
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA
DOCTORAL PROGRAMME IN COMPUTER SCIENCE AND ENGINEERING

END-USER DEVELOPMENT OF MASHUPS:
MODELS, COMPOSITION PARADIGMS AND

TOOLS

Doctoral Dissertation of:
Matteo Picozzi

Supervisor:
Prof. Maristella Matera
Tutor:
Prof. Letizia Tanca
The Chair of the Doctoral Program:
Prof. Carlo Fiorini

2013 – Cycle XXVI

Abstract

WITH With the Web 2.0 revolution, new technologies, new stan-
dards and new application models have been introduced in the
Web scenario. The Web has become more mature and full of

potentialities as a platform for the development of interactive rich appli-
cations. The use of client-side scripting languages, the diffusion of Web
Services and public APIs, and the always increasing basic skills of laypeo-
ple in the development of Web applications shaped up a scenario in which
a new class of web applications, the mashups, was born. Mashups inte-
grate, at different levels of the application stack, data, functionality and
user interfaces from different resources such as Web Services, public APIs
or enterprise databases. Mashups emerged in response to the need of users,
not necessarily experts of technology, to quickly assemble Web resources
to create new Web applications solving their situational needs. One charac-
terizing feature of these applications is that they are very often developed
by the end users, i.e., people who actually need the final application. To ac-
commodate this practice, which can be fruitful in several situations where
the possibility of constructing applications satisfying specific needs is re-
quired, in the last years different tools, conceived to offer intuitive compo-
sition languages, have been proposed. Unfortunately, most of such tools,
after a couple of years of activity, were dismissed.
My PhD thesis aims at investigating and defining a framework that includes
models, composition paradigms and tools for the End-User Development
(EUD) of mashups. Two main reasons for the failure of the mashup tools
so far proposed are indeed their incompleteness with respect to the users

I

needs and their difficulty of use. The framework defined in this thesis aims
therefore at covering the most salient activities in a mashup life cycle, and
proposes a new composition paradigm based on abstractions that try as
much as possible to hide technical details. The end users are enabled to
integrate data of diverse resources, to create components that could be used
in a mashup composition, to generate mashups that can be deployed on dif-
ferent kinds of devices (e.g., mobile devices or multitouch screens). We
have also investigated collaboration mechanisms to allow groups of users
to share resources and co-create applications. This last feature is particu-
larly fruitful to promote the potential of mashup composition as a paradigm
for knowledge sharing and creation.

Sommario

LA rivoluzione del Web 2.0 ha introdotto, tra le altre cose, nuove tec-
nologie, nuovi standard e nuovi modelli che consentono di svilup-
pare applicazioni più ricche ed interattive. L’utilizzo massiccio di

linguaggi di scripting client-side, la diffusione dei web services e di API
pubbliche e la sempre maggiore diffusione di conoscenze basilari di tecno-
logie per lo sviluppo di applicazioni Web, hanno delineato lo scenario in
cui sono nati i mashup.
I mashup sono applicazioni che integrano, a diversi livelli dello stack ap-
plicativo, dati, funzionalità e interfacce fornite da risorse differenti, come
web service, API pubbliche o database aziendali. I mashup sono emersi
per rispondere alle reali esigenze degli utenti, non necessariamente esperti
di tecnologia, che avevano bisogno di integrare velocemente risorse Web
e creare nuove applicazioni. Una peculiarità dei mashup è che spesso so-
no sviluppati dalle stesse persone che ne hanno bisogno e che ne faranno
uso. Queste caratteristiche possono essere molto vantaggiose laddove vi sia
la necessità di sviluppare in modo flessibile applicazioni specifiche. A tal
scopo, negli scorsi anni sono stati proposti numerosi tool di composizione
che fanno uso di linguaggi intuitivi. Purtroppo, molti di questi tool, dopo
qualche anno di attività sono stati dismessi.
Il lavoro illustrato in questa tesi di dottorato si è concentrato sulla defi-
nizione di un ecosistema di modelli, paradigmi, tecniche e strumenti che
consentano lo sviluppo di mashup da parte degli utenti finali (l’end-user de-
velopment di mashup). L’inadeguatezza rispetto ai veri bisogni degli utenti
e la loro difficoltà di utilizzo sono state alcune delle cause del fallimento

III

di molti mashup tool. Il nostro ecosistema si pone l’obiettivo di coprire
tutte le fasi del ciclo di vita di un mashup e comprende un paradigma di
composizione nuovo e semplificato, basato su astrazioni che nascondano il
più possibile i dettagli tecnici agli utenti. Le astrazioni che abbiamo defini-
to consentono di integrare dati forniti da diverse sorgenti presenti sul web,
di creare componenti che possano essere usati per comporre mashup e di
generare mashup che possano essere utilizzati su dispositivi di diverso tipo
come dispositivi mobili o schermi multi-touch. Ci siamo anche concentrati
su meccanismi di collaborazione che consentano a gruppi di utenti di con-
dividere risorse e co-creare applicazioni. Ciò è particolarmente utile per
valorizzare il potenziale della composizione di mashup come paradigma
per la creazione e condivisione di conoscenza.

Acknowledgements

The Ph.D. program has been a rich experience. During these three years I
had the opportunity to do a lot of new experiences, to put myself on test
and to grow professionally and humanly. I met a lot of people belonging
to academy and industry coming from all over the world, I had the oppor-
tunity to better know professors and researchers I first met when I was a
bachelor and master student, I wrote and presented articles, and prepared
and corrected exams.
At the end of this journey, I would like to sincerely thank all the people who
made this expetience possible. In particular, I would like to thank Maris-
tella for all the offered opportunities, for having believed in me, for the
suggestions, the numerous exchange of views and the precious and con-
stant help. I would like to thank also Chiara Francalanci, the Lombardy
Region and Beta80 for the fundings of the first two years, and Stefano Ceri,
Paolo Cremonesi and Maria Francesca Costabile (and all the group of the
University of Bari) for the third year. An acknowledge goes also to Niko-
lay Mehandjiev (and all his colleagues) who have allowed me to spend an
awesome period at the Manchester Business School.
And, last but not least, i would like to thank all my family, Chiara and my
friends (included my Ph. D. Student colleagues met in these year) for their
closeness and patience.

V

Ringraziamenti

Il dottorato di ricerca è stato un percorso molto ricco. Durante questi tre an-
ni ho avuto modo di fare numerose esperienze nuove, di essere messo alla
prova sotto molteplici punti di vista e di crescere dal punto di vista profes-
sionale ed umano. Ho incontrato e conosciuto persone nuove, provenienti
da università e da aziende di tutto il mondo, ho avuto modo di approfondire
la conoscenza di professori e ricercatori “dall’altra parte” della cattedra, ho
scritto e presentato articoli e ho preparato e corretto esami.
A conclusione di questo percorso, vorrei ringraziare sinceramente tutte le
persone che hanno reso possibile questa esperienza. In primis, vorrei rin-
graziare Maristella per tutte le opportunità offertemi, per aver creduto in
me, per i consigli, i numerosi confronti ed il prezioso e costante aiuto. Vor-
rei anche ringraziare Chiara Francalanci, la Regione Lombardia e Beta80
per aver creato le condizioni necessarie per svolgere i primi due anni e
Stefano Ceri, Paolo Cremonesi e Maria Francesca Costabile (e tutto il suo
gruppo di ricerca dell’Università di Bari) per il terzo anno. Un ringrazia-
mento va anche a Nikolay Mehandjiev (e a tutti i suoi colleghi) per avermi
concesso di passare uno splendido periodo presso la Manchester Business
School.
Da ultimo ma non per ultimi, i miei ringraziamenti vanno alla mia famiglia,
a Chiara e ai miei amici (inclusi i miei colleghi dottorandi conosciuti in
questi anni) per la vicinanza e la pazienza.

VII

Contents

1 Introduction 1
1.1 Rationale . 2
1.2 Mashups and User Driven Innovation 3
1.3 UI-centric Composition . 5
1.4 Problem Statement . 6
1.5 Contributions . 6
1.6 Research Methods . 9
1.7 Validation . 9
1.8 Thesis Outline . 10

2 Background and related works 13
2.1 Mashups . 13

2.1.1 Mashup components 15
2.1.2 Mashup types . 16
2.1.3 Integration logic . 18
2.1.4 Advanced mashups 19

2.2 End-user development and mashup development 20
2.2.1 User-driven innovation 21
2.2.2 Long tail applications 22
2.2.3 End-users involvement in the mashup development

scenario . 22
2.2.4 Collaboration in mashup development 25

2.3 Mashup Tools . 28
2.4 W3C standards . 31

IX

3 UI-centric composition paradigm 35
3.1 Adopting EUD principles 36
3.2 Development process . 40

3.2.1 Selection of data services and visual templates 40
3.2.2 Visual mapping . 43
3.2.3 Schema generation and execution on multiple devices 45
3.2.4 Component synchronization within UI mashups . . . 45
3.2.5 Composition assistance mechanisms 46
3.2.6 Collaboration . 48

4 Models 51
4.1 Models for UI Component synchronization 51

4.1.1 UI Component synchronization 54
4.1.2 Domain Specific Languages 55

4.2 Visual Integration Model 58
4.2.1 UI-based integration of data sources 62
4.2.2 Domain Specific Language 65
4.2.3 Union and fusion 66

4.3 Models for quality-aware mashup composition 68
4.3.1 Dimensions for quality-aware assisted composition . 70
4.3.2 Community perceived quality 74

4.4 Collaboration model . 74

5 PEUDOM 79
5.1 Overall functionalities and architecture 79
5.2 Composition environments 82

5.2.1 UI Mashup Dashboard 82
5.2.2 Component Editor 88

5.3 Execution environments 91
5.3.1 UI Mashup Engine 91
5.3.2 Multi-device execution engines 92

5.4 Composition Assistance Module 94
5.5 Collaboration modules . 97

5.5.1 Sharing resources 97
5.5.2 Architecture . 101

6 Validation of the proposed approaches 105
6.1 Performance evaluation . 105

6.1.1 Mashup composition and execution 106
6.1.2 Data-fusion . 109
6.1.3 Performances on mobile devices 112

6.2 User studies . 113
6.2.1 Overall methodology 114
6.2.2 Study on the mashup composition paradigm 115
6.2.3 Study on the component creation 117
6.2.4 Preliminary study on collaboration mechanisms . . . 119
6.2.5 Preliminary study on domain-specific customization . 120

6.3 Composition assistance mechanisms 125

7 Conclusions and future work 129
7.1 Impact of the developed framework 131
7.2 Future work . 132
7.3 Achievements . 133

Bibliography 135

CHAPTER1
Introduction

The Web 2.0 revolution has introduced a plethora of novelties in the Web
scenario. Besides the introduction of new technologies enabling the devel-
opment of more interactive rich applications, a fully distributed and demo-
cratic communication platform has emerged, that equally involves develop-
ers, information providers, and consumers. The availability of client-side
technologies, the diffusion of Web services and public APIs, and the always
increasing diffusion of basic skills in the development of Web applications
have shaped up a scenario in which the end users evolve from passive con-
sumers of applications to producers of contents and applications. Thus new
applications, the Web mashups, has emerged, as Web artifacts that are cre-
ated by integrating, at different levels of the application stack, data, func-
tionality and user interfaces made available by different online resources.
Mashups have emerged in response to the need of users, not necessarily
experts of technology, to quickly assemble Web resources to create new
Web applications solving their situational needs. To help users “help them-
selves” and create their own mashups, in the last years a number of tools
have been proposed offering intuitive composition languages. The dream
was to provide a gate to a “programmable Web”, where end users are al-
lowed to construct composite applications that merge content and functions

1

Chapter 1. Introduction

in a way that satisfies the long tail of their specific needs. However, the
approaches proposed so far do not fully accommodate this vision. Unfor-
tunately, most of the proposed tools were dismissed after a short time of
activity. The main causes of such failure, as also observed in some user-
centric studies [73], are the incompleteness with respect to the users needs
and especially the difficulty of use of the adopted composition paradigms
and design notations.
This thesis aims at proposing an alternative solution for the mashup devel-
opment that, by covering the most salient activities in the mashup life cycle
and by proposing a composition paradigm that abstracts as much as pos-
sible from technical details, is more adequate with respect to the skills of
average, non-expert users. This thesis therefore introduces a mashup de-
velopment framework that is oriented towards the End User Development.
It contributes to the definition of adequate abstractions that hide the tech-
nology and implementation complexity that characterizes the integration of
heterogeneous resources, and that can be adopted by the end users in a kind
of “democratic” paradigm for mashup development. Given the fundamental
role of user interfaces, as a medium easily understandable by the end users,
the proposed approach is characterized by a composition process guided
by UI-centric models able to support the WYSIWYG specification of data
integration and service orchestration at the user interface level. Model-to-
code generative techniques translate models into application schemata that
in turn guide at runtime the dynamic instantiation of pervasive, compos-
ite applications by means of different lightweight execution environments
that can be run on the Web and on mobile devices and that also support
collaboration practices for mashup sharing and co-creation.

1.1 Rationale

Past years have seen an evolution in the way information seeking appli-
cations are constructed and deliver responses to user’s information needs.
The emergence of Web mashups [37] mirrors indeed the trend, introduced
by the Web 2.0 scenario, of allowing the users, not necessarily skilled pro-
grammers, to get rapid access to diverse resources offering functionality
and data on the Web, and create new value by integrating them into sim-
ple, but situated, applications. The proliferation of mobile devices with the
capability of running software applications, and the abundant quantity of
content and services that can be accessed through such new devices have
also favored this evolution and are constantly increasing the desire of the
end users to participate in the development of their own artifacts satisfy-

2

1.2. Mashups and User Driven Innovation

ing their information needs. The ease of accessing and composing services
thus offers to the end users the opportunity to accommodate the “long tail”
of their specific needs not always addressed by the commonly available
applications. Nevertheless, for service providers the opportunity is to capi-
talize on the variety of their service’s usages, as a source of preferences to
fine-tune their services and also identify the best innovative uses [37, 51].
The emerging scenario is therefore characterized by a strong potential for
user-centric innovation. However, the research on Web mashups has not
produced substantial improvements for the end users in the mashup devel-
opment practices, with the consequence that still only few experts are able
to create their mashup applications by programming by hand the service
integration [73].
We directly experienced some limits of mashup development practices in
the context of our research, when we tried to define composition paradigms
and tools through which specific communities of end-users, exploiting the
potential of mashup technologies, could construct Web applications re-
sponding to the flexibility arising more and more in working environments
and personal life situations [4, 21, 23]. Also in the context of user stud-
ies, we observed that user-centric development of mashups can be made
concrete only through methods and tools adopting adequate abstractions,
able to hide technicalities so that technologies become accessible to the
end users. This need is even more accentuated in the mobile context, where
even expert users need to get acquainted with very specific technologies
and languages that vary depending on the target mobile device. There is
therefore a need for composition paradigms and enabling tools abstracting
from implementation details, but at the same time supporting the creation
of full-fledged applications.

1.2 Mashups and User Driven Innovation

Because of the mashup intrinsic value as development practice to let end
users to produce new value, mashup composition is in line with the so-
called “culture of participation” [39], in which users evolve from passive
consumers of applications to active co-creators of new ideas, knowledge,
and products. There is indeed a specific driver at the heart of the user par-
ticipation to the mashup phenomenon: user innovation, i.e., the desire and
capability of users to develop their own things, to realize their own ideas,
and to express their own creativity. According to very recent works pub-
lished in the literature there is indeed an emerging need to make software
systems flexible, i.e., able to support a large variety of tasks to replace fixed

3

Chapter 1. Introduction

applications with elastic, situational environments that can accommodate
different needs. New design principles are therefore emerging [60], to pro-
mote paradigms in which end users can access contents and functionality,
but also flexibly use and manipulate such resources in several situations and
across several applications. This new trend promotes a user-driven innova-
tion approach: service providers offer innovation toolkits through which
users can build their own products [92] starting from reusable services and
by means of adequate composition tools. The advantage resulting from
such approach is that the iterative experimentation generally needed to de-
velop and test a new product can be entirely carried out by the user, who are
enabled to create solutions that closely meet their needs. At the same time,
if an experiment turns out to add significant value, the service provider can
integrate the user innovation back into its core product [51].

The mashup innovation potential is however not adequately supported by
the approaches for mashup composition proposed so far. The research on
mashups has been focusing on enabling technologies and standards, with
little attention on easing the mashup development process - in many cases
mashup creation still involves the manual programming of the service in-
tegration. Research teams and industrial players tried to define simplified
composition approaches, mostly based on visual notations and lightweight
design and execution platforms running on the Web. However, most of
such projects failed, due to their inadequacy with respect to some key prin-
ciples defined and experimentally validated in the End-User Development
(EUD) domain [29, 73]. According to the EUD vision, enabling a larger
class of users to create their own applications requires the availability of
intuitive abstractions, interactive development tools, and a high level of as-
sistance [15,64]. In particular, for a mashup development process to reflect
the user-driven innovation potential, the challenge is to let users concentrate
on the conception of new ideas, rather than on the technicalities beyond ser-
vice composition; in other words, users should be enabled to easily access
resources responding to personal needs, integrate them to compose new ap-
plications, and simply run such applications without worrying about what
happens behind the scenes. The prototype-centric and iterative approach
that in the last years has characterized the development of modern Web
applications ought to be even more accentuated [37]: the composers, who
correspond to the mashup end user, just mash-up some services and run the
result to check whether it works and responds to their needs. In case of
unsatisfactory results, they fixe the problems and are immediately able to
run the mashup again.

4

1.3. UI-centric Composition

1.3 UI-centric Composition

Our claim is that EUD of mashups can be promoted by UI-centric ap-
proaches, where composers are allowed to focus on user-oriented artifacts,
i.e., user interfaces that they are able to use, not programmatic interfaces
or data formats. Nevertheless, operating at the UI level must give users the
possibility, by means of visual actions on the UI of the composite applica-
tion, to define integration also at the data and the logic layer. Some projects
(e.g., Dynvoker [89], SOA4All [59]) already had a similar intuition, and
focused on easing the creation of effective presentations on top of services,
to provide a direct channel between the user and the service. However, such
approaches focused on the interaction with single services, while they did
not investigate the integration of multiple services. The importance of UI as
language for development emerges also from some works on model-driven
development. For example, in [84] is presented MockAPI, an approach
supporting API-first Web application development based on the annotation
of user interface mockups to derive running API prototypes that are the
starting point for agile development.
There has been a considerable body of research on mashup tools, the so-
called mashup makers, which provide visual notations for combining ser-
vices, without requiring users to write code. Among the most prominent
platforms, Yahoo!Pipes (http://pipes.yahoo.com) focuses on data integra-
tion via RSS or Atom feeds, and offers a data-flow composition language.
JackBe Presto (http://jackbe.com) also adopts a pipes-like approach for
data mashups, and allows a portal-like aggregation of UI widgets (mash-
lets). IBM DAMIA [86] offers support to quickly assemble data feeds
from the Internet and a variety of enterprise data sources. Mashart [34]
focuses on the integration of heterogeneous components, offering a design
paradigm through which users create graph-based models representing the
way mashup components are integrate at different level of the application
stack by coupling events and output parameters of some components with
input parameters of other components.
With respect to manual programming, the previous platforms certainly al-
leviate the mashup composition tasks. However, to some extent they still
require an understanding of the integration logic (e.g., data flow, param-
eter coupling, and composition operator programming). In other words,
such tools tried to supply abstractions for non-programmers, but on top of
the same model for APIs and Web services conceived for programmers.
Even worse, in some cases building a complete Web application equipped
with a user interface requires the adoption of additional tools or technolo-

5

Chapter 1. Introduction

gies. A study about users’ expectations and usability problems of mashup
composition environments [73] showed the evidence of a fundamental is-
sue concerning conceptual understanding of service composition (i.e., end
users do not think about connecting services). In our previous work focus-
ing on a platform for the composition of Web mashups we partially solved
these problems thanks to the definition of a visual composition paradigm
that the users judged easy to use and intuitive [23]. The work presented in
this thesis capitalize on these initial results and goes one step forward to-
ward the definition by the end users of pervasive components to access data
sources and create UIs for data visualization. We believe that this is a valu-
able result, considering that one of the pitfalls of current mashup platforms
is that even the only registration of new components, without considering
their creation from scratch, is a task for expert administrators only.

1.4 Problem Statement

The general research question that guides our work is the following:

How can we enable end users to exploit the plethora of re-
sources available on-line and to develop mashups?

This implies conceiving adequate composition paradigms, based on inter-
active metaphors, to enable end users, with technological skills or not, to
develop applications that meet their situational needs by reusing already
available resources with a very low effort.

1.5 Contributions

In light of the previous considerations, we believe that there are numerous
opportunities for research and development in the area of end-user devel-
opment of mashups. In a preliminary investigation, we assessed how the
integration of UI components at the presentation layer [96], if supported
by composition paradigms abstracting from technical details [23], is ade-
quate for the end-users to compose Web mashups by synchronizing the be-
havior of pre-packaged applications. In this thesis we clarify our perspec-
tive on the end user development of mashups though UI synchronization
paradigms, and also introduce a new composition approach that enables
the creation of multi-device mashups. The ease of use, the intuitiveness
and the effectiveness of the proposed paradigm are demonstrated by some
user studies we conducted to analyze the behavior of real users using our
tools. We also show how such composition paradigms can be sustained

6

1.5. Contributions

by UI-centric modeling abstractions enabling the composition of heteroge-
neous resources and by a reference architecture enabling the fruition of the
composed applications on different client devices. More specifically, we
introduce the following contributions:

• User-driven development process. We argue that the user-driven cre-
ation of mashups is more challenging than the provider-driven devel-
opment of services. Firstly, for non-expert users it is desirable to
have a mashup composition paradigm that hides the back-end com-
plexity and simplifies the data, service and UI aggregation process
through mechanisms as close as possible to the front-end organiza-
tion, i.e., the “appearance”of the final application that the user would
really experience. Therefore, our approach is strongly characterized
by a visual composition paradigm allowing users to integrate contents
into unified visualizations and synchronize the behavior of the result-
ing UI components based on an event-driven logic. The users ma-
nipulate exactly the data and the visual elements they will see and
interact with in their final applications. A WYSIWIG style indeed al-
lows the users to immediately get realistic examples of the data that
will populate the visual elements and the way contents will be fused
into unified visualization and synchronized with other resources. In
other words, the composition method is based on an “integration-by-
example” paradigm, where the users can immediately observe the ef-
fect of their composition actions.

• UI-centric models for resource integration. We propose a new visual-
oriented model for mashup composition, based on associating data
and function renderers, exposed by online resources, to visual ren-
derers available in some pre-defined UI templates. Associating a UI
to an integrated data set is one of the most challenging tasks in the
construction of mashups. Our UI templates and the consequent visual
integration model try to alleviate this task, also providing the users
with an environment where they program data integration and syn-
chronization of different services by expressing at the interface level
examples of what they would like to experience during the execution
of the final application. We therefore propose Domain Specific Lan-
guages (DSLs) that encapsulates the fundamental constructs of the
visual mapping paradigm, yet abstracting from specific visualization
styles and execution devices.

• Multi-device deployment of composite resources. Our modeling ab-
stractions enable a model-driven process that transforms “examples”

7

Chapter 1. Introduction

of data integration and UI component synchronization, visually de-
fined by users, into applications that can be run on multiple devices.
A design environment allows users to visually express data integra-
tion queries and automatically generates a composition description,
based on our DSLs, that is then exploited by client-side execution en-
gines running on different devices to dynamically integrate data and
visually render the final mashup. Independently of our proof of con-
cept implementation, we believe that the modeling abstractions under
these mechanisms captures salient, generally valid aspects, that can be
reused throughout different UI templates and execution platforms.

• Lightweight integration of resources. Our visual integration model
supports union and intersection joins to create integrated views of
data coming from multiple services and a publish-subscribe, event-
driven synchronization of data sources and services spanning multi-
ple domains, both in form of remote APIs (e.g., the most common
map-based services or other APIs commonly adopted in Web 2.0 ap-
plications), or of context- and content-based services local to mobile
devices (e.g., the access to the GPS component or to the info stored
in the personal address book). The main challenge is not the defini-
tion of a new data or service integration technique; rather our method
introduces some abstractions that sustain a paradigm where the local
and global integration schemata and publish-subscribe coupling of UI
components are dynamically derived from the association operated by
users through a visual interactive paradigm. One of our goal is indeed
to promote a lightweight integration of data and services that does not
require any dedicated integration platform and is based on queries and
integration mechanisms at the UI level that the users can intuitively
define and easily execute on different client devices, even the mobile
ones that are characterized by limited computing capabilities.

• Collaboration. We introduce asynchronous and synchronous collab-
oration techniques in mashup development and execution, enabling
users to share resources with other people (e.g., friends, teammates,
clients, co-workers) and to co-create artifacts, in line with the Web
2.0 style. In particular, we enable the production of annotations on
the available resources and introduce techniques for synchronous co-
editing that are based on the propagation of users’ actions to different
active instances of a shared information space.

• Proof of concepts. We illustrate a reference architecture for the execu-
tion of Web and mobile mashups that has guided the development of

8

1.6. Research Methods

our mashup platform, PEUDOM (Platform for End User Development
of Mashups). Through a performance test we show that a lightweight
integration of resources is possible also under the limitations posed
by the computing environments of client-side applications and mobile
devices. Through user studies we also validate the adequateness of the
composition paradigm with respect to the abilities of the average end
users.

1.6 Research Methods

The methodology applied in this research is composed of the following
steps:

1. Analysis of the state of the art and outline of lacks or not considered
aspects;

2. Proposal of solutions to fill the lacks, i.e., new models, composition
paradigms and technology solutions;

3. Implementation of the proposed solutions;

4. Validation through performance test and user studies;

5. Refinements trough iterations of the previous points.

The research has been organized according to an incremental method. The
first part of the research focused on investigating technological solutions
for the composition of mashups through the synchronization at the UI level
of components, and the provision of abstractions that could support the
EUD of mashups [24]. The second part focused on a paradigm and a tool
for UI component creation, with particular attention to the execution of the
created components within standalone execution environments running on
different devices. The last part was related to the collaborative creation
of mashups and components. At the end of each part of the research, we
conducted experiments in order to evaluate and validate the achieved results
and proceeded by solving the emerged issues. The next chapters in this
thesis will be devoted to illustrating the main ideas and results emerged
from the research, and the experiments conducted to validate them.

1.7 Validation

In order to validate and evaluate our approach, we have conducted per-
formance tests and three user studies focusing on the main platform mod-
ule, following the incremental flow described in Section 1.6. In particular,

9

Chapter 1. Introduction

the performance tests focused on the UI synchronization mechanisms, the
lightweight integration techniques and on the performances of our approach
on mobile devices.
Each part of our research also ended with a user study session to evalu-
ate the effectiveness and efficiency of the achieved solutions with respect
to skills and expectations of average users. The first study was about the
composition of mashups on the first version of the Mashup Dashboard. The
second study was about the component creation and the exporting and use
of the created components also on mobile devices. The last study focused
on the collaboration mechanisms. All the user-centric studies followed the
same four-phase methodology: (i) pre-experience and placement question-
naire; (ii) brief explanation of the experience and demo of the tool; (iii) user
experience and observation; (iv) post-experience evaluation questionnaire.
With the user study we want to answer to three main questions in order to
understand if the tool is intuitive and easy to use and if end users would use
again the tool in the future.

1. Do end users feel comfortable with the tool?

2. Are they able to accomplish some tasks that let them use the most
important features and functionalities of the tool?

3. Are they satisfied with the use of the tool and with the work done
through it?

During the experiments we observed two different categories of users: ex-
pert and non-expert users with respect to mashups and, in general, to Web
application development. We measured their performance in terms of task
execution time and number and type of errors. Through the post-experiment
questionnaire we were able to measure easy of use and user satisfaction.

1.8 Thesis Outline

This thesis is organized as follows:

• Chapter 2 - Background: this chapter illustrates the research back-
ground that underlies the contributions introduced in this thesis. In
particular, it defines mashups and describes their main types, the mashup
components and the main integration logics. Thus, it defines EUD and
highlights its relationship with mashup development to ends with an
overview on mashup tools and technologies for mashups.

10

1.8. Thesis Outline

• Chapter 3 - UI-centric composition paradigm: this chapter presents
one of the main contributions of our research. Based on EUD prin-
ciples, we developed a lightweight UI-centric composition paradigm
that supports users in all the phases of the mashup life-cycle. It in-
cludes the creation of components, their synchronization within UI
mashups, composition assistance mechanisms and collaboration tech-
niques.

• Chapter 4 - Models: this chapters illustrates the models that enable
the composition paradigm described in the previous chapter, and that
constitute the basis for the developed platform. After the definition of
the basic abstractions, we describe the models enabling: (i) UI com-
ponent synchronization; (ii) UI-based integration of data sources; (iii)
Quality-aware mashup composition; and (iv) Collaboration through
mashups composition.

• Chapter 5 - PEUDOM: this chapter describes PEUDOM Platform for
the End User Development of Mashup), which we implemented on
the basis of the composition paradigm and the models described in
the previous chapters. In particular, the functionalities and the archi-
tecture of the platform modules are described.

• Chapter 6 - Validation of the proposed approaches: this chapter presents
the results of performance tests, three user studies and a field study on
a specific domain, cultural heritage, our platform was customized to.
These studies allowed us to validate the technology feasibility of our
contributions and to evaluate our approaches collecting feedbacks by
end users.

• Chapter 7 - Conclusions: this chapter draws our conclusions, summa-
rizes the main results that have been achieved so far, and outlines the
future work of our research.

11

CHAPTER2
Background and related works

In this chapter we present the research background that underlies the con-
tribution introduced by this thesis. In Section 2.1 mashups are introduced.
In particular, they are categorized on the basis of the layers where integra-
tion is possible and the most diffused components and composition mech-
anisms are described. Then, Section 2.2 identifies the elements that need
to be considered for investigating a user-driven innovation scenario. Sec-
tion 2.3 gives an overview of the tools so far proposed in research and in-
dustrial contexts. Finally, Section 2.4 describes the most used technologies
for mashup development.

2.1 Mashups

Web mashups are “composite” Web applications constructed by integrating
ready-to-use functions and contents exposed by public or private services
and Web APIs. The mashup composition paradigm was initially exploited
in the context of the consumer Web, as a means for rapidly creating appli-
cations starting from public programmable APIs. A huge number of new
applications were for example built by integrating data sources with Google
Maps. Figure 2.1 shows HousingMaps (http://www.housingmaps.

13

http://www.housingmaps.com
http://www.housingmaps.com

Chapter 2. Background and related works

Figure 2.1: An HousingMaps screenshot.

com) that is considered the first map-based mashup. It is a mashup of
Craiglist and GoogleMaps. Craiglist provides advertisement information.
Initially, it displayed data just in a list view. Hence, HousingMaps de-
veloper integrated the data provided by Craiglist with GoogleMaps, thus
achieving a more effective visualization for that kind of data. HousingMaps
was published in 2005 by Paul Rademacher who hacked Google Maps in
order to use it in his Web page. This happened before Google released the
GoogleMap API, when mashup developers were hackers.
Soon the potential of the mashup integration technology emerged also for
the development of new applications by end users, even in more critical do-
mains. For example the so-called enterprise mashups [54] were proposed
as tools for the enterprise users – not necessarily technology-skilled – to
compose flexibly their dashboards for process and data analysis by reusing
and composing corporate services enabling the access to enterprise infor-
mation sources, Web resources and open services.
Service composition has been traditionally covered by powerful standards
and technologies (such as BPEL and WSCDL), which however can be mas-
tered by IT experts only [85]. Mashups have instead emerged as an alterna-
tive solution to service composition that can help realize the dream of a pro-
grammable Web [71] by non-programmer users. Different from traditional,
more mature Web service integration practices, mashup composition em-

14

http://www.housingmaps.com
http://www.housingmaps.com

2.1. Mashups

phasizes novel issues, such as the composition of heterogeneous resources
based on different service technologies and at different layers of the appli-
cation stack, i.e., data, business logics and presentation. The integration
at the presentation layer is the very innovative aspect that mashups brings
into the Web technology scenario, which enables the creation, with limited
effort and time, of full-fledged Web applications where also the user inter-
face (UI) of the final application can be easily achieved by synchronizing
the UIs of different ready-to-use components.

2.1.1 Mashup components

Components are the atomic part of a mashup. We can define mashup com-
ponents as any reusable software module that allow composition – abstract-
ing from their internals and technology specifics. Components could be
based on very different technologies, from SOAP Web services to RESTful
services to Web APIs, from RSS Feeds to UI widgets. What makes diffi-
cult to develop a mashup is indeed this heterogeneity of technologies that
are not developed for interoperability.
Components are usually created by wrapping resources. For example, if we
consider a Web API like Google Maps, which is one of the most used also
because it requires a little effort in order to be included inside a mashup,
the API by itself is not enough: a developer needs at least to call the API
operations. Some wrappers are very simple because the resource provides
by itself contents and visualization capabilities. However, wrappers can
also be very complex when the base resource provides only data, and the
component has to provide also data visualizations.
As for mashups, also components can be classified in three categories that
cover the three layers of the application stack:

• Data components provide access to data. Data sources can be either
static like RSS of Atom feeds, or dynamic like Web services, services
or Web APIs. A resource is considered dynamic if it is possible to for-
mulate queries and, according to the parameters that are dynamically
provided, it returns proper results. The use of a data component in
a mashup especially aims at integrating the data provided with other
data already available.

• Logic components provide access to business logic or functionalities.
A logic component can provide, for instance, payment (e.g., PayPal)
or booking functionality, or can simply have computing logic in the
form of reusable algorithms. In case of logic components, one have to

15

Chapter 2. Background and related works

set up the interaction with the component: how to provide input, how
to use or visualize outputs.

• User interface components come with their own UI. Often, they also
have their business logic and their data, but sometimes they just pro-
vide a visualization for data coming from data or logic components.
Google Maps is representative of this type of components. The use
of a UI component typically requires a viewport or place-holder area,
e.g., an HTML empty <div> tag, in which to render the component
UI. Thus a UI component brings with itself the presentation layer.

As illustrated in the next section, the type of components in a sense deter-
mines also the type of the mashup where the components are integrated.
In order to use a component, a developer has to know how it works, which
are its properties, and which operation it is possible to invoke. Hence, be-
fore using it, s/he has to “read” the component. What can be read depends
on what the provider of the component makes available. It is possible to
deserve three main situations:

• No description: the component is not provided with any description.
This requires the developer to read the component source code (if
available), to code examples where the component is used or to follow
a reverse engineering approach to understand the component behavior.
This is of course cumbersome and error-prone.

• Human-readable descriptor: often, a component is accompanied by
a human-readable text description. For instance, API documentations
fall in this class.

• Machine-readable documentation: finally we can also have machine-
readable descriptions (typically XML-based documents), which can-
not be only read by developers but also by development tools or run-
time environments, in order to ease the development and automate
execution respectively.

2.1.2 Mashup types

Several kinds of mashups can be identified in the Web scenario, which are
characterized by the use of different types of composition and by different
integration solutions. Mashups could consist of just a resource inclusion in
a Web page, at one of the three tiers of a Web application (i.e., data, logic
and presentation), or could be composite applications whose modules, the
components, are orchestrated and synchronized in a sophisticated manner.

16

2.1. Mashups

Developing a mashup means especially integrating data, logic or UI. We
can identify four different types of mashups that refer to the layer on which
the integration is done:

• Data mashups integrate data coming from diverse resources (e.g., ser-
vices, RSS feeds and Web pages). They fetch and manipulate data in
order to return them as an unique result set, which is the data mashup
output. They may require data mediation, cleaning, splitting, joining
or transforming the structure and semantic of the rough data into an
unified view. Data mashups are typically published as data resources.

• Logic mashups integrates components at the application logic layer.
This type of mashup is very similar to service composition but with a
big difference: service composition composes homogeneous services
while a logic mashup composes heterogeneous components. An ex-
ample of logic integration could be a mashup in which a component
provides a location string that will be converted to a latitude/longitude
couple using Google Geocoder, and this code will be used to provide
coordinates to feed another component. Pure logic mashups are not
very diffused. Such integration practices are instead used in hybrid
mashups.

• User Interface (UI) mashups integrate resources at the presentation
layer. They integrate components, which have an independent UI, in
a slingle composition and possibly synchronize them. Synchronizing
UI components means to allow each component to react to user actions
and propagate such actions on another component: a source compo-
nent triggers an event as consequence of user action, and also other
components (at least one) react to this event changing their status. UI
mashups are typically published as interactive Web applications.

• Hybrid mashups span multiple layers of the application stack. They
bring together more than one of the integrations practices described
above and the integration can also involve more than one layer. The
core challenge of hybrid mashups is the mediation between the three
layers, i.e., cross-level integration, since each layer typically handles
concerns that are very different from the others. Among the mashup
types, hybrid mashups are, of course, the most rich and complete type
because they include all the potentialities of the other types. Depend-
ing on the prevailing layer where integration takes place, they can
result as interactive Web applications or as Web services.

17

Chapter 2. Background and related works

Looking at the mashup ecosystem, e.g., the mashups published on the biggest
mashup and API repository on the Web, programmableweb.com, it is
clear that the majority of mashups have a sort of, although minimal, user
interface. Hence, we can observe that UI and hybrid mashups are the most
adopted solutions.

2.1.3 Integration logic

One of the most important mashups feature is the integration logic. It refers
to the way components are used to form a composite application and how
they are enabled to communicate with each other. Integration logic means
that a component can influence the state of another component. We can
identify four different kinds of logics:

• UI-based integration is an aggregation of different UI components
merely from a user interface point of view. The components ap-
pear in the same page but they are not synchronized together. This
kind of logic is anyway an improvement with respect to a navigation
through multiple pages, each one devoted to the interaction of one
single component, and allows one to have information from different
sources in the same one. We can consider Portlets as mashup with a
UI-based integration. Consider iGoogle or the most recent Netvibes
(www.netvibes.com): they enable the presentation in a unique
page of contents from different sources, each in its own widget con-
text; however those widgets are not synchronized together.

• Tightly coupled integration is an integration logic that can be ap-
plied to all kinds of components. Components synchronize among
them by invoking operations on other components. This kind of inte-
gration logic is commonly used by the developers who are not inter-
ested in modifying the mashup or reusing the wrapped components,
and thus hard code the integration functionalities in the source code
of the component wrappers. In this way, each component is enabled
to invoke operations of other components, and to pass parameters to
implement data/control flows.

• Orchestrated integration applies to all kind of components and con-
sists in a centralized composition logic that orchestrates the execution
of the individual components by directly interact with them, e.g., via
messages, function calls or events. The other way around, e.g., to
communicate with other components, components can interact with

18

programmableweb.com
www.netvibes.com

2.1. Mashups

the composition logic; in this case the composition logic mediates
communications.

• Choreographed integration applies to all types of components that
may present active behavior and requires components to comply with
a given convention (or contract) that specifies how to communicate
with each other. Choreographed integration requires the mashup to
provide a communication infrastructure and the setup logic of compo-
nents, then components know themselves how to communicate. The
communication infrastructure is typically a message or an event bus.
An event bus knows how to propagate a raised event to the right sub-
scribed operation while a message bus distributes tagged messages to
all the message subscribers. This integration logic is mainly applied in
mashup platforms where components can be added, reused and easily
included in new compositions with a small effort.

These types of integrations are ordered by the flexibility of the related com-
plexity of mashups architecture. The more integration mechanisms are de-
coupled from the components, the more it is easy to modify the integration
and reuse components. In the following chapters we indeed show how it
is possible to decouple synchronization of UI components and enable end
users to select their synchronization bindings through an end user develop-
ment tool. The work presented in this thesis greatly aims at flexible mech-
anisms and architectures.

2.1.4 Advanced mashups

We emphasized so far the internal architecture and integration aspects of
a mashup, distinguishing between data, logic, UI, and hybrid mashups in
function of where integration occurs in the application stack. Mashups
have been originally conceived as Web applications that collect data from
different sources and construct integrated views on service data and op-
erations facilitating content fruition, hence they are typically executed on
desktop machines, e.g., laptops or desktop PCs. It is also possible to clas-
sify mashups with respect to an application-oriented point of view:

• Multi-user mashups: the mashups described so far were related to
conventional Web applications, i.e., instantiated independently for each
individual user of the mashup. Multi-user mashups, instead, are mashups
that bring together multiple users in a same instance of a mashup and
provide different levels of collaboration or cooperation [68] and can
implement business logics as processes [36].

19

Chapter 2. Background and related works

• Mobile mashups: In line with the general trend in software/Web en-
gineering and the growing demand coming from a user basis that is
increasingly accessing the Web via mobile devices, mobile mashups
aim at bringing mashups to mobile devices, such as mobile phones
or tablets. For example, the visualization of geo-referenced data on a
map keeps to be one of the most adopted classes of mobile apps [13].
The mashup flexibility, laying in the composition of varying services,
combined with the increased diffusion and capabilities of mobile de-
vices, is now unveiling the mobile mashup paradigm [31, 70, 95]. In
some cases, the mashup is available as final application that is exe-
cuted on the mobile device [21]; in other cases, also the mashup de-
velopment environment may run on the mobile device, further com-
plicating the development of the mashup environment.

• Telco mashups: Bringing together the power of both multi-user and
mobile mashups, telco mashups aim at providing people with novel,
integrated communication capabilities and features [42]. Rather than
aiming at the communication among software components, telco mashups
aim at the communication among people, e.g., to further enhance col-
laboration. The peculiar characteristic of telco mashups is that they
may integrate services that make use of telco networks (e.g., to send
text messages or establish phone calls), creating a so-called converged
network for communications.

In our approach

With our platform, described in Chapter 5, we enable end users to develop hybrid
mashups that includes data and UI components, choreographed by a centralized
event-bus. Components have a machine readable XML-based descriptor that is
used by the platform to manage the couplings defined among them. In our ap-
proach we support the development of multi-device mashups through the creation
of component schemata that allow the execution of such components on multiple
devices, also mobile ones with respect to telco mashups and generated mobile
mashups include heterogeneous resources, not only telco-networks services. Fi-
nally, we support multi-user mashups through the implementation of sharing and
collaboration mechanisms.

2.2 End-user development and mashup development

The End-User Development (EUD) [27, 1, 47] has emerged as a paradigm
that promotes the definition of

20

2.2. End-user development and mashup development

“methods, techniques, and tools to allow users of software sys-
tems, who are acting as non-professional software developers, at
some point to create, modify or extend a software artifact” [62].

Capitalizing on traditional HCI principles, EUD especially focuses on the
capability of systems to offer support during run time to empower users
to create their applications very often, blurring the distinction between de-
sign time and run-time. A “culture of participation” [39], in which users
evolve from passive consumers of applications to active co-creators of new
ideas, knowledge, and products, is indeed more and more gaining momen-
tum [92].
Mashups are therefore emerging as a technology for EUD, enabling the
creation of innovative solutions in any context where flexibility and task
variability become a dominant requirement. In this section we will discuss
such a potencial, which is the rationale at the basis of our research.

2.2.1 User-driven innovation

There is a specific driver at the heart of the mashup phenomenon and user
participation: user innovation, i.e., the desire and capability of users to de-
velop their own things, to realize their own ideas, and to express their own
creativity. In a traditional design-build-evaluate cycle, feedback from the
user is only collected once a product prototype has been developed. Thus
feedback is collected late, and changes to the product, that reflect an im-
proved understanding of customer requirements, are costly. In a user-driven
innovation approach, a service provider offers users an innovation toolkit
through which users can build their own products [86]. This toolkit pro-
vides a constrained interface on the capabilities of the company’s product
platform, but this ensures that the new products are properly constructed,
adhering to a sort of conservative invention [50].
In general, the idea behind an innovation toolkit is that the iterative experi-
mentation needed to develop a new product can now be entirely carried out
by the user. Many users can work in parallel on the solution to a problem,
by focusing on their own version of the problem. They can create a solution
that closely meets their needs and can more quickly obtain feedback from
their development experiments. At the same time, the toolkit provider does
not carry the cost of failed experiments. Nonetheless, if an experiment turns
out to add significant value, the company can integrate the user innovation
back into its core product.

21

Chapter 2. Background and related works

2.2.2 Long tail applications

Another important driver for the mashup growing is the difficulty to elicit
requirements from users. It is impossible to know requirements from all
the possible users. Sometimes, requirements from different users may be in
contrast with each other. These aspects relate to what is generally called the
“long tail” of requirements that are not satisfied by common applications.

Web applications

Number
of users

Developed
applications Neglected applications

Opportunities from EUD of mashups

Figure 2.2: Relationship between the long tail of applications and end-user developed
mashups [26].

As represented in Figure 2.2, the situational applications that meet very spe-
cific requirements fall into the long tail of applications usually not imple-
mented in a development scenario “centralized” in an IT department [53].
EUD could be a solution to the specific users’ needs, though modest they
are, that generally are not being met. A “distributed” development sce-
nario, where users are directly involved based on EUD practices, can there-
fore support a change in the business application paradigm, by accommo-
dating the agility needed to produce quickly ad-hoc applications that ad-
dress new problems or support new business opportunities [26].

2.2.3 End-users involvement in the mashup development scenario

The way mashups are developed depends on the nature of a mashup. While
current consumer mashups (for example, all the numerous mashups based
on Google Maps) are mainly the results of some hacking activities by expert

22

2.2. End-user development and mashup development

developers, enterprise mashups highlight different development scenarios.
According to [33], is it possible to outline in two scenarios the different
contributions of users at different skill levels:

(a) Mashups can be created by expert developers (e.g., implementers of an
IT department, service providers or Web developers in general) to de-
liver applications quickly. End users are not directly involved in the de-
velopment process; however they benefit from the shorter turn-around
time for developing new applications.

(b) Expert developers deploy a tool that lets anyone create their own mashups.
This is analogous to how spreadsheets are used in organizations today:
end users (e.g., business analysts) can create spreadsheets without in-
volvement from an IT department. In this scenario end users are di-
rectly involved in the creation of their own mashups.

Figure 2.3 illustrates these two scenarios. The two (extreme) corresponding
solutions differ in terms of the heterogeneity of the services that can be
combined, the diversity of user needs that can be met, and the level of
sophistication of either the user or the tools that support their work. A
tool for the creation of mashups (scenario (b), Figure 2.3b) will, initially,
be the most challenging scenario to implement. However, it also provides
the biggest pay-off. Using the tool, users can combine services and data
to create their own mashups. The tool constrains what users can do and,
hence, ensures the composability of mashup components. In the sense of
the earlier discussion on user innovation [87, 93], such a tool provides a
toolkit that enables users to create their own applications. However, users
are not limited in terms of the types of applications they can build: this
scenario, therefore, supports the greatest diversity of user needs.
Another distinction between the two scenarios is the degree of control over
the quality of mashups being created. In scenario (a)) (Figure 2.3a), the IT
department (or the developer in general) fully controls what kind of mashup
is being developed. Thus, the IT department ensures the quality of those
mashups. However, not all mashups have strict requirements in terms of
security, performance, or reliability; they may only be used for a specific
purpose, and a complex solution developed by the IT department would
also be too costly. In scenario (b)), the IT department selects which compo-
nents can be mashed up and provides an environment for safely executing
the mashups. Users can create mashups from those components to meet
needs unanticipated or not served by the IT department. Such mashups
may subsequently serve as prototypes for hardened applications developed

23

Chapter 2. Background and related works

End User

Service
Service Repository

Mashup tool Mashup

Expert developer

develops writes
publishes

mashes up

uses

Description

<uisdl>
<comp/>
<listner/>
</uisdl>

<uisdl>
<comp/>
<listner/>
</uisdl>

(a) Mashups are developed by IT experts and end users can only use them.

End User

Service

Web

Mashup tool Mashup

Expert developer

develops writes
publishes mashes up

uses

Description

<uisdl>
<comp/>
<listner/>
</uisdl>

discovers
and selects

<uisdl>
<comp/>
<listner/>
</uisdl>

(b) Mashups are developed directly by end uesers.

Figure 2.3: Mashup development scenarios.

24

2.2. End-user development and mashup development

by the IT department, should there be a need for the mashup to be exposed
to many users within the enterprise, or if the mashup has to be offered to
outside users.
In von Hippel’s terms [93], mashups “democratize” innovation, allowing
end-users to meet their own needs, which a central IT department or, more
in general, a service provider cannot always address. Their use also short-
ens the time by which users obtain the desired functionality. One use of
mashups is indeed to prototype a solution to a problem faced by a specific
user, and later generalize it to a larger user community. Mashup develop-
ment is therefore similar to open source development (which was the source
for von Hippel’s metaphor) in two ways: the contributors to an open source
project are also users of the software it produces; and open source projects
provide a mechanism whereby contributors can progress from passive users
to providers of feedback and feature requests and to code contributors. Sim-
ilarly, mashup developers are often also users of thir mashups (in scenario
(b)); and not all the users of mashups need to be developers, but they can
contribute to mashup development by providing feedback and feature re-
quests.

2.2.4 Collaboration in mashup development

Another important aspect in the EUD of mashups is the collaboration among
users. Collaboration in mashup-based development can be beneficial in col-
lective intelligence scenarios [43], where teams of people co-create knowl-
edge by sharing integrated information spaces with professional peers, in
meta-design environments [40], where end users shape up their tools in col-
laboration with expert developers, or in scenarios where people, not able to
develop by themselves their own applications, ask for help and advice from
experts within reference communities in a kind of crowdsourced Web En-
gineering [77].
Consider the case of enterprise mashups: if a user develops a mashup that
is useful for her/his work and, by developing this application, s/he is filling
an IT department lack, it would be beneficial for the enterprise if this ap-
plication is shared to all the colleagues that can be interested in it. It is also
possible that the user who had the idea to develop such an application does
not have all the domain knowledge to develop it. If s/he can develop the
mashup with the help of her/his colleagues, this would improve the value
of the application itself.
This is the concept behind collective intelligence, which is recognized as
an important resource especially in the enterprises [9]. However, Web 2.0

25

Chapter 2. Background and related works

collaboration paradigms are also emerging; a notable example of collabo-
rative Web 2.0 platform is Google Drive, which enables users to share and
collaborate in document editing. It is possible to find other examples of the
diffusion of collaborative mechanisms also among the mashup tools, e.g.,
Yahoo! Pipes provides a community for mashups developers where it is
possible to share data mashups. Collective Intelligence has its foundations
in the Computer-Supported Cooperative Work (CSCW) discipline.
For several years CSCW has been “addressing how user coordination to
perform collaborative activities can be supported by means of computer
systems” [27, 88]. One adopted way of conceptualizing CSCW systems is
to consider the context of a system’s use. With this respect, one useful con-
ceptualization tool is the Groupware Matrix [55], which is reported in Ta-
ble 2.1. The matrix has two dimensions: a spatial dimension, to distinguish
between co-located or remote collaboration, and a temporal dimension, to
distinguish between synchronous or asynchronous communication. Each
matrix element identifies a different collaboration work context. For exam-
ple, according to this matrix, mashup-based collaboration, for the nature
of the medium on which mashups are executed (Web browser or mobile
execution modules), can be characterized as a remote collaboration. Also,
based on the time distribution of the work, different approaches for com-
munication can be used. As we will show later in this thesis, version control
and annotations can be used to enable asynchronous communication, while
instant communication, like a live chat and live editing, can be used to
support the synchronous co-creation of integrated workspaces by different
users.

same time (synchronous) different time (asynchronous)

same place
(co-located)

Face to face interactions
decision rooms, single

display group-ware, shared
table, wall display,

room-ware, . . .

Continuous task
team rooms, large public

display, shift work
group-ware, project

management, . . .

different
place
(remote)

Remote interactions
video conferencing, instance

messaging,
chats/NUDs/visrtual worlds,

shared screen, multi-user
editors, . . .

Communication +
coordination

email, bulletin boards, blogs,
asynchronous conferencing
group calendars, work-flow,
version control, annotations,

. . .

Table 2.1: The CSCW Matrix (a.k.a. Groupware Matrix)

Two coordination mechanisms in groupware are also highlighted in [7]:

26

2.2. End-user development and mashup development

sharing of resources and communication among the collaborating actors.
The main issues to be considered for sharing are the ownership of the shared
resources, the trust in the other people involved, hence the privacy levels
and the users’ roles. Moreover, in the case of a remote synchronous collab-
oration, e.g., in co-editing scenarios, each actor must be aware of who are
the other users that are online in that moment and what they are doing.
While collaboration is a mature research field in the CSCW community,
collaboration in the creation of Web artifacts, and especially Web mashups,
is still scarcely explored. The tools so far proposed ease mashup develop-
ment to unskilled users [3, 74] by offering intuitive visual notations sub-
stituting the programming of the component integration logic. Such tools
reached the goal of enabling the end user development of mashups; how-
ever most of them offer paradigms for the creation of single-user appli-
cations, while they do not support the co-creation of shared information
workspaces.
The need for mechanisms to let user collaborate for the creation of Web
artifacts is however also evident from some recent works proposed in liter-
ature. In the context of Web-based collaborative learning, the notion of Web
Space Configuration is introduced in [67] as a basic container for instan-
tiating W3C Widgets. The proposed approach is characterized by the in-
dependence of the created Widgets composition from the runtime environ-
ment. Such independence is thus exploited to support portability of the cre-
ated applications, but also its sharing through broadcasting and co-editing.
More specifically, broadcasting and co-editing are achieved by establishing
a long-lasting connection by the owner of a Web space, who invites other
users to join and see the Web space (broadcasting) and to apply changes
(co-editing).
In [78] the authors propose a crowdsourcing paradigm where user parti-
cipation is adopted as a solution to responsive design in Web application
development, trying to collectively solve problems related to the adaptation
of the Web apps to different screen devices. According to this approach,
system developers can provide an interface where adaptive features can
evolve at runtime with the help of users who can refine the adaptations
to better match their peculiar usage context. This paradigm opens Web de-
velopment towards the social dimension. However, the aim is limited to let
the users adjust the presentation of their Web apps to best fit their current
device, while it neglects collaboration and coordination of different stake-
holders. Additionally, if focuses exclusively on presentation adaptation,
while it does not cover at all modifications of the application content.
In [45] the authors propose a generic awareness infrastructure that aims

27

Chapter 2. Background and related works

at providing basic awareness services that are reusable throughout differ-
ent platforms. Awareness support is anchored at a standardized layer thus
providing an application-agnostic solution. Different collaborating clients
therefore include a component, the generic awareness adapter, that em-
beds awareness widgets and is devoted to managing awareness mechanisms
through the propagation (from the client to the server and vice-versa) of
awareness information. The approach is very interesting, especially be-
cause of its portability across different platforms, and its intrinsic extensi-
bility, being it based on the integration of widgets managing the different
collaboration aspects.

In our approach

Users can collaborate along all the dimensions highlighted by the CSCW matrix.
In particular, we adopted synchronous and asynchronous mechanisms (described
in Section 5.5). For asynchronous collaboration, we adopted annotations and
activity logs. With annotations users can “augment” content or components, in
order to share their thoughts with the collaborators. For synchronous cooper-
ation instant messaging tool and presence and action awareness techniques are
adopted. We use a chat tool in order to provide an instant communication to users
while presence and awareness techniques help users to understand who the other
on-line users are and what they are doing, e.g., the highlighting of a component
on which another user is working on and the list of on-line users.

2.3 Mashup Tools

In the literature, a lot of tools have been proposed to allow the development
of diverse kinds of mashups. However, most of these tools were dismissed
after few years of activity or were research projects that have never been
really adopted.
In Table 2.2 the tools described below and our platform PEUDOM are clas-
sified with respect to different classification dimensions discussed in this
chapter.
Some projects have focused on easing the creation of effective presenta-
tions on top of Web services, to provide a direct channel between the user
and the service. SOA4All [58] is a tool that facilitates the creation of ser-
vice infrastructures and increases the interoperability between large num-
bers of distributed and heterogeneous functionalities on the Web. SOA4All
concentrates on the establishment of an instance of a service delivery plat-
form that is optimized and tailored to the needs of Web services. Serv-
Face [79] adopts a model-driven development approach that applies service

28

2.3. Mashup Tools

Dimensions

PE
U

D
O

M

SO
A

4A
L

L

Se
rv

Fa
ce

Ya
ho

o!
Pi

pe
s

M
as

hA
rt

D
ap

pe
r

Ja
ck

B
e

Pr
es

to

D
am

ia

N
et

vi
be

s

E
zW

eb

Mashup
types

Data mashups 3 3 3 3 3 3 3
Logic mashups 3 3 3 3 3
UI mashups 3 3 3 3 3 3

Component
types

Data components 3 3 3 3 3 3 3
Logic components 3 3 3 3 3
UI components 3 3 3 3 3 3

Component
description

No description 3
Human-readable
Machine-readable 3 3 3 3 3 3 3 3

Integration
logic

UI-based 3
Tightly coupled
Orchestrated 3 3 3 3
Choreographed 3 3 3 3

Advanced
techniques

Multi-user mashup 3 3 3 3
Mobile mashup 3 3
Telco mashup

Table 2.2: Placement of out tool with respect to all the other main mashup tools

annotations to a visual authoring of service-based interactive applications.
Dynvoker [90] is a tool that allows users to generate forms dynamically to
invoke services in many scenarios, including rapid service testing and dy-
namic inclusion of services as plugins into applications. Such approaches
do not allow the composition of multiple services into an integrated appli-
cation.
There is also a considerable body of research on mashup tools, the so-
called mashup makers, which provide graphical user interfaces for combin-
ing mashup services. Yahoo! Pipes [1] is one of the most popular mashup
tools. Pipes is a wired environment in which mashup feeds are accessed
and “piped” through user-selected functionality (combine, filter, sort, split,
count, truncate and so on) to process the feed. It provides also a commu-
nity for building, sharing, rating and modifying mashups. MashArt [35] is
a Web tool that provide universal composition as a service in form of an
easy-to-use graphical development tool equipped with an environment for
fast deployment and execution of composite Web applications though the
pipe metaphor.
With respect to manual programming, such platforms certainly alleviate the
mashup composition tasks. However, to some extent they still require an

29

Chapter 2. Background and related works

understanding of the integration logic (e.g., data flow, parameter coupling,
and composition operator programming). In some cases, building a com-
plete Web application equipped with a user interface requires the adoption
of additional tools or technologies. Even when they offer an easy com-
position paradigm, they do not guide at all the composition process. A
study about users’ expectations and usability problems of a composition
environment for the the ServFace tool provides evidence of a fundamen-
tal issue concerning conceptual understanding of service composition (i.e.,
end users do not think about connecting services) [75].
Dapper [38] is a tool powered by Yahoo! that allows one to collect informa-
tion from Web pages or feeds, and create a Dapp. A Dapp is a container of
content that could be of different formats, e.g., XML, CSV, JSON, HTML
but also Google Gadget, Google Maps and iCal. Dapper therefore produces
customized contents using Web pages data. Our tools also allow users to
combine such data with other resources. We can thus consider Dapper as
useful addition to the Component Editor (see Chapter 5); we are indeed
planning to include Dapps into our Mashup Dashboard and allow users to
use them as mashup components.
Netvibes is a customizable Web portal. Users can select widgets or portlets
from a list that are used to compose the personal information spaces. Netvibes
is similar to the dismissed iGoogle portal. In these kind of applications it
is possible to create UI mashups by including widgets that however cannot
communicate. It is in fact not possible to synchronize or to integrate data
belonging to different widgets.
JackBe Presto and IBM Damia are enterprise-oriented tools which offer
support to integration, reporting and visualization of enterprise data. JabkBe
Presto [52] is a real-time operational intelligence software with real-time
Business Intelligence (BI) analytics. It allows to combine data from data
warehouses, feeds, social medias, existing BI systems and Excel spread-
sheets, and to create data visualization in real time. Its tools foster real-time
collaboration through an interactive dashboard that can be executed also on
mobile devices. Our approach also allows to execute the created mashups
on mobile devices but, through our platform-independent domain specific
languages, we generate visual integration descriptors that can be interpreted
by native web applications. IBM Damia [87] is a data integration platform
that allows business users to quickly and easily create data mashups that
combine data from desktop, Web, and traditional IT sources into feeds that
can be consumed by AJAX and other types of Web applications. In the
enterprise context, such tools are very useful to integrate data sources, al-
though it is different to create a full-fledged application also equipped with

30

2.4. W3C standards

a presentation layer.
EzWeb [66] is a mashup platform that empowers users to create and share
instant composite applications. It enable users to create a UI mashup in-
cluding and synchronizing UI components. This is possible thanks to an
event-driven paradigm that allows one to couple events and operations.
With respect to EzWeb we provide support to an extended mashups life-
cycle, in particular for component creation, execution on multiple devices
and real-time collaboration.

2.4 W3C standards

The W3C Web Applications (WebApps) Working Group is char-
tered to develop specifications for webapps, including standard
APIs for client-side development, and a packaging format for in-
stallable webapps1.

In the last years they have published several documents and working drafts
proposing new specifications. In particular, their publications have been
clustered in API specifications, Web Component specifications and Widget
specifications. While Widget specifications were officially proposed for the
first time in 2006 and have become W3C recommendations in November
2012, Web Components and API specifications are still in an embryonic
state.

• Widgets are defined as:

full-fledged client-side applications that are authored using
Web standards such as HTML and packaged for distribution.
[49]

Widget packages contain all the needed files, including a configura-
tion file, icons and the default start file. They are typically installed
client-side on different devices where they run as stand-alone applica-
tions, but they can also be embedded into Web pages and run in a Web
browser. In order to deploy Widgets, application servers like Apache
Wookie2 have been developed. Such servers allow one to upload and
deploy Widgets in a Web application.

• Web Components [48] consist essentially of five pieces: (i) templates,
which are markup descriptions of the component UI; (ii) decorators,

1http://www.w3.org/2008/webapps/
2http://wookie.apache.org

31

http://www.w3.org/2008/webapps/
http://wookie.apache.org

Chapter 2. Background and related works

which apply templates based on CSS selectors to affect rich, visual
and behavioral changes to documents; (iii) custom elements, which
can encapsulate component state and provide script interfaces; (iv)
Shadow DOM, which is a DOM subtree that can be associated to an
element, but does not appear as child node of the element; and (v)
imports, which allow loading external files. All those pieces, if used
together, allow one to create rich and interactive self-contained com-
ponents.

• API Specifications [47] consist in a set of documents – mainly working
drafts and few recommendations – which include specifications on,
aspects such as Cross-Origin Resource Sharing to control the security
policies of browsers, Server-Sent Events to manage server-side events,
Web Messaging and Web Sockets API to manage the communication
among applications, Web Storage to manage local variable, and Web
Workers to manage computational intensive tasks without interrupting
the user interface. All these APIs enrich the features of the webapps
by introducing new interfaces that are or will be soon implemented by
the future versions of the main browsers or by client-side libraries.

Although Web Component and API Specifications are not mature yet, in the
last months they have been more and more diffused. JavaScript libraries,
such as, Google’s Polymer3 and Mozilla’s Bricks4, have been developed
in order to exploit the new Web Components and APIs features. Since
these specifications are new, they are not natively supported by the mod-
ern browsers. For this reason, on the Web many polyfills were published,
which are client-side libraries that fills the lack of both modern and obso-
lete browsers in implementing the new HTML5 features (Web Components
and the new APIs included) and enables to the adoption of these new tech-
nologies also in not up-to-date browsers.
The webapps of the future will indeed take advantage of Widgets, APIs and
Web Components. In particular, also mashups will be involved in this evo-
lution. With respect to these emerging new standards it is important to un-
derstand how mashups are related to them. First, as better explained in the
following chapters, in our approach we use UI components that are packed
with a structure similar to the W3C Widgets packages described in [49].
Our component packages contain an HTML template, a set of scripts, the
component icon, the component stylesheets and the component libraries.
Further, the logical structure of our components is similar to the W3C Web

3http://www.polymer-project.org
4http://mozilla.github.io/brick/

32

http://www.polymer-project.org
http://mozilla.github.io/brick/

2.4. W3C standards

Component structure because we have a base component template that is
modified by scripts according to the user interaction like W3C Web Com-
ponents templates. In our scripts we implement an object for each compo-
nent which encapsulate all the component functions that are invokable also
from other components or objects in general. Hence we implemented the
concept of the Web Components custom elements and shadow DOM. An-
other aspect is the UI synchronization: Web Components are more similar
to our approach (see Chapter 4) because they easily support the event-based
synchronization, although they do not have an explicit exposition of events
and operations. Instead, Widgets have an important limitation: they do not
allow the inter-widget communication. This means that it is impossible
to natively support Widget synchronization. In [32] the authors propose a
method for the inter-widget communication in UI mashups. They infer the
synchronization among Widgets by monitoring the user interaction on the
UI. For example, if a user searches for the same keyword with two different
Widgets, the system detects this behavior and infers that, when s/he per-
forms a search with the first one, s/he wants to search for the same keyword
also with the other Widget. Thus the system creates a synchronization rule
that will be applied whenever this action occurs again.
In the future it will be interesting to see how the World Wide Web will
evolve thanks to these standards and, hopefully, thanks also to mashup ap-
plications.

33

CHAPTER3
UI-centric composition paradigm

Our mashup development paradigm allows users to compose different re-
sources at different levels of granularity, always operating on the UI of the
final interactive artifact to be created. Different levels of granularity lead to
an iterative cycle of activities that extend the life cycle of mashups (Figure
3.1), as typically supported by the majority of mash-maker tool [37], espe-
cially giving to the users the possibility of creating and editing the compo-
nents through which successively they can compose more suitable mashups
and enabling users to share resources (i.e., registered services, components
or mashup compositions) that can be reused by others.
As represented in Figure 3.1b, the user can integrate content retrieved through
remote data services and build visualizations where multiple data sets are
integrated. The result of this composition is what we call a UI component,
i.e., widgets that: i) provide a user interface (UI) on top of the integrated
result set, ii) can be executed as a self-contained application on multiple
devices, and iii) expose an event-driven logic that make them available to
be reused and synchronized with other components in a larger mashup. The
creation of UI components, especially through a visual paradigm adequate
for unskilled users, is an activity not supported by other tools, which gen-
erally appear as “closed” environments, where the addition of new compo-

35

Chapter 3. UI-centric composition paradigm

Usage and
Maintainance

Resource
Selection

Mashup
Composition

Mashup idea

Dismissal

(a) Mashup life cycle as supported by
the majority of mash-maker tools
[37].

Use, Reuse
and

Mantainance

Resource
Selection and
Registration

Component
Editing

Mashup idea

Dismissal

Mashup
Composition

Mashup
Sharing

(b) Mashup life cycle as supported by PEUDOM.

Figure 3.1: Mashup life cycles.

nents is a task for more expert developers. Moreover, our approach consider
also collaboration among users that is one of the most important aspects in
the Web 2.0 scenario.
In the rest of this chapter, we first describe the main EUD principles and
the barriers in the adoption of tools by the end users in the mashup de-
velopment domain. We show how our UI-centric composition paradigm
facilitate the mashup development and illustrate our development process,
that is based on the models described in Chapter 4, and supported by the
interactive composition environments offered by the PEUDOM platform,
further described in Chapter 5.

3.1 Adopting EUD principles

In order to identify the elements that are necessary to achieve viable solu-
tions for a user-driven composition scenario, we reviewed the findings of
some experimental studies on the definition and validation of EUD princi-
ples [44, 57, 65, 94], and re-interpreted such principles taking into account
the peculiarity of mashup composition. Also based on the experience that
we gained in the last years while building composition tools and observ-
ing end users using such tools [4, 21, 23], we identified some complexity
factors that also occur in the mashup composition activity, as supported by
the tools so far proposed. In particular, with reference to the barriers for
EUD identified in [57], we observed that in mashup composition typical
difficulties relate to:

• Design barriers. They relate to mapping the concept of the desired
application to an abstract description of a mashup composition. Not
always end users are able to make a distinction between application
design and execution; they find it difficult to compose a mashup using

36

3.1. Adopting EUD principles

abstract notations that are far from the concept of the final applica-
tion [73]. With this respect, for example, wired notations, adopted
by several mashup tools to create composition graphs specifying data
and/or event propagation, might not be adequate for the average end
user [81].

• Selection and use barriers. It is complicated for a non-expert com-
poser to guess how a component can be used, which features of its
programmatic interface can be adopted and which effect each service
may have on the overall composition. Abstract representations of the
service, for example in terms of input/output parameters, that are far
from the representation of the data or the UI layout that services are
able to offer do not help users understand how the service can be ex-
ploited and integrated in a mashup composition.

• Coordination barriers. They relate to identifying the way compo-
nents can be combined and integrated. Assuming that the users is
able to identify the services that can allow them to reach their goal,
several complexity factors then emerge when they have to define the
integration logic to get a coordinated behavior of the identified compo-
nents. Several tools still require the users to deal with service linking,
e.g., through parameter coupling or through the definition of process
graphs reflecting the execution flow. However, these aspects, that are
strictly related to programming, are not always understood by the or-
dinary end users [74, 81].

• Understanding barriers. They refer to the difficulty of understand-
ing the external behavior of the composition, due to the difficulty in
evaluating the behavior of the final application against the composer
expectations. Especially when specific design notations are used to
compose the application, users cannot easily imagine how the final
application will look like.

To overcome the previous problems, we consider the following require-
ments, already studied and validated in different studies ([15,44,57,63,94],
to mention the most relevant), as fundamental ingredients for the successful
porting of mashups technology to EUD:

• Closeness of mapping. In order to help users understand the fea-
tures provided by the available services, the effect that each service
may have on the overall composition, the way it can be integrated
with other services, it is important to come up with representations of

37

Chapter 3. UI-centric composition paradigm

services that abstract from technical details about the programmatic
interface or communication protocol while increasing role expressive-
ness [44]. One solution that we adopted is to let users manipulate, e.g.,
add, remove, or modify, visual objects. Also, the addition of one such
object into the composition workspace immediately produces the vi-
sualization of the UI and of the data provided by the corresponding
component. Therefore, users can operate at the level of service visu-
alization properties rather than being required to configure technical
details of services invocation and of the integration logic. One of the
experiments that we performed with real users [19] allowed us to as-
sess that this visual approach, focusing on the immediate visualization
of services, affect positively the user-perceived usefulness of mashup
composition and the ease-of-use of the proposed tool.

• Progressive evaluation. In order to further enhance the users’ per-
ception of, and the control on the effects that services and composition
actions have on the application under-construction, for example on its
look&feel, on the retrieved data set and the way data and component
behaviors are synchronized in the overall composition, it is important
to provide immediate feedback on “how the user is doing” [44]. We
therefore propose an immediate execution paradigm, where each sin-
gle composition action is observable through the immediate execution
of the modified application. In other words, we do not distinguish be-
tween design and execution: since the very first composition action,
the user is able to see a running application, and to observe incre-
mentally the effect of any other subsequent composition action. This
choice also avoids the so-called premature commitment [44], since
the user is not forced to make decisions without being able to ob-
serve and evaluate the effect of such decisions. One experiment con-
ducted to validate one tool prototype with real users [19] highlighted
that this choice positively affect self-efficacy, i.e., the users’ percep-
tion about their capability to face challenges competently, because the
users strongly feel in control of the composition process.

• Composition support. In order to further smooth EUD barriers, it is
also important to aid those users that do not have sufficient develop-
ment knowledge. Composition can be assisted or guided in multiple
ways, for instance by providing default system-driven service cou-
plings, when possible. Users find helpful any kind of hints that the
system is able to provide during the mashup development [74]. How-
ever, it is also important to give the users the right level of control to

38

3.1. Adopting EUD principles

modify the automatically provided solutions, and offer them recom-
mendations for further services and composition patterns that can fit
the current composition. In this thesis as well as also discuss some
techniques for the generation of quality-aware recommendations [22].

• Abstraction gradient. Another fundamental ingredient is to accom-
modate different users skills and attitudes, and also varying compo-
sition contexts by providing the users with different abstraction lev-
els [44], so ensuring a “gentle slope of difficulty” [63]. To meet this
requirement, we identified different “composition capabilities”, re-
flecting different composition granularities. Therefore, our approach
lets the users: i) embed pre-packaged, ready-to-use components into
a workspace, possibly taking advantage of pre-configured rules for
component coupling, without the need of defining any additional set-
ting for components execution and integration [23]; ii) define addi-
tional integration policies to synchronize the UIs of the different com-
ponents [96]; iii) build new components by visually programming the
integration of different data sources and the visualization of the inte-
grated data set through pre-defined user interface skeletons.

• Domain-specific focus. Domain specificity means to use specific ter-
minology and customizing the interaction on the target users needs,
as outlined by Casati in [28]. The composition paradigm illustrated
in the sequel of this chapter is not tied to any specific domain. Our
approach is indeed general purpose and open in its nature, being it
conceived for the integration of heterogeneous services, based on dif-
ferent visual templates and user interfaces supporting mashup com-
position. However, this openness facilitates the customization of the
proposed platform with respect to the characteristics and needs of spe-
cific communities of end users. Customization, for example, occurs
by selecting and registering into the platform services and data sources
(public or private) that can provide contents able to fulfill relevant user
information needs. Domain specificity is thus an orthogonal charac-
teristic of our approach that responds to the users’ need of understand-
ing the potentialities of composition tools and being comfortable with
the tools they use as a key success factor for the diffusion and the
real adoption of composition tools in general. In order to allow users
to understand the possibilities offered by the mashup platform and
to make sense of the services and components that are available for
composition, it is important to restrict the platform to a well-defined
domain the user is comfortable with. That is, we need to be able to

39

Chapter 3. UI-centric composition paradigm

develop a general platform which can be however easily customized
to speak the language of the target users, both in terms of functional-
ities and terminology known to the user. To ensure an adequate trade
off between specialization and offered functionality, we believe that
general platforms should be amenable to the customization of the of-
fered components and of the provided composition features. Our UI
centric paradigm enables a decoupling of the presentation and inter-
action layer, which enables the adoption of different UIs on top of the
business logic layer of our tool, facilitating the customization of tools
with respect to the EUD requirements. This is what we experienced
when we specialized our generic platform to support the activities of
different communities of end-users [4, 21, 23].

3.2 Development process

Given the ingredients defined above, Figure 3.2 outlines the whole life-
cycle for mashup development supported by our approach, from the cre-
ation of single components, to the execution of such components on differ-
ent devices and/or their integration within more complex mashups.

3.2.1 Selection of data services and visual templates

The starting point is the discovery and the registration into the platform of
a set of data components. The registration is kept simple and minimum,
so that even the end-users can tackle it, and is performed through visual
forms where the service configuration data, i.e., the service end point and
the request parameters to filter out relevant contents, have to be entered.
In the initial design phase, the composer selects one data component (com-
ponent selection), and one of its pre-defined query (query selection). The
query is executed and a result set is returned and visualized in a Web-based
design environment.
Figure 3.3 shows the environment through which the user can visually pro-
gram the integration of data extracted from multiple services to create a
new UI Component. The left-hand panel displays the result set retrieved
by querying the data components selected by the user from the repository
of registered components. The panel on the right instead shows a UI tem-
plate that the user chooses among different pre-defined UI templates, also
depending on the device where s/he wants to execute the final composition.
As an example, let us suppose the user is interested in retrieving informa-
tion about the Star Wars movie. S/he visually browses the services already

40

3.2. Development process

Execution on
multiple
devices

Selection of
data services

and visual templates

Service
Repository

Service registration

Service selection

Query selection

Query execution

Result rendering

Template selection

Visual mapping

Schema generation

Schema interpretation

Query execution

Concrete UI rendering

Component
synchronization

Composition
Assistance

Mechanisms
Collaboration

Component
Repository

Service
result set

Service
result set

Template
Repository

Visual Template
Meta Model

Standalone
application on

different devices

Mashup
component
on mashup

platformComposition
Repository

Figure 3.2: The overall process for component and mashup creation.

41

Chapter 3. UI-centric composition paradigm

Figure 3.3: Visual Mapping through the Design Environment.

registered in the platform repository and selects a service publishing infor-
mation about movies, e.g., IMDB. Guided by the visual environment, s/he
can also set the parameter values to query the service, for example inserting
“Star” as search key. The data panel on the left displays data retrieved by
dynamically querying the service according to the defined settings.
S/he thus chooses a list-based UI template, like the one represented in fig-
ure, to display in form of a list (which we call global sub-template) the
content items about movies. Each list item in the UI template is repre-
sented by three visual elements, namely < title, subtitle, picture >. As
better explained in Chapter 4, these are the so called visual renderers that
the user instantiates with the data extracted by the data component. Visual
renderers are generic receptors of data that, based on the user choice, act
as placeholders for data visualization during the component execution. The
component schema consists of a set of visual renderers, each one represent-
ing the integration of data items coming from different resources. The way
visual renderers are displayed according to a given layout then depends on
the visual template selected by the user at design time, which in turn im-
plies a specific mapping between the visual renderers in the abstract model
and the widgets in the concrete visualization layout.
The UI template also includes a second view (a merge sub-template) that
allows the user to map, on an arbitrary number of additional visual render-

42

3.2. Development process

ers, further attributes that s/he might want to add as details of each item
in the union sub-template. In other words, the merge sub-template collects
the result of joins among different service result sets, based on some key
attributes in the union sub-template (e.g., the title and subtitle in the case
of the list-based UI template). At run-time, the merge sub-template is con-
structed on demand, i.e., only for a specific item selected by the user in
the union sub-template, thus reducing the complexity of fusing data and
identifying duplicates when multiple services are involved, which would
be required if instead acting on the the whole union result set.
In general, we assume that any UI template adopted for composition, and
its corresponding concrete view instantiated at runtime, be structured into
these two sub-templates, because this organization of the UI also deter-
mines our lightweight integration strategy that will be illustrated in the se-
quel of this paper. Nevertheless, this UI structure is also effective with
respect to the usability of the resulting applications. Indeed, it is coherent
with the well-known “global-detail” pattern commonly adopted in data vi-
sualization [25]. This pattern suggests providing a data overview first, then
details-on-demand based on the selection of a given item in the overview.
It can be applied for organizing the UIs on different client devices. It is for
example very common in Web applications design [30], and can be effec-
tively adopted in mobile apps design as well [14]. It is also adoptable in
almost any type of visualization style.
For example, Figure 3.4 highlights the adoption of the pattern, and the
resulting union and merge UI sub-templates, also in other UI templates
currently available in our platform, namely map-based and chart-based UI
templates:

• Map-based UI template: the map globally displays the result set items,
each one as a Point Of Interest (POI) highlighted on the map; a pop-up
balloon then displays the details for a selected POI.

• Chart-based UI template: the result set is shown as a series on a chart
and the selection of one of its points then lead to more detailed infor-
mation.

3.2.2 Visual mapping

After the selection of data components and UI templates, the user proceeds
with the visual mapping activity, during which s/he maps items from the
returned data sample onto the visual renderers of the UI template. The
visual mapping can be operated starting from multiple data sources; in this

43

Chapter 3. UI-centric composition paradigm

Merge sub-template

Merge sub-template

Merge sub-template

Union sub-template

Union sub-template

Union sub-template

Union sub-template

Figure 3.4: VT Components adopting List, Map and Chart UI Templates.

case the visual mapping actions performed by the end users, from multiple
result sets over the elements of a single UI template, define the integration
schema for the construction of the integrated result sets. Based on the visual
mapping an application schema is generated. During the execution phase,
the schema, interpreted by a runtime engine, guides the execution of queries
to the involved services and the generation of the concrete UI visualizing
the integrated result set.
Through drag&drop actions the user thus associates interesting data items,
selected from the left panel, to elements of the right-hand UI template
panel. In other words, the user “manipulates” data to instantiate the visual
elements that s/he will see and interact with in the final application. Also
the UI template panel allows the user to immediately get realistic examples
of the way data will be fused into a unified visual representation.
The user can select more than one data source for the UI template comple-
tion (e.g., another service publishing movies information, such as Netflix).

44

3.2. Development process

In this case the user-defined visual mapping not only specifies associations
of data with visual elements; as better explained in Chapter 4 it implicitly
specifies union or merge join of data for integrating the contents coming
from the different services.

3.2.3 Schema generation and execution on multiple devices

As we will illustrate in Chapter 4, each visual mapping action contributes
to the generation of a platform-independent schema that, for each element
in the visual template in charge of rendering data specifies: i) the bind-
ing with the data sources and the corresponding query, as programmed by
the visual associations operated by the user; ii) the invocation data inte-
gration operations in case of data coming from multiple sources. Thanks
to model-to-code generative techniques, such schema then guides a client-
side execution engine to dynamically generate the designed app, through
the construction of the app UI, based on the adopted UI template, and the
population of the visual renderers with data queried by the different ser-
vices. The generated code can thus play the role of a standalone mashup
application (this applies for example to the execution on mobile devices
where apps are generally simpler), or of a component to be used for the
creation of larger Web mashups.

3.2.4 Component synchronization within UI mashups

Our framework also provides an environment for the creation of mashups
that synchronize UI components at the presentation layer [23]. Figure 3.5
shows the visual workspace where this kind of composition can be per-
formed. In this case, the granularity of the composition is not related to
data items and single visual elements of a larger UI template; rather the
platform provides a repository of self-contained components equipped with
their own UI, both user-created through the environment described above,
or created by manually programming wrappers for public or private APIs
and services to manage the visualization of data through a UI and the event-
driven logic (i.e., capturing and propagating UI events) that enables our
UI synchronization paradigm. Such UI components can then be visually
composed by coupling exposed events and operations in an event-driven,
publish-subscribe fashion (see Section 4.1.1). As we will better illustrate
in the following, especially at this level where UI integration is addressed,
our composition environment is characterized by a visual paradigm, with
an immediate feedback about the effect of the user composition actions:
the addition of each component is indeed immediately followed by the vi-

45

Chapter 3. UI-centric composition paradigm

Figure 3.5: Visual synchronization of UI components.

sualization of the component UI, through which the user can start access-
ing and browsing the component data set. Possible synchronizations that
can be defined with other components already in place in the composition
workspace are automatically identified, based on compatibility rules, and
visually highlighted, e.g., through different colors (red or green) of the com-
ponent border. The definition of component couplings is then supported by
dialog windows where events and operations are described in terms of the
effect they produce (e.g., “Event: Location available”, and “Operation: A
marker will be added to the map”), not in terms of parameter name and
type required by the definition of event and data flows. The definition of a
coupling is immediately operated, by updating the status of the subscribed
components, based on the defined synchronization rule. In this way, the
users explore and easily actuate different design alternatives, and interac-
tively and iteratively compose their applications.

46

3.2. Development process

3.2.5 Composition assistance mechanisms

In order to support users during the development process, it is useful to
adopt mechanisms that can alleviate the composition effort hiding techno-
logical aspects and complexity to users. We identify as critical activities:
(i) the component selection; (ii) the similarity assessment of components;
(iii) the compatibility between events and operations in the synchronization
of components.
To support these activities, we provide mechanisms that give visual feed-
backs to users if they are trying to connect suitable components or not.
Figure 3.6a shows the highlighting mechanisms in component coupling.
When a user wants to couple two components, the border of the target com-
ponent is highlighted, in green if the component is compatible and in red
otherwise.
Also, once an event (or an operation) is selected in the dialog box illustrated
in Figure 3.6b, a color code helps the user to understand which operations
(or events) are compatible with the previously selected event (or operation).
When composing a mashup, the composer first needs to identify the “right”
components. The selection can be based on the syntactic and semantic fit-
ness of each component within the mashup under construction, but also on
quality measures. As soon as components are added into the composition,
the assessment of the quality of the overall composition can indeed take
place, and recommendations can be provided to the user accordingly.
Figure 3.6c shows examples of the recommendations generated by our tool,
to guide the user in the selection of alternative or additional components
that can maximize the quality of the overall mashup. The starting point for
computing the quality indexes on which the recommendations are based
is the quality of each single component [17]. However, the composition
schema is also taken into account, to identify the role, i.e., the importance,
that components play within the composition [18]. The quality of the com-
position can thus be evaluated as an aggregation of the quality of the single
components, weighed on the basis of the components’ role [22]. The anal-
ysis of the composition can also provide indications about the richness of
the integration logic, revealing whether the composition introduces infor-
mation spaces, functionality sets and visualizations that are richer than what
would be achieved by accessing separately individual components. Recom-
mendations can thus be generated, by ranking the components available in
platform on the basis of their attitude to increase the quality and the value
of the mashup.
In the following chapters the adopted quality model and the recommenda-

47

Chapter 3. UI-centric composition paradigm

(a) Highlighting of compatible components in coupling definition.

(b) Coupling creation dialog.

(c) Example of quality-based recom-
mendations for additional compo-
nents.

Figure 3.6: Composition assistance mechanisms.

48

3.2. Development process

tion mechanisms are described in detail.

3.2.6 Collaboration

The introduction of collaboration mechanisms that allows users to share
and co-create with other users the components and the composition they
are working on is another important aspect of our paradigm. This is so
important because users are nowadays used to collaborate with others, also
through Web applications. In particular, in the last years, Web applications
and tools that enable collaboration have been more and more diffused.
In our approach users can share their artifacts in order to show them to
others or to collaborate. For example, we performed a field study in the
Cultural Heritage domain. Through this study we assessed a guide of an
archaeological park would be interested to share an application where s/he
have collected all the material for the visit with the visitors but in the same
time s/he would also like to share the work done with her/his colleagues in
order to collaborate in the selection of contents. The extensions of our ap-
proach to cover collaboration requirements have been conceived to address
these needs that we identified in all the context and application domains
when our platform has been adopted.
Once an artifact is shared, users can collaborate asynchronously or syn-
chronously with different mechanisms.
Figure 3.7 shows the main collaboration mechanisms. For the asynchronous
collaboration, we considered annotations and activity logs. Annotations
(see Figure 3.7a) enable users to leave comments on a particular resource
(i.e., a service, a component or a mashup composition) or on its contents.
Activity logs (see Figure 3.7b) are the history of the actions performed by
all the users on a given shared resource.
For the synchronous mechanisms, users can instead use chat (Figure 3.7c),
presence and actions awareness techniques. Instant messaging tools like
chat help users to communicate synchronously and share comments, ideas,
knowledge and directions to other users. Presence and action awareness
techniques show to users how many users are working on the same re-
source, who they are and what they are doing. In other words, we pro-
vide the list of online users and visual feedbacks like highlighting (see Fig-
ure 3.7d) a part of a resource where other users are working on and a live
synchronization of the actions performed by another user.

49

Chapter 3. UI-centric composition paradigm

(a) The last annotation on the
GoogleMaps component. (b) The activity log.

(c) Chat and presence awareness mech-
anisms.

(d) Action awareness highlighting of the compo-
nent the other users are working on.

Figure 3.7: Collaboration mechanisms.

50

CHAPTER4
Models

In this chapter, we systematically define the modeling abstractions that
characterize our approach. In Section 4.1 we describe the Models for UI
Component synchronization that allows creating new composite applica-
tions by synchronizing the behavior of different UI Components at the pre-
sentation level. In Section 4.2 we illustrate peculiarities of our Visual In-
tegration Model that, based on the completion of UI Templates, enables a
light-weight paradigm for integrating Data and UI Components to create
multi-device UI Components and mashups. The main elements that will
be defined in Section 4.1 and Section 4.2 are schematically represented in
the meta-model represented in Figure 4.1. Than, in Section 4.3, we present
our Quality-aware Models for mashup composition that introduce the qual-
ity dimension to the composition of mashups. Finally, in Section 4.4, we
introduce the Collaboration Models on which are based the proposed asyn-
chronous and synchronous collaboration mechanisms.

4.1 Models for UI Component synchronization

Our models for UI Component synchronization capitalizes on models for
UI synchronization defined in [19, 23, 96]. We here report the most salient

51

Chapter 4. Models

UI Mashup

UI Component

Wrapped
ComponentVI Component

Coupling

Operation

Event

UI Template

Presentation
Template

1..* 0..*0..*

0..*

1..* 1..*

1

1

1..*

1..*

- parameter[]

Query

- endPoint

Data Component

Result Set

Viewport

Concrete View

1

1..*

1
1

UI
Sub-Template

Union
SubTemplate

Merge
SubTemplate

Coupling
VisualRenderer

Id
VisualRenderer

VisualRenderer

1 .. *

VI Schema

1..*

1..*

1

1..*

Figure 4.1: Main elements of our UI-centric composition paradigm.

features of such model, to facilitate the comprehension of the overall com-
position paradigm.

Definition 1. UI Component. A UI Component is a self-contained soft-
ware module that is bound to one or more services providing data and/or
functionality and is equipped with its own user interface (UI) (its concrete
view). A UI Component also exposes an event-driven logic characterized
by a set of events, E, that can be generated by the user interaction with
its concrete view, and a set of operations, O, that some other components’
events can activate to change its status when a synchronized behavior within
a composite application is needed.

The specificity of UI Components, that characterizes them with respect to
other components, for example Web services, is the presence of a UI as
a means for the users to interactively navigate and manipulate the compo-

52

4.1. Models for UI Component synchronization

nent’s content and to invoke business logics operations. Therefore, besides
adding a presentation layer which is missing in Web and data services, the
interaction with the UI in a sense replaces the invocation of Web services
operations through SOA protocols.
In Section 2.1.2 we have already introduced the concept of UI mashup. In
this Section we indeed provide a formal definition of such applications with
respect to the elements that compose the proposed UI-centric composition
paradigm.

Definition 2. UI Mashup. A UI mashup can be defined as

uim =< UIC,C >,

where UIC is the set of UI Components involved in the mashup, C is the
set of components’ couplings that determine the synchronized behavior of
components within the mashup.

Component couplings are defined based on an event-driven, publish-subscribe
integration logic [19, 23, 96]. Couplings are channels for inter-component
communication, based on which the occurrence of a published event causes
the execution of a subscribed operation, thus a state change in the sub-
scribed component. Therefore, couplings can be defined as in the follow-
ing:

Definition 3. Components’ Coupling. Given two UI Components, uics
and uict, a coupling synchronizing their behavior is a pair < euics , ouict >
representing the subscription of an operation of the target UI Component,
ouict , to an event raised by the source UI Component, euics .

These last definitions particularly stress the integration dimension within
mashups, which in our case is achieved through UI synchronization mech-
anisms. On the other hand, the UI Mashup definition intentionally does not
cover the presentation of the composite application itself, which is typically
achieved as the aggregation of each single component’s UI. For example,
in a UI Mashup executed on the Web, the presentation can be managed by a
grid-based HTML layout where each component’s UI is visualized within
a viewport1, i.e., a window or any other viewing area on the screen, gen-
erally implemented by means of an HTML div or an iframe, where the
visualization and execution of the component takes place. In other words,
our definition stresses the importance of each single component’s UI.

1http://www.w3.org/TR/CSS21/visuren.html

53

http://www.w3.org/TR/CSS21/visuren.html

Chapter 4. Models

4.1.1 UI Component synchronization

The adopted UI integration paradigm allows creating new composite appli-
cations by synchronizing the behavior of different UI Components at the
presentation level [96].

4.1.1.1 Component Model

The paradigm is based on a component model where the application logic
and the user interface cooperate with each other: any user action (e.g., the
user click on a button) or also operation requests from other services result
in the invocation of application logic functions (for example a new query
over the component data set) that cause changes in the service state and
are also mirrored in the user interface (for example an updated data set is
displayed).
To achieve a composite application where different UI Components get syn-
chronized, state changes must be captured and propagated to the other com-
ponents to update their state. For these reasons, as defined above (see Defi-
nition 1), each UI Component is characterized by events that can also bring
parameters, and by operations, whose invocation is triggered by events and
enact component state changes.
Generally, only some of all the possible events that can be generated by the
UI are selected and exposed as component events in charge of propagating
state changes. Operations are derived by the component functionalities, in
particular most of them are the functions that can be invoked through the
service interface the component is bound to. They generally require a set
of input parameters and returns set of values retrieved by the underlying
service. As for the definition of component events, UI Components gen-
erally expose a subset of the functions offered by the underlying service -
those ones that show some utility for the synchronization at the presentation
level.

4.1.1.2 Synchronization Model

The synchronization of different UI Components is thus achieved through
an event-driven, publish-subscribe model [23,96] based on the definition of
couplings (see Definition 3) which are channels defining intra-component
communications, based on which the occurrence of a published event causes
the execution of a subscribed operation, thus a state change in the sub-
scribed component.
As represented in Figure 4.2 such a composition logic can be managed
through an event bus that allows a component to communicate and share its

54

4.1. Models for UI Component synchronization

Event 1

Operation 2

Execution
Handler

Binding Binding

Component 1

Component 3 Component 4 Component 5

Component 2

Publisher: Component 1
Event: Event 1

Subscriber: Component 3
Operation: Operation 2

Figure 4.2: PEUDOM composition metamodel.

own UI events, or to observe and react to UI events of other components
through its subscribed operations. Each component keeps running accord-
ing to its own application logic, for example within the scope defined by an
HTML div. As soon as the events specified in the defined couplings oc-
cur, the involved components publish them and the subscribed components
capture them thus triggering the execution of their operations and updating
their UI accordingly.

4.1.2 Domain Specific Languages

To guide the mashup execution, both the Component and the Synchroniza-
tion Model have an XML-based specification.
Component properties, namely the binding with the actual service/API, the
events and the operations are expressed by means of the UISDL (UI Service
Description Language) [96], which provides a uniform model to coordinate
the mashup composition and execution, which obviates the heterogeneity of
service standards and formats by embedding only the information needed
for synchronizing services at the presentation level. Listing 4.1 shows the
part of the GoogleMaps UI Component descriptor that provides informa-
tion about properties, events and operations. The last part contains quality

55

Chapter 4. Models

annotations that are described in Section 4.3.

<component name="GoogleMaps" label="Google Maps"
ref="Components/googlemap"
image="Components/googlemaps/icon.png">

<!-- Parameters, events and operations-->
<property name="centerLatitude" value="45.47841"></property>
<property name="venterLongitude" value="9.23003"></property>
<property name="venterLongitude" value="9.23003"></property>
<property name="zoom" value="10"></property>

<event name="provideGeo"
label="provide the location latitude and longitude">

<param name="lat" type="float"
sem="Geography.owl/#Latitude"></param>

<param name="lon" type="float"
sem="Geography.owl/#Longitude"></param>

</event>

<event name="provideLocation"
label="provide the location as search key">

<param name="location" type="string"
sem="Geography.owl/#Location"></param>

</event>

<operation name="addMarker"
label="add a marker to the map">

<param name="lat" type="float"
sem="Geography.owl/#Latitude"></param>

<param name="lon" type="float"
sem="Geography.owl/#Longitude"></param>

<param name="title" type="string"
sem="General.owl/#Title"></param>

<param name="text" type="string"
sem="General.owl/#Content"></param>

<param name="urlImg" type="string"
sem="General.owl/#Image"></param>

<param name="url" type="string"
sem="General.owl/#URL"></param>

<param name="date" type="string"
sem="General.owl/#Date"></param>

</operation>

<operation name="centerMapPosition"
label="center the map to the given coordinates">

<param name="lat" type="float"

56

4.1. Models for UI Component synchronization

sem="Geography.owl/#Latitude"></param>
<param name="lon" type="float"

sem="Geography.owl/#Longitude"></param>
</operation>

<operation name="centerMapLocation"
label="center the map to the given location">

<param name="location" type="string"
sem="Geography.owl/#Location"></param>

</operation>

<operation name="searchByGeo"
label="center the map to location geographic

coordinates">

<param name="location" type="geo"
sem="Geography.owl/#Location"></param>

</operation>

<operation name="searchByKey"
label="get location position using the search key">

<param name="location" type="geo"
sem="Geography.owl/#Location"></param>

</operation>

<!-- Quality annotations -->
...

</component>

Listing 4.1: An example of UISDL DSL.

The synchronization model is expressed by means of the XPIL (eXtensible
Presentation Integration Language) XML-based language [23, 96]. List-
ing 4.2 is shown an XPIL document. In this example there are four UI
Components and four couplings. The Wikipedia and Last.fm UI Compo-
nents are coupled with YouTube and Flickr UI Components. The event
provideSearchKey is raised when a link in the Wikipedia UI Compo-
nent is clicked and the text of the link is passed as parameter to the cou-
pled operation. The events named provideEventGeoLocation and
provideArtistName are raised when a concert of the list provided by
Last.fm is selected and one passes as parameters the latitude and the longi-
tude of the concert to YouTube that searches videos by the position while
the other passes the artist name to Flickr.
<xpil>

57

Chapter 4. Models

<!-- Component declaration -->
<component ref="../components/Wikipedia/wrapper.uisdl"

id="Wikipedia" address="wikipedia"/>
<component ref="../components/YouTube/wrapper.uisdl"

id="YouTube" address="youtube"/>
<component ref="../components/Flickr/wrapper.uisdl"

id="Flickr" address="flickr"/>
<component ref="../components/LastFM/wrapper.uisdl"

id="LastFM" address="lastfm"/>

<!-- Coupling declaration -->
<coupling id="1"

publisher="Wikipedia"
event="provideSearchKey"
subscriber="YouTube"
operation="searchByKey"/>

<coupling id="2"
publisher="Wikipedia"
event="provideSearchKey"
subscriber="Flickr"
operation="searchByKey"/>

<coupling id="3"
publisher="LastFM"
event="provideEventGeoLocation"
subscriber="YouTube"
operation="searchByGeo"/>

<coupling id="4"
publisher="LastFM"
event="provideArtistName"
subscriber="Flickr"
operation="searchByKey"/>

</xpil>

Listing 4.2: An example of XPIL DSL.

4.2 Visual Integration Model

One limit of the UI synchronization approach described above is the dif-
ficulty in adding a new UI Component into the platform. This indeed re-
quires the intervention of expert programmers for the definition of adapters
(or wrappers), to mediate the invocation of the service operations and man-
aging synchronization events, and the creation of the component UI itself.
Since programming a wrapper and developing a UI by hand is not a task
affordable by non technical users, it results that, despite their intrinsic util-
ity as tool for the creation of Web applications, mashup platforms are often
perceived as closed environments, difficult to personalize through the in-

58

4.2. Visual Integration Model

clusion of new components. The key idea, which we already illustrated in
the previous section, is to instrument the composition platform with a set of
pre-defined UI templates, and to ask the user to fill in such templates with
selected data retrieved from interesting data sources. This mechanism en-
sures the confluence of data items retrieved through different services into
a unified presentation layer. It therefore enables a kind of “integration-by-
example” paradigm, with the visible advantage that the user sees a repre-
sentation, at the extensional level, of the data sources, and also immediately
achieve a representation of the way data will be integrated and displayed
into the final applications. It let the users expressing their desiderata on (i)
the selection of interesting data (e.g., how to query data sources), (ii) how
to fuse data coming from multiple services (e.g., how to integrate data) and
(iii) how to display the integrated result set.
Such a composition paradigm is based on a Visual Integration (VI) model,
i.e., a set of abstractions enforcing the UI-centric nature of our composition
paradigm and introducing a lightweight data mediation for the integration
of data coming from multiple sources into unified views at the presentation
level.
Since our approach also supports the creation of UI Components starting
from basic data sources, we distinguish between Wrapped UI Components
and VI Components (Visual-Integration based components).
Wrapped UI Components are pre-packaged by expert developers who man-
ually program wrappers for accessing public or private APIs. When the
accessed resources are not natively equipped with a UI, wrapping is also
aimed at creating UI and especially at managing the event-driven logic
needed for the synchronization of the resulting component at the presen-
tation level [23, 96].
A VI Component is instead created by the end users by mapping result
sets, extracted by one or more data components, on UI Templates. A Data
Component provides read-only access to a data source, remote or local, by
means of a suitable programming interface. Multiple queries can be defined
on a same data source. The user can select one or more such queries to
create the data set of a UI Component. Then a UI Template is an abstract
representation of the VI component concrete view, which is adopted during
the visual mapping activity to guide the selection and integration of data
retrieved through data components. Formally:

Definition 4. Data Component. A Data Component is a pair

dc =< ep,Q >,

where ep represents the service endpoint, e.g., the URI of a RESTful ser-

59

Chapter 4. Models

vice, and Q represents the set of pre-defined parametric queries over the
data services.

Definition 5. UI Template. A UI Template can be characterized as the pair

uit =< V R, TE >,

where:

• V R is a set of visual renderers, vrk, i.e., elements that provide visual
placeholders for single data attributes, or for the aggregation or fusion
of data attributes extracted from multiple data components. The way
vrs are displayed in the final application is specific for each UI Tem-
plate (e.g., a POI in a map, a text field for a list-based UI). However,
at a higher level of abstraction, each vr can be considered merely as a
“receptor” of data attributes.

• TE is the set of events that at runtime can be raised by the selection
of the template visual renderers. The VI components making use of
the template inherit this set of events.

Visual renderers are grouped in two different sub-templates.

• In the union sub-template, the vrk (i.e., uvrk) are in charge of dis-
playing some key attributes as identifiers of data instances (ID visual
renderers), plus few other representative attributes. At runtime, the
data attributes associated with the ID visual renderers are exploited to
detect and manage duplicates within the result sets. For this reason,
each UI Template adopted for the rendering of the final application is
characterized by a fixed set of uvrs.

• In the merge sub-template, the vrk (i.e., mvrk) display additional at-
tributes providing details of the data instances selected in the union
sub-template. Different from the union sub-template, the number of
merge visual renderers is not defined a priori, and the users can ar-
bitrarily add visual renderers, or even chose not to add a merge sub-
template. Some mvrk can play the role of coupling visual renderers,
meaning that their selection will generate an event involved in the def-
inition of one or more couplings.

Given the availability of Data Components and UI Templates, a VI Schema
then consists of the following elements:

60

4.2. Visual Integration Model

Definition 6. VI Schema. A VI Schema is

vis =< Q, uit,M >,

where:

• Q is the set of queries that the user selects from each involved Data
Component to gather the VI Component data;

• uit is the user-selected UI Template associated to the component for
the visualization of its integrated data set;

• M represents the set of mappings between data items, extracted through
the queries in Q, and visual renderers characterizing the uit; it spec-
ifies the way multiple result sets are integrated into the selected uit.
Therefore, independently of the adopted UI Template, a VI schema is
represented by tuple mappings, M ,

M =< m1,m2, . . . ,mn >,

where eachmk represents the mapping of data belonging to the results
of a query q ∈ Q onto the visual render vrk.

A VI Schema is therefore an abstract description, i.e., independent of any
specific visualization layout chosen for data display. It represents the way
the visual elements that compose a selected concrete view in the final ap-
plication display fused data items coming from multiple services according
to the visual mapping operated by the users during the component design
phase. The visual elements users can associate data with are specific for
each UI template (e.g., a POI in a map, a text field for a list-based UI).
However, at an abstract level, each visual element can be considered merely
as a “receptor” of data attributes. An example of VI Schema is reported in
Figure 4.3.

Definition 7. VI Component. A VI component can be described as the
tuple

vic =< vis, E,O >,

where vis is a VI Schema denoting the basic elements of the component,
while E and O are the sets of events and operations exposed by the com-
ponent to make it comply with the event-driven logic needed by our UI
synchronization paradigm. E ⊆ TEuit, i.e., E is derived from the events
associated to the UI Template visual renderers (see Definition 5). O ⊆ Q,
i.e., O is derived from the set of queries that can change the status of the
component by updating its content.

61

Chapter 4. Models

Therefore, while for Wrapped UI Components the component logic is blurred
in the programmed wrapper, and depends on the opportunistic strategy
adopted by the programmer, in VI Components a unique execution logic,
replicated according to the technology of the target execution environments,
is used to interpret the created VI Schema and generate, through model
transformations, the code for the component execution.

4.2.1 UI-based integration of data sources

The creation of VI components is based on the integration of result sets
coming from different data components; thus a data integration problem
has to be managed. Data integration is usually modeled as a triple <
G,S,M >, where G is the global schema, S is the source schema, and
the M is the mapping between G and S [61]. In particular, the mapping as-
sociates each element ofGwith a query over S [61]. In order to increase the
flexibility of the supporting tools and also to give to the users the freedom
of composing their own applications without any constraints, we assume
that the source schemas for the registered data components are not “known
a-priori” (i.e., specified/described by an expert designer); rather they are
derived by interpreting the returned result sets.
Therefore, the result set representation in the data panel of our design en-
vironment (see Figure 3.3) gives an idea of the content retrieved through a
data component and also provides users with a “situational” source schema
S, that corresponds to the whole set of attributes retrieved through the ex-
ecuted query. The global schema G is structured according to the set of
visual renderers in the UI template. The user selection of interesting data
attributes in the data panel then defines the source local schema, ls ⊆ S,
that is based on the mapping M between the source schemas and the global
schema G. Note that the global schema is not completely defined a priori.
What is known in advance is the set of uvrs that characterize the union
sub-template in the selected UI template, while the structure of the merge
sub-template is totally undefined and is constructed as soon as the user adds
attributes in the merge sub-template.
More formally, let us consider the set of data sources {s1, . . . , sj} selected
by the user. Associating some attributes of a data source si with the vi-
sual renderers of a UI template corresponds to specifying assertions of the
form V R → Qsi expressing that the data visualized by each element vrk
is retrieved by a projection query Qsi over si. The set of all the attributes
{si.ah} extracted through Qsi determines the source local schema, lsi, i.e.,
a reduction of the original source schema that actually contributes to the

62

4.2. Visual Integration Model

c
h

uvr3

j
pn o

a

a

uvr2

b
g

uvr1

b
f

uvr2

a

⟘
b ⟘

mvr4uvr1

l

mvr2

⟘

mvr5uvr3

b
j

d
m

⟘
k

⟘ea

mvr3mvr1

c

uvr3 mvr1

g

mvr2

⟘
a b

uvr1 uvr2

h

ed

f

c

i

Reduced result set from source Upcoming

r

mvr5

m

uvr3 mvr3

o

mvr4

⟘
a b

uvr1 uvr2

p
lk

n
j

q
Reduced result set from source Last.fmUnion

Fusion

Union sub-template instance

Fusion on demand result set

Sources

Upcoming

Last.fm

uvr2

title

⟘

name ⟘

mvr4uvr1

address

mvr2

⟘

mvr5uvr3
venue_name

image

descr

phone

⟘

city

⟘start_datename

mvr3mvr1
photo_url

Union mapping

A. Schema reduction through union and merge mapping

<sources>...</sources>

<filters>...</filters>

<union type="list">
 <vr name="Title" src="Upcoming" query="@name"/>
 <vr name="Subtitle" src="Upcoming" query="/@venue_name"/>
 <vr name="Image" src="Upcoming" query="@photo_url"/>
 <vr name="Title" src="Last.fm" query="/title"/>
 <vr name="Subtitle" src="Last.fm" query="venue/name"/>
 <vr name="Image" src="Last.fm" query="venue/image[position()=4]"/>
</union>

<merge>
 <vr name="Description" src="Upcoming" query="@description"/>
 <vr name="Start date" src="Upcoming" query="@start_date"/>
 <vr name="City" src="Last.fm" query="venue/location/city" coupling="twitter|flickr|wiki"/>
 <vr name="Address" src="Last.fm" query="venue/location/street" coupling="maps|flickr"/>
 <vr name="Phone" src="Last.fm" query="venue/phonenumber" coupling="dialer|addressbook"/>
</merge>

B. Schema generation

Merge mapping

C. Union and fusion

Global schema instance

uvr2 mvr2 mvr3

e l mka

mvr1 mvr5uvr1

c

mvr4

b

uvr3

d

⋃ F

Duplicate
detection

Union
sub-template

Merge
sub-template

Figure 4.3: Schema construction and data union and fusion strategy based on the specifi-
cation of vrs and visual mappings in a Visual Integration schema.

63

Chapter 4. Models

construction of the integrated data set.
Coherently with the structure of the UI templates adopted for data visual-
ization, the local schema also consists of two parts:

• ulsi = {uvr1, . . . , uvrm}, a reduction of the local schema that corre-
sponds to the mapping of the attributes with the union sub-template:
∀si.ah ∈ ulsi, uvrk → si.ah;

• mlsi = {mvro, . . . ,mvrn}, a reduction of the local schema that cor-
responds to the mapping of the attributes with the merge sub-template:
∀si.ah ∈ mlsi,mvrk → si.ah.

To better clarify the procedure to build the local schema, let us consider the
example illustrated in Figure 4.3, where a list-based UI template is adopted.
Data are gathered from two sources s1 = Upcoming and s2 = Last.fm.
The user defines the local schemas lss1 and lss2 by selecting attributes from
the two services and mapping them on the visual renderers of the list UI
template. In particular, in the example in Figure 4.3.A the user identifies
the following schema reduction

srs1 =< name, venue_name, photo_url, descr, start_date >

and
srs2 =< title, name, image, city, address, phone > .

According to the UI template definition, the first three attributes of each
schema reduction (i.e., < name, venue_name, photo_url > for s1 and
< title, name, image > for s2) are associated with the same union visual
renderers in the global schema (< uvr1, uvr2, uvr3 >), while the other re-
maining fields are mapped onto distinct merge visual renderers. As reported
in Figure 4.3.C, the result consists of the two local schemas

lss1 =< uvr1, uvr2, uvr3,mvr1,mvr2 >,

and
lss2 =< uvr1, uvr2, uvr3,mvr3,mvr4,mvr5 > .

The table represents indeed how selected attributes, associated with visual
renderers, are re-named according to the visual renderer names. In particu-
lar, we assign the same attribute names to all the attributes assigned to the
union sub-template (e.g., uvr1, uvr2 and uvr3 in the example), while we
assign distinct names (e.g., from mvr3 to mvr5) to the attributes assigned
to the merge sub-template. The two data sources are thus overlapped on the

64

4.2. Visual Integration Model

basis of the attributes associated with the ID visual renderers in the union
sub-template2, in the example uvr1, uvr2.
The global schema G is thus obtained as a Universal Relation [76], i.e.,
as the union of all the the names of attributes in the local schemas. The
assumption at the basis of the Universal Relation is that attributes with the
same name in the global schema refer to the same property [76], thus there
is no reason to replicate them. Therefore, as also represented in Figure
4.3.C, in the example described above

G = lss1
⋃

lss2 =< uvr1, uvr2, uvr3,mvr1,mvr2,mvr3,mvr4,mvr5 > .

4.2.2 Domain Specific Language

The VI schema generated from the user through the visual mapping activ-
ity contains rules for the automatic instantiation of the final mashup. Figure
4.3.B shows a simplified fragment of the schema generated for our refer-
ence example.
The schema mirrors the UI-centric nature of our approach, since it describes
the structure of the presentation layer in terms of the adopted visual render-
ers. All the other properties, that are necessary to retrieve and fuse data, are
specified in correspondence of single visual renderers:

• For each vrk, the src attribute specifies the data components pro-
viding the mapped data and the corresponding query; the settings to
invoke the data component (URI and query parameters) are automati-
cally added at the beginning of the schema (not reported in figure for
brevity). Data component properties may also include the definition
of data filters, defined by the user and proposed at runtime to pro-
gressively refine the result set. Also, if multiple data components and
queries are specified for a given vrk, this will imply at run time the
application of corresponding data union and fusion policies.

• For each vrk the coupling attribute specifies the list of additional
UI components subscribed to the selection of merge visual renderers
(in the example Twitter, Flickr and Wikipedia for the city visual
renderer). Each coupling is then interpreted as a pair

< mvrk.selection, UIcompi.operation >,

specifying that an operation of the UI component uic subscribes to the
selection of the visual element mvrk.

2The indication of which attributes are keys can derive from pre-defined settings in the UI template definition.
The user can modify these settings through a functionality offered by the design environment.

65

Chapter 4. Models

This schema therefore specifies the behavior of a self-contained mashup,
or it can also specify the properties of a UI mashup component that has to
synchronize with other components within a larger composition. In the last
case, the created component exposes: (i) as events the selection of visual
renderers, carrying as parameter the displayed data; (ii) as operations, the
selection queries at the basis of the component creation (the one selected
by the users).Under this assumption, VI components are aligned with our
UI Component model characterized by events and operations [23].

4.2.3 Union and fusion

The models previously introduced are complemented with a policy for data
union and fusion (Figure 4.3.C) that determines the way instances coming
from different services, but referring to a same real-word entity, have to
be managed. At run time, the union sub-template is instantiated with the
extracted data, based on the union local schema, the ulsi, of each involved
data component, without checking, at least initially, if duplicates exist. This
check is performed only when the user selects a specific instance from the
union sub-template, thus a Data Fusion on Demand policy is adopted. The
aim is to reduce the computational effort, by limiting it only to the actual
need of eliminating redundancies related to the user selection.
The adopted algorithm is reported in the Alghoritm 1 Listing. In a first
phase, the local schemas of the involved sources and the global schema for
the result set under construction are initialized. In particular, starting from
the user selected instance, si, we derive the local schema of the service
from which si is extracted, lssi.
In order to identify duplicates, a comparison set, CS, is built by adding
all the instances belonging to the result sets, RSi, of all the other services
involved in the mashup. The key attributes of the user-selected instance
si, Ksi are then compared with the key attributes of all the instances in
CS, Kcsi . In our current implementation, the similarity among instances
is evaluated by adopting the Soundex metrics [8]. In particular, the func-
tion IsSimilar(Ksi, Kcsi) computes a similarity score, sc, based on this
measure. If sc is greater than a specific threshold, τ (in our experiments
τ = 0.965), the items are considered similar. The merge attributes of csi
are added as merge attributes of the selected instance. As also represented
in Figure 4.3.C, the final instance is thus composed of the attributes belong-
ing to union local schema of si, the attribute in the merge attributes of si,
and the attributes in the merge local schemas of all the similar instances.
Once the user, after accessing the details of the selected item, returns back

66

4.2. Visual Integration Model

ALGORITHM 1: Data Fusion On Demand
RSi: result sets for the i-th data component
si: the instance selected by the user at runtime
CS: comparison set, including all the instances to be compared with si to identify duplicates
csi: i-th item of CS

GetLocalSchema(csi): returns the local schema of the origin data source of the instance csi
GetPrimaryKey(csi): returns the primary key values of the instance csi
GetMergeAttributes(lsi): extracts from the local schema lsi the attributes in mlsi
AddMergeAttributes(mlsi,mlsj): adds the attributes in mlsj to mlsi
IsSimilar(Ki,Kj): returns true if two passed primary keys are similar, based on the adopted
similarity measure

begin

// Initialization of ls for the origin data source of si
lssi ← GetLocalSchema(si)
// Initialization of the comparison set CS
forall the RSi, si /∈ RSi do

add RSi to CS
end

// Search for similar items with the comparison set CS
Ksi ← GetPrimaryKey(si)
forall the csi ∈ CS do

Ki ← GetPrimaryKey(csi)
// Similarity Evaluation
if IsSimilar(Ksi,Ki) then

lsi ← GetLocalSchema(csi)
Fuse(lssi,lsi)
remove csi

end
end

end

Fuse(lssi,lsi) {
mlsi ← GetMergeAttributes(lsi)
mlssi ← GetMergeAttributes(lssi)
AddMergeAttributes(mlssi,mlsi)

}

67

Chapter 4. Models

to the visualization of the union sub-template, our policy for handling du-
plicates also updates the visualized union set. In particular, the identified
duplicates are filtered out, and the only instance selected by the user is vi-
sualized.
It is evident that the complexity of the previous algorithm is especially re-
lated to the comparisons needed for the identification of duplicates. How-
ever, our choice to concentrate on the only instance selected by the user
and compare it with all the other instances in CS allows us to keep the
complexity linear to the cardinality of CS.

4.3 Models for quality-aware mashup composition

Mashup applications generally consist of a single page, with a simplistic
presentation layer, usually deriving from the combination of the layout of
each individual component, and an application logic mainly deriving from
the operations exposed by the involved components [16]. The additional
integration logic has a limited complexity.
One could assume that, being mashups “simple” Web applications, their
quality could be addressed by the methods so far proposed for traditional
Web applications. This is partially true: traditional principles must not be
neglected; however, models need to be re-purposed to capture the salient
characteristics of these applications. This is the conclusion we reached by
analyzing about 100 mashups available on programmableWeb.com, by ap-
plying criteria and metrics related to traditional dimensions of the perceived
quality of Web applications, e.g., accessibility and usability [16].
We compared the results achieved through such traditional metrics with
the results of a heuristic evaluation conducted by a pool of five independent
evaluators, PhD students and researcher acquainted with Web Technologies
and Web mashups. The study revealed a discrepancy between the two as-
sessments, highlighting that understanding the quality of mashups requires
models that takes into account the specifics of such applications. For exam-
ple, several applications were ranked as good on the basis of Web quality
metrics, but the expert inspection revealed that they just “embedded” some
APIs without any attempt to define an integration logic, which is instead a
typical aspect of mashups.
Starting from these considerations we tried to understand how the quality of
a mashup can be characterized, and haw we could exploit a quality model to
assist the end user in the composition of quality mashups. The starting point
or our investigation was a quality model specific for mashup components
[17]. Beeing mashups composite applications our assumption was that it is

68

4.3. Models for quality-aware mashup composition

fundamental to base our approach on the quality of elementary components.
We then identified the quality dimensions of component aggregations.
Independently of the adopted quality model, we assume that within our
tool quality properties are visible through ad-hoc descriptions on which the
choice of components by mashup composers can be based. For example,
in our mashup tool components are made available in a repository where
component descriptions specify both the functional properties of the com-
ponent, shown in Listing 4.1, (e.g., exposed operations, I/O parameters,
their syntactic and semantic categories to assess component compatibility
and similarity), and also quality annotations.
<component>

<!-- UISDL Parameters, events and operations-->
...

<!-- Quality annotations -->
<quality>

<reputation>1</reputation>
<languages>

<language></language>
</languages>
<dataFormats>

<dataFormat>XML</dataFormat>
<dataFormat>JSON</dataFormat>

</dataFormats>
<security>no autentication</security>
<timeliness>0.9</timeliness>
<accuracy>0.9</accuracy>
<completeness>0.8</completeness>
<availability>1</availability>

</quality>

</component>

Listing 4.3: Excerpt of a descriptor adopted in PEUDOM for the specification and quality
properties of a component.

Listing 4.3 reports a simplified example of such a descriptor. Besides
events and operations, which characterize our publish-subscribe composi-
tion paradigm, the descriptor also specifies quality annotations, expressing
quality properties such as the complexity of the component’s technological
properties (e.g., languages and data formats enhancing operability and in-
teroperability), the richness and completeness of the provided data, the UI
usability. These properties (e.g., the available languages and formats) are
partly derived from the documentation of services and APIs, disclosed by
the component developers - if any. Some other properties may also derive

69

Chapter 4. Models

from evaluations that the administrator of the mashup platform performs
at the component registration time. Also, quality and popularity data dis-
closed by public ranking services (e.g., Alexa (http://www.alexa.
com)) can be taken into account.

4.3.1 Dimensions for quality-aware assisted composition

Let us assume that, using a mashup-maker tool, the mashup composer can
access a component registry C in which each component ci is associated
with a component descriptor specifying functional properties [19, 96], and
a quality vector, QVi = [qai1, qai2, . . . , qain], storing the values computed
through the metrics associated with a set of component quality attributes. It
is thus possible to define the value of a quality index for the i-th component
(QIi) as an aggregation of the different qai, possibly weighed to privilege
some quality attributes over others. The QI computed for each single com-
ponent is the basis for the generation of quality-aware recommendations.
When the user starts the composition, and the workspace is empty, compo-
nents are first ranked based on the value of their QIs. Each time the user
adds a new component, all the other components in C are classified and
ranked according to the criteria that we describe in the following.

4.3.1.1 Component compatibility and similarity

Inconsistencies at the composition logic level can cause a low quality of the
mashup. When the user extends the current composition with new compo-
nents, the compatibility of such components with the current status of the
composition is an important factor; components in C can be therefore ana-
lyzed and scored accordingly. In particular, compatibility can be estimated
as the combination of syntactic and semantic compatibility:

• Syntactic compatibility checks for type compatibility among the oper-
ation parameters exposed by one candidate component and the param-
eters of all the other components already in the composition.

• Semantic compatibility subsumes the syntactic compatibility, and checks
whether the operation parameters of the candidate component belong
to the same (or a similar) semantic category of at least one of the op-
erations exposed by the other components already in place.

Component similarity can also help determine in which measure some com-
ponents in C can functionally substitute the ones already in the composi-
tion. This property can be useful to recommend alternative components
that can improve the composition quality.

70

http://www.alexa.com
http://www.alexa.com

4.3. Models for quality-aware mashup composition

Compatibility and similarity can be verified on the basis of annotations
that enrich the components’ descriptor with semantic categories (based on
ontological entities) for both operations and parameters. Examples of such
annotations in a component descriptor are represented in Figure 5.4a, where
the specification of events and operations are enriched with “similarity”
tags expressing semantic meanings.

4.3.1.2 Role-based aggregated quality

Compatibility and similarity can ensure that a more consistent composition
is produced. An estimation of the mashup quality can be then achieved by
aggregating the QIs of the individual components. In particular, as soon as
new components are added into the composition workspace, the compatible
components in C can be ranked based on their capacity to increase the
quality of the overall mashup.
The quality of the overall composition cannot be simply quantified as a
plain aggregation of the individual QIs; rather the aggregation must take
into account the role that each component plays in the composite logics. By
analyzing the most popular mashups published on programmableWeb.com
we identified a number of composition patterns, in which two component
roles emerge [18]:

• In most cases one component assumes a central role in the composi-
tion, being the service the user interacts with the most. We call this
component master. The master is the starting point of the user interac-
tion causing the other connected components to react and synchronize
accordingly, in practice implementing a “star” composition pattern.

• A slave is then a component whose behavior depends on another com-
ponent; its state is mainly modified by events originating in a master
component. Many mashups also allow the user to interact with slave
components. However, the filtering of the content displayed by slave
components depends on the user’s interaction with the master compo-
nent and occurs by automatically propagating synchronization infor-
mation from the master to the slaves.

It emerges that master components, being central points of synchroniza-
tion, have a major influence on the mashup quality - a master could even
degrade the quality of the other components that depend on it. Therefore,
the aggregation of the different QIs must be adequately weighted.
In order to identify master-slave dependencies during mashup composition,
we model a mashup as an directed weighted graph G = (V,E), where each

71

Chapter 4. Models

vertex vi ∈ V represents a component and each arc eij ∈ E represents
that one binding is defined between the two connected components, and
therefore that vi is master with respect to vj .
Based on the analysis of all the paths in the composition graph, which re-
flect the defined bindings, for each component vi we then define the cen-
trality of a component vi, Centralityi, as a variant of the betweenness cen-
trality measure [41], weighting all the shortest paths inversely proportional
to their length [12].
This measure, applied to each component in the composition and normal-
ized with respect to the maximum centrality, provides the weights to be
used to aggregate the different QIs. The quality of the overall composition
is therefore defined as:

QC =
∑
i

Centralityi ∗QIi

QC is computed every time a new component ci is added to the composition
to identify in which measure ci and all its similar components increase the
quality of the composition.

4.3.1.3 Added value

In our analysis of mashups, we also tried to capture the concept of added
value of a composition, conceived as the set of additional features (data,
functions, visualizations) that the composition logics introduces with re-
spect to accessing single services separately [16].
Mashups are developed in order to offer a set of functions that we call
MFS (Mashup Function Set), and consequently retrieve and give access
to a data set, MDS (Mashup Data Set), exploiting a set of visualization
mechanisms, MV S (Mashup Visualization Set). Each single component ci
is also characterized by its own data set DSi, a function set, FSi, and a set
of visualization mechanisms, V Si

3. When used within a mashup, smaller,
situational portions of such sets, SDSi (the component’s Situational Data
Set), SFSi (the component’s Situational Function Set) and SV Si (the com-
ponent’s Situational Visualization Set) are considered, depending on the
specific needs that the mashup is supposed to satisfy [18]. The composition
thus provides an added value if the number of features that it offers, at least
at one of the three layer (data, function, visualization), is greater than the

3Depending on their nature, components may or may not provide all the three layers. For example, map APIs
expose data, functions and multiple visualizations. On the other hand, other components may just offer one of
these layers. For example, an RSS Feed is a plain data source for which functionality, e.g., feed filtering, and
visualizations have to be provided by other components.

72

4.3. Models for quality-aware mashup composition

amount of those offered by the single components, i.e., if⋃
i

SFSi ⊂MFS ∨
⋃
i

SDSi ⊂MDS ∨
⋃
i

SV Si ⊂MV S.

Operatively, to evaluate the added value of the composition at the data
layer, it is possible to consider the richness of data formats, e.g., whether
the mashup provides plain, multimedia or social data, which can be as-
sessed on the basis of a classification of components reflecting the nature
of their data sets. Also, it is possible to consider the richness of additional
information deriving from the join queries enabled by the synchronization
among the different components. This measure can be quantified as the ra-
tio between the data bindings actually defined among components, and the
number of all the possible data bindings. The former are evaluated by ana-
lyzing the composition model, where the data bindings actually defined are
specified; the latter are instead evaluated by defining and analyzing a com-
patibility matrix, derived from the component descriptors, to identify all the
possible join queries that could be achieved combining output parameters
produced by a component with compatible data filtering operations exposed
by other components. The added value at the data layer thus aggregates the
richness of data formats with the richness of additional information.
The functionality layer addresses the richness of functionality. Similarly to
what we propose at the data layer, this measure can be quantified as the ratio
between the number of function bindings actually defined and the number
of all the possible function bindings, which can be derived respectively
from the components and the composition descriptions.
At the presentation layer, we then relate the multiplicity of visualizations
with the multiplicity of data sources. In particular, we classify components
as data sources when they have an own data set, and viewers, when they
only provide visualizations on top of any external data set4. The added
value can be assessed by considering the richness of visualizations, i.e., the
number of different viewers associated with the involved data sources. In
fact, in many cases, the analysis of the same phenomenon from the dif-
ferent perspectives that different visualizations can offer can better support
decisions. Symmetrically, in other situations the analysis can be improved
by aggregating heterogeneous data into a unified visualization. Hence, we
also take into account the cohesiveness of visualizations, i.e., the capacity
of a viewer to convey integrated data.
The aggregated measure of the composition added value can then be achieved
by averaging the three distinct values, possibly assigning different weighs

4Some components, e.g., GMaps, can fall in both categories.

73

Chapter 4. Models

to the three layers. Such a measure is especially useful to understand
whether the value of the current composition can be increased by adding
new components.

4.3.2 Community perceived quality

The notion of recommendations can be further extended to take into ac-
count the best practices adopted by communities of mashup developers,
so exploiting collaborative filtering mechanisms. If large repositories of
components are available, then the most frequent associations among (cat-
egories of) components can be mined and exploited to suggest typical com-
position patterns that get consensus in a given community, and that there-
fore reflect the users’ perception of the quality of the created mashups.
With the exception of few mashup-maker tools available online (e.g., Ya-
hoo! Pipes), it is uncommon for a mashup platform to have large reposito-
ries with a number of components and compositions adequate for the min-
ing tasks. In order to perform experiments on quality dimensions, we there-
fore mined recurrent composition patterns from a data set crawled from pro-
grammableweb.com, the largest collection of mashups and mashup compo-
nents currently available on the Web. From the so-achieved database, we
selected mashups with at least two components; then we mined the most
recurrent combinations of components. Given the huge number of distinct
components (more than 6000 at the time of our experiment), and the diffi-
culty to reproduce such a large variety in a local repository, we identified
the most recurrent categories; the extracted association rules thus reflect
recurrent combinations at the category level. We thus defined a technique
that exploits such extracted knowledge to guide the production of recom-
mendations.
We assume all the components available in the local repository be classified
according to the same categories used for the mining tasks. As soon as
the state of the composition evolves, the set of categories of the involved
components guide the filtering of pertinent association rules, i.e., of those
rules where the set of categories in the antecedent part corresponds to the
set of categories in the composition. Thus the categories appearing in the
consequent part of the rule with higher confidence are projected over the
local repository, to identify the components falling into those categories.

4.4 Collaboration model

When users are collaborating it is very important to allow them to commu-
nicate synchronously and asynchronously for achieving coordination. We

74

4.4. Collaboration model

have therefore identified an annotation system and a synchronous notifica-
tion mechanisms [5, 6]. With this respect it is fundamental to identify the
elementary objects on which coordination has to take place. We therefore
model each mashup under construction as an interactive document, which
indicates any instance of a schema (or Document Object Model) defining an
identifiable unit of interaction. In this perspective, it is possible to identify
three main types of document:

• The mashup composition model, describing the integration of the ser-
vices forming the mashup;

• The mashup UI Template, describing the presentation aspect of the
mashup;

• The actual contents presented at each moment by the different ex-
tracting data from services. We assume that each service will present
contents according to some service-specific schema.

Assuming that schemata are expressed in an XML-based language, each
document can be represented as a tree, where nodes define organizational
structures and leaves present the actual content the users interact with.
Hence, an annotation process (or respectively a live editing session) con-
sists in the production of user-generated information (editing action) asso-
ciated with some node or leaf in such a tree. In order to fix these concepts,
we provide here an abstract view of this process for handling annotations.
Given a document D, an intervention on D aimed at synchronous or
asynchronous collaboration is the process by which a collection AD =
{a1, . . . , an} additional information items is created, together with a map
describing the relation of each item ai with D. As discussed above, D is
modeled as a composition of content items, according to a schema SD, so
that its composition is defined by a tree TD, according to a PART_OF rela-
tion. We call ND the set of nodes in TD, with each node corresponding to a
content item. An additional information item can refer to D as a whole, or
to any subtree or leaf in its composition. The structure of each information
item is defined by a schema SA, supporting at least the following data [11]:

• the item author, as identified during the interaction;

• the timestamp, captured when the annotation any editing action on it
is committed in the mashup repository;

• the source, as identified by the interactive selection of the part of the
document to which the collaboration item refers;

75

Chapter 4. Models

• the actual information added by the author for the item through the
collaboration intervention;

• its visibility, either private, public, or group-based.

An interactive process can exploit specific tools to identify the source, for
example mouse pointing, selection of text, or sketching of shapes. In gen-
eral, arbitrary fragments of the original content, or sets of fragments across
the tree structure, could be selected and associated with an information
item. For example, one could draw a shape to identify some areas of a
picture, or select several areas and refer collectively to them [2]. Hence,
the annotation map describing the relation of AR to D is defined by a
function am : AD → ℘(HD), where HD = ND × POS, and POS is
a set of locations defined over the content items, specifying the source of
the information item. Given an information item ai we have map(ai) =
{(nj, {pos1, . . . , poski}), where nj represents the node in ND which is the
root of the subtree containing all the items to which ai refers, and each
posk defines the location of a fragment in nj identified by the collaboration
process.
While interacting with the mashup, users can perform two types of collab-
orative activities: annotations and live editing, distinguished according to
the nature of the info descriptor and to their usage within the platform.
With annotations, the info descriptor is of an arbitrary nature and can con-
sist of any kind of digital data. The info added in an annotation can be
used to generate an independent document, without corrupting the origi-
nal mashup. The new document can be annotated in turn, thus supporting
forms of asynchronous collaboration, for example by constructing annota-
tion threads. Moreover, annotations can be used to request modifications of
parts of the mashup itself, delegating the realization of the request to autho-
rized users, i.e., users with visibility on the annotation. In particular, every
user can access his or her private annotations, and all public annotations.
Moreover, users belonging to some group can access annotations posted to
that group.
With live editing, the info describes a set of modifications to the composi-
tion of a mashup, which are immediately activated on the instance in use
by their author but also reflected to the aspects of mashup composition and
behavior shared with other users, defining a form of synchronous collab-
oration. Both processes, annotation and live editing, are enabled by spe-
cial mechanisms through which the actions on any instance of the mashup
are captured and propagated to the other active instances of the mashup.
As described in the next section, this is possible thanks to the interaction

76

4.4. Collaboration model

between client-side modules, managing the composition and execution of
each mashup instance, and a server-side module managing persistency and
evolution of the mashup schema.
The combination of live editing and annotation poses some specific issues,
concerning the problem of orphan interventions, i.e., interventions refer-
ring to content items which are no longer present in the document. While
in principle some mechanism could be devised to retrieve content which
has simply been moved in a different position [10], our strategy is to adopt
a conservative stance, whereby if an intervention i refers to a node n in a
subtree which has been eliminated by a live editing process e, we remove
the intervention. A check on the values of the first components na and ne

(i.e., those in in ND) of map(i) and map(e) identifies these situations, by
checking that na ∈ subtree(ne). Note that this problem is relative to inter-
ventions by the collaborating users on the composition and visual template
models, while interventions on some content provided by a service can be
retrieved if the same service provides the same content at some subsequent
request, or if references to specific content instances are maintained by the
platform.

77

CHAPTER5
PEUDOM

In this chapter we present PEUDOM (Platform for End User Development
of Mashups), from a functional and architectural point of view. In Section
5.1 we describe the overall functionalities and the overall architecture of the
platform introducing the main modules. Section 5.2 describes the composi-
tion environments that are used to create visual template-based components
and mashups. The execution environments, included the ones that enable
the execution on different devices, are presented in Section 5.3. Finally,
modules that provide composition assistance mechanisms and enable the
collaborative co-creation of mashups are presented in Section 5.4 and in
Section 5.5, respectively.

5.1 Overall functionalities and architecture

PEUDOM is the mashup-maker platform that makes concrete the models
and the techniques described in the previous chapters by enabling end users
to develop their mashups.
Figure 5.1 summarize the platform functionalities. The overall system al-
lows the management of UI Components and UI Mashups through: CRUD
functions (Create, Read, Update and Delete), a versioning system, and their

79

Chapter 5. PEUDOM

Component Editor Mashup Dashboard
CRUD
Service

Select
Visual

Template

Visual
Mapping

Share
Component

Share
Composition

Component
Operation Execution

Add/Remove
Bindings

Add/Remove
Components

CRUD
Composition

CRUD
Component

Collaboration Layer

Communication Layer

Chat

Annotations

Live
Editing

Sharing Layer

NotificationsVersion
Control

User/Group
Management

Composition Assistance Mechanisms Layer

Component
Compatibility

Recommendations Composition-completion
Recommendations

Quality-aware Composition-
improvement Recommendations

Figure 5.1: PEUDOM overall functionalities.

publication as shared resources in the platform repositories. The platform
supports users in the choice of components and in the definition of cou-
plings through Composition Assistance Mechanisms, e.g., by suggesting
which components and which couples of events and operations are com-
patible. Through quality-aware recommendations users are supported to
add new components or to substitute already added ones in order to im-
prove the quality of the overall composition. With PEUDOM end users
can also collaborate synchronously and asynchronously. Concerning syn-
chronous collaboration, users that are working on the same resource can
chat together and see the actions of the other users through live editing
mechanisms. To collaborate asynchronously, users can annotate available
resources or specific areas to indicate specific needs, e.g., requesting ser-
vice versioning, or to ask for information to more experienced partners.

80

5.1. Overall functionalities and architecture

Other Devices

PEUDOM

UI Mashup Dashboard Component Editor

Composition Assistance Module

Collaboration Module

Platform Repositories

Web Resources

Mobile Device

Mobile
Execution Environment

Large Screen Device

Large Screen
Execution Environment

…

Figure 5.2: PEUDOM overall architecture.

Through a specific notification service, users become aware of similar re-
quests from other partners, or of answers to their requests. Finally, they can
directly interact with the working platform to retrieve particular versions of
components or services and configure them in their personalized space.
Figure 5.2 shows the overall architecture of our platform. PEUDOM is
composed by two main environments and some additional modules that are
in charged of managing complementary functionalities. The UI Mashup
Dashboard manages the creation and usage of mashups by adding, remov-
ing, synchronizing and interacting with components. The Component Edi-
tor enables registering, annotating and querying services, thus the creation
of VI Components through mapping of the results of service queries onto
the selected visual templates. Each created component has a platform-
independent descriptor, the VI Schema, that allows to edit and execute it
on multiple devices (e.g., mobile devices, large multi-touch displays or
multimedia interactive blackboards). Besides the main composition envi-
ronments, the Composition Assistance Module provides quality-based rec-
ommendations on syntactically and semantically compatible components,
while the Collaboration Module implements collaboration mechanisms,
e.g., live editing, chat and the other mechanisms for user-awareness already
discussed in Chapter 3. Finally, the Platform Repositories layer includes:

• A Service Repository that contains the descriptions of registered ser-

81

Chapter 5. PEUDOM

vices that are used by the Component Editor to query the data compo-
nent. Services can be private or shared.

• A Component Repository stores the UI Component descriptors al-
ready presented in Section 4.1.1, together with with their sharing poli-
cies – they can be either private or shared.

• A Composition Repository contains the mashup compositions as de-
scribed in Section 4.1.1. Compositions can be private or shared. The
information about the sharing policies applied for a composition are
stored in the Composition Repository as well.

• The Assisted Composition Repository includes all the data needed by
the composition assistance mechanisms. It contains the Association
Rules, the Compatibility and Similarity Matrices and the Quality Vec-
tors (see Section 4.3).

• The Collaboration Repository contains all the information related to
component and composition sharing and collaboration mechanisms
(e.g., users, groups of users, chat sessions, annotations and live editing
sessions).

5.2 Composition environments

This section describes the composition environments. Both the composi-
tion environments are Web applications; on the client side they are imple-
mented with HTML5, CSS3 and JavaScript and are based on the jQuery
framework. Server side JSP technology is adopted and a MySQL DBMS is
than used to manage the platform repositories.

5.2.1 UI Mashup Dashboard

The UI Mashup Dashboard allows the users both to compose and use mashups,
providing an intermixing of these two phases. This intermixing help users
in the mashup development, because they can immediately see the results
of their work in a progressive evaluation that helps reducing the design
barriers. In this Section we focus only on the composition aspects, while
mashup execution is discussed in Section 5.3.
In Figure 5.3 a screen shot of the UI Mashup Dashboard is shown. The
main area of the interface is the workspace. In the workspace some com-
ponents are instantiated, i.e., IMDB, Wikipedia, Youtube and Flickr. In
the left side of the screen, there is the component palette that shows all the

82

5.2. Composition environments

Menu bar

Components
palette

Platform
menu

Figure 5.3: The UI Mashup Dashboard workspace. The left-hand component palette, the
menu bar and the platform menu are highlighted.

available components. On top, a menu bar contains buttons for generic util-
ities (e.g., save, load, back, forward, composition graph and annotations),
the name of the composition, the platform menu that links to the Compo-
nent Editor, the sharing preferences, the profile info of the logged user and
groups management.

5.2.1.1 Functionalities

The UI Mashup Dashboard provides several functionalities, which can be
grouped in three main macro-functionalities:

• Component management includes adding, deleting and executing
operations. In the component palette (see Figure 5.4b) all the avail-
able components are listed, both Wrapped Components and VI Com-
ponents. By clicking on an icon, the corresponding component, will
be added to the composition. Components are shown to users in a
window in the workspace context, which can be moved and resized.

83

Chapter 5. PEUDOM

(a) A component window. In the top bar the icons allow one to close, annotate component,
execute component operations and close the component window.

(b) The component palette
lists the available com-
ponents and, clicking on
the icons, the components
will be added in the com-
position workspace.

(c) The “execution operation” dialog. Users can select one
of the operations exposed by the component and invoke
it manually, so changing the component state.

Figure 5.4: Key features of components management.

84

5.2. Composition environments

• Composition management includes: creation of a new composition,
loading of existing compositions, saving the current composition, cou-
pling creation and composition monitoring through the composition
graph. The most significant features are reported below:

– Loading of existing compositions. It is possible to load previously
saved compositions, both personal or shared (see Figure 5.5a).
If a shared composition is loaded, a user can have permission
restrictions in the usage of components or in the editing of the
composition, e.g., could be prevented users from adding, deleting
components or modifying component preferences.

– Coupling creation. In order to create a coupling between two
components, users have to drag and drop the top left icon of the
component window on another component window. If those com-
ponents are compatible (a colored border indicates the compati-
bility, green if they are compatible and red if not) the dialog in
Figure 5.5c is shown. From this dialog users create the coupling
by selecting, from two drop-down lists, the event and the opera-
tion involved in the coupling. Even in this case a green-red color
code indicates if the selected event (or operation) is compatible
with the operation (or event) that the user has been selecting. This
coupling mechanism hides to users the complexity of the under-
lying publish-subscribe pattern.

– Composition graph. In order to control the composition, espe-
cially the created couplings, it is necessary to provide a mech-
anism to represent the composition schematically. We therefore
provide a graph-based visualization, where components are the
nodes and couplings are the directed edges. Figure 5.5b shows
an example of composition graph. Going over the edges with the
mouse pointer, a tool-tip shows details of the coupling, i.e., the
event and the operation the edge is referring to.

– Saving a composition. It is possible to save the composition. For
each component, it is possible to keep track of the current status,
i.e., to save the result of operations that have been performed on
it, in order to re-create the same state when the composition is
opened in the future.

85

Chapter 5. PEUDOM

(a) Dialog box for composition loading:
it is possible to open compositions,
whether shared or not, and also to
select previous versions of a specific
composition.

(b) The composition graph represents the compo-
sition as a graph where components are the
nodes and the created coupling are the edges.

(c) Dialog for the creation of couplings, users have to select, from two drop-
down menus, which event they want to bind to which operation. Once the
coupling is created, when the event on the first component is raised, the
bound operation on the other component is executed.

Figure 5.5: Key features of composition management.

86

5.2. Composition environments

PEUDOM

UI Mashup Dashboard Component Editor

Composition Assistance Module

Collaboration Module

Web View

Composition Manager

Compatibility Manager

Mashup Engine

Platform Repositories

Component Repository Composition Repository

UI Ad-hoc
Component

VT-based
Component

Figure 5.6: The architectural modules of UI Mashup Dashboard.

5.2.1.2 Architecture

As represented in Figure 5.6, from an architectural point of view, the UI
Mashup Dashboard is composed by several modules that implement the
functionalities described in the previous section.

• Web View is the main view of the platform. It contains the workspace
and all its sub-views described above, i.e., the component palette, the
coupling dialogs and the composition graph.

• Compatibility Manager is the module that, every time a coupling has
to be defined, checks the compatibility between two components: an
event-publisher component and a condidate subscriber component.
Once two components are selected, it establishes the compatibility
among their events and operations. Compatibility rules are stored in
a Compatibility Matrix, stored in the Composition Assistance Repos-
itory. Each entry of the matrix is a tuple, < cs, e, ct, o >, where cs is
the source component, i.e., the component that raises the event e, and

87

Chapter 5. PEUDOM

ct is the target component where the operation o is executed. Such
a matrix is updated every time a new component is added into the
Component Registry.

• Composition Manager provides all the functionalities that are related
to the composition, i.e., creating new compositions, saving composi-
tions, loading compositions, adding and removing components, dis-
playing the composition graph and creating couplings.

• Mashup Engine is the module that provides the synchronization among
components, handling events and operation calls. This module is bet-
ter described in Section 5.3, being it related to the executive of the
created mashups.

5.2.2 Component Editor

The Component Editor allows end users to register REST services in the
platform and to query them in order to use their data to develop VI Compo-
nents (see Chapter 4). Components can be exported as platform-independent
XML-based descriptors, thus interpreted and executed on the UI Mashup
Dashboard or in standalone applications, e.g., mobile apps, coded accord-
ing to the target device technology.

5.2.2.1 Functionalities

The functions offered by the Component Editor can be clustered in three
groups:

• Service management includes registration of services and service se-
lection. In order to use services for component creation, services must
be registered in the platform (see Figure 5.7a). The registration of a
service means creating a description that can be used to select and to
query it. The description include the name of the service, the URL
endpoint and the possible queries and their parameters. Thanks to
this description it is possible, also for end users, to make requests (or
queries) to services. Once a service is registered it is possible to select
it in order to create components.

• Component management. The Component Editor makes it possi-
ble to save and load components. The saving process produces a de-
scriptor that is used to export the component also on other devices of
platforms.

88

5.2. Composition environments

(a) The dialog for the registration of services.

(b) List of services for the category “Cin-
ema”. By selecting a category, it is then
possible to select the desired service.

(c) When dragging a data item from the data panel to the visual template, the item is mapped onto
the corresponding visual renderer.

Figure 5.7: Key features of the Component Editor.

89

Chapter 5. PEUDOM

Menu bar

Data panel Visual template panel

Figure 5.8: A screen shot of the Component Editor. On the left the data panel is high-
lighted, while on the right it is placed the visual template panel.

• Component editing includes the possibility to invoke queries on data
components, also specifying parameters value, and to map data onto a
selected visual template, according to the visual integration paradigm
illustrated in Chapter 3.

5.2.2.2 Architecture

Figure 5.9 shows the Component Editor architecture and highlights it main
modules.

• Web View is the main view of the environment and contains the menu
bar and the elements that allow to select services and templates and to
map the data onto the visual renderers.

• Service Manager offers support for querying REST services, display-
ing the retrieved results in a visual format, and visually defining se-
lection and projection queries over such results.

• Visual Mapping Manager translates the visual mapping actions into
composition rules included in an XML-based component schema.

• Component Manager manages all the aspects related to loading and
saving components.

90

5.3. Execution environments

PEUDOM

UI Mashup Dashboard Component Editor

Composition Assistance Module

Collaboration Module

Service Manager

Web View

Visual Mapping Manager

Component Manager

Platform Repositories

Component Repository Composition RepositoryService Repository

Figure 5.9: The Component Editor architecture.

5.3 Execution environments

In this chapter we describe the engines managing the mashup execution,
in particular the synchronization among multiple UI Components and the
execution of the VI Components on different devices.

5.3.1 UI Mashup Engine

As described in Section 4.1.1, in our mashup platform, UI Component syn-
chronization complies with an event-driven, publish-subscribe paradigm.
Some architectural modules are in charge of capturing events and propagat-
ing them to govern synchronization at the UI level.
The events occurring during mashup execution are managed by the UI
Mashup Engine through the Event Broker, shown in Figure 5.10. Such
events can be synchronization events or composition events. The synchro-
nization events are managed by the Execution Handler that, based on the
composition schema, it acts as an event bus: it listens and handles the events

91

Chapter 5. PEUDOM

UI Mashup Engine

Status Manager

Event Broker

Execution Handler Composition Handler

Figure 5.10: UI Mashup Engine architecture.

raised by the interaction with each single component, and activates the sub-
scribed operations as prescribed by the listeners in the composition schema.
The Composition Handler manages composition events. In particular, it au-
tomatically translates the addition of a component or the creation of a new
coupling, updating the current composition model accordingly. The Com-
position Handler dispatches composition events to the Status Manager, a
module in charge of maintaining a mashup state representation. Combined
with the composition model, the mashup state is useful to recover a pre-
viously defined mashup for a later execution, but especially to let users
monitor their composition and modify it on the fly. State variables, related
to UI Components or UI Mashups, are: default or specific parameter values
(e.g., the value of a parameter for querying a data source), layout properties
(e.g., the position of a component in the workspace and the colors used to
show values on a chart) or any other property that the user can set to control
the component data and appearance.

5.3.2 Multi-device execution engines

The VI schemata created through the Component Editor, can be interpreted
and executed on different platforms.
Multiple execution engines can be developed for the different devices. In
the context of this research we implemented execution engines for the PEU-
DOM Web platform, and for Android smart-phones, and for multi-touch
screens – based on the MultiTaction technology. All these engines com-
ply with the same architecture, although they are implemented through the
native technology on the target devices.
Figure 5.11 illustrates the main architectural elements. The Schema Inter-
preter parses the application schema created at design time. Hence, Data
Manager is able to compose the query through Query Manager. When the
response is provided, Data Extractor selects data from the result set ac-

92

5.3. Execution environments

Multi-device Execution Engine

Visual Template Renderer

Schema Interpreter

Data Manager

Query Manager Data Extractor

Figure 5.11: General architecture of execution engines.

cording to the application schema and, finally, Visual Template Renderer
renders data in the UI.
Especially when more than one service is included in the component schema,
it is possible that some of the items retrieved are duplicated. The Data Man-
ager module also manages the detection and elimination of duplicates, by
means of the Soundex similarity algorithm [8], and the fusion of corre-
sponding data attributes into the global sub-template (see Section 4.2.1).
In the following, two examples of execution environments are presented
but the device independence of the generated schemata allows to use such
a VI Components also on other devices, e.g., large displays or multimedia
interactive blackboards.

5.3.2.1 Web execution environments

Web execution environments are included in Web applications and it is pos-
sible to have standalone execution environments or integrated execution
environments. Standalone execution environments are the ones that just
display the contents extracted by the interpretation of the exported schema,
while integrated execution environments are integrated in a container Web
application that allows to use these contents for synchronizations with other
contents or services.
The Web execution environments are developed in form of component wrap-
pers: there is a wrapper for each visual template that is able to read, in-
terpret and display data in a component window. Once a VI Component
created trough the Component Editor is saved, the component is instanta-
neously available for composition and its icon appears in the component
palette. When Wrapped Components are used, it is possible to predict the
compatibilities among their events and operations but, when components

93

Chapter 5. PEUDOM

are instantiated at runtime, it is more difficult to assess the compatibility.
To solve this issue, as first solution, for each VI Component we expose gen-
eral purpose events and operations, e.g., the provideSearchKey event
and the searchByKey() operation. The events are generated by user
interactions with the UI like an item the selection, caused by a click on a
visual renderer. We are planning for the future some more sophisticated
mechanisms like coupling among operations of the target component and
their parameters, taken from the set of data provided by the source compo-
nent.

5.3.2.2 Mobile execution engines

An example of mobile execution engine is MobiMash [21]. It is able to ex-
ecute a mashup composed of VI Components, Wrapped Components, plus
“local” components managing the coupling with device functions (e.g., the
agenda or the map navigator). The users download from the platform repos-
itory the VI Schema. The execution engine masters the instantiation of the
VI Component as described above. In particular, if Android is the target
OS, the application schema is translated into the Android layout markup
language that will be used by the OS for the generation of screens – the
so-called activities.
According to the target device implementation of the mashup application,
it is possible also to couple the data and function provided by the execution
environment to other general purpose services and invoking, by means of
proper API wrappers, synchronized operations exposed by such services.

5.4 Composition Assistance Module

The techniques for quality assessment described in Section 4.3 have also
been integrated in PEUDOM [19, 23]. Figure 5.12 illustrates the main ar-
chitectural components, with particular emphasis on those in charge of ex-
ecuting the quality-based ranking algorithms.
In the platform back-end, the Component Repository stores the component
descriptors specifying both the functional and quality properties (see an ex-
ample in Listing 4.3) of components that are exploited by our recommenda-
tion paradigm. We defined a family of algorithms that provide recommen-
dations on the basis of a two-phases process. The structures used to com-
pute recommendations are updated off-line, thus at real-time the algorithm
use them to compute recommendations. Every time a new item is added to
the platform it is necessary to re-compute these structures. The functional
properties augmented with semantic annotations are exploited to compute

94

5.4. Composition Assistance Module

PEUDOM

UI Mashup Dashboard Component Editor

Composition Assistance Module

Collaboration Module

Component Recommender

Quality Manager

Quality Broker Similarity Broker Compatibility
Broker

Association Rules
Manager

Platform Repositories

Component Repository Composition Repository Composition Assistance
Repository

Figure 5.12: Composition assistance module architecture.

the compatibility and similarity matrices contained in the Composition As-
sistance Repository. Association Rules reflecting community-based com-
position practices are also computed off-line periodically, starting from
the data crawled from mashup repositories, publicly available (e.g., pro-
grammableWeb.com) or local to the adopted mashup platform.
Our recommendation model is indeed composed by the Compatibility and
Similarity matrices and by the Association Rules. Those matrices are used
to assess the compatibility and the similarity among all the components in
the repository. A semantic reasoner is used for this purpose1. The two ma-
trices are computed at the first use of the platform, and updated every time
a new component is added into or dropped from the Component Reposi-
tory. The quality annotations specified in component descriptors are used to
compute quality vectors, contained in the Composition Assistance Repos-
itory. A quality vector stores the quality measures achieved by computing
metrics, such as those defined in the quality model for mashup components
reported in [17], starting from the quality annotations.
The Component Recommender generates the component ranking. It ana-
lyzes the association rules, to discover the component categories to recom-

1Our current implementation uses the Pellet reasoner (http://clarkparsia.com/pellet/).

95

http://clarkparsia.com/pellet/

Chapter 5. PEUDOM

(a) Example of quality-based recommendations
for alternative components.

(b) Example of recommendations for additional
components based on the assessment of the
perceived quality and added-value dimen-
sions.

Figure 5.13: Recommendation windows in the PEUDOM visual editor [16].

mend for mashup completion, and identifies the components in those cate-
gories that are compatible and similar with the components already in the
composition. It then exploits the Quality Broker to compute the aggregated
quality and the added value indexes, based on the analysis of the quality
vectors and of the composition model. The result is a ranking of compo-
nents, based on the quality and the added-value increment that components
can give to the composition under constructions.
Figure 5.13a shows an example of a quality-based recommendation for al-
ternative components, i.e., on the right components that can improve the
added value of the overall composition are suggested. The window dis-
plays on the left the components currently included in the mashup together
with an evaluation of their quality expressed in form of stars. Internally,
the tool exploits the graph-based representation of such a composition, to
identify the existing inter-component dependencies and scoring the compo-
sition quality according to the QC metric. If one component is selected, for
example Google Maps in figure, the right panel shows a list of components
that are similar to Google Maps and compatible with the other components
in the composition. These components are ranked by taking into account
their capacity to increase the composition quality if replaced to Google
Maps. Further details about their quality and their similarity with Google
Maps are also given. Quality measures are normalized with respect to a
selected scale. Figure 5.13b shows an example of completion recommen-
dation that our tool produces on the basis of the added-value measure. We

96

5.5. Collaboration modules

express measures in a scale from 1 to 5, and visualize them in form of stars.
Assuming that the current composition consists of the components listed in
the left-hand side of the window, our technique identifies candidate compo-
nents (reported in the right-hand panel) that can increase the composition
value. In the example, the suggested components would provide content of
different nature, i.e., multimedia data (YouTube) and user-generated con-
tents (Twitter), and an additional timeline visualization (TimelineJS) that
in the example mashup would support the temporal characterization of the
music events.

5.5 Collaboration modules

Collaborating for mashup development in scenarios for end user develop-
ment means exploiting the co-creation of information spaces as a means to
communicate and share information and ideas with the goal of developing
new knowledge.
In the previous chapters we have described the adopted collaboration mech-
anisms (see Section 3.2.6) and the models on which they are based (see
Section 4.4). Taking into account these models and mechanisms, we clar-
ify in the next of this section the sharing policies and the architecture of the
platform collaboration modules.

5.5.1 Sharing resources

We discuss below what is possible to share in our platform, the sharing
polices and the roles of users with respect to the adopted sharing polices.

What to share. According to the elements that characterize our composi-
tion paradigm, when working on a mashup a user can share different kind
of objects:

• Registered services: a user can share basic services (e.g., REST Web
services), that can be invoked from her/his personal profile and that
show a common utility for a group of users for the creation of mean-
ingful resources on which collaboration can be established. What is
actually shared in this case is the service descriptor, which specifies
the information needed to invoke the service, e.g., its URI) and to exe-
cute basic queries to retrieve an initial data set on which to coordinate
(e.g., search keys and parameter values). Such descriptors is made ac-
cessible to the sharing users in their Component Editors. Depending
on the roles assigned to the sharing users, service descriptors can then

97

Chapter 5. PEUDOM

be jointly modified, for example to refine the result set through new
and expanded queries. In our approach sharing services – and their
descriptors – is fundamental: services are indeed the building block to
compose any other resource, e.g., VI Components through the Com-
ponent Editor and also mashups through the Mashup Dashboard.

• VI Components: besides the basic services, also resources packaged
through the Component Editor by integrating multiple data sets into
visual templates can be the object of sharing. Even in this case a com-
ponent descriptor is shared; assuming the presence on the user device
of an execution module, the component descriptor specifies the logic
to query the basic services, integrate the result sets into UI Templates,
and then dynamically create and instantiate the component UI on the
executing device. Depending on users’ roles, components can be just
used as they are within the UI Mashup Dashboard for creating or mod-
ifying mashups, or they can be jointly modified within the Component
Editor.

• UI MAshups: Finally, the mashup resulting form component integra-
tion within the UI Mashup Dashboard can be shared, to allow other
users to access the integrated content, or to let them participate to the
co-creation and evolution of the mashup.

Who to share with. Sharing of the previous objects can be allowed to
different actors, both single users and groups. Each actor being assigned
with one or multiple roles among those reported in the following:

• owner: the user who initially creates the object to be shared; s/he
has all the permissions on the object and it cannot unsuscribe from the
shared object.

• super-user: a user with all the privileges of the owner, with the
difference that s/he can leave the sharing.

• user: s/he does not have the full permissions, i.e., s/he can perform
only a reduced set of modification actions, for example s/he cannot
add or remove objects contained in the shared ones, but can only mod-
ify some of her/his configuration settings.

• viewer: a user who can access and use the object but cannot modify
it.

98

5.5. Collaboration modules

In order to clarify in detail roles and sharing policies we have to deeply
describe what can be done with the sharable objects. Each kind of object
(services, component and composition) must be handled in a different way
except for the possibility to share them or to leave the object sharing. Table
5.1, Table 5.2 and Table 5.3 describe in detail our sharing polices for the
three kinds of considered objects.

Share Leave
sharing

Modify
params Use

owner 3 7 3 3

super-user 3 3 3 3

user 7 3 3 3

viewer 7 3 7 3

Table 5.1: Sharing policies for registered services

Share Leave
sharing

Modify
param
values

Modify
mapping Use

owner 3 7 3 3 3

super-user 3 3 3 3 3

user 7 3 3 3 3

viewer 7 3 7 7 3

Table 5.2: Sharing policies for components

Sh
ar

e

L
ea

ve
sh

ar
in

g

Sa
ve

as

Sa
ve

Sa
ve

st
at

us

A
dd

/R
em

co
m

po
ne

nt
s

A
dd

/R
em

co
up

lin
gs

E
xe

cu
te

op
er

at
io

n

V
ie

w

owner 3 7 3 3 3 3 3 3 3

super-user 3 3 3 3 3 3 3 3 3

user 7 3 3 7 3 7 7 3 3

viewer 7 3 7 3 7 7 7 7 3

Table 5.3: Sharing policies for mashup compositions

99

Chapter 5. PEUDOM

PEUDOM

UI Mashup Dashboard Component Editor

Composition Assistance Module

Collaboration Module

Live Editing
Server

Communication ServerSharing Manager

User/
Gorup

Manager

Versioning
System

Live Editing Client

Communication Client
Client
Server

Editing
Action Queue

Notification
Server

Annotation
Server

Chat
Server

Platform Repositories

Component
Repository

Composition
Repository

Service
Repository

Collaboration
Repository

Figure 5.14: Collaboration module architecture.

In particular, services can be modified (in terms of base URL, operations
and their parameters) or used, i.e., chosen for a component creation and
their result set items could be mapped onto visual renderer elements.

Components can be modified (in terms of values of services parameters and
mapping onto visual render elements) or used, i.e., exported trough their
schema or used in a mashup composition.

The possible actions on compositions are: (i) view/use the composition
without modifying query parameters, just interacting with the visible com-
ponents; (ii) execute operations or modify queries; (iii) add or remove cou-
plings; (iv) add or remove components; (v) save the status of the composi-
tion, in terms of executed queries and results retrieved by components; (vi)
save the composition as an increment of version, like a commit in a ver-
sioning system; (vii) save the composition as a new branch of a versioning
system, in this case, the user who saves the composition becomes its owner
even if the permission level of the components already included is kept the
same and is not promoted to the owner level.

100

5.5. Collaboration modules

5.5.2 Architecture

As highlighted in Figure 5.14, additional clientside modules, together with
a server-side layer, take care of managing the persistence and the co-evolution
of schemas, as required by the collaborative functions illustrated above.
While the client manages the interaction with users capturing their actions
and updating the view as a response of other users’ actions, the server man-
ages resource sharing and communication in both its synchronous and asyn-
chronous aspects. To support multiuser access to resources, the server also
hosts the required schema repositories (for registered services, components
and composition) and databases (for example to manage user access to re-
sources in different versions).
We can group the collaboration modules in three clusters:

• Sharing Manager includes the User/Group Manager, which is in
charged to manage users and the subscriptions to groups of users, and
the Versioning System, which manages the compositions and compo-
nents schema versioning.

• Live Editing Module manages the live editing aspects by capturing
relevant user actions on instances of the mashup composition, and
propagating them to a server module and involves Live Editing Client,
Live Editing Server and Editing Action Queue modules.

• Communication Module is composed by Communication Client and
Communication Server and contains the modules for notification, an-
notation and chat management.

For live editing, in order to facilitate the appropriation of the paradigm by
the end users, we adopt a technique in use in other collaboration platforms
(e.g., Google Drive), notifying every relevant modification on a mashup
execution to any other composition instance. In particular, the Live Edit-
ing Client captures the elements describing the required modification and
propagates them to the Live Editing Server, which takes care of the compo-
sition schema evolution by maintaining a representation of the distributed
editing actions: every editing session on a given mashup composition has
an associated Editing Action Queue.
As illustrated in Figure 5.15, any active instance of a mashup composi-
tion periodically queries the Live Editing Server, to know whether new
actions, generated by other executions, are available. Any action propa-
gated to the different clients is represented as a pair <modifiedObject,
notification>. The first element represents the argument of the action

101

Chapter 5. PEUDOM

loop

loop

cl1LEC:
LiveEditingClient

cl1CC:
CommunicationClient

les:
LiveEditingServer

Actor

cl2CC:
CommunicationClient

cl2LEC:
LiveEditingClient

cl2CM:
CompositionManager

Time

performs
live

editing

cl1UI:
UIController

addAction
Executed() notifyEditing()

enqueue()

[forall editing since
last check]

check()

checkModifications()

notifyModification()

dequeue()

reportEditAction()

modifySchema()
load
Schema()

[forall cl2CC in
active instances]

Figure 5.15: Sequence diagram reporting the communications following a user action on
a client and the propagation of such action to the other clients involved in a live editing
session.

(e.g., a component, a coupling, a query parameter) and all its properties.
The second represents some metadata (e.g., the ID of the user who per-
formed the action), needed for notifying the change. The modifiedObject
properties have effect on the composition schema; the notification element
is used by the Live Editing Client to highlight visually the action. The
Live Editing Client interprets the received actions and triggers events to let
the Composition Manager accordingly modify the composition schema and
reload the composition schema. Changes are highlighted in the workspace,
based on the notification meta-data. To reflect composition changes with
minimal delay, the Live Editing Client periodically checks the composi-
tion status representation through the Live Editing Server, to verify whether
some actions must be loaded and rendered within the mashup instance. The
sequence diagram in Figure 5.15 illustrates communication between clients
and server for publishing (client cl1) and retrieving (client cl2) edit ac-
tions.
The Communication Client and Communication Server modules manage
aspects for synchronous (e.g., by chat and notifications) and asynchronous
(e.g., by annotations) communication.
Annotations are persisted in an annotation manager and are retrievable by
authorized users when uploading the original document. Annotations can

102

5.5. Collaboration modules

also be presented to users in a live form. To this end, the instance of the
composition can inquire with the server if there are annotations, for some
of the nodes currently present in the instance composition, whose times-
tamp is more recent than the last check for annotations. This form of syn-
chronization of all the active mashup composition instances implies a “dis-
tributed” representation of the composition schema, which is maintained at
each client. Server-side management of the action queue ensures synchro-
nized evolution of all the active composition instances.

103

CHAPTER6
Validation of the proposed approaches

In order to validate our approach, we assessed its portability and perfor-
mance on different execution environments. Since our approach stresses
the importance of providing composition paradigms adequate for the end
users, we also conducted some user studies to validate the suitability of the
design environments and the composition paradigm with respect to the ca-
pability and characteristics of laypeople, not expert in computer science in
service composition. In performing these studies, we followed the incre-
mental flow described in Chapter 1. Finally, to complete the validation of
the proposed approaches, a field study on multi-device execution environ-
ments and a test on assistance mechanisms are presented.

6.1 Performance evaluation

In order to assess the feasibility of our approach from a technological point
of view, we conducted some experiments to evaluate the performance of
some critical procedures, like the event-driven, publish-subscribe mashup
composition and execution of the UI mashups created through the Web
dashboard, and the data-fusion on demand at the basis of the fruition of our
multi-device UI components. We measured the complexity of such pro-

105

Chapter 6. Validation of the proposed approaches

cedures in terms of time and memory consumption on the desktop Web
platform. To conduct those experiments we used Firefox 24.0 on a Mac-
Book Pro with OS X 10.8.5, 2.5 GHz Intel Core i5 CPU and 8GB of DDR3
RAM. For the data fusion on demand we also evaluated its performance on
mobile devices: a Samsung Galaxy S II with a dual-core 1.2 GHz ARM
Cortex-A9 processor with 1 GB of RAM.

6.1.1 Mashup composition and execution

Our mashup composition and execution is executed client-side. We decided
not to use a server-side mashup engine because mashups are interaction-
intensive applications, whose execution generally generates a high number
of requests to the server in order to instantiate all the included components
and synchronize their behaviors. However, a client-side implementation
could be critical because of the lower performances of clients if compared
to servers. In order to demonstrate that our approach is lightweight and
client-side execution is feasible, we therefore conducted some experiments.
We do not consider recommendations and collaboration since these are ex-
tensions of the platform we are still working on from the technological
point of view. At the time of writing, we just evaluated the efficacy and
effectiveness of such mechanisms with respect to the user performance.

6.1.1.1 Testing scenario

The performance test of the Web dashboard was conducted executing 4
scenarios with increasing complexity where each scenario is included in
the following one:

1. The first scenario was about the inclusion of a VT UI Component
called IMDb, which gets data from an unofficial API of IMDb1 called
MyMovieAPI2, and the Wikipedia Wrapped Component. The two
components were coupled and a new search was performed on the
IMDb component with search key “ocean”. Than the first item of the
returned list (“Ocean’s Eleven”) was selected raising the synchroniza-
tion with Wikipedia and the link “George Clooney” was clicked in
Wikipedia.

2. The second scenario included in the composition also the Flickr and
YouTube Wrapped Components, coupling them with IMDb compo-

1http://www.imdb.com
2http://mymovieapi.com

106

http://www.imdb.com
http://mymovieapi.com

6.1. Performance evaluation

nent. After a new search on IMDb, all the other three components
were synchronized and there was a new interaction with Wikipedia.

3. The third scenario involves the same components with the same cou-
plings but had a more complex interaction phase that raised a higher
number of events.

4. The last scenario, that involves all the components and actions of the
previous ones, coupled also the Wikipedia provideSearchKey
event to Flickr and YouTube searchByKey() operations. In this
way, when a link is clicked on Wikipedia, both Flickr and YouTube
get synchronized according to the Wikipedia selection.

6.1.1.2 Procedure

We were interested in measuring times and memory consumption as per-
formance indicators of our approach. In particular we captured times by
instrumenting the JavaScript code with the Firebug3 utilities that measure
the time intervals between the call of console.time() and the call of
console.timeEnd() functions. We measured time intervals for the
component initialization, which occours when components are added into
the composition, the main search operations of the components involved
in the test scenario and the component synchronization when, on the rais-
ing of an event, the coupled operations must be retrieved and called. We
were able to conduct 50 experiments thanks to the Selenium Firefox plugin,
which allowed us to record and replay the execution of our Web application
by recording the interactions with the browser. The tests were then grouped
in test suites.
For the memory consumption we collected data from the Mac OS Activity
Monitor and from the process status (ps) OS utility.

6.1.1.3 Results

Table 6.1 describes the results, in terms of computation times, of the ex-
periment on the performance of mashup composition and execution. Since
in our approach there is an intermixing between design and execution, in
this evaluation we measured also operations that belongs to the design ac-
tivity, i.e., addComponent(). It is possible to identify four clusters of
measured operations. The first group is the setup of the components that in-
cludes the creation of the container from the Composition Manager and the
init() function that is dependent on the implementation of components.

3Firebug is a Firefox plugin used to test and debug Web applications. http://getfirebug.com

107

http://getfirebug.com

Chapter 6. Validation of the proposed approaches

Operation Average time [ms] # of experiments
addComponent() 130.62 185
init() 31.44 130
loadSchema() 8.20 55
displayGlobalView() 19.42 113
displayDetailView() 3.84 57
searchByKey() 830.78 701
triggerEvent() 15.72 999

Table 6.1: Results of the experiments about mashup composition and execution.

Figure 6.1: Relation between latency and download with respect to computation times.

The second group is about the VI Components in the phases of loading the
component schema, displaying the global view and then the detail view,
respectively. The third group is about the operations used to retrieve data
from services, which include the service latency, the data download and
the computations to display the data in the component container. The last
group is about the triggerEvent() function that is the function of the
Mashup Engine that is called by components to trigger the synchronization
events.
Note that, in Table 6.1, the functions have a different number of executions;
this is because they are called a different number of times in the execution
of the testing scenarios. As expected, the most time-consuming function is
searchByKey(). In fact this function implies the latency of the service
and the download time of data, this last activity taking most of the time.
In Figure 6.1 we show the percentage of time consumed by the aggrega-
tion of latency and download times over the computation time spent by the

108

6.1. Performance evaluation

platform in order to render the data. It is evident that the latency and down-
load time constitute almost the totality of the searchByKey() execution
times while the computation time to enact the operation is irrelevant.
Another dimension we measured is the memory consumption. In Figure
6.2a we report the memory consumption of our platform with respect to the
memory consumption of the browser and of all the active processes. Figure
6.2b shows instead the memory consumption of the browser with respect to
PEUDOM during the execution of the testing scenarios.

6.1.2 Data-fusion

Another critical activity in our approach is data fusion, which is at the basis
of content integration in the VI Components. As explained in Section 4.2.3,
data fusion must compare elements from two different services and fuse
the similar elements. To evaluate this aspect we measured the times for the
whole Algorithm 1 considering the worst case in which all the elements,
from all the services, should be compared.
For the experiment we considered 2 services (EventBrite and Eventful),
which provide information about events of different kinds, and queried
them using the search key “music”. EventBrite returned 225 events and
Eventful returned 6201 items, of which we considered the top 400 ele-
ments. In fact, in a real scenario, the user would not be able to scan more
than few hundreds of elements. Thus the number of elements considered
for the experiment in a sense represents an extreme case.
In order to measure the time intervals, we used the same Firebug utilities
adopted for the time performance experiment. In order to evaluate the scal-
ability of our algorithm we ran the experiment with an increasing number
of items in the set of the elements to compare.
In Table 6.2 the results of the experiment are reported. We conducted 16
experiments by increasing the number of considered items, with an incre-
ment of 25 items up to the maximum number of retrieved items per service.
These items are used in the creation of the selected-item set and comparison
set. The selected-item set is the set of items selected by the user, which are
used to search for duplicates in the comparison set. The comparison set is
the set of all the elements that do not belong to the services of the selected
items that may contain duplicates (we assume that there are not duplicate
items provided by the same service). Note that, in the execution of the data
fusion on-demand algorithm, the selected-item set has cardinality equals to
1 because the user select only one item. As explained above, for the exper-
iment we are considering the worst case, in which all the items of a service

109

Chapter 6. Validation of the proposed approaches

(a) System memory consumption.

(b) Comparison of browser and PEUDOM memory consumption.

Figure 6.2: Memory consumption during the execution of the testing scenarios.

110

6.1. Performance evaluation

Experiment Comparison- Selected- time # of # of fused
set items [#] items set [#] [ms] comparisons elements
1 25 25 109 625 5
2 50 50 362 2,500 7
3 75 75 799 5,625 7
4 100 100 1,255 10,000 7
5 125 125 2,056 15,625 8
6 150 150 3,032 22,500 9
7 175 175 4,144 30,625 15
8 200 200 5,421 40,000 18
9 225 225 6,804 50,625 18

10 250 225 7,549 56,250 18
11 275 225 8,470 61,875 18
12 300 225 8,861 67,500 18
13 325 225 9,361 72,125 18
14 350 225 10,050 78,750 18
15 375 225 10,999 84,375 20
16 400 225 13,179 90,000 20

Table 6.2: Results of the experiments about performances of data fusion.

are selected and compared with all the items of the other services.
In Figure 6.3 we report the chart about the performances of the experiment
on data fusion whose details are reported in Table 6.2. It is evident that
the relationship among time and number of comparisons is linear. Finally,
to adapt the experiment to a scenario in which our “on-demand” policy is
applied, the reader should consider as execution time the one corresponding
to the number of items in the comparison set. For example, if we consider a
scenario in which there are 3 services with 300 retrieved elements each, and
a user selects an item from one of those services, the performance of the
data fusion on-demand is the time corresponding in the chart to 300+300 =

Figure 6.3: Time of execution over number of comparisons in data fusion performance
experiment.

111

Chapter 6. Validation of the proposed approaches

Figure 6.4: Download and display times on mobile with 3G and WiFi connections.

600 compared items; that is less than 100ms (see the first row of Table 6.2),
which is a very good result.

6.1.3 Performances on mobile devices

Our approach allows also to create components that can be exported on
different devices. Since the worst possible case is to execute the mashup on
a mobile device, we conducted experiments also on small devices to test,
in particular, the behavior of the download of data and of our data fusion
algorithm.
To conduct the performance tests on mobile devices we used three services,
i.e., Last.FM, Upcoming and Do Staff Media, considering two scenarios:
the first used Last.FM and Upcoming, and the second all the three services.
It is important to monitor download times because mobile devices often use
mobile networks like 3G, with lower performances than WiFi or Ethernet
connections that instead characterize desktop devices. In Figure 6.4 the
performances of a 3G network are compared to the performances of a WiFi
network in downloading data from the services. The values reported refer
to the whole time, from the execution of requests to the services to the
complete display of data on the device. However, since we can assume as
constant the time to display data, the values on the chart can be considered
as a measure of the download time. Note that, as expected, the download
and display times are linear and WiFi has significant better performances
than 3G.
The other critical aspect on mobile devices is the data fusion on demand.

112

6.2. User studies

Figure 6.5: Time of execution over number of comparisons in data fusion performance
experiment on mobile devices.

Figure 6.5 shows the average times of execution of data fusion with respect
to the number of compared items. Times are measured from the tap on a
selected element in the global view, to the display to the user of the merged
details. For each test we chose data items with strings of different lengths
in order to consider cases with different complexity4. We can observe that
the represented relationship is a linear function and the maximum time,
corresponding to 200 items, is less than 10 seconds, which, according to
[80] is the maximum time a mobile user is disposed to wait.

6.2 User studies

In this section we describe the experiments we conducted in order to val-
idate with users different aspects of our composition process. The first
two studies, about the mashup composition paradigm and the component
creation, are controlled experiments where we clustered the selected users
in two groups: experts and non-experts, in order to explore whether tech-
nology expertise influenced users performance and satisfaction. Both of
them adopt the same methodology described in Section 6.2.1, although
they focus on different activities that the users can perform through our
framework. The third is a preliminary study that aimed at validating the
adopted collaboration mechanisms and understanding how to improve our
first assumptions about opening mashups to collaboration. The fourth is a

4The most consuming operation is indeed the comparison among text data items in order to check their
similarity.

113

Chapter 6. Validation of the proposed approaches

preliminary field study on a cultural heritage domain specification of our
approach that aims at validating multi-device execution environments and
getting insights to improve the interaction paradigms.

6.2.1 Overall methodology

We adopted a common methodology for the validation studies we con-
ducted with users, so as to be able to compare the results of the first three
validation sessions. In the following the phases of the adopted methodology
are described:

• Pre-experiment questionnaire. This questionnaire had the goal of col-
lecting personal data about users like age and sex and data on their
relationship with the technology, in particular the mean number of
hours spent on the computer, how much they were used to surf the
Internet and their familiarity with service composition and mashups.
This questionnaire allow us to classify users and understand whether
they were technology experts or not.

• Tutorial and background. Before asking users to perform the tasks
we briefly explained the tool and its capabilities and functionalities in
order to give them a background.

• Experimental tasks. In this phase users were asked to accomplish
some predefined tasks with incremental difficulty in order to under-
stand the degree of complexity they were able to use and master: if a
user could execute the second task, s/he was also able to execute the
first. During the task execution we measured the number of steps they
were able to finish and the time they spent to complete the tasks.

• Post-experiment questionnaire. After the task execution the users were
asked to fill a post-experiment questionnaire with the goal of measure
two main dimensions: the ease of use and the satisfaction. In this
questionnaire there were: 7-point scale questions (from a very posi-
tive to very negative) and open questions where users could express
their opinion on the tool and suggest improvements. The scale of the
close questions were inverted randomly in order to force users to keep
attention and to improve the significancy of the answers.

Table 6.3 presents data about the user samples selected to conduct the stud-
ies. In total we selected 82 users with an age between 18 and 70 with dif-
ferent expertise. In particular 35 experts and 47 non experts (respectively
the 43% and the 57%). Thus we were able to compare the results of experts

114

6.2. User studies

Experiment # of users Ages Expert/Not-expert users
Mashup composition paradigm 35 21-53 13/22
Component creation 36 18-70 17/19
Collaboration mechanisms 11 21-64 5/6
Total 82 18-70 35/47

Table 6.3: Demographic data about the experiments user samples.

and not experts in order to study the technology biases on the usage of our
solution.

6.2.2 Study on the mashup composition paradigm

A first study was conducted to evaluate the UI synchronization paradigm.
Users were asked to add, remove, couple and synchronize components as
described in Chapter 5. For this user study we considered a customiza-
tion of our platform as a dashboard for a specific domain use case [23],
i.e., the sentiment analysis of touristic cities in Europe. This use case was
provided by the Milan Municipality that was interested in monitoring the
city reputation about tourism in Milan with respect to the main cities in
Europe. We analyzed the sentiment of data retrieved from social networks,
e.g., Twitter, Trip Advisor and Lonely Planet, and provide analytics visu-
alizations to users. Users can select sources and visualizations, and filter
data according to some predefined categories. The application of a filter
is thus implemented as a new query to the sentiment analysis data ware-
house. This is an example of domain-specific adaptation of the platform
because, in the domain in which it is adopted, analysts were more confident
to sources, filters and viewers. With our platform, we enable the tourism
officers to create their dashboard by composing and synchronizing infor-
mation visualization-based UI Components.
The experiment was composed by two tasks, the first was about adding,
create couplings and verify the synchronization of components by raising
events in a simpler scenario while the second was more complex because
was more articulated and gave less information about the composition pro-
cedure in order to leave users free to choose how to proceed.
The two tasks were comparable in terms of number of components to be
integrated and composition steps. Task 2, however, required a less trivial
definition of filters, to sift the involved data sources, and a more articulated
definition of couplings. Also, while the formulation of Task 1 was more
procedural (i.e., it explicitly illustrated the required steps), Task 2 just de-
scribed the final results to be achieved, without revealing any details about

115

Chapter 6. Validation of the proposed approaches

the procedure required.

• Task 1. In the first task the user had to add two chart components
to visualize sentiment measures and then had to create couplings be-
tween the components. After that, the user was invited to active the
coupling by interacting with the UI in order to enjoy the experience
of the intra-components synchronization. The last point in the task
asked the user to add another chart and synchronize it with the charts
included before.

• Task 2. The second task was articulated along only two point. Our
intent was indeed to increase the difficulty with respect to Task 1 giv-
ing less information about the composition procedure, and leaving the
user free to chose how to proceed. The task asked first to add chart
components and then to couple them in order to obtain a dashboard
that showed some particular dimensions with respect a domain spe-
cific analysis on the reputation of the tourism in Milan.

All the participants, both experts and not experts, were able to complete
both the tasks without particular difficulties. No differences in task com-
pletion time were found between experts and novices. In particular, tech-
nology expertise was not discriminant for task 1 (p = .161) and for task
2 (p = .156). The lack of significant differences between the two groups
does not necessarily mean that expert users performed bad. However, it in-
dicates that the tool enables even inexperienced users to complete a task in
a limited time. The average time to complete task 1 was about 2.5 minutes,
while for task 2 it was about 2 minutes. This positive result is not surpris-
ing since novices can perform as good as experts even in the case of Web
searches [56, 91].
The difference in completion times for the two tasks can be also used as
a measure of learning [46]. This difference is about half a minute (t =
28.2, p = .017), i.e., a reduction of about 15%. This result highlights the
learnability of the tool: although the second task was more critical com-
pared to the first one, subjects were able to accomplish it in a shorter time.
The ease of use was further confirmed by the data collected through four
questions in the post-questionnaire, asking users to judge whether they
found it easy to identify and include services in the composition, to de-
fine couplings between services, and to monitor and modify the status of
the mashups. We also asked users to score the general ease of use of the
tool. Users could modulate their evaluation on a 7-point scale. The relia-
bility of the ease of use questions is satisfying (α = .75). The correlation

116

6.2. User studies

between the four detailed questions and the global score is also satisfying
(ρ = .58, p < .001). This highlights the high external reliability of the
measures. On average, users gave the ease of use a mark of 1.77 (the scale
was from 1 very positive to 7 very negative). The distribution ranged from
1 to 4 (mean = 1.77,MSE = .12). We did not found differences between
novice and expert users. This was especially true for perceived usefulness
(p = .51).
The user satisfaction with the composition paradigm was assessed using
two complementary techniques. A semantic-differential scale required users
to judge the method on 12 items. Users could modulate their evaluation on
a 7-point scale (1 very positive - 7 very negative). Moreover, a question
asked users to globally score the method on a 10-point scale (1 very posi-
tive - 10 very negative). The reliability of the satisfaction scale is satisfying
(α = 0.76). Therefore, a user-satisfaction index was computed as the mean
value of the score across all the 12 items.
The average satisfaction value is very good (min = 1.3,max = 3.5,mean =
2.2,MSE = .09). The correlation between the average satisfaction value
and the global satisfaction score is satisfying (ρ = .41, p < .015). On
average, users gave the composition method a mark of 2.9, with a distribu-
tion ranging from 2 to 4. We did not find differences between experts and
novices. The moderate correlation between the satisfaction index and the
ease of use index (ρ = .55, p = .011) also reveals that who perceived the
method as easy also tended to evaluate it as more satisfying. This confirms
that ease of use is perceived.
The last two questions asked users to judge their performance as mashup
developers and to indicate the percentage of requirements they believed to
have satisfied with their composition. This metric can be considered as a
proxy of confidence [46]. On average, users indicated to be able to cover
the 91% of requirements specified by the two experimental tasks (min =
60%,max = 100%,MSE = 1.7%). They also felt very satisfied about
their performance as composers (mean = 1.8,MSE = .13; 1 very positive
- 4 very negative). We also found a direct correlation between the users
perception of their performance as mashup developers and the global ease
of use (ρ = .57, p < .001), meaning that the tool’s ease of use improves
user confidence.

6.2.3 Study on the component creation

This second study aimed at evaluating the activity of component creation
through our tools. Users were asked to create components starting from the

117

Chapter 6. Validation of the proposed approaches

selection of preregistered services in two tasks with incremental complexity
as in the previous test.

• Task 1. Users were asked to execute a task for their free time orga-
nization, by creating a map-based component. First they were asked
to select Eventful and Upcoming services, which are services that pro-
vide information about events. From the data retrieved by the ser-
vices, users had to select latitude and longitude coordinates to locate
the event on the map (once added an event on the map it appears as a
colored marker) and add details to the markers by adding the descrip-
tion and event address. At the end the users were asked to save the
created component.

• Task 2. The second task was about the planning of a trip to Milan.
Users had to select the map visual template and associate with it, from
the GooglePalces service, the hotels and the underground stations. As
details for the added items, they were required to associate, the name
of the hotel or underground station.

All the participants were able to complete both the tasks without relevant
difficulties. The average times for the completion of the two scenarios were
respectively 3m30s for novices and 3m36s for technology experts for task
1 and 5m20s for novices and 4m46s for experts for task 2. Considering
these data, we can notice that there is not a relevant difference between
novices and experts. This hypothesis is confirmed also by the Wilcoxon-
Mann-Whitney test (U = 47, p = .4707, 1 − α = 95%) because the two
populations have the same distribution.
From the post-experiment questionnaire we monitored the tool’s easy of
use asking to users to express their opinion with respect to the selection
of services and the creation of the components through the visual template
mapping techniques. Users could modulate their evaluation on a 7-point
scale. The reliability of the ease of use questions is satisfying (α = .73). On
average, users gave the ease of use a mark of 2.56 (the scale was from 1 very
positive to 7 very negative). The distribution ranged from 1 to 4 (mean =
2.56,MSE = 1.53). Comparing the distribution of the two categories of
users considered in these tests we can conclude that there is not a difference
distribution for novices and experts (t = 0.97, p = 0.45, α = 5%).
The user satisfaction was assessed using, as in the previous study, two com-
plementary techniques: a semantic-differential scale on 12 items (1 very
positive - 7 very negative) and a question to globally score the method (1
very positive - 10 very negative). The reliability of the satisfaction scale is

118

6.2. User studies

satisfying (α = 0.75).
The average satisfaction value is good (min = 2.1,max = 3.6,mean =
2.7,MSE = 1.34). On average, users gave the component creation method
a mark of 2.7, with a distribution ranging from 1 to 4. Also in this study, we
did not find differences between experts and novices because they have the
same distribution (t = 0.26, p = 0.80, α = 5%). The moderate correlation
between the satisfaction index and the ease of use index (ρ = .55, p = .011)
also reveals that who perceived the method as easy also tended to evaluate
it as more satisfying. This confirms that ease of use is perceived.
Finally, in the last two questions, users were asked to judge their perfor-
mance as component developers and to indicate the percentage of require-
ments they believed to have satisfied with their composition. On aver-
age, users indicated to be able to cover the 89.6% of requirements speci-
fied by the two experimental tasks (min = 50%,max = 100%,MSE =
1.65%). They also felt very satisfied about their performance as composers
(mean = 1.92,MSE = .39; 1 - very positive, 4 - very negative).

6.2.4 Preliminary study on collaboration mechanisms

The evaluation of the collaboration mechanisms is a preliminary study that
aims at evaluating the chosen mechanisms to understand how to improve
our first assumptions about opening mashups to collaboration.
For this experiment, users were asked to execute three incremental tasks:
from a base task, in which they had to complete simple mashup tasks and in-
troduce some collaboration mechanisms, to an intermediate task with sim-
ple sharing activities, up to an advanced task where users are asked to per-
sonalize the sharing polices and use advanced collaboration mechanisms.

• Task 1. In the first task users had to compose a mashup including the
YouTube, LastFM and Flickr UI Components and to use them without
any coupling. Then another user, one of the test conductors, logged
into the platform. Thus the user who was performing the experiment
could use the presence awareness mechanisms to identify how many
users were online and who they are. The two users started to interact
via the instant messaging tool and at the end of the task the user was
asked to locate the latest activities menu and to save the composition.

• Task 2. In the intermediate task the user did not received much guid-
ances. S/Hewas was asked to create a composition with at least three
components, to save the composition and to share such a composition
with another user.

119

Chapter 6. Validation of the proposed approaches

Figure 6.6: Easy of use of the main collaboration mechanisms.

• Task 3. In the last task users had to open a shared composition and
try to modify it. The user did not have the permission to modify the
composition and asked to the composition owner to give her/him such
permissions. Than s/he created a new VT Component and added it
to the composition. As last activity, the user was asked to change the
permissions using the advanced settings of the sharing environment.

After the execution of the scenarios, we asked users to evaluate the sharing
environment and the collaboration mechanisms. About the sharing envi-
ronment, users expressed their opinion in a 5-values scale (1 very negative
- 5 very positive). On average users gave to the sharing environment a
mark between 2 and 5 (mean = 3.75,MSE = 1.84), thus users were
globally satisfied by this environment. Figure 6.6 shows the results to the
question about the easy of use and the immediacy of understanding of the
main collaboration mechanisms. Real-time collaboration includes all the
sub-mechanisms that allows this functionality, e.g., users awareness and
real-time synchronization of the users’ workspaces. As expected, chat and
notifications are the best rated mechanisms because users are already used
to use them in other collaboration (or communication) platforms while it is
encouraging that real-time collaboration mechanisms were considered easy
for the majority of users.

6.2.5 Preliminary study on domain-specific customization

We also conducted a field study to assess the validity of a domain-specific
customization of our framework for the cultural heritage domain. We de-
veloped execution engines for two different types of devices: a multi-touch
display (46") and Android tablets (7"). These are indeed the devices adopted
at archaeological park of Egnathia, where we conducted the studies, as a
support for the park guides [5]. In particular, the guides needed a platform

120

6.2. User studies

to extract contents from heterogeneous (personal or third-parties) sources,
and compose Personal Information Spaces (PISs) that can be ubiquitously
executed on different devices and contexts of use. In this study, according
to the user-centered design, we were interested in collecting feedback in a
real context of use. We were interested in validating with end users our ap-
proach by evaluating pros and cons, and getting insights that can improve
the current state of the prototypes of the multi-device execution environ-
ments. It is worth noticing that at this stage of our work, the field study
is part of a set of formative evaluations that we are still conducting, and is
mainly focused on qualitative data.

6.2.5.1 Participants and Design

The study involved 28 visitors and 2 professional tourist guides, named
Achille (male) and Conny (female). Each guide accompanied a group of
14 visitors in the visit of the Egnathia park. Visitors were people who
had booked a visit to the park. They were heterogeneous as regards age
(from 21 to 50 year-old, plus an 8-year old child), gender, and cultural
background. These visitors were randomly divided in two groups.

6.2.5.2 Procedure

The study consisted of two main sessions: (i) PIS composition for orga-
nizing the visit, and (ii) park visit. In the first session the two guides were
given a 1-hour demonstration of the desktop application, accessible through
a PC, to be used to create the components. After this, according to the co-
discovery exploration technique [17], the two guides were invited to create
together a component for visiting an archaeological park, named Monte
Sannace, in Apulia region. In this way, the guides had the possibility to get
familiar with the application. Then, they were asked to create the PIS to
be used for the visit of the Egnathia archaeological park. The guides indi-
vidually created their PIS by positioning on an interactive map of the park
all the multimedia contents they would like to illustrate to visitors. At the
end of the PIS composition session, the guides were interviewed together to
gather impressions, problems and suggestions in order to improve the im-
plemented composition mechanisms and the overall system. In the second
session the park visit session was performed at the archaeological park of
Egnathia. This session was composed of two different phases: 1) the brief-
ing phase at the beginning of the visit, in which the guide accessed his/her
PIS through a large multi-touch display (46 inches), placed at the entrance
of the indoor park museum, 2) the tour phase, in which the guides accessed

121

Chapter 6. Validation of the proposed approaches

their PIS on a tablet (7 inches) during the tour through the remains in the
park. In the briefing phase, the guide interacted with his/her PIS on the
multi-touch display to introduce visitors to the history of Egnathia and the
remains that they were going to see in the park. After this, the tour phase
began. During the tour, guides could use the tablet to show visitors the
contents of their PIS regarding the remains. In both phases, guides could
search for new contents and, possibly, update their PIS. The visit session
lasted on average 1 hour and half. At the end of the visit, each visitors’
group participated in a focus group where their impressions on the overall
visit experience were collected. The two guides were interviewed together
again at the end of the visit, to discuss in more details their experience,
highlighting pros and cons of PIS use.
In order to analyze the guides’ experience in composing their PIS and using
it (the first objective of our study), we gathered data through naturalistic ob-
servation of the guides while: 1) composing their PIS on the desktop, 2) in-
teracting with the created PIS on the multi-touch display during the briefing
phase, 3) interacting with the tablet during the tour phase. These data were
complemented by the guides’ comments gathered during the interviews af-
ter the PIS composition and at the end of the visit of the Egnathia park. To
get information on the visitors’ experience we collected data through natu-
ralistic observation of visitors during the visit and a focus group at the end
of the visit.

6.2.5.3 Results

Results are presented in three different parts, depending on the phase they
are referring to:

• Composition phase. In this phase, the guides were observed while
composing their PIS for visiting the archaeological park of Egnathia
using the desktop application. In general, the usability problems they
experienced were not so serious to stuck them; they were indeed able
to continue the PIS composition without the help of the two HCI ex-
perts. Both guides appeared disoriented by the few contents returned
by some of the searches they had performed; they tried to refine the
search by typing different keywords and, finally, added the most ap-
propriate multimedia material available on the Web. At the end of this
phase the two guides were interviewed together. As overall impres-
sion, they said they appreciated the ease of use of the application, in
particular the possibility to quickly put the retrieved content on the
park map. They were rather satisfied by the PIS they had created and

122

6.2. User studies

they were confident that it would be a valuable support during the
visit.

• Briefing phase. The briefing aimed at both introducing visitors to
the history of Egnathia and providing some preliminary information.
The briefing time, during which the guides used the multi-touch dis-
play, was different: 28 minutes and 35 seconds for Achille, and 11
minutes and 45 seconds for Conny. During his interaction with the
multi-touch display, the guides experienced some interaction difficul-
ties due to some limits related to the multi-touch display technology.
Both guides appeared quite relaxed in using the multi-touch display.
They illustrated the multimedia contents they had previously inserted
in their PISs. They were able to search new content without diffi-
culties related to the search functionality. During the briefing phase,
all visitors appeared very interested in the multimedia contents illus-
trated by the guides on the multi-touch display: they asked questions
to their guide, commented images among them, and in general ap-
peared engaged and stimulated by the shown material. This was con-
firmed in the focus group, in which visitors explicitly expressed their
positive opinion about the briefing phase. It is worth noticing that,
when the search for new content required more than 2 minutes, vis-
itors appeared to be disturbed and started chatting among them and
looking around.

• Tour phase. In the tour phase, the two guides accompanied the visitor
group through the remains in the outdoor park. The guides were free
to use their tablet as well as the panels located in the park to better
present the park remains. Achille and Conny used tablet and panels in
different ways. Conny was more prone to the use of such tools; in fact
she used the tablet 9 times and the panels 9 times. In total, she spent
7 minutes and 53 seconds to interact with the tablet, and 3 minutes
and 58 seconds to show images on the panels. Achille used such tools
very little: he used a panel once for 10 seconds and the tablet once
for 1 minute. Both guides performed searches through the PIS on the
tablet. Only one search did not get results of her interest. The only
time Achille used the tablet was to perform a search. Both guides
remarked that, during the tour, searches requiring more than 2 minutes
interrupted the narrative and distracted visitors. Moreover, they said
that, even if they did not feel uncomfortable during this waiting time,
they would have preferred to get more material without the delay due
to the Internet connection, i.e., from local repositories.

123

Chapter 6. Validation of the proposed approaches

6.2.5.4 Discussion

The objective of this study was to assess the value of the PIS, accessible
from different devices, in the specific context of the visits at archaeological
parks. To this aim, we analysed the experience of the two actors involved in
a visit: the guide and the visitor. The guide has a double role: 1) composer,
i.e. s/he creates her/his PIS; 2) end user, i.e. s/he uses the PIS during the
visit to illustrate the park remains to visitors. The visitors participate in an
visit which is enhanced by the availability of different types of multime-
dia materials and, thanks to the possibility given by the PIS to search new
content, their curiosity may be better satisfied than in traditional visit.
Composing the PIS with a desktop application did not create any problem to
the guides. They appreciated the support of the PIS in organizing the mate-
rial for the visit. However, the guides complained about the scarce material
they were able to find when searching the services available in the platform.
This is a problem common to all service-based applications, which have to
rely either on contents made available by third-parties or on user-generated
contents. To limit this problem, more sensible services should be added into
the platform; they can be further third-parties or local and ad-hoc created
collections of contents, maintained by domain experts and even fed by the
end users themselves by adding self-produced material. Both guides and
visitors appreciated very much the briefing phase with the support of the
multi-touch display, even if it lasted much longer than in traditional visits,
where the briefing to introduce visitors to the archaeological park is about
5 minutes at most.
Nobody complained about this longer phase; on the contrary they all said:
“It’s worth it!". The multi-touch display is very valuable in this phase of the
visit, since it allows the guides to present much more multimedia materials
related to park elements, which enrich a lot their spoken presentation.
Summarizing, the study results showed a general appreciation of use of the
multi-touch display in the context of the visit. However, a difficulty was
generated by the position of the multi-touch display. It was positioned on a
support 110 centimeters high. For this reason, some visitors could not see
the whole display. In future installations, it would be better to use a higher
support (at least 150 centimeters), placing it on a platform of at least 50
centimeters on which the guide will get on. In this way, the display will
be better visible by all visitors. However, the fact that the visitors moved
to see the display is a symptom of their interest in looking at the material
showed by the guide’s PIS.
A negative aspect of the use of the PIS on the multi-touch display was the

124

6.3. Composition assistance mechanisms

waiting time of a search for new content. This was in part due to the time
for typing the search keywords and in part to the low connection speed.
However, the search through composition tool is limited to the services
made available in the platform (i.e. Flickr, YouTube and Wikipedia). Thus,
the search for very specific material can often be unsuccessful, and this
might easily bother guides and visitors.

6.3 Composition assistance mechanisms

In order to test the effectiveness of mining the most frequent associations
from repository of mashups and mashup components, we performed a set
of experiments in which we simulated the creation of a number of mashups,
based on our assisted composition method. We selected a set of well-
designed and popular mashups, top-ranked in the programmalbleWeb repos-
itory and we used such mashups as benchmarks. More specifically, we used
such mashups for the identification of our goal mashups, i.e., a set of in-
teresting mashups with respect to their popularity and quality. We wanted
indeed to understand in which measure, given a properly selected set of
components including the ones in the selected goal mashups, our mecha-
nism would have led to the composition of quality mashups.
In order to identify the set of benchmark mashups, we considered the pop-
ularity ranking provided by programmableWeb and we mediated it with
the judgment of five evaluators, achieved in a previous study [16] through
heuristic evaluation sessions that did not take into account our quality met-
rics. For each goal mashup, we simulated our assisted composition assum-
ing as starting point the inclusion of one of the components in the consid-
ered goal mashup. Our recommendation technique was able to suggests
different alternative compositions, that in 80% of the cases were very close
to our goal mashups, with a distance of maximum 2 components. In any
final composition, the quality was not degraded with respect to the goal
mashups.
We here describe one of the performed composition experiments, in which
the goal was to create a mashup providing a visual encyclopedia: the idea
is to enrich the textual content extracted by an online encyclopedia or dic-
tionary with visual content. The benchmark mashup selected to verify the
resulting composition is Shahi5, a popular mashup which is also one of
the top-ranked mashups among those that we have analyzed. In particular,
Shahi is a visual dictionary that combines Wiktionary content with Flickr

5http://blachan.com/shahi/

125

Chapter 6. Validation of the proposed approaches

Iteration no. Present categories Selected Association Rule Suggested Component
1 Reference Reference→ Photo Flickr
2 Reference, Photo Reference, Photo→ Social Twitter
3 Reference, Photo, Social Reference, Social→ Search Google Ajax Search

Table 6.4: Selection of association rules in the construction for the Shahi sample mashup.

images, and offers search facilities by using Google Ajax Search and Yahoo
Image Search.
The assisted composition procedure mainly relies on the component reg-
istry, and on the association rule extracted from the analysis of mashup
repositories. The component registry contains all the available components
together with their descriptors in which operational and quality features are
described. The association rules repository instead suggests valuable pat-
terns for combining different components’ categories. Once the user selects
the first component to be included in the composition, the recommendation
procedure starts, and proceeds according to two fundamental steps: i) the
selection of the category of the component to adopt in order to enrich the
current composition and ii) the selection of a specific component, within
the selected category, to add. In the second step, the selection of the most
suitable component is driven by the compatibility with the components al-
ready in place and the potential mashup quality. The two steps are repeated
until the user reaches the desired goal, or the algorithm does not find any
other components to include in the composition.
For example, in order to build the visual encyclopedia mashup, we consider
Wikipedia as the first component; applying iteratively the procedure for the
assisted composition we obtain the results summarized in Table 6.4. Here,
the second column refers to the categories to which the components already
involved in the mashup belong. The third column specifies the association
rule that drives the selection of the category of the new component that
can extend the composition. When more rules are identified, support and
confidence are considered to identify a single rule. In case of more rules
with the same value for such parameters, the different possible expansions
of the mashups are ranked based on the quality and added value of the
components falling in the involved categories. Finally, the fourth column
contains the name of the component selected because it results to be the
top-ranked, based on the assessment of quality measures.
After the third steps, the recommendation procedure did not find any other
association rules to apply for expanding the current composition. Compar-
ing the obtained mashup with our benchmark, Shahi, we noticed that both
mashups address the same situational need, but our quality-aware assisted

126

6.3. Composition assistance mechanisms

composition also suggested to extend the composition with a “social” com-
ponent (i.e., the Twitter API), not included in the original mashup. This in
a sense proves that the aggregation of different quality dimensions lead to
the consideration of different composition solutions that can improve the
value of the final composition.

127

CHAPTER7
Conclusions and future work

In this thesis we introduced our perspective over the EUD-based compo-
sition of mashups, discussing how adequate abstractions, mainly based on
visual template completion, can enable a lightweight integration process,
leading to the definition of unified data views, the synchronization between
such data and remote APIs and custom device services, and the integration
of UI components of the presentation layer.
With respect to the goals illustrated in Chapter 1, in this thesis we presented
the following results:

• The definition of a user-driven development process that, according
to the need of non-expert users to compose situational applications,
hides the back-end complexity and simplify the task of information
integration. Our assumption is that, in order to provide support for the
EUD of mashups, we have to put the user in the center of the devel-
opment process. Hence, we adopted WYSIWYG (What You See Is
What You Get) visual mechanisms that immediately show to the users
an example of the artifact they are creating [19, 23]. The closeness
of the design artifacts with the “appearance” of the final application
confers to our composition paradigm the possibility to help end users

129

Chapter 7. Conclusions and future work

in understanding how to meet their needs through self-developed ap-
plications. This thesis describes in detail the activities of the proposed
development process.

• The definition of UI-centric models for resource integration. A Visual
Integration model [20] allows the user to associate data and function to
predefined UI Templates, providing a support for resource integration.
We also defined a Domain Specific Language (DSL) able to encapsu-
late, abstracting from UI styles and execution environments, the fun-
damental constructs of the Visual Integration paradigm. Through our
models, we describe properties of elements of general validity in the
mashup domain, like UI Components, events, operations, couplings,
that can be easily adopted for lightweight integration of resources also
in other platforms or contexts.

• The pervasive diffusion of technology in form of mobile devices and
mobile applications, more and more service-oriented and integration-
intensive, legitimates our approach on multi-device deployment of com-
posite resources. This is possible thanks to the capability of our tools
to generate descriptors based on our DSL. Users integrate “by ex-
ample” the resources, obtaining artifact descriptors that can be then
executed on different devices by client-side execution engines. We
therefore developed different execution engines for desktop devices,
mobile devices (both smartphones and tablets) and multi-touch large
displays [4, 5, 20, 21].

• With respect to the lightweight integration of resources, our Visual
Integration model supports at the client-side the combination of in-
tegrated views of data coming from multiple services [20, 21] and
publish-subscribe, event-driven synchronization of data sources [19,
23]. In the first case, we adopt an “on-demand” data fusion [20], so
that the efforts required for comparing and merging data are concen-
trated only on the data the user is really interested in. We introduce a
lightweight integration paradigm that does not require any dedicated
integration platform but is based mainly on integration mechanisms
at the UI level that can be defined and executed on different client
devices, where the client can also be a mobile device with limited ca-
pabilities.

• Collaboration-oriented mechanisms extend the basic composition paradigm
to cover both synchronous and asynchronous collaboration, thus pro-
viding a comprehensive approach for users to exchange ideas and dy-

130

7.1. Impact of the developed framework

namically co-create integrated information spaces [5, 69]. As users
become increasingly familiar with Web 2.0 mechanisms to exchange
ideas and instantly communicate with peers, collaboration becomes
a fundamental feature of modern Web-based applications. However,
service-based Web composition environments offering this feature are
still lacking. This thesis tries to fill this gap, by showing how services,
service-based resources and composition models can be considered
objects of collaboration. The presented collaborative features emerged
from a series of studies where real users expressed their desiderata on
possible collaborative aspects of the platform [5].

• As a proof of concepts we implemented a platform for end-user devel-
opment of mashups [69] and mobile execution engines [21] running
on mobile and multi-touch large displays [5]. We conducted perfor-
mance tests on the integration of resources, and in particular on the
paradigm for “data fusion on demand”, under the limited computa-
tion capability of mobile devices. The results of the performance tests
show that our approach is feasible also on limited computation envi-
ronments. We therefore conducted three user studies (the first one is
published in [23]) in order to validate the adequateness of the compo-
sition paradigm with respect to the abilities of the average end users.
We thus proved that the lack of technical skills does not affect user
performance in terms of effectiveness, efficiency and satisfaction. A
field study conducted at an archaeological park [5] allowed us to an-
alyze archaeological park guides’ experience in composing and using
Personal Information Spaces (PISs) through our platform, and the im-
pact on the visitors’ experience. The study showed that the guides ap-
preciated the usefulness of PISs, in particular the good mapping with
their working activities. On their side, visitors enjoyed the possibil-
ity of looking at pictures and videos that enhanced the guides’ spoken
presentation. Finally, we tested our quality-based recommendation of
components [22,82] through an experiment that returned encouraging
results.

7.1 Impact of the developed framework

One of the strength of our work is that it is a general framework that can be
adapted to different specific domains. In the context of a project founded
by the Milan Municipality on sentiment analysis in the touristic domain,
we adapted our framework to run as a dashboard to visualize and analyze
sentiment analysis data [23]. Sentiment analysis focuses on understand-

131

Chapter 7. Conclusions and future work

ing market trends starting from the unsolicited feedback provided by users
comments published on the Web. Components made requests to a local
source containing the analyzed data. Users were enabled to add and syn-
chronize components, and filter data on different dimensions. Raw data
were aggregated according to the request parameters and provided to users
with different information visualization techniques. This tool was installed
at the Milan Municipality and was used by the real end users.
To respond to the needs of a community of an archaeological park’s guides,
we also implemented execution environments for different devices, and
some park guides used both the composition environment and the execu-
tion environments for a real visit [4, 5]. As described in Section 6.2.5,
we implemented an execution environment on a multi-touch large display,
which was used by the guides in the visit briefing phase to show some re-
lated contents. Then, during the tour phase, guides used the other execution
environment deployed on a tablet. The considered field study allowed us
to validate our approach and collect very useful feedback from guides and
visitors.
In 2012, in the context of a weekly project conducted during a summer
school on ubiquitous computing and information visualization in Oulu, Fin-
land, we used our platform to display traffic data by applying information
visualization techniques to enhance the city traffic planning [83]. We were
able to use our Mashup Dashboard, integrating data coming from city sen-
sors and providing interactive visualizations.

7.2 Future work

We are planning to collect additional user feedback in order to improve
further the interaction paradigms and to elicit new features that are not pro-
vided so far. However, we already identified some additional features that
can contribute to complete our approach and improve its usability. We are
currently working on refining our meta-design approach and revising the
implementation of our platform accordingly. In particular, we are design-
ing an environment to support the WYSIWYG creation of UI Templates
(which currently have to be manually coded in HTML and JavaScript). We
are also refining the techniques used to link the abstract representation of
visual templates, as a set of generic visual renderers, to the concrete vi-
sualizations in the final applications. This can be achieved through the
definition of an intermediate modeling layer highlighting which concrete
visual renderers are exploited within the concrete visualizations. This map-
ping is now hard coded within the execution environment. Moving such a

132

7.3. Achievements

specification to the model level enhances the decoupling between content,
presentation and device our approach aims to.
The easy configuration of services and service integration presented in this
thesis also assumes a set of default rules, for example related to the op-
erations that can be invoked trough UI Components. We however believe
that with few extensions, but keeping the same visual metaphor, our current
platform can evolve towards a development environment for expert users,
giving them the possibility to configure services and UI Components more
flexibly, and also introducing more sophisticated conflict resolution policies
in the construction of the integrated data views. Our future work is devoted
to improve the design environment along this direction, trying to achieve a
full-fledged approach, accommodating different expertise levels.
The implemented prototypes are sufficient to demonstrate the validity of
our approach in terms of feasibility, easy of use and users’ satisfaction but
some technological aspects con be improved. In particular, we are looking
for better performing technologies to manage communication and live edit-
ing collaboration techniques and we are planning to improve the degree of
integration of the composition assistance mechanisms in PEUDOM, con-
cerning the quality-aware recommendation of components.
It would be also interesting to investigate how our tools can be included
or integrated with other end-user tools, e.g., Content Management Systems
(CMS) like Wordpress or Drupal or enterprise portals like Liferay. Also for
this reason, it could be useful to adopt some of the emerging standards for
web applications like W3C Widgets and Web Components. While Widgets
are a W3C Recommendation and platforms for the deployment of Widgets,
like Apache Rave, have been developed, Web Components are still in a
working draft status. Web Components are a more promising standard for
mashups because Widgets do not allow the intra-widget communication,
while Web Components do.
Finally, we are now investigating how to customize our paradigm in an-
other specific domain by implementing a real-case scenario provided by
the VINCENTE project (A Virtual collective INtelligenCe ENvironment to
develop sustainable Technology Entrepreneurship ecosystems) in order to
consider a new use case and to improve our approach.

7.3 Achievements

In 2010, in recognition of the innovative aspects promoted by the special-
ization of our platform for sentiment analysis, the City of Milan has been
awarded with a prize for Innovation in Enterprise 2.0.

133

Chapter 7. Conclusions and future work

In 2012, the paper Quality-aware mashup composition: issues, techniques
and tools was one of the candidate for the best paper award at the QUATIC
(Quality of Information and Communications Technology) conference.
In July 2013, at the International Conference on Web Engineering (ICWE
2013) in Aalborg, Denmark, we won the Best Demo and Poster Award for
the paper PEUDOM: a Platform for End-user Development of Common
Information Spaces.

134

Bibliography

[1] Yahoo! pipes. http://pipes.yahoo.com/pipes/.

[2] M. Addisu, D. Avola, P. Bianchi, P. Bottoni, S. Levialdi, and E. Panizzi. Multimedia infor-
mation extraction: Advances in video, audio, and imagery analysis for search, data mining,
surveillance and authoring. chapter 24: Annotating Significant Relations on Multimedia Web
Documents, pages 401–417. IEEE Computer Society Press, 2012.

[3] Saeed Aghaee, Marcin Nowak, and Cesare Pautasso. Reusable decision space for mashup tool
design. In EICS, pages 211–220, 2012.

[4] C. Ardito, M.F. Costabile, G. Desolda, M. Matera, A. Piccinno, and M. Picozzi. Composition
of situational interactive spaces by end users: a case for cultural heritage. In Mille et al. [72],
page In print.

[5] Carmelo Ardito, Paolo Bottoni, Maria Francesca Costabile, Giuseppe Desolda, Maristella Mat-
era, Antonio Piccinno, and Matteo Picozzi. Enabling end users to create, annotate and share
personal information spaces. In IS-EUD, 2013.

[6] Carmelo Ardito, Maria Francesca Costabile, Giuseppe Desolda, Rosa Lanzilotti, Maristella
Matera, Antonio Piccinno, and Matteo Picozzi. Personal information spaces in the context
of visits to archaeological parks. In Proceedings of the Biannual Conference of the Italian
Chapter of SIGCHI, page 5. ACM, 2013.

[7] Liam J. Bannon and Susanne Bødker. Constructing common information spaces. In ECSCW,
pages 81–, 1997.

[8] Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv., 41(1), 2008.

[9] Eric Bonabeau. Decisions 2.0: the power of collective intelligence. MIT Sloan management
review, 50(2):45–52, 2009.

[10] Paolo Bottoni, Alessandro Cotroneo, Michele Cuomo, Stefano Levialdi, Emanuele Panizzi,
Marco Passavanti, and Rosa Trinchese. Facilitating interaction and retrieval for annotated
documents. International Journal of Computational Science and Engineering, 5(3):197–206,
2010.

[11] Paolo Bottoni, Stefano Levialdi, Nicola Pambuffetti, Emanuele Panizzi, and Rosa Trinchese.
Storing and retrieving multimedia web notes. IJCSE, 2(5/6):341–358, 2006.

135

http://pipes.yahoo.com/pipes/

Bibliography

[12] Ulrik Brandes. On variants of Shortest-Path Betweenness Centrality and their Generic Com-
putation. Social Networks, 30(2), 2008.

[13] Andreas Brodt and Daniela Nicklas. The telar mobile mashup platform for nokia internet
tablets. In Alfons Kemper, Patrick Valduriez, Noureddine Mouaddib, Jens Teubner, Mokrane
Bouzeghoub, Volker Markl, Laurent Amsaleg, and Ioana Manolescu, editors, EDBT, volume
261 of ACM International Conference Proceeding Series, pages 700–704. ACM, 2008.

[14] Stefano Burigat and Luca Chittaro. On the effectiveness of overview+detail visualization on
mobile devices. Personal and Ubiquitous Computing, 17:371–385, 2013.

[15] Margaret M. Burnett, Curtis R. Cook, and Gregg Rothermel. End-user software engineering.
Commun. ACM, 47(9):53–58, 2004.

[16] Cinzia Cappiello, Florian Daniel, Agnes Koschmider, Maristella Matera, and Matteo Picozzi.
A quality model for mashups. In Sören Auer, Oscar Díaz, and George A. Papadopoulos,
editors, ICWE, volume 6757 of Lecture Notes in Computer Science, pages 137–151. Springer,
2011.

[17] Cinzia Cappiello, Florian Daniel, and Maristella Matera. A quality model for mashup compo-
nents. In Martin Gaedke, Michael Grossniklaus, and Oscar Díaz, editors, ICWE, volume 5648
of Lecture Notes in Computer Science, pages 236–250. Springer, 2009.

[18] Cinzia Cappiello, Florian Daniel, Maristella Matera, and Cesare Pautasso. Information quality
in mashups. IEEE Internet Computing, 14(4):14–22, 2010.

[19] Cinzia Cappiello, Florian Daniel, Maristella Matera, Matteo Picozzi, and Michael Weiss. En-
abling end user development through mashups: Requirements, abstractions and innovation
toolkits. In IS-EUD, pages 9–24, 2011.

[20] Cinzia Cappiello, Maristella Matera, and Matteo Picozzi. End-user development of mobile
mashups. In Aaron Marcus, editor, HCI (12), volume 8015 of Lecture Notes in Computer
Science, pages 641–650. Springer, 2013.

[21] Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Alessandro Caio, and Mariano Tomas
Guevara. Mobimash: end user development for mobile mashups. In Mille et al. [72], pages
473–474.

[22] Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Florian Daniel, and Adrian Fernandez.
Quality-aware mashup composition: Issues, techniques and tools. In Mille et al. [72], page In
print.

[23] Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Gabriele Sprega, Donato Barbagallo, and
Chiara Francalanci. Dashmash: A mashup environment for end user development. In Proc. of
Web Engineering - 11th International Conference, ICWE 2011, Paphos, Cyprus, June 20-24,
2011, volume 6757 of LNCS, pages 152–166. Springer, 2011.

[24] Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Gabriele Sprega, Donato Barbagallo,
and Chiara Francalanci. Dashmash: a mashup environment for end user development. In Web
Engineering, pages 152–166. Springer, 2011.

[25] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in information visualiza-
tion - using vision to think. Academic Press, 1999.

[26] Nicole Carrier, Tom Deutsch, Chris Gruber, Mark Heid, and Lisa Lucadamo Jarrett. The
business case for enterprise mashups. IBM White Paper, 2008.

[27] Peter H. Carstensen and Carsten Sørensen. From the social to the systematic mechanisms
supporting coordination in design. Computer Supported Cooperative Work, 5(4):387–413,
1996.

136

Bibliography

[28] Fabio Casati. How end-user development will save composition technologies from their con-
tinuing failures. In End-User Development, pages 4–6. Springer, 2011.

[29] Fabio Casati, Florian Daniel, Antonella De Angeli, Muhammad Imran, Stefano Soi, Chrito-
pher R. Wilkinson, and Maurizio Marchese. Developing mashup tools for end-users: On the
importance of the application domain. IJNGC, 3(2), 2012.

[30] Stefano Ceri, Maristella Matera, Francesca Rizzo, and Vera Demaldé. Designing data-intensive
web applications for content accessibility using web marts. Commun. ACM, 50(4):55–61,
2007.

[31] Prach Chaisatien and Takehiro Tokuda. A description-based composition method for mobile
and tethered mashup applications. J. Web Eng., 12(1&2):93–130, 2013.

[32] Olexiy Chudnovskyy, Christian Fischer, Martin Gaedke, and Stefan Pietschmann. Inter-widget
communication by demonstration in user interface mashups. In Web Engineering, pages 502–
505. Springer, 2013.

[33] F Daniel, M Matera, and M Weiss. Web mashups: leveraging user innovation. Technical
report, Technical report, Politecnico di Milano, 2009.

[34] Florian Daniel, Fabio Casati, Boualem Benatallah, and Ming-Chien Shan. Hosted universal
composition: Models, languages and infrastructure in mashart. In Alberto H. F. Laender, Sil-
vana Castano, Umeshwar Dayal, Fabio Casati, and José Palazzo Moreira de Oliveira, editors,
ER, volume 5829 of Lecture Notes in Computer Science, pages 428–443. Springer, 2009.

[35] Florian Daniel, Fabio Casati, Boualem Benatallah, and Ming-Chien Shan. Hosted universal
composition: Models, languages and infrastructure in mashart. In Conceptual Modeling-ER
2009, pages 428–443. Springer, 2009.

[36] Florian Daniel, Agnes Koschmider, Tobias Nestler, Marcus Roy, and Abdallah Namoun. To-
ward process mashups: key ingredients and open research challenges. In Proceedings of the
3rd and 4th International Workshop on Web APIs and Services Mashups, page 9. ACM, 2010.

[37] Florian Daniel, Maristella Matera, and Michael Weiss. Next in mashup development: User-
created apps on the web. IT Professional, 13(5):22–29, 2011.

[38] Dapper. http://open.dapper.net.

[39] Gerhard Fischer. End-user development and meta-design: Foundations for cultures of partici-
pation. In IS-EUD, pages 3–14, 2009.

[40] Gerhard Fischer. Understanding, fostering, and supporting cultures of participation. Interac-
tions, 18(3):42–53, 2011.

[41] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40:35–41,
1977.

[42] Hendrik Gebhardt, Martin Gaedke, Florian Daniel, Stefano Soi, Fabio Casati, Carlos A Igle-
sias, and Scott Wilson. From mashups to telco mashups: a survey. Internet Computing, IEEE,
16(3):70–76, 2012.

[43] Antonietta Grasso and Gregorio Convertino. Collective intelligence in organizations: Tools
and studies. Comput. Supported Coop. Work, 21(4-5):357–369, October 2012.

[44] Thomas R. G. Green and Marian Petre. Usability analysis of visual programming environ-
ments: A ’cognitive dimensions’ framework. J. Vis. Lang. Comput., 7(2):131–174, 1996.

[45] Matthias Heinrich, Franz Josef Grüneberger, Thomas Springer, and Martin Gaedke. Reusable
awareness widgets for collaborative web applications - a non-invasive approach. In ICWE,
pages 1–15, 2012.

137

http://open.dapper.net

Bibliography

[46] Kasper Hornbæk. Current practice in measuring usability: Challenges to usability studies and
research. International Journal of Man-Machine Studies, 64(2):79–102, 2006.

[47] http://www.w3.org/2008/webapps/wiki/PubStatus. Api specification documents. Technical
report, W3C, January 2014.

[48] http://www.w3.org/TR/2013/WD-components-intro 20130606/. Introduction to web compo-
nents. Technical report, W3C, June 2013.

[49] http://www.w3.org/TR/widgets/. Widget packaging and xml configuration. Technical report,
W3C, November 2012.

[50] Thomas P Hughes. The evolution of large technological systems. The social construction of
technological systems: New directions in the sociology and history of technology, pages 51–82,
1987.

[51] B. Iyer and T.H. Davenport. Reverse engineering google’s innovation machine. Harvard
Busines Review, 86(4):58–69, 2008.

[52] JackBePresto. http://jackbe.com.

[53] Till Janner, Robert Siebeck, Christoph Schroth, and Volker Hoyer. Patterns for enterprise
mashups in b2b collaborations to foster lightweight composition and end user development.
In Web Services, 2009. ICWS 2009. IEEE International Conference on, pages 976–983. IEEE,
2009.

[54] Anant Jhingran. Enterprise information mashups: Integrating information, simply. In VLDB,
pages 3–4, 2006.

[55] Robert Johansen. Groupware: Computer support for business teams. The Free Press, 1988.

[56] K. Khan and C. Locatis. Searching through cyberspace: The effects of link display and link
density on information retrieval from hypertext on the world wide web. Journal of the Ameri-
can Society for Information Science, 49(2):176–182, 1998.

[57] Andrew Jensen Ko, Brad A. Myers, and Htet Htet Aung. Six learning barriers in end-user
programming systems. In VL/HCC, pages 199–206. IEEE Computer Society, 2004.

[58] Reto Krummenacher, Barry Norton, Elena Simperl, and Carlos Pedrinaci. Soa4all: enabling
web-scale service economies. In Semantic Computing, 2009. ICSC’09. IEEE International
Conference on, pages 535–542. IEEE, 2009.

[59] Reto Krummenacher, Barry Norton, Elena Paslaru Bontas Simperl, and Carlos Pedrinaci.
Soa4all: Enabling web-scale service economies. In ICSC, pages 535–542. IEEE Computer
Society, 2009.

[60] Markus Latzina and Joerg Beringer. Transformative user experience: beyond packaged design.
Interactions, 19(2):30–33, 2012.

[61] Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,
2002.

[62] Henry Lieberman, Fabio Paternò, and Volker Wulf. End user development, volume 9. Springer,
2006.

[63] Henry Lieberman, Fabio PaternÚ, and Volker Wulf. End User Development, volume 9 of
Human-Computer Interaction Series. Springer, 2004.

[64] Xuanzhe Liu, Gang Huang, and Hong Mei. Towards end user service composition. In COMP-
SAC (1), pages 676–678. IEEE Computer Society, 2007.

[65] David Lizcano, Fernando Alonso, Javier Soriano, and Genoveva López. Supporting end-user
development through a new composition model: An empirical study. J. UCS, 18(2):143–176,
2012.

138

http://jackbe.com

Bibliography

[66] David Lizcano, Javier Soriano, Marcos Reyes, and Juan J Hierro. Ezweb/fast: reporting on a
successful mashup-based solution for developing and deploying composite applications in the
upcoming web of services. In Proceedings of the 10th International Conference on Information
Integration and Web-based Applications & Services, pages 15–24. ACM, 2008.

[67] Xiangfeng Luo, Marc Spaniol, Lizhe Wang, Qing Li, Wolfgang Nejdl, and Wu Zhang, edi-
tors. Advances in Web-Based Learning - ICWL 2010 - 9th International Conference, Shang-
hai, China, December 8-10, 2010. Proceedings, volume 6483 of Lecture Notes in Computer
Science. Springer, 2010.

[68] Maristella Matera, Matteo Picozzi, Michele Pini, and Marco Tonazzo. Peudom: a mashup
platform for the end user development of common information spaces. In Web Engineering,
pages 494–497. Springer, 2013.

[69] Maristella Matera, Matteo Picozzi, Michele Pini, and Marco Tonazzo. Peudom: A mashup
platform for the end user development of common information spaces. In Florian Daniel,
Peter Dolog, and Qing Li, editors, ICWE, volume 7977 of Lecture Notes in Computer Science,
pages 494–497. Springer, 2013.

[70] E. Michael Maximilien. Mobile mashups: Thoughts, directions, and challenges. In ICSC,
pages 597–600. IEEE Computer Society, 2008.

[71] E. Michael Maximilien, Hernán Wilkinson, Nirmit Desai, and Stefan Tai. A domain-specific
language for web apis and services mashups. In ICSOC, volume 4749 of LNCS, pages 13–26.
Springer, 2007.

[72] Alain Mille, Fabien L. Gandon, Jacques Misselis, Michael Rabinovich, and Steffen Staab,
editors. Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, April
16-20, 2012 (Companion Volume). ACM, 2012.

[73] Abdallah Namoun, Tobias Nestler, and Antonella De Angeli. Conceptual and usability issues
in the composable web of software services. In Florian Daniel and Federico Michele Facca,
editors, ICWE Workshops, volume 6385 of Lecture Notes in Computer Science, pages 396–407.
Springer, 2010.

[74] Abdallah Namoun, Tobias Nestler, and Antonella De Angeli. Service composition for non-
programmers: Prospects, problems, and design recommendations. In Antonio Brogi, Cesare
Pautasso, and George Angelos Papadopoulos, editors, ECOWS, pages 123–130. IEEE Com-
puter Society, 2010.

[75] Abdallah Namoun, Tobias Nestler, and Antonella De Angeli. Conceptual and usability issues
in the composable web of software services. In Current Trends in Web Engineering, pages
396–407. Springer, 2010.

[76] Felix Naumann. Quality-Driven Query Answering for Integrated Information Systems, volume
2261 of Lecture Notes in Computer Science. Springer, 2002.

[77] Michael Nebeling, Stefania Leone, and Moira C Norrie. Crowdsourced web engineering and
design. In Web Engineering, pages 31–45. Springer, 2012.

[78] Michael Nebeling, Stefania Leone, and Moira C. Norrie. Crowdsourced web engineering and
design. In Marco Brambilla, Takehiro Tokuda, and Robert Tolksdorf, editors, ICWE, volume
7387 of Lecture Notes in Computer Science, pages 31–45. Springer, 2012.

[79] Tobias Nestler, Marius Feldmann, Gerald Hübsch, André Preußner, and Uwe Jugel. The serv-
face builder-a wysiwyg approach for building service-based applications. In Web Engineering,
pages 498–501. Springer, 2010.

[80] Sumaru Niida, Satoshi Uemura, and Hajime Nakamura. Mobile services. Vehicular Technology
Magazine, IEEE, 5(3):61–67, 2010.

139

Bibliography

[81] Cesare Pautasso and Monica Frisoni. The mashup atelier. In George Feuerlicht and Winfried
Lamersdorf, editors, Service-Oriented Computing ñ ICSOC 2008 Workshops, volume 5472 of
Lecture Notes in Computer Science, pages 155–165. Springer Berlin Heidelberg, 2009.

[82] Matteo Picozzi, Marta Rodolfi, Cinzia Cappiello, and Maristella Matera. Quality-based rec-
ommendations for mashup composition. In Proc. of ComposableWeb 2010, in print, 2010.

[83] Matteo Picozzi, Nervo Verdezoto, Matti Pouke, Jarkko Vatjus-Anttila, and Aaron J. Quigley.
Traffic visualization - applying information visualization techniques to enhance traffic plan-
ning. In Sabine Coquillart, Carlos Andújar, Robert S. Laramee, Andreas Kerren, and José
Braz, editors, GRAPP/IVAPP, pages 554–557. SciTePress, 2013.

[84] José Matías Rivero, Sebastian Heil, Julián Grigera, Martin Gaedke, and Gustavo Rossi. Mock-
api: an agile approach supporting api-first web application development. In Web Engineering,
pages 7–21. Springer, 2013.

[85] Agnes Ro, Lily Shu-Yi Xia, Hye-Young Paik, and Chea Hyon Chon. Bill organiser portal:
A case study on end-user composition. In WISE Workshops, volume 5176 of LNCS, pages
152–161. Springer, 2008.

[86] David E. Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan, and Ashutosh Singh.
Damia: data mashups for intranet applications. In Jason Tsong-Li Wang, editor, SIGMOD
Conference, pages 1171–1182. ACM, 2008.

[87] David E Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan, and Ashutosh Singh.
Damia: data mashups for intranet applications. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 1171–1182. ACM, 2008.

[88] John B Smith. Collective intelligence in computer-based collaboration. Psychology Press,
1994.

[89] Josef Spillner, Marius Feldmann, Iris Braun, Thomas Springer, and Alexander Schill. Ad-hoc
usage of web services with dynvoker. In ServiceWave, volume 5377 of LNCS, pages 208–219.
Springer, 2008.

[90] Josef Spillner, Marius Feldmann, Iris Braun, Thomas Springer, and Alexander Schill. Ad-hoc
usage of web services with dynvoker. In Petri Mähönen, Klaus Pohl, and Thierry Priol, editors,
Towards a Service-Based Internet, volume 5377 of Lecture Notes in Computer Science, pages
208–219. Springer Berlin Heidelberg, 2008.

[91] A. G. Sutcliffe, M. Ennis, and S. J. Watkinson. Empirical studies of end-user information
searching. J. Am. Soc. Inf. Sci., 51(13):1211–1231, 2000.

[92] E. von Hippel. Democratizing Innovation. MIT Press, 2005.

[93] Eric Von Hippel. Democratizing innovation: The evolving phenomenon of user innovation.
Journal für Betriebswirtschaft, 55(1):63–78, 2005.

[94] Jen-Her Wu, Yung-Cheng Chen, and Li-Min Lin. Empirical evaluation of the revised end user
computing acceptance model. Computers in Human Behavior, 23(1):162 – 174, 2007.

[95] Ke Xu, Xiaoqi Zhang, Meina Song, and Junde Song. Mobile mashup: Architecture, chal-
lenges and suggestions. In Management and Service Science, 2009. MASS ’09. International
Conference on, pages 1 –4. IEEE Computer Society, sept. 2009.

[96] Jin Yu, Boualem Benatallah, Régis Saint-Paul, Fabio Casati, Florian Daniel, and Maris-
tella Matera. A framework for rapid integration of presentation components. In Carey L.
Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy, editors,
WWW, pages 923–932. ACM, 2007.

140

	Introduction
	Rationale
	Mashups and User Driven Innovation
	UI-centric Composition
	Problem Statement
	Contributions
	Research Methods
	Validation
	Thesis Outline

	Background and related works
	Mashups
	Mashup components
	Mashup types
	Integration logic
	Advanced mashups

	End-user development and mashup development
	User-driven innovation
	Long tail applications
	End-users involvement in the mashup development scenario
	Collaboration in mashup development

	Mashup Tools
	W3C standards

	UI-centric composition paradigm
	Adopting EUD principles
	Development process
	Selection of data services and visual templates
	Visual mapping
	Schema generation and execution on multiple devices
	Component synchronization within UI mashups
	Composition assistance mechanisms
	Collaboration

	Models
	Models for UI Component synchronization
	UI Component synchronization
	Domain Specific Languages

	Visual Integration Model
	UI-based integration of data sources
	Domain Specific Language
	Union and fusion

	Models for quality-aware mashup composition
	Dimensions for quality-aware assisted composition
	Community perceived quality

	Collaboration model

	PEUDOM
	Overall functionalities and architecture
	Composition environments
	UI Mashup Dashboard
	Component Editor

	Execution environments
	UI Mashup Engine
	Multi-device execution engines

	Composition Assistance Module
	Collaboration modules
	Sharing resources
	Architecture

	Validation of the proposed approaches
	Performance evaluation
	Mashup composition and execution
	Data-fusion
	Performances on mobile devices

	User studies
	Overall methodology
	Study on the mashup composition paradigm
	Study on the component creation
	Preliminary study on collaboration mechanisms
	Preliminary study on domain-specific customization

	Composition assistance mechanisms

	Conclusions and future work
	Impact of the developed framework
	Future work
	Achievements

	Bibliography

