
POLITECNICO DI MILANO

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

Integrating formal methods with industrial
standards in the development of flexible

manufacturing systems

Doctoral Dissertation of:
Luca Ferrucci

Advisor:

Prof. Dino Mandrioli

Tutor:

Prof. Luciano Baresi

Supervisor of the Doctoral Program:

Prof. Carlo Fiorini

2013 – XXVI

A B S T R A C T

This thesis presents a complete, innovative, formal verification approach to

model certain class of manufacturing systems, the Flexible Manufacturing
Systems (FMS). The thesis is the final product of a collaboration project be-

tween a group of automatic control engineers of the "Istituto di Tecnologie
Industriali ed Automazione" (ITIA) of the CNR of Milano and a group of

informatics engineers of the "Dipartimento di Elettronica, Informazione e

Bioingegneria" (DEIB) of the Politecnico di Milano. A complete, integrated
Model-Driven environment is the final target of the project; this environment

should support the designer from the modelling phase to the formal verifica-
tion, to obtain an agile, flexible development process.

To overcome the difficulties in the use of formal languages, the approach

is based on widely-used, graphical but semi-formal high level modelling lan-
guages. The most part of these languages have Model-driven environments

to help system designers in the development process and have simple and

familiar notations, but lack of a rigorous semantics. We chose one of the typ-
ical languages adopted in such environments supporting the development

of FMS, namely Stateflow, and we encoded it in terms of formulae of the
metric temporal logic TRIO; by this way we provided a rigorous, composi-

tional, run-to-completion semantics for Stateflow, based on concepts of micro

and macro-steps. The formal model and the axiomatization of the semantics
allow the formal verification of a set of real-time qualitative or quantitative

user-defined properties, using a fully automatic model checker, Zot, which
has been developed internally by the group of the DEIB. The approach is

general enough to allow the use of different modelling languages, logical for-

malisms or model-checking tools. The approach is illustrated and validated
through a realistic case study.

In the evolution of the work, a new metric temporal logic, X-TRIO, has
been developed as an extension to TRIO, to overcome the limitations of the

time model of TRIO. In effect, many formal semantics of high level graph-

ical languages, such as the one of Stateflow, adopt the abstraction of "zero-
time transitions", which does not consume time. These however have several

drawbacks in terms of naturalness and logic consistency, as a system may be
modelled to be in different states at the same time. X-TRIO exploits concepts

from non-standard analysis to model micro and macro-steps. In the thesis, the

i

expressiveness and decidability properties of the new metric temporal logic
have been studied and analysed. Also, a plugin for Zot is presented to allow

the use of the new logical formalism.

ii

S O M M A R I O

Questa tesi presenta un completo ed innovativo approccio alla verifica for-

male e alla modellazione di una ben specifica classe di sistemi di produzione,
i sistemi manifatturieri flessibili o Flexible Manufacturing Systems (FMS). La

tesi è il prodotto finale di un progetto di collaborazione tra un gruppo di
ingegneri automatici del controllo dell’ "Istituto di Tecnologie Industriali Ed

Automazione" (ITIA) del CNR di Milano e un gruppo di ingegneri informatici

del "Dipartimento di Elettronica, Informazione e Bioingegneria" (DEIB) del
Politecnico di Milano. L’obiettivo finale del progetto è un ambiente completa-

mente integrato di modellazione, basato su un approccio orientato al modello;
questo ambiente dovrebbe supportare il progettista dalla fase di modellazione

a quella della verifica formale, per ottenere un processo di sviluppo agile e

flessibile .
Per superare le difficoltà nell’utilizzo dei linguaggi formali, l’approccio è

basato su linguaggi ampiamente diffusi di modellazione di alto livello, pos-

sibilemnte grafici, ma purtroppo soltanto semi-formali. La maggior parte di
questi linguaggi hanno sia ambienti integrati adatti ad aiutare i progettisti di

sistemi nel processo di sviluppo, sia notazioni semplici e familiari, ma man-
cano di una semantica rigorosa.

Per questa tesi, abbiamo scelto uno dei linguaggi più usati per la model-

lazione di FMS, Stateflow, e lo abbiamo codificato usando formule della logica
metrica temporale TRIO; per ottenere ciò, abbiamo sviluppato una semantica

per Stateflow rigorosa e composizionale, di tipo run-to-completion, basata sul
concetto di micro- e macro- steps . Il modello e la rigorosa formalizzazione

della semantica permettono la verifica formale di un insieme di proprietà

in tempo reale, sia qualitative che quantitative, definite dall’utente, utiliz-
zando un bounded model checker, Zot, che è stato sviluppato internamente

dal gruppo del DEIB. L’approccio è sufficientemente generale da consentire
l’uso di diversi linguaggi di modellazione, formalismi logici o strumenti di

model-checking. L’approccio è illustrato e validato attraverso un caso di stu-

dio realistico.
In una successiva evoluzione del lavoro, una nuova logica metrica tempo-

rale, X-TRIO, è stata sviluppata come estensione di TRIO, per superare i limiti
del suo approccio temporale. Infatti, molte semantiche formali per linguaggi

grafici di modellazione ad alto livello, come ad esempio quella di Stateflow,

iii

adottano l’astrazione delle "transizioni a tempo zero", che non consumano
tempo reale. Queste però presentano alcuni inconvenienti in termini di natu-

ralezza e coerenza logica, in quanto un sistema può essere modellato in modo

da essere in diversi stati nello stesso istante temporale. X-TRIO sfrutta i con-
cetti dell’Analisi Non-Standard per modellare micro e macro-steps. Nella tesi,

sono state studiate e analizzate le proprietà di espressività e decidibilità della
nuova logica temporale metrica. Inoltre, è stato sviluppato un plugin per Zot

per consentire l’utilizzo pratico del nuovo formalismo logico.

iv

A C K N O W L E D G M E N T S

Thanks to my parents Antonia and Rolando, for their patience.

Thanks to my advisor Dino Mandrioli and to the components of my group at the

DEIB of the Politecnico di Milano, Matteo Rossi and Angelo Morzenti, for their fun-
damental ideas and contributions on the theoretical part of this thesis.

Thanks to the components of the group of automatic engineers of the Institute ITIA
of the CNR di Milano, Emanuele Carpanzano and Mauro Mazzolini, for their funda-

mental contributions.

Thanks to my reviewer Silvio Ghilardi of the Università degli Studi di Milano
Thanks to my sister Veronica to help me keeping my sanity.

Thanks to my colleagues at the DEIB of the Politecnico di Milano, for the infinite
hours spent to hear me talking about boring and tedious, but (I hope) very interested

arguments.

Thanks to all of them, simply for their existence

v

C O N T E N T S

1 introduction 1

1.1 Content of the thesis: a formal verification method for FMS . . 3

1.2 Structure of the thesis . 7

2 high-level languages and standards for the modelling

of fms 11

2.1 Statechart: an high-level language for the modelling of FMS . . 13

2.1.1 Syntax . 13

2.1.2 Semantics . 17

2.2 The industrial standard IEC-61499 29

3 overview of the methodology approach: a case study 35

3.1 The case study: a robotic cell . 35

3.2 A semantics for Simulink/Stateflow 44

3.3 Temporal logic encoding of the case study 51

3.3.1 TRIO: a metric temporal logic 51

3.3.2 TRIO encoding of the case study 52

3.4 System properties verification and experimental results 58

3.5 Limitations: towards a new metric temporal logic 62

4 x-trio : a metric temporal logic for fms 65

4.1 The general X-TRIO logic . 65

4.1.1 An introduction to Non Standard Analysis 65

4.1.2 X-TRIO syntax and semantics 67

4.1.3 Examples of usage of X-TRIO 69

4.2 Towards decidable versions of X-TRIO 71

4.2.1 A propositional X-TRIO 72

4.2.2 Expressiveness of X-TRIOP
T

. 73

4.2.3 Decidability of X-TRIOP
T

. 77

4.3 A decidable fragment of X-TRIO 78

4.3.1 A decision procedure for X-TRIOP-R
N+

. 82

4.4 X-TRIO encoding of the case study 92

4.4.1 Variations to the composition semantics 94

vii

viii list of figures

5 related works 97

5.1 MD approaches for the development process of FMS 98

5.2 Formal specifications for reactive systems 102

6 tools 111

6.1 Zot verification tool . 111

6.2 Sf2Trio tool: encoding Stateflow/Simulink into X-TRIOP-R
N+

. . . 115

7 concluding remarks 123

7.1 Future Work . 124

bibliography 127

L I S T O F F I G U R E S

Figure 1 Synthesis of the methodology approach 4

Figure 2 A Statechart example diagram 14

Figure 3 A Basic FB . 31

Figure 4 An ECC of a Basic FB . 31

Figure 5 A FB network . 32

Figure 6 Robotic Cell. 38

Figure 7 Developed IEC 61499 control solution 39

Figure 8 ECC of the robot controller module 40

Figure 9 Stateflow diagram of the controller of the robotic cell
of Figure 6. 41

Figure 10 Stateflow diagram of component Machine 1 of Figure 6. 42

Figure 11 Simulink diagram of the robotic cell. 44

Figure 12 Example of stutter transitions 50

Figure 13 Deadlocked run returned by Zot. 61

Figure 14 Part of trace representing counters. 81

Figure 15 An example of ρS (with δφ = 1). 86

Figure 16 Overall architecture of Zot 113

Figure 17 Model of Machine 1 in the input syntax of the Sf2Trio

tool. 119

Figure 18 Model of the composed module of the robotic cell in
the input syntax of the Sf2Trio tool. 120

ix

L I S T O F TA B L E S

Table 1 TRIO derived temporal operators. 52

Table 2 Some variations of TRIO derived temporal operators. . 53

Table 3 Test results. 60

Table 4 Translation schema τ. 88

xi

1I N T R O D U C T I O N

In the last years, FMS systems are increasingly required to operate in dynamic
environments characterized by quick changes of the demand, and to deliver

highly customized products; this, in turn, calls for the agile and fast reconfig-
uration of production cells. As a consequence, the complexity of automation

solutions for manufacturing systems has become considerable. The capability

to operate in dynamic environments characterized by quick changes of the
demand, the request for highly customized products and the need for agile

and fast re-configuration of production cells are the main reasons for which
the complexity of modern automation solutions for manufacturing systems

is strongly increased. At the same time, features like interoperability, porta-

bility and scalability are the key to reduce the huge costs and times needed
to design and realize a new production system, or to modify an existing one.

This challenging context requires new paradigms, based on the distribution of

control onto a network of embedded components, to make the design, mod-
ification, integration and reconfiguration of resulting solution more agile [1].

Furthermore, structured approaches to control system design that support de-
sign and testing of the whole automation system must be adopted [2]. Then,

the guidelines, methods and tools of a comprehensive development method-

ology must be defined that allow developers to specify complex automation
systems in an easy and safe way, to maintain the traceability along the differ-

ent design phases, and to describe the behaviour of the target system [3, 4]. A
commonly structured methodology consists of several steps which are briefly

described hereafter:

• Control system specification in which the process to be automated is de-
scribed and the functional activities to be performed, as well as the

purpose of the complete system are defined

• Control system architecture and functional design in which the control sys-
tem is conceived and developed exploiting concepts and paradigms pro-

vided by reference models and standards

• Software implementation in which the real software solution is deployed

by means of appropriate programming languages

1

2 introduction

• Verification and Validation (V&V) in which the structural correctness of
the control code and the compliance of the behaviour of the automation

system with its requirements are verified

These phases are not strictly ordered, such as in the classical waterfall
model; in particular, the V&V phase, if it is performed using formal meth-

ods, is usually executed immediately after the functional design phase, since
it allows the designer to correct errors or unwanted behaviours of the system,

before its implementation, with a considerable saving of time. It is well known

that, effectively, in engineering the two phases of verification and validation are
different and, often, confused, although they are usually performed together.

The verification phase corresponds to check if the software implementation of

the system, or its functional design or formal model, fulfils the requirements
identified during the control system specification phase; in other words, it

consists in answering to the question: "are we building the thing right?". In-
stead, the validation phase corresponds to check if the requirements and the

system design or model are consistent with the needs and the informal con-

ceptual idea of the whole system given by the commissioner; in other words,
it consists in answering to the question: "are we building the right thing?". We

can note that, if the set of requirements is complete and fulfils the need of the
commissioner, verification and validation phases coincide perfectly, so in this

thesis we refer to them as a unique V&V phase.

The V&V phase is crucial to obtain a robust and reliable automation solu-
tion, but there is no commonly adopted effective approach for this phase. In

effect, in the current industrial practice, most operating conditions of the de-
veloped system are not properly verified, and several design and implementa-

tion errors often remain unresolved until the commissioning phase due to the

considerable complexity of the control logic and to the limited development
time available. Nonetheless, the lack of proper identification and correction

of such errors before final commissioning critically impacts on ramp-up time
and costs as well as on production downtimes [5]. V&V in control systems

can be addressed through simulation or formal approaches. Simulation is

currently the most widely known and adopted technique for V&V of indus-
trial automation systems. The deployment and implementation of simulation

frameworks is quite simple thanks to the tools available for software- and

hardware-in-the-loop simulation [6]. The main open problem of such an ap-
proach is the definition of the test cases to achieve complete and exhaustive

model analysis. Therefore, the quality of the simulation results closely de-
pends on a good definition of testing scenarios and verifying any possible

1.1 content of the thesis : a formal verification method for fms 3

behaviour of the system still remains a difficult task. To overcome this limi-
tation, formal verification approaches, which are able to exhaustively explore

the execution space of a system model, have been studied and proposed for

the design of manufacturing systems [7]. A possible field of application is in
the production of a good set of model coverage tests [8] to be successively

performed over the formal model, sometimes saving time over the execu-
tion of the exhaustive static analysis of the model, which suffers of the well-

known state-space explosion problem. In most instances, formal verification

techniques are based on modelling notations that are separate from those nor-
mally used by practitioners in their design work, and the mapping from the

concepts of one notation to those of the other one is often difficult. In the next

section, we describe the path of the work on the development of a formal
verification approach for the modelling of FMS.

1.1 content of the thesis: a formal verification method for

fms

This thesis is the result of a collaboration between a group of automatic con-

trol engineers of the "Istituto di Tecnologie Industriali ed Automazione" (ITIA)

of the CNR of Milano and a group of informatics engineers of the "Diparti-
mento di Elettronica, Informazione e Bioingegneria" (DEIB) of the Politecnico

di Milano. The aim of the work is to give a solution to the problem of spec-
ifying an integrated development process for the control software of FMSs,

using the MDE (Model-Driven engineering) approach described in the last

section. In particular, a way to perform the V&V phase using formal methods.
The resulted IDE (Integrated Development Environment) should support the

designer from the modelling phase to the formal verification phase.
In Figure 1, are shown the main ingredients of my formal verification ap-

proach. It is based on the use of model checking as a formal method to perform

the V&V phase. Informally speaking, the model checking is a method to algo-
rithmically check whether a program (the model) satisfies a specification. The

model and the properties are usually expressed in a specification language
with a precise, rigorous semantics, such as temporal logics or specific lan-

guages for model checker tools such as Promela, the input language for the

model checker SPIN. The problem can be expressed mathematically as: given
a temporal logic formula p and a modelM, both expressed in the specification

language, with initial state s, decide if M, s |= p.

4 introduction

SYSTEM PROPERTIES

TRIO metric

temporal logic description of the

property to be verified

MODEL CHECKER ZOT

SAT or SMT Solver

COMPOSED SYSTEM MODEL

Simulink graph

MODEL Component 1

StateFlow graph

MODEL Component 2

StateFlow graph

MODEL Component N

StateFlow graph

...

SEMANTICS RULES

OF STATEFLOW AND SIMULINK

LTL Linear temporal

logic formulae

ZOT LTL SYSTEM MODEL

LTL linear temporal logic

description of the system model

Translation

YES NO

Counterexample trace

Figure 1: Synthesis of the methodology approach

1.1 content of the thesis : a formal verification method for fms 5

The approach has been developed during the initial phase of the work. A
crucial part of this phase was to identify a high-level formalism to model the

system architecture and functional design of FMS, which accomplished to the

following set of prerequisites identified by the group of the control engineers:

1. easy-to-use: the language should be easy to understand and use by prac-

titioners or control engineers. Widely-used graphical languages are pre-
ferred, with an operational oriented notation similar to finite state ma-

chines, to provide them with a familiar notation.

2. compositional: the language must allow the decomposition of complex

and distributed systems into a set of independent modules, which can
be developed separately. Each module component must be kept small

and simple in order to be understandable and easy to be verified; it can

be considered a black box, with an external interface and an internal
behaviour whose details are not important for the development of other

components.

3. abstract: the language should allow to abstract from the details of the im-
plementation of a component when they are not important, or to refine

it when they are necessary, i.e. it must allow a hierarchical decomposi-

tion.

4. easy to be verified: the language should be easy to be verified using formal
methods; for this reason, it should be possible to verify each component

separately, in an exhaustive manner without the interaction of the user.

Specification languages such as temporal logics or languages similar to

Promela, do not satisfy all these prerequisites; in particular, they are not easy

to use for control engineers, since the effort needed to properly master them
is too high. This is the main reason why model checking is not widely-used

by practitioners. In effect, the cost of staff training and the number of errors in

the resulted specifications may be so high to affect the degree of penetration
of this technique in the design of complex, distributed systems in industry.

Furthermore, these languages are, in most part, no compositional; in contrast,
they are easy to be verified formally, by nature.

For these reasons, the group decided to choose a toolbox of high-level

graphical languages, Stateflow/Simulink, which are suitable to model reactive
systems; they are compositional, widely-used in the international community

and well supported by Model-driven environments. The choice of a particular

6 introduction

modelling language is not mandatory for the application of the approach: it
is possible to use any language which satisfy the above prerequisites and is

suitable to model reactive systems; Statechart [9], the SFC notation of the IEC

61131-3 [10], the IEC 61499 [11] and timed Petri Nets [12] are some examples
of such type of languages.

The main drawbacks in the use of these languages is their lack of a rigorous
semantics, which is mandatory to allow the application of formal methods.

Most of them are complex languages with an intricate semantics, usually ex-

plained in an informal way in the official documentation. To overcome this
limitation, the group developed a formal semantics of the Stateflow/Simulink

based notation, given in terms of a set of rules specified in a metric temporal

logic, TRIO; the rules are then translated in Linear Temporal Logic (LTL), a
common input formalism for a large class of model checkers. To foster in-

formation hiding, the formal semantics is compositional, so the prerequisites
2 and 4 listed above are satisfied. The logic-based semantics precisely cap-

tures and resolves the intricacies (and possibly the hidden ambiguities) of the

design notation, and it is used to formally check whether user-defined prop-
erties of interest are satisfied by the system model or not. In particular, thanks

to the metric nature of the logic-based language underlying the approach, i.e.
TRIO, Stateflow models are provided with a precise, metric, notion of time;

this is exploited, on the one hand, to introduce metric constraints in the mod-

els, and on the other hand to allow users to analyse real-time properties.
To satisfy all above prerequisites, the idea was to translate a model of the

FMS specified in Stateflow/Simulink into an equivalent LTL formal model,
embedding the set of semantic rules specified in TRIO, and translated in LTL,

into the model.

The guideline to apply the approach to the design of an FMS is the follow-
ing:

• The system designer must provide the model of the manufacturing sys-
tem, decomposing the architecture in a set of components, each of which

should be specified by a Stateflow diagram; the external interface of the

component (unless the system has a single component) must be speci-
fied as described in section 3.1

• The overall system can be composed, if needed, using a Simulink-like

notation, exploiting the external interfaces of the components; the rules

for the composition are described in section 3.1

1.2 structure of the thesis 7

• The obtained set of semantic rules, specified in TRIO, must be embed-
ded in each component and integrated in the overall model of the sys-

tem defined in Simulink/Stateflow, obtaining an LTL formal model

• The formal model of the system (or of a single component) and the set

of real-time properties to be checked, are given as input to the bounded
model checker Zot to be analysed; Zot1 is described in section 6.1

• Zot performs the checks by encoding temporal logic formulae into the

input language of various solvers; Zot supports two kinds of solvers:

SAT solvers and SMT solvers. After the solver performs the analysis, if
the property does not hold, a counterexample trace is returned to help

the designer to identify and correct the error

In a successive evolution of the work, two further steps have been intro-

duced in the methodology approach. First, the new standard modelling lan-

guage, IEC 61499 [11], has been used to model a simple case study; it is largely
used in literature and in industry to model FMSs. ISaGRAF6 [13] is a model-

driven environment that is an implementation of this standard. We will see
in chapter 3 that, exploiting the rules defined in [14], it is possible to translate

in an easy and straightforward way an IEC 61499 model into a correspond-

ing Stateflow/Simulink diagram, maintaining the semantics of the IEC 61499

standard.

Finally, a new metric temporal logic has been developed, called X-TRIO,
which is an extension of TRIO; it exploits the concepts of Non-Standard Anal-

ysis [15] to introduce a new model of time, which captures and solves, at the

semantic level, some theoretical limitations of the original TRIO formaliza-
tion. A plugin for Zot, which implements X-TRIOP-R

N+
, the decidable subset of

X-TRIO described in section 4.3, has been developed during this part of the

work. The motivations, and the limitations of the original formalization logic

are given in section 3.5.

1.2 structure of the thesis

This thesis is structured as follows:

• In chapter 2 the most widely-used high level graphical languages for

the modelling of FMS are described and analysed. In the first section,

1

8 introduction

the syntax and the various semantics of Statechart have been described;
Statechart is a modelling language introduced by [16] and is the ances-

tor of Stateflow. The analysis of the various semantics shows the com-

plexity and difficulties in the development of a rigorous semantics for
a semi-formal complex language. In the second section, the syntax and

the described part of the informal semantics of the IEC 61499 standard
has been described, with a brief analysis of the most common differ-

ences between the various implementations of the standard, especially

its execution model

• In chapter 3, a complete case study of a simple FMS, a robotic cell, is de-

veloped to demonstrate the validity of the approach. In the first section

is described the case study, developed using the IEC 61499 standard and
translating in the Simulink/Stateflow notation. In the second section, a

formal semantics of Simulink/Stateflow is given, to allow the encoding
of the case study in TRIO, described in the third section. Finally, a set of

interested qualitative and quantitative real-time properties are analysed

and formalized in TRIO, with a set of experimental results obtained
using Zot on the case study

• In chapter 4 the new temporal logic X-TRIO is deeply analysed. In the

first section, the main concepts of NSA are exposed. Then, the syntax
and the structure semantics of the main (undecidable) version of the

logic are given, with some examples of the usage. In the second section,

to accomplish the not easy task of achieving a decidable but yet general
enough version of the logic, a propositional syntax is given, simplifying

the semantics; in the second part of the section, some expressiveness
results are exposed, and the first demonstration of its undecidability is

given. In the same section, a yet undecidable fragment of X-TRIO, called

X-TRIOP
N+

, is defined, introducing a discrete temporal domain and the

demonstration of the undecidability of X-TRIOP
N+

. Finally, in the third

section, a sufficient condition to obtain a decidable fragment of the logic

is given, with a decision procedure based on the syntax translation of

the logic in PLTLB (Propositional Linear Temporal Logic with Both past
and future operators). Then, the semantics of Stateflow is re-encoded

exploiting the new logic

• In chapter 5 some related works are described and analysed deeply. The
first section describes some works related to different model-driven en-

gineering approaches to the development process of FMS using formal

1.2 structure of the thesis 9

methods, focusing on the main differences between them and this thesis.
The second section, instead, describes alternative approaches to NSA to

deal with zero-time transitions, and some works which exploit NSA in

a different way

• In chapter 6 the tools that have been used in this thesis to model and per-
form the formal verification of the robotic cell case study are described.

The first section presents the architecture of the model checker Zot, and
the main plugins, in particular the X-TRIO plugin. The second section

describes the Sf2Trio tool, another plugin for Zot that allows the manual

translation of a Stateflow/Simulink model into a logic model in a simple
and straightforward way, without writing the necessary TRIO formulae

directly. It represents the first step towards an integrated Model-driven

environment, which would be the final result of the collaboration project

2H I G H - L E V E L L A N G U A G E S A N D S TA N D A R D S F O R T H E
M O D E L L I N G O F F M S

The design process for FMS has changed dramatically over the last few years.

Increasingly, designers use a model-driven approach, exploiting model-based
development environments; these allow the system, including its software,

the plant that it will control and the environment in which it will operate, to

be represented in graphical form at a high-level of abstraction. Model-based
development environments provide extensive tools for validation through

simulation, and code generators that can compile an executable controller
from its graphical representation.

The evolution to model-based development has been driven by the increas-

ing complexity of FMSs and of distributed control systems. Alongside these
developments, there has been an increase in criticality, with regard to both

human safety and the cost of faults. This increasing criticality creates a need

for improved methods of analysis and verification, and this provides an op-
portunity for formal verification methods like model checking. However, a

lot of graphical modelling languages to model FMS were not built with for-
mal methods in mind, and do not appear to be well suited for formalization:

in effect, they lack a formal and rigorous semantics. In this chapter, one of

the most widely used graphical modelling languages has been described: the
IEC 61499 standard [11]. The IEC 61499 is a recent international standard

introduced by the IEC group, which is an advancement of the IEC 61131 stan-
dard [10]: it is well suited to develop distributed complex systems thanks to

its compositional and distributed nature. For these properties, and mainly to

its recent standardization, we have chosen the IEC 61499 standard to model a
case study to prove the validity of the approach described in the introduction

to this thesis.
The standard is based on the concept of Function Blocks (FB), that is the

basic building block from which entire applications may be built. A basic

function block executes an elementary control function, i.e. it is an abstrac-
tion of a single component of an FMS, like for example a manufacturing

machine. Its behaviour is described by using a finite state machine known as
execution control chart (ECC); this internal notation is similar to another well-

known and widely used graphical notation language, Stateflow. Stateflow is

11

12 high-level languages and standards for the modelling of fms

an extension of Statechart developed by Mathworks [9]; like Statechart, it has
been introduced to overcome the limitations of state transition diagrams, to

obtain a very succinct and intuitive representation. Stateflow is based on the

Statemate semantics of Statechart [17].
In this thesis, it has been decided to translate the ECC notation into State-

flow, to provide to control and automatic engineers a familiar notation. In
chapter 3, rules to translate an ECC into a Stateflow diagram are given. Not

all the features of Stateflow have been exploited in this thesis, in particular

the compositional state types (OR and AND-states), which are useless due to
the flat nature of the ECC notation.

For completeness, and for a better comprehension of the features and the

semantics difficulties in developed a rigorous semantics for Stateflow, in this
chapter Statechart is described, which is the graphical notation language in-

troduced by Harel in [16], while Stateflow is described in chapter 3. In the
exposition, to simplify, only the basic elements of the original specification of

Statechart have been taken in consideration, which include its most popular

features, ignoring time actions, history, special events (e.g., events generated
when a state is entered or exited), special actions (e.g. start action, history

clear, deep clear), condition expressions and data items.
Condition expressions and data items have been introduced later in State-

chart, as a natural evolution of the original language to increase its expres-

siveness. For this reason, a lot of subsequent extensions of Statechart, such as
Stateflow itself, are based on them: in particular, the version of Stateflow de-

scribed in this thesis, differently from the original one, implements the events
using boolean variables. So, syntax and semantics of condition expressions

and data items are described deeply in the chapter 3, introducing a suitable

notation and all the obvious semantics intricacies. Instead, although not used
in this version of Stateflow, for historical reasons compositional states are

considered in the exposition of Statechart; another motivation is that, in the
methodology described in this thesis, parallel and sequential decompositions

are obtained exploiting Simulink diagrams, so a comparison between the two

different approaches is possible.
The next two sections describe the main features of Statechart and the IEC

61499 standard, their syntax and the various semantics (especially for State-
chart) that have been developed during last decades, to provide a look into

the differences in the execution models and the difficulties in developing a

complete formal verification process for them and, in the case of Statechart,
their extensions.

2.1 statechart : an high-level language for the modelling of fms 13

2.1 statechart : an high-level language for the modelling of

fms

In this section, the syntax and the various semantics of Statechart are intro-
duced and analysed.

Statechart has been proposed to overcome the limitations of state transition
diagrams that are flat and unstructured, while preserving their visual nature.

They exploit the notions of parallelism, hierarchy and broadcast communi-

cation. These features allow for very succinct representations and naturally
support stepwise development. Thanks to these properties, and to the graphi-

cal simple notation, it has been widely used in industry, especially in the field

of automation of large industrial processes or plants, such as in aviation sys-
tems, mechatronics systems, embedded systems or in the modelling of FMS.

The main drawback is that its complexity has prevented the development of
a rigorous semantics that allows the formal verification of systems modelled

in this language: in last decades, various approaches have been investigated,

which led to a proliferation of different semantics. They can be divided in
three main groups, that are described in section 2.1.2. The existence of these

different Statechart formalisations can lead to a Babel-like confusion, because
the same Statechart can be interpreted in a completely different way under

various semantics. This confusion impedes the communication of the mean-

ing of Statechart designs, since that meaning largely depends on the actual
semantics the viewer (not the designer) is using. In addition, it hampers the

exchange of Statechart designs among different software tools.

2.1.1 Syntax

In the next subsection, the syntax of the graphical modelling language Stat-

echart is described in an informal way. In subsection 2.1.1 the syntax is pre-

sented in a more rigorous, formal way.

Informal syntax

The most basic elements in Statechart are states. A state is usually represented
by a variable sized rectangle with rounded edges. There are different kinds of

states which are called OR-states, AND-states and BASIC-states. More specif-
ically, a BASIC-state is a state such that it has no sub-OR-states, sub-AND-

states and sub-BASIC-states. OR-states are complex states with one or more

states defined internally; an OR-state represents an abstraction of its sub-states,

14 high-level languages and standards for the modelling of fms

i.e. the internal states composed themselves a Statechart diagram which is a
refinement of the OR-state, with a default state which represents the initial

state of the sub-diagram; in particular, when the system is in an OR-state, it

is in one and only one of its sub-states. AND-states are complex states which
have two or more orthogonal components. Each of these components, as OR-

states, are themselves Statechart diagrams which are executed concurrently;
in other words, AND-states allow the parallel decomposition of a state. The

orthogonal components of an AND-state are normally drawn with a dashed

line. In this case, when the system is in an AND-state, it is also in one and
only one states of any its components. In Figure 2, an example of a Statechart

diagram is shown which is used in the rest of this chapter to explain the main

features and the differences between the various semantics of Statechart.

Figure 2: A Statechart example diagram

S1, S2 and S21 are OR-states, S is an AND-state and all the other ones are
BASIC-states.

Using the concept of sub-states, the states of a Statechart diagram form a

hierarchy of levels; the parent of a state is, by definition, the unique AND or
OR-state that directly includes it. In Figure 2, S is the parent of S1 and S2,

while S1 is the parent of S11 and S12. The state at the maximal level of the

hierarchy, without a parent, is the root of the diagram. Usually, the root is an
OR-state which is not always represented in the Statechart, as in Figure 2.

2.1 statechart : an high-level language for the modelling of fms 15

Transitions are used in order to specify system dynamics in a Statechart di-
agram. A transition is represented as an arrow which denotes that the system

changes its current state from the one attached to the tail of the arrow, called

source state, to the one attached to the head of the arrow, called the destination
state of the transition. Transitions can leave and enter states on any level of

the hierarchy.
Transitions are normally labelled with a construct of the form e/a; it de-

notes that the transition fires when the event e occurs. a is an action which

can be carried out when the transition is taken. An event is a signal or message
that can be generated by the external environment as input to the Statechart

diagram, or generated internally as a result of the execution of an action. A

special event is for example entered(S) that occurs (and hence causes the
transition to take place) when state S is entered. An action, instead, can do

one or more of the followings things:

• trigger an internal event

• launch an activity, which is an externally defined operation or algorithm
which takes a certain quantity of time to be performed and is not under

the direct control of Statechart. Statechart has the ability to start and

stop activities to model behaviours of a system defined externally and
treated as "black boxes".

Events can be combined with the usually boolean operators or, and and not.

Events and actions are optional; a transition labelled with no events is always
enabled and is forced to fire immediately.

Besides allowing actions to appear along transitions, they can also appear

associated with the entry to or exit from a state. Actions associated with the
entry to a state S are executed when S is entered, as if they appear on the

transition leading into S. Similarly, actions associated with the exit from S are
executed when S is exited, as if they appear on the transition exiting from S.

Each state can be associated with static reactions, which are of the same

format of a transition label and are executed as long as the system is in (and
is not exiting) the state in question.

In the Statechart diagram in Figure 2, t2 is an example of a transition be-
tween the source state S211 and the destination state S212, labelled with b, c̄/a,

where the comma is an abbreviation for the and operator and c̄ is an abbrevi-

ation for not(c); the transition fires when the event b happens and the event
c does not happen, triggering the event a. In the example diagram, there are

neither actions entering or exiting states, nor static reactions.

16 high-level languages and standards for the modelling of fms

Formal syntax

In this section, a formal syntax for Statechart is introduced, using the method

in [18]. It is useful to define and explain rigorously the differences in the
various semantics of Statecharts that are analysed in the successive sections

of this chapter.
In the formal syntax described in [18], a Statechart SC is a tuple SC =

{S, T ,E} where:

• S is a finite set of states,

• T is a finite set of transitions that connect the states

• E is a finite set of events. Set E is divided into sets Eext and Eint. Set

Eext contains all external events, which are generated by the environ-

ment, while set Eint contains all internal events, which are generated
by transitions in T . They are not necessarily disjoint sets.

The environment is the external world which provides external events for
the Statechart diagram. Function children : S → ℘(S) defines for each state

s its immediate substates. If s is a child of s ′ , we call s ′ the parent of s, as

defined informally in the previous section. By children∗ and children+ we
denote the reflexive-transitive and transitive closures of children, respectively.

If s ∈ children∗(s ′), we say that s is a descendant of s ′ and that s ′ is an

ancestor of s. If s is ancestor or descendant of s ′ , then s and s ′ are ancestrally
related. A state s is a basic state if children(s) = ∅, otherwise it is an OR or an

AND-state. The function type : S → {Basic,OR,AND} assigns to each state
its type. The root state is identified with the identifier root. Function default :

S → S identifies for each OR-state s one of its children as the default state:

default(s) ∈ children(s). If a transition t enters s but does not explicitly
enter any of its children, then t enters default(s). For example, in Figure 2,

children(S2) = {S21, S22}, while children∗(S2) = {S21, S22, S211, S212, S213};
finally, default(S21) = S211.

For a set X of states, the least common ancestor (lca) of X , denoted lca(X)

is the state x such that:

• X ⊆ children∗(x)

• for every y ∈ S such that X ⊆ children∗(y), we have that x ∈ children∗(y)

Every set of states has a unique least common ancestor. Two states x and y

are orthogonal, written x⊥y, if x and y are not ancestrally related, and their

2.1 statechart : an high-level language for the modelling of fms 17

lca is an AND-state. For example, in Figure 2, S11 and S212 are orthogonal
since they are not ancestrally related and lca(S11, S212) = S, where type(S) =

AND; instead, S211 and S22 are not orthogonal since, although they are not

ancestrally related, lca({S211, S22}) = S21, where type(S21) = OR, i.e. S21 is
not and AND-state.

2.1.2 Semantics

Central to the question of formal verification of Statechart is its semantics.
Unfortunately, defining the semantics of a complex notation like Statechart

is not a straightforward task. The original Statechart paper [16] only hinted

informally at how a semantics could be defined. In literature exists differ-
ent formalizations, each of which uses its own assumptions in defining an

execution semantics, but it is possible to identified a common set of basic in-
gredients and definitions. In this section, the common design decisions taken

by the main semantics of Statechart are described, in the first part, in an in-

formal way; instead, in the second part of the section, they are presented in
a more rigorous, formal way. Then, in the next sections, the main theoretical

differences between the various semantics are described and analysed deeply.

This in-depth analysis will serve to guide and illustrate the choices made in
the methodology presented in this thesis.

The semantics of a Statechart diagram is a set of runs, representing the
reaction of the actual system to a sequence of events or stimuli. A run consists

of a series of detailed snapshots of the system’s situation; such a snapshot is

called a status and is different from a state of the diagram. The first status
of a run is called the initial status, while each subsequent one is obtained

from its predecessor by executing a step. A status contains informations about
active states and activities, values of data-items and conditions, generated

events and scheduled actions, and some informations regarding the system’s

history (its past behaviour). At the beginning of each step, the environment
supplies the system under description with a set of initial external events.

These events, together with changes that occurred in the system during and
since the previous step, trigger transitions between states and static reactions

within states. As a result, the system moves into a new status. Some states

are exited, and some are entered; values of conditions and data-items are
modified; new events are generated; activities are started and stopped, and

so on.

18 high-level languages and standards for the modelling of fms

In Statechart, a status is formally represented by a configuration, which is
a maximal consistent set of states that the system can be in simultaneously.

The concepts of consistency and maximality are given formally later on in

this section, using the definition given in section 2.1.1. More precisely, given
a root state r, a configuration (relative to r) is a set of states C obeying the

following rules:

• r ∈ C

• Given an OR-state s ∈ C, exactly one of s’s substates is in C

• Given an AND-state s ∈ C, all of s’s substates are in C

• The only states in C are those that are required by the above rules.

It follows that configurations are "closed upwards"; that is, when the sys-

tem is in any state s, it must also be in s’s parent state. Since it is enough to
know its basic states to uniquely determine a configuration, we use the term

basic configuration to refer to a maximal set of basic states that the system can

be in simultaneously, or in other words, the set of basic states in a legal config-
uration. For example, if the actual configuration of the diagram of Figure 2 is

C = {root, S, S1, S2, S11, S21, S211}, the equivalent, unique and more concise
basic configuration is C ′ = {S11, S211}.

In a step, the system typically carries out operations of four types: transi-

tions, static reactions, actions performed when a state is entered, and actions
performed when a state is exited. Similar to the definition of a configuration,

a step is a maximal consistent set of enabled transitions. Again, concepts of
consistency and maximality for a transition are given formally later on in this

section. Given a system in a certain basic configuration C, once an external

event e is generated, transitions which are labelled e/a become enabled if
their source state is in C. Then the system proceeds to execute actions a and

update the current configuration, adding the transition’s target states of the

enabled transitions to C and eliminating the source states from it. We need
to distinguish between the case of leaving an OR or an AND-state. In the

former case, the outgoing transition from the OR-state is enabled only if the
sub-Statechart (the part of the Statechart diagram which is contained graphi-

cally in the OR-state) is in the final state. In the latter case, it is enabled only if

all sub-Statecharts are in a final state; a final state is a state without outgoing
transitions. For example, if the actual basic configuration of the diagram in

Figure 2 is C = {S12, S211} with an emply set of pending events, and the event

2.1 statechart : an high-level language for the modelling of fms 19

c is provided by the environment, then the transition t3 becomes enabled and,
when the system executes it (transitions are executed instantaneously, but the

order in which the system performs one of the enabled transitions, if there

are many, depends on the semantics), the internal event a is generated and
added to the set of pending events; the next basic configuration of the system

is C ′ = {S12, S213}, and the set of pending events becomes E ′ = {a}.
After executing a step, the system reaches a so called stable configuration,

then it waits for the occurrence of a new external event. Once reached a stable

configuration, every previous generated events become invalid. For example,
the execution of the above transition t3 is not a step, since in the basic config-

uration C ′ = {S12, S213} with the set of pending events E ′ = {a} the transition

t4 is enabled; when the system executes it, the system enters the basic config-
uration C ′′ = {S12, S22} with an invariant set of pending events E ′ = {a}; C ′′

is a stable basic configuration, since there are no outgoing enabled transitions.
The different proposals semantics presented in literature can be classified

in three main approaches:

1. Proposals of the first approach are based on the fixpoint semantics for
Statechart, initially proposed in [19]

2. Proposals of the second approach focus on the semantics as imple-

mented in the Statemate tool set, initially proposed in prose in [17]. It is
called the Statemate semantics of Statechart.

3. The last group of formalisations focuses on Statechart for object-oriented

systems. This group is expanding quickly due to the incorporation of

Statechart in UML, the emerging de facto standard for modelling soft-
ware systems. So it is called the UML semantics for Statechart, and it is

officially proposed in prose in [20]

The various semantics differs in the step’s execution, in the definition of a
stable configuration, in the evaluation order of events (which influences the

execution order of transitions) and other peculiarities described in the next
sections.

In the rest of this section a set of definitions needed to define formally what

is a step, a configuration and how to perform the update of the configuration
is given; they are the common parts of the various semantics approaches.

Formally, a set X of states is consistent if for every x,y ∈ X, either x and y
are ancestrally related or x⊥y. A consistent set X is maximal if for every state

s ∈ S\X, {s} ∪ X is not consistent. These definitions are needed to define a

20 high-level languages and standards for the modelling of fms

configuration as a maximal consistent set of states, as mentioned above. For
example, the set X = {S11, S12} is not consistent, the set Y = {S11, S21} is

consistent but not maximal, while the set Z = {root, S, S1, S2, S11, S21, S211}

is a maximal consistent set of states, i.e. it is a configuration.
Given a consistent set X of states, the default completion dcomp(X) is the

smallest set D such that:

• X ⊆ D

• if s ∈ D and type(s) = AND then children(s) ⊆ D

• if s ∈ D and type(s) = OR and children(s)∩X = ∅ then default(s) ⊆ D

• if s ∈ D and s 6= root then parent(s) ∈ D

For example, for the diagram in Figure 2, the default completion of the set

of states X = {S11} is dcomp(X) = {S11, S1, S2, S21, S211, S, root}. For each
transition t ∈ T , source(t) denotes the set of source states of t and target(t)

the set of target states: source, target : T → ℘(S). If the source state of a

transition is an AND-state, then all the basic states in the AND-state that are
active are in the set source(t); on the contrary, if the target state of a transition

is an AND-state, then all the basic states in the AND-state that are active are
in the set target(t). In all the other cases, the two sets are singletons.

To ensure that a transition can get enabled and enters a valid next con-

figuration, we require that both source(t) and target(t) are consistent and
non-empty.

The scope of a transition is the most nested OR-state that contains both
source(t) and target(t). Thus, it equals l = lca(source(t) ∪ target(t)) only

if l has type OR, which is usually the case.

The event that triggers a transition t is denoted by event(t). If a transition
has no trigger event, we use the special event null.

We classify transitions according to their trigger events:

• A transition t is external if event(t) ∈ Eext

• A transition t is internal if event(t) ∈ Eint \ Eext

• A transition t is a completion transition if event(t) = null

The set of events generated by a transition t is denoted action(t). We

require that action(t) ⊆ Eint. The set of events generated by a set T of

2.1 statechart : an high-level language for the modelling of fms 21

transitions is denoted: generated(T) =
⋃

t∈T action(t). A transition t trig-
gers transition t ′ , written t ≫ t ′ , if the trigger of t ′ is generated by t:

t≫ t ′ ⇔ event(t ′) ∈ action(t). We note that a transition can trigger itself.

Given a configuration C ⊆ S and a set I ⊆ E of external events, we assert
that a transition is relevant if its sources are in C. The set of relevant transitions

is defined as relevant(C) = {t ∈ T |source(t) ⊆ C}. Using these definitions,
we can formally give the notion of enabling of a transition: a transition t is

enabled if it is relevant in C and the trigger event of t is in I or null, i.e. the

set of enabled transitions is defined as:

enabled(C, I) = {t ∈ T |t ∈ relevant(C)∧ event(t) ∈ I∪ {null}}

Two transitions t1 and t2 are consistent if either they are the same transi-
tion, or their scopes are orthogonal:

consistent(t1, t2)⇔ t1 = t2 ∨ scope(t1)⊥scope(t2)

A set T of transitions is consistent if every pair of transitions in the set is

consistent:

consistent(T)⇔ ∀t1, t2 ∈ T : consistent(t1, t2)

Two transitions t1 and t2 conflict if t1 6= t2 , their sources are consistent

and scope(t1) and scope(t2) are ancestrally related:

conflict(t1, t2) ⇔ t1 6= t2 ∧ consistent(source(t1), source(t2))
∧ scope(t1) and scope(t2) are ancestrally related

Note that transitions t1 and t2 can be inconsistent yet not conflicting. In

Figure 2 the transitions t3 and t4 are conflicting, since their source states are
consistent, while transitions t1 and t2 are consistent and not conflicting; there

are not inconsistent yet not conflicting transitions in the example diagram.
Finally, a set T of transitions is maximal if adding an enabled transition to

T would result in an inconsistent set:

maximal(T ,C, I)⇔ ∀t ∈ enabled(C, I)\T : ¬consistent(T ∪ {t})

Using these auxiliary definitions, we can now formally define a step. A set
of transitions St, given a configuration C ⊆ S and a set I ⊆ E of external

events, is a step if and only if St is enabled, consistent and maximal:

22 high-level languages and standards for the modelling of fms

isStep(St,C, I)⇔ St ⊆ enabled(C, I)∧ consistent(St)∧maximal(St,C, I)

For example, in Figure 2, given St = {t3}, C = {root, S, S1, S2, S12, S21, S211}

and I = {c}, isStep(St,C, I) is true since the transition t4, although enabled,
is not consistent with t3, while t1 and t2 are not enabled; instead, given

St = {t3}, C = {root, S, S1, S2, S11, S21, S213} and I = {a}, isStep(St,C, I) is

false since maximal(St,C, I) is not true: in fact, the transition t4 is enabled
and consistent with t3, but it does not belong to St.

To define the effect of taking a step, we need further definitions. First, we
observe that by taking a transition t, only states below scope(t) are left and en-

tered. The states entered by t, denoted enters(t), are the states below scope(t)

that are in dcomp(target(h)):

enters(t) = dcomp(target(t)) ∩ children∗(scope(t))

Given a configuration C and step St, the function nextConfig(C, St) de-

fines the configuration reached by taking St:

nextConfig(C, St) = C\
⋃

t∈St

children∗(scope(t)) ∪
⋃

t∈St

enters(t)

Thus, for each transition t ∈ St, the states in C that are below scope(t)

are left, and the states in enters(t) are entered. For example, for the diagram

in Figure 2, given the configuration C = {S, S1, S2, S21, S211, S12} and the
step St = {t3}, nextConfig(C, St) = C \ children∗(scope(t3)) ∪ enters(t3),
where children∗(scope(t3)) = {S211, S212, S213} and enters(t3) = {S213};
then, nextConfig(C, St) = {S, S1, S2, S21, S213, S12}.

To define formally the fixpoint, Statemate, and UML semantics, we use

a symbolic transition system (STS). A symbolic transition system is a tuple
STS = {D, init,→} , where:

• D is a finite set of typed variables on some typed data domain dom(D).
σ is a evaluation of the variables of D, i.e. a mapping σ : D → dom(D).

We denote with Σ(D) the set of evaluations on D

• init is a first-order predicate over variables in D characterising the ini-

tial evaluation

2.1 statechart : an high-level language for the modelling of fms 23

• → is a first-order transition predicate over variables in D, D ′, where
the unprimed variables in D refer to the current evaluation, while the

primed ones in D ′ to the next evaluation. For example the predicate

x = x′ + 1 relates an evaluation σ to a next evaluation σ′ if and only if
σ′(x) = σ(x) + 1; we then write σ→ σ′.

A run of an STS is an infinite sequence of evaluations σ0σ1σ2 . . . such that
σ0 is the initial evaluation that satisfies init, and for each pair σi,σi+1 of

evaluations, σi → σi+1, where i > 0.

Fixpoint semantics

In the fixpoint semantics, a Statechart maps to a symbolic transition system

STSFP . Variables of STSFP are the current configuration C and the current
set of input events I.

In the initial evaluation, the configuration is the default completion of root,
with no input events:

init⇔ C = dcomp({root})∧ I = ∅

In the example in Figure 2, init⇔ C = {root, S, S1, S2, S11, S21, S211} ∧ I =

∅.
In the fixpoint semantics, the system waits in a stable evaluation for events

to occur and takes a single step in response. To formalise this, two kinds of

transition predicates are needed. The first predicate, denoted with −→FPevent,
models the occurrence of external events in a stable evaluation:

−→FPevent⇔ stableFP(C, I)∧C = C ′ ∧ ∅ ⊂ I ′ ⊆ E.

An evaluation is defined to be stable if there are no input events to be

processed:

stableFP(C, I)⇔ I = ∅

Next, if events I have occurred, the system reacts by taking a step St, for-
malised by predicate −→FPstep. A peculiar feature of the fixpoint semantics is

that events generated in the current step are sensed immediately. That is, tran-
sitions triggered by generated events are enabled immediately and are taken

in the same step. Thus, generated internal events are additional input events

for the isStep predicate.

24 high-level languages and standards for the modelling of fms

−→FPstep⇔ ¬ stableFP(C, I)∧ ∃St ⊆ T : isStep(St,C, I∪ generated(St))

∧ C ′ = nextConfig(C, St)∧ I ′ = ∅

This definition does not satisfy the causality principle. The causality princi-
ple requires that each transition in a step must be (in)directly triggered by an

external event. This formalisation allows internal event generations that are
not triggered by any external event, which violates causality. To solve this, it is

sufficient to rules out statecharts violating causality, rendering an additional

semantic definition of causality superfluous.
Combining the two above predicates, we have that a reaction, in a stable

evaluation σ0, to a set of external events is always a finite sequence consist-
ing of two transitions σ0 −→

FP
event σ1 −→

FP
step σ2, where the first transition

models the receiving of input events and the second transition the reaction

to these input events. It is impossible that a Statechart diverges under the
fixpoint semantics.

The following is an example of a complete step applying the fixpoint se-
mantics for the diagram in Figure 2, starting from the initial stable evaluation,

after the occurrence of the external event c, using basic configurations:

σ0 = C = {S11, S211} , I = ∅ −→FPevent σ1 = C = {S11, S211} , I = {c}

−→FPstep σ2 = C = {S12, S213} , I = ∅

We can note that, in this example, the execution of the action on the enabled

transition t3 generates the internal event a, which is sensed immediately, trig-
gering indirectly the transition t1.

Now, the main features that differentiate the fixpoint semantics from the
other ones are synthesized in the following:

• Events generated internally in a step are sensed immediately in the
same step

• The perfect synchrony hypothesis holds: under this hypothesis, the system

responds immediately to new input events. Further more, it responds
infinitely fast, i.e. transitions take zero time to be executed

• At each step, a maximal non-conflict set of enabled transitions is exe-

cuted

• Statecharts violating causality must be avoided

• The system cannot diverge

2.1 statechart : an high-level language for the modelling of fms 25

Statemate semantics

In the Statemate semantics, a Statechart maps to a symbolic transition system

STSSM . As in the fixpoint semantics, variables of STSSM are the current
configuration C and the current set of input events I.

The initial evaluation is defined the same as for the fixpoint semantics:

init⇔ C = dcomp({root})∧ I = ∅

Like the fixpoint semantics, the Statemate semantics uses two transition
predicates. On the surface, these are very similar to the ones defined for the

fixpoint semantics, but as we will see, they differ subtly from them. The first
predicate,−→SMevent , models the occurrence of one or more external events in

a stable evaluation and is identical to the one defined for the fixpoint seman-

tics:

−→SMevent⇔ stableSM(C, I)∧C = C ′ ∧ ∅ ⊂ I ′ ⊆ E.

However, the definition of stable evaluation is somewhat different. In State-

mate, an evaluation is stable if there are no input events to be processed and
there are no enabled transitions:

stableSM(C, I)⇔ I = ∅∧ enabled(C, I) = ∅

The second transition predicate, −→SMstep, models again the taking of a step.

A step is only taken if the current valuation is not stable, i.e. there are some
input events or some enabled transitions. The effect of taking a step is that

a next configuration is reached and that some internal events (actions of the

transitions in the step) are generated. These generated events are put in I ′.
Transition relation −→SMstep formalises this:

−→SMstep⇔ ¬stableSM(C, I)

∧∃St ⊆ T : isStep(St,C, I)∧C ′ = nextConfig(C, St)
∧I ′ = generated(St)

Again, we can note that this definition is similar to its counterpart in the
fixpoint semantics. The major difference is that internally generated events

are sensed in the next step only, while these are sensed immediately in the

fixpoint semantics. Combining these transition predicates, we have that in
Statemate a reaction to a set of external input events consists of a sequence

of steps, called a macro-step: σ0 −→
SM
event σ1 −→

SM
step σ2 . . . σn−1 −→

SM
step

26 high-level languages and standards for the modelling of fms

σn , where σ0,σn � stableSM(C, I), and for every evaluation σi , where
0 < i < n, σi 2 stable

SM(C, I). A single −→SMstep is called a micro-step. The

sequence might be infinite, in which case the Statechart diverges. Then, for

every valuation σi with i > 0, we have σi 2 stable
SM(C, I). In literature, this

is defined as a Zeno behaviour.

The following is an example of a complete step applying the Statemate se-
mantics for the diagram in Figure 2, starting from the initial stable evaluation,

after the occurrence of the external event c, using basic configurations:

σ0 = C = {S11, S211} , I = ∅ −→SMevent σ1 = C = {S11, S211} , I = {c}

−→SMstep σ2 = C = {S11, S213} , I = {a}

−→SMstep σ3 = C = {S12, S22} , I = {b, c}

−→SMstep σ4 = C = {S12, S22} , I = ∅

We can note that, in this example, the execution of the action on the en-
abled transition t3 generates the internal event a, which is sensed only at the

beginning of the next step, triggering two transitions: t1 and t4, which are

not conflicting; transition t4 is not enabled in the fixpoint semantics, until a
new external event occurred.

Now, as for the fixpoint semantics, the main features that differentiate the
Statemate semantics from the other ones are synthesized in the following:

• Events generated internally in a step are sensed and processed only in

the next step

• Two different models of time are supported: synchronous and asynchronous.

In the synchronous time model, the system executes a single step every
time unit (e.g. a clock tick), reacting to all the external changes that occur

in the time unit that elapsed since the completion of the previous step.

In the asynchronous model, the system reacts to an external event by
performing a sequence of reactions (called steps). At each step, a max-

imal non-conflict set of enabled transitions is selected based on events
and conditions generated in the previous step. While all events live for

one step, external events are consulted only at the beginning of the first

micro-step and are communicated to the environment after completion
of the last micro-step of a macro-step. Micro-steps are executed infinitely

fast, with the clock being incremented only at macro-step boundaries,
i.e. transitions take zero time to be executed

• The system can diverge, causing Zeno behaviours

2.1 statechart : an high-level language for the modelling of fms 27

The asynchronous one is the model of time used in this description of the
formal Statemate semantics, since it respects the perfect synchrony hypothe-

sis.

UML semantics

In the UML semantics, a Statechart maps to a symbolic transition system
STSUML . Variables of STSUML are the current configuration C and a current

queue q ∈ E∗ which is a sequence of events.
For an event queue q = e1 . . . en ∈ E

∗ , we introduce the following notation:

• head(q) = e1 denotes the first event of q if q 6= ǫ, i.e. q is not empty.

• tail(q) = e2 . . . en, where n > 2, denotes q with the first element re-

moved, and tail(q) = ǫ if n < 2.

• enqueue(e,q) = qe denotes the result of appending event e to q, and
enqueue(Ev,q) denotes the result of appending all events in Ev ⊆ E in

some arbitrary order to q.

In the initial evaluation, the system is in the default completion of root and
the queue has no input events:

init⇔ C = dcomp({root})∧ q = ǫ.

For the UML semantics, three transition predicates are needed. The first

predicate, denoted −→UMLevent , models the occurrence of one or more external
events, which are added to the queue. As in the other two semantics, such

transitions do not change the current configuration:

−→UMLevent⇔ ∃Ev ⊆ E : Ev 6= ∅∧C = C ′ ∧ q ′ = enqueue(Ev,q)

Note that in this semantics, differently from the other two ones, external
events can occur in both stable and unstable evaluations. In particular, they

can occur while some other event is being processed. Events in the queue are
processed one by one. An event is processed if the current evaluation is stable,

i.e. there are no enabled completion transitions:

stableUML(C,q)⇔ enabled(C, ∅) = ∅.

In a stable evaluation, the system processes the first event from the queue
by taking a step. Note that an event can be either external or internal, since

generated events are also inserted in the queue:

28 high-level languages and standards for the modelling of fms

−→UMLstep ⇔ q 6= ǫ∧ stableUML(C,q)

∧∃St ⊆ T : isStep(St,C, {head(q)})

∧C ′ = nextConfig(C, St)
∧q ′ = enqueue(generated(St), tail(q))

After the step has been taken, the current evaluation can be unstable: there

could be some enabled completion transitions. However, the next event can

only be processed in a stable evaluation. Therefore, the enabled completion
transitions need to be taken first.

−→UMLcompletionstep⇔ ¬stableUML(C,q)∧

∃St ⊆ T : isStep(St,C, ∅)∧C ′ = nextConfig(C, St)

∧q ′ = enqueue(generated(St),q)

Combining these transition predicates, a reaction in configuration C to pro-

cessing an event from the queue is typically a sequence:

σ0 −→
UML
step σ1 −→

UML
completionstep σ2 −→

UML
completionstep σ3 . . . σn−1

−→UMLcompletionstep σn

where σ0,σn � stableUML(C,q). If there is a cycle of completion transi-
tions, the sequence is infinite: then for every evaluation σi , where i > 0,

σi 2 stableUML(C,q). Thus, a Statechart can diverge, as in the Statemate

semantics.
The following is an example of three complete steps applying the UML se-

mantics for the diagram in Figure 2, starting from the initial stable evaluation
with an empty queue, after the occurrence of the external event c, using basic

configurations:

σ0 = C = {S11, S211} ,q = ǫ −→UMLevent σ1 = C = {S11, S211} ,q = c

−→UMLstep σ2 = C = {S11, S213} ,q = a

−→UMLcompletionstep σ3 = C = {S11, S22} ,q = ac

−→UMLstep σ4 = C = {S12, S22} ,q = c

−→UMLstep σ5 = C = {S12, S22} ,q = ǫ

We can note that, differently from the Statemate semantics, the system can-
not execute transitions t4 and t1 simultaneously, since it is not in a stable

evaluation after the execution of the first step.

2.2 the industrial standard iec-61499 29

Now, as for the other semantics, the main features that differentiate the
UML semantics from the other ones are synthesized in the following:

• Events generated internally in a step are sensed and processed only in

successive steps (not necessarily the next)

• The perfect synchrony hypothesis does not hold: a step takes time and
during this time the next events can already arrive

• A queue is used to avoid that events are lost

• The system processes events from the queue one by one and responds to

each event by taking a step: all completion transitions must be executed

before the next step is entered

• At each step, a maximal non-conflict set of enabled transitions is exe-
cuted

• The system can diverge, causing Zeno behaviours

2.2 the industrial standard iec-61499

In this section, the semi-formal international standard IEC 61499 is briefly
described. IEC 61499 is an international standard for the modelling of dis-

tributed control systems. It is an advancement of the IEC 61131 standard [10],

which deals mainly with the modelling of Programmable Logic Controllers
(PLCs). As mentioned in the introduction of this chapter, the programming

unit of the IEC 61499 is the Function Block (FB). It is the basic building block
from which entire applications may be built. There are three types of function

blocks: basic function blocks, composite function blocks and service interface func-

tion blocks. A basic function block executes an elementary control function,
such as reading a sensor or setting the state of an actuator. A simple basic

FB is shown in Figure 3. The behaviour of a basic function block is defined
using a Moore-type finite state machine (FSM), known as the execution control

chart (ECC), similar to the one shown in Figure 4. An ECC consists of execu-

tion control (EC) states, EC transitions, and EC actions. An EC transition has an
associated Boolean expression that may contain event inputs, data inputs or

internal variables. An EC state may be further associated with zero or more

EC actions, which consist of an algorithm to be executed and/or an output
event to be emitted after the execution of an algorithm. The initial state, that

30 high-level languages and standards for the modelling of fms

shall have no associated EC actions, by convention is indicated with a double
rectangle, as the Start state in Figure 4.

Basic function blocks may be combined together in a composite function block,

to encapsulate an higher-level control function. The service interface function
block is an implementation-dependent FB that provides an interface between

the application and the underlying execution platform and a communication
services among devices.

Regardless of the type, every function block has a well-defined input/out-

put interface that consists of event and data ports, as illustrated in Figure
3. Event ports are drawn on the upper half of the block, while data ports are

drawn on the lower half. Event-data associations may be specified at the inter-

face to update internal data with new values from the interface whenever the
associated event occurs. The WITH qualifier from IEC 61499 indicates that the

corresponding event and data signals must be synchronized: it is represented
as a vertical line between the event and the data signals associated to it, with

a little square on each; it is possible to see an example in Figure 3, between

the event Init and the data inputs HLimit and XHLimit. It is not possible to
connect a data input signal to more than an event.

FBs adopt an event-driven model of execution. The transition conditions in
an ECC are evaluated whenever the FB receives an input event. The input

event triggers the scheduling of the FB. As soon as one of the conditions

becomes true the corresponding EC transition fires. For states with more than
one outgoing transition, the transition conditions will be evaluated according

to the order in which they are declared in their XML representations. Actions
associated with a given state will be executed once upon entry to the state.

Composite FBs enable the encapsulation of a network of FBs (Function

block network, briefly FBN) within another block. Unlike basic FBs, the be-
haviour of composite FBs depends on the composite behaviour of the encap-

sulated network, rather than on an ECC. Networks consisting of these various
types of blocks may be further grouped together within a functional unit of

software known as a resource. Resources may be allocated to specific devices,

and a device itself may have several resources allocated to it. In IEC 61499

parlance, a device is simply a PLC. A system is made up of various devices

that implement a complete specification.
The run-to-completion semantics is assumed for the execution of the FB

instance. The standard defines the execution of a basic FB as a sequence of

eight (internal) events t1− t8 as follows:

2.2 the industrial standard iec-61499 31

Figure 3: A Basic FB

Figure 4: An ECC of a Basic FB

1. Relevant input variable values (i.e., those associated with the event in-

put by the WITH qualifier) are made available.

2. The event at the event input occurs.

3. The execution control function notifies the resource scheduling function
to schedule an algorithm for execution.

4. Algorithm execution begins.

32 high-level languages and standards for the modelling of fms

Figure 5: A FB network

5. The algorithm completes the establishment of values for the output vari-

ables associated with the event output by the WITH qualifier.

6. The resource scheduling function is notified that algorithm execution

has ended.

7. The scheduling function invokes the execution control function.

8. The execution control function signals an event at the event output.

These events are only specified in a informal way, without a detailed fur-
ther description, so they are not sufficient for creating an execution model of

function blocks and are not enough clear. Many of the discrepancies between
existing function block implementations arise due to the standard’s inade-

quate treatment of various fundamental aspects of the execution model. They

are:

1. The lack of any notion of time. FBs do not have an explicit notion of time.
Hence, the concept of simultaneous events and the lifetime of events

within an ECC can be ambiguously interpreted.

2. The lack of any notion of composition. While individual function blocks

may be connected to form networks, the standard does not define the

composite behaviour of such a network. Nothing is said about the com-
posite state when multiple ECCs are connected, or of the semantics for

their communication. Hence, a variety of ad-hoc approaches rise.

2.2 the industrial standard iec-61499 33

3. The lack of an event-processing policy; in fact, an unreliable transition
evaluation order is defined in the IEC 61499 standard. To avoid the un-

predictable behaviour of the FB-network diagram, the event-processing

policy should be defined at the design phase so as the control engineer
is aware of the corresponding execution semantics of its design. There

are three alternatives that can be supported by FB-based run-time envi-
ronments for the processing of input events:

• events are processed on a first come order. This is implemented by

a traditional FIFO event queue.

• events are processed on a priority based order. This can also be
implemented by priority queues.

• all pending input events are candidates for processing at the time

the thread of the FB inserts the running state.

4. The lack of a possibility to define an evaluation order of transitions
in the graphical notation, against of the evaluation order defined by

the standard, based on the order of the transitions in the textual FB

specification. This leads to a non deterministic execution. A possible
solution is a definition of a priority label for the transitions at the design

level.

These have resulted in different interpretations and/or implementations

of the standard. Such an implementation is the ISaGRAF6 environment [13],

which has been used to model the case study developed in this thesis to
demonstrate the validity of the approach.

3O V E RV I E W O F T H E M E T H O D O L O G Y A P P R O A C H : A
C A S E S T U D Y

In this chapter, a case study of a simple reactive system has been developed

using the IEC 61499 standard as a modelling language to validate the effec-
tiveness of the new process-development approach presented in this thesis.

This simple case study, a robotic cell, is described in the section 3.1. Succes-

sively, the IEC 61499 model is translated into a Simulink/Stateflow diagram,
exploiting a set of syntactic rules described in [14]. A rigorous semantics is

given to the Simulink/Stateflow model, to allow a translation of the semantic
rules into a temporal logical formalism, TRIO, described in 3.3.1. The logic-

based semantics precisely captures and resolves the intricacies (and possibly

the hidden ambiguities) of the design notation, and it is used to formally
check whether user-defined properties of interest are satisfied by the system

model or not. As described in the introduction, thanks to the metric nature of

the logic-based language underlying the approach, Stateflow models are pro-
vided with a precise, metric, notion of time; this is exploited, on the one hand,

to introduce metric constraints in the models (e.g., "the plant remains in state
S no longer than 3 time units"), and on the other hand to allow users to anal-

yse properties such as "does the plant terminate the processing within 10 time

units of its start?". In fact, some interested qualitative and quantitative real-
time properties are analysed in section 3.4, with a set of experimental results

obtained using a bounded model checker, Zot, over the case study. In last
section 3.5, the main weaknesses of the approach are described and analysed,

especially the theoretical limitations of the metric temporal logic TRIO in the

modelling of systems based on steps of different order of magnitude in their
duration. For this reason, we have decided to develop a new metric temporal

logic, called X-TRIO, as an extension of TRIO to overcome its limitations.

3.1 the case study : a robotic cell

In this section, a simple case study in the field of FMS, modelled using the

IEC 61499 standard [21, 11], is presented. The standard has been described in

section 2.2. It is a simple robotic cell, which is one of the most typical part

35

36 overview of the methodology approach : a case study

of an FMS. An high level schema of the cell is shown in Figure 6. This case
study, although very simple, is adapt to show the validity of the new process-

development approach presented in this thesis, since it is a compositional

system, with five different basic components, which interact by sending and
receiving signals, so all the various features of the language are exploited. To

simplify the model, all variables and signals are of boolean type.
The cell has been developed using a closed-loop methodology, typical of

system engineering: all the components of the cell and the external environ-

ment are modelled, to obtain a complete specification of the behaviour of the
system; in this way, in the last section of this chapter some relevant real-time

properties have been checked. The FBN is composed of 6 FBs:

1. A conveyor belt (Conveyor_in), which provides pallets of two types, A
and B, to be processed by two different machines. To simplify the im-

plementation of the logic controller of the Conveyor_in, every time unit
only a pallet, randomly chosen between the two types, is present on the

conveyor belt to be processed. It remains on the conveyor until a robot

arm, which is the main component of the robotic cell, moves it to the
suitable machine. The Conveyor_in sends a signal to the robot arm to

indicate the presence of a new pallet. The model of the Conveyor_in is
not shown.

2. Two different machines, (Machine 1 and Machine 2), which can only pro-

cess pallets of types A and B, respectively, and produce final artefacts

without a particular type. The working time of the two machines is
hardcoded in the ECC of the FBs and translated in the logical model,

so it is possible to analyse real-time properties such as "Is it possible to
finish processing three pallets of type A in 10 units of time?"; the exact

specification of the working time is not important, but in the implemen-

tation has been fixed to two time units. A machine controller sends to
the robot two different signals: a signal to indicate that the machine

has finished processing a piece, and another signal to indicate that the
piece has been removed by the robot arm and the machine is free to

process a new pallet. During the initialization of the system, each ma-

chine controller sends to the robot arm the signal that its corresponding
controlled machine is free.

3. Another conveyor belt (Conveyor_out), which receives from the robot

arm the finished artefacts to be released out of the cell. The Conveyor_out

3.1 the case study : a robotic cell 37

does not send any signal to the robot arm; it is only an abstract compo-
nent of the cell, without an important behaviour, so it has not been really

implemented as FB.

4. A robot arm (Robot), which loads and unloads the pallets of the two

types A ad B from the Conveyor_in to the suitable machine, and loads
and unloads the finished artefacts from one of the machines to the Con-

veyor_out. The developed IEC 61499 control solution of the controller of
the robot arm is shown in Figure 7. The FB of the controller of the robot

arm has 10 input signals and 6 output signals, which are represented

on the left and on the right respectively in Figure 7. The two FBs, on the
left and on the right, are service interface FBs needed to interface the

controller with the rest of the components: the FB on the left receives sig-

nals from the rest of the components of the cell (input events and data),
instead the FB on the right sends the commands generated by the robot

controller (output events and data) to them. The FB called E_RESTART
is needed to fire the initialization of the system. During the initializa-

tion, the robot is in a predefined position, the position called P0, where

it waits for a signal from the (Conveyor_in), or from a machine. The in-
ternal behaviour of the robot arm is modelled by the ECC depicted in

Figure 8. The ECC of the robot controller sends command to the robot
arm such as "go to the Machine 1", or "go to the Conveyor_in", and re-

ceives the reactions of the robot arm as input signals such as "position

of the Machine 1 reached" or "position P0 reached"; these reactions are
modelled by the FB described in the next point.

5. The last component models the reactions of the environment: the main

part of this FB models the reaction of the robot arm to the commands
sent by the robot controller. In particular, in a way similar to the Con-

veyor_in, the time needed to move the robot arm between the various

stations of the cell is hardcoded in the ECC of the FB and embedded in
the logical model; again, the exact specification of this time duration is

not important, but in the implementation it has been fixed to one time
units. The model of the environment is not shown.

In FMSs, non-deterministic choices within a component must be avoided.

In the case study, to deal with multiple requests from different components,
it has been statically assigned priorities to the operations performed by the

robot: the unloading of final artefacts from the machines has higher priority

38 overview of the methodology approach : a case study

than their loading; also, unloading final artefacts from Machine 1 has prece-
dence over unloading them from Machine 2. Finally, at any time, the robot

arm can switch from automatic to manual mode, where an operator can send

commands directly to the robot when the need arises to perform operations
outside the production cycle. The system switches back to automatic mode

through a suitable command.
The entire case study is implemented using the ISaGRAF6 environment

[13], which completely supports the development of control applications with

the IEC 61499 standard.

Figure 6: Robotic Cell.

The adoption of the IEC 61499 standard as reference model for the control

system of the robotic cell fosters the definition of reusable control modules
and the re-configurability of the solution, since the principles of modular-

ity, encapsulation and standardization of interfaces are effectively supported.
The control logic of each component of the FMS, i.e. the ECC of each FBs, is

translated into Stateflow diagrams, from the developed IEC 61499-compliant

control solution, for its formal verification. To guarantee that the properties
and the features of the IEC 61499 control solution described above are main-

tained in the Stateflow diagrams, the rules defined in [14] to translate an IEC
61499 model into a corresponding Stateflow are exploited. More precisely, the

Simulink/Stateflow description of an IEC 61499 model is obtained by trans-

lating each FB into a Simulink block constituted by a Stateflow model, where:

3.1 the case study : a robotic cell 39

Figure 7: Developed IEC 61499 control solution

• Input and output data are represented as input and output signals of

Boolean or Double types in the corresponding Simulink block.

• Input and output events are represented as rising or falling edges of

input and output signals of Boolean type in the corresponding Simulink
block.

• The ECC and related algorithms are represented by means of Stateflow

diagrams, in a straightforward way; for example, each state and tran-

sition of the ECC is translating in a state and a transition with similar
conditions, events and actions of the corresponding Stateflow diagram.

The exact way to perform this translation is not given here in details,

40 overview of the methodology approach : a case study

Figure 8: ECC of the robot controller module

since it is not mandatory for this thesis, and is performed by hand right

now.

• Internal data is represented by means of local Simulink variables.

Finally, the Simulink/Stateflow model is obtained by connecting the Simulink
blocks according to the structure of the original IEC 61499 model, such as the

Simulink graph of Figure 11, which is the composed model of the robotic cell

obtained translating the IEC 61499 model of Figure 8.
Simulink and Stateflow are two toolboxes of the Matlab environment inte-

grated with each other, that support dynamic systems analysis through time-
based and discrete-event simulation.

3.1 the case study : a robotic cell 41

Figure 9: Stateflow diagram of the controller of the robotic cell of Figure 6.

42 overview of the methodology approach : a case study

Figure 10: Stateflow diagram of component Machine 1 of Figure 6.

Now, the syntax of the graphical modelling language Stateflow and an in-

troduction to the use of Simulink as a compositional notation for composed
Stateflow diagrams are briefly described.

As mentioned in the previous chapter 2, the Stateflow notation is a variation

of Statechart, so the description is limited only to the differences between the
two notations.

Simulink and Stateflow [9] are two toolboxes of the Matlab environment
integrated with each other, that support dynamic systems analysis through

time-based and discrete-event simulation.

A Stateflow diagram, similar to a Statechart one, is a tuple SF = {S, s0,D, T }
where:

3.1 the case study : a robotic cell 43

1. D = DI ∪DO ∪DL. D is a finite set of typed variables partitioned into
input variables DI, output variables DO, and local variables DL. DI
and DO include Boolean variables used to represent input and output

events: a variable vi (resp. vo) modelling an input (resp. output) event
is set to truewhen the event is received from (resp. notified to) the envi-

ronment. This is a variation to simplify the original notation of Stateflow,
where events and variables are separated.

2. S is a finite set of states. A state can be associated with three kinds

of actions: entry, exit and during actions; they are executed, respectively,
when the state is entered, is exited, or during the permanence of the

system in the state. An action is the assignment of the evaluation of an

expression e over constants and variables of D to a non-input variable v:
it is denoted with v = e. A during action corresponds to a static reaction

of a Statechart diagram.

3. s0 is the unique initial state of the Stateflow diagram

4. T is a finite set of transitions, that may include conditions (i.e., con-

straints) and actions. The graphical Stateflow notation of the label of a

transition is similar to the Statechart notation, [c]/a, without the event
part. A condition is a boolean expression over the variables of D, that

can be composed using the usual logical operators or, and and not.

Actions over both states and transitions allow one to write Stateflow di-

agrams in a more concise way, since it is possible to build a semantically
equivalent Stateflow diagram with actions over transitions only. For example,

an entry action of a state is equivalent to an action on any transition enter-

ing the state; a during action of a state s with a transition from s to itself is
equivalent to a during action on the transition.

Such as in Statechart, in Stateflow there are also advanced features such
as time actions, history, special events, special actions, junctions and so on.

In this thesis, to simplify the exposition, only the basic features are used.

So, OR and AND-states are not used since the ECC of the IEC 61499 has
a flat, sequential structure: as a consequence, only a state of the ECC and,

consequently, of the corresponding Stateflow diagram, is active.
As mentioned above, an FB is translated into a Simulink block, which rep-

resents the basic component of a Simulink/Stateflow representation of the

model. The public interface of the basic component, which represents the set
of input and output data and events of the FB, comprises the set of variables

DInt = DI ∪DO of the Stateflow diagram that models its behaviour.

44 overview of the methodology approach : a case study

An FBN, instead, is translated into a Simulink diagram: this Simulink di-
agram, composed of one or more basic components (i.e. Simulink blocks),

represents a composed component of the Simulink/Stateflow representation.

Its public interface is the union of the input and output variables of its com-
ponents, while its behaviour is described by the Stateflow diagrams of its

basic components, whose communication channels are represented graphi-
cally through links. Each link corresponds to a flow of messages (signals or

data) sent from a component to another one, and models the corresponding

link in the IEC 61499 FBN. Simulink diagrams can, in turn, be composed to
obtain higher-level components. The detailed features of communication are

explained in the coming Section 3.2.

Figure 11: Simulink diagram of the robotic cell.

3.2 a semantics for simulink/stateflow

Stateflow is a complex language with numerous, complicated, and often over-

lapping features lacking any formal definition. Its documentation describes
the semantics in informal operational terms, supported by numerous exam-

ples, but the actual definition of the language is the "simulation semantics"
given by its behaviour when simulated in the Matlab environment. A com-

plete formal verification process for Stateflow requires first to give it a formal

definition. As it is possible to understand from the documentation of Math-
works, the semantics of Stateflow is similar to the Statemate semantics of

Statecharts described in section 2.1.2. Furthermore, in this thesis a composi-
tion operator ‖ is defined to build hierarchical, modular models from simpler

3.2 a semantics for simulink/stateflow 45

ones: it is useful to define the behaviour of a composed component of a Simu-
lik/Stateflow diagram, according to its Simulink graph.

Now some basic concepts and definitions of the semantics of Statechart

have been formally redefined to adapt them to Stateflow, in particular for
the presence of variables with different domains. Since, given a Stateflow

diagram, it is possible to build another semantically equivalent Stateflow di-
agram with actions over transitions only, the semantics is given only for this

type of Stateflow diagrams.

Such as for Statechart, the semantics of a Stateflow diagram is a set of
runs, representing the reaction of the system to a sequence of input events,

represented by a subset of input boolean variables of the Stateflow diagram.

A run is a sequence of configurations {Ci}i>0 such that, for each i > 0, Ci is
obtained from Ci−1 by executing a step.

We remind that a configuration is a maximal consistent set of states that
the system can be in simultaneously; but, since all states of this particular

version of Stateflow are basic states, there is only a single active state. For this

reason, in the semantics of this version of Stateflow, a configuration Ci is a
pair 〈si,µi〉 where si ∈ S is the currently active state and µi is an evaluation

of the variables of D, i.e. a mapping µi : D → dom(D). An expression e
on the variables of D is evaluated in the active configuration by the function

eval(e,µ), which return a value in the common domain of all the variables in

e. The initial configuration is always of the form C0 = 〈s0,µ0〉, where µ0 is
the initial evaluation for all the variables.

Since any state of a Stateflow diagram is a basic state, children(s) = ∅
for every state s, so functions children and its reflexive-transitive function

children∗ and transitive closure children+ become useless; the same for the

default function. Instead, every state s has the same parent(s) = r, where
r is the root of the Stateflow diagram; r is the OR-state (not indicated in

the graphical notation) which represents the entire Stateflow diagram and is
the unique common ancestor of any set of states, and every other state is its

children. For this reason, every couple of states is not orthogonal and every

set of states X is not consistent, except if it is a singleton.

A transition in a Stateflow diagram is denoted with s
[c]/a
−→ s ′, where s

is the (unique) source state, s ′ is the (unique) target state, c is a condition

expression and a is an action. In this semantics, the scope of any transition
scope(t) is always the root r.

The effect of executing an action a of the form v = e in a certain configura-

tion C = 〈s,µ〉 is a new evaluation function µ ′ = µ[v/eval(a,µ)], where the

46 overview of the methodology approach : a case study

value of v is substituted with the value eval(a,µ), where eval is a function
that evaluates the expressions in a using the evaluation function µ. As for

Statechart, a transition is relevant in C if its unique source state is s.

Given all this new definitions, a Stateflow transition is enabled in a config-
uration C only if it is relevant in C and the condition c is true under the

evaluation function µ. So, the set of enabled transitions in C is defined as:

enabled(C) = {t ∈ T |t = [c]/a ∈ relevant(C)∧ eval(c,µ) = true}

Since the scope of a transition is always r, two transitions are always in-
consistent, and are conflicting if their source states are the same. So, a set of

transitions is maximal if it is a singleton or is empty, i.e. the set of enabled

transitions is always a singleton or is empty. The problem of conflicting tran-
sitions has been solved by assigning them a priority.

Taking in consideration that a step, in Stateflow, is constituted by the sin-
gle transition t that is enabled in the configuration C, i.e. isStep(t,C) ⇔
t ∈ enabled(C), executing a step leads the system in the new configuration

nextConfig(C, t) = 〈s ′,µ ′〉, where s ′ = target(t) and µ ′ = µ[v/eval(a,µ)].
The system reaches a stable configuration when the set of enabled transitions

is empty, i.e. stableSF(C)⇔ enabled(C) = ∅.
Before given the definition of a Stateflow step, we need to redefine the pred-

icate −→SFevent , which models the occurrence of one or more external events

in a stable configuration C = 〈S,µ〉. So, denoted with EDI an evaluation func-
tion that returns the new values assigned externally to the input variables in

DI, where at least one of the input variables has changed its value respect to
the value returned by µ, the redefined predicate is:

−→SFevent⇔ stableSF(C)∧ ∃v ∈ DI : µ(v) 6= EDI(v)
∧C ′ = 〈S,µ ′ = µ[v1/EDI(v1), . . . , vn/EDI(vn)]〉

where v1, . . . , vn ∈ DI.
Finally, the definition of a Stateflow step is the following:

−→SFstep⇔ ¬stableSF(C)∧ ∃t ⊆ T : isStep(t,C)

∧C ′ = nextConfig(C, t)

Combining these transition predicates, we have that a reaction to a set

of external input events consists of a sequence of steps, called a macro-step:
σ0 −→

SF
event σ1 −→

SF
step σ2 . . . σn−1 −→

SF
step σn , where σ0,σn � stableSF(C),

3.2 a semantics for simulink/stateflow 47

and for every valuation σi , where 0 < i < n, σi 2 stableSF(C). A single
−→SFstep is called a micro-step.

Such as the Statemate semantics for Statechart, the semantics for Stateflow

defined in this thesis is of the so-called run-to-completion type, with an asyn-
chronous time model. We briefly remind the main features:

• Events generated internally in a micro-step are sensed and processed
only in the next micro-step. It means that, when an action update the

value of a variable in the set DO ∪DL, the update is processed only at

the beginning of the next micro-step.

• The system senses input events, i.e. update input variables, only when

it is in a stable configuration, i.e. at the beginning of a macro-step. Out-
put events, i.e. the value of output variables, are communicated to the

environment after completion of the macro-step, when the system is in
a new stable configuration

• The perfect synchrony hypothesis holds: micro-steps are executed in-
finitely fast, with the clock being incremented only at macro-step bound-

aries, i.e. transitions take zero time to be executed

• The system can diverge, causing Zeno behaviours. A run has Zeno be-

haviour if infinitely many actions are executed in a finite amount of
time. In Stateflow, it corresponds to the situation in which infinitely

many micro-steps are executed during a single macro-step, which in
turn occurs when the run enters a loop of micro-steps that is never ex-

ited, thus never triggering the advancement of time. Zeno runs must be

avoided in models because they represent unfeasible behaviours. Sec-
tion 3.4 shows how Zeno runs can be detected for the formal semantics

of Stateflow described in this section, using a simple formula written in
the TRIO metric temporal logic.

In summary, the semantics of a macro-step is the following:

1. When a macro-step begins, input data and events are assigned to the
corresponding variables of set DI. Suppose for example that the current

configuration Ci of the Robot Stateflow of Fig. 9 is
Ci = 〈OkP0, {M1Free = 1,M2Free = 0, FM2 = 0,M1 = 0, . . .}〉, and

that the input event In2 occurs, meaning that there is a completed work-

piece on Machine 2. Then the input variables are updated to false except
M2, producing a new configuration C ′ with the current time and state

unchanged.

48 overview of the methodology approach : a case study

2. As long as there are enabled transitions, micro-steps are executed in
zero time. For example, the transition enabled in configuration Ci+1
is the one with condition [M2 & !M1 & !SwitchAutoMan & !FM2];

the transition is immediately taken and the system executes the action
entry : ToM2 = 1 of the destination state GoToM21, leading to the

following new configuration:

Ci+2 = 〈GoToM21, {ToM2 = 1, . . .}〉

As before, time does not advance.

3. When there are no more enabled transitions to execute, a stable con-
figuration is reached. At this point the macro-step is completed, time

advances of one unit, and output events and data produced during
the macro-step are communicated to the environment. In the example

above, no transitions are enabled in configuration Ci+2, so time ad-

vances, the values of the variables and the current state do not change
and the new event ToM2 is produced according to the Simulink graph

of Figure 11.

A run identifies a sequence of time instants {Ti}i∈N, one for each macro-

step, hence the time domain is discrete. This is consistent with the underlying

physical model, since the PLCs on which FMS control solutions are built, are
governed by discrete clocks, i.e. each macro-step corresponds to a clock cycle

of the modelled PLC.
The last part of the semantics concerns the composition of two or more

components, according to the Simulink graph. Given two Stateflow diagrams

G1 = 〈S1, s10 ,D1, T1〉 and G2 = 〈S2, s20 ,D2, T2〉, we introduce a composi-
tional binary operator ‖ whose result is a new composed component G =

〈S, s0,D, T〉 where D = D1 ∪D2, S = S1 × S2 and s0 = 〈s10 , s20〉.
The sets of all possible configurations of G1 and G2 are denoted with C1

and C2, respectively. The evaluation functions of the input variables in DI1
and DI2 , given externally, are denoted with EDI1

and EDI2
. A global config-

uration of G is a couple c = 〈c1, c2〉 with c1 ∈ C1 and c2 ∈ C2.

A global configuration c =< c1, c2 > is stable if the two local configurations
c1 = 〈s1,µ1〉 ∈ C1 and c2 = 〈s2,µ2〉 ∈ C2 are stable:

stableSL(c1, c2)⇔ stableSF(c1)∧ stable
SF(c2)

Given the new concept of global stability through the new stableSL pred-

icate, we must introduce two new global predicates −→SLevent and −→SLstep

3.2 a semantics for simulink/stateflow 49

which are based on it. The predicate −→SFevent asserts that the composed com-
ponent is sensible to new external events only when a global stable configu-

ration is reached:

−→SLevent⇔ stableSL(c1, c2)

∧ (∃v ∈ DI1 : µ(v) 6= EDI1
(v)∨ ∃v ∈ DI2 : µ(v) 6= EDI2

(v))

∧ c ′ = 〈c ′1, c ′2〉 : c
′
1 = 〈s1,µ ′ = µ[v1/EDI1

(v1), . . . , vn/EDI1
(vn)]〉

∧ c ′2 = 〈s2,µ ′ = µ[v2/EDI2
(v2), . . . , vn/EDI2

(vn)]〉

where v1, . . . , vn ∈ DI1 ∪DI2 . We note that the global configuration C is up-

dated only if at least one of the input variables of one of the two components
has changed its value respect to the value returned by µ.

Finally, the definition of a step of the composed component G, i.e. a global
micro-step, is the following:

−→SLstep⇔ ¬ stableSL(c1, c2)

∧ (∃t1, t2 ⊆ T : (isStep(t1, c1)∧ isStep(t2, c2)

∧ c ′ = 〈nextConfig(c1, t1),nextConfig(c2, t2)〉)
∨ ∃t1 ⊆ T : (isStep(t1, c1)∧ c

′ = 〈nextConfig(c1, t1), c2〉)
∨ ∃t2 ⊆ T : (isStep(t2, c2)∧ c

′ = 〈c1,nextConfig(c2, t2)〉))

From the definition of a global step, we can note that the system can evolve

in two different ways:

1. Suppose that G is in configuration c = 〈c1, c2〉, with c1 = 〈s1,µ1〉 ∈ C1

and c2 = 〈s2,µ2〉 ∈ C2. If there are two transitions t1 : s1
g1/a1
−→ s ′1

and t2 : s2
g2/a2−→ s ′2 of, respectively, G1 and G2 that are enabled in

c1 and c2, then the next configuration of the composed component is
c ′ = 〈c ′1, c ′2〉 where c ′1 = 〈s ′1,µ ′

1〉 and c ′2 = 〈s ′2,µ ′
2〉. µ

′
1 and µ ′

2 are the

new evaluations of the variables according to the execution of actions

a1 and a2. In this case both components execute their transitions in a
real parallel manner, instead of force them to interleave.

2. Suppose that G is in configuration c = 〈c1, c2〉, but only the transition

s1
g1/a1−→ s ′1 is enabled. In this case, the next configuration of the com-

posed component is c ′ = 〈c ′1, c2〉 (with c ′1 = 〈s ′1,µ ′
1〉); we can note that

the second component does not change its local configuration, i.e. it ex-
ecutes a so-called stutter transition (usually denoted with ε). Time does

not advance, since the first component executes a non-stutter transition.

50 overview of the methodology approach : a case study

Instead of using the global semantics, which substitutes the local semantics,
in the next section 3.3 we show that it is possible to construct a compositional

global semantics exploiting the local one, avoiding the use of the global predi-

cate stableSL. stableSL models a global clock, which ticks every time all com-
ponents reach a local stable configuration, but it exposes to every component

informations about the other ones. Using the global compositional semantics,
each component can be considered as a black box that an engineer can design

and verify separately through a compositional verification approach.

From the above description, it follows that the global clock of the composed
component G synchronizes the clocks of its components; so, it is possible that

a component can reach a local stable configuration before the others, while

the system does not reach yet a global stable configuration. Then, each com-
ponent that is in a stable configuration must perform stutter transitions until

all other components also reach their local stable configuration. This mecha-
nism is exemplified in Figure 12, which shows the fragments of the runs of

two modules A and B that are composed to realize a third component C. The

S
9

S
0

S
1

S
2

S
3

S
7

S
8

S
9

0 1 2 3
t

c :A
0 0

c :A
1 1

c :A
2 2

c :A
7 7

c :A
8 8

ε

A

B

Figure 12: Example of stutter transitions

figure shows the first macro-step of the two runs: for component A the macro-

step begins in state S0 and ends in state S3; similarly for component B. The

x axis shows the number of micro-steps executed from the beginning of the
macro-step: component B reaches a stable configuration in state S9, in fewer

micro-steps than A, so a stutter ε transition is introduced to synchronize the

clocks of the two components. After the fourth micro-step, both components
have reached a stable configuration and the clock of component C advances

to the next time unit.
The composition operator ‖ is such that, when two components of any type

are composed, their input and output variables become input and output vari-

ables of the composition, i.e., they do not become local to the composed com-
ponent, hence they cannot be hidden. In addition, an input variable cannot be

linked to more than one output variable, to guarantee the uniqueness of the

3.3 temporal logic encoding of the case study 51

value assigned to the input variable (on the other hand, an output variable
can be linked to more than one input variable, as in a "multicast" communi-

cation). It is easy to prove that, thanks to this further restrictions, the parallel

composition operator becomes associative.

3.3 temporal logic encoding of the case study

3.3.1 TRIO: a metric temporal logic

The original TRIO [22] language is a general-purpose formal specification

language suitable for describing complex real-time systems. TRIO is a first-

order linear temporal logic that supports a metric on time. TRIO formulae
are built out of the usual first-order connectives, operators, and quantifiers,

as well as a single basic modal operator, called Dist, that relates the current
time, which is left implicit in the formula, to another time instant: given a

time-dependent formula φ (i.e., a term representing a mapping from the time

domain to truth values) and a (arithmetic) term t indicating a time distance
(either positive or negative), the formula Dist(φ, t) specifies that φ holds at a

time instant whose distance is exactly t time units from the current one. TRIO

formulae can be interpreted both in discrete and dense time domains.
The following is the TRIO syntax (where v, k, f and p are, respectively, a

variable, a constant, a function, and a predicate; functions and predicates can
have arity 0):

φ := p(τ1, . . . , τn) | ¬φ |φ1 ∧φ2 |Dist(φ, τ) | ∀v.φ
τ := v | k | f(τ1, . . . , τn)

(1)

Functions and predicates can be either interpreted (they can be for exam-
ple arithmetic operations or comparisons) or uninterpreted; for example, one

could introduce a predicate connected(c1 , c2) that holds for all those pairs

of components that are connected with each other. In its full generality, TRIO
allows users to write arithmetic formulae, hence it is trivially undecidable.

TRIO also defines, and allows the user to define, a large set of derived op-
erators to make formulae simpler and more intuitive. For instance, Futr(φ, t)

is equivalent to t > 0∧ Dist(φ, t), while Past(φ, t) is equivalent to t > 0∧

Dist(φ,−t). Table 1 presents a meaningful sample of TRIO derived operators,
whereas Table 2 shows some useful variations thereof. For convenience, TRIO

items (variables, functions, predicates) are distinguished into time-dependent

52 overview of the methodology approach : a case study

(TD) and time-independent ones (TI) with the obvious meaning of the two
terms [22].

The goal of the verification phase is to ensure that the system S satisfies

some desired property R, that is, that S |= R. In the TRIO approach S and R
are both expressed as logic formulae Σ and ρ, respectively; then, showing that

S |= R amounts to proving that Σ⇒ ρ is valid. TRIO is supported by a variety
of verification techniques implemented in prototype tools. In this thesis, we

use Zot [23], a bounded satisfiability checker which supports verification of

discrete-time TRIO models. Zot is described in section 6.1 in further details.

OPERATOR DEFINITION

Futr(φ,d) d > 0∧ Dist(φ,d)

Past(φ,d) d > 0∧ Dist(φ,−d)

AlwF(φ) ∀d(0 6 d→ Futr(φ,d))
AlwP(φ) ∀d(0 6 d→ Past(φ,d))

SomF(φ) ∃d(0 6 d∧ Futr(φ,d))
SomP(φ) ∃d(0 6 d∧ Past(φ,d))

Lasts(φ, δ) ∀d(0 6 d 6 δ→ Futr(φ,d))

Lasted(φ, δ) ∀d(0 6 d 6 δ→ Past(φ,d))
WithinF(φ, δ) ∃d(0 6 d 6 δ∧ Futr(φ,d))

WithinP(φ, δ) ∃d(0 6 d 6 δ∧ Past(φ,d))
Until(φ,ψ) ∃d(Futr(ψ,d)∧ ∀v(0 6 v < d→ Futr(φ, v)))

Since(φ,ψ) ∃d(Past(ψ,d)∧ ∀v(0 6 v < d→ Past(φ, v)))

Table 1: TRIO derived temporal operators.

3.3.2 TRIO encoding of the case study

In this section, the semantics of Stateflow is formalized using the TRIO tem-

poral logic. The usual qualitative temporal operators of the classical LTL [24]
are used to describe the sequence of micro-steps: the idea is to exploit the ©
operator to model a transition execution, i.e. the passage from a configuration
to the next one, which corresponds to a micro-step and could be interpreted

as a discrete "logical" time model; © is the usual LTL next state operator, i.e.,

©F holds in the current "state" iff F holds in the next "state".

3.3 temporal logic encoding of the case study 53

OPERATOR DEFINITION

SomF((φ) ∃d(0 < d∧ Futr(φ,d))

SomP((φ) ∃d(0 < d∧ Past(φ,d))

WithinF()(φ, δ) ∃d(0 < d < δ∧ Futr(φ,d))

WithinF(](φ, δ) ∃d(0 < d 6 δ∧ Futr(φ,d))

WithinF[)(φ, δ) ∃d(0 6 d < δ∧ Futr(φ,d))

WithinP(](φ, δ) ∃d(0 < d 6 δ∧ Past(φ,d))

Table 2: Some variations of TRIO derived temporal operators.

Instead, the real time advancement is modelled by a special tick predicate,

which holds any time a component is in a stable configuration: the tick pred-
icate models the advancement of the clock of a PLC, using a discrete "real"

time model. The metric operators specific of TRIO are used to express the

quantitative properties of macro-steps, exploiting the tick predicate to spec-
ify real-time metric temporal properties.

The TRIO logic formulae are written in Lisp, which is the input language
of the Zot tool, thus allowing users to perform automatic verification of State-

flow models. For each variable V ∈ D of the Stateflow model, we introduce a

corresponding Zot variable with finite domain dom(V). When variables have
the same domain, we group them in Zot arrays (i.e., finite sequences of vari-

ables that are accessed through an index). In the case of the controller of the
robotic cell of Figure 9 we introduce three arrays, InputCRO (of 10 elements),

OutputCRO (of 6 elements) and LocalCRO (of 2 elements), corresponding,

respectively, to the sets DI, DO and DL of the Stateflow model. We also intro-
duce a Zot variable s representing the current state of the Stateflow diagram,

whose domain dom(s) corresponds to the set S of states. In the case of the

diagram of Figure 9, StateCRO is a variable with domain [0, . . . , 11], where
each value corresponds to a different state and 0 is the initial state. We use

temporal logic formulae to express constraints defining valid sequences of
micro-steps. For readability, we write v = k to mean that the actual value re-

turned by the evaluation function of the current configuration for the variable

v is k.
Given a Stateflow diagram representing the behaviour of a module m, for

each transition Hm,i : sm,i
gm,i/am,i
−→ tm,i with source state sm,i and target

54 overview of the methodology approach : a case study

state tm,i, with condition expression gm,i, we introduce the following for-
mula:

(γm,i ∧ sm = sm,i)→ ((©(sm = tm,i))∧ αm,i) (2)

where γm,i is a Boolean formula encoding condition expression gm,i, and

αm,i is a temporal logic formula encoding the transition action am,i.
The formula (2) asserts that if the current state is sm,i and the transition

condition γm,i holds in the current configuration, then in the next micro-step
the new configuration active state must be tm,i and the action am,i must

be executed, updating the output and local variables at the beginning of the

next micro-step. The left part of the formula (2) checks if the transition is
enabled, implementing the predicate enabled, while the right part executes

the transition, implementing the =⇒SFstep predicate, i.e. the formula models

the execution of a micro-step.
If no transition is enabled, the system reaches a stable configuration, so the

next configuration is exactly the same of the actual one, which is captured by
the following formula:

(
∧|Hm|

i=1 ¬(γi ∧ si = sm,i))→ NOCHANGE (3)

where |Hm| is the number of transitions of the Stateflow diagram of the

module m, and subformula NOCHANGE, which is not detailed here to sim-
plify the exposition, asserts that in the next micro-step the current state and

the values of all output and local variables do not change, except the input
variables. The formula (3) models the execution of stutter transitions in stable

configurations, waiting for the occurrence of an external event.

The complete definition of the behavior of the transitions of the Stateflow

diagram of a module m is given by
(

∧|Hm|

i=1 (2)i

)

∧ (3).

The time advancement of the run-to-completion Stateflow semantics is mod-

eled, as mentioned in the introduction to this section, by a predicate called
tick, which is added to the encoding of each Stateflow diagram. Predicate

tick holds in each micro-step following the one in which the system has

reached a stable configuration. When predicate tick holds, time advances to
the next clock cycle of the PLC.

The behaviour of predicate tick is captured by the following formula:

(
∧|Hm|

i=1 ¬(γi ∧ sm = sm,i)))⇔ (©tick) (4)

3.3 temporal logic encoding of the case study 55

To foster information hiding, instead of relying on a single global predicate
modelling the time advancement, in this encoding each module has its local

tick predicate. As explained in section 3.2, additional predicates and formulae

are introduced in the composed system model for the synchronization of the
local ticks.

We introduce a formula asserting that when predicate tick does not hold,
the values of the input variables DI must be the same of the preceding micro-

step:

�(¬tick→ (
∧

v∈DI
(∀x((

←−
©(v = x))→ (v = x))))) (5)

where the
←−
© and � are, respectively, the yesterday and globally LTL oper-

ators:
←−
©F holds if formula F held in the previous state, while �F holds if F

is true in the current and in all future state. The formula (5) models the fact
that the system is sensible to external events only when it is in a stable con-

figuration, forcing the input variables to not change their value in all other
configurations. In this way, an error in a formula which encode an action

which tries to update an input variable lead to an inconsistent logic model

and can be immediately identified by a counterexample trace of the model
checker tool.

The conjunction of formulae MOD ≡ ((
∧|Hm|

i=1 (2)i)∧ ((3) − (5))), is a for-
mula that characterizes all the runs of a Stateflow diagram, i.e. it encodes the

behaviour of a basic component.

Next, we encode the semantics of module composition described through
Simulink graphs. We use a modular approach to hide the details of the time

advancement of a module to the other components, exploiting the local se-

mantics encoded by the formulae (2), (3), (4) and (5). A special integrator
module M must be added to access the data of the public interfaces of each

component; it embeds a number of axioms needed to ensure the correct be-
haviour of the composed module, as represented in the Simulink graph.

As described in Section 3.2, the local clock of a component that is part of a

composed component advances only when the system has reached a global
stable configuration. However, the local tick predicate of the module does

not convey the information on when such event occurs, since it is not directly
related to the state of the other components. To avoid the use of a global tick

predicate shared between components, which would break compositionality,

we add two new local predicates to the interface of each component module,
called stable and tickext. stablem holds when the modulem reaches a locally

56 overview of the methodology approach : a case study

stable configuration and it replaces predicate tick in formula (4), thus giving
the new formula:

(

|Hm|
∧

i=1

(¬(γi ∧ (sm = sm,i))))↔ (©stablem) (6)

We use predicate tickext to convey to single modules the information about

the overall system state. This predicate is set to true by the integrator module
M when all its components reach a stable configuration. In the compositional

semantics, the local tickm of a component m holds iff both stable and tickext

are true, which is captured by the following formula:

�(tickm ⇔ (stablem ∧ tickext
m)) (7)

Module M has also its own local clock predicates tickM, stableM and

tickext
M , so the semantics is compositional in that M itself can be part of other

composed modules, but this does not affect its formulae. If M is the com-

position of NM modules, to obtain the synchronization of the clocks of the

component modules, we impose the following three conditions:

1. Predicate stableM is true iff all the predicates stablem of the compo-

nent modules are true. This condition implies that the local clock of

each composed module advances iff the overall system is in a stable
configuration.

2. Each predicate tickext
m of each component module must be equivalent to

tickM.

3. Predicate tickM is true iff predicates stableM and tickext
M hold, such as

for the local components.

The three conditions above are formalized through the following formulae

embedded in the module M:

�(stableM ⇔ (

nM
∧

i=1

stablei)) (8)

�(

nM
∧

i=1

(tickM ⇔ tickext
i)) (9)

�(tickM ⇔ (stableM ∧ tickext
M)) (10)

3.3 temporal logic encoding of the case study 57

Formulae (8), (9) and (10) lead to a behaviour that is equivalent to imple-
ment the global stableSL predicate.

Finally, we formalize the semantics of the communication between compo-

nents, represented as links in the Simulink graph, as described in section 3.
A link between an output variable of a component m1 and an input variable

of a component m2 means that the corresponding data or event produced by
m1 is communicated and received by m2. This corresponds to synchronizing

the value of the input variable of m2, to the value of the output variable of

m1 only when the overall system has reached a stable configuration, i.e. when
the predicate tickM holds. This is captured by the following formula:

�(tickM → (vm1 ,out = vm2,in)) (11)

where vm1 ,out is an output variable of component m1 linked to the vm2 ,in

input variable of the component m2. M contains an instance of formula (11)
for each link of the Simulink graph.

In the compositional semantics, the formula SYS encoding the behavior
of the composed system is given by the conjunction of the local formulae

SYS ≡ ((
∧nM
i=1 (2)i)∧ ((5) − (6))), for each component, plus the formulae ((7)-

(11)) embedded in module M.
We remark that, since in the run-to-completion semantics the real time ad-

vances only when macro-steps are performed, to express the metric properties
of a system we need to redefine some TRIO operators to reflect this notion of

time advancement. First, we redefine the TRIO Dist operator, where Dist(F,K)

holds in each instant t such that formula F holds at the instant t+K. The fol-
lowing formula defines the meaning of the new operator Distnew(F, 1), to take

into account that time advances only at the occurrence of tick, starting from
the operators predicating on micro-steps:

Distnew(F, 1) =©(¬tick∪ (tick∧©(¬tick∪ ((©tick)∧ F)))) (12)

where ∪ is the usual binary LTL operator until, and A ∪ B holds in those

states such that there is a future state in which B holds, and A holds in all
states up to that one (excluded).

Formula (12) asserts that Distnew(F, 1) holds if, at the end of the macro-

step following the current one, F holds. The end of the current macro-step
occurs in the micro-step right before the next state in which tick holds (i.e.,

the future micro-step in which ©tick is true and such that tick is false in all
states in-between). Distnew(F,K) is therefore defined as follows:

58 overview of the methodology approach : a case study

Distnew(. . .Distnew(Distnew(F, 1) , 1 . . . , 1)) (k times).

Finally, we also redefine the Until TRIO operator, to predicate only on

macro-steps. The new Untilnew(A,B) is defined by the following formula:

Untilnew(A,B) =©(((©tick)→ A)∪ ((©tick)∧B)) (13)

Formula (13) asserts that Untilnew(A,B) holds if there is a future state in
which the clock ticks, B holds at the end of that macro-step, andA holds at the

end of all macro-steps in between. Notice that formulae A and B are evaluated

only in the last micro-step of a macro-step, when all system variables have
certainly been updated.

3.4 system properties verification and experimental results

In this section, it is illustrated how the encoding presented in section 3.3.2 can
be exploited to check some relevant properties of the robotic cell of Figure 6.

The formulae analysed in this section capture but a portion of the kinds of

properties that can be checked using TRIO on a Simulink/Stateflow model;
they show how the technique presented in this thesis can be applied to study

a wide range of features of modelled systems. As mentioned in the introduc-
tion section of this chapter, we used the bound model checker Zot to perform

model checking on the TRIO model of the robotic cell. Zot is described deeply

in section 6.1; it performs checking of the properties by encoding temporal
logic formulae into the input language of various solvers; for this tests, Zot

exploits the widely used SMT solvers Microsoft Z3 [25], so it is possible to
represent also arithmetic variables and quantitative properties over them. To

avoid infinite state systems, every variable has a finite domain, so it is possi-

ble to apply bounded model checking techniques without further decidability
issues.

We first check that the modelled system does not have Zeno runs, which

would make it unfeasible. We remember that the system shows a Zeno be-
haviour if, from a certain point on, time does not advance, i.e. predicate tick

does not hold. The presence of Zeno runs is formalized by the following simple
LTL formula:

♦(�(¬tickM)) (14)

where tickM is the global tick predicate of the robotic cell, and ♦ is the

eventually LTL operator. ♦F holds in a state if there is a future state in which

3.4 system properties verification and experimental results 59

formula F holds. Formula (14) holds if, from a certain micro-step on, the
clock does not tick anymore. Using the Zot tool, it has been checked that the

formula SYS∧ (14) is unsatisfiable, which means that there are no runs of the

system that also show property (14), hence the model does not exhibit Zeno
runs.

Since we are now guaranteed that time advances in the modelled system,
we can use the TRIO temporal operators to predicate on actual time instants

(i.e., on macro-steps), and state metric properties such as "operation OP ter-

minates within K time units", etc.
Next, we check for the existence of deadlocks in the system model. A model

is deadlock-free if it cannot reach a configuration after which its state does not

progress anymore. The usual definition of deadlock requires that the model
never leaves its state s; in this case, however, we only consider what happens

at the end of macro-steps, and while the intermediate micro-steps are ignored.
In other words, the deadlock is defined over macro-steps only, considering in-

ternal micro-steps states as transient states, non-observable outside the mod-

ule. Different analyses would have been possible with a simple tweak of the
formulae checked. The presence of deadlock does not depend on the value of

the input data since we have a closed-loop system. The system is in deadlock
if all of its components are in a deadlock state. The following TRIO formula

captures this notion of deadlock: it holds if all components c ∈ C (with C the

set of system components) can reach a deadlock state:

∧

c∈C

∨

x∈dom(sc)

SomF(AlwF(sc = x)) (15)

where dom(sc) is the set of states of component c, SomF and AlwF are

the TRIO counterparts of the eventually and globally LTL operators; they are

defined in Table 1.
Finally, a property concerning the possibility to produce and deliver one

final artefact within T time units from the system start-up is analysed. The

property is captured by the following formula:

WithinF((sRob = GoToCo1)∨ (sRob = GoToCo2), T) (16)

The formula states that, within T time units from the start of the system, one

of the two states GoToCo1 or GoToCo2 of Figure 9 is reachable. The Stateflow
diagram reaches state GoToCo1 if a workpiece of any type has been produced

60 overview of the methodology approach : a case study

by Machine 1, and similarly for GoToCo2 and Machine 2. WithinF is a TRIO
operator derived from Dist:

WithinF(F, T)
def
=

∨

06t6T

Dist(F, T) .

In the tests for the formula (16), we used two values, 15 and 20, for T . For-

mula (16) does not hold if T = 15, but it does if T = 20. Analysing the output

of the Zot tool, in the latter case we found that 16 is the minimum number
of time units to satisfy the formula (which can be confirmed by checking

formula (16) with T = 16).
Some performance results obtained during the verification of properties

(14) and ((15)-(16)) with the two values of T mentioned above, are shown in

Table 3. Table 3 shows the time required by the tool to check the property, the
memory occupation and the result, i.e. whether the property holds or not. All

tests have been carried out on a 3.3 Ghz quad core PC with 4 Gbytes of Ram.

Table 3: Test results.

Formula Time (sec) Memory (Mb) Result

Zeno Paths detection (14) 85 264 No

Deadlock detection (15) 17991 268 No

Production, T=15 (16) 407 260 No
Production, T=20 (16) 89 272 Yes

The Stateflow diagram of Figure 9 has 12· 218 possible configurations (corre-

sponding to the state space of cardinality |S|· 2|D|); the overall system model,

which also includes diagrams for all the other components, is considerably
larger. As a consequence, deadlock detection analysis (formula (15)) takes a

long time, as the tool must exhaustively analyse all possible runs.
Formulae (14) and (16), instead, formalize reachability properties; their anal-

ysis is much faster, since the tool stops as soon as it finds a run that satis-

fies the formula. Verifications was performed with a bound of 70 time units,
which is a user-defined parameter that corresponds to the maximal length of

runs analysed by Zot. It is well known that, for each LTL formula, exists a com-
pleteness threshold CT for the bounded model checking problem: it represents

the minimum value for the bound such that, if there is no counterexample to

the formula of length CT or less, then the formula is satisfiable. We checked

3.4 system properties verification and experimental results 61

automatically, using a particular parameter of Zot called textitloop-free, that
70 is a valid CT for the formulae (14), (15) and (16).

To conclude this section, we briefly illustrate an example of verification that

allowed us to detect and correct errors in a previous version of the model. By
feeding Zot formula (15) on an earlier model of the robotic cell, not shown

here to simplify the exposition, the tool determined that deadlock configu-
rations did exist, and it returned a counterexample of a deadlocked run. By

studying this run, we discovered that the system model remained forever in

configurations with state GoToCIn1, (see Figure 9). The run, which is summa-
rized in Figure 13, shows a problem in the communication protocol between

the Robot component and the Machine 1 component, which also affects the cell

Controller.

Figure 13: Deadlocked run returned by Zot.

The run is represented as a timeline, starting from 0. Over each micro-step

we report the partial configuration with the name of the active state of the
Controller component of Figure 9, and the values of the input variable FM1

and the output variable ToM1 (the other variables are not shown). The label

below the micro-step (e.g., t) identifies the macro-step to which it belongs.
When the Controller component enters state GoToM12 at time t, it signals

to Machine 1, sending an output event modelled by variable ToM1, that the
Robot has just arrived. After working for l instants of time, at time t + l +

1 Machine1 signals to the Controller the "work termination" event, which is

mapped to variable FM1. The transition between states GoToM12 and Start
becomes enabled and the Controller component returns to the initial state,

resetting FM1 to signal the end of the communication. The problem occurs
if the Controller component reaches state GoToCIn a second time, such as at

62 overview of the methodology approach : a case study

time k in Figure 13. In fact, starting from the time instant k+ 1, the Controller
component cannot leave the state GoToCIn anymore since variable FM1 has

not been reset by Machine 1. Hence, no outgoing transitions are enabled. After

correcting the error, a new check of property (15) showed that the modified
system model is deadlock-free.

3.5 limitations: towards a new metric temporal logic

The main drawback of the approach is mainly due to the nature of the met-
ric temporal logic TRIO. In fact, the original TRIO language is well suited to

deal both with continuous systems that evolve in a continuous time domain

and with discrete systems where each step takes exactly one time unit; finally,
it can deal also with heterogeneous systems that combine both continuous

and discrete components through suitable approximations [26]. More com-
plex systems, however, evolve through discrete steps, whether in continuous

or discrete time and state domains; furthermore, different steps may require

time durations that differ even by orders of magnitude from each other. An
example of these systems are reactive systems, such as the simple robotic cell

used as a case study in this thesis.

These type of systems are, usually, modelled through high level graphical
languages such as Stateflow, whose run-to-completion semantics is based on

the synchrony hypothesis: under this hypothesis, the system responds imme-
diately to new input events. Further more, it responds infinitely fast. This

hypothesis is suitable for reactive systems, such as the abstract model of a

PLC cycle, since it holds under the following assumptions:

1. the environment can be described as a discrete process, namely as an
infinite sequence of inputs {Ii}i∈N, occurring at successive instants of

time

2. the system is infinitely faster than the environment, so its reaction to
inputs Ii is completed before inputs Ii+1 are produced

Systems under this hypothesis, usually, are modelled assuming that their

evolution is a sequence of steps of two different types (and durations), micro-

and macro-steps, of which, normally, only the latter ones "consume time":
micro-step durations, being negligible w.r.t macro ones, is roughly assimi-

lated to zero-time. This assumption simplifies models and their analysis but

it is not without drawbacks. In fact, in temporal logics such as TRIO, that

3.5 limitations : towards a new metric temporal logic 63

adopt a view of system state as a function of time, such a notion of zero-
time transition is however counterintuitive (when a zero-time micro-step is

performed more than one state is associated with a single time instant), and

may lead to logical contradiction. For example, to overcome this contradiction,
in the encoding of the semantics of Stateflow, the © operator is exploited to

model a zero-time transition, executing a micro-step in one "logical" time unit;
to distinguish between "logical" time and "real" time, we use an explicit "tick"

predicate. This approach is similar to some temporal logics, which adopt a

time structure where more than one system state may be associated with a
single time instant (an example, reported in chapter 5, is the super-dense time

model) and therefore must provide distinct notations to refer to time and state

change. In these notations, the progress of time and state evolution are fully
decoupled, which is rather unnatural in most practical cases.

To accurately and naturally model such systems, we have decided to follow
a different path: the idea is to develop a new metric temporal logic, enriching

TRIO with a new "next-step" operator; whereas normally in metric frame-

works this operator is associated with exactly one time unit (in TRIO terms
this would mean©φ ≡ Dist(φ, 1)), here we do not associate a fixed time du-

ration to the execution of a step; rather, we distinguish between micro-steps
that occur in a negligible but non-null time duration, and macro-steps that

take a finite, but in general not a priori fixed time, using two different ver-

sions of the new operator. We borrow from Nonstandard Analysis (NSA) [15]
the concept of infinitesimal number to formalize the non-null but negligible

duration of micro steps, as opposed to that of macro-steps which is repre-
sented by standard numbers. This is not a completely novel approach, since

in literature other works exploited it to model reactive or discrete-event sys-

tems; some of them are reported in chapter 5, with a brief description of their
differences respect to the approach described in this thesis.

We called this new metric temporal logic X-TRIO; its main features are
described in the next chapter. From a mere experimental viewpoint, the new

logic does not add performance improvements respect to the TRIO encoding

described in this chapter. Furthermore, although the full version of new logic,
in the same way as TRIO, is Touring equivalent (since it includes first-order

arithmetic), its actual decidable fragment, called X-TRIOP-R
N+

, is not expressive

more than the classic LTL since, in the chapter 4, a complete procedure to

translate formulae written in X-TRIOP-R
N+

to equisatisfiable LTL formulae is

given.

4X - T R I O : A M E T R I C T E M P O R A L L O G I C F O R F M S

In this chapter is described deeply the new metric temporal logic X-TRIO. In
its full generality, X-TRIO includes full arithmetic and is, therefore, undecid-

able; thus, we look for a suitable restriction that makes it decidable, but still
general enough to formalize and analyse the main properties of various sys-

tems of industrial relevance. Among the many possible ones, the approach

we used is based on a syntax inspired by decidable versions of Metric Tempo-
ral Logic (MTL) [27] and a "fine tuning" of the temporal domain over which

X-TRIO formulae are interpreted. The decidability of the chosen X-TRIO sub-
set is then shown through translation into LTL, which enables the use of any

LTL-based satisfiability solver. Finally, to show the practical applicability and

generality of X-TRIO, we use it to formalize the semantics of Stateflow, in a
similar way to the one described in 3.3.

4.1 the general x-trio logic

In this section, we introduce X-TRIO in its full generality. After a short sum-

mary on the main concepts of NSA, we give the syntax and the model-
theoretic semantics of the full version of the X-TRIO logic. We conclude this

section with a few preliminary examples of application of the logic.

4.1.1 An introduction to Non Standard Analysis

In this section, we introduce the main concepts of the modern theory of in-

finitesimals founded by A. Robinson [15], the Non-Standard Analysis (NSA).

We provide only a minimum background that is needed to explain our ap-
plication of this theory to the modelling of reactive systems, by changing the

underline model of time.
The main idea that facilitates practical application of NSA is given in [28]:

the author defines a theory, called Internal Set Theory (IST), which includes

a typical axiomatization of arithmetic and extends it through the predicate
standard (briefly st), which is deliberately left undefined, plus three additional

axiom schemes.

65

66 x-trio : a metric temporal logic for fms

The predicate standard help us to introduce the concept of infinitesimal num-
ber in a standard temporal domain T , such as the sets R orN. Given a domain

T , the number ǫ is infinitesimal respect to T if ǫ > 0 and ǫ is smaller than any

number in T>0.
The original values of T are classified as standard and are characterized

by the above predicate st, that is, x is standard iff st(x) holds. T is, by this
way, augmented with infinitesimal numbers and all numbers resulting from

adding and subtracting infinitesimal non-zero numbers to and from standard

ones, respectively.
Predicate ns(x) denotes that x is non-standard. For each x, st(x) holds if

and only if ns(x) does not hold. Note that 0 is the only infinitesimal stan-

dard number. It is possible to demonstrate that all non-standard numbers are
of the form v± ǫ, where st(v) holds, and ǫ is infinitesimal greater than 0;

since we use this form for non-standard numbers in the rest of the thesis, we
give the demonstration of the decomposition over, for example, the set of the

hyperreals R:

Theorem 4.1.1. Any finite non-standard real number x ∈ R, can be uniquely de-

composed as a sum x = v ± ǫ, where v is a real standard number and ǫ is an
infinitesimal.

Proof. For the unicity of the decomposition, consider that if one would have

x+ ǫ = y+ µ where x and y are two usual real numbers and ǫ and µ are
two infinitesimals numbers, one would indeed deduce that x + y = µ + ǫ.

But, since this quantity is both a standard real number and an infinitesimal

number, it must be equal to 0, which shows that one both has x = y and
ǫ = µ as expected. On the other hand, let x = [(xn) : n > 0] be a finite

non-standard real number. Let us then consider the subset B of R defined by
setting B = b ∈ R : b < x. Due to the finiteness of x, it is easy to see that B

is a bounded set of real numbers which hence has a supremum a ∈ R. Let

us then set ǫ = x− a and let us suppose that there exists a strictly positive
real number r ∈ R such that r < |ǫ|. If ǫ > 0, we would have r < x− a, i.e.

a < a+ r < x, in contradiction with the fact that a is the supremum of B
(there would be a bigger real number a+ r ∈ B than a). On the other hand, if

ǫ < 0, we would have r < a− x, hence x < a− r < a, again contradicting the

fact that a is the supremum of B (a− r would be a small upper bound of B
than a). Hence ǫ must be an infinitesimal, which ends the proof.

We denote the extension of the original standard time domain T with in-

finitesimal numbers as T . T is a totally ordered set of numbers.

4.1 the general x-trio logic 67

NSA provides an axiomatization that allows one to apply all arithmetic op-
erations and properties of traditional analysis in an intuitive way: for instance,

the sum of two standard numbers is standard, the sum of two infinitesimal

numbers is an infinitesimal number and the sum of an infinitesimal number
with a standard number is a non-standard number.

The theory of NSA introduces, in addition to the notion of infinitesimal
numbers and operations on them, the notion of infinite numbers (which are,

intuitively, greater than any value in T), plus a rich set of results that make

NSA an appealing framework for reasoning on both familiar and new objects.
One of the most important result is that any standard domain T and its exten-

sion with infinitesimal numbers, T , are elementarily equivalent, which means

that the first order logical properties of T and T (expressed in the logical the-
ory of ordered fields) are exactly the same. This property is in fact a special

case of a more general result, called the transfer principle, which claims that,
given a set-theoretical formula φ involving only variables on T which does

not have any free variable, φ is true iff φ ′ is true, where φ ′ stands for the

formula on non-standard domain obtained from φ by transfer, i.e. by chang-
ing each usual standard set a involved in φ by its non-standard version a. As

one can immediately see, the transfer principle is a very strong property of
non-standard domains since it claims basically that every usual property of

standard domains holds for non-standard domains up to replacing standard

sets by their non-standard equivalents.
We exploit some of the terminology and concepts of NSA to provide an

elegant characterization of zero-time steps, but I do not make use of the full
power of the theory; for example, I do not deal with infinite numbers (i.e.,

we have that ns(x) iff x = v± ǫ, with st(v) and ǫ infinitesimal), as they are

useless when modelling zero-time transitions.

4.1.2 X-TRIO syntax and semantics

The syntax of X-TRIO is a straight extension of the TRIO one:

φ := p(τ1, . . . , τn) | ¬φ |φ1 ∧φ2 |Dist(φ, τ) | ∀v.φ |X(φ) |Y(φ) | st(τ)

τ := v | k | f(τ1, . . . , τn)
(17)

Derived temporal operators can be defined as in Tables 1 and 2.

In keeping with the tradition of TRIO [29], X-TRIO can be interpreted over

different temporal domains.

68 x-trio : a metric temporal logic for fms

A model-theoretic semantics for X-TRIO is defined by following a fairly
standard path on the basis of a temporal structure S = 〈T ,D,β,ν,σ〉, where:

• T is the time domain such that ∀t ∈ T it is t > 0.

• D is the union of the domains associated with functions and predicates

(i.e., of their arguments and results).

• β associates, at every time instant, each function and predicate with its

interpretation in that instant. For example, given a predicate p, β(p, t) is
the relation associated with p at instant t. β can be seen as the “system

state”, i.e., what holds in each time instant.

• ν : V −→ D is an evaluation function that associates with each variable
and constant a value in its domain.

• σ is the distinguishing element of the X-TRIO temporal structure; it

is a (possibly infinite) sequence of time instants starting from the ini-

tial instant 0, called History. Intuitively, it represents the discrete se-
quence of instants when the system changes state; more precisely I have

σ = {σi|i ∈ N, σi ∈ T , σ0 = 0, ∀j ∈ N s.t. j < i it is σj < σi, and ∀t ∈
T , if σi < t < σi+1, then for all function or predicate e it is β(e,σi) =

β(e, t))}.

Given a term τ, its value at time t is computed through a function α that

is defined as follows: for each variable (resp. constant) it is α(v, t) = ν(v) (resp.
α(k, t) = ν(k)); if τ = f(τ1, . . . , τn), then α(τ, t) = β(f, t)(α(τ1, t), . . . ,α(τn, t)).

The satisfaction relation � of an X-TRIO formula φ on a structure S =

〈T ,D,β,ν,σ〉 at a time instant t ∈ T is defined as follows:

S, t � p(τ1, . . . , τn) iff 〈α(τ1, t), . . . ,α(τn, t)〉 ∈ β(p, t)

S, t � ¬φ iff S, t 2 φ

S, t � φ1 ∧φ2 iff S, t � φ1 and S, t � φ2

S, t � Dist(φ,d) iff t+α(d, t) ∈ T and S, t+α(d, t) � φ

S, t � X(φ) iff there is i ∈ N s.t. σi 6 t < σi+1 and S,σi+1 � φ

S, t � Y(φ) iff there is i ∈ N s.t. σi−1 < t 6 σi, i > 0 and S,σi−1 � φ

S, t � ∀v.φ iff for all ν ′ that differ from ν at most for v, 〈T ,D,β,ν ′,σ〉, t � φ

Finally, a formula φ is satisfiable in a structure S iff S, 0 � φ. Notice that in
this thesis we consider system evolutions that conventionally begin from time

0.

4.1 the general x-trio logic 69

4.1.3 Examples of usage of X-TRIO

In its present general version, X-TRIO allows users to express any system

property of interest (remember that it has full Turing computational power
since it includes first-order arithmetic.). Let us show some examples of X-

TRIO formulae.
Consider as time domain the following restriction of the hyperreals ∗

R [30]:
∗
R>0 = {x ∈ ∗

R|x > 0}.

First of all, it will be useful in the following to identify the origin of the
temporal domain (which is, by definition, mono-infinite). This can be done

through the following X-TRIO formula, where k is any constant in ∗
R>0:

orig = ∀d.(0 < d < k→ Dist(¬Dist(⊤,−k) ,d))

In fact, formula orig holds only at instant 0, since Dist(¬Dist(⊤,−k) ,d) is
true in an instant t ∈ ∗

R>0 iff at t+ d Dist(⊤,−k) is false, which occurs iff

t+ d− k < 0. Then, for 0 < t < k, if d = k− t/2, it is t+ d− k = t/2 > 0, so
orig does not hold (similarly if t > k).

We can also introduce an abbreviation for the duration of the current step,

which is the difference of the "timestamps" (i.e., the distance from the origin)
between the end and the start of the step:

Dur(d) = ∃d1,d2(X(Past(orig,d1)∧ Y(Past(orig,d2)))∧ d = d1 − d2)

We can distinguish micro-steps (which take an infinitesimal time) from
macro-steps (which take a non-infinitesimal time) by means of the follow-

ing new derived operators, where Xm (resp. XM) stands for "the next step is a

micro one" (resp. macro):

Xm(φ) = X(φ)∧ ∀d(Dur(d)→ inf(d))

XM(φ) = X(φ)∧ ∀d(Dur(d)→ ¬inf(d))

We introduce operators to state whether the next step ends in a standard

or in a non-standard instant. For this, it is useful to introduce abbreviation

NowST = ∃t(t > 0∧ Past(orig, t)∧ st(t)), which holds exactly in all those
instants that are standard.

Xst(φ) = X(φ∧ NowST)

Xns(φ) = X(φ∧¬NowST)

Now, we use X-TRIO formulae to define some interesting behaviours of

systems that evolve through micro- and macro-steps.

70 x-trio : a metric temporal logic for fms

The formula (18) states that "the system keeps going forever", i.e. at any
time, the system will make progress with further steps, whether micro or

macro:

AlwF(SomF(X(⊤))) (18)

Conversely, the following formula (19) claims that at some point the system

will stop forever:

SomF(X(AlwF(¬X(⊤)))) (19)

i.e., there will be a point at some time when the next step will cause the
system to have no further steps. Thus the formula can be satisfied only by a

finite sequence σ.

The following formula (20) is similar to (19):

SomF(AlwF(¬X(⊤))) (20)

The formula (20), differently from (19), could also be satisfied by an infinite

σ where the steps never advance, past a certain instant of time: this is a Zeno
behaviour, first defined in section 2.1.2. Next I show how X-TRIO allows me to

formalize and distinguish in a natural way various forms of such pathological
behaviours, in particular different types of Zeno behaviours.

A first sufficient but not necessary condition to exhibit a Zeno behaviour is

that, from some point on, only micro-steps occur:

SomF(Xm(⊤)∧ AlwF(Xm(⊤)→ Xm(Xm(⊤)))) (21)

On domain ∗
R>0, a Zeno behaviour can occur also with a σ consisting ex-

clusively of macro-steps, which however have an always decreasing duration.

The following formula (22) could be satisfied, e.g., by a sequence σ whose

steps σi occur at time instants
∑i−1
k=0

1
2k

:

SomF(AlwF(¬X(⊤)))∧ SomF(XM(⊤)∧ AlwF(XM(⊤)→ XM(XM(⊤)))) (22)

If, instead, we restrict the time domain to be a discrete set augmented with

infinitesimals, such as the one that will be used in section4.3, then only for-
mula (21) captures Zeno behaviours.

We can also specify so-called "Berkeley behaviours" [31], i.e., those where
time keeps advancing, but the step duration is ever decreasing or, more pre-

cisely it becomes shorter than any standard number:

AlwF(SomF(XM(⊤)))∧

∀t(st(t)→ SomF(AlwF(XM(⊤)→ ∀d(Dur(d)→ d < t)))
(23)

4.2 towards decidable versions of x-trio 71

The formula (23) is satisfied, e.g., by a sequence whose steps occur at in-

stants of time
∑i
k=1

1
k .

From the point of view of the physical intuition, the behaviours specified

by formulae (20), (21), (22), and (23) could all be considered as "pathological"

and could look as "almost indistinguishable", but the difference in the mathe-
matical formalization could be used, for instance, to separate cases in which

an unstable clock ever increases its frequency (formulae (22) and (23)) form
cases where an unacceptable number of gate switches is supposed to occur

within a clock period.

4.2 towards decidable versions of x-trio

Since the advent of model checking, much research effort has been devoted to
the definition of logic languages that exhibit a best trade-off between natural-

ness (ease of usage), expressiveness (computational power), and decidability1

effort (complexity of decision procedures). In the case of TRIO, such an effort

has produced several "LTL-oriented" versions of the original language and

supporting tools. In this section, we trace a path to achieve the same goal for
the new X-TRIO language. To this end, several directions are possible, depend-

ing on the combination of syntactic and domain restrictions chosen. In fact,
the full generality of temporal domains augmented with infinitesimal num-

bers, as in NSA, is both too powerful to achieve decidability and often even

useless in practical cases (infinite numbers have been already excluded since
we are not interested in behaviours that take, say, an infinite time to perform

a single step); thus, there are several ways of restricting time domains which

clearly affect decidability and computational complexity properties. Some of
these are effective only when combined with suitable syntactic restrictions,

which in turn depend on the domain chosen. For instance, in most practical
cases we can assume that a macro step ends always in a standard element

of the time domain, i.e., XM(⊤) ↔ Xst(⊤). In this thesis, we will focus on

one particular version of X-TRIO that exhibits a good trade-off between ex-
pressiveness and computational effort: it can be translated into LTL formulae

(with past operators), it is PSPACE-complete, and it can be (and has been)
implemented in satisfiability solvers for LTL, such as Zot.

First, however, we circumscribe the range of alternatives by exploring some

more general variants of the logic, for which we analyse expressiveness and

1 As usual, in this thesis by decidable logic language we mean a language whose satisfiability problem
is decidable.

72 x-trio : a metric temporal logic for fms

decidability properties. This will give us a feel for the bounds within which it
is reasonable to search for meaningful, though decidable variants of X-TRIO,

and it will also point to further promising directions along which the logic can

be extended. When looking for decidable fragments of temporal logic, a first
natural (though not necessary [32]) syntactic restriction to consider is to avoid

explicit first-order quantifications. From the point of view of the temporal
domain, instead, discrete ones are natural candidates; however, dense time

domains have also been widely investigated in literature for classic temporal

logics [33, 34], so we will start by focusing on them.

4.2.1 A propositional X-TRIO

We start by restricting X-TRIO to a propositional, MTL-like syntax, in which

the basic temporal operators are the metric Until and the metric Since. In
addition, we specialize the X operator in two separate cases, Xst and Xns.

We also introduce a condition on the history σ that will entail that a "jump"

from σi to σi+1 corresponds to a macro-step (resp. micro-step) if and only if
st(σi+1) (resp. ns(σi+1)).

All in all, we give the following syntax for X-TRIO (where p ∈ AP, a and b

are constant distances such that a 6 b, a < ∞, b 6 ∞, 〈∈ {(, [}, 〉 ∈ {),]}, and
〉 6=] if b = ∞):

φ := p | ¬φ |φ1 ∧φ2 |Until〈a,b〉(φ1,φ2) | Since〈a,b〉(φ1,φ2) |

Xst(φ) |Xns(φ) |Yst(φ) |Yns(φ)
(24)

We denoted the new propositional X-TRIO logic, yet defined over the aug-
mented domain T and including the condition on the history, with X-TRIOP

T
,

where the P letter means Propositional.

As a consequence of the simplified syntax, the structures over which formu-
lae are to be interpreted are also simpler. More precisely, a temporal structure

is now a triple S = 〈T ,β,σ〉, where:

• T is the time domain (as before, ∀t ∈ T it is t > 0).

• β : T −→ 2AP associates, to every instant of time, the propositions that
hold in that instant.

• σ is defined as before, with the additional constraint that if i > 0 and

ns(σi), then for all σi−1 < j < σi it is ns(j).

4.2 towards decidable versions of x-trio 73

Then, the satisfaction relation � on a structure S = 〈T ,β,σ〉 at a time instant
t ∈ T is defined as follows:

S, t � p iff p ∈ β(t)
S, t � ¬φ iff S, t 2 φ

S, t � φ1 ∧φ2 iff S, t � φ1 and S, t � φ2
S, t � Xst(φ) iff there is i ∈ N s.t. σi 6 t < σi+1, S,σi+1 � φ and st(σi+1)

S, t � Xns(φ) iff there is i ∈ N s.t. σi 6 t < σi+1, S,σi+1 � φ and ns(σi+1)

S, t � Yst(φ) iff there is i ∈ N s.t. σi−1 < t 6 σi, i > 0, S,σi−1 � φ and st(σi−1)
S, t � Yns(φ) iff there is i ∈ N s.t. σi−1 < t 6 σi, i > 0, S,σi−1 � φ and ns(σi−1)

S, i |= Until〈a,b〉(φ,ψ) iff ∃t ∈ T s.t. i+ a ≺1 t ≺2 i+ b and S, t, |= ψ

and ∀t ′ ∈ T s.t. i 6 t ′ < t it is S, t ′ |= φ

S, i |= Since〈a,b〉(φ,ψ) iff ∃t ∈ T s.t. i− b ≺2 t ≺1 i− a and S, t |= ψ

and ∀t ′ ∈ T s.t. t < t ′ 6 i it is S, t ′ |= φ

Note that, in the semantics of the metric Until and Since, ≺1 (resp. ≺2) is

< or 6 depending on whether the left (resp. right) endpoint is included or

excluded.
In the next subsections 4.2.2 and 4.2.3 we study some relevant properties of

the X-TRIOP
T

. In particular, we study how its expressiveness and decidability

are affected by the choice of temporal domain and by possible restrictions on
the temporal operators used.

4.2.2 Expressiveness of X-TRIOP
T

When formalizing and analysing systems that evolve through micro- and
macro-steps, it is often useful to be able to write formulae that can sepa-

rate between the two kinds of instants. More precisely, we would like to be

able to define an X-TRIOP
T

formula F that holds in an instant t if and only if
t is standard. In this section, we investigate this issue, and, as a corollary, we

derive some expressiveness results for X-TRIOP
T

.

Let us consider, for the temporal domain T , the following subset of the
hyperreals:

R+ = {x ∈ ∗
R|∃v, ǫ > 0 s.t. st(v), inf(ǫ) and x = v+ ǫ}

It includes all numbers of the form v+ ǫ, where v > 0 is a real number, and
ǫ > 0 is an infinitesimal number.

We have the following Theorem 4.2.1:

74 x-trio : a metric temporal logic for fms

Theorem 4.2.1. No X-TRIOP
T

formula F such that AP = ∅, evaluated over the

temporal domain T = R+, that does not include instances of the Since〈a,b〉 operator,

is such that F is true in an instant t ∈ R+ iff t is such that st(t).

To prove Theorem 4.2.1 we first introduce the following abbreviations:

Until(φ,ψ) = Until(0,∞)(φ,ψ)

SomF(φ) = Until[0,∞)(⊤,φ)

Futr(φ,d) = Until[d,d](⊤,φ)

WithinF〈〉(φ,d) = Until〈0,d〉(⊤,φ)

Lasts〈〉(φ,d) = ¬WithinF〈〉(¬φ,d)

and the following equivalences:

Until(a,∞)(φ,ψ) ≡ Lasts[)(φ,a)∧ Futr(Until(φ,ψ) ,a)

Until[a,∞)(φ,ψ) ≡ Lasts[)(φ,a)∧ Futr(ψ∨ Until(φ,ψ) ,a)

Until(a,b〉(φ,ψ) ≡ Lasts[)(φ,a)∧

Futr
(

Until(φ,ψ)∧ WithinF(〉(ψ,b− a) ,a
)

Until[a,b〉(φ,ψ) ≡ Lasts[)(φ,a)∧

Futr
(

(ψ∨ Until(φ,ψ))∧ WithinF[〉(ψ,b− a) ,a
)

(25)

Hence, in the following proofs, we use Until (non-metric), Futr and WithinF

as basic temporal operators, instead of the metric Until〈a,b〉, without loss of
generality. We can similarly define operators Since (non-metric), SomP, Past,

WithinP and Lasted.
Before tackling the proof of Theorem 4.2.1, we introduce the auxiliary lemma

4.2.2:

Lemma 4.2.2. If AP = ∅ and S = 〈R+,β,σ〉 is such that the history σ contains

only standard instants of time (i.e., ∀i ∈ N it is st(σi)), any X-TRIOP
T

formula
F that does not include instances of the Since〈a,b〉 operator and with less than n

instances of the Yst operator is such that, given two instants t1 < t2 with t1 > σn,
it is S, t1 |= F iff S, t2 |= F.

Proof. First of all, note that in structure S, formulae Xns(φ) and Yns(φ) are

always false, independent of φ. The proof is by induction on the structure of

F.
The base cases, in which F = ⊤ or F = ⊥ are trivial, and so are the cases

F = φ1 ∧φ2 and F = ¬φ.

4.2 towards decidable versions of x-trio 75

Suppose F is Futr(φ, k); then, we have S, t1 |= F iff S, t1 + k |= φ; since
σn < t1 < t1 + k, by inductive hypothesis this holds iff S, t2 + k |= φ, i.e., iff

S, t2 |= Futr(φ, k).

If F = WithinF()(φ, k), S, t1 |= F iff there is 0 < d < k s.t. S, t1 + d |= φ.
Since t2 + d > t1 + d > σn, by inductive hypothesis, S, t1 + d |= φ iff

S, t2 + d |= φ, hence S, t2 |= F. The cases for other variants of the WithinF
operator and for the Until are similar.

If F = Xst(φ), S, t1 |= F iff S,σi |= φ, where σi is the first element of σ such

that σi > t1 (note that by hypothesis it is st(σi)). If σj is the smallest element
of σ s.t. σj > t2 (also, it is st(σj)), by inductive hypothesis it is S,σi |= φ iff

S,σj |= φ, hence iff S, t2 |= Xst(φ).

If F = Yst(φ), S, t1 |= F iff S,σi |= φ, where σi is the biggest element of
σ such that σi < t1 (for which st(σi) by hypothesis). If σj is the biggest

element of σ s.t. σj < t2 (also, it is st(σj)), since the number of operators Yst

in φ is n− 1, and σj > σi > σn−1, by inductive hypothesis it is S,σi |= φ iff

S,σj |= φ, hence iff S, t2 |= Yst(φ).

Proof of Theorem 4.2.1. To prove Theorem 4.2.1, assume there is an X-TRIOP
T

formula F such that AP = ∅, F contains no instances of operator Since〈a,b〉

and such that, given a structure S, it is S, t |= F iff st(t). If N is the number

of instances of operator Yst in F, given a structure S as in Lemma 4.2.2, two
instants t1, t2 such that σN < t1 < t2, st(t1) and ns(t2), by Lemma 4.2.2 it is

S, t1 |= F iff S, t2 |= F, which contradicts the assumption.

It is easy to see that X-TRIOP
T

formula NowST = Lasts[)(¬Past(⊤, ǫ) , ǫ),

where ǫ > 0 is any infinitesimal constant, holds exactly in the time instants
t ∈ N+ such that st(t). As a consequence, we have the following Corollary

4.2.3:

Corollary 4.2.3. Over the R+ temporal domain, X-TRIOP
T

with past operators is
strictly more expressive than its future-only counterpart.

If we change the temporal domain from R+ to R±, in which we admit also
non-negative instants of time of the form v− ǫ, it is not possible anymore to

separate standard and non-standard instants, as the following Theorem 4.2.4
holds:

Theorem 4.2.4. Consider AP = p and an X-TRIOP
T

formula F evaluated over the

temporal domain T = R±; no such formula can express the property "p holds in all

standard instants".

76 x-trio : a metric temporal logic for fms

Again, let us consider, as primitive temporal operators, Futr, Past, WithinF,
WithinP, etc. The proof of Theorem 4.2.4 is somewhat similar to the one of

[35]; more precisely, we rely on the following intermediate lemma 4.2.5:

Lemma 4.2.5. Consider AP = p and an X-TRIOP
T

formula F; let δF+ and δF− be

the sum of all time bounds appearing in future and past operators in F, respectively,
and δF = δF+ + δF− ; let Si = 〈R±,β,σ〉 be a structure such that, for a fixed

infinitesimal ε and for all k ∈ N it is σk = kε, and for all t it is β(t) = {p}, except
for one instant i > 1+ δF, where β(i) = ∅. Then, given two structures Si and Sj
with j > i > 1+ δF, Si, 0 |= F iff Sj, 0 |= F.

Proof. Structures Si correspond to Zeno behaviours in which all σi are at an

infinitesimal distance from the origin. Then, for all t, ǫ (with ǫ infinitesimal)
such that t > 1− ǫ and all formula φ it is Si, t 6|= Xns(φ), Sj, t 6|= Xns(φ), and

similarly for Xst(φ), Yst(φ), Yns(φ). In fact, Xst(φ) is always false, and Yst(φ)

is false for all t > ε.
We show the following:

• for all t such that t 6 δF− + 1 it is Si, t |= F iff Sj, t |= F;

• for all t > i− δF+ it is Si, t |= F iff Sj, j− i+ t |= F, i.e., starting from δF+
instants before p becomes false in each structure Si, Sj, F has the same
values in Si and Sj if the same offset is considered;

• for all 1 + δF− 6 t < i − δF+ , Si, t |= F iff Si, 1+ δF− |= F; i.e. in all

instants from 1+ δF− (included) to i− δF+ (excluded) F has the same

value in structure Si.

The proof is by induction on the structure of F.
The property holds in the base case F = p, as Si and Sj are the same except

in instants i and j, and j > i > 1+ δF− + δF+ . The cases in which F is ¬φ or

φ1 ∧φ2 are trivial.
If F = Futr(φ,d), we have Si, t |= F iff Si, t+ d |= φ. If t > i− δF+ , then

t+d > i− δφ+
, and by induction hypothesis Si, t+d |= φ iff Sj, j− i+ t+d |=

φ, i.e. Sj, j− i+ t |= F. If t+ d < 1+ δF− , then Si, t+ d |= φ iff Sj, t+ d |= φ,

hence the result. If 1+ δF− 6 t < i− δF+ or 1+ δF− 6 t+ d < i− δF+ , then

t+ d < i− δφ+
< j− δφ+

, as t < i− δF+ and δF+ = δφ+
+ d, so Si, t+ d |= φ

iff Si, 1 + δF− |= φ, iff Sj, 1 + δF− |= φ, iff Sj, t + d |= φ, hence the result.

Similarly for WithinF〈〉(φ,d).

The reasoning is specular if F = Past(φ,d), for which Si, t |= F iff t−d ∈ R±

and Si, t−d |= φ. If t−d > i−δF+ , then by induction hypothesis Si, t−d |= φ

4.2 towards decidable versions of x-trio 77

iff Sj, j− i+ t− d |= φ, i.e. Sj, j− i+ t |= F. If t < 1+ δF− , then Si, t− d |= φ

iff Sj, t− d |= φ, hence the result. If 1+ δF− 6 t− d < i− δF+ or 1+ δF− 6

t < i − δF+ , then 1+ δφ−
6 t − d, as 1+ δF− 6 t and δF− = δφ−

+ d, so

Si, t− d |= φ iff Si, 1+ δφ−
|= φ, iff Sj, 1+ δφ−

|= φ, iff Sj, t− d |= φ, hence
the result. Similarly for WithinP〈〉(φ,d).

If F = Xns(φ), Si, t 6|= F and Sj, t 6|= F if t > 1− ǫ for some infinitesimal ǫ.
If t = ǫ for some infinitesimal ǫ, then Si, t |= F and Sj, t |= F iff Si,σj+1 |= φ,

with σj 6 t < σj+1. Similarly for Xst(φ), Yst(φ) and Yns(φ).

If F = Until(φ,ψ), then Si, t |= F if there is t ′ > t such that Si, t
′ |= ψ. We

separate several cases. If t > i− δF+ , then by induction hypothesis Si, t
′ |= ψ

iff Sj, j− i + t
′ |= ψ, and also by induction hypothesis we have that for all

t 6 t ′′ < t ′ Si, t
′′ |= φ iff for all j− i+ t 6 t ′′ < j− i+ t ′ Sj, t

′′ |= φ, hence
the result. Similarly if t < t ′ < 1+ δF− . If t < i− δF+ 6 t ′, then by induction

hypothesis Si, t
′ |= ψ iff Sj, j− i+ t

′ |= ψ, Si, t |= φ iff Sj, t |= ψ, and for all
t 6 t ′′ < t ′ it is Si, t

′′ |= φ iff for all t 6 t ′′ < j− i+ t ′ it Sj, t
′′ |= φ, hence the

result. The other cases are similar, and are not detailed here for brevity. The

case F = Since(φ,ψ) is dual.
Si, 0 |= F iff Sj, 0 |= F simply descends by observing that 0 < 1+ δφ−

.

Proof of Theorem 4.2.4. Suppose there is an X-TRIOP
T

formula F that captures

property "p holds in all standard instants". Consider two instants i, j such that
st(i), ns(j) and j > i > 1+ δF. Then, by lemma 4.2.5, I have that Si, 0 |= F iff

Sj, 0 |= F, but F does not hold for Si, so it does not hold for Sj, either, though

by definition it should.

4.2.3 Decidability of X-TRIOP
T

As we expect, we have the following decidability result for the X-TRIOP
T

logic:

Theorem 4.2.6. The satisfiability problem of X-TRIOP
T

formulae over the temporal

domain nsDomT = R+ is undecidable.

Proof. To show the undecidability of X-TRIOP
T

, we reduce the satisfiability

problem of MTL, which is well-known to be undecidable [36], to that of

X-TRIOP
T

. Given an MTL formula F, it is possible to transform it in the X-TRIOP
T

formula F ′ in which every subformula φ of F becomes NowST → φ. Then,
given two structures S1 and S2 such that for all t s.t. st(t) it is β1(t) = β2(t),

S1, 0 |= F ′ iff S2, 0 |= F ′, as NowST→ φ is true in all non-standard instants of

time (where the antecedent is false). Then, a structure S is a model of F ′ iff its

78 x-trio : a metric temporal logic for fms

restriction to the standard instants of time is a model of F, so any procedure
to decide the satisfiability of F ′ would also decide the satisfiability of F, which

is impossible.

To achieve decidability, many different choices are possible. For example,

in the standard MTL case, one way to make the logic decidable is to limit the
kinds of intervals that can be written in the metric Until modality [33]. De-

cidability is also often obtained by considering a discrete temporal domain.
In the next section 4.3 this second path is explored, without renouncing in-

finitesimals, however.

4.3 a decidable fragment of x-trio

In this section, we focus the attention on discrete subsets of the hyperreals
∗
R. In particular, we consider the temporal domain N+ = {x ∈ ∗

R|∃v, k ∈
N s.t. x = v+ kε}, with ε > 0 a fixed infinitesimal. Note that N+ is not the set

of the hypernaturals [30], which does not include infinitesimal numbers, but,
rather, a particular subset of the hyperreals.

For temporal domain N+ it is easy to see that Theorem 4.2.1 and Corol-
lary 4.2.3 still hold. In this case, however, the definition of NowST can be

simplified in the following way: NowST = ¬Past(⊤, ε).

In X-TRIOP
T

, we consider only distances for the bounds a,b of the metric

Until and Since operators that have the form v± kε. On domain N+, in ad-
dition to equivalences 25, we have a further set of results that allow us to

consider only a subset of the logic X-TRIOP
T

(which includes, for example, an

unbounded number of forms for operator Futr, one for each possible bound),
without loss of generality. More precisely, one can show that through opera-

tors Futr(•, 1), Futr(•, ε) and Until (and their past counterparts) it is possible
to express all other temporal operators. Here we present some of the more

interesting ones (note that Until[(φ,ψ) = ψ∨ Until(φ,ψ)).

First of all, it is easy to show that Futr(•, v± kε) can be expressed in terms
of Futr(•, 1) and Futr(•, ε), as in the following (where k > 1, st(v) and v > 1):

Futr(φ, v+ kε) ≡ Futr(Futr(φ, kε) , v)

Futr(φ, v− kε) ≡ Futr(Past(φ, kε) , v)

Futr(φ, v) ≡ Futr(Futr(φ, v− 1) , 1)

Futr(φ, kε) ≡ Futr(Futr(φ, (k− 1)ε) , ε)

(26)

4.3 a decidable fragment of x-trio 79

Similar equivalences hold for the Past operator; note that in this case, when
the bound is v− kε, the equivalence is the following:

Past(φ, v− kε) ≡ Futr(Past(φ, v) , kε) (27)

In fact, if Past(φ, v− kε) is evaluated in an instant t, it might be that t −
(v− kε) ∈ N+, but t− v 6∈ N+. Hence, in (26) it is Futr(Past, . . .) instead of

Past(Futr, . . .), as the latter form might be false, no matter the value of φ, even

if t− v+ kε ∈ N+.
The equivalences for operator WithinF must take into account the pecu-

liarities of the underlying domain. In a standard, discrete domain such as
N, WithinF[](φ, 1), for example, would simply be φ∨ Futr(φ, 1). However, in

domain N+, between 0 and 1 there is an infinity of non-standard numbers of

the form kε, so WithinF[](φ, 1) actually reads "φ holds either in the current in-

stant, or one instant from now, or in one of the non-standard instants between
now and one instant from now". On the other hand, WithinF[](φ, 2ε) is still

equivalent to φ∨ Futr(φ, ε)∨ Futr(φ, 2ε). Then, the following equivalences
hold (with st(v), v > 1 and k > 0).

WithinF[](φ, kε) ≡ φ∨ Futr
(

WithinF[](φ, (k− 1)ε) , ε
)

(28)

WithinF[](φ, v± kε) ≡ WithinF[](φ, 1)∨ (29)

Futr
(

WithinF[](φ, v− 1± kε) , 1
)

WithinF[](φ, 1− kε) ≡ φ∨ Futr
(

Until[(¬NowST,φ∧¬NowST) , ε
)

(30)

∨Futr(φ∨¬Since(¬φ, NowST ∧¬φ) , 1− kε)

Let us focus on equivalence (30). S, t |= WithinF[](φ, 1− kε) if S, t |= φ, or
if S, t ′ |= φ for any of the infinite instants of time in [t+ ε, t+ 1− kε]. Recall

that t ∈ N+ has the form v+nε. Then, [t+ ε, t+ 1− kε] = [t+ ε, v+ 1) ∪ [v+
1t + 1− kε]. If φ holds in [t+ ε, v+ 1), then there is an instant t ′ > t such

that ns(t ′), S, t ′ |= φ, and for all t ′′ ∈ [t, t ′) it is ns(t ′′). This corresponds to

the second disjunct in equivalence (30). If φ holds in [v+ 1, t+ 1− kε], then it
must be t+ 1− kε > v+ 1, and either S, t+ 1− kε |= φ (notice that it could

be t+ 1− kε = v+ 1), or it is not possible that between t+ 1− kε and the
preceding standard instant (i.e., v), included, φ never holds. This is captured

by the third disjunct in (30).

Similar equivalences hold for operator WithinP[].

80 x-trio : a metric temporal logic for fms

Finally, all other forms of operators WithinF and WithinP (WithinF(), WithinF(],
etc.) can be expressed in terms of WithinF[]. We consider, for example, the case

of operators WithinF() and WithinP(). The following equivalences are trivial

(with d > 2ε and k > 2).

WithinF()(φ,d) ≡ Futr
(

WithinF[](φ,d− 2ε) , ε
)

(31)

WithinP()(φ, kε) ≡ Past
(

WithinP[](φ, (k− 2)ε) , ε
)

(32)

The case for WithinP()(φ, 1− kε), which is captured by equivalence (33),

is a bit more involved, since it must separate the case in which the current
instant is a standard one, from the one in which it is not.

WithinP()(φ, 1− kε) ≡
(

¬NowST∧ Past
(

WithinP[](φ, 1− (k+ 2)ε) , ε
))

∧(NowST∧
Past(WithinF[](φ, 1− (k+ 2)ε) , 1− (k+ 1)ε))

(33)

In fact, if ns(t), then t − ε ∈ N+, so WithinP()(φ, 1− kε) is simply

WithinP[](φ, 1− kε− 2ε) evaluated in t − ε. If, instead, st(t), then

WithinP()(φ, 1− kε) is false if t = 0 (and in this case 1 − kε − ε 6∈ N+); if

t > 1, then 1 − kε− ε ∈ N+, and WithinP()(φ, 1− kε) iff in 1− kε− ε it is
WithinF[](φ, 1− kε− 2ε).

The case WithinP()(φ, v± kε), with st(v) and v > 1 is not shown here for

brevity.
Equivalences (25) and (26)-(33) suggest the following simplified, though

equivalent for domain N+, syntax for X-TRIO:

φ := p | ¬φ |φ1 ∧φ2 | Futr(φ, 1) |Past(φ, 1) | Futr(φ, ε) |Past(φ, ε) |
Until(φ1,φ2) | Since(φ1,φ2) |Xst(φ) |Xns(φ) |Yst(φ) |Yns(φ)

(34)

We denoted the new propositional fragment of X-TRIO, over the discrete
domain N+, with X-TRIOP

N+
.

Despite the restrictions introduced in X-TRIOP
N+

, however, it is undecidable,

and the following Theorem 4.3.1 holds:

Theorem 4.3.1. The satisfiability problem of the X-TRIOP
N+

logic is undecidable.

4.3 a decidable fragment of x-trio 81

Proof sketch. In classic fashion (see, e.g., [37]), we reduce the halting problem
of a 2-counter machine to the satisfiability problem of X-TRIOP

N+
formulae,

by defining a set of X-TRIOP
N+

formulae that formalize the increment and

decrement of the 2 counters.

We associate one counter with the sequence of even standard numbers, and

one with the sequence of odd standard numbers, as detailed below.
We associate two propositional letters, E and O, with each standard instant

of σ so that when the current standard instant is even (resp., odd) then only E
(resp., O) holds. They do not hold in non-standard instants. These constraints

are represented by the following X-TRIOP
N+

formulae (we show the case of

even instants):

E→ Xns

(

Until[(¬O∧¬E, Xst(O)∧¬O∧¬E)
)

E↔ Futr(O, 1)

Given two consecutive standard instants σj and σi in σ (i.e., such that σi =

σj + 1), there is a finite nonempty sequence σ[j,i) of length i− (j+ 1) of non-
standard instants in σ between them since σ is discrete.

We introduce X-TRIOP
N+

formulae (not shown here for brevity) to partition

σ[j,i) into two subsequences such that, at each instant, either propositional

letter A or propositional letter B) holds. We use letters A and B to "mark"
each instant in σ[j,i) as shown in Figure 14. The sequence of B’s ends in the

last non-standard instant of σ[j,i).

Figure 14: Part of trace representing counters.

The sequence of A and B are used to represent the two counters: the num-
bers of A’s starting from standard numbers marked with E (resp.O) represent

the first (resp. second) counter. We encode the operations increase/decrease/check
if 0, by manipulating the length of the sequence of A’s. For example, the

counter associated with E increases its current value if the sequence of A’s

that starts at the next even standard instant is such that the last A of that
sequence dists 2+ ε from the last A of the current sequence of A’s. This is

encoded through the following X-TRIOP
N+

formula, reminding that all the

naturals numbers belong to the temporal domain:

82 x-trio : a metric temporal logic for fms

E→ (A→ Until(A,B∧ Futr(A∧ Xns(B) , 2)))∧

(B→ Futr(A∧ Xns(B) , 2))

The other cases are omitted for brevity.
The counter is zero when the sequence of A’s is empty. In the case of the

counter associated with even standard numbers we can encode this check
with the formula E∧B.

Finally, at the initial instant of the sequence σ, which is an even number, E

holds and the corresponding counter value is 0 (i.e., E∧ B holds at 0).
The halting of the formalized machine is expressed simply as reachabil-

ity of a final state. Hence, we conclude that the satisfiability problem of
X-TRIOP

N+
is undecidable.

In section 4.4, we introduce a sufficient condition that makes X-TRIOP
N+

decidable, but still expressive enough for our purposes.

4.3.1 A decision procedure for X-TRIOP-R
N+

In this section, we show the decidability of a fragment of X-TRIOP
N+

by reduc-

ing its satisfiability problem to that of PLTLB (LTL with both future and past

operators). The transformation is effective and has been implemented in the
Zot satisfiability checker.

PLTLB extends classic LTL [38] with past operators; its syntax (as used in

the rest of this thesis) is the following:

φ := p| ¬φ |φ1 ∧φ2 |XL(φ) |YL(φ) |φ1ULφ2 |φ1 SLφ2 (35)

We have also the usual abbreviations FL(φ) = ⊤ULφ and GL(φ) = ¬FL(¬φ).
The semantics of PLTLB is defined over discrete traces. A trace is an infinite

word π = π(0)π(1) . . . over the finite alphabet Σ = 2AP, where each π(i)

represents the set of atomic propositions that are true in i.

�L denotes the satisfiability relation of PLTLB. The definition of �L is straight-

forward if one considers that, for any φ, YL(φ) is false at 0 [38].
As a first step, to encode X-TRIOP

N+
into PLTLB, we restrict histories σ

according to the following constraints:

1. Histories σ are infinite.

4.3 a decidable fragment of x-trio 83

2. Either all standard natural numbers or a bounded interval thereof in-
cluding 0 belong to σ.

3. If σi+1 is non-standard (ns(σi+1)), then σi+1 − σi = ε.

Constraints 1, 2 and 3 are not strictly necessary to obtain decidability, but

they are not overly restrictive and they reduce the number of cases to be
considered in the encoding. For example, a finite history σ must be such that,

after the last element of the sequence, the state does not change, which can

be also represented as an infinite history in which, from a certain point on,
all β(σi) are the same.

Notice also that, if σi+1 is standard (st(σi+1)), then between σi and σi+1
there is an infinite sequence of non-standard numbers σi + ε,σi+ 2ε, . . . such

that, for all k ∈ N, β(σi + kε) = β(σi).

In order to reduce the satisfiability problem of X-TRIOP
N+

(which is in gen-

eral undecidable) to that of PLTLB (which is decidable), we need to apply fur-
ther restrictions. The key to encoding a counting mechanism in X-TRIOP

N+
is

to evaluate formulae of the form Futr(φ, v+ kε) (with v > 1) in non-standard

instants only. Then, every occurrence of Futr(φ, v+ kε) in an X-TRIOP
N+

for-

mula φ, with v > 1, will be intended as an abbreviation for the following
formula:

Futr(φ, v+ kε)∧ NowST (36)

Hence, the value of Futr(φ, v+ kε) in non-standard instants does not affect

the value of the formula if v > 1. Similar considerations hold for the Past
operator.

In addition, we introduce a further restriction that allows us to obtain a
quite simple decision procedure for the logic, with a rather limited cost in

expressiveness, as discussed below. The restriction consists of imposing that

the value of formulae is meaningful only in instants that are "covered" by
the history σ. In fact, as shown in Section 4.1.3, an infinite history σ could

exhibit a Zeno behaviour, where there are instants t ∈ T such that, for all i,
σi < t. Then, by convention, we state that formulae that are evaluated after

one such accumulation point are false. This can be achieved by considering

every subformula ψ of an X-TRIOP
N+

formula φ as an abbreviation for:

ψ∧ SomF(Xst(⊤)∨ Xns(⊤)) (37)

84 x-trio : a metric temporal logic for fms

We denote the logic X-TRIOP
N+

with the restrictions described in points 1,

2, 3 and the substitutions (36) and (37), with X-TRIOP-R
N+

, where the letter R

means Restricted.

We have the following result:

Lemma 4.3.2. Given an X-TRIOP-R
N+

formula φ, and given two structures S1 =

〈N+,β1,σ〉, S2 = 〈N+,β2,σ〉 (i.e., which have the same history σ) such that, for
all t ∈ N+ for which there is i ∈ N such that t < σi, it is β1(t) = β2(t), then

S1, 0 |= φ iff S2, 0 |= φ.

Proof. We show a stronger result, from which Lemma 4.3.2 descends as corol-

lary. More precisely, we show that, given any t ∈ N+, S1, t |= φ iff S2, t |= φ.
First of all, we remark that, if for each t ∈ N+ there is a σi such that t < σi,

then for all t ∈ N+ it is β1(t) = β2(t), hence the desired result. In addi-
tion, notice that, in this case, condition SomF(Xst(⊤)∨ Xns(⊤)) is true for all

t ∈ N+, so the value of φ does not depend on it.

In the rest of the proof, we consider the case in which there are instants
t such that, for all i, σi < t. The set of such instants can be shown to have

a minimum, which we indicate with t, such that st(t). Then, history σ accu-
mulates at t, and we separate two cases: t < t and t > t. In the case t > t,

SomF(Xst(⊤)∨ Xns(⊤)) is false, hence for all φ both S1, t 6|= φ and S2, t 6|= φ.

Then, we only need to consider the case t < t. The rest of the proof is by
induction on the structure of φ: consider a subformula ψ of φ.

If ψ = p, by hypothesis β1(t) = β2(t); hence the result. If ψ = Futr(ζ, 1),
then S1, t |= ψ iff S1, t+ 1 |= ζ, hence, by inductive hypothesis, iff S2, t+ 1 |= ζ,

and iff S2, t |= ψ.

The cases ψ = ¬ζ and ψ = ψ1 ∧ψ2 are trivial.
Similarly for Past(ζ, 1), Futr(ζ, ε), and Past(ζ, ε).

If ψ = Until(ψ1,ψ2), S1, t |= ψ iff there is t ′ > t such that S1, t ′ |= ψ2,
and for all t 6 t ′′ < t ′ it is S1, t |= ψ1; by inductive hypothesis this occurs iff

S2, t ′ |= ψ2, and for all t 6 t ′′ < t ′ it is S2, t |= ψ1, i.e., iff S2, t |= ψ. The case

Since(ψ1,ψ2) is similar.
If ψ = Xst(ζ), then S1, t |= ψ iff there is i ∈ N such that st(σi+1), σi < t 6

σi+1 and S1,σi+1 |= ζ; by inductive hypothesis this holds iff S2,σi+1 |= ζ,
hence the result. Similarly for Xns(ζ), Yst(ζ) and Yns(ζ).

As a consequence of Lemma 4.3.2, and also of the next lemma 4.3.3, in order

to determine whether an X-TRIOP-R
N+

formula is satisfiable we only need to

4.3 a decidable fragment of x-trio 85

focus on the sequence σ, disregarding the instants following an accumulation
point, if any.

In order to introduce the PLTLB-based decision procedure for X-TRIOP-R
N+

,

we need a further intermediate result. We show that, in each interval (σi,σi+1)

such that st(σi+1), there is an instant t̄ such that the subformulae of φ have
the same value in all t ∈ [t̄,σi+1). In addition, t̄ is a number of non-standard

instants that is equal to the maximum nesting depth δ of Past(•, ε) operators

far from σi .
More precisely, given a formula φ, the nesting δφ of Past(•, ε) operators

is defined as follows: δp = 0; δψ1∧ψ2 = max(δψ1 , δψ2), and similarly for

the Until and Since operators; δ¬ψ = δψ (similarly for Futr(ψ,±1) and for
Futr(ψ, ε)); finally, δPast(ψ,ε) = 1+ δψ. Then, we have the following result:

Lemma 4.3.3. Given an X-TRIOP-R
N+

formula φ and a structure S = 〈N+,β,σ〉, if

st(σi+1), then for any two instants j, k ∈ N+ such that σi + δφε < j < k < σi+1,

S, j � φ iff S, k � φ.

Proof. First of all, we notice that it must be ns(j) and ns(k), as, by constraint
2, σi > σi+1 − 1. Then, the proof proceeds by induction on the structure of φ.

If φ = p ∈ AP, then p ∈ β(j) iff p ∈ β(k), as β(j) = β(k) by definition of σ,

hence the result.
If φ = ¬ψ, S, j |= φ iff S, j 6|= ψ, which holds iff S, k 6|= ψ by inductive

hypothesis, as δφ = δψ, i.e., iff S, k |= φ. The case for Futr(ψ, ε) is similar.

If φ = ψ1 ∧ ψ2, S, j |= φ iff both S, j |= ψ1 and S, j |= ψ2, which, by
inductive hypothesis, holds iff both S, k |= ψ1 and S, k |= ψ2, as δφ > δψ1
and δφ > δψ2 .

If φ = Futr(ψ, 1), then both S, j 2 φ and S, k 2 φ, as Futr(ψ, 1) is by conven-

tion false in non-standard instants. Similarly when φ = Past(ψ, 1).

If φ = Until(ψ1,ψ2), we have that S, k � φ iff there is a t > k s.t. S, t � ψ2,
and for all k 6 t ′ < t it is S, t ′ � ψ1. By inductive hypothesis, since δφ > δψ1 ,

for all t ′, t ′′ s.t. j 6 t ′′ < k 6 t ′ < σi+1, we have that S, t ′ � ψ1 iff S, t ′′ � ψ1.
Hence, S, t ′ � ψ1 holds for all k 6 t ′ < t iff also for all j 6 t ′′ < t it is

S, t ′′ � ψ1. Then, S, k � φ iff S, j � φ. The case φ = Since(ψ1,ψ2) is similar.

If φ = Xst(ψ), S, j � φ iff S,σi+1 � ψ, as st(σi+1). I have also S, k � φ iff
S,σi+1 � ψ, hence the result.

If φ = Xns(ψ), both S, j 2 φ and S, k 2 φ, as st(σi+1).
If φ = Yst(ψ), both S, j � φ and S, k � φ hold iff st(σi) and S,σi � ψ.

Similarly for the case φ = Yns(ψ).

86 x-trio : a metric temporal logic for fms

If φ = Past(ψ, ε), S, j |= φ iff S, j− ε |= ψ; since j− ε > σi + (δφ − 1)ε and
δφ = δψ + 1, then k− ε > j− ε > σi + δψε hence, by inductive hypothesis,

we have S, k− ε |= ψ, i.e., S, k |= φ.

Notice that Lemma 4.3.3 does not hold if j = σi + δφε. For example, if

j = σ0 = 0, σ1 = 1, and p ∈ β(σ0), with δφ = 0, then Yst(p) holds in
k = σ0 + ε, but not in j.

The basic idea of the encoding is, given an X-TRIOP-R
N+

formula φ, to build

a corresponding PLTLB formula τ(φ) such that each model S = 〈N+,β,σ〉 of

φ corresponds to a trace π that is a model of τ(φ), where each t ∈ N+ such
that there is σi > t is mapped onto an element π(ρS(t)), and β(t) = π(ρS(t)),

where ρS : N+ 7→ N is monotonic. Then, we represent the transition σi 7−→
σi+1 through the PLTLB operator XL. Constraints 2 and 3 guarantee that the
difference between σi+1 and σi = v+ kε is either 1− kε or ε, depending on

whether σi+1 is standard or not.

Figure 15: An example of ρS (with δφ = 1).

The encoding "flattens" the history σ over π: it represents each σi through
an element of π. Then, to separate the elements of π that represent standard

instants from those that represent non-standard ones, we introduce a PLTLB

propositional letter sp such that sp ∈ π(i) iff i in π corresponds to a standard
number. In addition, we need to introduce "filling" elements in π to repre-

sent the (infinite) non-standard instants between σi and σi+1 when st(σi+1).
Lemma 4.3.3 suggests that the required number of these elements is finite,

equal to δφ+ 1; in fact, all non-standard instants such that σi+ δφ < t < σi+1
are equivalent from the point of view of the truth of subformulae, hence they
can be "condensed" in one single element. We mark the first δφ elements of π

following the one corresponding to σi with proposition ep, and the element
corresponding to all instants σi + δφ < t < σi+1 with fp. Figure 15 depicts

an example of history σ, and its corresponding trace π.

4.3 a decidable fragment of x-trio 87

Then, trace π must obey the following PLTLB constraint, where nsp is an
abbreviation for ¬sp ∧¬fp ∧¬ep:

sp ∧

GL((ep → ¬fp ∧¬sp)∧ (fp → ¬sp) ∧

(sp →

XL

(

nspUL

(

∧δφ−1
k=0 XkL(ep)∧

X
δφ
L (fp ∧ XL(sp))

))

∨

XL(GL(nsp))) ∧

(ep ∨ fp →
∧

p∈AP p↔ YL(p)))

(38)

PLTLB formula (38) imposes, respectively, that:

1. sp holds in π(0)

2. ep, fp and sp are mutually exclusive

3. each element marked sp is followed either by an infinity of nsp elements
or by a finite number of nsp elements, until there is a sequence of exactly

δφ ep elements followed, in turn, by a fp element, which is in turn

followed by a sp element

4. if ep or fp ∈ π(i + 1), then all propositions that hold in π(i + 1) also
hold in π(i)

In other words, traces π have one of the following two forms:

sp(ns
∗
p e
δφ
p fp sp)

ω

or

sp(ns
∗
p e

δφ
p fp sp)

∗(nsp)
ω

Transformation τ of Table 4 takes an X-TRIOP-R
N+

formula φ and produces

an equisatisfiable PLTLB formula φL (for simplicity, we translate only the

operator Until[; the translation for operator Until is very similar).

Given a structure S = 〈N+,β,σ〉, for all t ∈ N+ such that there is σi > t,

we define a function ρS : N+ 7→ N as follows(see Figure 15 for a graphical
representation):

1. ρS(0) = 0 (σ0 = 0);

88 x-trio : a metric temporal logic for fms

τ(p) = p

τ(¬φ) = ¬τ(φ)

τ(φ1 ∧φ2) = τ(φ1)∧ τ(φ2)

τ(Xns(φ)) = XL(nsp ∧ τ(φ))

τ(Xst(φ)) = XL((ep ∨ fp)UL (sp ∧ τ(φ)))

τ(Yns(φ)) = YL((ep ∨ fp) SL (nsp ∧ τ(φ)))

τ(Yst(φ)) = YL((ep ∨ fp) SL (sp ∧ τ(φ)))

τ(Futr(φ, 0)) = τ(Past(φ, 0)) = τ(φ)

τ(Futr(φ, ε)) = (¬fp ∧ XL(τ(φ)))∨ (fp ∧ τ(φ))

τ(Past(φ, ε)) = ¬sp ∧ ((¬fp ∧ YL(τ(φ)))∨ (fp ∧ τ(φ)))

τ(Futr(φ, 1)) = sp ∧ XL(¬spUL (sp ∧ τ(φ)))

τ(Past(φ, 1)) = sp ∧ YL(¬sp SL (sp ∧ τ(φ)))

τ(Until[(φ,ψ)) = τ(φ)UL τ(ψ)

τ(Since[(φ,ψ)) = τ(φ) SL (fp ∧ τ(φ)∧ τ(ψ)) ∨ τ(φ) SL (¬fp ∧ τ(ψ))

Table 4: Translation schema τ.

2. if ns(t), and ∃i s.t. t = σi (hence t = σi−1+ ε), then ρS(t) = ρS(σi−1) +

1

3. if ns(t), and ∃i s.t. σi + δφε < t < σi+1 (hence st(σi+1)), then ρS(t) =
ρS(σi) + δφ + 1

4. if t > 0 and st(t) (hence there is i > 0 s.t. t = σi), then ρS(t) =

ρS(σi−1) + δφ + 2

5. if ns(t), and ∃i s.t. σi < t 6 σi + δφε < σi+1, then there is k s.t. t =

σi + kε, and ρS(t) = ρS(σi) + k

Notice that the above rule 3 is applied to all non-standard instants in

between σi + δφε and σi+1, and it maps each of them onto a "filling" ele-
ment in π. As a consequence, the above rule 4 maps a standard instant onto

ρS(σi−1) + δφ + 2, i.e., to the element in π that follows a "filling" one. Then,

if t < t ′, we have ρS(t) 6 ρS(t
′). The following Theorem 4.3.4 holds:

4.3 a decidable fragment of x-trio 89

Theorem 4.3.4. Given an X-TRIOP-R
N+

formula φ, there is a structure S = 〈N+,β,σ〉

such that S, 0 � φ iff there exists a trace π such that π �Lτ(φ)∧ (38).

Proof. Suppose we have a structure S = 〈N+,β,σ〉. The corresponding infinite
word π is built from S as follows (where AP are the atomic propositions in

φ): for each p ∈ AP and t ∈ N+ such that there is σi > t (hence ρS(t)

is defined), p ∈ β(t) iff p ∈ π(ρS(t)). In addition, sp ∈ π(ρS(t)) iff st(t),
fp ∈ π(ρS(t)) iff there i s.t. σi + δφ < t < σi+1 and st(σi+1), and ep ∈ ρS(t)
iff σi < t 6 σi + δφ < σi+1. It can be shown that trace π built in this way
satisfies formula (38).

Dually, if π is such that π �Lτe(φ) ∧ (38), structure S = 〈N+,β,σ〉 is ob-

tained in the following way.
Given an l ∈ N, if ep, fp /∈ π(l) (i.e., l is not a "filling" element), 〈l0 . . . lv〉

(where ∀j ∈ [0, v), we have lj < lj+1) are all the elements of the infinite word
π such that lv 6 l and ∀j ∈ [0, v] : sp ∈ π(lj) (i.e., they are all the elements

that correspond to standard instants in π preceding element l), and k = l− lv
(i.e., k is the number of elements between π(l) and π(lv)), then σl = v+ kε.
This entails that, since σl is a standard number iff it is of the form v+ 0ε, we

have that st(σl) iff sp ∈ π(l). In addition, by (38), sp ∈ π(0), hence σ0 = 0 as
expected. This defines the points of the history σ of S, which in turn defines

ρS.

β is defined as follows: for each t such that there is σi > t, for each p ∈ AP,
p ∈ β(t) iff p ∈ π(ρS(t)). If, instead, there is no σi > t, we can choose the

value of β(t) arbitrarily, as, by Lemma 4.3.2, it does not affect the truth of φ
in S; then, in this case we have p /∈ β(t) for all p ∈ AP.

We prove Theorem 4.3.4 by induction on the structure of formula φ. First

of all, by Lemma 4.3.2, if there is an accumulation point t, instants t > t do
not affect the satisfiability of φ, hence we need only analyse instants t < t.

Then, we show that, for all t < t (where t = +∞ if there is no accumulation

point), it is S, t |= ψ (where ψ is a subformula of φ) iff π, ρS(t)�Lτ(ψ).
If ψ = p, then S, t |= p iff p ∈ β(t), which holds, by construction, iff

p ∈ π(ρS(t)), i.e. iff π, ρS(t)�Lp, and τ(p) = p, hence the result. The cases
ψ = ¬ζ and ψ = ψ1 ∧ψ2 are immediate.

If ψ = Xns(ζ), S, t |= ψ iff σi 6 t < σi+1, ns(σi+1) and S,σi+1 |= ζ;

by inductive hypothesis this holds iff π, ρS(σi+1)�Lτ(ζ), and by construction
sp, fp, ep /∈ π(ρS(σi+1)), hence π, ρS(σi+1) − 1�LXL(τ(ζ)∧nsp), and by con-

struction ρS(t)+ 1 = ρS(σi+1), since it must be t = σi, because σi+1 = σi+ ε.
If ψ = Xst(ζ), S, t |= ψ iff σi 6 t < σi+1, st(σi+1) and S,σi+1 |= ζ;

by inductive hypothesis this holds iff π, ρS(σi+1)�Lτ(ζ), and by construc-

90 x-trio : a metric temporal logic for fms

tion sp ∈ π(ρS(σi+1)), hence π, ρS(σi+1)�Lτ(ζ)∧ sp. It is either σi < t, or
σi = t. If σi < t, fp ∈ π(ρS(t)) or ep ∈ π(ρS(t)) and ρS(σi+1) > ρS(t) + 1.

If σi = t, fp, ep /∈ π(ρS(t)), and ρS(σi+1) = ρS(t) + δφ + 2. In both cases

for all ρS(t) < l < ρS(σi+1) it is fp ∈ π(ρS(t)) or ep ∈ π(ρS(t)), hence
π, ρS(t)�LXL((fp ∨ ep)UL (sp ∧ τ(ζ))), i.e., π, ρS(t)�Lτ(ψ). The cases for the

Yns and Yst operators are similar.
Futr(ψ, 0) (and Past(ψ, 0)) is equivalent to ψ, hence this case is trivial.

If ψ = Futr(ζ, ε), S, t |= ψ iff S, t+ ε |= ζ, which, by inductive hypothesis,

holds iff π, ρS(t + ε)�Lτ(ζ). We have two cases: σi 6 t 6 δφ < σi+1 and
σi + δφ < t < σi+1 (hence st(σi+1)). In the first case, fp /∈ ρS(t), ρS(t+ ε) =
ρS(t) + 1, hence π, ρS(t)�L¬fp∧XL(τ(ζ)). In the second case, fp ∈ ρS(t), and

by Lemma 4.3.3 S, t+ ε |= ζ iff S, t |= ζ, which in turn holds iff π, ρS(t)�Lτ(ζ),
hence π, ρS(t)�Lfp ∧ τ(ζ). All in all, π, ρS(t)�L¬fp ∧ XL(¬sp ∧ τ(ζ)) ∨ fp ∧

τ(ζ), i.e., π, ρS(t)�Lτ(ψ).
The case ψ = Past(ζ, ε) is similar to the previous one, with the addition

that S, t |= ψ only if t− ε ∈ N+ (i.e., ns(t)) which, by inductive hypothesis,

holds iff sp /∈ π(ρS(t)), i.e., π, ρS(t)�L¬sp.
If ψ = Futr(ζ, 1), S, t |= ψ iff st(t), t+ 1 < t, and S, t+ 1 |= ζ. It is st(t) iff

sp ∈ π(ρS(t)). Also, t+ 1 < t holds iff there is σi > t+ 1, i.e., iff ρS(t+ 1)
is defined, and sp ∈ π(ρS(t + 1)). In addition, when ρS(t + 1) is defined,

S, t + 1 |= ζ iff π, ρS(t + 1)�Lτ(ζ), by inductive hypothesis. As ρS(t + 1) >

ρS(t), and there are no standard instants in between, then π, ρS(t)�Lsp ∧

XL(¬spUL (sp ∧ τ(ζ))), i.e., π, ρS(t)�Lτ(ψ).

The case ψ = Past(ζ, 1) is similar.
If ψ = Since[(ψ1,ψ2), then S, t |= ψ iff there is 0 6 t ′ 6 t s.t. S, t ′ |= ψ2

and for all t ′ < t ′′ 6 t it is S, t ′′ |= ψ1. By inductive hypothesis we have

π, ρS(t
′)�Lτ(ψ2). We have two cases: σi 6 t ′ 6 σi + δφ < σi+1 for some

i, or σi + δφ < t ′ < σi+1. In the former case, then for all t ′ < t ′′ 6 t it is

also ρS(t
′) < ρS(t

′′) 6 ρS(t), hence, by inductive hypothesis, for all ρS(t
′) <

ρS(t
′′) 6 ρS(t) it is π, ρS(t

′′)�Lτ(ψ1), hence π, ρS(t)�Lτ(ψ1) SL τ(ψ2). In the

latter case, instead, there are some t ′ < t ′′ < σi+1 hence, by Lemma 4.3.3,

S, t ′ |= ψ1, and also ρS(t
′) = ρS(t

′′) and fp ∈ π(ρS(t
′)). Then, by inductive

hypothesis, we have π, ρS(t
′)�Lτ(ψ2) and for all ρS(t

′) 6 ρS(t
′′) 6 ρS(t) it

is π, ρS(t
′′)�Lτ(ψ1). Then, π, ρS(t)�Lτ(ψ1) SL (fp ∧ τ(ψ1) ∧ τ(ψ2)). Overall,

π, ρS(t)�Lτ(ψ1) SL τ(ψ2)∨ τ(ψ1) SL (fp ∧ τ(ψ1)∧ τ(ψ2)), i.e., π, ρS(t)�Lτ(ψ).

The case for the Until[operator is similar.

Finally, from translation schema τ and Theorem 4.3.4 we can prove the

following Theorem 4.3.5:

4.3 a decidable fragment of x-trio 91

Theorem 4.3.5. The satisfiability problem of X-TRIOP-R
N+

is PSPACE-complete.

Proof. First of all, we remark that the satisfiability problem of PLTLB is PSPACE-

complete [38]. Then, to show the PSPACE-hardness of the satisfiability prob-

lem for X-TRIOP
N+

I reduce the satisfiability problem of PLTLB to that of

X-TRIOP-R
N+

. To achieve this, given a PLTLB formula φL, we can build a corre-

sponding X-TRIOP-R
N+

formula simply by applying the following transforma-

tion: UL 7→ Until[, SL 7→ Since[, XL 7→ Futr(•, 1), YL 7→ Past(•, 1), and by

including the constraint AlwF(¬Xns(⊤)).
To show the PSPACE-completeness, it is enough to note that, given an

X-TRIOP-R
N+

formula φ, transformation τ produces an equisatisfiable PLTLB

formula φL, whose size is polynomial in the size of φ.

As mentioned above, Lemma 4.3.3 does not hold if we relax the condition

on j and allow it to be j = σi + δφ. However, if we allow σi + δφ 6 j <

k < σi+1, the only cases where the proof fails are those for Yns, Yst, and

Futr(•, 1) (when st(σi) and δφ = 0). This suggests that, if φ does not include
instances of operator Past(•, ε) (in which case δφ = 0, and, by constraint (38),

no elements marked with ep appear in π), nor instances of the Yns and Yst

operators, the encoding can be simplified. In fact, in this case we can use the
following modified encoding τf (we only show the cases that differ from τ):

τf(Xns(φ)) = XL(τf(φ)∧¬sp)

τf(Xst(φ)) = XL(sp ∧ τf(φ))∨ (fp ∧ XL(τf(φ)))

τf(Futr(φ, ε)) = XL(¬sp ∧ τf(φ))∨ (XL(sp)∧ τf(φ))

τf(Since[(φ,ψ)) = τf(φ) SL (XL(¬sp)∧ τf(ψ)) ∨

τf(φ) SL (XL(sp)∧ τf(φ)∧ τf(ψ))

Also, constraint (38) is replaced by the following formula (4.3.1):

sp ∧ GL

(

(sp → XL(fp ∨¬sp))∧ (fp → (YL(sp)∧

¬sp ∧ XL(sp))) ∧ (fp →
∧

p∈AP p↔ YL(p))

)

As it happens with other logic formalisms, past operators allow users to

obtain more succinct and intuitive formulae, paying a little price in terms of

computational complexity.
Different optimizations of the encoding are possible, depending on the

shape of the X-TRIOP-R
N+

formulae to be analysed, but are not reported here

for brevity.

92 x-trio : a metric temporal logic for fms

4.4 x-trio encoding of the case study

In this section, we encode the semantics of Stateflow using X-TRIOP-R
N+

formu-

lae. We first focus on single Stateflow diagrams, then deal with the issue of

composing diagrams in a hierarchy. The formulae are a modification of the
formulae presented in section 3.3, so only the main differences between the

two encoding are described. To simplify the formalization of the Stateflow se-
mantics, restrict the distance between two consecutive non-standard instants

has been restricted to be ǫ, so each micro-step has a predefined infinitesimal

fixed length. In principle, it would be possible to define different infinitesimal
lengths for each basic component, but this is outside of the scope of this the-

sis. Then, operator Xns is related to the metric operator Dist(φ, ǫ), as formula

AlwF(Xns(φ)→ Dist(φ, ǫ)) holds.
Given a Stateflow diagram representing the behaviour of a module m, for

each transition Hm,i : sm,i
gm,i/am,i
−→ s ′m,i with source state sm,i and target

state s ′m,i with condition gm,i and action am,i, we introduce the following
formula:

AlwF
(

(γm,i ∧ sm = sm,i)→ ((Xns

(

sm = s ′m,i

)

)∧ αm,i)
)

(39)

Formula (39) formalizes the execution of a micro-step: it asserts that if the

current state of module m is sm,i and the transition condition γm,i holds,
then in the next micro-step the active state is s ′m,i and the transition actions

αm,i is executed. Since we want to encode a zero-time transition with an

infinitesimal one, in this formula it is sufficient to replace the operator © of
the formula (2) with the operator Xns.

The formula (3) remains unchanged in the new encoding, since it does not
involve temporal operators:

AlwF
(

(
∧|Hm|

i=1 ¬(γi ∧ si = sm,i))→ NOCHANGE
)

(40)

The "real" time advancement of the semantics is modelled through operator

Xst instead of an explicit predicate tick. We restrict the distance between two
consecutive standard instants (i.e. macro-steps) in a run to be exactly 1.

The following formula expresses a necessary condition for time advance-

ment and substitutes the formula (4):

4.4 x-trio encoding of the case study 93

AlwF



Xst(⊤)→ (

|Hm|
∧

i=1

¬(γm,i ∧ sm = sm,i))



 . (41)

Formula (41) asserts that the next instant of time is a standard one if the

system is in a stable configuration.

Finally, we introduce a formula asserting that input variables VI,m of mod-
ule m change values only at the beginning of a macro-step, i.e. in a standard

instant of time. In other words, if the next instant of time is non-standard, then
the values of the input variables must be the same as those in the current in-

stant. This formula replaces the formula (5), which models the fact that the

system is sensible to external events only when it is in a stable configuration:

AlwF
(

Xns(⊤)→ (
∧

v∈VI,m,x∈DI
((v = x)→ Xns(v = x)))

)

(42)

The formula MODm encoding the behaviour of a single component m

is given by the conjunction of formulae
∧|Hm|

i=1 (39)i , (40-42), plus others not

shown for brevity.
To encode the semantics of module composition, we use a modular ap-

proach to hide the details of time advancement of modules to other com-

ponents, exploiting the local semantics encoded by the above formulae. The
method is the same described in section 3.3.2, and uses a special integra-

tor module M. Again, we introduce two X-TRIOP-R
N+

predicates (and related

X-TRIOP-R
N+

formulae) that act as the interface of the module for the purpose

of coordinating time advancement.
The first predicate, stablem is true when a generic component module m

reaches a stable configuration, and is equivalent to the predicate with the

same name given in the TRIO encoding. This is formalized by the following
formula, which replaces the formula (6):

AlwF
(

(
∧|Hm|

i=1 ¬(γi ∧ sm = sm,i))↔ stablem

)

(43)

The second predicate, extSTm, is used to coordinate different modules; it is

equivalent to the predicate tickext
m used in the TRIO encoding.

At the level of modulem, time advancement obeys the following constraint:

AlwF(Xst(⊤)↔ (stablem ∧ extSTm)) (44)

This formula does not substitute the formula (41), but this is a further condi-

tion to enforce the modulem to reach a stable configuration when the extSTm

94 x-trio : a metric temporal logic for fms

predicate is set to true by M, i.e. when the overall system is in a global stable
configuration.

Module M has its own predicates stablem and extSTm. Furthermore, we

have the following constraints, in addition to (43) and (44):

AlwF

(

stablem ↔ (

nM
∧

i=1

stablemi)

)

(45)

AlwF

(

nM
∧

i=1

(extSTM ↔ extSTmi)

)

(46)

Formula (45) states that module M is stable only when all its components

are stable, while (46) defines that the value of extSTM is passed on from
M to its components; nM is the number of components which compose the

module M. These formulae encode the same behaviour of the formulae (8)
and (9), respectively.

Finally, we formalize the relations between inputs and outputs of compo-

nents of a Simulink graph such as those of Figure 11.
A link between an output variable of a componentm1 and an input variable

of a component m2 means that the corresponding data or event produced by
m1 is communicated and received by m2. This corresponds to synchronizing

the value of the input variable ofm2, to the value of the output variable ofm1
at the beginning of each macro-step, i.e., when the instant of time is standard.

This is captured by the following constraint, which uses predicate NowST

introduced in Section 4.1.3:

AlwF
(

NowST→ (vm1 ,out = vm2,in)
)

(47)

where vm1 ,out is an output variable of component m1 linked to the vm2 ,in

input variable of the component m2.

4.4.1 Variations to the composition semantics

As mentioned in section 2.1.2, many semantics exist for Statechart and its
variants such as Stateflow. The X-TRIOP-R

N+
-based approach pursued in this

thesis gives us great flexibility in adapting the formal semantics depending

on the cases. In fact, changing semantics is as simple as changing X-TRIOP-R
N+

formulae.

4.4 x-trio encoding of the case study 95

For example, in some semantics input and output variables are synchro-
nized not only at the end of a macro-step, but also during it [18]. To allow

for this behaviour one would have to change constraint 43 with the follow-

ing one (also, constraint 42 would have to be modified, but this is not shown
here for brevity), which prescribes that connected input and output variables

have the same values, unless one of the two components has reached a stable
configuration:

AlwF
(

¬stablem1 ∧¬stablem2 → (vm1 ,out = vm2 ,in)
)

(48)

where vm1 ,out is an output variable of component m1 linked to the vm2 ,in

input variable of the component m2.
Another possible variation could consist of imposing that there must be a

maximum number K of micro-steps in a macro-step. This would reduce to

forcing condition stablem∧ extSTm (which, for formula (44), entails passing
to a new macro-step) to occur within Kǫ instants from a standard one, which

is simply formalized by the following formula (where WithinF(φ,Kǫ) is an
abbreviation for φ∨ Dist(φ, ǫ)∨ . . .∨ Dist(φ,Kǫ)):

AlwF(NowST→WithinF(stablem ∧ extSTm,Kǫ)) (49)

In a similar vein, another possible semantic variation might impose that a
macro-step cannot last more than K micro-steps, even if the system has not

yet reached a stable configuration. This semantics could be formalized, for
example, by introducing an additional predicate, say adv_unstablem which

holds exactly at distance Kǫ from a standard instant t if at t+Kǫ the module

is still not stable. Then, formula (44) should be modified as follows (formu-
lae (39)-(41) would also have to be modified, but this is not shown here for

brevity):

AlwF(Xst(⊤)↔ (stablem ∨ adv_unstablem)∧ extSTm) (50)

5R E L AT E D W O R K S

As mentioned in the introduction, the work of this thesis comes from a collab-
oration between a group of automatic control engineers of ITIA and a group

of informatics engineers of the DEIB of the Politecnico di Milano. The main
objective of the work is to give a solution to the problem of specifying a de-

velopment process for the control software of FMSs, using an MDE (Model-

Driven engineering) approach. A commonly structured MDE methodology
consists of several steps (or phases) which are briefly reminded hereafter and

described in the introduction:

• Control system specification

• Control system architecture and functional design

• Software implementation

• Verification and Validation (V&V)

In the literature of the last decades, different frameworks based on the MDE

approach have been developed. In the next section 5.1, some works which
are similar to this one are analysed; the common ingredient is the use of

formal methods to perform the V&V phase, but with differences with regard

to the modelling language, the tools or the way formal methods are used, for
example to obtain a set of tests to be performed successively.

A second group of works, that are shown in section 5.2, are related to the
evolution of the work. They try to solve the problematic of time modelling

of reactive systems that we solved introducing the X-TRIO metric temporal

logic, using different approaches. For example, some works use an approach
based on NSA to solve the problem of micro- macro steps and zero-time

transitions, but do not address issues of decidability or verification; other

works use the concept of super-dense time to model time in discrete-events
and hybrid systems, but in a less intuitive and elegant way.

The different approaches to give a rigorous semantics to Statechart, and the
various types of semantics, have already been described in the chapter 2.

97

98 related works

5.1 md approaches for the development process of fms

Verification is the process of checking the robustness and reliability of the

designed control solution by proving its compliance with a given specifica-
tion [39]. During the last few years, many research efforts focused on explor-

ing and developing new methodologies supporting the verification process
through formal approaches. Different types of formal models, as well as logics

for the definition of the properties to be proved for the model have been inves-

tigated. The quantity of different solutions in literature is very high, mainly
due to the fact that in the international community there is not a general con-

sensus on which is the better formal or semi-formal language or standard to

be used to model behaviour of FMS, or the best formal tools to check proper-
ties or the way to use it, so in this section have been selected only a part of

the existed works, each of which is a good representative for its category of
solutions.

The works in [39–43] define the model of the control system in terms of

timed Signal Interpreted Petri Net (tSIPN) or timed Net Condition/Event
Systems (NCES) [44], which are extensions of the classic Petri Nets. Respect

to Stateflow, which is a graphical semi-formal modelling language, NCES and
tSIPN have a rigorous semantics. NCES and tSIPN have a similar syntax and

semantics, so only one of them has been explained here.

A timed NCES is a discrete state place-transition net formally described by
the tuple:

NCES = {P, T , F,M0,CN,EN,C,E,BC,BE,CS,Dt}

where the tuple PN = {P, T , F,M0} is a classic Petri Net, and:

• CN is the set of condition arcs CN ⊆ PxT

• EN is the set of event arcs EN ⊆ TxT

• C is the set of conditions, further subdivided into Cin and Cout, the set
respectively of input and output conditions

• E is the set of events, further subdivided into Ein and Eout, the set

respectively of input and output events

• BC is the set of NCES module condition input arcs BC ⊆ C
inxT

• BE is the set of NCES module event input arcs BE ⊆ E
inxT

5.1 md approaches for the development process of fms 99

• CS is the set of NCES module condition output arcs CS ⊆ PxC
out

• Dt is the set of NCES module event output arcs CS ⊆ TxE
out

So, respect to a classic PN, a NCES module is equipped with inputs and

outputs which are of two types:

• Condition inputs/outputs carrying state information

• Event inputs/outputs carrying state transition information

The semantics of a NCES is of type run-to-completion, defined by the firing

rules of the transitions. In addition to the fire rules of a classic PN, a transition

is enabled by a condition signals if all source places of the condition signals
are marked by at least one token (similar for event signals); if enabled, a

transition is forced to fire and is executed in zero time.
NCES and tSIPN benefit also of the property of composition, so basic and

composite modules exist. A composite module consists of a network of mod-

ules interconnected via event and condition arcs, in a similar way to the
Simulink/Stateflow framework presented in this thesis.

The time in NCES is indicated by the permeability intervals attached to the
incoming flow arcs of transitions. To every pre-arc of a transition, an interval

[eft, lft] is attached with 0 6 eft 6 w (w is fixed). The interpretation is as

follows: every place p bears a clock which is running if and only if the place
is marked and switched off otherwise. All running clocks run at the same

speed measuring the time the token status of its place has not been changed
e.g. the clock on a marked place p shows the age of the youngest token on

p. If a firing transition t is able to remove a token from the place p or adds a

token to p then the clock of p is turned back to 0. In addition, a transition t is
able to fire only if for any pre-place p of t the clock at place p shows a time

u(p) such that eft(p, t) 6 u(p) 6 lft(p, t). Hence, the firing of transitions is

restricted by the clock positions. Timed NCES is a powerful formalism, which
expressiveness is enough to model discrete-events reactive systems.

In [40], an tSIPN sample model of a machining line with three working sta-
tions is verified using a symbolic model checker, Cadence SMV, and is then

translated into the IEC 61131-SFC language [10], and is verified again using

the same model checker. The translation from the tSIPN model to the lin-
ear temporal logic, which is used as input language of the model checker, is

given by hand, in a similar way of the work of this thesis. In [39] an IEC 61499

sample model of a simple plant is analysed through the SESA model checker,

100 related works

using a tool developed by the authors called VEDA. System properties to
be checked are defined in Computation Tree Logic (CTL), a branching-time

temporal logic incomparable with LTL. The semantics of CTL formulae is de-

fined with respect to a reachability graph of the NCES model, whose states
and paths are used in the satisfaction relation �. In [43] authors use two ex-

tensions of CTL, ECTL (Extended CTL) and TCTL (Timed CTL), as input
languages for the model checker SESA. In particular, TCTL essentially con-

sists in attaching a time bound to the modalities of CTL. Details about how to

translate an IEC 61499 model to an NCES model is given in another previous
work of the same authors, [45], fixed a semantics of IEC 61499. Instead, [42]

is a successive work of the same authors where they give a translation of IEC

61499 data types and algorithms in NCES, leaving as future works a more
precise translation of an entire IEC 61499 application in NCES.

The works in [8] and [46] are examples of the use of Stateflows and State-
charts as a modeling language for FMS. A lot of other works related to the

formal verification of Statecharts using model checking can be found in [47],

which is a useful survey paper. In [8], a real model of the logic controller of a
lasts warehouse deployed in the shoe manufacturing plant in Vigevano man-

aged by ITIA has been developed in Simulink/Stateflow language exploiting
modularization. The particularity of this work is that it uses formal methods

to automatically generate test cases to reach the coverage of a Stateflow dia-

gram. The properties to be proved are taken from the Model Coverage prop-
erties proposed by the DO-178B standard, which is the primary mean used by

aviation software developers to obtain U.S. Federal Aviation Administration
approval of airborne computer software. This standard has been proposed

by the aerospace sector as a property set for verification of critical-safety so-

lution, due to the lack in industry of commonly accepted quality indicators.
There are three Model Coverage objectives:

• Decision Coverage, analyses decision points and determines whether all

states of the Stateflow diagram can be reached at least once, then gener-
ates one reachability objective for each state.

• Condition Coverage, analyses the transitions of the Stateflow diagram and

determines whether all conditions of each transition becomes true and
false at least once, then it generates two objectives for each transition

condition.

• Modified Condition Decision Coverage, analyses the transitions of the State-

flow diagram and determines to extent to which the test case checks the

5.1 md approaches for the development process of fms 101

independence of the transition conditions. Then, for each condition on
the transition, determines if there is at least once that a change in the

condition triggers the transition, then generates two objectives for each

transition condition.

Simulink Design Verifier (SDV), that is a bounded model checker integrated

in Matlab, has been considered by the authors to perform model automatic
analysis. SDV is capable to generate test cases that achieve Model Coverage

objectives. The generated test cases are automatically executed on the model

by means of the integrated Simulink Verification and Validation tool, which,
at the end of each execution, provides a report exposing achieved model cover-

age percentages. Authors applied the Model Coverage approach to the model

of the lasts warehouse, showing the obtaining results.
[46] is a bit more theoretical paper about model checking of Statechart di-

agrams. Authors want to perform model checking given arbitrary properties
defined in CTL over a computation tree of the model, the tree of all possible se-

quences of Statechart configurations. To do so, they give the definition of what

is a generic step semantics for Statechart, and define what is a step, in a similar
way of this thesis, overcoming the problem of all the existing different step

semantics described in section 2.1.2. They claim, without demonstration, that
the formulation of CTL properties on a computation tree is straightforward.

To exploit existing model checkers, they show how to construct a Marked

Kripke Structure whose computation tree is equivalent to the computation
tree of the initial Statechart model and formally demonstrate it. Finally, they

define an expansion operator to expand the Statechart CTL specifications so
they can be used as equivalent specifications for the Marked Kripke Structure

obtained through the translation; an example to validate the approach and

the results is given, using the STATEMATE step semantics of Statechart.
The work [48] is an example of the use of UML 2.0 as modelling language.

A brief introduction to functionality based controllers (FBC), which are logic
controllers that can change their functionalities, is given. The various function-

alities are modelled using IEC 61499 Function Blocks. Then, for modelling the

behaviour of the FBs, Activity Diagrams of UML are investigated, which are
based on the semantics of classic PNs. Authors used the Borland Together

Control Center 6.2 tool to model Activity Diagrams for FBCs.

In this section, several formal methodologies for the verification of automa-
tion solutions, existed in literature, have been described, with differences re-

gard to the types of model-checking tools exploited and the formalisms used
to describe the control algorithm. Each methodology has its specific benefits

102 related works

and limitations, but none of the approaches mentioned above is commonly
adopted in the current development practice. In particular, the works come

from the automatic and control engineering field, where the focus is on the

approaches and methodologies supporting the verification process of FMS
through formal methods, without going in-depth in the more theoretical part

of the problems, for example how to model time in real-time and reactive sys-
tems. This thesis has a more general approach for the modelling of reactive

systems, since it presents a new metric temporal logic to deal with zero-time

transitions and step semantics; this logic is a "glue" between a front-end part,
the modelling language (Simulink/Stateflow, but also other languages with a

similar semantics can be modelled in X-TRIOP-R
N+

, such as tSPIN, NCES or the

Activity Diagrams of UML 2.0) and a back-end part, the model checker tool

who takes X-TRIOP-R
N+

as input language.

5.2 formal specifications for reactive systems

In the last decades, a lot of efforts have been spent in the development of
formal specification methods for real-time and reactive systems. In this the-

sis, in the evolution of the original work, we introduced a metric temporal

logic which deals with the time modelization problems of this type of sys-
tems, in particular about the notions of zero-time transitions and micro- and

macro-steps. These notions appear very naturally when reasoning about com-
putations of embedded systems too, so they arise in real-time temporal log-

ics (metric and not metric). Since the very early developments in this field,

approaches were introduced that admit zero-time transitions at the price of
associating multiple states to single time instants, as in [49]. The approach of

this thesis is akin to that of [27], which defines, for the first time, a first-order
temporal logic to support the definition of quantitative real-time properties,

the Metric Temporal Logic (MTL), which extends the classic temporal logic.

It introduces a distance function d : TxT → D over the pointwise T temporal
domain of classic temporal logic, to measure time. D is the range (or metric)

domain of d; the author says that there are no reasons to use reals as range

domain, but that a structure with addition and a zero element is enough and
gives the minimum restrictions. After it, he defines a metric point structure,

which is a two-sorted structure M = {T ,D,<,d,+, 0} where:

• < is a total order relation over T , <⊆ TxT

• d is surjective

5.2 formal specifications for reactive systems 103

• (D,+, 0) is an algebraic structure where + : DxD → D and 0 ∈ D are
respectively the usual addition operation and the zero element of D.

Furthermore, he introduces a particular metric point structure, which sup-

port the notion of micro- and macro-steps and is the first and more general
example of the so called super-dense time approach, which is an alternative

approach to model time in systems with the presence of zero-time transitions.

This particular metric point structure is defined in the following way, given
T = NxN and D = {0}xN∪N+xZ :

• (n,n ′) ≺ (m,m ′) iff (n < m or (n = m and n ′ < m ′)) is the lexico-

graphic order between couple of natural numbers

•

d((n,n ′), (m,m ′)) =






(0, |n ′ −m ′|) if n = m

(m−n,m ′ −n ′) if n < m
(n−m,n ′ −m ′) if n > m

is the distance function over couple of natural numbers

• (n,m) + (n ′,m ′) = (n+n ′,m+m ′) is the addition operation over cou-

ple of natural numbers

• the element 0 corresponds to the couple (0, 0)

Informally, the idea is that a change in the first component of the couple

corresponds to the evolution of the real time, in the same way as a change
in the standard part of non-standard numbers in this thesis; keeping fixed

the first component, a change in the second component corresponds to the

evolution of the logic time and represents a micro-step, in the same way as
a change in the infinitesimal part of non-standard numbers. In the rest of

the paper, it defines a group of basic metric operators and demonstrates that
it is possible to derive the classical qualitative operators of temporal logic

quantifying existentially, over time, the basic metric operators. Finally, it gives

equivalences between the basic metric operators, a proof system and several
examples to show how to express real-time properties in MTL. A lack of the

work is that it does not address issues of decidability and verification.
A group of works which are based on the super-dense time approach are

[50–52]. They are only a little part of works which exploit this approach, but

the more representatives.
The work [50], the oldest, proposes a framework for the formal specifi-

cation of timed and hybrid systems. In the first part of the paper, authors

104 related works

define a semantics for timed transition systems, which are adapted to model
discrete-events and reactive systems. Given a time domain T , for example the

totally ordered set of real numbers R, a timed transition system is a transition

systems with an interval [l,u] associated to each transition, with u > l and
u, l ∈ T , which are respectively the minimal and maximal delay of the tran-

sition. The timed transition system has a run-to-completion semantics, with an
explicit clock. Transitions take zero-time to be performed, so it is possible to

have different value for a variable at the same instant of time: this is a great

difference with my approach, where the evaluation of the variables and the
current state, that the authors called a situation, is a function of time, which is

a more natural and intuitive way to model it. After the introduction of timed

transition systems, they present Timed Statechart, an extension of the normal
Statechart notation, by annotating each transition with an interval [l,u], denot-

ing the lower and upper time bound of that transition. A particularity of the
semantics of this system is that an event persists until time progresses, with-

out consume it, and disappear when time advances again, which is similar

to the STATEMATE semantics of Statechart. To specify properties for timed
transition systems they use two different styles of specification, one is based

on MTL, the other one on a age-based approach with explicit clocks over the
operators of a classic temporal logic; in the age-based approach, an age func-

tion is introduced that, for each formula φ, measures the length of the largest

time interval ending in the current position, on which the formula φ holds
continuously. Then, a proof system is given for timed transition systems.

In the second part of the paper, authors define a semantics for hybrid sys-
tems. Informally speaking, an hybrid system is a real-time heterogeneous sys-

tem that include continuous-time subsystems interacting with discrete events,

such as a digital controller that controls a continuous environment. The time
model is an extension of the super-dense time structure, where the time do-

main is the set of non-negative real numbers instead of the set of natural
numbers. A time structure can be viewed as consisting of alternations of dis-

crete and continuous phases. A discrete phase is a sequence of instants of the

time structure where only the second component increases; it corresponds
to a zero-time transition of the system. Instead, a continuous phase is a se-

quence of instants of the time structure where only the first component, the
real time, increases: the evolution of variables during a continuous phase is

given by the definition of a continuous function in the interval of real num-

bers [ti, ti+1], which are respectively the initial instant and the final instant
of the continuous phase. The semantics is of type run-to-completion. To model

hybrid systems, authors define a generalization of a timed transition system,

5.2 formal specifications for reactive systems 105

called phase transition system. The main difference is that a phase transition
system adds a finite set of activities to the original formalism, where each ac-

tivity is associated with a conditional differential equation which constraints

the value of a continuous variable of the system. Transitions start activities by
enabling their activation conditions, and viceversa activities start transitions:

this mechanism models the activation of discrete and continuous phases. To
specify properties, they use again the two different styles of specifications

developed for timed transition systems.

The other two works [51, 52] are related to the specification of a semantics
for hybrid systems of the Ptolemy project [53]. In the first work, authors de-

fine an operational run-to-completion semantics for these systems, with, as in

[50], an alternation of continuous and discrete phases. The paper presents a
simulation tool, HiVisual, used to develop an example of such type of systems.

Authors represent continuous evolving and discrete signals with a continuous
function on, respectively, a continuous or discrete domain represented by an

extension of the super-dense time structure that they called the tag set; each

element of this time structure is a possible tag for the signal. The evolution
of the system is represented with a set of ODE (Ordinary Differential Equa-

tions), which is the usual mathematical way to describe the trajectory of a
continuous signal. The work is complicated by the issue of smoothness, Lips-

chitzness, existence and uniqueness of solutions, which are not addressed by

this thesis since they are typical of hybrid systems.
In the second work [52], the same authors give a semantics to discrete-event

models, which generalizes the semantics of a synchronous/reactive system;
the continuous-time semantics of hybrid systems is presented as a generaliza-

tion of the discrete-event one. The work shows that all three semantic models

can be used in actor-oriented composition languages, which can be concretely
represented in several ways. An actor-oriented design is a component method-

ology very close to the component methodology presented in this thesis and
the one of the IEC 61499 Function Block Network, where a series of atomic

actors with a well-defined interface could be composed to form a composite

actor. The interface includes ports and parameters, where the latters are used
to configure the operations of an actor. Ports are connected by explicit com-

munication channels: a difference with Simulink/Stateflow is that actors can-
not communicate directly but only through the channels connected to their

output ports. The composition of arbitrary models of computation is made

tractable by an abstract semantics, which abstracts how communication and
flow of control work. The abstract semantics is not the union of interesting

semantics, but rather the intersection. It is abstract in the sense that it rep-

106 related works

resents the common features of models of computation as opposed to their
collection of features. In this semantics, actors execute in three phases:

1. a setup phase

2. a sequence of iterations

3. a wrap-up phase

An iteration is a sequence of operations that read input data from a port,

produce output data to a port, and update the internal state of an actor: these
operations are described in detailed in the paper and represented with ab-

stract functions.

Authors start defining the semantics of synchronous/reactive (SR) models.
The execution of an SR model follows ticks of a global clock, in a synchronized

way. At each tick, every variable may have a value, that is calculated by a
function. To give a semantics to SR systems, the authors specialize the tagged

signal model introduced in [51]. They define a signal to be the entire history

of a communication between an output port and an input port. Given the set
of natural numbers as tag set, with the usual numerical order, then a signal

s is a partial function s : T ⇀ V defined on an initial segment of T , which is

the time domain; V is the domain of the range values of the signal. After it,
they define the semantics for discrete-events (DE) and continuous-time (CT)

models as an extension of the semantics of SR models. Both of them use the
tagged signal model, with the difference that in CT models, some signals,

between two discrete phases, have continuous evolving values governed by

a set of ODE. Both extensions use the set of non-negative reals as the first
component of the time structure. Given the different time models, all the

three semantics are of type run-to-completion. A limitation of these works is
that the Zeno behaviours must be detected in advance and avoided, since all

the execution traces must progress a priori, instead in this thesis it is possible

to specify a X-TRIOP-R
N+

formula to detect and analyse the presence of various

type of Zeno behaviours.
Other works [54, 55, 12] have tried to deal with the problem of giving a

formal and rigorous semantics to semi-formal languages based on the micro-
macro step abstraction, using non-standard analysis (NSA). In [54] they use

a NSA semantics approach to solve a set of ODE describing an hybrid sys-

tem modelled in Simulink, in presence of cascaded mode changes produced
by the "zero-crossing" problem. In particular, authors define a denotational, a

constructive and a Kahn Process Network semantics for hybrid systems for a

5.2 formal specifications for reactive systems 107

minimalist language called SimpleHybrid. They define a principle, called stan-
dardization principle, which characterize the class of hybrid systems which can

only be given a standard semantics, for any choice of the time base (which cor-

responds to the constant ǫ, introduced in the chapter 4) of the non-standard
semantics. Despite the similarities between their approach and the one of this

thesis, the latter is more general, since it is possible to view it as a "schema"
to extend existed metric temporal logics to use a NSA based framework.

In [55], authors define a complete system theory, discussing in detail the

notion of "system" and investigating its computability issues. They use a for-
malization close to that of Turing machines to define the concept of "system",

starting by the formal definition of a time scale, which is an increasing suc-

cession of non-standard positive numbers where, for each instant, exists a
predecessor and a successor which belongs to the time scale itself. Then, they

define dataflows, which are mapping functions from a time scale T to symbols
of an alphabet A, and the concept of snapshot of a dataflow, which is, given

an instant t, the set of symbols produced by the dataflow at an instant t ′ such

that t ′ = min{u ∈ T |t 6 u}. Later in the paper, they define the concept of
transfer function, which can be seen as a real-time dataflow transformer satis-

fying a so called causality condition. In the non-standard framework, it is the
classic strong causality condition, since the concept of working in zero time

is not defined. Transfer functions can be "composed" through interfaces, in

such a way that a "system" can be the result of the composition of two or
more "subsystems". Finally, they define a "system" as a particular extension

of a Turing machine, adding an input/output mechanism that consists of:

• an input channel x capable of receiving, only on instants of a given
input time scale, elements that belong to a given input alphabet, called

the input domain of the system

• an output channel y capable of emitting, only on instants of a given out-

put time scale, elements that belong to a given output alphabet, called
the output domain of the system

The memory tape is indexed by the set of non-standard natural numbers

and the control mechanism updates the internal state at instants that belong
to an internal time scale, that could be also a non-standard set. The authors

observe that it is possible to associate to each system a transfer function which

is the mapping that associates to any input flow, the output flow generated by
the system. Conversely, they define the class of implementable transfer function,

which is the class of functions that can be associated to a system. The work

108 related works

ends with the definition of a computable function, which is a function on real
numbers that can be approximated by an implementable transfer function,

given a suitable encoding of non-standard numbers: in this way, the authors

demonstrate formally that a large class of real physical systems (such as dy-
namical and Hamiltonian systems, hybrid systems and so on) can be defined

using their formalism. This work is more general than the one in this the-
sis, since it tries to define a formalism to describe a large class of real-time

systems, but it addresses the problematic only on a theoretical viewpoint.

In [12], authors deal with the problem of zero-time transitions giving an
NSA semantics to timed Petri Nets (TPN). They use the TRIO temporal logic

to obtain an axiom system to describe the non-standard semantics in a way

similar to the one in this thesis. A timed Petri Nets is very close to a tSIPN,
without events and condition arcs and the input/output mechanism. In par-

ticular, every transition is labelled by a pair [l,u], with u > l > 0 and u, l ∈ T ,
where T is the standard time domain and u and l are respectively the minimal

and maximal delay of the transition. To implement the non-standard seman-

tics, they change the fire rules of a transition, permitting to augment the lower
and the upper-bound of each transition by an infinitesimal positive constant

amount. They introduce a first axiom which asserts that, given a transition
v and its lower-bound l, if the transition fire at a certain instant of time t,

than it consumes a token which has been produced strictly more than l time

units before t: in this way, if l = 0, the axiom excludes a zero-time transition
and constraints the transition to fire in an infinitesimal positive time. Another

axiom asserts that, given a transition v and its upper-bound u, exists an in-
finitesimal number ǫ such that each previous transition, which belongs to the

set of transitions producing the token which enables the transition v, fires at

a distance d in the past, with d 6 u+ ǫ. Adding axioms stating the token
uniqueness, authors obtain that:

• there are no firings occurring exactly in null time

• no transitions can fire exactly at the same instant, but at least at two

instants whose distance is infinitesimal

This work is less general than the one in this thesis and is similar to the first
part, where TRIO has been used to develop a set of axioms modelling a par-

ticular semantics of reactive systems. Instead, in this thesis we realize a new

metric temporal logic, X-TRIO, which intrinsically exploits a non-standard
time model to deal with the problem of the modelling of micro- macro-step

systems with zero-time transitions.

5.2 formal specifications for reactive systems 109

Finally, the proposal in [56] provides notations for modelling micro-steps
in the framework of Duration Calculus, which, unlike TRIO, is a logic based

on intervals: it defines a decidable fragment of the notation but does not

give algorithms or builds tools supporting verification. Other works are only
partially connected to this thesis, since they deal with issues concerning the

modelling and development of embedded systems at various time scales: [57]
and [31] deal with issues of sampling and digitization, [58] and [59] discuss

issues related with time granularity, and [60] provides a refinement method

based on assume-guarantee induction over different time scales.

6T O O L S

In this chapter are described the tools that have been used in this thesis to
model and perform the formal verification of the robotic cell case study. In

the section 6.1 is described Zot, a bound model checker developed internally
at the Politecnico di Milano, written in the Common Lisp programming lan-

guage. It has been used to perform the verification of an axiomatic X-TRIOP-R
N+

model of the robotic cell. This model has been developed using the Sf2Trio

tool, a plugin for Zot described in section 6.2, which allows the manual trans-
lation of a Stateflow/Simulink graphical model into a logic model in a simple

and straightforward way, without writing the necessary X-TRIOP-R
N+

formu-

lae directly. Another tool, a plugin for Zot, called X-TRIO, has been devel-

oped during the work for this thesis, to implement the decidable fragment of
X-TRIOP-R

N+
. It is described briefly in section 6.1.

6.1 zot verification tool

Zot [23] is a Bounded Model/Satisfiability checker that takes as input specifi-

cations written in a variety of temporal logics, and determines whether they

are satisfiable or not. Through this basic mechanism, it can perform verifica-
tion of user-defined properties for the desired models.

Let us call S the temporal logic-based model of the system being designed.
If S is fed to the Zot tool "as is", Zot will look for an execution trace of the

modelled system; if it does not find one (i.e., if the model is unsatisfiable),

then the model is contradictory, hence it contains some flaw that make it
unrealizable in practice. Now, suppose we introduce a further temporal logic

formula, P, which formalizes a user-defined property to be checked for the

system. We can ask Zot to check whether the formula S∧ ¬P is satisfiable
or not. If S∧¬P is unsatisfiable, this means that there is no execution trace

that satisfies the system (i.e., S), that also satisfies ¬P, that is, that violates
the property P. If no system trace violates property P, then the latter actually

holds for the system. If, on the other hand, S∧¬P is satisfiable, this means

that there is at least one system trace that satisfies both S and ¬P; that is,
there is at least one execution trace of the system that violates the property,

111

112 tools

so the property does not hold for the system. If Zot determines that S∧¬P

is satisfiable, then the tool produces an execution trace that satisfies it, i.e.

a counterexample trace that is compatible with the system model but that

violates the property.
Zot performs the checks outlined previously by encoding temporal logic

formulae into the input language of various solvers. In particular, Zot sup-
ports two kinds of solvers: SAT solvers and SMT solvers. SAT solvers are

capable of taking, as input, formulae written in propositional logic and deter-

mine whether they are satisfiable or not. SMT solvers do the same, but they
accept, as input, formulae written in logics (fragments of First-Order Logic)

that are richer than the simple propositional logic. Over the last few years,

both SAT solvers and SMT solvers have made great strides in terms of their
performances, so that they have become viable engines for fully automated

logic-based verification approaches such as the one realized by Zot. In ad-
dition, most SAT/SMT solvers accept inputs written in a standard format (

DIMACS format for SAT solvers and the SMT-LIB/SMT-LIB2 format for SMT

solvers), which makes them easily interchangeable. This is very useful, since
different solvers implement different heuristics, and the "best" solver does not

exist in absolute terms, but only on a model-by-model case.
At its core, Zot encodes specifications written in a variety of temporal log-

ics into the input languages of SAT/SMT solvers. The tool supports several

different encodings, which the user can choose by setting suitable options in
the verification scripts. Zot is plugin-based: every encoding is realized by a

plugin, and to select the encoding to be used the user selects the correspond-
ing plugin. Figure 16 depicts the architecture of the Zot tool. At the basis,

there are the third-party SAT and SMT solvers. Suitable modules interface

Zot with the underlying solvers. Since the two kinds of solvers accept differ-
ent inputs and have different features, the interface modules are also different,

depending on the solver: "sat-interface" and "zot2cnf" interface Zot with SAT
solvers, while "smt-interface" does the same for SMT solvers.

The plugins implementing the different encodings define how temporal

logic formulae are translated into the input languages of SAT/SMT solvers.
The temporal logic supported by Zot are depicted in Figure 16 in the lightest

grey. They are:

1. LTLB: propositional LTL with both future and past operators.

2. CLTLB: constraint LTLB, wich has the same temporal operators as LTLB,
but which admits, as atomic elements, also a limited set of first-order

arithmetic constraints (e.g. x > 2).

6.1 zot verification tool 113

Zot script (Lisp)

X-TRIO

TRIO

TRIO

LTLB CLTLBLTLB

e
e
z
o
t

b
e
z
o
t

s
m

te
e
z
o
t

s
m

tb
e
z
o
t

a
e
2
z
o
t

a
e
2
z
o
t-

r

m
e
e
z
o
t

m
b
e
z
o
t

s
m

tm
e
e
z
o
t

smt-interface

zot2cnf

sat-interface

SMT solver (z3, yices, ...)SAT solver (minisat, zchaff, ...)

Solvers Plugins Logic languages

Figure 16: Overall architecture of Zot

3. TRIO: the metric linear temporal logic described in section 3.3.1.

4. X-TRIO: the new metric temporal logic described in this thesis in chap-

ter 4. The plugin implements the decidable fragment X-TRIOP-R
N+

.

Since both LTLB and CLTLB are subsets of the more expressive TRIO, to
encode TRIO formulae into the input languages of SAT/SMT solvers some

plugins (e.g., eezot in Figure 16) first translate TRIO formulae into LTLB/-

CLTLB, then they encode the latters into the language of the corresponding
solver. Zot plugins implement the primitives that are used in Zot scripts to

define the models to be analysed. Since the plugins are implemented as Lisp
modules, the primitives are essentially Lisp declarations. Then, Zot scripts,

which contain both the model to be analysed and the necessary commands

to invoke the desired solver, are a collection of Lisp statements. The available
Zot plugins are the following:

114 tools

• eezot, which encodes LTLB formulae into the input language of SAT
solvers; eezot also translates TRIO formulae into LTLB ones, by trans-

forming the TRIO metric operator Dist into a series of next/yesterday

operators.

• smteezot, which encodes LTLB formulae in the input language of SMT

solvers; smteezot is akin to eezot (for example as far as the translation

of the TRIO Dist operator is concerned), but it exploits the features of
SMT solvers to produce a more compact encoding than eezot.

• ae2zot, which encodes CLTLB formulae in the input language of SMT

solvers; ae2zot differs from smteezot in that it supports arithmetic con-
straints over integer numbers such as x > 2. However it is similar to

smteezot in that it translates the TRIO Dist operator as a sequence of
next/yesterday operators.

As shown in Figure 16, Zot includes also other plugins that are not used in
this thesis.

In the following, the X-TRIO plugin is explained briefly, which is the imple-

mentation of the decidable fragment X-TRIOP-R
N+

logic. In this thesis has been

demonstrated that it is possible to reduce the satisfiability of a X-TRIOP-R
N+

formula φ to a suitable LTLB formula ψ which is equisatisfiable under some
restrictions shown in section 4.3. The transformation is syntax-directed and is

based on the translation schema illustrated in table 4, under the further con-
ditions imposed by the formula (38) over the LTLB trace π; the formula must

be true at the instant 0. In other words, to enforce the condition over the LTLB

trace, the X-TRIO plugin wraps the function zot of the TRIO plugin, which is
the interface to invoke the model checker, in such a way that the X-TRIOP-R

N+

formula φ is translated in the LTLB formula π∧ (38). The X-TRIOP-R
N+

opera-

tors implemented in the X-TRIO plugin are the following:

• (X-somf F) is the X-TRIOP-R
N+

operator SomF(F)

• (X-alwf F) is the X-TRIOP-R
N+

operator AlwF(F)

• (X-until F G) is the X-TRIOP-R
N+

operator Until(F,G)

• (X-since F G) is the X-TRIOP-R
N+

operator Since(F,G)

• (X-next-ns F) is the X-TRIOP-R
N+

operator Xns(F)

6.2 sf2trio tool : encoding stateflow/simulink into x-triop-r
+

115

• (X-next-st F) is the X-TRIOP-R
N+

operator Xst(F)

• (X-yesterday-ns F) is the X-TRIOP-R
N+

operator Yns(F)

• (X-yesterday-st F) is the X-TRIOP-R
N+

operator Yst(F)

• (X-dist F S N) , where S and N are respectively the standard and non-
standard part of the non-standard number T = S + Nε, implements the

Futr(F, T) operators if T > 0 and the Past(F,−T) operators if T < 0.

To allow the construction of more concise formulae, the list above contains

also derived operators. In the future, we will implement natively in the plu-

gin other derived operators described in section 4.2. sp, fp and ep are imple-
mented internally in the X-TRIO plugin as the Lisp terms NowST, Ep and Fp

respectively, since the TRIO plugin uses Lisp terms to implements the propo-

sitional letters of the temporal logic.

6.2 sf2trio tool : encoding stateflow/simulink into x-triop-r
+

Sf2Trio is a tool that supports designers in the construction of Simulink/State-

flow models, avoiding the burden to write manually the necessary X-TRIOP-R
N+

formulae. It constitutes a first step towards the development of a completely
automatic tool to translate a system specified by a Simulink/Stateflow dia-

gram into a set of X-TRIOP-R
N+

formulae that characterize its behaviour. Sf2Trio

has been developed as a plugin for Zot and is based entirely over two other

plugins: X-TRIO, which implements the encoding given in Section 4.4 for the
X-TRIOP-R

N+
metric temporal logic, and ae2zot, which is used by Sf2Trio to sup-

port checking of arithmetic finite integer variables in an efficient way. The

current version of the tool provides a set of commands to specify a Stateflow

diagram for a basic component and to define the composition and interactions
of several basic components into a composed one, according to the Simulink

graph.
We first illustrate the commands to define the Stateflow diagram of a basic

component. Each command is specified by its syntax, with the name of the

command in bold and parameters in italic (parameters with a colon, as in
:parameter-name, are optional).

1. (make-module ModName)

A module is the entity that, in Sf2Trio, represents a (basic or composed)

component. Parameter ModName is the module name.

116 tools

2. (def-variable VName Type DomType : initvalue : range

(minvalue maxvalue))

Command def-variable defines a single Stateflow variable, with the fol-

lowing parameters:

• VName is the name of the variable.

• Type is one of three predefined values (*Input*, *Output* and *In-

tern*) qualifying the variable as input, output or internal.

• DomType denotes the type of the variable; in the actual version of
the tool, only integer (*Int*) and boolean (*Bool*) variables may be

declared; integer variables range over finite domains.

• :init specifies an optional initial value, at time 0, for the variable;
if it is not specified, the default value is nil, which corresponds to

false, for boolean variables, and 0 for integer variables.

• :range specifies the range of an integer variable; by default, the
value is in the range [−100, 100].

3. (def-state SName : init : entering Acts : during Acts : exiting Acts

: inv Expr)

Command def-state defines a single state of the Stateflow diagram. Its
parameters are the following:

• SName is the state identifier.

• :init indicates that this state is the unique initial state for the State-
flow diagram. The uniqueness is not enforced by the plugin, it is

responsibility of the user.

• :entering, :during and :exiting each specify a list of actions Acts that
are executed when the state is, respectively , entered, exited, or

throughout the permanence in the state. The syntax of a single

action has the form (var expression), where expression denotes the
value assigned to var. Arithmetic operators include the usual +, ∗,
− and /; constant expressions must be integers.

• :inv specifies a time invariant over a state. The syntax has the form
(operator val), where val is an integer constant value greater or equal

than one and operator is one of the following:

– <= every outgoing transition from the state SName is enabled

up to val standard instants of time in the future, starting from
the instant of time in which the state SName is entered. If the

6.2 sf2trio tool : encoding stateflow/simulink into x-triop-r
+

117

state is entered in a non-standard instant of time, val must be
added to its standard part to obtain the standard instant of

time from which the outgoing transitions are disabled.

– >= every outgoing transition from the state SName is disabled

up to val standard instants of time in the future, starting from

the instant of time in which the state SName is entered. If the
state is entered in a non-standard instant of time, val must be

added to its standard part to obtain the standard instant from
which the outoing transitions are enabled.

– = every outgoing transition from the state SName is disabled
up to val standard instants of time in the future, starting from

the instant of time in which the state SName is entered, and

enabled between val and val+1 standard instants of time in the
future. If the state is entered in a non-standard instant of time,

val must be added to its standard part to obtain the standard
instant from which the outgoing transitions are disabled.

4. (def-transition SourceSName DestSName : condition Expr

: action Act)

Command def-transition defines a single transition of the Stateflow di-
agram, with the following parameters:

• SourceSName and SourceDestSName are, respectively, the label names
of the source and destination states of the transition.

• :condition specifies the transition condition as a boolean expression
Expr. If absent, the condition is always true.

• :action specifies a transition action, which is executed when the
transition fires.

The following Sf2Trio commands are used to declare a composed compo-
nent.

1. (make-composed-module ModName ComposedModules)

Command make-composed-module specifies the set of components of

the specified composed module.

• ModName is the name of the composed module.

• ComposedModules is a list of pairs (ModName Path), where the
first parameter is the name of a module to compose and the second

is the file that contains its specification.

118 tools

2. (def-connection SourceVName DestVName)

Command def-connection defines an equivalence between a pair of

variables (SourceVName, DestVName); this corresponds to a link of the

Simulink graph that describes the composed module. The connected
variables must be of the same type, but of different modules. In a com-

posed module, a variable is referenced in a different way respect to a
basic module, using the syntax ModName.VName, where the first part

is the name of the module and the second is the name of the variable

defined in the module ModName.

The following commands, which can be declared in any module, are used

to define and verify user-defined properties thereof.

1. (def-axiom Formula)

Command def-axiom defines a TRIO temporal logic formula that spec-

ifies a temporal property of the model, for example a constraint which
specifices that a machine must remain in a busy state for a fixed number

of time instants (its working time).

• Formula is the X-TRIOP-R
N+

formula, written in the input language

of Zot, which formalizes the desired property. States and variables

can be referred to in the formula using the corresponding predi-
cates automatically introduced by the Sf2Trio tool, which have the

form VName if the formula is defined in a basic component, or

ModName.VName if the formula is defined in a composed com-
ponent. The special formModName.State refers to the actual state

of the module ModName.

2. (analyze BoundLength Property)

Command analyze is the interface to the Zot model checker. It performs
the verification of a user-defined property for the specified module, us-

ing the plugin ae2zot and the Z3 solver [25].

• BoundLength is the maximum length of runs analysed by Zot. It is

the length of execution traces analysed by the solver.

• Property is the user-defined property, written in X-TRIOP-R
N+

, that is

to be analysed by Zot.

Figure 17 is the Sf2Trio model of the Stateflow diagram of the Machine 1 of
Figure 10. Figure 17 is the Sf2Trio model of the composed component of the

robotic cell, which corresponds to the Simulink graph of Figure 11.

6.2 sf2trio tool : encoding stateflow/simulink into x-triop-r
+

119

(make-module ’Machine1)

;;; Input Variables Definitions

(def-variable ’FM1 ’*Input* ’*Bool*)

(def-variable ’SwitchAutoMan ’*Input* ’*Bool*)

;;; Output Variables Definitions

(def-variable ’M1 ’*Output* ’*Bool*)

;;; State Definitions

(def-state ’Start t :init t :entering ((M1 nil)))

(def-state ’Working :inv ’(>= 2))

(def-state ’WorkingEnd :entering ((M1 t)))

(def-state ’Dispatch :entering ((M1 nil)))

;;; Transition Definitions

(def-transition ’Start ’Working :condition ’(&& FM1 (!! SwitchAutoMan)))

(def-transition ’Working ’Start :condition ’SwitchAutoMan)

(def-transition ’Working ’WorkingEnd :condition ’(&& (!! FM1) (!! SwitchAutoMan)))

(def-transition ’WorkingEnd ’Working :condition ’SwitchAutoMan)

(def-transition ’WorkingEnd ’Start :condition ’SwitchAutoMan)

(def-transition ’WorkingEnd ’Dispatch :condition ’(&& FM1 (!! SwitchAutoMan)))

(def-transition ’Dispatch ’Start :condition ’(|| (!! FM1) SwitchAutoMan))

Figure 17: Model of Machine 1 in the input syntax of the Sf2Trio tool.

The two figures are used to exemplify how to use the tool Sf2Trio in a

real case study, the robotic cell, illustrating some of the commands defined
in the two Lisp scripts. In Figures 17 and 18 there are no integer variables,

so it is not possible to show how to define and use such type of variables in

actions or user-defined properties. The following are a list of some examples
of commands:

• (def-variable ’SwitchAutoMan ’*Input* ’*Bool*) is an example of the defi-

nition of a boolean input variable, SwitchAutoMan. It corresponds to the
Stateflow variable with the same name which is used to signal that the

robot arm is entered in manual mode. It is initialized by default to false
and is an input variable for the module of the Machine 1, as it is possible

to see in Figure 11.

120 tools

(make-composed-module ’RoboticCell ’(

(Machine1 "path\Machine1.lisp")

(Machine2 "path\Machine2.lisp")

(ConveyorIn "path\ConveyorIn.lisp")

(Robot "path\Robot.lisp") (Controller "path\Controller.lisp")))

;;; ConveyorIn

(def-connection ’ConveyorIn.A ’Controller.A)

(def-connection ’ConveyorIn.B ’Controller.B)

(def-connection ’ConveyorIn.FCIn ’Robot.FCIn)

;;; Machine1

(def-connection’Robot.FM1 ’Machine1.FM1)

(def-connection ’Controller.M1 ’Machine1.M1)

;;; Machine2

(def-connection ’Robot.FM2 ’Machine2.FM2)

(def-connection ’Controller.M2 ’Machine2.M2)

;;; Robot

(def-connection ’Controller.ToP0 ’Robot.ToP0)

(def-connection ’Controller.ToM1 ’Robot.ToM1)

(def-connection ’Controller.ToM2 ’Robot.ToM2)

(def-connection ’Controller.ToCin ’Robot.ToCin)

(def-connection ’Controller.ToCout ’Robot.ToCout)

(def-connection ’Controller.FP0 ’Robot.FP0)

(def-connection ’Controller.FM1 ’Robot.FM1)

(def-connection’Controller.FM2 ’Robot.FM2)

(def-connection ’Controller.FCIn ’Robot.FCIn)

(def-connection ’Controller.FCOut ’Robot.FCOut)

(analyze 20 (X-somf ([=] Controller.State Controller.Start)))

Figure 18: Model of the composed module of the robotic cell in the input syntax of the

Sf2Trio tool.

• (def-state ’Start t :init t :entering ((M1 nil))) is an example of the definition

of the Start state of the Machine 1, with an entry action (M1nil). The

action corresponds to the assignment of the false value to the Stateflow
variable M1 of the Machine 1, which is used to signal that the machine

is free to process a new piece.

6.2 sf2trio tool : encoding stateflow/simulink into x-triop-r
+

121

• (def-state ’Working :inv ’(>= 2)) is an example of the definition of the
Working state of the Machine 1, with an invariant over the state. The

invariant models the self-transition of the Working state in Figure 10: it

means that the Machine 1 needs at least two standard instants of time
to process a piece, i.e. it models the working time of the machine. To

enforce it, the outgoing transitions are disabled when the Working state
is entered until the working time is expired.

• (def-transition ’Start ’Working :condition ’(&& FM1 (!! SwitchAutoMan)))

is an example of the definition of the transition between the Start state

and the Working state, with a guard over the transition. The guard is
modelled with the formula (&& FM1 (!! SwitchAutoMan)), which is an

example of the definition of a conditional expression: && and !! are

the Lisp operators which correspond to the two X-TRIOP-R
N+

operators ∧

and ¬. The notation is the usual Lisp prefix notation for functions and
operators. The guard means that the machine starts to process a new

piece (i.e. it enters the Working state) if the robot arm is not in manual
mode and it has just delivered a new piece to the machine, signalled

using the Stateflow variable FM1.

• (make-composed-module ’RoboticCell ’((Machine1 "path\Machine1.lisp")

. . .)) is an example of the definition of a composed module, the Robotic-
Cell module. (Machine1 "path\Machine1.lisp") is an example of how to

define the path of one of the modules of the robotic cell, the Machine 1

component, where path is the directory path of the Lisp script which

define the component.

• (def-connection ’ConveyorIn.A ’Controller.A) is an example of the connec-

tion between the variable A of the Conveyor-in and the variable of the
same name of the Controller of the robotic cell. Since RoboticCell is a

composed module, the notation to refer the variables is of the form

ModName.VName, which is needed also to disambiguate variables
with the same name of different modules.

• (analyze 20 (X-somf ([=] Controller.State Controller.Start))) is an example

of the definition of a property to be verified by the Zot model checker
on the RoboticCell model. (X-somf ([=] Controller.State Controller.Start)) is

an example of an user-defined property. In particular, X-somf is the

Lisp function which implement the X-TRIOP-R
N+

SomF operator; ([=] Con-

troller.State Controller.Start)) instead is an example of the use of the spe-

122 tools

cial form ModName.State: in this particular case, the operator [=] is
used to check if the actual state of the Controller module is the Start

state. In the same way of action’s expressions and conditions, the nota-

tion is the usual Lisp prefix notation for functions and operators.

Is is also possible to use composed modules as components of higher level

composed modules, but the case study is too simple to show this feature of
the tool.

7C O N C L U D I N G R E M A R K S

In this thesis, an approach to the formal verification of the modelling of con-
trol code for FMSs has been presented and analysed. The thesis has demon-

strated the validity of the approach, and its orthogonality respect to the choice
of modelling language, formalism and model checking tool; the use of a high

level graphical modelling language allows designers to work with a pow-

erful, easy to use, familiar notation, without imposing them the use of the
formalism of the underlying verification tool. The translation in a classic lin-

ear temporal logic (TRIO formulae are translated into LTL) permits to use a
large class of different model checker tools that take this logical formalism as

input language, but it is also possible to use a different logical formalism, for

example CTL or MTL; the particularity of the approach is the separation of
concerns about the encoding of the semantics of the language and the specific

model, which must be separated, and the possibility to integrate in a unique

Model-driven environment the entire development process.
Furthermore, the particular axiomatization of the run-to-completion seman-

tics of Stateflow-like notation allows designers to check the model for the
presence of so-called Zeno behaviours. In addition, the logic-based approach

facilitates a rather fine analysis of the temporal behaviour of Stateflow dia-

grams, since it allows users to separate between different micro-steps of the
same macro-step (e.g., the first vs. the last micro-step of the same macro-step)

and predicate over them, both in a qualitative (the order of execution of the
transitions of the Stateflow diagram) or in a quantitative way (whether, for ex-

ample, within x micro-step the system reaches a global stable configuration).

The new X-TRIO logic, introducing the notion of infinitesimal duration for
micro-steps and by borrowing the elegant terminology of NSA to formalize

them, overcomes the limitations of the approaches based on zero-time transi-
tions, which collapses the duration of some action to zero, and the approaches

based on different time granularities, such as [59], where different but posi-

tive standard and comparable time scales are adopted at different levels of
abstraction, and generalize them: on the one side, unlike traditional map-

pings of different but positive standard time granularities, infinitesimal steps
may accumulate in unbounded or unpredictable way, thus allowing for the

analysis of usually pathological cases such as Zeno behaviours, in the same

123

124 concluding remarks

way as the formalization in TRIO described in section 3.3.2; on the other side,
by imposing that the effect of an event strictly follows in time its cause, we

are closer to the traditional view of dynamical system theory, and we can rea-

son explicitly about possible synchronizations between different components,
even at the level of micro-steps, in a more elegant way than in the original

formalization.
The choice, made in this thesis, of using one time unit for micro-steps and

one for macro-steps is good enough for Stateflow and FMS, but it is not a

necessary restriction: different, fixed or even variable durations for micro-
steps could be used to model different components of a system and their

synchronization at the micro-level; macro- steps, too, could have different du-

rations. Also, non-zero infinitesimal durations for micro-steps are well-suited
to investigate dangerous behaviours such as Zeno ones; however, once these

have been excluded, one could revert to a finite metric of micro-steps, per-
haps exploiting different time granularities: something similar occurs during

hardware design where, in various contexts, the designer analyses the risk

of critical races and the duration of precise finite sequences of micro-steps,
or collapses all such sequences in an abstract zero-time. X-TRIO allows the

designer to manage all such "phases" in a uniform and general way.

7.1 future work

Future work will focus on creating a complete Model-driven environment

through which FMS experts can seamlessly move from the modelling to the

verification of their designs, then receive feedback from the formal verifica-
tion tool, without having to directly access the formal concepts underlying

the environment. The prototype formal verification tools, Sf2Trio and the X-
TRIO plugins, that support the technique presented in this paper, show the

feasibility of the approach. In the future we will study mechanisms for im-

proving the efficiency of the verification phase, in particular by exploiting
the hierarchical and modular nature of the analysed Simulink/Stateflow dia-

grams. We will also explore the application of the approach to other industry
standards besides IEC 61499, such as timed Petri Nets.

With reference to the introduction of the new X-TRIO logic, we also plan

to exploit its flexibility in decidability issues. Infact, the trade-off between
expressiveness and decidability (efficiency) offers many opportunities. Other

fragments of X-TRIO, more general than X-TRIOP
N+

, and decision procedures

7.1 future work 125

different from, or complementary to, the translation into PLTLB will be inves-
tigated.

B I B L I O G R A P H Y

[1] M. Khalgui, O. Mosbahi, H.M. Hanisch, and Z. Li. A multi-agent ar-

chitectural solution for coherent distributed reconfigurations of function
blocks. Journal of Intelligent Manufacturing, 23:2531–2549, 2012.

[2] H. Pranevicius. Formal specification and analysis of distributed systems.

Journal of Intelligent Manufacturing, 9:559–569, 1998.

[3] A. Brusaferri, A. Ballarino, and E. Capanzano. Reconfigurable
knowledge-based control solutions for responsive manufacturing sys-

tems. In Studies in Informatics and Control (SIC) Vol. 20, pages 31–42, 2011.

[4] F. Basile, P. Chiacchio, V. Vittorini, and N. Mazzocca. Modeling and

logic controller specification of flexible manufacturing systems using be-
havioral traces and petri net building blocks. Journal of Intelligent Manu-

facturing, 15:351–371, 2004.

[5] J. Wang and Y. Deng. Incremental modeling and verification of flexible

manufacturing systems. Journal of Intelligent Manufacturing, 10:485–502,
1999.

[6] D. Zhang and A. Anosike. Modelling and simulation of dynamically

integrated manufacturing systems. Journal of Intelligent Manufacturing,
23:2367–2382, 2012.

[7] H.M. Hanisch, A. Lobov, J.M. Lastra, R. Tuokko, and V. Vyatkin. Formal

validation of intelligent-automated production systems: towards indus-

trial applications. In International Journal of Manufacturing Technology and
Management Vol. 8, No. 1, pages 75–106, 2006.

[8] M. Mazzolini, A. Brusaferri, and E. Carpanzano. Model-checking based

verification approach for advanced industrial automation solutions. In

Proceedings of the International Conference on Emerging Technologies and Fac-
tory Automation, pages 1–8, 2010.

[9] Mathworks. Stateflow online documentation.

http://www.mathworks.it/help/toolbox/stateflow/, 2011.

127

128 bibliography

[10] IEC. International Standard IEC61131-3, Programming Languages for Pro-
grammable Controllers. International Electro-technical Commission, (IEC),

2.0 edition, January 2003.

[11] IEC. International Standard IEC61499, Function Blocks, Part 1 - 4. Interna-

tional Electro-technical Commission, (IEC), 1.0 edition, January 2005.

[12] A. Gargantini, D. Mandrioli, and A. Morzenti. Dealing with zero-time
transitions in axiom systems. Information and Computation, 150(2):119–131,

1999.

[13] ICS Triplex ISaGRAF. Isagraf6 developer web site and online documen-

tation. http://www.isagraf.com, 2012.

[14] A. Ballarino and E. Carpanzano. Modular automation systems design
using the IEC 61499 standard and the simulink/stateflow toolboxes. In

Proceedings of the Asme Japan-Usa Symposium on Flexible Automation, 2002.

[15] A. Robinson. Non-standard analysis. Princeton University Press, 1996.

[16] Harel. Statecharts: A visual formalism for complex systems. Sci. of Comp.
Prog., 8(3):231–274, 1987.

[17] Harel and Naamad. The STATEMATE semantics of statecharts. ACM

TOSEM, 5(4):293–333, 1996.

[18] R. Eshuis. Reconciling statechart semantics. Sci. of Comp. Prog., 74:65–99,

2009.

[19] A. Pnueli and M. Shalev. What is in a step: On the semantics of state-
charts. Lecture notes in computer science, 526:2544 – 265, 1991.

[20] Object Management Group. OMG Unified Modeling Language (OMG

UML), Superstructure. Technical report, OMG, 2010. formal/2010-05-05.

[21] R.W. Lewis. Modelling control systems using iec 61499. applying func-

tion blocks to distributed systems. IEEE Publishing, 2001.

[22] E. Ciapessoni, A. Coen-Porisini, E. Crivelli, D. Mandrioli, P. Mirandola,
and A. Morzenti. From formal models to formally-based methods: an in-

dustrial experience. ACM Transactions on Software Engineering and Method-
ology, 8(1):79–113, 1999.

bibliography 129

[23] M. Pradella, A. Morzenti, and P. San Pietro. Refining real-time system
specifications through bounded model- and satisfiability-checking. In

Proc. of ASE, pages 119–127, 2008.

[24] E. Carpanzano, L. Ferrucci, D. Mandrioli, M. Mazzolini, A. Morzenti,

and M. Rossi. Automated formal verification of flexible manufacturing
systems. Journal of Intelligent Manufacturing, pages 1–15, 2013.

[25] Microsoft. Z3 online documentation. http://z3.codeplex.com/, 2012.

[26] C.A. Furia and M. Rossi. Integrating discrete- and continuous-time met-

ric temporal logics through sampling. In Eugene Asarin and Patricia

Bouyer, editors, Proceedings of the 4th International Conference on the Formal
Modeling and Analysis of Timed Systems (FORMATS’06), Lecture Notes in

Computer Science. Springer-Verlag, 2006.

[27] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

[28] F. Diener and M. Diener. Nonstandard analysis in practice. Springer-Verlag,

1995.

[29] A. Morzenti, D. Mandrioli, and C. Ghezzi. A model parametric real-

time logic. ACM Transactions on Programming Languages and Systems, 14

(4):521–573, 1992.

[30] R. Goldblatt. Lectures on the Hyperreals: An Introduction to Nonstandard

Analysis. Springer, 1998.

[31] C.A. Furia and M. Rossi. A theory of sampling for continuous-time

metric temporal logic. ACM Transactions on Computational Logic, 12(1):
1–40, 2010. Article 8.

[32] S. Demri and D. D’Souza. An automata-theoretic approach to constraint

LTL. Information and Computation, 205(3):380–415, 2007.

[33] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctual-
ity. Journal of the ACM, 43(1):116–146, 1996.

[34] Y. Hirshfeld and A.M. Rabinovich. Logics for real time: Decidability and

complexity. Fundamenta Informaticae, 62(1):1–28, 2004.

130 bibliography

[35] P. Wolper. Temporal logic can be more expressive. In Proceedings of the
22nd Annual Symposium on Foundations of Computer Science, pages 340–

348, 1981.

[36] R. Alur and T.A. Henzinger. Real-time logics: Complexity and expres-

siveness. Information and Computation, 104(1):35–77, 1993.

[37] R. Alur and T.A. Henzinger. A really temporal logic. Journal of the ACM,
41:181 – 203, 1994.

[38] P. Schnoebelen. The complexity of temporal logic model checking. In

Advances in Modal Logic, pages 393–436, 2002.

[39] V. Vyatkin and H.M. Hanisch. Verification of distributed control systems

in intelligent manufacturing. Journal of Intelligent Manufacturing, 14:123–
136, 2003.

[40] S. Klein, X. Weng, G. Frey, J. Lesage, and L. Litz. Controller design for

an FMS using signal interpreted Petri nets and SFC. In Proceedings of the
American Control Conference, pages 4141–4146, 2002.

[41] V. Vyatkin, H.M. Hanisch, and T. Pfeiffer. Object-oriented modular

place/transition formalism for systematic modeling and validation of

industrial automation systems. In Proceedings of the IEEE International
Conference on Industrial Informatics, pages 224–232, 2003.

[42] C. Pang and V. Vyatkin. Towards formal verification of iec61499: mod-

elling of data and algorithms in nces. In Proceedings of 5th IEEE Interna-

tional Conference on Industrial Informatics, pages 879–884, 2007.

[43] H. Khalgui and H.M. Hanisch. Nces-based modelling and ctl-based ver-
ification of reconfigurable benchmark production systems. In Proceed-

ings of International Symposium on Industrial Embedded Systems, pages 1–10,
2008.

[44] M. Rausch and H.M. Hanisch. Net condition/event systems with multi-

ple condition outputs. In Proceedings of the Symposium on Emerging Tech-

nologies and Factory Automation, pages 592–600, 1995.

[45] H.M. Hanisch and V. Vyatkin. Development of adequate formalisms for
verification of iec 61499 distributed applications. In Proceedings of the 39th

SICE Annual Conference, pages 73–78, 2000.

bibliography 131

[46] Q. Zhao and B.H. Krogh. Formal verification of statecharts using finite-
state model checkers. In Proceeding of the American Control Conference,

pages 313–318, 2001.

[47] P. Bhaduri and S. Ramesh. Model checking of statechart models: Survey

and research directions. CoRR, cs.SE/0407038, 2004.

[48] S. Panjaitan and G. Frey. Functional design for iec 61499 distributed con-
trol systems using uml activity diagrams. In Proceedings of the 2005 In-

ternational Conference on Instrumentation, Communications and Information

Technology, pages 64–70, 2005.

[49] J.S. Ostroff. Temporal Logic for Real Time Sytems. Advanced Software
Development Series. John Wiley & Sons, 1989.

[50] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems, 1992.

[51] E.A. Lee and H. Zheng. Operational semantics of hybrid systems. Lecture

Notes in Computer Science, 3414:25–53, 2005.

[52] E.A. Lee and H. Zheng. Leveraging synchronous language principles for
heterogeneous modeling and design of embedded systems. In Proceed-

ings of the 7th ACM & IEEE international conference on Embedded software,

2007.

[53] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: A frame-
work for simulating and prototyping heterogeneous systems. Int. Journal

of Computer Simulation, 4:155–182, 1994.

[54] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. Non-standard

semantics of hybrid systems modelers. J. of Comp. and Sys. Sci., 78(3):877

– 910, 2012.

[55] S. Bliudze and D. Krob. Modelling of complex systems: Systems as

dataflow machines. Fundam. Inf., 91:251–274, 2009.

[56] D.P. Guelev and D. Van Hung. Prefix and projection onto state in dura-
tion calculus. Electr. Notes Theor. Comput. Sci., 65(6):101–119, 2002.

[57] T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks?

In Proc. of the Int. Coll. on Aut., Lang. and Prog., volume 623 of LNCS,

pages 545–558, 1992.

132 bibliography

[58] A. Burns and I.J. Hayes. A timeband framework for modelling real-time
systems. Real-Time Systems, 45(1–2):106–142, 2010.

[59] E. Corsetti, E. Crivelli, D. Mandrioli, A. Morzenti, A. Montanari, P. San

Pietro, and E. Ratto. Dealing with different time scales in formal speci-

fications. In Proc. of the 6th Int. Work. on Software Specification and Design,
pages 92–101, 1991.

[60] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. Assume-guarantee re-

finement between different time scales. In Proc. of CAV, volume 1633 of

LNCS, pages 208–221, 1999.

