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Abstract

This thesis deals with the theoretical development of distributed and
decentralized control algorithms based on Model Predictive Control
(MPC) for linear systems subject to constraints on inputs and states.
In all the presented techniques, the basic idea consists in considering
the coupling terms among the subsystems as disturbances to be re-
jected. Part of this disturbance is assumed to be known over all the
prediction horizon, while the remaining one is considered unknown but
bounded. To reject this second term, a robust approach is implemented
using polytopic invariant sets.

A regulation problem for distributed control is initially described,
together with some practical solutions needed to deal with implementa-
tion issues. A continuous-time version of the proposed approach is also
provided. Secondly, two different distributed solutions to the tracking
problem are given. In the first one, developed for tracking piecewise
constant setpoints, a fictitious reference signal is used to guarantee
feasibility. The second one, instead, can be used for tracking constant
setpoints and relies on the description of the dynamic system in the
so-called “velocity-form”, which allows one to insert an integral action
in the closed-loop. The properties of systems described in velocity-
form are then investigated for the centralized case. Finally, the re-
sults derived for the centralized systems in velocity-form are used to
develop a completely decentralized approach with integral action for
tracking piecewise constant references. Several simulation examples
are reported to show the performances of the proposed algorithms.
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Summary and publications

In recent years, process plants, electrical, communication and traffic
networks and manufacturing systems have been characterized by an
increasing complexity. Usually, they result to be composed by a huge
number of relatively small or medium-scale subsystems interacting via
inputs, states or outputs. The design of a centralized controller for the
whole large-scale system is often a difficult challenge due to possible
limitations, for instance, in computing capabilities or communication
bandwidth. Reliability and robustness of the overall control system
could represent additional reasons for avoiding centralized controllers.

According to these motivations, remarkable efforts have been put in
the research field of hierarchical, decentralized and distributed control.
Among all the possible solutions, particularly interesting appear to be
those based on Model Predictive Control (MPC). Several reasons can
be listed to support this claim: first of all, MPC is a multivariable
optimal control technique and, among the advanced control methods,
it is probably the only one really adopted by the industrial world and
able to cope with operational constraints on inputs, states and outputs.
Secondly, in the last years fundamental properties such as stability of
the closed-loop systems and robustness with respect to several classes
of external disturbances have been proved for many different MPC for-
mulations. Lastly, when controlling large-scale systems in a distributed
or decentralized framework, the values of inputs, states and outputs are
explicitly computed over all the prediction horizon at each sampling
time by a local controller designed with MPC and they can be used as

I



i
i

“thesis_main” — 2014/1/26 — 15:56 — page II — #10 i
i

i
i

i
i

information to be transmitted to other local controllers to coordinate
their actions. This data transmission can greatly simplify the design of
a distributed control system and can allow one to obtain performances
close to those of a centralized controller.

In this thesis, we present a number of distributed control algorithms
based on the Distributed Predictive Control (DPC) approach. They
are designed for linear systems subject to constraints on inputs and
states, described in state space form and decomposable in several non-
overlapping subsystems.

The main idea of DPC is that, at every sampling time, each subsys-
tem transmits to its neighbors the reference trajectories of its inputs
and states over all the prediction horizon. Moreover, by adding proper
additional constraints to the MPC formulation, all the local controllers
are able to guarantee that the real values of their inputs and states lie
in a specified invariant neighbor of the corresponding reference tra-
jectories. In this way, each subsystem has to solve an MPC problem
where the reference trajectories received from the other controllers rep-
resent a disturbance known over all the prediction horizon, while the
differences between the reference and the real values of its neighbors’
inputs and states can be seen as an unknown bounded disturbance
to be rejected. To this end, a robust tube-based MPC formulation is
adopted and implemented using the theory of polytopic invariant sets.

This thesis also presents a completely decentralized version of DPC,
named DePC (Decentralized Predictive Control) for strongly decoupled
systems. In this case, no transmission of information is required, as all
the interactions via inputs and states are seen as unknown disturbances
to be rejected.

The thesis is structured as follows. Chapter 1 provides an overview
of the most common centralized MPC algorithms for regulation, track-
ing and disturbance rejection, as well as a short description of the main
solutions for distributed and decentralized control, with particular at-
tention to those based on MPC.

In Chapter 2, the basic formulation of DPC for regulation of discrete-
time systems is presented [BC1]. Efficient techniques for the compu-
tation of polytopic robust invariant sets, for the initialization of ref-
erence trajectories and for the online solutions to possible large and
unexpected disturbances are also shown [J4], in order to provide both
the theoretical results and some practical hints useful for real industrial
applications. Since the discrete-time domain does not allow to consider
the process inter-sampling behavior in the MPC optimization problem,

II
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in Chapter 3 a continuous-time version of DPC is illustrated [J3].
Chapters 4 and 5 present two extensions of DPC for the solution

of the tracking problem: the first one, see [C3, J3], can be used to
track piecewise constant targets. The main improvement with respect
to the standard DPC formulation consists in including among the opti-
mization variables of the MPC problem the value of the reference point
that each subsystem really tracks at each sampling time. An additional
term in the cost function is also considered to penalize the distance of
this extra optimization variable from the desired external set point.
The second solution [C1] is based on inserting an integral action in the
closed-loop by rewriting the initial system in the so called “velocity-
form”. This formulation guarantees rejection of constant disturbances
and can be used to track constant targets: in fact, recursive feasibility
can not be proved if the value of the reference signal is changed.

In Chapter 6, to overcome the limitation of being able to manage
only constant references for systems in velocity-form, a thorough study
of their properties for centralized control is described for both the case
of nominal [C2] and disturbed [J1] systems. The obtained results allow
one to use the velocity-form also in presence of varying set points.
Once again, time-varying external references are handled adding as
optimization variable the set point really tracked at each time instant.
The cost function term weighting its distance from the external one
guarantees an asymptotic convergence of the first one to the latter.

The outcomes of the previous developments for centralized control
of systems in velocity-form have been exploited to develop a decen-
tralized control method for tracking, called DePC [C4], and presented
in Chapter 7. It is able to manage piecewise constant set points and
to reject external disturbances, asymptotically deleting their effects in
case they are constant.

Eventually, some conclusions are drawn in Chapter 8.

List of publications

International journals

J1. G. Betti, M. Farina, and R. Scattolini. A robust MPC algorithm
for offset-free tracking of constant reference signals. IEEE Trans-
actions on Automatic Control, 58(9):2394-2400, 2013.

III



i
i

“thesis_main” — 2014/1/26 — 15:56 — page IV — #12 i
i

i
i

i
i

J2. M. Farina, G. Betti, L. Giulioni, and R. Scattolini. An approach
to distributed predictive control for tracking - theory and appli-
cations. IEEE Transactions on Control Systems Technology, in
press.

J3. M. Farina, G. Betti, and R. Scattolini. Distributed predictive
control of continuous-time systems. Systems and Control Letters
(submitted).

J4. G. Betti, M. Farina, and R. Scattolini. Implementation issues and
applications of a distributed predictive control algorithm. Journal
of Process Control (submitted).

International conferences proceedings

C1. G. Betti, M. Farina, and R. Scattolini. Distributed predictive con-
trol for tracking constant references. In American Control Con-
ference (ACC), 2012, pages 6364-6369.

C2. G. Betti, M. Farina, and R. Scattolini. An MPC algorithm for
offset-free tracking of constant reference signals. In Decision and
Control (CDC), 2012 IEEE 51st Annual Conference on, pages
5182-5187.

C3. M. Farina, G. Betti, and R. Scattolini. A solution to the tracking
problem using distributed predictive control. In European Control
Conference (ECC), 2013, pages 4347-4352.

C4. G. Betti, M. Farina, and R. Scattolini. Decentralized predictive
control for tracking constant references. In Decision and Control
(CDC), 2013 IEEE 52st Annual Conference on, pages 5228-5233.

Book chapters

BC1. G. Betti, M. Farina, and R. Scattolini. Distributed MPC: a
noncooperative approach based on robustness concepts. In J.M.
Maestre and R.R. Negenborn, editors, Distributed Model Predic-
tive Control made easy, volume 69 of Intelligent Systems, Con-
trol and Automation: Science and Engineering, pages 421 - 435.
Springer Netherlands, 2014.

IV



i
i

“thesis_main” — 2014/1/26 — 15:56 — page V — #13 i
i

i
i

i
i

Contents

I Introduction 1

1 Introduction 3
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Model Predictive Control . . . . . . . . . . . . . . . . . 5

1.2.1 Standard MPC formulation . . . . . . . . . . . 5
1.2.2 Robust tube-based MPC . . . . . . . . . . . . . 8
1.2.3 MPC for tracking piecewise constant references 11

1.3 Invariant sets . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Polytopic approximation of the minimal robust

invariant set . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Maximal output admissible set . . . . . . . . . 17

1.4 Distributed and decentralized MPC . . . . . . . . . . . 19
1.4.1 Decentralized control based on MPC . . . . . . 20
1.4.2 Distributed control based on MPC . . . . . . . 22

II Solutions to the regulation problem 25

2 Distributed Predictive Control 27
2.1 Statement of the problem and main assumption . . . . 28
2.2 Description of the approach . . . . . . . . . . . . . . . 29

2.2.1 The online phase: the i-DPC optimization prob-
lems . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Convergence results and properties of DPC . . . . . . . 33

V



i
i

“thesis_main” — 2014/1/26 — 15:56 — page VI — #14 i
i

i
i

i
i

2.3.1 Properties of DPC . . . . . . . . . . . . . . . . 34
2.4 Implementation issues . . . . . . . . . . . . . . . . . . 36

2.4.1 The discretization method . . . . . . . . . . . . 36
2.4.2 Computation of the state-feedback gain and of

the weighting matrices . . . . . . . . . . . . . . 37
2.4.3 Computation of the RPI sets and of the terminal

sets . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.4 Generation of the reference trajectories (for sys-

tems without coupling constraints) . . . . . . . 44
2.5 Simulation examples . . . . . . . . . . . . . . . . . . . 48

2.5.1 Temperature control . . . . . . . . . . . . . . . 48
2.5.2 Four-tanks system . . . . . . . . . . . . . . . . 51
2.5.3 Cascade coupled flotation tanks . . . . . . . . . 55
2.5.4 Reactor-separator process . . . . . . . . . . . . 58

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 60
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . 61
2.7.2 Proof of Algorithm 2.1 . . . . . . . . . . . . . . 64

3 Continuous-time DPC 67
3.1 Partitioned continuous-time systems . . . . . . . . . . 68
3.2 DPC for continuous-time systems . . . . . . . . . . . . 69

3.2.1 Models: perturbed, nominal and auxiliary . . . 69
3.2.2 Statement of the i-DPC problems . . . . . . . . 71
3.2.3 Properties of DPC . . . . . . . . . . . . . . . . 72

3.3 Tuning of the design parameters . . . . . . . . . . . . . 73
3.3.1 Choice of the control gains Kc

i , Ki . . . . . . . 74
3.3.2 Choice of Q̄i, R̄i, P̄i, X̄F

i . . . . . . . . . . . . . 74
3.3.3 Choice of Q̂i, R̂i, P̂i, λ . . . . . . . . . . . . . . 76

3.4 Simulation example . . . . . . . . . . . . . . . . . . . . 76
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 77
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6.1 Recursive feasibility . . . . . . . . . . . . . . . . 79
3.6.2 The collective problem . . . . . . . . . . . . . . 80
3.6.3 Proof of convergence . . . . . . . . . . . . . . . 82

III Solutions to the tracking problem 87

4 DPC for tracking 93

VI



i
i

“thesis_main” — 2014/1/26 — 15:56 — page VII — #15 i
i

i
i

i
i

4.1 Interacting subsystems . . . . . . . . . . . . . . . . . . 93
4.2 Control system architecture . . . . . . . . . . . . . . . 96

4.2.1 The reference output trajectory management layer 97
4.2.2 The reference state and input trajectory layer . 98
4.2.3 The robust MPC layer . . . . . . . . . . . . . . 102

4.3 The distributed predictive control algorithm . . . . . . 104
4.3.1 Off-line design . . . . . . . . . . . . . . . . . . . 104
4.3.2 On-line design . . . . . . . . . . . . . . . . . . . 106

4.4 Simulation examples . . . . . . . . . . . . . . . . . . . 109
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 115
4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6.1 Proof of recursive feasibility and convergence of
the reference management problem . . . . . . . 115

4.6.2 Proof of recursive feasibility of the i-DPC problem116
4.6.3 Proof of convergence for the robust MPC layer . 118

5 DPC for systems in velocity-form 121
5.1 The system . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1.1 System under control . . . . . . . . . . . . . . . 121
5.1.2 Partitioned system . . . . . . . . . . . . . . . . 122
5.1.3 System with integrators . . . . . . . . . . . . . 123

5.2 The DPC algorithm for tracking . . . . . . . . . . . . . 124
5.2.1 Nominal models and control law . . . . . . . . . 124
5.2.2 Input and state constraints . . . . . . . . . . . . 125
5.2.3 i-DPC problems . . . . . . . . . . . . . . . . . . 126

5.3 Convergence results . . . . . . . . . . . . . . . . . . . . 128
5.4 Implementation issues . . . . . . . . . . . . . . . . . . 130
5.5 Simulation example . . . . . . . . . . . . . . . . . . . . 130
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 131
5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7.1 Proof of Proposition 5.1 . . . . . . . . . . . . . 132

6 Centralized MPC with integral action 135
6.1 MPC for offset-free tracking: nominal systems . . . . . 136

6.1.1 Statement of the problem . . . . . . . . . . . . 136
6.1.2 The velocity form . . . . . . . . . . . . . . . . . 137
6.1.3 The maximal output admissible set . . . . . . . 138
6.1.4 The MPC problem . . . . . . . . . . . . . . . . 140

6.2 MPC for offset-free tracking: disturbed systems . . . . 142

VII



i
i

“thesis_main” — 2014/1/26 — 15:56 — page VIII — #16 i
i

i
i

i
i

6.2.1 Statement of the problem and transformation in
velocity-form . . . . . . . . . . . . . . . . . . . 142

6.2.2 The maximal output admissible set computed
using tightened constraints . . . . . . . . . . . . 143

6.2.3 The MPC problem . . . . . . . . . . . . . . . . 145
6.3 Simulation examples . . . . . . . . . . . . . . . . . . . 150
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5.1 Proof of Proposition 6.2 and of Proposition 6.3 157
6.5.2 Proof of Theorem 6.1 and of Theorem 6.2 . . . 158
6.5.3 Proof of Corollary 6.1 . . . . . . . . . . . . . . 161
6.5.4 Proof of Corollary 6.2 . . . . . . . . . . . . . . 161
6.5.5 Proof of Corollary 6.3 . . . . . . . . . . . . . . 161
6.5.6 Proof of Proposition 6.4 . . . . . . . . . . . . . 162

7 DePC for tracking 165
7.1 The dynamical system . . . . . . . . . . . . . . . . . . 166

7.1.1 System under control . . . . . . . . . . . . . . . 166
7.1.2 Partitioned system . . . . . . . . . . . . . . . . 166
7.1.3 Subsystems with integrators . . . . . . . . . . . 167

7.2 The DePC algorithm for tracking . . . . . . . . . . . . 168
7.2.1 Nominal models and control law . . . . . . . . . 168
7.2.2 Constraints for inputs and states . . . . . . . . 169
7.2.3 Computation of the terminal set . . . . . . . . . 171
7.2.4 i -DePC problems . . . . . . . . . . . . . . . . . 172

7.3 Convergence results . . . . . . . . . . . . . . . . . . . . 173
7.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 178

IV Conclusions 179

8 Conclusions 181

Bibliography 185

VIII



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 1 — #17 i
i

i
i

i
i

Part I

Introduction

1



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 2 — #18 i
i

i
i

i
i



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 3 — #19 i
i

i
i

i
i

1
Introduction

This chapter introduces the basic ideas underlying robust MPC based
on polytopic invariant sets and a short review on distributed and decen-
tralized predictive control. The goal is to provide in a simple and com-
pact form the main techniques used in the following chapters, as well
as to clearly describe the scientific context of this thesis. To improve
the readability of the thesis, all the information about the adopted
notation has been listed at the beginning of this Chapter.

1.1 Notation

The symbols and recurring terms used throughout the thesis are listed
below.

• The discrete-time index is denoted by k, and the dependence on
time of the variables of discrete-time systems is denoted by a
subscript, e.g. xk, uk+1. The continuous-time index is denoted by
t, and the dependence on time of the variables of continuous-time
systems is represented in brackets, e.g. x(t), u(t).

• For a discrete-time signal sk and a, b ∈ N , a ≤ b, we denote
(sa; sa+1; . . . ; sb) with s[a:b]. For a continuous-time variable s(t)
and a given time interval T ⊆ R+ (T can be open or closed), the
trajectory s(t) with t ∈ T is denoted by s(T ).

• The short-hand v = (v1, . . . , vs) denotes a column vector with s
(not necessarily scalar) components v1, . . . , vs.

3
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• Only when distributed or decentralized techniques are discussed,
the large-scale system (centralized) matrices and vectors are writ-
ten in bold. In all the other cases, standard fonts are used to
indicate also possibly non-scalar elements.

• The expression ‖x‖2
Q stands for x[T ]Qx, where x is a column vec-

tor and xT is the transpose of x.

• Iα stands for an identity matrix of order α. Where clear from the
context, 0 is used to represent a matrix of proper dimensions with
all its elements equal to zero.

• All the eigenvalues of a Schur matrix have absolute value strictly
less than 1. A matrix is said to be Hurwitz if all its eigenvalues
have negative real part.

• λM(·) and λm(·) are the maximum and the minimum eigenvalues
of a matrix, respectively.

• A polyhedron is a subset of Rn defined by the intersection of a
finite number of closed half-spaces, i.e. a polyhedron X is a set
defined by a finite number of inequalities: X , {x ∈ Rn|f ′ix ≤
gi, i ∈ I} where fi ∈ Rn, gi ∈ R and I is a finite index set. A
polytope is a bounded polyhedron.

• Given two sets A and B, their Minkowski sum (set addition) is
A ⊕ B , {a + b|a ∈ A, b ∈ B}. Their Minkowski, or Pontryagin,
difference (set subtraction) is A	B , {a|a⊕B ∈ A}. We denote
by
⊕M

i=1 Pi the Minkowski sum of the sets {P1, ..., PM}.

• A generic p-norm ball centered at the origin in the Rdim space is
defined as follows: B(dim)

p,ε (0) := {x ∈ Rdim : ‖x‖p ≤ ε}.

• Given a generic compact set L, H = box(L) is the smallest hyper-
rectangle containing L with faces perpendicular to the cartesian
axis.

• int(X) denotes the interior of set X.

• A continuous function α : R+ → R+ is a K∞ function if and only
if i) α(0) = 0, ii) it is strictly increasing and iii) α(s) → +∞ as
s→ +∞.
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1.2. MODEL PREDICTIVE CONTROL 5

1.2 Model Predictive Control

In this Section the fundamentals of Model Predictive Control are il-
lustrated. MPC is probably the most widely used advanced control
technique for control of industrial plants (see, e.g., [127,128]). Its main
features, that made it particularly suited for several applications, are:

• the control problem is reformulated as an optimization one, in
which it is possible to include different and possibly conflicting
goals.

• In the control problem formulation it is possible to explicitly con-
sider constraints on inputs, outputs and states. This is achieved
by predicting the evolution of the system as a function of an ad-
missible sequence of future control inputs.

• It is possible to design the controller also using empirical process
models obtained, for instance, through step or impulse responses
of the system.

An in-depth presentation is beyond the scope of this thesis: for detailed
discussions, the reader is referred to the textbooks [20, 95, 136] and to
the survey papers [56,105].

1.2.1 Standard MPC formulation

Consider a time-invariant, linear, discrete-time system described by

xk+1 = Axk +Buk (1.1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector and
the pair (A,B) is assumed to be reachable. The states and the in-
puts have to fulfill the constraints xk ∈ X ⊂ Rn and uk ∈ U ⊂ Rm.
Given a prediction horizon of duration equal to N ∈ I+ time steps, the
goal at time step k is to compute the sequence of N control variables
u[k:k+N−1] = (uk, uk+1, . . . , uk+N−1) that minimizes the finite horizon
cost function

V (xk, u[k:k+N−1]) =
N−1∑
ν=0

(‖xk+ν‖2
Q + ‖uk+ν‖2

R) + ‖xk+N‖2
P (1.2)

where Q ∈ Rn×n, R ∈ Rm×m and P ∈ Rn×n are positive definite ma-
trices. Note that the definite positiveness of matrix Q is not strictly
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6 CHAPTER 1. INTRODUCTION

required [136], and here is asked only to simplify the following proofs.
The term ‖xk+ν‖2

Q + ‖uk+ν‖2
R represents the stage cost where matrices

Q and R are design parameters, while matrix P appearing in the ter-
minal cost ‖xk+N‖2

P has to be carefully selected in order to guarantee
the convergence of the control algorithm. For the same reason, an ad-
ditional terminal constraint xk+N ∈ Xf is required as well, where the
properties of the set Xf ⊆ X will be specified later on.

If the sets X, U and Xf are polytopes, it is easy to verify that, given
the current value of the state xk, the optimization problem

min
u[k:k+N−1]

V (xk, u[k:k+N−1])

s.t.

xk+ν ∈ X ∀ ν = 0, . . . , N − 1

uk+ν ∈ U ∀ ν = 0, . . . , N − 1

xk+N ∈ Xf

xk+1 = Axk +Buk

(1.3)

can be written as a quadratic programming problem, i.e., as an opti-
mization problem of the form

min
z

1

2
z′Υz +$′z

s.t.

Λz ≤ σ

(1.4)

whose solutions can be computed with well known and computationally
efficient algorithms [19].

Let us denote by u[k:k+N−1]|k = (uk|k, uk+1|k, . . . , uk+N−1|k) the opti-
mal control sequence computed at time k. According to the receding
horizon (or moving horizon) principle, the rationale underlying MPC
is to use only the first element of the optimal sequence, i.e. uk|k, and
to solve again the optimization problem (1.3), referred to the horizon
[k + 1, . . . , k +N + 1], at the next time step.

As the control input is the outcome of an optimization procedure
solved at each time step k, the control law is an implicit state-feedback
one. In order to prove that:

i) the optimization problem results to be feasible also at time step
k + 1;

ii) the convergence of the closed-loop system is guaranteed;
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1.2. MODEL PREDICTIVE CONTROL 7

an auxiliary state-feedback control law Kax, not used to compute the
control law, but necessary for the mathematical proofs and for the
design of the controller, together with a proper pair of weighting matrix
P and terminal set Xf , must be selected. The most common choices
are the following ones:

1. Zero Terminal Constraint (ZTC): P = 0, Ka = 0 and Xf = {0}.

2. Quasi-Infinte LQ (QILQ): P is the unique positive definite solu-
tion of the Riccati algebraic (stationary) equation
P = A′PA+Q− A′PB(R +B′PB)−1B′PA; Ka is the infinite
horizon LQR (linear quadratic regulator) gain:
Ka = (R +B′PB)−1B′PA; Xf is chosen such that Xf ⊆ X,
KaXf ⊆ U and (A+BKa)Xf ⊆ Xf .

3. Arbitrary Stabilizing Gain (ASG): Ka is selected as an arbitrary
stabilizing gain (using, e.g., eigenvalue assignment techniques); P
is the solution of the Lyapunov equation
(A+BKa)

′P (A+BKa)− P = −(Q+KaRK
′
a); Xf is chosen such

that Xf ⊆ X, KaXf ⊆ U and (A+BKa)Xf ⊆ Xf .

Note that a possible way to select Xf in QILQ and ASG is to define
it as the ellipsoidal invariant set Xf = {x|x′Px ≤ o} with the positive
scalar o small enough to guarantee Xf ⊆ X and KaXf ⊆ U. Then, it
can be transformed in a polytopic positively invariant set as explained
in [5].

A sketch of the recursive feasibility and of the convergence is now
provided for all the three proposed choices. Let assume to be at generic
time instant k and that the optimal control sequence is
u[k:k+N−1]|k = (uk|k, uk+1|k, . . . , uk+N−1|k), associated to the optimal
value of the objective function Vo(xk). Applying the control input uk|k,
the system reaches the state xk+1|k = Axk +Buk|k. If at time k + 1 the
sequence u[k+1:k+N−1]|k of the control sequence computed at time k is
applied to the system, the state at time k +N is xk+N |k ∈ Xf and
a feasible trajectory is followed. Therefore, thanks to the properties
of Xf , the control sequence ũ[k+1:k+N ] = (uk+1|k, uk+2|k, . . . , Kaxk+N |k)
is an admissible solution to the optimization problem at time k + 1.
The corresponding cost function value Ṽ (xk+1|k, ũ[k+1:k+N ]) is subopti-
mal, i.e. by definition it holds that Vo(xk+1|k) ≤ Ṽ (xk+1|k, ũ[k+1:k+N ]).



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 8 — #24 i
i

i
i

i
i

8 CHAPTER 1. INTRODUCTION

Considering all the terms of the cost function, it is possible to see that

Ṽ (xk+1|k, ũ[k+1:k+N ])− Vo(xk) = −‖xk‖2
Q − ‖uk|k‖2

R

+ ‖xk+N |k‖2
Q + ‖Kaxk+N |k‖2

R − ‖xk+N |k‖2
P + ‖(A+BKa)xk+N |k‖2

P =

− ‖xk‖2
Q − ‖uk|k‖2

R + ‖xk+N |k‖2
Q+K′aRKa−P+(A+BKa)′P (A+BKa) (1.5)

Since ZTC guarantees xk+N |k = 0 while QILP and ASG,
recalling that the stationary Riccati equation can be also
written as P = Q+K ′aRKa + (A+BKa)

′P (A+BKa), lead to
Q+K ′aRKa − P + (A+BKa)

′P (A+BKa) = 0, in all cases we have

Ṽ (xk+1|k, ũ[k+1:k+N ])− Vo(xk) = −‖xk‖2
Q − ‖uk|k‖2

R (1.6)

The suboptimality of Ṽ (xk+1|k, ũ[k+1:k+N ]) allows one to write

Vo(xk+1|k)− Vo(xk) ≤ −(‖xk‖2
Q + ‖uk|k‖2

R) (1.7)

When the state is different from zero, the cost function is therefore
a monotonic strictly decreasing positive function. Therefore,
Vo(xk)− Vo(xk+1|k)→ 0. But Vo(xk)− Vo(xk+1|k) ≥ ‖xk‖2

Q + ‖uk|k‖2
R,

thus (‖xk‖2
Q + ‖uk|k‖2

R)→ 0 as well. The definite positiveness of ma-
trices Q and R implies that inputs and states converge to the origin.

1.2.2 Robust tube-based MPC

If the system to be controlled is affected by an external unknown (but
bounded) disturbance, using the standard technique on the nominal
system [85, 148], i.e. the system obtained by the real one neglecting
the disturbance, could easily lead to the loss of the stability prop-
erties and/or to constraints violation [125]. As it has been clarified
in [63], nominal MPC can be nonrobust even with respect to arbitrar-
ily small disturbances. For this reason, attention has been recently
focused on the development of MPC algorithms ensuring desired ro-
bustness properties, see, e.g., [11,79,80,103,129]. This activity has led
to the development of two broad classes of algorithms: one is based on
a min-max formulation of the optimization problem that defines MPC,
see [86,100,129,147]. The other one relies on the a priori evaluation of
the disturbance effect over the prediction horizon and the enforcement
of tighter and tighter constraints to the predicted state trajectories,
see [30, 62, 82, 84]. Among the latter ones, the so-called “tube-based”.
method discussed in [81, 107] has received much attention for its sim-
plicity and in view of the fact that it requires an on-line computational
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1.2. MODEL PREDICTIVE CONTROL 9

load comparable to that of nominal MPC. In the reminder of this Sec-
tion, the approach described in [107] will be presented more in detail,
since it plays a fundamental role in the DPC control scheme.

Consider a linear, discrete-time system under control described by

xk+1 = Axk +Buk + wk (1.8)

where xk ∈ X ⊂ Rn, uk ∈ U ⊂ Rm and wk ∈ W ⊂ Rn is an unknown
but bounded disturbance. U, X and W are polytopes containing the
origin in their interior. The nominal system corresponding to (1.8) is

x̂k+1 = Ax̂k +Bûk (1.9)

Consider a control gain K selected in such a way that F = A+BK is
Schur and the robust positive invariant (RPI) set Z verifying
FZ⊕W ⊆ Z (details on how to compute Z as a polytopic set will
be given in Section 1.3). It can be easily proved that if xk − x̂k ∈ Z
and if the real system is controlled with

uk = ûk +K(xk − x̂k) (1.10)

then xk+1 − x̂k+1 ∈ Z for all wk ∈ W. Therefore, the input uk to sys-
tem (1.8) is computed as the sum of two terms: namely, by the nomi-
nal input ûk obtained as the solution of a standard MPC optimization
problem solved considering the nominal model (1.9) and by the cor-
rective term K(xk − x̂k), which has the role of keeping the real system
state as close as possible to that of the nominal system. The fact that
xk+1 − x̂k+1 ∈ Z, anyway, is guaranteed only if xk − x̂k ∈ Z: xk is the
measured, current state of the real system and therefore can not be
instantaneously changed. On the contrary, x̂k is the current state of
a fictitious, non-existing system and can therefore be initialized arbi-
trarily. The tube-based MPC considers the nominal system (1.9) with
tighter constraints and its main innovation relies in adding its current
state to the set of optimization variables.

The cost function to be minimized is

V (x̂k, û[k:k+N−1]) =
1

2

N−1∑
ν=0

(‖x̂k+ν‖2
Q + ‖ûk+ν‖2

R) +
1

2
‖x̂k+N‖2

P (1.11)

where Q ∈ Rn×n, R ∈ Rm×m and P ∈ Rn×n are positive definite matri-
ces. As in the standard MPC case, the simplest choice for parameters
K and P consists in synthesizing K using the LQR criterion and com-
puting P as the corresponding solution of the stationary Lyapunov
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10 CHAPTER 1. INTRODUCTION

equation. The quadratic programming problem to be solved at each
time step is

min
x̂k,û[k:k+N−1]

V (x̂k, û[k:k+N−1])

s.t.

xk − x̂k ∈ Z
x̂k+ν ∈ X̂ ∀ ν = 0, . . . , N − 1

ûk+ν ∈ Û ∀ ν = 0, . . . , N − 1

x̂k+N ∈ X̂f

x̂k+1 = Ax̂k +Bûk

(1.12)

where X̂ = X	 Z, Û = U	KZ and X̂f is such that X̂f ⊂ X̂,
KX̂f ⊂ Û and F X̂f ⊂ X̂f . It is assumed that W is small enough to
guarantee that Z ⊂ int(X) and KZ ⊂ int(U). Once the optimal pair
(x̂k|k, û[k:k+N−1]|k) is computed, the control action for the real system
is given by Equation (1.10), i.e., uk = ûk|k +K(xk − x̂k|k).

Setting the design parameters as described, the proof of recursive
feasibility turns out to be very similar to that of the standard MPC.
Specifically, at time k + 1 it holds that xk+1 − x̂k+1|k ∈ Z. Denoting
˜̂u[k+1:k+N ] = (û[k+1:k+N−1]|k, Kx̂k+N |k) the properties of X̂f guarantee
that the tuple (x̂k+1|k, ˜̂u[k+1:k+N ]) is a (suboptimal) feasible solution to
the optimization problem (1.12).

As for the convergence proof, the corresponding (suboptimal) cost
function Ṽ (x̂k+1|k, ˜̂u[k+1:k+N ]) is characterized by

Vo(xk+1) ≤ Ṽ (x̂k+1|k, ũ[k+1:k+N ])

where Vo(xk+1) is the optimal value of the cost function at time k + 1
obtained using (x̂k+1|k+1, û[k+1:k+N ]|k+1). As in the standard case,

Ṽ (x̂k+1|k, ũ[k+1:k+N ])− Vo(xk) = −(‖x̂k|k‖2
Q + ‖ûk|k‖2

R)

thus
Vo(xk+1)− Vo(xk) ≤ −(‖x̂k|k‖2

Q + ‖ûk|k‖2
R)

The cost function turns out to be a monotonic strictly decreasing pos-
itive function, therefore Vo(xk)− Vo(xk+1|k)→ 0. Being

Vo(xk)− Vo(xk+1|k) ≥ ‖x̂k|k‖2
Q + ‖ûk|k‖2

R
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1.2. MODEL PREDICTIVE CONTROL 11

we have that (‖x̂k|k‖2
Q + ‖ûk|k‖2

R)→ 0 as well. Since Q and R are
positive definite, the nominal inputs and states converge to zero. Since
the real states are always constrained in an invariant neighborhood
defined by Z with respect to the nominal ones, they will be steered to
the neighborhood of the origin Z. Note that, for the same reason, the
tighter constraints represented by X̂ and Û, ensure the fulfillment of
the real constraints x ∈ X and u ∈ U at all the time instants.

1.2.3 MPC for tracking piecewise constant references

For practical application purposes, model predictive controllers must
be able not only to regulate the system state to zero, but also to
handle non-zero target steady states which can be provided by a steady
state target optimizer [112]. The standard solution to this problem
consists in changing the system state coordinates, i.e. shifting the
system state to the desired steady state [114]. Unfortunately, the new
target steady state could be unreachable and, moreover, after such
shifting, feasibility may not be guaranteed. The latter problem can
be solved by re-calculating the control horizon and the terminal set
for the new target steady state, but the complexity of this procedure
does not allow one to perform the recalculation on-line. This problem
has motivated several solutions proposed in the literature [10, 16, 31,
58,121,141].

Recently, an effective MPC algorithm for tracking was proposed
in [6, 52, 88, 89]. The main ingredients are: i) the online computation
of the actual target to be really tracked at each time instant, ii) the
penalization of the deviation between the artificial steady state and the
desired one at the optimization problem level. The controller steers
the system to any admissible target steady state while satisfying the
system constraints; if the desired target is not admissible, the system
is steered to the closest admissible steady state.

The system to be controlled is

xk+1 = Axk +Buk

yk = Cxk +Duk
(1.13)

where xk ∈ X ⊆ Rn is the state, uk ∈ U ⊆ Rm is the input and yk ∈ Rm

is the output. The number of outputs is assumed to be equal to the
number of inputs only for the sake of simplicity: extensions to non-
square systems are shown in the provided references. Inputs and states
are subject to constraints defined by compact, convex polyhedra X and
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U containing the origin in their interior and defined by

X = {x ∈ Rn : Axx ≤ bx}

and
U = {u ∈ Rm : Auu ≤ bu}

Let ȳ be a generic set-point with (x̄, ū) representing the related steady-
state pair, i.e.[

x̄
ū

]
=

[
A− In B
C D

]−1 [
0
Im

]
ȳ = S−1

[
0
Im

]
ȳ = Mȳ =

[
Mx

Mu

]
ȳ (1.14)

where it is assumed that the system matrix S has full rank and there-
fore can be inverted. The set of all the admissible set-points is denoted
as

Y = {ȳ = Cx̄+Dū : x̄ ∈ X, ū ∈ U, (A− In)x̄+Bū = 0} ⊆ Rm

As in the regulation cases, an auxiliary state-feedback control law
and a proper terminal invariant set are required to ensure recursive
feasibility. For a generic target ȳ, the auxiliary control law is given by

u = K(x− x̄) + ū = Kx+
[
−K K

]
Mȳ = Kx+ Lȳ (1.15)

which guarantees that the system is steered to the steady-state (x̄, ū)
provided that A+BK is Schur. Since the system is subject to con-
straints, the main goal is to find a set such that the constraints are
fulfilled when the auxiliary control law is used. From now on, we de-
fine the set of all the λ-admissible set points ȳλ as

Yλ = {ȳλ = Cx̄λ +Dūλ : x̄λ ∈ λX, ūλ ∈ λU, (A− In)x̄λ +Būλ = 0}

with λ ∈ (0, 1].
To find this invariant set, consider the extended state q = (x, ȳλ)

and its closed loop dynamics when the auxiliary control law (1.15) is
used to reach x̄λ

qk+1 =

[
xk+1

ȳλ

]
=

[
A+BK BL

0 Im

] [
xk
ȳλ

]
= Aqqk (1.16)

Now select a positive scalar λ ≤ 1, and define a set Qλ given by all the
values of q such that: i) the steady state (x̄λ, ūλ) = Mȳλ lies inside the
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1.2. MODEL PREDICTIVE CONTROL 13

set λX × λU ⊆ X× U ; ii) the state x lies inside X and the auxiliary
control law (1.15) corresponding to x belongs to U. The set

Qλ = {q = (x, ȳλ) : u = Kx+ Lȳλ ∈ U, x ∈ X,
x̄λ = Mxȳ

λ ∈ λX, ūλ = Muȳ
λ ∈ λU} (1.17)

is a polyhedron defined by the inequalities
Ax 0
AuK AuL

0 AxMx

0 AuMu

[ xȳλ
]
≤


bx
bu
λbx
λbu

 (1.18)

The actual constraints for the system correspond to Q1, i.e. to Qλ

with λ = 1. The need of tightening the constraints for the steady-state
comes from the method used for computing the invariant set, as it
will be explained later. An invariant set Ωq for the extended state q,
i.e. such that AqΩq ⊆ Ωq, is said to be an admissible invariant set for
tracking if the extended state fulfills all the constraints, which means
Ωq ⊆ W1. The biggest among all possible admissible invariant sets for
tracking is said to be the maximal invariant set for tracking (MIST),
and it can be proved to be defined by [59]

Oq
∞ = {q : Aiqq ∈ Q1, ∀ i ≥ 0} (1.19)

Unfortunately, in general it is not possible to compute Oq
∞, because it

might be not finitely determined by a finite set of constraints. On the
contrary, choosing λ ∈ (0, 1), it is possible to state that the MIST with
respect to Qλ

Oq,λ
∞ = {q : Aiqq ∈ Qλ, ∀ i ≥ 0} (1.20)

is a finitely determined polytope, and therefore computable [59]. Note
that, since λ can be chosen arbitrarily close to 1, the obtained invariant
set is arbitrarily close to the real maximal invariant set Oq

∞.
After having chosen arbitrarily λ ∈ (0, 1), let’s assume that we want

to track a desired λ-admissible target ȳλ,d corresponding to the couple
(x̄λ,d, ūλ,d) = Mȳλ,d. The MPC for tracking considers as decision vari-
able an artificial λ-admissible reference ȳλ,a, with (x̄λ,a, ūλ,a) = Mȳλ,a,
and the deviation between the artificial steady state x̄λ,a and the de-
sired steady state x̄λ,d is penalized. This penalization guarantees that
x̄λ,a asymptotically reaches x̄λ,d. In order to present the control tech-
nique in the clearest possible way, we will consider only the case of
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λ-admissible targets. Anyway it is easy to show that, if we have to track
a generic non-λ-admissible target ȳd corresponding to (x̄d, ūd) = Mȳd,
possibly non-admissible for system (1.13) because outside the set Y,
the penalization of the distance between x̄λ,a and x̄d makes the system
evolve to a λ-admissible steady state such that its deviation with the
desired (although possibly unreachable) steady state x̄d is minimized.

The cost function over the prediction horizon N is

V (xk, ȳ
λ,d, uk:k+N−1, ȳ

λ,a) =
N−1∑
ν=0

(‖xk+ν − x̄λ,a‖2
Q + ‖uk+ν − ūλ,a‖2

R)

+ ‖xk+N − x̄λ,a‖2
P + ‖x̄λ,a − x̄λ,d‖2

T (1.21)

where the matrices Q ∈ Rn×n, R ∈ Rm×m, P ∈ Rn×n and T ∈ Rn×n

are all assumed to be positive definite. The input sequence over all the
prediction horizon u[k:k+N−1] and ȳλ,a, i.e., the target really tracked
at time k, are the decision variables, while the current state xk and
the desired target ȳλ,d are parameters of the cost function. The MPC
problem to be solved is

min
s,u[k:k+N−1]

V (xk, ȳ
λ,d, uk:k+N−1, ȳ

λ,a)

s.t.

xk+ν ∈ X ∀ ν = 0, . . . , N − 1

uk+ν ∈ U ∀ ν = 0, . . . , N − 1

(xk+N , ȳ
λ,a) ∈ Ow,λ

∞

xk+1 = Axk +Buk

(1.22)

The proofs of recursive feasibility of the MPC problem, of asymptotic
stability of the controller and of convergence of the closed-loop system
to ȳλ,d are based on three main steps.

1. Prove that, if at the initial time instant feasibility holds for a
certain value of ȳλ,a, with standard arguments it is possible to
demonstrate that keeping ȳλ,a constant at next time steps guar-
antees recursive feasibility while the system is steered towards
ȳλ,a.

2. Prove that, if the system reaches an equilibrium point
ȳλ,a 6= ȳλ,d, there exists a suboptimal input sequence that de-
creases the value of the cost function and that steers the sys-
tem from ȳλ,a to ȳλ,d while fulfilling all the constraints. In other
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words, the only closed-loop stable equilibrium point compatible
with the proposed minimization problem is the one corresponding
to ȳλ,a = ȳλ,d.

3. From the previous steps infer that the system asymptotically con-
verges to the unique equilibrium point for the closed-loop system,
where ȳλ,a = ȳλ,d.

The mathematical details, here skipped to avoid repetitions, can be
found in Chapter 6 for systems enlarged with integrators.

1.3 Invariant sets

Given an autonomous system of the form

xk+1 = Fxk (1.23)

where xk ∈ Rn and F is Schur, a set P is defined to be positively
invariant if Fxk ∈ P for all xk ∈ P, i.e., if FP ⊆ P. Assume that the
system is affected by a disturbance and is described by

xk+1 = Fxk + wk (1.24)

where wk ∈W ⊂ Rn is an unknown bounded external disturbance. A
set P is defined to be robustly positively invariant (RPI) if Fxk+wk ∈ P
for all xk ∈ P and wk ∈W, i.e., if FP⊕W ⊆ P.

Invariant sets play an important role in control of constrained sys-
tems [15]. In fact, if the constraints are violated at any time instant,
serious consequences may arise: for example, physical components
may be damaged or saturation may cause a loss of closed-loop sta-
bility [8,65,157]. Considering in particular the case of MPC, as shown
in the previous Sections, invariant sets can be required to prove recur-
sive feasibility of the control algorithm or to design robust controllers.

1.3.1 Polytopic approximation of the minimal robust invari-
ant set

For a system with dynamic equation (1.24), it is often necessary to
compute the minimal RPI (mRPI) P∞, which is the RPI set in Rn

that is contained in every closed RPI set of (1.24). For instance, this
need arises when a target set in robust time-optimal control has to
be computed [106], when the properties of the maximal RPI have to
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be studied [78] or when robust predictive controllers have to be de-
signed [81,107] (as explained in Section 1.2.2).

Consider the discrete-time, linear, time-invariant system (1.24),
where it is assumed that matrix F ∈ Rn×n is Schur and set W is a
polytope containing the origin in its interior. It is possible to demon-
strate that the mRPI set P∞ exists, is compact, contains the origin in
its interior and is given by [78]

P∞ =
∞⊕
i=0

F iW (1.25)

Since P∞ is a Minkowski sum of infinitely many terms, it is generally
impossible to obtain an explicit characterization of it. However, if there
exist an integer φ ≥ 1 and a scalar α ∈ [0, 1) such that F φ = αIn, then
P∞ = (1− α)−1

⊕φ−1
i=0 F

iW [78]. Therefore, if F is nilpotent with index
φ, i.e., if F φ = 0, it is possible to compute

P∞ =

φ−1⊕
i=0

F iW (1.26)

In [131, 132] the assumption that there exist an integer φ ≥ 1 and
a scalar α ∈ [0, 1) such that F φ = αIn is relaxed, and replaced by the
assumption that there exists an integer φ ≥ 1 and a scalar α ∈ [0, 1)
that satisfy F φW ⊆ αW. In this case we can no longer compute P∞ in
a finite number of steps, but we can solve the problem of computing
an RPI set P(α, φ) that contains the mRPI set and that is as close as
desired to it. In fact, it can be proved that

P(α, φ) = (1− α)−1

φ−1⊕
i=0

F iW (1.27)

is a convex, compact, polytopic RPI set of (1.24) containing P∞. The
approximation error decreases as α increases. Summarizing, the com-
putation of the polytopic RPI outer approximation to the mRPI can
be done as described in the next algorithm.
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Algorithm 1.1 Computation of the RPI outer approximation
of the mRPI

1. Choose arbitrarily α ∈ [0, 1).

2. Starting from φ = 1, increase the integer φ until a value φ ≥ 1 is
found such that F φW ⊆ αW.

3. Evaluate P(α, φ) using (1.27).

Note that, due to the need of resorting to Minkowski sums, finding
the approximation to the mRPI set can result in an extremely com-
putationally demanding procedure. Finally, it is worth recalling that
the same authors extended the approach also to continuous-time sys-
tems [133].

1.3.2 Maximal output admissible set

The standard MPC algorithms for regulation and tracking presented
above usually require the computation of invariant terminal sets re-
lated to the auxiliary state-feedback control law and guaranteeing that
constraints on states, inputs and outputs are fulfilled during the evo-
lution of the system. An important contribution to the computation
of such invariant set is presented in [59], where the notion of maximal
output admissible set (MOAS) is introduced.

Consider an autonomous, discrete-time, time-invariant linear sys-
tem

xk+1 = Fxk

yk = Cxk
(1.28)

where xk ∈ Rn is the state and the output yk ∈ Rp has to satisfy
an output constraint yk ∈ Y for all k ≥ 0. For such a system, a
set O ⊂ Rn is said to be output admissible if x0 ∈ O implies that
yk ∈ Y for all k > 0, i.e. if CF kx0 ∈ Y for all k > 0. The maximal
output admissible set O∞ is the biggest one, namely the set of all initial
conditions x0 for which CF kx0 ∈ Y holds for all k > 0. We underline
that output admissible sets are not necessarily positively invariant,
but it is easy to show that the maximal output admissible set is always
positively invariant [95]. In addition, we stress the fact that computing
the MOAS for system (1.28) can solve several different problems. For



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 18 — #34 i
i

i
i

i
i

18 CHAPTER 1. INTRODUCTION

instance, if a terminal set for standard MPC with constraints x ∈ X
and u ∈ U is required, one can apply the results of [59] to the system

xk+1 = (A+BK)xk

yk =

[
In
K

]
xk

(1.29)

imposing yk = (xk, uk) ∈ Y = X× U.
If Y = {y ∈ Rm : f ′iy ≤ gi, i ∈ I} is a convex polytope containing

the origin and, referring to system (1.28), the pair (F,C) is observable
and the matrix F is strictly or simply stable (eigenvalues with abso-
lute value equal to one are admitted), then O∞ results to be convex,
bounded and a neighbor of the origin. Moreover, if F is asymptotically
stable, then O∞ is described by a finite set of constraints and can be
computed as follows.

Algorithm 1.2 Computation of the MOAS

1. Initialize t = 0.

2. For each i ∈ I, maximize Ji(x) = f ′iCF
t+1x with respect to x sub-

ject to f ′jCF hx ≤ gj for all j ∈ I and for all h = 0, 1, . . . , t. De-
note with J∗i the maximum values of Ji(x).

3. If J∗i ≤ gi for all i ∈ I, then stop and let t∗ = t. Otherwise, set
t = t+ 1 and go to step 2.

4. Define the maximal output admissible set as

O∞ = {x ∈ Rn : f ′iCF
tx ≤ gi, i ∈ I, 0 ≤ t ≤ t∗}

If the pair (F,C) is non-observable, it is possible to show that
O∞(F,C,Y) = O∞(F1, C1,Y)× Rn−q, where the observable pair (F1, C1)
can be obtained changing the state coordinates so that (F,C) takes the
form

C =
[
C1 0

]
, F =

[
F1 0
F3 F2

]
being C1 ∈ Rp×q, F1 ∈ Rq×q, F2 ∈ R(n−q)×(n−q) and F3 ∈ R(n−q)×q. O∞
turns out to be a set with infinite extent in those directions belonging
to the unobservable subspace.
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A second important case is the one where matrix F is not asymp-
totically stable but has d simple eigenvalues in 1. In this case, one can
always find a coordinates change which transforms (F,C) in the form

C =
[
CS CL

]
, F =

[
FS 0
0 Id

]
where FS ∈ R(n−d)×(n−d) is asymptotically stable and the partitioning
of C and F is dimensionally consistent. Then define

Ĉ =

[
CL CS
CL 0

]
and Y(ε) = {y ∈ Rp : f ′iy ≤ gi − ε, i ∈ I}, where ε can be arbitrarily
chosen such that 0 < ε ≤ ε0 being ε0 = −max{−gi, i ∈ I}. It can
be demonstrated that O∞(F, Ĉ,Y × Y(ε)) is finitely determined and
contained in O∞(F,C,Y). Thus, O∞(F, Ĉ,Y × Y(ε)) can be used to
approximate O∞(F,C,Y), and the precision of the approximation in-
creases as ε→ 0. It is easy to see that using the set (1.18) with λ < 1
for computing the MIST, as explained in Section 1.2.3, is equivalent
to adopting the set Y× Y(ε) with ε > 0.

1.4 Distributed and decentralized MPC

In the last years, the size of systems to be controlled is continuously
increasing, mainly due to the advances in technology and telecommu-
nications. Common examples are smart electrical grids, networks of
sensors and actuators, big chemical plants and water or traffic manag-
ing systems [22,25,110,115,116,161,163,164].

Since the sixties, researchers have been developing decentralized and
distributed methods with guaranteed closed-loop stability [37, 38, 94,
151, 152, 154] to overcome the difficulties that arise when centralized
techniques are applied to large-scale systems. Specifically, non-trivial
problems can be caused, for instance, by possible limitations due to
computing capabilities or communication bandwidth. Reliability and
robustness of the overall control system could represent additional rea-
sons for avoiding centralized solutions and for adopting distributed or
decentralized ones. In the latter cases, in fact, the original system is
controlled by several local agents, each one taking into account only a
small portion of the whole system.
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In this thesis, we assume that the decomposition of the initial large-
scale system into several small-scale interacting subsystems is given.
In-depth analysis on how to decompose the overall input and output
vectors into input-output pairs or groups while minimizing mutual in-
fluences among subsystems can be found in [26, 61, 66–68, 75, 117, 136,
142, 156, 171]. Note that sometimes, in order to obtain a proper de-
composition, it can be useful to apply state transformations or permu-
tations to the initial system [94,152,154].

In the framework of distributed and decentralized control, an in-
creasing attention has been devoted to algorithms based on optimiza-
tion and receding horizon control. When using these techniques, in
fact, the values over all the prediction horizon of inputs, states and
output intrinsically computed at each sampling time by a local con-
troller designed with MPC can be used as data to be broadcast to the
neighbors. This information can simplify the design of a distributed
control system and can allow one to obtain performances close to those
of a centralized controller. In the following Sections, some control ar-
chitectures proposed for decentralized and distributed MPC will be
listed. We refer to [21,136,144] for additional details.

Techniques for distributed solution of centralized MPC [46, 55, 93,
170] will not be covered: in these cases, the optimization problem is
decomposed into smaller subproblems and, at each sampling time, the
local controllers solve the centralized optimization problem using itera-
tive decomposition algorithms (e.g., dual decomposition, price coordi-
nation). Optimality and feasibility are generally guaranteed only when
the convergence of the decomposition algorithm (within each sampling
time) is achieved.

1.4.1 Decentralized control based on MPC

Often large-scale systems are controlled by resorting to decentralized
techniques. In these cases, a non-overlapping decomposition of inputs
u and controlled outputs y is needed, in order to group such variables
into disjoint sets. Then, the obtained sets are coupled to produce
non-overlapping pairs (or groups, if multivariable local control systems
are used). Eventually, for each input-output pair (or group), a local
controller is designed with the aim of regulate its own subsystem in a
completely independent fashion. In Fig. 1.1, an example of decentral-
ized control for a system constituted by two subsystems is given. It can
be seen that the dynamics of each subsystem is influenced by the inputs
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Figure 1.1: Decentralized control scheme of a system constituted by two subsys-
tems.

and the states of the other one. In designing decentralized controllers,
the interactions due to coupling inputs and/or states are neglected,
so that the synthesis of the control system becomes trivial. On the
other hand, asymptotic stability of the overall large-scale system can
be attained only when the interactions are weak. Strong (neglected)
coupling terms, in fact, can lead to poor performances and instability
of the whole system, as explained, e.g., in [41,169], where the effects of
fixed modes is studied. Conditions to obtain stability using decentral-
ized controllers can be found in [9,40,70–72,94,143,145,152,153,155].

As for decentralized predictive controllers, only few contributions
can be found in the literature. This is probably due to the fact that
extending to the decentralized case the standard stability analysis of
the centralized MPC, based on the idea of using the optimal cost as
a Lyapunov function, is not an easy task. Examples of decentralized
MPC where the local control law have been computed by neglecting
the coupling terms among subsystems are reported in [1,45]. In [102], a
decentralized MPC control method for nonlinear systems is presented.
The dynamics is assumed to be affected by an external decaying distur-
bance, and stability is guaranteed, despite the effects of the exogenous
disturbance and of the interactions among subsystems, by including a
contraction constraint in the optimization problem. Coupling terms
among subsystems are seen as disturbances to be rejected via a robust
approach in [130], where Input to State Stability (ISS) [77] is used
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to prove stability. Also in [138, 139] interactions among subsystems
are considered as disturbances to be rejected using the robust tube-
based MPC algorithm. Linear discrete-time systems in a plug-and-play
framework are considered: specifically, the problem of plugging subsys-
tems into (or unplugging subsystems from) an existing plant without
spoiling overall stability and constraint satisfaction is addressed.

1.4.2 Distributed control based on MPC

In Fig. 1.2 an example of a distributed controller is depicted. The dif-
ference with respect to the decentralized case is that some information
is transmitted among the local regulators. In this way, each controller
has some information about the behaviour of the neighbor systems. As
already stated, when MPC is used to design the local controllers, the
information exchange usually consists of the predicted control or state
variables over the prediction horizon.

A first classification of distributed MPC algorithms can be made
on the basis of the communication network topology: fully connected
algorithms require information transmission from any local regulator
to all the others; partially connected algorithms, on the contrary, are
based on information transmission from any local regulator to a certain
subset of the neighboring ones. In [137] a discussion of positive and neg-
ative sides of partially connected algorithms can be found: generally, it
is possible to say that they are suited for weakly coupled subsystems,
because in this case a reduction in the information exchange does not
greatly affect the performance of the system. A second classification
can be made based on the communication protocol: noniterative algo-
rithms are characterized by a single transmission of information within
each sampling time, while iterative algorithms allow local controllers
to transmit and receive information many times within the sampling
time. Obviously, local control systems working with an iterative trans-
mission protocol can take decisions using an higher amount of informa-
tion: often, iterations are even used for allowing a global consensus on
the actions to be taken within the sampling interval [166,167]. About
this point, in fact, we can distinguish between independent, or non-
cooperating, algorithms, where each local regulator aims to minimize
a local performance index, and cooperating algorithms, where each
local controller minimizes a global cost function.

Several distributed solutions based on MPC have been proposed
in the literature. State feedback non-cooperating, noniterative al-
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Figure 1.2: Distributed control scheme of a system constituted by two subsystems.

gorithms for discrete-time linear system are presented in [21], while
in [43,83] independent, iterative, fully connected methods are described
for discrete-time unconstrained linear systems represented by input-
output models. An iterative, cooperating method for discrete-time lin-
ear systems is shown in [166]: interestingly, a global optimum is reached
when the iterative procedure converges, but recursive feasibility and
closed-loop stability are anyway guaranteed also if the information ex-
change is stopped at any intermediate iteration. In [2–4] a partially
connected, noniterative, non-cooperating algorithm for discrete-time
linear systems is described. Communication failures are taken into con-
sideration, and conditions for a-posteriori stability analysis are given
also in case of malfunctions. The control technique proposed in [73] can
be classified as partially connected, noniterative and non-cooperating
as well. It is suited for nonlinear, discrete-time systems and it is based
on the idea of considering the effects of the interconnections among
the subsystems as disturbances. Each local controller transmits the
values of the predicted state trajectories so that the others can predict
the disturbances they have to reject. The control inputs are computed
using a min-max approach where local cost functions in worst-case
scenario are minimized. Convergence to a set is proved. Another non-
cooperating, noniterative, partially connected algorithm, this time for
nonlinear continuous-time systems, is presented in [44]. Proofs of feasi-
bility and convergence are based on the theory explained in [109], and
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rely on the assumptions that the interactions among subsystems are
weak and that the actual inputs and states trajectories do not differ
too much from the predicted values. The latter requirement is imposed
with a proper consistency constraint added to the optimization prob-
lem. In [50, 140] two different non-cooperating, noniterative, partially
connected algorithms for linear discrete-time systems are proposed. In
both cases, interactions among subsystems are considered as distur-
bances to be rejected, and to this end the robust MPC based on tubes
is exploited. Command governors strategies for distributed supervision
and control of large-scale systems are proposed in [23, 24, 162], where
dynamically coupled interconnected linear systems possibly affected
by bounded disturbances and subject to local and global constraints
are considered. Finally, an experimental implementation of distributed
MPC is described in [108].
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2
Distributed Predictive Control

In this chapter the state feedback Distributed Predictive Control (DPC)
algorithm originally proposed in [50] is sketched and extended. The
overall system to be controlled is assumed to be composed by a num-
ber of interacting subsystems Si with non-overlapping states, linear
dynamics and possible state and control constraints. The dynamics
of each subsystem can depend on the state and input variables of the
other subsystems, and joint state and control constraints can be con-
sidered. A subsystem Si is said to be a neighbor of subsystem Sj if the
state and/or control variables of Si influence the dynamics of Sj or if a
joint constraint on the states and/or on the inputs of Si and Sj must
be fulfilled.

DPC has been developed with the following rationale: at each sam-
pling time, the subsystem Si sends to its neighbors information about
its future state x̃i and input ũi reference trajectories, and guarantees
that its actual trajectories xi and ui lie within certain bounds in the
neighborhood of the reference ones. Therefore, these reference trajec-
tories are known exogenous variables for the neighboring subsystems
to be suitably compensated, while the differences xi − x̃i, ui − ũi are
regarded as unknown bounded disturbances to be rejected. In this way,
the control problem is set in the framework of robust MPC, and the
tube-based approach inspired by [107] is used to formally state and
solve a robust MPC problem for each subsystem.

The highlights of DPC are the following.

• It is not necessary for each subsystem to know the dynamical
models governing the other subsystems (not even the ones of its

27
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neighbors), leading to a non-cooperative approach.

• The transmission of information is limited (DPC is non-iterative
and requires a neighbor-to-neighbor, i.e., partially connected, com-
munication network), in that each subsystem needs only to know
the reference trajectories of its neighbors.

• Its rationale is similar to the MPC algorithms often employed in
industry: reference trajectories, tailored on the dynamics of the
system under control, are used.

• Convergence and stability properties are guaranteed under mild
assumptions.

• The method can be extended to cope with the output feedback
case.

2.1 Statement of the problem and main assumption

Consider a linear, discrete-time system described by the following state-
space model:

xk+1 = Axk + Buk (2.1)

where xk ∈ X ⊆ Rn is the state and uk ∈ U ⊆ Rm is the input, both
subject to constraints.

Letting xk = (x
[1]
k , . . . , x

[M ]
k ), uk = (u

[1]
k , . . . , u

[M ]
k ), system (2.1) can

be decomposed in a set of M dynamically coupled non-overlapping
subsystems, each one described by the following state-space model:

x
[i]
k+1 = Aiix

[i]
k +Biiu

[i](k) +
M∑

j=1,j 6=i

{Aijx[j]
k +Biju

[j]
k } (2.2)

where x[i]
k ∈ Xi ⊆ Rni , n =

∑M
i=1 ni, and u

[i]
k ∈ Ui ⊆ Rmi ,m =

∑M
i=1 mi,

are the state and input vectors of the i-th subsystem Si (i = 1, . . . ,M),
and the sets Xi and Ui are convex neighborhoods of the origin.

The subsystem Sj is said to be a dynamic neighbor of the subsystem
Si if and only if the state or the input of Sj affects the dynamics of Si
i.e., iff Aij 6= 0 or Bij 6= 0. The symbol Ni denotes the set of dynamic
neighbors of Si (which excludes i).

Note that the matrices A and B of system (2.1) have block entries
Aij and Bij respectively, and that X =

∏M
i=1 Xi and U =

∏M
i=1 Ui are

convex by convexity of Xi and Ui, respectively.
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The states and inputs of the subsystems can be subject to coupling
static constraints described in collective form by

Hs(xk,uk) ≤ 0

where s = 1, . . . , nc. Hs is a constraint on Si if x[i] and/or u[i] are ar-
guments of Hs, while Ci = {s ∈ {1, . . . , nc} : Hs is a constraint on i}
denotes the set of constraints on Si. Subsystem Sj is a constraint neigh-
bor of subsystem Si if there exists s̄ ∈ Ci such that x[j] and/or u[j] are
arguments of Hs̄, while Hi is the set of the constraint neighbors of Si.
Finally, for all s ∈ Ci, a function is defined hs,i(x[i], u[i],x,u) = Hs(x,u),
where x[i] and u[i] are not arguments of hs,i(a, b, ·, ·). When X = Rn,
U = Rm and nc = 0 the system is unconstrained. In general Sj is
called a neighbor of Si if j ∈ Ni ∪ Hi. In line with these definitions,
the communication topology which will be assumed from now on is
a neighbor-to-neighbor one. Indeed, we require that information is
transmitted from subsystem Sj to subsystem Si if Sj is a neighbor of
Si.

The algorithm proposed in this Chapter is based on MPC concepts
and aims to solve, in a distributed fashion, the regulation problem for
the described network of subsystems, while guaranteeing constraint
satisfaction. Towards this aim, the following main assumption on de-
centralized stabilizability is introduced.

Assumption 2.1 There exists a block diagonal matrix
K =diag(K1, . . . , KM), with Ki ∈ Rmi×ni, i = 1, . . . ,M such that:

i) A + BK is Schur.

ii) Fii = (Aii +BiiKi) is Schur, i = 1, . . . ,M .

�

2.2 Description of the approach

In DPC, at any time instant k, each subsystem Si transmits to the
subsystems having Si as neighbor its future state and input reference
trajectories (to be later defined) x̃[i]

k+ν and ũ
[i]
k+ν , ν = 0, . . . , N − 1,

respectively, referred to the whole prediction horizon N . Moreover,
by adding suitable constraints to its MPC formulation, Si is able to
guarantee that, for all k ≥ 0, its real trajectories lie in specified time
invariant neighborhoods of the reference trajectories, i.e, x[i]

k ∈ x̃
[i]
k ⊕Ei
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and u
[i]
k ∈ ũ

[i]
k ⊕ Eui , where 0 ∈ Ei and 0 ∈ Eui . In this way, the

dynamics (2.2) of Si can be reformulated as

x
[i]
k+1 = Aiix

[i]
k +Biiu

[i]
k +

∑
j∈Ni

(Aijx̃
[j]
k +Bijũ

[j]
k ) + w

[i]
k (2.3)

where

w
[i]
k =

∑
j∈Ni

{Aij(x[j]
k − x̃

[j]
k ) +Bij(u

[j]
k − ũ

[j]
k )} ∈Wi (2.4)

and
Wi =

⊕
j∈Ni

{AijEj ⊕BijEuj } (2.5)

As already discussed, the main idea behind DPC is that each subsys-
tem solves a robust MPC optimization problem considering that its dy-
namics is given by (2.3), where the term

∑
j∈Ni(Aijx̃

[j]
k+ν +Bijũ

[j]
k+ν) can

be interpreted as an input known in advance over the prediction hori-
zon ν = 0, . . . , N − 1 to be suitably compensated and w[i]

k is a bounded
disturbance to be rejected.

By definition, w[i]
k represents the uncertainty of the future actions

that will be carried out by the dynamic neighbors of subsystem Si.
Therefore the local MPC optimization problem to be solved at each
time instant by the controller embedded in subsystem Si must min-
imize the cost associated to Si for any possible uncertainty values,
i.e., without having to make any assumption on strategies adopted by
the other subsystems, provided that their future trajectories lie in the
specified neighborhood of the reference ones. Such conservative but
robust local strategies adopted by each subsystem can be interpreted,
from a dynamic non-cooperative game theoretic perspective, as max-
min strategies, i.e., the strategies that maximize the worst case utility
of Si (for more details see, e.g., [150]).

To solve local robust MPC problems (denoted i-DPC problems), the
algorithm proposed in [107] has been selected in view of the facts that
no burdensome min-max optimization problem is required to be solved
on-line, and that it naturally provides the future reference trajectories
x̃

[i]
k and ũ

[i]
k , as it will be clarified later in this chapter. According

to [107], a nominal model of subsystem Si associated to equation (2.3)
must be defined to compute predictions

x̂
[i]
k+1 = Aiix̂

[i]
k +Biiû

[i]
k +

∑
j∈Ni

(Aijx̃
[j]
k +Bijũ

[j]
k ) (2.6)
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while the control law to be used for Si is

u
[i]
k = û

[i]
k +Ki(x

[i]
k − x̂

[i]
k ) (2.7)

where Ki, i = 1, . . . ,M , must be chosen to satisfy Assumption 2.1.
Letting z[i]

k = x
[i]
k − x̂

[i]
k , in view of (2.3), (2.6) and (2.7) one has

z
[i]
k+1 = Fiiz

[i]
k + w

[i]
k (2.8)

where w[i]
k ∈ Wi. Since Wi is bounded and Fii is Schur, there exists

a robust positively invariant (RPI) set Zi for (2.8) such that, for all
z

[i]
k ∈ Zi, then z[i]

k+1 ∈ Zi. Given Zi, define two sets, neighborhoods of
the origin, ∆Ei and ∆Eui , i = 1, . . . ,M such that ∆Ei ⊕ Zi ⊆ Ei and
∆Eui ⊕KiZi ⊆ Eui , respectively.

Finally, define the function ĥs,i such that the constraint
ĥs,i(x̂

[i]
k , û

[i]
k , x̃k, ũk) ≤ 0 guarantees that hs,i(x

[i]
k , u

[i]
k ,x

∗
k,u

∗
k) ≤ 0 for all

x
[i]
k ∈ x̂

[i]
k ⊕ Zi, u

[i]
k ∈ û

[i]
k ⊕KiZi, x∗k ∈ x̃k ⊕

∏M
i=1 Ei, and

u∗k ∈ ũk ⊕
∏M

i=1 Eui .

2.2.1 The online phase: the i-DPC optimization problems

At any time instant k, we assume that each subsystem Si knows the fu-
ture reference trajectories of its neighbors x̃[j]

k+ν , ũ
[j]
k+ν , ν = 0, . . . , N − 1,

j ∈ Ni ∪Hi ∪ {i} and, with reference to its nominal system (2.6) only,
solves the following i-DPC problem.

min
x̂
[i]
k ,û

[i]
[k:k+N−1]

V N
i (x̂

[i]
k , û

[i]
[k:k+N−1]) =

N−1∑
ν=0

(‖x̂[i]
k+ν‖

2
Qoi

+‖û[i]
k+ν‖

2
Roi

)+‖x̂[i]
k+N‖

2
P oi

(2.9)
subject to (2.6), to

x
[i]
k − x̂

[i]
k ∈ Zi (2.10)

to

x̂
[i]
k+ν − x̃

[i]
k+ν ∈ ∆Ei (2.11)

û
[i]
k+ν − ũ

[i]
k+ν ∈ ∆Eui (2.12)

x̂
[i]
k+ν ∈ X̂i ⊆ Xi 	 Zi (2.13)

û
[i]
k+ν ∈ Ûi ⊆ Ui 	KiZi (2.14)
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for ν = 0, . . . , N − 1, to the coupling state constraints

ĥs,i(x̂
[i]
k , û

[i]
k , x̃k, ũk) ≤ 0 (2.15)

for all s ∈ Ci and to the terminal constraint

x̂
[i]
k+N ∈ X̂F

i (2.16)

Note that constraints (2.10), (2.11) and (2.12) are used to guarantee the
boundedness of the equivalent disturbance w[i]

k . In fact in the i-DPC
problem, for ν = 0, constraints (2.10), (2.11), and (2.12) imply that
x

[i]
k − x̃

[i]
k ∈ ∆Ei ⊕ Zi ⊆ Ei and u[i]

k − ũ
[i]
k ∈ ∆Eui ⊕KiZi ⊆ Eui , which in

turns guarantees that w[i]
k ∈Wi. This, in view of the invariance prop-

erty of (2.8), implies that x[i]
k+1 − x̂

[i]
k+1 ∈ Zi and, since (2.11) and (2.12)

are imposed over the whole prediction horizon, it follows by induction
that w[i]

k+ν ∈Wi for all ν = 0, . . . , N − 1 and x
[i]
k+ν − x̂

[i]
k+ν ∈ Zi for all

ν = 1, . . . , N .
In (2.9), Qo

i , Ro
i , and P o

i are positive definite matrices and represent
design parameters, whose choice is discussed in Section 2.4 to guarantee
stability and convergence properties, while X̂F

i in (2.16) is a nominal
terminal set whose properties will be discussed in the next Section.

At time k, let the pair (x̂
[i]
k|k, û

[i]
[k:k+N−1]|k) be the solution to the

i-DPC problem and define by û[i]
k|k the input to the nominal system (2.6).

Then, according to (2.7), the input to the system (2.2) is

u
[i]
k = û

[i]
k|k +Ki(x

[i]
k − x̂

[i]
k|k) (2.17)

Denoting by x̂[i]
k+ν|k the state trajectory of system (2.6) stemming from

x̂
[i]
k|k and û

[i]
k:k+N−1|k, at time k it is also possible to compute x̂[i]

k+N |k and
Kix̂

[i]
k+N |k. In DPC, these values incrementally define the trajectories

of the reference state and input variables to be used at the next time
instant k + 1, that is

x̃
[i]
k+N = x̂

[i]
k+N |k , ũ

[i]
k+N = Kix̂

[i]
k+N |k (2.18)

Note that the only information to be transmitted consists in the ref-
erence trajectories update (2.18). More specifically, at time step k,
subsystem Si computes x̃[i]

k+N and ũ[i]
k+N according to (2.18) and trans-

mits their values to all the subsystems having Si as neighbor, before
proceeding to the next time step.
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2.3 Convergence results and properties of DPC

In order to state the main theoretical contribution of the paper, define
the set of admissible initial conditions x0 = (x

[1]
0 , . . . , x

[M ]
0 ) and initial

reference trajectories x̃[j]
[0:N−1], ũ

[j]
[0:N−1], for all j = 1 . . . ,M as follows.

Definition 2.1 Letting x = (x[1], . . . , x[M ]), denote by

XN := {x : if x[i]
0 = x[i] for all i = 1, . . . ,M

then ∃(x̃[1]
[0:N−1], . . . , x̃

[M ]
[0:N−1]), (ũ

[1]
[0:N−1], . . . , ũ

[M ]
[0:N−1]),

(x̂
[1]
0/0, . . . , x̂

[M ]
0/0 ), (û

[1]
[0:N−1], . . . , û

[M ]
[0:N−1]) such that (2.2)

and (2.10)-(2.16) are satisfied for all i = 1, . . . ,M}

the feasibility region for all the i-DPC problems. Moreover, for each
x ∈ XN , let

X̃x := {(x̃[1]
[0:N−1], . . . , x̃

[M ]
[0:N−1]), (ũ

[1]
[0:N−1], . . . , ũ

[M ]
[0:N−1]) :

if x[i]
0 = x[i] for all i = 1, . . . ,M then ∃

(x̂
[1]
0/0, . . . , x̂

[M ]
0/0 ), (û

[1]
[0:N−1], . . . , û

[M ]
[0:N−1]) such that (2.2)

and (2.10)-(2.16) are satisfied for all i = 1, . . . ,M}

be the region of feasible initial reference trajectories.

Assumption 2.2 Letting X̂ =
∏M

i=1 X̂i, Û =
∏M

i=1 Ûi and
X̂F =

∏M
i=1 X̂F

i , it holds that:

i) Ĥ [i]
s (x̂) ≤ 0 for all x̂ ∈ X̂F , for all s ∈ Ci, for all i = 1, . . . ,M ,

where Ĥ [i] is such that Ĥ [i]
s (x̂) = ĥs,i(x̂

[i], Kaux
i x̂[i], x̂,Kauxx̂) for

all s ∈ Ci, for all i = 1, . . . ,M .

ii) X̂F ⊆ X̂ is an invariant set for x̂+ = (A + BKaux)x̂;

iii) û = Kauxx̂ ∈ Û for any x̂ ∈ X̂F ;

iv) for all x̂ ∈ X̂F and, for a given constant κ > 0,

VF
(
x̂+
)
−VF (x̂) ≤ −(1 + κ)l(x̂, û) (2.19)

where VF (x̂) =
∑M

i=1 ‖x̂[i]‖2
P oi

and l(x̂, û) =
∑M

i=1(‖x̂[i]‖2
Qoi

+‖û[i]‖2
Roi

).

�
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In Section 2.4 we will show how to properly select matrices Qo
i , Ro

i ,
and P o

i to guarantee stability and convergence properties. It will also
be explained how to choose the terminal set X̂F

i in order to satisfy
Assumption 2.2.

Assumption 2.3 Given the sets Ei, Eui , and the RPI sets Zi for
equation (2.8), there exists a real positive constant ρ̄E > 0 such that
Zi⊕B(ni)

ρ̄E (0) ⊆ Ei and KiZi⊕B(mi)
ρ̄E (0) ⊆ Eui for all i = 1, . . . ,M , where

B(dim)
ρ̄E (0) is a ball of radius ρ̄E > 0 centered at the origin in the Rdim

space. �

Proper ways to select the design parameters satisfying Assumption 2.3
are presented in the following section.

Theorem 2.1 Let Assumptions 2.1-2.3 be satisfied and let ∆Ei and
∆Eui be neighborhoods of the origin satisfying ∆Ei ⊕ Zi ⊆ Ei and
∆Eui ⊕KiZi ⊆ Eui . Then, for any initial reference trajectories in X̃x0,
the trajectory xk, starting from any initial condition x0 ∈ XN , asymp-
totically converges to the origin while fulfilling all the constraints. �

Proofs can be found in the Appendix.

2.3.1 Properties of DPC

Some further properties of DPC are in order.
Optimality issues. Global optimality of the interconnected closed

loop system cannot be guaranteed using DPC. This, on the one hand,
is due to the inherent conservativeness of robust algorithms and, on
the other hand, is due to the game theoretic characterization of DPC.
Namely, the provided solution to the control problem can be cast as a
max-min solution of a dynamic non-cooperative game (see, e.g., [150])
where all the involved subsystems aim to optimize local cost functions
which are different from each other: therefore, different and possibly
conflicting goals inevitably imply suboptimality. Differently from sub-
optimal distributed MPC algorithms discussed in [136], whose solutions
can be regarded as Nash solutions of non-cooperative games and which
possibly lead to instability of the closed-loop system, the convergence
of the DPC algorithm can be guaranteed, see Theorem 2.1.

Robustness. As already discussed, the algorithm presented in this
chapter basically relies on the tube-based robust MPC algorithm pro-
posed in [107]. Namely, robustness is here used to cope with uncertain-
ties on the input and state trajectories of the neighboring subsystems.
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More specifically, the difference between the reference trajectories of
the neighboring subsystems and the real ones is regarded as a distur-
bance, which is known to be bounded in view of suitable constraints
imposed in the optimization problem. Anyway, the described approach
can be naturally extended for coping also with standard additive dis-
turbances in the interconnected models (2.2), i.e., in case the intercon-
nected perturbed systems are described by the dynamic equations

x
[i]
k+1 = Aiix

[i]
k +Biiu[i](k) +

∑
j∈Ni

{Aijx[j]
k +Biju

[j]
k }+ d

[i]
k (2.20)

where d[i]
k ∈ Di ⊂ Rni is an unknown bounded disturbance and the set

Di is a convex neighborhood of the origin. In this case, we have again

x
[i]
k+1 = Aiix

[i]
k +Biiu

[i]
k +

∑
j∈Ni

(Aijx̃
[j]
k +Bijũ

[j]
k ) + w

[i]
k (2.21)

where this time the disturbance acting on subsystem i is

w
[i]
k =

∑
j∈Ni

{Aij(x[j]
k − x̃

[j]
k ) +Bij(u

[j]
k − ũ

[j]
k )}+ d

[i]
k ∈Wi (2.22)

and
Wi =

⊕
j∈Ni

{AijEj ⊕BijEuj } ⊕ Di (2.23)

The overall disturbed collective system, letting dk = (d
[1]
k , . . . , d

[M ]
k )

with dk ∈ D =
∏M

i=1 Di ⊂ Rn can be written as

xk+1 = Axk + Buk + dk (2.24)

and can be steered to a neighboring of the origin.
Output feedback. The approach that has been previously de-

scribed for coping with unknown exogenous additive disturbances has
been employed in [49] for designing a DPC algorithm for output feed-
back control. Specifically, assume that the input and output equations
of the system are the following

x
o[i]
k+1 = Aiix

o[i]
k +Biiu

[i]
k +

∑
j∈Ni{Aijx

o[j]
k +Biju

[j]
k }

y
[i]
k = Cix

o[i]
k

(2.25)

where the state which is not directly available is here denoted as xo[i]k

for reasons that will become clearer later on. Denote with x
[i]
k the
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estimate of xo[i]k , for all i = 1, . . . ,M . To estimate the state of (2.25)
we employ a decentralized Luenberger-like observer of the type

x
[i]
k+1 = Aiix

[i]
k +Biiu

[i]
k+1+

∑
j∈Ni

{Aijx[j]
k +Biju

[j]
k+1}−Li(y

[i]
k −Cix

[i]
k ) (2.26)

Assume that the decentralized observer is convergent i.e., A + LC is
Schur, where C = diag(C1, . . . , CM) and L = diag(L1, . . . , LM). Under
this assumption it is possible to guarantee that the estimation error
for each subsystem is bounded, i.e., xo[i]k − x

[i]
k ∈ Σi for all i = 1, . . . ,M .

In this way (2.26) exactly corresponds to the perturbed system (2.21),
where d[i]

k = −LiCi(xo[i]k − x
[i]
k ) is regarded as a bounded disturbance,

i.e., d[i]
k ∈ Di = −LiCiΣi. From this point on, the output feedback

control problem is solved as a robust state feedback problem applied
to the system (2.21). Details on this approach can be found in [49],
where a condition and a constructive method are derived to compute
the sets Σi in such a way that Σ =

∏M
i=1 Σi is an invariant set for the

interconnected observer error.
Tracking. As it will be shown in the next chapters, the DPC

method can be extended also to the problem of tracking desired output
signals.

2.4 Implementation issues

2.4.1 The discretization method

In most of the control applications, the model of the plant is developed
in the continuous-time starting from physical laws. In this framework,
the sparse structure of the model clearly represents physical connec-
tions (such as mass or energy flows) among the subsystems, each one
described by the linear (or linearized) model

ẋ[i](t) = Aciix
[i](t) +Bc

iiu
[i](t) +

∑
j∈Ni

{Acijx[j](t) +Bc
iju

[j](t)} (2.27)

where the notation is coherent (mutatis mutandis) with the one adopted
in (2.2). Unfortunately, the sparse, zero-nonzero pattern of the system
(zero-nonzero matrices Acij, Bc

ij) is lost when the exact ZOH (Zero-
Order-Hold), Backward Euler, or bilinear transformations are used to
discretize the system, while it is preserved only by the Forward Euler
(FE) transformation. However, it is well known that with FE some
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important properties of the underlying continuous time system can be
lost; for example stability is maintained only for very small sampling
times, which can be inadvisable in many digital control applications.

In distributed and decentralized control techniques based on MPC,
where discrete-time models are mainly utilized, the loss of sparsity can
easily result in an increase of the controller complexity. For these
reasons, in order to improve the performance of FE and to main-
tain sparsity, a new discretization method called Mixed Euler ZOH
(ME − ZOH) has been proposed in [33, 34], and its properties have
been studied in [48]. In synthesis, ME-ZOH allows one to compute
the matrices of (2.2) starting from the continuous-time model (2.27)
as follows

Aii(h) = eA
c
iih (2.28)

Aij(h) =

∫ h

0

eA
c
iitdtAcij, j 6= i (2.29)

Bij(h) =

∫ h

0

eA
c
iitdtBc

ij, ∀ i, j (2.30)

where h is the adopted sampling time. It is apparent that the zero-
nonzero structure of the matrices Acij and Bc

ij is maintained together
with some important properties, see [48].

2.4.2 Computation of the state-feedback gain and of the
weighting matrices

The design of the block diagonal matrix K satisfying Assumption 2.1,
and the computation of the positive-definite block diagonal matrix
Po = diag(P o

1 , . . . , P
o
M), P o

i ∈ Rni×ni can be done resorting to Linear
Matrix Inequalities (LMIs) [18], see the Appendix and [12] for addi-
tional details.

Algorithm 2.1 Computation of the state-feedback gain and of
the weighting matrices - Method 1

1. Define K = YS−1 and Po = S−1, and solve for Y and S the
following LMI [

S SAT + YTBT

AS + BY S

]
� 0 (2.31)
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with the additional constraints

Sij = 0 ∀i, j = 1, ...,M (i 6= j) (2.32)

Yij = 0 ∀i, j = 1, ...,M (i 6= j) (2.33)

where Sij ∈ R(ni+mi)×(nj+mj), Yij ∈ Rni×(nj+mj) are the blocks out-
side the diagonal of S and Y, respectively. Finally, denoting by
Sii and Yii the block diagonal elements of S and Y, respectively,
the requirement that each block Ki must be stabilizing for its i-th
subsystem (recall again Assumption (2.1)), translates in the fol-
lowing set of conditions[

Sii SiiA
T
ii + Y T

ii B
T
ii

AiiSii +BiiYii Sii

]
� 0 (2.34)

In conclusion, the computation of K and Po calls for the solution
of the set of LMI’s (2.77),(2.78), (2.79) and (2.80), which can be
easily found with suitable available software (e.g., YALMIP [92]).

2. Once K and Po are available the parameters Qo
i and Ro

i must be
chosen to satisfy (2.19). To this end, define
Q̄ = Po − (A + BK)TPo(A + BK), choose an arbitrarily small
positive constant κ and two block diagonal matrices
Q = diag(Qo

1, . . . , Q
o
M) and R = diag(Ro

1, . . . , R
o
M), with

Qo
i � 0 ∈ Rni×ni and Ro

i � 0 ∈ Rmi×mi. Then proceed as follows:

• if
Q̄− (Q + KTRK)(1 + κ) � 0 (2.35)

set Qo = Q and Ro = R;
• otherwise set Q = ηQ and R = ηR, with 0 < η < 1, and
repeat the procedure until (2.35) is fulfilled. Once Q and R
satisfying (2.35) have been found, set Qo = Q and Ro = R.

Finally, extract from Qo and Ro the submatrices Qo
i and Ro

i of
appropriate dimensions.

A second possibility is discussed in [50], and requires that a set of
control gains Ki, i = 1, . . . ,M , verifying Assumption 2.1 are given.
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Algorithm 2.2 Computation of the the weighting matrices -
Method 2

1. Define Fij = Aij +BijKj, i, j = 1, . . . ,M , and let νi denote the
number of dynamic neighbors of subsystem i plus 1. It is well
known that, if

√
νiFii is Schur, then for any Qi = QT

i � 0 there
exists a matrix Pi = P T

i � 0 satisfying

νiF
T
ii PiFii − Pi = −Qi (2.36)

Define the matrixMQ ∈ RM×M with entries µQij

µQii = −λm(Qi), i = 1, . . . ,M (2.37a)

µQij = νj‖F T
jiPjFji‖2, i, j = 1, . . . ,M with i 6= j (2.37b)

2. If MQ is Hurwitz, define the values of pi, i = 1, . . . ,M as the
entries of the strictly positive vector p satisfyingMQp ≺ 0.

3. Set P o
i = piPi.

4. Qo
i � 0, Ro

i � 0, and κi are chosen in such a way that

rank([BT
ii R

oT
i ]T ) = mi (2.38)

(1 + κi)(Q
o
i + (Ki)

TRo
iRi) ≤ Q̃i (2.39)

where

Q̃i = piQi −
M∑
j=1

pjνjF
T
jiPjFji (2.40)

5. Set κ = min(κ1, . . . , κM).

2.4.3 Computation of the RPI sets and of the terminal sets

Two of the main issues in DPC are to verify, for all i = 1, . . . ,M
that i) Ei ⊇ Zi ⊕∆Ei, Eui ⊇ KiZi ⊕∆Eui , Zi ⊂ Xi andKiZi ⊂ Ui, and
ii) X̂F

i ⊆ X̂i and KiX̂F
i ⊆ Ûi.

Concerning i), remember that Zi is the RPI set for equation (2.8)
where the disturbance term wik lies in the set Wi, which depends on
sets Zj, j ∈ Ni. For this reason, the problem can not be tackled by
considering each subsystem separately. In this section we propose some
alternative solutions to i).
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Furthermore, to verify ii) we simply set X̂F
i = αZi for all i = 1, . . . ,M ,

for an arbitrary and sufficiently small α ∈ (0, 1). Finally, remark that
an algorithm for obtaining a polytopic invariant outer approximation
of the minimal RPI set has been presented in Chapter 1 [131,132].

The first technique to compute the RPI sets Zi is based on an em-
pirical simplified distributed reachability analysis procedure, which has
obtained remarkable results in several applications. We will use rect-
angular sets (i.e., through the box operation) to greatly simplify the
set-theoretical computations (e.g., the Minkowski sums), at the price of
slightly more conservative results. Anyway, the same procedure could
be performed without resorting to the box operation, provided that the
number of states of the submodels is small enough.

Algorithm 2.3 Computation of the RPI sets - Method 1

1. For all i = 1, . . . ,M , arbitrarily choose hyperrectangles ∆Ei and
∆Eui .

2. Initialize Zi =
⊕

j∈Ni{box(Aij∆Ej) ⊕ box(Bij∆Euj )} for all
i = 1, . . . ,M .

3. For all i = 1, . . . ,M , compute Z+
i = box(FiiZi)⊕{

⊕
j∈Ni{box(AijZj)⊕

box(BijKjZj)}} ⊕ {
⊕

j∈Ni{box(Aij∆Ej)⊕ box(Bij∆Euj )}}.

4. If Z+
i ⊆ Zi for all i = 1, . . . ,M then go to step 5: by definition,

the hyperrectangles Zi actually correspond to the required RPI sets.
Otherwise set Zi = Z+

i and repeat step 3.

5. If Zi ⊂ Xi and KiZi ⊂ Ui then stop. Otherwise set ∆Ei = γ∆Ei,
∆Ui = γ∆Ui, with γ ∈ (0, 1), and go to step 2.

A second possibility for computing the RPI sets Zi consists in solving
a linear programming (LP) problem. For all i = 1, . . . ,M , we define
sets Ei, Eui , ∆Ei and ∆Eui as hypercubes, centred on the origin, with
faces perpendicular to the cartesian axis and the scalars ei = ‖Ei‖∞,
eui = ‖Eui ‖∞, ∆ei = ‖∆Ei‖∞ and ∆eui = ‖∆Eui ‖∞ corresponding to a
half of the edge of each hypercube. Define also x∞i and u∞i as the
infinity norms (i.e., a half of the edges) of the biggest cubes, centred
on the origin, inscribed inside of Xi and Ui, respectively.

If we define w∞i =
∑

j∈Ni{‖Aij‖∞ej + ‖Bij‖∞euj }, using the prop-
erties of norm operators it is possible to state that w∞i ≥ ‖Wi‖∞,
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where Wi is the set containing the real disturbance affecting sub-
system i and ‖Wi‖∞ corresponds to a half of the edge of the small-
est hypercube centered on the origin having faces perpendicular to
the cartesian axis and containing Wi. To compute the RPI set Zi
for (2.8) (see [131, 132]) we use the hypercube W∞i having infinity
norm w∞i , i.e., Zi = 1

1−αi

⊕si−1
l=0 F l

iiW∞i , where s and αi ∈ [0, 1) must
fulfill F si

ii W∞i ⊆ αiW∞i . The latter is verified if ‖Fii‖si∞ ≤ αi in view
of properties of the norm operator and of the hypercubes. In addi-
tion, remark that Zi is contained inside the hypercube having infinity
norm γiw

∞
i , where γi = 1/(1−αi)

∑si−1
l=0 ‖Fii‖l∞. These considerations

suggest the following procedure for computing Zi.

Algorithm 2.4 Computation of the RPI sets - Method 2

1. For all i = 1, . . . ,M , arbitrarily choose parameters αi.

2. For all i = 1, . . . ,M , compute si such that ‖Fii‖si∞ ≤ αi and than
evaluate γi = (1− αi)−1

∑si−1
l=0 ‖Fii‖l∞.

3. Solve the following linear programming problem.

min
ov

ρ (2.41)

subject to

ρ ≥ γiw
∞
i ∀i = 1, . . . ,M (2.42)

γiw
∞
i + ∆ei ≤ ei ∀i = 1, . . . ,M (2.43)

‖Ki‖∞γiw∞i + ∆ui ≤ eui ∀i = 1, . . . ,M (2.44)
γiw

∞
i ≤ x∞i ∀i = 1, . . . ,M (2.45)

‖Ki‖∞γiw∞i ≤ u∞i ∀i = 1, . . . ,M (2.46)
∆ei ≥ ∆ēi ∀i = 1, . . . ,M (2.47)
∆ui ≥ ∆ūi ∀i = 1, . . . ,M (2.48)

where ov = (∆e1, e1,∆u1, e
u
1 , . . . ,∆eM , eM ,∆uM , e

u
M) ∈ R4M con-

tains only strictly positive elements. ∆ēi and ∆ūi are arbitrary
positive parameters to be used in order to have sets ∆Ei and ∆Eui
bigger than a prescribed size.

4. Compute Zi = (1− αi)−1
⊕si−1

l=0 F l
iiW∞i .

In the proposed optimization problem, the objective function combined
together with constraints (2.42) aims at minimizing the largest RPI set.
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Constraints (2.45) and (2.46) guarantee the existence of sets X̂i and Ûi

for all the subsystems. Lastly, constraints (2.43) and (2.44), if the LP
problem turns out to be feasible, allow one to find the hypercubes Ei,
∆Ei, Eui and ∆Eui such that Ei ⊇ Zi ⊕∆Ei and Eui ⊇ KiZi ⊕∆Eui .

Note that these first two methods, with trivial modifications, can
be also applied to systems where the subsystems are affected by an
exogenous disturbance d[i]

k ∈ Di ⊂ Rni and have a dynamics described
by equation 2.20.

Specifically, Algorithm 2.3 has to be modified by initializing
Zi =

⊕
j∈Ni{box(Aij∆Ej)⊕ box(Bij∆Euj )} ⊕ box(Di) and computing

Z+
i = box(FiiZi)⊕ {

⊕
j∈Ni

{box(AijZj)⊕ box(BijKjZj)}}⊕

{
⊕
j∈Ni

{box(Aij∆Ej)⊕ box(Bij∆Euj )}})⊕ box(Di)

for all i = 1, . . . ,M .
As for Algorithm 2.4, it is sufficient to define

w∞i =
∑

j∈Ni{‖Aij‖∞ej + ‖Bij‖∞euj }+ d∞i , where d∞i = ‖Di‖∞ is equal
to a half of the edge of the smallest hypercube with faces perpendicular
to the cartesian axis and containing the set Di.

A last option is the following [50].

Algorithm 2.5 Computation of the RPI sets - Method 3

1. Assume that Ei can be equivalently represented in one of the fol-
lowing two ways:

Ei = {εi ∈ Rni |εi = Ξiδi where ‖δi‖∞ ≤ li}
= {εi ∈ Rni |fTi,rεi ≤ li for all r} (2.49)

where δi ∈ Rnδi , Ξi ∈ Rni×nδi , fi,r ∈ Rni, and r = 1, . . . , r̄i for all
i = 1, . . . ,M . The constants li ∈ R+, appearing in both equivalent
definitions, can be regarded as scaling factors.
Define the shape of the polyhedra with a proper setting of matrices
Ξi and vectors fi,r, i = 1, . . . ,M .

2. Assuming that Fii is diagonalizable for all i = 1, . . . ,M (which
is always possible since Kis are design parameters) define Ni,
i = 1, . . . ,M , such that Fii = N−1

i ΛiNi, where
Λi = diag(λi,1, . . . , λi,ni), where λi,j is the j-th eigenvalue of Fii.



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 43 — #59 i
i

i
i

i
i

2.4. IMPLEMENTATION ISSUES 43

Define also

fi =

f
T
i,1
...
fTi,r̄i


i = 1, . . . ,M . Then, compute the matrix MP ∈ RM×M whose
entries µPij are

µPii = −1, i = 1, . . . ,M (2.50a)

µPij = ‖fiN−1
i ‖∞(‖NiAijΞj‖∞ + ‖NiBijKjΞj‖∞)

1

1−maxj=1,...,ni |λi,j|
,

i, j = 1, . . . ,M with i 6= j (2.50b)

3. If MP is Hurwitz, define the values of li, i = 1, . . . ,M , as the
entries of the strictly positive vector l satisfying MP l < 0. For
its computation use the following procedure:

• If the system is irreducible [47], l is the Frobenius eigenvector
of matrixMP .
• If the system is reducible:
a) Since the system is reducible there exists a permutation

matrix H (where HT = H−1) such that M̃P = HMPHT

is lower block triangular, with block elements Mij, whose
diagonal blocksMii are irreducible. Let ωi (strictly positive
element-wise) be the Frobenius eigenvector of Mii, associ-
ated to the eigenvalue λi < 0.

b) Set α1 = 1 and define recursively αi, for i > 1, such that
αi|λivi| > |

∑i−1
j=1 αjMijvj| element-wise (vi is the number

of dynamic neighbors of subsystem i).
c) Define ω = [α1ω

T
1 , . . . , αMω

T
M ]T , and vM = HTω. From

the definition of αis, it follows that M̃Pω < 0, and so
MPvM = HTHMPHTHvM = HTM̃Pω < 0.

4. Compute Eui = KiEi, for all i = 1, . . . ,M .

5. Compute Wi =
⊕

j∈N〉{AijEj ⊕BijEuj }, for all i = 1, . . . ,M .

6. For all i = 1, . . . ,M , compute Zi as the polytopic RPI outer δ-
approximation of the minimal RPI (mRPI) set for (2.8), as shown
in [132].
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7. For all i = 1, . . . ,M , the sets ∆Ei, can be taken as any polytope
satisfying ∆Ei ⊕ Zi ⊆ Ei, and finally ∆Eui = Ki∆Ei.

IfMP defined in (2.50) is not Hurwitz, the previous algorithm can not
be applied.

We remark that the algorithms presented for computing the sets
only provide sufficient conditions, meaning that other criteria and al-
gorithms can be devised and adopted, which can be even more efficient,
especially when applied to specific case studies. In addition, the effec-
tiveness of the proposed methods strongly depends on some arbitrary
initial choices, i.e., in Algorithm 2.5 matrices Ξi (or equivalently vectors
fi), i = 1, . . . ,M , defining the shape of sets Ei and in Algorithm 2.3
the shapes and dimension of the sets ∆Ei and ∆Eui , i = 1, . . . ,M . If
the selected method results to be inapplicable for a given choice, a
trial-and-error procedure is suggested, in order to find a suitable ini-
tial choice (which is nevertheless not guaranteed to exist) guaranteeing
the applicability of the selected method.

2.4.4 Generation of the reference trajectories (for systems
without coupling constraints)

The DPC algorithm assumes that an initial feasible solution or, more
specifically, an initial reference trajectory, exists. This problem can be
cast as a purely offline design problem.

On the other hand, disturbances of unexpected entity could occur
during the ordinary system operation, alterating the system’s condi-
tion (i.e., by producing constraint violation, e.g., x[i]

k+1 − x̂
[i]
k+1|k /∈ Zi)

with possible serious consequences on the future solution (e.g., con-
cerning feasibility) of the control problems. Once this condition is
detected by a given system Si, it must be broadcast to all other sub-
systems through an event-based emergency iterative transmission, and
an extra-ordinary reset operation requires the recalculation of new suit-
able state and output reference trajectories for all subsystems.

The simplest solution consists (according with the approach sug-
gested in [44]) in generating these trajectories using a centralized con-
troller. This has the drawback that a centralized controller must be
designed together with the distributed ones, and that it must be kept
activated while the system is running in order to recover the proper
functioning of the process if unpredicted external disturbances affect
the plant. Obviously, the need of a centralized “hidden” supervisor
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greatly reduces the advantages of utilizing a distributed control scheme.
In this section, we present two different methods for the generation

of the trajectories, useful both for offline reference trajectory genera-
tion (i.e., performed at time k = 0) and for extra-ordinary reset op-
erations, requiring number of iterative information exchanges among
neighbors. The first method (i.e., Algorithm 2.7) is applicable when
x ∈ X̂F , while the second one (i.e., Algorithm 2.8) can be used when
x /∈ X̂F . Therefore, at each time step k, we first need a procedure to
check whether xk ∈ X̂F , i.e., that x[i]

k ∈ X̂F
i for all i = 1, . . . ,M .

To this purpose we define some useful notation: denote with
G = (V,A) the connected, undirected communication graph support-
ing the distributed control architecture for system (2.1). V is the set of
M nodes, each corresponding to a subsystem, while A is the set of undi-
rected arcs connecting the nodes (given two nodes i, j ∈ V, there exists
an undirected arc - of unitary length - i↔ j ∈ A if and only if j ∈ Ni
or i ∈ Nj). We denote by P s

max the longest among all the shortest paths
linking all the possible pairs of nodes in V. P s

max can be computed, for
instance, using the Floyd-Warshall algorithm [17, 54, 124]. P s

max rep-
resent the maximum number of hops required for sending information
from a node to all other vertices. The following procedure has to be
executed.

Algorithm 2.6 Algorithm for evaluating whether xk ∈ X̂F

1. For all i = 1, . . . ,M , initialize µi = 1 if x[i]
k ∈ X̂F

i or µi = 0 if
x

[i]
k /∈ X̂F

i . Set ν = 0.

2. Receive µj from all j ∈ Ni and from all j : i ∈ Nj. Set ν = ν + 1.

3. For all i = 1, . . . ,M , set µi = minj:(i↔j)∈A⋃
{i}(µj). If ν < P s

max

go to step 2. If ν = P s
max go to step 4.

4. For all i = 1, . . . ,M , if µi = 1, then controller i can conclude that
xk ∈ X̂F . Otherwise, it holds that xk 6∈ X̂F .

Note that, after P s
max iterations, it holds that µi = µj for all

i, j = 1, . . . ,M .
We now present the two distributed techniques for generating the

trajectories x̃[i]
[k:k+N−1] and ũ

[i]
[k:k+N−1] that each subsystem has to trans-

mit to its neighbors. The first one, to be used when the whole state
xk is inside X̂F , is based on the auxiliary control law, and guaran-
tees to find a solution. It requires N transmissions of information
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from each subsystem to its neighbors. The second one, instead, is an
optimization-based procedure which has been proved to be very effec-
tive when xk /∈ X̂F . If a solution is found, the latter provides also the
minimum prediction horizon length N such that a reference trajectory
exists for all subsystems.

Algorithm 2.7 Computation of the reference trajectories
- Method 1 (x ∈ X̂F )

1. For all i = 1, . . . ,M , initialize x̃[i]
k = x

[i]
k and ũ[i]

k = Kix̃
[i]
k .

2. Receive x̃[j]
k and ũ[j]

k from the neighbors (j ∈ Ni). If N = 1 stop.
If N ≥ 2, set ν = 0 and then go to step 3.

3. For all i = 1, . . . ,M , update the state reference trajectory as
x̃

[i]
k+ν+1 = Aiix̃

[i]
k+ν +Biiũ

[i]
k+ν +

∑
j∈Ni{Aijx̃

[j]
k+ν +Bijũ

[j]
k+ν} and set

ũ
[i]
k+ν+1 = Kix̃

[i]
k+ν+1.

4. Receive x̃[j]
k+ν+1 and ũ[j]

k+ν+1 from the neighbors (j ∈ Ni). If
ν = N − 1 stop. Else, set ν = ν + 1 and go to step 3.

This first algorithm is very intuitive, because it exploits the properties
of the invariant terminal set X̂F . The N transmissions of information
allow a distributed state evolution equal to the one that would result
from applying the centralized auxiliary state feedback law to the entire
system.

Algorithm 2.8 Computation of the reference trajectories
- Method 2 (x /∈ X̂F )

1. For all i = 1, . . . ,M , set ν = 0, arbitrarily define sets Bi contain-
ing the origin (their role will be later specified), initialize x̃[i]

k = x
[i]
k

and receive x̃[j]
k for all j ∈ Ni and for all j such that Bji 6= 0.

2. For all i = 1, . . . ,M , initialize ũ[i]
k−1 solving the following quadratic

programming (QP) problem

min
ũ
[i]
k−1

‖ˆ̃x0[ii]
k+1‖

2 +
∑

j:Bji 6=0

‖Bji‖2
2

‖Bii‖2
2

‖ˆ̃x0[ji]
k+1‖

2 (2.51)



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 47 — #63 i
i

i
i

i
i

2.4. IMPLEMENTATION ISSUES 47

subject to

ˆ̃x
0[ii]
k+1 = Aiix̃

[i]
k +Biiũ

[i]
k−1 +

∑
j∈Ni

Aijx̃
[j]
k (2.52)

ˆ̃x
0[ji]
k+1 = Ajjx̃

[j]
k +Bjiũ

[i]
k−1 + Ajix̃

[i]
k (2.53)

ũ
[i]
k−1 ∈ Ûi (2.54)

ˆ̃x
[ii]
k+1 ∈ X̂i (2.55)

3. For all i = 1, . . . ,M

- if ν = 0 receive ũ[j]
k−1 for all j ∈ Ni;

- if ν ≥ 1 receive x̃[j]
k+ν for all j ∈ Ni.

4. For all i = 1, . . . ,M , for all j : Bij 6= 0 compute
λ

[ij]
k+ν = Aiix̃

[i]
k+ν +Biiũ

[i]
k+ν−1 +

∑
z∈Ni\{j}{Aizx̃

[z]
k+ν +Bizũ

[z]
k+ν−1}.

5. For all i = 1, . . . ,M , for all j : Bji 6= 0, receive λ[ji]
k+ν.

6. For all i = 1, . . . ,M , compute ũ[i]
k+ν solving the following QP prob-

lem
min
ũ
[i]
k+ν

‖ˆ̃x[ii]
k+ν+1‖

2 +
∑

j:Bji 6=0

‖Bji‖2
2

‖Bii‖2
2

‖ˆ̃x[ji]
k+ν+1‖

2 (2.56)

subject to

ˆ̃x
[ii]
k+ν+1 = Aiix̃

[i]
k+ν +Biiũ

[i]
k+ν +

∑
j∈Ni

{Aijx̃[j]
k+ν +Bijũ

[j]
k+ν−1} (2.57)

ˆ̃x
[ji]
k+ν+1 = Ajix̃

[i]
k+ν +Bjiũ

[i]
k+ν + λ

[ji]
k+ν (2.58)

ũ
[i]
k+ν ∈ Ûi (2.59)

ũ
[i]
k+ν − ũ

[i]
k+ν−1 ∈ Bi (2.60)

ˆ̃x
[ii]
k+ν+1 ∈ X̂i 	

⊕
j∈Ni

BijBj (2.61)

7. For all i = 1, . . . ,M , receive ũ[j]
k+ν for all j ∈ Ni.

8. For all i = 1, . . . ,M , update the state reference trajectory as
x̃

[i]
k+ν+1 = Aiix̃

[i]
k+ν +Biiũ

[i]
k+ν +

∑
j∈Ni{Aijx̃

[j]
k+ν +Bijũ

[j]
k+ν}.
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9. If xk+ν+1 ∈ XF
i for all i = 1, . . . ,M , then N = ν + 1 and stop.

Else, set ν = ν + 1 and go to step 3.

The second algorithm aims at iteratively finding feasible inputs using
one-step predictions. Each controller minimizes a cost function includ-
ing both the norm of the state variable of subsystem Si and the term
‖Bji‖22
‖Bii‖22

‖ˆ̃x[ji]
k+ν+1‖2, limiting the possible negative effect of the inputs of

subsystem Si on the state of subsystem Sj, for all j such that Bji 6= 0.
The importance of this factor becomes greater as the coupling strength
through inputs increases. The one-step prediction equation (2.57) is
affected only by the errors on its neighbors’ current inputs but, at the
same time, such error is bounded using constraint (2.60) (and the un-
certainty drops with the decrease of the size of the arbitrary set Bi).
The fulfillment of constraints on future states is required to each sub-
system only with respect to its own states, see constraint (2.61), which
is coherent to the idea of having weak coupling terms among the sub-
systems, such that a robust approach for managing their interactions
can be used. Finally note that the check of the stopping criterion in
step 9) requires Algorithm 2.6 to be applied; to reduce the iterations
required, one can check xk+ν+1 ∈ XF only after N̄ iterations and, in
case, only periodically.

2.5 Simulation examples

In this section, we present some simulation examples concerning widely-
used and standard case studies in the context of distributed control.

2.5.1 Temperature control

We aim at regulating the temperatures TA, TB, TC and TD of the four
rooms of the building represented in Figure 2.1. The first apartment
is made by rooms A and B, while the second one by rooms C and
D. Each room is equipped with a radiator supplying heats qA, qB,
qC and qD. The heat transfer coefficient between rooms A - C and
B - D is kt1 = 1 Wm−2 K−1, the one between rooms A - B and C -
D is kt2 = 2.5 Wm−2 K−1, and the one between each room and the
external environment is kte = 0.5 Wm−2 K−1. The nominal external
temperature is T̄E = 0 ◦C and, for the sake of simplicity, solar radiation
is not considered. The volume of each room is V = 48 m3, and the wall
surfaces between the rooms are all equal to sr = 12 m2, while those
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of the external walls are equal to se = 24 m2. Air density and heat
capacity are ρ = 1.225 kgm−3 and c = 1005 J kg−1 K−1, respectively.

Figure 2.1: Schematic representation of a building with two apartments.

Letting φ = ρcV , the dynamic model is the following:

φdTA
dt

= srk
t
2(TB − TA) + srk

t
1(TC − TA) + sek

t
e(TE − TA) + qA

φdTB
dt

= srk
t
2(TA − TB) + srk

t
1(TD − TB) + sek

t
e(TE − TB) + qB

φdTC
dt

= srk
t
1(TA − TC) + srk

t
2(TD − TC) + sek

t
e(TE − TC) + qC

φdTD
dt

= srk
t
1(TB − TD) + srk

t
2(TC − TD) + sek

t
e(TE − TD) + qD

(2.62)
Letting i = {A, B, C, D}, the considered equilibrium point is:
qi = q̄ = 20sek

t
e W, with Ti = T̄ = 20 ◦C in correspondence of T̄E = 0 ◦C.

Let δTi = Ti − T̄ , δTE = TE − T̄E, δqi = (qi − q̄)/φ. In this way, denot-
ing σ1 = srk

t
1/φ, σ2 = srk

t
2/φ, σ3 = sek

t
e/φ, σ = σ1 + σ2 + σ3,

x = (δTA, δTB, δTC , δTD), u = (δqA, δqB, δqC , δqD) and
d = [σ3 σ3 σ3 σ3]T δTE the previous model is rewritten in the continuous-
time state space representation ẋ(t) = Acx(t) + Bcu(t) + d(t), where

Ac =


−σ σ2 σ1 0
σ2 −σ 0 σ1

σ1 0 −σ σ2

0 σ1 σ2 −σ

 , Bc =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The discrete-time system of the form (2.24) (with n = 4 and m = 4) is
obtained by mE-ZOH discretization with sampling time h = 10 s. The
partition of inputs and states is:

x[1] =
[
δTA δTB

]T
, u[1] =

[
δqA δqB

]T
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x[2] =
[
δTC δTD

]T
, u[2] =

[
δqC δqD

]T
The constraints on the inputs and the states of the linearized system
have been chosen as:

x
[1]
min =

[
−5 −5

]T
, x[1]

max =
[
5 5

]T
x

[2]
min =

[
−5 −5

]T
, x[2]

max =
[
5 5

]T
u

[1]
min =

[
−0.038 −0.038

]T
, u[1]

max =
[
0.030 0.030

]T
u

[2]
min =

[
−0.038 −0.038

]T
, u[2]

max =
[
0.030 0.030

]T
The real external temperature has been assumed to randomly vary
between −10 ◦C and 10 ◦C. Matrices Ki and Pi representing a feasible
solution to (2.77),(2.78), (2.79) and (2.80) are:

K1 = K2 =

[
−0.0986 −0.0005
−0.0005 −0, 0986

]
P1 = P2 =

[
2.17 · 106 1

1 2.17 · 106

]
The weighting matrices used in the simulations are
Qo

1 = Qo
2 = Ro

1 = Ro
2 = I2. Algorithm 2.3 for computing the RPI sets

has been used, while the initial reference trajectories have been gener-
ated using Algorithm 2.8. The results of the simulations, performed

Figure 2.2: Trajectories of the states x[1] (lef) and x[2] (right) obtained with DPC
(black lines) and with cMPC (gray lines) for the temperature control problem.
Solid lines: δTA and δTC ; dashed lines: δTB and δTD.
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Figure 2.3: Inputs u[1] (left) and u[2] (right) obtained with DPC (black lines) and
with cMPC (gray lines) for the temperature control problem. Solid lines: δqA and
δqC ; dashed lines: δqB and δqD.

using the continuous-time process model, are shown in Figure 2.2, while
the values of the input variables are depicted in Figure 2.3. To show
the capability of Algorithm 2.7 to recover the reference trajectories, a
sudden decrease of temperature TA is forced at t = 350 s (it could repre-
sent, for instance, the opening of a door). In both figures a comparison
between DPC and centralized MPC (cMPC) is provided, showing only
a small performance degradation.

2.5.2 Four-tanks system

A benchmark case often used to assess the effectiveness of distributed
control algorithms is the four-tanks system schematically drawn in Fig-
ure 2.4, originally described in [74] and then utilized, for instance,
in [7, 108].

The goal is to regulate the levels h1, h2, h3 and h4 of the four tanks.
The manipulated inputs are the voltages of the two pumps v1 and
v2. We assumed that a bounded unknown disturbance w = (w1, w2)
affects the applied voltages, i.e., that the real input to the plant is
u = (v1 + w1, v2 + w2). The parameters γ1 and γ2 ∈ (0, 1) represent
the fraction of the water that flows inside the lower tanks, and are kept
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Figure 2.4: Schematic representation of a four-tanks system.

fixed during the simulations. The dynamics of the system is given by

dh1
dt

= − a1
A1

√
2gh1 + a4

A4

√
2gh4 + γ1k1

A1
v1

dh2
dt

= − a2
A2

√
2gh2 + (1−γ1)k1

A2
v1

dh3
dt

= − a3
A3

√
2gh3 + a2

A2

√
2gh2 + γ2k2

A3
v2

dh4
dt

= − a4
A4

√
2gh4 + (1−γ2)k2

A4
v2

(2.63)

where Ai and ai are the cross-section of Tank i and the cross section of
the outlet hole of Tank i, respectively. The coefficients k1 and k2 rep-
resent the conversion parameters from the voltage applied to the pump
to the flux of water. The values of the parameters, taken from [74], are:
A1 = A4 = 28 cm2, A2 = A3 = 32 cm2, a1 = a4 = 0.071 cm2,
a2 = a3 = 0.057 cm2, k1 = 3.35 cm3 V−1 s−1, k2 = 3.33 cm3 V−1 s−1,
γ1 = 0.7, γ2 = 0.6. The considered equilibrium point is v̄1 = v̄2 = 3 V,
h̄1 = 12.263 cm, h̄2 = 1.409 cm, h̄3 = 12.783 cm and h̄4 = 1.634 cm.
Letting δhl = hl − h̄l, l = 1, 2, 3, 4 and δvi = vi − v̄i, i = 1, 2,
x = (δh1, δh2, δh3, δh4), u = (δv1, δv2), d = B(w1, w2), linearizing sys-
tem (2.63) around the considered equilibrium point and discretizing it
using mE-ZOH with sampling time h = 1 s, we obtain a linear system
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of the form (2.24), where

A =


0.984 0 0 0.044

0 0.967 0 0
0 0.033 0.989 0
0 0 0 0.957

 , B =


0.083 0
0.031 0

0 0.062
0 0.047


Inputs and states are partitioned as:

x[1] =
[
δh1 δh2

]T
, u[1] = δv1

x[2] =
[
δh3 δh4

]T
, u[2] = δv2

The constraints on the inputs and the states of the linearized system
have been chosen as:

x
[1]
min =

[
−12.263 −1.409

]T
, x[1]

max =
[
40 40

]T
+ x

[1]
min

x
[2]
min =

[
−12.783 −1.634

]T
, x[2]

max =
[
40 40

]T
+ x

[2]
min

u
[1]
min = u

[2]
min − 3, u[1]

max = u[2]
max = 3

The disturbances w1,2 on the applied voltages are assumed to randomly
vary between −0.01 V and 0.01 V. Matrices Ki and Pi satisfying the
LMI conditions are:

K1 =
[
−0.772 −0.181

]
, K2 =

[
−0.778 −0.250

]
P1 =

[
48.3 −1
−1 59.3

]
, P2 =

[
166.8 1.94
1.94 70.7

]
The weighting matrices are Qo

1 = Qo
2 = I2 and Ro

1 = Ro
2 = 1. To com-

pute the RPI sets, the Algorithm 2.3 has been used, and the initial ref-
erence trajectories have been designed using Algorithm 2.7. The simu-
lation results, obtained using the continuous-time nonlinear model, are
reported in Figure 2.5, while in Figure 2.6 the applied real voltages are
shown. In addition to the external disturbance (w1, w2), included in
the robust controller design, at time t = 100 s an unpredicted impulse
equal to 2 V has been applied to the first pump. Then, the reference
trajectories have been re-generated online to recover the nominal op-
erating conditions with algorithm 2.7. The performances are close to
the ones obtained with centralized MPC.
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Figure 2.5: Trajectories of the states x[1] (lef) and x[2] (right) obtained with DPC
(black lines) and with cMPC (gray lines) for controlling the four-tanks system.
Solid lines: x1 and x3; dashed lines: x2 and x4.

Figure 2.6: Inputs u[1] (lef) and u[2] (right) obtained with DPC (black lines) and
with cMPC (gray lines) for controlling the four-tanks system.



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 55 — #71 i
i

i
i

i
i

2.5. SIMULATION EXAMPLES 55

2.5.3 Cascade coupled flotation tanks

Consider the level control problem of flotation tanks discussed in [158].
The system consists of five tanks connected in cascade with control
valves between the tanks (Figure 2.7). A flow of pulp q enters into
the first tank. The goal is to keep the levels yi, i = 1, . . . , 5, stable in
all the tanks. The manipulated inputs are the signals to the valves vi,
i = 1, . . . , 5. The mathematical model describing the dynamics of the

Figure 2.7: Schematic representation of the flotation tanks.

levels inside the five tanks is [158]:

πr2 dy1
dt

= q − k1v1

√
y1 − y2 + h1

πr2 dy2
dt

= k1v1

√
y1 − y2 + h1 − k2v2

√
y2 − y3 + h2

πr2 dy3
dt

= k2v2

√
y2 − y3 + h2 − k3v3

√
y3 − y4 + h3

πr2 dy4
dt

= k3v3

√
y3 − y4 + h3 − k4v4

√
y4 − y5 + h4

πr2 dy5
dt

= k4v4

√
y4 − y5 + h4 − k5v5

√
y5 + h5

(2.64)

where r is radius of the tanks, ki, i = 1, . . . , 5 are the valves coeffi-
cients and hi, i = 1, . . . , 5 are the physical height differences between
subsequent tanks. We set r = 1 m, ki = 0.1 m2.5/Vs, i = 1, . . . , 5
and hi = 0.5 m, i = 1, . . . , 5. The nominal value for the inlet flow
is q̄ = 0.1 m3 s−1 and we assume that it is affected by an uncer-
tainty w = ±0.5% randomly varying with the time. We consider the
equilibrium point where ȳi = 2 m, i = 1, . . . , 5, and, correspondingly,
v̄i = 1.4142 m, i = 1, . . . , 4 and v̄5 = 0.6325 V. Let δyi = yi − ȳi,
i = 1, . . . , 5, δvi = vi − v̄i, i = 1, . . . , 5, x = (δy1, δy2, δy3, δy4, δy5),
u = (δv1, δv2, δv3, δv4, δv5) and d = Bdw. The discrete-time linearized
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system corresponding to system (2.64), with mE-ZOH discretization
and a sampling time h = 5 s, has the form (2.24), where
Bd = [1.4714 0 0 0 0]T and

A =


0.853 0.147 0 0 0
0.136 0.727 0.136 0 0

0 0.136 0.727 0.136 0
0 0 0.136 0.727 0.136
0 0 0 0.157 0.969

 ,

B =


−0.104 0 0 0 0
0.096 −0.096 0 0 0

0 0.096 −0.096 0 0
0 0 0.096 −0.096 0
0 0 0 0.111 −0.248


The partitions of inputs and states, for i = 1, . . . , 5 is:

x[i] = δyi, u
[i] = δvi

The constraints on the inputs and the states of the linearized system,
for i = 1, . . . , 5, have been set as:

x
[i]
min = −1, x[i]

max = 1, u
[i]
min = −v̄i, u[i]

max = 3− v̄i

terms Ki and Pi solving the LMI conditions are:

K1 = 0.287, K2 = K3 = K4 = 0.143, K5 = 0.776

P1 = 1.18, P2 = 1.07, P3 = 1.05, P4 = 1, P5 = 1

The weighting matrices, for i = 1, . . . , 5, are Qo
i = Ro

i = 1. To compute
the RPI sets the Algorithm 2.4 has been used, while the initial reference
trajectories have been designed using Algorithm 2.8. In Figure 2.8 we
show the simulation results, obtained using the continuous-time nonlin-
ear model, i.e., depicting the state and input of the first tank, directly
affected by the external flow q. Figure 2.9 and Figure 2.10 report, re-
spectively, the states and the inputs of the remaining four tanks. Also
in this case, only minor differences arise between the centralized and
the distributed solutions. At time t = 300 s, a disturbance of magni-
tude w = 0.1 m3 s−1 is applied to the plant, and the distributed control
system reacts generating from scratch the reference trajectories (i.e.,
with Algorithm 2.7).
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Figure 2.8: Trajectories of the state x[1] (left) and of the input u[1] (right) obtained
with DPC (black lines) and with cMPC (gray lines) for the control of the floating
tanks.

Figure 2.9: Trajectories of the states x[2] (solid lines), x[3] (dashed lines), x[4] (dash-
dot lines) and x[5] (dotted lines) obtained with DPC (black lines) and with cMPC
(gray lines) for the control of the floating tanks.
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Figure 2.10: Inputs u[2] (solid lines), u[3] (dashed lines), u[4] (dash-dot lines) and
u[5] (dotted lines) obtained with DPC (black lines) and with cMPC (gray lines) for
the control of the floating tanks.

2.5.4 Reactor-separator process

The DPC algorithm has been used for control of the reactor-separator
process already considered in [91, 159] and shown in Figure 2.11. The

Figure 2.11: Schematic representation of the reactor-separator process.

plant consists of three subsystems, i.e. two reactors and a separator.
The reactant A is inserted in the two reactors, where it is converted
to product B, with a side product C ; a significant recirculation from
the separator to the first reactor makes the system heavily coupled .
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The model, whose equations can be found in [91], is derived under the
assumption of hydraulic equilibrium, so that each subsystem has three
states: x[i] = (xAi, xBi, Ti) where xAi and xBi are the mass fractions
of A and B in the vessel i, while Ti is its temperature; each subsystem
has the heat input Qi as control variable. Referring again to the model
reported in [91], the plant parameters used in the experiments reported
below are summarized in Table 1.

Table 1: Parameters used in the reactor-separator process.
Parameter Description Nominal value

F10 effluent flow rate vessel 1 8.3 kg s−1

F02 effluent flow rate vessel 2 0.5 kg s−1

FR recycle flow rate 40 kg s−1

V1 volume vessel 1 89.4 m3

V2 volume vessel 2 90 m3

V3 volume vessel 3 13.27 m3

k1 pre-exp. value for react. 1 0.336 s−1

k2 pre-exp. value for react. 2 0.089 s−1

E1/R norm. act. energy for react. 1 -100 K
E2/R norm. act. energy for react. 2 -150 K
xA10 mass fract. of A in ext. streams 1
xB10 mass fract. of B in ext. streams 0
T10,20 feed stream temperatures 313 K
∆H1 heat of reaction for reaction 1 -40 kJ kg−1

∆H2 heat of reaction for reaction 2 -50 kJ kg−1

Cp heat capacity 2.5 kJ kg−1

ρ solution density 0.15 kgm−3

αA relative volatility of A 3.5
αB relative volatility of B 1.1
αC relative volatility of C 0.5

Correspondingly, with Q̄1,2,3 = 10 kJ s−1, the equilibrium x̄A1 = 0.6,
x̄B1 = 0.352, T̄1 = 327 K, x̄A2 = 0.536, x̄B2 = 0.4, T̄2 = 328.4 K,
x̄A3 = 0.285, x̄B3 = 0.565, T̄3 = 328.5 K has been computed and the
linearized model around this steady state has been derived and dis-
cretized with sampling time ∆ = 0.1 s (see Figure 2.12). For the design
of DPC, first the gains Ki, i = 1, 2, 3 have been designed for the pairs
(Aii, Bii) according to the LQ criterion with Qi = I3 and Ri = 10−6

for all i, which allows to verify Assumption 2.1. The weighting matri-
ces and the sets have been chosen in order to satisfy Assumptions 2.2
and 2.3. We set N = 10.

The capability of regulating the state trajectories of the linearized
system to the origin has been tested in simulation, in face of a pertur-
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bation of magnitude ∆x[i] = (∆xAi, ∆xBi, ∆Ti) where ∆xAi = −0.05,
∆xBi = −0.05 and ∆Ti = −5 for all i with respect to the equilibrium
condition at time t = 0 s. Note that the constraints on the absolute
input variables Qi ∈ [0, 50] for all i, see [159], result in the following
constraints on the deviation of Qi with respect to Q̄i: ∆Qi ∈ [−10, 40].

Figure 2.12: State and input variables with DPC (black lines) and with cMPC (grey
lines) for all subsystems (i = 1: solid lines; i = 2, dotted lines, i = 3: dashed lines).

The dynamics of ∆xAi, ∆xBi, ∆Ti and the inputs ∆Qi with respect
to the equilibrium conditions are shown in Figure 2.12, and compared
with the ones obtained applying a centralized MPC controller (cMPC).
Note that ∆Qi saturate at values which are not on the boundary of
the feasibility set, since the robustness arguments used to define DPC
make the constraints more conservative than the ones used in cMPC.
This slightly degrades the performance of DPC with respect to cMPC
in the regulation of Ti.

2.6 Conclusions

In this Chapter, starting from the theoretical results presented in [50],
the DPC algorithm has been presented in a shape useful for practical
implementation. All the offline design phase has been carefully studied,
in order to propose algorithms as simple as possible. Some techniques
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for facing faults due to unpredicted external disturbances have been
described as well. Several simulation results based on processes taken
from the literature have been presented, showing the effectiveness of
the approach, which leads to performances close to the ones obtained
using a centralized solution. In the next chapters, we will extend the
proposed approach to continuous-time systems and to the tracking
problem.

2.7 Appendix

2.7.1 Proof of Theorem 2.1

For the sake of completeness, we report the proof of Theorem 2.1 [50].

The collective problem

Define the collective vectors x̂k = (x̂
[1]
k , . . . , x̂

[M ]
k ),

x̃k = (x̃
[1]
k , . . . , x̃

[M ]
k ), ũk = (ũ

[1]
k , . . . , ũ

[M ]
k ), ûk = (û

[1]
k , . . . , û

[M ]
k ),

wk = (w
[1]
k , . . . , w

[M ]
k ), zk = (z

[1]
k , . . . , z

[M ]
k ), and the matrices

A∗ = diag(A11, . . . , AMM), B∗ = diag(B11, . . . , BMM), Ã = A − A∗,
B̃ = B−B∗. Collectively, we write equations (2.3) and (2.6) as

xk+1 = A∗xk + B∗uk + Ãx̃k + B̃ũk + wk (2.65)

x̂k+1 = A∗x̂k + B∗ûk + Ãx̃k + B̃ũk (2.66)

In view of (2.7), uk = ûk + K(xk − x̂k), from (2.8),

zk+1 = (A∗ + B∗K)zk + wk (2.67)

Minimizing (2.9) for all i = 1, . . . ,M is equivalent to minimize

VN∗(xk) = min
x̂k,û[k:k+N−1]

VN(x̂k, û[k:k+N−1]) (2.68)
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subject to the dynamic constraints (2.66) and

xk − x̂k ∈ Z =
M∏
i=1

Zi (2.69a)

x̂k+ν − x̃k+ν ∈ E =
M∏
i=1

Ei (2.69b)

ûk+ν − ũk+ν ∈ Ũ =
M∏
i=1

Ui (2.69c)

x̂k+ν ∈ X̂ (2.69d)

ûk+ν ∈ Û (2.69e)
H(x̂k+ν , ûk+ν ,x̃k+ν , ũk+ν) ≤ 0 (2.69f)

for ν = 0, . . . , N − 1, and the terminal constraint

x̂k+N ∈ X̂F (2.70)

In (2.69), H collects all the constraints (2.15) and, by i) in Assump-
tion 2.2, H(x̂,Kx̂, x̂,Kx̂) ≤ 0 for all x̂ ∈ X̂F . The collective cost func-
tion VN is defined as

VN(x̂k, û[k:k+N−1]) =
N−1∑
ν=0

l(x̂k+ν , ûk+ν) + VF (x̂k+N)

We also define

VN,0(x̂k) = min
û[k:k+N−1]

VN(x̂k, û[k:k+N−1]) (2.71)

subject to (2.66), (2.69b)-(2.70).

Feasibility

From Definition 2.1, it collectively holds that

XN = {x : if x0 = x then ∃x̃[0:N−1], ũ[0:N−1], x̂0/0, û[0,N−1]

such that (2.66), (2.69) and (2.70) are satisfied}

and that, for each point of the feasibility set x ∈ XN ,

X̃x := {(x̃[0:N−1], ũ[0:N−1]) : if x0 = x then ∃x̂0/0, û[0,N−1]

such that (2.66), (2.69) and (2.70) are satisfied}
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At time k, xk ∈ XN and (x̃[k:k+N−1], ũ[k:k+N−1]) ∈ X̃xk . The opti-
mal nominal input and state sequences obtained by minimizing the
collective MPC problem are û[k:k+N−1]/k = {ûk/k, . . . , ûk+N−1/k} and
x̂[k:k+N ]/k = {x̂k/k, . . . , x̂k+N/k}, respectively. Finally, recall that
x̃k+N = x̂k+N/k and ũk+N = Kx̂k+N/k.

Define ûk+N/k = Kx̂k+N/k and compute x̂k+N+1/k according to (2.66)
from x̂k+N/k where ûk+N = ûk+N/k. We obtain

x̂k+N+1/k = A∗x̂k+N/k + B∗ûk+N/k + Ãx̃k+N + B̃ũk+N

= (A + BK)x̂k+N/k

since x̃k+N = x̂k+N/k and ũk+N = ûk+N/k. In view of constraint (2.70)
and Assumption 2.2, ûk+N/k ∈ Û and x̂k+N+1/k ∈ X̂F . Therefore,
they satisfy (2.69d), (2.69e) and (2.70). Also, according to Assump-
tion 2.2, (2.19) holds. We also define the input sequence u[k+1:k+N ]/k

and the state sequence x[k+1:k+N+1]/k stemming from the initial condi-
tion x̂k+1/k and the input sequence u[k+1:k+N ]/k. In view of the feasibil-
ity of the i-DPC problem at time k, we have that xk+1 − x̂k+1/k ∈ Z,
x̂k+ν/k − x̃k+ν ∈ E, and ûk+ν/k − ũk+ν ∈ Ũ for all ν = 1, . . . , N − 1.
Note also that x̂k+N/k − x̃k+N = 0 ∈ E and ûk+N/k − ũk+N = 0 ∈ Ũ
by (2.18). Furthermore, since x̃k+N = x̂k+N/k ∈ X̂F , from (2.70) it
holds that H(x̂k+N/k, ûk+N/k, x̃k+N , ũk+N) ≤ 0 from i) of Assump-
tion 2.2. Therefore x[k+1:k+N+1]/k and u[k+1:k+N ]/k are feasible at k+ 1,
since (2.69) and (2.70) are satisfied. This proves that xk ∈ XN and
(x̃[k:k+N−1], ũ[k:k+N−1]) ∈ X̃xk implies that xk+1 ∈ XN and
(x̃[k+1:k+N ], ũ[k+1:k+N ]) ∈ X̃xk+1

.

Convergence of the optimal cost function

By optimality, VN,0(x̂k+1/k) ≤ VN(x̂k+1/k,u[k+1:k+N ]/k), where

VN(x̂k+1/k,u[k+1:k+N ]/k) =
N∑
ν=1

l(x̂k+ν/k, ûk+ν/k) + VF
(
x̂k+N+1/k

)
Therefore we compute that

VN,0(x̂k+1/k)−VN,0(x̂k/k) ≤ −l(x̂k/k, ûk/k) + l(x̂k+N/k, ûk+N/k)+

+ VF
(
x̂k+N+1/k

)
−VF

(
x̂k+N/k

)
(2.72)

and, in view of (2.19), it follows that

VN,0(x̂k+1/k)−VN,0(x̂k/k) ≤ −(‖x̂k/k‖2
Qo + ‖ûk/k‖2

Ro) (2.73)
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Since Qo and Ro are positive definite matrices x̂k/k → 0 and ûk/k → 0
as k →∞.

Finally, recall that the state xk evolves according to

xk+1 = (A + BK) xk + B
(
ûk/k −Kx̂k/k

)
By asymptotic convergence to zero of the nominal state and input
signals x̂k/k and ûk/k respectively, we obtain that B

(
ûk/k −Kx̂k/k

)
is

an asymptotically vanishing term. Since also (A + BK) is Schur by
Assumption 2.1, we obtain that xk → 0 as k → +∞.

2.7.2 Proof of Algorithm 2.1

In this Section, the approach based on Linear Matrix Inequalities [18],
for computing the state-feedback gain and the weighting matrices is
described in detail.

First recall that the closed-loop system composed by (2.1) and by
the state feedback uk = Kxk control law is stable if and only if there
exist a matrix Po ∈ Rn×n such that{

Po � 0
(A + BK)TPo(A + BK)−Po ≺ 0

(2.74)

Now define the positive definite matrix S, such that Po = S−1 and
rewrite conditions (2.74) as{

S � 0
(AT + KTBT )S−1(A + BK)− S−1 ≺ 0

(2.75)

Pre- and post-multiplying (2.75) by S, and defining matrix Y ∈ Rm×n

such that K = YS−1, (2.75) can be written as{
S � 0
(SAT + YTBT )S−1(AS + BY)− S ≺ 0

(2.76)

By using the Schur complement transformation [173], this expression
can be transformed in the following LMIs[

S SAT + YTBT

AS + BY S

]
� 0 (2.77)

whose solution S and Y allows to compute K = YS−1 and Po = S−1.
Moreover, since Po is required to have a block diagonal structure, the
additional constraints have to be included into the LMI problem:

Sij = 0 ∀i, j = 1, . . . ,M (i 6= j) (2.78)
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where Sij ∈ Rni×nj are the blocks of S outside the diagonal, and
Sii ∈ Rni×ni are the diagonal blocks.

Analogously, in order to have also K block diagonal, Y must be
block diagonal as well:

Yij = 0 ∀i, j = 1, . . . ,M (i 6= j) (2.79)

where Yij ∈ Rmi×nj are the blocks of Y outside the diagonal.
Finally, each block Ki must be stabilizing for its i-th subsystem (re-

call again Assumption 2.2), which translates in the following condition
for each subsystem:[

Sii SiiĀ
T
ii + Y T

ii B̄
T
ii

ĀiiSii + B̄iiYii Sii

]
� 0 (2.80)
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3
Continuous-time DPC

With some notable exceptions, see e.g. [32,44,90,146], the majority
of the distributed control algorithms proposed so far have been de-
veloped for discrete-time systems, possibly obtained from an underly-
ing continuous-time model, see also the Distributed Predictive Control
(DPC) technique presented in Chapter 2. The discrete-time frame-
work is particularly suitable for the design of distributed MPC, since
it also allows to easily develop methods based on distributed optimiza-
tion approaches, see e.g. [7,27,28,42,76,134], or on agent negotiation,
see e.g. [97, 98]. On the other hand, it does not allow to consider the
process inter-sampling behavior in the optimization problem underly-
ing any MPC algorithm; for this reason, the development of new and
effective MPC methods for continuous-time systems is of interest.

In this Chapter, the DPC algorithm is formulated in a continuous-
time framework. Also the continuous-time DPC is based on a non-
iterative scheme where the future state and control reference trajec-
tories are transmitted among neighboring systems, i.e. systems with
direct couplings through their state or control variables, and the dif-
ferences between these trajectories and the true ones are interpreted
as disturbances to be rejected by a proper robust control method. The
continuous-time approach is characterized by a higher complexity, but
it has the positive side of considering in the optimization problem the
system behavior at all time instants.

67
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3.1 Partitioned continuous-time systems

Consider a process made by M interacting systems described by the
continuous-time linear model

ẋ(t) = Ax(t) + Bu(t) (3.1)

where x(t) ∈ X ⊆ Rn and u(t) ∈ U ⊆ Rm are the state and input vec-
tors, respectively, both subject to constraints.

Letting x(t) = (x[1](t), . . . , x[M ](t)) and u(t) = (u[1](t), . . . , u[M ](t)),
the dynamics of each subsystem is given by

ẋ[i](t) = Aiix
[i](t) +Biiu

[i](t) +
∑

j 6=i,j∈M

{Aijx[j](t) +Biju
[j](t)} (3.2)

where x[i](t) ∈ Xi ⊆ Rni and u[i](t) ∈ Ui ⊆ Rmi are the state and input
vectors, respectively, of the i-th system (i = 1, . . . ,M), and it holds
that n =

∑M
i=1 ni and m =

∑M
i=1mi. The sets Xi and Ui defining the

constraints are convex neighborhoods of the origin and we have that
X =

∏M
i=1 Xi and U =

∏M
i=1 Ui, which are convex due to the convexity

of Xi and Ui. The subsystems’ matrices Aij and Bij, i, j = 1, . . . ,M
are the block entries of the matrices A and B describing the dynamics
of the large-scale system (3.1). In the following, subsystem j will be
defined as a neighbor of subsystem i if and only if Aij 6= 0 and/or
Bij 6= 0, and Ni will denote the set of neighbors of subsystem i (which
excludes i).

Concerning systems (3.2), the following stabilizability assumption
is introduced.

Assumption 3.1 There exist matrices K̄i ∈ Rmi×ni, i = 1, . . . ,M ,
such that F̄ii = (Aii +BiiK̄i) are Hurwitz. �

We define K̄ =diag(K̄1, . . . , K̄M).
As for the collective system (3.1), the following assumption on de-

centralized stabilizability is made.

Assumption 3.2 There exists a block-diagonal matrix Kc, defined as
Kc =diag(Kc

1, . . . , K
c
M) with Kc

i ∈ Rmi×ni, i = 1, . . . ,M , such that:

i) A + BKc is Hurwitz.

ii) Fii = (Aii +BiiK
c
i ) is Hurwitz, i = 1, . . . ,M .

�
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Note that Assumption 3.2 implies Assumption 3.1 which can be triv-
ially satisfied by setting K̄i = Kc

i . However, since K̄i and Kc
i play

different roles in the design algorithm to be presented, it can be useful
to allow them to be different for performance enhancement.

3.2 DPC for continuous-time systems

The continuous-time distributed control law described in the follow-
ing is composed by two terms, the first one is a standard state feed-
back, while the second one is computed by an MPC-based distributed
control algorithm running with sampling period T and at sampling
times tk = kT , k ∈ N. For simplicity of notation, given the sampling
instant tk, the time instant tk + hT will be denoted by tk+h.

3.2.1 Models: perturbed, nominal and auxiliary

In order to set up the proposed distributed control method, it will
be assumed that at any time instant tk each subsystem i transmits
to its neighbors its continuous-time future state and input reference
trajectories x̃[i](t) and ũ[i](t), t ∈ [tk, tk+N−1). Moreover, by adding
suitable constraints to the MPC formulation, each subsystem will be
able to guarantee that its state and control trajectories lie in specified
time-invariant neighborhoods of the reference trajectories, i.e, for all
t ∈ [tk, tk+N−1), x[i](t) ∈ x̃[i](t) ⊕ Ei and u[i](t) ∈ ũ[i](t) ⊕ Ui, where
0 ∈ Ei and 0 ∈ Ui. It is possible to rewrite (3.2) as the perturbed
model

ẋ[i](t) = Aiix
[i](t)+Biiu

[i](t)+
∑
j∈Ni

(Aijx̃
[j](t)+Bijũ

[j](t))+w[i](t) (3.3)

where the term
∑

j∈Ni(Aijx̃
[j](t) + Bijũ

[j](t)) can be interpreted as a
disturbance, known in advance over the future prediction horizon of
length (N − 1)T (i.e., for all t ∈ [tk, tk+N−1)), to be suitably compen-
sated. On the other hand,

w[i](t) =
∑
j∈Ni

(
Aij(x

[j](t)− x̃[j](t)) +Bij(u
[j](t)− ũ[j](t))

)
∈Wi (3.4)

is a bounded unknown disturbance (i.e., Wi =
⊕

j∈Ni{AijEi ⊕BijUi})
to be rejected.

For the statement of the individual MPC sub-problems, hereafter
denoted i-DPC problem, we rely on a continuous-time version, see [51],
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of the robust MPC algorithm presented in [107] for constrained discrete-
time linear systems with bounded disturbances. As a preliminary step,
define the i-th subsystem nominal model obtained from equation (3.3)
by neglecting the disturbance w[i](t):

˙̂x[i](t) = Aiix̂
[i](t) +Biiû

[i](t) +
∑
j∈Ni

(Aijx̃
[j](t) +Bijũ

[j](t)) (3.5)

The control law for the i-th perturbed subsystem (3.3) is given by

u[i](t) = û[i](t) +Kc
i (x

[i](t)− x̂[i](t)) (3.6)

where Kc
i is the feedback gain satisfying Assumption 3.2. Letting

z[i](t) = x[i](t)− x̂[i](t), from equations (3.3) and (3.6), one obtains

ż[i](t) = Fiiz
[i](t) + w[i](t) (3.7)

where w[i](t) ∈ Wi. Since Wi is bounded and Fii is Hurwitz, it is
possible to define the robust positively invariant (RPI) set Zi for (3.7)
(see, for example, [160] and [133]) such that, for all z[i](tk) ∈ Zi, then
z[i](t) ∈ Zi for all t ≥ tk. Here, we assume that the sets Zi are such that
there exist non-empty sets X̂i ⊆ Xi 	 Zi and Ûi ⊆ Ui 	Kc

iZi. Given
Zi, define the neighborhoods of the origin Ei and Ui, i = 1, . . . ,M such
that Ei ⊕ Zi ⊆ Ei and Ui ⊕Kc

iZi ⊆ Ui, respectively.
Assume also that it is possible to guarantee that, for suitably defined

sets Ēi and Ūi and for t ∈ [tk+N−1, tk+N), x̃[i](t) ∈ Ēi and ũ[i](t) ∈ Ūi.
Then, with reference to the time interval t ∈ [tk+N−1, tk+N ], it is worth
defining an auxiliary “decentralized" model, obtained from equation
(3.5) by neglecting the known disturbance term:

˙̄x[i](t) = Aiix̄
[i](t) +Biiū

[i](t) (3.8)

Similarly to (3.6), the term û[i](t) is set as follows

û[i](t) = ū[i](t) + K̄i(x̂
[i](t)− x̄[i](t)) (3.9)

where K̄i is the feedback gain satisfying Assumption 3.1. Letting
s[i](t) = x̂[i](t)− x̄[i](t), from (3.5), (3.8) and (3.9) one has

ṡ[i](t) = F̄iis
[i](t) + w̄[i](t) (3.10)

where w̄[i](t) =
∑

j∈Ni{Aijx̃
[j](t) + Bijũ

[j](t)} ∈ W̄i and
W̄i =

⊕
j∈Ni{Aij Ēj ⊕BijŪj}. Since W̄i is bounded and F̄ii is Hurwitz,

it is possible to define a further robust positively invariant (RPI) set Si



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 71 — #87 i
i

i
i

i
i

3.2. DPC FOR CONTINUOUS-TIME SYSTEMS 71

for (3.10). The sets Ēi and Ūi must satisfy Ēi⊕Si ⊆ X̂i, Ūi⊕K̄iSi ⊆ Ûi,
Si ⊆ Ei and K̄iSi ⊆ Ui.

Although not strictly necessary for the derivation of the properties
of the proposed DPC method, for simplicity in the following it will
be assumed that the feed-forward term ū[i](t) is a piecewise constant
signal, i.e., ū[i](t) = ū[i](tk+N−1) for all t ∈ [tk+N−1, tk+N).

3.2.2 Statement of the i-DPC problems

At any time instant tk, given the future reference trajectories x̃[j](t),
ũ[j](t), t ∈ [tk, tk+N−1), j ∈ Ni ∪ {i}, for system i = 1, . . . M we define
the following i-DPC problem

min
x̂[i](tk),û[i]([tk,tk+N−1)),x̄[i](tk+N−1),ū[i](tk+N−1)

V N
i (3.11)

subject to (3.5), (3.8), to

x[i](tk)− x̂[i](tk) ∈ Zi (3.12)

x̂[i](t)− x̃[i](t) ∈ Ei (3.13)

û[i](t)− ũ[i](t) ∈ Ui (3.14)

x̂[i](t) ∈ X̂i (3.15)

û[i](t) ∈ Ûi (3.16)

for all t ∈ [tk, tk+N−1), to

x̂[i](tk+N−1)− x̄[i](tk+N−1) ∈ Si (3.17)

x̄[i](t) ∈ Ēi (3.18)

ū[i](t) ∈ Ūi (3.19)

for all t ∈ [tk+N−1, tk+N), and to the terminal constraint

x̄[i](tk+N) ∈ X̄F
i (3.20)

where X̄F
i is a terminal set related to the i-th nominal subsystem (3.8),

specified in the following section.
The cost function V N

i is

V N
i =

1

2

∫ tk+N−1

tk

(‖x̂[i](t)‖2
Q̂i

+ ‖û[i](t)‖2
R̂i

)dt+
1

2
‖x̂[i](tk+N−1)‖2

P̂i
+

+ λ

(
1

2

∫ tk+N

tk+N−1

(‖x̄[i](t)‖2
Q̄i

+ ‖ū[i](t)‖2
R̄i

)dt+
1

2
‖x̄[i](tk+N)‖2

P̄i

)
(3.21)
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where λ is a positive constant and the symmetric, positive definite
matrices Q̂i, Q̄i, R̂i, R̄i, P̂i, and P̄i are design parameters and are
chosen as specified later.

Denoting by

Xi(tk) = (x̂[i](tk), û
[i]([tk, tk+N−1)), x̄[i](tk+N−1), ū[i](tk+N−1))

the arguments of the cost function V N
i , the optimal solution to the

i-DPC problem at time tk is the 4-uple

Xi(tk|tk) = (x̂[i](tk|tk), û[i]([tk, tk+N−1)|tk), x̄[i](tk+N−1|tk), ū[i](tk+N−1|tk))

The signal x̂[i](t|tk), t ∈ [tk, tk+N−1] (respectively x̄[i](t|tk),
t ∈ [tk+N−1, tk+N ]) is the solution to (3.5) (respectively to (3.8)) ob-
tained with x̂[i](tk|tk) as initial conditionand û([tk, tk+N−1)|tk) as in-
put sequence (respectively with x̄[i](tk+N−1|tk) as initial condition and
ū(tk+N−1|tk) as constant input). According to (3.6), the control law
for the system (3.2), for t ∈ [tk, tk+1), is given by

u[i](t) = û[i](t|tk) +Kc
i (x

[i](t)− x̂[i](t|tk)) (3.22)

Finally, the reference trajectories x̃[i](t) and ũ[i](t) are incrementally
defined as follows. Specifically, for t ∈ [tk+N−1, tk+N), we set

x̃[i](t) = x̄[i](t|tk) (3.23a)

ũ[i](t) = ū[i](t|tk) (3.23b)

Then, these pieces of trajectories are transmitted to the subsystems
j such that i ∈ Nj, i.e., which need their knowledge to compute
the future predictions x̂[j](t). Remark that, by solely transmitting
x̄[i](tk+N−1|tk) and ū[i](tk+N−1|tk), the whole x̄[i](t|tk), t ∈ [tk+N−1, tk+N),
can be exactly reconstructed by subsystem j provided that j knows the
dynamical model governing the subsystem i.

3.2.3 Properties of DPC

In order to establish the main stability and convergence properties of
the proposed distributed control law, the following definition and as-
sumption must be introduced. The set of admissible initial conditions
x(t0) = (x[1](t0), . . . , x[M ](t0)) and initial reference trajectories x̃[j](t),
ũ[j](t), for all j = 1 . . . ,M and t ∈ [t0, tN−1), are defined as follows.
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Definition 3.1 Letting x = (x[1], . . . , x[M ]), denote by

XN := {x : if x[i](t0) = x[i] for all i = 1, . . . ,M then ∃
(x̃[1](t), . . . , x̃[M ](t)), (ũ[1](t), . . . , ũ[M ](t))
for all t ∈ [t0, tN−1), Xi(t0|t0) such that (3.5), (3.8),
and (3.12)- (3.20) are satisfied for all i = 1, . . . ,M}

the feasibility region for all the i-DPC problems. Moreover, for each
x ∈ XN , let

X̃x := {(x̃[1](t), . . . , x̃[M ](t)), (ũ[1](t), . . . , ũ[M ](t)) for all t ∈ [t0, tN−1) :
if x[i](t0) = x[i] for all i = 1, . . . ,M then ∃Xi(t0|t0) such that
(3.5), (3.8), (3.12)- (3.20) are satisfied for all i = 1, . . . ,M}

be the region of feasible initial reference trajectories.

Assumption 3.3 Given the sets Ei, Ui, and the RPI sets Zi for equa-
tion (3.7), there exists a real positive constant ρ̄E > 0 such that Zi ⊕
B(ni)
ρ̄E (0) ⊆ Ei and Kc

iZi ⊕ B
(mi)
ρ̄E (0) ⊆ Ui for all i = 1, . . . ,M . �

Then, it is possible to state the following result (see the Appendix
for the proof).

Theorem 3.1 Let Assumptions 3.1, 3.2, and 3.3 be satisfied; then,
there exist computable design parameters λ, Q̂i, Q̄i, R̂i, R̄i, P̂i, P̄i such
that, for any initial reference trajectories in X̃x(t0), the trajectory x(t),
starting from any initial condition x(t0) ∈ XN , asymptotically con-
verges to the origin. �

A detailed discussion on how to select the design parameters and the
sets of interest is reported in the following section.

Remark 3.1 In the optimization problem (3.11) it has been assumed
that û[i]([tk, tk+N−1)) is a generic function of time. However, for com-
putational reasons, it is usually more convenient to resort to param-
eterized functions and to optimize with respect to the corresponding
parameters.

3.3 Tuning of the design parameters

In this section we show how to compute design parameters which guar-
antee that Theorem 3.1 holds.
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3.3.1 Choice of the control gains Kc
i , Ki

The control laws (3.6), (3.9) require the knowledge of the gains Kc
i

and Ki satisfying Assumptions 3.1 and 3.2. While the terms Ki can
be computed with any standard synthesis method provided that the
pair (Aii, Bi) is stabilizable, the computation of Kc =diag(Kc

1, . . . , K
c
M)

is more difficult, since both a collective and a number of local stabil-
ity conditions must be fulfilled. For instance, this problem can be
easily tackled in a centralized fashion by defining two block diagonal
matrices S =diag(S1, . . . , SM), Si ∈ Rni,ni , and Y =diag(Y1, . . . , YM),
Yi ∈ Rmi,ni , and by solving the following set of LMI’s, see [172]

S � 0
Si � 0, i = 1, . . . ,M
SAT + AS + YTBT + BY ≺ 0
SiA

T
ii + AiiSi + Y T

i B
T
ii +BiiYi ≺ 0, i = 1, . . . ,M

(3.24)

Then, Kc = YS−1 is the required stabilizing block diagonal matrix.

3.3.2 Choice of Q̄i, R̄i, P̄i, X̄F
i

In order to define matrices Q̄i, R̄i, P̄i, and the invariant set X̄F
i ,

we must preliminarily define the auxiliary control law for the sys-
tem (3.8), which must be consistent with the simplifying assumption
that ū[i](t) is piecewise constant. Assuming that the terminal con-
straint
x̄[i](tk+N) ∈ X̄F

i is verified, we define the auxiliary control law, to be
applied to system (3.8) for all t ∈ [tk+N , tk+N+1), as

ū[i](t) = ū[i](tk+N) = Kd
i x̄

[i](tt+N) (3.25)

where the gainKd
i must stabilize the continuous-time system (3.8). De-

noting, for all η ∈ [0, T ], Azohii (η) = eAiiη andBzoh
ii (η) =

∫ η
0
eAii(η−ν)Biidν

and given x̄[i](tk+N), for all t ∈ [tk+N , tk+N+1] one has

x̄[i](t) = F zoh
ii (t− tk+N)x̄[i](tk+N)

x̄[i](tk+N+1) = F d
iix̄

[i](tk+N)
(3.26)

where F zoh
ii (η) = Azohii (η) + Bzoh

ii (η)Kd
i and F d

ii = F zoh
ii (T ). Therefore,

the gains Kd
i can be computed with any standard stabilization method

to guarantee that F d
ii is Schur. This procedure allows also one to re-

sort to the results reported in [101], Lemma 1, which turn out to be
useful in the following developments. Specifically, given the symmetric
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weighting matrices Q̄i > 0 and R̄i > 0 appearing in (3.21) and which
can be chosen as free design parameters, define two constants γi1 > 0,
γi2 > 0 in such a way that

γi1 > λM(Q̄i) (3.27a)
γi2 > T‖Kd

i ‖2λM(R̄i) (3.27b)

Furthermore, define a matrix Q∗i in such a way that λm(Q∗i ) > γi1. Let
the symmetric matrix P̄i be the unique positive definite solution of the
following Lyapunov equation

(F d
ii)
T P̄iF

d
ii − P̄i + Q̃i = 0 (3.28)

where Q̃i =
∫ T

0
(F zoh

ii (η))TQ∗F zoh
ii (η)dη + γi2I. Then, for each pair of

sets Ēi, Ūi, it is proven in [101] that there exist a sampling period
T ∈ [0,+∞) and a constant ci > 0 such that the set

X̄F
i (Kd

i , T ) = {x̄[i] | ‖x̄[i]‖2
P̄i
≤ ci} (3.29)

satisfies, for all x̄[i](tk+N) ∈ X̄F
i and for all t ∈ [tk+N , tk+N+1), the

conditions

x̄[i](t) ∈ Ēi, Kdx̄
[i](tk+N) ∈ Ūi (3.30a)

‖x̄[i](tk+N+1)‖2
P̄i
− ‖x̄[i](tk+N)‖2

P̄i
≤

−γi1
∫ tk+N+1

tk+N

‖x̄[i](η)‖2dη − γi2‖x̄[i](tk+N)‖2

(3.30b)

Letting

l̄i(x̄
[i](t), ū[i](t)) =

λ

2

∫ t+T

t

(‖x̄[i](η)‖2
Q̄i

+ ‖ū[i](η)‖2
R̄i

)dη (3.31a)

V̄ F
i (x̄[i](t)) =

λ

2
‖x̄[i](t)‖2

P̄i
(3.31b)

from the definition of γi1 > 0, γi2 > 0 and V̄ F
i , and recalling (3.25),

(3.31b) implies that x̄[i](tk+N+1) ∈ X̄F
i and

V̄ F
i (x̄[i](tk+N+1))−V̄ F

i (x̄[i](tk+N)) ≤

−λ
2

∫ tk+N+1

tk+N

(‖x̄[i](η)‖2
Q̄i

+ ‖ū[i](η)‖2
R̄i

)dη ≤

− l̄i(x̄[i](tk+N), ū[i](tk+N)) (3.32)
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Therefore, since properties (3.30a)- (3.32) are required to establish the
main properties of the method (see the proof of Theorem 3.1), for any
pair Q̄i, R̄i it is required to choose the weights P̄i in (3.21) according
to (3.28) and the terminal set X̄F

i in (3.20) according to (3.29).

3.3.3 Choice of Q̂i, R̂i, P̂i, λ

The symmetric, positive definite matrices Q̂i, R̂i can be freely chosen
according to specific design criteria, while, in order to guarantee the
stability properties of Theorem 3.1, given an arbitrary constant α > 1,
the matrix P̂i must be computed to satisfy the following Lyapunov
equation:

Φ̄[i]
x (T )T P̂iΦ̄

[i]
x (T )− P̂i +Q[i]

x + αIn = 0 (3.33)

where

Q[i]
x =

∫ T

0

Φ̄[i]
x (η)T Q̂iΦ̄

[i]
x (η) + Φ̄[i]

u (η)T R̂iΦ̄
[i]
u (η)dη

and, for all η = [0, T ], Φ̄
[i]
x (η) = eF̄iiη and Φ̄

[i]
u (η) = K̄iΦ̄

[i]
x (η). For the

tuning of scalar λ, there exists a positive number λ̄ > 0 such that,
if λ ≥ λ̄, then the convergence of the scheme is guaranteed. For a
numerical assessment of λ̄, see the discussion in Section 3.6

3.4 Simulation example

Consider the problem of regulating the levels yi, i = 1, . . . , 5 of the five
flotation tanks system discussed in [158], see also Chapter 2, where
a flow of pulp q enters into the first one. The tanks are connected in
cascade with control valves between subsequent reservoirs (Figure 3.1),
and the manipulated inputs are the signals to the valves vi, i = 1, . . . , 5.
We refer the reader to Chapter 2 for details about the dynamic model
of the system, its parameters, the considered equilibrium point and the
constraints on inputs and states. For the sake of simplicity, in this case
external disturbances are not considered.

Let δyi = yi − ȳi, i = 1, . . . , 5, δvi = vi − v̄i, i = 1, . . . , 5,
x = (δy1, δy2, δy3, δy4, δy5) and u = (δv1, δv2, δv3, δv4, δv5).

The partitions of inputs and states, for i = 1, . . . , 5 is x[i] = δyi,
u[i] = δvi.

The weighting matrices, for i = 1, . . . , 5, are Q̄i = R̄i = 1 and
Q̂i = R̂i = 1.
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Figure 3.1: Schematic representation of the cascade coupled flotation tanks.

Note that, since the subsystems have all one state, the RPI sets
can be computed easily. In fact, for a scalar system having dynamics
ẋ(t) = λx(t)+w(t) with w ∈W = {w ∈ R|−b ≤ w ≤ b}, we have that
the RPI set Z is defined as Z = {x ∈ R | b/λ ≤ x ≤ −b/λ} [133]. In
this way, the computation of the RPI sets Zi can be solved via a linear
programming problem. The terms of the cost function, moreover, can
be computed easily solving standard integrals. For subsystems with
more than one state, symbolic calculus tools should be used.

In Figure 3.2 the states trajectories, obtained using the continuous-
time nonlinear model in simulation are depicted. Figure 3.3 shows the
applied inputs. In both cases, a comparison with a standard centralized
discrete-time MPC algorithm is provided.

3.5 Conclusions

In this Chapter we have presented a non-cooperative distributed pre-
dictive control algorithm for continuous-time systems based on robust
MPC, whose convergence properties have been proved. A realistic case
study has been used for testing the performance of the algorithm. Af-
ter the in-depth study of the regulation problem presented in first two
chapters, in the next ones we will present some solutions to the tracking
problem.
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Figure 3.2: Trajectories of the state x[1] (solid lines), x[2] (dashed lines), on the
left, and x[3] (solid lines), x[4] (dashed lines), x[5] (dash-dot lines), on the right,
obtained with DPC (black lines) and with cMPC (gray lines) for the control of the
floating tanks.

Figure 3.3: Inputs u[1] (solid lines), u[2] (dashed lines), on the left, and u[3] (solid
lines), u[4] (dashed lines), u[5] (dash-dot lines), on the right, used with DPC (black
lines) and with cMPC (gray lines) for the control of the floating tanks.
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3.6 Appendix

3.6.1 Recursive feasibility

First we prove that, given for all i = 1, . . . ,M , an optimal feasible
solution Xi(tk|tk) to (3.11) at time tk, the 4-uple

Xi(tk+1|tk) = (x̂[i](tk+1|tk), (û[i]([tk+1, tk+N−1)|tk), ū[i](t|tk)+
+K̄i(x̂

[i](t|tk)−x̄[i](t|tk)), t ∈ [tk+N−1, tk+N)), x̄[i](tk+N |tk), Kd
i x̄

[i](tk+N |tk))
(3.34)

is a feasible solution to (3.11) at time tk+1. Recall that, according
to (3.23), after the solution to (3.11) is computed at time tk, each
subsystem j transmits x̃[j]([tk+N−1, tk+N)) = x̄[j]([tk+N−1, tk+N)|tk) and
ũ[j]([tk+N−1, tk+N)) = ū[i]([tk+N−1, tk+N)|tk) to all the subsystems i sat-
isfying j ∈ Ni.

Importantly, in (3.34), for t ∈ [tk+N−1, tk+N), the trajectory x̂[i](t|tk)
is computed, by subsystem i, according to system (3.5), with
û[i](t) = ū[i](t|tk) + K̄i(x̂

[i](t|tk)− x̄[i](t|tk)). Therefore it results that,
for all t ∈ [tk+N−1, tk+N)

˙̂x[i](t|tk) = Aiix̂
[i](t|tk) +Bii

(
ū[i](t|tk) + K̄i(x̂

[i](t|tk)− x̄[i](t|tk))
)

+
+
∑

j∈Ni(Aijx̄
[j](t|tk) +Bijū

[j](t|tk))
= (Aii +BiiK̄i)x̂

[i](t|tk)−BiiK̄ix̄
[i](t|tk)+

+
∑

j∈Ni Aijx̄
[j](t|tk) +

∑M
j=1Bijū

[j](t|tk)
(3.35)

On the other hand, the trajectory x̄[i](t|tk), for all t ∈ [tk+N , tk+N+1],
is computed according to (3.8) with ū[i](t|tk) = Kd

i x̄
[i](tk+N |tk), and

therefore x̄[i](t|tk) = F zoh
i (t− tk+N)x̄[i](tk+N |tk).

From (3.12) x[i](tk) − x̂[i](tk) ∈ Zi and, from (3.13)- (3.14), for
t ∈ [tk, tk+1), it is guaranteed that x̂[j](t) − x̃[j](t) ∈ Ej,
û[j](t)− ũ[j](t) ∈ Ej for all j ∈ Ni and w[i](t) ∈Wi. Therefore, in view
of the invariance of Zi with respect to (3.7), it holds that x[i](tk+1) −
x̂[i](tk+1|tk) ∈ Zi.

For t ∈ [tk+1, tk+N−1), constraints (3.13), (3.14), (3.15) and (3.16)
are verified in view of the feasibility of (3.11) at time tk.
For t ∈ [tk+N−1, tk+N), recalling (3.35) we have that

˙̂x[i](t|tk)− ˙̄x[i](t|tk) = (Aii +BiiK̄i)(x̂
[i](t|tk)− x̄[i](t|tk))

+
∑

j∈Ni

(
Aijx̄

[j](t|tk) +Bijū
[j](t|tk)

)
(3.36)
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and recall also that x̃[i](t) = x̄[i](t|tk) and ũ[i](t) = ū[i](t|tk) for all
i = 1, . . . ,M . In view of (3.17) x̂[i](tk+N−1|tk)−x̄[i](tk+N−1|tk) ∈ Si and
from (3.18)- (3.19), it is guaranteed that∑

j∈Ni(Aijx̄
[j](t|tk) +Bijū

[j](t|tk)) ∈ W̄i for all j ∈ Ni. In view of the
invariance of Si with respect to (3.10), it holds that
x̂[i](t|tk) − x̄[i](t|tk) = x̂[i](t|tk) − x̃[i](t) ∈ Si. Furthermore, since
û[i](t|tk) − ū[i](t|tk) = û[i](t|tk) − ũ[i](t) ∈ K̄iSi and Si ⊆ Ei and
K̄iSi ⊆ Ui, then (3.13) and (3.14) are also verified for t ∈ [tk+N−1, tk+N).
This also proves that x̂[i](tk+N |tk) − x̄[i](tk+N |tk) ∈ Si and that (3.17)
is satisfied. Moreover, being Ēi ⊕ Si ⊆ X̂i and Ūi ⊕ K̄iSi ⊆ Ûi, con-
straints (3.15) and (3.16) are verified for t ∈ [tk+N−1, tk+N).

Finally, note that x̄[i](tk+N) ∈ X̄F
i in view of (3.20) and of the

definition (3.29) of X̄F
i and (3.30b), the constraints (3.18), (3.19), (3.20)

are also verified at time tk+1. In view of this, the 4-uple Xi(tk+1|tk) is
a feasible solution to (3.11) at time tk+1.

This implies that, given the optimal solution X∗i (tk+1) to the prob-
lem (3.11) at time tk+1 (which is proved to exist, provided that (3.11)
is feasible at time tk), for all i = 1, . . . ,M it holds that, by optimality

V N∗
i (x(tk+1)) = V N

i (X∗i (tk+1)) ≤ V N
i (Xi(tk+1|tk)) (3.37)

3.6.2 The collective problem

To prove the convergence to zero of the solution, we now define the
collective problem, equivalent to the one considered in the previous
sections. Define the vectors

x̂(t) = (x̂[1](t), . . . , x̂[M ](t)), x̄(t) = (x̄[1](t), . . . , x̄[M ](t))

x̃(t) = (x̃[1](t), . . . , x̃[M ](t)), û(t) = (û[1](t), . . . , û[M ](t))

ū(t) = (ū[1](t), . . . , ū[M ](t)), ũ(t) = (ũ[1](t), . . . , ũ[M ](t))

w(t) = (w[1](t), . . . , w[M ](t)), w̄(t) = (w̄[1](t), . . . , w̄[M ](t))

z(t) = (z[1](t), . . . , z[M ](t)), s(t) = (s[1](t), . . . , s[M ](t))

Then define the matrices A∗ = diag(A11, . . . , AMM),
B∗ = diag(B11, . . . , BMM), Ã = A−A∗, B̃ = B−B∗. Collectively,
we write equations (3.3), (3.5), and (3.8) as

ẋ(t) = A∗x(t) + B∗u(t) + Ãx̃(t) + B̃ũ(t) + w(t) (3.38)
˙̂x(t) = A∗x̂(t) + B∗û(t) + Ãx̃(t) + B̃ũ(t) (3.39)
˙̄x(t) = A∗x̄(t) + B∗ū(t) (3.40)
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In view of (3.6) and (3.9), u(t) = û(t) + Kc(x(t) − x̂(t)) and
û(t) = ū(t)+K̄(x̂(t)−x̄(t)). From this, and in view of (3.7) and (3.10),

ż(t) = (A∗ + B∗Kc)z(t) + w(t) (3.41)
ṡ(t) = (A∗ + B∗K̄)s(t) + w̄(t) (3.42)

Minimizing (3.11) at time tk for all i = 1, . . . ,M is equivalent to solve
the following collective minimization problem

VN∗(x(tk)) = min
X(tk)

VN(X(tk)) (3.43)

where X(tk) = (X1(tk), . . . , XM(tk)), subject to the dynamic con-
straints (3.39), (3.40) and

x(tk)− x̂(tk) ∈ Z =
M∏
i=1

Zi (3.44a)

x̂(t)− x̃(t) ∈ E =
M∏
i=1

Ei (3.44b)

û(t)− ũ(t) ∈ Ũ =
M∏
i=1

Ui (3.44c)

x̂(t) ∈ X̂ =
M∏
i=1

X̂i (3.44d)

û(t) ∈ Û =
M∏
i=1

Ûi (3.44e)

for all t ∈ [tk, tk+N−1), to

x̂(tk+N−1)− x̄(tk+N−1) ∈ S =
M∏
i=1

Si (3.45)

x̄(t) ∈ Ē =
M∏
i=1

Ēi (3.46)

x̄(t) ∈ Ū =
M∏
i=1

Ūi (3.47)

and the terminal constraint

x̄(tk+N) ∈ X̄F =
M∏
i=1

X̄ F
i (3.48)
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The collective cost function VN is

VN =
N−2∑
h=0

l̂(x̂(tk+h), û(tk+h)) + V̂F (x̂(tk+N−1)) +

l̄(x̄(tk+N−1), ū(tk+N−1)) + V̄F (x̄(tk+N)) (3.49)

where, from (3.31):

l̂(x̂(t), û(t)) =
1

2

∫ t+T

t

(‖x̂(η)‖2
Q̂

+ ‖û(η)‖2
R̂

)dη (3.50a)

l̄(x̄(t), ū(t)) =
λ

2

∫ t+T

t

(‖x̄(η)‖2
Q̄ + ‖ū(η)‖2

R̄)dη (3.50b)

V̂F (x̂(t)) =
1

2
‖x̂(t)‖2

P̂
(3.50c)

V̄F (x̄(t)) =
λ

2
‖x̄(t)‖2

P̄ (3.50d)

and Q̂ =diag(Q̂1, . . . , Q̂M), R̂ =diag(R̂1, . . . , R̂M), P̂ =diag(P̂1, . . . , P̂M),
Q̄ =diag(Q̄1, . . . , Q̄M), R̄ =diag(R̄1, . . . , R̄M), and P̄ =diag(P̄1, . . . , P̄M).

3.6.3 Proof of convergence

Denote with X(tk|tk) = (X1(tk|tk), . . . , XM(tk|tk)) the optimal solution
to (3.43) at time tk, and with X(tk+1|tk) = (X1(tk+1|tk), . . . , XM(tk+1|tk))
the feasible (non-optimal) solution to (3.43) at time tk+1, where
Xi(tk+1|tk) is defined in (3.34), for all i = 1, . . . ,M . From (3.37) we
have that

VN∗(x(tk+1))−VN∗(x(tk)) ≤ VN(X(tk+1|tk))−VN(X(tk|tk))
≤ −l̂(x̂(tk|tk), û(tk|tk)) + (a) + (b)

(3.51)
where
(a) = l̂(x̂(tk+N−1|tk), û(tk+N−1|tk))− l̄(x̄(tk+N−1|tk), ū(tk+N−1|tk))

+V̂F (x̂(tk+N |tk))− V̂F (x̂(tk+N−1|tk))
(b) = l̄(x̄(tk+N |tk), ū(tk+N |tk)) + V̄F (x̄(tk+N+1|tk))− V̄F (x̄(tk+N |tk))

Consider first term (b). If matrices P̄i, i = 1, . . . ,M , are chosen as the
solutions to the Lyapunov equations (3.28) then, from (3.32), for all
i = 1, . . . ,M

V̄ F
i (x̄i(tk+N+1|tk))− V̄ F

i (x̄i(tk+N |tk)) ≤ −l̄i(x̄i(tk+N |tk), ūi(tk+N |tk))
(3.52)
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which, collectively, implies that (b) ≤ 0.

Considering now term (a), define the following collective quanti-
ties: F∗ =diag(F̄11, . . . , F̄MM), Azoh(η) =diag(Azoh11 (η), . . . , AzohMM(η)),
Bzoh(η) =diag(Bzoh

11 (η), . . . , Bzoh
MM(η)). Since ū(t|tk) is constant for all

t ∈ [tk+N−1, tk+N), and recalling (3.35), for t ∈ [tk+N−1, tk+N ] it results
that

x̄(t|tk) =Azoh(t− tk+N−1)x̄(tk+N−1|tk) + Bzoh(t− tk+N−1)ū(tk+N−1|tk)
(3.53a)

and, from (3.35)

˙̂x(t|tk) =F̄∗x̂(t|tk) + (Ã−B∗K̄)x̄(t|tk) + Bū(t|tk)
=F̄∗x̂(t|tk) + (Ã−B∗K̄)Azoh(t− tk+N−1)x̄(tk+N−1|tk)+

+
(

(Ã−B∗K̄)Bzoh(t− tk+N−1) + B
)

ū(t|tk) (3.53b)

Therefore, solving (3.53b), we obtain

x̂(t|tk) =Φ̄x(t− tk+N−1)x̂(tk+N−1|tk) + Γ̄1x(t− tk+N−1)x̄(tk+N−1|tk)
+ Γ̄2x(t− tk+N−1)ū(tk+N−1|tk) (3.54)

û(t|tk) =Φ̄u(t− tk+N−1)x̂(tk+N−1|tk) + Γ̄1u(t− tk+N−1)x̄(tk+N−1|tk)
+ Γ̄2u(t− tk+N−1)ū(tk+N−1|tk) (3.55)

where Φ̄x(η) = eF∗η, Γ̄1x(η) =
∫ η

0
eF∗(η−ν)(Ã − B∗K̄)Azoh(ν)dν,

Γ̄2x(η) =
∫ η

0
eF∗(η−ν)((Ã − B∗K̄)Bzoh(ν) + B)dν, Φ̄u(η) = K̄Φ̄x(η),

Γ̄1u(η) = K̄(Γ̄1x(η)−Azoh(η)), Γ̄2u(η) = I + K̄(Γ̄2x(η)−Bzoh(η)).

Denote, for brevity, x̂k+N−1 = x̂(tk+N−1|tk),
vk+N−1 = (x̄(tk+N−1|tk), ū(tk+N−1|tk)), and

Γ̄x(η) =
[
Γ̄1x(η) Γ̄2x(η)

]
Γ̄u(η) =

[
Γ̄1u(η) Γ̄2u(η)

]
Āx(η) =

[
Azoh(η) Bzoh(η)

]
Āu(η) =

[
0 I

]
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Then, in view of (3.55) we compute the elements of term (a) as

l̂(x̂(tk+N−1|tk), û(tk+N−1|tk)) =
1

2
‖x̂k+N−1‖2∫ T

0 Φ̄x(η)T Q̂Φ̄x(η)+Φ̄u(η)T R̂Φ̄u(η)dη

+
1

2
‖vk+N−1‖2∫ T

0 Γ̄x(η)T Q̂Γ̄x(η)+Γ̄u(η)T R̂Γ̄u(η)dη

+ x̂Tk+N−1(

∫ T

0

Φ̄x(η)T Q̂Γ̄x(η)

+ Φ̄u(η)T R̂Γ̄u(η)dη)vk+N−1 (3.56a)

V̂F (x̂(tk+N |tk)) =
1

2
‖x̂k+N−1‖2

Φ̄x(T )T P̂Φ̄x(T )

+
1

2
‖vk+N−1‖2

Γ̄x(T )T P̂Γ̄x(T )

+ x̂Tk+N−1Φ̄x(T )T P̂Γ̄x(T )vk+N−1

(3.56b)

l̄(x̄(tk+N−1|tk), ū(tk+N−1|tk)) =
λ

2
‖vk+N−1‖2∫ T

0 Āx(η)T Q̄Āx(η))+Āu(η)T R̄Āu(η)dη

(3.56c)

Define, for simplicity:

Qv =

∫ T

0

(
Γ̄x(η)T Q̂Γ̄x(η) + Γ̄u(η)T R̂Γ̄u(η)

)
dη (3.57a)

Sxv =

∫ T

0

(
Φ̄x(η)T Q̂Γ̄x(η) + Φ̄u(η)T R̂Γ̄u(η)

)
dη (3.57b)

Rv =

∫ T

0

(
Āx(η)T Q̄Āx(η)) + Āu(η)T R̄Āu(η)

)
dη (3.57c)

Therefore

(a) = 1
2
‖x̂k+N−1‖2

Φ̄x(T )T P̂Φ̄x(T )−P̂+Qx
+ 1

2
‖vk+N−1‖2

Γ̄x(T )T P̂Γ̄x(T )+Qv−λRv
+x̂Tk+N−1(Φ̄x(T )T P̂Γ̄x(T ) + Sxv)vk+N−1

(3.58)
Recall that P̂ is the block-diagonal matrix whose blocks P̂i satisfy (3.33)
for all i = 1, . . . ,M , i.e., such that P̂ satisfies

Φ̄x(T )T P̂Φ̄x(T )− P̂ +Qx + αI = 0 (3.59)

where α > 1 is an arbitrary scalar. The following procedure is proposed
for defining a suitable scalar λ and matrix P̂.
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1. Define SPxv = Φ̄x(T )T P̂Γ̄x(T )+Sxv and an arbitrary scalar β > 0
such that

βI ≥STPxvSPxv (3.60)

or equivalently

β ≥‖SPxv‖2
2 (3.61)

2. Define λ̄ as the smallest value of λ > 0 satisfying

λRv − Γ̄x(T )T P̂Γ̄x(T )−Qv ≥ βI (3.62)

Note that, given P̂ and β > 0, since Rv > 0, it is always possible
to define λ̄ > 0. finally, set λ > λ̄.

According to the sketched procedure and in view of (3.59) and (3.62),
from (3.58) we can write

(a) ≤ −α
2
‖x̂k+N−1‖2 − β

2
‖vk+N−1‖2 + x̂Tk+N−1SPxvvk+N−1 (3.63)

Since
0 ≤ 1

2
‖x̂k+N−1 − SPxvvk+N−1‖2 = 1

2
‖x̂k+N−1‖2+

+1
2
‖vk+N−1‖2

STPxvSPxv
− x̂Tk+N−1SPxvvk+N−1

it follows that
x̂Tk+N−1SPxvvk+N−1 ≤ 1

2
‖x̂k+N−1‖2 + 1

2
‖vk+N−1‖2

STPxvSPxv

and, from (3.63)

(a) ≤ 1−α
2
‖x̂k+N−1‖2 + 1

2
‖vk+N−1‖2

STPxvSPxv−βI (3.64)

Therefore, since β satisfies (3.60) and α > 1, then (a) ≤ 0.
From (3.51), and having proved that both (a) ≤ 0 and (b) ≤ 0, we

obtain that

VN∗(x(tk+1))−VN∗(x(tk)) ≤ −l̂(x̂(tk|tk), û(tk|tk)) (3.65)

Therefore l̂(x̂(tk|tk), û(tk|tk))→ 0 as k →∞. Under suitable smooth-
ness assumptions on û(t|tk) and x̂(t|tk) and since Q̂ > 0 and R̂ > 0,
it follows that x̂([tk, tk+1)|tk)→ 0 and û([tk, tk+1)|tk)→ 0 as k →∞.

Recalling now system (3.1) where, for all k ∈ N, t ∈ [tk, tk+1),
u(t) = û(t|tk) + Kc(x(t|tk)− x̂(t)). We can write

ẋ(t) = (A + BKc)x(t) + B(û(t|tk)−Kcx(t|tk))
Since B(û(t|tk)−Kcx(t|tk)) is an asymptotically vanishing term, and
since A + BKc is Hurwitz in view of Assumption 3.2, we obtain that
x(t)→ 0 as t→∞.
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Introduction to the tracking problem

Most of the contributions in the field of model predictive control are
referred to the so-called regulation problem, i.e. asymptotically steer-
ing the state of the system to zero [105, 135, 136]. On the contrary,
minor attention (see, e.g., [53, 88]) has been placed in the design of
control schemes for the asymptotic tracking of constant reference out-
put signals, that represent an important issue from the industrial point
of view.

In the development of efficient industrial MPC algorithms, two main
issues must be considered: i) the offset-free problem and ii) the unfea-
sible reference problem. The offset-free problem requires to develop
methods which can guarantee asymptotic zero error regulation for
piecewise constant and feasible reference signals, while the unfeasible
reference problem aims at finding suitable solutions when the nominal
constant reference signal cannot be reached due to the presence of state
and/or control constraints.

Regarding the offset-free problem, many solutions have been pro-
posed so far. The most popular one consists of augmenting the model
of the plant under control with an artificial disturbance, which must
be estimated together with the system state. This disturbance can ac-
count for possible model mismatch or for the presence of real unknown
exogenous signals. Depending on its assumed dynamics, many algo-
rithms have been developed, such as those described in [96, 111, 113,
118, 120, 123]. Another approach directly relies on the Internal Model
Principle [39], where an internal model of the reference, i.e. an inte-

89
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grator, is directly included in the control scheme and fed by the output
error. Then, the MPC algorithm is designed to stabilize the ensem-
ble of the plant and the integrator. This strategy has been followed
in [99, 104] where also more general exogenous signals and nonlinear,
non square systems have been considered. A third solution to the
offset-free problem consists of describing the system in the so-called
“velocity-form”, see [122, 168], where the enlarged state is composed
by the state increments and the output error, while the manipulated
variable is the control increment.

The unfeasible reference problem has been discussed in e.g. [29,119,
135]. More recently, a bright solution has been proposed in [6, 87–89],
see Chapter 1. In these papers, the MPC cost function is complemented
by a term explicitly penalizing the distance between the required (pos-
sibly unfeasible) reference signal and an artificial, but feasible, refer-
ence, which turns out to be one of the optimization variables. Stability
and convergence results are proven both in nominal conditions and for
perturbed systems.

As for the contributions in the field of distributed control, only
few papers on distributed MPC for tracking have been published (see,
e.g., [53], where a cooperative distributed MPC scheme is proposed).
Indeed, in a distributed setting, the standard approach, based on the
reformulation of the tracking problem as a regulation one by computing
at any set-point change of the output the corresponding state and
control target values, cannot be followed due to the decentralization
constraint.

Often, in industrial applications, hierarchical structures are used [149],
e.g. including i) a Real Time Optimization (RTO) for computing the
optimal operating conditions and ii) a centralized regulator with Model
Predictive Control (MPC) for tracking purposes.

Two-layer structures, although very efficient in many practical ap-
plications, pose great difficulties when a distributed control is used
at the lower layer. In fact, the references computed at the higher
layer can ignore the presence of dynamic constraints among the sub-
systems and, as such, can lead to infeasible local optimization prob-
lems. This prevents one from directly applying the many decentralized
and distributed MPC algorithms recently developed (see the examples
reported in Chapter 1) for the regulation problem. In addition, in a
distributed setting, the decentralization constraints do not allow to fol-
low the standard approach, based on the reformulation of the tracking
problem as a regulation one by computing at any set-point change of
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the output the corresponding state and control target values. An alter-
native approach is described in [23,162], where a distributed sequential
reference-governor approach is proposed.
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4
DPC for tracking

In this Chapter, a distributed MPC method based on Distributed
Predictive Control (DPC) for the solution of the tracking problem is
discussed. It is based on a hierarchical structure, depicted in Figure 4.1,
that consists of three layers: I) a standard RTO optimization layer; II)
an intermediate layer which transforms, for each local subsystem, the
references y[i]

set−point computed with RTO into feasible trajectories x̃[i],
ũ[i] and ỹ[i] for the state, input and output variables, respectively; III)
in the lower layer local MPC regulators Ci can communicate according
to a prescribed information pattern and are designed with the state-
feedback DPC algorithm originally developed for the solution of the
regulation problem.

Notably, in the intermediate layer the reference trajectories are com-
puted according to the same information pattern adopted at the lower
layer, and the overall scheme guarantees that state and control con-
straints are fulfilled. Moreover, the controlled outputs reach the pre-
scribed reference values computed with RTO whenever possible, or
their nearest feasible value when feasibility problems arise due to the
constraints.

4.1 Interacting subsystems

Consider the collective dynamical model

xk+1 = Axk + Buk (4.1a)
yk = Cxk (4.1b)

93



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 94 — #110 i
i

i
i

i
i

94 CHAPTER 4. DPC FOR TRACKING

Figure 4.1: Overall control architecture for distributed tracking.

in which xk ∈ Rn is the collective state vector, uk ∈ Rm is the collective
input vector and yk ∈ Rm is the collective output vector.

The dynamic system (4.1) can be decomposed in a set ofM dynam-
ically interacting non-overlapping subsystems which, according to the
notation used in [94], are described by

x
[i]
k+1 = Aiix

[i]
k +Biiu

[i]
k + Eis

[i]
k (4.2a)

y
[i]
k = Cix

[i]
k (4.2b)

z
[i]
k = Czix

[i]
k +Dziu

[i]
k (4.2c)

where x[i]
k ∈ Rni and u

[i]
k ∈ Rmi are the state and input vectors, re-

spectively, of the i-th subsystem, while y[i]
k ∈ Rmi is its output vec-

tor. According to the non-overlapping decomposition, it holds that
xk = (x

[1]
k , . . . , x

[M ]
k ), n =

∑M
i=1 ni, that uk = (u

[1]
k , . . . , u

[M ]
k ),

m =
∑M

i=1mi, and that yk = (y
[1]
k , . . . , y

[M ]
k ). In line with the interaction-

oriented models introduced in [94], the coupling input and output vec-
tors s[i]

k and z[i]
k , respectively, are defined to characterize the intercon-

nections among the subsystems; in a collective form, they are defined
as sk = (s

[1]
k , . . . , s

[M ]
k ), zk = (z

[1]
k , . . . , z

[M ]
k ), and the interconnections
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among subsystems are described by means of the algebraic equation

sk = Lzk (4.3)

where L is called interconnection matrix. More specifically, the cou-
pling input s[i]

k to subsystem i depends on the coupling output z[j]
k of

the j-th subsystem according to

s
[i]
k =

M∑
j=1

Lijz
[j]
k (4.4)

We say that subsystem j is a dynamic neighbor of subsystem i if and
only if Lij 6= 0, and we denote as Ni the set of dynamic neighbors of
subsystem i (which excludes i).

The input and state variables are subject to the “local" constraints
u

[i]
k ∈ Ui ⊆ Rmi and x[i]

k ∈ Xi ⊆ Rni , respectively, where the sets Ui and
Xi are convex.

The state transition matrices A11 ∈ Rn1×n1 , . . . , AMM ∈ RnM×nM of
the M subsystems are the diagonal blocks of A, whereas the dynamic
coupling terms between subsystems correspond to the non-diagonal
blocks of A, i.e., Aij = EiLijCzj, with j 6= i. Correspondingly,
Bii, i = 1, . . . ,M , are the diagonal blocks of B, whereas the influence of
the input of a subsystem upon the state of different subsystems is repre-
sented by the off-diagonal terms of B, i.e., Bij = EiLijDzj, with j 6= i.
The collective output matrix is defined as C = diag(C11, . . . , CMM).

Concerning system (4.1a) and its partition, the following main as-
sumption on decentralized stabilizability is introduced:

Assumption 4.1 There exists a block-diagonal matrix K, i.e.
K = diag(K1, . . . , KM), with Ki ∈ Rmi×ni, i = 1, . . . ,M such that:

i) F = A + BK is Schur.

ii) Fii = (Aii +BiiKi) is Schur, i = 1, . . . ,M .

�

We recall that the design of the stabilizing matrix K can be performed
according to the procedure proposed in Chapter 1.

Moreover, in order to solve the tracking problem for constant refer-
ence signals, the following standard assumption is made.
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Assumption 4.2 Defining

S =

[
In −A −B

C 0

]
then rank(S) = n+m. �

4.2 Control system architecture

We want to design a distributed state-feedback control law, based on
MPC, for the tracking of a given constant set-point signal y[i]

set−point ∈ Rmi ,
where y[i]

set−point can be obtained, e.g., by means of any RTO method,
see again Figure 4.1. More specifically, our aim is to asymptotically
steer the system output y[i]

t to a constant desired value y[i]
set−point for

all i = 1, . . . ,M . The main idea behind the proposed algorithm is to
consider a three-layer control architecture, see Figure 4.2.

Figure 4.2: Control system architecture for distributed tracking.

1) The reference output trajectory management layer. For
each subsystem i = 1, . . . ,M , a local reference trajectory management
unit is required, which defines the reference trajectory ỹ[i]

k+ν of the out-
put y[i]

k+ν . Although it would be natural to take ỹ[i]
k+ν = y

[i]
set−point for

all ν ≥0, this choice could easily lead to infeasible standard MPC op-
timization problems, even in the centralized framework. Furthermore,



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 97 — #113 i
i

i
i

i
i

4.2. CONTROL SYSTEM ARCHITECTURE 97

in the distributed context this point is particularly critical, since too
rapid changes in the output reference trajectory for a given subsys-
tem could greatly affect the performance and the behavior of the other
subsystems. Therefore ỹ[i] will be regarded as an argument of an opti-
mization problem rather than a fixed parameter, and constraints lim-
iting the time variation of the local reference signals will be defined
and computed. This layer is completely decentralized, i.e., the trans-
mission of information between local reference trajectory management
units is not needed.

2) The reference state and input trajectory layer. For each
subsystem i = 1, . . . ,M assume that at any time instant k the fu-
ture reference trajectories ỹ[i]

k+ν , ν = 0, . . . , N − 1, are available for all
i = 1, . . . ,M . In order to define the reference trajectories x̃[i]

k , ũ
[i]
k , and

z̃
[i]
k of the corresponding state, input, and coupling output variables,
we design a suitable algorithm, using the output reference information
as data.

3) The robust MPC layer. For each subsystem i = 1, . . . ,M , a
robust MPC unit is designed to drive the real state and input trajecto-
ries x[i]

k and u[i]
k as close as possible to the reference ones x̃[i]

k , ũ
[i]
k , while

respecting the constraints on the same variables. As in the case of the
reference state and input trajectory layer, information is required to
be transmitted from reference trajectory management units of neigh-
boring regulators, in a neighbor-to-neighbor fashion.

4.2.1 The reference output trajectory management layer

For each subsystem i = 1, . . . ,M , a local reference trajectory manage-
ment unit defines, at any time k, the reference trajectory ỹ[i]

k+ν of the
output y[i]

k+ν . Similarly to the approach taken in [88], the values ỹ[i] will
be regarded as an argument of an optimization problem itself, rather
than a fixed parameter.

In the distributed context, too rapid changes of the output reference
trajectory of a given subsystem could greatly affect the performance
and the behavior of the other subsystems. Therefore, the main require-
ment for guaranteeing good performance and constraint satisfaction of
our control scheme is to limit the rate of variation in time of the output
reference signals. Therefore we will require that, for all i = 1, . . . ,M ,
for all k ≥ 0

ỹ
[i]
k+1 ∈ ỹ

[i]
k ⊕ B

(mi)
p,ε (0) (4.5)
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This layer is completely distributed, i.e., the reference trajectories ỹ[i]
k

of any subsystem i are computed only on the basis of local information
and of the information provided by the reference trajectory manage-
ment units of its constraint neighbors.

4.2.2 The reference state and input trajectory layer

Two different methods can be used to obtain the signals (x̃
[i]
k , ũ

[i]
k ) based

on the desired output trajectory ỹ[i]
k . The first one relies on the use of

an integrator to expand the system (4.2a), while the second one makes
use of an observer. In this Section, we provide detailed descriptions
of both. As they are two alternative options, we will use the same
notation for the two cases in order to improve the readability of the
remainder of the Chapter. Anyway, it is important to recall that,
depending on the technique chosen for this layer, the same symbols
can take different meanings.

Computing the reference state and input trajectories using an integrator

For each subsystem i = 1, . . . ,M assume that at any time instant k the
future reference trajectories ỹ[i]

k+ν , ν = 0, . . . , N − 1, are available. In
order to define the reference trajectories (x̃

[i]
k , ũ

[i]
k ) based on the desired

output trajectory ỹ
[i]
k , we expand the system (4.2a), referred to the

reference trajectories, with an integrator, i.e.,

x̃
[i]
k+1 = Aiix̃

[i]
k +Biiũ

[i]
k + Eis̃

[i]
k (4.6a)

ẽ
[i]
k+1 = ẽ

[i]
k + ỹ

[i]
k+1 − Cix̃

[i]
k (4.6b)

where, similarly to (4.2c) and (4.4)

z̃
[i]
k = Czix̃

[i]
k +Dziũ

[i]
k (4.6c)

s̃
[i]
k =

∑
j∈Ni

Lij z̃
[j]
k (4.6d)

Define χ[i]
k = (x̃

[i]
k , ẽ

[i]
k ),

Aij =



[
Aii 0
−Ci Imi

]
if j = i

[
Aij 0
0 0

]
if j 6= i

,Bij =

[
Bij

0

]
,Gi =

[
0
Imi

]
(4.6e)
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and consider the control law

ũ
[i]
k = Kiχ[i]

k (4.6f)

where Ki =
[
Kx
i Ke

i

]
. Letting Fij = Aij + BijKj, the dynamics of the

variable χ[i]
k is therefore defined by the following dynamical system

χ
[i]
k+1 = Fiiχ[i]

k +
∑
j∈Ni

Fijχ[j]
k + Giỹ[i]

k+1 (4.7)

The gain matrix Ki is to be determined as follows: denoting by A and
B the matrices whose block elements are Aij and Bij, respectively, and
K = diag(K1, . . . ,KM), the following assumption must be fulfilled

Assumption 4.3 The matrix F = A+ BK is Schur. �

Note that the synthesis of the Ki’s can be performed according to the
procedures proposed in Chapter 1.

Define, for all i = 1, . . . ,M and for all k ≥ 0, χ[i]ss
k = (x

[i]ss
k , e

[i]ss
k ),

i.e., the steady-state condition for (4.7) corresponding to the reference
outputs ỹ[i]

k assumed constant, i.e., ỹ[i]
k+1 = ỹ

[i]
k , and satisfying for all

i = 1, . . . ,M

χ
[i]ss
k = Fiiχ[i]ss

k +
∑
j∈Ni

Fijχ[j]ss
k + Giỹ[i]

k (4.8)

In view of (4.6), Cix
[i]ss
k = ỹ

[i]
k+1 and F is Schur stable (see Assump-

tion 4.3). Then a solution to the system (4.8) exists and is unique.
Collectively define χssk = (χ

[1]ss
k , . . . , χ

[M ]ss
k ), χk = (χ

[1]
k , . . . , χ

[M ]
k ), and

ỹk = (ỹ
[1]
k , . . . , ỹ

[M ]
k ). From (4.6e)-(4.8) we can collectively write

χssk+1 − χssk = (In+p −F)−1G(ỹk+1 − ỹk) (4.9)

where G = diag(G1, . . . ,GM). Therefore

χk+1 − χssk+1 = F(χk − χssk ) + G(ỹk+1 − ỹk) + χssk − χssk+1

= F(χk − χssk ) + (In+p − (In+p −F)−1)G(ỹk+1 − ỹk)

= F(χk − χssk )− (In+p −F)−1FG(ỹk+1 − ỹk) (4.10)

We can rewrite (4.10) as

χk+1 − χssk+1 = F(χk − χssk ) + w̃k (4.11)
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where w̃k can be seen as a bounded disturbance. In fact, in view
of (4.5)

ỹk+1 − ỹk ∈
M∏
i=1

B(mi)
p,ε (0) (4.12)

and therefore w̃k ∈ W̃ = −(In+p −F)−1FG
∏M

i=1 B
(mi)
p,ε (0).

Under Assumption 4.3, for the system (4.11) there exists a possibly
non-rectangular Robust Positive Invariant (RPI) set ∆χ such that, if
χk − χssk ∈∆χ, then it is guaranteed that χk+ν − χssk+ν ∈∆χ for all
ν ≥ 0. This, in turn, implies that there exist sets ∆χ

i , i = 1, . . . ,M ,
defined in such a way that ∆χ ⊆

∏M
i=1 ∆χ

i , such that it is guaranteed
that, for any initial condition χ0 − χss0 ∈∆χ, then

χ
[i]
k − χ

[i]ss
k ∈ ∆χ

i (4.13)

for all k ≥ 0.

Computing the reference state and input trajectories using an observer

Denote

Aij =



[
Aii Bii

0 Imi

]
if j = i

[
Aij Bij

0 0

]
if j 6= i

, Ci =
[
Cii 0

]
(4.14)

Define, for all i = 1, . . . ,M and for all k ≥ 0, χ[i]ss
k = (x

[i]ss
k , u

[i]ss
k ) where

x
[i]ss
k and u[i]ss

k are the steady-state state and input values correspond-
ing to the reference outputs ỹ[i]

k and satisfy the following steady-state
equations

χ
[i]ss
k = Aiiχ[i]ss

k +
∑

j∈Ni Aijχ
[j]ss
k

ỹ
[i]
k = Ciχ[i]ss

k

(4.15)

It is easy to verify that Assumption 4.2 guarantees that a solution
to the system (4.15) exists and is unique. In view of this, letting
xssk = (x

[1]ss
k , . . . , x

[M ]ss
k ), ussk = (u

[1]ss
k , . . . , u

[M ]ss
k ), and

ỹk = (ỹ
[1]
k , . . . , ỹ

[M ]
k ), from (4.15) one has[

xssk − xssk+1

ussk − ussk+1

]
∈ −S−1

[
0
Im

] M∏
i=1

B(mi)
p,ε (0) (4.16)
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from which it follows that, for all i = 1, . . . ,M , there exists a set ∆ss
i

such that, for all k ≥ 0

χ
[i]ss
k − χ[i]ss

k+1 ∈ ∆ss
i (4.17)

An observer is now designed to provide an estimate χ[i]
k = (x̃

[i]
k , ũ

[i]
k ) of

the collective variable χ[i]ss
k using the output reference information as

data. We let
s̃

[i]
k =

∑
j∈Ni

Lij z̃
[j]
k (4.18)

The dynamics of the variable χ[i]
k is defined by the following dynamical

system
χ

[i]
k+1 = Aiiχ[i]

k +
∑
j∈Ni

Aijχ[j]
k + Gi(ỹ[i]

k+1 − Ciχ
[i]
k ) (4.19)

where Gi =

[
Gx
i

Gu
i

]
are gains to be determined as follows: denoting by

A the matrix whose block elements are Aij, C = diag(Ci), and G =
diag(Gi), the following assumption must be fulfilled

Assumption 4.4 The matrix A− GC is Schur. �

Note that the synthesis of the Gis can be performed according to the
procedures proposed in Chapter 1.

From (4.14)-(4.15), it follows that

χ
[i]
k+1 − χ

[i]ss
k+1 = (Aii − GiCi)(χ[i]

k − χ
[i]ss
k ) (4.20)

+
∑
j∈Ni

Aij(χ[j]
k − χ

[j]ss
k ) + (Aii − GiCi)(χ[i]ss

k − χ[i]ss
k+1)

+
∑
j∈Ni

Aij(χ[j]ss
k − χ[j]ss

k+1 )

In view of (4.17) we can rewrite (4.20) as

χ
[i]
k+1 − χ

[i]ss
k+1 = (Aii − GiCi)(χ[i]

k − χ
[i]ss
k )

+
∑

j∈Ni Aij(χ
[j]
k − χ

[j]ss
k ) + w̃

[i]
k

(4.21)

where

w̃
[i]
k = (Aii − GiCi)(χ[i]ss

k − χ[i]ss
k+1) +

∑
j∈Ni

Aij(χ[j]ss
k − χ[j]ss

k+1 ) ∈ W̃i
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can be regarded as a bounded disturbance in view of (4.17) and

W̃i = (Aii − GiCi)∆ss
i ⊕ (

⊕
j∈Ni

Aij∆ss
j ) (4.22)

Under Assumption 4.4, for the system (4.21) there exists a possi-
bly non-rectangular Robust Positive Invariant (RPI) set ∆χ such
that, if (x̃k − xssk , ũk − ussk ) ∈∆χ, then it is guaranteed that
(x̃k+1 − xssk+1, ũk+1 − ussk+1)) ∈∆χ. This, in turn, implies that there ex-
ist sets ∆χ

i , i = 1, . . . ,M , such that, for any initial condition
(x̃0 − xss0 , ũ0 − uss0 ) ∈∆χ, it is possible to guarantee that

(χ
[i]
k − χ

[i]ss
k ) ∈ ∆χ

i (4.23)

for all k ≥ 0.

4.2.3 The robust MPC layer

For each subsystem i = 1, . . . ,M , a robust MPC unit is designed to
drive the real state and input trajectories x[i]

k and u[i]
k as close as pos-

sible to the reference ones x̃[i]
k , ũ

[i]
k , while respecting the constraints on

the same variables. As in the case of the reference state and input tra-
jectory layer, information is required to be transmitted from reference
trajectory management units of neighboring regulators, in a neighbor-
to-neighbor fashion. Similarly to the regulation case, by adding suit-
able constraints to the MPC problem formulation, for each subsystem
and for all k ≥ 0 we will be able to guarantee that the actual cou-
pling output trajectories lie in specified time-invariant neighborhoods
of the reference trajectories. If z[i]

k ∈ z̃
[i]
k ⊕Zi, where 0 ∈ Zi, in view

of (4.3) and (4.6d) (or (4.18)) we guarantee that s[i]
k ∈ s̃

[i]
k ⊕ Si, where

Si =
⊕

j∈Ni LijZj. In this way, (4.2a) can be written as

x
[i]
k+1 = Aiix

[i]
k +Biiu

[i]
k + Eis̃

[i]
k + Ei(s

[i]
k − s̃

[i]
k ) (4.24)

where Ei(s
[i]
k − s̃

[i]
k ) is a bounded disturbance and the term Eis̃

[i]
k+ν can

be interpreted as an input, known in advance over the prediction hori-
zon ν = 0, . . . , N − 1.

For the statement of the individual MPC sub-problems, henceforth
called i-DPC problems, we define the i-th subsystem nominal model
associated to equation (4.24)

x̂
[i]
k+1 = Aiix̂

[i]
k +Biiû

[i]
k + Eis̃

[i]
k (4.25)
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or, if the observer is used

x̂
[i]
k+1 = Aiix̂

[i]
k +Biiû

[i]
k + Eis̃

[i]
k +Gx

i (ỹ
[i]
k+1 − Ciix̃

[i]
k ) (4.26)

Then we let

ẑ
[i]
k = Czix̂

[i]
k +Dziû

[i]
k (4.27)

The control law for the i-th subsystem (4.24), for all k ≥ 0, is assumed
to be given by

u
[i]
k = û

[i]
k +Ki(x

[i]
k − x̂

[i]
k ) (4.28)

where Ki satisfies Assumption 4.1. We also define ε[i]
k = x

[i]
k − x̂

[i]
k .

If the integrator is used for the reference state and inputs trajectory
layer, from equation (4.24), (4.25) and (4.28) we obtain

ε
[i]
k+1 = Fiiε

[i]
k + w

[i]
k

(4.29)

where

w
[i]
k = Ei(s

[i]
k − s̃

[i]
k ) (4.30)

is a bounded disturbance since s[i]
k − s̃

[i]
k ∈ Si. It follows that

w
[i]
k ∈Wi = EiSi (4.31)

On the other hand, if the observer is used for the reference state
and inputs trajectory layer, from (4.24), (4.26) and (4.28) we obtain
again the expression (4.29) where, in this case,

w
[i]
k = Ei(s

[i]
k − s̃

[i]
k )−Gx

i (ỹ
[i]
k+1 − Ciix̃

[i]
k ) (4.32)

is a bounded disturbance since s
[i]
k − s̃

[i]
k ∈ Si and, in view of (4.5)

and (4.23)

ỹ
[i]
k+1 − Ciix̃

[i]
k = ỹ

[i]
k+1 − ỹ

[i]
k + ỹ

[i]
k − Ciix̃

[i]
k

= ỹ
[i]
k+1 − ỹ

[i]
k + (−Ci)(χ[i]

k − χ
[i]ss
k ) ∈ B(mi)

p,ε (0)⊕ (−Ci)∆χ
i

(4.33)

It follows that

w
[i]
k ∈Wi = EiSi ⊕ (−Gx

i )(B(mi)
p,ε (0)⊕ (−Ci)∆χ

i ) (4.34)
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In both cases, since w
[i]
k is bounded and Fii is Schur, there ex-

ists an RPI Ei for (4.29) such that, for all ε[i]
k ∈ Ei, then ε

[i]
k+1 ∈ Ei.

Therefore at time k + 1, in view of (4.2c) and (4.27), it holds that
z

[i]
k+1 − ẑ

[i]
k+1 = (Czi +DziKi)ε

[i]
k+1 ∈ (Czi +DziKi)Ei.

In order to guarantee that, at time k + 1, z[i]
k+1 − z̃

[i]
k+1 ∈ Zi can be

still verified by adding suitable constraints to the optimization prob-
lems, the following assumption must be fulfilled.

Assumption 4.5 For all i = 1, . . . ,M , there exists a positive scalar
ρi such that

(Czi +DziKi)Ei ⊕ Bp,ρi(0) ⊆ Zi (4.35)

�

If Assumption 4.5 is fulfilled, we define, for all i = 1, . . . ,M , the convex
neighborhood of the origin ∆z

i satisfying

∆z
i ⊆ Zi 	 (Czi +DziKi)Ei (4.36)

and we consider the constraint ẑ[i]
k+1 − z̃

[i]
k+1 ∈ ∆z

i , in such a way that

z
[i]
k+1 − z̃

[i]
k+1 = z

[i]
k+1 − ẑ

[i]
k+1 + ẑ

[i]
k+1 − z̃

[i]
k+1 ∈ (Czi +DziKi)Ei ⊕∆z

i ⊆ Zi
(4.37)

as required at all time steps k ≥ 0.

4.3 The distributed predictive control algorithm

It is now possible to state the i-DPC problem, to be solved at any time
instant. The overall design problem is composed by a preliminary
centralized off-line design and an on-line solution of the M i-DPC
problems. These two steps are detailed in the following.

4.3.1 Off-line design

The off-line design consists of the following procedure:

1. if the integrator is used for the reference state and inputs tra-
jectory layer: compute the matrices K and K satisfying Assump-
tions 4.1 and 4.3. If the observer is used for the reference state and
inputs trajectory layer: compute the matrices K and G satisfying
Assumptions 4.1 and 4.4.
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2. If the integrator is used for the reference state and inputs trajec-
tory layer: define B(mi)

p,ε (0), compute ∆χ (a RPI for (4.11)) and
∆χ
i . If the observer is used for the reference state and inputs

trajectory layer: compute ∆ss
i with (4.16), (4.17); compute W̃i

with (4.22) and W̃ =
∏M

i=1 W̃i; compute ∆χ, which represents a
RPI for the collection of subsystems (4.21), and compute ∆χ

i .

3. Compute the RPI sets Ei for the subsystems (4.29) and the sets
∆z
i satisfying (4.36) and (4.37);

4. compute X̂i ⊆ Xi 	 Ei, Ûi ⊆ Ui 	KiEi, the positively invariant
set Σi for the equation

δx
[i]
k+1 = Fiiδx

[i]
k (4.38)

such that
(Czi +DziKi)Σi ⊆ ∆z

i (4.39)

5. If the integrator is used for the reference state and inputs trajec-
tory layer: compute the convex sets Yi such that[

Ini 0
Kx
i Ke

i

](
Γi(In+p −F)−1G

∏M
j=1 Yj ⊕∆χ

i

)
⊕

⊕
[
Ini
Ki

]
Σi ⊆ X̂i × Ûi

(4.40)

where Γi is the matrix, of suitable dimensions, that selects the
subvector χ[i]

k out of χk. Specifically, Yi is the set associated
to ỹ[i]

k such that the corresponding steady-state state and input
satisfy the control and state constraints defined by X̂i and Ûi.

If the observer is used for the reference state and inputs trajectory
layer: compute the convex sets Yi such that

HiS
−1

[
0
Im

] M∏
j=1

Yj ⊕∆xu
i ⊕

[
Ini
Ki

]
Σi ⊆ X̂i × Ûi (4.41)

where Hi is the matrix, of suitable dimensions, that selects the
vector (x[i], u[i]) out of (x,u), i = 1, . . . ,M .
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4.3.2 On-line design

At any time instant the on-line design is performed in two steps, both
based on the solution of a suitable distributed and independent op-
timization problem. First, the output reference trajectories ỹ[i]

k are
recursively updated. Then, the real control input u[i]

k is computed with
MPC.

Computation of the reference outputs

The output reference trajectory ỹ
[i]
t+N is computed by the reference

output trajectory management layer to minimize the distance with the
set-points and, at the same time, to fulfill the constraints. The opti-
mization problem to be solved at each time instant k is the following

min
ȳ
[i]
k+N

V y
i (ȳ

[i]
k+N , k) (4.42)

subject to

ȳ
[i]
k+N − ỹ

[i]
k+N−1 ∈ B

(mi)
p,ε (0) (4.43)

ȳ
[i]
k+N ∈ Yi (4.44)

where

V y
i (ȳ

[i]
k+N) = γ‖ȳ[i]

k+N − ỹ
[i]
k+N−1‖

2 + ‖ȳ[i]
k+N − y

[i]
set−point‖2

Ti

The weight Ti must verify the inequality

Ti > γImi (4.45)

while γ is an arbitrarily small positive constant.
At time k, ȳ[i]

k+N |k is the solution to the optimization problem (4.42).

Remark 4.1 In the implementation described in this Chapter, cou-
pling constraints are not considered for simplicity. However, it is pos-
sible to include in the problem constraints involving the state of more
than one subsystems. This, for instance, can be handled by impos-
ing suitable constraints at the reference output trajectory management
layer level. This implies that trasmission of information must be sched-
uled between local output trajectory management units. This issue has
been explored in details in [60] and applied for controlling unicycle
robots with collision avoidance capabilities.
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Computation of the control variables

The i-DPC problem solved by the i-th robust MPC layer unit is defined
as follows:

min
x̂
[i]
k ,û

[i]
[k:k+N−1]

V N
i (x̂

[i]
k , û

[i]
[k:k+N−1]) (4.46)

where

V N
i (x̂

[i]
k , û

[i]
[k:k+N−1]) =

N−1∑
ν=0

‖x̂[i]
k+ν − x̃

[i]
k+ν‖

2
Qi

+ ‖û[i]
k+ν − ũ

[i]
k+ν‖

2
Ri

+ ‖x̂[i]
k+N − x̃

[i]
k+N‖

2
Pi

(4.47)

subject to (4.25) (or to (4.26)) and, for ν = 0, . . . , N − 1,

x
[i]
k − x̂

[i]
k ∈ Ei (4.48a)

ẑ
[i]
k+ν − z̃

[i]
k+ν ∈ ∆z

i (4.48b)

x̂
[i]
k+ν ∈ X̂i (4.48c)

û
[i]
k+ν ∈ Ûi (4.48d)

and to the terminal constraint

x̂
[i]
k+N − x̃

[i]
k+N ∈ Σi (4.49)

Note that, in case the observer is used for the reference state and input
trajectory layer, the value x̃[i]

k+N has to be computed with

x̄
[i]
k+N(ȳ

[i]
k+N |k) =Aiix̃

[i]
k+N−1 +Biiũ

[i]
k+N−1 + Eis̃

[i]
k+N−1

+Gx
i (ȳ

[i]
k+N |k − Ciix̃

[i]
k+N−1) (4.50)

The weights Qi and Ri in the performance index (4.47) must be taken
as positive definite matrices of appropriate dimensions while, in order
to prove the convergence properties of the proposed approach, it is
advisable to select the matrices Pi as the solutions of the (fully inde-
pendent) Lyapunov equations

F T
ii PiFii − Pi = −(Qi +KT

i RiKi) (4.51)

At time k, the tuple (x̂
[i]
k|k, û

[i]
[k:k+N−1]|k, ȳ

[i]
k+N |k) is the solution to the

i-DPC problem and û[i]
k|k is the input to the nominal system (4.25) (or

to the nominal system (4.26)).
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Remark 4.2 It is important to note that the problems (4.42) and (4.46)
are independent from each other. In fact, on the one hand, it is easy
to see that (4.42) does not depend on x̂[i]

k and û[i]
[k:k+N−1]. On the other

hand note that, both the cost function V N
i and the constraints (4.48)

are independent of ȳ[i]
k+N |k.

Then, according to (4.28), the input to the system (4.2a) is

u
[i]
k = û

[i]
k|k +Ki(x

[i]
k − x̂

[i]
k|k) (4.52)

Moreover, we set ỹ[i]
k+N = ȳ

[i]
k+N |k and the references ẽ[i]

k+N and x̃
[i]
k+N+1

are computed from (4.6b) and (4.6a), respectively. Finally
ũ

[i]
k+N = Kx

i x̃
[i]
k+N +Ke

i ẽ
[i]
k+N from (4.6f) (in case the observer is used,

x̃
[i]
k+N and ũ[i]

k+N are computed with (4.19) once ỹ[i]
k+N is given).

Denoting by x̂[i]
k+ν|k the state trajectory of system (4.25) (or of sys-

tem (4.26)) stemming from x̂
[i]
k|k and û

[i]
[k:k+N−1]|k, at time k it is also

possible to compute x̂[i]
k+N |k.

The properties of the proposed distributed MPC algorithm for track-
ing can now be summarized in the following result (the proof is reported
in the Appendix).

Theorem 4.1 Let Assumptions 4.1-4.5 be verified and the tuning pa-
rameters be selected as previously described. If at time k = 0 a feasible
solution to (4.42), (4.46) exists then, for all i = 1, . . . ,M

I) Feasible solutions to (4.42), (4.46) exist for all k ≥ 0, i.e., con-
straints (4.43), (4.44), (4.48) and (4.49), respectively, are veri-
fied. Furthermore, the constraints (x

[i]
k , u

[i]
k ) ∈ Xi × Ui and for all

i = 1, . . . ,M are fulfilled for all k ≥ 0.

II) The resulting MPC controller asymptotically steers the i-th sys-
tem to the admissible set-point y[i]

feas.set−point, where y
[i]
feas.set−point

is the solution to

y
[i]
feas.set−point =argmin

y[i]∈Yi
‖y[i] − y[i]

set−point‖2
Ti

(4.53)

Note that when coupling static constraints (not considered in this
Chapter) are present, the convergence to the nearest feasible solution
to the prescribed set-point may be prevented for some initial condi-
tions. These situations are denoted deadlock solutions in [162].
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4.4 Simulation examples

We consider the problem of controlling the temperature of the apart-
ment depicted in Figure 4.3 and constituted by two parts both with
two rooms: rooms A and B belong to the first one, while rooms C
and D to the second one. Each room is characterized by its own tem-
perature (TA, TB, TC and TD) and is endowed with its own radiator
(supplying heats qA, qB, qC and qD). For a detailed description of the
model, of the used parameters and of the considered working point,
we refer to Chapter 2. The discrete-time system of the form (4.1),

Figure 4.3: Schematic representation of a building with two apartments.

with n = 4, m = 4, is obtained by zero-order-hold discretization with
sampling time T = 30 s, and it is described by the matrices

A =


0.9731 0.0148 0.0059 0.0001
0.0148 0.9731 0.0001 0.0059
0.0059 0.0001 0.9731 0.0148
0.0001 0.0059 0.0148 0.9731


B =


29.594 0.2243 0.0897 0.0009
0.2243 29.594 0.0009 0.0897
0.0897 0.0009 29.594 0.2243
0.0009 0.08973 0.2243 29.594

 , C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The observer-based method has been used in the reference state and in-
put trajectory layer. The matrices Ki and Gi fulfilling Assumption 4.1
and Assumption 4.4 have been computed as suggested in Chapter 2.

The weights used in the simulation are and Q1 = Q2 = I2,
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R1 = R2 = I2, T1 = T2 = I2, γ = 10−6, and a prediction horizon of
N = 3 was used.

Figure 4.4: Trajectories of the output variables y[1] (above) and y[2] (below) ob-
tained with DPC (black solid lines) and with cMPC (dashed gray lines). Think
black lines: desired set-points y[1,2]set−point; black dash-dot lines: reference trajectories
ỹ1,2.

Figure 4.5: Trajectories of the inputs variables u[1] (above) and u[2] (below) ob-
tained with DPC (black solid lines) and with cMPC (dashed gray lines).

In the simulations, the reference trajectories for y[2]
set−point are both
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always equal to zero, as well as the one related to TB, while the first
output of the first subsystem, TA, should track a piece-wise constant
reference trajectory, which values are 2 and −1. The results achieved
are depicted in Figure 4.4, while the trajectories of the input vari-
ables are shown in Figure 4.5. In both these figures, a comparison
between the outputs obtained with DPC and with centralized MPC is
provided: it is possible to see that the transients obtained with DPC
are slower, due to the limitation imposed to the set-point variations
by constraint (4.43). Moreover, the distributed approach can lead to
a reduction of the admissible set-point due to constraint (4.44), where
the sets Yi must satisfy (4.41).

Figure 4.6: Schematic representation of the four-tanks system.

As second example, we consider now the four-tank system (see Fig-
ure 4.6) described in [74] and in Chapter 2, where we aim to control the
water levels h1 and h3 of tanks 1 and 3 using the command voltages of
the two pumps v1 and v2. In this case, we assume there are no external
disturbances affecting the system.

The obtained linearized and discretized system with sampling time
T = 0.5 s and zero-order-hold discretization has the form (4.1) with
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n = 4, m = 2 where

A =


0.9921 0 0 0.0206

0 0.9835 0 0
0 0.0165 0.9945 0
0 0 0 0.9793


B =


0.0417 2.47 · 10−4

0.0156 0
1.30 · 10−4 0.0311

0 0.0235

 , C =

[
1 0 0 0
0 0 1 0

]

We first show the results obtained with a controller in which an
observer has been used in the reference state and input trajectory layer.
The matrices Ki and Gi fulfilling Assumption 4.1 and Assumption 4.4
have been computed by means of suitable LMIs (see Chapter 2).

Figure 4.7: Trajectories of the output variables y[1] (above) and y[2] (below) ob-
tained with DPC (black solid lines) and with cMPC (dashed gray lines). Think
black lines: desired set-points y[1,2]set−point; black dash-dot lines: reference trajectories
ỹ1,2.

The weights used in the simulation are Q1 = Q2 = I2, R1 = R2 = 1,
T1 = T2 = 1, γ = 10−6, while the chosen prediction horizon is N = 3.

In the simulations, the reference trajectory for y[2]
set−point is always

equal to zero, while the output of the first subsystem should track a
piece-wise constant reference trajectory, which values are −0.25 and
0.5. The results achieved are depicted in Figure 4.7, while the trajec-
tories of the input variables are shown in Figure 4.8.
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Figure 4.8: Trajectories of the inputs variables u[1] (above) and u[2] (below) ob-
tained with DPC (black solid lines) and with cMPC (dashed gray lines).

In both these figures, a comparison between the outputs obtained
with DPC and with centralized MPC is provided: it is possible to see
that also in this case, the limitation imposed to the set-point variation
leads to slower transients.

The same system has been used for testing the integrator-based
method for the reference state and input trajectory layer. The ma-
trices Ki and Ki fulfilling Assumption 4.1 and Assumption 4.2 have
been computed as described in Chapter 2. The used weights and the
prediction horizon are the ones shown for the previous case.

In the simulations, the reference trajectories y[i]
set−point, i = 1, 2 are

piece-wise constant (see Figure 4.9, grey dash-dotted lines). The results
achieved are depicted in Figure 4.9, while the input trajectories are
shown in Figure 4.10. Notably, the set-point y[1]

set−point = 2.5 results
infeasible to our algorithm, and hence the system output y[1]

t converges
to the nearest feasible value. The system result to be faster than
in the case where the observer was used, so important performance
improvements can be obtained using the integrator for managing the
reference state and input trajectory layer.
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Figure 4.9: Trajectories of the output variables y[1] (above) and y[2] (below) (black
solid lines) and reference outputs ỹ[1] (above) and ỹ[2] (below) (black dashed lines).
Grey dash-dotted lines: desired set-points y[1,2]set−point.

Figure 4.10: Trajectories of the inputs variables u[1] (above) and u[2] (below).
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4.5 Conclusions

In this Chapter, a distributed MPC method for the solution of the
tracking problem has been discussed, consisting in a hierarchical archi-
tecture based on Distributed Predictive Control. The overall scheme
guarantees that state and control constraints are fulfilled and that the
controlled outputs reach the prescribed reference values whenever pos-
sible, or their nearest feasible value when feasibility problems arise due
to the constraints. The algorithm has been tested on two benchmark
problems. In the next chapters, different solutions to the tracking prob-
lem including an integral action in the closed-loop will be presented.

4.6 Appendix

4.6.1 Proof of recursive feasibility and convergence of the
reference management problem

Assume that, at step k, a solution ȳ
[i]
k+N |k to (4.42) exists for all

i = 1, . . . ,M . Then a solution to (4.42) exists at step k + 1 for all
i = 1, . . . ,M . In fact, taking ȳ

[i]
k+N+1 = ȳ

[i]
k+N |k = ỹ

[i]
k+N one has

ȳ
[i]
k+N |k − ỹ

[i]
k+N = 0 ∈ B(mi)

p,ε(0) and ȳ
[i]
k+N |k ∈ Yi, hence verifying (4.43)

and (4.44), respectively.
To prove convergence for the reference management layer note that,

since at time k + 1, ȳ[i]
k+N+1 = ỹ

[i]
k+N is a feasible solution, we have that,

in view of the optimality of the solution ȳ[i]
k+N+1|k+1

V y
i (ȳ

[i]
k+N+1|k+1, k + 1) ≤ V y

i (ȳ
[i]
k+N |k, k + 1) ≤ ‖ȳ[i]

k+N |k − y
[i]
set−point‖2

Ti

(4.54)

In view of the fact that ȳ[i]
k+N+1|k+1 = ỹ

[i]
k+N+1 for all k, we write

V y
i (ȳ

[i]
k+N+1|k+1, k + 1) = γ‖ỹ[i]

k+N+1 − ỹ
[i]
k+N‖2 + ‖ỹ[i]

k+N+1 − y
[i]
set−point‖2

Ti
,

and we rewrite (4.54) as

‖ỹ[i]
k+N+1 − y

[i]
set−point‖2

Ti
≤ ‖ỹ[i]

k+N − y
[i]
set−point‖2

Ti
− γ‖ỹ[i]

k+N+1 − ỹ
[i]
k+N‖2

From this we infer that ỹ[i]
k+N+1 − ỹ

[i]
k+N → 0 as k →∞, and that

‖ỹ[i]
k+N − y

[i]
set−point‖2

Ti
→ const (4.55)
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as k → +∞.
Assume, by contradiction, that ‖ỹ[i]

k+N − y
[i]
set−point‖2

Ti
→ c̄i, with

c̄i > coi , where

coi = ‖y[i]
feas.set−point − y

[i]
set−point‖2

Ti
(4.56)

Note that this implies that ỹ[i]
k+N 6= y

[i]
feas.set−point for all i = 1, . . . ,M .

Assume that, given k̄, for all k ≥ k̄ the optimal solution to (4.42) is
ȳ

[i]
k+N |k = ȳ[i] where ‖ȳ[i] − y[i]

set−point‖2
Ti

= c̄i. It results that

V y
i (ȳ

[i]
k+N |k, k) = c̄i

On the other hand, an alternative solution is given by ¯̄y
[i]
k+N , where

¯̄y
[i]
k+N = λiȳ

[i] + (1− λi)y[i]
feas.set−point

with λi ∈ [0, 1). This solution is feasible provided that
I) ¯̄y

[i]
k+N − ȳ[i] ∈ Bmip,ε(0) which can be verified if (1− λi) is sufficiently

small, II) ¯̄y
[i]
k+N ∈ Yi which is also satisfied if (1− λi) is sufficiently

small (since Yi is convex and ȳ[i] 6= y
[i]
feas.set−point).

According to this alternative solution

V y
i (¯̄y

[i]
k+N , k) = γ‖¯̄y[i]

k+N − ȳ
[i]‖2 + ‖¯̄y[i]

k+N − y
[i]
set−point‖2

Ti

Now if (4.45) is verified, then V y
i (¯̄y

[i]
k+N , k) < V y

i (ȳ[i], k). This con-
tradicts the assumption that ‖ỹ[i]

k+N − y
[i]
set−point‖2

Ti
→ c̄i, with c̄i > coi .

Therefore, the only asymptotic solution compatible with (4.42), is that
corresponding with ỹ[i]

k+N = y
[i]
feas.set−point for all i.

It is now proved that ỹ[i]
k → y

[i]
feas.set−point for k →∞. In view of As-

sumption 4.2, this implies that Ciχ[i]
k = Cix̃

[i]
k → y

[i]
feas.set−point for all

i = 1, . . . ,M .

4.6.2 Proof of recursive feasibility of the i-DPC problem

Assume that, at step k, a solution to (4.46) exists for all i = 1, . . . ,M ,
i.e., (x̂

[i]
k|k, û

[i]
[k:k+N−1]|k). Next we prove that, at step k + 1, a solution

to (4.46) exists for all i = 1, . . . ,M . To do so, we prove that the
tuple (x̂

[i]
k+1|k, û

[i]
[k+1:k+N ]|k) satisfies the constraints (4.25) (or (4.26))
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and (4.48a)-(4.49) and is therefore a feasible (possibly suboptimal)
solution to (4.46). Here û[i]

[t+1:t+N ]|t is obtained with

û
[i]
k+N |k = ũ

[i]
k+N +Ki(x̂

[i]
k+N |k − x̃

[i]
k+N) (4.57)

First note that, in view of (4.6a), (4.25) and (4.57) (or, if the observer
is used, in view of (4.26), and (4.57))

x̂
[i]
k+N+1|k − x̃

[i]
k+N+1 = Fii(x̂

[i]
k+N |k − x̃

[i]
k+N) (4.58)

and therefore x̂[i]
k+N+1|k − x̃

[i]
k+N+1 ∈ Σi in view of the definition of Σi as

a positively invariant set for (4.38), hence verifying (4.49). Therefore
the constraint (4.49) is verified at step k + 1.

Moreover, in view of the robust positive invariance of sets Ei with
respect to equation (4.29), i = 1, . . . ,M , x[i]

k+1 − x̂
[i]
k+1|k ∈ Ei, and there-

fore (4.48a) is verified. Furthermore, in view of the feasibility of (4.48b)-
(4.48d) at step k, it follows that constraints (4.48b)-(4.48d) are satisfied
at step k + ν for ν = 1, . . . , N − 1 and, from (4.49) and (4.39),

ẑ
[i]
k+N |t − z̃

[i]
k+N = (Czi +DziKi)(x̂

[i]
k+N |k − x̃

[i]
k+N) ∈ (Czi +DziKi)Σi ⊆ ∆z

i

(4.59)
Hence constraint (4.48b) is verified at time k +N .

Suppose now that the integrator is used for the reference state and
input trajectory layer. In this case we have that[

x̂
[i]
k+N |k

û
[i]
k+N |k

]
∈

[
x̃

[i]
k+N

ũ
[i]
k+N

]
⊕
[
Ini
Ki

]
Σi (4.60)

where, from (4.13)[
x̃

[i]
k+N

ũ
[i]
k+N

]
∈
[
Ini 0
Kx
i Ke

i

](
χ

[i]ss
k+N ⊕∆χ

i

)
(4.61)

In turn, in view of (4.8) and similarly to (4.9),

χ
[i]ss
k+N ∈ Γi(In+p −F)−1G

M∏
i=1

Yj (4.62)
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This eventually implies that, in view of (4.40)[
x̂

[i]
k+N |k

û
[i]
k+N |k

]
∈
[
Ini 0
Kx
i Ke

i

](
Γi(In+p −F)−1G

∏M
i=1 Yj ⊕∆χ

i

)
⊕

⊕
[
Ini
Ki

]
Σi ⊆ X̂i × Ûi

(4.63)

which verifies constraints (4.48c) and (4.48d) at time k +N .
Assume instead that the observer is used for the reference state and

input trajectory layer. In this case we have that[
x̂

[i]
k+N |k

û
[i]
k+N |k

]
∈

[
x̃

[i]
k+N

ũ
[i]
k+N

]
⊕
[
Ini
Ki

]
Σi

where, from (4.23) [
x̃

[i]
k+N

ũ
[i]
k+N

]
∈

[
x

[i]ss
k+N

u
[i]ss
k+N

]
⊕∆xu

i (4.64)

In turn, in view of the definition of the sets Yi,[
x

[i]ss
k+N

u
[i]ss
k+N

]
∈ HiS

−1

[
0
Im

]∏M
j=1 Yj (4.65)

This eventually implies that, in view of (4.41)[
x̂

[i]
k+N |k

û
[i]
k+N |k

]
∈ (HiS

−1

[
0
Im

]∏M
j=1 Yj)⊕∆xu

i ⊕
[
Ini
Ki

]
Σi ⊆ X̂i × Ûi

which verifies constraints (4.48c) and (4.48d) at time k +N .

4.6.3 Proof of convergence for the robust MPC layer

At time k the pair (x̂
[i]
k|k, û

[i]
[k:k+N−1]|k) is a solution to (4.46), leading to

the optimal cost

V ∗Ni (k) =
N−1∑
ν=0

‖x̂[i]
k+ν|k − x̃

[i]
k+ν‖

2
Qi

+ ‖û[i]
k+ν|k − ũ

[i]
k+ν‖

2
Ri

+ ‖x̂[i]
k+N |k − x̃

[i]
k+N‖

2
Pi

(4.66)
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Since (x̂
[i]
k+1|k, û

[i]
[k+1:k+N ]|k) is a feasible solution to (4.46) at time k + 1,

by optimality V ∗Ni (k + 1) ≤ V N
i (x̂

[i]
k+1|k, û

[i]
[k+1:k+N ]|k), which is equal to

V N
i (x̂

[i]
k+1|k, û

[i]
[k+1:k+N ]|k) =

N∑
ν=1

‖x̂[i]
k+ν|k − x̃

[i]
k+ν‖

2
Qi

+ ‖û[i]
k+ν|k − ũ

[i]
k+ν‖

2
Ri

+

+ ‖x̂[i]
k+N+1|k − x̃

[i]
k+N+1‖

2
Pi

(4.67)

Adding and removing the terms ‖x̂[i]
k|k − x̃

[i]
k ‖2

Qi
+ ‖û[i]

k|k − ũ
[i]
k ‖2

Ri
, and

‖x̂[i]
k+N |k − x̃

[i]
k+N‖2

Pi
from the right hand side of (4.67), we obtain that

V ∗Ni (k + 1) ≤
N−1∑
ν=0

‖x̂[i]
k+ν|k − x̃

[i]
k+ν‖

2
Qi

+ ‖û[i]
k+ν|k − ũ

[i]
k+ν‖

2
Ri

+ ‖x̂[i]
k+N |k − x̃

[i]
k+N‖

2
Pi

+

(4.68a)

+ ‖x̂[i]
k+N |k − x̃

[i]
k+N‖

2
Qi

+ ‖û[i]
k+N |t − ũ

[i]
k+N‖

2
Ri

+ (4.68b)

+ ‖x̂[i]
k+N+1|k − x̃

[i]
k+N+1‖

2
Pi
− ‖x̂[i]

k+N |k − x̃
[i]
k+N‖

2
Pi

+ (4.68c)

− (‖x̂[i]
k|k − x̃

[i]
k ‖

2
Qi

+ ‖û[i]
k|k − ũ

[i]
k ‖

2
Ri

) (4.68d)

Note that (4.68a) is equal to V ∗Ni (k) in (4.66). On the other hand, in
view of (4.58), we can write (4.68b)-(4.68c) as

(4.68b)- (4.68c) = ‖x̂[i]
k+N |k − x̃

[i]
k+N‖2

FTii PiFii−Pi+Qi+KT
i RiKi

which, in view of (4.51), implies that

(4.68b)- (4.68c) = 0 (4.69)

Therefore, for all i = 1, . . . ,M

V ∗Ni (k + 1) ≤ V ∗Ni (k)− (‖x̂[i]
k|k − x̃

[i]
k ‖

2
Qi

+ ‖û[i]
k|k − ũ

[i]
k ‖

2
Ri

) (4.70)

and, according to standard arguments in MPC [105], we prove that,
for all i = 1, . . . ,M

x̂
[i]
k|k → x̃

[i]
k (4.71a)

û
[i]
k|k → ũ

[i]
k (4.71b)

as k →∞.
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Suppose now the integrator is used for the reference state and input
trajectory layer. In this case, consider the model (4.1a) and, collec-
tively, the model (4.6a) and equation (4.28). We have that

xk+1 = Axk + B
(
ûk|k + K(xk − x̂k|k)

)
x̃k+1 = Ax̃k + Bũk + BK(x̃k − x̃k)

(4.72)

for all k ≥ 0. Denote ∆xk = xk − x̃k, ∆x̂k = x̂k|k − x̃k and
∆ûk = ûk|k − ũk. From (4.72)

∆xk+1 = F∆xk + B (∆ûk −K∆x̂k) (4.73)

Since, in view of (4.71), B (∆ûk −K∆x̂k)→ 0 as k →∞, in view of
Assumption 4.1 it holds that ∆xk → 0 as k →∞, which implies that
asymptotically Cix

[i]
k → Cix̃

[i]
k .

On the other hand, suppose we are in the case where the observer
is used for the reference state and input trajectory layer. Consider the
model (4.1a) and, collectively, the model (4.19) and equation (4.28).
We have that

xk+1 = Axk + B
(
ûk|k + K(xk − x̂k|k)

)
x̃k+1 = Ax̃k + Bũk + Gx(ỹk+1 −Cx̃k) + BK(x̃k − x̃k)

(4.74)

for all k ≥ 0, where Gx = diag(Gx
1 , . . . , G

x
M). From (4.74)

∆xk+1 = F∆xk + B (∆ûk −K∆x̂k) + Gx(ỹk+1 −Cx̃k) (4.75)

Since, in view of (4.71) and of the convergence of the reference tra-
jectory layer, B (∆ûk −K∆x̂k) + Gx(ỹk+1 −Cx̃k)→ 0 as k →∞, in
view of Assumption 4.1 it holds that ∆xt → 0 as k →∞, which implies
that asymptotically Ciix

[i]
k →→ Cix̃

[i]
k .
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5
DPC for systems in velocity-form

In this Chapter, DPC is extended to include an integral action in the
closed-loop for the tracking of constant reference signals. Specifically,
according to the approach proposed in e.g. [122,168], integrators are in-
serted into the loop and the corresponding enlarged system is described
in velocity-form. If the process is affected by constant disturbances,
this solution allows one to guarantee offset-free steady-state regulation
for constant reference signals without the need to compute the corre-
sponding steady-state values of the state and control vectors. Under
standard assumptions in MPC, the closed-loop system enjoys stability
properties, in the sense that the subsystems’ state trajectories starting
from given sets in the state space converge to the required equilibrium.

5.1 The system

5.1.1 System under control

Consider a discrete-time, linear system, which obeys to the linear dy-
namics

xk+1 = Axk + Buk
yk = Cxk

(5.1)

where xk ∈ Rn is the state, uk ∈ Rm is the input, and yk ∈ Rm is the
output. The constant output reference target value to be tracked is
denoted by ȳ ∈ Rm. To guarantee the existence and the uniqueness
of the steady-state pair (x̄, ū) ∈ Rm+n such that the system output
corresponds to ȳ, the following standard assumption is made.

121
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Assumption 5.1 The input-output system (5.1) has no invariant ze-
ros in 1, i.e.,

rank

([
In −A −B

C 0

])
= n+m

�

The state and input vectors are constrained to lie in prescribed sets,
i.e. x ∈ X, u ∈ U, where X, U are compact and convex sets. As it will
more formally specified in Assumption 5.4, constants x̄ and ū must lie
in suitable subsets of X and U, respectively, which in turn implicitly
define a set of admissible constant output references Ȳ. The sets X
and U are here defined as the cartesian product of suitable subsets,
according to the decomposition of the system into subsystems (see the
next section).

5.1.2 Partitioned system

The system (5.1) is partitioned in M low order interconnected non
overlapping subsystems, where a generic sub-model has x[i]

k ∈ Rni as
state vector, i.e., xk = (x

[1]
k , . . . , x

[M ]
k ) and

∑M
i=1 ni = n. Accordingly,

the state transition matrices A11 ∈ Rn1×n1 , . . . , AMM ∈ RnM×nM of the
M subsystems are the diagonal blocks of A, whereas the non-diagonal
blocks of A (i.e., Aij, with i 6= j) define the dynamic coupling terms
between subsystems. Also the input vector uk is assumed to be parti-
tioned in M non-overlapping sub-vectors u

[i]
k ∈ Rmi , where

uk = (u
[1]
k , . . . , u

[M ]
k ) and u

[i]
k is denoted as the i-th subsystem input.

Correspondingly, Bij, i, j = 1, . . . ,M , are the blocks of B defining the
direct influence of input u[j]

k upon the state x[i]
k . Finally, the output

yk is partitioned into M non overlapping output vectors y[i]
k ∈ Rmi ,

with i = 1, . . . ,M and
∑M

i=1 mi = m, where y[i]
k is assumed only to de-

pend on x
[i]
k , for all i = 1, . . . ,M . This implies that C has a block

diagonal structure C = diag(C1, . . . , CM), where Ci ∈ Rmi×ni for all
i = 1, . . . ,M . In accordance with the output partition, the output
reference target ȳ can be seen as decomposed into M local output ref-
erence targets ȳ[i], consistent with the definition of y[i]

t . From now on,
the subsystem j is said to be a dynamic neighbor of subsystem i if and
only if the state and/or the input of j affect the dynamics of subsystem
i i.e., if and only if Aij 6= 0 and/or Bij 6= 0. By Ni we denote the set
of dynamic neighbors of subsystem i (which excludes i).
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According to these partitions, the i-th subprocess obeys to the linear
dynamics

x
[i]
k+1 = Aiix

[i]
k +Biiu

[i]
k +

∑
j∈Ni{Aijx

[j]
k +Biju

[j]
k }

y
[i]
k = Ci x

[i]
k

(5.2)

where x[i]
k ∈ Xi ⊆ Rni and u[i]

k ∈ Ui ⊆ Rmi , being Xi and Ui convex sets
consistent with the adopted partition, i.e. X =

∏M
i=1 Xi, U =

∏M
i=1 Ui.

We assume that each subsystem enjoys the following property.

Assumption 5.2 For each subsystem (5.2):

i) the pair (Aii, Bii) is reachable.

ii) rank
([
Ini − Aii −Bii

Cii 0

])
= ni +mi.

�

5.1.3 System with integrators

In order to solve the tracking problem, the partitioned system is now
enlarged withm integrators and, according to [122,168], is described in
“velocity form”. Specifically, letting δx[i]

k = x
[i]
k − x

[i]
k−1, ε

[i]
k = y

[i]
k − ȳ[i]

and δu[i]
k = u

[i]
k − u

[i]
k−1, system (5.2) is written as

δx
[i]
k+1 = Aiiδx

[i]
k +Biiδu

[i]
k +

∑
j∈Ni{Aijδx

[j]
k +Bijδu

[j]
k }

ε
[i]
k+1 = CiAiiδx

[i]
k + ε

[i]
k + CiBiiδu

[i]
k + Ci

∑
j∈Ni{Aijδx

[j]
k +Bijδu

[j]
k }

(5.3)
Letting ξ[i]

k = (δx
[i]
k , ε

[i]
k ) and

Aii =

[
Aii 0
CiAii Imi

]
, Bii =

[
Bii

CiBii

]
, Aij =

[
Aij 0
CiAij 0

]
Bij =

[
Bij

CiBij

]
, Ci =

[
0 Imi

]
system (5.3) can be written in compact form as

ξ
[i]
k+1 = Aiiξ[i]

k + Biiδu[i]
k +

∑
j∈Ni{Aijξ

[j]
k + Bijδu[j]

k }
ε

[i]
k = Ciξ[i]

k

(5.4)

For system (5.4) the following property holds (see the Appendix for
the proof):
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Proposition 5.1 Under Assumption 5.2, the pair (Aii,Bii) is reach-
able. �

The set of M models (5.4) can be written in the collective form

ξk+1 = Aξk + Bδuk
εk = Cξk

(5.5)

where ξk = (ξ
[1]
k , . . . , ξ

[M ]
k ), εk = (ε

[1]
k , . . . , ε

[M ]
k ), δuk = (δu

[1]
k , . . . , δu

[M ]
k ),

while A, B and C are the matrices whose block entries are Aij, Bij,
and Cij, respectively.

Concerning system (5.5) and its partition, the following main as-
sumption on decentralized stabilizability is introduced.

Assumption 5.3 There exists a block-diagonal matrix K, i.e.
K = diag(K1, . . . ,KM) with Ki ∈ Rmi×(ni+mi), i = 1, . . . ,M , such that

i) The matrix F = A + BK is Schur.

ii) The matrices Fii = Aii + BiiKi are Schur.

�

5.2 The DPC algorithm for tracking

5.2.1 Nominal models and control law

DPC is developed under the assumption that, at any time instant k,
each subsystem (5.4) transmits its state and input reference trajecto-
ries ξ̃[i]

k+ν and δũ
[i]
k+ν , ν = 0, . . . , N − 1 to its neighbors. Moreover, by

adding suitable constraints to its formulation, each subsystem is able
to guarantee that, for all k ≥ 0, its true state ξ[i]

k and input δu[i]
k tra-

jectories lie in specified time-invariant neighborhoods of ξ̃[i]
k and δũ

[i]
k

respectively, i.e, ξ[i]
k − ξ̃

[i]
k ∈ Ei and δu[i]

k − δũ
[i]
k ∈ Eui , where 0 ∈ Ei and

0 ∈ Eui . In this way (5.4) can be written as

ξ
[i]
k+1 = Aiiξ[i]

k + Biiδu[i]
k +

∑
j∈Ni

{Aij ξ̃[j]
k + Bijδũ[j]

k }+ w
[i]
k (5.6)

where

w
[i]
k =

∑
j∈Ni

{Aij(ξ[j]
k − ξ̃

[j]
k ) + Bij(δu[j]

k − δũ
[j]
k )} ∈Wi (5.7)
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is a bounded disturbance, specifically

Wi =
⊕
j∈Ni

{AijEj ⊕ BijEuj} (5.8)

and
∑

j∈Ni{Aij ξ̃
[j]
k + Bijδũ[j]

k } can be seen as an input, known in ad-
vance over the prediction horizon, which can be treated in the MPC
formulation as a known disturbance.

With reference to the subsystems (5.6), it is possible to define the
i-th subsystem nominal model as

ξ̂
[i]
k+1 = Aiiξ̂[i]

k + Biiδû[i]
k +

∑
j∈Ni

{Aij ξ̃[j]
k + Bijδũ[j]

k } (5.9)

According to the robust MPC approach based on tubes [107], the con-
trol law for the true i-th subsystem (5.6) is defined, for all k ≥ 0,
as

δu
[i]
k = δû

[i]
k +Ki(ξ[i]

k − ξ̂
[i]
k ) (5.10)

Letting z[i]
k = ξ

[i]
k − ξ̂

[i]
k , from (5.6)-(5.10) we obtain

z
[i]
k+1 = (Aii + BiiKi)z[i]

k + w
[i]
k

(5.11)

where w[i]
k ∈Wi. Since Wi is bounded and Fii = Aii + BiiKi is Schur,

there exists a robust positively invariant (RPI) set Zi (which is as-
sumed to be symmetric with respect to the origin) for (5.11) such
that, for all z[i]

k ∈ Zi, then z
[i]
k+1 ∈ Zi. Note that, correspondingly,

δu
[i]
k − δû

[i]
k ∈ KiZi.

5.2.2 Input and state constraints

The reformulation (5.4) of (5.2) requires to transform the original con-
straints on the state and control variables x[i] and u[i] in terms of con-
straints on δx[i] (i.e., on ξ[i]) and δu[i]. To this end, first define the sets
∆Ei and ∆Ui, for all i = 1, . . . ,M , containing the origin and satisfying
∆Ei ⊕ Zi ⊆ Ei and ∆Eui ⊕KiZi ⊆ Eui , respectively. Then, note that,
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for ν = 1, . . . , N , it holds that

x
[i]
k+ν = x

[i]
k +

ν∑
r=1

δx̂
[i]
k+r +

ν∑
r=1

(δx
[i]
k+rν − δx̂

[i]
k+ν)

∈ x[i]
k +

ν∑
r=1

δx̂
[i]
k+ν

ν⊕
r=1

[
Ini0

]
Zi (5.12a)

u
[i]
k+ν−1 = u

[i]
k−1 +

ν∑
r=1

δû
[i]
k+r−1 +

ν∑
r=1

(δu
[i]
k+r−1 − δû

[i]
k+r−1)

∈ u[i]
k−1 +

ν∑
r=1

δû
[i]
k+r−1

ν⊕
r=1

KiZi (5.12b)

Therefore, the constraints x[i]
k+ν ∈ Xi and u

[i]
k+ν−1 ∈ Ui for ν = 1, . . . , N

translate in the following:

x
[i]
k +

ν∑
r=1

δx̂
[i]
k+r ∈ X̂i(ν) = Xi 	 {

ν⊕
r=1

[
Ini 0

]
Zi} (5.13a)

u
[i]
k−1 +

ν∑
r=1

δû
[i]
k+r−1 ∈ Ûi(ν) = Ui 	 {

ν⊕
r=1

KiZi} (5.13b)

In the following, these constraints on δx̂[i] will be transformed into
equivalent constraints on ξ̂[i] (see (5.18) and (5.19) below). Note that,
in view of the definition (5.13), Ûi(ν + 1) ⊆ Ûi(ν) and X̂i(ν + 1) ⊆ X̂i(ν)
for all ν.

5.2.3 i-DPC problems

The minimization problem for subsystem i (i-DPC) at instant k is
now stated starting from the knowledge of the stabilizing gain ma-
trix Ki, of the sets Ei, Eui , Zi, ∆Ei, and ∆Eui of the future input
and state reference trajectories for i and its neighbors ξ̃[j]

k+ν and δũ[j]
k+ν ,

ν = 0, . . . , N − 1, j ∈ Ni, and of the output reference target ȳ[i]. With
these ingredients, the i-DPC problem consists in the following:

min
ξ̂
[i]
k ,δû

[i]
[k:k+N−1]

V N
i (ξ̂

[i]
k , δû

[i]
[k:k+N−1]) =

N−1∑
ν=0

‖ξ̂[i]
k+ν‖

2
Qi

+ ‖δû[i]
k+ν‖

2
Ri

+ ‖ξ̂[i]
k+N‖

2
Pi

(5.14)
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subject to the dynamic constraints (5.9), to the constraints

ξ
[i]
k − ξ̂

[i]
k ∈ Zi (5.15)

ξ̂
[i]
k+ν − ξ̃

[i]
k+ν ∈ ∆Ei (5.16)

δû
[i]
k+ν − δũ

[i]
k+ν ∈ ∆Eui (5.17)

x
[i]
k +

[
Ini 0

] ν∑
r=1

ξ̂
[i]
k+r ∈ X̂i(ν) (5.18)

u
[i]
k−1 +

ν∑
r=1

δû
[i]
k+r−1 ∈ Ûi(ν) (5.19)

with ν = 1, . . . , N , and to the terminal constraint

ξ̂
[i]
k+N ∈ ΞF

i (5.20)

where the sets ΞF
i (assumed to be symmetric with respect to the origin)

are defined in the following.

Remark 5.1 .
I) If (5.15) is satisfied and (5.16)- (5.17) are verified for ν = 0, then
ξ

[i]
k − ξ̃

[i]
k ∈ ∆Ei ⊕ Zi ⊆ Ei and δu

[i]
k − δũ

[i]
k ∈ ∆Eui ⊕KiZi ⊆ Eui ,

which implies that w[i]
k ∈Wi. This, in view of the invariance prop-

erty of (5.11) with respect to Zi, implies that ξ[i]
k+1 − ξ̂

[i]
k+1 ∈ Zi.

Considering that constraints (5.16) and (5.17) are imposed over
the whole prediction horizon, it follows by induction that
w

[i]
k+ν ∈Wi and ξ

[i]
k+ν − ξ̂

[i]
k+ν ∈ Zi for all ν = 1, . . . , N . Therefore,

the initially stated requirement on the boundedness of the distur-
bance w[i]

k is verified.

II) In the quadratic cost function (5.14) the positive definite matri-
ces Qi, Ri and Pi are suitable tuning parameters to be properly
selected by the designer.

III) The final cost V F
i = ‖ξ̂[i]

k+N‖2
Pi

must be selected (see the following
Section) to guarantee suitable decreasing properties of the cost
function.

The solution of the i-DPC problem (5.14) at time k is the pair
(ξ̂

[i]
k/k, δû

[i]
[k:k+N−1]/k); therefore, according to (5.10) and a receding hori-

zon implementation, the input to the system (5.2), at instant k, is

δu
[i]
k = δû

[i]
k/k +Ki(ξ[i]

k − ξ̂
[i]
k/k) (5.21)
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Finally, letting ξ̂
[i]
k+ν/k be the trajectory stemming from ξ̂

[i]
k/k,

δû
[i]
[k:k+N−1]/k, and (5.9), the reference trajectories to be used in the

next time instant k + 1 are incrementally updated by appending the
values

ξ̃
[i]
k+N = ξ̂

[i]
k+N/k (5.22a)

δũ
[i]
k+N = Kiξ̂[i]

k+N/k (5.22b)

to the reference trajectories previously defined for k + ν ≤ k +N − 1.

5.3 Convergence results

The convergence properties of the proposed algorithm can be proved
according to the results reported in Chapter 2 and in [50]. First define
the set of admissible initial conditions ξ0 = (ξ

[1]
0 , . . . , ξ

[M ]
0 ) and initial

reference trajectories ξ̃[j]
[0:N−1], δũ

[j]
[0:N−1], for all j = 1 . . . ,M as follows.

Definition 5.1 Letting ξ = (ξ[1], . . . , ξ[M ]), denote the feasibility re-
gion for all the i-DPC problems by

ΞN := {ξ : if ξ[i]
0 = ξ[i] for all i = 1, . . . ,M then

∃(ξ̃[1]
[0:N−1], . . . , ξ̃

[M ]
[0:N−1]), (δũ

[1]
[0:N−1], . . . , δũ

[M ]
[0:N−1]),

(ξ̂
[1]
0/0, . . . , ξ̂

[M ]
0/0 ), (δû

[1]
[0:N−1], . . . , δû

[M ]
[0:N−1]) such

that (5.2) and (5.15)- (5.20) are satisfied
for all i = 1, . . . ,M}

Moreover, for each ξ ∈ ΞN , let

Ξ̃N
ξ := {(ξ̃[1]

[0:N−1], . . . , ξ̃
[M ]
[0:N−1]), (δũ

[1]
[0:N−1], . . . , δũ

[M ]
[0:N−1]) :

if ξ[i]
0 = ξ[i] for all i = 1, . . . ,M then ∃

(ξ̂
[1]
0/0, . . . , ξ̂

[M ]
0/0 ), (δû

[1]
[0:N−1], . . . , δû

[M ]
[0:N−1]) such

that (5.2) and (5.15)- (5.20) are satisfied
for all i = 1, . . . ,M}

be the region of feasible initial reference trajectories with respect to a
given initial condition.

Assumption 5.4 Letting Z =
∏M

i=1 Zi, Û =
∏M

i=1 Ûi, and Ξ̂F =
∏M

i=1 Ξ̂F
i ,

it holds that:
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i) Ξ̂F is an invariant set for ξ̂+ = F ξ̂;

ii) Defining for simplicity of notation ∆Ξ =
⊕∞

s=1 F
s(Ξ̂F ⊕ Z), and

H = diag(
[
In1 0

]
, . . . ,

[
InM 0

]
) the following properties must be

satisfied:

x̄ ∈ X̂(N − 1)	H∆Ξ	H
N−1⊕
r=1

Z (5.23a)

ū ∈ Û(N − 1)	K∆Ξ	K
N−1⊕
r=1

Z (5.23b)

iii) For all ξ̂ ∈ Ξ̂F

VF
(
ξ̂+
)
−VF

(
ξ̂
)
≤ −l(ξ̂, δû) (5.24)

where VF (ξ̂) =
∑M

i=1 V
F
i (ξ̂[i]) and l(ξ̂, δ̂u) =

∑M
i=1 li(ξ̂

[i], δû[i]),
being li(ξ̂[i], δû[i]) = ‖ξ̂[i]‖2

Qi
+ ‖δû[i]‖2

Ri
.

�

Assumptions 5.4-i) and 5.4-iii) are standard in stabilizing MPC algo-
rithms, while Assumption 5.4-ii) corresponds to require that the the
state and control variables of the closed-loop system formed by (5.5)
and the set of control laws (5.10) satisfy the constraints on x and u.

Assumption 5.5 Given the sets Ei, Ui, and the RPI sets Zi for equa-
tion (5.11), there exists a real positive constant ρ̄E > 0 such that
Zi ⊕ B(ni)

ρ̄E (0) ⊆ Ei and KiZi ⊕ B(mi)
ρ̄E (0) ⊆ Ui for all i = 1, . . . ,M , where

B(dim)
ρ̄E (0) is a ball of radius ρ̄E > 0 centered at the origin in the Rdim

space. �

The main convergence result is now stated; since the velocity-form
allows one to transform a tracking problem in a regulation one, it can
be proved along the lines reported in Chapter 2 and in [50].

Theorem 5.1 Let Assumptions 5.1-5.5 be satisfied and let ∆Ei and
∆Eui be neighborhoods of the origin satisfying ∆Ei ⊕ Zi ⊆ Ei and
∆Eui ⊕KiZi ⊆ Eui . Then, for any initial reference trajectories in Ξ̃N

ξ0,
the trajectory ξk, starting from any initial condition ξ0 ∈ ΞN , asymp-
totically converges to the origin, so that the output y of system (5.1)
converges to the reference ȳ. �
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5.4 Implementation issues

The DPC algorithm requires to compute the block diagonal matrix
K = diag(K1, . . . ,KM) satisfying Assumption 5.4. Moreover, condi-
tion (5.24) must be fulfilled by a proper selection of a matrix
P = diag(P1, . . . , PM). Eventually, the sets Ei, Eui , Zi, ∆Ei, ∆Eui and
ΞF
i must be characterized. Since the tracking problem has been trans-

formed in a regulation one, the algorithms presented in Chapter 2 can
be used.

5.5 Simulation example

Consider the four-tanks system of Figure 5.1, see [7,36,57,74,108,165],
already introduced in Chapter 2. We recall that the goal is to control
the levels h1 and h3 of Tanks 1 and 3. The manipulated inputs are the
voltages of the two pumps v1 and v2. The parameters γ1 and γ2 ∈ (0, 1)
represent the fraction of water that flows inside the lower tanks, and
are kept fixed during the simulations.

Figure 5.1: Schematic representation of the four-tanks system.

The dynamic model of the system and the values of the parameters
have been described in Chapter 2. In this case, external disturbances
are not considered.

The linearization of the dynamic system and its zero-order-hold
discretization with sampling time T = 0.5 s, leads to the model (5.1)
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with n = 4, m = 2 and

A =


0.9921 0 0 0.0206

0 0.9835 0 0
0 0.0165 0.9945 0
0 0 0 0.9793


B =


0.0417 2.47 · 10−4

0.0156 0
1.30 · 10−4 0.0311

0 0.0235

 , C =

[
1 0 0 0
0 0 1 0

]

In order to apply the DPC algorithm for tracking, this system has been
partitioned into 2 subsystems: the first one constituted by Tank 1 and
Tank 2, and the second one by Tank 3 and Tank 4. The partition of
inputs, outputs and states is, therefore

x[1] =
[
x1 x2

]T
, u[1] = u1 , y[1] = y1

x[2] =
[
x3 x4

]T
, u[2] = u2 , y[2] = y2

The parameters used in the simulation are Q1 = Q2 = 3.24 · 10−9 · I3,
R1 = R2 = 3.24 · 10−15, y[1] = −0.4, y[2] = 0 and

K1 =
[
−10.87 0.25 −3.21

]
K2 =

[
−12.45 0.36 −3.96

]
P1 =

 6.01 · 10−6 −4.98 · 10−7 1.23 · 10−6

−4.98 · 10−7 2.04 · 10−6 2.47 · 10−8

1.23 · 10−6 2.47 · 10−8 1.81 · 10−6


P2 =

 7.37 · 10−6 −2.71 · 10−7 1.59 · 10−6

−2.71 · 10−7 1.46 · 10−6 2.92 · 10−7

1.59 · 10−6 2.92 · 10−7 2.73 · 10−6


In Figure 5.2, a comparison between the outputs obtained with DPC

and with centralized MPC (cMPC) is provided, showing only a slight
performance degradation of DPC with respect to cMPC.

5.6 Conclusions

The DPC algorithm for tracking presented in this Chapter has an im-
portant features which make it suited for industrial applications, specif-
ically the integral action inserted in the closed-loop. On the other hand,
the proposed method has guaranteed convergence properties only in
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Figure 5.2: Trajectories of the output variables y[1] (above) and y[2] (below) ob-
tained with DPC (solid lines) and with cMPC (dashed lines). Dotted lines: refer-
ence ȳ[i].

case the reference is kept constant: for time-varying reference signals,
recursive feasibility can not be proved. In order to extend also to the
cases of varying external setpoints the approach based on the velocity-
form version of dynamic systems, its properties have been studied for
the centralized case, as shown in Chapter 6.

5.7 Appendix

5.7.1 Proof of Proposition 5.1

The pair (Aii,Bii) is reachable iff, for all λ ∈ C,

rank
([
λIni+mi −Aii −Bii

])
(5.25)

= rank
([
λIni − Aii −Bii 0
−CiAii −CiBii (λ− 1)Imi

])
= ni +mi

On the one hand, if λ 6= 1, since the term (λ− 1)Imi has full rank mi,
and since the matrix[

λIni − Aii −Bii 0
−CiAii −CiBii (λ− 1)Imi

]
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is block lower triangular, to guarantee (5.25) it is sufficient to guarantee
that

rank(
[
λIni − Aii −Bii

]
) = ni

which holds in view of the observability properties of the pair (Aii, Bii).
On the other hand, if λ = 1, to guarantee (5.25) it is sufficient to

show that
rank

([
Ini − Aii −Bii

−CiAii −CiBii

])
= ni +mi

which is equivalent to the condition ii) of Assumption 5.2.
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6
Centralized MPC with integral action

The control technique presented in Chapter 5 has the important pos-
itive side of inserting an integral action in the closed-loop. This can be
really useful in practice, since it leads to an offset-free tracking of con-
stant reference points also in presence of constant disturbances (and/or
errors in the model). The negative side of the proposed formulation is
that feasibility is not guaranteed when setpoint changes are required.
To overcome this issue, an in-depth study of centralized controllers for
systems rewritten in velocity-form is discussed in this Chapter.

As already discussed, three different solutions to the offset-free prob-
lem have been proposed so far. The first one consists of augment-
ing the model of the plant under control with an artificial distur-
bance, which must be estimated together with the system state [96,
111, 113, 118, 120, 123]. Another approach consists of including an in-
ternal model of the reference fed by the output error in the control
scheme [39,99,104]. A third solution consists of describing the system
in velocity-form [122,168].

Although all these solutions to the offset-free problem share the
common idea to include, implicitly or explicitly, an integral action in
the control loop, each one has its own advantages and drawbacks. In
particular, the use of the velocity-form does not require the use of a
state estimator even when the plant state is available and does not
require to compute the steady state target for the plant state and con-
trol variables in order to properly formulate the optimization problem
considered in the MPC formulation. On the other hand, in order to
address the stability issue with MPC algorithms for systems in veloc-

135
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ity form, in [168] the “zero terminal constraint" solution is suggested,
while, to the best of the author knowledge, no stability results have
been established for MPC algorithms based on the velocity-form and
characterized by a terminal cost and a terminal constraint, terms usu-
ally considered to guarantee stability and convergence, see [105]. This
is due to the difficulty to find an auxiliary control law and an asso-
ciated terminal set where the constraints on the state and input of
the system are fulfilled, see [122]. Note that the zero terminal con-
straint solution cannot be used for systems affected by bounded but
non-constant disturbances.

In this Chapter, an MPC algorithm for linear systems described in
velocity form is presented. It allows one to track piecewise constant
signal rejecting constant disturbances, and relies on the approach de-
scribed in [6,87–89] for the solution of the unfeasible reference problem.
The proposed method guarantees stability properties and the conver-
gence of the controlled output to the feasible reference or to the near-
est artificial reference, i.e. the solution of the offset-free problem. The
main point in the derivation of the method is related to the definition
of an auxiliary stabilizing control law and of a region where its use can
guarantee the fulfillment of the original state and control constraints.
The proposed method is initially derived for nominal systems and is
then extended for coping with disturbances and uncertainties. Specif-
ically, the latter version is used in three cases, which differ from each
other in view of the type of perturbation affecting the system, i.e.,
bounded disturbance, constant disturbance, and model uncertainty.
All the proofs are reported in the Appendix to improve readability.

6.1 MPC for offset-free tracking: nominal systems

6.1.1 Statement of the problem

Consider a discrete-time, linear, time-invariant system, described by

xk+1 = Axk +Buk
yk = Cxk

(6.1)

where xk ∈ Rn is the state, uk ∈ Rm is the input, and yk ∈ Rm is the
output. The inputs and state variables are subject to constraints, i.e.
xk ∈ X and uk ∈ U for all instants k, where X, U are compact and
convex neighbors of the origin.
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For system (6.1) we consider the problem of designing a state-
feedback control system, based on MPC, for tracking a given constant
reference signal ro ∈ Rm, i.e., that asymptotically steers the system
output yk to the desired value ro. We underline that ro is allowed to
change without losing feasibility: in this sense, also if all the Chapter is
developed referring to constant setpoints, the reader should remember
that in practice the proposed method can be used to track piecewise
constant references.

The following standard assumptions are made.

Assumption 6.1 i) The state is measurable.

ii) The pair (A,B) is reachable.

iii) The input-output system (6.1) has no invariant zeros in 1, i.e.,
rank(S) = n+m, where

S =

[
In − A −B
−C 0

]
�

Note that Assumption 6.1 iii) guarantees the existence and the unique-
ness of the steady-state pair (xo, uo) ∈ Rm+n such that the system out-
put corresponds to the desired value yo.

6.1.2 The velocity form

In order to solve the tracking problem, the system is enlarged with
m integrators and described in velocity-form. Specifically, denoting
by r̂ a generic tracking target (which could be different from ro, for
reasons which will become clear later on), the corresponding steady
state condition is denoted (x̂, û). Letting δxk = xk − xk−1, εk = yk − r̂,
and δuk = uk − uk−1, system (6.1) can be reformulated as follows

δxk+1 = Aδxk +Bδuk
εk+1 = CAδxk + εk + CBδuk

(6.2)

Define ξk = (δxk, εk) and

A =

[
A 0
CA Im

]
, B =

[
B
CB

]
(6.3)

In this way system (6.2) can be written in compact form as

ξk+1 = Aξk + Bδuk (6.4)
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The following proposition can be easily proved.

Proposition 6.1 If Assumption 6.1 holds, then the pair (A,B) is
reachable. �

In view of the reachability property of (A,B), it is possible to compute
the gain K such that F = A+ BK is Schur.

The dynamics of system (6.4), under the state-feedback control law

δut = Kξk (6.5)

is given by
ξk+1 = Fξk (6.6)

Lastly, knowing r̂, it is possible to give a useful relationship between
the states of the systems in velocity form and the states and inputs of
the original system as shown with the following proposition.

Proposition 6.2 Under Assumption 6.1 the following equation hold:[
xk
uk−1

]
= C∗

[
ξk
r̂k

]
=
[
Cξ Cy

] [ξk
r̂k

]
(6.7)

where
C∗ =

[
A B
0 Im

]
Σ−1

[
In 0 0
0 Im Im

]
(6.8)

and
Σ =

[
A− In B
CA CB

]
(6.9)

�

Where C∗ ∈ R(n+m)×(n+2m), while Cξ ∈ R(n+m)×(n+m) and Cy ∈ R(n+m)×m

are two matrices such that C∗ =
[
Cξ Cy

]
. Note that the inverse of Σ

always exists in view of Assumption 6.1 iii) (see the Appendix).

6.1.3 The maximal output admissible set

In the following, system (6.4) will be used to design an MPC algorithm
with stability and tracking properties. To this end, (6.5) will be the
auxiliary control law used to guarantee stability, see [105]. However,
with respect to more standard formulations, the velocity form (6.4)
with state and control increments δxk and δuk poses the problem of
properly reformulating the constraints on the original variables xk and
uk in terms of constraints on the state ξk of the closed-loop system (6.6).
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To this regard, the main problem of this section is to define a suit-
able invariant set for the trajectory ξk and at the same time a set of
output reference values r̂, such that it is guaranteed that the original
input and state variables uk and xk, respectively, lie in the feasibility
sets U and X.

In view of Proposition 6.2, the issue of computing an invariant set
where (ξk, r̂) must lie in order to guarantee that constraints
(xk, uk) ∈ X× U are verified for all k can be cast as the problem of
computing the maximal output admissible set (MOAS) for the follow-
ing auxiliary system: [

ξk+1

r̂

]
=

[
F 0
0 Im

] [
ξk
r̂

]
(6.10a)[

xk
uk−1

]
=
[
Cξ Cy

] [ξk
r̂

]
(6.10b)

where (6.10a) and (6.10b) play the role of a state equation and of an
output equation, respectively.

Letting

F ∗ =

[
F 0
0 Im

]
assume the following Assumption is fulfilled.

Assumption 6.2

i) The pair (F ∗, C∗) is observable.

ii) X× U is a close polytope.

�

Then a polytopic inner approximation Oε to the MOAS can be com-
puted in a finite number of steps [59], which is defined as follows:

Oε = {(ξ, r̂) ∈ Rn+2m : CξFkξ + Cyr̂ ∈X× U ∀ k ≥ 0 and
Cyr̂ ∈ Xε × Uε} (6.11)

where Xε and Uε are close and compact sets satisfying Xε ⊕ Bnε (0) ⊆ X
and Uε ⊕ Bmε (0) ⊆ U, where Bdimε (0) defines a ball of radius ε in the
Rdim space, and ε can be arbitrarily small. The definition (6.11) enjoys
a fundamental property: Oε results to be the set of initial conditions
(ξ, r̂) for the dynamic system (6.10a) such that, during the transient, it
is guaranteed that (xk, uk) = CξFkξ + Cyr̂ ∈ X× U, and the allowed
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steady state values (x̂, û) = Cyr̂ belong to the set Xε × Uε ⊂ int(X× U)
(in fact, note that when the nominal system is at an equilibrium point,
ξ̂k = 0, thus (x̂, û) = C∗(0, r̂) = Cyr̂, i.e., Cy = −S−1

[
0 Im

]′
. The

latter is fundamental for the following results. For details on the com-
putation of Oε, please see [59] and Chapter 1.

6.1.4 The MPC problem

In this Section we introduce the MPC solution to the tracking problem
stated in the previous section.

Similarly to [88], we remark that an arbitrary desired reference out-
put ro may easily lead to infeasible standard MPC optimization prob-
lems. In case this occurs, we assume (in line with the reference governor
approach [58]) that the value r̂k to be considered as the output refer-
ence trajectory in the MPC problem at time k is different from ro and
guarantees feasibility. As such, r̂k will be regarded as an argument of
the optimization problem itself, rather than a fixed parameter.

These considerations lead to state the following MPC optimization
problem to be solved at each time instant k:

V ∗N(ro, δxk, yk) = min
r̂k,δu[k:k+N−1]

VN(r̂k, δu[k:k+N−1]; r
o, δxk, yk) (6.12)

where

VN =
N−1∑
ν=0

{‖ξk+ν‖2
Q + ‖δuk+ν‖2

R}+ ‖ξk+N‖2
P + ‖r̂k − ro‖2

T (6.13)

subject to the dynamic constraint (6.4), to the constraints

C∗
[
ξ̂k+ν

ŷk

]
∈ X× U (6.14)

for all ν = 1, . . . , N − 1, and to the terminal constraint[
ξk+N

r̂k

]
∈ Oε (6.15)

As discussed, in the minimization problem (6.12), ro and r̂k are the
fixed desired reference value and the “artificial” setpoint actually tracked
at instant k, respectively. Furthermore, the input sequence δu[k:k+N−1]

and r̂k are the decision variables of the problem. The solution to (6.12)
is denoted δu[k:k+N−1]|k, r̂k|k.
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Note that, in view of the definition of ξ and ε, the stated problem
requires to optimize, at any time instant, not only the future control
increments, but also the part of the current state ξk which depends on
r̂.

The weighting matrices Q ∈ R(n+m)×(n+m) and R ∈ Rm×m are sym-
metric and positive definite, and P ∈ R(n+m)×(n+m) is the positive def-
inite solution of the equation

FTPF − P = −(Q+KTRK) (6.16)

In view of the dimensions of F , P ∈ R(n+m)×(n+m). We can decompose
it as follows

P =

[
Pxx Pxy
P T
xy Pyy

]
where Pxx ∈ Rn×n, Pxy ∈ Rn×m, and Pyy ∈ Rm×m. Matrix T ∈ Rm×m

is a further tuning knob that must satisfy the constraint

T − Pyy � 0 (6.17)

Some comments are in order. Constraints (6.14) are equivalent to
require that xk+ν ∈ X for all ν = 1, . . . , N − 1 and uk+ν ∈ U for all
ν = 0, . . . , N − 2. Furthermore, (6.15) implies that if, for all times
k + i, i ≥ N , the system (6.4) is controlled using the auxiliary state-
feedback control law (6.5) then, in view of the invariance properties of
Oε, xk+N+i ∈ X and uk+N+i−1 ∈ U are verified for all i ≥ 0.

The main convergence result can now be stated.

Theorem 6.1 Let Assumption 6.1 be verified and the design param-
eters Q, R, P , T , X× U, and Oε be chosen as specified. Then, if
at time k = 0 a feasible solution to the optimization problem (6.12)-
(6.15) exists, the resulting MPC control law asymptotically steers the
nominal system output ŷk to the admissible set-point rad, where

rad = argmin
Cyy∈Xε×Uε

‖y − ro‖2
T (6.18)

Moreover, δuk|k → 0 as k →∞, and the constraints (xk, uk) ∈ X× U
are fulfilled for all k ≥ 0. �
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6.2 MPC for offset-free tracking: disturbed sys-
tems

6.2.1 Statement of the problem and transformation in velocity-
form

Assume system (6.1) is affected by a disturbance

xk+1 = Axk +Buk + wk
yk = Cxk

(6.19)

where the disturbance wk ∈W is unknown, but bounded, and W in-
cludes the origin. Concerning system (6.19), we suppose that Assump-
tion 6.1 is again fulfilled.

If, in addition to δxk = xk − xk−1, εk = yk − r̂, δuk = uk − uk−1,
ξk = (δxk, εk), A and B (see (6.3)), we introduce also

Bw =

[
In
C

]
, δwk = wk − wk−1, dk = Bwδwk (6.20)

system (6.19) can be reformulated as

ξk+1 = Aξk + Bδuk + dk (6.21)

Associated with system (6.19), the following nominal system is defined.

x̂k+1 = Ax̂k +Bûk
ŷk = Cx̂k

(6.22)

Letting δx̂k = x̂k − x̂k−1, ε̂k = ŷk − r̂, δûk = ûk − ûk−1, ξ̂k = (δx̂k, ε̂k),
the nominal counterpart of system (6.21) is

ξ̂k+1 = Aξ̂k + Bδûk (6.23)

According to [107] assume that, for all k, for the real system (6.21) the
following control law is considered

δuk = δûk +K(ξk − ξ̂k) (6.24)

where the gain K is defined a priori such that F = A+ BK is Schur
(see Proposition 6.1). From (6.21), (6.23), and (6.24) it directly follows
that

(ξk+1 − ξ̂k+1) = F(ξk − ξ̂k) + dk (6.25)

which is independent of the control input δûk to the nominal system.
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6.2.2 The maximal output admissible set computed using
tightened constraints

One of the main obstacles for the use of the velocity form is due to
the difficulty to transform the state and control constraints for the
real disturbed system (6.19) in terms of equivalent constraints on the
enlarged nominal state ξ̂k, of the reference signal r̂. To this end, the
approach outlined in the following consists in three logical steps:

I) we write (xk − x̂k, uk−1 − ûk−1) in terms of (ξk − ξ̂k, wk−1);

II) we show that there exists a robust positively invariant (RPI) set
(denoted Z̃) where (ξk − ξ̂k, wk−1) is guaranteed to lie;

III) we compute, from Z̃, the tightened set X̂U where (x̂k, ûk−1) must
lie to verify the constraints on xk and uk.

As for I), the following result will be used.

Proposition 6.3 Under Assumption 6.1, the following equations hold[
xk
uk−1

]
= C∗

[
ξk
r̂k

]
+ Cwwk−1 (6.26)[

x̂k
ûk−1

]
= C∗

[
ξ̂k
r̂k

]
(6.27)

where C∗ =
[
Cξ Cy

]
is defined in equation (6.8) and

Cw =

[
In
0

]
−
[
A B
0 Im

]
Σ−1

[
In
C

]
(6.28)

�

From (6.26) and (6.27), the difference between real and nominal states
and inputs is [

xk − x̂k
uk−1 − ûk−1

]
=
[
Cξ Cw

] [ξk − ξ̂k
wk−1

]
(6.29)

Concerning II), defining ωk = wk−1 one can write, from (6.20) and
(6.25) [

ξk+1 − ξ̂k+1

ωk+1

]
= F̃

[
ξk − ξ̂k
ωk

]
+ B̃wwk (6.30)
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where

F̃ =

[
F −Bw
0 0

]
, B̃w =

[
Bw
In

]
From (6.30), since the Schureness of F̃ follows from the Schureness of
F , in view of [132] it is possible to compute the minimal RPI set Z̃ for
(ξk − ξ̂k, ωk) as

Z̃ =
∞⊕
ν=0

F̃νB̃wW (6.31)

Therefore, in view of (6.31), if (ξk − ξ̂k, ωk) ∈ Z̃ and wk+j ∈W for all
j ≥ 0, it holds that (ξk+j, ωk+j) ∈ (ξ̂k+j, 0)⊕ Z̃ for all j ≥ 1. An
algorithm for the computation of a polytopic robustly invariant outer
approximation of the latter set can be devised in line with [132], as
shown in Chapter 1.

Remark 6.1 An alternative choice is to set dk ∈ D = Bw (W⊕ (−W))
in (6.21) and to compute a RPI set for (6.25) as Z =

⊕∞
ν=0FνD, such

that if (ξk − ξ̂k) ∈ Z then ξk+j ∈ ξ̂k+j ⊕ Z for all j ≥ 1 and for all
possible disturbance realizations. Such a simpler but more conservative
choice corresponds to replace Z̃ in (6.31) with Z×W in the following
developments.

Point III). Since ωk = wk−1 and in view of (6.31) one has that, if
(ξk − ξ̂, ωk) ∈ Z̃, then[

xk
uk−1

]
=

[
x̂k
ûk−1

]
+
[
Cξ Cw

] [ξk − ξ̂
ωk

]
∈
[
x̂k
ûk−1

]
⊕
[
Cξ Cw

]
Z̃ (6.32)

Therefore, in order to guarantee that (xk, uk−1) ∈ X× U, the following
tightened constraints must be satisfied for (x̂k, ûk−1)

(x̂k, ûk−1) ∈ X̂U (6.33)

where X̂U is the set, with non-empty interior, that verifies

X̂U ⊆ (X× U)	
[
Cξ Cw

]
Z̃ (6.34)

In terms of ξ, r̂ and in view of (6.27), equation (6.33) can be written
as

C∗
[
ξ̂k
r̂k

]
∈ X̂U (6.35)
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In order to design an MPC stabilizing feedback control law, it is ad-
visable to define the auxiliary control law

δûk = Kξ̂k (6.36)

to compute an invariant set for the nominal closed-loop system (6.23),
(6.36), together with a set of output reference values r̂, where (ξ̂k, r̂)

must lie in order to guarantee that constraints (x̂k, ûk−1) ∈ X̂U are veri-
fied for all k. This requires to compute the maximal output admissible
set (MOAS) Ô for the auxiliary nominal system with the dynamic
equation [

ξ̂k+1

r̂

]
=

[
F 0
0 Im

] [
ξ̂k
r̂

]
(6.37)

and the output equation (6.27).
Provided that Assumption 6.2 is verified, an invariant, polytopic

inner approximation Ôε of the MOAS can be computed in a finite
number of steps [59]. Specifically, Ôε is defined as follows

Ôε = {(ξ̂, r̂) ∈ Rn+2m : CξFkξ̂ + Cyr̂ ∈X̂U ∀ k ≥ 0 and

Cyr̂ ∈ X̂U(ε)} (6.38)

where X̂U(ε) is a close and compact set satisfying X̂U(ε)⊕ Bnε (0) ⊆ X̂U,
and ε can be arbitrarily small. Note that ˆOε ⊂ Ô [59]. It is finally
worth remarking that, in view of (6.38), a reference output r̂ is feasible
if Cyr̂ ∈ X̂U(ε).

6.2.3 The MPC problem

The case of bounded variable disturbance

In the formulation of the robust MPC problem and according to [107],
at any time k the optimization problem is stated with reference to
the nominal system (6.23) and its initial condition ξ̂k is considered as
an optimization variable, besides the future nominal input sequence
δû[k:k+N−1]. Being ξ̂k = (δx̂k, (ŷk − r̂k)), this means that both δx̂k and
ŷk are arguments of the optimization problem. As for possibly infeasi-
ble reference signals ro, and following [88] also in this case, the value r̂k
to be considered as the output reference trajectory in the MPC prob-
lem at time k is regarded as an argument of the optimization problem
itself and is computed in such a way that feasibility is guaranteed.
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The MPC problem to be solved at each time instant k is:

V ∗N(ro, δxk, yk) = min
δx̂k,ŷk,r̂k,δû[k:k+N−1]

VN(δx̂k, ŷk, r̂k, δû[k:k+N−1]; r
o, δxk, yk)

(6.39)
where

VN =
N−1∑
ν=0

{‖ξ̂k+ν‖2
Q + ‖δûk+ν‖2

R}+ ‖ξ̂k+N‖2
P + ‖r̂k − ro‖2

T

subject to the dynamic constraint (6.23), to the constraints[
In+m

0

]
(ξk − ξ̂k) ∈

[
0

−wk−1

]
⊕ Z̃ (6.40)

where, at time k, wk−1 can be explicitly computed from xk−1, uk−1,
and xk using (6.19), to

C∗
[
ξ̂k+ν

r̂k

]
∈ X̂U (6.41)

for all ν = 1, . . . , N − 1, and to the terminal constraint[
ξ̂k+N

r̂k

]
∈ Ôε (6.42)

According to the receding horizon approach, at any time instant the
optimal solution δx̂k|k, ŷk|k, r̂k|k, δû[k:k+N−1]|k is found and the control
law (6.24) is applied with δûk = δûk|k and ξ̂k = (δx̂k|k, (ŷk|k − r̂k|k)).

A proper selection of the tuning parameters allows one to prove the
convergence properties of the proposed control algorithm. In partic-
ular, the weighting matrices Q and R are assumed to be symmetric
and positive definite, while P and T are defined as in equations 6.16
and 6.17.

Theorem 6.2 Let Assumption 6.1 be verified and the design parame-
ters Q, R, P , T , Z̃, X̂U, and Ôε be chosen as specified. Then, if at time
k = 0 a feasible solution to the optimization problem (6.39)- (6.42) ex-
ists, the resulting MPC control law asymptotically steers the nominal
system output ŷk to the admissible set-point rad, where

rad = argmin
Cyy∈X̂U(ε)

‖y − ro‖2
T (6.43)

Moreover, δûk|k → 0 as k →∞, and the constraints (xk, uk) ∈ X× U
are fulfilled for all k ≥ 0. �
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This result guarantees that, for any feasible initial state, the proposed
method asymptotically steers the nominal system output to the desired
reference value ro if ro is admissible, or to the admissible output rad if ro
is not admissible. Since the controller always keeps (ξk − ξ̂k) bounded
for all k ≥ 0, in view of (6.30), the output of the real system is driven
in a neighborhood of ro (or of rad). Moreover, the following corollary
accounts for the case the disturbance converges to a constant value.

Corollary 6.1 Let Assumption 6.1 be verified, the design parameters
Q, R, P , T , Z̃, X̂U, and Ôε be chosen as specified. If wk → w̄ as k →∞
and if, at time k = 0, a feasible solution to the optimization prob-
lem (6.39)- (6.42) exists, then the resulting MPC control law asymptot-
ically steers the system (6.19) output yk to the admissible set-point rad
given by (6.43) and the constraints (xk, uk) ∈ X× U are fulfilled for all
k ≥ 0. �

The case of constant unknown disturbance

When the disturbance wk ∈W is unknown but constant, i.e., wk = w̄,
a standard and much simpler formulation of the MPC problem can be
used. In fact, being δwk = 0, the velocity forms of the system (6.21)
and of its nominal model (6.23) coincide. Therefore Z̃ = {0} ×W
which means that, provided that ξk = ξ̂k, ξk+j = ξ̂k+j for all w̄ ∈W.
In view of this, the robust tube-based MPC formulation is no longer
needed and the optimization problem can be directly formulated on the
plant variables ξk and δuk. Moreover, to guarantee (xk, uk−1) ∈ X× U,
the set X̂U in (6.33), (6.35), and (6.38) must verify

X̂U ⊆ (X× U)	 CwW (6.44)

which is the reformulation of (6.34) in this simpler case.
In summary, the optimization problem to be solved on-line has the

following standard formulation of (non-robust) MPC.

V ∗N(ro, δxk, yk) = min
r̂k,δu[k:k+N−1]

VN(r̂k, δu[k:k+N−1]; r
o, δxk, yk) (6.45)

where

VN =
N−1∑
ν=0

{‖ξk+ν‖2
Q + ‖δuk+ν‖2

R}+ ‖ξk+N‖2
P + ‖r̂k − ro‖2

T
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subject to the dynamic constraint (6.21) with dk = 0, to the con-
straints (6.41), for all ν = 1, . . . , N − 1, and to the terminal
constraint (6.42).

Once the optimization problem has been solved at any time k and
its optimal solution r̂k|k, δu[k:k+N−1]|k has been computed, the input
applied to the real system is uk = uk−1 + δuk|k.

With arguments similar to those used for the general case, the fol-
lowing corollary of Theorem 6.2 can be stated.

Corollary 6.2 Let Assumption 6.1 be verified, the design parameters
Q, R, P , T , Z̃, X̂U, and Ôε be chosen as specified. Consider the case
of constant disturbances, i.e., wk = w̄ for all k ≥ 0. Then, if at time
k = 0 a feasible solution to the optimization problem (6.45) exists,
the resulting MPC control law asymptotically steers the system (6.19)
output yk to the admissible set-point rad given by (6.43) and the con-
straints (xk, uk) ∈ X× U are fulfilled for all k ≥ 0. �

It is worth recalling that, in the definition (6.43) of rad, the set X̂U(ε)

appears, which is defined on the basis of X̂U, which now must verify
the condition (6.44).

The case of model uncertainties

A possible application of the results presented in this paper is the case
where the disturbance wk stems from model perturbations. Specif-
ically, assume that the real system matrices are Ar = A+ Aδ and
Br = B +Bδ, with Aδ and Bδ unknown, but bounded. Since xk ∈ X
and uk ∈ U, the control problem can be stated as in (6.19), where the
bounded disturbance is

wk = Aδxk +Bδuk (6.46)

We assume, according to [79], that

[
Aδ Bδ

]
=

nα∑
i=1

αi
[
Ai Bi

]
(6.47)

where αi > 0 are unknown time-invariant parameters satisfying∑nA
i=1 αi = 1. Define also

Aδ =

[
Aδ 0
CAδ 0

]
Bδ =

[
Bδ

CBδ

]
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The following corollary of Theorem 6.2 can be stated, provided that
all the ingredients of the MPC problem (6.39) can be properly defined,
including X̂U.

Corollary 6.3 Let Assumption 6.1 be verified, the design parameters
Q, R, P , T , Z̃, X̂U, and Ôε be chosen as specified, and model un-
certainties be of the type (6.46). Furthermore, assume that the ma-
trix Fr = A+Aδ + (B + Bδ)K is Schur for all pairs

[
Aδ Bδ

]
satisfy-

ing (6.47). Then, if at time k = 0 a feasible solution to the optimization
problem (6.39)- (6.42) exists, the resulting MPC control law asymptot-
ically steers the system (6.19) output yk to the admissible set-point rad
given by (6.43) and the constraints (xk, uk) ∈ X× U are fulfilled for all
k ≥ 0. �

Methods for designing the gain matrix K satisfying the assumptions
of the corollary have been thoroughly studied in the past, also in the
context of MPC, see, e.g., [35, 79].

One of the key points of the proposed approach lies in the existence
of a proper set X̂U. According to its definition, it is computed as
follows:

I) computeW = convH
(⋃nα

i=1{
[
Ai Bi

]
X× U}

)
, where convH denotes

the convex hull.

II) Compute Z̃ using (6.31).

III) Compute X̂U using (6.34).

Note that step III) can be carried out provided that[
Cξ Cw

]
Z̃ ⊂ X× U (6.48)

which, in view of the fact that Z̃ is in turn computed from X×U, is in-
deed a small gain requirement. In fact, small perturbations (i.e., small
Aδ and Bδ) result in a small Z̃. A simple sufficient condition guaran-
teeing (6.48) can be stated in case X× U is a zonotope i.e., a centrally
symmetric convex polytope, defined in the following alternative ways:

X× U =

{
(x, u) ∈ Rn+m :

[
x
u

]
= Ξx,uv where ‖v‖∞ ≤ 1

}
=

{
(x, u) ∈ Rn+m : hTi

[
x
u

]
≤ 1 for all i = 1, . . . , r

} (6.49)
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for suitably-specified matrices Ξx,u and vectors hi, i = 1, . . . , r. Also
define Hx,u as

Hx,u =
[
h1 . . . hr

]
(6.50)

The following proposition provides a sufficient (but conservative) con-
dition for the small gain one (6.48).

Proposition 6.4 Assume that

∞∑
ν=0

‖F̃ν‖∞‖HT
x,u

[
Cξ Cw

]
‖∞ max

j=1,...,nα
‖B̃w

[
Aj Bj

]
Ξx,u‖∞ < 1

(6.51)

then X̂U can be properly defined. �

Checking (6.51) is straightforward: Hx,u and Ξx,u are given once sets
X and U are defined, and all the matrices appearing in (6.51) are
defined in the problem setup. Furthermore, since F̃ is Schur, there exist
constants α ≥ 1, β ∈ [0, 1) such that ‖F̃ν‖∞ ≤ αβν . Therefore, by
replacing

∑∞
ν=0 ‖F̃ν‖∞ with α/(1− β), we obtain a sufficient condition

for (6.51).

6.3 Simulation examples

For assessing the performances of the nominal algorithm presented
in Section 6.1, consider the following benchmark problem, originally
proposed in [87] and [88]. The nominal dynamic model of the plant is

xk+1 = Axk +Buk
yk = Cxk

(6.52)

where

A =

[
1 1
0 1

]
, B =

[
0.5 0
0 1

]
, C =

[
1 0
0 1

]
Note that, differently from [87] and [88], here both states correspond
to outputs. The constraints on the states and inputs are ‖x‖∞ ≤ 5 and
‖u‖∞ ≤ 3, respectively. System (6.52) is used for the synthesis of the
controller. Assume also that the plant is affected by both model per-
turbations and disturbances: the real transition and output matrices
are Areal and Breal, respectively, and an additional constant unknown
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disturbance w̄ is present. Therefore the evolution of the system obeys
to

xk+1 = Arealxk +Brealuk + w̄
yk = Cxk

(6.53)

where

Areal =

[
0.8 1.1
0.05 0.9

]
, Breal =

[
0.55 0.05
−0.05 0.9

]
C =

[
1 0
0 1

]
, w̄ =

[
0.5
0.5

]
We set Q = diag(0.1, 0.1, 1, 1), R = diag(0.1, 0.1), and N = 10. Ma-
trices K and P have been computed according to the LQ synthesis
criterion:

K =

[
−1.69 −1.71 −1.22 0.30
−0.05 −0.10 0.02 −0.73

]

P =


0.44 0.34 0.24 −0.06
0.34 0.54 0.24 0.01
0.24 0.24 1.41 0.10
−0.06 0.01 0.10 1.37


Matrix Pyy is therefore

Pyy =

[
1.41 0.10
0.10 1.37

]
Matrix T has been set to T = 10Pyy.

In the simulations, the reference trajectory for y2 is constant and
equal to zero. The first output y1, instead, has a piece-wise constant
reference trajectory, taking values 5, −5.5 and 3. The results are shown
in Figure 6.1. In Figure 6.2 we show the trajectories of the input
variables.

Importantly, note that every admissible reference signal is tracked
without error and that the effects of the model perturbation and of
the unknown disturbance have been rejected, thanks to the particular
offset-free MPC formulation proposed in this paper. On the other
hand, the setpoint −5.5 it is not admissible and the output is steered
to the closest admissible value.

Although constraint satisfaction is not guaranteed for perturbed
systems by the results presented in Section 6.1, they are accidentally
satisfied in this example.
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Figure 6.1: Trajectories of the real plant output variables y1 (above) and y2 (below).
Grey solid line: real desired references (ŷ1,2); black dash-dotted line: artificial
references (ȳ1,2); black solid line: outputs of the system (y1,2).

Figure 6.2: Trajectories of the inputs applied to the real system. Blak solid line:
first input; black dash-dotted line: second input.
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To test the robust version of the proposed algorithm, consider again
this first benchmark problem. The dynamic model is given by

xk+1 = Axk +Buk + wk
yk = Cxk

(6.54)

where
A =

[
1 1
0 1

]
, B =

[
0.5 0
0 1

]
, C =

[
1 0
0 1

]
The constraints on the states and inputs are again ‖x‖∞ ≤ 5 and
‖u‖∞ ≤ 3, while the variable disturbance w is such that ‖w‖∞ ≤ 0.1.
For the synthesis of the controller it has been set N = 5, Q = I4,
R = 0.01I2, while the matrices K and P have been computed with
the LQ∞ synthesis criterion. The weighting matrix T has been set to
T = 10Pyy.

Figure 6.3: Trajectories of the real plant output variables y1 (above) and y2 (below).
Grey solid line: real desired references (ro1,2); black dash-dotted line: artificial
references (r̂1,2); black solid line: outputs of the system (y1,2). The disturbance wk

is constant for k ≥ 24.

In the reported simulations, the reference trajectory for y2 is con-
stant and equal to zero. The first output y1, instead, has a piecewise
constant reference trajectory, taking values 5, −5.5 and 3. The distur-
bance is randomly varying in the set W for k ∈ [0, 23], while it is kept
constant for k ∈ [24, 35]. The results are shown in Figure 6.3, while
Figure 6.4 shows the trajectories of the input variables.

Note that every admissible reference signal is tracked, without error
when wk = w̄, and that the effects of the unknown disturbance have
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Figure 6.4: Trajectories of the inputs applied to the real system. Black solid line:
first input; black dash-dotted line: second input.

been rejected. On the other hand, the setpoint −5.5 is not admissible
and the output is steered to the closest admissible value. Constraints
on states and inputs are always fulfilled thanks to the robust approach.

Let’s now consider a second example, proposed in [69,123], to eval-
uate the application of the nominal formulation of Section 6.1: its sim-
ple implementation and useful characteristics could in fact be of great
interest from an industrial point of view. A continuous stirred-tank

Figure 6.5: Sketch of a continuous stirred-tank reactor.

reactor (Figure 6.5) is considered: in the liquid phase, an irreversible
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reaction occurs. The temperature inside the reactor is regulated with
external cooling. The nonlinear equations which give the dynamics of
the CSTR are

dc

dt
=
F0(c0 − c)
πr2h

− k0ce(− E

RT
) (6.55a)

dT

dt
=
F0(T0 − T )

πr2h
− ∆H

ρCp
k0ce(− E

RT
) +

2Uh

rρCp
(Tc − T ) (6.55b)

dh

dt
=
F0 − F
πr2

(6.55c)

The three state variables, all measurable, are the level of the tank, h,
the molar concentration of the reagent, c and the reactor temperature
T . The first two are taken as the controlled outputs. The manipulated
inputs to the system are the outlet flow rate, F , and the coolant liquid
temperature, Tc. The inlet flow rate is assumed to be an unknown
disturbance. In Table 6.1 the model parameters are reported. The

Table 6.1: CSTR parameters

Parameter Nominal value
F0 100 lmin−1

T0 350 K
c0 1 mol l−1

r 0.219 m
k0 7.2 × 1010 min−1

E/R 8.750 K
U 915.6 WKm−2

ρ 1 kg l−1

Cp 0.239 JKg−1

∆H -5 × 104 Jmol−1

system is linearized in correspondence of the stable steady state where
hs = 0.659 m, cs = 0.877 mol l−1, T s = 324.5 K, F s = 100 l min−1 and
T sc = 300 l, having denoted with apex s the steady state. As shown
in [123], using a sampling time of 1 min, the following linear discrete-
time model is obtained

xk+1 = Axk +Buk + wk
yk = Cxk

(6.56)
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with

A =

0.2511 −3.368e−3 −7.056e−4

11.06 0.3296 −2.545
0 0 1

 ,
B =

−5.426e−3 1.530e−5

1.297 0.1218
0 −6.592e−2

 , C =

[
1 0 0
0 0 1

]
,

wk =

−1.762e−5

7.784e−2

6.592e−2

 pk
where x = ((c− cs), (T − T s), (h− hs)), u = ((Tc − T sc ), (F − F s)),
y = ((c− cs), (h− hs)) and p = F0 − F s

0 .

Figure 6.6: Trajectories of the plant output variables y1 (above) and y2 (below).
Grey solid line: real desired references (yr1,2); black dash-dotted line: artificial
references (ȳ1,2); black solid line: outputs of the system (y1,2).

At time k = 10 (i.e., t = 10 min), a disturbance p = 10 enters the
plant, and the goal of the controller is to track the steady state values
of the outputs (i.e., to regulate the outputs of the linearized system to
zero).

The length of the prediction horizon is N = 5, while we put
Q = diag(0.01, 0.01, 0.01, 10, 10) and R = diag(0.01, 0.01). Matrix K
has been generated according to LQ criterion and we chose T = 10Pyy.
The results are reported in Figure 6.6, from which it is clear that the
disturbance is completely rejected. In Figure 6.7 the applied inputs
are shown.
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Figure 6.7: Trajectories of the inputs applied to the system. Blak solid line: first
input; black dash-dotted line: second input.

6.4 Conclusions

In this paper, a robust MPC algorithm solving the offset-free tracking
and the infeasible reference problems has been developed for disturbed
systems expressed in velocity form. Convergence results have been
obtained by suitably defining the auxiliary control law and the terminal
set used in the problem formulation. In the next Chapter, the obtained
results will be used to derive a decentralized control algorithm for
tracking varying (piacewise constant) references.

6.5 Appendix

6.5.1 Proof of Proposition 6.2 and of Proposition 6.3

Being δxk = xk − xk−1, system (6.19) can be written as

δxk = (A− In)xk−1 +Buk−1 + wk−1

yk = Cxk = C(Axk−1 +Buk−1 + wk−1)
(6.57)

which gives[
xk−1

uk−1

]
=

[
A− In B
CA CB

]−1

(

[
δxk
yk

]
−
[
In
C

]
wk−1) (6.58)
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The dynamics of the state of system (6.19) allows one to write also[
xk
uk−1

]
=

[
A B
0 Im

] [
xk−1

uk−1

]
+

[
In
0

]
wk−1 (6.59)

Inserting (6.58) inside (6.59) and recalling that[
δxk
yk

]
=

[
In 0 0
0 Im Im

] [
ξk
r̂k

]
(6.26) clearly follows. Expression (6.27) and (6.7) are obtained in the
same way simply considering wk−1 = 0.

In order to find matrices C∗ and Cw we need to prove that the
inverse of Σ can be computed. It is easy to see that Σ is invertible if
and only if S is invertible, which holds in view of Assumption 6.1. This
can be proved by contradiction as follows. Let’s suppose that Σ−1 can
not be computed: this mean that there exists a vector µ = (µx, µu),
with µx ∈ Rn and µu ∈ Rm such that Σµ = 0 with µ 6= 0, i.e.,

Aµx +Bµu = µx
C(Aµx +Bµu) = Cµx = 0

(6.60)

that can be written as Sµ = 0. Since µ 6= 0, this contradicts Assump-
tion 6.1 iii) and therefore proves the existence of Σ−1.

6.5.2 Proof of Theorem 6.1 and of Theorem 6.2

The proof of Theorem 6.1 is a simplified version of the proof of Theo-
rem 6.2, see [13], and therefore is here skipped. Moreover, once The-
orem 6.2 and Corollary 6.2 have been proved, a very simple proof of
Theorem 6.1 can be stated. We refer the reader to the proof of Corol-
lary 6.2 for additional details.

As for the proof of Theorem 6.2, it follows the same rationale as the
proof of Theorem 1 in [88]. Specifically, it is based on the following
steps:

I) we prove that the only closed-loop stable equilibrium point such
that ξ̂k = 0, compatible with the minimization problem (6.39), is
the one corresponding to r̂k = rad.

II) We prove recursive feasibility and that the system converges asymp-
totically to an equilibrium point, i.e., that ξ̂k → 0 as k →∞.
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III) From the previous steps we infer that the nominal system asymp-
totically converges to the unique equilibrium point, which is com-
patible with (6.39).

Step I
First note that, among all admissible points (ξ̂k, r̂k) = (δx̂k, ŷk − r̂k, r̂k),
the point (0, 0, rad), where rad fulfills (6.43), is the equilibrium condi-
tion to (6.23) (corresponding to ŷk = r̂k = rad and δûk+ν = 0 for all ν)
such that the cost function VN is globally minimized. Recall that it is
admissible since Cyrad ∈ X̂U(ε), see (6.38).

Consider a generic admissible reference r̂ 6= rad, such that
(x̂r, ûr) = Cyr̂ ∈ X̂U(ε), corresponding to the equilibrium
(δx̂k, ŷk − r̂k, r̂k) = (0, 0, r̂) for the system (6.37) (i.e., corresponding
to an equilibrium to (6.23) in case δûk+ν = 0 for all ν ≥ 0). The cost,
associated to such equilibrium condition is

VN = ‖r̂ − ro‖2
T (6.61)

Instead, consider the solution corresponding to the trajectory start-
ing from (δx̂k, ŷk − r̂k, r̂k) = (0, r̂ − r̃, r̃) (i.e., from the point (x̂r, ûr),
which does not correspond now to an equilibrium point for (6.37), in
view of the fact that the reference output is now r̃ 6= r̂), and evolving
according to the auxiliary control law (6.36). If r̃ is defined according
to r̃ = λr̂ + (1− λ)rad, λ ∈ [0, 1), then:

i) the corresponding equilibrium is admissible, i.e., Cyr̃ ∈ X̂U(ε), in
view of the convexity of X̂U(ε).

ii) since Cyr̃ ∈ X̂U(ε), and being Ôε ⊂ Ô, provided (1− λ) (and hence
‖r̂ − r̃‖) is sufficiently small, we get that the initial condition
(0, r̂ − r̃, r̃) ∈ Ô. In this way, it is possible to control the system
with the auxiliary law (6.36).

The cost associated to such auxiliary control law is

ṼN = ‖r̃ − ro‖2
T+

N−1∑
ν=0

{‖Fν(0, r̂ − r̃)‖2
Q + ‖KFν(0, r̂ − r̃)‖2

R}+

+ ‖FN(0, r̂ − r̃)‖2
P (6.62)

In view of (6.16), we obtain that the latter is equal to

ṼN = ‖r̃ − ro‖2
T + ‖(0, r̂ − r̃)‖2

P = ‖r̃ − ro‖2
T + ‖r̂ − r̃‖2

Pyy (6.63)
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since Pyy ≺ T

ṼN < ‖r̃ − ro‖2
T + ‖r̂ − r̃‖2

T (6.64)

Note that
a = ‖r̃ − ro‖T = λ‖r̂ − ro‖T
b = ‖r̂ − r̃‖T = (1− λ)‖r̂ − ro‖T
c = a+ b = ‖r̂ − ro‖T

Since a, b, c > 0, if a + b = c then a2 + b2 < c2. From this, (6.64),
and (6.61)

ṼN < VN

from which it follows that, for all r̂ 6= rad, (0, 0, r̂) is not an equilibrium
point for the closed loop system.

Step II
Recursive feasibility and convergence of ξ̂k to zero, once r̂ is kept con-
stant, can be proved resorting to standard robust tube-based MPC
arguments, see [107].

Feasibility: Consider that, at time k, a solution to (6.39) is
(δx̂k|k, ŷk|k, r̂k|k, δû[k:k+N−1]|k). Then it is easy to see that a feasible so-
lution to (6.39) at time k+1 is (δx̂k+1|k, ŷk+1|k, r̂k|k, δû[k+1:k+N ]|k), where
it is defined δûk+N |k = Kξ̂k+N |k, where ξ̂k+N |k stems from (6.23) with
inputs δû[k:k+N−1]|k and initial condition ξ̂k|k = (δx̂k|k, (ŷk|k − r̂k|k)).

Convergence: Consider the above-mentioned feasible solution at
time k + 1. Following standard arguments for the proof of the con-
vergence of robust tube-based MPC [107] we obtain that

V ∗N(ro, δxk+1, yk+1)− V ∗N(ro, δxk, yk) ≤ −‖ξ̂k|k‖2
Q − ‖δûk|k‖2

R

In view of the positive definiteness of V ∗N and of Q and R, it holds that
ξ̂k|k → 0 and δûk|k → 0 as k →∞.

Note that, in the case the disturbance is constant, the evolution of
the real system in velocity form is indeed ξk+1 = Aξk + Bδuk. Since
the input increment to the real system is δuk = δûk|k +K(ξk − ξ̂k|k),
the system dynamics is described by ξk+1 = Fξk + δûk|k −Kξ̂k|k where
δûk|k −Kξ̂k|k is an asymptotically vanishing term. Being F Schur then
ξk → 0 as k →∞.

Step III
In view of Step II, convergence of ξ̂k is guaranteed. Since, in view
of Step I, the only equilibrium to (6.23) compatible with (6.39) is
the one corresponding to r̂k = rad, then it also holds that ŷk → rad
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as k →∞. Since the control law (6.24) always keeps ξk in a neigh-
borhood of ξ̂k, we have that yk tends to a neighborhood of rad, i.e.,
yk → rad ⊕

[
0 Im 0

]
Z̃ as k →∞.

6.5.3 Proof of Corollary 6.1

In view of Theorem 6.2, ŷk → rad as k →∞. Since the input incre-
ment to the real system is δuk = δûk/k +K(ξk − ξ̂k/k), the system dy-
namics is described by ξk+1 = Fξk + δûk/k −Kξ̂k/k + dk where both
δûk/k −Kξ̂k/k and dk = Bw(wk − wk−1) are asymptotically vanishing
terms. Being F Schur stable, then ξk → 0 as k →∞.

6.5.4 Proof of Corollary 6.2

In view of Theorem 6.2, ŷk → rad as k →∞. This, in general, means
that yk tends to a neighborhood of rad. Recalling that, in this particular
case, Z̃ = {0} ×W, we have that

yk → rad ⊕
[
0 Im 0

]
Z̃ = rad ⊕ {0} = rad

as k →∞.
Note that this result allows one to derive a very simple proof of The-

orem 6.1. In fact, the nominal algorithm can be seen as a particular
case of constant disturbance, where w̄ = 0, W = {0},
Z̃ = {0} × {0} = {0}, X̂U = X̂× Û and Ôε = Oε.

6.5.5 Proof of Corollary 6.3

In view of Theorem 6.2, it is proved that ŷk → rad as k →∞. We
define εak = yk − rad and ε̂ak = ŷk − rad. Noting that
δwk = wk − wk−1 = Aδδxk +Bδδuk we have that, similarly to (6.2)

δxk+1 = (A+ Aδ)δxk + (B +Bδ)δuk
εak+1 = C(A+ Aδ)δxk + εak + C(B +Bδ)δuk

(6.65)

where, for all k, δuk = δûk|k +K
[
δxk − δx̂k|k
εak − ε̂ak

]
. We can therefore write

equation (6.65) as [
δxk+1

εak+1

]
= Fr

[
δxk
εak

]
+ ηk (6.66)
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where ηk =

[
B +Bδ

C(B +Bδ)

](
δûk|k −K

[
δx̂k|k
ε̂ak

])
is an asymptotically van-

ishing term. Since Fr is Schur, it implies that δxk → 0 and εak → 0 as
k →∞.

6.5.6 Proof of Proposition 6.4

Recalling (6.49) and (6.34), the set X̂U exists if there exists ρ > 0 such
that [

Cξ Cw
]
Z̃⊕ B(2n+m)

ρ (0) ⊆ X× U (6.67)

which is verified if, for all i = 1, . . . , r

max
z̃∈Z̃

hTi
[
Cξ Cw

]
z̃ < 1 (6.68)

In view of (6.31), (6.68) is verified if, for all i = 1, . . . , r

∞∑
ν=0

max
w∈W

hTi
[
Cξ Cw

]
F̃νB̃ww < 1 (6.69)

where, in view of (6.49), w =
∑nα

j=1 αj
[
Aj Bj

]
Ξx,uv, where ‖v‖∞ ≤ 1.

Therefore (6.69) is verified if, for all i = 1, . . . , r and for all
αj, j = 1, . . . , nalpha

∞∑
ν=0

max
‖v‖∞≤1

hTi
[
Cξ Cw

]
F̃νB̃w

nα∑
j=1

αj
[
Aj Bj

]
Ξx,uv < 1 (6.70)

Note that, for all i = 1, . . . , r∑∞
ν=0 max‖v‖∞≤1 h

T
i

[
Cξ Cw

]
F̃νB̃w

∑nα
j=1 αj

[
Aj Bj

]
Ξx,uv

=
∑∞

ν=0 ‖hTi
[
Cξ Cw

]
F̃νB̃w

∑nα
j=1 αj

[
Aj Bj

]
Ξx,u‖∞

Since, in view of (6.50) and for all ν = 0, . . . ,∞,

‖hTi
[
Cξ Cw

]
F̃kB̃w

∑nα
j=1 αj

[
Aj Bj

]
Ξx,u‖∞

≤ ‖HT
x,u

[
Cξ Cw

]
F̃kB̃w

∑nα
j=1 αj

[
Aj Bj

]
Ξx,u‖∞
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for all i = 1, . . . , r, then∑∞
ν=0 ‖hTi

[
Cξ Cw

]
F̃νB̃w

∑nα
j=1 αj

[
Aj Bj

]
Ξx,u‖∞

≤
∑∞

ν=0 ‖HT
x,u

[
Cξ Cw

]
F̃νB̃w

∑nα
j=1 αj

[
Aj Bj

]
Ξx,u‖∞

≤
∑nα

j=1 αj
∑∞

ν=0 ‖HT
x,u

[
Cξ Cw

]
F̃νB̃w

[
Aj Bj

]
Ξx,u‖∞

≤ maxj=1,...,nα

(∑∞
k=0 ‖HT

x,u

[
Cξ Cw

]
F̃νB̃w

[
Aj Bj

]
Ξx,u‖∞

)
≤
∑∞

ν=0 ‖F̃ν‖∞‖HT
x,u

[
Cξ Cw

]
‖∞·

·maxj=1,...,nα ‖B̃w
[
Aj Bj

]
Ξx,u‖∞

Eventually, if (6.51) is verified, it follows that (6.68) is also verified.
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7
DePC for tracking

Using the results shown in Chapter 6 for centralized controllers based
on the velocity-form version of the dynamic systems, we present a de-
centralized algorithms for tracking piecewise constant references with
integral action in the closed-loop.

The problem of designing decentralized regulators is of paramount
importance in the industrial world, where most of the controllers are
simple single-input-single-output PI (or PID) regulators. For this rea-
son, synthesis methods of decentralized regulators have first been pro-
posed since the 70’s for control of large-scale systems mainly in the
continuous-time framework [94,151,152,169]. The problem of designing
decentralized regulators with offset-free tracking properties has been
tackled in the 80’s both in the continuous-time [40, 64] and in the
discrete-time [145] contexts.

In this Chapter, we address the decentralized offset-free tracking
problem of piecewise constant reference signals for systems subject
to constraints on inputs and states. The systems are supposed to
be constituted by a set of non-overlapping subsystems coupled by
states and inputs. To reach our aim, first we recast the problem as
a regulation one by reformulating the plant model in the velocity-
form [14, 122, 126, 168]. Secondly we state the decentralized control
problem as a tube-based robust one [107], where dynamic interactions
among subsystems are interpreted as perturbations to be rejected, sim-
ilarly to [50, 139]. This approach implies the definition of tightened
state and input constraints for accounting for uncertainties. Conver-
gence results are reported and a simulation example is provided to

165
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evaluate the performances of the control algorithm. The proposed de-
centralized predictive control (DePC) scheme has the great advantage
that no transmission of information among the local controllers is re-
quired, at the price of a reduction of the size of feasibility sets.

7.1 The dynamical system

7.1.1 System under control

The process to be controlled is described by a discrete-time, linear,
time invariant system with dynamic equations

xk+1 = Axk + Buk + vk
yk = Cxk

(7.1)

where xk ∈ Rn is the state, uk ∈ Rm is the input, vk ∈ V ⊂ Rn is an un-
known bounded external disturbance and yk ∈ Rm is the output. The
set V is convex, compact and includes the origin. The state and input
vectors are constrained to lie within given convex and compact sets,
i.e. xk ∈ X ⊂ Rn, uk ∈ U ⊂ Rm. The constant reference to be tracked
is denoted by ro ∈ Rm. To guarantee the existence and the uniqueness
of the steady-state pair such that the system output corresponds to ro,
the following standard assumption is made.

Assumption 7.1 The input-output system (7.1) has no invariant ze-
ros in 1, i.e.,

rank

([
In −A −B

C 0

])
= n+m

�

7.1.2 Partitioned system

As shown in Chapter 5, system (7.1) is divided in M interacting
and non overlapping subsystems, each one having x[i]

k ∈ Rni as state
vector, u[i]

k ∈ Rmi as input vector, y[i]
k ∈ Rmi as output vector and

v
[i]
k ∈ Vi ⊂ Rni as external disturbance, i.e., xk = (x

[1]
k , . . . , x

[M ]
k ),

uk = (u
[1]
k , . . . , u

[M ]
k ), yk = (y

[1]
k , . . . , y

[M ]
k ) and vk = (v

[1]
k , . . . , v

[M ]
k ) (with∑M

i=1 ni = n and
∑M

i=1mi = m). The sets Vi are convex, compact, and
include the origin and V is defined as V =

∏M
i=1 Vi. We assume that, for

all subsystems, y[i]
k depends only on x[i]

k (this means that C has a block
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diagonal structure). Eventually, The reference vector ro is decomposed
into M local output set-points ro,[i], consistent with the definition of
y

[i]
k . According to this partition of system (7.1), as already seen in the
previous Chapters, the matrices Aij and Bij, i, j = 1, . . . ,M , whose di-
mensions are consistent with the partition of states and inputs, are the
block entries of the matrices of A and B. Given the i-th subsystem,
by Ni we denote the set of its neighbors (which excludes i), i.e. the set
of subsystems for which Aij 6= 0 and/or Bij 6= 0.

The dynamics of the i-th subsystem is given by

x
[i]
k+1 = Aii x

[i]
k +Biiu

[i]
k +

∑
j∈Ni{Aijx

[j]
k +Biju

[j]
k }+ v

[i]
k

y
[i]
k = Ci x

[i]
k

(7.2)

where x[i]
k ∈ Xi ⊆ Rni and u

[i]
k ∈ Ui ⊆ Rmi , being Xi and Ui convex,

compact and neighbors of the origin, for all i = 1, . . . ,M . We define
X =

∏M
i=1 Xi, U =

∏M
i=1 Ui. A second assumption, on the properties of

the subsystems, is introduced.

Assumption 7.2 For each subsystem (7.2):

i) the pair (Aii, Bii) is reachable.

ii) rank

([
Ini − Aii −Bii

Cii 0

])
= ni +mi.

�

In order to design a decentralized controller, all the subsystems (7.2)
are seen as independent processes affected by an unknown, bounded,
external disturbance, i.e.

x
[i]
k+1 = Aii x

[i]
k +Biiu

[i]
k + w

[i]
k

y
[i]
k = Ci x

[i]
k

(7.3)

where w[i]
k ∈Wi is defined as w[i]

k =
∑

j∈Ni{Aijx
[j]
k +Biju

[j]
k }+v

[i]
k , thus

having Wi =
⊕

j∈Ni{AijXj ⊕BijUj} ⊕ Vi.

7.1.3 Subsystems with integrators

To track the reference signal, m integrators are inserted in the parti-
tioned subsystems, according to their description in velocity-form (see,
e.g., [122, 168] and Chapters 5 and 6). Let r̂[i] be a generic tracking
target, which could be different from ro,[i], because using the approach
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described in [88] the setpoint is considered as one of the optimiza-
tion variables. Then, defining δx

[i]
k = x

[i]
k − x

[i]
k−1, ε

[i]
t = y

[i]
k − r̂[i],

δu
[i]
k = u

[i]
k − u

[i]
k−1 and δw[i]

k = w
[i]
k −w

[i]
k−1 system (7.3) can be reformu-

lated as

δx
[i]
k+1 = Aiiδx

[i]
k +Biiδu

[i]
k + δw

[i]
k

ε
[i]
k+1 = CiAiiδx

[i]
k + ε

[i]
k + CiBiiδu

[i]
k + Ciδw

[i]
k

(7.4)

Defining ξ[i]
k = (δx

[i]
k , ε

[i]
k ), δv[i]

k = v
[i]
k − v

[i]
k−1 and

Aii =

[
Aii 0
CiAii Imi

]
, Bii =

[
Bii

CiBii

]
, Bwi =

[
Ini
Ci

]
Aij =

[
Aij 0
CiAij 0

]
, Bij =

[
Bij

CiBij

]
, d

[i]
k = Bwi δw

[i]
k (7.5)

system (7.2) can be reformulated in compact form as

ξ
[i]
k+1 = Aiiξ[i]

k + Biiδu[i]
k + d

[i]
k (7.6)

which is equivalent to

ξ
[i]
k+1 = Aiiξ[i]

k + Biiδu[i]
k +

∑
j∈Ni

{Aijξ[j]
k + Bijδu[j]

k }+ Bwi δv
[i]
k (7.7)

As shown in Chapter 4 [12]:
Proposition 7.1 Under Assumption 7.2, the pair (Aii,Bii) is reach-
able. �

The set of M models (7.7) can be collectively written as

ξk+1 = Aξk + Bδuk + Bwδvk (7.8)

where ξk = (ξ
[1]
k , . . . , ξ

[M ]
k ), δuk = (δu

[1]
k , . . . , δu

[M ]
k ),

δvk = (δv
[1]
k , . . . , δv

[M ]
k ), Bw = diag(Bw1 , . . . ,BwM) while A and B are

the matrices whose block entries are Aij, Bij, respectively.

7.2 The DePC algorithm for tracking

7.2.1 Nominal models and control law

The following nominal subsystem is introduced

x̂
[i]
k+1 = Aiix̂

[i]
k +Biiû

[i]
k

ŷ
[i]
k = Cix̂

[i]
k

(7.9)



i
i

“thesis_main” — 2014/1/26 — 15:56 — page 169 — #185 i
i

i
i

i
i

7.2. THE DEPC ALGORITHM FOR TRACKING 169

consisting in (7.3) where coupling terms and external disturbance are
neglected. Define δx̂[i]

k = x̂
[i]
k − x̂

[i]
k−1, ε̂

[i]
k = ŷ

[i]
k − r̂[i], δû[i]

k = û
[i]
k − û

[i]
k−1,

and ξ̂[i]
k = (δx̂

[i]
k , ε̂

[i]
k ). The velocity-form model corresponding to (7.9)

is

ξ̂
[i]
k+1 = Aiiξ̂[i]

k + Biiδû[i]
k (7.10)

To compute a decentralized stabilizing state feedback auxiliary control
law for all the M nominal subsystems (7.10), a new assumption is
introduced.

Assumption 7.3 There exists a block-diagonal matrix
K = diag(K1, . . . ,KM), with Ki ∈ Rmi×(ni+mi), i = 1, ...,M , such
that:

i) the matrix F = A + BK is Schur.

ii) The matrices Fii = Aii + BiiKi are Schur.

�

We will compute the control action of the real subsystems (7.6) as

δu
[i]
k = δû

[i]
k +Ki(ξ[i]

k − ξ̂
[i]
k ) (7.11)

For the nominal subsystems (7.10), consider the control laws

δû
[i]
k = Kiξ̂[i]

k (7.12)

From (7.6), (7.10), (7.12), and (7.11) we have

(ξ
[i]
k+1 − ξ̂

[i]
k+1) = Fii(ξ[i]

k − ξ̂
[i]
k ) + d

[i]
k (7.13)

7.2.2 Constraints for inputs and states

One of the main problems related to the formulation of MPC problems
when applied to systems formulated in velocity form is how to properly
define the input, state, and terminal constraint sets. For this purpose,
we need the following result, proved in Chapter 6 for centralized sys-
tems [14].
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Proposition 7.2 For all i = 1, . . . ,M , under Assumption 7.2 the fol-
lowing equations hold[

x
[i]
k

u
[i]
k−1

]
= C∗i

[
ξ

[i]
k

r̂[i]

]
+ Cw

i w
[i]
k−1 (7.14)[

x̂
[i]
k

û
[i]
k−1

]
= C∗i

[
ξ̂

[i]
k

r̂[i]

]
(7.15)

where

C∗i =

[
Aii Bii

0 Imi

] [
Aii − Ini Bii

CiAii CiBii

]−1 [
Ini 0 0
0 Imi Imi

]
Cw
i =

[
Ini
0

]
−
[
Aii Bii

0 Imi

] [
Aii − Ini Bii

CiAii CiBii

]−1 [
Ini
Ci

]
�

It is worth underling that the inverse appearing in the definition of C∗i
and Cw

i always exists since Assumption 7.2 is verified, see Chapter 6.
Let now partition matrix C∗i as follows: C∗i =

[
Cξ
i Cy

i

]
, where

Cξ
i ∈ R(ni+mi)×(ni+mi) and Cy

i ∈ R(ni+mi)×mi . From equations (7.14)
and (7.15) we obtain[

x
[i]
k − x̂

[i]
k

u
[i]
k−1 − û

[i]
k−1

]
=
[
Cξ
i Cw

i

] [ξ[i]
k − ξ̂

[i]
k

w
[i]
k−1

]
(7.16)

Defining ω[i]
k = w

[i]
k−1 one can write, from (7.5) and (7.13)[
ξ

[i]
k+1 − ξ̂

[i]
k+1

ω
[i]
k+1

]
= F̃ii

[
ξ

[i]
k − ξ̂

[i]
k

ω
[i]
k

]
+ B̃wi w

[i]
k (7.17)

where
F̃ii =

[
Fii −Bwi
0 0

]
, B̃wi =

[
Bwi
Ini

]
Since Fii is Schur, F̃ii is Schur as well. In view of this, it is possible
(see [131]) to compute the minimal robust positively invariant (RPI)
set for (7.17) as Z̃i =

⊕+∞
k=0 F̃kiiB̃wi Wi.

Moreover, considering (7.16), if (ξ
[i]
k − ξ̂

[i]
k , ω

[i]
k ) ∈ Z̃i, then to verify

the constraints (x
[i]
k , u

[i]
k−1) ∈ X× U it has to be guaranteed that

(x̂
[i]
k , û

[i]
k−1) ∈ X̂U

i (7.18)
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where X̂U
i must satisfy

X̂U
i ⊆ (Xi × Ui)	

[
Cξ
i Cw

i

]
Z̃i (7.19)

An assumption on the existence of sets X̂U
i is required.

Assumption 7.4 For each subsystem (7.3) there exists B(ni+mi)
p,ε (0)

such that [
Cξ
i Cw

i

]
Z̃i ⊕ B(ni+mi)

p,ε (0) ⊆ (Xi × Ui) (7.20)

�

In terms of ξ̂[i]
k , r̂

[i] and in view of (7.15), Equation (7.18) can be written
as

C∗i

[
ξ̂

[i]
k

r̂[i]

]
∈ X̂U

i (7.21)

7.2.3 Computation of the terminal set

An invariant set for the nominal closed-loop subsystem (7.10)- (7.12)
must be computed, together with a set of output reference values r̂[i],
where (ξ̂

[i]
k , r̂

[i]) must lie in order to guarantee that constraints (7.18)
are verified for all k when the control law (7.12) is used. To this end, as
explained in Chapter 1, it is sufficient to compute the maximal output
admissible set (MOAS) [59] Ôi for the following system:[

ξ̂
[i]
k+1

r̂[i]

]
=

[
Fii 0
0 Imi

] [
ξ̂

[i]
k

r̂[i]

]
(7.22a)[

x̂
[i]
k

û
[i]
k−1

]
= C∗i

[
ξ̂

[i]
k

r̂[i]

]
(7.22b)

where (7.22a) and (7.22b) act as a state equation and as an output
equation, respectively.

Assumption 7.5 For each subsystem:

i) the pair (

[
Fii 0
0 Imi

]
, C∗i ) is observable.

ii) X̂U
i is a closed polytope.

�
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Under this assumption, see Chapter 1, an invariant, polytopic inner
approximation Ôε

i to the MOAS can be computed in a finite number
of steps. Specifically, Ôε

i is defined as follows

Ôε
i = {(ξ̂[i], r̂[i]) ∈ Rni+2mi : Cξ

iFkiiξ̂[i] + Cy
i r̂

[i] ∈ X̂U
i ∀ k ≥ 0,

Cy
i r̂

[i] ∈ X̂U
i (ε)} (7.23)

where X̂U
i (ε) is a close and compact set satisfying

X̂U
i (ε)⊕ Bni+miε (0) ⊆ X̂U

i , and ε can be arbitrarily small.

7.2.4 i-DePC problems

At any time step k an MPC optimization problem is solved where,
similarly to [107], the predictions of the state variables are computed
using the nominal model (7.10), while its initial condition ξ̂

[i]
k is re-

garded to as an optimization variable, as well as the nominal input
sequence δû[i]

[k:k+N−1].
In the proposed control scheme, infeasible reference set-points are

handled similarly to [88]. Specifically, the value r̂
[i]
k , which is the

value of r̂[i] decided at time k, is regarded to as an argument of the
optimization problem itself, rather than a fixed parameter. Being
ξ̂

[i]
k = (δx̂

[i]
k , (ŷ

[i]
k − r̂

[i]
k )), this means that δx̂[i]

k , ŷ
[i]
k and r̂

[i]
k are all dif-

ferent arguments of the optimization problem.
The decentralized predictive control problem solved on-line by the

i-th subsystem (denoted i -DePC) at each discrete time instant k is:

V N∗
i (ro,[i], δx

[i]
k , y

[i]
k ) =

min
δx̂

[i]
k ,ŷ

[i]
k ,r̂

[i]
k ,δû

[i]
[k:k+N−1]

V N
i (δx̂

[i]
k , ŷ

[i]
k , r̂

[i]
k , δû

[i]
[k:k+N−1]; r

o,[i], δx
[i]
k , y

[i]
k ) (7.24)

where

V N
i = ‖r̂[i]

k − r
o,[i]‖2

T +
k+N−1∑
ν=k

{‖ξ̂[i]
ν ‖2

Qi
+ ‖δû[i]

ν ‖2
Ri
}+ ‖ξ̂[i]

k+N‖
2
Pi

subject to the dynamic constraint (7.10), to the constraints[
Ini+mi

0

]
(ξ

[i]
k − ξ̂[i]k) ∈

[
0

−w[i]
k−1

]
⊕ Z̃i (7.25)
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C∗i

[
ξ̂

[i]
k+k

r̂
[i]
k

]
∈ X̂U

i (7.26)

for all ν = 1, . . . , N − 1, and to the terminal constraint[
ξ̂

[i]
k+N

r̂
[i]
k

]
∈ Ôε

i (7.27)

It is worth remarking that the term w
[i]
k−1 used in (7.25) can be com-

puted, at time k, by subsystem i using (7.3). At any time instant the
optimal solution δx̂

[i]
k|k, ŷ

[i]
k|k, r̂

[i]
k|k, δû

[i]
[k:k+N−1]|k is found and the control

law (7.11) is applied with δû[i]
k = δû

[i]
k|k and ξ̂[i]

k = (δx̂
[i]
k|k, (ŷ

[i]
k|k − r̂k|k)[i]).

The convergence properties of the proposed control algorithm can
be proved by properly selecting the tuning parameters: Qi � 0 and
Ri � 0, while Pi � 0 is assumed to be chosen as the solution of the
Lyapunov equation

FTiiPiFii − Pi = −(Qi +KTi RiKi) (7.28)

As for the matrix Ti, decompose Pi ∈ R(ni+mi)×(ni+mi) as follows

Pi =

[
P xx
i P xy

i

P yx
i P yy

i

]
where P xx

i ∈ Rni×ni , and select Ti to satisfy the inequality

Ti − P yy
i � 0 (7.29)

7.3 Convergence results

In this section the main convergence properties of the proposed method
are given. In particular, we first resort to the results provided in Chap-
ter 6 as a preliminary step. Importantly, if Assumption 7.4 is verified
for all i, the decentralized control problem is, as a matter of fact, de-
composed into independent “decoupled” robust MPC problems. The
recursive feasibility properties and the convergence of the nominal sub-
systems’ outputs ŷ[i]

t is therefore guaranteed by the theory described
in Chapter 6 reported here for completeness.

Theorem 7.1 ( [14]) For each i = 1, . . . ,M , let Assumption 7.2 be
verified and the design parameters Qi, Ri, Pi, Ti, Z̃i, X̂U

i , and Ôε
i
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be chosen as specified. Then, if at time k = 0 a feasible solution
to the i-DePC optimization problem (7.24) - (7.27) exists, then the
resulting control law asymptotically steers the nominal output ŷ[i]

k of
subsystem (7.9) - (7.10) to the admissible set-points r[i]

ad, where

r
[i]
ad = argmin

y[i]∈
[
0 Imi

]
Oρi

‖y[i] − ro,[i]‖2
T (7.30)

Moreover δx̂[i]
k|k → 0, δû[i]

k:k+N−1|k → 0 as k → ∞ and the constraints

(x
[i]
k , u

[i]
k ) ∈ Xi × Ui are fulfilled for all k ≥ 0. �

The result stated in Theorem 7.1 is used to prove convergence of the
real outputs y[i]

k to a neighborhood of the desired (feasible) reference
set-points. The proof is provided by considering the collective system.

Corollary 7.1 For all i = 1, . . . ,M , let Assumptions 7.2 and 7.3 be
verified and the design parameters Qi, Ri, Pi, Ti, Z̃i, X̂U

i , and Ôε
i be

chosen as specified. Then, if at time k = 0 a feasible solution to the i-
DePC optimization problem (7.24) - (7.27) exists, then the constraints
(x

[i]
k , u

[i]
k ) ∈ Xi × Ui are fulfilled for all k ≥ 0 and for all i = 1, . . . ,M .

Moreover, the resulting control law asymptotically steers the output yk
of system (7.1) to:

I) the value rad in case the exogenous unknown disturbance v is
constant;

II) the set rad⊕∆r, in case the unknown exogenous unknown distur-
bance v is time-varying. Here rad = (r

[1]
ad, . . . , r

[M ]
ad ) and

∆r = HyZv, where Zv is the minimal RPI set for the collective
system [

ξk+1

µk+1

]
=

[
F −Bw

0 0

] [
ξt
µk

]
+

[
Bw

In

]
vk (7.31)

having defined µk = (µ
[1]
k , . . . , µ

[M ]
k ) = vk−1, while Hy ∈ Rm×(2n+m)

is the matrix that selects vector εk out of (ξk,µk).

�

Proof 7.1 First, using Theorem 7.1 we can guarantee that for all i =

1, . . . ,M ŷ
[i]
k → r

[i]
ad, δx̂

[i]
k|k → 0, δû[i]

k:k+N−1|k → 0 as k → ∞ and that
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the constraints (x
[i]
k , u

[i]
k ) ∈ Xi×Ui are fulfilled for all k ≥ 0. Secondly,

we define εa,[i]k = y
[i]
k − r

[i]
ad and ε̂a,[i]k = ŷ

[i]
k − r

[i]
ad. Similarly to (7.7), we

write [
δx

[i]
k+1

ε
a,[i]
k+1

]
=

∑
j∈Ni∪{i}

{
Aij

[
δx

[j]
k

ε
a,[j]
k

]
+ Bijδu[j]

k

}
+ Bwi δv

[i]
k (7.32)

Under (7.11) and recalling that εa,[i]k − ε̂
a,[i]
k = y

[i]
k − ŷ

[i]
k = ε

[i]
k − ε̂

[i]
k ,

equation (7.32) is equivalent to[
δx

[i]
k+1

ε
a,[i]
k+1

]
=

∑
j∈Ni∪{i}

(Aij + BijKj)

[
δx

[j]
k

ε
a,[j]
k

]
+ η

[i]
k + Bwi δv

[i]
k (7.33)

where

η
[i]
k =

∑
j∈Ni∪{i}

Bij(δû[j]
k −Kj

[
δx̂

[j]
k

ε̂
a,[j]
k

]
)

is an asymptotically vanishing term. Collectively, defining
ξak = (δx

[1]
k+1, ε

a,[1]
k+1, δx

[2]
k+1, . . . , ε

a,[M ]
k+1 ), µk = (µ

[1]
k , . . . , µ

[M ]
k ) = vk−1, and

ηt = (η
[1]
k , . . . , η

[M ]
k ), we can write equation (7.33) as[

ξak+1

µk+1

]
=

[
F −Bw

0 0

] [
ξak
µk

]
+

[
In+m

0

]
ηk +

[
Bw

In

]
vk (7.34)

Since F is Schur, in view of Assumption 7.3 i), then:

I) in case vk is constant, i.e., vk = v̄ for all k ≥ 0, the limit set
for the trajectories of ξak in equation (7.34) is the origin, which
implies that y[i]

k → ŷ
[i]
k as k → +∞ for all i = 1, . . . ,M .

II) In general, see [133], the limit set of all trajectories (ξak,µk) is
Zv, from which it follows that yk → ŷk ⊕HyZv.

7.4 Example

Consider the problem of regulating the temperatures TA, TB, TC and
TD of the four rooms of the building sketched in Figure 7.1. Rooms
A and B belong to the first apartment while rooms C and D to the
second one. Each room has a radiator supplying heats qA, qB, qC and
qD. We refer the reader to Chapter 2 for details about the dynamic
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Figure 7.1: Schematic representation of a building with two apartments

model, the values of the parameters and the considered equilibrium
point.

The discrete-time system of the form (7.1) (with n = 4 andm = 4) is
obtained by zero-order-hold discretization with sampling time T = 10
s. The partition of inputs, outputs and states is:

x[1] =
[
δTA δTB

]T
, u[1] =

[
δqA δqB

]T
, y[1] =

[
δTA δTB

]T
x[2] =

[
δTC δTD

]T
, u[2] =

[
δqC δqD

]T
, y[2] =

[
δTC δTD

]T
The considered constraints on the inputs and the states of the lin-
earized system have been chosen as:

x
[1]
min = x

[2]
min = (−5,−5), x[1]

max = x[2]
max = (10, 10)

u
[1]
min = u

[2]
min = (−0.26,−0.26), u[1]

max = u[2]
max = (0.25, 0.25)

The matrices Ki fulfilling Assumption 7.3 are obtained by solving suit-
able linear matrix inequalities [18].The weighting matrices used in
the simulation are Q1 = Q2 = 2I2, R1 = R2 = I2. We finally set
Ti = 10P yy

i and N = 3.
In the simulations, the reference trajectories for y[2]

set−point are both
always equal to zero, as well as the one related to TB, while TA must
track a piece-wise constant reference trajectory, whose values are 7,
−7 and 3. The results are shown in Figure 7.2, while the values of the
input variables are depicted in Figure 7.3. To show the capability of
our algorithm to reject constant external disturbances, a step of the
external temperature is added, i.e., TE(t) = 10 ◦C for t ≥ 4.5 min.
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Figure 7.2: Trajectories of the output variables y[1] (above) and y[2] (below) ob-
tained with DPC (black solid lines) and with cMPC (dashed gray lines). Think
black lines: desired set-points y[1,2]set−point; black dash-dot lines: reference trajectories
ỹ1,2.

Figure 7.3: Trajectories of the inputs variables u[1] (above) and u[2] (below) ob-
tained with DPC (black solid lines) and with cMPC (dashed gray lines).
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In both these figures a comparison between the outputs obtained
with DPC and with centralized MPC is provided, showing the effec-
tiveness of our approach. Note that the infeasible target −7 is managed
reaching the closest admissible output.

7.5 Conclusions

In this Chapter we presented a decentralized control algorithm based
on MPC for offset-free tracking of varying (piecewise constant) refer-
ences. The integral action has been inserted in the closed-loop rewrit-
ing the dynamic system in velocity-form. The proposed controller can
handle infeasible references and is fully decentralized. As no informa-
tion is required to be transmitted among subsystems, this technique
can be useful in cases where communication is not possible or is affected
by frequent disruptions.
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Conclusions

In this thesis several algorithm based on MPC for distributed and de-
centralized control of linear systems subject to constraints on inputs
and states have been presented. All the control techniques rely on the
idea of considering the coupling terms among the subsystems as distur-
bances to be rejected. Specifically, each control system is required to
reject a know disturbance, constituted by the nominal state and inputs
trajectories of the other subsystems, and an unknown (but bounded)
disturbance, which is the differences between the nominal trajectories
and the real values of the inputs and of the states of the neighbors.
To reject this second term, the robust tube-based MPC approach has
been adopted.

Initially, a regulation problem for distributed control has been solved,
and some practical implementation issues have been presented and
solved. A continuous-time version of the proposed approach has been
also provided. Then, the tracking problem has been considered and
a number of solutions has been proposed. The first one can be used
to track a piecewise constant target, and is based on the inclusion
among the optimization variables of the MPC problem of the value
of the reference point that each subsystem really tracks. A penal-
ization of its distance from the desired external set point guarantees
feasibility at each time instant. To reject constant disturbances, a sec-
ond solution has been developed by inserting an integral action in the
closed-loop. To this end, the system under control has been rewrit-
ten in velocity-form assuming that the desired setpoint is constant. In
order to obtain an algorithm exploiting the velocity-form capabilities

181
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to be used also in case of variable references, an in-depth study of the
properties of systems rewritten in velocity-form for the centralized case
has been presented. Eventually, the results derived for this latter case
have been used to develop a completely decentralized approach with
integral action for tracking piecewise constant references.

All the presented algorithms have been tested in simulation, both
to understand their performances and to evaluate the complexity of
the controller design and the required online computational load.

Several properties make the control methods shown in this thesis
suitable also for industrial applications. First of all, they all rely on
the robust tube-based MPC algorithm, therefore it is straightforward
to extend them in order to include the possibility of rejecting additive
external disturbances. In particular, huge efforts have been put in
studying how to insert an integral action in the closed-loop system.
Such characteristic is extremely important for the industry, since it
allows one to perfectly reject constant unknown disturbances and to
delete steady-state offsets caused by errors in the model. Moreover,
all the algorithms have been designed for controlling a wide class of
large scale systems, in fact they can be used for dynamically coupled
subsystems, as well as for subsystems with coupled constraints (not
considered in this thesis).

Secondly, concerning the distributed techniques, the transmission of
information is extremely limited. Each subsystem is required to know
only the model governing its dynamics and how it is influenced by the
inputs and outputs of the neighboring subsystems. Only neighbor-to-
neighbor communication among subsystems is needed and the data
transmitted, at each time instant, by each subsystem correspond only
to the value of the reference trajectories of states and inputs at the
end of the prediction horizon. Notably, information must be transmit-
ted and received with a non-iterative communication protocol i.e, once
within a sampling time. The decentralized control scheme, by defini-
tion adopted in this thesis, does not require any online transmission of
information at all. We also remark that as the number of subsystems
grows (while, for instance, the average number of neighbors for each
subsystem remains constant), the information required to be stored,
processed and transmitted by each subsystem not linked to the new
subsystems remains constant.

Extensions to the output-feedback control case have already been
developed and do not represent a critical issue. Basically, this improve-
ment only needs to apply the same approach previously described for
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coping with unknown exogenous additive disturbances.
An important result is also that the online computational load re-

quired to each local controller is the same of a standard robust tube-
based MPC algorithm. Thus, since the large-scale constrained optimal
control problem is partitioned in many independent subproblems, the
overall computational complexity is extremely reduced. Note also that
the number of optimization variables in the local optimization prob-
lems remains constant regardless of the topology (and complexity) of
the interconnection network.

Eventually, as shown in the reported simulation examples, even if
the solution computed at each sampling time by the local controllers
is in general globally suboptimal considering the whole large-scale sys-
tem, the performances obtained using the distributed and decentralized
algorithms have always been close to those of centralized controllers.

On the other hand, the proposed distributed techniques are affected
by some non-negligible issues. First of all, the offline design can be ex-
tremely difficult. The problem of computing the RPI sets for all the in-
terconnected subsystems has been solved only through methods based
on sufficient conditions and that depend on some arbitrary parameter
choices. It is still not possible to evaluate if the proposed methods
can be applied to a given system without resorting to a trial-and-error
(possibly infinite) procedure.

Secondly, also when one of the described distributed algorithm can
be used for controlling a given system, the offline computational load
due to the required sets manipulations can be extremely heavy. In
practice, it turns out to be difficult to apply such techniques to systems
constituted by subsystems with more than 6 or 7 states.

Finally, the fact that the interactions among subsystems are seen
as disturbances to be rejected implies that the controllers described in
this thesis are suited for systems characterized by weak interactions.

To overcome these problems, distributed algorithms based on proba-
bilistic approaches are currently being studied. Also possible variations
where robust approaches are (partially) substituted by an increased
communication load could help in enlarging the range of systems where
successful applications can be obtained.
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