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Summary

The present doctoral thesis deals with asymptotic behavior of evolution equations with
nonclassical heat conduction. First, we consider the strongly damped nonlinear wave
equation on a bounded smooth domain Ω ⊂ R3

utt −∆ut −∆u+ f(ut) + g(u) = h

which serves as a model in the description of type III thermal evolution within the the-
ory of Green and Naghdi. In particular, the nonlinearity f acting on ut is allowed to be
nonmonotone and to exhibit a critical growth of polynomial order 5. The main focus
is the longterm analysis of the related solution semigroup, which is shown to possess
global and exponential attractors of optimal regularity in the natural weak energy space.
Then, we analyze two evolution systems ruling the dynamics of type III thermoelastic
extensible beams or Berger plates with memory. Specifically, we study the decay prop-
erties of the solution semigroup generated by an abstract version of the linear system

utt +∆2u+∆αt = 0

αtt −∆α−
∫ ∞

0

µ(s)∆[α(t)− α(t− s)] ds−∆ut = 0

along with the limit situation without memory{
utt +∆2u+∆αt = 0

αtt −∆α−∆αt −∆ut = 0

and the existence of regular global attractors for an abstract version of the nonlinear
model 

utt − ω∆utt +∆2u−
[
b+ ∥∇u∥2L2(Ω)

]
∆u+∆αt = g

αtt −∆α−
∫ ∞

0

µ(s)∆[α(t)− α(t− s)] ds−∆ut = 0.
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Moreover, we discuss the asymptotic behavior of the nonlinear type III Caginalp phase-
field system {

ut −∆u+ ϕ(u) = αt

αtt −∆αt −∆α + g(α) = −ut

on a bounded smooth domain Ω ⊂ R3, with nonlinearities ϕ and g of polynomial
critical growth 5, proving the existence of the regular global attractor. Finally, we
analyze the linear differential system

ρ1φtt − κ(φx + ψ)x = 0

ρ2ψtt − bψxx + κ(φx + ψ) + δθx = 0

ρ3θt −
1

β

∫ ∞

0

g(s)θxx(t− s) ds+ δψtx = 0

describing a Timoshenko beam coupled with a temperature evolution of Gurtin-Pipkin
type. A necessary and sufficient condition for exponential stability is established in
terms of the structural parameters of the equations. In particular, we generalize pre-
viously known results on the Fourier-Timoshenko and the Cattaneo-Timoshenko beam
models.

In the first chapter of the thesis we introduce some preliminary results about infinite-
dimensional dynamical systems and linear semigroups needed in the course of the in-
vestigation. The remaining chapters correspond to the following papers, written during
the three years of PhD.

• F. Dell’Oro and V. Pata, Long-term analysis of strongly damped nonlinear wave
equations, Nonlinearity 24 (2011), 3413–3435, (Chapter 2 and Chapter 3).

• F. Dell’Oro and V. Pata, Strongly damped wave equations with critical nonlinear-
ities, Nonlinear Anal. 75 (2012), 5723–5735, (Chapter 4).

• F. Dell’Oro, Global attractors for strongly damped wave equations with sub-
critical-critical nonlinearities, Commun. Pure Appl. Anal. 12 (2013), 1015–
1027, (Chapter 5).

• M. Coti Zelati, F. Dell’Oro and V. Pata, Energy decay of type III linear thermoe-
lastic plates with memory, J. Math. Anal. Appl. 401 (2013), 357–366, (Chapter 6).

• F. Dell’Oro and V. Pata, Memory relaxation of type III thermoelastic extensible
beams and Berger plates, Evol. Equ. Control Theory 1 (2012), 251–270, (Chap-
ter 6).

• M. Conti, F. Dell’Oro and A. Miranville, Asymptotic behavior of a generaliza-
tion of the Caginalp phase-field system, Asymptot. Anal. 81 (2013), 297–314,
(Chapter 7).

• F. Dell’Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-
Pipkin thermal law, submitted, (Chapter 8).
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ings, and Prof. Jaime Muñoz Rivera for the kind hospitality in Petrópolis and many
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Introduction

The aim of the research contained in the present doctoral thesis is the mathematical
analysis of well-posedness and asymptotic behavior of linear and nonlinear dissipative
partial differential equations with nonclassical heat conduction, that is, thermal evolu-
tions where the temperature may travel with finite speed propagation. In the linear case,
we mainly focus on the stability properties of the associated semigroups, analyzing the
decay to zero of the solutions. In the nonlinear situation, we dwell on existence and
regularity of finite-dimensional global and exponential attractors, providing a complete
description of the asymptotic dynamics by means of suitable “small” regions of the
phase space.

Hereafter is a detailed discussion of the models considered in the thesis. In particular,
the nonclassical character of the temperature is stressed and the physical meaning and
relevance are explained.

Nonlinear Heat Conduction of Type III

Let Ω ⊂ R3 be a bounded domain with sufficiently smooth boundary ∂Ω. The thermal
evolution in a homogenous isotropic (rigid) heat conductor occupying the space-time
cylinder ΩT = Ω× (0, T ) is governed by the balance equation

et + div q = F.

Here, the internal energy e is a function of the relative temperature field

ϑ = ϑ(x, t) : ΩT → R,

that is, the temperature variation from an equilibrium reference value, while

q = q(x, t) : ΩT → R3

is the heat flux vector. Finally, F represents a source term. We also assume the Dirichlet
boundary condition

ϑ(x, t)|x∈∂Ω = 0,

1
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expressing the fact that the boundary ∂Ω of the conductor is kept at null (i.e. equilib-
rium) temperature for all times. Considering only small variations of ϑ and ∇ϑ, the
internal energy fulfills with good approximation the equality

e(x, t) = e0(x) + cϑ(x, t),

where e0 is the internal energy at equilibrium and c > 0 is the specific heat. Accord-
ingly, the balance equation becomes

cϑt + div q = F. (1)

For a general F of the form

F (x, t) = −f(ϑ(x, t)) + h(x), (2)

accounting for the simultaneous presence of a time-independent external heat supply
and a nonlinearly temperature-dependent internal source, equation (1) reads

cϑt + div q+ f(ϑ) = h. (3)

To complete the picture, a further relation is needed: the so-called constitutive law for
the heat flux, establishing a link between q and ϑ. In fact, the choice of the constitutive
law is what really determines the model. At the same time, being a purely heuristic
interpretation of the physical phenomenon, it may reflect different individual percep-
tions of reality, or even philosophical beliefs. For instance, for the classical Fourier
constitutive law

q+ κ∇ϑ = 0, κ > 0, (4)

we deduce from (3) the familiar reaction-diffusion equation

cϑt − κ∆ϑ+ f(ϑ) = h.

Nevertheless, such an equation predicts instantaneous propagation of (thermal) signals,
a typical side-effect of parabolicity. This feature, sometimes called the paradox of heat
conduction (see e.g. [14, 32]), has often encountered strong criticism in the scientific
community, up to be perceived as “physically unrealistic” by some authors. Therefore,
several attempts have been made through the years in order to introduce some hyper-
bolicity in the mathematical modeling of heat conduction (see e.g. [8, 48]). A possible
choice is adopting the Maxwell-Cattaneo law [8], namely, the differential perturbation
of (4)

q+ εqt + κ∇ϑ = 0, κ≫ ε > 0. (5)

In which case, the sum (3)+ε∂t(3) entails the hyperbolic reaction-diffusion equation

εcϑtt − κ∆ϑ+ [c+ εf ′(ϑ)]ϑt + f(ϑ) = h,

widely employed in the description of many interesting phenomena, such as chemi-
cal reacting systems, gene selection, population dynamics or forest fire propagation,
to name a few (cf. [33, 59, 60]). Another strategy is relaxing (4) by means of a time-
convolution against a suitable (e.g. convex, decreasing and summable) kernel µ. Pre-
cisely, omitting the dependence on x,

q(t) = −κ0∇ϑ(t)−
∫ t

−∞
µ(t− s)∇ϑ(s) ds. (6)

2
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The constant κ0 can be either strictly positive or zero, according to the models of
Coleman-Gurtin [18] or Gurtin-Pipkin [48], respectively. Plugging (6) into (3) we end
up with the integrodifferential equation

cϑt − κ0∆ϑ−
∫ ∞

0

µ(s)∆ϑ(t− s) ds+ f(ϑ) = h.

Quite interestingly, in the (fully hyperbolic) case κ0 = 0, we recover (5) as the particu-
lar instance of (6) corresponding to the kernel

µ(s) =
κ

ε
e−s/ε.

In a different fashion, the theory of heat conduction of type III devised by Green and
Naghdi [43–47, 90] considers instead a perturbation of the classical law (4) of integral
kind. Indeed, the Fourier law is modified in the following manner:

q+ κ∇ϑ+ ω∇u = 0, κ, ω > 0, (7)

where an additional independent variable appears: the thermal displacement u : ΩT →
R, defined as

u(x, t) = u(x, 0) +

∫ t

0

ϑ(x, s) ds,

hence satisfying the equality

ut(x, t) = ϑ(x, t), ∀ (x, t) ∈ ΩT ,

and (for consistency) complying with the Dirichlet boundary condition

u(x, t)|x∈∂Ω = 0.

Using (7) the balance equation (1) turns into

cutt − κ∆ut − ω∆u = F.

Replacing for more generality (2) with

F (x, t) = −f(ϑ(x, t))− g(u(x, t)) + h(x),

allowing the source term to contain a further contribution depending nonlinearly on the
thermal displacement, we finally arrive at the boundary-value problem

cutt − κ∆ut − ω∆u+ f(ut) + g(u) = h,

u|∂Ω = 0,

ut|∂Ω = 0,

which will be analyzed in Chapters 2-5. We refer the reader to [80–87] for discussions
and other developments related to type III heat conduction.

3
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Type III Thermoelastic Extensible Beams and Berger Plates

For n = 1, 2, let Ω ⊂ Rn be a bounded domain with sufficiently smooth boundary ∂Ω.
Given the parameters ω > 0 and b ∈ R, we consider the evolution system of coupled
equations on the space-time cylinder Ω+ = Ω× R+

utt − ω∆utt +∆2u−
[
b+ ∥∇u∥2L2(Ω)

]
∆u+∆ϑ = g, (8)

ϑt + div q−∆ut = 0, (9)

in the unknown variables

u = u(x, t) : Ω+ → R, ϑ = ϑ(x, t) : Ω+ → R, q = q(x, t) : Ω+ → Rn.

Such a system, written here in normalized dimensionless form, rules the dynamics of
a thermoelastic extensible beam (for n = 1) or Berger plate (for n = 2) of shape Ω
at rest (see [4, 93]). Accordingly, the variable u stands for the vertical displacement
from equilibrium, ϑ is the (relative) temperature and q is the heat flux vector obeying
some constitutive law, depending on one’s favorite choice of heat conduction model.
The term −ω∆utt appearing in the first equation witnesses the presence of rotational
inertia, whereas the real parameter b accounts for the axial force acting in the reference
configuration: b > 0 if the beam (or plate) is stretched, b < 0 if compressed. Finally,
the function g : Ω → R describes a lateral load distribution. We also assume that
the ends of the beam (or plate) are hinged, which translates into the hinged boundary
conditions for u

u(x, t)|x∈∂Ω = ∆u(x, t)|x∈∂Ω = 0,

and we take the Dirichlet boundary condition for ϑ

ϑ(x, t)|x∈∂Ω = 0,

expressing the fact that the boundary ∂Ω is kept at null (i.e. equilibrium) temperature
for all times. It is worth noting that different boundary conditions for u are physically
significant as well, such as the clamped boundary conditions

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0,

where ν is the outer normal vector. However, the mathematical analysis carried out
in this thesis (see Chapter 6) depends on the specific structure of the hinged boundary
conditions (the so called “commutative case”). In the clamped case major modifications
on the needed tools are required and the proofs become much more technical.

We are left to specify the constitutive relation for the heat flux, establishing a link
between q and ϑ. Adopting for instance the classical Fourier law (the physical constants
are set to 1)

q = −∇ϑ,

equation (9) turns into
ϑt −∆ϑ−∆ut = 0.

4
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In a different fashion, as already said, the theory of heat conduction of type III devised
by Green and Naghdi considers a perturbation of the classical law of integral kind, by
means of the so-called thermal displacement

α(x, t) = α0(x) +

∫ t

0

ϑ(x, s) ds,

satisfying the equality αt = ϑ and (for consistency) complying with the Dirichlet
boundary condition

α(x, t)|x∈∂Ω = 0.

Then, the Fourier law is modified as

q = −∇αt −∇α,

so that (9) takes the form

αtt −∆α−∆αt −∆ut = 0. (10)

Still, the equation predicts infinite speed propagation of (thermal) signals, due to its
partially parabolic character which provides an instantaneous regularization of αt. Such
an effect is not expected (nor observed) in real conductors. Similarly to what done
in [30] for the Fourier case, a possible answer is considering a memory relaxations of
the above constitutive law of the form

q(t) = −
∫ ∞

0

κ(s)∇αt(t− s) ds−∇α(t),

for some bounded convex summable function κ (the memory kernel) of total mass∫ ∞

0

κ(s) ds = 1.

Up to a rescaling, we may also suppose κ(0) = 1. Accordingly, (9) becomes

αtt −∆α−
∫ ∞

0

κ(s)∆αt(t− s) ds−∆ut = 0, (11)

where the past history of the temperature is supposed to be known and regarded as an
initial datum of the problem. It is readily seen that, when the function κ converges in
the distributional sense to the Dirac mass at zero, equation (10) is formally recovered
from (11). From the physical viewpoint, this means that (10) is close to (11) when the
memory kernel is concentrated, i.e. when the system keeps a very short memory of the
past effects. As a matter of fact, (11) can be given a more convenient form. Indeed,
defining the differentiated kernel

µ(s) = −κ′(s),

a formal integration by parts yields∫ ∞

0

κ(s)∆αt(t− s) ds =

∫ ∞

0

µ(s)∆[α(t)− α(t− s)] ds.

5
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In summary, equation (8) and the particular concrete realization (11) of (9) give rise to
the system 

utt − ω∆utt +∆2u−
[
b+ ∥∇u∥2L2(Ω)

]
∆u+∆αt = g,

αtt −∆α−
∫ ∞

0

µ(s)∆[α(t)− α(t− s)] ds−∆ut = 0,

which will be analyzed in Chapter 6 (actually, in a more general abstract form). As
a matter of fact, from the physical viewpoint, it is also relevant to neglect the effect
of the rotational inertia on the plate (see e.g. [40, 51, 55, 57]). This corresponds to the
limit situation when ω = 0. Hence, we will also consider the following linear and
homogeneous version of the above model

utt +∆2u+∆αt = 0,

αtt −∆α−
∫ ∞

0

µ(s)∆[α(t)− α(t− s)] ds−∆ut = 0,

along with the system {
utt +∆2u+∆αt = 0,

αtt −∆α−∆αt −∆ut = 0,

formally obtained when the memory kernel collapses into the Dirac mass at zero. As
we will see, the presence of the memory produces a lack of exponential stability of the
associated linear semigroups, preventing the analysis of the asymptotic properties in
the nonlinear case.

Type III Nonlinear Caginalp Phase-Field Systems

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. The thermal evolution of
a material occupying a volume Ω, with order parameter u and (relative) temperature ϑ,
is governed by the equations

∂u

∂t
= −∂Ψ

∂u
, (12)

∂H

∂t
+ div q = F. (13)

Here, Ψ denotes the total free energy of the system defined as

Ψ(u, ϑ) =

∫
Ω

(1
2
|∇u|2 + Φ0(u)− uϑ− 1

2
ϑ2
)
dx,

where the potential

Φ0(s) =

∫ s

0

ϕ(y) dy for some real ϕ : R → R,

6
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has a typical double-well shape (e.g. Φ0(s) = (s2 − 1)2). Besides, H stands for the
enthalpy of the material

H = −∂Ψ
∂ϑ

= ϑ+ u,

q is the heat flux vector and F represents a source term. Finally, we assume the Dirich-
let boundary condition for u and ϑ

u(t)|∂Ω = ϑ(t)|∂Ω = 0.

Accordingly, equation (12) reads

ut −∆u+ ϕ(u) = ϑ, (14)

while the concrete form of (13) depends on the choice of the constitutive law for the
heat flux. For example, within the classical Fourier law

q = −k∇ϑ, k > 0,

we deduce from (13) the reaction-diffusion equation

ϑt − k∆ϑ = −ut + F

which, coupled with (14), constitutes the original Caginalp phase-field system [6]. In-
stead, adopting the theory of heat conduction of type III, the heat flux takes the form

q = −k⋆∇α− k∇ϑ, k⋆ > 0,

where the variable

α(t) =

∫ t

0

ϑ(τ) dτ + α(0)

represents the thermal displacement. In turn, the balance equation (13) translates into

αtt − k∆αt − k⋆∆α = ut + F.

In conclusion, for a general term F of the form

F = −g(α)

accounting for the presence of a nonlinear internal source depending on the displace-
ment, and setting the physical constants to 1, we end up with the following nonlinear
phase-field system of Caginalp type{

ut −∆u+ ϕ(u) = αt,

αtt −∆αt −∆α + g(α) = −ut.

This model will be studied in Chapter 7. We refer the reader to [62–65] for further
discussions related to phase-field systems with nonclassical heat conduction.

7
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Timoshenko Systems with Gurtin-Pipkin Thermal Law

Given ℓ > 0, we consider the thermoelastic beam model of Timoshenko type [92]
ρ1φtt − κ(φx + ψ)x = 0,

ρ2ψtt − bψxx + κ(φx + ψ) + δϑx = 0,

ρ3ϑt + qx + δψtx = 0,

(15)

where the unknown variables

φ, ψ, ϑ, q : (x, t) ∈ [0, ℓ]× [0,∞) 7→ R

represent the transverse displacement of a beam with reference configuration [0, ℓ], the
rotation angle of a filament, the relative temperature and the heat flux vector, respec-
tively. Here, ρ1, ρ2, ρ3 as well as κ, b, δ are strictly positive fixed constants. The system
is complemented with the Dirichlet boundary conditions for φ and ϑ

φ(0, t) = φ(ℓ, t) = ϑ(0, t) = ϑ(ℓ, t) = 0,

and the Neumann one for ψ

ψx(0, t) = ψx(ℓ, t) = 0.

Such conditions, commonly adopted in the literature, seem to be the most feasible from
a physical viewpoint. To complete the picture, we need to establish a link between q
and ϑ, through the constitutive law for the heat flux. We assume the Gurtin-Pipkin heat
conduction law

βq(t) +

∫ ∞

0

g(s)ϑx(t− s) ds = 0, β > 0, (16)

where the memory kernel g is a (bounded) convex summable function on [0,∞) of total
mass ∫ ∞

0

g(s) ds = 1.

As already said, equation (16) can be viewed as a memory relaxation of the Fourier law,
inducing (similarly to the Cattaneo law) a fully hyperbolic mechanism of heat transfer.
In this perspective, it may be considered a more realistic description of physical reality.
Accordingly, system (15) turns into

ρ1φtt − κ(φx + ψ)x = 0,

ρ2ψtt − bψxx + κ(φx + ψ) + δϑx = 0,

ρ3ϑt −
1

β

∫ ∞

0

g(s)ϑxx(t− s) ds+ δψtx = 0,

and this model will be studied in the final Chapter 8.
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CHAPTER1

Preliminaries

In this first chapter, we recall some basic tools from the theory of infinite-dimensional
dynamical systems and linear semigroups. A more detailed presentation can be found
in the classical books [2, 13, 24, 49, 50, 53, 77, 88, 91].

1.1 Infinite-Dimensional Dynamical Systems

Nonlinear dynamical systems play a crucial role in the modern study of several physi-
cal phenomena where some kind of evolution is taken into account. In particular, many
dynamics are characterized by the presence of some dissipation mechanisms (e.g. fric-
tion or viscosity) which produce a loss of energy in the system. Roughly speaking,
from the mathematical viewpoint dissipation is represented by the existence of a set in
the phase space called absorbing set (see Definition 1.1.3). Nevertheless, in order to
have a better understanding of the asymptotic behavior of the system, some additional
“good” geometrical and topological properties (e.g. compactness or finite fractal/Haus-
dorff dimension) are necessary. This leads to the modern concept of attractor (see Def-
inition 1.1.7), that is, the minimal compact set which attracts uniformly all the bounded
sets of the phase space.

1.1.1 Dissipative dynamical systems

We begin with some definitions.

Definition 1.1.1. Let X be a real Banach space. A dynamical system (otherwise called
C0-semigroup of operators) on X is a one-parameter family of functions S(t) : X → X
depending on t ≥ 0 satisfying the following properties:

9
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(S.1) S(0) = I;1

(S.2) S(t+ τ) = S(t)S(τ) for all t, τ ≥ 0;

(S.3) t 7→ S(t)x ∈ C([0,∞), X) for all x ∈ X;

(S.4) S(t) ∈ C(X,X) for all t ≥ 0.

Remark 1.1.1. In light of some recent developments (see [9] and [13, Chapter XI]),
the notion of dynamical system can be actually given in a more general form, removing
the continuity assumptions (S.3) and (S.4) from Definition 1.1.1 (see the forthcoming
Remark 1.1.2 for a more detailed discussion).

Along this section, S(t) will always denote a dynamical system acting on a Banach
space X .

Definition 1.1.2. A nonempty set B ⊂ X is called invariant for S(t) if

S(t)B ⊂ B, ∀t ≥ 0.

Definition 1.1.3. A subset B ⊂ X is called absorbing set if it is bounded 2 and for any
bounded set B ⊂ X there exists an entering time te = te(B) ≥ 0 such that

S(t)B ⊂ B, ∀t ≥ te.

It is worth noting that, once we have proved the existence of an absorbing set B, an
invariant absorbing set can be easily constructed through the formula∪

t≥te

S(t)B ⊂ B, te = te(B).

As already mentioned, a dynamical systems is called dissipative if it possesses an ab-
sorbing set. We also need the notion of ω-limit set.

Definition 1.1.4. The ω-limit set of a nonempty set B ⊂ X is defined as

ω(B) =
∩
t≥0

∪
τ≥t

S(τ)B.

Thus, since ω(B) in some sense captures the dynamics of the orbits of B, if the dy-
namical system possesses an absorbing set B one might try to describe the asymptotic
behavior of the whole system through union∪

x∈B

ω(x),

since any trajectory eventually enters into B. However, this set turns out to be too
“small” in order to provide the necessary information, as will be clear in the sequel.

1Here, I denotes the identity on X .
2Some authors do not require boundedness in the definition of absorbing set.
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1.1.2 Global and exponential attractors

Due to the fact that the phase space X can be infinite-dimensional, existence of absorb-
ing set usually gives poor information on the longterm dynamics. Indeed, for instance,
balls are not compact in the infinite-dimensional case. Therefore, one might think to
investigate, for example, existence of compact absorbing set. However, when deal-
ing with concrete dynamical systems generated by partial differential equations arising
in Mathematical Physics, compact absorbing sets pop up when the equation exhibits
regularizing effects on the solution, that is, when the dynamics is parabolic. Thus, in
the hyperbolic case, compact absorbing set are out of reach. The central idea is then
to consider compact sets that “attract” (rather than absorb) the orbits originating from
bounded sets.

Definition 1.1.5. If B1 and B2 are nonempty subsets of X , the Hausdorff semidistance
between B1 and B2 is defined as

δX(B1,B2) = sup
z1∈B1

inf
z2∈B2

∥z1 − z2∥X .

Observe that the Hausdorff semidistance is not symmetric. Moreover, it is easy to see
that

δX(B1,B2) = 0 if and only if B1 ⊂ B2,

where B2 denotes the closure in X of the set B2.

Definition 1.1.6. A set K ⊂ X is called attracting for S(t) if

lim
t→∞

δX(S(t)B,K) = 0,

for any bounded set B ⊂ X . The dynamical system S(t) is called asymptotically
compact if has a compact attracting set.

Definition 1.1.7. A compact set A ⊂ X which is at the same time attracting and fully
invariant (i.e. S(t)A = A for every t ≥ 0) is called the global attractor of S(t).

It is well-known that the global attractor of a dynamical system, provided it exists, is
unique and connected (see e.g. [2, 49, 50, 91]). Besides, in several concrete situations
arising in dynamical systems generated by partial differential equations, the attractor A
has finite fractal dimension

dim f(A) = lim sup
ε→0

lnNε

ln 1
ε

,

where Nε is the smallest number of ε-balls of X covering A. In this situation, roughly
speaking, the long-term dynamics becomes finite-dimensional (see e.g. [91]).

We now state one of the main abstract results concerning existence of global attrac-
tors. To this aim, we will lean on the notion of Kuratowski measure of noncompactness
of a bounded set B ⊂ X . This is by definition

α(B) = inf
{
d : B is covered by finitely many sets of diameter less than d

}
.

Accordingly, α(B) = 0 if and only if B is totally bounded, i.e. precompact in a Banach
space framework. Further straightforward properties are listed below (cf. [49]):

11
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• α(B) = α(B);

• α(B) ≤ diam(B);

• α(B1 ∪ B2) = max{α(B1), α(B2)};

• B1 ⊂ B2 ⇒ α(B1) ≤ α(B2).

The result reads as follows.

Theorem 1.1.1. Let S(t) : X → X be a dissipative dynamical system acting on a
Banach space X , and let B an absorbing set. If there exists a sequence tn ≥ 0 such
that

lim
n→∞

α(S(tn)B) = 0,

then ω(B) is the global attractor of S(t).

We address the reader to the classical books [2,13,49,91] for a proof (but see also [75]
and Theorem A.2 in the final appendix).

Remark 1.1.2. The basic objects of the theory introduced so far (absorbing and at-
tracting sets, global attractors) can be in fact revisited only in terms of their attraction
properties, without any continuity assumption on S(t). Within this approach, a slight
different notion of global attractor is necessary, the minimality with respect to attrac-
tion being the sole characterizing property. The invariance is discussed only in a sec-
ond moment, as a consequence of some kind of continuity. A detailed discussion can be
found in [9].

Nonetheless, the global attractor is usually affected by an essential drawback. Indeed,
the attraction rate can be arbitrarily slow and, in general, cannot be explicitly estimated.
As a consequence, the global attractor may be very sensitive to small perturbations.
Although not crucial from the theoretical side, this problem becomes significant for
practical purposes (e.g. numerical simulations). In order to overcome these difficulties,
a new object has been introduced in [26], namely, the so-called exponential attractor.

Definition 1.1.8. An exponential attractor is a compact invariant set E ⊂ X of finite
fractal dimension satisfying for all bounded set B ⊂ X the exponential attraction
property

δX(S(t)B,E) ≤ I(∥B∥X)e−ωt

for some ω > 0 and some increasing function I : R+ → R+.

Contrary to the global attractor, an exponential attractor is not unique. With regard
to sufficient conditions for the existence of exponential attractors in Hilbert spaces we
refer to [1, 26]. In a Banach space setting, the first result was devised in [27] (see
also [17] and the final appendix of this thesis).
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1.1.3 Gradient systems

In this section we analyze a special class of dynamical systems, the so-called gradient
systems, characterized by the existence of a Lyapunov functional. We begin with some
definitions.

Definition 1.1.9. A function Z ∈ C(R, X) is called a complete bounded trajectory
(CBT) of S(t) if

sup
τ∈R

∥Z(τ)∥X <∞

and
S(t)Z(τ) = Z(t+ τ), ∀t ≥ 0, ∀τ ∈ R.

We also introduce the set of stationary points of S(t)

S = {z ∈ X : S(t)z = z, ∀t ≥ 0},

and the unstable set of S, that is,

W (S) =
{
Z(0) : Z CBT and lim

τ→−∞
∥Z(τ)− S∥X = 0

}
.

Definition 1.1.10. A Lyapunov functional for the dynamical system S(t) is a function
Λ ∈ C(X,R) such that

(i) Λ(z) → ∞ if and only if ∥z∥X → ∞;

(ii) Λ(S(t)z) ≤ Λ(z) for every z ∈ X and every t ≥ 0;

(iii) Λ(S(t)z) = Λ(z) for all t ≥ 0 implies that z ∈ S.

If there exists a Lyapunov functional, then S(t) is called a gradient system.

We report the following standard abstract result on existence of global attractors for
gradient systems (see [49, 56]).

Lemma 1.1.1. Let S(t) : X → X be a gradient system acting on a Banach space X .
Assume that

(i) the set S of the stationary points of S(t) is bounded in X;

(ii) for every R ≥ 0 there exist a positive function IR vanishing at infinity and a
compact set KR ⊂ X such that S(t) can be split into the sum S0(t) + S1(t),
where the one-parameter operators S0(t) and S1(t) fulfill

∥S0(t)z∥X ≤ IR(t) and S1(t)z ⊂ KR,

whenever ∥z∥X ≤ R and t ≥ 0.

Then, S(t) possesses a connected global attractor A, which consists of the unstable set
W (S). Moreover, A is a subset of KR for some R > 0.

In conclusion, roughly speaking, the asymptotic dynamics of gradient systems can be
fully described by means of complete bounded trajectories departing (at −∞) from the
set of stationary points of S(t).

13
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1.2 Linear Semigroups

We now consider the particular situation where S(t) is a linear operator for every t ≥ 0.
With standard notation, we will denote by L(X) the space of bounded linear operators
from X into X .

Definition 1.2.1. Let X be a real Banach space. A linear dynamical system (otherwise
called C0-semigroup of bounded linear operators) acting on X is a family of maps

S(t) ∈ L(X)

depending on t ≥ 0 satisfying the semigroup properties (S.1)-(S.2) together with

(S.3’) lim
t→0

S(t)x = x for all x ∈ X .

Notice that assumption (S.3’) and the semigroup properties imply the continuity

t 7→ S(t)x ∈ C([0,∞), X) for every fixed x ∈ X.

When dealing with linear dynamical systems, an important concept is the one of
infinitesimal generator.

Definition 1.2.2. The linear operator A with domain

D(A) =

{
x ∈ X : lim

t→0

S(t)x− x

t
exists

}
defined as

Ax = lim
t→0

S(t)x− x

t

is the called the infinitesimal generator of the linear dynamical system S(t).

It is possible to show that A is a closed, densely defined operator which uniquely
determines the linear dynamical system (see e.g. [77]). Formally, one writes

S(t) = etA

to indicate that the operator A is the infinitesimal generator of the semigroup S(t).
One important and natural question is then to determine whenever a closed linear

operator with dense domain in X is the infinitesimal generator of a linear dynami-
cal system S(t). As a matter of fact, a necessary and sufficient condition is given by
the Hille-Yosida Theorem (see e.g. [77]), so that the problem is nowadays completely
solved from the theoretical viewpoint. However, the Hille-Yosida Theorem is some-
how difficult to apply in several concrete situations, as it involves the knowledge of the
spectrum of the operator A (usually, not an easy task to achieve). Nevertheless, in a
Hilbert space setting, there exists a more effective criterion. We need two preliminary
definitions.

Definition 1.2.3. S(t) is called a contraction semigroup if

∥S(t)∥L(X) ≤ 1, ∀t ≥ 0.

14
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Definition 1.2.4. A linear operator A on a real Hilbert space X is dissipative if

⟨Ax, x⟩ ≤ 0, ∀x ∈ D(A).

The result reads as follows.

Lemma 1.2.1 (Lumer-Phillips). Let A be a densely defined linear operator on a real
Hilbert space X . Then A is the infinitesimal generator of a contraction semigroup S(t)
if and only if

(i) A is dissipative; and

(ii) Range(I − A) = X .

We address the reader to [77] for the proof. The Lumer-Phillips Theorem turns out
to be a very useful tool in the study of linear dynamical systems generated by partial
differential equations, as we will see in Chapter 6.

Another fundamental problem is the one of asymptotic stability, that is, the study of
the decay properties of the trajectories.

Definition 1.2.5. The linear dynamical system S(t) is said to be

• stable if
lim
t→∞

∥S(t)x∥X = 0, ∀x ∈ X;

• exponentially stable if there are M ≥ 1 and ε > 0 such that

∥S(t)∥L(X) ≤Me−εt, ∀t ≥ 0.

Exploiting the semigroup properties, when lack of exponential stability occurs we can
say that there is no decay pattern valid for all x ∈ X (see [11, 77]).

In order to deal with concrete cases of linear dynamical systems generated by partial
differential equations, we will also exploit an operative abstract criterion developed
in [79] (but see also [37] for the statement used here). First, we need a definition.

Definition 1.2.6. The complexification of a real Banach spaceX is the complex Banach
space XC defined as

XC = X ⊕ iX = {z = x+ iy with x, y ∈ X}

and endowed with the norm

∥x+ iy∥XC =
√
∥x∥2 + ∥y∥2 .

Analogously, the complexification AC of a linear operator of A on X is the (linear)
operator on XC with domain

D(AC) = {z = x+ iy with x, y ∈ D(A)}

defined by
AC(x+ iy) = Ax+ iAy.
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The result is the following.

Lemma 1.2.2. A linear dynamical system S(t) = etA acting on a real Hilbert space X
is exponentially stable if and only if there exists ε > 0 such that

inf
λ∈R

∥iλz − ACz∥XC ≥ ε∥z∥XC , ∀z ∈ D(AC), (1.2.1)

where AC and XC are understood to be the complexifications of the original infinitesi-
mal generator A and space X , respectively.

16



CHAPTER2

Strongly Damped Nonlinear Wave Equations

2.1 Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. Calling H = L2(Ω),
with inner product ⟨·, ·⟩ and norm ∥ · ∥, and introducing the strictly positive Dirichlet
operator

A = −∆ with domain D(A) = H2(Ω) ∩H1
0 (Ω) b H,

we consider the evolution equation in the unknown u = u(x, t) : Ω× R+ → R

utt + Aut + Au+ f(ut) + g(u) = h (2.1.1)

subject to the initial conditions

u(x, 0) = a(x) and ut(x, 0) = b(x),

where a, b : Ω → R are assigned data.
The time-independent external source h = h(x) is taken in H, while the nonlinearities
comply with the following assumptions, λ1 > 0 being the first eigenvalue of A.

Assumptions on f . Let f ∈ C1(R), with f(0) = 0, satisfy for every s ∈ R and some
c ≥ 0 the growth bound

|f ′(s)| ≤ c+ c|s|4, (2.1.2)

along with the dissipativity condition

lim inf
|s|→∞

f ′(s) > −λ1. (2.1.3)
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Assumptions on g. Let g ∈ C1(R), with g(0) = 0, satisfy for every s ∈ R and some
c ≥ 0 the growth bound

|g′(s)| ≤ c+ c|s|p−1 with p ∈ [1, 5], (2.1.4)

along with the dissipativity conditions

lim inf
|s|→∞

g(s)

s
> −λ1, (2.1.5)

lim inf
|s|→∞

sg(s)− c1
∫ s

0
g(y)dy

s2
> −λ1

2
, (2.1.6)

for some c1 > 0. In fact (2.1.5)-(2.1.6) are automatically verified (with c1 = 1) if g
fulfills the same dissipation condition (2.1.3) of f , slightly less general but still widely
used in the literature.

As explained in the introduction of the thesis, equation (2.1.1), here written in dimen-
sionless form, rules the thermal evolution in a rigid body of shape Ω within the theory
of heat conduction of type III devised by Green and Nagdhi. However, other physical
interpretations are possible, for example viscoelasticity of Kelvin-Voigt type.

After introducing the notation and the functional setting (see Section 2.2), in the suc-
cessive Section 2.3 we consider an equivalent formulation of the problem, more suit-
able for our purposes. Well-posedness is proved in Section 2.4, yielding a solution
semigroup S(t) (dynamical system) acting on the natural weak energy space. Finally,
in Sections 2.5-2.6, we dwell on the dissipative character of the semigroup, witnessed
by the existence of (bounded) regular absorbing sets.

2.2 Preliminaries

2.2.1 Notation

For σ ∈ R, we define the hierarchy of (compactly) nested Hilbert spaces

Hσ = D(A
σ
2 ), ⟨w, v⟩σ = ⟨A

σ
2w,A

σ
2 v⟩, ∥w∥σ = ∥A

σ
2w∥.

For σ > 0, it is understood that H−σ denotes the completion of the domain, so that H−σ

is the dual space of Hσ. Moreover, the subscript σ is always omitted whenever zero.
The symbol ⟨·, ·⟩ also stands for duality product between Hσ and its dual space H−σ. In
particular,

H2 = H2(Ω) ∩H1
0 (Ω) b H1 = H1

0 (Ω) b H = L2(Ω) b H−1 = H−1(Ω),

and we have the Poincaré inequality

λ1∥w∥2 ≤ ∥w∥21, ∀w ∈ H1.

Then we define the natural energy spaces

Hσ = Hσ+1 × Hσ
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endowed with the standard product norms

∥{w1, w2}∥2Hσ
= ∥w1∥2σ+1 + ∥w2∥2σ.

We will also encounter the “asymmetric” energy spaces

Vσ = Hσ × Hσ.

2.2.2 General agreements

Without loss of generality, we may (and do) suppose c1 = 1 in (2.1.6). Along the chap-
ter, we will perform a number of formal energy-type estimates, which are rigorously
justified in a Galerkin approximation scheme. In the proofs, we will always adopt the
symbol Λ (or Λε) to denote some energy functional, specifying its particular structure
from case to case. Moreover, the Hölder, Young and Poincaré inequalities will be tacitly
used in several occasions, as well as the Sobolev embedding

H1 ⊂ L6(Ω).

2.2.3 A technical lemma

We report a Gronwall-type lemma from the very recent paper [70].

Lemma 2.2.1. Given k ≥ 1 and C ≥ 0, let Λε : [0,∞) → [0,∞) be a family of
absolutely continuous functions satisfying for every ε > 0 small the inequalities

1

k
Λ0 ≤ Λε ≤ kΛ0 and

d

dt
Λε + εΛε ≤ Cε6Λ3

ε + C

for some continuous Λ0 : [0,∞) → [0,∞). Then there are constants δ > 0, R ≥ 0 and
an increasing function I ≥ 0 such that

Λ0(t) ≤ I(Λ0(0))e
−δt +R.

2.3 An Equivalent Formulation

Equation (2.1.1) can be given an equivalent formulation, allowing to render the calcu-
lations much simpler.

2.3.1 Decompositions of the nonlinear terms

The first step is splitting f and g into the sums of suitable functions.

Lemma 2.3.1. For every fixed λ < λ1 sufficiently close to λ1, the decomposition

f(s) = ϕ(s)− λs+ ϕc(s)

holds for some ϕ, ϕc ∈ C1(R) with the following properties:

• ϕc is compactly supported with ϕc(0) = 0;
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• ϕ vanish inside [−1, 1] and fulfills for some c ≥ 0 and every s ∈ R the bounds

0 ≤ ϕ′(s) ≤ c|s|4.

Proof. In light of (2.1.3), fix any λ subject to the bounds

lim inf
|s|→∞

f ′(s) > −λ > −λ1.

Hence,
f ′(s) ≥ −λ, ∀ |s| ≥ k,

for k ≥ 1 large enough. Choosing then any smooth function ϱ : R → [0, 1] satisfying

sϱ′(s) ≥ 0 and ϱ(s) =

{
0 if |s| ≤ k,

1 if |s| ≥ k + 1,

it is immediate to check that

ϕ(s) = ϱ(s)[f(s) + λs] and ϕc(s) = [1− ϱ(s)][f(s) + λs]

comply with the requirements.

Lemma 2.3.2. For every fixed λ < λ1 sufficiently close to λ1, the decomposition

g(s) = γ(s)− λs+ γc(s)

holds for some γ, γc ∈ C1(R) with the following properties:

• γc is compactly supported with γc(0) = 0;

• γ vanish inside [−1, 1] and fulfills for some c ≥ 0 and every s ∈ R the bounds

0 ≤
∫ s

0

γ(y) dy ≤ sγ(s) and |γ′(s)| ≤ c|s|p−1.

Proof. Using this time (2.1.5)-(2.1.6), where we put c1 = 1, for any fixed λ < λ1 close
to λ1 and every |s| ≥ k ≥ 1 large enough we get

s[g(s) + λs] ≥ 0 and
∫ s

0

g(y)dy ≤ sg(s) +
1

2
λs2.

Similarly to the previous proof, we define

γ(s) = ϱ(s)[g(s) + λs] and γc(s) = [1− ϱ(s)][g(s) + λs].

Then, the first inequality tells that

0 ≤
∫ s

0

γ(y) dy ≤ ϱ(s)

∫ s

0

[g(y) + λy] dy = ϱ(s)

[ ∫ s

0

g(y) dy +
1

2
λs2

]
,

and by applying the second one we establish the desired integral estimate, whereas the
growth bound on γ′ is straightforward.
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2.3. An Equivalent Formulation

Due to Lemma 2.3.1 and Lemma 2.3.2, the functionals on H1 given by

Φ0(w) = 2

∫
Ω

∫ w(x)

0

ϕ(y) dydx, Γ0(w) = 2

∫
Ω

∫ w(x)

0

γ(y) dydx,

and
Φ1(w) = ⟨ϕ(w), w⟩, Γ1(w) = ⟨γ(w), w⟩,

fulfill for every w ∈ H1 the inequalities

0 ≤ Φ0(w) ≤ 2Φ1(w), (2.3.1)
0 ≤ Γ0(w) ≤ 2Γ1(w). (2.3.2)

Moreover, since

|ϕ(s)|
6
5 = |ϕ(s)|

1
5 |ϕ(s)| ≤ c|s||ϕ(s)| = csϕ(s),

we deduce that for all C > 0 sufficiently large

∥ϕ(w)∥L6/5 ≤ C[Φ1(w)]
5
6 , ∀w ∈ H1. (2.3.3)

2.3.2 The equation revisited

For a fixed λ < λ1 complying with Lemma 2.3.1 and Lemma 2.3.2, we rewrite (2.1.1)
in the equivalent form

utt +But +Bu+ ϕ(ut) + γ(u) = q, (2.3.4)

where
q = h− ϕc(ut)− γc(u) ∈ L∞(R+; H)

and
B = A− λI with domain D(B) = D(A)

is a positive operator commuting with A. In particular, the bilinear form

(w, v)σ = ⟨w,A−1Bv⟩σ = ⟨w, v⟩σ − λ⟨w, v⟩σ−1

defines an equivalent inner product on the space Hσ whose induced norm | · |σ, in light
of the Poincaré inequality, satisfies

λ1 − λ

λ1
∥w∥2σ ≤ |w|2σ = ∥w∥2σ − λ∥w∥2σ−1 ≤ ∥w∥2σ. (2.3.5)

2.3.3 The renormed spaces

Aiming to deal with the reformulated version (2.3.4) of the original equation, it is con-
venient to redefine the norms of the energy spaces. Accordingly, we agree to consider
Hσ and Vσ endowed with the equivalent norms

|{w, v}|2Hσ
= |w|2σ+1 + ∥v∥2σ and |{w, v}|2Vσ

= |w|2σ + |v|2σ.

Whenever needed, the norm inequalities (2.3.5) will be applied without explicit men-
tion.
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Chapter 2. Strongly Damped Nonlinear Wave Equations

2.3.4 Formal estimates

We conclude by establishing some general differential relations, widely used in the
forthcoming proofs. Given a vector-valued function w, as regular as required, we set

�w = 2wtt + 2Bwt + 2Bw.

The following identities are verified by direct calculations:

⟨�w,w⟩ = d

dt

[
|w|21 + 2⟨w,wt⟩

]
+ 2|w|21 − 2∥wt∥2, (2.3.6)

⟨�w,wt⟩ =
d

dt

[
|w|21 + ∥wt∥2

]
+ 2|wt|21, (2.3.7)

⟨�w,wtt⟩ =
d

dt

[
|wt|21 + 2(w,wt)1

]
+ 2∥wtt∥2 − 2|wt|21. (2.3.8)

Next, we define the family of energy functionals depending on ε ≥ 0

Πε(w) = (1 + ε)|w|21 + ∥wt∥2 + 2ε⟨wt, w⟩. (2.3.9)

Exploiting (2.3.6)-(2.3.7), the inequalities

Π0(w) ≤ 2Πε(w) ≤ 4Π0(w) (2.3.10)

and
d

dt
Πε(w) + εΠε(w) +

1

2

[
ε|w|21 + 3|wt|21

]
≤ ⟨�w,wt + εw⟩ (2.3.11)

are easily seen to hold for every ε > 0 sufficiently small.

2.4 The Solution Semigroup

2.4.1 Well-posedness

First, we stipulate the definition of solution.

Definition 2.4.1. Given T > 0, we call weak solution to (2.3.4) on [0, T ] a function

u ∈ C([0, T ],H1) ∩ C1([0, T ],H) ∩W 1,2(0, T ; H1)

satisfying for almost every t ∈ [0, T ] and every test θ ∈ H1 the equality

⟨utt, θ⟩+ (ut, θ)1 + (u, θ)1 + ⟨ϕ(ut), θ⟩+ ⟨γ(u), θ⟩ = ⟨q, θ⟩.

Theorem 2.4.1. For every T > 0 and every z = {a, b} ∈ H there is a unique weak
solution u to (2.3.4) on [0, T ] subject to the initial conditions

{u(0), ut(0)} = z.

Moreover, given any pair of initial data z1, z2 ∈ H, there exists a constant C ≥ 0
depending (increasingly) on the norms of zı such that the difference ū = u1 − u2 of the
corresponding solutions satisfies the continuous dependence estimate

∥{ū, ūt}∥L∞(0,T ;H) + ∥ūt∥L2(0,T ;H1) ≤ CeCT |z1 − z2|H.
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2.4. The Solution Semigroup

2.4.2 Sketch of the proof

The continuous dependence is essentially contained in the proof of Theorem 3.2.1 in
the next chapter (by setting ε = 0). Concerning existence, we follow the usual Galerkin
procedure, considering the solutions un to the corresponding n-dimensional approxi-
mating problems. Arguing as in the forthcoming Theorem 2.5.1 and Corollary 2.5.1,
with the aid of (2.3.3), we deduce the uniform boundedness of

un in L∞(0, T ; H1),

∂tun in L∞(0, T ; H) ∩ L2(0, T ; H1),

and, calling ΩT = Ω× (0, T ), those of

γ(un) and ϕ(∂tun) in L
6
5 (ΩT ).

Hence, we can extract weakly or weakly-∗ convergent subsequences

un ⇀ u, ∂tun ⇀ ut, γ(un)⇀ γ⋆, ϕ(∂tun)⇀ ϕ⋆,

in the respective spaces. Proving the claimed continuity in time of u is standard mat-
ter. The only difficulty is identifying the limits of the nonlinearities, i.e. showing the
equalities

γ⋆ = γ(u) and ϕ⋆ = ϕ(ut).

The first is a consequence of the so-called weak dominated convergence theorem. In-
deed, from the Sobolev compact embedding

W 1,2(0, T ; H1) b C([0, T ],H),

we learn that, up to a subsequence,

un → u a.e. in ΩT ⇒ γ(un) → γ(u) a.e. in ΩT .

For every fixed β ∈ L6(ΩT ), the latter convergence together with the L
6
5 -bound of

γ(un) entail the limit∫ T

0

⟨γ(un(t)), β(t)⟩ dt→
∫ T

0

⟨γ(u(t)), β(t)⟩ dt.

This provides the equality∫ T

0

⟨γ⋆(t), β(t)⟩ dt =
∫ T

0

⟨γ(u(t)), β(t)⟩ dt,

in turn implying
γ⋆ = γ(u) a.e. in ΩT .

Instead, the identification of ϕ⋆ requires an additional argument. For τ < T arbitrarily
chosen, proceeding as in the proof of the forthcoming Theorem 2.6.1, we obtain the
uniform boundedness of

∂ttun in L2(τ, T ; H1),
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Chapter 2. Strongly Damped Nonlinear Wave Equations

with a bound depending on τ (and blowing up when τ → 0). Still, this is enough to
infer the uniform boundedness of

∂tun in W 1,2(τ, T ; H1) b C([τ, T ],H),

and conclude that, calling Ωτ,T = Ω× (τ, T ),

∂tun → ut a.e. in Ωτ,T ⇒ ϕ(∂tun) → ϕ(ut) a.e. in Ωτ,T .

Then, repeating the previous argument with Ωτ,T in place of ΩT , we establish the equal-
ity

ϕ⋆ = ϕ(ut) a.e. in Ωτ,T ,

which extends on the whole cylinder ΩT by letting τ → 0.

2.4.3 The semigroup

The main consequence of Theorem 2.4.1 is that the family of maps

S(t) : H → H acting as S(t)z = {u(t), ut(t)}, (2.4.1)

where u is the solution on any interval [0, T ] containing t with initial data z = {a, b} ∈
H, defines a dynamical system on H (normed by | · |H).

In what follows, we will often refer more correctly to (2.4.1) when speaking of solu-
tion with initial data z, whose corresponding (doubled) energy is by definition

E(t) = |S(t)z|2H = |u(t)|21 + ∥ut(t)∥2.

2.5 Dissipativity

In this section, we consider a nonlinearity g(u) of critical order p = 5. The dissipative
character of S(t) is witnesses by the existence of absorbing sets, capturing the trajec-
tories originating from bounded sets of initial data uniformly in time. The existence of
an invariant absorbing set for S(t) is an immediate corollary of the next result.

Theorem 2.5.1. The dissipative estimate

E(t) ≤ I(E(0))e−δt +R

holds for some structural quantities δ > 0, R ≥ 0 and I : [0,∞) → [0,∞) increasing.

Proof. Along the proof, C ≥ 0 will denote a generic constant, possibly depending
on ϕ, γ, q, but independent of the initial energy E(0). Due to (2.3.9)-(2.3.10) and the
positivity of Γ0, the family of functionals

Λε = Πε(u) + Γ0(u)

satisfies for every ε > 0 small

E = Π0(u) ≤ Λ0 ≤ 2Λε ≤ 4Λ0. (2.5.1)
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2.5. Dissipativity

The product in H of (2.3.4) and 2ut + 2εu reads

⟨�u, ut + εu⟩+ 2Φ1(ut) = −2⟨γ(u), ut + εu⟩ − 2ε⟨ϕ(ut), u⟩+ 2⟨q, ut + εu⟩,

and an application of (2.3.11) entails

d

dt
Πε(u) + εΠε(u) +

1

2

[
ε|u|21 + 3|ut|21

]
+ 2Φ1(ut) (2.5.2)

≤ −2⟨γ(u), ut + εu⟩ − 2ε⟨ϕ(ut), u⟩+ 2⟨q, ut + εu⟩.

Recalling (2.3.2), we have

−2⟨γ(u), ut + εu⟩ = − d

dt
Γ0(u)− 2εΓ1(u) ≤ − d

dt
Γ0(u)− εΓ0(u),

whereas (2.3.3) and (2.5.1) yield

−2ε⟨ϕ(ut), u⟩ ≤ 2ε∥ϕ(ut)∥L6/5∥u∥L6 ≤ Cε[Φ1(ut)]
5
6 |u|1 ≤ Φ1(ut) + Cε6Λ3

ε.

Finally,

2⟨q, ut + εu⟩ ≤ 2ε∥q∥∥u∥+ 2∥q∥∥ut∥ ≤ 1

2

[
ε|u|21 + |ut|21

]
+ C.

Plugging the three inequalities in (2.5.2), we end up with

d

dt
Λε + εΛε + |ut|21 + Φ1(ut) ≤ Cε6Λ3

ε + C. (2.5.3)

Within (2.5.1) and (2.5.3), we meet the hypotheses of Lemma 2.2.1. Thus,

E(t) ≤ Λ0(t) ≤ I(Λ0(0))e
−δt +R,

for some δ > 0, R ≥ 0 and I ≥ 0 increasing. On the other hand, from the growth
bound on γ we infer the control

Λ0 = E + Γ0(u) ≤ cE
[
1 + E2

]
, c ≥ 1.

Accordingly, upon redefining I in the obvious way, the theorem is proven.

For initial data z ∈ B invariant absorbing, an integration in time of (2.5.3) with ε = 0
provides a corollary.

Corollary 2.5.1. For any invariant absorbing set B there is C = C(B) ≥ 0 such that

sup
z∈B

∫ T

t

[
|ut(τ)|21 + Φ1(ut(τ))

]
dτ ≤ C + C(T − t), ∀T > t ≥ 0.
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Chapter 2. Strongly Damped Nonlinear Wave Equations

2.6 Partial Regularization

In the same spirit of [73], a full exploitation of the partially parabolic features of the
equation allows us to gain additional regularity on the velocity component of the solu-
tion.

Theorem 2.6.1. There exists an invariant absorbing set B satisfying

sup
t≥0

sup
z∈B

[
|ut(t)|1 + ∥utt(t)∥+

∫ t+1

t

|utt(τ)|21 dτ
]
<∞.

In particular, B is a bounded subset of V1.

The proof will require some passages. We begin with a simple observation, stated as
a lemma.

Lemma 2.6.1. If B0 is an invariant absorbing set, then

B1 = S(1)B0 ⊂ B0

remains invariant and absorbing, and any (bounded) function Λ : B1 → R satisfies

sup
t≥0

sup
z∈B1

Λ(S(t)z) = sup
t≥0

sup
z∈B0

Λ(S(t+ 1)z) ≤ sup
z∈B0

Λ(S(1)z).

Lemma 2.6.2. There exists an invariant absorbing set B1, together with a constant
C = C(B1) ≥ 0, such that for all initial data in B1

sup
t≥0

|ut(t)|1 ≤ C and
∫ 1

0

∥utt(t)∥2 dt ≤ C.

Proof. Fix an arbitrary invariant absorbing set B0, and consider initial data z ∈ B0. In
what follows, C ≥ 0 is a generic constant depending only on B0. By (2.3.1) and the
growth bound on γ, the functional

Λ = Λ(S(t)z) = |ut|21 + Φ0(ut) + 2(u, ut)1 + 2⟨γ(u), ut⟩+K

fulfills for K = K(B0) > 0 large enough the uniform controls

|ut|21 ≤ 2Λ ≤ C
[
1 + |ut|21 + Φ1(ut)

]
.

In particular, we see from Corollary 2.5.1 that∫ 1

0

Λ(S(t)z) dt ≤ C.

Recalling (2.3.8), the product in H of (2.3.4) and 2utt yields

d

dt
Λ + 2∥utt∥2 = 2|ut|21 + 2⟨γ′(u)ut, ut⟩+ 2⟨q, utt⟩.

Estimating the right-hand side as

2|ut|21 + 2⟨γ′(u)ut, ut⟩ ≤ 2|ut|21 + 2∥γ′(u)∥L3/2∥ut∥2L6 ≤ C
(
1 + ∥u∥41

)
|ut|21 ≤ CΛ,
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2.6. Partial Regularization

and
2⟨q, utt⟩ ≤ 2∥q∥∥utt∥ ≤ ∥utt∥2 + C,

we obtain
d

dt
Λ + ∥utt∥2 ≤ CΛ + C. (2.6.1)

Hence, multiplying at every fixed time t ∈ [0, 1] both terms of (2.6.1) by t, we have

d

dt

[
tΛ(S(t)z)

]
≤ CΛ(S(t)z) + C,

and a subsequent integration on [0, 1] gives

Λ(S(1)z) ≤ C

∫ 1

0

Λ(S(t)z) dt+ C ≤ C.

Choosing
B1 = S(1)B0 ⊂ B0

and applying Lemma 2.6.1, we draw the uniform estimate

sup
t≥0

sup
z∈B1

Λ(S(t)z) ≤ sup
z∈B0

Λ(S(1)z) ≤ C,

establishing the desired bound

sup
t≥0

sup
z∈B1

|ut(t)|1 ≤ C.

In turn, for initial data z ∈ B1, the differential inequality (2.6.1) improves to

d

dt
Λ + ∥utt∥2 ≤ C,

and an integration over [0, 1] provides the remaining integral control.

Proof of Theorem 2.6.1. We now take initial data z from the invariant absorbing set B1

of the previous lemma. Accordingly, C ≥ 0 will stand for a generic constant depending
only on B1. Differentiating (2.3.4) with respect to time, we get

�ut = −2ϕ′(ut)utt − 2γ′(u)ut + 2qt.

Multiplying both terms by utt, we obtain from (2.3.7)

d

dt
Λ + 2|utt|21 = −2⟨ϕ′(ut)utt, utt⟩+ 2⟨qt, utt⟩ − 2⟨γ′(u)ut, utt⟩,

where
Λ = Λ(S(t)z) = |ut|21 + ∥utt∥2.

Since ϕ′ ≥ 0,
−2⟨ϕ′(ut)utt, utt⟩ ≤ 0.

Concerning the other two terms, we have

2⟨qt, utt⟩ = −2⟨ϕ′
c(ut)utt + γ′c(u)ut, utt⟩ ≤ C∥utt∥2 + C,
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Chapter 2. Strongly Damped Nonlinear Wave Equations

and, after Lemma 2.6.2,

−2⟨γ′(u)ut, utt⟩ ≤ 2∥γ′(u)∥L3/2∥ut∥L6∥utt∥L6 ≤ C|utt|1 ≤ |utt|21 + C.

Summarizing, we arrive at

d

dt
Λ + |utt|21 ≤ CΛ + C. (2.6.2)

By Lemma 2.6.2 we infer also the integral control∫ 1

0

Λ(S(t)z) dt ≤ C.

Hence, multiplying by t and integrating on [0, 1], we get

Λ(S(1)z) ≤ C.

Defining
B = S(1)B1 ⊂ B1,

we conclude from Lemma 2.6.1 that

sup
t≥0

sup
z∈B

[
|ut(t)|21 + ∥utt(t)∥2

]
= sup

t≥0
sup
z∈B

Λ(S(t)z) ≤ sup
z∈B1

Λ(S(1)z) ≤ C.

At this point, choosing initial data z ∈ B, we can rewrite (2.6.2) as

d

dt
Λ + |utt|21 ≤ C,

and an integration over [t, t+ 1] completes the argument.
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CHAPTER3

Attractor for the SDNWE.
The Critical-Subcritical Case

3.1 Introduction

The longterm properties of the strongly damped wave equation (2.1.1) considered in
the previous chapter have been widely investigated by several authors. The existence
of a regular global attractor in the case f ≡ 0 and within a critical growth condition on
g is well-known (see e.g. [7, 21, 72, 73]). Moreover, in presence of a linear (or at most
sublinear) f , many results are available in the literature. To the best of our knowledge
the more challenging case of a superlinear f has been tackled in [17, 54]. There, with
reference to assumption (2.1.4), the existence of the global attractor (without additional
regularity) is attained provided that p < 3 or p ≤ 3, respectively, and f has a subcritical
growth

|f ′(s)| ≤ c+ c|s|r−1, r < 5.

The focus of this chapters is the asymptotic behavior of the semigroup generated by
equation (2.1.1) in the critical-subcritical case. More precisely, for a nonlinearity f
of critical polynomial order r = 5, we obtain the global attractor whenever p < 5,
establishing its optimal regularity within the further restriction p ≤ 4.

In the next Section 3.2 we establish the existence of the global attractor A for S(t).
In Section 3.3 we give a conditional regularity result for A, whose optimal regularity is
demonstrated in the final Section 3.4.

Remark 3.1.1. Analogously to what done in [52] for the case f ≡ 0, it is also possible
to study the asymptotic properties of equation (2.1.1) in the “supercritical” situation
(i.e. beyond the quintic growth) assuming a further polynomial control from below and
changing the phase space.
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3.2 The Global Attractor

According to Theorem 2.4.1, along the chapter S(t) will denote the solution semigroup
generated by equation (2.1.1), acting on the phase space H. The main result reads as
follows.

Theorem 3.2.1. For any fixed p < 5, the semigroup S(t) : H → H possesses a
connected global attractor A.

Since a fully invariant bounded set is contained in every absorbing set, Theorem 2.6.1
proved in the previous chapter provides an immediate corollary.

Corollary 3.2.1. Any solution S(t)z = {u(t), ut(t)} on A fulfills

sup
t≥0

sup
z∈A

[
|ut(t)|1 + ∥utt(t)∥+

∫ t+1

t

|utt(τ)|21 dτ
]
<∞.

As a byproduct, A is bounded in V1.

According to the abstract Theorem A.1 stated in the final appendix, the existence of A
is attained once we find a constant ν < 1, a time T > 0 and a precompact pseudometric
ρ on B such that the map S = S(T ), known to be continuous on the whole space H
from Theorem 2.4.1, satisfies the inequality

|Sz1 − Sz2|H ≤ ν|z1 − z2|H + ρ(z1, z2), ∀ z1, z2 ∈ B. (3.2.1)

Up to an inessential multiplicative constant, the pseudometric that will do reads

ρT,m(z1, z2) = sup
t∈[0,T ]

[
∥u1(t)− u2(t)∥2m + ∥∂tu1(t)− ∂tu2(t)∥2

] 1
2
,

with T > 0 and m < 1 to be properly chosen, where

{uı(t), ∂tuı(t)} = S(t)zı, ı = 1, 2.

The precompactness of ρT,m follows from standard Sobolev compact embeddings. In-
deed, if zn is a sequence in B, the corresponding solutions un are known from Theo-
rem 2.6.1 to be uniformly bounded in

W 2,2(0, T ; H1) b C([0, T ],Hm) ∩ C1([0, T ],H).

Proof of Theorem 3.2.1. Along the proof, we will exploit several times the uniform
bounds provided by Theorem 2.6.1. Accordingly, C ≥ 0 will stand for a generic
constant depending only on B. Without loss of generality, we assume p ∈ [3, 5) and we
fix

m =
p− 3

2
∈ [0, 1).

The time T > 0 is also understood to be fixed, albeit its precise value will be specified
in a later moment. Let then zı ∈ B be arbitrarily given, and call for short

D = ρT,m(z1, z2).
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The difference of the solutions

{ū(t), ūt(t)} = S(t)z1 − S(t)z2

fulfills the equation
�ū = 2ϕd + 2γd,

where we put

ϕd = ϕ(∂tu2)− ϕ(∂tu1) + ϕc(∂tu2)− ϕc(∂tu1),

γd = γ(u2)− γ(u1) + γc(u2)− γc(u1).

Thus, by (2.3.9) and (2.3.11), a multiplication in H by ūt + εū with ε > 0 small leads
to

d

dt
Πε(ū) + εΠε(ū) +

1

2

[
ε|ū|21 + 3|ūt|21

]
≤ 2⟨ϕd, ūt⟩+ 2ε⟨ϕd, ū⟩+ 2⟨γd, ūt + εū⟩.

We now estimate the right-hand side uniformly with respect to t ∈ [0, T ], being D the
only quantity dependent on T . Firstly, we learn from (2.3.1) that

2⟨ϕd, ūt⟩ ≤ C∥ūt∥2 ≤ CD2,

whereas the growth bound on ϕ entails

2ε⟨ϕd, ū⟩ ≤ Cε
[
1 + ∥∂tu1∥L6 + ∥∂tu2∥L6

]4∥ū∥L6∥ūt∥L6 ≤ 1

2
|ūt|21 + Cε2|ū|21.

Concerning the last term, from the Sobolev embedding

Hm ⊂ L
6

3−2m (Ω)

we obtain

2⟨γd, ūt + εū⟩ ≤ C
[
1 + ∥u1∥L6 + ∥u2∥L6

]2+2m∥ū∥L6/(3−2m)

[
∥ūt∥L6 + ε∥ū∥L6

]
≤ C∥ū∥m

[
|ūt|1 + ε|ū|1

]
≤ |ūt|21 + Cε2|ū|21 + CD2.

In summary, up to fixing ε small enough, the right-hand side is controlled by

Cε2|ū|21 +
3

2
|ūt|21 + CD2 ≤ 1

2

[
ε|ū|21 + 3|ūt|21

]
+ CD2.

Accordingly,
d

dt
Πε(ū) + εΠε(ū) ≤ CD2,

and the standard Gronwall lemma on [0, T ] yields

Πε(ū(T )) ≤ Πε(ū(0))e
−εT + CD2.

Therefore, invoking (2.3.9)-(2.3.10),

|Sz1 − Sz2|2H ≤ 2Πε(ū(T )) ≤ ν2|z1 − z2|2H + CD2,

Choosing T > 0 large enough such that ν < 1, we recover (3.2.1).
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3.3 A Conditional Result

The next issue is the regularity of the attractor. To this end, let A be the global attractor
of S(t), whose existence is actually unproven for the critical case p = 5. Introducing
the two-component vector

h⋆ = {−B−1h, 0} ∈ H1,

we define the translate of the attractor

A⋆ = A+ h⋆ = {z + h⋆ : z ∈ A}.

We also need the following standard result (cf. Lemma 2.1 in [12]).

Lemma 3.3.1. Given a nonnegative locally summable function φ on R+, the inequality∫ t

0

e−ε(t−s)φ(τ) dτ ≤ 1

1− e−ε
sup
T≥0

∫ T+1

T

φ(τ) dτ

holds for every t ≥ 0 and every ε > 0.

A conditional regularity result holds.

Proposition 3.3.1. Assume to know that A is bounded in H1. Then A⋆ is bounded in
H2. In turn, A is bounded in V2, and is bounded in H2 whenever h ∈ H1.

Proof. Let C ≥ 0 be a generic constant depending only on A, and consider an arbitrary
solution

S(t)z = {u(t), ut(t)} with z = {a, b} ∈ A.

We first show the boundedness of A in V2. To this end, on account of the full invariance
of the attractor, it is enough proving the uniform bound

|ut(1)|2 ≤ C.

Indeed, recalling also Corollary 3.2.1, the vector ξ = ut(1) fulfills

Bξ + ϕ(ξ) = q(1)− utt(1)−Bu(1)− γ(u(1)) ∈ H,

and from the monotonicity of ϕ we obtain

2|ξ|22 ≤ 2|ξ|22 + 2⟨ϕ′(ξ)∇ξ,∇ξ⟩ = 2⟨Aξ,Bξ + ϕ(ξ)⟩ ≤ |ξ|22 + C.

Next, defining the function

ζ = B−1[q − h− utt − ϕ(ut)− γ(u)],

we verify by direct calculations the identity

u(t)−B−1h− e−t(a−B−1h) =

∫ t

0

e−(t−τ)ζ(τ) dτ.
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Exploiting the V2-boundedness of the attractor proved earlier, together with the integral
estimate in Corollary 3.2.1, an application of Lemma 3.3.1 provides the control∫ t

0

e−(t−τ)|ζ(τ)|3 dτ ≤ 1

1− e−1
sup
T≥0

∫ T+1

T

|ζ(τ)|3 dτ ≤ C.

Accordingly,
|u(t)−B−1h− e−t(a−B−1h)|3 ≤ C,

yielding in turn, as A is bounded in V2,

|S(t)z + h⋆ − e−t(z + h⋆)|H2
≤ C.

Letting t → ∞ and appealing once more to the full invariance of the attractor, we
conclude that A⋆ is bounded in H2.

3.4 Regularity of the Attractor

The (optimal) regularity of the global attractor A is attained within a restriction on the
growth of g.

Theorem 3.4.1. Assume that p ≤ 4. Then the translate A⋆ of the global attractor is
bounded in H2.

The proof will be carried out in a number of lemmas. We preliminarily observe that,
due to Proposition 3.3.1, it suffices showing the boundedness of A in H1. To this aim,
calling as usual C ≥ 0 a generic constant depending only on A, let us consider an
arbitrary solution

S(t)z = {u(t), ut(t)} with z = {a, b} ∈ A,

which is known by Corollary 3.2.1 to satisfy uniformly in time

|u|1 + |ut|1 ≤ C. (3.4.1)

Then, we split u into the sum

u(t) = v(t) + w(t),

where v and w solve the Cauchy problems
vtt +Bv +Bvt + ϕ(ut)− ϕ(wt) + γ(v) = 0,

v(0) = a,

vt(0) = b,

(3.4.2)

and 
wtt +Bw +Bwt + ϕ(wt) + γ(u)− γ(v) = q,

w(0) = 0,

wt(0) = 0.

(3.4.3)
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Lemma 3.4.1. The uniform bound |v|1 + ∥vt∥ ≤ C holds, along with the integral
estimate ∫ ∞

0

|vt(t)|21 dt ≤ C. (3.4.4)

Proof. Multiplying (3.4.2) by 2vt, and using the monotonicity of ϕ, we obtain

d

dt

[
|v|21 + ∥vt∥2 + Γ0(v)

]
+ 2|vt|21 ≤ 0.

Recalling that Γ0(v) is positive, an integration over [0, t] gives

|v(t)|21 + ∥vt(t)∥2 + 2

∫ t

0

|vt(τ)|21 dτ ≤ C.

Since t > 0 is arbitrary, we are finished.

Collecting (3.4.1) and (3.4.4) we draw an immediate corollary.

Corollary 3.4.1. There is M =M(A) ≥ 0 such that, for any time T ≥ 1, the estimate

|wt(tT )|1 ≤M

occurs for some tT = tT (z) ∈ [T − 1, T ].

Lemma 3.4.2. The uniform bound |wt|1 ≤ C holds.

Proof. Arguing as in Lemma 2.6.2, we introduce the functional

Λ = |wt|21 + Φ0(wt) + 2(w,wt)1 + 2⟨γ(u)− γ(v), wt⟩+K

with K = K(A) > 0 large enough in order to have

|wt|21 ≤ 2Λ ≤ C
[
1 + |wt|61

]
.

Indeed, thanks to (3.4.1) and Lemma 3.4.1,

2
∣∣⟨γ(u)− γ(v), wt⟩

∣∣ ≤ 2∥γ(u)− γ(v)∥L6/5∥wt∥L6 ≤ 1

4
|wt|21 + C.

The product in H of (3.4.3) and 2wtt (cf. (2.3.8)) yields

d

dt
Λ + 2∥wtt∥2 = 2|wt|21 + 2⟨γ′(u)ut − γ′(v)vt, wt⟩+ 2⟨q, wtt⟩.

Appealing again to (3.4.1) and Lemma 3.4.1, and using the straightforward inequality

|wt|1 ≤ |vt|1 + |ut|1 ≤ |vt|1 + C,

the right-hand side is controlled by

2|wt|21 + 2
[
∥γ′(u)∥L3/2∥ut∥L6 + ∥γ′(v)∥L3/2∥vt∥L6

]
∥wt∥L6 + 2∥q∥∥wtt∥

≤ 2∥wtt∥2 + C|wt|21 + C|vt|1|wt|1 + C

≤ 2∥wtt∥2 + C|vt|21 + C.
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Therefore, we arrive at
d

dt
Λ ≤ C|vt|21 + C.

At this point, for every fixed T > 0, we integrate over [t, T ], for some positive t ≥ T−1.
By virtue of (3.4.4), this gives

|wt(T )|21 ≤ 2Λ(T ) ≤ C + 2Λ(t) ≤ C
[
1 + |wt(t)|61

]
.

If T ≤ 1 we choose t = 0, otherwise we choose t = tT as in Corollary 3.4.1. In either
case, the desired bound follows.

We subsume (3.4.1), Lemma 3.4.1 and Lemma 3.4.2 into the uniform estimate

|u|1 + |v|1 + |w|1 + |ut|1 + |vt|1 + |wt|1 ≤ C. (3.4.5)

We are now able to prove the (exponential) decay of the solutions to (3.4.2).

Lemma 3.4.3. There exists δ = δ(A) > 0 such that

|{v(t), vt(t)}|H ≤ Ce−δt.

Proof. With reference to equation (3.4.2), we introduce the family of functionals

Λε = Πε(v) + Γ0(v),

and we recast word by word the proof of Theorem 2.5.1 (with v in place of u), the only
differences here being that q = 0 and the term ϕ(ut) is replaced by ϕ(ut)−ϕ(wt). Then
we find the inequality

d

dt
Λε + εΛε +

1

2

[
ε|v|21 + 3|vt|21

]
+ 2⟨ϕ(ut)− ϕ(wt), vt⟩ ≤ −2ε⟨ϕ(ut)− ϕ(wt), v⟩.

The monotonicity of ϕ ensures that

2⟨ϕ(ut)− ϕ(wt), vt⟩ ≥ 0,

while using (3.4.5) we draw the estimate

−2ε⟨ϕ(ut)− ϕ(wt), v⟩ ≤ 2ε∥ϕ(ut)− ϕ(wt)∥L6/5∥v∥L6 ≤ Cε|vt|1|v|1.

It is readily seen that, up to fixing ε = ε(A) > 0 small enough, we arrive at

d

dt
Λε + εΛε ≤ 0,

and the Gronwall lemma together with (2.5.1) give the desired decay.

The growth bound p ≤ 4, not used so far, will play a role in the next lemma, where
we will need the inequality

∥γ(u)− γ(v)∥ ≤ C|w|
1
2
2 . (3.4.6)
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Indeed, if p ≤ 4, we can write

∥γ(u)− γ(v)∥ ≤ C
[
1 + ∥u∥3L6 + ∥v∥3L6

]
∥w∥L∞ ,

and the assertion follows from (3.4.5) and the Agmon inequality

∥w∥2L∞ ≤ cΩ∥w∥1∥w∥2,

where cΩ > 0 depending only on the three-dimensional domain Ω.

Lemma 3.4.4. We have the uniform bound

|{w(t), wt(t)}|H1
≤ C.

Proof. On account of (2.3.9)-(2.3.10), for every ε > 0 small the energy functional

Λε = Πε(A
1
2w)

fulfills
|{w,wt}|2H1

≤ 2Λε.

We take the product in H of (3.4.3) and 2Awt + 2εAw. Since the operators A and B
commute, by (2.3.11) and the monotonicity of ϕ, this gives

d

dt
Λε + εΛε +

1

2

[
ε|w|22 + 3|wt|22

]
≤ ⟨�w,Awt + εAw⟩+ 2⟨ϕ′(wt)∇wt,∇wt⟩

= 2⟨Q,Awt + εAw⟩ − 2ε⟨ϕ′(wt)∇wt,∇w⟩,

having set
Q = q − γ(u) + γ(v).

Exploiting (3.4.5) and (3.4.6), we derive the controls

2⟨Q,Awt + εAw⟩ ≤ C
[
1 + |w|

1
2
2

][
|wt|2 + ε|w|2

]
≤ Cε−

4
3 + Cε

4
3 |w|22 +

1

2
|wt|22,

and

−2ε⟨ϕ′(wt)∇wt,∇w⟩ ≤ Cε∥ϕ′(wt)∥L3/2∥∇wt∥L6∥∇w∥L6 ≤ Cε2|w|22 + |wt|22.

Therefore, once the parameter ε > 0 is fixed small enough, the right-hand side of the
differential inequality becomes less than

1

2

[
ε|w|22 + 3|wt|22

]
+ C,

so that
d

dt
Λε + εΛε ≤ C.

Since Λε(0) = 0, applying the standard Gronwall lemma we are led to

|{w(t), wt(t)}|2H1
≤ 2Λε(t) ≤ C.

Conclusion of the Proof of Theorem 3.4.1. Lemma 3.4.3 and Lemma 3.4.4 tell that
the solutions originating from A are uniformly attracted by a (proper) closed ball B of
H1 centered at zero. Since A is fully invariant, this means that A is contained in the
H-closure of B. But closed balls of H1 are closed in H as well, for H1 is reflexive.

36



CHAPTER4

Attractor for the SDNWE.
The Fully-Critical Case

4.1 Introduction

The aim of the present chapter is the longterm analysis of the strongly damped nonlinear
wave equation (2.1.1) where both the nonlinearities f and g exhibit a critical growth of
polynomial order 5. More precisely, we stipulate the following assumptions.

Hypotheses on f and g. Let f ∈ C1(R) and g ∈ C2(R), with f(0) = g(0) = 0, satisfy
for every s ∈ R and some c ≥ 0 the growth bounds

|f ′(s)| ≤ c+ c|s|4, (4.1.1)

|g′′(s)| ≤ c+ c|s|3, (4.1.2)

along with the dissipation conditions

inf
s∈R

f ′(s) = −λ > −λ1, (4.1.3)

lim inf
|s|→∞

g′(s) > −λ1. (4.1.4)

The dissipation condition for g is standard: roughly speaking, (4.1.4) tells that g is
essentially monotone at infinity. On the contrary, the more restrictive (4.1.3) implies
the essential monotonicity of f on the whole real line. In this chapter, assuming the
(strong) monotonicity of the damping operator

−∆ut + f(ut)

ensured by (4.1.3), we prove the existence of an exponential attractor of optimal reg-
ularity and, in turn, the one of the regular global attractor of finite fractal dimension.
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Still, the existence of exponential (or even global) attractors in the fully critical case
when (4.1.3) is replaced by weaker the dissipativity condition

lim inf
|s|→∞

f ′(s) > −λ1

remains an open (and possibly quite challenging) question.
In Section 4.2 we focus on the dynamical system and its dissipative properties, recall-

ing some results proved in Chapter 2. Section 4.3 is devoted to the main theorem on
the existence of global and exponential attractors whose proof is carried out in the last
Sections 4.4-4.6.

4.2 The Dissipative Dynamical System

We begin by reporting a generalized version of the Gronwall lemma (see [20, Lemma
2.1]).

Lemma 4.2.1. Setting R+
0 = [0,∞), let Λ : R+

0 → R+
0 be an absolutely continuous

function satisfying, for some ν > 0 and k ≥ 0, the inequality

d

dt
Λ(t) + 2νΛ(t) ≤ µ(t)Λ(t) + k,

where µ : R+ → R+ fulfills ∫ T

t

µ(τ) dτ ≤ ν(T − t) +m

for every T > t ≥ 0 and some m ≥ 0. Then

Λ(t) ≤ Λ(0)eme−νt +
kem

ν
.

For future use, we also recall the existence and uniqueness result.

Theorem 4.2.1. For every T > 0 and every initial datum z = {a, b} ∈ H, prob-
lem (2.1.1) admits a unique weak solution

u ∈ C([0, T ],H1) ∩ C1([0, T ],H) ∩W 1,2(0, T ; H1).

In addition, for any pair of initial data z1, z2 ∈ H, the difference of the corresponding
solutions ū(t) satisfies

∥{ū(t), ūt(t)}∥H ≤ CeCt∥z1 − z2∥H, (4.2.1)

for some constant C ≥ 0 depending (increasingly) only on the norms of z1, z2.

As a byproduct, (2.1.1) generates a dynamical system S(t) acting on the phase space

H = H1 × H,

defined by the rule
S(t)z = {u(t), ut(t)},

where u(t) is the solution at time t with initial data {u(0), ut(0)} = z.
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4.2.1 Dissipative estimates

In light of our purposes, it is convenient to consider the solutions to the more general
equation

utt + Aut + Au+ f(ut) + g(u) = q, (4.2.2)

with a time-dependent external source

q = q(x, t) : Ω× R+ → R.

One of the main theorems of Chapter 2 is the following.1

Theorem 4.2.2. Suppose q ∈ L∞(R+; H). Then the solution u to (4.2.2) with initial
data z ∈ H fulfills the dissipative estimate

∥{u(t), ut(t)}∥H ≤ I(∥z∥H)e−δt +R,

for some constants δ > 0, R ≥ 0 and some increasing function I : R+ → R+.

For the particular case q = h, Theorem 4.2.2 provides the existence of an (invariant)
absorbing set for S(t). Actually, an exploitation of the partially parabolic features of
the dynamical system provides the following more general result (Theorem 2.6.1).

Theorem 4.2.3. There exists an invariant absorbing set B0 such that

sup
t≥0

sup
z∈B0

[
∥ut(t)∥1 + ∥utt(t)∥+

∫ t+1

t

∥utt(τ)∥21 dτ
]
<∞.

In particular, B0 is bounded in V1.

Remark 4.2.1. Along the chapter, we will often make use without explicit mention of
the Sobolev embedding

Hs ⊂ L
6

3−2s (Ω), s ∈ [0, 3
2
),

as well as of the Hölder, Young and Poincaré inequalities. Besides, we will perform
formal energy-type estimates, justified in a proper Galerkin approximation scheme.

4.2.2 The dissipation integral

In what follows, C ≥ 0 will denote a generic constant depending only on the invariant
absorbing set B0 of Theorem 4.2.3. We define the functionals on H1

G(w) = 2

∫
Ω

∫ w(x)

0

g(y) dydx and Q(w) = 2⟨h,w⟩.

An exploitation of (4.1.3) allows us to obtain further information on the integrability of
the velocity field.

Lemma 4.2.2. We have the dissipation integral

sup
z∈B0

∫ ∞

0

∥ut(τ)∥21 dτ ≤ C.

1It is immediate to see that the proof of Theorem 2.5.1 is still valid replacing the time-independent forcing term
h with q ∈ L∞(R+; H).
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Proof. By (4.1.2), the functional

Λ = ∥ut∥2 + ∥u∥21 +G(u) +Q(u) +K

fulfills for K = K(B0) > 0 large enough the uniform controls

0 ≤ Λ ≤ C.

Taking product in H of (2.1.1) and 2ut and exploiting (4.1.3), we easily obtain

d

dt
Λ + ν∥ut∥21 ≤ 0

for some ν > 0. Integrating the last inequality over [0, t], we get∫ t

0

∥ut(τ)∥21dτ ≤ C,

and since t > 0 is arbitrary we are finished.

4.3 Global and Exponential Attractors

4.3.1 Statement of the result

The main result of the chapter reads as follows.

Theorem 4.3.1. The dynamical system S(t) on H admits an exponential attractor E
contained and bounded in V2.

In particular, S(t) is asymptotically compact, and an immediate corollary can be
drawn.

Corollary 4.3.1. There exists the global attractor A ⊂ E of the dynamical system S(t).
Accordingly,

dim f(A) ≤ dim f(E) <∞.

Remark 4.3.1. Since E is bounded in V2, arguing as in the previous chapter we can
actually deduce the boundedness in H2 of the translate

E⋆ = E+ h⋆,

where we set
h⋆ = {−A−1h, 0} ∈ H1.

4.3.2 Proof of Theorem 4.3.1

First, we establish three lemmas, whose proof will be given in the next sections.

Lemma 4.3.1. There exists a closed set B1 ⊂ H bounded in H1 such that

δH(S(t)B0,B1) ≤ C0e
−ω0t

for some C0 ≥ 0 and ω0 > 0, where B0 is the invariant absorbing set of Theorem 4.2.3.
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Lemma 4.3.2. There exists a closed invariant set B2 ⊂ H such that

sup
t≥0

sup
z∈B2

[
∥u(t)∥2 + ∥ut(t)∥2 + ∥utt(t)∥

]
<∞ (4.3.1)

and
δH(S(t)B1,B2) ≤ C1e

−ω1t

for some C1 ≥ 0 and ω1 > 0. In particular, B2 is bounded in V2.

Lemma 4.3.2 along with (4.2.1) provide an immediate corollary.

Corollary 4.3.2. For every T > 0, the map

(t, z) 7→ S(t)z

is Lipschitz continuous on [0, T ]× B2 into H, with a Lipschitz constant ℓ = ℓ(T ) > 0.

Lemma 4.3.3. There exists a compact invariant set E ⊂ H, with dim f(E) < ∞,
bounded in V2 such that

δH(S(t)B2,E) ≤ C2e
−ω2t

for some C2 ≥ 0 and ω2 > 0.

We now appeal to the transitivity property of exponential attraction devised in [28].

Lemma 4.3.4. Let B0,B1,B2 ⊂ H be such that

δH(S(t)B0,B1) ≤ C0e
−ω0t and δH(S(t)B1,B2) ≤ C1e

−ω1t

for some C0, C1 ≥ 0 and ω0, ω1 > 0. Assume also that for all z, ζ ∈
∪

t≥0 S(t)Bı

∥S(t)z − S(t)ζ∥H ≤ Keκt∥z − ζ∥H,

for some K ≥ 0 and κ > 0. Then

δH(S(t)B0,B2) ≤ Ce−ωt,

where C = KC0 + C1 and ω = ω0ω1

κ+ω0+ω1
.

In light of the above results and recalling (4.2.1), by applying twice Lemma 4.3.4 we
conclude that

δH(S(t)B0,E) ≤ Ce−ωt

for some C ≥ 0 and ω > 0. At this point, since B0 is absorbing, it is standard matter
verifying that

δH(S(t)B,E) ≤ I(∥B∥H)e−ωt

for every bounded set B ⊂ H and some increasing function I : R+ → R+.
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4.4 Proof of Lemma 4.3.1

We proceed through a number of steps. Exploiting an idea from [74], fixing θ > 0
suitably large we decompose the functions f and g as

f(s) = ϕ(s)− λs and g(s) = γ(s)− θs.

Due to (4.1.1)-(4.1.4), it is apparent that

0 ≤ ϕ′(s) ≤ c+ c|s|4, γ′(s) ≥ 0, |γ′′(s)| ≤ c+ c|s|3.

Introducing the positive functionals

Φ(u) = 2

∫
Ω

∫ u(x)

0

ϕ(y) dydx,

and

Γ(u) = 2

∫
Ω

∫ u(x)

0

γ(y) dydx,

we consider an arbitrary solution S(t)z = {u(t), ut(t)} with initial data z = {a, b} ∈
B0. Then, we write

u(t) = v(t) + w(t),

where v and w solve
vtt + Avt + Av + ϕ(ut)− ϕ(wt) + γ(u)− γ(w) = 0,

v(0) = a,

vt(0) = b,

(4.4.1)

and 
wtt + Awt + Aw + ϕ(wt) + γ(w) = q,

w(0) = 0,

wt(0) = 0,

(4.4.2)

with
q = λut + θu+ h.

Throughout this section, C ≥ 0 will denote a generic constant depending only on
B0. Following a standard approach (see e.g. [2, 49, 50, 91]), we will show that system
(4.4.1) is exponentially stable, whereas the solutions to (4.4.2) are uniformly bounded
in a more regular space.

Lemma 4.4.1. We have

sup
t≥0

[
∥w(t)∥1 + ∥wt(t)∥

]
≤ C.

Proof. We learn from Theorem 4.2.2 that q ∈ L∞(R+; H). Thus Theorem 4.2.2 applies
to system (4.4.2).
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Lemma 4.4.2. For every ν > 0 and every T > t ≥ 0,∫ T

t

∥wt(τ)∥21 dτ ≤ ν(T − t) +
C

ν
.

Proof. Arguing as in Lemma 4.2.2, we see that the functional

Λ = ∥wt∥2 + ∥w∥21 + Γ(w)− 2θ⟨u,w⟩ − 2⟨h,w⟩+K

satisfies for K = K(B0) > 0 large enough the uniform controls

0 ≤ Λ ≤ C.

Multiplying (4.4.2) by 2wt we obtain

d

dt
Λ + 2∥wt∥21 + 2⟨ϕ(wt), wt⟩ = 2λ⟨ut, wt⟩ − 2θ⟨ut, w⟩.

The monotonicity of ϕ gives
2⟨ϕ(wt), wt⟩ ≥ 0,

while, exploiting Lemma 4.4.1,

2λ⟨ut, wt⟩ − 2θ⟨ut, w⟩ ≤ C∥ut∥1.

Thus, for every ν > 0,
d

dt
Λ + 2∥wt∥21 ≤ ν +

C

ν
∥ut∥21,

and the claim is proven by integrating on [t, T ], on account of Lemma 4.2.2.

We subsume Lemma 4.2.2 and Lemma 4.4.2 into the integral bound∫ T

t

[
∥ut(τ)∥21 + ∥wt(τ)∥21

]
dτ ≤ ν(T − t) +

C

ν
(4.4.3)

for any T > t ≥ 0 and any ν > 0 small. The next lemma provides a regularization
estimate for wt.

Lemma 4.4.3. We have
sup
t≥0

∥wt(t)∥1 ≤ C.

Proof. By the positivity of Φ and Γ and the growth bounds of ϕ and γ, we infer that the
functional

Λ = ∥wt∥21 + 2⟨wt, w⟩1 + Φ(wt) + Γ(w) +K

satisfies, for K = K(B0) > 0 sufficiently large

∥wt∥21 ≤ 2Λ ≤ C
[
1 + ∥wt∥61

]
.

The product in H of (4.4.2) and 2wtt yields

d

dt
Λ + 2∥wtt∥2 = 2∥wt∥21 + ⟨γ′(w)wt, wt⟩+ 2⟨q, wtt⟩.
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The estimate

⟨γ′(w)wt, wt⟩+ 2⟨q, wtt⟩ ≤ C∥wt∥21 + ∥wtt∥2 + C

gives
d

dt
Λ ≤ C∥wt∥21 + C.

Thus, for every fixed T > 0, integrating over [t, T ] for some positive t ≥ T − 1 and
using Lemma 4.4.2, we arrive at

∥wt(T )∥21 ≤ 2Λ(T ) ≤ C + 2Λ(t) ≤ C
[
1 + ∥wt(t)∥61

]
.

If T ≤ 1 we choose t = 0. Otherwise we observe that, in view of Lemma 4.4.2, there
exists M =M(B0) ≥ 0 such that, for some tT ∈ [T − 1, T ],

∥wt(tT )∥1 ≤M.

Choosing t = tT the proof is over.

Lemma 4.4.4. There exists ω0 = ω0(B0) > 0 such that

∥{v(t), vt(t)}∥H ≤ Ce−ω0t.

Proof. Introduce the positive function

p =

∫ 1

0

γ′(su+ (1− s)w) ds

and observe that
γ(u)− γ(w) = vp.

Defining
P = ⟨vp, v⟩,

it follows from (2.3.10) and the positivity of P that the family of functionals

Λε = Πε(v) + P

satisfies, for ε > 0 sufficiently small,

∥v(t)∥21 + ∥vt(t)∥2 ≤ 2Λε ≤ 4Λ0. (4.4.4)

On the other hand, from the growth bound on γ, we obtain

Λ0 ≤ C
[
∥v(t)∥21 + ∥vt(t)∥2

]
. (4.4.5)

Multiplying (4.4.1) by 2vt + 2εv we infer that

⟨�v, vt + εv⟩+ 2⟨ϕ(ut)− ϕ(wt), vt⟩+ 2⟨vp, vt + εv⟩ = −2ε⟨ϕ(ut)− ϕ(wt), v⟩.

Exploiting the monotonicity of ϕ and (2.3.11) we get

d

dt
Λε + εΛε +

1

2

[
ε∥v∥21 + 3∥vt∥21

]
≤ ⟨pt, v2⟩ − 2ε⟨ϕ(ut)− ϕ(wt), v⟩.
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By the growth bound on γ, the function

pt =

∫ 1

0

γ′′(su+ (1− s)w) [sut + (1− s)wt] ds

fulfills
∥pt∥L3/2 ≤ C

[
∥ut∥1 + ∥wt∥1

]
.

Thus

⟨pt, v2⟩ ≤ C∥pt∥L3/2∥v∥21 ≤ C
[
∥ut∥1+ ∥wt∥1

]
∥v∥21 ≤

ε

4
∥v∥21+

C

ε

[
∥ut∥21+ ∥wt∥21

]
Λε.

Using Lemma 4.4.3 and the growth bound on ϕ, we deduce the control

−2ε⟨ϕ(ut)− ϕ(wt), v⟩ ≤ Cε∥vt∥1∥v∥1 ≤
ε

4
∥v∥21 +

3

2
∥vt∥21.

Therefore, we arrive at

d

dt
Λε + εΛε ≤ C

[
∥ut∥21 + ∥wt∥21

]
Λε.

In view of (4.4.3), an application of Lemma 4.2.1 together with (4.4.4)-(4.4.5) gives the
desired decay.

Lemma 4.4.5. We have the uniform bound

∥{w(t), wt(t)}∥H1 ≤ C.

Proof. By (2.3.10) and the monotonicity of γ, we see that the functional

Λε = Πε(A
1
2w) + 2⟨γ(w), Aw⟩

fulfills
∥{w(t), wt(t)}∥2H1

≤ 2Λε.

Taking the product in H of (4.4.2) and 2Awt+2εAw, exploiting (2.3.11) and the mono-
tonicity of ϕ, we obtain

d

dt
Λε + εΛε +

1

2

[
ε∥w∥22 + 3∥wt∥22

]
≤⟨�w,Awt + εAw⟩+ 2⟨γ(w), Awt + εAw⟩+ 2⟨γ′(w)wt, Aw⟩+ 2⟨ϕ′(wt)∇wt,∇wt⟩
=2⟨q, Awt + εAw⟩+ 2⟨γ′(w)wt, Aw⟩ − 2ε⟨ϕ′(wt)∇wt,∇w⟩.

We have
2⟨q, Awt + εAw⟩ ≤ C + ∥wt∥22 + ε2∥w∥22,

and
−2ε⟨ϕ′(wt)∇wt,∇w⟩ ≤ Cε2∥w∥22 +

1

2
∥wt∥22.

Furthermore, by the Agmon inequality,

2⟨γ′(w)wt, Aw⟩ ≤ C∥w∥22∥wt∥1.
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Chapter 4. Attractor for the SDNWE. The Fully-Critical Case

Thus, for a fixed ε > 0 sufficiently small,

d

dt
Λε + εΛε ≤ C∥wt∥1Λε + C. (4.4.6)

For every T > t ≥ 0, using Lemma 4.4.2 we estimate∫ T

t

∥wt(τ)∥1dτ ≤
√
T − t

(∫ T

t

∥wt(τ)∥21dτ
) 1

2

≤
√
T − t

(
ν(T − t) +

C

ν

) 1
2

≤
√
ν(T − t) +

C

ν
√
ν
.

In summary, for ν > 0 small enough,∫ T

t

∥wt(τ)∥1dτ ≤ ν(T − t) +
C

ν3
. (4.4.7)

Hence, choosing ν = ε
2
, applying Lemma 4.2.1 to (4.4.6) and noting that Λε(0) = 0,

we are finished.

Finally, we take a closed ball B1 of H1 centered at zero with radius sufficiently large
(i.e. larger than the C in the statement of Lemma 4.4.5). Then, collecting Lemma 4.4.4
and Lemma 4.4.5, the proof of Lemma 4.3.1 is completed.

4.5 Proof of Lemma 4.3.2

In this section, C ≥ 0 will stand for a generic constant depending only on B1.

Lemma 4.5.1. The following estimate holds:

sup
t≥0

sup
z∈B1

∥{u(t), ut(t)}∥H1 ≤ C.

Proof. Let u(t) be a solution of (2.1.1) with initial data z = {a, b} ∈ B1, and observe
that Lemma 4.4.3 and equation (4.4.7) remain true with u in place of w. Recasting the
proof of Lemma 4.4.5, we end up with an inequality analogous to (4.4.6). Since the
initial data belong to B1, we apply Lemma 4.2.1 and the desired estimate is drawn.

Next, calling te ≥ 0 the entering time of B1 into B0, we consider the invariant set

K =
∪
t≥te

S(t)B1 ⊂ B0.

The properties of the set K are summarized in the following lemma.

Lemma 4.5.2. We have

sup
t≥0

sup
z∈K

[
∥u(t)∥2 + ∥ut(t)∥2 + ∥utt(t)∥

]
≤ C.
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Proof. Take initial data z ∈ K. We know from Theorem 4.2.3 that utt ∈ L∞(R+; H).
Moreover, Lemma 4.5.1 tells that u ∈ L∞(R+; H2). Hence, for all t ≥ 0,

Aut(t) + ϕ(ut(t)) = h+ λut(t)− utt(t)− Au(t)− g(u(t)) ∈ H.

Exploiting the monotonicity of ϕ, we deduce that

2∥ut(t)∥22 ≤ 2∥ut(t)∥22 + 2⟨ϕ′(ut(t))∇ut(t),∇ut(t)⟩
= 2⟨Aut(t), Aut(t) + ϕ(ut(t))⟩ ≤ ∥ut(t)∥22 + C,

which yields the desired conclusion.

Finally, we define
B2 = KH

(closure in H).

By the continuity of S(t) in H and the invariance of K, we immediately get

S(t)B2 = S(t)KH ⊂ S(t)K
H
⊂ KH

= B2.

Thus, B2 is invariant. Moreover, B2 absorbs B1 by construction, and hence attracts B1

at an arbitrary rate ω1 > 0, up to choosing the constant C1 sufficiently large. We are
left to show (4.3.1). To this end, fixed any time t ≥ 0, take u(t) originating from initial
data z ∈ B2. Select a sequence

zn → z with zn ∈ K,

whose corresponding solution fulfills (up to a subsequence)

un → u weakly in H2,

where the identification of the limit is attained by exploiting the semigroup continuity.
Thus

∥u(t)∥2 ≤ lim inf
n→∞

∥un(t)∥2 ≤ C.

The remaining estimates for ut in L∞(R+; H2) and utt in L∞(R+; H) are similar. Fi-
nally, from (4.3.1) we learn that B2 is bounded in V2 and Lemma 4.3.2 is proven.

4.6 Proof of Lemma 4.3.3

In order to prove Lemma 4.3.3, we follow the standard abstract scheme described in
the final appendix (see Lemma A.1 and Theorem A.3). For every initial data z ∈ B2,
denote by L(t)z the solution at time t to the linear homogeneous problem{

utt + Aut + Au = 0,

(u(0), ut(0)) = z,

and let
K(t)z = S(t)z − L(t)z.
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Chapter 4. Attractor for the SDNWE. The Fully-Critical Case

Given two solutions

S(t)z1 = (u1(t), ∂tu1(t)) and S(t)z2 = (u2(t), ∂tu2(t))

originating from z1, z2 ∈ B2, we make the decomposition

S(t)z1 − S(t)z2 = (ū(t), ūt(t)) = (v̄(t), v̄t(t)) + (w̄(t), w̄t(t)),

where {
v̄tt + Av̄t + Av̄ = 0,

(v̄(0), v̄t(0)) = z1 − z2,
(4.6.1)

and {
w̄tt + Aw̄t + Aw̄ + f(∂tu1)− f(∂tu2) + g(u1)− g(u2) = 0,

(w̄(0), w̄t(0)) = 0.
(4.6.2)

Lemma 4.6.1. For every t > 0 sufficiently large, we have the estimate

∥{v̄(t), v̄t(t)}∥H ≤ ϑ∥z1 − z2∥H,

for some ϑ < 1.

Proof. Multiplying (4.6.1) by 2v̄t + 2εv̄ and exploiting (2.3.11), we find

d

dt
Πε(v̄) + εΠε(v̄) ≤ ⟨�v̄, v̄t + εv̄⟩ = 0.

Taking into account (2.3.10), the Gronwall lemma yields the exponential decay of the
linear semigroup generated by (4.6.1), which readily implies the claim.

In the sequel the generic constant C ≥ 0 will depend only on B2.

Lemma 4.6.2. The following inequality holds

∥{w̄(t), w̄t(t)}∥H1 ≤ CeCt∥z1 − z2∥H.

Proof. We consider, for ε > 0 small, the functional

Λε = Πε(A
1
2 w̄).

We take the product in H of (4.6.2) and 2Aw̄t + 2εAw̄. Using (2.3.11), we obtain

d

dt
Λε + εΛε +

1

2

[
ε∥w̄∥22 + 3∥w̄t∥22

]
≤ ⟨�w̄, Aw̄t + εAw̄⟩

= −2⟨f(∂tu1)− f(∂tu2), Aw̄t + εAw̄⟩
− 2⟨g(u1)− g(u2), Aw̄t + εAw̄⟩.

Due to (4.1.1) and the Agmon inequality,

∥f(∂tu1)− f(∂tu2)∥ ≤ C∥∂tu1 − ∂tu2∥.
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Thus
−2⟨f(∂tu1)− f(∂tu2), Aw̄t + εAw̄⟩ ≤ C∥ūt∥∥w̄t + εw̄∥2.

Moreover, by (4.1.2),

−2⟨g(u1)− g(u2), Aw̄t + εAw̄⟩ ≤ C∥ū∥1∥w̄t + εw̄∥2.

A final application of the Hölder inequality entails

d

dt
Λε + εΛε ≤ C

[
∥ū∥21 + ∥ūt∥2

]
.

Since Λε(0) = 0, applying (4.2.1) the Gronwall lemma and (2.3.10) we are finished.

At this point, for t⋆ > 0 sufficiently large, we set

L = L(t⋆) and K = K(t⋆).

In light of Lemmas 4.6.1-4.6.2, the assumptions (A.1) and (A.2) of Lemma A.1 in the
appendix are verified. This ensures the existence of a discrete exponential attractor
Ed ⊂ B2 for the discrete semigroup

S = S(t⋆).

Recalling Corollary 4.3.2, we learn from Theorem A.3 that

E =
∪

τ∈[0,t⋆]

S(τ)Ed ⊂ B2

is an exponential attractor for the semigroup S(t) on B2. The proof of Lemma 4.3.3 is
over.
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CHAPTER5

Attractor for the SDNWE.
The Subcritical-Critical Case

5.1 Introduction

We begin by summarizing the results obtained in Chapters 3 and 4. We have analyzed
the nonlinear strongly damped wave equation

utt −∆ut −∆u+ f(ut) + g(u) = h (5.1.1)

on a bounded smooth domain Ω ⊂ R3. The asymptotic properties of the semigroup
generated by (5.1.1) in the presence of a linear (or at most sublinear) f have been
studied by many authors. On the contrary, the analysis in the case of a superlinear
f , which introduces highly non trivial technical difficulties due to the simultaneous
interaction between two nonlinearities, is far from being completely exhaustive. We
focused on two challenging situations: the critical-subcritical case{

|f ′(s)| ≤ c+ c|s|4,
|g′(s)| ≤ c+ c|s|p−1, p < 5,

(5.1.2)

and the fully critical case {
|f ′(s)| ≤ c+ c|s|4,
|g′(s)| ≤ c+ c|s|4.

(5.1.3)

Case (5.1.2) has been investigated in Chapter 3, where the existence of the global attrac-
tor is proved. Moreover, exploiting a suitable decomposition of the semigroup and un-
der the additional hypothesis p ≤ 4, the (optimal) regularity of the attractor is reached.
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The fully critical situation (5.1.3) has been studied in Chapter 4 within the stronger
dissipativity assumption

inf
s∈R

f ′(s) = −λ > −λ1.

This hypothesis furnishes the dissipation integral∫ ∞

0

∥∇ut(τ)∥2 dτ <∞,

and the existence of an exponential attractor of optimal regularity (and then the one of
a regular global attractor of finite fractal dimension) can be proved. The aim of this
chapter is to analyze the subcritical-critical situation. More precisely, we stipulate the
following hypothesis.

Assumptions on f . We suppose that f ∈ C1(R), with f(0) = 0, satisfies for every
s ∈ R and some c ≥ 0 the subcritical growth bound

|f ′(s)| ≤ c+ c|s|r−1, r ∈ [1, 5), (5.1.4)

along with the dissipation condition

lim inf
|s|→∞

f ′(s) > −λ1. (5.1.5)

Assumptions on g. We suppose that g ∈ C1(R), with g(0) = 0, satisfies for every
s ∈ R and some c ≥ 0 the critical growth bound

|g′(s)| ≤ c+ c|s|4, (5.1.6)

along with the dissipation conditions

lim inf
|s|→∞

g(s)

s
> −λ1, (5.1.7)

lim inf
|s|→∞

sg(s)− c1
∫ s

0
g(y)dy

s2
> −λ1

2
, (5.1.8)

for some c1 > 0.

Hypotheses (5.1.7)-(5.1.8) are verified in one shot if g satisfies the stronger dissipa-
tivity assumption

lim inf
|s|→∞

g′(s) > −λ1.

Moreover, without loss of generality, we may suppose c1 = 1 in (5.1.8). Although, in
principle, the critical growth on f is harder to treat than the one of g, the very same
method used in Chapter 3 does not seem to work. In particular, the study of the regu-
larity of the attractor requires a bootstrap procedure, contrary to Chapter 3 where the
regularity is attained in one step. Thus, the techniques of the present chapter are com-
pletely different and specifically tailored for this subcritical-critical situation.

The remaining part of the chapter is organized as follows. In the next Section 5.2 we
state and demonstrate the existence of the global attractor, whose optimal regularity is
proved in the subsequent Section 5.3.
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5.2. The Global Attractor

5.2 The Global Attractor

Let us introduce some notation. For an arbitrary Banach space X and r ≥ 0, we define
the (closed) ball

BX (r) = {x ∈ X : ∥x∥X ≤ r}.

We also denote by I and D the set of continuous increasing functions J : R+ → R+ and
the set of continuous decreasing functions β : R+ → R+ with β(∞) < 1, respectively.
We also recall that, in light of Lemmas 2.3.1 and 2.3.2, for every fixed λ < λ1 we can
decompose

f(s) = ϕ(s)− λs+ ϕc(s)

and
g(s) = γ(s)− λs+ γc(s)

for some ϕ, ϕc ∈ C1(R) and γ, γc ∈ C1(R), satisfying the following properties:

• ϕc and γc are compactly supported, with ϕc(0) = γc(0) = 0;

• ϕ vanish inside [−1, 1] and fulfills for some c ≥ 0 and every s ∈ R the bounds

0 ≤ ϕ′(s) ≤ c|s|r−1;

• γ vanish inside [−1, 1] and fulfills for some c ≥ 0 and every s ∈ R the bounds

|γ′(s)| ≤ c|s|4,

and
0 ≤ Γ(s) ≤ sγ(s), (5.2.1)

where Γ(s) =
∫ s

0
γ(y) dy.

Accordingly, we rewrite (5.1.1) as

utt +But +Bu+ ϕ(ut) + γ(u) = q, (5.2.2)

where
q = h− ϕc(ut)− γc(u) ∈ L∞(R+; H)

and
B = A− λI with dom(B) = dom(A)

is a positive operator commuting with A. In particular, the bilinear form

(w, v)σ = ⟨w,A−1Bv⟩σ = ⟨w, v⟩σ − λ⟨w, v⟩σ−1

defines an equivalent inner product on the space Hσ, with induced norm | · |σ. Finally,
for further use, we report some estimates involving the linear part of (5.2.2) (cf. (2.3.10)
and (2.3.11)). Given a vector-valued function w = w(t) as regular as needed, we define

�w = 2wtt + 2Bwt + 2Bw,
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and we introduce the family of functionals depending on ε ≥ 0

Πε(w) = (1 + ε)|w|21 + ∥wt∥2 + 2ε⟨wt, w⟩.

By direct calculations, the inequalities

Π0(w) ≤ 2Πε(w) ≤ 4Π0(w) (5.2.3)

and

d

dt
Πε(A

s
2w) + εΠε(A

s
2w) +

ε

2
|w|21+s +

3

2
∥wt∥21+s ≤ ⟨�w,Aswt + εAsw⟩ (5.2.4)

hold for every ε > 0 sufficiently small and every s ∈ R.
We now state and prove one of the main results of the chapter.

Theorem 5.2.1. The dynamical system S(t) : H → H1 possesses a (connected) global
attractor A such that

sup
t≥0

sup
z∈A

[
|ut(t)|1 + ∥utt(t)∥

]
<∞. (5.2.5)

In particular, A is bounded in V1.

With reference to Theorem 4.2.3, along the section C ≥ 0 stands for a generic
constant depending only on the invariant absorbing set B0. For every initial data
z = {a, b} ∈ B0, we consider an arbitrary solution

S(t)z = {u(t), ut(t)}

and we split
u(t) = v(t) + w(t),

where v and w solve the Cauchy problems
vtt +Bvt +Bv + γ(v) = 0,

v(0) = a,

vt(0) = b,

(5.2.6)

and 
wtt +Bwt +Bw + ϕ(ut) + γ(u)− γ(v) = q,

w(0) = 0,

wt(0) = 0.

(5.2.7)

We first show the (uniform) exponential decay of the solutions to (5.2.6).

Lemma 5.2.1. There exists δ = δ(B0) > 0 such that

|{v(t), vt(t)}|H ≤ Ce−δt.

1We recall that, according to Theorem 2.4.1, equation (5.2.2) generates a dynamical system S(t) acting on the
phase space H.
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Proof. Denoting
Γ0(v) = 2⟨Γ(v), 1⟩,

due to (5.2.1) and (5.2.3) the family of functionals

Λε = Πε(v) + Γ0(v)

fulfills, for every ε > 0 small,

Π0(v) ≤ Λ0 ≤ 2Λε ≤ 4Λ0. (5.2.8)

On the other hand, from the growth bound on γ we infer the control

Λ0 ≤ cΠ0(v)
[
1 + Π0(v)

2
]
, c ≥ 1. (5.2.9)

Taking the product in H of (5.2.6) and 2vt + 2εv we obtain

⟨�v, vt + εv⟩+ d

dt
Γ0(v) + 2ε⟨γ(v), v⟩ = 0.

Thus, applying (5.2.4) with s = 0 and (5.2.1)

d

dt
Λε + εΛε ≤ 0,

and the Gronwall lemma together with (5.2.8) and (5.2.9) give the desired decay.

Next, we define the number

κ = min{1
4
, 5−r

2
} > 0, (5.2.10)

and we prove a time-dependent bound of the solutions to (5.2.7).

Lemma 5.2.2. There exists a function J ∈ I such that

|{w(t), wt(t)}|Hκ
≤ J(t).

Proof. Multiplying (5.2.7) by 2Aκwt we obtain

d

dt
Π0(A

κ
2 w) + 2|wt|21+κ = −2⟨ϕ(ut), Aκwt⟩+ 2⟨γ(v)− γ(u), Aκwt⟩+ 2⟨q, Aκwt⟩.

Exploiting Theorem 4.2.3, Lemma 5.2.1 and the growth bounds on ϕ and γ we derive
the controls

−2⟨ϕ(ut), Aκwt⟩ ≤ C∥ut∥rL6r/(5−2κ)∥wt∥1+κ ≤ C∥ut∥rL6∥wt∥1+κ ≤ C +
1

2
|wt|21+κ

and

2⟨γ(v)− γ(u), Aκwt⟩ ≤ C
[
∥v∥4L6 + ∥u∥4L6

]
∥w∥L6/(1−2κ)∥wt∥1+κ

≤ C|w|1+κ|wt|1+κ ≤ C Π0(A
κ
2 w) +

1

2
|wt|21+κ.
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Moreover,

2⟨q, Aκwt⟩ ≤ C∥wt∥1+κ ≤ C +
1

2
|wt|21+κ.

Therefore, we end up with

d

dt
Π0(A

κ
2 w) ≤ C Π0(A

κ
2 w) + C,

and the Gronwall lemma completes the proof.

Proof of Theorem 5.2.1. In light of Lemma 5.2.1 and Lemma 5.2.2 we infer that

lim
t→∞

[
δH(S(t)B, C(t))

]
= 0,

where, for every fixed t, C(t) is a bounded subset of Hκ b H. Thus, the existence of
the global attractor A is proved. Moreover, since A is fully invariant, it is contained
in every absorbing set and then the uniform bound (5.2.5) follows immediately from
Theorem 4.2.3.

5.3 Regularity of the Attractor

In this section, we prove the optimal regularity of the global attractor A.

Theorem 5.3.1. The global attractor A of the dynamical system S(t) is bounded in V2.

The proof of Theorem 5.3.1, carried out with a bootstrap procedure, relies on two
lemmas. The first Lemma 5.3.1 is a technical result necessary to apply the bootstrap-
ping argument contained in the subsequent Lemma 5.3.2.

Throughout the section, we set κ as in (5.2.10).

Lemma 5.3.1. The global attractor A is bounded in V1+κ.

Proof. In what follows, C, δ > 0 and J ∈ I will denote generic constants and a
generic function, respectively, depending only on the invariant absorbing set B0 of
Theorem 4.2.3. We divide the proof in two steps. First, we prove that A is bounded in
Hκ; subsequently, we show the boundedness of A in V1+κ.

Step 1. Our aim is to apply the abstract Theorem A.4 reported in the final appendix
with V = Hκ. Denote r = ∥B0∥H and take z ∈ B0. For x ∈ BH(r) and y ∈ Hκ such
that x+ y = z, we define

Vz(t)x = (v̂(t), v̂t(t)) and Uz(t)y = (ŵ(t), ŵt(t)),

where v̂(t) and ŵ(t) solve {
v̂tt +Bv̂t +Bv̂ + γ(v̂) = 0,

v̂(0) = x,

and {
ŵtt +Bŵt +Bŵ + ϕ(ut) + γ(u)− γ(v̂) = q,

ŵ(0) = y.
(5.3.1)
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Assumption (i) of Theorem A.4 holds by construction, while (ii) follows easily re-
casting the proof of Lemma 5.2.1. It remains to verify (iii). Taking the product in H
of (5.3.1) and 2Aκŵt + 2εAκŵ and using (5.2.4) we obtain

d

dt
Πε(A

κ
2 ŵ) + εΠε(A

κ
2 ŵ) +

ε

2
|ŵ|21+κ +

3

2
∥ŵt∥21+κ

≤ ⟨�ŵ, Aκŵt + εAκŵ⟩
= −2⟨ϕ(ut), Aκŵt + εAκŵ⟩+ 2⟨Q,Aκŵt + εAκŵ⟩,

having set Q = q+ γ(v̂)− γ(u). In light of Theorem 4.2.3 and the growth bound on ϕ,
we estimate

−2⟨ϕ(ut), Aκŵt + εAκŵ⟩ ≤C∥ut∥rL6r/(5−2κ)

[
∥Aκŵt∥L6/(1+2κ) + ε∥Aκŵ∥L6/(1+2κ)

]
≤C∥ut∥rL6

[
∥ŵt∥1+κ + ε∥ŵ∥1+κ

]
≤1

2
∥ŵt∥21+κ +

ε

4
|ŵ|21+κ + C.

Next, we compute

|Q| ≤ |q|+ |γ(v̂)− γ(u)| ≤ |q|+ C|ŵ|
[
|v̂|+ |u|

]4
≤ |q|+ C|ŵ|

[
|v̂|+ |v|

]4
+ C|w|4

[
|u|+ |v̂|

]
.

Thus, exploiting the growth bound on γ

2⟨Q,Aκŵt + εAκŵ⟩

≤ C
[
1 + ∥ŵ∥L6/(1−2κ)

[
∥v̂∥L6 + ∥v∥L6

]4
+ ∥w∥4L24/(4−2κ)

[
∥u∥L6 + ∥v̂∥L6

]]
·
[
∥ŵt∥1+κ + ε∥ŵ∥1+κ

]
.

Appealing to Lemma 5.2.1, we infer

∥ŵ∥L6/(1−2κ)

[
∥v̂∥L6 + ∥v∥L6

]4 ≤ Ce−δt|ŵ|1+κ

and
∥w∥4L24/(4−2κ)

[
∥u∥L6 + ∥v̂∥L6

]
≤ C|w|41+κ.

In summary, applying also Lemma 5.2.2, the right-hand side is controlled by

Ce−δt|ŵ|21+κ + J(t) +
1

2
∥ŵt∥21+κ +

ε

4
|ŵ|21+κ,

and we end up with

d

dt
Πε(A

κ
2 ŵ) + εΠε(A

κ
2 ŵ) ≤ Ce−δt Πε(A

κ
2 ŵ) + J(t).

An application of the standard Gronwall lemma together with (5.2.3) provides the esti-
mate (iii). Therefore, invoking Theorem A.4, we conclude that the global attractor A is
bounded in Hκ.
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Step 2. Once the regularity in Hκ is established, choose an arbitrary initial data
z = {a, b} ∈ A. Theorem 5.2.1 yields

sup
t≥0

[
|u(t)|1+κ + |ut(t)|1 + ∥utt(t)∥

]
≤ C, (5.3.2)

where C ≥ 0 this time depends only on A. Then, we write equation (5.2.2) as

But = −utt −Bu− ϕ(ut)− γ(u) + q,

and we multiply by Aκut to get

|ut|21+κ = −⟨utt +Bu,Aκut⟩ − ⟨ϕ(ut) + γ(u)− q, Aκut⟩.

From (5.3.2) and the growth bounds on ϕ and γ we derive the controls

−⟨utt +Bu,Aκut⟩ ≤ C|ut|1+κ ≤ 1

4
|ut|21+κ + C,

and

−⟨ϕ(ut) + γ(u)− q, Aκut⟩ ≤C
[
1 + ∥ut∥rL6r/(5−2κ) + ∥u∥5L30/(5−2κ)

]
∥ut∥1+κ

≤C|ut|1+κ ≤ 1

4
|ut|21+κ + C,

so that
sup
t≥0

|ut(t)|1+κ ≤ C. (5.3.3)

Collecting estimates (5.3.2)-(5.3.3) and exploiting the fully invariance of A, the proof
of Lemma 5.3.1 is finished.

Lemma 5.3.2. Let s ∈ [κ, 1] be given and set

ℓ = min{κ, 1− s}.

The following implication holds

A bounded in V1+s ⇒ A bounded in V1+s+ℓ.

Proof. We consider an arbitrary solution

S(t)z = u(t) with z = {a, b} ∈ A,

and we make the decomposition

u(t) = v(t) + w(t)

where 
vtt +Bvt +Bv = 0,

v(0) = a,

vt(0) = b,

(5.3.4)
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5.3. Regularity of the Attractor

and 
wtt +Bwt +Bw + ϕ(ut) + γ(u) = q,

w(0) = 0,

wt(0) = 0.

(5.3.5)

Along the proof, the generic constant C ≥ 0 depends only on A. Multiplying (5.3.4)
by 2vt + 2εv and using (5.2.4) we find

d

dt
Πε(v) + εΠε(v) ≤ ⟨�v, vt + εv⟩ = 0.

Thus, taking into account (5.2.3), an application of the Gronwall lemma gives

|{v(t), vt(t)}|H ≤ Ce−νt, (5.3.6)

for some ν = ν(A) > 0. Then, we multiply (5.3.5) by 2As+ℓwt +2εAs+ℓw. Appealing
to (5.2.4) we obtain

d

dt
Πε(A

s+ℓ
2 w) + εΠε(A

s+ℓ
2 w) +

ε

2
|w|21+s+ℓ +

3

2
∥wt∥21+s+ℓ

≤ ⟨�w,As+ℓwt + εAs+ℓw⟩
= −2⟨ϕ(ut) + γ(u), As+ℓwt + εAs+ℓw⟩+ 2⟨q, As+ℓwt + εAs+ℓw⟩.

Exploiting the growth bounds on ϕ and γ we estimate

−2⟨ϕ(ut) + γ(u), As+ℓwt + εAs+ℓw⟩ ≤ C
[
∥ut∥rL6r/(5−2(s+ℓ)) + ∥u∥5L30/(5−2(s+ℓ))

]
·
[
∥As+ℓwt∥L6/(1+2(s+ℓ)) + ε∥As+ℓw∥L6/(1+2(s+ℓ))

]
.

If s < 1
2
, using the Sobolev embedding

H1+s ⊂ L
6

1−2s (Ω), s ∈ [0, 1
2
)

we have[
∥ut∥rL6r/(5−2(s+ℓ)) + ∥u∥5L30/(5−2(s+ℓ))

]
≤ C

[
∥ut∥rL6/(1−2s) + ∥u∥5L6/(1−2s)

]
≤ C

[
∥ut∥r1+s + ∥u∥51+s

]
≤ C.

If s ≥ 1
2
, we still have[

∥ut∥rL6r/(5−2(s+ℓ)) + ∥u∥5L30/(5−2(s+ℓ))

]
≤ C,

by means of the continuous embedding

H1+s ⊂ Lp(Ω), 1 ≤ p <∞.

In both cases we infer

−2⟨ϕ(ut) + γ(u), As+ℓwt + εAs+ℓw⟩ ≤ C
[
∥wt∥1+s+ℓ + ε∥w∥1+s+ℓ

]
≤ 1

2
∥wt∥21+s+ℓ +

ε

4
|w|21+s+ℓ + C.
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Moreover,

2⟨q, As+ℓwt + εAs+ℓw⟩ ≤ C
[
∥wt∥1+s+ℓ + ε∥w∥1+s+ℓ

]
≤ 1

2
∥wt∥21+s+ℓ +

ε

4
|w|21+s+ℓ + C,

and we end up with
d

dt
Πε(A

s+ℓ
2 w) + εΠε(A

s+ℓ
2 w) ≤ C.

Therefore, applying the Gronwall lemma and (5.2.3) we obtain

|{w(t), wt(t)}|Hs+ℓ
≤ C. (5.3.7)

From (5.3.6) and (5.3.7) we learn that the solutions originating from A are attracted by
a proper closed ball B of Hs+ℓ centered at zero. Since A is fully invariant this implies
that A is contained in the H-closure of B and thus it is bounded in Hs+ℓ. Besides,
from (5.2.5), we establish the uniform control

sup
t≥0

sup
z∈A

[
|u(t)|1+s+ℓ + |ut(t)|1+s + ∥utt(t)∥

]
<∞. (5.3.8)

At this point, for initial data z = {a, b} ∈ A, we rewrite equation (5.2.2) as

But = −utt −Bu− ϕ(ut)− γ(u) + q.

Multiplying by As+ℓut we infer

|ut|21+s+ℓ = −⟨utt +Bu,As+ℓut⟩ − ⟨ϕ(ut) + γ(u)− q, As+ℓut⟩.
Exploiting (5.3.8) and the growth bounds on ϕ and γ we have

−⟨utt +Bu,As+ℓut⟩ ≤ C|ut|1+s+ℓ ≤
1

4
|ut|21+s+ℓ + C,

and

−⟨ϕ(ut) + γ(u)− q, As+ℓut⟩ ≤ C
[
1 + ∥ut∥rL6r/(5−2(s+ℓ)) + ∥u∥5L30/(5−2(s+ℓ))

]
∥ut∥1+s+ℓ.

As before, if s < 1
2

we estimate[
∥ut∥rL6r/(5−2(s+ℓ)) + ∥u∥5L30/(5−2(s+ℓ))

]
≤ C

[
∥ut∥r1+s + ∥u∥51+s

]
≤ C,

whereas if s ≥ 1
2

we still estimate[
∥ut∥rL6r/(5−2(s+ℓ)) + ∥u∥5L30/(5−2(s+ℓ))

]
≤ C,

and we are led to

−⟨ϕ(ut) + γ(u)− q, As+ℓut⟩ ≤ C|ut|1+s+ℓ ≤
1

4
|ut|21+s+ℓ + C.

In conclusion
sup
t≥0

|ut(t)|1+s+ℓ ≤ C,

and we are finished.

Conclusion of the Proof of Theorem 5.3.1. From Lemma 5.3.1 we readily infer that
A is bounded in V1+κ. Thus, applying Lemma 5.3.2 starting from s = κ, it is apparent
that after a finite number of steps we get that A is bounded in V2. This completes the
argument.
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CHAPTER6

Thermoelastic Extensible Beams
and Berger Plates

6.1 Introduction

Let H be a real Hilbert space with inner product and norm ⟨·, ·⟩ and ∥ · ∥, respectively,
and let

A : D(A) b H → H

be a strictly positive linear operator with domain D(A) compactly embedded into H .
We consider for t > 0 the evolution system in the unknowns u = u(t) and α = α(t)

ü+ ωAü+ A2u+ f(∥A 1
2u∥2)Au− Aα̇ = g,

α̈ + Aα+

∫ ∞

0

µ(s)A[α(t)− α(t− s)] ds+ Au̇ = 0,
(6.1.1)

where u(0), u̇(0), α(0) and α̇(0), as well as the past history α(−s) of the variable α
appearing in the convolution integral are understood to be assigned data of the problem,
whereas ω > 0 is a fixed parameter.

The following general assumptions on the constitutive terms are made:
• The function g ∈ H is independent of time.
• The convolution kernel µ is a summable nonincreasing piecewise absolutely contin-
uous function on R+ = (0,∞) subject to the normalization conditions∫ ∞

0

µ(s) ds =

∫ ∞

0

sµ(s) ds = 1 (6.1.2)

and whose discontinuity points (if any) form an increasing sequence {sn}n≥1.
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Chapter 6. Extensible Beams and Berger Plates

• The nonlinear map f ∈ C1(R+
0 ) fulfills for every x ≥ 0

f(x)x ≥ −a0x+ b0 (6.1.3)

for some b0 ∈ R and a0 < λ1, where

λ1 = min
0 ̸=u∈D(A)

∥Au∥
∥u∥

> 0

is the first eigenvalue of the operator A. Accordingly, the primitive

F (x) =

∫ x

0

f(y) dy

is readily seen to satisfy the inequality

F (x) ≥ −ax+ b (6.1.4)

for some b ∈ R and a0 < a < λ1.

Remark 6.1.1. As detailed in the introduction of the thesis, system (6.1.1) can be
viewed as an abstract version of an evolution model describing the vibrations of ther-
moelastic beams and plates, corresponding to the choice H = L2(Ω), f(x) = x + b
and

A = −∆, D(A) = H2(Ω) ∩H1
0 (Ω),

for some bounded smooth domain Ω ⊂ Rn (n = 1, 2).

Since the seminal work of Woinowsky-Krieger [93], nonlinear evolution systems
modeling thermoelastic beams or plates, within different types of heat conduction laws,
have been widely investigated (see e.g. [5,16,23,38,78] and references therein). In [23],
in place of the classical Fourier law, the authors consider the type III heat conduction
law proposed by Green and Naghdi. More specifically, they study the system{

ü+ A2u+ (b+ ∥A 1
2u∥2)Au− Aα̇ = g,

α̈ + Aα+ Aα̇ + Au̇ = 0,
(6.1.5)

where the dissipation is entirely contributed by the second equation ruling the evolution
of the thermal displacement α. When dealing with models of this kind, one difficulty
lies in the fact that the mechanical component does not cause any loss of energy, which
renders the asymptotic analysis nontrivial.

The main focus of the first part of this chapter (from Section 6.2 to Section 6.10) is the
longtime behavior of the solution semigroup generated by (6.1.1), which can be viewed
as a memory relaxation of system (6.1.5). In particular, the dissipation mechanism is
only thermal and merely due to the convolution (or memory) integral, without any
additional instantaneous dissipative term. We prove the existence of the regular global
attractor for the associated semigroup in the natural weak energy space, provided that
µ satisfies a suitable decay assumption (see (6.4.1) below). The strategy is based on the
existence of a Lyapunov functional, which reflects the gradient system structure of the
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problem, along with the exploitation of certain dissipation integrals and sharp energy
estimates.

As already said in the introduction of the thesis, from the physical viewpoint it is
also relevant to neglect the rotational inertia term ωAü appearing in the first equation
of (6.1.1). Accordingly, in the second part of the chapter (from Section 6.11 to Section
6.14) we study the corresponding linear homogeneous system with ω = 0, i.e.

ü+ A2u− Aα̇ = 0,

α̈ + Aα+

∫ ∞

0

µ(s)A[α(t)− α(t− s)] ds+ Au̇ = 0,
(6.1.6)

along with the limit situation without memory{
ü+ A2u− Aα̇ = 0,

α̈ + Aα+ Aα̇ + Au̇ = 0.
(6.1.7)

Our main results are the lack of exponential stability of the solution semigroup gener-
ated by system (6.1.6), and the exponential stability of the one associated with (6.1.7)
(see Theorems 6.13.1 and 6.14.1). This witnesses that the dissipation mechanism of
system (6.1.1), entirely contributed by the memory, is extremely weak and hence it is
hard to obtain stabilization properties. Actually, the two liner systems above will be
studied in a more general form, with a coupling term depending on a real parameter
σ ≤ 3

2
.

6.2 Functional Setting and Notation

Analogously to Chapter 2, for r ∈ R, we define the compactly nested family of Hilbert
spaces (r will be always omitted whenever zero)

Hr = D(A
r
2 ), ⟨u, v⟩r = ⟨A

r
2u,A

r
2v⟩, ∥u∥r = ∥A

r
2u∥.

For r > 0, it is understood that H−r denotes the completion of the domain, so that H−r

is the dual space of Hr. Accordingly, the symbol ⟨·, ·⟩ also stands for duality product
between Hr and H−r, and we have the generalized Poincaré inequalities

λ1∥u∥2r ≤ ∥u∥2r+1, ∀u ∈ Hr+1.

These inequalities, as well as the Hölder and the Young inequalities, will be tacitly used
several times in what follows. Next, we introduce the so-called memory spaces

Mr = L2
µ(R+;Hr+1)

endowed with the weighted L2-inner products (again, we will write M in place of M0)

⟨η, ξ⟩Mr =

∫ ∞

0

µ(s)⟨η(s), ξ(s)⟩r+1 ds.

The infinitesimal generator of the right-translation semigroup on M is the linear oper-
ator

Tη = −Dη, with domain D(T ) =
{
η ∈ M : Dη ∈ M, η(0) = 0

}
,
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Chapter 6. Extensible Beams and Berger Plates

where D stands for weak derivative, whereas η(0) = 0 means

lim
s→0

η(s) = 0 in H1.

Denoting by
µn = µ(s−n )− µ(s+n ) ≥ 0

the jumps of µ at the points s = sn, for every η ∈ D(T ) we define the nonnegative
functional

Γ[η] = −
∫ ∞

0

µ′(s)∥η(s)∥21 ds+
∑
n

µn∥η(sn)∥21.

An integration by parts together with a limiting argument yield the equality (see [11,
41, 69])

2⟨Tη, η⟩M = −Γ[η]. (6.2.1)

In order to simplify the calculations, we consider the strictly positive operator

B = I + ωA, with domain D(B) = D(A).

The operator B commutes with A and the bilinear form

(u, v)r = ⟨Bu, v⟩r−1 = ⟨A
r−1
2 B

1
2u,A

r−1
2 B

1
2v⟩

defines an equivalent inner product on the space Hr with induced norm

|u|2r = ∥u∥2r−1 + ω∥u∥2r.
In light of the Poincaré inequality, | · |r turns out to be an equivalent norm on the space
Hr. Accordingly,

(η, ξ)Mr =

∫ ∞

0

µ(s)(η(s), ξ(s))r+1 ds

gives rise to an equivalent inner product on the memory space Mr, with corresponding
norm | · |Mr . Finally, we introduce the phase spaces

Hr = Hr+2 ×Hr+1 ×Hr+1 ×Hr ×Mr

endowed with the norms

∥(u0, u1, α0, α1, η0)∥2Hr = ∥u0∥2r+2 + |u1|2r+1 + ∥α0∥2r+1 + ∥α1∥2r + ∥η0∥2Mr .

We conclude the section by recalling a generalized version of the Gronwall lemma
(cf. Lemma 4.2.1).

Lemma 6.2.1. Let Λ : R+
0 → R+

0 be an absolutely continuous function satisfying for
some κ > 0 and almost every t the inequality

d

dt
Λ(t) + 2κΛ(t) ≤ ψ(t)Λ(t),

where ψ : R+
0 → R+

0 fulfills ∫ t

τ

ψ(y) dy ≤ κ(t− τ) +m

for every t > τ ≥ 0 and some m ≥ 0. Then

Λ(t) ≤ Λ(0)eme−κt.
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6.3 The Solution Semigroup

In this section, we study the well-posedness of system (6.1.1) in the phase space H.

6.3.1 The past history formulation

An effective way to deal with the nonlocal character of equations with memory is trans-
lating the problem in the history space framework of Dafermos [25]. To this end, setting
formally for t ≥ 0 and s > 0

ηt(s) = α(t)− α(t− s), (6.3.1)

we rewrite system (6.1.1) as
Bü+ A2u+ f(∥u∥21)Au− Aα̇ = g,

α̈ + Aα +

∫ ∞

0

µ(s)Aη(s) ds+ Au̇ = 0,

η̇ = Tη + α̇.

(6.3.2)

Thanks to the introduction of the auxiliary variable ηt, containing the information on
the past history of α, we reduce to an abstract ODE on a Hilbert space, for which the
powerful machinery of the theory of dynamical systems applies.

6.3.2 Well-posedness

System (6.3.2) possesses a unique weak solution which continuously depends on the
initial data.

Proposition 6.3.1. For all initial data z ∈ H, problem (6.3.2) admits a unique solution

Z ∈ C([0,∞),H).

Moreover, if z1, z2 ∈ H are such that ∥zi∥H ≤ R, then the corresponding solutions
fulfill

∥Z1(t)− Z2(t)∥H ≤ eQ(R)t∥z1 − z2∥H, ∀t ≥ 0, (6.3.3)

for some positive increasing function Q.

Proof. Along the proof, it is crucial to have uniform energy estimates on any finite-
time interval. Indeed, these estimates follow directly from the existence of a Lyapunov
functional, as shown later in the work. We omit the proof of existence, based on a
standard Galerkin approximation procedure. Concerning the continuous dependence
estimate (6.3.3), we consider initial data z1, z2 ∈ H such that ∥zi∥H ≤ R and we call

Zi(t) = (ui(t), u̇i(t), αi(t), α̇i(t), η
t
i)

the corresponding solutions. Considering the difference

Z1(t)− Z2(t) = (v(t), v̇(t), β(t), β̇(t), ξt)
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and denoting
Ê(t) = ∥Z1(t)− Z2(t)∥2H,

we multiply in H the first equation of (6.3.2) by 2v̇ and the second one by 2β̇. More-
over, we multiply in M the third equation of (6.3.2) by 2ξ. Exploiting (6.2.1), we
obtain

d

dt
Ê = 2⟨Tξ, ξ⟩+ 2⟨f(∥u2∥21)Au2 − f(∥u1∥21)Au1, v̇⟩

≤ 2∥v̇∥
[
∥f(∥u1∥21)Av∥+ ∥(f(∥u1∥21)− f(∥u2∥21))Au2∥

]
≤ Q(R)Ê ,

for some positive increasing function Q. Applying the (standard) Gronwall lemma we
are done.

Hence system (6.3.2) generates a dynamical system

S(t) : H → H

acting as
z = (u0, u1, α0, α1, η0) 7→ S(t)z = Z(t),

where Z(t) is the unique weak solution to (6.3.2) with initial datum Z(0) = z. In
particular, the last component ηt of the solution Z(t) has the explicit representation
formula (see [76])

ηt(s) =

{
α(t)− α(t− s) 0 < s ≤ t,

η0(s− t) + α(t)− α0 s > t.
(6.3.4)

Finally, we define (twice) the energy at time t ≥ 0 corresponding to the initial datum
z ∈ H as

E(t) = ∥S(t)z∥2H.
Proposition 6.3.2 (Energy equality). For all sufficiently regular initial data z (in par-
ticular, with η in the domain of T ) we have the energy identity

d

dt

[
E + F (∥u∥21)

]
+ Γ[η] = 2⟨g, u̇⟩. (6.3.5)

Proof. We multiply in H the first equation of (6.3.2) by 2u̇ and the second one by 2α̇.
Next, we take the product in M of the third equation of (6.3.2) and 2η. Exploiting
(6.2.1), the claim follows.

6.4 The Main Result

From now on, the memory kernel is supposed to satisfy the additional assumption

µ′(s) + δµ(s) ≤ 0 (6.4.1)

for some δ > 0 and almost every s ∈ R+. Note that µ can be unbounded in a neighbor-
hood of zero. As a direct consequence, we deduce the inequality

δ∥η∥2M ≤ Γ[η], ∀η ∈ D(T ). (6.4.2)
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Remark 6.4.1. Actually, hypothesis (6.4.1) can be relaxed: the results contained in the
present chapter hold even if µ satisfies for some C ≥ 1 and δ > 0 the weaker condition

µ(t+ s) ≤ Ce−δtµ(s),

for every t ≥ 0 and almost every s ∈ R+, provided that µ is not too flat (cf. [34, 68]).
In fact, the latter inequality boils down to (6.4.1) in the particular case where C = 1.

The set S of stationary points of S(t) consists of all vectors of the form (u, 0, 0, 0, 0)
with u solution to

A2u+ f(∥u∥21)Au = g. (6.4.3)

In particular, the set S is bounded in H. To see that, just multiply the equation by u in
H and use (6.1.3).

Theorem 6.4.1. Within assumption (6.4.1), the semigroup S(t) acting on H possesses
the (connected) global attractor A bounded in H2. In addition, A coincides with the
unstable set W (S) of S.

As typically occurs in equations with memory, the next proposition holds.

Proposition 6.4.1. The semigroup S(t) fulfills the backward uniqueness property on
the whole space H; namely, if

S(τ)z1 = S(τ)z2

for some τ > 0 and z1, z2 ∈ H, then z1 = z2.

As a straightforward consequence, we have

Corollary 6.4.1. The restriction of S(t) on A extends to a C0-group of operators {S(t)}t∈R,
that is, the map S(t)|A can be extended to negative times by the formula

S(−t)|A =
[
S(t)|A

]−1
.

Finally, the formal equality (6.3.1) is actually verified for all times by the trajectories
lying on the attractor.

Corollary 6.4.2. For every initial datum z ∈ A, let

Z(t) = (u(t), u̇(t), α(t), α̇(t), ηt)

be the (unique) CBT such that Z(0) = z. Then the equality (6.3.1) holds for every t ∈ R
and every s ∈ R+.

6.5 Further Remarks

I. Up to minor modifications in the proofs, it is possible to allow the presence of an
external heat supply h ∈ H in the model; that is, to consider the system

ü+ ωAü+ A2u+ f(∥A 1
2u∥2)Au− Aα̇ = g,

α̈ + Aα+

∫ ∞

0

µ(s)A[α(t)− α(t− s)] ds+ Au̇ = h.
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In this case, setting

αh = A−1h and zh = (0, 0, αh, 0, 0),

the corresponding solution semigroup possesses the global attractor Ah, which satisfies

Ah = A+ zh,

where A is the attractor of system (6.3.2). Accordingly, Ah is bounded (at least) in the
less regular space

V = H4 ×H3 ×H2 ×H2 ×M2.

II. As shown in [20], the ball B0 of H centered at zero of radius1

R0 = 1 + sup
{
∥z∥H : Λ(z) ≤ 1 + sup

z0∈S
Λ(z0)

}
turns out to be an absorbing set for S(t). Note that R0 can be explicitly calculated in
terms of the structural quantities of the system. Nonetheless, given a bounded set B ⊂
H, we do not have a procedure to compute the entering time of B into the absorbing ball
B0. However, within further assumptions on the nonlinear map f (e.g. in the physically
relevant case f(x) = x + b), it is possible to prove the existence of absorbing sets for
S(t) via explicit energy estimates, exploiting a Gronwall-type lemma from the recent
paper [70] (cf. Lemma 2.2.1). This provide a precise (uniform) control on the entering
time of the trajectories. Incidentally, the argument applies also when time-dependent
external forces are present.

III. By means of the regularity proved in Theorem 6.4.1, exploiting [17, Corollary 2.20]
one can show that the fractal dimension of the global attractor A in H is finite. However,
since the embedding H2 ⊂ H is not compact due to the memory component (see
[76] for a counterexample), this requires the introduction of a suitable space compactly
embedded into H (see e.g. [35]). As a matter of fact, it is even possible to prove the
existence of a regular exponential attractor having finite fractal dimension.

IV. As detailed in forthcoming Section 6.9, the proof of Theorem 6.4.1 relies on a
suitable decomposition of the semigroup into the sum of two nonlinear one-parameter
operators: the first exponentially decaying to zero, and the other one uniformly bounded
in the more regular space H2. Nevertheless, as shown in the next Section 6.6, the
system is of gradient type and, due to the rotational inertia coefficient ω > 0, the
nonlinear term is subcritical and compact on the phase space. Hence, the existence
of the global attractor depends on the exponential stability of the corresponding linear
semigroup. According to this approach, once existence is attained, the regularity has
to be proved in a second moment. On the contrary, our calculations allow to obtain
both existence and (optimal) regularity by the same token. Incidentally, the proof of the
exponential stability of the associated linear semigroup is contained in the forthcoming
Lemma 6.9.1. The exponential stability of a similar linear model, with the Gurtin-
Pipkin heat conduction law, has been proved in [42].

1Here Λ is the Lyapunov functional for S(t) of the next Section 6.6.
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6.6 The Lyapunov Functional

In this section, we prove the existence of a Lyapunov functional for the semigroup S(t).

Theorem 6.6.1. Let z = (u0, u1, α0, α1, η0) ∈ H. The function

Λ(z) = ∥z∥2H + F (∥u0∥21)− 2⟨g, u0⟩

is a Lyapunov functional for S(t).

Proof. We will prove properties (i)-(iii) of Definition 1.1.10. Exploiting (6.1.4), it is
immediate to verify that

ϖ∥z∥2H − c ≤ Λ(z) ≤ c∥z∥2H + F (∥u0∥21) + c, (6.6.1)

for some ϖ > 0 and c > 0, both independent of z. This proves (i). Property (ii) is a
direct consequence of the energy identity (6.3.5), which gives

d

dt
Λ = −Γ[η] ≤ 0. (6.6.2)

Concerning property (iii), if Λ is constant along a trajectory, from (6.6.2) and (6.4.2)
we obtain

δ∥η∥2M ≤ Γ[η] = 0,

which implies ηt = 0 for all t ≥ 0. Therefore α(t) is constant in time and, using the
second equation of (6.3.2), we learn that u̇(t) is constant. Accordingly,

u(t) = u0 + w0t

for some vector w0 ∈ H1. At this point, we infer from (6.6.1) that u(t) is bounded.
Thusw0 = 0 and then u(t) is constant in time. The second equation now reads α(t) = 0
for all t ≥ 0. Since ü(t) = 0, from the first equation we also obtain that u(t) solves
(6.4.3) and the theorem is proven.

6.7 An Auxiliary Functional

The next step is introducing a suitable energy functional reflecting the dissipation mech-
anism of the problem. In order to deal with the possible singularity of µ at zero, we
choose s⋆ ∈ (0, s1) (where s1 = ∞ if µ is jump-free) such that∫ s⋆

0

µ(s) ds ≤ 1

4
. (6.7.1)

Defining the truncated kernel

ρ(s) = µ(s⋆)χ(0,s⋆](s) + µ(s)χ(s⋆,∞)(s),

we consider the functional

Θ(t) = −
∫ ∞

0

ρ(s)⟨α̇(t), ηt(s)⟩ ds.

It is easily seen that
|Θ(t)| ≤ cE(t), ∀t ≥ 0, (6.7.2)

for some c > 0.

69



Chapter 6. Extensible Beams and Berger Plates

Lemma 6.7.1. For every fixed ν ∈ (0, 1], the functional Θ satisfies the differential
inequality

d

dt
Θ+

1

2
∥α̇∥2 ≤ ν

2

[
∥α∥21 + |u̇|21

]
+
c

ν

[
∥η∥2M + Γ[η]

]
,

for some constant c ≥ 0 independent of ν.

Proof. Along the proof, c ≥ 0 indicates a generic constant depending only on the
structural quantities of the problem but independent of ν. The time derivative of Θ is
given by

d

dt
Θ =−

∫ ∞

0

ρ(s)⟨α̈, η(s)⟩ ds−
∫ ∞

0

ρ(s)⟨α̇, η̇(s)⟩ ds

=

∫ ∞

0

ρ(s)⟨α, η(s)⟩1 ds+
∫ ∞

0

ρ(s)
(∫ ∞

0

µ(σ)⟨η(σ), η(s)⟩1 dσ
)
ds

+

∫ ∞

0

ρ(s)⟨u̇, η(s)⟩1 ds−
∫ ∞

0

ρ(s)⟨α̇, Tη(s)⟩ ds− ∥α̇∥2
∫ ∞

0

ρ(s) ds.

Since ρ(s) ≤ µ(s), we estimate∫ ∞

0

ρ(s)⟨α, η(s)⟩1 ds ≤ ∥α∥1
∫ ∞

0

µ(s)∥η(s)∥1 ds

≤ ∥α∥1∥η∥M ≤ ν

2
∥α∥21 +

1

2ν
∥η∥2M, (6.7.3)

and ∫ ∞

0

ρ(s)
(∫ ∞

0

µ(σ)⟨η(σ), η(s)⟩1 dσ
)
ds ≤

(∫ ∞

0

µ(s)∥η(s)∥1 ds
)2

≤ ∥η∥2M. (6.7.4)

Moreover ∫ ∞

0

ρ(s)⟨u̇, η(s)⟩1 ds ≤ ∥u̇∥1
∫ ∞

0

µ(s)∥η(s)∥1 ds

≤ ∥u̇∥1∥η∥M ≤ ν

2
|u̇|21 +

c

ν
∥η∥2M. (6.7.5)

Integrating by parts in s, we infer that

−
∫ ∞

0

ρ(s)⟨α̇, Tη(s)⟩ ds =
∑
n

µn⟨α̇, η(sn)⟩ −
∫ ∞

s⋆

µ′(s)⟨α̇, η(s)⟩ ds

≤ ∥α̇∥
(∑

n

µn∥η(sn)∥ −
∫ ∞

s⋆

µ′(s)∥η(s)∥ ds
)

≤ 1

4
∥α̇∥2 +

(∑
n

µn∥η(sn)∥ −
∫ ∞

s⋆

µ′(s)∥η(s)∥ ds
)2

.
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Since
∑

n µn ≤ µ(s⋆) as s⋆ < s1, we have(∑
n

µn∥η(sn)∥ −
∫ ∞

s⋆

µ′(s)∥η(s)∥ ds
)2

≤ 2

(∑
n

µn∥η(sn)∥
)2

+ 2

(∫ ∞

s⋆

µ′(s)∥η(s)∥ ds
)2

≤ 2
∑
n

µn

∑
n

µn∥η(sn)∥2 + 2

∫ ∞

s⋆

µ′(s) ds

∫ ∞

s⋆

µ′(s)∥η(s)∥2 ds

≤ cµ(s⋆)Γ[η].

Thus

−
∫ ∞

0

ρ(s)⟨α̇, Tη(s)⟩ ds ≤ 1

4
∥α̇∥2 + cΓ[η]. (6.7.6)

Finally, using (6.7.1) and the equality ρ(s) = µ(s) for s ≥ s⋆ we obtain

−∥α̇∥2
∫ ∞

0

ρ(s) ds ≤ −∥α̇∥2
∫ ∞

s⋆

µ(s) ds ≤ −3

4
∥α̇∥2. (6.7.7)

Collecting (6.7.3)-(6.7.7), the proof is finished.

6.8 Dissipation Integrals

Let now R ≥ 0 be fixed. Till the end of the section, C ≥ 0 will denote a generic
constant depending only on R, besides the structural quantities of the problem. We
consider initial data z ∈ H such that ∥z∥H ≤ R. Thanks to Theorem 6.6.1, we draw
the control

E(t) ≤ C. (6.8.1)

We have the following dissipation integral for the norm of α̇.

Lemma 6.8.1. For every ν > 0 small, the integral estimate∫ t

τ

∥α̇(y)∥2 dy ≤ ν(t− τ) +
C

ν2

holds for all t > τ ≥ 0.

Proof. Define
Λ(t) = Λ(t) + ν2Θ(t),

where Λ is the Lyapunov functional and Θ is the functional introduced in Lemma 6.7.1.
Exploiting (6.6.2), Lemma 6.7.1 and (6.8.1) we have

d

dt
Λ = −Γ[η] + ν2

d

dt
Θ

≤ −Γ[η] + cν
[
∥η∥2M + Γ[η]

]
+ Cν3 − ν2

2
∥α̇∥2.
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For every ν > 0 small enough, invoking (6.4.2) we estimate

−Γ[η] + cν
[
∥η∥2M + Γ[η]

]
= (cν − 1)Γ[η] + cν∥η∥2M
≤ −(δ − cνδ − cν)∥η∥2M ≤ 0.

Therefore, we end up with

d

dt
Λ +

ν2

2
∥α̇∥2 ≤ Cν3.

Since from (6.7.2) and (6.8.1)
|Λ(t)| ≤ C,

integrating on the interval (τ, t) the proof is finished.

Next, we prove the existence of a dissipation integral for the norm of u̇.

Lemma 6.8.2. For every ν > 0 small, the integral estimate∫ t

τ

|u̇(y)|21 dy ≤ ν(t− τ) +
C

ν5
(6.8.2)

holds for all t > τ ≥ 0.

Proof. By direct calculations, the functional

Ψ(t) = ⟨Bu̇(t), α̇(t)⟩−1 + (u(t), α(t))1

satisfies the equality
d

dt
Ψ+ |u̇|21 = ∥α̇∥2 + (u, α̇)1 − ⟨u, α̇⟩1 − f(∥u∥21)⟨u, α̇⟩+ ⟨g, α̇⟩−1 − (u̇, η)M.

In light of (6.8.1), estimating

∥α̇∥2 + (u, α̇)1 − ⟨u, α̇⟩1 − f(∥u∥21)⟨u, α̇⟩+ ⟨g, α̇⟩−1 ≤ C∥α̇∥+ ∥α̇∥2

we obtain for every ν > 0 small
d

dt
Ψ+ |u̇|21 ≤ C∥α̇∥+ ∥α̇∥2 + |u̇|1|η|M ≤ ν +

C

ν
∥α̇∥2 + |u̇|1|η|M.

At this point, we define the functional

Φ(t) = Λ(t) + νΨ(t).

It is apparent from (6.8.1) that
|Φ(t)| ≤ C. (6.8.3)

Exploiting the inequality above, we infer
d

dt
Φ + Γ[η] + ν|u̇|21 ≤ ν2 + C∥α̇∥2 + ν|u̇|1|η|M

≤ ν2 + C∥α̇∥2 + ν

2
|u̇|21 +

ν

2
|η|2M.

In conclusion, using (6.4.2), for every ν > 0 small enough we have
d

dt
Φ +

ν

2
|u̇|21 ≤ ν2 + C∥α̇∥2.

Recalling (6.8.3), an integration over (τ, t) together with Lemma 6.8.1 give the claim.
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6.9 Proof of Theorem 6.4.1

Aiming to apply Lemma 1.1.1, for a fixed R ≥ 0 we consider initial data z ∈ H
with ∥z∥H ≤ R. As before, along the section C ≥ 0 will denote a generic constant
depending only on R. Similarly to [39], we split the solution S(t)z into the sum

S(t)z = S0(t)z + S1(t)z,

where

S0(t)z = (v(t), v̇(t), β(t), β̇(t), ξ(t)),

S1(t)z = (w(t), ẇ(t), γ(t), γ̇(t), ζ(t))

solve the Cauchy problems

Bv̈ + A2v + f(∥u∥21)Av + ℓv − Aβ̇ = 0,

β̈ + Aβ +

∫ ∞

0

µ(s)Aξ(s) ds+ Av̇ = 0,

ξ̇ = Tξ + β̇,

(v(0), v̇(0), β(0), β̇(0), ξ0) = z,

(6.9.1)

and 

Bẅ + A2w + f(∥u∥21)Aw − ℓv − Aγ̇ = g,

γ̈ + Aγ +

∫ ∞

0

µ(s)Aζ(s) ds+ Aẇ = 0,

ζ̇ = Tζ + γ̇,

(w(0), ẇ(0), γ(0), γ̇(0), ζ0) = 0.

(6.9.2)

Here, ℓ = ℓ(R) > 0 is a positive constant chosen large enough that

1

2
∥v∥22 + f(∥u∥21)∥v∥21 + ℓ∥v∥2 ≥ 1

4
∥v∥22. (6.9.3)

This choice is possible due to the interpolation inequality

∥v∥21 ≤ ∥v∥∥v∥2

and the fact that f(∥u∥21) is uniformly bounded thanks to (6.8.1). Finally, we set

E0(t) = ∥S0(t)z∥2H and E1(t) = ∥S1(t)z∥2H2 .

We will show that E0 decays exponentially and E1 is uniformly bounded.

Lemma 6.9.1. There exists κ = κ(R) > 0 such that

E0(t) ≤ Ce−κt.
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Proof. The functional

Υ0(t) = E0(t) + f(∥u(t)∥21)∥v(t)∥21 + ℓ∥v(t)∥2

fulfills the identity
d

dt
Υ0 + Γ[ξ] = 2f ′(∥u∥21)⟨Au, u̇⟩∥v∥21.

Exploiting (6.8.1), we estimate

2f ′(∥u∥21)⟨Au, u̇⟩∥v∥21 ≤ C∥u̇∥E0,

and thus
d

dt
Υ0 + Γ[ξ] ≤ C∥u̇∥E0. (6.9.4)

We also consider the functionals

Ψ0(t) = ⟨Bv̇(t), β̇(t)⟩−1 + (v(t), β(t))1,

Φ0(t) = ⟨Bv̇(t), v(t)⟩,
Σ0(t) = ⟨β̇(t), β(t)⟩+ ⟨v(t), β(t)⟩1.

In light of (6.8.1), the functional Ψ0 satisfies

d

dt
Ψ0 + |v̇|21 = ∥β̇∥2 + (v, β̇)1 − ⟨v, β̇⟩1 − f(∥u∥21)⟨v, β̇⟩ − ℓ⟨v, β̇⟩−1 − (v̇, ξ)M

≤ 1

16
∥v∥22 +

1

4
|v̇|21 + C

[
∥β̇∥2 + ∥ξ∥2M

]
. (6.9.5)

Concerning the functional Φ0, we have

d

dt
Φ0 + ∥v∥22 + f(∥u∥21)∥v∥21 + ℓ∥v∥2 = ⟨β̇, v⟩1 + |v̇|21 ≤

1

4
∥v∥22 + |v̇|21 + C∥β̇∥2.

Therefore, applying (6.9.3) we obtain

d

dt
Φ0 +

1

2
∥v∥22 ≤ |v̇|21 + C∥β̇∥2. (6.9.6)

Lastly, the functional Σ0 fulfills

d

dt
Σ0 + ∥β∥21 = ∥β̇∥2 + ⟨v, β̇⟩1 − ⟨β, ξ⟩M

≤ 1

8
∥v∥22 +

1

2
∥β∥21 + C

[
∥β̇∥2 + ∥ξ∥2M

]
. (6.9.7)

Collecting (6.9.5)-(6.9.7), we get

d

dt
{2Ψ0 + Φ0 + Σ0}+

1

2
|v̇|21 +

1

4
∥v∥22 +

1

2
∥β∥21 ≤ C

[
∥β̇∥2 + ∥ξ∥2M

]
. (6.9.8)

At this point, arguing exactly as in Lemma 6.7.1, we consider the functional

Θ0(t) = −
∫ ∞

0

ρ(s)⟨β̇(t), ξt(s)⟩ ds,
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and we draw the estimate

d

dt
Θ0 +

1

2
∥β̇∥2 ≤ ε

2

[
∥β∥21 + |v̇|21

]
+
c

ε

[
∥ξ∥2M + Γ[ξ]

]
(6.9.9)

for every ε ∈ (0, 1] and some constant c ≥ 0 (independent of ε and R). Finally, we
define

Λ0(t) = Υ0(t) + 2ε3{2Ψ0(t) + Φ0(t) + Σ0(t)}+ ε2Θ0(t).

It is apparent from (6.9.3) that, for ε > 0 sufficiently small,

1

2
E0(t) ≤ Λ0(t) ≤ CE0(t). (6.9.10)

Appealing to (6.9.4), (6.9.8) and (6.9.9), for ε > 0 small enough the functional Λ0

satisfies the differential inequality

d

dt
Λ0 +

1

2
Γ[ξ] +

ε3

2

[
∥v∥22 + |v̇|21 + ∥β∥21 + ∥β̇∥2

]
≤ C∥u̇∥E0 + Cε∥ξ∥2M.

Estimating

C∥u̇∥E0 ≤
ε3

4
E0 + C∥u̇∥2E0,

by applying (6.4.2) and (6.9.10), possibly reducing the parameter ε > 0, we end up
with

d

dt
Λ0 + 2κΛ0 ≤ C∥u̇∥2Λ0

for some κ = κ(R) > 0. Up to fixing ν > 0 in (6.8.2) sufficiently small in order to
have

C

∫ t

τ

∥u̇(y)∥2 dy ≤ κ(t− τ) + C,

the claim follows from Lemma 6.2.1 together with (6.9.10).

Lemma 6.9.2. We have the uniform estimate

sup
t≥0

E1(t) ≤ C.

Proof. The functional

Υ1(t) = E1(t) + f(∥u(t)∥21)∥w(t)∥23 − 2⟨g, w(t)⟩2

satisfies the equality

d

dt
Υ1 + Γ[Aζ] = 2f ′(∥u∥21)⟨u̇, u⟩1∥w∥23 + 2ℓ⟨v, ẇ⟩2.

Due to (6.8.1) and the bound ∥v∥2 ≤ C ensured by Lemma 6.9.1, we infer that

∥w∥23 ≤ ∥w∥2∥w∥4 ≤ (∥u∥2 + ∥v∥2)∥w∥4 ≤ C∥w∥4, (6.9.11)

and
2ℓ⟨v, ẇ⟩2 ≤ C∥ẇ∥2 ≤ C|ẇ|3.
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Therefore,
d

dt
Υ1 + Γ[Aζ] ≤ C

[
∥w∥4 + |ẇ|3

]
. (6.9.12)

Then, analogously to the proof of the previous lemma, we define the functionals

Ψ1(t) = ⟨Bẇ(t), γ̇(t)⟩1 + (w(t), γ(t))3,

Φ1(t) = ⟨Bẇ(t), w(t)⟩2,
Σ1(t) = ⟨γ̇(t), γ(t)⟩2 + ⟨w(t), γ(t)⟩3.

Again, we estimate the time derivative of every single functional, making use of the
equations of system (6.9.2). Regarding the functional Ψ1, we have

d

dt
Ψ1 + |ẇ|23

= ∥γ̇∥22 + (w, γ̇)3 − ⟨w, γ̇⟩3 − f(∥u∥21)⟨w, γ̇⟩2 + ℓ⟨v, γ̇⟩1 − (ẇ, ζ)M2 + ⟨g, γ̇⟩1

≤ 1

16
∥w∥24 +

1

4
|ẇ|23 + C

[
∥γ̇∥22 + ∥ζ∥2M2 + 1

]
. (6.9.13)

Concerning Φ1, we obtain

d

dt
Φ1 + ∥w∥24 = |ẇ|23 + ⟨γ̇, w⟩3 − f(∥u∥21)∥w∥23 + ℓ⟨v, w⟩2 + ⟨g, w⟩2.

Applying (6.8.1) and (6.9.11), the right-hand side is controlled by

|ẇ|23 + ⟨γ̇, w⟩3 − f(∥u∥21)∥w∥23 + ℓ⟨v, w⟩2 + ⟨g, w⟩2 ≤ |ẇ|23 +
1

4
∥w∥24 + C∥γ̇∥22 + C,

hence
d

dt
Φ1 +

3

4
∥w∥24 ≤ |ẇ|23 + C

[
∥γ̇∥22 + 1]. (6.9.14)

Moreover, the functional Σ1 fulfills

d

dt
Σ1 + ∥γ∥23 = ∥γ̇∥22 + ⟨w, γ̇⟩3 − ⟨γ, ζ⟩M2

≤ 1

8
∥w∥24 +

1

2
∥γ∥23 + C

[
∥γ̇∥22 + ∥ζ∥2M2

]
. (6.9.15)

Collecting (6.9.13)-(6.9.15) we are led to

d

dt
{2Ψ1 +Φ1 +Σ1}+

1

2
|ẇ|23 +

1

2
∥w∥24 +

1

2
∥γ∥23 ≤ C

[
∥γ̇∥22 + ∥ζ∥2M2 + 1

]
. (6.9.16)

Next, with reference to Lemma 6.7.1, we consider the further functional

Θ1(t) = −
∫ ∞

0

ρ(s)⟨γ̇(t), ζt(s)⟩2 ds,

which satisfies

d

dt
Θ1 +

1

2
∥γ̇∥22 ≤

ε

2

[
∥γ∥23 + |ẇ|23

]
+
c

ε

[
∥ζ∥2M2 + Γ[Aζ]

]
(6.9.17)
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for every ε ∈ (0, 1] and some constant c ≥ 0 (independent of ε and R). Finally, we
define

Λ1(t) = Υ1(t) + 2ε3{2Ψ1(t) + Φ1(t) + Σ1(t)}+ ε2Θ1(t).

It is then an easy matter to see that, for ε > 0 small enough,

1

2
E1(t)− C ≤ Λ1(t) ≤ CE1(t) + C. (6.9.18)

Exploiting (6.9.12), (6.9.16) and (6.9.17), for ε > 0 sufficiently small we draw the
inequalities

d

dt
Λ1 +

1

2
Γ[Aζ] +

ε3

2

[
∥γ∥23 + |ẇ|23 + ∥γ̇∥22 + ∥w∥24

]
≤ C∥w∥4 + C|ẇ|3 + Cε∥ζ∥2M2 + C

≤ ε3

4
∥w∥24 +

ε3

4
|ẇ|23 + Cε∥ζ∥2M2 + C.

Thus, in light of (6.4.2) and possibly reducing again ε > 0, we obtain

d

dt
Λ1 +

ε3

4
E1 ≤ C.

Since Λ1(0) = 0, the claim follows from the controls (6.9.18), together with the stan-
dard Gronwall lemma.

6.9.1 Conclusion of the proof of Theorem 6.4.1

We are now in a position to complete the proof of Theorem 6.4.1. Since Theorem 6.6.1
ensures the existence of a Lyapunov functional for S(t) and the set S of stationary
points is bounded in H, we need to verify only assumption (iii) of Lemma 1.1.1. To
this end, recalling Lemma 6.9.1, we are left to show that the solution S1(t)z to problem
(6.9.2) belongs to a compact set KR whenever ∥z∥H ≤ R. Indeed, the third component
ζt of S1(t)z admits the explicit representation

ζt(s) =

{
γ(t)− γ(t− s) 0 < s ≤ t,

γ(t) s > t.

Therefore,

Dζt(s) =

{
γ̇(t− s) 0 < s ≤ t,

0 s > t.

Hence, Lemma 6.9.2 and the summability of the kernel µ give

∥Dζt∥M1 + sup
s∈R+

∥ζt(s)∥3 ≤ C,

and we conclude that
S1(t)z ∈ KR,

77



Chapter 6. Extensible Beams and Berger Plates

where

KR =
{
z = (u0, u1, α0, α1, η0) : ∥z∥H2+∥Dη0∥M1+ sup

s∈R+

∥η0(s)∥3 ≤ C, η0(0) = 0
}

is compact in H due to a general compactness result for memory spaces (see Lemma
5.5 in [76]).

Remark 6.9.1. It is worth noting that, except for the proof of the boundedness of S,
hypothesis (6.1.3) on the nonlinear map f is not needed. In fact, the set S turns out to
be bounded assuming (6.1.4) only (see e.g. [15]).

6.10 Proofs of Proposition 6.4.1 and Corollary 6.4.2

6.10.1 Proof of Proposition 6.4.1

We consider two initial data z1, z2 ∈ H, and we denote by Z1(t) and Z2(t) the corre-
sponding solutions. Calling the difference

Z1(t)− Z2(t) = (v(t), v̇(t), β(t), β̇(t), ξt),

we suppose that Z1(τ) = Z2(τ) for some τ > 0. The explicit representation formula
for ξt reads

ξt(s) =

{
β(t)− β(t− s) 0 < s ≤ t,

ξ0(s− t) + β(t)− β(0) s > t.

Since ξτ = 0, we learn that

0 = β(τ) = β(τ − s), ∀s ∈ (0, τ ],

i.e. β(t) ≡ 0 on the whole interval [0, τ ]. In turn,

0 = ξτ (s) = ξ0(s− τ), ∀s > τ,

implying ξ0 = 0, and so ξt ≡ 0 on [0, τ ]. At this point, from the second equation of
(6.3.2) we get v̇(t) ≡ 0 on [0, τ ]. Since v(τ) = 0, this gives v(t) ≡ 0 on [0, τ ].

6.10.2 Proof of Corollary 6.4.2

For every z ∈ A, let
Z(t) = (u(t), u̇(t), α(t), α̇(t), ηt)

be the (unique from Proposition 6.4.1) CBT such that Z(0) = z. Assume first t > 0,
and let τ > 0 be arbitrarily fixed. Naming

zτ = S(−τ)z

and setting
(uτ (t), u̇τ (t), ατ (t), α̇τ (t), η

t
τ ) = S(t)zτ ,

we have

(uτ (t+ τ), u̇τ (t+ τ), ατ (t+ τ), α̇τ (t+ τ), ηt+τ
τ ) = (u(t), u̇(t), α(t), α̇(t), ηt).
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Hence, the representation formula (6.3.4) gives

ηt(s) = ηt+τ
τ (s) = ατ (t+ τ)− ατ (t+ τ − s) = α(t)− α(t− s),

whenever 0 < s ≤ t + τ . From the arbitrariness of τ > 0, we conclude that (6.3.1)
holds for all t > 0. The proof of the case t ≤ 0 is analogous and therefore omitted.

6.11 The Linear Case

In the remaining part of the chapter, we analyze the linear version of system (6.1.1)
and the corresponding limit situation without memory in the case ω = 0 . For more
generality, we also consider a coupling term depending on a fixed parameter

σ ≤ 3
2
.

Precisely, we study the two linear systems{
ü+ A2u− Aσα̇ = 0,

α̈+ Aα+ Aα̇+ Aσu̇ = 0,
(6.11.1)

and 
ü+ A2u− Aσα̇ = 0,

α̈ + Aα +

∫ ∞

0

µ(s)A[α(t)− α(t− s)] ds+ Aσu̇ = 0,
(6.11.2)

investigating the decay properties of the associated contraction semigroups (that will
be denoted by U1(t) and U2(t), respectively). When σ ≥ 1

2
we prove the exponential

decay of U1(t) via energy methods. We also show that U1(t) fails to be exponentially
stable if σ < 1

2
. From the physical viewpoint, this is not surprising. Indeed, since

the dissipation mechanism is only thermal, when the coupling is not strong enough the
system is not able to convert thermal into mechanical dissipation, which is needed to
stabilize the plate. Concerning the semigroup U2(t), lack of exponential stability is
proved for all values of σ.

6.12 The Contraction Semigroups

In this section, we show that systems (6.11.1) and (6.11.2) generate two contraction
semigroups on the phase spaces

H = H2 ×H ×H1 ×H

and
V = H2 ×H ×H1 ×H ×M,

respectively. It will be clear from the proofs that the limitation σ ≤ 3
2

plays an essential
role.
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6.12.1 The first system

Introducing the state vector z(t) = (u(t), v(t), α(t), β(t)), we view system (6.11.1) as
the ODE in H

ż(t) = Az(t),

where the linear operator A is defined as

A


u

v

α

β

 =


v

−A2u+ Aσβ

β

−Aα− Aβ − Aσv


with domain

D(A) =

z ∈ H

∣∣∣∣∣∣∣∣∣
v ∈ H2

−u+ Aσ−2β ∈ H4

β ∈ H1

α+ β + Aσ−1v ∈ H2

 .

Theorem 6.12.1. The operator A is the infinitesimal generator of a contraction semi-
group

U1(t) = etA : H → H.

Proof. The proof is based on an application of Lemma 1.2.1. It is easy to see that A is
dissipative, for

⟨Az, z⟩ = −∥β∥21 ≤ 0, ∀z ∈ D(A).

It remains to show that
Range(I− A) = H.

To this aim, let ẑ = (û, v̂, α̂, β̂) ∈ H. We look for a solution z = (u, v, α, β) ∈ D(A)
to the equation

z − Az = ẑ (6.12.1)

which, written in components, reads

u− v = û, (6.12.2)

v + A2u− Aσβ = v̂, (6.12.3)
α− β = α̂, (6.12.4)

β + Aα+ Aβ + Aσv = β̂. (6.12.5)

Plugging (6.12.2) into (6.12.3) and (6.12.4) into (6.12.5) we obtain{
v + A2v − Aσβ = ψ1,

β + 2Aβ + Aσv = ψ2,
(6.12.6)

where
ψ1 = v̂ − A2û ∈ H−2 and ψ2 = β̂ − Aα̂ ∈ H−1.
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Then we associate to (6.12.6) the bilinear form on H2 ×H1

B((v, β), (ṽ, β̃)) = ⟨v, ṽ⟩+ ⟨v, ṽ⟩2 − ⟨β, ṽ⟩σ + ⟨β, β̃⟩+ 2⟨β, β̃⟩1 + ⟨v, β̃⟩σ.

Clearly, B is coercive on H2 ×H1. Moreover, since σ ≤ 3
2
,

|B((v, β), (ṽ, β̃))| ≤c
[
∥v∥2∥ṽ∥2 + ∥β∥1∥β̃∥1

]
+ ∥β∥1∥ṽ∥2σ−1 + ∥β̃∥1∥v∥2σ−1

≤c∥(v, β)∥H2×H1∥(ṽ, β̃)∥H2×H1 ,

for some constant c ≥ 0. Hence, by means of the Lax-Milgram lemma, problem
(6.12.6) admits a unique (weak) solution (v, β) ∈ H2 ×H1. Thus, in light of (6.12.2)-
(6.12.5), the vector

z = (v + û, v, β + α̂, β) ∈ D(A)
solves equation (6.12.1).

6.12.2 The second system

In order to carry out the analysis of (6.11.2), we translate the problem in the history
space framework. To this end, defining the auxiliary variable

ηt(s) = α(t)− α(t− s),

system (6.11.2) can be given the form
ü+ A2u− Aσα̇ = 0,

α̈ + Aα+

∫ ∞

0

µ(s)Aη(s) ds+ Aσu̇ = 0,

η̇ = Tη + α̇.

Introducing the state vector z(t) = (u(t), v(t), α(t), β(t), ηt), we view the latter system
as the ODE in V

ż(t) = Bz(t),
where the linear operator B is defined as

B


u

v

α

β

η

 =


v

−A2u+ Aσβ

β

−Aα−
∫∞
0
µ(s)Aη(s) ds− Aσv

Tη + β


with domain

D(B) =


z ∈ V

∣∣∣∣∣∣∣∣∣∣∣

v ∈ H2

−u+ Aσ−2β ∈ H4

β ∈ H1

α+
∫∞
0
µ(s)η(s) ds+ Aσ−1v ∈ H2

η ∈ D(T )


.
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Theorem 6.12.2. The operator B is the infinitesimal generator of a contraction semi-
group

U2(t) = etB : V → V .

Proof. Analogously to Theorem 6.12.1, the proof relies on Lemma 1.2.1. It is immedi-
ate to see that B is dissipative, for (see e.g. [69])

⟨Bz, z⟩ = ⟨Tη, η⟩M ≤ 0.

Next, we prove that
Range(I− B) = V .

As before, given ẑ = (û, v̂, α̂, β̂, η̂) ∈ V , we look for a solution z = (u, v, α, β, η) ∈
D(B) to the equation

z − Bz = ẑ (6.12.7)

which, written in components, reads

u− v = û, (6.12.8)

v + A2u− Aσβ = v̂, (6.12.9)

α− β = α̂, (6.12.10)

β + Aα+

∫ ∞

0

µ(s)Aη(s) ds+ Aσv = β̂, (6.12.11)

η − Tη − β = η̂. (6.12.12)

Integrating (6.12.12) with η(0) = 0, we find

η(s) = (1− e−s)β + E(s), (6.12.13)

where

E(s) =

∫ s

0

ey−sη̂(y) dy.

Substituting (6.12.10) and (6.12.13) into (6.12.11) and (6.12.8) into (6.12.9), we obtain{
v + A2v − Aσβ = ψ1,

β + Aβ + γAβ + Aσv = ψ2,
(6.12.14)

where we set

γ =

∫ ∞

0

µ(s)(1− e−s) ds > 0

and

ψ1 = v̂ − A2û,

ψ2 = β̂ − Aα̂− A

∫ ∞

0

µ(s)E(s) ds.
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It is apparent that ψ1 ∈ H−2. Concerning ψ2, we note that∥∥∥ ∫ ∞

0

µ(s)E(s) ds
∥∥∥
1
≤

∫ ∞

0

µ(s)

∫ s

0

ey−s∥η̂(y)∥1 dy ds

≤
∫ ∞

0

√
µ(s)

∫ s

0

ey−s
√
µ(y)∥η̂(y)∥1 dy ds

≤
√
κ ∥η̂∥M,

which readily yields ψ2 ∈ H−1. At this point, as in the proof of Theorem 6.12.1, we
infer the existence of a unique (weak) solution (v, β) ∈ H2×H1 to problem (6.12.14).
Moreover, in light of (6.12.13), we have

∥η∥2M ≤ 2κ∥β∥21 + 2

∫ ∞

0

µ(s)∥E(s)∥21 ds

≤ 2κ∥β∥21 + 2

∫ ∞

0

(∫ s

0

ey−s
√
µ(y)∥η̂(y)∥1 dy

)2

ds

≤ 2κ∥β∥21 + 2∥η̂∥2M,

implying η ∈ M. Accordingly,

Tη = η − β − η̂ ∈ M.

Finally, it is easy to ascertain that η(s) → 0 inH1 as s→ 0. This finishes the proof.

6.13 Decay Properties of the Semigroup U1(t)

We now analyze the decay properties of the semigroup U1(t). As we will see, the
picture is quite different depending whether or not σ ≥ 1

2
.

Theorem 6.13.1. If σ ≥ 1
2

the semigroup U1(t) is exponentially stable.

Proof. We will perform several multiplications which make sense if the initial data
belong to the domain of A. For the general case, a standard approximation argument
will do. Along the proof, the generic constant C ≥ 0 will depend only on the structural
quantities of the problem. Defining the energy functional

E(t) = 1

2

[
∥u̇(t)∥2 + ∥u(t)∥22 + ∥α̇(t)∥2 + ∥α(t)∥21

]
,

multiplying in H the first equation of (6.11.1) by u̇ and the second one by α̇, we obtain
the identity

d

dt
E + ∥α̇∥21 = 0. (6.13.1)

Then, we introduce the further functionals

Φ(t) = ⟨u̇(t), u(t)⟩,
Θ(t) = ⟨α̇(t), α(t)⟩+ ⟨u(t), α(t)⟩σ,
Ψ(t) = ⟨u̇(t), α̇(t)⟩−σ + ⟨u(t), α(t)⟩1−σ.
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Concerning Φ, we have

d

dt
Φ + ∥u∥22 = ∥u̇∥2 + ⟨u, α̇⟩σ (6.13.2)

≤ ∥u̇∥2 + ∥u∥2σ−1∥α̇∥1

≤ 1

4
∥u∥22 + ∥u̇∥2 + C∥α̇∥21,

while, regarding Θ,

d

dt
Θ+ ∥α∥21 = ∥α̇∥2 + ⟨u, α̇⟩σ − ⟨α, α̇⟩1 (6.13.3)

≤ ∥α̇∥2 + ∥u∥2σ−1∥α̇∥1 + ∥α∥1∥α̇∥1

≤ 1

8
∥u∥22 +

1

2
∥α∥21 + C∥α̇∥21.

Besides, the functional Ψ fulfills

d

dt
Ψ+ ∥u̇∥2 = ∥α̇∥2 − ⟨u, α̇⟩2−σ + ⟨u, α̇⟩1−σ − ⟨u̇, α̇⟩1−σ (6.13.4)

≤ ∥α̇∥2 + ∥u∥3−2σ∥α̇∥1 + ∥u̇∥1−2σ∥α̇∥1 + ∥u∥1−2σ∥α̇∥1

≤ 1

16
∥u∥22 +

1

4
∥u̇∥2 + C∥α̇∥21.

Finally, we set
Λ(t) = E(t) + ε

[
Φ(t) + Θ(t) + 2Ψ(t)

]
,

for ε small enough such that

1

2
E(t) ≤ Λ(t) ≤ CE(t). (6.13.5)

On account of (6.13.1)-(6.13.4), we have the differential inequality

d

dt
Λ +

ε

2

[
∥u∥22 + ∥u̇∥2 + ∥α∥21

]
+ (1− Cε)∥α̇∥21 ≤ 0.

Up to taking a smaller ε, we conclude that

d

dt
Λ + ωΛ ≤ 0

for some ω > 0, and the Gronwall lemma entails

Λ(t) ≤ Λ(0)e−ωt.

Therefore, exploiting (6.13.5),

E(t) ≤ CE(0)e−ωt,

as claimed.
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Remark 6.13.1. The exponential stability of U1(t) for σ = 1 has been actually already
obtained in [58] by means of semigroups techniques. The advantage of our approach
(via explicit energy estimates) lies in the fact that the argument can be exported to the
nonlinear case.

Theorem 6.13.2. If σ < 1
2

the semigroup U1(t) is not exponentially stable.

Proof. With reference to the abstract Lemma 1.2.2, the strategy consists in showing
that condition (1.2.1) fails to hold. It is understood that in this proof A and U1(t)
stand for the complexifications of the operator A and the semigroup U1(t), respectively.
Denoting by

λn → ∞
the increasing sequence of the (strictly positive) eigenvalues of A, and by wn ∈ H the
corresponding normalized eigenvectors, we choose

ẑn = (0, wn, 0, 0),

which satisfies by construction
∥ẑn∥H = 1.

For every n ∈ N, we claim that the equation

iλnzn − Azn = ẑn

has a unique solution zn = (un, vn, αn, βn) ∈ D(A) such that

lim
n→∞

∥zn∥H = ∞,

hence violating (1.2.1). Indeed, looking for a solution of the form

un = pnwn, vn = qnwn, αn = anwn, βn = bnwn,

for some pn, qn, an, bn ∈ C, we obtain the system

iλnpn − qn = 0, (6.13.6)

iλnqn + λ2npn − λσnbn = 1, (6.13.7)
iλnan − bn = 0, (6.13.8)
iλnbn + λnan + λnbn + λσnqn = 0. (6.13.9)

Substituting (6.13.6) into (6.13.7) we get

bn = −λ−σ
n .

Plugging then (6.13.8) into (6.13.9) we are led to

qn = λ1−2σ
n + i

(
λ1−2σ
n − λ−2σ

n

)
.

Recalling the assumption σ < 1
2
, we conclude that

|qn| ≥ Re(qn) → ∞.

Since
∥zn∥H ≥ ∥vn∥H = |qn|,

the claim follows.
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Remark 6.13.2. Nonetheless, it is not hard to show that stability occurs for all values
of σ, namely,

lim
t→∞

∥U1(t)x∥H = 0, ∀x ∈ H.

6.14 Decay Properties of the Semigroup U2(t)

Contrary to the previous case, the presence of the memory prevents the exponential
decay of the semigroup U2(t) for all σ, at least within a very mild decay assumption on
the kernel.

Theorem 6.14.1. The semigroup U2(t) is not exponentially stable provided that

lim
s→0

√
s µ(s) = 0 if σ ≤ 1,

lim
s→0

s
2σ−1
2σ µ(s) = 0 if σ > 1.

Let us denote the Fourier transform of µ by

F (ω) =

∫ ∞

0

µ(s)e−iωs ds.

In order to prove the theorem, we will need a technical lemma from [71].

Lemma 6.14.1. Given ϑ ∈ [0, 1), assume that

lim
s→0

s1−ϑµ(s) = 0.

Then
lim
ω→∞

ωϑF (ω) = 0.

Proof of Theorem 6.14.1. In the same spirit of Theorem 6.13.2, we will show that con-
dition (1.2.1) fails to hold. Again, B and U2(t) will denote the complexifications of B
and U2(t), respectively, and

λn → ∞

the increasing sequence of the (strictly positive) eigenvalues of A, with corresponding
normalized eigenvectors wn ∈ H . Denoting

ξn =
1√
λn

wn,

we consider the vector
ẑn = (0, 0, 0, 0, ξn)

with norm
∥ẑn∥V = ∥ξn∥M =

√
κ . (6.14.1)

For every n ∈ N, we study the equation

iωnzn − Bzn = ẑn,
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for some ωn ∈ R to be suitably chosen, in the unknown zn = (un, vn, αn, βn, ηn). We
look for a solution of the form

un = pnwn, vn = qnwn, αn = anwn, βn = bnwn, ηn(s) = ϕn(s)wn,

for some pn, qn, an, bn ∈ C and ϕn ∈ L2
µ(R+) with ϕn(0) = 0. Componentwise, we

draw the set of equations

iωnpn − qn = 0, (6.14.2)

iωnqn + pnλ
2
n − λσnbn = 0, (6.14.3)

iωnan − bn = 0, (6.14.4)

iωnbn + anλn + λn

∫ ∞

0

µ(s)ϕn(s) ds+ qnλ
σ
n = 0, (6.14.5)

iωnϕn(s) + ϕ′
n(s)− bn =

1√
λn
. (6.14.6)

Substituting (6.14.2) into (6.14.3) and (6.14.4) into (6.14.5) we get, respectively,

qn =
iωnλ

σ
n

λ2n − ω2
n

bn (6.14.7)

and
−ω2

nbn + λnbn + iωnλn

∫ ∞

0

µ(s)ϕn(s) ds+ iωnqnλ
σ
n = 0. (6.14.8)

Besides, an integration of (6.14.6) with ϕn(0) = 0 entails

ϕn(s) =
1

iωn

(
bn +

1√
λn

)(
1− e−iωns

)
. (6.14.9)

Plugging (6.14.7) and (6.14.9) into (6.14.8), we finally arrive at(
−ω2

n+λn(1+κ)− ω2
nλ

2σ
n

λ2n − ω2
n

)
bn+

√
λn

(
κ−F (ωn)

)
−λnF (ωn)bn = 0. (6.14.10)

At this point, we fix ωn in such a way that

−ω2
n + λn(1 + κ)− ω2

nλ
2σ
n

λ2n − ω2
n

= 0.

This is possible if and only if the fourth order equation

ω4
n − ω2

n

(
λ2n + λn(1 + κ) + λ2σn

)
+ λ3n(1 + κ) = 0

admits a real solution. Indeed, for λn large enough, it is immediate to verify that there
exists a positive solution

ωn ∼


λn if σ < 1,
√
2λn if σ = 1,

λσn if σ > 1.

(6.14.11)
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Since F (ωn) → 0, we obtain from (6.14.10) and (6.14.11)

bn ∼ κ
F (ωn)

·


ω
− 1

2
n if σ < 1,

4
√
2ω

− 1
2

n if σ = 1,

ω
− 1

2σ
n if σ > 1.

Using Lemma 6.14.1, we conclude that

∥zn∥V ≥ ∥βn∥ = |bn| → ∞,

which, together with (6.14.1), yield the thesis.

Remark 6.14.1. As a matter of fact, the semigroup U2(t) turns out to be stable for all
σ, except in the case of a very particular class of memory kernels µ, called resonant,
for which the system exhibits trajectories with conserved energy (see e.g. [69]).
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CHAPTER7

Caginalp Phase-Field Systems

7.1 Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. We consider the follow-
ing nonlinear system of Caginalp type in the unknowns u = u(x, t) : Ω×R+ → R and
α = α(x, t) : Ω× R+ → R{

ut −∆u+ ϕ(u) = αt,

αtt −∆αt −∆α + g(α) = −ut,
(7.1.1)

supplemented with the initial data
u(x, 0) = u0(x),

α(x, 0) = α0(x),

αt(x, 0) = α1(x),

and Dirichlet boundary conditions,{
u(x, t)|x∈∂Ω = 0,

α(x, t)|x∈∂Ω = 0.

As detailed in the introduction of the thesis, system (7.1.1) serves as a model in the
description of type III phase-field evolutions, with order parameter u and thermal dis-
placement α.
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Assumptions on the nonlinearities. We assume that ϕ, g ∈ F , where F is the class of
functions

F = {f ∈ C1(R) : f(0) = 0 and |f ′(s)| ≤ c+c|s|4, for all s ∈ R and some c ≥ 0 }.

Furthermore, we require the following dissipation conditions (in the sense that they al-
low to prove the dissipativity of the associated semigroup, i.e., the existence of bounded
absorbing sets, see below):

lim inf
|s|→+∞

ϕ(s)

s
> −λ1, (7.1.2)

lim inf
|s|→+∞

g′(s) > −λ1, (7.1.3)

where λ1 > 0 is the first eigenvalue of the linear operator −∆ on L2(Ω) with domain
H2(Ω) ∩H1

0 (Ω). Finally, we assume that

ϕ′(s) ≥ −c, for every s ∈ R. (7.1.4)

Our aim in this chapter is to study the asymptotic behavior of the solution semi-
group associated to (7.1.1). The first results concerning well-posedness and existence
of global attractors for this model have been obtained in [63] in the case g = 0, under
the growth restriction

|ϕ′(s)| ≤ c+ c|s|r, r = 2,

and with (7.1.2) replaced by the less general condition

ϕ(s)s ≥
∫ s

0

ϕ(y)dy ≥ −c.

Here, we develop the analysis under assumption (7.1.2), in the case of two nonlineari-
ties ϕ and g, both of critical order r = 4, proving the existence of a global attractor of
optimal regularity.

After introducing some preliminaries in Section 7.2, we prove the well-posedness in
Section 7.3, yielding a solution semigroup (dynamical system) acting on the natural
weak energy space. In Sections 7.4-7.5, we turn to the study of the dissipativity of
the semigroup, characterized by the existence of regular absorbing sets. The final Sec-
tion 7.6 is devoted to the main result concerning existence and regularity of the global
attractor.

7.2 Preliminaries

7.2.1 Functional setting

Let A be the strictly positive Dirichlet operator

A = −∆ with domain D(A) = H2(Ω) ∩H1
0 (Ω) b L2(Ω).

Analogously to Chapter 2, for σ ∈ R we introduce the scale of (compactly) nested
Hilbert spaces

Hσ = D(A
σ
2 ),
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with inner product
⟨w, v⟩σ = ⟨A

σ
2w,A

σ
2 v⟩

and norm
∥w∥σ = ∥A

σ
2w∥.

Again, for σ > 0, it is understood that H−σ denotes the completion of the domain, so
that H−σ is the dual space of Hσ. We omit the subscript σ whenever it equals zero and
the symbol ⟨·, ·⟩ also stands for the duality product between Hσ and H−σ. In particular,

H2 = H2(Ω) ∩H1
0 (Ω) b H1 = H1

0 (Ω) b H = L2(Ω) b H−1 = H−1(Ω).

We also define the energy spaces

Hσ = Hσ+1 × Hσ+1 × Hσ,

endowed with the standard product norms

∥{w1, w2, w3}∥2Hσ
= ∥w1∥2σ+1 + ∥w2∥2σ+1 + ∥w3∥2σ.

7.2.2 Technical lemmas

We need the following Gronwall-type lemma.

Lemma 7.2.1. Let X be a Banach space and let Z ⊂ C(R+, X). Let E : X → R be a
function such that

inf
t∈R+

E(z(t)) ≥ −m, E(z(0)) ≤M,

for some m,M ≥ 0 and every z ∈ Z . In addition, assume that, for every z ∈ Z ,
the function t 7→ E(z(t)) is continuously differentiable and satisfies the differential
inequality

d

dt
E(z(t)) + µ∥z(t)∥2X ≤ k,

for some µ > 0 and k > 0, both independent of z ∈ Z . Then, there exists t0 = m+M
k

≥
0 such that

E(z(t)) ≤ sup
ζ∈X

{
E(ζ) : µ∥ζ∥2X ≤ 2k

}
, ∀t ≥ t0.

The proof can be found in [3]. We will also exploit the Uniform Gronwall Lemma
(see, e.g., [91], Section 1.1.3) which reads as follows.

Lemma 7.2.2. Let Λ0 be an absolutely continuous nonnegative function and Λ1,Λ2

be two nonnegative functions satisfying, almost everywhere in R+, the differential in-
equality

d

dt
Λ0 ≤ Λ0Λ1 + Λ2.

Assume also that

sup
t≥0

∫ t+1

t

Λı(τ)dτ ≤ mı, ı = 0, 1, 2,

for some positive constants mı. Then, there exists c > 0 depending only on mi such
that

Λ0(t+ 1) ≤ c, ∀t ≥ 0.
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We finally recall a useful decomposition lemma stated in Chapter 2 (Lemma 2.3.1).

Lemma 7.2.3. Let g ∈ F satisfy (7.1.3). Then, for every λ < λ1 sufficiently close to
λ1, the decomposition

g(s) = g0(s)− λs+ g1(s)

holds for some g0, g1 ∈ C1(R) with the following properties:

• g1 is compactly supported with g1(0) = 0;

• g0 vanishes inside [−1, 1] and fulfills, for some c ≥ 0 and every s ∈ R, the bounds

0 ≤ g′0(s) ≤ c|s|4.

Defining the following functionals on H1:

Φ(w) = 2

∫
Ω

∫ w(x)

0

ϕ(y) dydx

and

G0(w) = 2

∫
Ω

∫ w(x)

0

g0(y) dydx,

by (7.1.2) and Lemma 7.2.3, the inequalities

Φ(w) ≥ −(1− ν)∥w∥21 − c1, (7.2.1)

⟨ϕ(w), w⟩ ≥ −(1− ν)∥w∥21 − c1 (7.2.2)

and

0 ≤ G0(w) ≤ 2⟨g0(w), w⟩ (7.2.3)

hold for some 0 < ν < 1 and c1 ≥ 0.

Remark 7.2.1. Along the chapter, we will perform several formal estimates which
can be justified within a proper Galerkin scheme. Moreover, the Hölder, Young and
Poincaré inequalities will be used without explicit mention, as well as the Sobolev em-
bedding

H1 ⊂ L6(Ω).

Remark 7.2.2. We stress that we study the model in the meaningful physical dimension
N = 3. Nonetheless, all the results are true in lower dimensions and can also be
proved for N > 3: accordingly, one has to assume the correct critical growth on the
nonlinearities ϕ′ and g′ (namely, 4

N−2
instead of 4) and to exploit the corresponding

Sobolev embeddings.
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7.3 The Solution Semigroup

We start by giving a suitable notion of weak solution.

Definition 7.3.1. Given T > 0, we call weak solution to (7.1.1) on [0, T ] a pair (u, α),

u ∈ C([0, T ],H1) ∩ C1([0, T ],H−1),

α ∈ C([0, T ],H1) ∩ C1([0, T ],H) ∩ C2([0, T ],H−1) ∩W 1,2(0, T ; H1),

satisfying, for almost every t ∈ [0, T ] and every test function (v, θ) ∈ H1 × H1, the
equalities

⟨ut, v⟩+ ⟨u, v⟩1 + ⟨ϕ(u), v⟩ = ⟨αt, v⟩,
⟨αtt, θ⟩+ ⟨αt, θ⟩1 + ⟨α, θ⟩1 + ⟨g(α), θ⟩ = −⟨ut, θ⟩.

Theorem 7.3.1. For every T > 0 and every z0 = {a1, a2, a3} ∈ H, system (7.1.1)
admits a unique weak solution (u, α) on [0, T ] such that

{u(0), α(0), αt(0)} = z0.

In addition, given R > 0, for any pair of initial data z1, z2 ∈ H such that ∥z1∥H ≤ R
and ∥z2∥H ≤ R, the difference (ū, ᾱ) = (u1 − u2, α1 − α2) of the corresponding
solutions satisfies

∥{ū, ᾱ, ᾱt}∥L∞(0,T ;H) ≤ KeKT∥z1 − z2∥H, (7.3.1)

for some constant K = K(R) ≥ 0.

Proof. Concerning existence, this follows from a usual Galerkin procedure, consider-
ing the solutions (un, αn) to n-dimensional approximating problems. Arguing as in the
forthcoming Theorem 7.4.1 and Corollary 7.4.1, with (un, αn) in place of (u, α), we
deduce the boundedness of

un in L∞(0, T ; H1) ∩ L2(0, T ; H2),

∂tun in L2(0, T ; H),

αn in L∞(0, T ; H1),

∂tαn in L∞(0, T ; H) ∩ L2(0, T ; H1),

and, calling ΩT = Ω × (0, T ), those of ϕ(un) and g(αn) in L
6
5 (ΩT ). Hence, we can

extract (weakly or weakly-∗) convergent subsequences to some limit (u, α). Proving
that this limit solves the original problem is a standard matter, as well as the proof of
the regularity

u ∈ C([0, T ],H1).

Moreover, arguing as in Chapter 2 (proof of Theorem 2.4.1), we obtain

α ∈ C([0, T ],H1) ∩ C1([0, T ],H).
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The required regularity in H−1 of both u and α is now immediately seen by comparison
in the equations. It remains to prove (7.3.1). Setting ū = u1 − u2 and ᾱ = α1 −α2, the
difference system reads{

ūt −∆ū+ ϕ(u1)− ϕ(u2) = ᾱt,

ᾱtt −∆ᾱt −∆ᾱ + g(α1)− g(α2) = −ūt.

Along the proof, the generic constant K ≥ 0 may depend on R. Multiplying the first
equation by 2ūt, the second one by 2ᾱt and summing up, we obtain

d

dt
Λ + 2∥ūt∥2 + 2∥ᾱt∥21 = 2⟨ϕ(u2)− ϕ(u1), ūt⟩+ 2⟨g(α2)− g(α1), ᾱt⟩, (7.3.2)

where
Λ = ∥ū∥21 + ∥ᾱ∥21 + ∥ᾱt∥2.

The growth of g and Corollary 7.4.1 entail

2⟨g(α2)− g(α1), ᾱt⟩ ≤ K∥ᾱ∥1∥ᾱt∥1 ≤ ∥ᾱt∥21 +K∥ᾱ∥21.

Using the embedding H5/4 ⊂ L12(Ω), we have

2⟨ϕ(u2)− ϕ(u1), ūt⟩ ≤ K∥ū∥1∥ūt∥
[
1 + ∥u2∥45/4 + ∥u1∥45/4

]
.

Furthermore, a classical interpolation inequality yields

∥uı∥45/4 ≤ K∥uı∥31∥uı∥2. (7.3.3)

Thus, accounting for Corollary 7.4.1, the right-hand side of (7.3.2) is controlled by

∥ūt∥2 + ∥ᾱt∥21 +K
[
1 + ∥u2∥22 + ∥u1∥22

]
Λ

and we end up with
d

dt
Λ ≤ K

[
1 + ∥u2∥22 + ∥u1∥22

]
Λ.

An application of the Gronwall lemma, along with Corollary 7.4.1, completes the proof.

In light of Theorem 7.3.1, system (7.1.1) generates a dynamical system S(t) on the
phase space H, defined by

S(t)z0 = z(t) = {u(t), α(t), αt(t)},

where (u(t), α(t)) is the solution at time twith initial datum z0 = {u(0), α(0), αt(0)} ∈
H.
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7.4 A Priori Estimates and Dissipativity

As already said, the presence of some dissipation mechanism in the dynamical system
S(t) reflects into the existence of an absorbing set.

Theorem 7.4.1. There exists a constant R0 > 0 with the following property: given any
R ≥ 0, there exists te = te(R) ≥ 0 such that, whenever

∥z0∥H ≤ R,

the inequality
∥S(t)z0∥H ≤ R0

holds for every t ≥ te.

In order to simplify the calculations, according to Lemma 7.2.3, we fix λ sufficiently
close to λ1 and rewrite the nonlinear Caginalp system (7.1.1) as{

ut −∆u+ ϕ(u) = αt,

αtt −∆αt −∆α + g0(α)− λα = −ut − q,
(7.4.1)

with q = g1(α). In addition, given any solution (u, α) to (7.4.1), we introduce the
equivalent inner product (·, ·)1 on H1 defined by

(w, v)1 = ⟨w, v⟩1 − λ⟨w, v⟩,

with induced norm | · |1. The corresponding energy reads

E(t) = ∥u(t)∥21 + |α(t)|21 + ∥αt(t)∥2.

Proof of Theorem 7.4.1. Let C ≥ 0 be a generic constant independent of R and set
S(t)z0 = z(t). Due to (7.2.1)-(7.2.3) and the growth of ϕ and g0, the functional

E(z(t)) =∥u(t)∥21 + ε∥u(t)∥2 + ∥αt(t)∥2 + |α(t)|21
+ε∥α(t)∥21 + 2ε⟨αt(t), α(t)⟩+ Φ(u(t)) +G0(α(t))

fulfills, for ε > 0 small,
E(z(t)) ≥ νE(t)− C (7.4.2)

and
E(z(t)) ≤ CE(t)

[
1 + E(t)2

]
. (7.4.3)

Multiplying the first equation of (7.4.1) by 2ut+2εu, the second one by 2αt+2εα and
summing up, we infer

d

dt
E+2∥ut∥2 + 2ε∥u∥21 + 2∥αt∥21 − 2ε∥αt∥2

+2ε|α|21 + 2ε⟨ϕ(u), u⟩+ 2ε⟨g0(α), α⟩

=2ε⟨αt, u⟩ − 2ε⟨ut, α⟩ − ⟨q, 2αt + 2εα⟩.
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Thus, by (7.2.2) and (7.2.3),

d

dt
E+∥ut∥2 +

3

2
∥αt∥21 + 2εν∥u∥21 + 2ε|α|21

≤2ε⟨αt, u⟩ − 2ε⟨ut, α⟩ − ⟨q, 2αt + 2εα⟩+ 2εc1,

for ε > 0 small enough. Possibly reducing ε, we have

−⟨q, 2αt + 2εα⟩ ≤ 1

4
∥αt∥21 +

ε

4
|α|21 + C

and
2ε⟨αt, u⟩ − 2ε⟨ut, α⟩ ≤

1

2
∥ut∥2 +

1

4
∥αt∥21 + εν∥u∥21 +

ε

4
|α|21.

Therefore,

d

dt
E + µ

[
∥u∥21 + ∥α∥21 + ∥αt∥2

]
+

1

2
∥ut∥2 +

1

2
∥αt∥21 ≤ C,

for some µ > 0, and
d

dt
E(z(t)) + µ∥z(t)∥2H ≤ C.

Applying Lemma 7.2.1, together with (7.4.2) and (7.4.3), we finish the proof of the
theorem.

Corollary 7.4.1. Given any R ≥ 0, there exists a constant K = K(R) ≥ 0 such that,
whenever ∥z0∥ ≤ R, the corresponding solution S(t)z0 fulfills

∥S(t)z0∥H ≤ K, ∀t ≥ 0, (7.4.4)

and ∫ T

t

[
∥ut(τ)∥2 + ∥αt(τ)∥21 + ∥u(τ)∥22

]
dτ ≤ K +K(T − t), ∀ T > t ≥ 0.

Proof. Along the proof, K ≥ 0 denotes a generic constant depending on R. Recasting
word by word the proof of Theorem 7.4.1 with ε = 0, we end up with

d

dt

[
∥u∥21 + ∥αt∥2 + |α|21 + Φ(u) +G0(α)

]
+ ∥ut∥2 + ∥αt∥21 ≤ C, (7.4.5)

for some C ≥ 0 (independent of R). Fix any t ≤ te(R) and integrate the last inequality
over [0, t] to find, in light of (7.2.1)-(7.2.3),

E(t) ≤ K.

Applying Theorem 7.4.1, we conclude that ∥S(t)z0∥H ≤ K for every t ≥ 0. To
prove the remaining bounds, we integrate inequality (7.4.5) over [t, T ] and obtain the
required estimates for ut in L2(t, T ; H) and αt in L2(t, T ; H1). The product in H of the
first equation of (7.4.1) by −2∆u reads

d

dt
∥u∥21 + 2∥u∥22 + 2⟨ϕ′(u)∇u,∇u⟩ = −2⟨αt,∆u⟩.
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Using (7.1.4) and (7.4.4), we end up with

d

dt
∥u∥21 + ∥u∥22 ≤ K

and, integrating over [t, T ], the claim is proved.

According to (7.4.4), the set

B0 = {z0 ∈ H : ∥S(t)z0∥H ≤ K(R0), ∀t ≥ 0}

is an invariant absorbing set for the semigroup S(t).

Remark 7.4.1. It is worth noticing that the bound from below on ϕ′, assumed in (7.1.4),
is not needed for the existence of the absorbing set B0.

Remark 7.4.2. All the results obtained in this section are a priori estimates and do not
make use of Theorem 7.3.1.

7.5 Further Dissipativity

A deeper analysis of the dissipation mechanism involved in the system allows to dis-
cover a partial regularization effect on the solutions.

Theorem 7.5.1. There exists an invariant absorbing set B such that

sup
t≥0

sup
z0∈B

[
∥u(t)∥2 + ∥ut(t)∥1 + ∥αt(t)∥1 + ∥αtt(t)∥

]
< +∞.

The proof of Theorem 7.5.1 can be divided into two steps. First, we obtain the regu-
larization of u and αt.

Lemma 7.5.1. There exists an invariant absorbing set B1 such that

sup
t≥0

sup
z0∈B1

[
∥u(t)∥2 + ∥αt(t)∥1

]
< +∞.

Proof. In what follows, C ≥ 0 denotes a generic constant depending only on the in-
variant absorbing set B0 constructed in the previous section. Consider an initial datum
z0 ∈ B0. Owing to (7.1.4) and the growth of g0, the functional

Λ = Λ(S(t)z0) = ∥u∥22 + ∥u∥21 + ∥αt∥21 + 2(α, αt)1 + 2⟨g0(α), αt⟩+K0

satisfies, for K0 = K0(B0) > 0 sufficiently large,

∥u∥22 + ∥αt∥21 ≤ 2Λ ≤ C
[
1 + ∥u∥22 + ∥αt∥21

]
. (7.5.1)

Multiplying the first equation of (7.4.1) by −2∆(ut + u), the second one by 2αtt and
summing up, we find

d

dt
Λ + 2∥u∥22 + 2∥ut∥21 + 2∥αtt∥2 + 2⟨ϕ′(u)∇u,∇u⟩

= 2|αt|21 − 2⟨ϕ′(u)∇u,∇ut⟩+ 2⟨g′0(α)αt, αt⟩

− 2⟨αt,∆ut⟩ − 2⟨αt,∆u⟩ − 2⟨ut, αtt⟩ − 2⟨q, αtt⟩.
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By (7.1.4), we have
2⟨ϕ′(u)∇u,∇u⟩ ≥ −C,

while, by the growth assumption on ϕ and g0, exploiting the embedding H5/4 ⊂ L12(Ω)
and interpolation (see inequality (7.3.3)),

−2⟨ϕ′(u)∇u,∇ut⟩ ≤ C∥ut∥1∥u∥2
[
1 + ∥u∥45/4

]
≤ ∥ut∥21 + C

[
1 + ∥u∥22

]
Λ

and
2⟨g′0(α)αt, αt⟩ ≤ C∥αt∥21 ≤ CΛ.

Next, noting that

−2⟨ut, αtt⟩ − 2⟨q, αtt⟩ ≤ C
[
1 + ∥ut∥2

]
+ ∥αtt∥2

and
2|αt|21 − 2⟨αt,∆ut⟩ − 2⟨αt,∆u⟩ ≤ CΛ +

1

2
∥u∥22 +

1

2
∥ut∥21 + C,

we end up with

d

dt
Λ +

1

2
∥ut∥21 +

1

2
∥αtt∥2 ≤ C

[
1 + ∥u∥22

]
Λ + C

[
1 + ∥ut∥2

]
. (7.5.2)

Hence, setting

Λ0(t) =
t

t+ 1
Λ(S(t)z0),

elementary computations provide

d

dt
Λ0(t) ≤ h(t)Λ0(t) + k(t),

with
h(t) = C

[
1 + ∥u(t)∥22

]
and

k(t) =
1

[t+ 1]2
Λ(S(t)z0) + C

[
t

t+ 1

[
1 + ∥ut(t)∥2

]]
.

Since, by Corollary 7.4.1 and (7.5.1), there holds

sup
t≥0

∫ t+1

t

[
Λ0(τ) + h(τ) + k(τ)

]
dτ ≤ C,

applying Lemma 7.2.2, we have

Λ0(t+ 1) ≤ C, ∀t ≥ 0,

and, in particular,
Λ(S(1)z0) ≤ C.

The set
B1 = S(1)B0 ⊂ B0,
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is clearly absorbing and invariant. Moreover,

sup
t≥0

sup
z0∈B1

Λ(S(t)z0) = sup
t≥0

sup
z0∈B0

Λ(S(t+ 1)z0) ≤ sup
z0∈B0

Λ(S(1)z0) ≤ C,

which, along with (7.5.1), establishes the desired bound

sup
t≥0

sup
z0∈B1

[
∥u(t)∥2 + ∥αt(t)∥1

]
≤ C.

Corollary 7.5.1. We have the uniform estimate

sup
t≥0

sup
z0∈B1

[
∥ut(t)∥+

∫ t+1

t

[
∥ut(τ)∥21 + ∥αtt(τ)∥2

]
dτ

]
< +∞.

Proof. The control of ut in L∞(R+; H) immediately follows by comparison in the first
equation of (7.4.1). Integrating (7.5.2) over [t, t+ 1], we finish the proof.

Proof of Theorem 7.5.1. Take an initial datum z0 ∈ B1 and consider a generic constant
C ≥ 0 depending only on B1. Differentiating system (7.4.1) with respect to time, we
obtain {

utt −∆ut + ϕ′(u)ut = αtt,

αttt −∆αtt −∆αt + g′0(α)αt − λαt = −utt − qt.

Multiplying the first equation by 2utt, the second one by 2αtt and summing up, we find

d

dt
Λ + 2∥utt∥2 + 2∥αtt∥21 = −2⟨ϕ′(u)ut, utt⟩ − 2⟨g′0(α)αt, αtt⟩ − 2⟨qt, αtt⟩,

where
Λ = Λ(S(t)z0) = ∥ut∥21 + ∥αtt∥2 + |αt|21.

Due to the growth of ϕ and the Agmon inequality,

−2⟨ϕ′(u)ut, utt⟩ ≤ C∥utt∥ ≤ ∥utt∥2 + C,

while, using the growth of g0,

−2⟨g′0(α)αt, αtt⟩ − 2⟨qt, αtt⟩ ≤ C∥αtt∥1 ≤ ∥αtt∥21 + C.

Summarizing, we end up with

d

dt
Λ + ∥utt∥2 + ∥αtt∥21 ≤ C.

At this point, multiplying both terms of the above inequality by t ∈ [0, 1], we have

d

dt

[
tΛ(S(t)z0)

]
≤ Λ(S(t)z0) + C.

By Lemma 7.5.1 and Corollary 7.5.1,∫ 1

0

Λ(S(t)z0) dt ≤ C,
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hence, integrating over [0, 1],
Λ(S(1)z0) ≤ C.

Setting
B = S(1)B1 ⊂ B1,

which is absorbing and invariant, we conclude that

sup
t≥0

sup
z0∈B

Λ(S(t)z0) = sup
t≥0

sup
z0∈B1

Λ(S(t+ 1)z0) ≤ sup
z0∈B1

Λ(S(1)z0) ≤ C.

7.6 The Global Attractor

It follows from Theorem 7.5.1 that u(t) regularizes in finite time. Unfortunately, this
cannot occur for α(t), preventing the existence of a compact absorbing set for S(t).
Nonetheless, it is still true that there exists a compact attracting set for the semigroup.
More precisely, our main result is the existence of a compact set which is exponentially
attracting in H for the semigroup.

Theorem 7.6.1. There exist three strictly positive constants ϱ, C1, ω1 and a closed ball
BH1(ϱ) of H1 such that

δH(S(t)B,BH1(ϱ)) ≤ C1e
−ω1t, t ≥ 0.

As a corollary we have existence of the global attractor A for S(t). Besides, since the
global attractor is contained in any compact attracting set, it satisfies ∥A∥H1 ≤ ϱ.

Corollary 7.6.1. The semigroup S(t) : H → H possesses a (connected) global attrac-
tor A which is bounded in H1.

In light of Theorem 7.5.1, which provides a regularization of u(t) in finite time, the
proof of Theorem 7.6.1 is an immediate consequence of the following lemma.

Lemma 7.6.1. There exists a closed ball B in the space H2 × H1 such that

sup
z0∈B

δH1×H

(
{α(t), αt(t)}, B

)
≤ C0e

−t, t ≥ 0, (7.6.1)

for some positive constant C0 depending only on B.

Proof. We exploit the “parabolic” approach developed in [73]. Accordingly, we take
an initial datum z0 = {a1, a2, a3} ∈ B and we write α = η + ζ , with

−∆ηt −∆η + g0(α)− g0(ζ) = 0,

η(0) = a2,

ηt(0) = a3,

(7.6.2)

and 
−∆ζt −∆ζ + g0(ζ) = h,

ζ(0) = 0,

ζt(0) = 0,

(7.6.3)
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where, by force of Theorem 7.5.1,

h = λα− ut − q − αtt ∈ L∞(R+; H).

In what follows, the generic constant C ≥ 0 only depends on B. Multiplying (7.6.2) by
2η, from the monotonicity of g0, we infer

d

dt
∥η∥21 + 2∥η∥21 ≤ 0

and the Gronwall lemma entails

∥η(t)∥21 ≤ ∥η(0)∥21 e−2t, ∀t ≥ 0. (7.6.4)

Then, we multiply (7.6.3) by −2∆ζ . Using again the monotonicity of g0, we obtain

d

dt
∥ζ∥22 + 2∥ζ∥22 ≤ −2⟨h,∆ζ⟩ ≤ C∥ζ∥2 ≤ C + ∥ζ∥22.

Thus,
d

dt
∥ζ∥22 + ∥ζ∥22 ≤ C

and the Gronwall lemma gives the uniform bound

∥ζ(t)∥22 ≤ C. (7.6.5)

Collecting (7.6.4), (7.6.5) and Theorem 7.5.1, we see that, for every initial datum z0 ∈
B,

∥η(t)∥1 ≤ Ce−t, ∥ζ(t)∥2 ≤ C, ∥αt(t)∥1 ≤ C.

Hence, calling B the ball of H2 × H1 of radius C
√
2, we complete the proof.

Remark 7.6.1. The existence of a global attractor bounded in H1 for the semigroup
S(t) can also be proved within the weaker dissipativity assumption

lim inf
|s|→∞

g(s)

s
> −λ1.

In that case, the proof of Theorem 7.6.1 is indeed more complicated and requires an
abstract result from [21] (see Theorem A.4 in the appendix). We stress out that, con-
trary to Lemma 7.6.1 in which the attraction property for α is obtained separately, the
alternative technique needs a suitable splitting of the whole semigroup. The interested
reader can find the proper decomposition for α in [21, Section 4] (see also [72]) which
has to be coupled with the “subcritical” splitting for u as in [21, Example 3.5].

Remark 7.6.2. In light of Theorem 7.5.1, the global attractor A is easily seen to be
bounded in the more regular space H2 × H2 × H2.
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CHAPTER8

Timoshenko Systems with Gurtin-Pipkin
Thermal Law

8.1 Introduction

Given a real interval I = [0, ℓ], we consider the thermoelastic beam model of Timo-
shenko type [92] 

ρ1φtt − κ(φx + ψ)x = 0,

ρ2ψtt − bψxx + κ(φx + ψ) + δθx = 0,

ρ3θt + qx + δψtx = 0,

(8.1.1)

where the unknown variables

φ, ψ, θ, q : (x, t) ∈ I× [0,∞) 7→ R

represent the transverse displacement of a beam with reference configuration I, the
rotation angle of a filament, the relative temperature (i.e. the temperature variation
field from an equilibrium reference value) and the heat flux vector, respectively. Here,
ρ1, ρ2, ρ3 as well as κ, b, δ are strictly positive fixed constants. The system is comple-
mented with the Dirichlet boundary conditions for φ and θ

φ(0, t) = φ(ℓ, t) = θ(0, t) = θ(ℓ, t) = 0,

and the Neumann one for ψ

ψx(0, t) = ψx(ℓ, t) = 0.
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Chapter 8. Timoshenko Systems with Gurtin-Pipkin Thermal Law

As already said in the introduction of the thesis, such boundary conditions seem to be
the most feasible from a physical viewpoint. To complete the picture, a further relation
is needed: the so-called constitutive law for the heat flux, establishing a link between q
and θ. This is what really characterizes the dynamics, since no mechanical dissipation
is present in the system, and any possible loss of energy can be due only to thermal
effects.

8.1.1 The Fourier thermal law

A first choice is to assume the classical Fourier law of heat conduction

βq + θx = 0, (8.1.2)

where β > 0 is a fixed constant. In which case, the third equation of (8.1.1) becomes

ρ3θt −
1

β
θxx + δψtx = 0.

The exponential stability of the resulting Timoshenko-Fourier system has been ana-
lyzed in [67]. There, the authors introduce the so-called stability number1

χ =
ρ1
κ

− ρ2
b
,

representing the difference of the inverses of the propagation speeds. The main result
of [67] reads as follows: the contraction semigroup generated by (8.1.1)-(8.1.2) acting
on the triplet (φ, ψ, θ) is exponentially stable (in the natural weak energy space) if and
only if χ = 0.

8.1.2 The Cattaneo thermal law

As already said, the drawback of the Fourier law lies in the physical paradox of infinite
propagation speed of (thermal) signals, a typical side-effect of parabolicity. A different
model, removing this paradox, is the Cattaneo law [8], namely, the differential pertur-
bation of (8.1.2)

τqt + βq + θx = 0, (8.1.3)

for τ > 0 small. A natural question is whether the semigroup generated by (8.1.1)
coupled with (8.1.3), now acting on the state variable (φ, ψ, θ, q), remains exponentially
stable within the condition χ = 0 above. As shown in [31], the answer is negative:
exponential stability can never occur when χ = 0. More recently, in [89] a new stability
number is introduced in order to deal with the Timoshenko-Cattaneo system, that is,2

χτ =

[
ρ1
ρ3κ

− τ

][
ρ1
κ

− ρ2
b

]
− τ

ρ1δ
2

ρ3κb
.

1The notion of stability number is actually introduced in the subsequent paper [89], defined there as χ = κ/ρ1−
b/ρ2. The difference is clearly irrelevant with respect to the relation χ = 0. The motivation of our choice of χ is to
render more direct the comparison with the Cattaneo law.

2The value of χτ in [89] differs from ours for a multiplicative constant.
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The system is shown to be exponentially stable if and only if χτ = 0. Quite interest-
ingly, the Fourier case is fully recovered in the limit τ → 0, when (8.1.3) collapses
into (8.1.2). Indeed, for τ = 0 the equality

χ0 =
ρ1
ρ3κ

χ

holds, which tells at once that

χ0 = 0 ⇔ χ = 0.

It is worth mentioning that the proof of exponential stability in [89] is carried out via
linear semigroup techniques, whereas the analogous result of [67] for the Fourier case
is obtained by constructing explicit energy functionals.

8.1.3 The Gurtin-Pipkin thermal law

The aim of the present chapter is studying the Timoshenko system (8.1.1) assuming the
Gurtin-Pipkin heat conduction law for the heat flux [48]. More precisely, we consider
the constitutive equation

βq(t) +

∫ ∞

0

g(s)θx(t− s) ds = 0, (8.1.4)

where g, called the memory kernel, is a (bounded) convex summable function on [0,∞)
of total mass ∫ ∞

0

g(s) ds = 1,

whose properties will be specified in more detail later on. Equation (8.1.4) can be
viewed as a memory relaxation of the Fourier law (8.1.2), inducing (similarly to the
Cattaneo law) a fully hyperbolic mechanism of heat transfer. In this perspective, it
may be considered a more realistic description of physical reality. Accordingly, system
(8.1.1) turns into 

ρ1φtt − κ(φx + ψ)x = 0,

ρ2ψtt − bψxx + κ(φx + ψ) + δθx = 0,

ρ3θt −
1

β

∫ ∞

0

g(s)θxx(t− s) ds+ δψtx = 0.

(8.1.5)

Rephrasing system (8.1.5) within the history framework of Dafermos [25], we con-
struct a contraction semigroup S(t) of solutions acting on a suitable Hilbert space H,
accounting for the presence of the memory. Then, introducing the stability number

χg =

[
ρ1
ρ3κ

− β

g(0)

][
ρ1
κ

− ρ2
b

]
− β

g(0)

ρ1δ
2

ρ3κb
,

our main theorem can be stated as follows.

Theorem 8.1.1. The semigroup S(t) is exponentially stable if and only if χg = 0.
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As we will see in the next section, Theorem 8.1.1 actually subsumes and generalizes
all the previously known results on the exponential decay properties of the thermoelas-
tic Timoshenko system (8.1.1).

Remark 8.1.1. Actually, exploiting the techniques of [10, 11], it is possible to prove
that the contraction semigroup S(t) remains stable3 on H (although not exponentially
stable) also when χg ̸= 0.

In Section 8.2 we compare Timoshenko systems of the form (8.1.1) subject to dif-
ferent laws of heat conduction, viewed as particular instances of (8.1.5) for suitable
choices of the memory kernel. The comparison with the Timoshenko-Cattaneo system
of [31,89], only formal at this stage, is rendered rigorous in the final Section 8.8. After
introducing some notation (Section 8.3), in Section 8.4 we define the semigroup S(t)
describing the solutions to (8.1.5). The subsequent three sections are devoted to the
proof of Theorem 8.1.1. Firstly, we introduce some auxiliary functionals (Section 8.5),
needed in the proof of the sufficiency part of the theorem carried out in Section 8.6. The
necessity of the condition χg = 0 in order for exponential stability to occur is proved
in Section 8.7.

8.2 Comparison with Earlier Results

8.2.1 The Fourier case

The Fourier law (8.1.2) can be seen as a (singular) limit of the Gurtin-Pipkin law (8.1.4).
Indeed, defining the ε-scaling of the memory kernel g by

gε(s) =
1

ε
g
(s
ε

)
, ε > 0,

we consider in place of the original (8.1.4) the constitutive equation

βq(t) +

∫ ∞

0

gε(s)θx(t− s) ds = 0. (8.2.1)

Since gε → δ0 in the distributional sense, where δ0 denotes the Dirac mass at 0+, it
is clear that, in the limit ε → 0, equation (8.2.1) reduces to the classical constitutive
law (8.1.2). According to Theorem 8.1.1, exponential stability for the Timoshenko-
Gurtin-Pipkin model with memory kernel gε occurs if and only if

χgε =

[
ρ1
ρ3κ

− βε

g(0)

][
ρ1
κ

− ρ2
b

]
− βε

g(0)

ρ1δ
2

ρ3κb
= 0.

Letting ε→ 0, we recover the condition

χδ0 =
ρ1
ρ3κ

χ = 0

of the Fourier case. The convergence of the Timoshenko-Gurtin-Pipkin model to the
Timoshenko-Fourier one as ε → 0 can be made rigorous within the proper functional
setting, along the same lines of [22].

3We recall that S(t) is said to be stable on H if

lim
t→∞

∥S(t)z∥H = 0, ∀z ∈ H.
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8.2.2 The Cattaneo case

The Cattaneo law (8.1.3) can be deduced as a particular instance of (8.1.4), correspond-
ing to the memory kernel

gτ (s) =
β

τ
e−

sβ
τ .

Indeed, changing the integration variable, we can write the flux vector q in the form

q(t) = − 1

β

∫ t

−∞
gτ (t− s)θx(s) ds.

Since

g′τ (s) = −β
τ
gτ (s),

we draw the relation

qt(t) = − 1

β

∫ t

−∞
g′τ (t− s)θx(s) ds−

gτ (0)

β
θx(t) =

1

τ

∫ t

−∞
gτ (t− s)θx(s) ds−

1

τ
θx(t),

which is nothing but (8.1.3). Besides, we have the equality of the stability numbers

χgτ = χτ .

8.2.3 The Coleman-Gurtin case

A further interesting model, midway between the Fourier and the Gurtin-Pipkin one, is
obtained by assuming the (parabolic-hyperbolic) Coleman-Gurtin law for the heat flux,
namely,

βq(t) + (1− α)θx(t) + α

∫ ∞

0

g(s)θx(t− s) ds = 0, α ∈ (0, 1). (8.2.2)

The limit cases α = 0 and α = 1 correspond to the fully parabolic Fourier case and the
fully hyperbolic Gurtin-Pipkin case. The corresponding Timoshenko-Coleman-Gurtin
system, whose third equation now reads

ρ3θt −
1

β

[
(1− α)θxx + α

∫ ∞

0

g(s)θxx(t− s) ds

]
+ δψtx = 0,

generates (similarly to the Timoshenko-Gurtin-Pipkin system) a contraction semigroup
Σ(t) on H. For this system, the following theorem holds.

Theorem 8.2.1. The semigroup Σ(t) is exponentially stable if and only if χ = 0.

Hence, the picture is exactly the same as in the Fourier case. This, as observed in [89],
is due to the predominant character of parabolicity. Theorem 8.2.1 can be given a
direct proof, following the lines of the next sections. In fact, the situation here is much
simpler, do to the presence of instantaneous dissipation given by the term −θxx in
the equation. However, it is also possible to obtain Theorem 8.2.1 as a byproduct of
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Theorem 8.1.1. To this end, it is enough to consider the Timoshenko-Gurtin-Pipkin
system with kernel

gε(s) =
1− α

ε
g
(s
ε

)
+ αg(s),

whose exponential stability takes place if and only if

χgε =

[
ρ1
ρ3κ

− βε

(1− α + αε)g(0)

][
ρ1
κ

− ρ2
b

]
− βε

(1− α + αε)g(0)

ρ1δ
2

ρ3κb
= 0.

Performing the limit ε→ 0, we obtain the distributional convergence

gε → (1− α)δ0 + αg,

yielding in turn∫ ∞

0

gε(s)θxx(t− s) ds→ (1− α)θxx + α

∫ ∞

0

g(s)θxx(t− s) ds.

Accordingly, we see that

χ(1−α)δ0+αg =
ρ1
ρ3κ

χ,

and we recover the same stability condition of the Timoshenko-Fourier system.

8.2.4 Heat conduction of type III

We finally mention the model resulting from the constitutive law of type III of Green-
Naghdi for the heat flux

βq + θx + dpx = 0, d > 0, (8.2.3)

where

p(t) = p(0) +

∫ t

0

θ(r) dr

is the thermal displacement. Plugging (8.2.3) into (8.1.1), one obtains
ρ1φtt − κ(φx + ψ)x = 0,

ρ2ψtt − bψxx + κ(φx + ψ) + δptx = 0,

ρ3ptt − 1
β
ptxx − d

β
pxx + δψtx = 0.

In [61], the system is shown to be exponentially stable if χ = 0. Again, the partial
parabolicity of the model prevails, so that the exponential stability condition is the
same as in the Fourier case. Though, the constitutive law (8.2.3) cannot be deduced
from (8.1.4), not even as a limiting case. Possibly, this feature may reflect the fact that
the theory of heat conduction of type III seems to be at the limit of thermodynamic
admissibility (see the analysis of [36]).
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8.3 Functional Setting and Notation

8.3.1 Assumptions on the memory kernel

Calling
µ(s) = −g′(s),

the prime denoting the derivative with respect to s, let the following conditions hold.

(i) µ is a nonnegative nonincreasing absolutely continuous function on R+ such that

µ(0) = lim
s→0

µ(s) ∈ (0,∞).

(ii) There exists ν > 0 such that the differential inequality

µ′(s) + νµ(s) ≤ 0

holds for almost every s > 0.

Remark 8.3.1. For every k > 0, the exponential kernel g(s) = ke−ks meets the hy-
potheses (i)-(ii).

In particular, µ is summable on R+ with∫ ∞

0

µ(s) ds = g(0).

Besides, the requirement that g has total mass 1 translates into∫ ∞

0

sµ(s) ds = 1.

8.3.2 Functional spaces

In what follows, ⟨·, ·⟩ and ∥ · ∥ are the standard inner product and norm on the Hilbert
space L2(I). We introduce the Hilbert subspace

L2
∗(I) =

{
f ∈ L2(I) :

∫ ℓ

0

f(x) dx = 0

}
of zero-mean functions, along with the Hilbert spaces

H1
0 (I) and H1

∗ (I) = H1(I) ∩ L2
∗(I),

both endowed with the gradient norm, due to the Poincaré inequality. We also consider
the space H2(I) and so-called memory space

M = L2(R+;H1
0 (I))

of square summable H1
0 -valued functions on R+ with respect to the measure µ(s)ds,

endowed with the inner product

⟨η, ξ⟩M =

∫ ∞

0

µ(s)⟨ηx(s), ξx(s)⟩ ds.
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The infinitesimal generator of the right-translation semigroup on M is the linear oper-
ator

Tη = −Dη
with domain

D(T ) =
{
η ∈ M : Dη ∈ M, lim

s→0
∥ηx(s)∥ = 0

}
,

where D stands for weak derivative with respect to the internal variable s ∈ R+. The
phase space of our problem will be

H = H1
0 (I)× L2(I)×H1

∗ (I)× L2
∗(I)× L2(I)×M

normed by

∥(φ, φ̃, ψ, ψ̃, θ, η)∥2H = κ∥φx+ψ∥2+ρ1∥φ̃∥2+ b∥ψx∥2+ρ2∥ψ̃∥2+ρ3∥θ∥2+
1

β
∥η∥2M.

8.3.3 Basic facts on the memory space

For every η ∈ D(T ), the nonnegative functional

Γ[η] = −
∫ ∞

0

µ′(s)∥ηx(s)∥2 ds

is well defined, and the following identity holds (see [11, 41, 69])

2⟨Tη, η⟩M = −Γ[η]. (8.3.1)

Moreover, in light of assumption (ii) on µ, we deduce the inequality

ν∥η∥2M ≤ Γ[η], (8.3.2)

which will be crucial for our purposes.

8.4 The Contraction Semigroup

Firstly, we introduce the auxiliary variable

η = ηt(x, s) : (x, t, s) ∈ I× [0,∞)× R+ 7→ R,

accounting for the integrated past history of θ and formally defined as (see [25, 41])

ηt(x, s) =

∫ s

0

θ(x, t− σ) dσ,

thus satisfying the Dirichlet boundary condition

ηt(0, s) = ηt(ℓ, s) = 0

and the further “boundary condition”

lim
s→0

ηt(x, s) = 0.
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Hence, η satisfies the equation

ηtt = −ηts + θ(t).

The way to render the argument rigorous is recasting (8.1.5) in the history space frame-
work devised by C.M. Dafermos [25]. This amounts to considering the partial differ-
ential system in the unknowns φ = φ(t), ψ = ψ(t), θ = θ(t) and η = ηt

ρ1φtt − κ(φx + ψ)x = 0, (8.4.1)

ρ2ψtt − bψxx + κ(φx + ψ) + δθx = 0, (8.4.2)

ρ3θt −
1

β

∫ ∞

0

µ(s)ηxx(s) ds+ δψtx = 0, (8.4.3)

ηt = Tη + θ. (8.4.4)

Remark 8.4.1. The analogy with the original system (8.1.5) is not merely formal, and
can be made rigorous within the proper functional setting (see [41] for more details).

Introducing the state vector

z(t) = (φ(t), φ̃(t), ψ(t), ψ̃(t), θ(t), ηt),

we view (8.4.1)-(8.4.4) as the ODE in H

d

dt
z(t) = Az(t), (8.4.5)

where the linear operator A is defined as

A



φ

φ̃

ψ

ψ̃

θ

η


=



φ̃
κ
ρ1
(φx + ψ)x

ψ̃
b
ρ2
ψxx − κ

ρ2
(φx + ψ)− δ

ρ2
θx

1
βρ3

∫∞
0
µ(s)ηxx(s) ds− δ

ρ3
ψ̃x

Tη + θ


with domain

D(A) =


(φ, φ̃, ψ, ψ̃, θ, η) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ ∈ H2(I)

φ̃ ∈ H1
0 (I)

ψx ∈ H1
0 (I)

ψ̃ ∈ H1
∗ (I)

θ ∈ H1
0 (I)

η ∈ D(T )∫∞
0
µ(s)η(s) ds ∈ H2(I)


.

111



Chapter 8. Timoshenko Systems with Gurtin-Pipkin Thermal Law

Theorem 8.4.1. The operator A is the infinitesimal generator of a contraction semi-
group

S(t) = etA : H → H.
The proof of this fact is based on Lemma 1.2.1, and is omitted (however, the argument

is similar to the one of Theorem 6.12.2). Thus, for every initial datum

z0 = (φ0, φ̃0, ψ0, ψ̃0, θ0, η0) ∈ H
given at time t = 0, the unique solution at time t > 0 to (8.4.5) reads

z(t) = (φ(t), φt(t), ψ(t), ψt(t), θ(t), η
t) = S(t)z0.

Besides, ηt fulfills the explicit representation formula (see [41])

ηt(s) =

{∫ s

0
θ(t− σ) dσ s ≤ t,

η0(s− t) +
∫ t

0
θ(t− σ) dσ s > t.

Remark 8.4.2. As observed in [67], the choice of the spaces of zero-mean functions
for the variable ψ and its derivative is consistent. Indeed, calling

Θ(t) =

∫ ℓ

0

ψ(x, t) dx

and integrating (8.4.2) on I we obtain the differential equation

ρ2Θ̈(t) + κΘ(t) = 0.

Hence, if Θ(0) = Θ̇(0) = 0 it follows that Θ(t) ≡ 0.

Remark 8.4.3. For the existence of the contraction semigroup S(t) the hypotheses
(i)-(ii) on the kernel are overabundant. It is actually enough to require that µ be a
(nonnull and nonnegative) nonincreasing absolutely continuous summable function on
R+, possibly unbounded in a neighborhood of zero.

For any fixed initial datum z0 ∈ H, we define (twice) the energy as

E(t) = ∥S(t)z0∥2H.
The natural multiplication of equation (8.4.5) by z(t) in the weak energy space, along
with an exploitation of (8.3.1), provide the energy identity

d

dt
E(t) = 2⟨Az(t), z(t)⟩H =

2

β
⟨Tηt, ηt⟩M = − 1

β
Γ[ηt], (8.4.6)

valid for all z0 ∈ D(A).
As anticipated in the introduction, the main Theorem 8.1.1 of this chapter tells that

S(t) exp. stable ⇔ χg = 0.

The proof of the result is carried out in the next Sections 8.5-8.7.

Remark 8.4.4. We mention that an alternative approach is also possible. Namely, to
set the problem in the so-called minimal state framework [29], rather than in the past
history one. In which case, the necessary and sufficient condition χg = 0 of exponential
decay remains the same. In fact, one can show in general that the exponential decay
in the history space (i.e. what proved here) implies the analogous decay in the minimal
state space (cf. [19, 29]).
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8.5 Some Auxiliary Functionals

In this section, we define some auxiliary functionals needed in the proof of the suffi-
ciency part of Theorem 8.1.1. As customary, it is understood that we work with (reg-
ular) solutions arising from initial data belonging to the domain of the operator A.
Along the section, C ≥ 0 will denote a generic constant depending only on the struc-
tural quantities of the problem. Besides, we will tacitly use several times the Hölder,
Young and Poincaré inequalities. In particular we will exploit the inequality∫ ∞

0

µ(s)∥ηx(s)∥ ds ≤
(∫ ∞

0

µ(s) ds

) 1
2
(∫ ∞

0

µ(s)∥ηx(s)∥2 ds
) 1

2

=
√
g(0) ∥η∥M.

8.5.1 The functional I

Let
I(t) = − 2ρ3

g(0)

∫ ∞

0

µ(s)⟨θ(t), ηt(s)⟩ ds.

Lemma 8.5.1. For every εI > 0 small, I satisfies the differential inequality

d

dt
I + ρ3∥θ∥2 + ∥η∥2M ≤ εI∥ψt∥2 +

cI
εI
Γ[η]

for some cI > 0 independent of εI .

Proof. In light of (8.4.3) and (8.4.4), we have the identity

d

dt
I + 2ρ3∥θ∥2 + ∥η∥2M =− 2ρ3

g(0)

∫ ∞

0

µ(s)⟨Tη(s), θ⟩ ds

+
2

g(0)β

∥∥∥∥ ∫ ∞

0

µ(s)ηx(s) ds

∥∥∥∥2

− 2δ

g(0)

∫ ∞

0

µ(s)⟨ηx(s), ψt⟩ ds+ ∥η∥2M.

Integrating by parts in s, we infer that (as shown in [41], the boundary terms vanish)

− 2ρ3
g(0)

∫ ∞

0

µ(s)⟨Tη(s), θ⟩ ds = − 2ρ3
g(0)

∫ ∞

0

µ′(s)⟨η(s), θ⟩ ds

≤ C∥θ∥
√
Γ[η]

≤ ρ3∥θ∥2 + CΓ[η].

Thus, exploiting the inequalities

2

g(0)β

∥∥∥∥ ∫ ∞

0

µ(s)ηx(s) ds

∥∥∥∥2

≤ C∥η∥2M

and
− 2δ

g(0)

∫ ∞

0

µ(s)⟨ηx(s), ψt⟩ ds ≤ C∥ψt∥∥η∥M,
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appealing to (8.3.2) we obtain for every εI > 0 small the estimate

d

dt
I + ρ3∥θ∥2 + ∥η∥2M ≤ C∥ψt∥Γ[η] + CΓ[η] ≤ εI∥ψt∥2 +

C

εI
Γ[η],

where C is independent of εI .

8.5.2 The functional J

Defining the primitive4

Ψ(x, t) =

∫ x

0

ψ(y, t) dy,

let

J(t) = −2ρ2ρ3
δ

⟨θ(t),Ψt(t)⟩.

Lemma 8.5.2. For every εJ > 0 small, J satisfies the differential inequality

d

dt
J + ρ2∥ψt∥2 ≤ εJ

[
∥ψx∥2 + ∥φx + ψ∥2

]
+
cJ
εJ

[
∥θ∥2 + Γ[η]

]
for some cJ > 0 independent of εJ .

Proof. By means of (8.4.2) and (8.4.3), we get

d

dt
J + 2ρ2∥ψt∥2

=
2ρ2
βδ

∫ ∞

0

µ(s)⟨ηx(s), ψt⟩ ds−
2ρ3b

δ
⟨θ, ψx⟩+

2ρ3κ

δ
⟨θ, φ+Ψ⟩+ 2ρ3∥θ∥2.

Estimating the terms in the right-hand side as (here we use again (8.3.2))

2ρ2
βδ

∫ ∞

0

µ(s)⟨ηx(s), ψt⟩ ds ≤ C∥ψt∥∥η∥M ≤ ρ2∥ψt∥2 + CΓ[η]

and, for every εJ > 0 small,

− 2ρ3b

δ
⟨θ, ψx⟩+

2ρ3κ

δ
⟨θ, φ+Ψ⟩+ 2ρ3∥θ∥2

≤ C
[
∥ψx∥+ ∥φx + ψ∥

]
∥θ∥+ C∥θ∥2

≤ εJ
[
∥ψx∥2 + ∥φx + ψ∥2

]
+
C

εJ
∥θ∥2,

with C independent of εJ , the claim follows.

4In particular, Ψ ∈ H1
0 (I).
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8.5.3 The functional K

We introduce the number

γg = κ− g(0)ρ1
βρ3

depending on the memory kernel g. It is readily seen that

χg = 0 ⇒ γg ̸= 0.

Then, assuming χg = 0 and calling

K1(t) =
ρ1b

κ
⟨ψx(t), φt(t)⟩+ ρ2⟨ψt(t), φx(t) + ψ(t)⟩,

K2(t) =

∫ ∞

0

µ(s)⟨ηtx(s), φx(t) + ψ(t)⟩ ds,

K3(t) = −δρ1
κ

⟨θ(t), φt(t)⟩,

we set

K(t) =
2κ

γg

[
γg
κ
K1(t)−

ρ1δ

βρ3κ
K2(t) +K3(t)

]
.

Lemma 8.5.3. Suppose that χg = 0. Then K satisfies the differential inequality

d

dt
K + κ∥φx + ψ∥2 ≤ cK

[
∥ψt∥2 + Γ[η]

]
for some cK > 0.

Proof. In light of (8.4.1) and (8.4.2), we obtain the identity

d

dt
K1 + κ∥φx + ψ∥2 =

(
ρ2 −

ρ1b

κ

)
⟨ψt, φtx⟩+ ρ2∥ψt∥2 − δ⟨θx, φx + ψ⟩. (8.5.1)

By (8.4.4),

d

dt
K2 = −

∫ ∞

0

µ(s)⟨Tη(s), (φx + ψ)x⟩ ds− g(0)⟨θ, (φx + ψ)x⟩

−
∫ ∞

0

µ(s)⟨ηxx(s), φt⟩ ds+
∫ ∞

0

µ(s)⟨ηx(s), ψt⟩ ds.

From (8.4.3) we learn that

−
∫ ∞

0

µ(s)⟨ηxx(s), φt⟩ ds = −βρ3⟨θt, φt⟩+ βδ⟨ψt, φtx⟩,

while an integration by parts in s yields (again, the boundary terms vanish)

−
∫ ∞

0

µ(s)⟨Tη(s), (φx + ψ)x⟩ ds =
∫ ∞

0

µ′(s)⟨ηx(s), φx + ψ⟩ ds.
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We conclude that
d

dt
K2 =

∫ ∞

0

µ′(s)⟨ηx(s), φx + ψ⟩ ds+
∫ ∞

0

µ(s)⟨ηx(s), ψt⟩ ds (8.5.2)

− βρ3⟨θt, φt⟩+ βδ⟨ψt, φtx⟩+ g(0)⟨θx, φx + ψ⟩.
Finally, exploiting once more (8.4.1),

d

dt
K3 = −δρ1

κ
⟨θt, φt⟩+ δ⟨θx, φx + ψ⟩. (8.5.3)

At this point, reconstructing K from (8.5.1)-(8.5.3), we are led to the differential iden-
tity

d

dt
K + 2κ∥φx + ψ∥2

= χg
2g(0)κb

βγg
⟨ψt, φtx⟩+ 2ρ2∥ψt∥2

− 2ρ1δ

βγgρ3

[ ∫ ∞

0

µ′(s)⟨ηx(s), φx + ψ⟩ ds+
∫ ∞

0

µ(s)⟨ηx(s), ψt⟩ ds
]
.

Since χg = 0 by assumption, we are left to control the integral terms in the right-hand
side. We have

− 2ρ1δ

βγgρ3

∫ ∞

0

µ′(s)⟨ηx(s), φx + ψ⟩ ds ≤ C∥φx + ψ∥
∫ ∞

0

−µ′(s)∥ηx(s)∥ ds

≤ C∥φx + ψ∥
√
Γ[η]

≤ κ∥φx + ψ∥2 + CΓ[η],

and, recalling (8.3.2),

− 2ρ1δ

βγgρ3

∫ ∞

0

µ(s)⟨ηx(s), ψt⟩ ds ≤ C∥ψt∥∥η∥M ≤ C∥ψt∥2 + CΓ[η].

The proof is completed.

8.5.4 The functional L

Let
L(t) = 2ρ2⟨ψt(t), ψ(t)⟩ − 2ρ1⟨φt(t), φ(t)⟩.

Lemma 8.5.4. The functional L satisfies the differential inequality
d

dt
L+ ρ1∥φt∥2 + b∥ψx∥2 ≤ cL

[
∥φx + ψ∥2 + ∥ψt∥2 + ∥θ∥2

]
for some cL > 0.

Proof. By means of (8.4.1) and (8.4.2),
d

dt
L+2ρ1∥φt∥2 +2b∥ψx∥2 = 2ρ2∥ψt∥2 +2δ⟨θ, ψx⟩+2κ∥φx +ψ∥2 − 4κ⟨φx +ψ, ψ⟩.

Since the right-hand side is easily controlled by

b∥ψx∥2 + C
[
∥φx + ψ∥2 + ∥ψt∥2 + ∥θ∥2

]
,

we are done.
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8.6 Proof of Theorem 8.1.1 (Sufficiency)

Within the condition χg = 0, we are now in the position to prove the exponential
stability of S(t). In what follows, E is (twice) the energy, whereas I, J,K, L denote
the functionals of the previous Section 8.5.

8.6.1 A further energy functional

For ε > 0, we define

Mε(t) = I(t) + εJ(t) +
ερ2
2cK

K(t) + ε
√
εL(t),

where cK > 0 is the constant of Lemma 8.5.3.

Lemma 8.6.1. For every ε > 0 sufficiently small, the differential inequality

d

dt
Mε + ε2E ≤ cM

ε
Γ[η]

holds for some cM > 0 independent of ε.

Proof. Collecting the inequalities of Lemmas 8.5.1, 8.5.2, 8.5.3 and 8.5.4, we end up
with

d

dt
Mε + ε

(κρ2
2cK

− εJ −
√
ε cL

)
∥φx + ψ∥2 + ε

√
ε ρ1∥φt∥2 + ε(

√
ε b− εJ)∥ψx∥2

+
(ερ2

2
− εI − ε

√
ε cL

)
∥ψt∥2 +

(
ρ3 − ε

√
ε cL − εcJ

εJ

)
∥θ∥2 + ∥η∥2M

≤
(cI
εI

+
εcJ
εJ

+
ερ2
2

)
Γ[η].

At this point, we choose

εI =
ερ2
4

and εJ =
2εcJ
ρ3

.

Taking ε > 0 sufficiently small, the claim follows.

8.6.2 Conclusion of the proof of Theorem 8.1.1

By virtue of (8.4.6) and Lemma 8.6.1, for ε > 0 sufficiently small the functional

Gε(t) = E(t) + ε2Mε(t)

fulfills the differential inequality

d

dt
Gε + ε4E ≤ −

( 1

β
− cMε

)
Γ[η] ≤ 0.

It is also clear from the definition of the functionals involved that, for all ε > 0 small,

1

2
E(t) ≤ Gε(t) ≤ 2E(t).

Therefore, an application of the Gronwall lemma entails the required exponential decay
of the energy.
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Remark 8.6.1. It is worth observing that, contrary to what done in [89], here the proof
of exponential stability is based on the construction of explicit energy-like functionals.
The advantage (with respect to linear semigroups techniques) is that the same calcula-
tions apply to the analysis of nonlinear version of the problem, allowing, for instance,
to prove the existence of absorbing sets.

8.7 Proof of Theorem 8.1.1 (Necessity)

In this section, we prove that the semigroup S(t) is not exponentially stable when the
stability number χg is different from zero. According to the abstract Lemma 1.2.2
of Chapter 1, we show that condition (1.2.1) fails to hold assuming, without loss of
generality, ℓ = π. Accordingly, for every n ∈ N, the vector

ζn =
(
0, sinnx

ρ1
, 0, 0, 0, 0

)
satisfies

∥ζn∥H =
√

π
2ρ1

.

For all n ∈ N, we denote for short

λn =
√

κ
ρ1
n

and we study the equation
iλnzn − Azn = ζn

in the unknown variable

zn = (φn, φ̃n, ψn, ψ̃n, θn, ηn).

Our conclusion is reached if we show that zn is not bounded in H, since this would
violate (1.2.1). Straightforward calculations entail the system

ρ1λ
2
nφn + κ(φnx + ψn)x = − sinnx,

ρ2λ
2
nψn + bψnxx − κ(φnx + ψn)− δθnx = 0,

iρ3λnθn −
1

β

∫ ∞

0

µ(s)ηnxx(s) ds+ iδλnψnx = 0,

iλnηn − Tηn − θn = 0.

We now look for solutions (compatible with the boundary conditions) of the form

φn = An sinnx,

ψn = Bn cosnx,

θn = Cn sinnx,

ηn = ϕn(s) sinnx,
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for some An, Bn, Cn ∈ C and some complex square summable function ϕn on R+ with
respect to the measure µ(s)ds, satisfying ϕn(0) = 0. This yields

κnBn = 1,

knAn +
(
− ρ2λ

2
n + bn2 + κ

)
Bn + δnCn = 0,

iρ3λnCn +
n2

β

∫ ∞

0

µ(s)ϕn(s) ds− iδλnnBn = 0,

iλnϕn + ϕ′
n − Cn = 0.

An integration of the last equation gives

ϕn(s) =
Cn

iλn

(
1− e−iλns

)
.

Substituting the result into the third equation above, and denoting by

µ̂(λn) =

∫ ∞

0

µ(s)e−iλns ds

the Fourier transform5 of µ, we find the explicit solution

An =
ρ2κn

2 − ρ1bn
2 − ρ1κ

ρ1κ2n2
− δ2β

ρ3κβγg + ρ1κµ̂(λn)
,

where, according to the notation of Section 8.5,

γg = κ− g(0)ρ1
βρ3

.

At this point, we consider separately two cases.

Case γg = 0

We have

An =
ρ2κn

2 − ρ1bn
2 − ρ1κ

ρ1κ2n2
− δ2β

ρ1κµ̂(λn)
.

Due to the convergence µ̂(λn) → 0, ensured by the Riemann-Lebesgue lemma, we find
the asymptotic expression as n→ ∞

An ∼ − δ2β

ρ1κµ̂(λn)
.

Since
∥zn∥2H ≥ κ∥φnx + ψn∥2 + b∥ψnx∥2,

there exists ϖ > 0 such that

∥zn∥H ≥ ϖ∥φnx∥ = ϖn|An|
(∫ π

0

cos2 nx dx

) 1
2

=
ϖ
√
π√
2
n|An| → ∞.

5Since µ is continuous nonincreasing and summable, it is easy to see that µ̂(λn) ̸= 0 for every n.
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Case γg ̸= 0

Exploiting again the Riemann-Lebesgue lemma, we now get

An → 1

κ

(
ρ2
ρ1

− b

κ

)
− δ2

ρ3κγg
=
ρ3bg(0)

ρ1ρ3βγg
χg ̸= 0,

as χg ̸= 0 by assumption. As before, we end up with

∥zn∥H ≥ ϖ
√
π√
2
n|An| → ∞.

This finishes the proof.

Remark 8.7.1. The proof above actually holds within the same minimal assumptions
on the memory kernel ensuring the existence of S(t), i.e. µ nonnull, nonnegative, non-
increasing, absolutely continuous and summable on R+.

8.8 More on the Comparison with the Cattaneo Model

As previously observed in Section 8.2, at a formal level it is possible to recover the
exponential stability (as well as the lack of exponential stability) of the Timoshenko-
Cattaneo system from our main Theorem 8.1.1. Here, we give a rigorous proof of this
fact. To this aim, let us write explicitly the system studied in [31, 89]

ρ1φtt − κ(φx + ψ)x = 0,

ρ2ψtt − bψxx + κ(φx + ψ) + δθx = 0,

ρ3θt + qx + δψtx = 0,

τqt + βq + θx = 0,

which generates a contraction semigroup Ŝ(t) acting on the phase space

Ĥ = H1
0 (I)× L2(I)×H1

∗ (I)× L2
∗(I)× L2(I)× L2(I)

normed by

∥(φ, φ̃, ψ, ψ̃, θ, q)∥2Ĥ = κ∥φx + ψ∥2 + ρ1∥φ̃∥2 + b∥ψx∥2 + ρ2∥ψ̃∥2 + ρ3∥θ∥2 + τ∥q∥2.

According to the article [89], the semigroup Ŝ(t) is exponentially stable if and only if
the stability number χτ equals zero.

Along with Ŝ(t), we consider the semigroup S(t) on H generated by (8.4.5) for the
particular choice of the kernel

µ(s) = −g′τ (s) =
β2

τ 2
e−

sβ
τ .

Then, we define the map Λ : M → L2(I) as

Λη = − 1

β

∫ ∞

0

µ(s)ηx(s) ds.
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On account of the Hölder inequality,

τ∥Λη∥2 ≤ τ

β2

[ ∫ ∞

0

µ(s)∥ηx(s)∥ ds
]2

≤ 1

β
∥η∥2M. (8.8.1)

Due to the peculiar form of the kernel, the following result is a direct consequence of
the equations. The easy proof is left to the reader.

Lemma 8.8.1. Let z0 = (u0, η0) ∈ H be any initial datum, where u0 subsumes the first
5 components of z0, and call ẑ0 = (u0,Λη0) ∈ Ĥ. Then the first 5 components of S(t)z0
and Ŝ(t)ẑ0 coincide. Besides, the last component q(t) of Ŝ(t)ẑ0 fulfills the equality

q(t) = Ληt,

where ηt is the last component of S(t)z0.

The full equivalence between the two models is established in the next two proposi-
tions.

Proposition 8.8.1. If S(t) is exponentially stable on H, then so is Ŝ(t) on Ĥ.

Proof. Let ẑ0 = (u0, q0) ∈ Ĥ be fixed. Choosing η0 ∈ M of the form

η0(x, s) = −τ
∫ x

0

q0(y) dy,

it is readily seen that Λη0 = q0 and

1

β
∥η0∥2M =

τ 2

β
∥q0∥2

∫ ∞

0

µ(s) ds = τ∥q0∥2.

Lemma 8.8.1 yields the identity

∥Ŝ(t)ẑ0∥Ĥ = ∥Ŝ(t)(u0,Λη0)∥Ĥ = ∥(u(t),Ληt)∥Ĥ,

where u(t) denotes the first 5 components of either solution. On the other hand, we
infer from (8.8.1) and the exponential stability of S(t) that

∥(u(t),Ληt)∥Ĥ ≤ ∥(u(t), ηt)∥H ≤ C∥(u0, η0)∥He−ωt,

for some ω > 0 and C ≥ 1. Since

∥(u0, η0)∥H = ∥ẑ0∥Ĥ,

we are finished.

Proposition 8.8.2. If Ŝ(t) is exponentially stable on Ĥ, then so is S(t) on H.

Proof. To simplify the notation, we introduce the 5-component space

V = H1
0 (I)× L2(I)×H1

∗ (I)× L2
∗(I)× L2(I)
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normed by

∥(φ, φ̃, ψ, ψ̃, θ)∥2V = κ∥φx + ψ∥2 + ρ1∥φ̃∥2 + b∥ψx∥2 + ρ2∥ψ̃∥2 + ρ3∥θ∥2.

For a fixed z0 = (u0, η0) ∈ H, we set

ẑ0 = (u0,Λη0) ∈ Ĥ.

The exponential stability of Ŝ(t) and (8.8.1) imply that

∥u(t)∥2V ≤ ∥Ŝ(t)ẑ0∥2Ĥ ≤ Ce−ωt∥ẑ0∥2Ĥ ≤ Ce−ωt∥z0∥2H,

for some ω > 0 and C ≥ 1. Again, on account of Lemma 8.8.1, u(t) denotes the first
5 components of either solution. Thus, exploiting the energy identity (8.4.6) together
with (8.3.2), we arrive at the differential inequality

d

dt
∥S(t)z0∥2H + ν∥S(t)z0∥2H ≤ ν∥u(t)∥2V ≤ Cνe−ωt∥z0∥2H.

A standard application of the Gronwall entails the sought exponential decay estimate.
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Appendix

In this appendix, we report some abstract results on existence and regularity of global
and exponential attractors needed in the analysis carried out in Chapters 2-5. The pre-
sentation will be given in the more general context of a semigroup, that is, a family
of maps S(t) satisfying assumptions (S.1) and (S.2) of Definition 1.1.1 (no continuity
properties are required).

On the Existence of Global Attractors

We present a slightly modified version of a classical theorem on the existence of global
attractors for semigroups in metric spaces. Compared to analogous results in the current
literature (cf. [17,49]), the main advantage of our approach is that we require very mild
continuity-like assumptions on the semigroup.

I. Statement of the result

Given a complete metric space (X, d), let

S(t) : X → X

be a semigroup possessing an absorbing set B. In order to state the theorem, we need a
definition: a map S : X → X is closed on a set B ⊂ X if the implication

xn → x, Sxn → y ⇒ Sx = y

holds for every sequence xn ∈ B. The set B itself is neither assumed to be closed, nor
invariant under the action of S.

Theorem A.1. Assume there exist T > 0, ν < 1 and a precompact pseudometric ρ on
B such that the map S = S(T ) is closed on B and satisfies the inequality

d(Sx, Sy) ≤ ν d(x, y) + ρ(x, y), ∀ x, y ∈ B.

Then S(t) has a (unique) global attractor A.
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Since B is bounded, in comply with our definition of absorbing set, ρ precompact on
B means that any sequence in B admits a ρ-Cauchy subsequence. As a byproduct, for
every ε > 0, there exists a finite cover G1 ∪ · · · ∪ Gm of B such that

ρ(x, y) < ε, ∀ x, y ∈ Gk.

II. Proof of Theorem A.1

In view of our scopes, the main tool is the following abstract result from [75] (cf. also
Theorem 1.1.1).

Theorem A.2. If B is an absorbing set and

lim
n→∞

α(S(tn)B) = 0

for some tn → ∞, then the ω-limit set A of B is nonempty, compact and attracting for
the semigroup S(t) on X .

We point out that, other than being a semigroup, no assumptions on S(t) are made.
The proof is divided in four steps.

Step 1. We preliminarily show that

α(SB) ≤ να(B), ∀B ⊂ B.

Actually, this is well known. For the reader’s convenience, we recast the classical
argument of [49] (see Lemma 2.3 therein). Given B ⊂ B, select an arbitrary ε > 0.
Then

B ⊂ F1 ∪ · · · ∪ Fn and B ⊂ G1 ∪ · · · ∪ Gm,

for some Fi and Gk satisfying

diam(Fi) ≤ α(B) + ε and ρ(x, y) < ε, ∀ x, y ∈ Gk.

Setting Mik = Fi ∩ Gk, from the properties of α (see Chapter 1) we deduce the in-
equality

α(SB) ≤ α
(
S
∪

ik Mik

)
= α

(∪
ik SMik

)
= max

ik
α(SMik) ≤ max

ik
diam(SMik).

On the other hand, for every x, y ∈ Mik, we have

d(Sx, Sy) ≤ ν d(x, y) + ρ(x, y) ≤ να(B) + ε(ν + 1).

Consequently,

α(SB) ≤ max
ik

diam(SMik) ≤ να(B) + ε(ν + 1),

and a final limit ε→ 0 will do.

Step 2. Since B is absorbing, for some m ∈ N large enough we know that

SnB ⊂ B, ∀n ≥ m.
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In the usual notation, Sn = S ◦ · · · ◦ S (n-times). Therefore, exploiting Step 1,

α(SnB) = α(SSn−1B) ≤ να(Sn−1B) ≤ · · · ≤ νn−mα(SmB) ≤ νn−mα(B).

Choosing then tn = nT , we draw the convergence

lim
n→∞

α(S(tn)B) = lim
n→∞

α(SnB) = 0,

and from Theorem A.2 we learn that the ω-limit set A of B is compact and attracting.

Step 3. We claim that the equality SA = A implies the full invariance of A. Indeed, let
t ≥ 0 be arbitrarily fixed. Since A is closed, attracting and (in the above assumption)

A = SnA = S(nT )A,

we get

δX(S(t)A,A) = lim
n→∞

δX(S(t+ nT )A,A) = 0 ⇒ S(t)A ⊂ A.

Once A is known to be invariant, for n large we can write

A = S(nT )A = S(t)S(nT − t)A ⊂ S(t)A ⊂ A ⇒ S(t)A = A.

Step 4. Finally, we show that SA = A. Let then x ∈ A. By the definition of ω-limit
set, there exist sequences tn → ∞ and ξn ∈ B satisfying

xn
.
= S(tn)ξn → x.

At the same time, as A is compact and attracting, there exist y, z ∈ A such that (up to
subsequences)

yn
.
= S(tn − T )ξn → y and zn

.
= S(tn + T )ξn → z.

Summarizing,

yn → y, Syn = xn → x, xn → x, Sxn = zn → z.

Since the sequences xn, yn, zn eventually fall in the absorbing set B and the map S is
closed on B, we deduce the equalities Sy = x and Sx = z.

In conclusion, the set A is compact, attracting and fully invariant for S(t). The proof
of Theorem A.1 is finished.

On the Existence of Exponential Attractors

We recall a well-known abstract result on existence of exponential attractors, first de-
vised in [27]. Let H1 b H be compactly embedded Banach spaces, and let S(t) : H →
H be a semigroup. Finally, let B ⊂ H be a bounded closed invariant set.
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I. The discrete case

Firstly, we focus on the discrete semigroup

Sn = S ◦ · · · ◦ S (n-times)

generated by a map S : B → B. In this case, we talk of a discrete exponential attractor,
namely, a compact invariant set Ed ⊂ B of finite fractal dimension such that

δH(S
nB,Ed) ≤ Ce−ωn

for some ω > 0 and C ≥ 0.
We have the following lemma [17, Corollary 2.23].

Lemma A.1. For some ϑ < 1 and Θ ≥ 0, let the map S admit the decomposition

S = L+K,

where
∥Lz1 − Lz2∥H ≤ ϑ∥z1 − z2∥H (A.1)

and
∥Kz1 −Kz2∥H1 ≤ Θ∥z1 − z2∥H (A.2)

for every z1, z2 ∈ B. Then there exists a discrete exponential attractor Ed.

II. The continuous case

By definition, an exponential attractor for the semigroup S(t) on B is a compact invari-
ant set E ⊂ H of finite fractal dimension attracting the set B at an exponential rate,
namely

δH(S(t)B,E) ≤ Ce−ωt

for some ω > 0 and some C ≥ 0.
The next result appears in several slightly different forms in the literature (see e.g.

[66]).

Theorem A.3. Assume there exists t⋆ > 0 such that the map S = S(t⋆) fulfills the
hypotheses of Lemma A.1. Moreover, let the map

(t, z) 7→ S(t)z

be Lipschitz continuous on [0, t⋆]×B into H. Then there exists an exponential attractor
E on B.

The exponential attractor E on B is obtained by setting

E =
∪

τ∈[0,t⋆]

S(τ)Ed,

where Ed is the discrete exponential attractor of the map S = S(t⋆), whose existence
is ensured by Lemma A.1. Since B is invariant and Ed ⊂ B, we obtain in particular
E ⊂ B.
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On the Regularity of Global Attractors

Let V b H be reflexive Banach spaces with compact embedding, and let S(t) : H →
H be a semigroup possessing a (bounded) absorbing set B0. Within some continuity
assumptions (e.g. the strong continuity of the semigroup), a standard strategy to prove
the existence of the global attractor A for S(t) is showing that

lim
t→∞

[
δH(S(t)B0, C(t))

]
= 0, (A.3)

where C(t) is a bounded subset of V for every fixed t. If, in addition, one has the
uniform-in-time estimate

sup
t≥0

∥C(t)∥V <∞, (A.4)

then A is bounded in V as well. Unfortunately, the latter conclusion cannot be merely
inferred from (A.3). To this end, we report here a version of an abstract result from [21],
tailored for our scopes, allowing to deduce regularity properties for the global attrac-
tor without making use of estimate (A.4), generally hard to obtain in several concrete
situations. We proceed with a definition.

Definition A.1. A solution operator on H is a family of maps U(t) : H → H, depend-
ing on the parameter t ≥ 0, such that U(0)z = z for all z ∈ H.

Assuming the strong continuity of the semigroup S(t) and calling r = ∥B0∥H < ∞,
the theorem reads as follows.

Theorem A.4. For every z ∈ B0 let there exist two solution operators Vz(t) on H and
Uz(t) on V such that the following hold. 6

(i) For any x ∈ BH(r) and y ∈ V satisfying x+ y = z, we have

S(t)z = Vz(t)x+ Uz(t)y.

(ii) There is α ∈ D such that, for every x ∈ BH(r),

sup
z∈B0

∥Vz(t)x∥H ≤ α(t)∥x∥H.

(iii) There are β ∈ D and J ∈ I such that, for every y ∈ V ,

sup
z∈B0

∥Uz(t)y∥V ≤ β(t)∥y∥V + J(t).

Then there exist constants K,ω, ϱ > 0 such that

δH(S(t)B0,BV(ϱ)) ≤ Ke−ωt.

As a byproduct, S(t) possesses the global attractor A bounded in V .

Remark A.1. Theorem A.4 still works if S(t) is only a semigroup of closed operators
(see [75]).

6See Chapter 5, Section 5.2 for the definition of D, I and BH(r).
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In this thesis, we have studied the asymptotic behavior of some evolution equations
with nonclassical heat conduction. After a brief introduction to the theory of infinite-
dimensional dynamical systems and linear semigroups, in Chapters 2-5 we have ana-
lyzed the strongly damped nonlinear wave equation

utt −∆ut −∆u+ f(ut) + g(u) = h,

proving existence and regularity of global and exponential attractors and improving all
the results available in the previous literature. In particular, the nonlinearity f acting
on ut was allowed to exhibit a critical growth of polynomial order 5. In this situation,
the techniques based on the classical Gronwall lemma do not work and it is necessary
to exploit novel Gronwall-type lemmas with parameters from [70]. In the fully critical
case (i.e. when also the nonlinear function g has a critical growth) existence and optimal
regularity of the attractor were obtained under the essential-monotonicity assumption

inf
s∈R

f ′(s) > −λ1.

Still, the existence of the global attractor in the fully critical case within the weaker
dissipativity condition

lim inf
|s|→∞

f ′(s) > −λ1

remains an open (and possibly quite challenging) question. Another interesting prob-
lem is related to singular limits in type III heat conduction. More precisely, assuming
g ≡ 0 and restoring the physical constants according to the model equation discussed
in the introduction of the thesis, we end up with

utt − κ∆ut − ω∆u+ f(ut) = h.

It is then of great interest to understand what happens in the “Fourier limit” ω → 0,
formally leading to the classical nonlinear heat equation

ϑt − κ∆ϑ+ f(ϑ) = h,
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with the position ϑ = ut. Quite naturally, one might expect to deduce some kind of
convergence of the respective solutions. On the contrary, as shown in [36], for quite
general source terms the solutions to the type III equation diverge from the solutions
to the Fourier heat equation. Thus, the type III theory of heat conduction cannot be
considered as comprehensive of the Fourier one in a proper sense.

In Chapters 6 we have studied the system
utt − ω∆utt +∆2u−

[
b+ ∥∇u∥2L2(Ω)

]
∆u+∆αt = g,

αtt −∆α−
∫ ∞

0

µ(s)∆[α(t)− α(t− s)] ds−∆ut = 0,

modeling type III thermoelastic extensible beams or Berger plates with memory. The
main results are existence and regularity of the global attractor, together with some
characterizations of exponential and lack of exponential stability for the associated lin-
ear semigroup in the limit situation ω = 0. In this context, it would be interesting to
develop the analysis by considering more general nonlinearities or boundary conditions
on the variable u different from the hinged ones.

In Chapter 7 we have proved the existence of the regular global attractor for the solu-
tion semigroup generated by the nonlinear Caginalp phase-field system{

ut −∆u+ ϕ(u) = αt,

αtt −∆αt −∆α + g(α) = −ut.

In light of the results obtained in Chapters 2-5, possible future development may con-
cern with the study of more general situations, adding for instance a further nonlinearity
depending on the variable αt and analyzing the asymptotic properties of the correspond-
ing dynamical system.

Finally, in Chapters 8, we have studied the Timoshenko system with Gurtin-Pipkin
thermal law 

ρ1φtt − κ(φx + ψ)x = 0,

ρ2ψtt − bψxx + κ(φx + ψ) + δϑx = 0,

ρ3ϑt −
1

β

∫ ∞

0

g(s)ϑxx(t− s) ds+ δψtx = 0,

establishing a necessary and sufficient condition for the exponential stability in terms
of the structural parameters of the equations, and generalizing previously known results
on the Fourier-Timoshenko and the Cattaneo-Timoshenko beam models. However, in
spite of this complete characterization of the uniform decay of the solutions, several
questions are still open. For instance, the polynomial stability (particularly challenging
due to the presence of the memory component) or the asymptotic analysis of nonlinear
versions of the system. In particular, in the latter situation, it would be interesting to
prove existence and regularity of global and exponential attractors, and to show some
kind of convergence in the singular limit when the Gurtin-Pipkin thermal law reduces
to the Fourier one.
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[30] M. Fabrizio, B. Lazzari and J.E. Muñoz Rivera, Asymptotic behaviour of thermoelastic plates of
weakly hyperbolic type, Differential Integral Equation 13 (2000), 1347–1370.

[31] H.D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo
versus Fourier law, Arch. Rational Mech. Anal. 194 (2009), 221–251.

[32] G. Fichera, Is the Fourier theory of heat propagation paradoxical?, Rend. Circ. Mat. Palermo 41
(1992), 5–28.

[33] J. Fort, and V. Méndez, Wavefront in time-delayed reaction-diffusion systems. Theory and compar-
ison to experiments, Rep. Prog. Phys. 65 (2002), 895–954.

[34] S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity
with very low dissipation, Rocky Mountain J. Math. 38 (2008), 1117–1138.

[35] S. Gatti, A. Miranville, V. Pata and S. Zelik, Continuous families of exponential attractors for
singularly perturbed equations with memory, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 329–
366.

[36] C. Giorgi, D. Grandi and V. Pata, On the Green-Naghdi type III heat conduction model, Discrete
Contin. Dyn. Syst. Ser. B (in press).

132



Bibliography

[37] C. Giorgi, M.G. Naso and V. Pata, Exponential stability in linear heat conduction with memory: a
semigroup approach, Comm. Appl. Anal. 5 (2001), 121–134.

[38] C. Giorgi, M.G. Naso, V. Pata and M. Potomkin, Global attractors for the extensible thermoelastic
beam system, J. Differential Equations 246 (2009), 3496–3517.

[39] C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam, Nonlinearity 21 (2008), 713–
733.
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