

• efficiency the ability to communicate to the control panel located in

each house allows utility companies to track the electricity consumption

and possibly to dynamically change the amount of energy provided to

prevent overloads. The possibility to inform people on their own con-

sumptions and to calibrate electrical bills according to different policies

27

28 the scenario

(again, in order to prevent peaks and overloads of the grid) is another

consequence of the grid monitoring

• sustainability the traditional electrical grid is not built to allow many

distributed feed-in points, for example renewable energy sources like

solar panels or windmills, especially because these sources are often char-

acterized by frequent fluctuations in generated power; because of this

situation, informations have to be gathered from the grid to help bal-

ance these fluctuations and correctly handle the “stable” sources along

these new ones, that are becoming quite popular.

The smart grid is an often-cited scenario for IoT applications [15]: it runs on

quite different devices, from the in-house appliances to the main computers

of electrical companies, and it requires both local communication (to take im-

mediate decisions for example in case of power shortage in a neighborhood)

and remote communication (to coordinate with the main power grid and to

receive commands from the decision-makers).

3.2 the implemented scenario

The smart-home scenario we consider is an instance of the smart grid scenario

introduced before: in particular, its base design involves the house part of

the smart grid, which coordinates with the rest of the grid and at the same

time has to take local decisions based on different parameters, both local and

coming from the external network.

Base design

In general, the devices in Figure 9, being the control panel or individual ap-

pliances, need to access the Internet, e.g., the control panel must be able to

obtain energy rates from the provider, and to be accessible from the Internet,

e.g., appliance manufacturers must be able to remotely update the appliances’

on-board software. At the same time, a local control loop, guided by the con-

trol panel, is beneficial to reduce communication costs and improve perfor-

3.2 the implemented scenario 29

Figure 9: Smart-home application.

mances. In particular, the control panel acts as a front end for the users and

coordinates the appliances’ activities, dealing with:

f1 : discovery and monitoring of home appliances, which provides the infor-

mation to compute their operating schedules;

f2 : processing of the user inputs, and computation of a schedule of appliance

operation whenever required;

f3 : communication with external entities, e.g., to query the energy providers

for energy prices or to offer energy consumption information over the

Internet.

For ease of installation, smart-home devices are expected to feature wire-

less communication. Because of this, we design the discovery functionality

required in F1 using a soft-state approach [16]. The control panel periodically

broadcasts beacons that running appliances immediately acknowledge, either

to join the system initially or to confirm their presence afterwards. In absence

of acknowledgment, the control panel removes the appliance from the appli-

cation state.

30 the scenario

4
:

e
n

e
rg

y
 r

a
te

s

3*: energy query

4*: energy prediction

1*:
 e

nerg
y

query

5: s
ch

edule

2*:
 e

nerg
y p

re
dic

tio
n

1*: beacon

5: schedule

3
:

e
n

e
rg

y

ra
te

s
 q

u
e
ry

2: executable

model

energy provider

home

appliance

home appliance

control panel

Figure 10: Scenario A and B.

5: energy

consumption

and production

4: energy

queries 1*: beacon

2: add component

3*: energy statusenergy

provider
solar

panel

control

panel

Figure 11: Scenario C.

The design of the remaining functionality depends on application require-

ments and available hardware platforms:

scenario a : if home appliances are able to locally compute their expected

energy consumption, we can design the schedule computation of F2 by

issuing remote queries to obtain the corresponding information. This is

shown in the black sequence of exchanges in Figure 10: whenever the

user inputs new information, the control panel queries the appliances

for their expected energy consumption according to different operating

3.2 the implemented scenario 31

settings (step 1 and 2), and asks the energy provider for the energy

rates at different times of the day (step 3 and 4). Based on this and

environmental data collected from sensors, the control panel distributes

an operating schedule back to the appliances (step 5). The algorithm that

implements this behavior is shown by Algorithm 1: it is a formalization

of this sequence of steps, and it has been implemented in the smart-

home application that we developed and that will be described in the

next chapters

scenario b : if an appliance’s computational power is severely constrained,

e.g., in the case of a light fixture, or the amount of data to exchange is ex-

cessive, the estimation of expected energy consumption for F2 should be

performed by the control panel itself. The blue sequence of message ex-

changes in Figure 10 illustrates a design supporting this form of interac-

tion, which requires computationally-constrained appliances to provide

the control panel with a model of their expected energy consumption.

The light fixture indeed acknowledges the control panel’s beacon (step

1) by shipping an executable model to compute its expected energy con-

sumption (step 2). The control panel locally runs the model (step 3) to

compute an estimate of the light fixtures’ energy consumption (step 4)

before determining and transmitting its schedule (step 5).

scenario c: if some devices run different platforms, the necessary coordi-

nation must rely on standard-compliant interfaces and inter-operable

message formats. Such interfaces may also need to evolve after the sys-

tem is installed, especially for F3. For example, landlords may decide

to install solar panels and to sell the excess energy back to the grid. As

shown in Figure 11, whenever this happens, the control panel should be

extended with an additional interface to query the amount of produced

energy. This interface will be used by the energy provider in the energy

market. This is implemented by letting the newly installed solar panel

answering the control panel’s beacon (step 1) by requesting the addi-

tion of a new software component (step 2). This component will receive

messages from the solar panel to periodically inform the control panel

32 the scenario

about the produced energy (step 3). The same component will make

this information available over the Internet, e.g., to the energy provider

(step 4 and 5), in a standard and vendor independent manner.

Data: billing, requests, appliance models
Result: schedule for each appliance
while not solved do

get best time slot from billing;
foreach request do

calculate appliance behavior;
end
foreach hour in time slot do

if hour does not conflict with requests then
fill with appliances until upper limit;

end

end
if appliances is empty then

solved = true;
else

calculate next best time slot;
end

end
Algorithm 1: Schedule calculation

4
T H E E L I O T F R A M E W O R K

This chapter describes the ELIoT framework in detail: it shows the differences

in syntax and semantics with respect to Erlang; it introduces the ELIoT Vir-

tual Machine, a modification of the original VM, and we explain how the new

language semantics have been implemented; then we describe the hardware

interfaces, used to interact with sensors and actuators, and the hardware plat-

forms where we ported the VM (Chapter 6 will show several performance

measurements); we also show the dynamic RESTful interfaces that we intro-

duced in ELIoT, based on the Computational REST framework presented

before.

Running example

To make our explanation concrete, we consider the smart-home application

introduced in the previous chapter. The ELIoT code in Figure 12 reports part

of the implementation of the core functionality of the control panel: discovery

of home appliances, as per functionality F1 in the application base design

(lines 20 to 29); gathering of the appliances’ operating parameters, as per

scenario A (lines 35 to 42); and installation of the executable model of an

appliance’s expected energy consumption, as per scenario B (lines 46 to 54).

The main structure of the example is as follows: after defining constants

and structured types, the code in Figure 12 defines a recursive function receiver

run by the control panel (line 15). It takes the current set of known appliances

as input and assigns it to the Appliances variable. Processing stops at the

receive statement (line 17) and then unfolds depending on the type of re-

ceived message.

33

34 the eliot framework

1 % Define some constants holding chars (1 byte) to be used as headers of messages

2 -define(BCON, $M).

3 -define(APPLIANCE, $A).

4 -define(APPLIANCE_LOCAL, $L).

5 % The timer for sending beacons

6 -define(TIMER, 60000).

7
8 % Define the ’appliance’ record (tuple with named variables) with three fields: the

9 % appliance’s IP address, the process id of the appliance’s model (if running locally),

10 % and the list of its parameters.

11 -record(appliance, {ip, pid = none, parameters = []}).

12
13 % Main (recursive) function handling incoming messages. It takes a dictionary (key, value

14 % pairs) as a parameter, to hold the set of known appliances

15 receiver(Appliances) ->

16 % Extract the first message from the incoming queue (blocking)

17 receive

18 [...]

19 % On receiving the timer self message, build the beacon and send it in broadcast

20 timer ->

21 % Build the beacon with a single byte (8 bits): the value of constant BCON defined above

22 Msg = <<?BCON:8>>,

23 % Send the beacon, unreliably, to the processes called ’appliance’ running on nodes

24 % reachable from this one

25 {appliance, all} ∼ Msg,

26 % Re-send the timer self-message to myself, after TIMER milliseconds

27 erlang:send_after(?TIMER, self(), timer),

28 % Tail recursion: parse next message

29 receiver(Appliances);

30 % Process message coming from neighbors

31 {RSSI, SourceAddress, Content} ->

32 % Pattern match on the message content

33 case Content of

34 % First byte equals APPLIANCE, next is a binary blob: de-serialize and process

35 <<?APPLIANCE:8, SerializedParameters/binary>> ->

36 Parameters = data:decode_params(SerializedParameters),

37 % Create a new record with this appliance data

38 NewRecord = #appliance{ip = SourceAddress, parameters = Parameters},

39 % Add it to the dictionary (remember: immutable variables)

40 NewApps = dict:store(SourceAddress, NewRecord, Appliances),

41 % Tail recursion with the new set of appliances

42 receiver(NewApps);

43 % First byte equals APPLIANCE_LOCAL, next 20 bytes is a hash, then the lenght

44 % (1 byte) of the following field (SerializedName), then a binary blob holding

45 % serialized code: de-serialize and process

46 <<?APPLIANCE_LOCAL:8, Hash:20/binary, L1:8, SerializedName:L1/binary, Code/binary>> ->

47 Name = erlang:binary_to_list(SerializedName),

48 % Spawn a new process to execute the given code (which is checked against the hash)

49 {Pid, Parameters} = supervisor:start_model(Name, Code, Hash),

50 % Create A new record for the appliance and add it to the dictionary

51 NewRecord = #appliance{ip = SourceAddress, pid = Pid, parameters = Parameters},

52 NewApps = dict:store(SourceAddress, NewRecord, Appliances),

53 % Tail recursion with the new set of appliances

54 receiver(NewApps)

55 end

56 end.

Figure 12: Excerpt of control panel code.

4.1 the eliot language 35

4.1 the eliot language

Here we describe ELIoT’s dedicated language constructs, which concern three

key aspects of inter-process communication when developing IoT applica-

tions:

• handling different communication guarantees

• supporting extended addressing schemes

• providing access to low-level information from the networking stack.

Interprocess communication in ELIoT

As mentioned in Section 2.1, Erlang inter-process communication is based on

the ! operator, which is equally used for sending messages to a local or to a

remote process. In blurring the distinction between local and remote commu-

nication, Erlang assumes that the underlying protocol for sending messages

among Erlang VMs is reliable, in particular the TCP protocol provides these

guarantees to the developer. This is a strong assumption in the IoT scenarios

we target, where wireless communication is the rule more than the excep-

tion. Indeed, TCP provides reliable channels under several key assumptions

regarding the failure model, which is quite different on a wired network with

respect to a wireless network, especially where a low power wireless protocol

(such as ZigBee) is in place: channels may disappear due to nodes going out

of range, the network is decentralized and properties like broadcast transmis-

sion have a different semantic (e.g., in a wired network they typically span the

entire LAN, while in a ZigBee network they span the nodes that are visible

to the radio of the sender in a specific moment, if there is no retransmis-

sion in the network protocol implemented in the application). At the same

time, several IoT applications do not need reliable communication and may

sacrifice that for better efficiency. Accordingly, ELIoT complements Erlang’s

! operator, with a new operator: ∼∼∼, which models unreliable, best effort, send-

ing of messages. We see it at work at line 25 of Figure 12: after creating the

36 the eliot framework

single byte beacon (line 22), the control panel sends it unreliably using the

∼∼∼ operator.

1 % Extract the first message from the queue (blocking)

2 receive

3 % On receiving the timer self message, build a new message and send it

4 timer ->

5 Message = {Some, Content, Or, Another},

6 % Send Message to the process called ’destination’ on a device named ’node1’

7 % at address 1.2.3.4, using reliable send

8 {destination, ’node1@1.2.3.4’} ! Message;

9 % If something very bad happens, I will receive this NACK...

10 {nack, ReceiverAddress, Message} ->

11 % ... and will react, e.g., by informing the user

12 notify_user("Sending to ∼p failed", ReceiverAddress);

13 end.

Figure 13: Failure handling triggered by a failed message send.

Besides adding the ∼∼∼ operator, ELIoT addresses possible faults of the un-

derlying communication protocol by slightly changing the behavior of the

! operator: as pointed out before, the network cannot guarantee some prop-

erties anymore, and (as a consequence) neither the network protocol (details

on the new protocol implementation will follow); this means that we needed

to give the developer a way to know if the communication fails: in Erlang

the send primitive returns immediately, regardless of the destiny of the mes-

sage; in ELIoT, instead, in presence of communication faults that cannot be

resolved, the framework places a special nack message into the sender’s in-

coming message queue. Programmers can realize application-specific failure-

handling mechanisms based on such notifications, as exemplified in Figure 13.

When a timeout expires, the process prepares and reliably sends a message

to a specific destination Node1 (lines 4 to 8). The clause at line 10 matches

the nack message that the underlying VM generates for the sender process,

should the sending fail. In this example, the process simply reacts by notify-

ing the user (line 12), yet programmers are free to implement smarter mech-

anisms to handle such situations, possibly based on the actual destination

and payload of the failing massage, which are returned as part of the nack

message.

4.1 the eliot language 37

More generally, the need to carefully control the costs associated with wire-

less communication—both in terms of energy and bandwidth consumed—

hardly match the level of abstraction inherent in Erlang’s original inter-process

communication model. Explicitly providing a best-effort message send oper-

ator, alongside a more reliable one, reconciles the need for keeping a reason-

ably high level of abstraction with the reality of unreliable wireless commu-

nications.

Notice that ELIoT retains the blurred distinction between local and remote

communication by allowing both message send operators to be used to com-

municate with local processes. In this case, both straightforwardly guarantee

delivery of messages.

New addressing schemes in ELIoT

Through the ! operator, Erlang provides solely unicast messaging. Single pro-

cesses can be easily reached, being them local or remote, once programmers

know their unique identifier or the name they registered to, together with

the address of the VM they run on. While this is enough for the typical client-

server communication Erlang was conceived for, it is not enough to efficiently

support scenarios when a process needs to send a message to all other reach-

able processes. This form of broadcast communication is often used in IoT

applications, either as a primitive at the application level, e.g., for discovery,

or as a low-level mechanism to implement higher-level communication pro-

tocols. Even though Erlang libraries provide broadcast functions, they use

multiple unicast communications to emulate real broadcast with an unaccept-

able waste of resources.

ELIoT, instead, supports these scenarios by offering a richer addressing

scheme than Erlang. In particular, ELIoT messages addressed to {n, all}

reach processes with name n running on all reachable VMs; the notion of

reachability is a function of the target network scenario:

• the ELIoT version used for implementing the smart home scenario uses

UDP as communication protocol and broadcast UDP for the all key-

word, thus the span of message spreading depends on the network

38 the eliot framework

configuration (typically, it works only in the LAN and it does not go

across routers; it could be easily ported to IP multicast to overcome this

problem);

• an ELIoT prototype tested over ZigBee networks uses the protocol broad-

cast addressing, thus the span of message spreading is limited to the

devices in range.

Figure 12 (line 25) uses the all keyword to implement discovery of new ap-

pliances in the house network.

Notice that mapping processes to names happens in two steps. First, a

process registers itself under a symbolic name, as in standard Erlang. This

allows communication to the registered process based on its name, without

knowledge of the process id that the VM assigns at run-time. The process

then becomes accessible from the network only if explicitly exported, using

an ELIoT-specific function. Separating the two steps spares memory and pro-

cessing overhead at the VM level for processes that do not require network

interactions.

Addressing based on the all keyword has wide applicability in ELIoT.

In particular, programmers may also use it with the spawn primitive. This

is required, for example, when a new functionality is to be deployed on all

reachable nodes at once.

To further control the individual nodes where such spawning must happen,

programmers may use ad-hoc scoping filters. They express a condition—in the

form of a lambda function—that predicates over environment variables the

application supports or that invokes functions available within the application

itself. The process is actually spawned only on those nodes where the scoping

filter evaluates to true. We show an example of scoping filters, together with

the ELIoT-specific spawn_cond primitive, in Figure 14.

Accessing low-level information from the ELIoT networking stack

Full isolation of the various layers that build a networking stack is some-

times impossible to achieve and often not beneficial. Indeed, some form of

4.1 the eliot language 39

1 % This function reads some temperatures from sensors and averages them

2 read_avg_temperature() ->

3 Values = read_temperatures(),

4 average(Values).

5
6 % This function checks if the ’temperature_sensor’ variable is set in the ELIoT environment;

7 % we expect it being defined only on devices actually equipped with temperature sensors

8 temperature_node() ->

9 % Check the environment

10 case application:get_env(temperature_sensor) of

11 % The variable is not set

12 undefined -> false;

13 % The variable is set (and we ignore the value of the variable itself)

14 {ok, _} -> true

15 end.

16
17 % Spawn function read_avg_temperature on all devices reachable from this one,

18 % but only on those equipped with temperature sensors

19 spawn_cond(all, read_avg_temperature, temperature_node).

Figure 14: Scoping filters.

cross-layering is often required to improve efficiency, especially in presence

of embedded devices and wireless communication, which are the norm for

IoT scenarios.

ELIoT makes these considerations concrete by exposing information com-

ing from the network stack to the receiver. More specifically, while Erlang

fills the incoming message queue of the receiver only with the payload of

the message, hiding every other detail, the ELIoT network driver (part of the

VM) explicitly exposes additional information. In the current prototype, the

IP address of the source node and the Received Signal Strength Indicator

(RSSI) coming from the radio are added, but the communication driver can

be easily extended to add other information. Line 31 of Figure 12 shows how

this information can be easily accessed. This sharply contrasts the way pro-

grammers access and process similar information using low-level embedded

system languages, like C. Indeed, the IP source address and RSSI reading in

ELIoT are treated as any other type of data, and automatically materialized

by ELIoT into the receiver’s incoming message queue, without requiring in-

tricate platform-dependent code. As a result, ELIoT simplifies not only the

development of application-level functionality, but also the implementation

40 the eliot framework

of system-level services, e.g., RSSI-based localization algorithms [17] required

for location-aware services.

4.2 the eliot virtual machine

Erlang was originally designed to run on embedded platforms: it started in

the ’80s as a language for telecommunication devices inside the Ericsson cop-

many. In time, however, it grew up to support a much wider range of sce-

narios, by means of a large set of libraries and a complex run-time infrastruc-

ture. For example, a standard Erlang distribution contains the VM and the

base libraries, and the support for many different technologies, from NoSQL

databases to CORBA middleware to queue systems and much more. The VM

itself consumes large quantities of memory to load some of these modules

and launch several services during startup.

To address this issue, we decided to develop a custom version of the VM

for ELIoT, wiping off all the libraries that are not needed to run most pro-

grams3; we also changed several aspects of the VM mechanisms, in particular

regarding the network stack.

The structure of an ELIoT deployment is shown in figure 15: the VM runs

on the GNU/Linux operating system (and its variants, such as OpenWRT),

with a network driver developed distinctly and adaptable to different net-

work types (e.g., WiFi, ZigBee. . .). On top of the VM run the OTP libraries4,

the hardware interfaces to interact with sensors and actuators (depending on

the device which is running ELIoT), and the ELIoT API (shown in Table 2),

which contains a small number of functions that substitute the equivalent

ones from Erlang standard library and allow the simulator to run the appli-

cations unmodified (cfr. Section 5.1). On top of these libraries runs the ELIoT

application itself (CREST is a library offering the capability of dynamic REST-

ful interfacess, Section 4.4 will describe it in more detail).

3 These libraries can be re-added if necessary, but the network communication modifications may
require them to be modified: only those provided by ELIoT have already been adapted to the
new VM.

4 See footnote 3.

4.2 the eliot virtual machine 41

Linux OS

OTP

ELIoT VM
Network distribution

driver

HW
interface

ELIoT API

Simulator

ELIoT app CREST-ELIoT

erl-CoAP
McErlang

Figure 15: ELIoT structure

Table 2: ELIoT API.
Function Description Erlang equivalent(s)

set_node_name Set the name of this ELIoT node net_kernel:start/1, . . .
get_node_name/0 Get the name of this ELIoT node erlang:node/0, . . .
put_data/2 Save global data as key-value pairs application:set_env/3, erlang:put/2
get_data/2 Get global data application:get_env/2, erlang:get/1

4.2.1 The network stack

The main modification to the Erlang VM regards the network stack that is

used to allow the communication between processes located on different de-

vices in a transparent way with respect to the developer; the following two

sections will compare the existing approach and the ELIoT modifications.

Erlang

In the original VM, a process can obtain the identifier of another process re-

gardless of the fact that it is run by the same VM instance, and exchange

communication with it using the same send and receive calls that we pre-

42 the eliot framework

sented earlier. The developer has to know the location of a process only if it

is called by name (the node name has to be added in this case), and even in

this situation a module called global is able to resolve names on the network

and register them globally.

The standard communication protocol in Erlang, when traversing a net-

work, has the following workflow (see Figure 16):

1. a process sends a message to a remote process (by name or by identifier)

2. the VM extracts the name of the remote node, and asks a local daemon

(called epmd5) to resolve the name and contact the remote machine

3. the daemon contacts the remote machine daemon and checks if the node

name exists

4. if so, the remote VM opens a new network port, and the two VMs now

communicate directly with each other

5. a negotation phase (handshaking) takes place between the two VMs, to

check if the two Erlang interpreter versions are compatible with each

other (communication parameters can be set to make the dialog possi-

ble) and to check some basic security mechanisms (the cookie)

6. if the negotiation ended well, the two VM instances add each other to an

internal list of known nodes, and start periodically pinging each other

7. finally, the initial message is delivered to the receiving process (if it

exists, otherwise the message is discarded without alerting the sender).

The mechanism described at step 6 is important in Erlang, and it is needed

to implement the Erlang version of broadcast: all the known nodes at a certain

point in time are contacted through multiple unicast calls; if a ping fails to

reach a node, then the node is removed from the list.

All the network communication runs over TCP/IP, which gives the guaran-

tees on the reliability of the communication itself; a process has to implement

5 Which is actually a port mapper.

4.2 the eliot virtual machine 43

TCPepmd

Erlang
instances

Erlang
instances

epmd

Host1 Host2

Figure 16: Erlang host intercommunication

a mechanism of acknowledgements if it really needs to know if a message

has been correctly delivered6, but by using this network protocol it knows

that the network will try hard to make the message arrive at its destination.

ELIoT: the driver

In IoT scenarios, we decided that the developer needs more control over the

network communication: in particular, she may not need reliability guaran-

tees in some cases, and TCP/IP could be too demanding as a protocol when

using, for example, different wireless network technologies. Given these rea-

sons, we decided to drastically change the network communication.

The Erlang developers already provided the possibility of changing what

they call the distribution carrier: it is a driver with a standard interface offering

functions to start a new remote communication, send and receive serialized

data (which is (de)serialized by the VM), and produce some statistics used

internally to maintaing the known hosts list; the starting point has been to

create a new driver using UDP instead of TCP as its network protocol; as

a consequence, the communication steps have changed quite a bit (see Fig-

ure 17):

1. a process sends a message to a remote process (by name or by identifier)

6 Erlang has a function that can be used to ping explicitly another node, if needed.

44 the eliot framework

2. the VM extracts the name of the remote node, and sends this informa-

tion directly to the network driver (along with the message)

3. the network driver contacts the remote host on a standard UDP port,

and immediately delivers the message: there is no negotiation anymore,

because ELIoT uses a specific version of the communication protocol

and parameters, and they are not negotiable

4. the receiving network driver takes the message and sends it to its local

VM, which delivers it to the process (if it exists, otherwise the message

is discarded without alerting the sender), and it handles the ACK mech-

anism described below.

UDP

ELIoT
instance

ELIoT
instance

Host1 Host2

Figure 17: ELIoT host intercommunication

A distribution carrier driver is written in both C and Erlang: the C part

handles the network communication, while the Erlang part takes care mainly

of acting as a bridge between the C interface and the modules handling hand-

shaking, pinging and creation of new instances of the driver, whenever a

process sends its first message on the network.

The TCP driver worked in a way that each process that needed to com-

municate with the world created an instance of the driver, and each instance

was associated to a specific TCP port; this means that there was a one-to-one

correspondence between a process, a driver instance (called a port in the VM)

and a network port: the standard Erlang network port 4369/TCP is used by

the port mapper only for the initial communication steps.

4.2 the eliot virtual machine 45

By shifting to UDP, this correspondence lost its original meaning: UDP

is stateless, so we decided to completely remove the port mapper7; now a

driver instance listens on port 4369/UDP, and all messages are received by

it, and it will deliver each message to the correct process; each process still

has a correspondent instance of the driver, which is used only for sending

messages. This mechanism made the driver a little more complicated than

expected, to correctly handle the reception of a message for a process that

never received anything up to that moment.

The new driver is also capable of real broadcast communication, and to im-

plement this we used a simple trick: in ELIoT there can be only one instance

of the VM per host, because of the use of a unique network port as described

above, and the name of this instance (the name of the node, in Erlang terms) is

decided a priori to be eliot@1.2.3.4, where the part following the at symbol

is the IP address of the host; at this point, we arbitrarily chose all to be a

way of indicating to the network driver that the communication should be

sent in broadcast: all is a name of a fake ELIoT node, which corresponds

to a specific instance of the network driver, created when the interpreter is

started, that will send messages in broadcast. The devices that will receive

the communication depend on how the network driver implements the broad-

cast communication: for example, our UDP driver implements it by using IP

broadcast, while different implementations may use other mechanisms, de-

pending on how their network protocol works.

Substituting the UDP driver does not break compatibility between ELIoT

and Erlang per se, but as you can see from the communication steps presented

before, we decided to remove the handshaking/negotiation part, and conse-

quently the concept of overlay network that Erlang creates between its nodes:

as with reliability, we decided that this is yet another part that can and should

be implemented by developers only when needed in their scenarios, and the

7 Having an external process is also bad in some contexts, for example to run the framework on OS
limited platforms such as Android, because it requires specific permissions that may be needed
to perform some operation, requiring the developer to gain full control of the operating system
of the device, an operation that usually voids the warranty.

46 the eliot framework

VM should give them this possibility. Thus this makes the VM not compatible

with the Erlang one.

ELIoT: the send primitive

As we described earlier, by removing TCP we removed the reliability mecha-

nisms that were intrinsic in the network protocol: this means that a developer

does not have any reassurance about its messages being correctly deliver, and

moreover the Erlang primitives do not inform her about failures.

Given these premises, we decided to introduce a new operator, ∼∼∼, as de-

scribed before, and change the semantics of the existing one, !. The ∼∼∼ oper-

ator has the same syntax of the standard Erlang send operator, and locally it

behaves in the exact same way; when sending a message to a remote process,

however, the network driver simply encapsulates the message in a UDP data-

gram and sends it through the network, without any effort to check whether

it has been received or not. A developer can ask the VM to try a little harder,

by using the ! operator: the network driver will request the receiver for an

explicit acknowledgement, that will be handled by the driver—the VM will

have no role in this. The driver will re-send the packet several times, and if

no ACK has been received, it will inform the process sending the message,

through a message delivered to its mailbox: the message will be in the form

{nack, Destination, Message}, so the sender is able to distinguish the mes-

sages that it is sending out. At the moment, the acknowledgement parameters

can be configured only in the network driver.

The implementation of this operator has been done by adding the operator

itself to the language grammar, and by prepending additional information

about the reliability to the serialized message that it is passed to the driver,

thus making the VM (again) not compatible with the standard TCP driver.

Figure 18 shows the path of a message from the Erlang code through several

modules of the VM and back: both the BIF module (handling the built-in func-

tion calls) and the distribution module were involved in these modifications.

4.2 the eliot virtual machine 47

App

(Erlang)
BIF

(C)

Process

(C)

Dist

(C)

Driver

(C)

!/~

receive

n
e
t
w
o
r
k

Figure 18: Path of a send call in the VM

ELIoT: the protocol

The final step in network protocol modification has been to change the proto-

col itself, more specifically the messages exchanged by the nodes. This change

has been introduced to lower the impact of Erlang serialization, especially

when comparing ELIoT applications with analogous ones written e.g., in C

(see Section 6.2 for more details).

The Erlang network stack adds several informations to the original mes-

sage, because each layer adds its own header:

• the original message is serialized

• then the VM appends a header containing informations about the type

of the message and the destination8

• then the network driver adds its own header.

8 There are some 15 different messages in Erlang; here we are interested in the SEND and
REG_SEND ones, that send data to processes addressed by identifier or by name.

48 the eliot framework

The Erlang protocol is able to save space by adding an atom cache: atoms are

cached so that they are not re-sent every time they are used in the commu-

nication; while this is a nice feature, ELIoT uses a previous version of the

protocol that does not implement this cache, and this is due to the fact that

UDP communication does not have the one-to-one correspondence between

processes and driver instances, and atom caches cannot be correctly main-

tained (the VM does not know if a node has already sent messages before a

specific moment in time, so it cannot maintain a reliable cache).

Thus, we decided to change the protocol by removing some unused fields;

as shown in Figure 199, the driver adds 2 bytes, used for acknowledgement

handling, then we decided to remove the name of the originating process and

the cookie: the former was not used and not seen by the receiver anyway (we

add the source address as an additional information), while the latter was not

used because the cookie was handled during handshaking, and it was used

to establish the overlay network that ELIoT does not support anymore. Then

the driver adds RSSI and source IP address to the original message that will

be put inside the receiver’s mailbox. This is the third and last modification of

the VM that makes it not compatible with the Erlang one.

All these compatibility modifications have also the consequence that OTP

libraries that make use of the network are not compatible with ELIoT, unless

they are modified to handle the additional informations (and the possible loss

of messages); part of the standard Erlang libraries has been ported to this

structure, but developers should test the use of external functions carefully.

9 Grey fields are used in the image for alignment purposes only.

4.2 the eliot virtual machine 49

0 3 4 7 8 15

Type N
}

Driver header

131
}

Distribution header

131

Operation (2/6)

From name
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

Cookie
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

Destination name
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

Erlang header

131

RSSI

Source IP address

Content
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

Erlang message

Figure 19: Network message in ELIoT

50 the eliot framework

ELIoT: other modifications

The only other modification to the VM involves the ability of spawning pro-

cesses on selected nodes: an additional parameter to the spawn call is a lambda

function that will be evaluated on reception: if it evaluates to true, then the

function will be spawned, otherwise it will be discarded. This mechanism,

associated with the ability to spawn in broadcast (simply by using all as

the node name), allows developers to select only parts of the network to be

involved in the operation. An example usage could be to spawn a function

only on those nodes that have some specific hardware features, e.g., specific

sensors or actuators.

This does not break any compatibility, it simply introduces new functions

in addition to the existing ones. The lambda function is quite limited in the

current version: it has to be a one-liner containing a function call; the ability of

sending more complex functions could be useful but the main problem is that

Erlang needs to send the bytecode along with the lambda itself, otherwise the

receiving end would not be able to execute it, and this involves more complex

changes that are not supported by ELIoT yet.

4.2.2 Supported platforms

As a result of this work, our custom ELIoT VM drastically reduces the hard-

ware requirements compared to Erlang’s VMs, especially with respect to

memory consumption. This enables ELIoT to run on devices that are quite

unusual from those to which Erlang typically applies.

We tested different platforms (Table 3):

• a Raspberry Pi board (ARM processor), equipped with 256 MB of RAM

and an external SD card

• an Android device (Nexus 7, ARM processor), equipped with 1 GB of

RAM

• an ebook reader (Kindle 4th gen., ARM processor), equipped with 256 MB

of RAM

4.2 the eliot virtual machine 51

Table 3: Hardware list
Device Description Capabilities Limitations

Raspberry Pi ARM device
running Linux,
256/512 MB RAM,
SD based, supports
Ethernet and USB
peripherals

Hardware inter-
face: GPIO, SPI,
I2C, UART; only
one PWM output;
several hw shields
available

No ADC and only
one PWM, means
that hardware ex-
tensions are needed
to interface with
several hardware
peripherals

Nexus 7 ARM multicore de-
vice running An-
droid, 1 GB RAM,
internal SD, sup-
ports WiFi

Internal sensors
(accelerometer,
GPS. . .), integrated
touch-screen

Limited by the
SL4A wrapper of
Android API [18]

Carambola 1 MIPS device run-
ning OpenWRT,
32 MB RAM, flash
based, supports
WiFi

Hardware interface:
GPIO, SPI, I2C,
UART

Hardware interface
has no PWM and
quite low capabili-
ties, especially for
SPI and I2C; inter-
nal flash has only 8

MB of space avail-
able, which limits a
lot what can be in-
stalled

Kindle 4 ARM device run-
ning Linux, 256 MB
RAM, internal SD,
supports WiFi

Almost none: it
only provides an
E-ink display; de-
signed with power
saving in mind

Slower than the
other platforms
due to soft-floating
point implementa-
tion of the OS; it has
no sensors or hard-
ware interfaces, and
the screen needs
several libraries to
be run. No SDK
pubblicly available

Netduino 1 Atmel 32-bit micro-
controller, KBs of
RAM and disk

Hardware interface:
GPIO, PWM, ADC,
SPI, I2C, UART;
compatible with
several Arduino
shields; it is a
WSN-like device

It cannot run ELIoT,
but it has enough
capabilities to
support a compati-
bility library with
the network and
(de)serialization
protocols used by it

Waiting to be tested: Arduino Yún, Intel Galileo. . .

• a custom embedded board with a RT3050 MIPS processor called “Caram-

bola”, featuring 32 MB of RAM and 8 MB of embedded flash

52 the eliot framework

The latter currently represents the minimum hardware requirements to run

ELIoT; the ebook reader has been tested mainly because of its power effi-

ciency capabilities (see Section 6.2 to check the power consumption measure-

ments).

We also developed a small library to show how fully-capable ELIoT nodes

could interface with low-powered, WSN-like nodes and communicate with

them, using a subset of the network protocol used by Erlang. In particular, we

implemented this library in C#10, and we run an example of a “low-powered

appliance” able to communicate with ELIoT on a Netduino 1 [19]: this appli-

ance is able to parse the beacon messages coming from the control panel and

answer back with a binary blob containing a compiled Erlang module with

the implementation of the appliance behavior; this module is then run inter-

nally by the control panel and it is used during the scheduling phase instead

of communicating with the appliance itself (we suppose that the model imple-

mented is quite complex and cannot be executed directly by the low-power

Netduino board); this is an implementation of the scenario B presented in

Section 3.2.

4.3 hardware interfaces

1 readFromSensor() ->

2 % Open the SPI device communication

3 spidev:open("/dev/spidev0.0"),

4 % Send a request to the device and get the answer

5 case spidev:xfer2([16#68,16#0]) of

6 {ok, [A, B]} ->

7 % Combine the two bytes in a single value

8 Res = ((A band 3) bsl 8) bor B,

9 % Send the data to the network collector

10 eliot_ctp:collect(ctp, {eliot_api:get_node_name(), Res});

11 {error, Reason} ->

12 io:format(standard_error, "Error: ~p~n", [Reason])

13 end,

14 spidev:close().

Figure 20: SPI example: collecting data from sensors.

10 https://github.com/sivieri/eliotsharpmini

4.3 hardware interfaces 53

The scenarios ELIoT targets are typical IoT scenarios, where devices inter-

act with sensors and actuators to obtain data and manipulate the environ-

ment; the devices briefly shown above either include some sensors (e.g., An-

droid tablet has light sensor, accelerometer and gyroscope and many others),

or include hardware interfaces to interact with custom boards: for example,

the Carambola exposes several I/O pins supporting General Purpose I/O

(GPIO), SPI and I2C protocols; using custom boards such as the one imple-

mented for this project [20], the application would be able to obtain values

from the sensors in the rooms and collect them.

For these reasons, ELIoT includes libraries supporting these interfaces: they

provide a uniform API over different software implementations offered by the

operative systems (e.g., OpenWRT running on Carambola and Linux running

on the Raspberry Pi use different libraries to access the hardware, even if they

both run the same kernel version).

The code shown in Figure 20 is an example of such behavior: the function

interacts with a SPI device11: it sends two bytes (the first is the only one

relevant to select the channel and the data format) and it receives two bytes

back (SPI implements a full-duplex communication with each byte transfer);

these two bytes are then combined to obtain the 10-Bit expected value. This

value is then sent to the network device collecting data from all the producers,

by using the Collection Tree Protocol [21] included in ELIoT.

1 getLocation() ->

2 % Begin GPS negotiation

3 android:startLocating(),

4 timer:sleep(15),

5 % Get the current location

6 Location = android:readLocation(),

7 android:stopLocating(),

8 doSomething(Location).

Figure 21: Get location on an Android device.

Android devices already integrate several sensors, and the library support-

ing Erlang and ELIoT on Android offers a layer to call Android API directly

11 In this example taken from a real-world application, a MicroChip MCP3002 Dual Channel 10-Bit
A/D Converter.

54 the eliot framework

from Erlang code [18], a higher level with respect to the hardware interface

example shown before: as shown in Figure 21, an ELIoT application can ac-

cess GPS coordinates and get the current location of the device, and then use

that information to perform other calculations.

4.4 dynamic restful interfaces in eliot

This section introduces the integration of dynamic RESTful interfaces in ELIoT

(from now on called CREST): we reused some of the concepts implemented in

CREST-Erlang (discussed in detail in Section 2.2), which was a Web frame-

work with the ability of dynamic reconfiguration of Web services, imple-

mented with the Erlang programming language. This Web framework offers

two main features to the developers, described in the next two subsections.

4.4.1 REST interfaces

The “Internet of Things” world is quite complex, as we described previously,

with vendors offering devices with profound hardware differences and in-

compatible frameworks. One of the main jobs of the engineers is to combine

different products to develop the solution required for the problem at hand.

Because of this, providing an off-the-shelf RESTful interface to an IoT device

becomes very important: it allows the use of a standard protocol to easily

integrate different products.

This is the first functionality offered by CREST: an ELIoT node running

the CREST framework introduces a new set of APIs to the developers (see

Table 4), that can be used to install a module in the node (or list the run-

ning modules); the framework then takes care of wrapping this module with

a REST interface, giving users the possibility of invoking it through HTTP

operations. The module has to follow a simple structure to perform the wrap-

ping; such structure is shown in Figure 22.

The entry point of the module should, at some point, start parsing inbox

messages; in particular, there are three messages that should be supported

4.4 dynamic restful interfaces in eliot 55

Table 4: CREST local API.
Function Description

crest:start_local/1 Start a local process (in the form of a lambda function)
crest:start_local/2 Start a local process (module and entry point)
crest:list_local/0 List the installed modules

1 -module(example).

2 -export([example/0]).

3
4 example() ->

5 receive

6 {Pid, {"param", "name"}} ->

7 Pid ! {self(), ["Function example"]},

8 example();

9 % Specify the HTTP operation to be used to invoke this service

10 {Pid, {"param", "operation"}} ->

11 Pid ! {self(), ["POST"]},

12 example();

13 % Specify the number and type of parameters to be used when

14 % invoking this service

15 {Pid, {"param", "parameters"}} ->

16 Pid ! {self(), [{"samples", "integer()"}, {"interval", "integer()"}]},

17 example();

18 % Receive an invocation

19 {Pid, [{"samples", Samples}, {"interval", Interval}]} ->

20 % Send a message in broadcast using ELIoT

21 {temperature_sensor, all} ~ {sense, Samples, Interval},

22 % Receive the results

23 Results = receive_results(),

24 % Format the results as JSON and return them to the caller

25 Pid ! {self(), {"application/json", json:format(Results, ...)}},

26 example()

27 end.

Figure 22: CREST code example.

by the module, shown on lines 10, 15 and 19: through them, in a mechanism

similar to reflection, the CREST framework discovers the HTTP operation

to use12 and the number and type of parameters that the module expects

when receiving messages (line 19); from this information, the framework is

able (through reflection-like operations), to create a REST interface that can be

invoked by clients.

12 This may appear strange, given the fact that the framework automatically wraps the module in
a Web service; if this line is not present, then the operation defaults to POST, but since GET and
POST in HTTP have precise semantics [9], the developer should choose the most appropriate
one.

56 the eliot framework

The module can perform any kind of operations, remembering that each

call like the one shown on line 19 could be a standard Erlang message from

another process or an invocation coming from a Web client, thus being subject

to HTTP timeouts if it takes too long to be completed. New Web standards

(HTML5) introduced new concepts, such as Web sockets and asynchronous

Web APIs, that can overcome timeout problems and allow clients to stream

data continuously from a server (a very useful feature when showing data

through charts, for example); ELIoT will introduce them in the next releases

(see Chapter 8).

4.4.2 Dynamic reconfiguration

The second feature offered by CREST is a dynamic version of the API de-

scribed before: a module can be installed on a remote node running the

framework by invoking a specific URL, passing the bytecode of the module in

a HTTP POST invocation. The framework also provides another Erlang API

to obtain the same result (see Table 5).

Table 5: CREST remote API.
Function Description Erlang equivalent(s)

crest:start_remote/3 Install a function on a remote host http://www.example.com/crest/spawn

crest:list_remote/1 List installed functions on a remote host Web manager 25

The module to be installed can contain any type of code: for example, Fig-

ure 23 is an extremely simple function registering with a specific name and

responding to “ping” requests.

If, however, the module is able to parse messages in the form of {name,

value} lists, as shown in Figure 22, then it is automatically wrapped and ex-

posed as a Web service, and the framework provides it with a REST interface

that can be invoked remotely.

Finally, CREST introduces a local Web site to manage the installed services

from a Web browser: in particular, the Web manager (Figure 25) lists the ser-

vices on a specific host, allows developers to install a module directly from a

4.5 constrained application protocol 57

1 entry_point() ->

2 eliot:register(ping, self()),

3 eliot:export(ping),

4 example().

5
6 example() ->

7 receive

8 {RSSI, SourceAddress, {SenderName, ping}} ->

9 {SenderName, SourceAddress} ! pong,

10 example()

11 end.

Figure 23: CREST ping code.

browser (instead of using the previously shown URL or API), and automati-

cally generates a Web form for each installed module that invokes the service

wrapper, passing the input values for the given parameters (Figure 24 shows

a very simple form for a service requiring a single parameter).

Figure 24: CREST Web form

4.5 constrained application protocol

Constrained Application Protocol (CoAP) is a software protocol that allows

communication over the Internet for low-power devices, such as Wireless Sen-

sor Networks, or devices that can be monitored and supervised remotely,

such as switches and valves. It is currently published as a IETF draft, to be-

come a RFC [22].

The protocol can be viewed as a simplified version of REST over HTTP:

it is based on URIs and it implements a subset of HTTP operations (such

as PUT, POST, GET and DELETE); it can be easily translated to HTTP for

58 the eliot framework

Figure 25: CREST Web manager

compatibility with standard Internet applications, but it also supports specific

characteristics such as:

• multicast communication

• subscription to resources and push notifications

• low overhead.

It is usually implemented over UDP for devices supporting such protocols,

or directly over IPv6 for devices such as WSNs.

As shown previously in ELIoT architecture, we included support for CoAP,

too. Since CoAP is a protocol designed for IoT applications, it is important

for our framework to allow compatibility with other IoT applications already

4.5 constrained application protocol 59

developed with different technologies. Thus, our library supports both client

and server-side applications using this protocol.

The client library allows ELIoT applications to request resources to existing

CoAP applications, and get the response. This allows, for example, a ELIoT

application to interact with a Wireless Sensor Network, if the devices support

IPv6 communication or a specific gateway, able to translate between different

protocols, is in place. Our library has currently been tested over UDP and

IPv4/IPv6, and we are currently working on a port to 802.15.4 networks.

The server library is used analogously to the dynamic RESTful interfaces:

the framework automatically provides a CoAP interface for a module, and

translates the request parameters to an Erlang message that can be received

and parsed by the module, as it happens for REST requests.

For example, a module providing a sensor value can be reached both as

http://eliotserver/crest/UUID/temperature and as coap://eliotserver/

UUID/temperature, thus a ELIoT service can be queried also by low-powered

devices, when needed.

As for the client library, the current version supports UDP and IPv4/IPv6

(depending on the device configuration), and we are currently working on a

port to 802.15.4 networks.

5
T H E E L I O T F R A M E W O R K : D E V E L O P E R ’ S T O O L S

This chapter describes two important tools that the ELIoT framework and de-

velopment platform offers to developers: a simulator, to test applications for

algorithms scalability and devices functionality, and a model checker, based

on [23], to prove the correctness of algorithms and applications written with

ELIoT.

5.1 the simulator

Debugging and testing distributed IoT applications is a key area scarcely sup-

ported by most programming platforms. Gaining the required visibility into

the system state, in particular, is deemed to be an important feature for IoT

development [24]. ELIoT offers a great opportunity to overcome this situa-

tion. By leveraging Erlang’s blurred distinction between local and distributed

functionality, we developed a custom simulator that allows different configu-

rations.

Full simulation

A full simulation (Figure 27) is the execution of an application completely

simulated: a single host executes a certain, configurable, number of ELIoT

nodes, which will run on different hosts in the final deployment (Figure 26 as

a reference).

In this configuration, the simulator uses its own version of the ELIoT APIs

to abstract away the fact that different Erlang functions are actually used

to simulate different nodes: in particular, process names are changed (e.g., a

process registered as collector on a node node_1@10.0.0.3 will be registered

as collector_node_1 instead), and this information is maintained in a process

61

62 the eliot framework : developer ’s tools

LAN

UDP

ELIoT

node

ELIoT

node

ELIoT

node
ELIoT

node

ELIoT

node

Figure 26: Deployment.

translation table, so that all the function calls referring to the process have to

lookup in this table and correctly use the new name of the process.

This is done in a transparent way from the developer’s point of view (see

Figure 28): the application is compiled using a feature of Erlang called parse

transform, which allows ELIoT to intercept the abstract syntax tree of the code

to be compiled, and change it according to some rules specified in an ad-hoc

module, all without having to create intermediate, semi-compiled files. This

means that, for example, all the send calls are substituted with the simulator

versions. The only difference from the developer’s point of view is that she

has to use a different compilation command (e.g., make simulation instead

of make).

Table 6: Simulator API.
Function Description

register/2 Register the name
export/1 Export the process on the network
send/2 Send a message (! and ∼∼∼ too)
spawn/1, spawn/3 Spawn a new process

5.1 the simulator 63

Simulator

ELIoT

process

Local

messages

ELIoT

process

ELIoT

process

ELIoT

process

ELIoT

process

Figure 27: Simulated environment.

The full simulation capability can be used to test scalability of the algo-

rithms in use: a deployment of a hundred nodes can be costly, while a simula-

tion of the same number of nodes requires only a computer. The next config-

uration allowed by the simulator is to perform a mixed simulation (Figure 29):

some nodes are simulated in a single host, while other nodes are real nodes

installed on the final devices 13. In this way, developers can test on the real

hardware whether their code works or not (e.g., interfacing with hardware

ports, whereas the simulator can only provide random values for their simu-

lated equivalent), while at the same time the scalability of the application can

still be under scrutiny.

13 The CREST framework cannot be simulated, it can to be tested only on real devices.

64 the eliot framework : developer ’s tools

(a collection of modules)
Program

(a collection of modules)
Program

Concurrency &Simulator

Concurrency &ELIoT

Distribution Support

ELIoT simulator source−to−

source translation

Program execution

Compiled modules

Sequential Execution

ELIoT Data Handling &
Program execution

Modified Program

(collection of modules)

Compiled modules

Distribution Support

Sequential Execution

Normal ELIoT Workflow:

ELIoT compiler

(beam)

ELIoT Runtime System

ELIoT simulator Workflow:

ELIoT compiler

(beam)

ELIoT Runtime System

ELIoT Data Handling &

Figure 28: ELIoT simulator workflow.

Looking at the internals, the simulator starts additional processes that lis-

ten on the standard ELIoT port for external communication directed to any

process; they check against the process translation table whether to route the

message to the simulated node or not, and translate back if/when an answer

has to be sent to the external network. The simulator does not make assump-

tions about the type of network on which it is run, as long as the network

distribution driver supports that specific network (e.g., ZigBee vs. WiFi).

The simulation comprises the network links between each node: in particu-

lar, we use the TOSSIM network links modeler [25] to produce a set of traces

that define parameters for the communication between each pair of simulated

5.1 the simulator 65

Simulator
ELIoT

process
Local

messages

ELIoT

process

ELIoT

process

ELIoT

process

ELIoT

process

UDP

Translated

by simulator

ELIoT

node
ELIoT

node

Figure 29: Mixed environment.

nodes; the simulated send operation leverages these traces to decide whether

to deliver or not a message to the destination. If this probabilistic model is

not enough for the purposes of the simulation, then a more complex model,

for example maintaining a state for each channel, can be plugged in by imple-

menting a simple Erlang interface.

Developers can access an interactive shell inside the simulator and inject

messages in the network (to simulate sensor readings, for example, or to

check the message hops in a collection algorithm), or monitor any debug

message coming from any of the simulated nodes. They can also use the

standard Erlang debugging tools to check the code: Figure 30 shows the sim-

ulator at work with the smart-home application. In this configuration, the

control panel runs on a Raspberry Pi, while four appliances are simulated for

debugging purposes. Developers interact with the ELIoT simulator in three

ways: i) the process monitor in 〈1〉 shows the ELIoT processes running on

66 the eliot framework : developer ’s tools

Figure 30: Erlang debugging tools using ELIoT simulator.

simulated nodes, identified according to their register-ed names; ii) select-

ing a process in 〈1〉 opens the code monitoring in 〈2〉 that enables inspection

5.2 model checker 67

of the currently running code—in Figure 30, the appliance process is blocked

waiting for incoming messages—and allows to step through instructions and

set breakpoints, as well as to inspect or to manipulate the values of variables;

iii) the shell in 〈3〉 is bound to the real Raspberry Pi and allows developers

to trigger specific executions, e.g., the computation of a new schedule for the

appliances. When doing so, the simulator then shows how the appliances an-

swer to the control panel through the process and code monitors. The shell

allows automatizing these operations by scripting sequences of test cases.

To recap, the ELIoT simulator allows to start debugging a system in a fully

simulated deployment, and then to progressively move to a setting where the

execution also spans physical nodes. This retains visibility into the system

state through the simulated nodes, but it also allows to check the execution

of real hardware and the interactions with the physical environment.

The ELIoT simulator presents functionality to developers that are rarely

available using mainstream programming platforms for networked embed-

ded systems. The VM-based execution of ELIoT, together with the actor

model that simplifies inter-process communications, facilitates building tools

that effectively support developers in accurately testing and debugging dis-

tributed functionality.

5.2 model checker

Another interesting addition to the set of tools for ELIoT developers is a

model checker, that allows them to write and test properties of their applica-

tions, with specific mechanisms to consider the unrealiability of communica-

tion channels.

5.2.1 McErlang

McErlang [23] is an existing model checker for Erlang applications, written in

Erlang. The fact that the same language is used both for the analyzer and the

68 the eliot framework : developer ’s tools

application helps the former to simulate in an effective way the peculiarities

of the language.

(a collection of modules)
Program

(a collection of modules)
Program

Concurrency &McErlang

Concurrency &Erlang

Distribution Support

McErlang source−to−

source translation

Normal Erlang Workflow:

Erlang compiler

Program execution

Compiled modules

(beam or native)

Sequential Execution

Erlang Data Handling &

Erlang compiler

Program execution

Modified Program

(collection of modules)

Compiled modules

(beam or native)

Distribution Support

Erlang Data Handling &

Sequential Execution

McErlang Workflow:

McErlang Runtime System

Erlang Runtime System

Figure 31: McErlang workflow (from the McErlang manual).

As described by the authors, the workflow of the verifier is somewhat sim-

ilar to the workflow of our simulator (Figure 31): the source code is modified

on the fly by parse transform mechanisms so that the pure parts of the appli-

cation (and the garbage collection) are executed directly by the Erlang VM

without changes, while the side effect parts are executed by McErlang, using

rewritten parts of the standard library. In particular, the library functions re-

5.2 model checker 69

lated to process handling (creation, scheduling and communication) and fault

tolerance have been substituted with Erlang native code (instead of part Er-

lang, part C code, as described in the previous chapters when discussing the

VM internals). An application is executed in a single host, exactly as with our

simulator, and not in a distributed fashion.

The model checker offers several different monitors, which are functions

called whenever a new state is entered, and their job is to determine whether

the state satisfies the condition expressed through that monitor. The default

one is a safety monitor, which checks a safety property, e.g, if a deadlock may

arise between the processes in execution.

However, the monitor that mostly interests our discussion here is the one

implementing Büchi automata. This monitor is built starting from a Linear Tem-

poral Logic property, which is translated to a Büchi automaton implemented

in Erlang, which is then compared against the state tree explored during the

application simulation; the monitor signals an error if it finds an infinite loop

containing only accepting monitor states.

An example

The following example explains the basic functionality of the model checker,

as described above. The code in Figure 32 simply generates a parallel process,

which sends a message to the generating one, which it turn answers to it.

When the second process receives the echo of the first message, it terminates its

execution. Now, suppose we want to check the following property: eventually

P, where the predicate P is the fact that the echo has been received. To be able

to check this property, McErlang needs to know when this fact happens, and

to do so we call the function in line 7, which registers a new probe, with a

name and a value as its argument: it marks the reception of the echo message,

and from that moment on the predicate P holds true.

At this point, McErlang needs a couple more helper functions that receive

the list of probes for each state, and link that specific probe to that specific

predicate (as you can image, you can have multiple predicates and multiple

conditions). The checker has a library that translates the LTL property ex-

70 the eliot framework : developer ’s tools

pressed before into an automaton, and then executes the code against that

automaton. In the end, the result is positive: no counter-example has been

found by the model checker, so the property is verified for that code.

1 start() ->

2 register(echo, self()),

3 spawn(fun() ->

4 echo ! {msg, self(), ’hello world’},

5 receive

6 {echo, Msg} ->

7 mce_erl:probe(received, Msg),

8 Msg

9 end

10 end),

11 receive

12 {msg, Client, Msg} ->

13 Client ! {echo, Msg}

14 end.

Figure 32: Correct code.

On the other hand, the code in Figure 33 behaves in a completely different

way, even if on a superficial reading it may seem equivalent to the previous

example. The problem here lies in the fact that the process receiving the first

message is spawned in parallel with the process sending the message: we

know that the Erlang spawn primitive returns when the process has been

created, but the VM may decide to postpone its execution; this means that,

in some configurations, the second process may send the message to a non-

existing process, while in other configurations it may work as expected. But,

since we are verifying a LTL property, the Büchi automaton finds a counter-

example: in some cases the second process does not answer to the first one,

because it was not ready when the message was sent, so it has not been

received. This means that the property does not hold anymore, and the model

checker is able to find a counter-example (and it can show the execution trace

that brought it to that state).

The main limitation of the standard version of McErlang, from our point

of view, is that it treats the send operation as deterministic: a message sent

from a process to another will be surely received; in ELIoT, though, things are

quite different: the message may not arrive, because there is no network layer

5.2 model checker 71

1 start() ->

2 spawn(fun() ->

3 register(echo, self()),

4 receive

5 {msg, Client, Msg} ->

6 Client ! {echo, Msg}

7 end

8 end),

9 spawn(fun() ->

10 echo ! {msg, self(), ’hello world’},

11 receive

12 {echo, Msg} ->

13 mce_erl:probe(received, Msg),

14 Msg

15 end

16 end).

Figure 33: Error code.

trying its best to deliver it (especially when using the new send operator).

This means that the code being tested should be aware of this limitation, and

introduce reliability mechanisms when necessary. This in turn means that

a developer may want to verify if these mechanisms work in its scenario,

knowing (at least to some extent) the characteristics of the environment.

5.2.2 McErlang in ELIoT

To show the type of verification that a ELIoT developer may want from a

model checking tool, take the code in Figure 34: it is an excerpt of the code

used in the scenario (see Chapter 3) to calculate the optimal schedule for

the appliances in the smart home. The function is fairly complicated, but the

point here is what happens on line 18: the call to the rpc function sends a

message to another ELIoT node, and it expects an immediate answer: this is

due to the fact that the schedule being built needs consumption prediction by

all the appliances in the house, several times during the calculation, to obtain

the optimal time slots to engage each appliance.

The rpc function can be as simple as the one shown in the same figure, on

line 43: it sends a message (using the more reliable send operator) and blocks

until the answer has been received; if, for some reasons, the network layer is

72 the eliot framework : developer ’s tools

not able to get through with the message (even with packet re-send), then the

scheduling algorithm will get stuck and it will not be able to perform its task.

The developer should find an alternative algorithm to avoid this problem, if

she wants to guarantee the packet delivery, and she would want to be able to

verify her solution and check if the application satisfies the requirements.

Modeling channels

With this goal in mind, we decided to modify the McErlang application and

add a mechanism to model the channel packet reception rate (PRR), which

depends on the environmental conditions of the deployment. Several param-

eters can be used to model the channel (e.g, the beta [26] and gamma [27] fac-

tors), but as a first step we imagine the developer knows the environment and

she is able to describe the channel quality in terms of conditional packet delivery

functions (CPDF) [28], which essentially describe the probability a packet will

be delivered successfully after n consecutive failures or successes.

In practice, the channel is modeled as functioning in two states: sporadic

and burst. In the first case, the probability of a packet to be delivered to the

receiver is independent between each single transmission, because the time

intercurring between each of them is such that the different transmissions do

not influence each other’s probability. When, however, the channel is under a

burst of subsequent packet transmissions, the probability is no more indepen-

dent, and the model expresses that by describing the probability of success

(failure) after a certain number of successes (failures).

For example, Figure 35 shows two channel models: the X axis shows the

current number of transmissions, where a positive value means success, and

a negative number means failure (e.g., 5 means “5 subsequent successes”,

whereas -3 means “3 subsequent failures”). The first chart is the perfect (theo-

retical) situation, where packets are always delivered (positive numbers have

a probability of 1), and no failures occur (negative numbers have probabil-

ity 0). The second chart shows a more realistic situation, where, for example,

after 2 transmissions, there is a 0.9 probability of another succes and a 0.1

5.2 model checker 73

1 calc_single_app(Cur, CurConsumption, Cap,

2 #appliance{ip = IP, pid = Pid, params = Params} = Appliance) ->

3 #parameter{name = starttime, value = Start} = hd(lists:filter(filter_1/1, Params)),

4 #parameter{name = endtime, value = End} = hd(lists:filter(filter_2/1, Params)),

5 RealCur = Cur rem 24,

6 Dest = case Pid of

7 none ->

8 {sm, eliot_api:ip_to_node(IP)};

9 _ ->

10 Pid

11 end,

12 if

13 RealCur >= Start andalso RealCur < End ->

14 Bin1 = data:encode_params(Params),

15 Message = <<?EVAL:8/unsigned-little-integer,

16 RealCur:8/unsigned-little-integer,

17 Bin1/binary>>,

18 Res = case rpc(Dest, Message) of

19 <<?EVAL:8/unsigned-little-integer, Consumption:16/unsigned-little-integer>>

20 when Consumption + CurConsumption =< Cap ->

21 {Appliance, Consumption};

22 _Other ->

23 NewParams = lists:map(param_map/1, Params),

24 {Appliance#appliance{params = NewParams}, 0}

25 end,

26 Res;

27 true ->

28 {Appliance, 0}

29 end.

30
31 filter_1(#parameter{name = starttime}) -> true;

32 filter_1(_Parameter) -> false.

33
34 filter_2(#parameter{name = endtime}) -> true;

35 filter_2(_Parameter) -> false.

36
37 param_map(#parameter{name = starttime, value = Value} = Param) ->

38 Param#parameter{value = Value + 1 rem 24};

39 param_map(#parameter{name = endtime, value = Value} = Param) ->

40 Param#parameter{value= Value + 1 rem 24};

41 param_map(Param) -> Param.

42
43 rpc(Dest, Message) ->

44 Dest ! term_to_binary(Message),

45 receive

46 {_RSSI, _Source, Content} ->

47 binary_to_term(Content)

48 end.

Figure 34: Sample code to be verified.

probability of failure; at the same time, the probability of a third failure after

two packets already failed is 0.3 (thus, 0.7 of success).

74 the eliot framework : developer ’s tools

−50 0 50

0

0.5

1

(a) Perfect PRR

−50 0 50

0

0.5

1

(b) Variable PRR

Figure 35: CPDFs

An important property of these models is that they limit the number of

successive failures: after a certain number, the probability decreases towards

zero (the shape of the probability depends on the channel properties). The

charts consider a maximum value of 50 successful packets, after which there

is no dependence between the first and last of the 50 samples.

These charts show a value of zero for the initial value of transmissions

(when x equals to zero): this is due to the fact that the first send of a packet

happens during a non-burst situation, and it may start a burst if the subse-

quent send operations happen immediately after the first transmission.

During the sporadic phase, we can describe the probability of success or

failure of a single packet using the following formula:

pn = 1− (1− p1)
n

where pn is the probability of success of the n-th transmission after n− 1

subsequent failures, and p1 is the probability of success of a single transmis-

sion: the latter can be derived from packet delivery ratio (PDR) or known a

priori. Thus, this formula generates the plot shown in Figure 36, for exam-

ple for p1 = 0.5. This mathematical function generates an asymptote for the

5.2 model checker 75

−2 2 4 6 8 10

−2

−1

1

2

Figure 36: Non-burst plot with p1 = 0.5

sporadic1start sporadic2 sporadic3 . . . sporadicn-1 sporadicn

success

failure

success

failure

success

failure

success

failure

success

failure

success

Figure 37: Non-reliable operator model.

probability on the y-axis equal to 1, but in our case we need to guarantee a

maximum number of subsequent failures, otherwise the verification tool will

generate a path that will never guarantee safety properties; this means that

our mathematical function will reach the value 1 after a certain number of

failed send operations.

McErlang modifications: theory

We need to distinguish how the tool considers the channels status, depending

on the use of the reliable or non-reliable operator. In particular, non-reliable

send operations (the ∼∼∼ operator) behave as shown in Figure 37:

1. the tool follows the sporadic model shown in Figure 36, since the net-

work layer in this case does not try to re-send the message if it fails; the

76 the eliot framework : developer ’s tools

burst
(max n failures)

sporadic1 startsporadick

success

failure

failure

success

failure
(end of retries)

success

failure

Figure 38: Reliable operator model.

first step is considering the probability p1 for the first send (probability

of the first send after zero failures): if it succeeds, then it will follow the

same probability for the next send

2. if it fails, the tool will move to the next value the model, and the next

send operation will behave as before, moving along the model if failures

continue to happen

3. when the maximum number of subsequent failures has been reached (n

in this case), then the send operation must succeed and the tool will go

back to the initial state.

5.2 model checker 77

If the application uses the reliable operator (!), then the network layer will

apply a certain number of re-send operations if the message does not reach

the receiver; after a certain number of retries, it will give up and communicate

the event to the application layer (NACK). In this case, we apply the burst

model for the retries, and the sporadic model for the initial operation, as

shown in Figure 38:

1. the model starts from the same initial step shown before, when the first

send after zero failures is being performed; in case of success, the tool

continues to follow the same probability value

2. in case of failure, it moves to the burst model and starts the retries: if it

continues to fail, then it continues to follow the same model until one

of the following two conditions apply:

• the message is received, the tool goes back to the initial state and

the next send operation will follow the initial value of the sporadic

model, or

• the network layer gives up, and the message is lost. In this case,

the tool moves to the sporadic probability, but not at the initial

value, rather at the k-th value (where k is the previous value of the

counter in sporadic mode, before the burst, incremented by 1)

3. regardless of how the tool exited the burst model, the next send will

move to the initial value of the sporadic model if it succeed, or it will

move back to the burst state if it fails (and start a new batch of retries).

Moving from burst to sporadic

We performed a few tests to establish a value for variable k as shown on item 2

in the non-reliable model described before. The choices were either to perform

an increment by 1, thus considering the burst section as a single transmission

in sporadic mode, or to increment by the number of failed retransmissions

during the burst phase.

78 the eliot framework : developer ’s tools

We used the Twist Wireless Sensor Network testbed14 such that each node

was sending either a single broadcast transmission (95% of the time) or a 120-

packet burst (5% of the time) in a 500ms time span. Each node logged each

received message.

The experiment ran a total of 42 hours. We then took the logs of each node,

and for each link we calculated several metrics considering both the two pos-

sibilities described eariler, and the mean error on PDR is 4.27% considering

the burst as a single sporadic transmission, and 39.57% considering the burst

as multiple retransmissions. Thus, in our implementation we are considering

the increment by 1, since the error is one order of magnitude less than the

second possibility.

McErlang modifications: implementation

We introduced this channel model by leveraging an existing McErlang func-

tion, called mce_erl:choice, which adds non-deterministic features to the

model checker. In particular, the functions accepts a set of functions, and non-

deterministically chooses one of them for the execution of the application;

when using Büchi automata, the model checker explores all the ramifications

given by the function set, considering all the possible alternatives.

In practice, each send generates two states, by using the choice function:

one in which the transmission was successful, the other in which it failed; a

global state of the channels for each pair of (simulated) nodes is maintained15,

so each new application state knows the previous channel state, and it up-

dates the latter with the new number of subsequent successes or failures, and

the current probability to reach that particular state.

As an example, Figure 39 shows a very simple channel model, that consid-

ers at most three failures one after the other; a send operation in this model

would generate the execution tree shown in Figure 40 (which considers also

the sporadic model seen before, with p1 = 0.5). The tree on the left shows

the probability of behaviors from the root to each leaf, where left branches

14 http://www.twist.tu-berlin.de/wiki.
15 This means that the models could be different for each pair, even if in the discussion here they

are considered to be the same for the entire network, to simplify the examples.

5.2 model checker 79

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

li
ty

Figure 39: Simple channel model.

are successful transmissions and right branches are failures: as predicted, the

first failure brings the tool to the burst model (the B nodes) when using a

reliable operator, and it returns to the sporadic model (S nodes) whenever a

successful transmission goes through. If the application uses a non-reliable

send, as shown on the right, then it will use values only from the sporadic

model, and the tree shows how two subsequent transmissions behave.

The output of this version of the model checker can be as follows:

• the property is not satisfied, and a counter-example is found; in this

case, as with the standard version of McErlang, the developer can see

the counter-example and the trace of the execution that brought to that

specific error, and try to solve the issue;

• the property is satisfied, and the tool produces probabilities for each of

the leaves of the execution tree; the developer can then take these val-

ues and analyze the behavior of her application: these data can tell, for

example, the probability of having x number of retransmissions during

the execution of the application, which can be useful to know the prob-

80 the eliot framework : developer ’s tools

S1

B-1

B-2

B-3

S1

0.140

S1

0.210

S1

0.150

S1

0.500

(a) Reliable send

S1

S2

S3

0.125

S1

0.375

S1

S2

0.250

S1

0.250

(b) Non-reliable send

Figure 40: Send trees

ability of having the radio active for a certain period (retransmissions

require more energy).

As an example of a possible bug that the verification tool is able to detect

in this way, let’s look back at the code in Figure 34: each iteration of the

algorithm sends a message from the control panel to an appliance, and watis

back for an answer; both transmissions use the reliable operator, thus we can

apply the two models that we saw earlier. For the sake of this example, let’s

assume that the burst model is slightly different from the previous one, in

particular the number of subsequent failures is 5 instead of 3 (Figure 41, left,

which reports only the negative part of the chart), but the framework is tuned

to perform at most 3 retries of a failed send operation. The sporadic model

shown on the right in Figure 41, for p1 = 0.2 and reaching probability 1 when

x = 10.

The tree resulting from a single exchange between the control panel and

an appliance is shown in Figure 42, and the developer is verifying a property

stating that eventually the schedule will be computed: this property does not hold

5.2 model checker 81

−4 −2

0

0.5

1

(a) 5-failure channel model

5 10

−2

−1

1

2

(b) Non-burst plot with p1 = 0.2

Figure 41: Models for the smart home example

for all the leaves in the tree, since the retries are not enough to overcome the

maximum number of failures during the burst. Thus, the tool is able to find

the first of the tree paths that leads to a violation of the property, and the exe-

cution trace shown to the developer will show the exact sequence of function

calls and send operations that bring the application to an inconsistent state.

At this point, the developer can decide, for example, to increment the num-

ber of retries, at the expenses of power and network traffic, or to change the al-

gorithm so that it will contact the appliance again if it does not respond imme-

diately. The original McErlang tool, lacking the channel models, would have

returned no counter-examples, thus the application (once deployed) would

have missed the capability of correctly computing the schedules in some of

its iterations, possibly incrementing the current consumption of the smart

home.

82 the eliot framework : developer ’s tools

S 1

B
-1

B
-2

B
-3

S4
0

.1
3

4
4

0
0

0
0

S 1

B
-1

B
-2

B
-3

S4
0

.0
2

7
0

9
5

0
4

S 1
0

.0
4

0
6

4
2

5
6

S 1
0

.0
4

5
1

5
8

4
0

S 1
0

.0
4

8
3

8
4

0
0

S 1
0

.0
4

0
3

2
0

0
0

S 1

B
-1

B
-2

B
-3

S4
0

.0
3

0
1

0
5

6
0

S 1
0

.0
4

5
1

5
8

4
0

S 1
0

.0
5

0
1

7
6

0
0

S 1
0

.0
5

3
7

6
0

0
0

S 1
0

.0
4

4
8

0
0

0
0

S 1

B
-1

B
-2

B
-3

S4
0

.0
3

2
2

5
6

0
0

S 1
0

.0
4

8
3

8
4

0
0

S 1
0

.0
5

3
7

6
0

0
0

S 1
0

.0
5

7
6

0
0

0
0

S 1
0

.0
4

8
0

0
0

0
0

S 1

B
-1

B
-2

B
-3

S4
0

.0
2

6
8

8
0

0
0

S 1
0

.0
4

0
3

2
0

0
0

S 1
0

.0
4

4
8

0
0

0
0

S 1
0

.0
4

8
0

0
0

0
0

S 1
0

.0
4

0
0

0
0

0
0

Figure 42: A - B exchange.

6
E VA L U AT I O N

This chapter describes the evaluation analysis that we performed first and

foremost of ELIoT, primarily in an implementation of the home scenario de-

scribed in Chapter 3, compared to a C implementation of the same appli-

cation; this comparison is performed both qualitatively, i.e., looking at code

readability and structure of the applications, and quantitatively, i.e., looking

at memory and CPU consumption, network throughput and power consump-

tion, on the various devices already introduced before.

Finally, it shows the performances of the REST interface implementation

against the native functionality offered by Erlang to install new code at run-

time.

6.1 qualitative evaluation

6.1.1 Benefits to IoT Software Development

ELIoT provides two benefits to programmers: it increases their productivity

by rising the level of abstraction with respect to low-level languages like C,

and it eases debugging with custom tools. These two aspects are separately

analyzed next.

Programmers’ productivity

It is notoriously difficult to objectively compare the implementation effort

using different programming languages. Measuring the lines of code provides

a rough, yet quantitative indication of such effort. In our case, the C-based

smart home application requires 1623 lines of code, while the ELIoT-based

implementation merely requires 649 lines, corresponding to a 60% saving.

83

84 evaluation

Table 7: Home scenario application line code comparison.
C ELIoT ELIoT (manual code)

1623 649 462

Such figures of improvement become even more relevant as one considers

that the C implementation only provides the core functionality of the smart-

home application. Indeed, 187 lines of ELIoT code, out of the 649 total, are

actually used to set up the OTP’s application supervisor to provide failure

handling against process crashes, and to configure testing and debugging

services. These functionality are not available in the C implementation. Nev-

ertheless, these fragments of ELIoT code are largely borrowed from existing

templates; thus the number of application-specific lines of ELIoT code is ef-

fectively 462, for a 71.5% reduction with respect to the C implementation.

Beyond the raw numbers, using ELIoT caters for a higher level of abstrac-

tion that improves code readability, facilitating reuse and maintenance. This

becomes visible by looking at the structure of the control panel code, shown in

Figure 12. This structure is typical of ELIoT applications that implement com-

munication protocols. The code is organized as a single receive statement

with multiple cases, each associated to a specific message type determined in

a declarative fashion by pattern matching.

As an example, line 2 in Figure 43 uses binary pattern matching to deter-

mine when the message payload contains a function to be executed locally.

Matching happens in blocks: the first 8 bits are interpreted as a user-defined

code indicating the message type; the next 20 bytes are a SHA-1 hash code;

then a single byte specifies the length of the string that follows. Variable L1 is

assigned the latter value and immediately used as the length of the next field,

namely the function name. The rest of the sequence is a binary block that

holds the function’s byte-code16. The name, hash, and code of the received

function are then passed to the application supervisor (line 49) to spawn a

new process executing the code and to monitor its execution for reacting

should run-time errors occur.

16 The bit syntax allows to specify the length of each field using different units (bits or bytes),
depending on the field’s type.

6.1 qualitative evaluation 85

1 [...]

2 receiver(Appliances) ->

3 receive

4 [...]

5 timer ->

6 % Build the beacon with a single byte (8 bits): the value of constant BCON defined above

7 Msg = <<?BCON:8>>,

8 % Send the beacon, unreliably, to the processes called ’appliance’ running on nodes

9 % reachable from this one

10 {appliance, all} ∼ Msg,

11 [...]

12 case Content of

13 % First byte equals APPLIANCE, next is a binary blob: de-serialize and process

14 <<?APPLIANCE:8, SerializedParameters/binary>> ->

15 Parameters = data:decode_params(SerializedParameters),

16 [...]

17 % Tail recursion with the new set of appliances

18 receiver(NewApps);

19 % First byte equals APPLIANCE_LOCAL, next 20 bytes is a hash, then the lenght

20 % (1 byte) of the following field (SerializedName), then a binary blob holding

21 % serialized code: de-serialize and process

22 <<?APPLIANCE_LOCAL:8, Hash:20/binary, L1:8, SerializedName:L1/binary, Code/binary>> ->

23 [...]

24 % Tail recursion with the new set of appliances

25 receiver(NewApps)

26 end

27 end.

Figure 43: Excerpt of code from Figure 12

(shown here for reader’s convenience).

Figures 44 and 45 provide additional insights into the expressive power of

ELIoT. In particular, they focus on deserializing the operating parameters of

a newly discovered appliance (see line 15 of Figure 43). In C, as shown in

Figure 44, this requires writing error-prone code that explicitly manages type

conversions, memory allocation, and copying. Developers achieve the same

functionality recursively and in a declarative fashion with ELIoT, using the

binary pattern matching operators, as illustrated in Figure 45. In particular,

the decode_params function in line 3 of Figure 45 takes the message payload

as input and invokes a function with the same name and an additional ar-

gument: an initially-empty list of appliance’s operating parameters. In line 7,

if the payload is empty, indicating that message deserialization is complete,

the list of deserialized parameters is returned as the final result. Otherwise,

the first parameter is matched and decoded (lines 11 and 12). Each parame-

ter includes the length of the parameter’s name (L1) followed by the name

86 evaluation

1 int deserialize_params(char *buf, GList **params) {

2 unsigned int params_len;

3 int tot, i;

4 parameter_t *param = NULL;

5 memcpy(¶ms_len, buf, sizeof(unsigned int));

6 for (i = 0, tot = 0; i < params_len; ++i) {

7 tot += deserialize_parameter(buf + sizeof(unsigned int) + tot, ¶m);

8 *params = g_list_append(*params, (void *) param);

9 }

10 return sizeof(unsigned int) + tot;

11 }

12 int deserialize_parameter(char *buf,

13 parameter_t **param) {

14 unsigned long name_len;

15 parameter_t *p = NULL;

16 p = malloc(sizeof(parameter_t));

17 memset(p, 0, sizeof(parameter_t));

18 memcpy(&name_len, buf, sizeof(unsigned long));

19 p->name = g_string_new_len(buf + sizeof(unsigned long), name_len);

20 memcpy(&p->type, buf + sizeof(unsigned long) + name_len, 1);

21 memcpy(&p->value, buf + sizeof(unsigned long) + name_len + 1, sizeof(uint8_t));

22 memcpy(&p->ro, buf + sizeof(unsigned long) + name_len + 1 + sizeof(uint8_t), sizeof(uint8_t));

23 *param = p;

24 return sizeof(unsigned long) + name_len + 1 + 2*sizeof(uint8_t);

25 }

Figure 44: C implementation.

itself (SerializedName), the parameter’s type (Type), its value (Value), and

a boolean indicating whether the parameter is read only (Ro). The decoded

information is used in line 14 to build an Erlang record, prepended to the

1 % Decode Payload by calling the two-args version of the function passing an empty list,

2 % which will be filled with the data extracted from the payload

3 decode_params(Payload) -> decode_params(Payload, []).

4
5 % Pattern matching on the first arg: if the binary variable is empty, then we finished

6 % (we reached the base case for the recursion) and we can return the ListOfPars...

7 decode_params(<<>>, ListOfPars) -> ListOfPars;

8 % ... otherwise, the first byte (L1) contains the length of the parameter’s name (next field),

9 % and the following bytes represent: its type, its value, and it being read-only; the rest

10 % of the payload contains other parameters that will be extracted in the next (recursive) call

11 decode_params(<<L1:8, SerializedName:L1/binary, Type:8/unsigned-integer,

12 Value:8/unsigned-integer, Ro:8/unsigned-integer, Rest/binary>>, ListOfPars) ->

13 % Fill a new record with the extracted content

14 NewRecord = #parameter{name = erlang:binary_to_list(SerializedName),

15 type = Type, value = Value, ro = Ro},

16 % Recursive call to continue parsing the payload. The new record is saved into the list

17 decode_params(Rest, [NewRecord|ListOfPars]).

Figure 45: ELIoT implementation.

6.1 qualitative evaluation 87

list of decoded parameters during the recursive call in line 17. Overall, the 25

lines of C code in Figure 44 reduce to 7 lines of (uncommented) ELIoT code

in Figure 45.

1 [...]

2 char msg = ’M’;

3 memset(&destAddr, 0, sizeof(struct sockaddr_in));

4 destAddr.sin_family = AF_INET;

5 destAddr.sin_port = htons(PORT);

6 destAddr.sin_addr.s_addr = destIp;

7 sock = socket(AF_INET, SOCK_DGRAM, 0);

8 setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (void *) &broadcastPermission,

9 sizeof(broadcastPermission));

10 sendto(sock, &msg, 1, 0, (struct sockaddr *) &destAddr, sizeof(struct sockaddr_in));

11 [...]

Figure 46: C code for sending beacon messages in the smart-home application—
functionally equivalent to lines 7 and 10 in Figure 43.

Similar benefits are found in creating and sending messages. For instance,

Figure 46 shows the C code necessary to prepare and broadcast a beacon

message, as done in lines 7 and 10 of Figure 43. The tedious code necessary

to setup the UDP socket and the broadcast address are replaced in ELIoT by

addressing to all and the ∼∼∼ operator. This makes the 9 lines of C code shrink

to only 2 in ELIoT.

Generally, one might argue that the more compact implementations attain-

able using the functional paradigm lead to higher chances of programming

errors, essentially because the code is semantically more dense. The evidence,

however, demonstrates that this is not the case. On the contrary, and espe-

cially for highly distributed functionality, the more compact code resulting

from the use of functional programming ultimately yields more dependable

systems [29, 30].

Because of its Erlang core, ELIoT also simplifies implementing concurrent

functionality, by virtue of dedicated language and system support to multi-

threading. As an example, mutexes and condition variables, required in C to

explicitly synchronize concurrent threads, are unnecessary with ELIoT. Al-

ready in the relatively simple smart-home application, nonetheless, C pro-

grammers heavily rely on such synchronization primitives to coordinate ac-

88 evaluation

cess to the shared list of appliances. ELIoT programmers can, on the other

hand, organize the code in such a way that the list of appliances is modified

by the receiving thread only, whereas other threads operate on an immutable

copy of such data structure, included in the message that triggers their pro-

cessing.

6.2 quantitative evaluation

Previously, we introduced the hardware devices we ported ELIoT to; this

evaluation considers three of them:

• a Raspberry Pi board (ARM processor), equipped with 256 MB of RAM

• an ebook reader (Kindle 4th gen., ARM processor), equipped with 256 MB

of RAM

• a custom embedded board with a RT3050 MIPS processor called “Caram-

bola”, featuring 32 MB of RAM.

In particular, the ebook reader has been tested mainly for its power saving

features, while the other two devices have been thoroughly tested for CPU

and memory consumption, too.

6.2.1 System Performance

Increasing developers’ productivity often comes at a cost. This is also the case

for ELIoT, where such cost materializes as performance overhead. To pre-

cisely evaluate this aspect, we compare the performance of the C and ELIoT

implementations of the smart-home application by measuring memory con-

sumption, CPU usage and power consumption, as well as network traffic. We

perform this comparison on both embedded devices currently running the

ELIoT VM.

6.2 quantitative evaluation 89

Raspberry Pi Carambola0

5

10

15

20

25

30

M
By

te
s

C (thread default stack size)
C (thread 1M stack size)
C (thread 256K stack size)
ELIoT (bare)
ELIoT (application running)

Figure 47: Memory consumption (pmap).

Memory

We measure memory usage with pmap: a Linux utility that reports the entire

memory allocated for a given application, including code, libraries, stack, and

heap. This gives a precise indication of the amount of memory a device needs

to run the application: devices with less memory would just be unable to run

the same application implementation.

Figure 47 reports the results. The caveat in the results we obtain from the C

implementation is that it uses the pthread library for multiprocessing, which

leaves to programmers the burden to explicitly choose the stack size for each

thread. Over-provisioning this value is common practice in mainstream pro-

gramming, as plenty of memory is typically available. In embedded system

programming, however, this is conducive to interesting observations: a naive

C programmer who uses the default stack size17 would build an application

17 The default stack size in the pthread library is 8 MB for the Raspberry Pi (vanilla Linux) and 2

MB for Carambola (OpenWrt).

90 evaluation

that uses the same or more memory than the corresponding ELIoT implemen-

tation. ELIoT programmers, on the other hand, rely on lightweight multipro-

cessing provided by the VM and do not need to worry about such system con-

figuration details. Nevertheless, a skilled C programmer able to manually fine-

tune the system configuration—a typically error-prone and time-consuming

task—would find working settings at 1MB or even 256 KB per-thread stack

space, the latter being the minimum that allows the application to run cor-

rectly. In this case, the C implementation consumes less than half the memory

of the ELIoT implementation.

To better characterize memory usage in ELIoT, we separately assess the VM

with no application loaded and when the smart-home application is running.

As shown in Figure 47, it turns out that the VM is responsible for most of the

memory used by ELIoT, with the application requiring only a few additional

KB. This has two consequences: i) it clearly points at the VM as an avenue

for further improvements to battle the memory overhead in ELIoT; and ii) it

suggests that the gap between C and ELIoT likely reduces with more complex

applications, as the memory occupation due to the VM is a fixed cost paid

once and for all.

CPU usage and power consumption

We measure the time the CPU is busy processing using the getrusage primi-

tive, which returns per-process CPU time split between user and system time.

At the control panel, we run 50 consecutive executions of the operations to

compute the appliances’ schedule, as per functionality F2, by assuming that

the expected energy consumption at the appliances is computed remotely,

corresponding to scenario A. We also include six rounds of beaconing for dis-

covery and monitoring of appliances between scheduling operations, as per

functionality F1. Such setting is representative of foreseeable usages of the

smart-home application. Each cycle lasts 60 seconds. We repeat the 50 iter-

ations across 30 different runs, and plot the resulting average with the 95%

confidence intervals.

6.2 quantitative evaluation 91

Raspberry Pi Carambola0

50

100

150

200

250

Hu
nd

re
th
s
of
 s
ec
on

ds

C User
C System
ELIoT User
ELIoT System

Figure 48: CPU times.

Figure 48 depicts the results. Using the C implementation, the user time is

much lower than the system time, especially on a relatively powerful device

like the Raspberry Pi. Differently, the time spent by the CPU using ELIoT on

the Raspberry Pi is split almost equally between user and system time, while

on the Carambola most time is spent executing user code. Using ELIoT, both

user and system times are larger compared to the C counterparts. In absolute

terms, however, the latencies that such CPU times may introduce are less than

30 ms per iteration, which includes a schedule computation and six rounds of

beaconing. These are reasonably within tolerance of non-realtime applications

such as a smart-home.

Increased CPU times also correspond to higher power consumption. To

assess this aspect, we hook the Raspberry Pi and the Carambola to a pro-

fessional voltage generator/multimeter to measure their average power con-

sumption throughout a single application iteration.

92 evaluation

Carambola
(Idle: 590.7 mW)

Raspberry Pi
(Idle: 1600 mW)

0

1

2

3

4

5

6

7

8

9
m

W

C
ELIoT

Figure 49: Power consumption. (The idle power consumption is factored out.)

Figure 49 shows the results of our measurements by factoring out the power

consumption when the board is completely idle. Compared to the C imple-

mentation of the smart-home application core functionality, ELIoT imposes

an overhead of about 5 mW on the Carambola and of 6 mW on the Raspberry

Pi, arguably negligible for the scenarios we consider. Adding the idle baseline

to the measures above results in a relatively high overall figure for the plat-

forms we tested, which are not optimized for limiting power usage. On the

other hand, better engineered platforms exist, which are powerful enough to

run ELIoT and still have a reduced power usage, in particular at idle. For ex-

ample, a modern smartphone using a Samsung S3C2442 SoC absorbs about

268 mW when idle [31], while the ARM board that runs the Amazon Kindle

4 (a device explicitly designed for low power consumption) absorbs 45 mW

when idle with wifi enabled and connected, as we measured using the same

equipment used for the other platforms.

6.2 quantitative evaluation 93

Figure 50 shows the previous chart with this additional device: in this case,

the idle power consumption is (more than) one order of magnitude less than

the other two, at the same time the difference between idle and full throttle is

more noticeable, due to the fact that the Linux version running on the Kindle

is compiled with soft floating point, which means that part of the floating point

calculations have to be emulated in software (on the other hand, boards such

as the Raspberry Pi use hard floating point, taking advantage of the full power

of hardware arithmetical units).

Carambola Raspberry Pi Kindle 40

200

400

600

800

1000

1200

1400

1600

1800

m
W

Idle
C
ELIoT

Figure 50: Total power consumption, with Kindle.

Network traffic

Using a standard network inspection tool, we measured the amount of bytes

transferred through the network during a single application iteration. This

includes several messages exchanged between the control panel and the ap-

pliances. The application payload is the same for both the C and the ELIoT

implementation.

94 evaluation

Table 8: Network traffic.

System Bytes

C 1929

ELIoT 2126

Overhead ELIoT (%) 10.21

LAN WAN0

10

20

30

40

50

60

70

80

m
s

ICMP ping
Schedule
Company

Figure 51: Network delay (LAN and Internet).

Table 8 shows the results.

The total overhead of ELIoT with respect to C is 10.21% (2126 vs. 1929

bytes). This is due to the small additional header that the ELIoT VM adds to

every message to support the abstract addressing mechanisms, e.g., to reach

specific ELIoT processes within a given node. The number of messages, how-

ever, is the same in both the implementations. The small overhead due to

ELIoT is then still practical.

We also measured the network latency in Internet-scale interactions, to

show how the framework performs when ELIoT messages move in a Wide

Area Network, a typical case for IoT applications.

Figure 51 shows the round-trip time of two exemplary network messages

used in our scenario (the “schedule” message is a single step of the inter-

actions required to prepare the appliances’ schedule, while the “company”

6.2 quantitative evaluation 95

message is one interaction from the electrical company to the control panel.

They are both representative examples of complex messages that can happen

in an ELIoT application.

The LAN measurements have been taken using two Raspberry Pis on a

wired connection to the same router, while the WAN measurements have

been taken using two Raspberry Pis situated in two different countries (Italy

and Sweden, in particular). The two devices were executing a control panel

and an appliance for the first type of messages, and a control panel and a

company for the second type. The chart shows also the network delay from

ethernet to ethernet ports using a sequence of ICMP ping messages. In all

cases, the interactions have been executed 10000 times, and the plot shows

also the 95% confidence intervals, barely visible since they are under 0.5%.

It can be observed that, regardless of the network delay, it takes about 20

to 25 ms for each ELIoT message to traverse the network stack (from the

application level down to the ethernet port) on the sender, traverse back the

stack on the receiver, elaborate the response and send it back to the sender.

Spawn time

We assess the time needed by ELIoT to spawn a new process whose byte-

code comes from the network. This is key to evaluate the actual usability of

the ELIoT mechanisms to upload new functionality on a running node; for

example, in the smart-home application when appliance manufacturers need

to update the on-board software. In particular, we measure the time it takes

from when a message with the necessary bytecode is received at the node

to when the new functionality is ready to accept input data. On average, this

time goes from 50 ms on the Raspberry Pi to less than 20 ms on the Carambola

(Figure 52): arguably acceptable in most practical scenarios.

6.2.2 RESTful interfaces performances

In Section 2.2, we presented the CREST-Erlang framework and the perfor-

mance evaluation of that implementation, compared with the original version

96 evaluation

Raspberry Pi Carambola
0

10

20

30

40

50
m
ill
is
ec
on

d
s

Figure 52: Spawn time

of the framework. In particular, the Erlang implementation was three orders

of magnitude faster than the original Scheme implementation, and the over-

head introduced by the CREST-Erlang framework only slightly deteriorated

the performances with respect to a standard REST application built with the

same language (less than 10 ms in response time and a small increment in

throughput).

As described earlier (Section 4.4), we used the experience from the devel-

opment of the CREST-Erlang framework to implement dynamic RESTful

interfaces for ELIoT, confident in the small price in terms of performances

that Erlang Web frameworks introduce, due to the parallelization characteris-

tics of the language itself. The next two charts will show how the integration

of these interfaces in ELIoT impact its performance.

The first chart, in Figure 53, shows the spawn time of a new REST function,

using either the Web manager or ELIoT API, which takes about 130 ms, and

the REST invocation of the same function , which takes about 20 ms; the REST

6.2 quantitative evaluation 97

overhead doubles the spawn time of native ELIoT functions, as shown on Fig-

ure 54: this is the time taken by the framework to unpack the HTTP request,

spawn the process and return the HTTP response to the caller. Both the server

and the client were connected on a wired LAN, and the measurements were

taken on the Raspberry Pi device.

Function spawn Function invocation0

20

40

60

80

100

120

140

m
s

Figure 53: Function spawn absolute timings on Raspberry Pi

98 evaluation

0

20

40

60

80

100

120

140

m
s

Erlang native
RESTful

Figure 54: REST spawn time with respect to ELIoT spawn time

7
R E L AT E D W O R K S

This chapter will illustrate existing works that include both sides of IoT pro-

gramming, enabling local or remote communication and spanning the entire

spectrum of devices described in the previous chapter. This will help point

out the differences with respect to ELIoT.

We will describe the problems in developing applications in IoT scenarios,

and the difficulties in testing and debugging that have been underlined by

several research works.

We will then show existing works similar to the Computational REST archi-

tecture and paradigm, a contribution that has been described on Chapter 2

and that has been the foundation for the dynamic RESTful interfaces offered

by ELIoT and described in Section 4.4.

Finally, we will illustrate existing works to apply formal verification to em-

bedded distributed applications, and how they differ from the model check-

ing tool described in Section 5.2.

7.1 sensor network programming and pervasive computing

The first side of IoT programming is also the “older” one: the Wireless Sensor

Networks research field is at least a decade old, and the local interactions

paradigm is an intrinsic part of its programming model.

Existing solutions for sensor network programming [16] allow an efficient

implementation of localized interactions by deploying the application logic

right onto the embedded devices; at the same time, these solutions have sev-

eral limitations, as described in [16] and [32].

99

100 related works

Level of abstraction

The first limitation is that these frameworks and operating systems offer a

very low level of abstraction, where the developer has to know all the intimate

details of the hardware platforms that she is targeting, to be able to fine-tune

the application settings and set the algorithms that she will use, especially

regarding the network communication. This generates ad-hoc solutions for

specific problems, and makes it difficult to generalize and reuse at least parts

of the developed software.

This is well represented by two well-known operating systems for Wireless

Sensor Networks, TinyOS [2] and Contiki [3]: the former is an event-based

open source operating system, able to run on several typical low-level devices

used in WSN, while the latter is another open source operating system with a

programming model more similar to standard programming languages. Both

these systems are programmed through (a dialect of) C, and require knowl-

edge of the platform and offer a very detailed API to control each hardware

component. This means that changing the hardware usually means changing

parts of the application, possibly re-thinking the algorithms to accomodate

the new hardware characteristics.

Things are even more difficult with commercial or proprietary operating

systems for WSNs, such as WaspMote [33], which offer their own specific

APIs and are in general difficult to port to different platforms, or integrate

into competitive products.

Other systems try to avoid these problems by offering a higher level of

abstractions, to help portability and reuse of the software. For example, Reg-

iment [34] features a functional programming model, providing primitives

such as fold and map to process data originating from subsets of nodes. Flask [35]

provides a data-flow programming model based on discrete computational

steps, akin to side effect-free function calls. Snlog [36] is a rule-oriented ap-

proach inspired by logical programming, where rules are recursively applied

on data available in a dedicated repository. Common to these approaches—

and in fact to most solutions in the field [16]—is that the language constructs

are compiled to TinyOS or Contiki code before deployment. Thus, the code

7.1 sensor network programming and pervasive computing 101

running on the embedded device bears little resemblance to the hand-written

one, complicating testing and debugging.

ELIoT tries to offer advantages of both these approaches: on one hand, it

uses a high level programming language, with typical functional program-

ming mechanisms useful for manipulating streams of data coming from sen-

sors; being VM-based, it hides to the developer the low-level layers of the

application, but it allows the developer to easily access parts of these lay-

ers, for example letting her choose whether to use or re-implement reliability

mechanisms; the developer can also access parts of the VM implementation

and “plug in” her own implementations of network distribution protocols

and hardware interfaces, depending on the deployment devices.

Local communication

The second limitation is that it is largely common to these approaches the

view of the sensor network as a stand-alone system, where Internet-scale in-

teractions are at best mediated by ad-hoc gateways that are to be designed

and implemented on a per-application basis. Different solutions provide re-

mote access to sensors and actuators from the Internet, such as sMAP [37] and

CoAP [38], that implement low-powered IPv6 networking, but the limitations

of these kinds of devices limit the usefulness of these protocols: adding a full

network stack to these devices usually means moving to the “remote commu-

nication” paradigm and render difficult the additional implementation of a

local communication.

From a conceptual standpoint, ELIoT aims at bringing the localized interac-

tions, already enabled by sensor network programming, in Internet-connected

embedded networks.

Testing and debugging

Finally, worth noticing is that sensor network operating systems often come

with an accompanying simulator, e.g., TOSSIM [25] for TinyOS and Cooja/M-

SPSim [39] for Contiki. This is key to quickly prototype applications and has

often significantly contributed to the adoption of the platform. We do the

102 related works

same with ELIoT, with the added feature of enabling mixed deployments

with some simulation instances running on real devices, akin to EmStar [40],

to avoid emulation of the real devices and preferring the execution of the

application on real instances of them, at the same time in a simulated envi-

ronment which allows testing of scalability other than hardware interfacing.

7.2 iot architectures and application frameworks

Significant activities are undergoing to define software architectures for the

IoT, spanning from the network to the application layer. For example, the IoT6

project [41] exploits an IPv6-based network layer to build CoAP services atop.

The IoT-A project [42] defines an architectural reference model for the inter-

operability of IoT devices, whereas Spitfire [43] investigates unified concepts

for facilitating the effective development of IoT applications.

ELIoT is largely complementary to these efforts. Sound software architec-

tures are necessary to improve interoperability, organize applications’ func-

tionality, and reason about the system operation. Orthogonal to these aspects

is how to specify the actual application processing within the individual com-

ponents, and how to establish their distribution across the networks of sensors

and actuators, and Internet-side services. ELIoT provides effective support for

the latter aspects.

In terms of distributed coordination, integrating smart objects with the In-

ternet may follow two communication models. Solutions exist to proactively

export sensor data to the Internet, such as Publish/Subscribe middleware [44],

shared memory systems [45], and platforms providing storage and process-

ing facilities for sensor data, such as Cosm [46].

At a logical level, in both approaches the application logic runs outside the

network of embedded sensor and actuators. This simplifies prototyping IoT

applications, yet it does not allow an efficient implementation of combined

Internet-scale and localized interactions. ELIoT aims at efficiently enabling

the latter by retaining the ability to coordinate with Internet-side services.

For example, as seen in the smart-home scenario, ELIoT developers can im-

7.2 iot architectures and application frameworks 103

plement control loops that span neighboring devices and integrate them with

externally-running services.

Similar considerations apply in relating ELIoT to the body of work in per-

vasive computing systems. For example, Aura [47] and Gaia [48] focus on

effective development of interactions between users and the devices they op-

erate: the former offers a system trying to understand the behavior of its users,

and leverage this knowledge to modify the office or home behavior to acco-

modate the current user task; Gaia offers a similar system, where virtual spaces

created by users are associated to real spaces and real devices, again to acco-

modate user tasks in the environment. Since both these platforms offer high

level functionality, the underlying operating system has to integrate as many

different devices as possible, and a framework like ELIoT could easily offer

this kind of portability by leveragin its being based on a Virtual Machine.

MundoCore [49] provides a low-level framework and middleware for de-

veloping platforms integrating different devices, from mobile systems to com-

puters in a homogeneous framework. Although MundoCore caters for effec-

tive integration of heterogeneous hardware, an issue we also tackle in ELIoT

using a VM-based execution model, these system do not focus on how to

effectively develop Internet-scale and localized interactions within the same

application.

There also exist works tackling the development process of IoT applica-

tions. Srijan [50], for example, presents a model-driven approach by establish-

ing specific roles for the involved stakeholders, and by introducing domain-

specific languages (DSLs) to model both the application and the underlying

systems. Interfaces and component connectors are automatically generated

based on such models. Similar works are largely complementary to ELIoT,

which focuses on providing effective programming and system support. For

example, ELIoT may serve as a target language for Srijan, likely simplifying

code generation.

104 related works

7.3 application scenarios

Several researches have proposed many different “Internet of Things” scenar-

ios to exemplify the type of interactions that can be obtained by this paradigm;

an exaustive list of these proposals is for example [15], which has been spon-

sored by a company working on IoT and M2M interactions: we decided to

exemplify the use of ELIoT on a smart-home application, inspired by both

the smart grid and remote control appliance scenarios shown in the survey (n.

15 and n. 47).

Ad-hoc solutions exist for developing software in specific application do-

mains. For example, Gator Tech [51] presents the design of a pervasive com-

puting system especially conceived for elderly people, within an environ-

ment enriched by sensors and actuators; whereas HomeOS [52] is a mid-

dleware layer implementing higher-level abstractions for smart-home appli-

cations, giving the illusion that the house itself can be treated as a single

computing device.

ELIoT’s applicability extends beyond this particular context. For example,

in the logistics domain, sensor attached to packages may provide fine-grained

continuous monitoring of the shipped goods, used to take smart routing de-

cisions and to inform business analysts at the back-end of item availability

and market trends [53]. Such applications feature similar combinations of

localized and Internet-scale interactions as our smart-home example. ELIoT

precisely aims at enabling both kinds of interactions within the same devel-

opment framework.

7.4 computational rest

Computational REST, the framework used as a foundation for the dynamic

RESTful interfaces implemented in ELIoT, is related with current research on

evolvable and dynamically adaptable software architectures and on program-

ming languages supporting dynamic adaptation. Seminal work on the iden-

tification of the critical architectural issues concerning run-time evolution is

7.4 computational rest 105

described in [54–56]. The CREST approach is largely motivated by this work.

Several alternative architectural styles exist to support dynamically evolvable

distributed applications. Hereafter we briefly review the most relevant ones

and we contrast them with CREST.

Publish-subscribe (P/S) [57, 58] is an event-based style where components

are not directly connected, but communicate through a common middleware

system, which takes any new event notification and dispatches it to any com-

ponent subscribed for that specific event. This structure is highly dynamic

since nodes may be added and removed while the system is running; com-

munication is asynchronous and components can operate independently of

each other.

Map-reduce (M/R) [59] is a style used to parallelize a computation over a

large data set by distributing work over a collection of worker nodes. In the

map phase each node receives from a master node some amount of data and

elaborates it, returning key-value pairs to the master, while in the reduce phase

the master node takes the answers to all the sub-problems and combines them

to produce the output. Because worker nodes may be masters, a tree structure

can be easily obtained, increasing scalability. As in the P/S case, M/R nodes

are completely autonomous; they may join and leave dynamically as they

do not share any data or state directly, and perform their computation in

isolation w.r.t. the others.

Similarly to CREST, P/S and M/R architectural styles are oriented to dy-

namic adaptation, but differently from CREST they are not specifically ori-

ented to supporting Web applications, probably the most important domain

for distributed applications today and the one we target.

The two architectural styles that are today competing for becoming a stan-

dard in building Web applications are REST and the Service-Oriented archi-

tecture (SOA) [60]. We already discussed the differences between CREST and

REST in Section 2.2. SOA models a Web application as a composition of differ-

ent autonomous services, independently developed and existing in different

namespaces and execution contexts. Services may be dynamically discovered

and compositions may bind to them dynamically. Usually these services op-

106 related works

erate over HTTP using Web Service protocols supporting standardized dis-

covery and service invocation. Unfortunately, these protocols violate REST

principles, and this can be a major problem, since REST principles are those

that guaranteed the success of the Web.

CREST not only follows the REST principles, but also promises to support

dynamic adaptation much better. Indeed, both REST and SOA focus on data

as the primary element exchanged among components and this makes it hard

to adapt the architecture of the application dynamically, since this usually

requires to introduce new components/services. Vice-versa, CREST adopts

the computations themselves as the elements exchanged among nodes (i.e.,

peers) and this makes it straightforward to change the architecture of the

application at run time, when required.

Besides architectural styles, another research direction related with the

Computational REST work concerns programming languages. In particular,

the identification of features or language constructs that may provide bet-

ter support to the specific requirement of run-time adaptation. This some-

times leads to extensions of existing languages to support dynamic adap-

tation. For example, context-oriented programming extensions have been pro-

posed and implemented for various languages [61], starting from initial work

on LISP [62], up to the initial version of ContextErlang [63] developed by our

research group. The features supported by Aspect-Oriented programming

languages [64], and in particular Dynamic Aspect-Oriented languages [65],

have also been proved to help in this context.

Functional programming languages, and in particular the notions of contin-

uation and closure, have also been revamped in the context of Web program-

ming. A short summary of work upon which CREST-Scheme is rooted can be

found in [66], while examples of use of functional programming concepts in

Web applications are provided in [67, 68].

7.5 model checking 107

7.5 model checking

Several works have been proposed during the years to apply model checking

techniques to embedded distributed systems, in particular to Wireless Sensor

Networks, with different purposes: to model check this kind of applications,

or specific algorithms, or properties of the typical network layers in use (e.g.,,

to compare variants of the Medium Access Control of IEEE wireless proto-

cols).

Anquiro [69] refers to the first kind: it is a tool for model checking WSN

applications. It is based on the Bogor [70] model checker and it provides dif-

ferent levels of abstraction to overcome the problem of state space explosion:

• hardware specific, to verify low-level functionality

• neighborhood communication, to verify network level functionality in-

dependently of the hardware platform

• system-wide communication, to verify application level functionality in-

dependently of the network layer.

The tool translates C code implemented using the Contiki OS [3], and then

verifies the model obtained by the translation. Users can specify properties

using Linear Temporal Logic, and the tool searches for counter-examples to

these properties, which can then be inspected by the developer.

ELIoT model checker relies on similar concepts: it verifies applications writ-

ten using the ELIoT framework, without specific translations to different mod-

eling languages, due to the fact that it uses a model checker written in the

same language as ELIoT applications; properties can be specified using LTL,

and the tool is used to verify application level functionality, with network

models that can be tuned by the developer, depending on the type of environ-

ment in which the application will be deployed.

T-Check [71] is a tool for the TinyOS framework [2] to detect violations of

properties about the system. The tool starts from the application source code,

enhanced with assertions and properties used to reason about the system.

Users can specify safety properties (all states of the system must not violate

108 related works

them) or liveness properties (they must be true at least in one of the states).

The tool is built upon the TinyOS simulator, TOSSIM [25], which is driven by

scripts written with programming languages different from TinyOS C dialect

(i.e., Python), making the tool able to work with high-level properties, losing

the low-level specific issues.

ELIoT model checker does not need assertions, but it needs at least one

“probe” specified in the system, so that the tool knows then a certain property

holds; as mentioned before, it builds upon the same programming language

of the applications, thus allowing developers to verify properties spanning

their entire application.

The problem of using model checkers written in different languages with

respect to the applications can be observed also in [72], where the authors

modeled TinyOS applications using hybrid automata, able to capture both

discrete transitions and continuous flow transitions; these models fit quite

well for TinyOS applications, where parts of the system (e.g., energy con-

sumption) can be modeled using continuous variables, and the operational

behavior is modeled on finite state automata. The model languages used here

are HyTech [73] and SHIFT [74], thus the tool relies on the precision of the

translation of the application.

The same considerations apply also to [75], which is a work that models

the Optimal Geographically Control Algorithm by using Real-Time Maude [76],

which is a model checking tool that can be applied to real-time systems: in

this case, the algorithm has been specified by using this modeling language

and analysed using this tool, thus relying on the precision of the translation

from the original algorithm to the model, obtaining results that could be quite

different from the ones obtained analysing a specific implementation of the

same algorithm. Again, ELIoT overcomes these problems by using the same

programming language.

A characteristic of the ELIoT model checker is the fact that is uses deter-

ministic model checking techniques, providing probabilistic informations to

the developer to inspect the behavior of her application. There have been

works that used probabilistic model checking, for example to check prop-

7.5 model checking 109

erties of the Medium Access Control of IEEE 802.11 protocols using proba-

bilistic timed automata and UPPAAL [77]; similar works verified properties

using Discrete Time Markov Chains (again, probabilistic models) and PRISM

for IEEE 802.15.4 protocols used in WSNs [78]. In both cases, the researchers

wanted to demonstrate specific properties of the wireless protocols, from max-

imum intervals between successive correct packet transmissions to energy

consumption for low power protocols. In both cases, their aim was at a lower

level with respect to ELIoT purpose.

8
C O N C L U S I O N S

This thesis has presented ELIoT, a new framework for developing applica-

tions for the “Internet of Things”.

The work started from a broad analysis of the existing frameworks used to

develop IoT applications with the corresponding devices, from Wireless Sen-

sor Networks’ low-powered boards, equipped with simple microcontrollers,

to today’s smartphones and tablets, equipped with multicore processors and

powerful communication capabilities.

We have described the two main paradigms under which we can classify

these frameworks, namely local communication enablers and remote communica-

tion enablers. The former provides APIs and capabilities allowing local com-

munication between devices, a paradigm common in Wireless Sensor Net-

works, where the application-level decisions are taken inside the network and

gateways to the Internet are used mainly to send data to online collectors for

further (offline) analysis. The latter provides APIs to easily communicate with

remote devices and computers through the Internet, for example with cloud

systems, to collect data and take decisions. In both cases, it is not easy to

perform the complementary action: for example, Wireless Sensor Networks

operative systems seldom offer the capability to integrate into the Internet

and directly communicate with Web services. At the same time, frameworks

for more powerful devices (e.g., smartphones) do not offer APIs to enable lo-

cal communication: if two of these devices have to exchange data, the easiest

way is to use services provided through the Internet, even if the two devices

are next to each other.

We think that this can be changed, and we introduced ELIoT to show that

it is possible to offer a powerful framework that allows both types of com-

munication. In doing so, we leveraged some of the existing features of the

111

112 conclusions

Erlang language and Virtual Machine, and introduced features for both types

of communication:

• different network distribution protocols, which give more control to the

developer on how the VM behaves when sending messages to remote

processes. In particular, ELIoT offers specific mechanisms to make the

transmission reliable or non-reliable, and the developer can decide to

improve upon these options depending on the type of the application.

Moreover, the framework provides broadcast communication with the

possibility of disseminating computation, using context filters to select

only parts of the network. We also simplified the network distribution

protocol used by the VM, in particular removing the overlay network

between Erlang nodes18, giving the application developer the responsi-

bility of creating and maintaining an overlay only when needed

• the capability of deploying computations at runtime and automatically

generate REST interfaces to invoke them, so that they can be easily inte-

grated into different frameworks and used outside ELIoT (even browsed

through the Internet, if necessary). This capability leveraged our knowl-

edge of Web services in Erlang, due to the development of a previous

framework to change the Web of resources to a Web of computations

(the Computational REST paradigm and architecture).

At the same time, testing and debugging IoT applications is known to be

quite difficult, for example to correctly integrate a model of the environment

or to test algorithms scalability. This is due to the peculiarities of the appli-

cations and the lack of sound software engineering tools and procedures: for

low-powered devices, the developer relies on her knowledge of the low-level

aspects of the boards and the operative systems, creating a solution specific

to the targeted scenario. On the other hand, applications for more powerful

devices (e.g., smartphones) are developed with frameworks that offer simu-

lators unable to reliably emulate the hardware platform, especially for those

18 Instances of the VM running on a device.

conclusions 113

operating systems (e.g., Android) offering a wide variety of different devices

(smartphones, tablets, TV accessories).

ELIoT provides a simulator tool that tests the code as is, emulating the

network and the environment using known tools and allowing the devel-

oper to fine-tune the environment model (to the extent of plugging in new

model implementations), leveraging her knowledge of the deployment sit-

uation. Moreover, the simulator allows mixed scenarios, where part of the

network is simulated and part runs on real devices: this avoids having to

emulate the hardware of several different devices, and obtain more precise

measurements from the real hardware.

ELIoT also provides a modified version of an existing model checker for

Erlang (called McErlang [23]), to reflect the peculiarities of IoT scenarios and

the mechanisms that ELIoT provides with respect to “vanilla” Erlang. The

developer can verify LTL properties of the application, obtaining validation

proofs or counter-examples violating those properties. This tool is written

in Erlang, and this means that it is able to verify ELIoT applications without

changing the code or having to translate it into a different modeling language,

thus producing more reliable results with respect to solutions that need a

model translation.

Finally, we tested the ELIoT framework on several different devices, going

from small, WSN-like boards, to smartphones and more powerful devices. We

tested a ELIoT application against a functionally-comparable C version, using

a typical IoT scenario as a starting point, and compared the performances of

these two versions on some of these devices: the ELIoT version performed as

the C one from a memory consumption point of view, while having worse

performances from a CPU point of view. This is due to the fact that ELIoT ap-

plications run on a Virtual Machine, and a VM it requires more CPU time, but

at the same time allows developing more portable programs (the same appli-

cation was tested on MIPS, ARM and Intel microprocessors without changes

in the code, even when interfacing with external hardware). We also tested

ELIoT on special devices such as ebook readers, to show how low can the

energy consumption be also for ELIoT applications (despite the existence of

114 conclusions

a VM and the need of more CPU time), if the device has been developed with

energy saving in mind19.

8.1 future work

Future work on ELIoT will involve different parts of the framework: from Vir-

tual Machine improvements, to empowered RESTful interfaces, to thorough

testing of the hardware side and the verification tool.

The Virtual Machine and the standard library

The main limitation of ELIoT is the design of the existing Erlang Virtual

Machine: we simplified the functionality of the existing Erlang network dis-

tribution protocol and removed not used libraries, but its footprint, especially

from a memory point of view, is still quite high. We want to investigate how

to improve this situation, with possible collaborations with other Erlang de-

veloper groups that are working on running the language and platform on

embedded devices.

We want to investigate how to improve the filtering capabilities of broadcast

spawn operations: as mentioned in the previous chapters, an important limi-

tation is the fact that transmission of the bytecode is needed to send complex

filtering functions to remote nodes; we would like to integrate such solutions

in a seamless way in the Virtual Machine, to expand the filtering options

given to the developers.

RESTful interfaces

ELIoT introduced dynamic RESTful interfaces and the ability of automati-

cally wrap modules and applications into Web services, that can be invoked

through standard HTTP calls.

New Web standards, such as HTML5, have introduced new interactions be-

tween clients and servers using HTTP operations, such as Web sockets and

19 Which is not always the case, for example for devices such as the Raspberry Pi.

8.1 future work 115

asynchronous communication; moreover, AJAX technologies and libraries help

obtaining a better user experience when using Web applications. We want to

introduce some of these technologies into our dynamic RESTful interfaces, to

improve the Web manager, introduce JSON calls to Web services and limit the

need to handle HTTP timeouts by the developers, making this issue transpar-

ent to module invocations.

Hardware testing

The IoT world is in continuous evolution, and new devices with new pecu-

liarities or improvements with respect to previous ones are presented almost

every day; our effort is to test ELIoT on all the devices that seem interesting

to us and that we think can provide benefits to the developers.

Moreover, we already support ZigBee network protocols, and we want to

introduce a library to seamlessly communicate with Wireless Sensor Net-

works and interface with devices that, due to hardware limitations, cannot

run ELIoT. We already developed a specialized library for low-powered de-

vices to show how to handle the network protocol on non-Erlang devices (see

Section 4.2.2) and remain compatible with at least part of the ELIoT network

messages; we want to integrate similar libraries on WSN operating systems

like TinyOS.

Model checking

We introduced McErlang as a model checker for Erlang applications, and

discussed the modifications we made to integrate it with ELIoT functional-

ity and with developer needs in IoT scenarios; we are now in the process

of comparing real world data with results obtained in our tests, to improve

the instruments the tool gives to the developers for fine-tuning verification

properties.

We are also testing the complexity of model checking applied to large ap-

plications, to show the limitations in terms of LTL properties and state space

explosion that the model checker is able to stand, and how to reduce the num-

116 conclusions

ber of states in parts of the execution tree that can be ignored during the state

space exploration.

8.2 final remarks

This thesis has shown the benefits of supporting multiple communication

paradigms for “Internet of Things” applications, and the correspondence be-

tween distributed mobile/embedded applications and the actor model sup-

ported by Erlang. It also showed the benefits of having tools to support the

development of applications in these complex scenarios.

We think that different programming models, paradigms and tools are

needed to thoroughly explore this exploding area of computer science and

engineering and to produce robust and reliable applications, especially be-

cause these applications are integrating into everyday devices and our lives

more and more every day.

B I B L I O G R A P H Y

[1] Openenergymonitor. http://openenergymonitor.org.

[2] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister. System architecture directions for networked sensors.

SIGPLAN Not., 35(11):93–104, November 2000.

[3] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a

lightweight and flexible operating system for tiny networked sensors.

In Proc. Int. Workshop on Embedded Networked Sensors, 2004.

[4] Alessandro Sivieri, Luca Mottola, and Gianpaolo Cugola. Drop the

phone and talk to the physical world: Programming the internet of things

with Erlang. In SESENA, pages 8–14, 2012.

[5] Alessandro Sivieri, Luca Mottola, and Gianpaolo Cugola. Eliot: Build-

ing internet of things software combining localized and internet-scale

interactions. Major revision submitted for publication on Computer Networks,

2013.

[6] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modu-

lar actor formalism for artificial intelligence. In Proceedings of the 3rd

international joint conference on Artificial intelligence, pages 235–245, San

Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc. URL

http://portal.acm.org/citation.cfm?id=1624775.1624804.

[7] Justin Ryan Erenkrantz. Computational REST: a new model for decentral-

ized, internet-scale applications. PhD thesis, Long Beach, CA, USA, 2009.

Adviser-Taylor, Richard N.

[8] Alessandro Sivieri, Gianpaolo Cugola, and Carlo Ghezzi. Computational

rest meets erlang. In Proc. 49th Int. Conf. on Objects, Models, Components,

Patterns. Springer-Verlag, 2011. ISBN 978-3-642-21951-1.

117

118 bibliography

[9] Roy T. Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, 2000. URL http://portal.acm.org/citation.

cfm?id=932295.

[10] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understand-

ing code mobility. IEEE Transactions on Software Engineering, 24:342–361,

1998.

[11] Justin R. Erenkrantz, Michael Gorlick, Girish Suryanarayana, and

Richard N. Taylor. From representations to computations: the evolution

of web architectures. In ESEC-FSE ’07: Proceedings of the 6th joint meeting

of the european software engineering conference and the 14th ACM SIGSOFT

symposium on Foundations of software engineering, pages 255–264, New

York, NY, USA, 2007. ACM Press. ISBN 9781595938114. doi: 10.1145/

1287624.1287660. URL http://dx.doi.org/10.1145/1287624.1287660.

[12] M.M. Gorlick, J.R. Erenkrantz, and R.N. Taylor. The infrastructure of

a computational web. Technical report, University of California, Irvine,

May 2010.

[13] Mochiweb. http://github.com/mochi/mochiweb.

[14] H. Farhangi. The path of the smart grid. Power and Energy Magazine,

IEEE, 8(1):18 –28, january-february 2010. ISSN 1540-7977. doi: 10.1109/

MPE.2009.934876.

[15] Libelium top 50 iot applications. http://www.libelium.com/top_50\

_iot_sensor_applications_ranking.

[16] Luca Mottola and Gian Pietro Picco. Programming wireless sensor net-

works: Fundamental concepts and state of the art. ACM Compututing

Surveys, 2011. ISSN 0360-0300.

[17] Koen Langendoen and Niels Reijers. Distributed localization in wireless

sensor networks: a quantitative comparison. Comput. Netw., 43(4), 2003.

[18] Scripting layer for android. URL https://code.google.com/p/

android-scripting/.

bibliography 119

[19] Netduino. URL http://netduino.com.

[20] Alessandro Sivieri. Velux-lab: Monitoring a nearly zero energy building.

In Proceedings of the Fifth Workshop on Real-World Wireless Sensor Networks,

2013.

[21] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and

Philip Levis. Collection Tree Protocol. In Proc. Int. Conf. on Embedded

Networked Sensor Systems, 2009. ISBN 978-1-60558-519-2.

[22] Z. Shelby, K. Hartke, and C. Bormann. Constrained Application Protocol

(CoAP), draft 18. RFC draft 18. URL https://datatracker.ietf.org/

doc/draft-ietf-core-coap/.

[23] Lars-Ake Fredlund and Hans Svensson. Mcerlang: a model checker for

a distributed functional programming language. In Proceedings of the

12th ACM SIGPLAN international conference on Functional programming,

ICFP ’07, pages 125–136, New York, NY, USA, 2007. ACM. ISBN 978-1-

59593-815-2. doi: 10.1145/1291151.1291171. URL http://doi.acm.org/

10.1145/1291151.1291171.

[24] Alex Bernauer and Kay Roemer. Meta-debugging pervasive computers.

In Proc. Workshop on Programming Methods for Mobile and Pervasive Systems,

2010.

[25] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: accu-

rate and scalable simulation of entire TinyOS applications. In Proc. 1st

ACM Conf. on Embedded Networked Sensor Systems, 2003. ISBN 1-58113-

707-9.

[26] Kannan Srinivasan, Maria A. Kazandjieva, Saatvik Agarwal, and Philip

Levis. The β-factor: measuring wireless link burstiness. In Proceed-

ings of the 6th ACM conference on Embedded network sensor systems, SenSys

’08, pages 29–42, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-990-

6. doi: 10.1145/1460412.1460416. URL http://doi.acm.org/10.1145/

1460412.1460416.

120 bibliography

[27] Kannan Srinivasan, Mayank Jain, Jung Il Choi, Tahir Azim, Edward S.

Kim, Philip Levis, and Bhaskar Krishnamachari. The κ factor: in-

ferring protocol performance using inter-link reception correlation. In

Proceedings of the sixteenth annual international conference on Mobile comput-

ing and networking, MobiCom ’10, pages 317–328, New York, NY, USA,

2010. ACM. ISBN 978-1-4503-0181-7. doi: 10.1145/1859995.1860032. URL

http://doi.acm.org/10.1145/1859995.1860032.

[28] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. An

empirical study of low-power wireless. ACM Trans. Sen. Netw., 6(2):16:1–

16:49, March 2010. ISSN 1550-4859. doi: 10.1145/1689239.1689246. URL

http://doi.acm.org/10.1145/1689239.1689246.

[29] Ulf Wiger, Gösta Ask, and Kent Boortz. World-class product certification

using erlang. SIGPLAN Not., 37(12), 2002.

[30] Bruce J. MacLennan. Functional programming: practice and theory. Addison-

Wesley Longman Publishing Co., Inc., 1990.

[31] Aaron Carroll and Gernot Heiser. An analysis of power consumption in

a smartphone. In Proc. of the USENIX annual technical conference, 2010.

[32] Gian Pietro Picco. Software engineering and wireless sensor networks:

happy marriage or consensual divorce? In Proc. FSE/SDP Workshop on

Future of Software Engineering Research, 2010. ISBN 978-1-4503-0427-6.

[33] Waspmote. www.libelium.com/waspmote.

[34] Ryan Newton, Greg Morrisett, and Matt Welsh. The Regiment macropro-

gramming system. In Proc. Int. Conf. on Information Processing in Sensor

Networks, 2007. ISBN 978-1-59593-638-7.

[35] Geoffrey Mainland, Greg Morrisett, Matt Welsh, and Ryan Newton. Sen-

sor network programming with Flask. In Proc. Int. Conf. on Embedded

Networked Sensor Systems, 2007.

bibliography 121

[36] David Chu, Lucian Popa, Arsalan Tavakoli, Joseph M. Hellerstein, Philip

Levis, Scott Shenker, and Ion Stoica. The design and implementation

of a declarative sensor network system. In Proc. Int. Conf. on Embedded

Networked Sensor Systems, 2007. ISBN 978-1-59593-763-6.

[37] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and

David Culler. sMAP: a simple measurement and actuation profile for

physical information. In Proc. 8th ACM Conf. on Embedded Networked

Sensor Systems, 2010.

[38] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained application

protocol (CoAP). draft-ietf-corecoap-07, 2011.

[39] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam

Dunkels, Thiemo Voigt, Robert Sauter, and Pedro José Marrón. COO-

JA/MSPSim: interoperability testing for wireless sensor networks. In

Proc. Int. Conf. on Simulation Tools and Techniques, 2009. ISBN 978-963-

9799-45-5.

[40] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya

Ramanathan, and Deborah Estrin. EmStar: a software environment for

developing and deploying wireless sensor networks. In Proc. USENIX

Annual Technical Conference, 2004.

[41] IoT6 - Universal Integration of the IoT. www.iot6.eu, .

[42] Internet of Things - Architecture. www.iot-a.eu, .

[43] Spitfire Semantic Web interaction with Real Objects. spitfire-project.

eu.

[44] G.C. Fox, S. Kamburugamuve, and R.D. Hartman. Architecture and Mea-

sured Characteristics of a Cloud Based Internet of Things. In Proc. Int.

Conf. on Collaboration Technologies and Systems, 2012.

[45] P. Langendoerfer, K. Piotrowski, M. Diaz, and B. Rubio. Distributed

Shared Memory as an Approach for Integrating WSNs and Cloud Com-

122 bibliography

puting. In Proc. 5th Int. Conf. on New Technologies, Mobility and Security,

2012.

[46] Cosm. cosm.com.

[47] João Pedro Sousa and David Garlan. Aura: an architectural framework

for user mobility in ubiquitous computing environments. In Proceedings

of the IFIP 17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP

Conference on Software Architecture: System Design, Development and Main-

tenance, WICSA 3, pages 29–43, Deventer, The Netherlands, The Nether-

lands, 2002. Kluwer, B.V.

[48] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ran-

ganathan, Roy H. Campbell, and Klara Nahrstedt. A middleware in-

frastructure for active spaces. IEEE Pervasive Computing, pages 74–83,

October 2002.

[49] E. Aitenbichler, J. Kangasharju, and M. Mühlhäuser. MundoCore: A

light-weight infrastructure for pervasive computing. Pervasive and Mo-

bile Computing, pages 332–361, 2007.

[50] Pankesh Patel, Animesh Pathak, Damien Cassou, and Valérie Issarny. En-

abling high-level application development in the Internet of Things. In

Proceedings of the 4th International Conference on Sensor Systems and Soft-

ware, 2013.

[51] Sumi Helal, William Mann, Hicham El-Zabadani, Jeffrey King, Youssef

Kaddoura, and Erwin Jansen. The gator tech smart house: A pro-

grammable pervasive space. Computer, pages 50–60, March 2005.

[52] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J. Brush, Bongshin Lee,

Stefan Saroiu, and Paramvir Bahl. An operating system for the home. In

Proc. 9th USENIX Conf. on Networked Systems Design and Implementation,

2012.

[53] SenseAware powered by FedEx. goo.gl/zKc3Q.

bibliography 123

[54] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-

based runtime software evolution. In ICSE, pages 177–186, 1998.

[55] Richard N. Taylor, Nenad Medvidovic, and Peyman Oreizy. Architec-

tural styles for runtime software adaptation. In WICSA/ECSA, pages

171–180, 2009.

[56] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Runtime

software adaptation: framework, approaches, and styles. In 30th inter-

national conference on Software engineering, pages 899–910, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-079-1. doi: http://doi.acm.org/10.

1145/1370175.1370181.

[57] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,

35(2):114–131, 2003.

[58] Gianpaolo Cugola and Alessandro Margara. Processing flows of infor-

mation: From data stream to complex event processing. ACM Comput.

Surv. – to appear.

[59] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data process-

ing tool. Commun. ACM, 53(1):72–77, 2010.

[60] Elisabetta DiNitto, Carlo Ghezzi, Andreas Metzger, Mike P. Papazoglou,

and Klaus Pohl. A journey to highly dynamic, self-adaptive service-

based applications. Autom. Softw. Eng., 15(3-4):313–341, 2008.

[61] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and

Michael Perscheid. A comparison of context-oriented programming lan-

guages. In COP ’09: International Workshop on Context-Oriented Program-

ming, pages 1–6, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-538-

3. doi: http://doi.acm.org/10.1145/1562112.1562118.

[62] Pascal Costanza. Language constructs for context-oriented program-

ming. In In Proceedings of the Dynamic Languages Symposium, pages 1–10.

ACM Press, 2005.

124 bibliography

[63] Carlo Ghezzi, Matteo Pradella, and Guido Salvaneschi. Context oriented

programming in highly concurrent systems. In COP ’10: International

Workshop on Context-Oriented Programming, co-located with ECOOP 2010,

Maribor, Slovenia, 2010, (to appear).

[64] Hidehiko Masuhara and Gregor Kiczales. Modeling crosscutting in

aspect-oriented mechanisms. pages 2–28. Springer-Verlag, 2003.

[65] Philip Greenwood and Lynne Blair. L.: Using dynamic aspect-oriented

programming to implement an autonomic system. Technical report, Pro-

ceedings of the 2003 Dynamic Aspect Workshop (DAW04 2003), RIACS.

[66] William E. Byrd. Web programming with continuations.

Technical report, Unpublished Tech. Report, available at

http://double.co.nz/pdf/continuations.pdf, 2002.

[67] Paul Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and

Matthias Felleisen. Automatically restructuring programs for the web. In

Proceedings of the 16th IEEE international conference on Automated software

engineering, ASE ’01, pages 211–, Washington, DC, USA, 2001. IEEE Com-

puter Society. URL http://portal.acm.org/citation.cfm?id=872023.

872573.

[68] Christian Queinnec. The influence of browsers on evaluators or, con-

tinuations to program web servers. In Proceedings of the fifth ACM SIG-

PLAN international conference on Functional programming, ICFP ’00, pages

23–33, New York, NY, USA, 2000. ACM. ISBN 1-58113-202-6. doi:

http://doi.acm.org/10.1145/351240.351243. URL http://doi.acm.org/

10.1145/351240.351243.

[69] Luca Mottola, Thiemo Voigt, Fredrik Österlind, Joakim Eriksson, Lu-

ciano Baresi, and Carlo Ghezzi. Anquiro: enabling efficient static ver-

ification of sensor network software. In Proceedings of the 2010 ICSE

Workshop on Software Engineering for Sensor Network Applications, SESENA

’10, pages 32–37, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-

bibliography 125

969-5. doi: http://doi.acm.org/10.1145/1809111.1809122. URL http:

//doi.acm.org/10.1145/1809111.1809122.

[70] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and

highly-modular software model checking framework. In Proceedings of

the 9th European software engineering conference held jointly with 11th ACM

SIGSOFT international symposium on Foundations of software engineering,

ESEC/FSE-11, pages 267–276, New York, NY, USA, 2003. ACM. ISBN 1-

58113-743-5. doi: http://doi.acm.org/10.1145/940071.940107. URL http:

//doi.acm.org/10.1145/940071.940107.

[71] Peng Li and John Regehr. T-check: bug finding for sensor networks. In

Proceedings of the 9th ACM/IEEE International Conference on Information Pro-

cessing in Sensor Networks, IPSN ’10, pages 174–185, New York, NY, USA,

2010. ACM. ISBN 978-1-60558-988-6. doi: http://doi.acm.org/10.1145/

1791212.1791234. URL http://doi.acm.org/10.1145/1791212.1791234.

[72] Sinem Coleri, Mustafa Ergen, and T. John Koo. Lifetime analysis of a

sensor network with hybrid automata modelling. In Proceedings of the

1st ACM international workshop on Wireless sensor networks and applications,

WSNA ’02, pages 98–104, New York, NY, USA, 2002. ACM. ISBN 1-

58113-589-0. doi: http://doi.acm.org/10.1145/570738.570752. URL http:

//doi.acm.org/10.1145/570738.570752.

[73] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-toi. Hytech: A

model checker for hybrid systems. Software Tools for Technology Transfer,

1:460–463, 1997.

[74] Marco Antoniotti and Aleks Göllü. Shift and smart-ahs: a language

for hybrid system engineering modeling and simulation. In Proceedings

of the Conference on Domain-Specific Languages on Conference on Domain-

Specific Languages (DSL), 1997, DSL’97, pages 14–14, Berkeley, CA, USA,

1997. USENIX Association. URL http://dl.acm.org/citation.cfm?id=

1267950.1267964.

126 bibliography

[75] P.C. Olveczky and S. Thorvaldsen. Formal modeling and analysis of

wireless sensor network algorithms in real-time maude. Parallel and

Distributed Processing Symposium, International, 0:157, 2006. doi: http:

//doi.ieeecomputersociety.org/10.1109/IPDPS.2006.1639414.

[76] PeterCsaba Ölveczky and José Meseguer. Specification and analysis

of real-time systems using real-time maude. In Michel Wermelinger

and Tiziana Margaria-Steffen, editors, Fundamental Approaches to Soft-

ware Engineering, volume 2984 of Lecture Notes in Computer Science, pages

354–358. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-21305-5.

doi: 10.1007/978-3-540-24721-0_26. URL http://dx.doi.org/10.1007/

978-3-540-24721-0_26.

[77] Marta Z. Kwiatkowska, Gethin Norman, and Jeremy Sproston. Prob-

abilistic model checking of the ieee 802.11 wireless local area network

protocol. In PAPM-PROBMIV, pages 169–187, 2002.

[78] Paolo Ballarini and Alice Miller. Model checking medium access con-

trol for sensor networks. In Proceedings of the Second International Sym-

posium on Leveraging Applications of Formal Methods, Verification and Val-

idation, pages 255–262, Washington, DC, USA, 2006. IEEE Computer

Society. ISBN 978-0-7695-3071-0. doi: 10.1109/ISoLA.2006.16. URL

http://portal.acm.org/citation.cfm?id=1396805.1397116.

