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Abstract

A physical prototype is essential since early stages of development of
robotic systems, as they involve mechanical, electronic, and software
components and the overall success of robotic applications depends on
the performance, and on the interplay, of all of them. Unfortunately, set
up a prototype is a demanding process that often drains resources from
research activities, and prevents results to be transferred to real-world
applications. This is one of the main limiting factors in todays robotic
research and a major reason explaining the still missing entry of robotics
into the mass market with the expected impact.

This thesis presents the Rapid Robot Prototyping framework (R2P),
which aims at dramatically reduce time and efforts required to build
a prototype platform, allowing to focus on research aspects instead of
struggling on implementation details. Modular, open source, develop-
ment is the way to obtain this result: modules can be developed and
consolidated individually, by research groups with specific competences,
and then reused in multiple projects, sharing solutions and improving
reliability. Modular approaches are common in several fields, and have
been recently applied to robot software development; in this thesis, we
bring the same approach to hardware and low-level control.

Starting from the identification of a set of common requirements for
robotic platforms, we have implemented specific, standardized, hardware
modules, featuring on-board computation, each focused on the satisfac-
tion of a specific functional requirement. We designed a communication
protocol to enable the modules interact in real-time on a bus, allowing to
accomplish complex tasks by the cooperation of distributed devices. A
lightweight publish/subscribe middleware has been developed to bring
to embedded firmware development the programming techniques which
are currently restricted to high-level software, thus extending modular-
ity to low-level control software. R2P also provides native interfacing
to ROS, currently the most adopted software framework for robotics,
enabling the developed platforms to be easily integrated in a large range
of projects. Complex systems can now be implemented by assembling
off-the-shelf components and easily programming their interaction, with-
out the need for domain-specific knowledge in electronics and low-level
control. In the thesis the overall approach has been validated with some
use cases to demonstrate the effectiveness of the proposed approach on
real applications.
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Chapter 1

Introduction

“ Imagine being present at the birth of a new industry.
1t is an industry based on groundbreaking new technologies,
wherein a handful of well-established corporations sell highly
specialized devices for business use and a fast-growing num-
ber of start-up companies produce innovative toys, gadgets
for hobbyists and other interesting niche products. But it
18 also a highly fragmented industry with few common stan-
dards or platforms. Projects are complex, progress is slow,
and practical applications are relatively rare. In fact, for all
the excitement and promise, mo one can say with any cer-
tainty when - or even if - this industry will achieve critical
mass. If it does, though, it may well change the world. ”

Bill Gates, January 2007

The previous excerpt is from the first paragraph of the article “A
robot in every home” published on Scientific American [58]. Playing on
the duality with the early ages of computer industry, Gates is actually
referring to the emergence of the service robotics industry, highlighting
how the lack of standards and basic building blocks, to easily turn an
idea into a working system, might actually prevent its success. Today,
indeed, robots are widely exploited in manufacturing processes, assembly
lines, military applications, or to assist surgeons, but they still fail in

1



1. Introduction

hitting the mass market and entering our everyday life.

The problems stressed by the above mentioned article were solved, in
computer industry, by fostering modular approaches: hardware has been
implemented by assembling interchangeable components, with standard
interfaces, and software has been organized in libraries, packages, and
frameworks. Reuse of software among different projects and by several
developers has become the way to cut down costs, speed up development,
and ease maintenance. The same happened for several other mass prod-
ucts (cars, cameras, appliances, etc.), as modularity enables the reuse of
components in different products, thus enlarging the share set, reducing
costs, in terms of both time and money, and improving reliability, too.

In recent years, also the robotics community started to push for mod-
ular, reusable, development approaches, and a variety of software frame-
works (e.g., ROS [111], Orocos [37], OpenRDK [39], and many others)
were proposed to assist researchers and to allow the sharing of results
among different applications. Several projects did benefit from the avail-
ability of a variety of ready-to-use software packages, focusing on their
specific goals and not wasting time on the preconditions needed to test
solutions and evaluate results.

Despite evident progresses, developing real world robotic applications
is still challenging, as they cover many domains, and require specific
competences in different fields. Mechanical, electronic, and software
components are involved in every robot and the overall success of a
robotic application depends on the interplay of all of them. A physical
prototype is thus essential for any robot development, both to validate
research results or to develop a new product. Unfortunately, set up a
prototype is a demanding process that often drains resources from re-
search activities: no standardized components for the development of
generic robots exists, and systems are often implemented from scratch,
even if they share most of the requirements. Many unexpected issues of-
ten show up at early stages of development, delaying, or even preventing,
the translation of interesting ideas into a working system.

Starting from the previous considerations, we propose in this thesis a
modular approach to robot prototyping, which aims at solving the com-
mon problems faced in the development of robotic platforms. The result
of the thesis is Rapid Robot Prototyping (R2P), a framework providing
hardware devices, software components, and tools to easily implement
robot platforms. R2P relies on the principle that the functionalities iden-
tified in a robotic application can be implemented by modules not only at
software level, as it is common in most frameworks, but also at hardware
level. Functional requirements can be easily identified through classic
decomposition of a system into smaller subsystems, and some of them

2



1.1. Main contributions

can be recognized as pertaining to the physical platform, and should
be embedded into it, while others are dependent on the specific appli-
cation, and could rely on high-level software frameworks, as nowadays
best practice.

R2P is focused on implementing basic platform functionalities (e.g.,
motor control, distance measurement, inertial navigation) by means of
specific, standardized hardware modules, with corresponding firmware,
each focused on a particular requirement, fostering separation of con-
cerns. Modules are then plugged on a common bus and interact in
real-time, allowing to accomplish complex tasks by the cooperation of
distributed devices. R2P also brings to embedded firmware development
the programming techniques which are currently restricted to high-level
software, so that modularity is extended also to low-level control. Robot
prototypes can then be implemented by assembling and easily program-
ming off-the-shelf components, relieving researchers and designers from
spending time and resources on activities which are far from their focus.
Finally, a lightweight ROS communication library allows to seamlessly
integrate the hardware platform within ROS to implement high-level
functionalities.

1.1. Main contributions

In the following we briefly summarize the main contributions of this
thesis and, whenever these contributions have been published as peer-
reviewed publications, we address the interested reader to them.

Distributed hardware modules. By analyzing several common robotic
systems, we identified a set of functional requirements which can
be implemented by means of distributed devices, with on-board
computation, each focused on a specific task. Interconnecting the
basic modules on a real-time communication channel, robots can
be implemented as distributed systems with off-the-shelf modules,
enabling massive hardware/software reuse and fast prototyping.

Andrea Bonarini, Matteo Matteucci, Martino Migliavacca, Roberto Sannino,
and Daniele Caltabiano. “Modular low-cost robotics: What communication
infrastructure?”. In Proceedings of 18th World Congress of the International
Federation of Automatic Control (IFAC), pages 917-922, 2011.

RTCAN. We designed and implemented a novel real-time CAN-Bus
protocol focused on robotic applications, which aims at combining

3



1. Introduction

the advantages of different approaches to communication schedul-
ing and supports the requirements of a distributed architecture
for robots. RTCAN takes into account time-triggered communi-
cation, e.g., from control loops, which are handled with a pure
TDMA approach to guarantee temporal determinism, as well as
event-triggered transmission requests, e.g., from sensors, which are
scheduled with an deadline-based policy to reduce delivery latency.

Martino Migliavacca, Andrea Bonarini, and Matteo Matteucci. “RTCAN:
a real-time can-bus protocol for robotic applications”. In Proceedings of 11th
International Conference on Informatics in Control, Automation and Robotics
(ICINCO), pages 353-360, 2013.

Lightweight publish/subscribe middleware. To support robot design-
ers in writing of modular, reusable, software components for robotic
applications on embedded platforms, we developed a lightweight
publish /subscribe middleware targeted at resource-constrained de-
vices. The middleware enables to implement low-level control soft-
ware by means of distributed nodes, following a programming ap-
proach and a syntax most robot developers might be familiar with.

Martino Migliavacca, Andrea Bonarini, and Matteo Matteucci. “A Lightweight
Publish/Subscribe Middleware for Embedded Modular Robotic Architectures”.
(Submitted to Journal of Software Engineering for Robotics (JOSER)).

pROSnode. pROSnode is a lightweight ROS client which can run on
low-cost microcontrollers, publishing native ROS messages over
TCP/IP. With pROSnode, high-level software written in ROS can
be easily interfaced with low-level control software embedded in
hardware modules. More in general, pROSnode enables users, de-
velopers, and companies to develop ROS-compatible devices for
robotics, which seamlessly integrate within ROS systems.

Martino Migliavacca, Andrea Zoppi, Andrea Bonarini, and Matteo Mat-
teucci. “wROSnode - running ROS on microcontrollers”. Presented at the
2013 ROS Developers Conference, May 11-12, Stuttgart, Germany.

Rapid Robot Prototyping. The concepts and the technologies presented
above have been integrated in the Rapid Robot Prototyping frame-
work (R2P), which is the main result of this Thesis. R2P provides
all the components needed to prototype a robotic application: a
set of hardware devices focused on robot requirements, a real-time



1.2. Thesis outline

communication channel and a publish/subscribe middleware to im-
plement distributed low-level control, native integration with ROS
and tools to ease the development process.

The main concepts of the framework have been presented in:

Andrea Bonarini, Matteo Matteucci, Martino Migliavacca, and Davide Rizzi.
“R2P: an Open Source Modular Architecture for Rapid Prototyping of Robotics
Applications”. In Proceedings of 1st IFAC Conference on Embedded Systems,
Computational Intelligence and Telematics in Control (CESCIT’12), pages 68-
73, 2012.

Andrea Bonarini, Matteo Matteucci, Martino Migliavacca, and Davide Rizzi.
“R2P: An open source hardware and software modular approach to robot pro-
totyping”. In Robotics and Autonomous Systems, (in press), 2013.

Examples of R2P applications are reported in:

Martino Migliavacca, Andrea Bonarini, and Matteo Matteucci. “Modular
Development of Mobile Robots with Open Source Hardware and Software Com-
ponents”. In Proceedings of 17th annual RoboCup International Symposium,
(in press), 2013.

Davide A. Cucci, Martino Migliavacca, Andrea Bonarini, and Matteo Mat-
teucci. “Development of Mobile Robots Using Off- The-Shelf Open-Source Hard-
ware and Software Components for Motion and Pose Tracking”. (Submitted
to 2014 IEEE International Conference on Robotics and Automation).

1.2. Thesis outline

A brief outline of the thesis structure follows.

Chapter 1 briefly introduces motivations, goals and approach of the pre-
sented work, and reports the main contributions.

Chapter 2 extends the motivations of this thesis, starting by the obser-
vation that robotics still failed to enter into our everyday life. The
process of robot prototyping is identified as one of the main rea-
sons currently limiting robotic research; to overcome this problem,
we propose to apply to robot development a modular approach, as
it did already boost progress in several other fields. A review of
related work concludes the Chapter.

Chapter 3 introduces the R2P framework. The main goals of the frame-
work are firstly detailed and motivated. Then the proposed ap-
proach is described, from the identification of robot functional re-
quirements to their implementation through distributed, reusable,

5



1. Introduction

hardware and software modules. An overview of the framework,
outlining its main components, is finally presented for an easier
reading of the rest of the thesis.

Chapter 4 presents RTCAN, a real-time CAN bus protocol focused on
robotic applications. After highlighting communication needs of
common robotic systems, an introduction to the CAN bus and a
review of existing communication protocols are reported. Then
RTCAN is introduced: its main objectives, the mixed approach to
communication scheduling, as well as communication benchmarks,
are presented.

Chapter 5 is focused on the middleware used by distributed R2P com-
ponents to exchange information. The publish/subscribe commu-
nication paradigm is identified as effective solution to decouple
data flows, and common middlewares for robotics are reviewed.
R2P lightweight publish/subscribe middleware is then presented,
with implementation details and communication benchmarks.

Chapter 6 introduces pROSnode, a lightweight ROS client for resource-
constrained devices. tROSnode enables direct integration of R2P
modules with ROS systems: topics published on the R2P network
can be accessed from ROS nodes, and, at the same way, R2P
modules can subscribe data published by ROS software.

Chapter 7 illustrates the hardware modules we already developed to
satisfy some common requirements of robotic systems. In partic-
ular, we describe the power supply module, the motor controller,
the inertial measurement unit, an interface to proximity sensors,
the generic input/output board, and a gateway module providing
Ethernet and USB connections.

Chapter 8 validates the proposed approach by reporting some use cases.
We used R2P to prototype some robots, with different goals and
requirements, showing how its modular architecture can be ex-
ploited to develop a variety of applications.

Chapter 9 concludes the thesis, reviewing obtained results and outlin-
ing planned future improvements.

Appendix A reports the schematics of the R2P modules presented in
Chapter 7.



Chapter 2

Robot development: from the
idea to the prototype

A prototype is a precondition for any robot development, aimed both
at the validation of some research result or at the development of a
new application. Robot prototyping is not a trivial process, requiring
competences from many domains; developers with strong knowledge in
their own field may have little or no experience about other domains, and
building a prototype often drain much more resources than expected.
For these reasons, we identify the robot prototyping process as one of
the main limiting factors in today’s robotic research, and a major reason
explaining the still failed entry, apart from a few examples, of robotic
applications into the mass market, contrary to many forecasts.

In this section we highlight the need of a prototype while developing
robotic applications, and review several problems often faced in common
approaches to robot prototyping.

2.1. A robot in every home?

Robotics has been expected to enter our everyday life not only by roboti-
cists, but also by technology entrepreneurs, financial analysts, market
experts, and even governments. The South Korean government, for ex-
ample, announced in 2006 that personal robots will have 100% Korean

7



2. Robot development: from the idea to the prototype

market coverage some time between 2010 and 2020 [53]. With a more
conservative approach, the United States Government sponsored the
20183 Roadmap for U.S. Robotics [42], drafted by leading U.S. roboti-
cists, which also includes a section for service robotics. Similarly, the
European Union invited researchers to contribute to the Robotics2020
SRA Roadmap [65], to collect proposals and opinions about several top-
ics related to robotics, from technologies to ethical and legal issues,
expecting the entry of robots in our society.

Despite such prominent expectations and efforts, it is evident, espe-
cially to people actually involved in robotics research, that we are still far
from having robots ready to enter in every home. The only noticeable
example of a robotic application successfully hitting the mass market
are autonomous vacuum cleaner: the Roomba (pictured in Figure 2.1),
for instance, was introduced by iRobot in 2002, and has been reported
to be sold in over 8 million units by 2013 [74].

Roomba is a small differential drive base featuring a rotating brush
spinning under the frame, capable to collect dust and light dirt, in order
to help people in keeping their homes clean. The robot is equipped
with bump sensors to avoid obstacles (actually, to react to the obstacles
it bumps into), infrared proximity sensors to recognize walls and move
along them, and a capacitive sensor allowing to recognize dust. It follows
some preset motion patterns, using the sensors to prevent from getting
stuck or falling down stairs, and it is able to locate the recharging station
and return to it on low batteries. The robot itself is pretty simple, but
very well engineered, targeted to the market, and capable of autonomous
operations (but it still needs a human intervention to empty the dust
tank). Although Roomba does not completely substitute a conventional
cleaner, it has shown that robots can help in everyday life, and its very
good reception by consumers demonstrated that people want robots in
their homes. As a consequence, many manufacturers started offering
their version of autonomous vacuum cleaners, actually creating a new,
and growing, market.

Apart from this well known case, and a few other examples, there
are almost no robots available on the mass market. This is in contrast
not only with the expectation we mentioned, but also with the several
demonstrations of achieved robot capabilities which have been presented,
in last years, by robotic researchers. The main problem we see with the
development of novel robotic applications is to transfer the results of
research efforts into real-world applications. To this extent, an early
requirement is the development of a working prototype to test an idea
on.

8



2.2. The problem of robot prototyping

Figure 2.1.: The Roomba autonomous robotic vacuum cleaner. It has
been reported that more than 8 million units have been
sold by 2013, making it the first robot successfully entering
the mass-market.

2.2. The problem of robot prototyping

Developing a robotic system is a challenging and demanding task, in-
volving multiple fields, such as mechanical design, electrical engineering,
software development, signal processing, control theory and artificial in-
telligence. Researchers all over the world are focused on core require-
ments of robots, from autonomous navigation to computer vision, from
machine learning to human-robot interaction. Advances in individual
fields, such as computer vision, simultaneous localization and mapping
(SLAM), or motion planning, are remarkable, and several very promis-
ing results have been obtained in recent years. If considered singularly,
it is often possible to evaluate solutions to these problems by setting up
simple systems (e.g., moving a camera by hand to benchmark a SLAM
algorithm), or even relying on virtual setups (e.g., by simulating an en-
vironment to debug a motion planner). But, also having solved several
relevant problems, the overall success of a robotic application depends
on the interplay of all these components. As a consequence, it is almost
always required to transfer research results on a real, working, robot to
truly evaluate its performance.

The importance of having a prototype is evident, for example, in
the field of autonomous, self-driving, cars: major advances have been
achieved within the Grand Challenge competitions [4], which lead sev-
eral teams to equip real vehicles with sensors and try to have them
autonomously drive from a point to another, in real environments. In
the first edition, in 2004, none of the robot vehicles was able to complete

9



2. Robot development: from the idea to the prototype

a path through a desert area. In 2005, all but one of the 23 finalists in
race surpassed the distance completed by the best vehicle in the 2004
race, and five vehicles successfully reached the target. The next edition,
in 2007, was held in a urban environment, with traffic lights, cars driven
by humans, and even pedestrians; despite such a much more challenging
situation, 6 over the 11 finalists did success. Later, Google invested on
one of the principal teams participating to the Grand Challenge, start-
ing the Google car project, which developed the first autonomous car
enabled to ride on public roads, and, hopefully, will lead in the next
years to the production of the first commercial driverless car.

Prototyping a robotic system, though, is not a straightforward pro-
cess. Several non trivial steps are involved: designing and building the
mechanics, selecting the electronic devices to control it, integrate the
several components, write the low-level control software and, finally, in-
terface it with the high-level software. Moreover, to effectively assist
robot designers and researchers, prototypes should also be reliable, a re-
quirement not so often satisfied by custom setups worked out in research
laboratories.

Mechanical designs are frequently application dependent, needing ad-
hoc configurations which are hardly achievable by off-the-shelf robotic
platforms. Robot frames can be realized by using standardized parts,
such as aluminium profiles, with the respective joints, which allow to
build relatively complex structures with simple tools. Several building
systems are available on the market, and are exploited since years to
build a variety of robots, from wheeled and legged mobile platforms to
assistance and service robots [64,108].

Having designed the frame,the process of selecting the electronic de-
vices, e.g., sensor, actuators, and controllers, starts. Looking at to-
day’s possibilities, we can pick devices either from the automation mar-
ket or from the hobby market. Components from automation market
(e.g., Beckhoff automation systems [1]) are often expensive and offer
overkilling performance with respect to the requirements of a robotic
application prototype. Moreover, automation devices often need power
supplies not suitable for battery powered systems like mobile robots.
On the other hand, devices from the hobby market (e.g., Arduino [25])
are usually cheap, but they show poor performance, low reliability, and
no real-time capabilities making it impossible to implement advanced
robot requirements, such as distributed control loops. Another fre-
quently adopted approach is to design custom devices from scratch, to
satisfy the needs of a specific application. This is a process requiring
technical competences which may be out of the scope of research goals,
and, sure enough, greatly increases the development time. Custom so-
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lutions also may prevent the reuse of developed components through
different projects.

With no standardized components to use, also physically connecting
devices becomes a problem, as different power requirements, communi-
cation media, and data protocols, are involved. It is common to have
multiple power supplies and complex wiring, adding new points of fail-
ure to a system. Using heterogeneous devices also requires specialized
drivers and interfaces, leading to design robots as centralized systems,
where all the devices are connected to a single processing unit, e.g.,
a computer, thus preventing device-to-device communication. As we
will see, many low-level control tasks may be implemented directly at
hardware level, reducing latency, allowing real-time interactions, and
improving reliability. If, instead, the robot hardware is controlled by an
embedded processor, e.g., a microcontroller, specific skills are required,
having to deal with registers and peripherals at hardware level and, of-
ten, with the execution of critical, real-time, tasks.

The last step often needed to prototype a robotic application is to
write the high-level software controlling the robot. Facilitating devel-
opers in writing software for robotics has been a hot topic in the last
years, and several frameworks have been introduced (see Section 3.2.1).
Here, we mainly focus on the problem of interfacing a physical robotic
platform with the high-level software. Widely adopted frameworks such
as ROS, the Robot Operating Systems, provide drivers for several robotic
platforms, such as the PR2 [56] service robot, the Turtlebot [57] mobile
platform, the NAO humanoid robot [63], a few manipulators, and other
robots. Although it is very easy to start using robots with off-the-shelf
support, such platforms are often costly, and may not be suitable to
investigate specific robotic applications needing particular mechanics.
On the other hand, integrating hardware with high-level software may
require, first of all, an adapter to physically interface a computer to the
embedded devices (e.g., a CAN bus adapter) with the respective device
drivers. Then, the manufacturer-dependent protocols have to be imple-
mented on the computer, and interfaced to the high-level software, e.g.,
through an abstraction layer.

The issues reported so far are only the most common difficulties which
need to be frequently faced to get a working prototype, and many other
side problems often arise. Developing the prerequisites to start investi-
gating a new application often takes more time than the development of
the application itself, as we stress in the next section.
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Figure 2.2.: TiltOne, a balancing robot we built in our lab in 2008.

2.3. Case study: building tiltOne

To point out the steps needed to get a working prototype and highlight
the main issues, let’s consider a robotic application we built back in
2008, named tiltOne (see Figure 2.2). It is a low-cost balancing robot
supposed to self localize, recognize people, welcome them, and bring
them to a given place, e.g., a booth in an open-air exhibition.

First of all, we designed and built the mechanical system, using stan-
dard aluminium profiles and common bicycle wheels. Three man months
were sufficient to design and build the frame and the mechanics. An-
other activity was dedicated to select the devices needed to operate the
robot: two motor controllers, an inertial measurement unit (IMU), a
global positioning system (GPS) and a camera to recognize obstacles,
people, and faces. Only at this stage, we realized that building a proto-
type to test our application would have been much more difficult than
expected, as there were no ready-to-use standardized components that
we could choose, connect together, and easily integrate in our project.

Having to rapidly develop a low-cost robot, we initially chose ready
to use components from the hobby market, but they soon showed many
issues. First of all the motor drivers were not suited for precise control,
which is required to balance the robot, and we had to change them later.

12



2.3. Case study: building tiltOne

At the same time, the inertial sensors used for tilt estimation were noisy
and requested additional analog filtering circuits to get usable measures.
At the end, a custom electronic board with a microcontroller, analog
filters and interfaces for the different devices to control the robot was
designed and built. To localize the robot and recognize obstacles, people,
and faces, we used a commercial GPS receiver and a standard webcam,
both with USB connection, which forced us to put a computer on board
to run the GPS interface and the image processing software. The whole
process of selecting, interfacing and testing these devices and the control
board took as long as one man year.

The next step in prototyping our robotic system was the writing of the
software that runs on the microcontroller and performs balance control.
We started with the low level interface to the devices, then we added
algorithms to estimate robot’s inclination and to drive the motors. The
software increased in complexity with time, and we decided to switch to
a real time embedded operating system, which we had to choose after
testing and evaluating some alternatives. The development of the whole
balance control software took additional six man months.

Having the robot prototype ready, we finally started the development
of our idea: a balancing robot that recognizes people and brings them
to a given place. It took only three man months after the prototype was
consolidated to have the robot balancing and driving around, while the
GPS interface and image recognition software were reused from previous
projects. Finally, the system was running.

Looking back to the development of this project, we realized that it
took 24 man months to finish, of which only three have been spent on
topics strictly related to the specific application. Most of the time has
been spent in developing, testing and debugging the prototype we needed
to validate the application. It is evident that this effort, in terms of
money and time, is not compatible with the mass market requirements.
Surely, we did mistakes, and time could be saved if different choices were
taken, but we believe that the development process we walked through
is, actually, very common when investigating new robotic applications.
Besides the mechanical design, all other steps could have relied on stan-
dard modules aimed at robot prototyping. The devices we needed for
the development of our idea are basic sensors and actuators common to
almost every robotic application. If we had a set of ready-to-use mod-
ules, which we could just connect together in a plug and play fashion, we
could have been able to develop the prototype in terms of weeks instead
of years.
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2.4. A call for modularity

Although robotic systems have been built for decades by integrating
heterogeneous devices, or implementing custom solutions, we firmly be-
lieve that a modular approach based on off-the-shelf components would
strongly help robot designers in developing new applications. For the
vast majority of robotic applications, it is possible to identify a reason-
ably small set of common functionalities, which can be implemented in
a reusable way by modular components. Standardized components have
been widely recognized as fundamental in cost effective prototyping, de-
sign, and mass production. For instance, in the automotive field, the
car platform is often designed to share mechanical and electronic parts
among different models so that car manufacturer can reduce costs and
leverage on platform sharing [100]. The same approach has been taken
in the field of software engineering, leading to the development of new
programming techniques which are now widely recognized as convenient
to design and mantain complex systems. Software components, gener-
ally organized in libraries or frameworks, are re-used among different
projects and by several software producers [68]. Also in the field of
robotics, researchers fostered a modular approach since early years, to
ease the implementation of complex requirements through the decom-
position into simpler elements, which can then be shared and reused
through many projects.

In recent years, major efforts have been put in modularization of high-
level software for robotics; several development frameworks [37,59, 71,
78,111] have been proposed to assist researchers in the design of robotic
applications. Perhaps one of the most successful projects is the Robot
Operating System (ROS) [111], which aims at supporting robot devel-
opment and research by providing a modular software framework, a
communication infrastructure, and tools for debugging and inspecting
robotic applications. Robot software implemented with ROS can benefit
from a rich library of packages provided by other users, thanks to the
open source development approach, to significantly reduce the develop-
ment time of novel applications. ROS is becoming a de-facto standard
in robotics research software development; its very good reception and
its widespread adoption (see Figure 2.3) have shown that the community
needed a framework to join research efforts, boosting the development
of the high-level control software of robotic applications. Although we
believe that ROS did succeed in its goal, the vertical development of
autonomous robots, i.e., from mechanics to intelligence, still requires
many low-level prerequisites that, as we stressed, are often implemented
from scratch, leading to application-dependent, non reusable, solutions.
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Figure 2.3.: More than 175 organizations or individuals publicly release
ROS software in indexed repositories. Its widespread and
fast adoption showed that robotics needed a modular ap-
proach to speed up the development of novel applications.

Moreover, ROS is designed to run on desktop-class computers, with de-
manding requirements in terms of memory and processing power, thus
it cannot be used to write software for embedded targets. To the best
of our knowledge, the only software frameworks focused on embedded
development are FAMOUSO [120] and Aseba [91], which provide a com-
munication infrastructure and development tools for the control of event-
driven architectures. A more detailed review of these two frameworks
will be presented in Chapter 5.

Efforts to extend modular approaches to hardware prototyping have
been made mainly to produce educational and toy robotic construction
kits, and in the field of swarm robotics. Several toys producers feature
kits (e.g., Lego Mindstorm [82] and NXT [82], Fischertechnik Robot
Construction Kits [52], or Modular Robotics roBlocks/Cubelets [115,
121]), which provide easy to connect mechanical parts and basic de-
vices, such as small motors and simple proximity sensors. Despite
these construction kits have been used also in academia within research
projects [60,123,134], they are focused on teaching robotics to kids,
and their application areas are very limited due to sensors and actu-
ators performance, simple programming model, and limited processing
power.

Ready to use modular mobile robotic platforms have been proposed
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(a) e-puck

(b) Khepera-III

Figure 2.4.: Small mobile robotic platforms commonly used for educa-
tional and swarm robotics research purposes: the e-puck (a)
is 70 mm in diameter, the Khepera-III (b) 130 mm.

for educational purposes and to facilitate research in the field of swarm
robotics, such as the E-puck educational robot [41,98] and the Kephera
robot [66]; all of them offer a small mobile wheeled base to which ac-
cessories and custom boards can be added, providing additional actua-
tors, sensors, cameras, and interfaces to allow interactions between the
robots. Software tools such as graphical development environments, easy
to use scripting languages, and debugging tools, enable short startup
time while relieving the developers from working on the prerequisites of
their novel application. These systems are widely used in academia, and
their modular design did successfully facilitate advances in cooperative
and swarm robotics research (e.g., at the moment of writing, a search on
Google scholar for “Khepera” returns more than 6000 research papers).

More generic modular frameworks for robotics have been proposed
too, such as the CubeSystem [28] and the VolksBot Construction Kit [136].

The CubeSystem is a collection of hardware and software compo-
nents for fast robot prototyping, aiming at providing an open source
collection of generic building blocks that can be freely combined into an
application. It follows a tree-like architecture: a processor board is the
central unit, to which additional boards are stacked to include sensors,
actuators, or other devices. Programing is eased by RoboLib, a library
providing common functions for robotics, and CubeOS, an operating
system for the microcontroller employed on the processor board. The
CubeSystem has been used to build some robots, from Robocup small
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shooting
mechanism

(a) CubeSystem (b) VolksBot

Figure 2.5.: Modular robotic systems. CubeSystem (a) is a set of stack-
able boards, with an embedded operating system and ready
to use libraries. VolksBot (b) is a robot construction kit
providing mechanic components, a motor controller board,
and a few sensors; an on board computer runs the control
software.

size league platforms, to a mobile surveillance robot and a humanoid
torso [28].

VolksBot is a construction kit focused not only on electronics and
control, but also on mechanical components. Standard aluminium con-
struction extrusions are exploited to build robot frames, and ready to
use mechanical components are provided, such as the Universal Drive
Unit, a double layered aluminium frame including a 150 W DC motor, a
drive coupler, and an air-filled tire. A motor controller board, capable of
driving three motors up to 200 W, with encoder inputs and closed loop
control, connects via serial interface to the on board computer. VolksBot
sensors include an omnidirectional camera, a commercial range finder,
together with machined plates to attach them to the robot frame. The
robot requires an on board computer to operate, to which the motor
controller board and the sensors are attached by RS232 serial ports.
Software is designed using ICONNECT [124], a commercial framework
for the visual composition of signal flow graphs. Several robots have
been built with the VolksBot Construction Kit, such as RoboCup mid-
size league and RoboCup@Home platforms, a robot to transport people,
and a wheeled underwater vehicle.

Recently, the Robotic Open Platform (ROP) project [89] was started,
aiming to make hardware designs of robots available under an open
hardware license to the entire robotic community. Basically, it is a
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website collecting CAD drawings, electric schemes, and the respective
documentation, to build robot platforms open sourced by their original
developers. This is obviously a very interesting initiative, allowing to
easily share existing design avoiding to reinvent what have been already
implemented by others. The listed robots, however, are based on het-
erogeneous architectures, each exploiting custom hardware devices and
control architecture, preventing from sharing components and low-level
control functionalities between different platforms. We aim to solve this
problem, by proposing a framework that provides hardware devices, and
low-level software components, which can be easily assembled and pro-
grammed to control a variety of robotic platforms.
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Chapter 3

A framework for prototyp-
ing robotic applications

We can see robots as systems composed by both hardware devices, e.g.,
sensors and actuators, and software to operate them, e.g., filtering and
control algorithms. The functional requirements needed to accomplish
a task are then satisfied by the cooperation of hardware and software,
as the hardware is necessary to physically interact with the environ-
ment while the software is needed to decide how this interaction has
to be performed. With this vision in mind, we developed the Rapid
Robot Prototyping framework (R2P), which pushes modularity concepts
introduced by software engineers down to the hardware level: hard-
ware modules are defined by analyzing common functional requirements
of robotic systems, and the control software is written in a modular,
loosely coupled, fashion, bringing common programming paradigms and
patterns to resource-constrained devices.

3.1. Towards off-the-shelf robotics

The main goal of this thesis is to provide robot designers, researchers,
and enthusiast in general, with off-the-shelf components to quickly set
up generic robotic platforms, to enable them starting to work on their
idea, allowing to avoid the many problems we commonly have to face in
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Figure 3.1.: Profiles, joints, and accessories of a modular mechanics
building system.

the early stages of development of most robots.

We do not focus on the mechanical aspects of building a robot, mainly
for two reasons. First of all, in our experience, mechanics is very applica-
tion dependent, and providing basic mechanical components for generic
applications is likely to reduce the flexibility and the possibilities of the
framework, with the side effect of limiting its adoption to a specific class
of robotic systems. Particular shapes are commonly needed, comply-
ing with strict weight and size constrains, which cannot be generalized.
Moreover, for the range of robots which could take advantage from mod-
ular mechanics, we can already rely on multi-purpose building systems
commonly used in the factory automation field. These systems provide
several extruded aluminium profiles in various measures and shapes, and
a huge set of accessories to join them and build a frame within hours (see
Figure 3.1). Standard components are available from many distributors
and can be reused through different projects, providing the modularity
we need in most cases; for this reason, they are often used to build robot
frames.

We focus on the low-level control of generic robotic platforms, meaning
all those components that allow a robot to move, to perceive surrounding
objects, and to efficiently implement core functionalities like kinematics,
trajectory following, obstacle avoidance, and reaction to events. Mobile
robots are currently the main targets of the proposed framework, but,
thanks to the distributed architecture, and to the open source develop-
ment model, it can be easily extended to cover a wide range of robotic
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Figure 3.2.: The problem of robot wiring. Labels are mandatory to pre-
vent mistakes. (Image from http://www.societyofrobots.
com/)

systems. In the following, the main goals of the proposed framework are
detailed and motivated.

3.1.1. Quick installation and upgrade

Every prototyping process of a new robotic system starts with the as-
sembly of the frame and the selection and installation of the devices
needed to operate the robot. With respect to the purposes of the pro-
posed framework, we assume that the frame has been built, and the
actuators have been selected and mounted. Commonly, here starts the
often non trivial process of identifying the right motor controllers, sen-
sors, and other needed devices, and the even less trivial task of wiring up
everything, providing the right power supplies, connecting data cables,
and, eventually, interfacing the embedded devices with an on board com-
puter. This lead to complex wiring (see Figure 3.2), making the system
unreliable and difficult to upgrade.

The first goal of an effective framework for robot prototyping is to
solve these common problems. First of all, we aim at providing a set of
off-the-shelf hardware devices which can be used to actuate a wide range
of robotic platforms, eliminating the time consuming task of finding the
right component, often approached by trial and errors. Then, we want
to eliminate the complex wiring often found on robots, with different
supply levels and data protocols within a single system, which adds
several points of failure to the system. Aside from easing up the initial
building of a platform, it should also be seamless to upgrade an existing
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system by adding new devices, e.g., additional sensors, on the need; this
sets an additional goal for the framework.

3.1.2. Massive hardware and software reuse

We introduced in Section 3.2.1 the benefits that a modular approach
could bring to the development of new robots. Frameworks like ROS
allow to implement new applications by simply integrating existing soft-
ware packages, which are reused within many different projects. The
advantage is not only in terms of development time, but also in terms of
quality, as reusable modules receive contributions by several developers
all around the world, refining the code and leading to better imple-
mentations. In our lab, as in many other research laboratories, both in
academia and industry, we take daily advantage of using ROS to develop
the high-level software for our robots, and it is common to discover that
the functionality we just realized to need has been already implemented
by someone else and it is available as ROS package.

As already stressed, we are firmly convinced that such a win-win ap-
proach should not be limited to the development of high-level robot
software, but needs to be extended to the hardware level and to the
development of low-level control components, which are too often reim-
plemented from scratch. Modular, reusable, hardware, with consistent
interfaces and an easy to use firmware programming paradigm, could be
shared among different projects and laboratories, with improvements in
terms of performance, reliability, and development costs. The idea of
developing a framework for the rapid prototyping of robotic platforms
was born with exactly this goal in mind: bring the advantages that ROS
provided for the development of high-level software down to hardware
level, fostering massive reuse of developed components.

3.1.3. Flexibility

Research in robotics is advancing in several domains, like autonomous
navigation, self localization and mapping in unknown environments, tra-
jectory planning, motion control, robot-human interaction, edutainment
and robot games, artificial intelligence, cognitive robotics, and many
others. Robotic systems adopted in these fields are very diversified:
from small, educational, robots, to autonomous mobile vehicles, from
flying platforms, to manipulators and humanoid robots. Even if these
platforms may be apparently different, the prototyping issues previously
mentioned are common to many, if not all, of them, and solutions might
be shared also through highly heterogeneous applications.
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For this reason, we propose a framework as generic as possible, which
can be exploited to speed up the development of a wide range of robots.
Modular, effective, solutions dedicated to specific application fields are
already available, as reviewed in Section 3.2.1, and they have been
adopted by many research groups focused on that particular fields. How-
ever, it is common that research laboratories do not focus on a single
topic, with people working on different, varied, projects, and a shared
architecture would help transversely, allowing for a faster development
in multiple projects. Moreover, the results of a single project could be
tested on multiple platforms, in several environments, in order to eval-
uate and enhance their performance in different scenarios, still relying
on the same interfaces, as the same building blocks are used.

3.1.4. Performance

Robots are complex systems, with several devices working together to ac-
complish tasks, eventually with real-time constraints. The overall result
depends on how these devices work together, and the achieved quality is
highly dependent on the performance of the hardware system. Reliabil-
ity is important too: an unreliable robot slows down the development of
any application, compromises results and often prevents from conclud-
ing a project on time. In our experience, available devices commonly
show performance which may be too poor (e.g., when choosing to use
hobby-market electronics), or very good, but at a high cost (e.g., in-
dustry automation devices). Custom devices are then often designed
and built, increasing the development time and requiring deep techni-
cal skills. At the same time, control software, especially when working
on embedded targets, needs to be carefully implemented to allow for
good performance and prevent errors compromising the functionality of
a system and leading to dangerous situations.

We need a framework which is not focused on building toy-like robots
(not only, at least), but high-quality research platforms, where perfor-
mance is a primary goal, both in terms of hardware and software compo-
nents. Hardware devices must be robust and reliable, exploiting modern
electronic components, and suitable for running robot platforms requir-
ing precise motion control and accurate sensors. The same applies to
embedded software, which needs to provide efficient implementations
of common requirements (e.g., state of the art sensor filtering), and to
support real-time interactions when needed.
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3.1.5. Integration with high-level software

High-level robot requirements like reasoning, artificial intelligence, visual
algorithms, or planners, received much attention by roboticists, and the
need of an easy way to develop and share solutions to these problems
led to the proposal of several framework for robot software development,
as reported in Section 3.2.1. Those tasks are computational demanding,
and the existing frameworks already offer effective programming envi-
ronments and tools to perform research in those fields. We do not want
to propose a framework that overlaps with already available solutions;
on the contrary, we would like to take advantage of them and, in turn,
bring some advantages to other projects focused on robot software de-
velopment.

As integrating embedded devices with a full fledged computer, e.g.,
a desktop class computer, can be a non trivial process, often requiring
hardware adapters and custom software; another major goal of the pro-
posed framework is to offer an easy way to interface hardware platforms
with high-level software. Benefits are evident from both point of views:
platforms built with modular embedded components can take advantage
of existing software packages to let the robot accomplish complex tasks,
while high-level software frameworks can rely on the same interfaces to
interact with a possibly wide set of robotic systems, without needing to
write drivers or adapters for each platform.

3.1.6. Ease of use

A simple, intuitive, development approach is important to effectively
reduce the effort while prototyping an application. This should not be
ignored, since, besides the features it provides, a framework really speeds
up the development process only if developers can easily adopt it, start-
ing to be productive without needing a long practice time. Indeed, we
believe that its simplicity and fast learning curve, which in turns lead
to the composition of an extensive package repository, were the most
relevant aspects determining ROS success over other proposed frame-
works for robotic software. Ease of use is also important to support
user-centered design approaches [104], that lead to many successfull ap-
plications, where users and domain experts are deeply involved in the
development process. Even people with little or no expertise in robot
development, or researchers that do not want to spend time in acquiring
knowledge in fields far from their research interests, can easily build a
working prototype of innovative applications, still relying on the tech-
nology provided by ready to use solutions.
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This sets an additional goal for the prototyping framework: it has to
be simple to use, in terms of physical assembly and low-level control
development. At the hardware level, modules have to be easy to install,
in a plug-and-play fashion, requiring no specific competences about elec-
tric characteristics, signal levels, or heat dissipation. At the embedded
software level, we must provide users with an easy to use programming
paradigm, tools for code development and debug, and a syntax most
robot designers might be familiar with.

3.2. The approach

In this Section, the main concepts of the approach we propose are dis-
cussed: identification of requirements, implementation at hardware level,
low-level control through a distributed architecture, and open source de-
velopment.

3.2.1. Identification of functional requirements

The design of a new robotic application usually starts with the iden-
tification of its functional requirements: what do we need to have our
robot achieving its goal? To this extent, as robotic applications become
more and more sophisticated, the complete system has to be decomposed
into smaller sub-systems, to clearly separate concerns and to allow the
development of each functional requirement as a stand-alone task. Al-
though it may look as an obvious and trivial process, which has been
discussed since years in the field of software engineering, the debate on
how robotic systems should be decomposed lasted long, and it is still
an hot topic. Since the very beginning of robotic research, several de-
composition paradigms have been proposed; although they were mainly
focused on defining a good control architecture of robots, the proposed
approaches are also useful to identify functional requirements.
Historically, the traditional architecture is the so called hierarchi-
cal/deliberative paradigm, which follows a top-down approach: high-
level goals are decomposed into several processing steps (i.e., milestones
in the data flow from sensors to actuators) needed to achieve the de-
sired goal. This architecture is also referred as sense-plan-act loop (see
Figure 3.3). The result is the so-called horizontal decomposition of the
problem in vertical slices, each identifying a processing unit which allows
to accomplish a step in the data flow; Figure 3.3b reports the architec-
ture of a mobile robot obtained by applying the hierarchical paradigm.
To accomplish a task, the chain of processing steps is executed; maxi-
mum importance is given to high-level control, and low-level horizontal
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Sense —3 Plan Act

(a) The sense-plan-act work flow schema.

Sensors ———» ——P  Actuators

perception
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(b) Classical hierarchical decomposition of a mobile robot control system into
functional modules.

Figure 3.3.: The hierarchical paradigm.

communications are restricted as a consequence. Such serial execution
flow introduces strong coupling between components: an instance of each
of these components must be ready and running to operate the robot,
and changes made to a component must not break the interaction with
the adjacent ones, not to compromise the entire system.

A different approach has been proposed with the behavioral/reactive
paradigm [21, 34]: rather than decompose a problem on the basis of
data flow and internal processing, it is decomposed on the basis of de-
sired external manifestations of the robot, called behaviors. Behaviors
are defined as simple sense-act pairings, triggering actions through re-
active control: by observing sensor values, each sub-system recognizes
a stimulus and selects the corresponding output to produce (e.g., if the
robot is approaching an obstacle, it should stop the motors). Goals are
decomposed in tasks (i.e., sub-goals), instead of processing steps, each
satisfying a requirement; this is referred as vertical decomposition, with
tasks organized as horizontal slices, as shown in Figure 3.4. In this case,
a bottom-up approach is followed: complex applications are composed
by many independent, simple, behaviors executing concurrently; there
is no predefined flow of information as in the hierarchical paradigm, and
if a behavior does not work, this does not compromise the complete sys-
tem. The behavioral paradigm does not prevent low level interactions;
indeed, many behaviors interact directly with the hardware, e.g., keep
balance or avoid obstacles.

With the purpose of identifying the functional requirements of a robotic
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Figure 3.4.: Behavior-based decomposition of a balancing robot control
System.

application, we can notice how the task-based analysis fostered by the
behavioral paradigm enables an easier and clearer definition of single
requirements, specially when moving down to the hardware level. Sen-
sors and actuators involved in the execution of each task are precisely
recognized, allowing to easily determine the required hardware devices.
In the case of the application mentioned in Section 2.3, which involves a
balancing robot interacting with people, functional requirements could
be identified and detailed as follows.

e Keep balance: this task involves sensing the tilt of the robot, and
compensating it by actuating the wheels. As a consequence, it
requires an inclination sensor, two motor drivers, and a control
algorithm to keep the center of gravity right over the wheels axis.

e Awoid obstacles: to this extent, the robot needs to sense surround-
ing objects and to inhibit the current motion command to prevent
collisions. Thus, one or more proximity sensors have to be used,
and a way to inspect and eventually override motion setpoints
must be provided.

e Follow a trajectory, the robot needs to perceive its own movements
and to issue motion commands, trying to be as close as possible to
the given path. To track robot movements, we need and odomet-
ric system, i.e., encoders attached to the wheels (or, commonly,
to the motors) and the forward kinematic model to translate en-
coder readings into motion paths; in outdoor environments, a GPS
receiver could also be used to improve odometry. Then, motion
setpoints are issued in order to realize the needed movements.

o Trajectory planning: the planner needs to know the current robot
position and the destination. Current position is already provided
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by the odometric system used by the trajectory follower, while the
destination, in this application example, is fixed.

e Look for people: the robot can identify humans by running a face
detection algorithm, which analyzes images from a camera, or even
by using an RGB-D device such as the Microsoft Kinect [137].

e Interact with people: the robot may use audio or video messages,
lights, movements, and so on, to communicate with a human. For
this application, we choose to use only audio messages, which are
synthesized by a software running on an on board computer.

To summarize, the development of the example application requires,
at hardware level, two motor drivers, two wheel encoders, an inclination
sensor, a proximity sensor, a camera, and an interface to receive motion
commands from the on board computer. At software level, we require the
balancing algorithm, a system to avoid collisions, a trajectory controller,
a trajectory planner, human-robot interaction functionalities, and face
detection.

3.2.2. Modularity at the hardware level

The task-based decomposition of robotic systems also allows to easily
distinguish requirements strictly related to the application, which we
call application requirements, i.e., high-level tasks, from platform require-
ments, i.e., the low-level components needed by the platform to operate,
regardless of the particular application. In the considered examples, we
can identify the three lower tasks as platform requirements: the balanc-
ing robot has to be able to keep balance, avoid obstacles, and follow a
trajectory in most applications, e.g., either if it is autonomous or re-
motely operated by a human, while higher-level requirements, i.e., plan
a trajectory, interact with people, and look for people, are needed by
the specific application. We believe that platform requirements should
be implemented within the platform, so they can be shared by several
applications, providing simpler integration and allowing reuse within
multiple research projects in an easier way. Embedding such require-
ments in the robot platform also improves reliability, as solutions to
low level issues are immediately shared between applications. Unfortu-
nately, today, platform requirements are not implemented with the same
modular, reusable, approach followed for the development of higher level
application requirements, which are often implemented within common
software frameworks for robotics. For example, thinking again to the
welcoming robot, ROS users have packaged several trajectory planners,
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implementing state of the art algorithms; toolkits to perform human-
robot interactions within the ROS are available [79, 88|, as well as a
ROS package to recognize human engagement [114]; face recognition is
available out-of-the-box using the OpenCV [32] libraries supplied with
ROS standard distribution.

Ready-to-use components to satisfy platform requirements, on the
contrary, are much more rare, and, when available, their application is
limited to a particular platform or research field. Although some of those
requirements may be fairly trivial to implement, the lack of frameworks
focused on platform prototyping and low level tasks leads to develop
ad-hoc solutions, often from scratch. We extend the modular approach,
which has been demonstrated to effectively speed up the development
of application requirements, down to hardware level, providing ready to
use hardware modules to prototype robot platforms. Controlling motors
and computing odometry, measuring objects proximity, estimating the
attitude of a robot, or providing an interface to a computer, are needs
shared by most robotic platforms, and they should be implemented by
off-the-shelf components. With hardware level modularity, robots can
be rapidly built by simply assembling off-the-shelf components which
implement the identified platform requirements.

3.2.3. Distribuited computation

Low-cost embedded processors available today, like modern microcon-
trollers, allow to embed computation directly into devices, so, in addition
to providing the hardware needed to perform a task, they can also run
the control software to accomplish it. This is the approach of the so-
called smart devices, i.e., hardware components capable of accomplishing
tasks with some autonomy, which are becoming more and more common
in industries as automation and manufacturing, as, without needing an
external controller, they show high reliability, improved flexibility, and
their installation is much simpler.

Hardware modules for robot prototyping should be smart devices,
each featuring the hardware components, an embedded microcontroller,
and the low level control software, to fully implement common platform
requirements. Attitude estimation, for example, is performed within a
module, featuring inertial sensors and running an algorithm on the on
board microcontroller to filter and fuse the readings. In the same way,
the motor driver module sports the high power electronics to drive a
motor, and ensures that it actually follows the setpoint by running a
closed-loop controller.

On-board computation allows for a more comprehensive separation of
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concerns, as all the components, both hardware and software, needed to
perform a specific task, are embedded on a single device.

The on-board processor can also embed a communication protocol,
for an easier integration of the components, and enable direct device-to-
device communications, so that some low-level functionalities can be pro-
vided through distributed hardware modules without needing to interact
with any external computer, improving performance and robustness. In-
deed, although a single module running embedded control software can
fully implement a specific task, several platform requirements involve
more modules. For instance, to keep balance we need both a module
capable of estimating attitude, to measure the inclination of the robot,
and motor drivers to actuate the wheels. Then, the modules interact by
exchanging information (i.e., the current angle and wheel speeds), and
the balance keeping requirement is realized by the control loop closed
through the two devices. It follows that robots are implemented as dis-
tributed systems, with several devices cooperating to satisfy the needed
requirements and reach their goals.

An additional advantage of the distributed approach is an easier ad-
dition of functionalities, without the limits imposed by computational
requirements. In a centralized architecture, as a matter of fact, the
processor imposes a limit to the available computational power; even
by leaving free resources when developing the system, at some point,
such limit could be faced. In distributed architectures, each component
provides the processing power it requires, and adding new features does
not affect the functionalities of the existing ones. A limit can be intro-
duced by the communication bandwidth required by the overall system
to let the devices interact, but this can be eventually solved by splitting
a system in multiple subsystems, each with their own communication
channel. It follows that flexibility is increased, as improving an existing
system does not require a complete upgrade of existing devices.

3.2.4. Open source development

Open source software has been around since decades, showing how soft-
ware projects can take advantage of community-driven development.
Everyone can contribute, adding features and fixing bugs, to actively
improve open source projects. In the last years, users became more and
more attracted by open source projects, especially hobbyists and peo-
ple involved in education, having the possibility to see how the software
works under the hood and to hack the code to suit their needs. Recently,
the open source concept has been extended to hardware too, with suc-
cessful projects like Arduino [24], dedicated fairs all over the world, and
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the Open Source Hardware Association, founded in 2011 [8]. This ap-
proach then gained popularity as development strategy of big companies
too, e.g., in 2012 Google chose Arduino as the platform to develop new
Android compatible devices [72]. Open source hardware started to gain
interest also as a business model, where earnings come from services
and from selling ready to use products, while being open source allows
to improve quality, gives visibility, and attracts new users [130] [15].

3.3. Rapid Robot Prototyping: the big picture

This thesis presents the Rapid Robot Prototyping framework (R2P),
which aims at dramatically reduce time and efforts required to build
a prototype platform, allowing to focus on research aspects instead of
struggling on implementation details. The framework is composed by
several components (see Figure 3.5 for reference): a set of distributed
hardware modules, a physical bus to interconnect them, a real-time com-
munication protocol, a publish/subscribe middleware, and a communi-
cation library to interface with ROS. Although these components were
developed as part of the R2P project, they may also be used individually
and integrated within other existing frameworks; robot designers may
benefit of the hardware devices and program them with custom soft-
ware, or integrate R2P communication libraries within existing hard-
ware, thanks to the open source development approach we foster.

In the following, we describe the architecture of the framework, in-
troducing its main concepts and features; more specific details will be
reported in the next chapters.

3.3.1. Physical connection

The first element to be defined to connect hardware modules is the phys-
ical connection. We decided to use a single connector to transport both
power and data, to make the prototype building process as easy and
quick as possible. Power is provided by a dedicated module (see Sec-
tion 7.2), and the bus is designed to handle up to 20 hardware modules
over an up to two meter long cable. To reduce wires and connections in
the system, a daisy chain wiring schema is exploited, where each module
has two ports to connect to the previous and the next component, as
shown in Figure 3.5.
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We reviewed different communication standards [30], and we chosed
the CAN bus to exchange data between modules, as it shows some fea-
tures that best suit a modular architecture:

e it is a bus, so multiple devices can be connected on a single line;

e it is widely adopted in several fields, starting from the automotive
field, so that most of today microcontrollers have an integrated
CAN controller;

e CAN controllers can filter messages at hardware level, thus reduc-
ing processing requirements;

e it has been designed to work reliably in harsh environments;

e CAN transceivers are quite rugged, so they ideally suit the needs
of fault tolerance intrinsic in prototyping.

The CAN bus has a maximum data rate of 1 Mbps, which is enough
for a distributed system of smart devices where only pre-processed data
is sent over the network, and raw data are processed locally [30]. De-
tails about hardware characteristics of R2P modules are presented in
Chapter 7.

3.3.2. Real-time communication

Distributed systems require reliable communication to let several compo-
nents exchange information and perform a task. Moreover, robotic sys-
tems often involve tasks with real-time constrains, and the distributed
architecture reflects such requirement to the communication channel.
To define how communication occurrences have to be handled, a variety
of issues must be considered: should transmission requests be triggered
by time or by events? How priorities should be assigned to different
data sources? Do we need a static or a dynamic network configuration?
The constraints are hard real-time or soft-real time? There are many
fields, e.g., factory automation, automotive networking, or sensor net-
works, where answers to these questions can be easily picked out, and one
approach to communication scheduling can be recognized as preferable.
This is not true for the flexible, generic framework we are proposing, and
for robotic applications in general, where it is hard to define which com-
munication paradigm is the best, as different requirements are needed
by the different components of a complex robotic application.

The CAN bus presents several advanced built-in features suitable for
real-time communication, such as priority-based bus access arbitration
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implemented at hardware level, high determinism, and an efficient ac-
knowledgement mechanism. A variety of communication protocols for
the CAN bus are available, but, as we will discuss in Section 4.2, they
are not focused on the requirements of robotic systems, and they do not
provide the flexibility needed by the R2P framework. As a consequence,
we developed RTCAN, a new CAN-Bus protocol focused on robotic
applications, which aims at combining the best characteristics of differ-
ent approaches to communication scheduling, providing time determin-
ism, fast event response, and flexibility [96]. RTCAN schedules periodic
communications with time-division multiple-access (TDMA) approach,
which guarantees high determinism, low jitter, and improves reliability.
Sporadic communications are handled by a best-fit approach based on
Earliest Deadline First (EDF) scheduling, which increases priority of
messages while they are approaching the transmission deadline, provid-
ing low latency and high flexibility. RTCAN is presented and detailed
in Chapter 4.

3.3.3. Middleware

To support the development of modular software components on embed-
ded targets, R2P features a lightweight communication middleware [95].

R2P middleware main goals are software reuse, real-time communica-
tion, efficient implementation, and ease of use. It follows the publish/-
subscribe paradigm [49]: data producers publish messages on a topic,
i.e., a communication channel, while data consumers subscribe the cor-
responding topic to receive messages. Identifying data by its content,
i.e., the topic it is published on, instead of by its producer, promotes
loosely-coupled software design and, thus, code reuse. The middleware
provides concepts common to most robotics frameworks used on com-
puter systems, such as software nodes, topics, publishers, subscribers,
and message queues.

R2P middleware is written in a subset of C++, to take advantage of
some object-oriented programming features without compromising per-
formance on embedded targets. Its implementation is focused on code
efficiency and messaging performance. Locally, messages are handled
with memory sharing techniques, to achieve low delivery latency. Mes-
sage queues, with the possibility to assign priorities to different nodes,
guarantee that slow data consumers do not interfere with high-priority
tasks. Software nodes can subscribe both local and remote publishers,
with no difference from the user point of view. The middleware supports
both periodic and sporadic publishers, which can specify real-time com-
munication constraints, such as update period for time-triggered mes-

34



3.3. Rapid Robot Prototyping: the big picture

sages, and delivery deadline for event-triggered ones. Locally, processing
nodes are implemented as threads, taking advantages of the underlaying
RTOS to guarantee real-time execution; for remote messaging, real-time
support is provided by the underlaying communication channel (i.e., RT-
CAN). Finally, a simple API, which reminds the ROS syntax, enables
developers to write distributed code, on embedded targets, as they are
used to do on computer systems, fostering code reuse through different
projects, and reducing the learning curve for robotics developers already
used to ROS. The publish/subcribe communication paradigm, and its
implementation provided by the R2P middleware, are detailed in Chap-
ter 5.

3.3.4. Integration with ROS

While R2P supports rapid development of robotic systems using off-the-
shelf hardware and software components, applications involving compu-
tation intensive tasks such as computer vision, localization, and complex
planning, must also rely on a computer system and, eventually, a soft-
ware framework. Among the many available development frameworks
for robotics software, we chose to support ROS [111], as it currently is
the most widely adopted in academia and research laboratories, and,
recently, it is being considered also by industrial developers [118].

To natively integrate resource-constrained devices within ROS, we de-
veloped pROSnode [97], a lightweight, open source, ANSI C ROS client
library publishing native ROS messages over a TCP connection. A R2P
hardware module provides Ethernet connectivity and runs pROSnode,
enabling direct integration of R2P modules with ROS systems. Topics
published on the R2P network can be accessed from ROS nodes, and,
at the same way, R2P modules can subscribe data published by ROS
software. pROSnode is presented in Chapter 6.

3.3.5. Hardware modules

We have designed and built, as part of the R2P framework, a set of
plug-and-play hardware modules that implement basic functionalities
required by common robotics applications. R2P modules aim at filling
the gap between hobby devices and automation components which are,
currently, often used to prototype robot platforms. Modules are based
on STM32 Cortex-M3 microcontrollers with 20Kb of RAM and 128Kb
of Flash memory, running the ChibiOS/RT RTOS and the R2P mid-
dleware. Each module has two RJ45 ports for daisy-chain connection
to the bus, a serial port for debugging purposes, and a JTAG header
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for advanced users who want to directly access the microcontroller. A
brief overview of the currently available modules follows. Notice that
these are just few modules out of a possibly huge set that could be re-
alized and shared with the R2P community, thanks to the open source
approach followed for both software and hardware development. A de-
tailed description of R2P hardware modules we developed is presented
in Chapter 7.

Power supply. This is the power supply unit, which powers all the
modules connected to the bus. Input voltage range is from 5.5V to 36V
DC. A DC-DC converter produces a 5V regulated output with maximum
current supply of 44 and short circuit protection. Both battery voltage
and current drain can be published over the network to monitor power
consumption and to estimate the residual battery life.

DC motor controller. This high-power motor controller board can
drive DC motors up to 36V, delivering a continuous 20A current. It
features closed loop control, with position feedback from a quadrature
encoder and current measurement from the on-board Hall-effect sensor.
The DC motor module accepts position, speed, and current limit set
points, and publishes position and speed messages, exploiting data from
the encoder, and the measured output current.

Inertial measurement unit. A 10-DoF Inertial Measurement Unit
featuring MEMS accelerometer, gyroscope, magnetometer and pressure
sensor. An additional serial port to acquire GPS coordinates from an
external GPS receiver is also provided on this module. The on-board
sensor fusion algorithm computes heading and attitude information.

Proximity sensors. A module to interface with proximity sensors
such as the Sharp IR rangers or MazBotiz [6] ultrasonic sensors. Each
module connects to up to 4 sensors. Calibration and data filtering al-
gorithms run on the microcontroller, which produces distance measure-
ments.

Input/output. A generic module featuring several analog and digital
inputs and outputs. It can be used to integrate existing devices, e.g.,
sensors and actuators, into a R2P system, or as a test platform while
developing new R2P modules.

Gateway. This is a gateway module featuring an Ethernet port, an
USB port, and a more powerful, Ethernet-enabled, microcontroller to
handle the TCP/IP stack. R2P messages can be forwarded from the
CAN-Bus to the IP network, or over an USB connection, and the other
way around. By running pROSnode, it provides seamless integration of
R2P-based systems within ROS.
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3.3.6. Open source licensing model

R2P is fully open source, to be easily adaptable to specific applica-
tion needs, and to take advantage of community-driven development to
became a mature and widespread project. The schematics of R2P hard-
ware modules, with the corresponding board designs, are distributed
under Creative Commons Attribution-ShareAlike 2.0 (CC BY-SA 2.0)
licensing [3]. The share alike model was chosen to foster the addition
of hardware modules to the R2P ecosystem, allowing to provide more
and more off-the-shelf devices satisfying common requirements of pos-
sibly diversified robotic platforms. The firmware running on the mod-
ules, instead, adopts the permissive BSD 2-clause license [13], to allow
the use of low-level control software initially developed on R2P modules
even in closed source, eventually commercial, projects with custom hard-
ware. Board schematics and layouts, the corresponding firmwares, the
real-time communication protocol, the middleware, together with some
demonstration nodes, are available on R2P GitHub repository [112].

37






Chapter 4

Real-time Communication

A key aspect in distributed architectures is the way communication be-
tween the different components is handled. Several components are in-
volved to run a distributed system, and they may show different, het-
erogeneous, communication requirements, which need to be taken into
account by the communication layer. We chose the CAN bus as com-
munication channel to connect R2P modules, as it allows for real-time
communication, it is available on many modern microcontrollers and it
is designed to work reliably in harsh environments. Existing CAN bus
protocols, tough, are not suitable to handle communication in robotic
systems, which are both event-triggered and time-triggered, and, do not
provide the flexibility needed by a modular framework like R2P.

To overcome these problems, a novel communication protocol has
been designed and implemented, named RTCAN (Real-Time CAN),
which combines the advantages of different approaches to communica-
tion scheduling. This chapter introduces and details the RTCAN pro-
tocol, and it is organized as follows. Section 4.1 highlights the principal
requirements of the distributed architecture proposed by R2P. Then, an
introduction to the CAN bus is presented in in Section 4.2, with a re-
view of existing protocols. In Section 4.3 RTCAN is presented, while
Section 4.4 reports communication benchmarks.
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4.1. Communication requirements

Robots developed with R2P are distributed real-time systems, with sen-
sors, actuators and controllers working together to guarantee effective
operation. It follows that the requirements of common tasks involved in
robotic systems, such as timely execution of control loops or quick reac-
tion to sensor readings, are propagated to the communication channel.
In this section we briefly describe some of these tasks, highlighting the
different paradigms which best handle them and, in turns, defining the
communication requirements.

4.1.1. Definitions

A real-time system is a system where the correctness of its operation does
not depend only on the value of its output, but also on the time when
the output is produced [77]. Real-time systems are called distributed
when they span across multiple nodes interconnected by a communi-
cation channel. To describe the temporal activity of a system, we call
instant a particular point in the time line, and event an occurrence as-
sociated to a particular instant. The distance between two instants is
called interval, and if event B should happen as a consequence of event
A, the time delay between the observation of A and B is called latency.
If a task is periodic, the interval between two executions is its period;
if the period is not exactly the same at each repetition, the difference
between the maximum and the minimum period is called jitter. The
deadline is the instant within a task must be accomplished. Real-time
tasks are classified as hard real-time if a missed deadline can imply severe
consequences, or as soft real-time if a missed deadline is tolerable.

4.1.2. Time-triggered and event-triggered architectures

The choice between time-triggered and event-triggered paradigms to de-
sign real-time systems has been subject to a long debate [76,105], which
highlighted advantages and drawbacks of both approaches.

In event-triggered systems, every task is initiated by the occurrence of
a significant change in the state of the system. For example, a two-states
sensor, like a bump sensor or a switch, generates an event each time its
value transits from one state to the other; in the same way, a generic
transducer converting a physical quantity into a measure may generate
an event every time the value changes, when it is above a threshold (i.e.,
a reference value), or when its changing ratio is above a threshold.

In the time-triggered paradigm, on the contrary, transmissions are
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conducted at predefined instants, regardless of the state of the system.
As a consequence, time-triggered designs lead to predictable temporal
behavior, since each communication occurrence is planned at design
time. This requires a detailed analysis of the overall system, which adds
complexity to its design and limits further system expansions. On the
other hand, a-priori scheduling allows to accurately test the system, e.g.,
to check messages schedulability, making it easier to guarantee quality
of service. Time-triggered systems are generally static and defined at
design time, but a centralized scheduler can be exploited to perform
online admissibility control and to improve flexibility.

An event-triggered design does not need a-priori knowledge about the
system to schedule communication, thus leading to a much more flexi-
ble design. But, as a consequence of flexibility, a much more extensive
testing is required to verify that the system can handle communication
requests under different load situations. Time-triggered communication
shows high temporal determinism and, thus, low jitter. An advantage
of event-triggered designs is, generally, a better resource exploitation
with respect to time-triggered designs, with higher achievable through-
puts [16].

4.1.3. Communication in robotic systems

A first source of communication in a distributed robotic system are con-
trol loops, which need to exchange data between sensors and actuators.
These data transfers are, generally, periodic, deterministic, and known
at design time. The update period is application dependent; generally,
it may range from a few Hz to 1 Khz on common robotic systems. Data
exchanged to run control loops is generally small in size, containing only
a few values used to broadcast the system state or to set a command
(i.e., a speed can often be expressed by a simple 16bit integer value),
but it can also grow when representation of more complex variables is
needed (i.e., the pose and attitude of a robot may be expressed by 6
32 bit floating point numbers, and other 6 may be needed to express
also its linear and angular velocities, resulting in 384 bits transmitted
for each update). Control loops often have hard-real time constrains, as
missed deadlines may introduce error in the control action, compromis-
ing the operation of the system and even generating dangerous situa-
tions. Moreover, they are highly affected by the presence of jitter [110],
which introduces variable delay and, thus, may induce overshoots of the
control action and instability. Another common source of data trans-
mission is the broadcast of system status, like a heartbeat signal, to
suddenly halt the system if a failure happens. The system status could

41



4. Real-time Communication

be updated asynchronously on change, but updating it periodically is
generally a safer solution: if the status is not received, every component
of the system can enter a safe mode. Periodic communication is best
handled in a time-triggered way, having transmission occurrences sched-
uled in a calendar with exclusive bus access, to prevent collisions and
reduce jitter.

Besides the sensors used in control loops, in a robotic system, we find
other kinds of data sources showing different requirements; for instance,
proximity sensors and bumpers produce useful data only when triggered
by some event, like approaching an obstacle, and the most important
factor is to react to new readings as quickly as possible. As a conse-
quence, delivery latency is, in many cases, the most important factor
when dealing with event-triggered data. If sensor readings are trans-
mitted periodically, the only way to reduce the worst case latency is to
increase the update frequency, which leads to a waste of bandwidth when
data are not relevant. Additionally, the worst case latency is still as long
as the update period, and it is difficult to estimate the time elapsed be-
tween the occurrence of an event and its actual reception. It becomes
clear that using event-triggered transmissions, for sporadic communica-
tion, saves bandwidth and, generally, reduces latencies. Depending on
the particular task, transmission of event-triggered data may show differ-
ent constraints; however, many event-triggered tasks can be considered
as soft real-time, since the corresponding data sources will, generally,
transmit again until the triggering condition is observed. Other sources
of non periodic data are planners, which can be triggered by some event
(e.g., the arrival of a new goal or a change in the environment) and their
execution may be not constant in time; it follows that an event-triggered

Table 4.1.: Communication requirements of messages exchanged by an
ideal balancing robot

Time/event Update Payload Real

triggered  frequency [Hz| [bytes| time

Motor torque setpoint T 1000 2 hard
Motor speed setpoint T 100 2 hard
Angle estimate T 100 10 hard
Odometry T 10 4 soft
Detected obstacles E - 8 soft
Trajectory waypoint E - 36 soft
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messaging paradigm is preferable to update their output.

As an example, consider again the balancing robot presented in Sec-
tion 2.3, which runs a control loop to keep its balance, another loop
to execute motion commands, and sports several proximity sensors to
avoid obstacles. Table 4.1 summarizes the requirements, in terms of data
transfers, of its basic tasks, and the respective characteristics. Notice
that some of these tasks may be not distributed in this specific applica-
tion (i.e., they are executed within a single board), but, as an example
of generic communication requirements in robotic systems, we report
all of them. Impedance control of a robotic arm, for instance, may be
distributed, as several joints contribute with their torque to the actual
force applied by the end effector.

As a conclusion, in robotic systems both periodic, time-triggered, and
sporadic, event-triggered, data transmissions are needed, thus a protocol
which combines the two communication paradigms is desirable.

4.2. The CAN bus

The CAN bus (Controller Area Network bus) is a communication pro-
tocol designed to connect a network of independent controllers, usually
resource-constrained devices, without the need of a host computer. The
development of Controller Area Network bus was started in 1983 at
Robert Bosch GmbH, as a vehicle bus protocol to connect the various
subsystems, guaranteeing high reliability and security. Being adopted
by the OBD-II and the EOBD vehicle diagnostics standards, which are
mandatory for car producers respectively in North America and Europe,
it rapidly gained popularity and it is now available as peripheral in most
modern microcontrollers, or as stand-alone controller. In recent years,
the CAN bus as also been adopted in different fields, such as industrial
automation, and this led to the development of several CAN-enabled
devices, such as Programmable Logic Controllers (PLC), as well as new
communication protocols.

The CAN bus is a multi-master, broadcast, half-duplex protocol,
which covers the first two layers of the 7-layer OSI specification (see
Figure 4.1). It is multi-master as there is no need of a coordinator node
in the network, and all nodes which need to transmit data can act as
master. The arbitration process to elect the current master is done by
the hardware, thus relieving the processor from running software im-
plementations of the protocol. When a transmitting node becomes the
master, data is broadcasted to all other nodes, which are all receivers
and passively listen to the bus. As there can be only one master at
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Figure 4.1.: The layered ISO 11898 CAN bus specification. (Image from
Texas Instruments SLLA270 Application Report)

the time, communication is always from one single node to the others,
implementing a half-duplex communication channel.

4.2.1. Physical Layer

Transmission Medium

Several physical mediums to interconnect CAN nodes are defined by
different standards, such as the ISO 11898-2 (high speed), ISO 11898-3
(fault-tolerant), SAE J2411 (single wire) or ISO 11992 (point-to-point).

The most common standard is by far the high speed CAN bus, which
specifies a two-wire differential bus (CAN_H and CAN_L signals) with
a characteristic line impedance of 120 Ohm. The data rate is 1 Mbit/s
over a theoretically possible bus length of 40 m, while for longer bus
lengths the specified data rate is lower (allowing up to 1 km bus length
at 50 Kbit/s); stubs, which are un-terminated, should not exceed 0.3 m
in length. The maximum number of nodes is actually limited only by the
electrical bus load (i.e., the overall load capacitance), but the high speed
standard recommends to not attach more than 30 nodes on the same bus
for 1 Mbit/s operation. The network topology is a single line, terminated
by 120 Ohm resistors at both ends to avoid signal reflections, as shown
in Figure 4.2; although not explicitly specified in the ISO standard, for
high speed operation in harsh environment the use of a twisted-pair
shielded cable is recommended [61].

The standard does not impose specific connectors, but they should
not affect the bus operating parameters; higher layer protocols, such
as CANopen [31] and DeviceNet [103] specify connectors required to
implement compliant devices, which include 9-pin DSUB, RJ10, RJ45,
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Figure 4.2.: A 120 Ohm terminated CAN bus. (Image from Texas In-
struments SLLLA270 Application Report)

M12 and others.

Signal Levels and Bit Representation

CAN specifies two logical states to represent bits: recessive and domi-
nant. According to ISO-11898-2, recessive and dominant states are rep-
resented by a differential voltage, which is applied between the CAN_L
and CAN_H signals of the bus. If the differential voltage is lower than
the minimum threshold (1.5 V on the transmitter side, 0.5 V on the
receiver side), the state is identified as recessive, which usually identifies
a logic 1. Otherwise, a differential voltage greater than the threshold
represents a dominant state, usually identifying a logic 0. The terms
dominant and recessive refer to how the signals affect the input of CAN
line drivers. In Figure 4.3 the block diagram of a typical CAN transceiver
is reported: bot the high and low side are driven by open-drain (or open-
collector) outputs, meaning that they can only impose a dominant state
(a differential voltage over the threshold) on their output, while the dif-
ferential voltage is driven low by the external terminator resistors. In
other words, if at least one of the transceivers connected to the bus out-
puts a dominant bit, the state of the bus becomes dominant regardless
of any other recessive bit outputs from the other nodes. This is the
foundation of the nondestructive bitwise arbitration of CAN, which will
be described in the following.

4.2.2. Transfer Layer
Bit Timing and Synchronization

The CAN bus encodes data with Non Return to Zero (NRZ) line code:
the signal can be a logic 1 or a logic 0, and there is no neutral position.
As the CAN bus is an asynchronous communication channel (i.e., there
is no explicit clock), and NRZ is not a self-clocking representation, the
bit time must be the same over all the network, and nodes are requested
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Figure 4.3.: The typical structure of a CAN transceiver. (Image from
Maxim 3051 datasheet)

to be synchronized. To this extent, each CAN controllers runs a syn-
chronization algorithm which adapts the receiver bit rate to the actual
rate of the bits transmitted on the bus, aligning to the transition edges.

The CAN bit time is composed by four time segments, as illustrated
in Figure 4.4:

e synchronization segment, used for synchronization purposes

e propagation segment, which is twice the delay introduced by the
line driver and the signal propagation over the bus

e phase 1 segment, the interval before the bus level is sampled

e phase 2 segment, the remaining time after the sample point

Each segment is multiple of the interval t,, the time quantum, which
is generated by a free-running timer. The synchronization algorithm
implemented in CAN controllers acts in two moments: at the beginning
of each frame, when the bit time counter is restarted, and at each suc-
cessive transition edge during the transmission, when the sample point
is advanced or retarded depending on what is observed on the bus. This
process guarantees, if there are no error conditions, the bit synchroniza-
tion of all nodes, but works only if there are transitions between the two
possible values of the bus. For this reason, the CAN bus imposes that
there are no more than 5 consecutive equal values on the bus, and the
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Figure 4.4.: CAN bit timing.

controllers apply a bit stuffing protocol introducing a transition every
time the condition is not matched. The bit stuffing protocol implies that
the length of frames is not constant, also if the payload does not change
in size, as the amount of bits introduced (up to 26 in a single frame)
depends on the particular data transmitted. This variable length needs
to be taken into account for time-triggered protocols, as the frame time
cannot be assumed fixed.

Message Frames

The CAN 2.0b specifications defines four types of frames which can be
transmitted on the bus:

e Data frames carry data from a transmitter to the receivers

e Remote frames are sent by a node to request a Data frame with
the same identifier

e Error frames are transmitted when bus errors are detected

e Quverload frames can be transmitted to insert a delay between con-
secutive Data or Remote frames

Here we focus on the Data frame, which is relevant for the implemen-
tation of the protocol we are presenting in this chapter.

A CAN Data frame, as shown in Figure 4.5, is composed by several
fields. The start of a new frame is identified by the Start of Frame
(SOF) bit, a single dominant bit, used to synchronize the receiver clocks
as explained in Section 4.2.2.

Then, the first field of the Data frame is the Arbitration field, contain-
ing the identifier of the message being transmitted. For the Arbitration
field, two CAN bus specifications are available (see Figure 4.6): in the
Standard mode, defined in the CAN 2.0a specification, the identifier is
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Figure 4.5.: The structure of a CAN Data frame.

composed by a 11bit, while in the Extended format, defined in CAN 2.0b
specification, the Identifier is 29-bit long. To be compatible with some
old CAN controllers, the 7 most dominant bits of the Arbitration field
should not be all set to recessive, but, as all new controllers accept also
those identifiers, the restriction is generally ignored on modern CAN
systems. The identifier is followed by the Remote Transmission Request
(RTR) bit, which identifies a Remote frame when set to dominant; the
extended arbitration field also include two additional reserved bits. The
overall length of the Arbitration field, thus, is 12 bit in Standard mode
and 32 bit in Extended format.

The Control field is composed by 6 bits: the first one is used to dis-
tinguish Standard and Extended frames, the second one is reserved for
future use, and the last 4 bits contain the Data Length Code (DLC),
specifying the length of the payload.

Next there is the Data field, containing up to 8 bytes of payload, and
the CRC field, containing a hardware generated 16-bit CRC sequence
calculated on all the previous fields. The CRC is checked during the
reception by all the receiver nodes, identifying correct or wrong messages
on-the-fly.

The following field, the ACK field, is used to signal the reception of
the message: the transmitter writes two recessive bits, while receivers
which correctly get a correct message impose a dominant level as second
bit. In this way, the transmitter node can check if the transmission
was successfully completed; on the other way, if a single node did not

48



4.2. The CAN bus

‘ Arbitration

8| 11-bitidentifier |3
Q -bit identifier 3

0 for data, 1 for remote frame /

Control |

3| bLc

if the first 11-bits are the same, standard frames prevail

=]
m
AMthe first 11-bi
‘ '/ Arbitration ‘ Control |
\ Y \ |
TS Base identifier |9 5 Extended identifier 2lalz| bLc
T 1d28-1d18 D m 1d17-1d0 =

0 for data frame
1 for remote frame
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field.

correctly receive the message but the other nodes did, the transmitter
is not signaled. As a consequence, protocols to guarantee the reception
of data needs to be implemented by higher level layers, if needed.

Finally, the End Of Frame (EOF) field is inserted, which is composed
by 7 recessive bits. This is the only condition where more than 5 con-
secutive bits with the same logic level are allowed to transit on the bus,
violating the bit-stuffing rule. Frames are then separated by the inter-
frame space, which consists of at least three recessive bits.

Arbitration

The CAN bus features a Carrier-Sense Multiple-Access with Bitwise
Arbitration (CSMA/BA) Media Access Control (MAC), implemented
at hardware level in the controllers. It is a priority-based arbitration
protocol, which relies on the dominant/recessive bus levels and on the
ability of CAN controllers to detect the bus status while transmitting.
During the transmission of the arbitration field of a CAN frame, if the
controller recognizes a dominant bit while it was trying to transmit a re-
cessive one, it knows that the arbitration is lost and the node becomes a
receiver. As a consequence, the higher priority Identifier is composed by
all dominant bits (logic zeros), while the lower priority one is composed
by all recessive bits (logical ones).

The CAN arbitration mechanism is non-preemptive: the arbitration
process begins with the Start Of Frame and lasts for the duration of
the Arbitration field, but the transmission of a message cannot be in-
terrupted by a higher priority transmission request after it get access to
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the bus.

Message Filtering

Another relevant feature of CAN controllers is the capability to filter in-
coming messages by their identifier at hardware level. Nodes can specify
one or more filters, and then actually receive only the messages they are
interested in. Furthermore, bit masks can also be specified, to apply
a filter to a subset of the message arbitration field, allowing the recep-
tion of group of messages which shares a part of the identifier. Filters
are generally associated to a specific set of receive registers (commonly
called Receive Objects), thus the node not only avoids the reception of
unwanted messages, but it also knows where to look for the messages it
subscribed, speeding up the processing of incoming data.

4.2.3. Application Protocols

The CAN standard does not give any specification about device ad-
dressing, flow control, data fragmentation over multiple messages and
the interface to the user application. These tasks are carried out by ded-
icated protocols, which implement the upper 5 layers of the 7-layer OSI
specification. Several protocols have been developed, with application
fields going from in-vehicle communications to aviation and military de-
vices control. Car manufacturers generally adopt proprietary protocols
to handle data for vehicle control, relying on standards such as OBD-II
and EOBD only for diagnostics. Aviation and military targeted proto-
cols are focused mainly on reliability, safety, and security, supporting
strict hard real-time constraints due to their critical application con-
texts, but without taking into account flexibility.

In recent years, the CAN bus also started to be exploited for industrial
automation, and several protocols have been proposed, such as SDS [80],
CAN Kingdom [54], DeviceNet [103], CANopen [31], and others. All
these protocols are based on the ISO 11898 CAN specification, and focus
on the same problems: assigning CAN identifiers to messages matching
the respective requirements and priorities, and provide an interface to
application developers.

Early protocols

Smart Distributed System (SDS) protocol development was originally
started by Honeywell in 1988 [80] to define a event-driven CAN appli-
cation layer for industrial control applications in a Microsoft Windows
control environment. It is optimized to be embedded with a very low

50



4.2. The CAN bus

footprint in cost-effective sensors and actuators, and it is mainly used for
point to point communication between a master and remote input/out-
put devices.

CAN Kingdom has been developed by Kvaser AB since 1990, and it
is mainly focused on distributed machine systems. The network is con-
figured by a master controller, called The King, while all other devices
do not know anything about the complete system. The idea behind the
protocol is to give maximum flexibility to node developers, which can
design nodes independently from a specific system: each node provides
the network with some services, but it does not know how they will
be used. As a consequence, the stack running on the single nodes is
much simpler with respect to other protocols such as DeviceNET and
CANopen. On the other hand, the system designer, who have complete
knowledge of the specific application, configure everything through the
King node, and can get the maximum performance as the network is set
up ad-hoc to best satisfy his needs.

DeviceNet

DeviceNet was developed by Allen-Bradley (now Rockwell Automation)
as application layer for the CAN fieldbus, adapting features of Control-
Net, another industrial protocol developed by Allen-Bradley, to make it
work on low-cost CAN devices. To promote the adoption of DeviceNet
worldwide, Rockwell started the Open DeviceNet Vendors Association
(ODVA); the association then defined a more generic technology, the
Common Industrial Protocol (CIP), which is now used by DeviceNet,
ControlNet and EtherNet/IP, fostering a simpler integration of differ-
ent industrial control devices. DeviceNet specifications are not limited
to the higher OSI layers, but they define also the physical layer, which
follows a trunkline-dropline topology where a main line, carrying both
the power supply and the communication bus, is deployed in the plant,
and the devices can be easily attached to it, when needed, by means of
droplines.

DeviceNet realizes a connection-based network: communication is al-
ways between exactly two nodes of the network which previously es-
tablished a connection. Three kind of messages can be exchanged by
DeviceNet nodes: Ezplicit and Implicit (also called I/0) messages can
be exchanged between the master and one of the slaves, while Peer mes-
sages can be exchanged between two slaves. Explicit messaging follows
the request/response communication paradigm: the DeviceNet master
issues a request to a particular slave, which replies on the same Explicit
message connection. Several fields are used to define the content of the
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messages, i.e., if it is a set or get request, which node attribute is in-
volved, and the data. This communication model is commonly used to
write and read values to or from a node, e.g., during the configuration of
a device. Explicit messages can be fragmented to support payloads big-
ger than 8 bytes, with the receiver sending reception acknowledgements
back to the sender in order to allow the next fragment to be transmitted.
Implicit or I/O messaging is used to exchange real-time data between
the master and the slaves, or vice versa. Both nodes must be aware of
the content of the messages, and transmission can be started in three
different ways: it can be polled by the master, it can be cyclic, peri-
odically triggered by the transmitting node, or it can be triggered by a
state change in the system. Peer messaging is generally only supported
between nodes of the same vendor, as no definition of data exchanged
on Peer connections is provided by DeviceNet specifications, and they
are rarely used.

DeviceNet is very popular in the industrial automation field, and
many manufacturers produce devices compliant to DeviceNet. One of
the major limit of this protocol is the connection-based communication
paradigm, which does not support data broadcasting to more than one
receiver. Moreover, besides DeviceNet supports cyclic messages, it does
not provide any time-triggered bus access arbitration mechanism, and
also periodic messages compete to gain bus control exploiting the stan-
dard CAN CSMA arbitration, which leads to transmission jitter.

CANopen

CANopen has been introduced by the CAN in Automation (CiA) or-
ganization in 1994, as CAN-based higher-layer protocol for embedded
control systems. The main goal of CANopen is to provide standard-
ized communication objects for real-time data, configuration data, and
network management data, relieving the developer from dealing with
low-level details such as the bit timing. The specifications comprise
an addressing scheme, a set of small communication protocols, and the
application layer, as well as application, device, and interface profiles.
Each CANopen device is composed by three main logical parts: the
protocol stack, handling messaging over the CAN network, the applica-
tion software, implementing the functionalities of the device and in-
terfacing with the hardware, and the object dictionary, which inter-
faces the application software and the communication protocol. The
object dictionary standardizes how to describe every object belonging
to the CANopen device, such as configuration values, input data (i.e.,
setpoints), and output data (i.e., measured values). Through the com-
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munication protocol, every entry in the object dictionary can be accessed
and, eventually, modified. The description of object dictionary entries,
as well as the communication behavior, are included in the FElectronic
Data Sheet (EDS) of the device.

Communication in CANopen is handled by different small protocols,
depending on which type of data need to be transmitted. In all proto-
cols, messages are broadcasted to every node in the network, which can
consume or discard them depending on their configuration. The Net-
work Management (NMT) protocols are used to change the state of the
devices and to monitor their status through heartbeat messages. The
Synchronization Object (SYNC) protocol provides the synchronization
signal to trigger synchronous tasks, such as the execution of some con-
trol action or the transmission of synchronous messages. To read and
write object dictionary entries, the Service Data Object (SDO) protocol
is used: a client which wants to read or write the dictionary of another
devices, which is called server, requests a SDO transfer specifying the en-
try index and, in write operations, the data to be updated. Entries with
data longer than the CAN payload are automatically fragmented by the
protocol. SDO transactions are always started by the client node, which
waits for a reply from the server node, and are generally used to update
the configuration of a device or to access auxiliary variables. Real-time
data is exchanged with the Process Data Object (PDO) protocol, which
handles Transmit Objects (TPDO), coming from the device, and Re-
ceive Objects (RPDO), going to the device. Each PDO can be mapped
to more than one dictionary entry, but no fragmentation is provided by
this protocol, so the maximum payload for PDO objects is 8 bytes. The
transmission of PDO messages can be synchronous or asynchronous: in
the former case, data transfer follows the SYNC messages, both peri-
odically or after a particular event is observed; in the latter case, the
message is sent after an internal or external trigger.

CANopen has been adopted by several manufacturers in applications
going from medical devices to machine control, from vehicle and mar-
itime electronics to building automation. The main limit with CANopen
is the little payload of Process Data Objects, which limits their us-
age to small, rapid, transfers, and the request/response communication
paradigm used to transmit Service Data Objects, which introduces over-
head and makes them suitable only for configuration purposes.
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4.2.4. Mixing Time- and Event- Triggered Traffic on the CAN
bus

As discussed in Section 4.1, robotic systems involve both event-triggered
and time-triggered tasks, imposing the same requirements to the com-
munication channel. Due to its hardware bus arbitration feature (see
Section 4.2.2), the CAN bus is well suited for fixed-priority communi-
cation, where each message is assigned with a priority and high prior-
ity messages only rely on winning arbitration against other competing
ones. This is the approach followed by most CAN bus protocols, as the
ones presented in the previous section, which rely only on the CAN bus
CSMA arbitration, reserving priority ranges to different message types.
Management messages generally have the higher priorities, to guaran-
tee control of the system state also in heavy bus load situations. Also
time triggered messages (i.e., periodic implicit messages in DeviceNet or
cyclic PDOs in CANopen), are mapped to high priorities, to allow them
win the arbitration over sporadic data transfers. Priorities are manually
assigned by the system designer, or automatically calculated exploit-
ing a scheduling algorithm, like the rate-monotonic scheduler [83,122]
which reserves higher priorities to transmissions occurring with shorter
periods.

When mixing event-triggered and time-triggered traffic, the simple
priority-based approach shows several drawbacks, which are summarized
in the following. First of all, transmission requests can always be delayed
by a higher priority request, introducing variable latency and preventing
precise timing. This, obviously, applies also to time triggered messages,
which can be delayed if messages with higher priority (e.g., a periodic
message with lower period in the case of rate-monotonic scheduling) are
transmitted. Moreover, the CSMA arbitration process starts with every
start of frame bit, and ongoing transmissions cannot be preempted; as
a consequence, if a time triggered transmission occurs while the bus is
not idle, it will be delayed at least for the time needed to complete the
current transfer.

Another source of variable delay, on the CAN bus, is the bit stuffing
algorithm applied to the content of CAN frames (see Section 4.2.2).
Transmission time is not constant, and it depends on the single bits of the
particular CAN frame to be transmitted; in other words, the duration of
the ongoing transfer may vary up to 26 bit times (the maximum number
of bits inserted by the bit stuffing algorithm). For this reason, also a
high priority message, if enqueued for transmission while another packet
is on the bus, not only has to wait some time before the bus becomes
idle, but this amount of time is not fixed and it cannot be known a priori,
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as it depends on message content. As a consequence, in hard real-time
applications, the recommended bus utilization factor for priority-based
communication protocols is often limited; for rate-monotonic schedulers,
for example, it has been proved that the utilization bound is 25% [19]
of the bus capacity.

To efficiently communicate with precise timing, without sacrificing
the bandwidth, a key aspect is to guarantee temporal isolation, so that
the instant when a message is transmitted does not depend on bus
load and higher priority transmissions. Temporal isolation can be en-
forced at two different levels; first of all, temporal isolation between
time-triggered and event-triggered traffic should be provided, to avoid
sporadic transmissions from degrading time sensitive messages. In other
words, time-triggered and event-triggered messages are handled in dis-
tinct time slices, so that their transmission can never overlap. If inter-
ference between different time-triggered messages needs to be prevented
too, temporal isolation can be applied with finer granularity, with time
slices reserved to every single message occurrence, implementing a pure
time-division multiple-access (TDMA) channel access method.

In order to extend CAN bus applications to distributed control sys-
tems, where temporal determinism and low jitter are mandatory, some
protocols to schedule time-triggered traffic on the CAN bus have been
presented [17,43], all of them provide temporal isolation between event-
triggered and time-triggered traffic, allowing for a much higher temporal
accuracy.

TTCAN

The time-triggered CAN (TTCAN) protocol has been developed to
allow the use of CAN bus in hard real-time applications achieving a
much higher bus utilization factor with respect to the recommended
values defined by common CSMA-based CAN protocols, while provid-
ing a superior quality of service with better real-time scheduling guar-
antees [55,81,139]. The TTCAN protcol has also been standardized
by the ISO Technical Commitee (ISO 11898-4), providing the first in-
ternationally accepted time-triggered specifications for any automotive
protocol.

TTCAN, as every time-triggered protocol, requires a global time base
to operate, and all scheduling actions are referred to that time base. To
this extent, a master node periodically broadcasts a reference message,
used by all nodes to adjust their local timer and to synchronize to the
rest of the network. Two consecutive reference messages delimit the
basic cycle (BC), which is composed of a fixed sequence of time slots, or
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time windows, as in common TDMA protocols. The complete schedule,
called matriz cycle (MC) or system matrix, which is composed by several
basic cycles (up to 64), repeats cyclically.

Each time window can be of one out of three different types: exclusive
time windows are assigned to a single specific message, preventing other
messages to access the bus; arbitrating time windows are assigned to
more than one message, and competing nodes resolve transmission con-
flicts exploiting the native CAN arbitration mechanism; free time win-
dows are not assigned to messages, providing room for future expansion
of the network. In the schedule reported in Figure 4.7, for example, the
matrix cycle is composed of 4 basic cycles, each containing 6 time slots.
Windows are organized, within the matrix cycle, in columns, meaning
that time slots in the same column have fixed length within all basic
cycles (i.e., message A, G, and E in column 1 of Figure 4.7). Not to cor-
rupt the time-triggered schedule, the CAN automatic re-transmission of
messages is allowed only to reference messages, while for other messages
an higher layer is required to handle transmission errors.

TTCAN allowed the adoption of CAN in hard real-time applications
such as drive-by-wire in the automotive field, overcoming the limits of
the native CSMA bus access arbitration mechanism when time-triggered
messaging is needed. Many integrated circuit manufacturers have de-
signed CAN controllers with hardware support for TTCAN, but, to the
best of our knowledge, there are no open source implementations of the
protocol available.
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The main drawbacks of TTCAN, which prevented us from adopting it
as communication protocol in R2P, concerns the lack of flexibility, which
is needed by the modular development approach of the framework. First
of all, the system matrix is static and must be entirely known by all nodes
at boot time, consuming memory and requiring to reprogram all nodes
if a new message needs to be added. Moreover, the column-based orga-
nization of basic cycles, imposing the length of time windows, reduces
flexibility even more and limits the maximum achievable throughput.

FTT-CAN

A different approach to allow time-triggered communication over the
CAN bus has been proposed with FTT-CAN (Flexible Time-Triggered
CAN) [17,109], which aims at mixing time-triggered and event-triggered
messaging without losing flexibility. FTT-CAN exploits the native CAN
bus CSMA arbitration, but provides temporal isolation between time-
triggered and event-triggered traffic. Dynamic scheduling is also taken
into account by FTT-CAN, allowing online admission control and cen-
tralized scheduling on the master node, which can be useful when work-
ing with dynamic network configurations.

Asin TTCAN, also FTT-CAN needs a master node transmitting peri-
odic trigger messages to align the local clocks on all nodes. The interval
delimited by two trigger messages is called elementary cycle (EC) and
defines a communication round. Within each round the protocol defines
two consecutive, distinct, communication phases: the asynchronous win-
dow first, followed by the syncronous window. During the asynchronous
window, event-triggered messages compete for the bus as soon as they
request a transmission, using the CAN bus CSMA arbitration. The
synchronous window is reserved for time-triggered messages, and its du-
ration varies depending on the traffic scheduled within that EC. Within
the synchronous window, time-triggered messages still use CSMA ar-
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bitration, meaning that there is no predefined delivery order, but the
synchronous window length guarantees that all scheduled messages will
be delivered during the current EC. FTT-CAN is designed to allow
different priority policies for CSMA arbitration (e.g., rate monotonic,
deadline monotonic, earliest deadline first). To compute the length of
the synchronous window, the master node runs a scheduler at the be-
ginning of each EC and broadcasts the resulting duration in the payload
of the trigger message. In this way, temporal isolation between the two
communication phases is achieved.

FTT-CAN was one of the first CAN bus protocols to support time-
triggered messaging, but later the research group responsible of its de-
velopment mainly concentrated on the Ethernet versions of the protocol
(FTT-Ethernet and FTT-SE).

A limit of FTT-CAN windowing approach is that the minimum period
for time-triggered messages is the period of the trigger message, limiting
the maximum frequency of periodic traffic. Reducing the period of trig-
ger messages allows to transmit messages at higher frequencies, but also
leads to higher protocol overhead and, thus, lower throughput. More-
over, using CSMA arbitration within the synchronous window, the jitter
of time-triggered messages is bounded only by the duration of the syn-
chronous windows they are scheduled in, which can be long and may vary
at each communication cycle. The windowing mechanism increases the
latency of event-triggered transmissions too, as grouping together the
periodic messages means that all events occurred during a synchronous
windows will be delayed to the next communication cycle.

4.3. RTCAN: a CAN bus protocol for robotic
applications

From the analysis of TTCAN and FTT-CAN, we can conclude that
TTCAN achieves better temporal determinism, handling time-triggered
data with a pure TDMA approach, while FTT-CAN is much more flex-
ible, with no shared and static schedule. On the other hand, TTCAN
requires a rigid and static schedule which must be known by all nodes,
sacrificing flexibility, while FTT-CAN is affected by some jitter and la-
tency due to the windowing system.

To better match the requirement of distributed robotic systems, we
developed RTCAN, a real-time communication protocol for the CAN bus
which provides limited jitter for control loops, low latency to quickly re-
act to events, and flexibility to easily add networked nodes to an existing
system.

58



4.3. RTCAN: a CAN bus protocol for robotic applications

4.3.1. Goals

RTCAN goals were defined starting from the requirements of common
robotic systems, which have been highlighted previously, and by analyz-
ing existing protocols for the CAN bus. An outline of the main goals of
the proposed protocol follows.

e Support both event-triggered and time-triggered traffic.

e Provide temporal determinism when delivering messages involved
in distributed control loops, to allow for a precise robot control.

e Support high frequency messaging to enable effective closure of in-
ner control loops, e.g., to implement current/torque control, with-
out adding too much overhead.

e Guarantee low latency to quickly response to event when exchang-
ing sporadic, event-triggered, messages.

e Allow flexible scheduling, to enable the connection of additional
communication sources to the network without needing to repro-
gram every node.

e Avoid global calendars shared by all nodes, to support flexibility
and to reduce memory footprint.

4.3.2. Message types

RTCAN mixes different approaches to communication handling, trying
to effectively match the communication requirements of robotic systems.
In RTCAN we define three distinct types of messages, each focused on
the specific characteristics of its application area:

e Hard real-time messages (HRT) are periodic messages, e.g., from
distributed control loops; they are deterministic, and their dead-
lines are absolute in time and should never be missed.

e Soft real-time messages (SRT) are triggered by events, e.g. new
sensor readings; they are not periodic neither deterministic, but
they need to be transmitted with the lowest possible latency. Dead-
lines are relative and if missed the system can still operate.

e Non real-time messages (NRT') do not expire in time, e.g., logging
messages; they can be delivered without any latency constraints,
exploiting free resources when available.
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Figure 4.9.: RTCAN priority and message ID encoded into the CAN bus
29-bit Extended ID

HRT transmission is time-triggered, in a pure TDMA approach, and
bus access is reserved in a calendar for each message occurrence. Ac-
cess to the bus is then exclusive, and no transmission conflicts need
to be managed, preventing transmission delays and reducing the jit-
ter. SRT messages are transmitted only when the bus is not reserved
for HRT transmissions, so they do not interfere with high priority mes-
sages thanks to temporal isolation. They compete for bus access using
dynamic priorities, so that messages gain chances to be transmitted
while approaching the respective deadlines. NRT messages are handled
as SRT ones, but they are assigned with a fixed priority, which is al-
ways lower than any other messages. RTCAN does not need a global
schedule shared by all nodes, improving flexibility and reducing mem-
ory requirements, as detailed in next sections. As RTCAN is focused on
real-time communication and not on fault tolerance, it does not handle
transmission or receive errors (e.g., bus failures, overruns, or checksum
mismatches): messages are just signed as corrupt on transmission fail-
ures, and error handling, eventually, has to be implemented by higher
communication layers.

Figure 4.9 shows how RTCAN uses the CAN Extended ID field (i.e.,
the 29 bit version) for the different message types. HRT messages are
identified by the first six bits set to dominant level, while, in the case of
SRT messages, these bits are used to encode the laxity, which is used for
bus arbitration as will be explained in Section 4.3.5; NRT messages have
all recessive bits at the beginning of the ID, so they will always loose
arbitration against SRT ones. The next 16 bits are used as message
identifier, which is assigned by the application; they must be unique,
as required by the CAN bus to perform bus access arbitration. Last
7 bits are used as fragment counter, to handle messages with payload
bigger than the 8 byte CAN frame payload. Indeed, as it is common to
need, even in control loops, transmission of variables which would not
fit in the standard payload, RTCAN features a simple fragmentation
protocol, and messages are fragmented at the origin and assembled back
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on reception, in a transparent way for the application. As the CAN
bus guarantees that packets are delivered in the same order they are
transmitted, this is straightforward.

4.3.3. The communication cycle

To achieve fine-grained temporal isolation, and, as a consequence, high
temporal determinism, RTCAN follows a TDMA approach: time is di-
vided in time slots, organized in communication cycles, and each trans-
mission must be completed inside the defined slot to avoid interferences
with other transfers. The first requirement for TDMA transmission
scheduling is that all nodes connected to the bus share a global time
base. To this extent, each RTCAN network has a master node, which
imposes the time to all other participants. The master node is statically
defined at design time, or can be arbitrated during the bootstrap of
the network by a simple protocol: each node is assigned by the system
designer with a master priority, depending from its time accuracy or
expected processor load. Then, during the bootstrap phase, all nodes
broadcast their priority, together with a numeric identifier, which is
unique within the network, and the higher value determines the master.

The master node sends periodic messages, named sync messages,
which are used as reference to align the local clocks on all other nodes.
Although this may seem trivial, and it is the approach followed by both
TTCAN and FTT-CAN, we found out while developing RTCAN that
a precise timestamping of CAN messages can be difficult. In the orig-
inal RTCAN design, we aimed at using the SOF (see Section 4.2.2)
timestamp as reference, which can be captured by CAN controllers at
hardware level using the CAN bus bit time as time base. Unfortunately,
we found out that CAN controllers, even if they provide the SOF times-
tamping feature, do not always give access to the hardware counter used
to generate bit timing and, thus, to capture timestamps. As a conse-
quence, the value can be used to precisely measure periods, but not to
determine a global clock.

The impossibility of observing the counter which defines the time base
also prevents the implementation of TTCAN level 2 [67], which requires
a global time reference. This problem affects several microcontrollers,
including the one used by R2P modules, so we decided to timestamp
sync messages within the reception interrupt handler. To provide a
better estimate, the delay between the transmission of a message and
the corresponding reception interrupt request is accurately measured at
boot time, by issuing transmissions with the CAN controller configured
in silent loop back mode (i.e., messages are not sent over the bus and
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the node receives what it transmits). With a high priority assigned to
CAN reception interrupts, and thanks to the fixed time interrupt handler
invocation featured by ARM microcontrollers [138], the estimate is very
accurate, allowing for time-triggered operations even without access to
the CAN bus bit timing counter. It should be noticed that this is of
primary importance for TDMA approaches, as the inaccuracy of local
times requires dead times between transmissions to prevent overlapping,
reducing the achievable throughput. Moreover, to prevent corruption of
the TDMA schedule, the automatic retransmission feature of the CAN
bus needs to be disabled.

Each sync message starts a new communication cycle, which is in turn
divided in several time slots, which can be assigned to HRT transmission
or left free for bus access arbitration of SRT and NRT messages. Time
slots are triggered by an hardware timer running on each node, and
issuing interrupts to send scheduled messages. The duration of a cycle,
and the period of sync messages as a consequence, has to be chosen
in order to prevent that the drift of local clocks lead to wrong slot
delimitation. The error accumulated within a single communication
cycle determines the needed inter-slot dead time and, as a consequence,
the maximum bandwidth exploitation. The length of each time slot
should be at least as long as an empty CAN 2.0B frame, and no longer
than a full one (from 64 to 128 bit-times, plus the overhead of bit stuffing
imposed by the CAN bus). The number of slots per cycle determines the
maximum throughput: smaller slots give higher bandwidth if many small
messages are sent on the bus, but a bigger reservation mask, described
in the following, is needed.

4.3.4. HRT message scheduling

HRT messages are handled following a pure TDMA approach: they are
scheduled for transmission by a centralized scheduler, and each transmis-
sion occurrence has exclusive access to the bus. In fault-free conditions,
then, collisions are prevented, and transmission delays as a consequence;
this allows to achieve high temporal determinism with low jitter (which
is, ideally, removed).

The centralized scheduler runs on the master node, which keeps track
of HRT transmission requests by all nodes. For each new request, admis-
sion control starts by checking that the needed transmission period is not
relatively prime to other scheduled transmission periods, to guarantee
that messages will never overlap. Then, an initial phase displacement,
which determines the time slot for the first transmission, is assigned by
the scheduler to the HRT message, and it is checked that all the sched-
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Figure 4.10.: RTCAN reservation mask: each slot reserved to HRT
transmissions is identified by a bit set to 1 in the corre-
sponding position.

uled messages fit within the available time slots. Messages sent at higher
rate, i.e., with lower period, limit the number of available phase displace-
ments, thus reducing the number of schedulable messages. This simple
approach to HRT message scheduling restricts the range of concurrent
scheduled periods, but removes transmission jitter (besides variable la-
tency of the communication media, which is negligible on the CAN bus).
Moreover, having control loops running at periods which are multiple
of each other is common on robotic systems, then such a limitation is,
generally, not a problem.

Given the initial phase displacement, since HRT messages are periodic,
each node can compute the next time slot reserved to a HRT message
simply adding its period. In other words, the scheduler and the admis-
sion control are centralized on the master node, but each node has a
local reservation calendar with only its own scheduled messages. Using
a centralized scheduler facilitates online dynamic scheduling, preserving
flexibility, while the partial local calendars reduce memory requirements
on the nodes. Only the master node needs to know all HRT message
reservations to schedule new requests.

The local calendars, however, are not sufficient to know which time
slots are free to transmit non-HRT messages, as nodes do not know reser-
vations from other participants in the network. Only the master nodes,
which tracks all HRT reservations, has full knowledge of the transmis-
sion schedule. At the beginning of each communication cycle, the master
node updates the global calendar and fills a mask of bits, called reser-
vation mask, with a number of bits equal to the number of time slots
in the communication cycle. Bits set to 1 identify a reserved slot, while
each bit set to 0 means that the corresponding slot is free for arbitration
of SRT/NRT messages. The reservation mask is sent as payload of each
sync message, and received by all nodes. Figure 4.10 reports an exam-
ple of RTCAN communication cycle, and the corresponding reservation
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mask. Nodes know only the time slots assigned to their HRT messages
(e.g., message A for node 1), but they can distinguish free slots from
reserved ones by simply checking for the corresponding bit in the reser-
vation mask. As soon as a new time slot is triggered by the internal
timer, nodes check for reservation of the current slot. If the slot has
been marked as reserved, and the local calendar has a corresponding
reservation, the node sends the HRT message associated to that slot.
Otherwise, the node remains silent as it knows that other nodes are go-
ing to transmit an HRT message. If the slot has been marked as free
for arbitration, each node checks its queued SRT/NRT messages and, if
any, it tries to win access to the bus using the CAN CSMA arbitration
process.

4.3.5. SRT and NRT message arbitration

Event-triggered messages cannot be scheduled a-priori, and multiple
transmission requests can be issued at the same time. To handle con-
current requests, aiming at favor the most important ones, a priority
has to be assigned to each competing message. Priorities can be as-
signed to data sources and mapped in the CAN ID field, to exploit the
hardware CSMA arbitration provided by CAN controllers which auto-
matically gives bus access to the message with higher priority. This is
the approach followed by most CAN protocols, but priorities have to be
assigned at design time, which is not suitable for a dynamic system as
a network of R2P modules: the architecture of a robot developed with
R2P can vary, by adding both modules or software nodes, and we do not
want to define priorities for all messages at each change in configuration.

Events, in general, need to be handled within a certain amount of
time, for two main reasons: because the system has to quickly react
to the event (i.e., to avoid hitting an obstacle), or because the data
has to be considered valid only for a certain period (i.e., the measured
value changes rapidly). Without a-priory knowledge of the complete
system, we can still define how quickly the event has to be managed,
or how long a transmission can be considered useful, and we can assign
a deadline to messages. Fixed priorities can be assigned with the same
approach of rate-monotonic schedulers [83], but considering messages
deadlines instead of their periods, as it is done by deadline-monotonic
(DM) schedulers [22,23]: messages with shorter deadlines have higher
transmission priority. This scheduling policy is simple to implement,
as priorities are directly mapped to deadlines, but in some cases the
obtained schedule is not optimal and deadlines which could be met are
actually missed. When the bus is loaded, the highest priority transmis-
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sion will always meet its deadline, while lower priority messages often
miss deadlines. Moreover, the maximum resource utilization factor to
guarantee deadlines for this class of schedulers, in the general case, as
been demonstrated to be In(2) = 0.69 [83].

Different approaches are possible considering dynamic schedulers, where
priorities are not static, but are computed during the execution of the
system. One of the most common dynamic schedulers used to serve
non periodic tasks is the Earliest Deadline First (EDF) [126]: at each
scheduling request (i.e., the previous task has finished or yielded the re-
source), the scheduler looks for the task closer to its deadline and assigns
the resource to it. EDF scheduling has been recently adopted in a variety
of scenarios, including real-time systems, as it shows high flexibility and
can reach a resource utilization factor equal to 1; although it may look
much more complex to implement, it has been claimed that such believes
are questionable under many aspects [38]. EDF based approaches have
been proposed to schedule communication on the CAN bus [86,101] but,
to the best of our knowledge, no implementation actually exists.

Going back to the problem of assigning priorities to event-triggered
transmissions, let now compare how the DM and the EDF scheduling
approaches apply. To be more precise, as a representation of absolute
deadlines would not fit in the ID of a CAN frame (i.e., too many bits
would be used to express an absolute deadline), instead of an EDF sched-
uler, we focus on a variant of it, which assigns priorities on the basis of
the residual time before the deadline is missed, which is called lazity;
this scheduling policy is called Least Laxity First (LLF) [107]. As trans-
mission time is relative to the configured CAN bit rate, and also the
laxity encoded in the CAN ID field as well, as explained in the follow-
ing, we use here pure numbers. Figure 4.11 reports a simple scenario
with 3 event sources: S4 emits events with a deadline d = 20, S? is as-
signed with a deadline d = 25 and events from source S¢ have deadline
d = 30. Priorities are represented as they would be processed by the
CAN bus: a lower number, thus CAN ID starting with dominant bits,
is equal to a higher transmission priority, as explained in Section 4.2.2.
For simplicity, each message transmission is assumed to take the same
amount of time, which is equal to 10.

Applying a DM scheduler, the priority of each message is static and
equal to its relative deadline, so messages from source S have priority
p = 20, SP have priority p = 25, and so on, as shown in Figure 4.11a.
The first 3 transmission requests are correctly handled: e? is transmitted
as soon as the event triggers, since there are no other messages; then,
two concurrent requests, triggered by event 6‘14 and elc, compete for
bus access when the ongoing communication is concluded, and 6‘14 is
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(b) LLF scheduling: event €S is transmitted before event eZ, and both dead-
lines are met.

Figure 4.11.: Comparison of Deadline-monotonic (DM) and Least Laxity
First (LLF) schedulers applied to transmission scheduling.

transmitted first as its deadline is shorter, thus its transmission priority
is higher. Then, the message triggered by event elc is transmitted, and all
communication requests did meet their deadlines. The following requests
are issued in a different order: events e and e are triggered at the
same time, and ef wins arbitration due to its shorter deadline. In the
meanwhile, also event eQB triggers, and as soon as the first transmission
ends, it gains access to the bus, delaying again the communication of
event e§ which misses its deadline.

Consider now the application of the LLF scheduler, as represented in
Figure 4.11b. Here the transmission priority is recomputed each time
there is a transmission chance (i.e., when the ongoing transmission con-
cludes and the bus becomes idle) by looking at the laxity. The first
transmissions are handled in the same order as in the previous example:
when the transmission of e ends, e wins the arbitration over e{ as,
at that moment, its laxity is [ = 15, while event e? still has a laxity of
I = 25 before its deadline. The second round, instead, is handled differ-
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ently with respect to the DM scheduler: when transmission of event e
concludes, event eQB has just triggered, and it still has a laxity of [ = 25,
while event eg is nearer to its deadline, with a laxity of [ = 20, and it
gets transmitted first. Then, e gets transmitted too, and all deadlines
are met.

RTCAN uses LLF scheduling for transmission of event-driven SRT
messages, taking advantage of its better handling of sporadic tasks and
its higher resource utilization. To exploit the CAN bus carrier-sense
multiple-arbitration, the laxity of the message is encoded in the first
bits of the CAN frame arbitration field, as shown in Figure 4.9. Lax-
ity can be encoded linearly or using a logarithmic scale, resulting in
a finer resolution for nearer deadlines, and a coarser resolution for re-
mote deadlines [101]. NRT messages are handled as SRT ones, but their
transmission priority is always lower (the laxity bits are all recessive)
and it is never increased, thus they always lose the arbitration against
SRT messages.

4.4. Benchmarks

RTCAN have been benchmarked to evaluate its communication per-
formance in terms of transmission jitter and latency. In the following
sections, the experimental setup is described and benchmark results are
reported.

4.4.1. Experimental setup

RTCAN tests have been conducted a set of R2P hardware modules (see
Chapter 7 for specifications). To evaluate the performance of the pro-
tocol, four nodes have been used: three of them communicate using
RTCAN, while an extra module has been used to capture and times-
tamp with microsecond resolution all transmitted packets. During the
tests the cycle period is set to 10 ms and the number of slots per cycle is
60. The CAN controllers are configured for 1 Mbit data rate. As a con-
sequence, each time slot lasts 166 ps, which can contain a 8 byte CAN
frame with worst case bit stuffing (158 bit times), plus the CAN inter-
mission field (3 bit times) and 5 ps of separation between slots. A fixed
slot length of 166 ps introduces a discretization of admissible frequen-
cies, thus the actual frequency obtained could be slightly different from
the required one (e.g., 1000 Hz is translated to a period of 6 time slots,
which leads to an actual frequency of 996 Hz). Anyway, differences are,
generally, small, and we are more interested in guaranteeing temporal
determinism and low jitter than precise transmission frequencies.
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With the test configuration, the maximum throughput is 378 kbps,
which means only a little overhead with respect to the maximum data
rate of CAN 2.0B specifications, which is 398 kbps (again, in worst-case
bit stuffing situation). Having 60 time slots per cycle, the maximum
frequency for HRT messages is 3 KHz, due to the fact that slot O is
reserved to the sync message. To benchmark RTCAN, each of the nodes
schedules 3 HRT messages according to the frequencies reported in Ta-
ble 4.13a; this gives a total time-triggered traffic of 249.6 kbps leaving
some resources to SRT and NRT messages. Given the HRT requirements
of the nodes, the centralized scheduler produces a reservation mask to
reserve bus access to all time-triggered messages occurrences. The re-
sulting communication cycle, which in this configuration is periodic, due
to the requested frequencies, is presented in Figure 4.12.

To saturate the remaining bandwidth, several SRT messages are trans-
mitted by each node, simulating event-triggered traffic. The trigger pe-
riod varies, while the relative deadline is fixed for each message. The
test configuration for SRT messages is shown in Table 4.13b; the result-
ing average traffic is 150.9 kbps. As a consequence, the total requested
throughput is about 400 kbps, higher than the maximum admissible
value of 378 kbps.

4.4.2. Results

During the benchmarks about 250 k HRT and 100 k SRT messages were
transmitted. With respect to HRT messages, we evaluated the actual
update period, its standard deviation and the distribution of transmis-
sion jitter. Results are reported in Table 4.2, while Figure 4.13 shows the
transmission jitter. The results show that HRT messages never missed a
deadline and the jitter is bounded to £3 ps. Moreover, due to temporal
separation, HRT performances are not influenced by the actual bus load.
About the measured periods, we believe that some unavoidable jitter is
introduced by the CAN itself, which adapts the bit time to other nodes,
in order to have consistent bit timing over the bus. This feature cannot
be deactivated on our CAN controllers and it is not measurable without
specific network analyzers.
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Message Measured Standard
ID count  period [ps] devation [ps]

Hy 61136 995.9 0.86
Hp 12427 4979.4 0.93
He 6213 9958.8 1.05

Table 4.2.: HRT messages mean period and its standard deviation.

Message Missed Mean
ID count ratio latency [ms]
Sa 4121 1.60% 4.33
SB 1594 5.52% 5.13
Sc 784 5.21% 14.94

Table 4.3.: SRT messages missed deadline ratio and mean transmission
latency.

For SRT messages, we evaluated the missed deadline ratio and the
delivery latency. Missed deadline ratio and mean latency are reported
in Table 4.3, while latency distribution is shown in Figure 4.14. The
results show that S¢o messages, which have longer deadlines, thus a lower
initial transmission priority, rarely win arbitration when the laxity is
still high due to the EDF scheduling, and higher priority messages, i.e.,
with shorter deadlines, have less delivery latency. It can be noticed also
how Sp messages, which have the same deadline of S4 messages, have
a higher miss ratio, due to their fragmentation: two frames must win
arbitration for a successful delivery.

The test shows that RTCAN can handle high frequency HRT messages
with low jitter and a very little overhead, given by the sync message,
which occupies 1/60 of the bandwidth. As a comparison, consider that
to transmit a 1 Khz message in FTT-CAN, a 1 Khz trigger message is
needed, wasting 1/6 of the available bandwidth. The jitter is lower too,
as in FTT-CAN it is only bounded by the length of the synchronous
window. Compared to TTCAN, the centralized scheduler used in RT-
CAN, with only local calendars on the nodes, gives the same temporal
determinism of pure TDMA protocols, but without affecting flexibility
as using a static system matrix.
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Chapter 5

Middleware

RTCAN, presented in Section 4.3, provides low level communications
with real-time capabilities between R2P modules, but higher level inter-
faces are needed to support developers in writing the distributed control
software and to foster the development of modular, reusable, code. To
this extent, R2P includes a lightweight publish/subscribe middleware,
which is presented in this Chapter. In Section 5.1 we focus on the
problem of decoupling data flows, a prerequisite for flexible, modular,
architectures; in Section 5.2 a quick overview of common middleware for
robotics is given, highlighting the lack of available solutions targeted at
resource constrained devices. Section 5.3 introduces the middleware of
R2P, its architecture, and some implementation details, while in Sec-
tion 5.4 communication benchmarks are reported.

5.1. Decoupling data flows

A generic data flow is a transfer of information from a sender, the data
producer, to a receiver, the data consumer, through a communication
channel. Information can be carried between several configurations of
participants, i.e., one-to-one (one producer and one consumer), one-to-
many (one producer and several consumers), and many-to-many (many
producers and many consumers). Different time relationship between
source and destination are also possible: the consumer may wait for
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new data within its execution, in a synchronous way, or may be asyn-
chronously signaled by the producer whenever new data has been trans-
mitted, i.e., through a callback; finally, messages can be queued at both
the sender and the receiver sides, to be consumed later.

Distributed environments may change in time, with devices being
added and removed. Components may be interested in data in dif-
ferent ways (e.g., to log a sensor measure or to close a control loop on
that measure), and generally their behavior is not fully deterministic.
For these reasons, decoupling the production and consumption of infor-
mation is recommended, as it increases scalability and removes explicit
constraints between the interacting components. According to [49], the
decoupling that the communication model provides between producers
and consumers can be described by three factors, which are summarized
in the following.

e Space decoupling defines if the interacting parties need to know
each other. In space decoupled data flows, producers can send
data through the communication channel, and consumers get data
indirectly through it. Producers do not need to hold references of
the consumers, or to know how many of them are taking part into
the interaction, and can send data even if there are no consumers
at all. In the same way, consumers do not hold references of the
producers, do not know how many producers are active and which
one produced the data they are receiving.

e Time decoupling defines if the data exchange requires both the
producer and the consumer to be active at the same time. With
time decoupling, producers can send data even if the consumer
is disconnected at that moment, and consumers may receive data
generated by a sender which is not active any more.

e Synchronization decoupling specifies if consumer and producer ac-
tivities are suspended while sending and receiving data. If syn-
chronization decoupling is provided, a producer is not blocked
while sending data, even if receivers are slowly consuming infor-
mation. On the other side, consumers are asynchronously notified,
i.e., through a callback, of the availability of new data while per-
forming some concurrent activity.

A rapid review of popular communication paradigms follows, high-
lighting the decoupling level they provide and how they would apply to
the modular architecture for robotic applications we are proposing.
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5.1.1. Message passing

Message passing is one of the very first techniques developed to allow dis-
tributed computation. In its simplest implementation, the data source
fills a message and it is responsible for delivering it to each of its recipi-
ents, on a given communication channel. The message passing model is
rarely used directly to develop distributed systems, since it exposes many
issues, such as recipient addressing and flow control, to the application.
On the top of this simple paradigm, however, many complex interaction
schemes have been built in the years, implementing much more com-
prehensive features. Modern inter-process communication systems like
D-Bus [87] and, in general, message-oriented middlewares, are based on
the concepts from message passing, and used in many popular software
projects as the Gnome window manager [132].

Despite being widely used in software engineering, the message pass-
ing model does not satisfy the decoupling requirements needed by dis-
tributed systems. Strict time coupling is imposed, as the consumer is
required to be ready to handle incoming data when the producer sends a
message, or the transfer will fail. Without message queuing techniques,
the reception of messages is synchronous, which gives synchronization
coupling on the consumer side. Moreover, as the data source must hold
references to receivers, which are explicitly specified, producers and con-
sumers are also space coupled.

5.1.2. Request/response

In the request/response model, information exchange occurs by issu-
ing requests and waiting for corresponding responses; examples of this
kind are client/server transactions and remote calls. Client/server in-
teractions are asymmetric requests commonly used to implement mas-
ter/slave type of queries. The client acts as a master, making a request
and waiting for the response from the server, which is a normally idle
slave waiting for requests from clients. As soon as the request is received,
the server elaborates the reply and sends it back to the client. This kind
of interaction is very popular and is often used to implement complex
software projects, with one server, or more, dispatching requests com-
ing from other components of the application. The use of client/server
transactions is also very common when many distinct peers need to ac-
cess the same resource, e.g., a file system or a communication channel,
with a server directly managing the resource to satisfy all the requests.

Client/server interactions are not generally suitable for distributed
real-time interactions due to some drawbacks of this technique. First
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of all, each data transfer needs two transactions, i.e., the request and
the corresponding responses, and occurs between exactly two peers, the
client and the server. Moreover, when a client is waiting for a response
by the server, it is blocked and cannot execute concurrent operations,
leading to strict synchronization coupling. Nevertheless, the server must
be running and ready to handle incoming requests, imposing time cou-
pling. As the client has to know the server address to issue a request,
space coupling is also present.

The request/response model has also been used to implement remote
procedure calls (RPC) [29,128] and, in object oriented languages, re-
mote method invocations (RMI). These techniques allow an application
to call a function which is executed on a remote system, receiving the
corresponding return value. The RPC/RMI technique gained high pop-
ularity within distributed computing, since, from the point of view of
the application, remote and local interactions work in the same way.
Such an easy to use solution presents many advantages, enabling any
developer to quickly write distributed applications, but also presents
some drawbacks, since issues which are not locally detectable (e.g., a
communication failure) have to be handled explicitly by the applica-
tion. Distributed object middlewares (DOM) have been developed on
the top of the RPC/RMI model, e.g., DCOM [36], CORBA [99, 133]
and ICE [69]. These technologies have also been adopted by several
of the first communication middlewares for robotics, e.g., Orocos [37],
Orca [93], RT-Middleware [20], and Miro [131].

RPC/RMI techniques suffer from the same problems of the clien-
t/server interactions: each data exchange is composed by two transac-
tions, adding overhead, and there are time and space couplings as caller
entities must hold remote references to each of their callees, which syn-
chronously handle requests. For the mentioned reason, the request/re-
sponse model, and its derivatives, is not the best choice for modern
robotics applications where most of the data flow is not peer-to-peer
but one-to-many or even many-to-many, and decoupling is needed due
to the frequent changes in the network of data producers and consumers.

5.1.3. Shared memory

The concept of shared memory is a common programming technique,
which allows multiple programs simultaneously access the same memory
area to exchange information avoiding redundant copies, in the same way
they were accessing their own local memory. This technique has been
extended to distributed computing systems, i.e., with processes running
on different machines which cannot access the same physical memory,
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with the introduction of the distributed shared memory paradigm [18,85].
When an application accesses a shared memory address, the operating
system takes care of mapping the virtual address to the actual, physi-
cal, memory area, in a way completely transparent to the application.
Communication occurs by simply writing into and reading from loca-
tions of the shared memory; changes are immediately available to all
the peers, which must read the updated values promptly, before new
data overwrites it.

The shared memory model offers time and space decoupling, because
data producers and consumers do not know each other, they simply ac-
cess the same memory area to exchange information, remaining anony-
mous. Producers write data into memory asynchronously, while con-
sumers read new values from the shared space in a synchronous way;
thus, synchronization decoupling is provided only at producer side.

The shared memory paradigm is very popular and widely adopted, al-
lowing applications to be designed as they were not distributed, thanks
to the underlying address mapping system. Despite its ease of use,
the simple shared memory paradigm, with consumers required to syn-
chronously access the memory to not loose consistency, is not appropri-
ate for applications needing to communicate events and react to data
change like robotic systems.

5.1.4. Notifications

In order to achieve synchronization decoupling, a synchronous remote
request can be split in two asynchronous transactions: a first one from
the consumer to the producer to specify how any occurrence of new data
can be signaled, and a second one back from the producer to the con-
sumer with the actual data. In the notifications model, the consumer
first sends a request to the producer with the details of the transaction
and a reference to the callback function used to actually perform the
transaction; then, the producer notifies the consumer returning its re-
ply, as soon as new data is ready, through the callback. This paradigm,
with consumers showing their interest on a particular data flow by di-
rectly registering with producers, corresponds to the well known observer
design pattern [75], where an object, called the subject, maintains a list
of its dependents, called observers, and notifies them automatically of
any state changes, usually by calling one of their methods. The mecha-
nism can be extended allowing the producer to return multiple replies,
by calling multiple callbacks to the consumer, implementing basic pub-
lish /subscribe transactions.

Although notifications are asynchronous, providing synchronization
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decoupling, the strict relationship between producers and consumers
introduced by the registration process still forces strong space and time
coupling.

5.1.5. Publish/subscribe

The publish/subscribe model has been proposed to overcome the cou-
pling problems shown by common communication paradigms. In this
model, consumers express their interest in a data flow by a issuing a
subscription to that specific flow, in order to receive any data update
matching their interest. On the other hand, producers can publish infor-
mation on a data flow, causing all subscribed consumers to be notified
whenever new data have been published. The core component of this
paradigm is the dispatcher, which acts as a mediator in charge of keep-
ing trace of active subscriptions and efficiently handling the notification
process.

Several flavors of publish/subscribe have been implemented, with dif-
ferences about how data flows are identified and, thus, subscribed. The
earliest publish/subscribe scheme was based on the concept of topics, or
subjects, identified by keywords, to which participants publish and sub-
scribe information. Topics can be seen as communication groups: sub-
scribers of a topic are somehow members of a group, to which publishers
broadcast heterogeneous data. Another variant is referred as content-
based publish/subscribe, where subscribers specify the actual content of
the data they are interested in through a subscription language. In this
way, publisher-subscriber relationships are not defined through a static
criterion (e.g., the topic name), but are evaluated at run time analyz-
ing the content of each data transfer. A different addressing schema
has been developed observing that data grouped in the same topic show
similarities not only in terms of content, but also in terms of struc-
ture [50]. This led to the proposal of the type-based publish/subscribe
model, which allows a closer integration between the middleware and
the application code, enabling type safety through different components
of the system: data flows are identified by the topic name, which also
defines the type of published messages.

This communication paradigm introduces space decoupling between
producers and consumers through the fact that publishers and sub-
scribers do not know each other: publish/subscribe operations, and in
particular the delivery of notification to all the subscribers, are medi-
ated by the dispatcher, whose architecture can be either centralized or
distributed. Time and synchronization decoupling are also provided, as
the only synchronous invocations are issued between the publisher and
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the dispatcher, and, in a second moment, between the dispatcher and
the subscriber. This model offers significant advantages in situations
where transferred data correspond essentially to time changing values
of an otherwise continuous signal (e.g., sensed data, control signals,
etc.), as a single subscription replaces a continuous stream of requests,
allowing for data transfer with minimum delay since the exchange is
one way and asynchronous. Being notification based, the publish/sub-
scribe model is very beneficial when a system needs to monitor a great
number of perhaps infrequent events, while in a client/server model or
shared memory model, the monitoring process should continuously poll
for possible changes. One-to-many and many-to-many communications
are supported by the publish/subscribe model in a natural way, and
its implementation can often take advantage of multicast and broadcast
mechanisms at the network level to improve efficiency of event notifica-
tion.

5.2. Publish/subscribe middlewares in robotics

The publish /subscribe communication model is very common in robotics,
as it is normal to have several sources of information of the same type
(i.e., multiple proximity sensors), and multiple consumers of the same
data (i.e., path planners and low-level collision avoidance). Moreover,
thanks to the complete decoupling provided by this paradigm, it sup-
ports the development of highly modular architectures. Indeed, sev-
eral development frameworks for robotic applications provide support
to publish/subscribe interaction.

5.2.1. ROS

Probably, the most noticeable publish /subscribe middleware for robotics
is ROS, which provides the user with three different communication
patterns to exchange data between peers: topics, services and actions.

Topics are named buses over which nodes exchange messages follow-
ing the publish/subscribe paradigm; they are intended for unidirectional,
continuous communication such as data streams from sensors. ROS top-
ics are strongly typed: publishers define the data type while advertising
a topic, specifying the ROS message type to refer to, and subscriber can
only receive messages with a matching type.

Messages are simple data structures, comprising several typed fields;
they are defined through message files and can include standard prim-
itive types (e.g., integers, floating point numbers, boolean values, etc.)
as well as previously specified ROS messages. The building system then
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parses the message files and generates the code needed to handle each
type of message, i.e., marshalling and unmarshalling functions.

Currently ROS supports two data transport to actually transfer data
over a network of nodes: the TCPROS transport, which streams message
data over persistent TCP/IP connections, and the UDPROS transport,
which broadcasts messages as UDP packets.

Pairing between subscribers and corresponding publishers is managed
by a centralized service, the ROS Master, acting as a name server keeping
track of publishers and subscribers to topics as well as services. The role
of the Master is to enable individual ROS nodes to locate each other,
then communication is established on a transport and the nodes can
start communicating.

ROS services are intended for request/response interactions, such as
remote procedure calls, that are not well handled by the publish/sub-
scribe paradigm. Transaction contents are described by service descrip-
tion files, composed of two ROS message type specifications: one for
the request and the other for the corresponding reply. Services should
only be used for remote procedure calls that terminate quickly, as they
implement synchronous, blocking, calls.

Asynchronous requests can be issued through actions, the ROS provider
of client-server interactions. Action specifications include three message
definitions used to describe an action: the goal, sent by the client to
describe the requested action, the feedback, used to tell a client about
the incremental progress of a goal, and the result, sent by the server
upon goal completion. ROS actions are used to create servers executing
long-running goals that can be preempted, e.g., moving the robot base
to a target location or applying a chain of filtering algorithms on sensor
data to extract interesting features.

The ROS feature-rich communication model has been proved to be
very effective to develop software for robotics, allowing users to easily in-
tegrate software components implementing complex applications with a
distributed approach. Unfortunately, ROS was developed with desktop-
class computers as target, and its implementation is not suitable for the
resources of low-cost embedded processors such as the microcontrollers
used in R2P modules. First of all, the ROS master rely on a XML-RPC
based protocol to setup nodes and connections, which ensures maximum
portability among different platforms but presents heavy requirements
in terms of both memory and computation. Moreover, ROS C++ imple-
mentation depends on complex software libraries and advanced language
features (such as exceptions and RTTI) which cannot be enabled on mi-
crocontroller targets due to their memory requirements. Currently sup-
ported transports rely on communication protocols needing dedicated
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hardware and heavy software stacks (i.e., TCP and UDP). Finally, ROS
does not support any real-time constraints, being developed to mainly
design high level behaviors such as reasoning and planning. Messages
can be queued for delivery at both producer and consumer sides, but no
specifications about message priority or delivery deadline can be defined.
Despite a ROS client-only implementation for low-cost microcontroller
is feasible, and has been implemented to interface R2P modules to a
ROS network (see Chapter 6), R2P needs a much more lightweight and
real-time oriented middleware to enable communication among software
nodes as well as hardware modules.

5.2.2. LCM

The Lightweight Communication and Marshalling (LCM) framework
provides a publish/subscribe messaging system, offering very high per-
formance, and enabling data exchange between processes with high through-
put and low latency. As in ROS, topics are strongly typed: each topic
carries only one type of message, with its data content specified through
message descriptor files. To prevent type inconsistency, e.g., due to
mismatching topics or wrong message descriptions, each LCM message
header contains a 64 bit hash code of its type descriptor, and type check-
ing is performed on every transmission.

LCM relies on UDP multicast messaging, so messages are sent once
for the whole network, scaling well with the number of nodes and achiev-
ing low delivery latency. UDP does not provide control flow and, as a
consequence, dropped packets are not resent, reducing the latency of
successive packets, but requiring the application to deal with lost mes-
sages, if needed.

LCM is very simple and efficient, and has been used also to perform
soft real-time tasks on real robots [35,84,129]. On the other side, as we
observed with ROS, having desktop-class computers as target platforms,
some LCM design choices make it not suitable for resource constrained
devices. The transport is not actually abstracted, so the strict depen-
dency from the UDP protocol requires an Ethernet-capable platform.
Performing run-time type checking prevents several problems from oc-
curring and sure enough has many advantages on powerful platforms,
but it introduces an overhead we need to avoid on embedded targets.
As an example, the 64 bit hash included into the LCM header would fill
an entire CAN packet for each message sent, which is off curse a cost
too high for a feature we do not strictly need. Moreover, LCM message
dispatching is worked out by comparing topic name strings at each re-
ception, adding overhead to the delivery process. Finally, no real-time
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constrain can be specified in LCM, preventing its use to implement hard
real-time distributed tasks.

5.2.3. Famouso

To the best of our knowledge, the only publish/subscribe middleware
supporting embedded devices is FAMOUSO, which claims to be able
to run on platforms ranging from 8-bit microcontroller to desktop-class
computers. FAMOUSO is focused on seamless integration of hetero-
geneous devices, enabling them to exchange data over a broad vari-
ety of communication media like CAN, ZigBee, AWDS and UDP. FA-
MOUSO messaging system is strictly event-driven: communication is al-
ways asynchronous, avoiding control flow dependencies and enabling the
independence of communication participants. Each FAMOUSO event is
specified by three elements: a subject, optional attributes, and the con-
tent. Subjects represent topics, and are defined by the applications;
each subject is then mapped to a network-dependent address, building
a global address space spanning across all networks. This feature is ex-
ploited by gateways, to enable and manage communication between dif-
ferent networks. Optional attributes could be context attributes, which
deliver additional information about the event, such as origin or times-
tamp. The event content is specified by the user and is application de-
pendent. Data is actually carried by event channels, which are abstract
channels for event dissemination. Event channels support the specifica-
tion of transmission requirements like deadline, jitter, omission degree,
and the reservation of the needed network resources to enforce delivery
guarantees. Despite being a powerful framework for event-driven appli-
cations, FAMOUSO does not suit the requirements of a distributed ar-
chitecture where also periodic, hard real-time, communication is needed,
e.g., to implement distributed control loops.

5.3. A lightweight publish/subscribe middleware

To let R2P modules exchange information, and to foster the develop-
ment of modular, reusable, embedded software, we have designed and
developed a lightweight middleware with the goal of bringing to resource
constrained devices the same programming techniques often exploited on
desktop-class processors.

R2P middleware follows the type-based publish/subscribe paradigm,
and it is focused on limited resource requirements, efficiency, thread-
safety, and real-time communication. The architecture is decentralized,
meaning that there is not a master node, but all participants have the
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Figure 5.1.: R2P middleware main components.

same role in the network. Each R2P module runs an instance of the
middleware, and network configuration is carried out through lazy, asyn-
chronous, interactions (i.e., a subscriber to a topic which has no pub-
lishers yet, periodically polls for new publishing nodes).

5.3.1. Nomenclature

A quick recap about the nomenclature used in R2P follows; see Fig-
ure 5.1 for reference. Hardware boards are called modules, each hosting
a microcontroller and connected to other modules by a communication
channel. Modules run several nodes, the software components which per-
form computation. Data is exchanged among nodes by messages, which
are simple data structures encoding some information. Nodes send mes-
sages by advertising a publisher about a specific topic, which identifies
the data content. On the other way, nodes can declare a subscriber on
the same topic, and the middleware associates it to the corresponding
publisher.

5.3.2. Nodes

Nodes are software components performing simple tasks, with the goal
of satisfying a specific functional requirement or a part of it. An ap-
plication is then implemented as a network of nodes, running on the
same module or distributed on several modules. Nodes provide modu-
larity from the software point of view: jobs, e.g., complex activities to
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achieve a goal, are split in multiple, smaller, tasks solving a well defined
and bounded problem. Then, nodes can be reused in different projects
showing common needs, speeding up the development and improving
maintainability.

Each node is assigned a string, the node name, which is used to identify
it, and which is unique within the module. The node name is then
composed with module name, building a hierarchical path string in the
form of /module name/node name, to uniquely address nodes within the
R2P network.

The life cycle of a node is composed by three phases: initialization,
loop, and termination. In the initialization phase, nodes set up the ele-
ments they need to operate and wait for everything to be ready. Pub-
lishers and subscribers are declared and advertised to the middleware,
which will associate them to the respective topics. If data coming from
specific topics is required to correctly run the node, it can wait for the
corresponding publisher to be instantiated. Nodes working with hard-
ware also initialize the corresponding peripherals before going through
the next phase.

When a node is operational, it enters a loop: here computation is
performed, decisions are made and messages carrying the results are
published to be consumed by other nodes. Incoming messages are pro-
cessed through the execution of callbacks or, eventually, directly getting
them from the subscriber, as shown in Section 5.3.5. Loop execution
is managed by calling the spin() method, which suspends the execu-
tion, until new messages are available, and invokes callbacks to handle
incoming data. Eventually, a timeout can be specified as argument of
the spin() method, and the thread is awaked if no messages have been
received within the timeout.

Nodes can be requested to exit the loop, and the termination phase
begins. Depending on the specific application, a node may terminate
directly or execute some instructions before exiting (e.g., a node control-
ling a motor may halt it or place it to a safe position to avoid unexpected
situations).

A node is actually implemented as a thread of the underlaying real-
time operating system, and thus it inherits thread features. Execution
priorities can be assigned to nodes, which then will be scheduled for ex-
ecution giving precedence to mandatory tasks. A motion control node,
for example, can be prioritized with respect to a node acting as a log-
ger, and its operation will not be preempted by nodes implementing less
important tasks. Node execution can also be synchronized, if needed,
relying on the synchronization primitives offered by the OS like signals,
semaphores, mutexes, and timers, imposing an execution flow and guar-
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class Timestamp : public r2p::Message {
uint32_t sec;
uint32_t nsec;

} R2P_PACKED;

class IMUAttitude : public r2p::Message {
float roll;
float pitch;
float yaw;

} R2P_PACKED;

Listing 5.1: Message content is specified by C++ classes

anteeing system consistence. Using the global time base provided by
RTCAN (see Section 4.3), threads can also be synchronized through
different R2P modules, coordinating distributed operations.

5.3.3. Message type specification

R2P follows the type-based publish/subscribe paradigm: a topic does
not only identify the subject of messages being exchanged, but also
their data type. The strong typed definition of data flows improves the
decoupling between producers and consumers, as referring to the same
topic guarantees that the content of exchanged messages is consistent.
Nodes can then be updated, or even replaced, with any other imple-
mentation which publishes and subscribes the same topics. With the
assumption that R2P modules share the same architecture, the binary
representation of message content is guaranteed to be consistent too.

The content of R2P messages is specified by defining standard C++
classes, composed by typed fields (see Listing 5.1), and such specifica-
tions are common to all nodes. Message definitions must inherit from the
r2p::Message class, which provides an additional header used for mem-
ory management, as explained in Section 5.3.4. They are also packed,
i.e., without added padding, to both save memory and avoid the need
for type-dependent marshalling and unmarshalling functions.

An abstract message definition language could have been used to spec-
ify messages, as it is done in ROS and LCM, improving flexibility and
type-safety. We did not adopt that solutions for two main reasons:
first of all, R2P modules share the same microcontroller architecture, so
machine-dependent problems such as binary representation of data and
endianness are not a problem; moreover, marshalling and unmarshalling
functions add execution overhead and require to copy the payload from
a data structure to another, needing to allocate more memory. R2P
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performs zero-copy message local delivery, and even the payload of mes-
sages coming from other nodes through a transport (i.e., a communica-
tion channel) are written directly into memory to reduce allocations and
improve performance, as detailed in a while.

5.3.4. Topics

Topics represent the channel used by nodes to actually exchange mes-
sages about a particular subject. Each topic is identified by a string,
the topic_name, and they are uniquely identified on the network as mod-
ule_name/node_name/topic. Topics are instantiated when they are first
referred by an advertisement (the creation of a publisher), or by a sub-
scription (the creation of a subscriber). With distributed publishers and
subscribers, an instance of the corresponding topic exists on all producer
and consumer modules, and they exchange data through a communica-
tion channel, as explained in the next Section.

In R2P, topics are also in charge of managing the memory where mes-
sage content is stored. The implementation of memory management
mechanisms depends greatly upon operating system, architecture and
available resources; on resource-constrained devices, such as the micro-
controllers used in R2P modules, standard dynamic memory allocation
functions (e.g., malloc() and free()), are often not supported and, gen-
erally, their use is not recommended. The main reason is that dynamic
memory management is prone to fragmentation: after some allocation
and deallocation requests, there will be sections of used and unused
memory, and, if successive allocations require chunks bigger than the
unused fragments, some memory is actually wasted. Many techniques
have been developed to efficiently use the available memory [135], trying
to minimize the wasted space and keeping track of unused areas. Func-
tions provided by standard libraries, like the GNU C library (glibc),
introduce execution and memory overhead, to achieve high utilization
factors keeping track of unused memory areas, which are not compat-
ible with embedded targets. Moreover, performance of most dynamic
allocators is affected by non-constant execution time, due to the search
for free memory chunks and to the optimization of unused areas, and
this prevents their use in critical sections of real-time applications. Al-
though alternative allocation algorithms have been proposed for real-
time systems [94,106], most RTOS targeted at resource-constrained pro-
cessors provide dynamic memory management primitives implementing
very simple allocation mechanisms, like first-fit algorithms (the first free
block large enough to satisfy the request is returned), affected by mem-
ory fragmentation and allocation time issues.
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Topics provide the user with functions to allocate memory for mes-
sages to be published based on memory pools. Memory pools, also called
fixed-size-blocks allocators, allow dynamic memory allocation, with con-
stant execution time, preventing fragmentation and with little memory
overhead. A number of memory blocks, all with the same size, are
preallocated to constitute the memory pool; then, the application can
allocate, access and free memory at run time as with standard alloca-
tors. The limit of managing only memory blocks with the same size is
not a problem for our purposes, as all messages exchanged on a topic
are of the same type and, thus, have the same memory footprint.

Within the creation of a new topic, an empty memory pool is initial-
ized and assigned to it. Memory blocks to fill the pool are provided on
subscription: each subscriber statically allocates memory for its mes-
sage queue (see Section 5.3.5]), and yields it to the memory pool, which
grows in size as a consequence. In other words, each local subscriber to
the topic participates to form the memory pool by donating the memory
it allocated. As a consequence, if several nodes subscribe to the topic,
each one with its message buffer length, the overall size of the mem-
ory pool will be the sum of all buffers donated by subscribers. This is
possible because chunks managed by the memory pool do not need to
have consecutive locations, but can be sparse in memory, as each free
chunk holds a pointer to the next available memory area. Publishers
allocate memory for new messages from the memory pool and publish
them; when all subscribers did consume the message, the memory can
be released and put back into the memory pool for future allocations.

When a producer publishes a message on a topic, the corresponding
topic handler cycles its subscribers and tests if they are ready to receive a
message (i.e., their message queue is not full) and, for ready subscribers,
the message is delivered into their queue. Then, the middleware notifies
nodes of new messages to consume, and schedules them for execution,
requesting the underlaying RTOS to awake them.

Message delivery and notification are important operations which need
to be optimized, as they affect performance of the whole middleware.
Firstly, this is the step in which data is actually transfered from pro-
ducers to consumers, thus the maximum throughput mainly depends on
how message delivery and notification are implemented. Moreover, these
operations involve critical sections of code (e.g., to work with message
queues and with the scheduler), requiring to be executed atomically by
locking the system or by acquiring a mutex. As a consequence, they are
source of jitter and other tasks can be delayed while messages are being
delivered. In R2P, these operations have been carefully implemented,
trying to reduce their execution time and overhead.
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To minimize the notification time, the middleware implements a zero-
copy message delivery mechanism: messages are filled by the publisher
and then notified to all subscribers by passing a reference to them. Mes-
sage queues, thus, do not contain messages with their content, but only
pointers to the memory areas where the messages to be consumed are
actually stored. On message publication the topic handler cycles each
subscriber and checks if its message queue is full; if not, the pointer to
the message is put into the queue, without needing to perform a copy of
its content. For each successful delivery, a reference counter associated
to the message is increased; then, when a subscriber finishes consum-
ing the message, it is released and the corresponding reference counter is
decremented. When the reference counter is equal to zero, it means that
all consumers did fetch and release the message, and the corresponding
memory can be freed. In fact, the delivery mechanism works together
with the memory pools responsible of allocating memory for messages:
allocation requests are issued by publishers, and the memory is freed and
put back in the pool after all subscribers dereferenced the message. The
zero-copy technique reduces delivery latency and jitter too, minimizing
the contributions dependent on the number of ready subscribers, which
is conditioned by the status of the system and, thus, it is not constant.

Notification of new enqueued messages is accomplished by perform-
ing two actions: first, the thread is marked as ready for execution, so
that it gets scheduled by the operating system and executed again; then,
a bit mask is used to identify which subscriptions have messages to be
consumed, allowing to directly invoke callbacks without polling each sub-
scriber. Callbacks are invoked within the execution context of the node,
so the order they get called follows the priority of the corresponding
node.

5.3.5. Publishers and subscribers

Publishers and subscribers are the mediators used by nodes to communi-
cate. They are declared within nodes, defining the data they are going to
produce and the data they need to operate. In other words, by declaring
its publishers and its subscribers, a node specifies the output and input
ports to connect with other nodes. The data type of messages must
be specified as parameter of a C4++ template, within the declaration
of publishers and subscribers, as shown by the code excerpts reported
in Listing 5.2 and 5.3. The data type is also used internally to cor-
rectly instantiate type-dependent structures, such as the memory pools
used to store messages and to handle memory allocations as described
in Section 5.3.4.
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void ledpub_node(void *arg) {
Node node ("ledpub");
Publisher <LedMsg> led_pub;
bool toggle = O0;

node.advertise(led_pub, "leds");

while (r2p::o0k()) {
LedMsg *msgp;
if (led_pub.alloc(msgp)) {
msgp->led = led;
msgp->value = toggle;
toggle “= 1;

led_pub.publish (*msgp);
}

Node::sleepMs (500);
}
}

Listing 5.2: Publisher node code sample

Depending on the application, it might be needed to queue messages
when a subscriber is not ready to consume available data. To this ex-
tent, a subscriber declaration expects as a parameter, together with the
message data type, the length of the queue to initialize. Each subscriber
holds its own queue, and messages are delivered to subscribers with
free slots in their queue, while messages are lost only by subscribers
with a full queue. In this way, decoupling between subscribers is pro-
vided, and slow consumers are prevented from blocking the delivery of
new messages to faster subscribers. Message queuing is realized without
involving copies of messages, to avoid data replication and execution
overhead, and messages are passed by reference. Details about message
notification and delivery are provided in Section 5.3.4.

Advertisement and subscription

Nodes communicate to the network their intention to produce data about
a particular subject by advertising a publisher on the corresponding
topic. On the other side, subscriptions are issued by consumer nodes to
associate subscribers to the topics they are interested in.
Advertisement and subscription actions are triggered by nodes, calling
the advertise() or the subscribe() operations on a publisher or on a
subscriber instance, respectively. The node is required only to specify
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void callback(const LedMsg &msg) {
setLed (msg.led, msg.value);
}

void ledsub_node(void * args) {
Node node("ledsub");
Subscriber <LedMsg, 5> sub(callback);

node.subscribe (sub, "leds");

while (r2p::o0k()) {
if (!'node.spinMs (1000)) {
/* Timeout! */
handle_timeout ();
}
}
}

Listing 5.3: Subscriber node code sample

the string representing the subject of the data flow (i.e., the topic name),
to identify the topic. These operations request the middleware to find
a local instance of the corresponding topic; if it is not found (i.e., it
is the first reference to that topic), a new instance is created. Local
advertisements and subscriptions are carried out by simple operations:
as soon as the node advertises a publisher, the middleware associates it
to an existing, or a new, topic instance. The same applies to subscribers,
which can be declared after or before respective publishers: the first to
be instantiated will cause the middleware to create the corresponding
topic.

Advertisements and subscriptions are also broadcasted to all the reg-
istered transports, to find remote instances of the topic and correctly
associate them. The protocol, which is sketched in Figure 5.2, is asyn-
chronous and stateless. Advertise and subscribe messages are exchanged
on the /r2p topic, which is dedicated to network management and pub-
lication of debug messages. The /r2p topic is subscribed by a special
node, running on each module, responsible for managing node requests,
creating new topic instances, dispatching debug messages and, eventu-
ally, in charge of handling the node loading process that will be described
in Section 5.3.8.

Whenever a publisher is advertised, an advertise message is sent on
every transport, containing the name of the topic; if a module connected
to the network has already a local instance of the same topic (the case
in Figure 5.2a), it replies with a subscription request. The request is
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Figure 5.2.: Advertisement and subscription through a generic trans-
port; note that notifications are broadcasted to all modules,
if supported by the communication channel

received by the management node running on the publisher side, which
looks for a local instance of the corresponding topic (i.e., being stateless,
there is no knowledge about the previous advertisement); if it is found,
a remote subscriber, specialized for the given transport, is instantiated
on that topic. Finally, a reply is broadcasted containing again the name
of the topic and, eventually, transport dependent parameters, like the
RTCAN ID on which messages on that topic will be published, and the
subscriber module creates a remote publisher on the corresponding local
topic instance. The same process applies when subscribers are declared
after the corresponding publishers: the initial advertisement message is
ignored, as there were no local instances of the topic, but on subscribe
operations the request is always broadcasted through transports, and if
publishers exist on any other module, a reply is transmitted.

From the topic point of view, local and remote publishers, or sub-
scribers, act at the same way: remote publishers receive messages through
the transport they were created on, and publish them on the local topic
instance, as local publishers do. In the same way, messages published
by local nodes are notified to the remote subscriber and, thus, sent the
corresponding transport.

Remote publishers and subscribers are specialized on a transport, and
may exploit specific features like the ID filtering capability of CAN con-
trollers to receive only messages on subscribed topics (see Section 4.2.2),
thus reducing processor load. The arbitration of transport-dependent
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parameters, such as the identifier associated to each topic, is left to the
implementation of the transport itself.

Producing and consuming messages

To produce a message, the application first tries to allocate memory to
hold the message content, by calling the alloc method on the publisher;
the request is actually forwarded to the corresponding topic, which man-
ages a memory pool, as already mentioned. Then, the message is broad-
casted by the publisher through the publish() operation, informing the
topic instance that new data needs to be delivered to subscribed nodes.

Messages can be consumed by nodes both in a synchronous and an
asynchronous way. Synchronous reception is achieved by calling the
fetch() operation on the subscriber, which returns the older message in
the queue, if available, or puts the node thread in wait state; a timeout
can be eventually specified to awake the node even if no message was
received. It should be noted that only the reception is synchronous,
as the message was already published and put in the queue; publishers
are not blocked and their execution is not affected by how messages are
consumed. To enable asynchronous reception, the node can specify a
callback function within the declaration of the subscriber and wait for
messages by calling the spin() method; then, for every message success-
fully delivered to the node (i.e., its queue was not full), the callback is
invoked to handle incoming data. An example of asynchronous message
handling is reported in Listing 5.3. Callbacks are invoked with the same
priority of the node, so that the execution of slow callbacks is prevented
from affecting the operations of other nodes.

5.3.6. Real-time support

R2P middleware is designed to run over a real-time operating system
(RTOS) featuring synchronization mechanisms and multi-threading. De-
pendency from the operating system is abstracted by classes acting as
interface between the software and the actual implementation of com-
mon RTOS primitives (e.g., threads, signals, semaphores, mutexes, etc.),
for an easier porting of the middleware to different architectures, also
independently from the R2P framework.

In the current implementation, the middleware supports ChibiOS/RT
[46], a compact, fast, open source RTOS focused on embedded real-time
applications. ChibiOS/RT provides both cooperative and round-robin
scheduling, which helps developers with little or no experience in RT
systems to write concurrent software nodes. It also features a complete
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Hardware Abstraction Layer (HAL), easing access to microcontroller
peripherals.

As nodes are threads, they are scheduled for execution by the RTOS.
Priorities are assigned to nodes in order to prevent critical tasks from
being blocked by lower priority ones. Developers can take advantage of
the many features offered by the underlaying RTOS to synchronize local
nodes, manage mutual access on hardware resources, and so on.

To support real-time interactions, the middleware defines 3 classes of
publishers:

e Periodic real-time publishers, which are time-triggered and publish
periodic messages, e.g., from distributed control loops. In this case,
the user specifies the update rate and provides a callback to get the
content of the message, which is then automatically published. If
the memory pool is empty, thus the message cannot be published,
the publishing node is signaled.

e Sporadic real-time publishers, which are event-triggered. These
publishers have a deadline, which specifies a time limit by which
messages must be inserted in the subscribers queue. If a deadline
is missed, the publishing node is signaled.

e Non real-time publishers, which do not expire in time, like logging
messages. If the message queue is full, the node is suspended,
waiting for an available slot.

Local and remote subscribers do not differentiate between the type
of publishers; anyway, as nodes can specify a timeout when waiting for
messages, they can notice missed deadlines and handle the condition.
Real-time interactions between distributed nodes, running on different
modules, depend on the features provided by the underlaying transport.

5.3.7. Transports

Transport are responsible of delivering messages to distributed nodes, by
using remote publishers and remote subscribers as previously explained.
The preferred transport used to connect R2P modules is RTCAN, pre-
sented in Chapter 4; it provides time-triggered communication with low
jitter for periodic real-time publishers, event-triggered messaging with
deadline-based priorities to support sporadic real-time publishers, and
low priority transmissions for non critical data transfers.

RTCAN allows to realize distributed real-time control loops, and re-
duces processing overhead thanks to the hardware filtering capabilities
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of CAN, so that each node automatically discards messages it is not in-
terested in, but cannot be implemented on an host computer without a
real-time operating system due to its strict timing requirements. For this
reason, R2P middleware is designed to support a variety of transports,
which can be implemented by providing basic functions such as send()
and receive(), eventually wrapped into a thread of the RTOS acting as
dispatcher. Transports are also responsible of marshalling and unmar-
shalling data, meeting the characteristics of the specific communication
channel, and must provide functions to build advertisement/subscrip-
tion messages, as they may contain transport-dependent fields on which
topics and messages are mapped.

At the time of writing, the middleware includes a debug transport over
a serial connection, which can be used to inspect the status of a node or of
the whole R2P network, as well as publishing and subscribing messages.
It uses a human-readable format to exchange data (i.e., plain strings to
identify topics and ASCII hexadecimal encoding of binary data), and
a python script can be used to marshal and unmarshal messages. The
debug transport can be used also on a TCP network stream, so that
easy access to the R2P network is available also through Ethernet and
WiFi connections, thanks to the R2P Gateway module (see Chapter 7).

5.3.8. Loading and configuring nodes

The firmware running on R2P modules can be compiled and deployed
following two approaches: by flashing a full and static image, or by
writing only a basic image and load nodes at run time. Static flash pro-
gramming is the common approach with microcontrollers: the developer
compiles the whole code (i.e., the operating system, the middleware, the
transport, and the application-dependent nodes) on a host machine, and
rewrites the flash memory every time an update is needed. Flashing the
firmware with standard tools, however, is often inconvenient, especially
when working on robots, as direct access to the devices is needed, as
well as specialized hardware programmers (e.g., a JTAG adapter) and a
complete development environment for the specific target.

To ease the deployment of low-level software, R2P features a node
loader, i.e., a Python tool to dynamically load nodes on modules by
transmitting the binary image via the middleware, without requiring
special tools or direct access to the robot. The node loader tool ex-
changes information with the target module on the /r2p management
topic to correctly prepare the binary image. Program and data mem-
ory requirements of the node are communicated to the module (i.e., the
sizes of the .data, .bss, and .text sections of the ELF image [102]), which
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RAM usage
Component [bytes]
Node 36
Topic 56
Publisher 16
Subscriber 48
Remote Publisher 16
Remote Subscriber 28

Table 5.1.: RAM footprint of main middleware classes

replies with the addresses where the corresponding sections will be writ-
ten into the flash memory. The tool relocates the code to the correct
addresses and delivers the binary image to the module using the stan-
dard Intel HEX format [44]. The module can now launch the new node,
allowing to test new functionalities without needing direct access to the
board.

Nodes configuration, e.g., the name of the topics, or the update period
or the parameters of a control algorithm, are also stored into a dedicated
area of the flash memory, and they can be remotely read and updated.
This allows for a much easier and faster tuning of the control software,
and makes code reuse straightforward: in several scenarios, the firmware
does not even need to be modified, and the only needed operation is to
configure a few parameters.

Using these tools, new nodes can be deployed, configured, and run,
over any transport supported by the middleware, allowing to test and
tune functionalities without needing physical access to the robot. Start-
ing from these tools, we plan to develop a graphical development envi-
ronment to easily inspect the R2P network, write and deploy nodes, and
configure them.

5.4. Benchmarks

We have run some benchmarks to evaluate R2P middleware footprint
and its messaging performance. Tests have been run on R2P hard-
ware modules, sporting STM32 ARM Cortex-M3 microcontrollers with
T2Mhz clock, 20K B of RAM and 128 K B of Flash memory.
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Used Available Ratio
Section [bytes] [kbytes] (%]

text 23524 128 18.3
.data 1324 20 6.6
.bss 7172 20 35.9

Table 5.2.: ELF sections size of a firmware with 2 publishers and 2 sub-
scribers
Used Available Ratio
Section [bytes] [kbytes] (%]

.text 41988 128 32.8
.data 1328 20 6.6
.bss 5588 20 29.3

Table 5.3.: ELF sections size of the static firmware without symbols re-
moval.

5.4.1. Memory footprint

The R2P middleware is written in a subset of C++, to take advantage
of some object-oriented programming features without compromising
performance on embedded targets. Some advanced features of the lan-
guage have been disabled (e.g., RTTI and exceptions), and template
metaprogramming techniques have been exploited for efficient execu-
tion on resource-constrained HW architectures. Table 5.1 reports the
memory requirements, in terms of RAM, of the main middleware com-
ponents; on the low-cost microcontrollers used in R2P modules, which
feature 20 kbyte of RAM, tens of nodes, publishers, and subscribers can
be instantiated.

Table 5.2 reports the requirements in terms of flash and RAM mem-
ory in case of static firmware. Data refer to an example node running
the complete RTOS and HAL, the middleware, the RTCAN protocol
and two nodes, each featuring a publisher and a subscriber, with the
corresponding remote counterparts statically instantiated (i.e., to give a
real usage example).

Dynamically loading nodes means that the module needs to be firstly
flashed with a base firmware, which includes all functions that may be
eventually needed by loaded nodes. This requires that no functionalities
are excluded from the base firmware, and some compiler optimizations,
such as the removal of unused symbols, have to be disabled. The result-
ing firmware is then bigger in terms of program memory, as shown in
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Table 5.3.

5.4.2. Messaging performance

A first benchmark we executed aims at measuring message delivery la-
tency and jitter for periodic publishers, i.e., from memory allocation
to message reception. The purpose of this test is to evaluate the in-
fluence of low-priority subscribers over high-priority tasks. To run the
test, a publisher has been set to transmit 8 bytes messages every 10 ms,
with one high-priority local node subscribed to the topic; then, several
low-priority nodes subscribe the same topic. Low-priority nodes used
in the benchmark are also slow consumers: half of them can consume
queued messages every 100 ms, the other half every 1 s. As a conse-
quence, they start loosing messages as soon as their receive queue fills,
while the high-priority node receives all messages. We run the test with
0, 2, 5 and 20 low-priority subscribers on the same module where the
high-priority one is. The same test has been also repeated with the
high-priority subscriber deployed on a remote node. Each test lasts 60
seconds, corresponding to 6000 published messages.

Table 5.4 reports the results we collected with the different configura-
tions. The latency increases linearly with the number of subscribers, as
it is due to subscription cycling required by message notification. No de-
lay is introduced with the slow consumption of messages by low-priority
nodes, thanks to priority handling and message queuing. We observed
a latency jitter, bounded to less than 1 ps per subscriber, which comes
from the different time of notification required by subscribers with a
full queue with respect to ready ones. Although the measured jitter is
small, and negligible for most applications, we are investigating differ-
ent approaches to notify subscribers involved in periodic, hard real-time,
tasks. The drawbacks in doing this comes from the need for differenti-
ating sporadic and periodic subscribers, which originally we choose to
keep identical to decouple them from the source.

Table 5.4.: Message delivery latency and jitter.
Low-priority Latency [us] Jitter [us]
Subscribers ILocal Remote Local Remote

0 6.6 114.6 +0.5 £3.2
2 7.4 117.4 +2.1 4438
) 10.2  120.2 +4.2 £6.1
20 23.5 133.5 +16.2 +£18.9
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Figure 5.3.: Maximum message throughput, in red, and delivery latency,
in blue, with respect to the number of subscribers.

Remote performance is mainly affected by the transport layer, as the
middleware makes no difference between local and remote subscriptions.
During the benchmark we used RTCAN as transport, which introduces
an unavoidable delay due to the transmit time over the CAN-Bus. The
jitter for periodic messages in RTCAN is bounded to less than 3 ps (see
Section 4.4), which is added to the jitter introduced by the middleware
in the figures of Table 5.4.

The second benchmark we run aims at measuring the maximum through-
put, in terms of messages per second obtainable with the R2P mid-
dleware. In this case, a publisher node publishes messages to several
subscribers (from 1 to 20), with the same priority, as soon as they are
all ready to receive it. For each configuration, 1 million messages have
been transmitted. The graph shown in Figure 5.3 reports the measured
throughput and the delivery latency, with respect to the number of sub-
scribers. We measured a maximum throughput of 86600 msg/s, which
lowers increasing the number of subscribers in an exponential way; this
is due to the publishing time which increases linearly with the number
of subscribers. It should be noticed that, in this case, all subscribers are
always ready to receive messages, which motivates the higher delivery
latency with respect to the previous benchmark. The graph shows that
each successful message delivery costs, in terms of latency, less than
4 ps. For remote subscriptions, the maximum throughput is limited
by the bandwidth of the communication bus used, which for RTCAN
is 384 kbps out of ideal 400 kbps of CAN (i.e., this is the maximum
throughput in terms of payload, net of unavoidable overhead).
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To summarize, benchmarks showed that the R2P middleware is able
to handle a high message throughput, and that high-priority tasks are
not influenced by slow consumers. The measured delivery latency and
jitter match the requirements of most robotics applications.
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Chapter 6

Integration with ROS

R2P is focused on robot platform prototyping and low-level control,
while high-level, computation-intensive, functionalities are implemented
with ROS, which has become a de facto standard. ROS is a frame-
work which typically runs on a desktop-class computer, and hardware
devices are currently interfaced to ROS with approaches in contrast
to the distributed architecture it fosters. For this reason, we devel-
oped ptROSnode, a lightweight ROS communication library targeted to
resource-constrained devices, allowing to exchange native ROS messages.
pROSnode has been developed within this thesis, and it is exploited by
the R2P framework to interface robot platforms with ROS, nevertheless
it is a stand alone library that may also be used independently from
R2P.

In this chapter, we review the common approaches adopted to inter-
face hardware devices to ROS, and briefly describe the ROS commu-
nication model. Then we introduce pROSnode, detailing how it was
implemented to allow its execution on resource-constrained devices. Fi-
nally, benchmarks of its footprint and its communication performance
are presented.
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6.1. Interfacing hardware devices to ROS

Robots developed with ROS usually feature an on-board computer,
which runs several software modules providing the needed requirements,
like vision, planning, and navigation. The distributed, loosely coupled,
architecture fostered by ROS has turned out to be quite effective for
the development of high-level functionalities, but interfacing hardware
devices to a ROS system is still an open problem. Most devices used
on robots (e.g., generic sensors and actuators), as well as R2P modules,
are based on low-cost microcontrollers, which cannot run the standard
ROS stack, as we stressed in Section 5.2.1.

6.1.1. Related work

The common solution to interface hardware devices to a ROS system
is to write a ROS node, directly communicating with the device, which
implements the required communication protocol and acts as a proxy by
publishing, or subscribing, messages on a ROS topic. Exchanged data
transit through the proxy node, introducing latency and avoiding any
direct device-to-device communication, in contrast with the distributed
development approach promoted by ROS.

To overcome this problem, the ROS community has proposed three
solutions to make ROS available on resource-constrained embedded sys-
tems: eros [127], rosc [62], and rosserial [51].

The eros projec proposes the creation of a cross-compiling tool-chain
to port standard ROS to embedded systems. It aims at running a com-
plete ROS system on embedded devices such as smart phones or in-
dustrial computers. These systems are clearly much more powerful than
microcontrollers generally used in sensors and actuators. Moreover, eros
is, currently, limited to a sketch on the ROS documentation wiki, with
apparently no active development ongoing.

The rosc project, instead, aims at implementing a complete ROS com-
munication library, like the roscpp or rospy libraries, using pure ANSI C
language. This would enable to handle ROS communication on resource-
constrained devices, which is our goal. Unfortunately, at the moment of
writing, it is under heavy development and no working implementation
is available yet.

Presently, what is really available in terms of code and documenta-
tion, among the different proposals for embedding ROS, is rosserial, a
general protocol for point-to-point ROS communications over a serial
transmission line. It simply serializes and de-serializes standard ROS
messages, and adds a packet header which allows multiple topics to
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Figure 6.1.: A simple robot running ROS, the legacy approach and the
pROSnode approach

share a common serial link. Its simplicity makes rosserial suitable for
simple architectures such as 8-bit microcontrollers used on Arduino, but
there is no natural integration with the ROS ecosystem: a proxy node
on the host machine is still required, although hidden to the user, to
bridge the connection from the serial protocol to the ROS network.

6.1.2. Toward native ROS hardware components

pROSnode proposes a different approach to integrate hardware compo-
nents within ROS. Using pROSnode, robotic devices register as native
ROS nodes, without the need of specific drivers, or software proxies, run-
ning on the host computer. In this way, robot designers can seamlessly
connect sensors and actuators to ROS systems through an Ethernet con-
nection.

Consider, for instance, a generic robot, as in Figure 6.1a, made of an
iRobot Create [73] moving base controlled via RS232 connection, a Sick
LMS100 [125] laser scanner, and a custom IMU board. These devices
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Figure 6.2.: The role of ROS Master

are connected to a host computer running a ROS application which uses
them. As they do not communicate with ROS directly, the computer
must run custom ROS nodes which interface with their low-level drivers
to ROS itself.

Instead, consider the configuration in Figure 6.1b. The laser scanner
could be a ROS-enabled device publishing native ROS messages, as it al-
ready features an Ethernet port and an on-board processor, and the same
applies to the custom IMU board, thanks to modern microcontrollers
and pROSnode; a robot platform developed with R2P components can
simply add a Gateway module, which provides Ethernet connectivity
and runs pROSnode (see Section 7.7), to communicate with ROS. With
this design, the user only has to connect the Ethernet cables, launch
ROS, and start developing the application, without worrying about low-
level protocols or device drivers.

6.2. ROS communication model

ROS has been already reviewed in Section 5.2.1; basically, it provides
several communication patterns to exchange data between peers: topics,
which follow the publish/subscribe paradigm, services, to perform re-
mote procedure calls, and actions, to issue asynchronous requests. Here
we mainly focus on how communication is set up and handled by ROS,
before describing how pROSnode has been implemented to support na-
tive ROS communication.

6.2.1. ROS Master

Each ROS systems requires to run a ROS Master, which is unique in
the network and is generally instantiated by the roscore application.
The Master provides naming and registration services to all instanti-
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ated ROS nodes, and tracks publishers and subscribers to topics as well
as services. The main role of the Master is to enable individual ROS
nodes to locate the needed data providers. Figure 6.2 shows a typical
association of a publisher and subscriber node: the producer advertises
a topic, which is registered on the master, so that the consumer is cor-
rectly associated to it on subscription; once the nodes have located each
other they communicate by peer-to-peer connections. The Master node
also provides the Parameter Server, which is used by nodes to store and
retrieve parameters at runtime.

Communication with the Master node is accomplished by remote pro-
cedure calls, which are implemented by exchanging XML-RPC messages.

6.2.2. Remote procedure calls

ROS nodes are capable of calling remote procedures, available through
the API exposed by the node objects themselves. Remote procedure
calls are executed by using the XML-RPC protocol, which uses XML
to encode calls and HTTP as a transport. These calls are only used
to manage the status of the computation graph and some global set-
tings, and they are not intended for actual data streams. XML-RPC
was chosen by the designers of ROS because of the many available im-
plementations, in several languages, and because the use of the XML
markup language makes debugging simpler. Moreover, XML-RPC calls
are stateless, a property which simplifies the control logic, since there is
no state to keep track of. These characteristics make XML-RPC parsing
much easier than bare XML, while keeping most of its advantages.
Three different XML-RPC APIs are defined by ROS:

e the Master API exposes the methods implemented by the unique
Master, e.g., to allow nodes to register as publishers, subscribers,
or service providers, and to perform name resolution;

e the Slave API, exposed by every ROS node, provides methods to
receive callbacks from the Master (i.e., to notify published mes-
sages), and to negotiate connections with other nodes;

e the Parameter Server API exposes the methods implemented by
the unique Parameter Server, to manage the centralized directory
of shared global parameters.

6.2.3. Data transport

Messages exchanged by nodes, on topics as well as through services,
are transferred by a custom protocol, named TCPROS, over a TCP
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connection. For lower latency, but less reliable, transfers, UDP streams
are provided by an alternative transport, UDPRQOS, but this is currently
not supported by all the components of the ROS framework, so it is
rarely used. Within the same process, messages can also be exchanged
with a zero-copy transport, by using nodlets, which are a variant of
standard ROS nodes.

TCPROS uses standard TCP/IP sockets to transfer message data.
To instantiate a connection, a TCPROS Header, containing message
specifications and routing information, has to be sent to a TCP socket
server. For instance, to perform a subscription the consumer sends a
header containing its own name, the name of the topic, the complete
message definition (see Section 6.2.4), and a few other fields. The header
is routed by the socket server to the corresponding publisher, which
replies by sending back the message type: if everything matches, the
connection is finally established and messages start to be exchanged.

6.2.4. Type descriptor

Data streams are based on the exchange of messages of a particular
type, specified by the topic/service at registration time. A message
is a sequence of values, which type and organization is defined by a
type descriptor. In ROS, two kinds of descriptors are used: the topic
descriptor, and the service descriptor.

A ROS topic message descriptor is written as a plain text file, which
specifies message content. Every line can define a strong-typed vari-
able, where the type is either a primitive type, or the name of another
message type descriptor, or even an array (fixed or variable) of any of
such types. Descriptors can also declare constant names of primitive
types. Listing 6.1 shows the content of a sample descriptor containing
other ROS messages, and Listing 6.1 reports the corresponding expanded
structure.

Service type descriptors follow the same syntax of message types, with
a separator line: the first part specifies the request message descriptor,
and the second part represents the response message descriptor.

Since descriptor content may be different among nodes, even if their
names coincide, a MD5 sum is used to determine if two nodes actually
share the same type.

6.3. pROSnode

pROSnode is a lightweight implementation of the ROS communication
stack, targeted to resource-constrained devices, which emulates a stan-
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# A representation of pose in free space.
Point position
Quaternion orientation

Listing 6.1: A ROS message descriptor

geometry_msgs/Point position
float64 x
float64 y
float64 z
geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 =z
float64 w

Listing 6.2: The expanded structure of a ROS message

dard ROS node supporting topics, services, and parameters. In this
section we present the pROSnode architecture, and detail its imple-
mentation, reporting the design choices we made to implement all the
functionalities ROS expects from a compliant node.

6.3.1. Architecture

The main goals of tROSnode are portability and low memory footprint,
while being fully compliant with the ROS communication protocol. To
this extent we decided to develop the whole library in ANSI C89, which
is supported by almost all C compilers for embedded systems. Being
targeted to hardware devices for robotics, which often involve the ex-
ecution of tasks with real-time constraints, pROSnode is designed to
run on the top of a RTOS providing common synchronization primi-
tives. Software portability has been obtained through an appropriate
hardware abstraction layer, which acts as interface to required low-level
functionalities such as communication, threading, synchronization, and
memory management. In its current implementation, ptROSnode sup-
plies bindings the ChibiOS/RT RTOS [46] and the LWIP lightweight
TCP/IP stack [47], together with a port for Posiz operating systems.

The architecture of pROSnode is organized in modules, grouped in
three main categories.

e (Core modules, which are platform-independent, provide the main
features of pROSnode: internal management of topic and ser-
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HTTP/1.1 200 OK
Content -Type: text/xzml
Content -Length: 309

<?7xml version="1.0"7>
<methodResponse>
<params>
<param>
<value>
<array>
<data>
<value><id4>1</id></value>
<value></value>
<value><i4d>6544</id></value>
</data>
</array>
</value>
</param>
</params>
</methodResponse>

Listing 6.3: Example of XML-RPC response

vice registries, node state machine, abstraction layers, parsers and
streamers of XML-RPC and ROS-specific protocols (e.g., TCPROS).

e Low-level-driver modules are responsible of binding the core ab-
straction layers to the specific target platform; they are the com-
ponents which need to be ported to support different hardware
architectures and different operating systems.

e User modules are application-dependent, providing functions for
topic and service handlers, as well as marshalling/unmarshalling
functions for the corresponding message types.

6.3.2. XML-RPC

The first feature we need, to be a compliant ROS node, is the XML-RPC
protocol, and the related handlers. Encoding remote calls with the XML
markup language surely shows several advantages, as we mentioned in
Section 6.2.2, but XML-RPC is not trivial to implement on resource-
constrained devices, mainly because of its verbosity and of the parsing
process necessary to extract the needed information.

Take for instance the example reported in Listing 6.3, which shows
the response to a simple remote call supposed to return 3 values (i.e.,
the Slave API getPid() method [117]). The size of the complete message
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is 309 bytes of paylod, as reported by the header, plus the length of the
header itself, 66 bytes in this case. The actual content is composed by
two integers (i.e., 8 bytes), plus a string with variable length, which is
empty in the considered example. It follows that there is an overhead of
367 bytes to transfer the 8 bytes we are interested in. Moreover, received
messages need to be parsed: in this case, the first useful data is nested
into 9 XML tags, and this depends on the specific message, so we cannot
simply skip a part of the payload to extract the actual content.

Common XML parser allocate a buffer to store the full message; this
is not applicable to resource-constrained devices, as RAM is limited,
and, additionally, the length of a message varies and it is not known
a-priori, requiring dynamic allocations. pROSnode provides an opti-
mized XML parser exploiting the properties of deterministic top-down
grammars [119]. It performs single pass parsing with zero-copy, directly
accessing the memory already allocated by the underlaying communica-
tion stack (e.g., LWIP). A single preallocated buffer is still needed, to
address a well known flaw of XML-RPC: the protocol allows to store
strings not only inside the dedicated string tags, but even into generic
value tags; in this case, the length of the payload is not specified, which
is an exception to the mentioned grammars, and a buffer is mandatory,
with a size big enough to handle the maximum possible string length.

About actual procedures, all ROS Slave API methods are imple-
mented by pROSnode, as well as calls to the Master API and to the
Parameter Server API implemented by the Master.

6.3.3. TCPROS

Full support to TCPROS is provided by pnROSnode. Headers to estab-
lish topic and service connections with other ROS nodes can be filled
by using a set of macros, which are expanded to corresponding mar-
shalling and unmarshalling statements, along with error checking. Once
the connection is active, the TCPROS protocol is very close to the bi-
nary representation in memory, so pROSnode merely performs raw data
transmission and reception.

Transmissions are performed without buffering: message fields are
sent on-the-fly, without filling the entire message, to reduce memory
requirements as well as latency.

Inbound data can be handled in two ways: a first approach is to allo-
cate memory from the heap, buffer the entire message upon reception,
and finally deliver it to the user application; this is easer for application
development, as messages can be slowly consumed and then released,
but, on constrained platforms, heap fragmentation becomes soon a prob-
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Figure 6.3.: Code generator flowchart

lem. A second approach is to directly access the buffers allocated by the
network stack, with zero-copy, but memory needs to be released soon
to prevent loosing successive packets. This increases the throughput, as
we will see in Section 6.4, and it is the way we forward messages from
ROS to R2P nodes: data is just transfered into the corresponding R2P
message, and memory is quickly released.

Routines to marshal and unmarshal message content belong to the
User modules, and should be implemented by application-specific code.
As writing these procedures by hand, as well as topic/service handler
routines, is a repetitive and error-prone task, they are actually generated
by an automated tool provided by pROSnode, which is presented in the
next Section.

6.3.4. Integration with user application

Having low footprint and high efficiency as main goals, pROSnode ex-
poses an API, and follows a programming model, which is quite dif-
ferent from ROS. To ease the integration of user applications within
pROSnode, we developed a code generator tool which takes care of gen-
erating the needed marshalling and unmarshalling functions, the ROS
headers, and the handling routines. The tool, urosgen, is a python script
which extracts information from standard ROS utilities, so that it should
be robust to future changes in the ROS framework. The workflow of
urosgen is sketched in Figure 6.3.

It is only required to fill a configuration file, specifying the name of
the node, its publishers, subscribers, and services, with the correspond-
ing ROS type descriptors. Listing 6.4 reports the configuration file to
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[Options]

nodeName = turtlesim
[PubTopics]

rosout = rosgraph_msgs/Log
turtleX/pose = turtlesim/Pose
turtleX/color_sensor = turtlesim/Color
[SubTopics]

turtleX/command_velocity = turtlesim/Velocity

[PubServices]

clear = std_srvs/Empty

kill = turtlesim/Kill

spawn = turtlesim/Spawn
turtleX/set_pen = turtlesim/SetPen
turtleX/teleport_absolute = turtlesim/TeleportAbsolute
turtleX/teleport_relative = turtlesim/TeleportRelative
[CallServices]

Listing 6.4: urosgen configuration file for the turtlesim demo

implement the turtlesim demo [116], a ROS sample application most
ROS developers may be familiar with. Once the involved message type
names are known, the tool extracts their description, by running the
rosmsg and rossrv ROS utilities, from the corresponding .msg and .srv
files. Finally, the message types are processed to produce needed mar-
shalling and unmarshalling functions.

Topic and service handler stubs are generated for each configuration
file entry. Listing 6.5 shows the generated publisher handler for the
/turtleX /pose topic, while Listing 6.6 reports the code subscribing the
/turtleX /velocity topic: the only needed instructions are to fill, or to
read, message content. When using pROSnode to interface R2P and
ROS, messages are just forwarded, inside the corresponding handlers.
The tool also generates detailed self-documentation for Dozygen (not
reported in listing examples, as well as most of the comments).

6.4. Benchmarks

In this section we present pROSnode benchmarks, reporting the mem-
ory occupation and the maximum achievable throughput, and providing
figures about the overhead introduced on common embedded systems.
These benchmarks are rather simple, since they have been designed
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uros_err_t pub_tpc__turtleX__pose(
UrosTcpRosStatus *tcpstp) {

UROS_TPC_INIT_H(msg__turtlesim__Pose);
while (!urosTcpRosStatusCheckExit (tcpstp)) {
/% TODO: Generate the contents of the message.*/

UROS_MSG_SEND_LENGTH(msgp, msg__turtlesim__Pose);
UROS_MSG_SEND_BODY(msgp, msg__turtlesim__Pose);

clean_msg__turtlesim__Pose (msgp);

tcpstp->err = UROS_O0OK;

_finally:
UROS_TPC_UNINIT_H(msg__turtlesim__Pose);
return tcpstp->err;

}

Listing 6.5: Generated publisher handler

uros_err_t sub_tpc__turt1eX__command_velocity(
UrosTcpRosStatus *tcpstp) {

UROS_TPC_INIT_H(msg__turtlesim__Velocity);

while (!'urosTcpRosStatusCheckExit (tcpstp)) {
UROS_MSG_RECV_LENGTH () ;
UROS_MSG_RECV_BODY (msgp, msg__turtlesim__Velocity);

/* TODO: Process the received message.*/

clean_msg__turtlesim__Velocity (msgp);

}
tcpstp->err = UROS_OK;

_finally:
UROS_TPC_UNINIT_H(msg__turtlesim__Velocity);
return tcpstp->err;

}

Listing 6.6: Generated subscriber handler
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to test the performance of pROSnode only; more complex benchmarks
would introduce a significant bias due to multi-threading and networking
subsystems and would not be appropriate to evaluate pROSnode.

Benchmarks were run on the R2P gateway module; hardware details
are presented in Section 7.7, here we just anticipate it sports an ARM
Cortex-M4 STM32F407 microcontroller by ST Microelectronics, featur-
ing 112Kb of available RAM and clocked at 168 M H z. nROSnode should
be able to run on any Ethernet-enabled microcontroller with similar
characteristics. Tests were performed by running pROSnode on top of
ChibiOS/RT and the LWIP network stack.

6.4.1. Memory footprint

The first benchmark is aimed at computing ptROSnode footprint in terms
of RAM and code size. To this extent, we implemented with pROSnode
the turtlesim application [116], which is used in common ROS tutorials.
The code was compiled with different gcc compiler optimization levels,
and with pROSnode and ChibiOS/RT assertions, and runtime checks,
enabled or disabled.

To compute the memory footprint, we started from a plain firmware
with ChibiOS/RT and related features (USB, Ethernet, shell emulator,
and self-tests), then incrementally included LWIP, tROSnode, and the
turtlesim user application. According to this benchmark, pROSnode
footprint is less than 40 Kbyte, comparable with the LWIP stack or the
operating system.

Table 6.1 summarizes the maximum stack depth reached by the prin-
cipal components of the turtlesim demo, with -O8 optimization enabled
and all checks disabled. Given these results, a few tens of pROSnode
publisher, subscribers, or services, could run on the test platform, which
can be considered satisfactory for most embedded robotic devices.

6.4.2. Communication performance

Communication performance has been measured by connecting the R2P
Gateway board to a standard notebook host, featuring an Intel T6500
processor (dual core, 2.1 GHz), through a 100 Mb/s Ethernet connection.
The firmware was compiled with maximum optimization level (i.e., -O3),
disabling both assertions and error messages. Within these benchmarks,
a single TCPROS topic is continuously streamed from the pROSnode
to the laptop, in the transmission case, and from the laptop to the
1nROSnode, in the reception case. The topic is of string type (i.e., ROS
std_msgs/String message type), so that it is possible to easily assign
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Figure 6.4.: Code footprint of the turtlesim application

Max stack
pROSnode component depth [B]
pub_srv__spawn 904
pub_tpc__rosout 432
pub_tpc__turtleX__pose 408
sub_tpc__turtleX__command_velocity 464
urosNodeThread 888
urosRpcSlavelistenerThread 476
urosRpcSlaveServerThread 616
urosRpcSlaveServerThread 476
urosThreadPoolWorkerThread 148

Table 6.1.: Stack usages of the principal turtlesim components.

content with different length to published messages.

In the transmission benchmark, the R2P Gateway publishes messages
subscribed by the host computer via the ROS rostopic utility. Results
are reported in Figure 6.5, which shows the CPU usage of the involved
components (i.e., the ptROSnode TCPROS server, and the two threads
instantiated by LWIP), the CPU idle time, and the maximum reachable
throughput in msgs/s, while varying the message size. When sending
messages smaller than 100 bytes, the board actually saturates the sub-
scriber on the laptop, at ~ 20000 msg/s, with still some CPU idle time
left. By increasing the message size up to 2000 bytes, the LWIP process-
ing thread takes most of the processing, leaving no CPU idle time, and
limiting the overall throughput. Beyond 2000 bytes per message, the
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Figure 6.5.: Transmission benchmark results

throughput approaches the 100 Mb/s limit of the Ethernet connection,
which is reached with messages over 5000 bytes.

These results demonstrate that pROSnode can handle, on the target
platform, really high throughputs with small messages, which is the most
common situation when communicating with hardware components of
a robot; when message size increases, the TCP/IP stack limits the per-
formance, probably mainly due to LWIP output buffer handling, which
is performed within the lwip_process thread.

The reception benchmark involves a publisher on the laptop, again
instantiated by using the ROS rostopic utility, which publishes messages
at the maximum possible rate, while the R2P gateway subscribes the
corresponding topic. In this case, the throughput limit of the rostopic
publisher on the host machine is of ~ 10000 msg/s.

The plot in Figure 6.6 reports the benchmark results, showing the
same figures of the transmission benchmark. With a size of up to
500 bytes per message, the board is able to receive messages at the
target rate, i.e., 10000 msg/s, still maintaining an idle time for the CPU
higher than 50%, and a pROSnode topic handler load below 20%. Be-
tween 1000 bytes and 2000 bytes per message, the LWIP threads require
~ 70% of the CPU time, while the topic handler settles at ~ 30% mak-
ing the CPU almost at full load. Beyond 2000 bytes, the 100 Mb/s limit
is reached, as also highlighted by the increase of CPU idle time. Results
from the reception benchmark shows that both pROSnode and LWIP
saturate the Ethernet bandwidth, while with small messages a limit is
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Figure 6.6.: Reception benchmark results

imposed by the ROS rostopic utility.

Overall, the benchmarks show that modern microcontrollers can han-
dle a high throughput on Ethernet connection, and that ptROSnode can
fit also resource-constrained devices, allowing to natively communicate
with a ROS systems. These results demonstrate the feasibility of the
proposed approach: it is possible to develop ROS-enabled hardware de-
vices for robotics, which do not need specific drivers or software proxies
to be interfaced to ROS. Within the R2P framework, this enables to
seamlessly integrate R2P-based robotic platforms, which still rely on
real-time communication to provide low-level control, with high-level
software developed in ROS.
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Chapter 7

Hardware modules

The last building blocks offered by the proposed framework to enable
robot designers rapidly prototype their applications are a set of off-the-
shelf hardware modules, each focused on solving a specific functional
requirement of common robot platforms. Modules use RTCAN as real-
time communication channel, and run embedded software implemented
through nodes of the publish/subscribe middleware. Having identified
the platform requirements, developers and researchers can select the
needed hardware modules, or develop new ones starting from the ref-
erence design, easily connect them, and deploy the low-level control
software with a distributed approach.

In this Chapter, we firstly introduce, in Section 7.1, the main char-
acteristics of R2P modules and the reference design they are based on.
Then, a review of the hardware devices we have already developed, to
allow to test the framework some real robots, is presented. Notice that
the software nodes reported are just an example of the possible nodes
one could develop end run on R2P modules, and that parameters as
topic names are fully configurable. Module schematics are reported in
Appendix A.
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Figure 7.1.: A R2P hardware module, with components from the refer-
ence design highlighted.

7.1. Reference design

All R2P modules are based on the same basic components, and new
modules can be easily developed by starting from the open source ref-
erence designs. Figure 7.1 shows one of the R2P modules, with shared
components highlighted.

Each module sports a STM32F103C8T6 ARM microcontroller by ST
Microelectronics as processing unit, which features a Cortex-M3 core
running at 72 Mhz, 20 Kbytes of RAM and 128 Kbytes of Flash mem-
ory in a 48 pin LQFP package. We chose the STM32 family as it pro-
vides a wide set of peripherals (e.g., 4 hardware timers with 4 channel
each, a 12 bit A/D converter with 10 inputs, 2 SPI, 2 12C and 3 USART
interfaces, CAN and USB controllers, and 36 general purpose input/out-
puts), and it is extremely low cost, with a target price of about 3 USD
for 1000 units. Moreover, being based on the ARM Cortex-M processor,
it is supported by many compliers and toolchains (e.g., the open source
GNU Tools for ARM Embedded Processors [5]) and by several open and
commercial real-time operating systems (e.g., ChibiOS/RT [46], FreeR-
TOS [113], eCos [48]), so that R2P hardware modules may eventually be
used as ready to use platform also outside the proposed framework. The
reference design also includes a 3.3 Volt linear regulator with a resettable
fuse on its input, the CAN transceiver (a MAX3051 from Maxim Inte-
grated), the JTAG interface, and a serial port for debugging purposes.
Actually, the two debug interface footprints can be left unpopulated if
nodes are developed with the tools provided by the R2P framework (see
Section 5.3.8).

We defined two standard sizes for R2P modules: smaller ones are 40 x
40 mm in size, while bigger ones (i.e., power modules) are 60 x 40 mm.
Both versions share the same mounting holes, for an easier attachment
to robot frames and to adopt similar housings.
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(b) 60 mm x 40 mm

Figure 7.2.: R2P hardware modules size expressed in millimeters.

Modules are connected using a single cable to transport both power
and data, fostering for a plug-and-play approach. Each module has two
ports to be connected to the previous and the next component, following
a daisy-chain connection schema (see Figure 7.3); this reduces wiring and
allows to easily add modules to existing systems. We chose a standard
RJ45 Ethernet patch cable as physical connection, as it matches CAN
bus specifications [61] to guarantee 1 Mbps operation in harsh environ-
ments and it is easily available. A pin header footprint is also present
on each board, as it provides space saving and a simple connection al-
ternative when modules are close and RJ45 jack/plug pairing space is a
problem.

Power supply requirements are usually not consistent among different
electronic devices, then a compromise must be reached. According to
power requirements, robotic modules can be divided in two categories:
modules needing only little power, i.e., less than 200 mA, like most of the
sensors, and modules requiring much higher power, like motor drivers.
The R2P bus has been designed to operate at 5 V, which suits most of
the requirements of todays electronic devices, while modules that require
a higher power supply must rely on an auxiliary connection and power
source. Of the 8 available conductors in standard Ethernet cables, one
pair is used for the CAN bus, while the other 6 are used for power supply
(3 for the positive and 3 for the negative). Common CAT5e UTP cables
use AWG-24 copper conductors (0.5 mm in diameter), and using three
of them gives a voltage drop of about 50 mV /A for each meter [14]. It
follows that a 2 meters long bus with 10 modules attached exhibits a
drop of about 200 mV, so power dissipation is limited and voltage at
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Figure 7.3.: A set of R2P modules connected together: the daisy-chain
connection schema reduces wiring and eases the addition of
new modules.

bus end is far above linear regulator requirements. The bus can safely
handle up to 20 hardware modules, each consuming 200 mA maximum,
over an up to 4 meter long cable.

7.2. Power supply

The power supply module (PS) is responsible of powering the R2P bus
and, as a consequence, all connected modules. The bus can also be pow-
ered in other ways, if a 5 V supply is already present on the robot, but
this module also provides some useful features. First of all, it sports a
switching DC/DC converter, with a wide range of power inputs and a
stable 5 V output, so that it can be used with a variety of batteries;
moreover, it monitors battery voltage and can be used to estimate re-
maining battery life. This module is 60 x 40 mm in size. The layout of
the module and an assembled board are visible in Figure 7.4.

7.2.1. Hardware design

The main role of the PS module is to provide power to the bus. To this
extent, we designed a switching DC/DC regulator based on the TPS5450
step-down converter by Texas Instruments. The regulator accepts any
input voltage between 5.5 V and 36 V and provides a stable 5 V out-
put with a maximum current of 4 A, thus able to power up to 20 R2P
standard modules, with an efficiency in the range of 83 — 93%. The PS
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(b) Assembled board

Figure 7.4.: Power supply module.

module has two inputs, so that it can be connected to both robot batter-
ies and an auxiliary input (i.e., a wall adapter to be used while charging
batteries). A power ORing circuit automatically switches between the
two inputs, and guarantees very low voltage drop on the battery path
by driving a N channel MOSFET, to reduce power losses and improve
efficiency and battery life. Inputs are also protected from voltage spikes
(e.g., when connecting and disconnecting the power cables) by a pair
of TVS diodes, improving reliability and protecting the connected mod-
ules. A voltage divider, with a Zener diode protection, is used to acquire
the voltage level on battery input, which can be monitored to estimate
remaining battery life. On the output path, a low value resistor (i.e., 30
mOhm), and the INA193 high-side measurement current shunt monitor
by Texas Instruments, allow to monitor the current flowing to the bus.

7.2.2. Embedded software

The core libraries of the PS module expose interfaces to acquire the
battery voltage and instant current consumption through the internal
A /D converter. Analog watchdogs can also be configured, i.e., high and
low thresholds to raise events when the acquired value is out of the preset
range. A ready-to-use R2P node tracks battery voltage and, with proper
calibration, can publish the remaining battery life on the /battery topic,
so that the robot can take actions as a consequence (e.g., return to the
charging station when running out of power). If a system only drains
power from the R2P bus, current consumption can be used to profile
power requirements too, providing better estimates.
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(b) Assembled board

Figure 7.5.: DC motor controller module.

7.3. DC motor controller

One of the first R2P modules we developed is a DC motor controller
board (DCM), to satisfy one of the most common primary platform
requirements: drive a motor and let the robot move. The DCM module
features all the electronics needed to drive motors from 7 V up to 36
V, with a maximum current of 20 A without heat sink, thanks to the
state-of-the-art components employed. This module is 60 x 40 mm in
size. The layout of the module and an assembled board are visible in
Figure 7.5.

7.3.1. Hardware design

The high-power H bridge uses an Allegro A4940 automotive full bridge
MOSFET driver, which includes a charge pump to drive high-side N
Channel MOSFETS for better efficiency. Indeed, we use 4 discrete MOS-
FET with a Drain-Source resistance of only 3 mOhm, reducing power
dissipation to only 1.2 Watt, on each active transistor, with 20 Ampere of
current drawn. This allows to dissipate heat on the PCB copper, remov-
ing the need of an heat sink in most applications. The MOSFET driver
inputs are independent, i.e., the transistors are driven directly by the
STM32 advanced timer TIM1, to precisely configure the behavior of the
H-bridge, including the dead time to prevent cross conduction, for accu-
rate motor driving. Additional cross conduction protection is provided
at hardware level, imposing a minimum dead time of 1 pS, to prevent
hardware damages. An incremental optical encoder (e.g., mounted on
motor shaft) can be connected to the encoder input, to acquire motion
feedback and perform closed loop control. Finally, a ACS711 Hall-effect
current sensor by Allegro Microsystems is used to measure the current
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flowing into motor windings, keeping a low-resistence path, in the range
of £25 Ampere.

7.3.2. Embedded software

The firmware of the DCM module provides core functionalities to re-
alize different PWM control strategies, i.e., sign/magnitude or locked-
antiphase, and with fast or slow current decay mode. Frequency and
resolution of PWM can be adjusted: the maximum frequency is mainly
limited by the dead time, and by the turn-on and turn-off times which
are under 100 nS; STM32 timers can be configured to use up to 16 bits
to synthesize the PWM wave, with a counter clock of 72 Mhz. Obvi-
ously, a compromise has to be reached, as higher PWM resolution lead
to lower realizable periods. By default, the module is configured for
sign/magnitude control, with a PWM frequency of 17.5 Khz, and fast
decay mode. Quadrature encoder readings are performed by another
hardware timer, and a function to get the number of ticks from the
last reading is available. Closed loop position or velocity control can be
performed by using the provided PID controller implementation, which
features saturation filters and conditional integrator for anti-windup;
to be application-agnostic, the motor is controlled in terms of ticks,
and conversion to actual measurement units is left to the kinematics.
Additionally, a maximum current value can be expressed for current-
chopping, to impose current/torque limits or to realize constant current
control. Dynamic current/torque control is under development.

A node is run by default on the DC module, subscribing the /set-
point topic, and publishing on the /encoder topic, to easily drive motors
through the R2P middleware. It can be configured for position or speed
control, and a timeout can be also specified: if the module does not
receive a new setpoint for a certain amount of time, the motor is actu-
ally stopped for safety. PID parameters (i.e., kp, k7, kp, and saturation
limits) can be tuned by updating the node configuration structure, and
saved to the Flash memory when the control law is satisfactory.

On the motor boards we often run also the nodes responsible of com-
puting forward and inverse kinematics, as will be shown in Chapter 8.
Currently, we have developed ready to use nodes to drive differential
robots (see Section 8.2) as well as three wheels holonomic omnidirec-
tional platforms (see Section 8.1).
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(b) Assembled board

Figure 7.6.: Inertial Measurement Unit module.

7.4. Inertial measurement unit

The inertial measurement unit module (IMU) allows the measurement
of acceleration, angular velocity, and bearing with respect to the heart
magnetic field, together with the altitude of a robot. By applying fil-
tering algorithms, 6 DoF pose and attitude can be estimated; moreover,
an external GPS receiver can be attached to integrate its measures in a
R2P embedded architecture. Inertial measurements can be a functional
requirement of a robotic platform, e.g., a two wheeled balancing robot
(see Section 8.3), or can be used to improve performance of control al-
gorithms or odometry estimates. The IMU module is equipped with
state-of-the-art MEMS sensors and on board filtering algorithm to pro-
vide reliable estimates. This module is 40 X 40 mm in size. The layout
of the module and an assembled board are visible in Figure 7.6.

7.4.1. Hardware design

The IMU module features several MEMS sensors to measure the dif-
ferent physical quantities. Linear accelerations and magnetic field mea-
surements are acquired by a LSM303DLHC 3 axis accelerometer and
magnetometer sensor by ST Microelectronics, which embeds in a very
small package state of the art MEMS devices. Acceleration with full scale
range going from £2 g up to 16 g can be measured, with a sensitivity
down to 1 mg/LSB and an acceleration noise density of 220 ng/ VHz.
The sensor has a digital output over 12C interface, providing 12 bit rep-
resentation of the measured value and a configurable Output Data Rate
(ODR) from 1 Hz up to 1.344 Khz. Magnetic field full-scale ranges from
+1.3 to +8.1 gauss, represented by a 12 bit digital value with a sensitiv-
ity as small as 0.9 mgauss and ODR up to 220 Hz. A MEMS gyroscope
(the ST Microelectronics L3G4200D) provides direct measurement of
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7.4. Inertial measurement unit

angular velocities, with a full-scale range from 250 dps to 2000 dps. It
is also a digital output sensor, via SPI interface, with a 16 bit on board
A /D converter providing up to 800 samples/s; its best sensitivity is 8.75
mdps/LSB and the declared noise density is of 0.03 dps/v/Hz. Finally,
pressure measurements are performed by a LPS331AP MEMS sensors
from ST Microelectronics, a 24 bit digital barometer which has a sensi-
tivity of 0.020 mbar RMS (i.e., less than 20 cm altitude difference) and
an ODR from 1 Hz to 25 Hz. An additional connector is present, to
interface an external GPS receiver, exposing a TTL serial port and 3.3
V power supply.

7.4.2. Embedded software

The IMU module provides interfaces to configure and run the on board
sensors, and to get the respective readings. However, inertial measure-
ment are noisy, and filters need to be applied to extract useful infor-
mation such as attitude and heading (AHRS) estimates. A variety of
filtering algorithms have been proposed in the literature, even recently,
as modern MEMS sensors enable to perform inertial measurements with
low cost devices. The IMU board provides, within its core function-
alities, the implementation of two AHRS algorithms which have been
recognized to provide effective estimates with low cost inertial sensors:
one based on nonlinear complementary filters [92], and the other per-
forming gradient descent optimization [90].

An interface to the MEMS pressure sensor provides pressure, thus
altitude, measurements, which can be conditioned, eventually, by acti-
vating a low pass filter. The GPS NMEA parser, which is derived from
an open source project [12], can be activated to receive GPS absolute
position measures by the optional external receiver.

Nodes are available to publish orientation data using one of the avail-
able filtering algorithms, with tunable parameters and configurable stream
period. The full representation can be published (i.e., roll, pitch, yaw,
and the respective angular velocities), by default on the /imu topic, or
only inclination and rate among a single axis, on the /#lt topic. A node
to stream unfiltered readings is also provided if raw data are needed,
as in the case of the application presented in Section 8.2. Barometric
and GPS readings can be published through two dedicated nodes, on
the /pressure and /gps topics respectively.

As MEMS sensors characteristics can vary from device to device, and
their orientation depends on the soldering process, we also developed a
set of calibration routines, to run on a host computer, which allow to
easily calibrate sensor parameters with common tools, i.e., a cube to
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(a) PCB layout

(b) Assembled board

Figure 7.7.: Proximity sensors module.

attach the IMU module to, and a rotating plane with known angular
velocity, i.e., a turntable [70]. The routines are available as python
scripts on the IMU open source repository.

7.5. Proximity sensors

The proximity module can be used to interface common proximity sen-
sors, e.g., infrared and ultrasonic rangefinders, with the R2P architec-
ture. It can be used to sense surrounding objects and avoid collisions
with obstacles, a primary functional requirement of most mobile robots.

This module is 40 x 40 mm in size. The layout of the module and an
assembled board are visible in Figure 7.7.

7.5.1. Hardware design

The proximity module has a quite simple hardware design, featuring
4 sensor inputs, with dual connector footprint, i.e., the JST connector
employed in common Sharp GP2Y series IR sensors [11], and a standard
0.1 inches pin header. The module is also compatible with 3 wires ultra-
sonic proximity sensors, such as MaxBotix rangefinders [6]. An on board
mosfet allows to power the sensors on demand. Analog sensor values are
routed to microcontroller pins which can be configured as inputs of the
internal A/D converter, or as capture inputs of an hardware timer. A
current limiting resistor and a protection Zener diode are inserted in the
signal path to prevent damages to the microcontroller.

7.5.2. Embedded software

The firmware running on this module exposes functions to configure mi-
crocontroller peripherals in order to acquire the connected sensors. Ana-
log sensors readings, e.g., from Sharp IR rangers, are acquired through
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(b) Assembled board

Figure 7.8.: Input/output module.

the A/D converter; it is possible to calibrate the maximum and mini-
mum values, and to filter readings to compensate for the non linearity
of such sensors. Sample curves for common sensors are provided. Sen-
sors with digital outputs, i.e., a PWM signal, are acquired by hardware
timers, configured in capture-compare mode; these sensors generally out-
put a value with linear dependency to the measure, and no additional
conditioning is needed.

Proximity readings from the 4 sensors are converted to millimeters
and published, by default, on the /prozimity topic.

7.6. Input/output

The input/output module (IO) is a generic module featuring several
analog and digital inputs and outputs. It can be used to integrate ex-
isting devices, e.g., sensors and actuators, into a R2P system, without
the need of designing a complete board. Hardware designers can also
use the IO module as a test platform while developing a new R2P mod-
ule, verifying its operation before finalizing the layout. This module is
60 x 40 mm in size. The layout of the module and an assembled board
are visible in Figure 7.8.

7.6.1. Hardware design

The IO module features a variety of connections for both analog and
digital signals to interface with external devices. It features up to 8
analog inputs, 2 analog outputs, up to 16 digital inputs/outputs, and
a 3.3 V supply output. To increase the number of connections, this
module sports a 64 pin version of the STM32 microcontroller from the
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high-density family (an STM32F103RET6). All the connections are
protected from electrostatic discharge transients and from shorts.

Analog inputs are buffered by operation amplifiers, to prevent dam-
ages to the microcontroller, and connected to the internal A /D converter,
which features 12-bit resolution and a maximum sample rate of 1 Msps.
The 2 analog outputs are based on the 2 D/A converters provided by
the STM32, with an additional output buffer capable to source and sink
currents up to 50 mA.

Digital inputs and outputs are routed to different microcontroller pe-
ripherals, exposing, depending on configuration (i.e., some peripheral
pins are mutually exclusive):

e 8 timer channels for PWM output and input, quadrature encoder
reading, etc.;

e 3 UART/USART ports, also usable as SPI interfaces
e 1 SPI/I2S interface

e 112C bus

e 1 4-bit SDIO port to interface memory cards

Finally, a dedicated linear regulator provides 3.3 V supply which can
be enabled and disabled by software.

7.6.2. Embedded software

The 10 module provides access to the peripherals through ChibiOS/RT
HAL, but does not run any node by default, being designed for cus-
tom applications. Nodes can be easily developed to interface external
components and, by publishing and subscribing R2P topics, to integrate
additional devices in a R2P network. As use case, we interfaced an
Avago ADNS-9500 mouse sensor to the IO module, through the SPI
bus. A node configures the sensor to acquire motion values from it, and
publishes the readings through the middleware, allowing odometry on
systems that are not equipped with encoders. This is only an example
of the many possible applications the IO module can be used for.

7.7. Gateway

The gateway module (GW) is used to connect the real-time R2P net-
work to an external computer, by means of USB or Ethernet connection.
Thanks to this module, interfacing low-level hardware with high-level
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(b) Assembled board

(a) PCB layout

Figure 7.9.: Gateway module.

software is seamless, as it removes any needs of specific adapters, bus
controllers, and software drivers. Plugging in a USB cable or an Ether-
net cable is sufficient to control a robot from a computer, through the
Python port of the R2P middleware or by communicating on standard
ROS topics. This module is 60 x 40 mm in size. The layout of the
module and an assembled board are visible in Figure 7.9.

7.7.1. Hardware design

This module sports a more powerful microcontroller with respect to
other R2P modules, as it needs to handle the TCP/IP stack for Ethernet
communication as well as the ptROSnode native ROS client. We used
a STM32F407 microcontroller by ST Microelectronics, with 192 Kbytes
of RAM and 1 Mbyte of Flash memory, and featuring an ARM Cortex-
M4 core clocked at 168 MHz. In addition to the standard CAN bus
connectors, the GW module exposes a USB micro-B connector, and
a 100 Mb/s Ethernet port with integrated magnetics. The Ethernet
connection is driven by a DP83848 PHY by Texas Instruments.

7.7.2. Embedded software

The firmware that runs on the GW board provides all the functionalities
to interface R2P modules with an host computer, both through USB or
Ethernet connection. USB communication is provided by means of a
USB CDC serial connection, i.e., a virtual UART interface, which is
handled out of the box by any modern operating system. The USB
driver is part of ChibiOS/RT operating system, and can be seen as a
standard serial connection also on the microcontroller side. By default,
the gateway instantiates a DebugTransport on the USB serial port (see
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Section 5.3.7), so that topics on the real-time CAN network can be
subscribed through the USB connection, or, in the other way, messages
can be published on existing topics from the connected computer.

Ethernet connectivity is handled by the LWIP library, an open source,
lightweight, implementation of the TCP/IP stack [47]. The default
firmware provides two ways to interface through Ethernet: by running
a DebugTransport over a TCP connection, or by using the pROSnode
native ROS client. The DebugTransport can be used by opening a con-
nection to a TCP port on the GW module address, e.g., with a telnet
client, and it can be used as it was a serial connection, allowing to re-
motely inspect and debug the R2P network.

Additionally, thanks to pROSnode, the GW module can be easy con-
figured to expose R2P topics into a ROS network, and vice versa, to
provide seamless integration between high-level software deveoped in
ROS and the robotic platform. Demo applications have been developed,
which translates R2P messages, which are generally more lightweight
than ROS counterparts, in standard ROS messages. As an example,
data from the IMU module can be formatted as ROS sensor-msgs/Imu
message and consumed by any ROS node, as shown by the use case
presented in Section 8.2.
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Chapter 8

Use cases

We have built some robot platforms exploiting the R2P framework, to
verify the several components (i.e., hardware modules, middleware, and
real-time communication) in real applications and to test R2P effective-
ness in reducing prototyping time. In this chapter, we present 3 of the
robots we have built, reviewing their functional requirement, highlight-
ing how they are satisfied by means of R2P components, and describing
the low-level control we realized with the R2P architecture. Although
these platforms are all mobile wheeled robots, they have fairly different
mechanics, and they were built for varied applications, which needed
different functional requirements. Here we show that by using the R2P
framework the different platforms have been built following the same
process, and sharing most of the components. This allowed us to build
and control a robot in hours, instead of weeks or even months as we
were used to.

In Section 8.1 we describe Triskar?2, an omnidirectional platform we
use in applications focused on interaction between humans and robots;
Section 8.2 presents Robocom, a heavy duty differential drive robot built
for sensor fusion research; finally, Section 8.3 reports the development of
the new low level control of tiltOne, the two-wheeled balancing platform
for service robotics applications we already introduced in Chapter 2.
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(a) The platform (b) Kinematics

Figure 8.1.: The triskar2 omnidirectional robot: a picture of the realized
platform (a) and its kinematics diagram (b).

8.1. Triskar2 omnidirectional platform

Triskar2 is the first robot we equipped with R2P modules. We needed
an holonomic omnidirectional platform to develop some human-robot
interaction applications, like robotic games. The main goal of this plat-
form is to provide a simple to use interface in ROS, so that our com-
puter engineering students can easily develop the high-level software,
and implement their games, without getting stuck on problems related
to mechanics, electronics, and low-level control. We also wanted to em-
bed kinematic calculations in the low-level control software, to allow
developers simply issue motion commands in terms of forward, lateral,
and angular speeds. Finally, for safer operations, we wanted obstacle
avoidance within the low-level control loop, to prevent the robot from
hitting things, or people, during tests, if wrong commands were issued.

The platform requirements needed for the Triskar2 robot are summa-
rized in the following;:

e follow motion setpoints;
e compute odometry;
e provide low-level obstacle avoidance;

e publish and subscribe standard ROS topics.
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8.1.1. Platform description

Triskar2 is a three-wheeled robot, with wheels spread at 120deg on a
circle, having their axes crossing at the center of the body frame; the
actual platform is shown in Figure 8.1a. The frame is built out of stan-
dard aluminium profiles, which we cut in our lab and assembled using
the standard joints provided by the manufacturer. Wheels are of omni
type, with several rollers on their perimeter, to give traction on the
component orthogonal to their axis while allowing free movements in
the axis direction, thus enabling movements with three degrees of free-
dom. Each wheel is actuated by a 70 W DC motor by Maxon Motor [7],
with a planetary gear head providing 14 : 1 reduction and an incremen-
tal optical encoder with 2000 ticks/turn mounted on the rear shaft. The
robot weights about 20 Kg and can move at a maximum speed of about
2 m/s.

The kinematics diagram of the robot is depicted in Figure 8.1b. The
body frame, which has origin in the middle of the robot, is aligned so
that the y axis points forwards, the x axis rightwards, and the z axis
upwards. The angle between the x axes of body and world frames, with
respect to the z axis, is named . Wheel angular positions are 01, 62, and
fs3. Having fixed the angle on which the wheels are distributed, the only
parameters used by the kinematic model become the wheel radius, R,
and the distance of the wheel origin from the body frame origin, L. For-
ward kinematics equations are reported in 8.1, while inverse kinematics
equation are presented in 8.2.

T = Rcos (3 6, +Rcos (%) 0y —R 0
y = —Rcos (%) 01 +Rcos (%) 0y (8.1)
¥=4( -R 6 —R 6 —R 03)

6 —

%( cos (%) T — CoS (%) y —L %)
Gy = +( cos (% ) v —L7) (8.2)
by =h( 1 @ L 4)

8.1.2. Control architecture

Triskar2 sports several R2P hardware modules, each running various
nodes communicating through the middleware. In particular, the fol-
lowing modules have been used:
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Figure 8.2.: Triskar2 software architecture: white ellipses are embedded
nodes running on R2P modules, while blue circles are ROS
nodes on a host computer.

Motor
controller 1

3 DC motor controllers to drive the 3 wheels;

e 2 proximity modules for sensing obstacles, with 4 IR sensors on
the front of the robot and 4 on its rear;

e 1 GW module to interface the R2P network with ROS;

1 PS module to power the R2P bus.

The overall distributed architecture of the software is reported in Fig-
ure 8.2. Looking at the node graph, people familiar with ROS may
recognize a very similar approach to implement a robotic application,
although all the low-level control software runs on tiny, low-cost, micro-
controllers. The needed functionalities are implemented by distributed
nodes, which can be easily modified, replaced or shared through differ-
ent projects thanks to the loosely-coupled design. Nodes are deployed
on the hardware modules as sketched in Figure 8.3.
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Figure 8.3.: Triskar2 architecture, with the R2P modules we used, the
corresponding control nodes, and the ROS application.

Velocity setpoints are published by a generic ROS application and
subscribed by the GW module through 1ROSnode and forwarded in the
R2P network on the /velocity_cmd topic. Here they are subscribed by
an obstacle avoidance node, running on the proximity module, which
filters them whenever an incoming obstacle is detected: if the issued
motion command is in a direction where an obstacle has been detected,
it is overridden to avoid contact. Then, another node, running on one
of the motor boards, is in charge of computing the inverse kinematics
to get the actual wheel speed setpoints, published on the /speed topic
and subscribed by the nodes responsible of running the PID controllers
on the motor boards. Encoder readings are published by each motor
board and subscribed by a node applying the forward kinematic model to
estimate robot movements, which are published on the /odometry topic,
subscribed by the GW module and routed to the computer as standard
ROS messages. The gateway also forwards proximity readings, and the
estimated remaining battery life which is monitored by an additional
node running on the PS module.

Triskar2 has an on board computer, to accomplish computational in-
tensive tasks, like vision and path planning, and to run ROS; an alter-
native setup has the R2P gateway connected to a WiFi router, with the
high-level control software running on an external computer.
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msg_t inversek_node(void *arg) {
Node node("inversek");
Publisher <Speed3Msg> speed_pub;
Subscriber<VelocityMsg, 5> velocity_sub;
Speed3Msg *speedmp;
VelocityMsg *velmp;

node.advertise (speed_pub, "speed");
node.subscribe(velocity_sub, "velocity");

while (r2p::o0k()) {
if (sub.fetch(velmp)) {
if ((speedmp = pub.alloc()) == NULL) {
sub.release (velmp) ;
continue;

}

speedmp.wheell = (1/_R) * (_C0S60 * velmp->forward
- _C0S30 * velmp->lateral - _L * velmp->angular);
speedmp .wheel2 = (1/_R) * (_C0S60 * velmp->forward
+ _C0S30 * velmp->lateral - _L * velmp->angular);
speedmp.wheel3 = (1/_R) * (-velmp->forward
- _L * velmp->angular);

pub.publish(speedmp);

Listing 8.1: The Triskar2 inverse kinematics node source code.

8.1.3. Discussion

Triskar2 was not the first omnidirectional robot we developed, as we used
to participate to the RoboCup Middle Size League (MSL) some years
ago, and Triskar2 mechanics is very similar, although it is bigger in size,
to common RoboCup MSL robots. Having always built our RoboCup
platforms out of custom components in the past, and having experienced
all the related problems, we could appreciate, while assembling Triskar2
electronics, the plug&play nature of the R2P framework, which saved us
a lot of time. Indeed, it took only a couple of hours to attach the modules
on the robot frame, wire them, and have the wheels spinning, encoder
readings working, and synchronization between the 3 distributed motor
drivers.

The only component we had to implement from scratch was the node
to apply the inverse kinematics and compute required wheel speeds.
Knowing the kinematic model formulas, it took a few minutes to write
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the node, which is shown in Listing 8.1: a publisher and a subscriber
are instantiated, then, for each velocity command received, a message
with the corresponding wheels setpoints is filled and published back. All
motor boards will receive the message, as they subscribe the /velocity
topic, and apply the respective setpoints by running a PID controller;
if the mechanics changes, and thus also the kinematic model, only the
node calculating it needs to be updated. Now, as kinematics is calculated
within a node, this becomes an additional ready to use component we
may reuse in several other projects.

The gateway, thanks to pROSnode, allowed us to rapidly interface
the robot with ROS, without needing to write specific drivers and to
employ adapters: we ran the uroscfg script (see Section 6.3.4) to generate
handlers for incoming ROS messages, and declared the corresponding
R2P publishers to forward messages to the hardware modules. To expose
R2P data to ROS, we proceeded in the same way, resulting in a native
ROS interface to drive the robot as well as native ROS messages to get
feedback from the platform.

Although while building Triskar2 we also found, and had to fix, some
bugs in the R2P framework, as this was the very first real robot built
out of R2P modules, we can claim that, using off-the-shelf R2P compo-
nents, we can build a platform like this, and have it moving by issuing
commands from a ROS node, in less than one day. Triskar2 was initially
tested by driving it from a remote node with a gaming-like interface, i.e.,
accepting inputs from mouse and keyboard. The platform has also been
already used in a hide-and-seek robotic game involving a remote con-
trolled AR.drone quadricopter [33] and Triskar2 moving autonomously;
all the game logic was written in ROS, relying on the hardware platform
controlled by R2P.
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Figure 8.4.: Robocom, a differential drive robot for research in sensor fu-
sion: the new platform (a) and a setup with several sensors
attached during a Rawseeds acquisition (b).

8.2. Robocom differential drive robot

Robocom is an heavy duty, differential drive, indoor robot, which can
carry a high payload. This platform has been built for sensor fusion ex-
periments, where sensory data from disparate sources are combined to
achieve a better estimation of the observed entities. For this reason, we
needed a mobile, modular, platform which could be easily equipped with
a variety of sensors. Robocom has been built some years ago within the
Rawseeds project [40], which was focused on providing benchmarking
tools for mobile robotic systems by publishing high-quality multisensor
datasets with corresponding ground truth. Recently, its custom hard-
ware has been replaced by R2P modules to better satisfy its requirements
while improving reliability.

The main requirement for any sensor-fusion application is to provide
reliable data from sensors, with accurate timestamps, to test filtering al-
gorithms on. In particular, we need, from the platform, encoder readings
and inertial measurements. Using the components commonly used in re-
search robots, i.e., industrial or hobby market motor drivers and sensors,
precise timestamping is not trivial to satisfy. Indeed, the several devices
would be connected to a on board computer, possibly dealing with dif-
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ferent buses and protocols exploited by different vendors, and data is
timestamped at software level. This approach does not allow for precise
timing, as delays introduced by the different communication channels is
not taken into account, and, above all, software running on a computer
is prone to latency and jitter, if particular care is not paid, e.g., by run-
ning a real-time operating system. Timestamp misalignments can be
estimated and corrected, but this can be done only by off-line analysis
(e.g., by looking at cross-correlation between sensor readings), and it
may even falsify acquired data. Obviously, the robot also needs to move
around, and we also need interface to ROS as it is the framework we
adopt to develop sensor fusion algorithms.
The platform requirements we identified for Robocom are:

o follow motion setpoints;

e provide encoder readings;

provide inertial measurement readings;

accurately timestamp sensor data;

publish and subscribe standard ROS topics.

8.2.1. Platform description

Robocom is a differential drive robot, with two actuated wheels on the
front and an additional caster wheel on the rear; the complete platform
is shown in Figure 8.4a. As for the previous use case, the frame is made
of standard aluminium profiles, which can be easily assembled to realize
the required structure. Robocom is actually composed by two frames:
the lower one is the mobile base, which sports all the hardware needed
to actuate the robot, the batteries, and a computer; the upper part is
a detachable structure to mount the sensors, as shown in Figure 8.4b.
This allows to easy swap a set of sensors with another, or to use the
mobile base in different projects, by simply removing the 4 screws that
connect the two parts.

Motion is provided by two high power 150 W DC motor by Maxon
Motor [7], with ceramic gear heads (74 : 1 reduction ratio), and optical
encoders with a resolution of 2000 ticks/turn. To provide mechanical
decoupling, the wheels are driven by a synchronous belt, so that hits on
the wheels are prevented from damaging the motors; each motor and
wheel pair is assembled in an aluminium profile and can be substituted
in case of need. Front wheels are 24 cm in diameter, and offer an high
grip also with a full payload, which can be as high as 80 Kg.
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Figure 8.5.: Robocom software architecture: white ellipses are embed-
ded nodes running on R2P modules, while blue circles are
ROS nodes on a host computer.

A computer is mounted on the lower frame, running ROS, to provide
the computational power needed to acquire data from high bandwidth
sensors, e.g., the several cameras used to collect visual information. The
lower frame also accommodates 6 lead-acid batteries, for a total 24 V
21 Ah capacity, to power the motors and supply the equipment.

8.2.2. Control architecture

Robocom custom control electronics has been completely replaced by
R2P modules, which feature much better specifications (i.e., the maxi-
mum continuous current of R2P motor controllers is 20 A with respect
to the 3 A supported by the old drivers), in a smaller footprint (i.e.,
the old drivers were inside a case with 300 x 100 x 100 mm size, while
the new drivers are only 60 x 40 x 15 mm each). We also replaced the
original commercial IMU with the R2P IMU module.
Summarizing, the following modules have been used on Robocom:

e 2 DC motor controllers to actuate the wheels;

e 1 IMU module to collect inertial measurement;
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e 1 GW module to interface the R2P network with ROS;

e 1 PS module to power the R2P bus.

Figure 8.5 shows the distributed embedded control software of the
robot, in the lower part, and the ROS nodes used in one of the appli-
cation developed with Robocom, in the upper part. Motion setpoints
are produced by the Teleop ROS node, which receives commands by a
human using a traditional joypad. The GW module subscribes the ROS
/velocity topic and forwards messages to the corresponding R2P topic,
which is then subscribed by the node responsible of running the inverse
kinematics model. Motor controller nodes running on the 2 DCM mod-
ules subscribe the computed speeds and, by running the on board PID
controller, drive the motors following the received setpoints.

DCM modules are also in charge of publishing readings from the motor
encoders, with precise timing. For this purpose, encoder data sampling is
synchronized to the reception of RTCAN sync message, and messages are
timestamped using the global time provided by RTCAN. This results in
almost simultaneous reading of the two encoders (some latency, and thus
jitter, may be introduced depending on threads running on each module,
and their priorities), and data is timestamped with 1 ps resolution and
an accuracy comparable to RTCAN time-triggered messages jitter (i.e.,
+3 ps). Inertial measurement acquired by the IMU module are also
timestamped using RTCAN global time, and readings by each sensor
are published on the /imu_raw topic. With the receiver connected to
the IMU, also data from GPS is timestamped with the same time base.

The GW module, while forwarding R2P messages to the ROS network,
fills the ROS standard header (i.e., std-msgs/Header) with timestamps
provided by R2P, so that all data produced by R2P modules have pre-
cise timing also within ROS. To provide online synchronization between
ROS and R2P clocks, the GW module can read the headers of messages
coming from ROS (e.g., on the /velocity topic), and track the offset be-
tween the two time bases. This only allows for a coarse synchronization,
but it is still better than timestamping data at reception time on the
computer. A much accurate approach whould be having a PTP client
running on the GW module, so that the clocks are aligned with very high
precision. Currently, we are working to port the PPSi PTP client [9],
an enhanced and lightweight PTP implementation developed at CERN,
to the R2P framework, aiming at providing clock synchronization as
feature of the GW module.
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8.2.3. Discussion

The issues showed by the old Robocom platform, within the Rawseeds
project, were mainly due to difficulties in aligning sensor readings, as
the robot sported several devices with no common time base and drifts
up to 150 ms were noticed [10]. For example, it used a custom motor
driver board, which also provided encoder readings, connected by a serial
interface, a commercial IMU was used to collect inertial measurement,
with a USB connection to the on board computer, and a GPS receiver,
producing position measures as well as the reference time, connected via
USB too. Some of the cameras were connected through Ethernet, with a
Precision Time Protocol (PTP) client to align their clocks, while others
had Firewire interfaces and required timestamping on the computer.
This resulted in misalignment in sensor timestamps and, moreover, the
different clocks showed variable drift, worsening the accuracy over time.
A lot of work has been dedicated to realign sensor data, and cross-
correlation analysis was used to estimate respective offsets and drift
ratios.

By using R2P modules, most of these problems do not occur, as data
is timestamped at the source of information, and using a consistent time
base over the whole network. This allows to perform research relying
on high quality data from the platform, instead of trying to correct
misaligned data with the risk of introducing additional errors and wast-
ing time and efforts. Robocom has been used within the ROAMFREE
(Robust Odometry Applying Multisensor Fusion to Reduce Estimation
Errors) project [45], which aims at providing a comprehensive, high-
performance, easy-to-use software library for sensor fusion and robust
odometry.
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(a) The platform (b) Notation used to describe the mo-
tion model

Figure 8.6.: tiltOne omnidirectional robot: a picture of the realized plat-
form (a) and its kinematics diagram (b).

8.3. tiltOne balancing robot

Recently, we developed a second version of tiltOne, the two-wheeled bal-
ancing robot introduced in Section 2.3. This platform has been designed
for service applications which need a tall robot (e.g., to interact with hu-
mans) while keeping a small footprint to move in complex environments
such as apartments and offices. Balancing robots satisfy these needs: the
footprint is reduced with respect to platforms with more wheels, they
can easily move in narrow spaces, being able to turn in place, and they
can carry loads much more efficiently with respect to legged solutions.
The main drawback of these robots is that they are inherently unstable,
needing to be actively balanced in order to remain upright.

The original version of tiltOne showed some issues mainly related to its
reliability, as it was built by assembling hobby market components, and
it was hard to upgrade with additional features due to the centralized,
ad-hoc, architecture. For this reason, we updated the robot with R2P
modules, aiming at satisfying with off-the-shelf components the following
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platform requirements:

keep balance;

follow motion setpoints;

provide odometry;

publish and subscribe standard ROS topics.

8.3.1. Platform description

The new version of tiltOne shares only the motors and the wheels with
the original design, while the frame has been rebuilt to improve mod-
ularity and to allow easy implementation of different applications with
the same platform; the current robot is shown in Figure 8.6a. The
aluminium frame is composed by two parts: the vertical shaft, to which
application-dependent devices can be attached, and the base, housing all
the electronic components, the motors, and a computer. The shaft and
the base can be separated in few minutes, by removing four screws and
disconnecting the cables providing power and communication. A bat-
tery holder is attached to the frame, at an adjustable height, to better
distribute the weights and allow for precise balance and motion control.

The robot sports two modified bicycle wheels, actuated by two 150 W
DC motor by Maxon Motor [7], with a 26 : 1 reduction ratio, and optical
encoders providing 2000 ticks/turn. A synchronous belt transmission is
used to decouple the wheels from the motors, so that motor axis are not
directly loaded with robot and payload weight; the pulleys introduce an
additional 4 : 1 reduction to the drive path. Motors parameters have
been defined to allow the robot carry a quite high payload (up to 50 kg)
travelling at speeds of about 1 m/s.

Balancing robots are similar to classic inverted pendulum on a cart
systems, with an additional constraint as the pivot point of the pole
is not free. The motion model of a balancing robot can be obtained
by decomposing the forces acting on the system in their horizontal and
vertical components. Equations 8.3 report a simplified motion model,
where Mgr and My are the masses of the wheels and of the frame, 6
represents the wheel rotation, « is the angle of the frame with respect
to the equilibrium position, L is the distance between the frame center
of mass and the wheel axis, and R is the wheel radius, as reported in
Figure 8.6b. Additionally, Jr represents the moment of inertia of the
frame, g the gravity acceleration and C the torque applied to the wheels.
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Figure 8.7.: tiltOne software architecture: white ellipses are embedded
nodes running on R2P modules, blue circles are ROS nodes
on a host computer.
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8.3.2. Control architecture

To control tiltOne, we need to precisely estimate the current tilt angle,
which needs to be controlled to both keep balance and follow motion
setpoints. The control action is then applied by driving the two wheels.
These requirements can be satisfied by using the following R2P modules,
which replaced the original electronics:

e 2 DC motor controllers to actuate the wheels;

e 1 IMU module to estimate the tilt;
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PIDY T PID® tiltOne

Figure 8.8.: The nested controllers used to keep balance and follow mo-
tion setpoints on tiltOne.

e 1 GW module to interface the R2P network with ROS;
e 1 PS module to power the R2P bus.

Figure 8.7 shows the distributed embedded control software of tiltOne
and a simple ROS application used to drive the robot. Motion setpoints
are issued by a ROS node, as usual, and forwarded on the R2P network
by the Gateway module on the /velocity topic. The Inverse kinematics
node applies the differential drive equations to the requested setpoint
and computes the corresponding wheel speeds, as tiltOne, from a planar
motion point of view, is a differential drive platform.

As tiltOne is a balancing robot, we cannot directly drive the wheels at
the requested speed, as this would cause the robot to suddenly fall down.
To move the robot forward, we first need to tilt in the corresponding
direction, then we can apply torque to the wheels to gain speed. When
the robot reaches the requested setpoint, it must stand vertical again,
which is the configuration to move with constant speed; to stop, it has
to tilt backward and then break the wheels. The control law we used to
drive tiltOne is realized by two nested PID controllers (see Figure 8.8):
the inner controller, PID“, follows the tilt setpoint, while the outer
controller PIDY modifies such setpoint to accelerate or decelerate the
robot reaching the target speed. These controllers are run inside the
corresponding nodes, i.e., Velocity control, which subscribes the speed
setpoint, compares it with the current speed, and publishes the tilt set-
point with an update rate of 20 Hz, and Balance control, which compares
the setpoint with the actual tilt measured by the IMU module and com-
putes the actual motor commands with an update rate of 100 Hz. The
overall control is than realized by a distributed control loop: the IMU
module runs the control algorithms, while the motor drivers actuate the
motors and close the loop publishing back the actual wheel speeds.

To let the robot turn, both the control nodes subscribe the motion
setpoints: in Velocity control we only take into account the motion com-
ponent & (i.e., the forward velocity), and compute the tilt needed to
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reach that velocity; in the Balance control node we apply a correction
to the actions computed by the controller, by adding and subtracting
a value proportional to the requested angular velocity (i.e., the ratio of
turn) to the two wheels.

Finally, the direct kinematic model is applied to compute odometry,
while another node is in charge of monitoring the battery level and
communicating it to the user application.

8.3.3. Discussion

The development of the first version of tiltOne took as long as one and
half man years, as reported in Section 2.3, and most of the time was
spent in looking for the right hardware devices, integrating them, and
learning how to correctly implement low-level software on the custom
control board we built. Developing the new version of the robot was,
with respect to that experience, totally straightforward. It took about
a week to build the new frame, assemble the motors and the wheels,
attach and wire the battery, and complete the mechanics. Then we
mounted the R2P modules we needed, simply connected them, and we
wrote the entire low-level control software in only one day. The Forward
kinematics, Inverse kinematics, Motor controller, and Battery monitor
nodes were the same developed to drive Robocom (see Section 8.2.2).
Thanks to the loosely coupled software architecture, we were able to
reuse the nodes without requiring any modifications. Tilt measurement
was already provided by the IMU module, and we simply extracted the
pitch component of its attitude estimate.

The only nodes we needed to implement were the ones focused on
balance and motion control. For this purpose we used the already im-
plemented PID controllers (i.e., the PID we use for motor control on
the DCM module), which we simply instantiated within two nodes and
tuned for these specific purpose. First we worked on balance control,
starting from the constants we were using on the old version of the robot
and tuning them by modifying the configuration of the Balance control
node, which runs the PID® controller. When the balance control was
satisfactory, we followed the same approach with the Velocity control
node to tune the PID? controller.

At that point, we were ready to drive the robot by a ROS node,
as it subscribes standard ROS messages; the platform we realized can
then be used for a variety of applications, and easily upgraded to satisfy
additional requirements. The architecture of the new tiltOne is, actually,
the architecture we presented in Figure 7?7 (see Section 3.3) to show
how a robot could be built out of off-the-shelf modular components.
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For instance, if we need obstacle avoidance, we can add a couple of
R2P Proximity modules and deploy the obstacle avoidance node from
the Triskar2 robot. If we are interested in studying alternative control
algorithms, we can just replace the controller nodes with the new ones.
By comparing the process of building the two versions of tiltOne, and
the resulting platforms we obtained, we were finally convinced of the
effectiveness of the approach we foster with the R2P framework.
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Chapter 9

Conclusions

This Chapter concludes the thesis: in Section 9.1 the results of this work
are reviewed, while Section 9.2 outlines future improvements.

9.1. Conclusions

Starting from the observation that robotics still fails to enter the mass
market, we identify in the problem of robot prototyping one of the main
limiting factors in today’s robotic research. Robotic applications need
to be prototyped at an early stage of development, as their success de-
pends on the interplay of a variety of components, involving several,
different, competencies. Today, the prototyping process can be even
more demanding than developing the application itself: no standardized
components for the development of generic robots exists, and systems
are often implemented from scratch, even if they share most of the re-
quirements. Many unexpected issues often show up at early stages of
development, slowing down, or even preventing, the translation of inter-
esting ideas into working systems.

In this thesis, we presented a novel approach to robot prototyping
based on modular development techniques which have been recognized
effective in many other fields. We extended the modular, component-
based, approach to hardware level, developing hardware devices and
programming tools focused on robot requirements, to enable massive
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hardware/software reuse and fast prototyping. By analyzing common
robotic systems, we identified a set of functional requirements that we
implemented at hardware level as distributed modules with on-board
computation, each focused on a specific task. Modules share a stan-
dard physical interface, with a simple connection schema, so that robot
prototypes can be developed by selecting the modules that satisfy the
identified requirements and by assembling them in a plug-and-play fash-
ion.

Real-time interaction between the different devices is provided by RT-
CAN, a novel protocol for the CAN bus we developed starting from the
requirements of distributed architectures for robots. It combines the
advantages of different approaches to communication scheduling: time-
triggered communication, e.g., from control loops, is handled with a pure
TDMA approach to guarantee high temporal determinism, while event-
triggered communication requests, e.g., from sensors, are handled with
EDF scheduling, to be delivered with low latency.

The publish/subscribe middleware extends modular development also
to low-level control software, which is implemented by means of dis-
tributed, loosely coupled, nodes executed on the hardware modules. In
this way software components running on resource-constrained devices
can be reused and shared through different projects, with a program-
ming model most robot developers might be familiar with.

To easily integrate robotic platforms with high-level control software,
we developed ptROSnode, a lightweight ROS client that can run on low-
cost microcontrollers, publishing native ROS messages over TCP/IP.
pROSnode enables directly interfacing with the low-level control net-
work, without the need for specific adapters and device drivers; in this
way, the same interfaces are shared among different robot platforms,
allowing to adopt the same ROS software in different projects.

The contributions of this thesis may be used independently and in-
tegrated in existing systems, or within the Rapid Robot Prototyping
(R2P) project, an open source hardware and software framework aim-
ing at reducing time and effort needed to develop robotic systems. With
R2P, common requirements are satisfied by off-the-shelf components, al-
lowing to quickly obtain working robot platforms to evaluate, develop,
and benchmark novel ideas and applications. We used R2P to proto-
type some robots, with different goals and requirements, showing how
the proposed architecture can be exploited to develop a variety of appli-
cations.
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9.2. Future work

R2P is a quite mature project, but it is still under active development
and several improvements have been already planned.

First of all, the current set of hardware and software components, al-
though can already help in the development of a number of platforms,
should be enlarged to allow more robot topologies to be implemented
with the R2P framework. We are already developing some additional
modules, e.g., a brushless DC motor driver and a module to drive stan-
dard hobby servos, while others have been drafted. For instance, it would
be interesting to integrate vision capabilities to allow robot platforms
perform simple, real-time, vision tasks without needing an on-board
computer, e.g., to perform visual odometry; for this purpose, we are
evaluating the integration of the CMUcam [2] embedded vision sensor
as a R2P module. Further software components are becoming available
while developing new robots and applications, as requirements that are
not already satisfied are implemented as middleware nodes, and they
can be shared and reused in other projects.

Building new, different, robot platforms is also planned to evaluate
and benchmark the framework in a variety of situations with different
functional or performance requirements. We plan to realize the low-
level control of a multi-rotor flying drone with distributed R2P modules,
aiming at developing an open platform for research in control theory,
aerial photogrammetry, and digital terrain mapping. Another platform
we are evaluating to equip with R2P is an autonomous all-terrain vehicle
used for complex autonomous operations [26,27]. Currently, its low-level
control is performed with closed, industrial, controllers, which only allow
to tune a few parameters; with an open, easy to use, architecture, we
alm at significantly improve its performance, being able to implement
novel control techniques.

To shorten the learning curve of the framework, we are also developing
a graphical IDE, which helps in inspecting the network of modules, up-
dating and deploying software nodes, and configuring their parameters.
An interesting scenario we are evaluating is to exploit R2P as low-level
interface for model-driven robot development, which is an active research
field to structure and formalize the robot development process.
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Appendix A

R2P module schematics

In this appendix we report the schematics of the R2P modules presented in
Chapter 7. Board designs are open source, distributed under the Creative
Commons Attribution-ShareAlike 2.0 (CC BY-SA 2.0) license [3], and available
on the R2P repository [112].
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