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Abstract

LIGHT weight and flexible manipulators have many advantages over heavy and
rigid manipulators such as lower energy consumption, higher payload to manip-
ulator weight ratio, small actuators to move manipulator arm, and safe to operate

with human coworker due to low inertia. These benefits come at the cost of flexibility
in links or joints. The flexibility leads to vibrations on the endeffector.

The control objective in the case of flexible link manipulators is that of achieving
desired endeffector trajectory tracking and suppressing vibrations of the endeffector.
Control design of such systems needs accurate dynamic models to obtain the desired
performance requirements. Many model based controllers were developed in the past
for flexible link manipulators. But these studies were limited to planar flexible link
manipulators.

In this thesis, a systematic approach for the dynamic modeling and control of spatial
flexible link manipulators is presented. A general purpose code has been developed
in MATLAB to derive the multi-body dynamic model of flexible manipulators for nu-
merical simulation and control design. In the dynamic formulation, the principle of
virtual work is used to derive the equations of motion in an absolute coordinate system
for general purpose implementation. Then, the dynamic model in the absolute coor-
dinates system is converted into independent coordinates form using a recursive kine-
matic formulation. The advantage of general purpose algorithm is it uses minimum set
of equations that define the dynamics of flexible manipulator, which is required in con-
trol design to reduce computational effort. In addition, it allows the dynamic modeling
of any arbitrary manipulator configuration that consists of rigid links, flexible links and
flexible joints.

To control the spatial flexible link manipulator, model based controllers such as PD
control, stable inversion control, nonlinear control, adaptive control are developed. The
simulation results of spatial flexible link manipulator that consists of three flexible links
and three revolute joints is presented to compare the performance of each controller in
terms of trajectory tracking and vibration suppression.

The dynamic model validation and performance of model based controllers are ex-
perimentally tested on a single flexible link manipulator. Numerical and experimen-
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tal results showed that adaptive control have better performance in terms of trajectory
tracking and vibration suppression compared to PD control, Stable inversion control
and nonlinear control in the presence of additional unknown payload mass.

Keywords: Dynamic modeling, spatial flexible manipulators, recursive kinematic
formulation, PD control, stable inversion control, nonlinear control, adaptive control
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Summary

ROBOT manipulators are designed to increase the productivity and to help humans
in tedious and hazardous work environment. These manipulators are made
of heavy and stiff materials to achieve high precision on endeffector motion.

Heavy robot manipulators have higher mass to payload ratio, consume more power and
have limited operation speed. To improve the performance of rigid robot manipula-
tors, the focus on light weight and flexible manipulators has increased in recent years.
The applications of light weight manipulators can be found in space, construction, and
medical field.

The control of light weight manipulators is complex based on the nature of flexibility
in the system, i.e. flexible joints, flexible links or flexible joints and links. Among
them, the most difficult task is to control the flexible link manipulators because of link
flexibility, under actuation and non-minimal phase nature. Under actuation is due to
finite number of actuators to control infinite degrees of freedom that arise due to link
flexibility. Non-minimum phase nature occurs because of non-collocation of actuators
and sensors.

Despite of various advantages, the flexible link manipulators have less progress at
the industrial level applications. There is a need to bring the advantages of flexible
link manipulators to more general industrial applications by eliminating the difficulties
surrounded to it such as modeling link flexibility, under actuation and non-minimum
phase nature in control design. The dynamic modeling that includes the link or joint
flexibility is considered as an important step in model based control design to achieve
better performance. In the past, many model based controllers were developed for
flexible links manipulators but these studies are limited to planar models.

The following research work is dedicated to identify and develop a systematic ap-
proach for the dynamic modeling that can accurately include the flexibility and to de-
velop model based control for spatial flexible manipulators to achieve desired trajectory
tracking.

In chapter [1], the introduction to the applications of flexible manipulators is pre-
sented. The state of the art on the dynamic modeling and control of flexible manipula-
tors is discussed. Then, the objective of the research work is presented.
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In chapter [2], the kinematic and dynamic formulation is presented for spatial flex-
ible manipulators. The kinematics of flexible links is defined using floating reference
formulation. The elastic deformations of flexible links are defined using the Euler
Bernoulli beam formulation. Finite element method is used to discretize the flexible
link to get finite dimensional dynamic models. The equations of motion of flexible
manipulators are derived using the principle of virtual work in an absolute coordinate
system. Then, the set of equations in absolute coordinates is converted into relative
or independent coordinates using recursive kinematic formulations. A general purpose
multi-body code structure developed based on the dynamic formulation is presented in
this chapter. The simulation results of spatial RRR flexible manipulator is presented to
study the effect of link and joint flexibility on the manipulator dynamics.

In chapter [3], model based controllers are designed for spatial flexible link manipu-
lators. PD control, Stable inversion control, nonlinear control, and adaptive control are
designed and implemented on a spatial RRR flexible link manipulator. The nonlinear
control and adaptive control derived in this chapter considers the friction and damp-
ing effect at the manipulator joints. The performance of model based controllers are
compared in terms of trajectory tracking and vibration suppression.

In chapter [4], the experimental setup of a single link flexible manipulator is pre-
sented. In the real system, the friction at manipulator joint plays an important role in
position control. The coulomb and viscous friction compensator is designed based on
set of experiments. The dynamic model is verified and performance of model based
controllers are compared with additional unknown payload mass on the endeffector.

In chapter [5], the conclusions on the dynamic modeling and model based con-
trollers for spatial flexible link manipulators are presented.
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CHAPTER1
Introduction

Robot manipulators are designed to increase the productivity and to help humans in
tedious and hazardous work environment. The manipulator arms are made of heavy
and stiff materials to achieve high precision on endeffector motion. However, the
heavy manipulator arms are required to have bulky actuators for robot manipulation
in workspace. In addition, the heavy manipulators have higher mass, consume more
power and have limited operation speed with respect to operating payload. In order to
built power efficient robot manipulators and to increase the operation speed, the focus
is switched towards development of light weight manipulators [28].

The applications of lightweight manipulators can be found in space, construction,
and medical field. In space applications, the space shuttle is equipped with a long
reach manipulator to assist the astronauts in extra vehicular activities [44]. The Shuttle
Remote Manipulation System (RMS), CANADARM shown in figure (1.1) is a 15.3 m
long, 38 cm in diameter, and weighs 408 kg. It has six joints similar to that of human
arm. The Shuttle RMS can handle payloads with masses up to 29,500 kg.

In construction applications, the truck mounted concrete boom structures shown in
figure (1.2) is used to transport the concrete. These manipulators can have vertical
movement up to 31.2 m, and horizontal movement up to 26.5 m.

Another attractive feature of light weight manipulators is safe to work along with
human coworker and easy transportability. With these advantages, the use of light
weight manipulators is emerging in the field of automotive, medical, and various gen-
eral purpose industrial applications. The KUKA and DLR together developed such a
light weight manipulator that, weighting 13.5 Kg, can handle 15 Kg load.

The benefits of light weight manipulators come at the cost of flexibility in joints,
links or both. For instance, KUKA DLR lightweight manipulator showed in figure
(1.3) is treated as flexible joint manipulator due to the harmonic drive transmission,
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Chapter 1. Introduction

Figure 1.1: Space shuttle remote manipulation system.

differential gear drive and frictional effect [60] [2]. The shuttle RMS [17] and concrete
boom structure [26] have a long slender links made of lightweight materials treated as
a flexible link manipulator. The flexible links can lead to vibrations on the end-effector
and complex dynamic behavior to the whole system.

The control of light weight manipulators is complex based on the nature of flexibility
in the system, i.e. flexible joints, flexible links or flexible joints and links. Among
them, the most difficult task is to control the flexible link manipulators because of
link flexibility, under actuation and non-minimal phase nature. Under actuation is due
to finite number of actuators to control infinite degrees of freedom that arise due to
link flexibility [5]. Non-minimum phase nature occurs because of non-collocation of
actuators and sensors [70].

Despite of various advantages, the flexible link manipulators have less the progress
at the industrial level. There is a need to bring the advantages of flexible link manipu-
lators to more general industrial applications by eliminating the difficulties surrounded
to it such as modeling link flexibility, under actuation and non-minimum phase nature
in control design. The dynamic modeling that includes the link or joint flexibility is
considered as an important step in model based control design and to achieve better
performance. The following research work is dedicated to identify and develop a sys-
tematic approach for the dynamic modeling and model based control of spatial flexible
manipulators.

1.1 State of the art

The state of the art on dynamic modeling and control of flexible manipulators are
discussed in this section. At first the various dynamic formulations and techniques for
the modeling of flexible manipulators are presented. Then, the control techniques to
achieve desired trajectory tracking and vibration suppression are presented.
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Figure 1.2: Truck mounted concrete boom pump.

Figure 1.3: Kuka DLR Light weight robot.

1.1.1 Dynamic modeling of flexible manipulators

Dynamic modeling is an important step in the control design process. The perfor-
mance of the controller mainly depends on the accuracy of the dynamic models that are
used in control design.

The dynamics of the robot manipulators can be derived using various methods such
as Newton-Euler, principle of virtual work, Lagrangian-Euler, Gibbs-Appell, Hamilton
principle. Many algorithms were developed based on these methods to define equations
of motion.

The inclusion of the dynamics due to flexibility makes the robot manipulator a
highly nonlinear model. It also establishes strong coupling between gross rigid body
motion and elastic deformations of links or joints. The techniques to model flexibility
in manipulator dynamics are presented below.

3
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Chapter 1. Introduction

Flexible Joint Manipulators

Flexible joint manipulators are assumed to have rigid links and flexible joints. In
[58] the joint flexibility was modeled as a linear spring and showed that as the stiffness
goes to infinity the model behaves like a rigid manipulator.

In [53] the dynamic model of two revolute joint robot with flexible joint is derived.
The flexible joint have servo stiffness and damping modeled along with stiffness and
damping of drive system. A series of simple torsional spring is used to model servo
stiffness and drive stiffness. The resulting torque stiffness equation at joints along with
equations of motion of rigid links is a highly coupled nonlinear ordinary differential
equations. From the numerical investigation, it is concluded that the servo damping
plays an important role in dynamic response of the system.

A generic dynamic model was developed in [31] for an industrial KUKA IR 761
robot manipulator which includes joint elasticity due to electric drives. In [39], the
dynamics of a n-link flexible manipulator was modeled with revolute flexible joints
described as a linear torsional spring with known stiffness.

The DLR medical robot in [43] is a redundant robot with 4 flexible joints. It consid-
ers the elasticity of joint due to harmonic drive and differential gear transmission. The
elastic joint was modeled as a linear torsional spring. The resulting dynamic model has
a strong coupling between the flexible joint and link motion.

Flexible Link Manipulator

Flexible link manipulators are assumed to have rigid joints and flexible links. The
links are considered to have low stiffness because of lightweight materials. The dy-
namics of link flexibility can be modeled using Euler-Bernoulli beam equation or Tim-
oshenko beam equation.

The dynamics of beam deformations can be described using partial differential equa-
tion. With the inclusion of dynamics due to link flexibility, the dynamic model takes the
form of coupled nonlinear ordinary and partial differential equation. The flexible link
manipulator system has distributed dynamic parameters which are characterized by in-
finite number of degrees of freedom. The exact solution of such systems is not feasible.
To simplify the modeling process, the continuous systems can be discretized by using
assumed mode method (AMM), finite element method (FEM), finite difference method
(FDM) and Lumped parameter method (LPM).

Assumed Mode Method

In AMM, the flexibility of link is truncated to obtain finite number of modes that
can accurately represent the dynamic parameters of the flexible link. This method as-
sumes the deflection of link is small and expresses the deflection as summation of finite
number modes. Each mode is defined as product of two functions, first as a function
of distance along manipulator length and other function as generalized coordinates de-
pending on time.

In [73], the dynamic model was developed using recursive Lagrangian approach via
transformation matrix and modeled the link flexibility using AMM. The transformation
matrix is a 4x4 matrix that includes the joint flexibility. This method is an extension
to classical rigid body transformation matrix. The advantage of this approach is that it
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1.1. State of the art

represents both joint and link deflection motion in the form of transformation matrix
and can be easily used in algorithm implementation.

A closed form dynamic modeling approach for a planar multi-link manipulators
were presented in [4]. A Lagrangian approach and AMM was used to model the dy-
namics of planar multi-link flexible manipulator.

In [72], a linearized dynamic model for a multi-link planar flexible manipulator
was derived using Euler-Lagrangian formulation and AMM. The dynamic model is
linearized around rigid body motion to decouple the rigid and elastic deformation of
manipulator.

The truncated modes of flexible link to approximate the dynamic behavior of system
are not the same when the manipulator has a payload mass on the endeffector. The
effect of endeffector payload mass on the modes of flexible link was studied in [52]
[50]. A two link planar flexible manipulator was considered to study the dynamics of
system with additional payload mass on endeffector. In those studies, a closed form
dynamic equation using Euler-Lagrangian formulation and AMM was derived to show
the effect of payload on dynamic behavior of the system.

There were number of research studies on AMM because of the simplicity in dy-
namic formulation. However, the main drawback of this method is that it is difficult to
find modes for non-regular cross-sections. And the choice of boundary conditions for
multilink manipulator is not unique. The possible boundary conditions reported in the
literature are clamped, pinned-pinned, free-free boundary conditions. In [22], it was
reported that if the beam to hub inertia ratio is small, the clamped boundary condition
yields better results than pinned boundary conditions.

Finite Element Method

Using Finite element method, the drawbacks of AMM such as defining boundary
conditions and irregular geometry can be accounted in a straightforward way. In this
method, the continuous flexible links are divided in number of small elements. The
displacements at any point on the link are expressed in terms of nodal displacements
and polynomial interpolation function defined in element. The dynamics of each finite
element is derived first then the elements are assembled based on element connectivity
to obtain dynamics of the whole system.

The comparison between two discretization techniques such as AMM and FEM was
studied in [64] to efficiently define link flexibility in manipulator dynamics. Lagrangian
equation was used to derive closed form dynamic equations of motions. The numerical
results were presented for a flexible spherical (RRP) manipulator and stated that FEM
overestimates the structural stiffness but it takes fewer operations to compute inertia
matrix.

A general purpose computer program SPACAR for numerical simulations of flex-
ible mechanism and manipulators was developed in [33]. SPACAR used a finite ele-
ment based Lagrangian formulation to define dynamics of the system. The program
was incorporated with virtual power type approach, to automatically eliminate the non-
working constraints forces and reactions. This approach leads the Lagrangian formula-
tion into a minimal set of ordinary differential equations.

In [57] the numerical and experimental investigation on dynamic modeling of flex-
ible manipulators was done. A planar constrained model was considered for dynamic

5



i
i

“thesis” — 2014/1/10 — 13:24 — page 6 — #14 i
i

i
i

i
i

Chapter 1. Introduction

model verification. The dynamic model was developed using Lagrangian approach and
finite element method. The experimental validation was carried out on a single link flex-
ible manipulator and compared with numerical finite element model in both frequency
and time domain. The FEM model showed closer agreement with the experimental
results.

A redundant Lagrangian FEM formulation for the dynamic modeling of flexible
links and joints was presented in [47]. The elastic deformation on each link is assumed
due to bending and torsion. The deformation of each link is expressed in tangential
local floating frame. The constrained equations due to connectivity of each link are
added to equations of motion by using Lagrangian multiplier. Other works on dynamic
modeling of spatial flexible manipulator based on Lagrangian formulation and FEM
were addressed in [67] [34].

The advantage of FEM method is that it can consider complex geometric shapes
and have no difficulties in defining the boundary conditions that exist in AMM. Other
important thing is that it can make use of existing and well defined FEM algorithms
for dynamic modeling of flexible manipulators to accurately define rigid and flexible
dynamics.

Finite Difference Method

Finite difference method is also used to approximate the dynamic characteristics
of flexible manipulators. This method discretizes the system into several segments
and develops a linear relation for deflection of the end of each segments using finite
difference approximation.

An algorithm was proposed for a real time simulation of flexible manipulator using
FDM in [55]. The performance of the algorithm was tested on a single link flexible
incorporating hub inertia and payload.

In [56] the study on FEM and FDM was done to investigate the dynamic characteris-
tics of the flexible manipulator system based on the accuracy, computational efficiency
and computational requirement. Both methods were compared on a single link flexible
manipulator and the results demonstrated that FEM representation was more accurate
and more efficient performance can be achieved compared to FDM.

Lumped Parameter Method

Lumped Parameter method is a simple method to model the dynamics of flexible
link. This method basically defines the continuous flexible link as lumped masses and
massless springs. There are two approaches to define the characteristics of concentrated
mass and springs. One of them is a numerical approach that uses finite element method
or Holzer method [15]. The other one is an experimental approach that uses a series of
experiments to define parameters of a flexible link.

In [68] the finite element method associated with model analysis was used to model
distributed system into lumped parameter model. The lumped parameter model was
defined as a cascade system of concentrated point masses and weightless linear and
angular spring.

In Holzer method [20] the flexible link was partitioned in to small divisions. The
total mass of each division is treated as two equal concentrated masses at the ends of
division. The lumped mass on the division points is connected by an elastomer without
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mass. The lumped mass is also called as station and elastomer between lumped mass is
called field.

In [69] the lumped parameter model of flexible link was defined using equivalent
representation of virtual rigid link and passive joints such as springs and dampers. The
parameters of virtual rigid link and passive joints were identified by using measured
data of real flexible link.

The advantage of lumped parameter method is that it does not involve complex
mode shape functions compared to finite element method and assumed mode method.
However, it cannot be used if the flexible link manipulator has complex geometric
shapes.

1.1.2 Control of flexible manipulators

The primary objective of control for a flexible link manipulator is to compute input
torque necessary to drive the system in a desired trajectory and minimizing the oscilla-
tion of the tip. The dynamic model of flexible manipulator is a nonlinear and coupled
differential equation. As stated in previous section, strong coupling exists between the
rigid body motion and the elastic modes. In control design, there should be a compro-
mise between rigid and elastic modes to achieve desired performance.

Many model based controllers were developed for flexible manipulators to achieve
desired trajectory tracking and vibration suppression. These are designed based on the
control schemes available for linear and nonlinear dynamic systems. Some of them
used a linearized dynamic model to simplify control design process. Moreover, the
linear control techniques to analyze system stability and robustness properties are very
well established.

The following nonlinear control techniques are widely used to design the controller
for flexible manipulator, i.e open loop method, feedback linearization method, singular
perturbation method, stable inversion method, Robust control, Adaptive control, sliding
mode technique, pole placement method, output redefinition, lead-lag control, iterative
learning method, and intelligent control methods such as Fuzzy Logic control, Neural
Network control.

Open loop method

In open loop control, the input signal is computed based on reference trajectory and
vibrations are controlled by modifying the input signal considering the physical and
vibrational properties of flexible link manipulators. The open loop control methods
developed for flexible link manipulators are command shaping method and computed
torque method based on model inversion.

A command shaping method for a single link flexible manipulator was proposed
in [75] [77]. This method computes the input signal required for a rest to rest motion
in a finite time and reduces the vibration of flexible link. The advantage of this method
is that it computes the input signal to suppress vibrations without measurement data by
solving a set of linear equation.

In [51] a feedforward control based on input shaping technique was proposed to
suppress vibrations. In the experiments, an unshaped bang-bang torque was used to
determine the dynamic parameters of the system. The parameters are then used in
input shaping technique to suppress vibrations.

7
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Chapter 1. Introduction

In computed torque method, the input torque is computed using model inversion
based of the desired output trajectory. In [66] a feedforward control was developed
based on inverse dynamic model. The dynamic model was derived in the form of dif-
ferential algebraic equations. In [1], an energy saving open loop control scheme was
proposed for a single link flexible manipulator to perform point to point motion in a
fixed time. For a given tip trajectory, the joint angle was computed using Artificial
Neural Network, and vector evaluated particle swarm optimization was used as a learn-
ing algorithm. The vibration suppression was realized along the joint trajectory using
minimum driving energy consumption. This method has an advantage of energy saving
because the residual vibrations are suppressed without measuring vibrations.

The open loop control methods are simple and require less measurement but they
are very sensitive to the model inaccuracy, system parameter variation, and uncertainty
in the implementation of desired trajectory. To overcome these issues, a feedback is
necessary to monitor the system behavior to improve the performance of the controller
and ensure stability of the system.

Feedback linearization Method

The first published and known work on feedback control of flexible manipulator
was presented in [74]. The theoretical studies of PD feedback control of two-link two
joint robot manipulator was presented. The joint position and velocity errors are used
in feedback loop with constant gains. The gains were calculated based on vibrational
properties to damp out the vibrations. The stability of the closed loop control was
analyzed using root-locus method.

In [54] studied extensively on control of flexible arms and influence of unmod-
eled dynamics in the system controllability and performance which is widely known
as spillover. After successful studies on different control challenges, there was a need
to develop and test these techniques on real platform. The first known flexible arm of
single link was developed at Aerospace robotics lab in Stanford University. In [63]
experimental studies on precise positioning of flexible arm by sensing the tip and arm
joint position are carried out. In this work, the concepts of non-collocated system robot
and non-minimum phase nature were addressed.

In [19] a model based controller was proposed using approximate inverse dynamics
and passive feedback control for a six degrees of freedom manipulator with flexible
links. In this approach, the non-minimum phase nature of the system is solved by intro-
ducing µ-tip rate which is output of the system and passive to input torque. The actual
tip position is approximated by µ-tip position using joint angles and elastic coordinates
by a parameter µ. The global asymptotic stability was proved using Lyapuonv function
for a PD feedback control. The advantage of this approach is that it does not require
measurement of elastic coordinates; the controller provides stable tracking by just using
joint angles and rates plus endeffector position and rates.

The collocated and noncollocated PD control for a single link manipulator was pro-
posed in [38]. Minimum phase system is achieved by exact transfer function which has
joint torque as input and joint angle plus weighted value of tip deflection as an output.
The non-minimum phase nature occurs when the tip position is considered as an output.
In this approach, the output of the link i.e. tip position is defined as joint angle plus
weighted value of tip deflection. The conditions for weighted value of tip is defined

8
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using infinite product expansion, root locus method such that the transfer function does
not have any open right half plane zeros.

Singular Perturbation Method

A Singular perturbation approach can be applied to control rigid body motion and
stabilize vibration along the trajectory. A well know work of trajectory control using
singular perturbation approach is in [16]. Using this approach, the system dynamics
are divided into slow and fast dynamics and a two stage controller was developed to
tackle system vibrations and trajectory tracking. Slow dynamics are mainly to control
the rigid body motion along the predefined trajectory along joint space. Fast dynamics
are responsible for stability of vibrations along the joint trajectory. In this approach, the
spill over problem in the fast dynamics is bounded by a perturbation parameter. Later
on, this approach is applied to design many controllers. Fast dynamic control and slow
dynamics control are controlled separately and many improvements are made on each
control to achieve desired performance.

A robust-optimal controller was proposed in [71] for a single link flexible manipu-
lator using singular perturbation approach. Slow dynamics (rigid modes) are controlled
using sliding mode method and optimal LQR is designed to stabilize the fast dynamics
(flexible modes). Angular position error is used to control rigid body dynamics, tip
deflections are measured using strain gauge. The proposed controller tested on a real
platform and the results showed good stability along trajectory.

A composite controller was developed in [6] for a three link spatial flexible ma-
nipulator using singular perturbation method. The composite controller is based on
Cartesian based PI control for endeffector trajectory tracking and pole placement feed-
back control to damp the vibrations along trajectory. The advantage of this method is it
does not require derivative of the endeffector position, and derivatives of strain gauge
in the feedback loop. The proposed controller was tested on a real platform FLEBOT
II.

Stable Inversion Method

Stable Inversion Method is another method widely used to design trajectory control
of flexible link manipulators. In this method, the dynamic model is inverted in the form
of Input-Output terms. In dynamic model inversion, the system has a non-minimum
phase nature when the endeffector is considered as output. There are several approaches
to make the model inversion stable in control design for trajectory tracking.

In [9] a joint based inversion approach was used to overcome the non-minimum
phase nature. In this case, the output of the system is considered as joint coordinates. In
this form, the model inversion has acceleration as an input and torque as an output. To
compute the torque corresponding to the desired endeffector trajectory with minimum
vibrations, both joint and elastic states are required. The elastic states for the reference
joint based trajectory should be computed first by solving the internal dynamics off-
line. In addition to computed torque for the desired reference trajectory, the system has
a PD feedback loop for a joint trajectory tracking to make control robust. The proposed
stable inversion control is robust at joint space and the vibrations are suppressed by
solving the internal dynamic off-line. However, it does not consider the endeffector in
the control loop, so the stability of tip vibrations is not guaranteed always.
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Chapter 1. Introduction

Later on, the output of the system i.e. tip position is defined as joint coordinates
plus weighted value of tip deflection [12] for accurate endeffector trajectory tracking.
As usual, the model inversion has unobservable internal dynamics i.e. elastic states for
the reference trajectory. Three methods were proposed to solve internal dynamics i.e.
approximate non-linear regulation, Iterative inversion in frequency domain, Iterative
learning in time domain [8] [13] [11]. Experimental results were presented on a two
link flexible manipulator FLEXARM to show the robustness of the proposed stable
inversion method. The disadvantage of these approaches is that the internal dynamics
should be solved first off-line.

The stable Inversion method in time domain and frequency domain was used in [21]
[23]. In [23], a model inversion method was proposed for endeffector tracking of flex-
ible manipulator. It takes end point acceleration as input and computes the torque in
frequency domain. The proposed model inversion is non-causal, because the output,
i.e. torque, must begin before the input, i.e. where the end point acceleration begins.
This approach showed good results for end point trajectory tracking but have the dis-
advantage of excessive computation burden due to dynamic model; input trajectory
should be transformed from time domain to frequency domain and output should be
transformed back to time domain. Later on, a convolution integration method [24] was
used to reduce this computational burden.

In [21], dynamic model inversion was proposed in time domain to reduce the com-
putation effort. The inverse dynamic model is treated as causal part and anti-casual
part to compute bounded torque for endpoint trajectory. This model can produce the
accurate endpoint trajectory but shows some position error due to present of friction
at joint. A simple PD feedback control loop is introduced to compensate the frictional
effects.

Recently, in [62] a stable inversion method for two link flexible manipulator is pro-
posed. The dynamic system is converted into the input-output form. The output of the
system is considered as joint angles plus weighted value of the tip deflection. To com-
pute the bounded torque required for given reference trajectory, bounded elastic states
are computed first by solving internal dynamics as a two sided boundary problem using
MATLAB bvp5c solver. In addition, a design optimization was proposed for choos-
ing weights of tip deflection. Some of the other works on stable inversion method for
flexible manipulators can be referred in [78], [45], [10], [46], and [46].

The stable inversion method proposed in the literature for a flexible link manipulator
assumes the dynamic model is accurate such that zero and poles of the system can be
located accurately. It does not consider the model uncertainty; any model parameter
such as mass of the link, stiffness, and unknown payload mass on the endeffector can
alter the location of poles and zeros of the system. In this case, stability of the system
is no longer assured using stable inversion method.

Robust control

The robust controllers were proposed for accurate trajectory tracking of flexible ma-
nipulators in the presence of unknown payload, and parameter uncertainty such as stiff-
ness and joint friction. In [35], a robust control design was proposed for a single link
flexible manipulators. The model uncertainty was considered due to stiffness, damping,
and payload mass. Uncertainty of payload in left-hand side of inertia matrix and un-
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certainty parameters included in right-hand side stiffness and damping are treated with
polytopic and descaling techniques respectively. Then robust controller design problem
is solved using linear matrix inequalitys (LMI).

In [3], a robust pole placement control was proposed using dynamic output feedback.
The robustness of the controller is analyzed using LMI techniques. In [65] addressed
the unstable closed loop response due to over-estimation of natural frequency from dy-
namic model derived from finite element method. A robustness of the controller is an-
alyzed using second method Lyapunov function for a bounded model uncertainty. The
proposed robust controller is a two stage controller, first stage controller is responsible
for stable joint trajectory tracking and second stage controller is to suppress vibrations
of the tip.

In [49] and [14] a robust controllers for flexible manipulators is proposed and the ro-
bustness of the system using µ-synthesis is analyzed. In [49] designed a collocated and
noncollocated controller, and considered the model uncertainties are due to unmolded
high frequency dynamics, error in natural frequencies, damping levels, actuators and
sensors.

Robust controller are designed, analyzed and proved to be stable in the presence of
bounded model uncertainty. When model uncertainties are large and cannot estimate
the bounds of uncertainty, then robust controllers may not guarantee the stability. To
overcome these difficulties and to make controller stable in unknown parameter uncer-
tainty, adaptive controllers were proposed for flexible manipulators.

Adaptive control

Adaptive control for flexible link manipulators is designed mainly for accurate tra-
jectory tracking and stabilizes tip vibrations for large unknown payload mass. The non-
linear dynamic system of flexible manipulator can be expressed in the fixed parameter
form, which is the product of regression term and an unknown constant parameter.

An adaptive controller was proposed in [18] for a flexible link manipulator carrying
payload much greater than manipulator mass. The input-output mapping of flexible
manipulator was defined using µ-tip rate similar to [19] and a passive approach to solve
non-minimum phase nature was applied. The passive nature of the output and fixed
parameter form of system dynamics allows us to easily extend the rigid body adaptive
controllers to flexible arms. The controller has feedforward term which is adaptive
form and strictly passive PD feedback law. The adaptive controller ensures global
stable tracking of cartesian endeffector coordinates with the help of only tip position
and rate error.

The extended version of adaptive controller was proposed in [25]; a joint space feed-
forward term is derived for multilink case where task space dynamics is non-trivial. The
proposed task space adaptive control and joint space adaptive control was experimen-
tally verified on a three link planar manipulator that has one rigid link and two flexible
links.

In [36] an adaptive variable structure was proposed for flexible link manipulators.
The dynamics of flexible link manipulator was converted from the flexible mode de-
pendent dynamics to strain dependent one, to reduce online computation burden on
feedback signal of the flexible modes. The nonlinear dynamics of the flexible ma-
nipulator was expressed as a linear-in-parameter form for the feedforward term. The
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stability of the systems was analyzed using Lyapunov function. The advantage of this
approach is that it has less computational effort and just uses strain measurement in the
feedback loop instead of complete elastic mode information. But, the adaptive variable
structure scheme comes with chattering effect along the trajectory. To overcome this
effect a saturation type adaptive law was proposed.

A nonlinear controller law both in non-adaptive and adaptive version was compared
numerically and experimentally on a two link flexible manipulator [37]. The controller
ensures accurate joint space trajectory tracking using joint position and velocity mea-
surement and vibration suppression using strain measurement. The stability of the con-
troller was analyzed using Lyapunov analysis. To avoid spillover problem, a second
order analog filter in strain gauge amplifier and first order analog filter in strain gauge
measurement was employed with a proper cutoff frequency to ensure closed loop sta-
bility. In [61] an adaptive control using sliding mode technique similar to [37] for a
single link flexible manipulator is designed.

Intelligent control Methods

Soft computing techniques such as Fuzzy logic (FL), Neural Networks (NN), Re-
inforcement learning (RL) are also used in the control of flexible manipulators. The
control with some intelligence is sometimes required to tackle unknown environment
and to improve the whole performance of the system. These techniques are employed
to choose suitable gains in feedforward compensation, feedback loop or both.

A vibration control using neural network was proposed in [48] for planar multi-
link flexible structures. In [29] a NN was developed to incrementally change the joint
trajectory to achieve tip trajectory tracking in operational space. The tip position error
was utilized as inputs to NN. The joint trajectory from NN was then controlled by PD
control in joint space.

A cascade Fuzzy logic control (FLC) was proposed in [32] for a single link flexible
manipulator. The control has a 3 FLCs, first fuzzy logic control has the input of joint
position and derivate error, second FLC has tip position and derivate error. The first
and second FLC outputs are the inputs to third FLC.

A Fuzzy-Neuro control was developed in [41] [42] for a planar two link rigid-
flexible manipulator. Fuzzy logic control was used in feedback loop and dynamic re-
current neural network (DRNN) was used in feedforward term. The parameter output
from FLC is used to update the adaptive DRNN model. The controller was applied for
first three vibration modes of flexible arm.

In [30] a composite controller was developed using singular perturbation approach.
The rigid body modes (slow dynamics) were controlled using NN and flexible modes
(fast dynamics) were controlled using PD control. The proposed controller was com-
pared with classical PD (slow dynamics)-PID (fast dynamics) control with additional
frictional term. The composite controller showed good tracking in the presence of
friction compared to PD-PID control. In [40] a fuzzy logic control using singular per-
turbation approach is proposed. Slow dynamics are controlled using fuzzy logic for
joint trajectory tracking and fast dynamics are controlled using optimal LQR control to
suppress vibrations.

In [59] a real time adaptive control was developed for a flexible manipulator carrying
variable payload mass using reinforcement learning (RL). The performance of nonlin-
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ear adaptive control (NAC), fuzzy-based adaptive control (FBAC), reinforcement based
adaptive control was compared for different payload mass. First nonlinear adaptive
control was designed using linear-in parameter form similar to [37] with some arbitrary
gains. These gains can produce stable trajectory tracking with the certain parameter
range. To improve the performance of controller NAC for varying payload, a FL was
used to choose appropriate gains with in parameter range. For FBAC, a prior knowl-
edge on parameter range is required to assign suitable gains. To overcome this, RL
based adaptive control was design. Actor-critic based RL adopts actor-critic weights
according to payload variation. The experimental results showed that RL based adap-
tive control has good performance over FBAC and NAC for payload variation.

1.2 Research Objective

Many model based controllers were developed in the past for trajectory tracking and
vibrations suppression. However, these are limited to numerical or experimental studies
on planar flexible link manipulators. The current research will be focused to develop
a systematic approach for the dynamic modeling and model based control design of
spatial flexible manipulators.

The research activity on flexible manipulators is divided into two parts. The first part
will be focused on dynamic modelling of spatial flexible manipulators while the second
part will be focused on control design for trajectory tracking and vibration suppression.

1.2.1 Dynamic modelling of flexible manipulators

The contribution of this thesis will be to develop a general purpose multi-body code
that can accurately model the link and joint flexibility in the manipulator dynamics.
The dynamic formulation will be developed based on the principle of virtual work and
recursive kinematic formulation. The deformation of each link is assumed to be due
to both bending and torsion. The deformation of the joints is assumed to be due to
pure torsion. The flexible links are discretized using finite element method to get finite
dimensional dynamic model.

A spatial flexible manipulator will be considered to study the effect of link and joint
flexibility on manipulator dynamics. The following cases are considered for the study:

1. Rigid links and Rigid joints

2. Flexible links and Rigid joints

3. Flexible links and Fleixble joints

1.2.2 Control modelling of flexible manipulators

Many model based controllers were proposed for flexible manipulators for trajectory
tracking applications. These are designed based on the control schemes available for
linear and nonlinear dynamic systems. Some of them used a linearized dynamic model
to simplify control design process and the linear control techniques to analyze system
stability and robustness properties. The following control schemes are widely used to
design control for flexible manipulator, i.e PID control, singular perturbation method,
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stable inversion method, robust control, adaptive control, pole placement method, out-
put redefinition, lead-lag control, iterative learning method, sliding mode control, and
intelligent controls such as Fuzzy Logic control and Neural Network control. However,
these are limited to numerical or experimental studies on planar flexible link manipula-
tors.

The contribution of this thesis is to study the advantages and disadvantages of well
developed controllers for planar flexible link manipulators and these methods are ex-
tended and improved to spatial flexible link manipulators. The following controllers
will be developed for spatial flexible link manipulator.

1. PD Control

2. Stable Inversion Control

3. A Nonlinear Control

4. Adaptive Control

14
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Dynamic modeling

In this chapter a systematic approach for the dynamic modeling of flexible manip-
ulator is presented. Rigid links, flexible links, and flexible joints are considered in the
dynamic formulation. The kinematics of flexible links are derived using the floating ref-
erence formulation. The flexible links are deformable due to bending and torsion. The
elastic deformations of flexible link due to bending is defined using the Euler-Bernoulli
beam formulation. The inclusion of the dynamics due to link flexibility makes the robot
manipulator a continuous system and require infinite degrees of freedom to estimate the
dynamic parameters. It is not feasible to include infinite DOF in the dynamic model
from the numerical simulations and control design point of view. Thus, the finite ele-
ment method is used to discretize the flexible link to get the finite dimensional dynamic
model.

The equations of motion are derived using the principle of virtual work in an ab-
solute coordinate system for the general purpose implementation. Then, the set of
equations in absolute coordinates is converted into relative or independent coordinates
using the recursive kinematic formulations. The dynamic model that are derived using
the principle of virtual work and finite element method considers the coupling effect of
rigid body motion and elastic deformations of flexible link.

A general purpose multi-body code has been developed based on systematic ap-
proach that is presented for dynamic formulation of flexible manipulators. The input to
the multi-body code are physical parameters of the flexible manipulator and the output
is finite dimensional dynamic model of flexible manipulator. The multi-body code can
be used for numerical simulation and control design purpose.
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Chapter 2. Dynamic modeling

2.1 Kinematic Description

In this section, the kinematic equations that describe the position, velocity and ac-
celeration of an arbitrary point is presented. A set of coordinate systems i.e. global
coordinate system, body-fixed coordinate system, and floating coordinate system are
used to derive the kinematic equations. The body-fixed coordinate system is used to
define the translation and rotation of rigid link, where as a floating coordinate system
is used to define the translation and rotation of flexible link. The general displacements
of a point is described using Chasles theorem. It defines an arbitrary displacement as a
sum of the translation of a point and a rotation along the axis of rotation.

According to Chasles theorem [7], the arbitrary displacement of a point can be de-
fined as

r = R + Au (2.1)

where r = [rx ry rz]
T is the global position vector of an arbitrary point,R = [Rx Ry Rz]

T

is the position vector of the body coordinate system. A is the coordinate transformation
matrix, and u = [ux uy uz] is the local position vector defined with respect to the body
coordinate system.

The transformation matrix A is defined as

A =

 2(β2
0 + β2

1)− 1 2(β1β2 − β0β2) 2(β1β3 + β0β2)

2(β1β2 + β0β2) 2(β2
0 + β2

2)− 1 2(β2β3 − β0β1)
2(β1β3 − β0β2) 2(β2β3 + β0β1) 2(β2

0 + β2
3)− 1

 (2.2)

where β0, β1, β2, and β3 are the Euler parameters. These quantities are defined as

β0 = cos(
β

2
) (2.3)

β1 = υ1 sin(
β

2
) (2.4)

β2 = υ2 sin(
β

2
) (2.5)

β3 = υ3 sin(
β

2
) (2.6)

in which υ1, υ1, and υ1 are components of the unit vector υ along the axis of rotation.
β is the angle of rotation.

Using Chasles theorem, the kinematic equations for the position, velocity and accel-
eration of rigid and flexible links are derived.

2.1.1 Kinematics of Rigid link

The representation of an arbitrary point Oi on the rigid link i is shown in Figure
[2.1]. The kinematic equation that defines an arbitrary displacement of a rigid link i is
derived using the body-fixed coordinate system. The body coordinate system XiYiZi
is attached to the rigid link i to identify the position and orientation of the rigid link i
in space. The configuration of each point on the rigid link i in space can be described
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Figure 2.1: Representation of an arbitrary point on a rigid link.

using the position and orientation of the body coordinate systemXiYiZi that are defined
with respect to the global coordinate system XY Z.

The position vector of an arbitrary point on the rigid link i is defined as

ri = Ri + Aiui (2.7)

where Ri = [Ri
x R

i
y R

i
z]
T is the position vector of the body coordinate system XiYiZi.

Ai is the transformation matrix defined using equation [2.2], and ui = [uix u
i
y u

i
z]
T is

the local position vector defined with respect to XiYiZi. For the rigid link, the local
position vector ui is a constant vector.

The velocity vector of an arbitrary point on the rigid link i is obtained by differenti-
ating equation [2.7]. It is written as

ṙi = Ṙi + Ai(ωi × ui) (2.8)

where ωi is the angular velocity vector defined in the body coordinate systemXiYiZi.
It is expressed as

ωi = Giβ̇i (2.9)
where

Gi = 2×

 −β1 β0 β3 −β2
−β2 −β3 β0 β1

−β3 β2 −β1 β0

 (2.10)

Equation [2.8] is written in partitioned form as

ṙi =
[
I −AiũiGi

] [ Ṙi

β̇i

]
(2.11)
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The equation [2.11] can be written as

ṙi = Liq̇i (2.12)

where
Li =

[
I −AiũiGi

]
(2.13)

q̇i =
[
Ṙi β̇i

]T
(2.14)

in which q̇i are the generalized velocities of the rigid link i defined in absolute coordi-
nate system.

The acceleration vector of an arbitrary point on the rigid link i is obtained by differ-
entiating equation [2.12]. It is written as

r̈i = Liq̈i + Ai

(
ω̃i

)2
ui (2.15)

where
q̈i =

[
R̈i β̈i

]T
(2.16)

in which q̈i is the generalized accelerations of rigid link i defined in absolute coordinate
system.

2.1.2 Kinematics of Flexible link

The representation of an arbitrary point Oi on the flexible link i is shown in Figure
[2.2]. The kinematic equations that can define an arbitrary displacement of a flexi-
ble link i is derived using floating reference frame formulation [7]. Floating reference
frame formulation uses two sets of coordinates i.e., body reference coordinates and
elastic coordinates. The body reference coordinates describe the position and orien-
tation of body coordinate system XiYiZi with respect to the global coordinate system
XY Z. The elastic coordinates describe the local displacements of flexible link i with
respect to the body coordinate system XiYiZi. The elastic deformations of flexible link
are approximated using the finite element method to obtain finite set of elastic coordi-
nates. The elastic coordinates of finite element shown in Figure [2.3] is defined using
element coordinate system XijYijZij with respect to body coordinate system XiYiZi.

The position vector of an arbitrary point on flexible link i is defined as

ri = Ri + Aiui (2.17)

where Ri = [RxRyRz]
T is the position vector of the body coordinate system XiYiZi.

Ai is the transformation matrix defined using equation [2.2], and ui is the local position
vector defined with respect to XiYiZi.

For the flexible link, the local position vector ui is defined as the sum of undeformed
position vector and elastic deformation vector. The local position vector ui is written
as

ui = uri + uei (2.18)

where uri is the undeformed position vector, and uei is elastic deformation vector that is
defined as

uei = Siq
e
i (2.19)
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Figure 2.2: Representation of an arbitrary point on a flexible link.

Figure 2.3: Elastic coordinates on finite element.

in which Si is the shape function matrix, and qei is the elastic coordinates vector. The
shape function Si is defined as
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Si =



1− ξ 0 0

6(ξ − ξ2)η 1− 3ξ2 + 2ξ3 0

6(ξ − ξ2)ξ 0 1− 3ξ2 + 2ξ3

0 −(1− ξ)`ζ −(1− ξ)`η
(1− 4ξ + 3ξ2)`ζ 0 (−ξ + 2ξ2 − ξ3)`

(−1 + 4ξ − 3ξ2)`η (ξ − 2ξ2 + ξ3)` 0

ξ 0 0

6(−ξ + ξ2)η 3ξ2 − 2ξ3 0

6(−ξ + ξ2)ζ 0 3ξ2 − 2ξ3

0 −`ξζ −`ξη
(−2ξ + 3ξ2)`ζ 0 (ξ2 − ξ3)`
(2ξ − 3ξ2)`η (−ξ2 + ξ3)` 0



T

(2.20)

in that

ξ =
ux
`

; η =
uy
`

; ζ =
uz
`

; (2.21)

where ` is length of element, and ux, uy, uz are spatial coordinates along element axis.
The velocity vector of an arbitrary point on the flexible link i is obtained by differ-

entiating equation [2.17]. It is written as

ṙi = Ṙi + Ai(ωi × ui) + AiSiq̇
e
i (2.22)

where ωi is angular velocity vector defined in body coordinate system XiYiZi. It is
expressed as

ωi = Giβ̇i (2.23)

where

Gi = 2×

 −β1 β0 β3 −β2
−β2 −β3 β0 β1

−β3 β2 −β1 β0

 (2.24)

Equation (2.22) is written in partitioned form as

ṙi =
[
I −AiũiGi AiSi

]  Ṙi

β̇i

q̇ei

 (2.25)

The Equation (2.25) can be written as

ṙi = Liq̇i (2.26)

where
Li =

[
I −AiũiGi AiSi

]
(2.27)
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q̇i =
[
Ṙi β̇i q̇ei

]T
(2.28)

in which q̇i is generalized velocities of flexible link i defined in absolute coordinate
system.

The acceleration vector of an arbitrary point on the flexible link i is obtained by
differentiating equation [2.26]. It is written as

r̈i = Liq̈i + Ai

(
ω̃i

)2
ui + 2Aiω̃iSiq̇

e
i (2.29)

where
q̈i =

[
R̈i β̈i q̈ei

]T
(2.30)

in which q̈i is generalized accelerations of the flexible link i defined in absolute coordi-
nate system.

2.2 Dynamics description

The equations of motion are derived using the principle of virtual work in absolute
coordinate system. In this section, the dynamic equations of rigid link, flexible link,
and flexible joint are presented.

2.2.1 Rigid link modeling

The virtual work of total forces acting on rigid link i is defined as

δWi = δW i
i + δWi

e (2.31)

where δW i
i , and δW e

i are respectively the virtual work of inertia forces, and external
forces.

The virtual work of inertia forces acting on rigid link i is written as

δW i
i =

∫
Vi

ρi r̈
T
i δri dVi (2.32)

where ρi and Vi are respectively, the mass density and volume of rigid link ij; r̈i and δri
are respectively the acceleration vector and virtual displacements of an arbitrary point
on rigid link i.

The virtual displacement δri is written as

δri = Liδqi (2.33)

where
Li =

[
I −AiũiGi

]
(2.34)

δqi =
[
δRi δβi

]T (2.35)

where qi is generalized coordinates of rigid link i defined in absolute coordinate system.
The acceleration vector r̈i of an arbitrary point can be defined using equation [2.15].

It is expressed as

r̈i = Liq̈i +Qi (2.36)
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in which q̈i is the generalized accelerations andQi is the quadratic term which is written
as

Qi = Ai

(
ω̃i

)2
ui (2.37)

Substituting acceleration vector r̈i and virtual displacements δri in equation (2.32) gives

δW i
i =

∫
Vi

ρi q̈
T
i L

T
i Liδqi dVi +

∫
Vi

ρi Q
T
i Liδqi dVi (2.38)

δW i
i =

[
q̈Ti Mi −QvT

i

]
δqi (2.39)

where Mi and Qv
i are respectively the inertia matrix and quadratic velocity term.

Mi =

∫
Vi

ρi

[
I −Ai ũi Gi

−Ai ũi Gi G
T

i ũ
T

i ũiGi

]
dVi (2.40)

and

Qv
i = −

∫
Vi

ρi

[
I

−GT

i ũ
T

i A
T
i

]
Qi dVi (2.41)

The virtual work of external forces acting on rigid link i is defined as

δW e
i = −QeT

i δq
i (2.42)

Substituting δW i
i , and δW e

i in equation [2.31] yields

δWi =
[
q̈Ti Mi −QvT

i −QeT

i

]
δqij (2.43)

From equation [2.43] the equations of motion can be rearranged as

Miq̈i = Qe
i +Qv

i (2.44)

where Qe
i and Qv

i are respectively the external forces applied and quadratic velocity
term. Equation [2.44] is the equations of motion of rigid link in absolute coordinate
system.

2.2.2 Flexible link modeling

The virtual work of total forces acting on flexible link i is defined as

δWi = δW i
i + δWi

s + δWi
e (2.45)

where δW i
i , δW

s
i , and δW e

i are respectively the virtual work of inertia forces, elastic
forces, and external forces acting on flexible link i. The flexible link i is discretized us-
ing finite element method to get finite dimensional dynamic model. The representation
of finite element ij on link i is shown in Figure [2.3]. The virtual work of flexible link i
can be obtained by summing up the virtual work of its elements.

The virtual work of total forces acting on element ij is defined as

δWij = δWij
i + δWij

s + δWij
e (2.46)
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2.2. Dynamics description

where δW i
ij , δW

s
ij , and δW e

ij are respectively the virtual work of inertia forces, elastic
forces, and external forces on element ij.

The virtual work of inertia forces acting on element ij is written as

δW i
ij =

∫
Vij

ρij r̈
T
ij δrij dVij (2.47)

where ρij and Vij are respectively, the mass density and volume of element ij. r̈ij and
δrij are respectively the acceleration vector and virtual displacements of an arbitrary
point on element ij.

The virtual displacement δrij is written as

δrij = Lijδqij (2.48)

where
Lij =

[
I −AiũijGi AiSij

]
(2.49)

δqij =
[
δRij δβij δqeij

]T (2.50)

where qij are the generalized coordinates of element ij.
The acceleration vector r̈ij of an arbitrary point can be defined using equation [2.29].

It is expressed as

r̈ij = Lij q̈ij +Qij (2.51)

where
q̈ij =

[
R̈ij β̈ij q̈eij

]T
(2.52)

and
Qij = Ai

(
ω̃i

)2
uij + 2Aiω̃iSij q̇

e
ij (2.53)

in which q̈ij are the generalized accelerations, and Qij is the quadratic term.
Substituting acceleration vector r̈ij and virtual displacements δrij in equation (2.47)

gives

δW i
ij =

∫
Vij

ρij q̈
T
ij L

T
ij Lijδqij dVij +

∫
Vij

ρij Q
T
ij Lijδqij dVij (2.54)

δW i
ij =

[
q̈Tij Mij −QvT

ij

]
δqij (2.55)

where Mij and Qv
ij are respectively the inertia matrix and quadratic velocity term.

Mij =

∫
Vij

ρij

 I −Ai ũij Gi Ai Sij

G
T

i ũ
T

ij ũijGi G
T

i ũ
T

ijSij

symmetric STijSij

 dVij (2.56)

and

Qv
ij = −

∫
Vij

ρij

 I

−GT

i ũ
T

ijA
T
i

STijA
T
i

Qij dVij (2.57)
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Chapter 2. Dynamic modeling

The virtual work of elastic forces due to the deformation of element ij can be defined
as

δW s
ij = −

∫
Vij
σTijδεijdVij (2.58)

where σij and εij are respectively the stress and the strain vectors of element ij.

εij = Diju
e
ij = DijSijq

e
ij (2.59)

σij = Eijεij = EijDijSijq
e
ij (2.60)

Substituting equation [2.59] and [2.60] in equation [2.58] gives

δW s
ij = −qeTij

[∫
Vij

(DijSij)
TEijDijSijdVij

]
δqeij

= −qeTij Ke
ijδq

e
ij

(2.61)

where Ke
ij is the element stiffness matrix defined as

Ke
ij =

∫
Vij

(DijSij)
TEijDijSijdVij (2.62)

in which Dij is the differential operator, Sij is the element shape function matrix and
Eij is the elastic coefficient.

The virtual work of external forces acting on element ij is defined as

δW e
ij = −QeT

ij δq
i (2.63)

Substituting δW i
ij , δW

s
ij and δW e

ij in equation [2.46] yields

δWij =
[
q̈Tij Mij −QvT

ij − qe
T

ij K
e
ij −QeT

ij

]
δqij (2.64)

From equation [2.64] the equations of motion can be rearranged as

Mij q̈ij = Qe
ij +Qv

ij +Qs
ij (2.65)

where Qe
ij are the applied external forces. Qv

ij and Qs
ij are respectively the quadratic

velocity term and elastic forces acting on element ij.
The virtual work of total forces acting on flexible link i is defined as

δWi =
ne∑
j=1

δWij
i +

ne∑
j=1

δWij
s +

ne∑
j=1

δWij
e (2.66)

where ne is the number of finite elements.
Equation [2.65] can be extended to all finite elements in flexible link i and assembled

based on element connectivity to form a dynamic model of flexible link.
Using the equation [2.66], the equations of motion of the flexible link i is defined as

Miq̈i = Qe
i +Qv

i +Qs
i (2.67)

where Qe
i are the external forces applied on flexible link i. Qv

i and Qs
i are respectively

the quadratic velocity term and elastic forces acting on flexible link i.
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2.2. Dynamics description

The equations of motion in absolute coordinate system for n link manipulator can
be defined as

M1 0 · · · 0

0 M2 · · · 0
...

... . . . 0

0 0 0 Mn



q̈1

q̈2
...
q̈n

 =


Qe

1

Qe
2

...
Qe
n

+


Qv

1

Qv
2

...
Qv
n

+


Qs

1

Qs
2

...
Qs
n

 (2.68)

The equation [2.68] expressed in compact form as

Mq̈ = Q
e

+Q
v

+Q
s (2.69)

where

M =


M1 0 · · · 0

0 M2 · · · 0
...

... . . . 0

0 0 0 Mn

 (2.70)

q̈ =
[
q̈1 q̈2 · · · q̈n

]T (2.71)

Q
e

=
[
Qe

1 Qe
2 · · · Qe

n

]T (2.72)

Q
v

=
[
Qv

1 Qv
2 · · · Qv

n

]T (2.73)

Q
s

=
[
Qs

1 Qs
2 · · · Qs

n

]T (2.74)

The equation [2.68] is the dynamic model derived in absolute coordinates. The
relative motions between the flexible links are imposed using recursive kinematic for-
mulation. The recursive kinematic formulation is presented in section [2.3]

2.2.3 Flexible joint modeling

The revolute joint j with actuator and transmission system is shown in Figure [2.4].
The actuator is assumed as electric motor and torsional spring represents the flexibility
induced due to the transmission system. θj and θi respectively are the rotations of
actuator j and link i.

The virtual work of torque exserted on link i by actuator j and transmission system
is defined as

δWj = T δθij (2.75)

where T is the total torque acting at the joint. The equation [2.75] is written in explicit
form as

δWj = (Jj θ̈j + Cj(θ̇j − θ̇i) +Kj(θj − θi)− Tj) δθij (2.76)
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Chapter 2. Dynamic modeling

Figure 2.4: Flexible joint j assembly

where Jj is the inertia of the motor. Kj andCj are the stiffness and damping coefficients
of the transmission system. Tj is the torque produced by motor. δθij is the virtual
change at joint. The equations of motions of joint assembly is written as

Jj θ̈j + Cj(θ̇j − θ̇i) +Kj(θj − θi) = Tj (2.77)

2.3 Recursive Kinematic Formulation

Consider two flexible link i− 1 and i shown in Figure [2.5] which are connected by
a revolute joint j. The joint allows relative rotation along joint axis and has one rigid
body coordinates θi.

The following kinematic relationship for revolute joint holds the relation between
generalized coordinates and joint coordinates [76]

Ri + Aiu
j
i −Ri−1 − Ai−1u

j
i−1 = 0 (2.78)

ωi = ωi−1 + ωji−1 − ω
j
i + ωi,i−1 (2.79)

where uji and uji−1 are local position vectors of joint defined on link i and i− 1 respec-
tively. ωji and ωji−1 are respectively the local angular velocity vectors of joint due to
elastic deformations on link i and i− 1. These vector quantities are defined as

ωji−1 = Ai−1S
jr
i−1q̇

e
i−1 (2.80)

ωji = AiS
jr
i q̇

e
i (2.81)

in which Sjri and Sjri−1 are respectively the constant shape function matrix of joint rota-
tions due to elastic deformations on link i and i − 1. ωi,i−1 is relative angular velocity
vector of link i with respect to link i-1 is expressed as

ωi,i−1 = νi−1θ̇i (2.82)

26



i
i

“thesis” — 2014/1/10 — 13:24 — page 27 — #35 i
i

i
i

i
i

2.3. Recursive Kinematic Formulation

Figure 2.5: Representation of Relative body Coordinates

where νi−1 is rotation axis defined with respect to link i−1 in global coordinate system
XY Z.

νi−1 = Ai−1νi−1 (2.83)

νi−1 is constant vector defined with respect to link i − 1 in body coordinate system
Xi−1Yi−1Zi−1.

Differentiating equation [2.78] twice with respect to time and equation [2.79] once
with respect to time gives

R̈i − Aiũ
j

iGiβ̈i + AiS
jt
i q̈

e
i = R̈i−1 − Ai−1ũ

j

i−1Gi−1β̈i−1

+ Ai−1S
jt
i−1q̈

e
i−1 + γR

(2.84)

ω̇i = ω̇i−1 + Ai−1S
jr
i−1q̈

e
i−1 − AiS

jr
i q̈

e
i + Ai−1νi−1θ̈i + γβ (2.85)

where Sjti and Sjti−1 are respectively the shape functions of joint translations defined on
link i and i-1. γR and γβ are written as

γR = −Ai
(
ω̃i

)2
uji + Ai−1

(
ω̃i−1

)2
uji−1 − 2Aiω̃iS

jt
i q̇

e
i

+ 2Ai−1ω̃i−1S
jt
i−1q̇

e
i−1

(2.86)

γβ = Ai−1ω̃i−1νi−1θ̇i + Ai−1ω̃i−1S
jr
i−1q̇

e
i−1 − Aiω̃iS

jr
i q̇

e
i (2.87)

The equation [2.84] and [2.85] can be written in a compact form as

Diq̈i = Di−1q̈i−1 +HiP̈i + γi (2.88)
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Chapter 2. Dynamic modeling

where

Di =

 I −Ai ũ
j

i Gi AiS
jt
i

0 AiGi AiS
jr
i

0 0 I

 (2.89)

Di−1 =

 I −Ai−1ũ
j

i−1Gi−1 Ai−1S
jt
i−1

0 Ai−1Gi−1 Ai−1S
jr
i−1

0 0 0

 (2.90)

Hi =

[
Ai−1νi−1 0

0 I

]
(2.91)

P̈i =
[
θ̈i q̈ei

]T
(2.92)

γi =
[
γR γβ

]T (2.93)

The generalization of recursive kinematic formulation for a n link manipulator is
expressed as

D1 0 · · · 0

−D1 D2 · · · 0
...

... . . . 0

0 0 −Dn−1 Dn



q̈1

q̈2
...
q̈n

 =


H1 0 · · · 0

0 H1 · · · 0
...

... . . . 0

0 0 0 Hn



P̈1

P̈2

...

P̈n

+


γ1

γ2
...
γn

(2.94)

The equation [2.94] can be written in compact form as

D q̈ = H P̈ + γ (2.95)

where

D =


D1 0 · · · 0

−D1 D2 · · · 0
...

... . . . 0

0 0 −Dn−1 Dn

 (2.96)

q̈ =
[
q̈1 q̈2 · · · q̈n

]T (2.97)


H1 0 · · · 0

0 H1 · · · 0
...

... . . . 0

0 0 0 Hn

 (2.98)
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2.4. Multi-Body Code Structure

P̈ =
[
P̈1 P̈2 · · · P̈n

]T (2.99)

γ̈ =
[
γ1 γ2 · · · γn

]T (2.100)

The generalized accelerations of n link manipulator q̈ in absolute coordinate system
can be expressed in terms of relative or independent coordinates as

q̈ = B P̈ + γ̃ (2.101)

where

B = D
−1
H (2.102)

γ̃ = D
−1
γ (2.103)

Substituting the generalized acceleration q̈ in equation [2.69] and premultiplying
with B

T
gives the dynamic model of n link manipulator in relative or independent

coordinates form. It is written as

B
T
M BP̈i = B

T
(Q

e
+Q

v
+Q

s −Mγ̃) (2.104)

which is written as

MP̈ = Q (2.105)

where

M = B
T
M B (2.106)

Q = B
T

(Q
e

+Q
v

+Q
s −Mγ̃) (2.107)

The equation [2.105] is a coupled and nonlinear dynamic model of n link manip-
ulator which can be used for numerical simulation and model based control design
purpose.

2.4 Multi-Body Code Structure

A gerneral purpose multi-body code has been developed in MATLAB to get the
dynamic model for numerical simulation and model based control design purpose. The
structure of the multi-body code is shown in Figure [2.6]. The input to the multi-
body code consists of physical parameters of body, joint, and actuators. The dynamic
model is nonlinear and configuration dependent. Hence, to get the dynamic parameters
such as inertia matrix, coriolis and centrifugal matrix, stiffness matrix, and damping
matrix the position and velocities of manipulator links are necessary. In the multi-body
code the damping matrix is defined using Rayleigh damping. Overall the input file
format consists of body definition, joint definition, actuator definition, position vector
and velocity vector of the manipulator.
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Chapter 2. Dynamic modeling

Figure 2.6: The structure of the multi-body code.

Body definition

The body definition is declared as a MATLAB structure called body structure. The
input fields to the body structure is shown in Table [2.1]. The body structure contains
all the necessary fields that are required for dynamic modeling. The user can choose
the rigid link modeling or flexible link modeling in the structure input field "body".

Table 2.1: The input fields of body structure.

Field Input Format Description
name String Input to assign name to the body
body Number 1 = Rigid link / 2 = Flexible link

element Number Number of finite element to discretize the link
(1 - for rigid link, n - for flexible link)

density Number Density of the link (Kg/m3)
youngs_mod Number Youngs Modulus of the link (MPa)
shear_mod Number Shear Modulus of the link (MPa)

moment_inertia Number Area Moment of Inertia (m4)
polar_inertia Number Moment of Inertia (m4)

length Number Length of the link (m)
area Number Cross-section area (m2)

alpha Number Rayleigh Damping constant
beta Number Rayleigh Damping constant

Joint definition

The joint definition is declared as a MATLAB structure called joint structure. The
input fields to the joint structure is shown in Table [2.2]. The user can choose the rigid
joint or flexible joint modeling in the structure input field "joint". In the joint structure,
inertia, damping, and stiffness properties are considered to model dynamics of flexible
joint. The flexible joint is necessary for the modeling of flexible joint manipulator such
as KUKA-DLR light weight manipulator.
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2.5. Study of flexibility effects on spatial manipulator

Table 2.2: The input fields of joint structure.

Field Input Format Description
name String Input to assign name to the joint
joint Number 1 = rigid joint ; 2 = flexible joint;

inertia Number Inertia of the motor
stiff Number Stiffness of the joint

damp Number Damping of the joint
axis Number 1 = X-axis; 2 = Y-axis; 3 = Z-axis;

body1 Number Link number
body2 Number Link number

body1_frame Vector Joint location w.r.t body1
body2_frame Vector Joint location w.r.t body2

Actuator definition

The actuator definition is declared as a MATLAB structure called actuator structure.
The actuator structure is optional choice. It is particularly useful for forward dynamic
simulation. The input fields to the actuator structure is shown in Table [2.3].

Table 2.3: The input fields of actuator structure.

Field Input Format Description
name String Input to assign name to the actuator
load Number Input torque (N-m)
axis Number 1 = X-axis; 2 = Y-axis; 3 = Z-axis;

body1 Number Link number
body2 Number Link number

2.5 Study of flexibility effects on spatial manipulator

A spatial RRR manipulator shown in Figure [3.6], is considered to demonstrate the
effect of link and joint flexibility on manipulator dynamics. The physical parameters
of a RRR spatial manipulator is presented in Table [2.4]. Uniform cross-section and
material properties are assumed on each link.

Table 2.4: The physical parameters of a RRR flexible manipulator.

Parameter Link 1 Link 2 Link 3
Link Length (m) 1 4.0 3.5
C/s Area (m2) 0.028 0.0020 0.0008

Moment of Inertia (m4) 8.33×10−7 6.24×10−7 5.37×10−7

Polar moment of Inertia (m4) 1.66×10−6 1.24×10−6 1.07×10−6

Tensile Modulus (MPa) 206000
Shear Modulus (MPa) 79300

Density (Kg/m3) 8253
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Chapter 2. Dynamic modeling

Figure 2.7: Spatial RRR flexible manipulator.

The following cases are considered to study the effect of flexibility on RRR spatial
manipulator dynamics

1. Rigid links and Rigid joints

2. Flexible links and Rigid joints

3. Flexible links and Fleixble joints

Each flexible link is discretized using two finite element beams with six degrees of
freedom on each node and one degree of freedom for rigid body rotations, i.e. θi where
i = 1, 2, 3. Manipulator joint has one rigid body rotation, i.e. θj where j = 1, 2, 3. The
torsional stiffness Kj for j = 1, 2, 3 at manipulator joints is defined as 5000 Nm/rad.
The damping effects on links and joints are ignored in the numerical simulation.

2.5.1 Simulation results

A constant torque of 400 Nm, is applied at each manipulator joint for each case
to compare manipulator endeffector X4Y4Z4 motion. The endeffector X4Y4Z4 motion
in global coordinate system along the X,Y and Z direction is shown in Figure [2.8] -
[2.10]. The elastic displacements of manipulator endeffector X4Y4Z4 along the X,Y
and Z direction is shown in Figure [2.11] - Figure [2.13]. It shows the elastic displace-
ments of flexible manipulator (i.e. Flexible links and Rigid joints, Flexible links and
Fleixble joints) endeffector X4Y4Z4 with respect to the rigid manipulator (i.e. Rigid
links and Rigid joints) endeffector X4Y4Z4 motion.

The joint response of RRR manipulator along joint 1, joint 2 and joint 3 is shown
in Figure [2.8] - Figure [2.10]. The joint deformations of flexible manipulator (i.e.
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2.5. Study of flexibility effects on spatial manipulator

Figure 2.8: Endeffector X4Y4Z4 trajectory response along X-direction.

Flexible links and Rigid joints, Flexible links and Fleixble joints) with respect to rigid
manipulator joint motion is shown in Figure [2.17] - Figure [2.19].

In addition to link flexibility, the flexibility at manipulator joint can significantly
alter the motion of the manipulator joint and eventually effects the endeffector X4Y4Z4

motion. For the long reach manipulators having link dimensions in the order of few
meters, the small elastic deformation at manipulator joint can lead to large endeffector
position error. It is particulary evident in Figure [2.11] - Figure [2.13].

The numerical simulation results show that the link and joint flexibility can signifi-
cantly alter the overall manipulator endeffector motion. Hence it is necessary to include
the dynamics of link and joint flexibility to accurately represent the dynamic behaviour
of the system.
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Chapter 2. Dynamic modeling

Figure 2.9: Endeffector X4Y4Z4 trajectory response along Y-direction.

Figure 2.10: Endeffector X4Y4Z4 trajectory response along Z-direction.
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2.5. Study of flexibility effects on spatial manipulator

Figure 2.11: Elastic displacements of endeffector X4Y4Z4 with respect to rigid manipulator endeffector
motion in X-direction.

Figure 2.12: Elastic displacements of endeffector X4Y4Z4 with respect to rigid manipulator endeffector
motion in Y-direction.
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Chapter 2. Dynamic modeling

Figure 2.13: Elastic displacements of endeffector X4Y4Z4 with respect to rigid manipulator endeffector
motion in Z-direction.

Figure 2.14: Joint θ1 trajectory response.
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Figure 2.15: Joint θ2 trajectory response.

Figure 2.16: Joint θ3 trajectory response.
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Figure 2.17: Elastic deformations of joint θ1 with respect to rigid manipulator joint motion.

Figure 2.18: Elastic deformations of joint θ2 with respect to rigid manipulator joint motion.
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2.5. Study of flexibility effects on spatial manipulator

Figure 2.19: Elastic deformations of joint θ3 with respect to rigid manipulator joint motion.

39



i
i

“thesis” — 2014/1/10 — 13:24 — page 40 — #48 i
i

i
i

i
i



i
i

“thesis” — 2014/1/10 — 13:24 — page 41 — #49 i
i

i
i

i
i

CHAPTER3
Control of flexible manipulators

Motion control of robot manipulator is important to achieve high speed operations
and multi-functionality. In that, dynamic model identification and control are two sub-
sets which are important to attain desired performance. In the previous chapter, the
dynamic formulation is presented to identify the dynamic model based on physical pa-
rameters of the manipulator. In this chapter, model based control for trajectory tracking
of spatial flexible manipulator is presented.

The objective of trajectory tracking control in the case of flexible manipulators is
to follow the desired reference trajectory and minimize vibrations of the end-effector
along trajectory. The approach to design a model based controller in order to meet the
desired performance varies based on the type of flexibility in the system. Link flexibility
is considered as most difficult to control because the flexibility is distributed and has
infinite degrees of freedom. In this chapter, the controller design is mainly addressed
for flexible link manipulators.

The most challenging problem in design of controller for flexible link manipula-
tors is under actuation and non-minimal phase nature. Under actuation is due to finite
number of actuators to control infinite degrees of freedom that arise due to link flexi-
bility. Non-minimum phase nature occurs because of non-collocation of actuators and
sensors.

Lets consider, the equations of motion of a flexible link manipulator which can be
written in explicit form as

M(q)q̈ + C(q, q̇)q̇ +Dq̇ +Kq = Bτ (3.1)

where q = [qr qf ]
T are rigid and elastic coordinates of the manipulator; qr is the

n × 1 vector that represents rigid body rotations of the n manipulator joints, and qf is
the m × 1 vector that represent elastic coordinates of the link. The number of elastic
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Chapter 3. Control of flexible manipulators

coordinates depends on the number of finite elements used to discretize the link. M(q)
is the Inertia matrix, C(q, q̇)q̇ is the Coriolis and centrifugal vector, Dq̇ is the frictional
and damping forces, Kq represents the internal forces due to body elasticity. Input
matrix B maps the external torque into generalized forces of the system.

The equations of motion explicitly written in rigid and elastic coordinates are

[
Mrr Mrf

Mfr Mff

] [
q̈r

q̈f

]
+

[
Crr Crf

Cfr Cff

] [
q̇r

q̇f

]
+

[
Drr 0

0 Dff

] [
q̇r

q̇f

]
+

[
0 0

0 Kff

] [
qr

qf

]
=

[
Br

Bf

]
τ

(3.2)

The actuators are assumed to be placed at manipulator joints. Thus, the input matrix
B is expressed as Br = InXn and Bf = 0mXn. The model inversion of equation
[3.2], that maps input torque and desired output trajectory, depends on the rigid and
elastic coordinates of the system. If the desired output trajectory is the tip trajectory,
the system is unstable due to non-minimum phase nature.

The following model based controllers are designed for the trajectory tracking.

1. PD Control

2. Stable Inversion Control

3. A Nonlinear Control

4. Adaptive Control

Among them, PD control and Stable inversion control are derived using feedback
linearization technique. A nonlinear control and Adaptive control are derived using
sliding mode technique.

3.1 PD Control

The control architecture of PD type control is shown in Figure [3.1]. It consists of
feedforward compensator and a PD feedback loop.

Using equation [3.2], the feedforward compensator is defined as

τ = Mrrq̈r +Mrf q̈f + Crrq̇r + Crf q̇f +Drrq̇r (3.3)

The coupling effect of rigid body motion and elastic deformations of flexible link in
equation [3.3] is ignored to study the effect of flexibility in control design. The equation
[3.3] is rewritten as

τ = Mrrq̈r + Crrq̇r +Drrq̇r (3.4)

A PD type feedback control at joint space is designed to ensure the stability for
unmodeled dynamics. It is written as

τ = Mrr(q̈r +Kper +Kvėr) + Crrq̇r +Drrq̇r (3.5)
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3.2. Singular Perturbation Control

Figure 3.1: PD control architecture.

Figure 3.2: Representation of flexible link tip position at the joint space.

where, Kp and Kv are the position and velocity error gain, respectively; er and ėr are
the joint trajectory error at position and velocity level, respectively.

The equation [3.5], is exactly similar to computed torque control of rigid link manip-
ulator. The objective of this PD control implementation is to analyse the contribution
of link flexibility in control design.

3.2 Singular Perturbation Control

The control architecture of stable inversion control is shown in Figure [3.3]. It con-
sists of a feedforward compensator and a robust feedback control to achieve desired tip
trajectory tracking. Feedforward compensator is derived with the help of stable inver-
sion technique. Stable inversion technique solves the non-minimum phase system by
pre-computing bounded internal states qf for the tip position y(t). The representation
of link tip position is shown in Figure [3.2].

43



i
i

“thesis” — 2014/1/10 — 13:24 — page 44 — #52 i
i

i
i

i
i

Chapter 3. Control of flexible manipulators

Figure 3.3: Stable inversion control architecture.

The actual tip position is defined as a nonlinear function in terms of joint rotation qr
and elastic coordinates qf .

y = qr + arctan
(qf
L

)
(3.6)

Where y, qr, and qf are respectively the tip position, joint angle, and link elastic dis-
placement. To simplify the coupling between tip position and link elastic displacement,
the actual tip position is approximated using joint angle and elastic displacement by a
weighted parameter. Using weighted parameter, the tip position is redefined as a linear
combination of joint angle and link tip elastic coordinates

y ≈ qr +
(qf
L

)
= qr + Γqf (3.7)

where Γ is the weighted parameter equal to the reciprocal of link length.
In order to compute bounded internal states, the internal dynamics of the system is

rewritten in terms of tip position y and elastic coordinates qf using equation [3.2]

Mfr(ÿ − Γq̈f ) +Mff q̈f + Cfr(ẏ − Γq̇f ) + Cff q̇f +Dff q̇f +Kffqf = 0 (3.8)

Iterative Learning Method

Internal dynamics of the system is solved using simple PD type Iterative learning
method. This method is applied on the nominal dynamic model of the system, since
dynamics of the unmodeled payload mass is unknown prior to consider in the dynamic
model.

Learning process for the internal dynamics of the system is expressed in terms of
deformation torque error,

ed(qf , q̇f , q̈f ) = Mfr(ÿ − Γq̈f ) +Mff q̈f + Cfr(ẏ − Γq̇f ) + Cff q̇f

+Dff q̇f +Kffqf
(3.9)

The bounded elastic coordinates in time domain for the given reference trajectory
y(t) is calculated as follows [8]

1. Set initial values q(0)f , q̇
(0)
f , q̈

(0)
f to zero along the trajectory. Set i = 0
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3.2. Singular Perturbation Control

2. Using equation [3.9], compute e(i)d (q
(i)
f , q̇

(i)
f , q̈

(i)
f )

If ‖e(i)d ‖ < εe, where εe is error tolerance,
set qfd = q

(i)
f and stop. Else process error using finite impulse response [FIR]

filter; e(i) and ė(i) are thus obtained

3. Update the q(i+1)
f using simple PD type learning rule

q
(i+1)
f = q

(i)
f −KLP e

(i)
d −KLDė

(i)
d (3.10)

with small gains KLP and KLD. Set i = i+ 1 and go to step 2.

Feedforward Compensator

Feed forward compensator is derived using a stable inversion technique. The bounded
elastic states qf , q̇f , q̈f are pre-computed using iterative learning method. Thus, the
model inversion is stable for the link tip position y(t). The torque required to drive the
system along the tip trajectory is computed using

τ = Mrrq̈r +Mrf q̈f + Crrq̇r + Crf q̇f +Drrq̇r (3.11)

However, the computed torque shown in equation [3.11] works well for the exact
model. A simple PD feedback control with arbitrary gains provides accurate trajectory
tracking. The closed loop computed torque control is written as

τ = Mrr(q̈r +Kper +Kvėr) +Mrf q̈f + Crrq̇r + Crf q̇f +Drrq̇r (3.12)

where, Kp and Kv are the position and velocity error gain, respectively. er is the joint
trajectory error i.e.

er = qrd − qr (3.13)

where qrd is the desired joint trajectory, computed using the bounded elastic coordinates
qf and the tip trajectory y(t) from the Iterative learning method. To account for model
uncertainties and unknown payload mass Mp, a robust feedback loop is designed based
on conventional rigid manipulator dynamics.

Robust feedback control

Lyapunov function is used to design feedback gains to guarantee the stability along
the trajectory with uncertainty in the model. Consider a nominal model

Mq̈ + C(q, q̇)q̇ +D(q) = Bτ (3.14)

A feedback linearization to a nominal model gives the tracking error dynamics for
the joint variable qr as [

ėr

ër

]
=

[
0 I

0 0

] [
er

ėr

]
+

[
0

I

]
u (3.15)

Due to the uncertainties present in M(q) and C(q, q̇), the tracking error dynamics
have an additional nonlinear term η, which is nonlinear function of both er and u.

ėr = Aer +B(u+ η) (3.16)
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Chapter 3. Control of flexible manipulators

η = ∆(u− q̈r) +M−1δ (3.17)
where

∆ = M−1M − In (3.18)
and

δ = C − C (3.19)
To derive the stability conditions the following assumptions are made with finite

constants defining the size of uncertainty [27]
1

µ2

≤ ‖M−1 ‖ ≤ 1

µ1

(3.20)

‖ ∆ ‖ ≤ a ≤ 1 (3.21)
‖ δ ‖ ≤ β0 + β1 ‖ er ‖ +β2‖ er ‖2 (3.22)

‖ q̈rd ‖ ≤ c (3.23)
Consider a feedback controller

u = −Ker (3.24)

such that

ėr = Aer +B(u+ η) = (A−BK)er +Bη = Ac +Bη (3.25)

By placing the poles far from the left-half of the plane, the stability of closed loop
system in the presence of η is guaranteed. Solving Lyapunov equation

Ac
TP + PAc = −Q (3.26)

with the choice of

Q =

[
2K2

p 0

0 2K2
v − 2Kp

]
(3.27)

and
K2
v > Kp (3.28)

the positive definite solution of equation [3.26] is written as

P =

[
2KpKv Kp

Kp Kv

]
(3.29)

and feedback gains is defined as

K = BTP =
[

Kv
2

a
Kv

]
(3.30)

The closed loop system equation [3.25] is uniformly bounded [27] if er(0) = 0, ėr(0) =
0 and

a > 1 +
1

µ1

[β0 + 2(β2β0 + β2(µ1 + µ2)c)
1
2 ] (3.31)

where
Kv = 2aI (3.32)

and
Kp = 4aI (3.33)

where Kp and Kv are position and velocity error gains, respectively. I is a n×n iden-
tity matrix. In this way, for the positive Kp and Kv gains the closed loop system is
asymptotically stable.
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Figure 3.4: A nonlinear control architecture.

3.3 A Nonlinear Control

The control architecture of a nonlinear control is shown in Figure [3.4]. The Lya-
punov function is used to show the asymptotic stability of closed loop system.

Consider the dynamic model

M(q)q̈ + C(q, q̇)q̇ +Dq̇ +Kq = Bτ (3.34)

Position error along the trajectory is defined as

e =

[
er

ef

]
=

[
qrd − qr
qfd − qf

]
(3.35)

where qrd and qfd are the desired rigid and flexible coordinates. qfd is set to zero to
suppress vibrations.

e =

[
qrd − qr
−qf

]
(3.36)

Lets define the sliding surface s as

s = ė+ λe =

[
ėr + λrer

ėf + λfef

]
(3.37)

where

λ =

[
λr 0

0 λf

]
(3.38)

The error dynamics of the system with newly defined signal Sr and Sf can be derived
as [

Mrr Mrf

Mfr Mff

] [
ṡr

ṡf

]
+

[
Crr Crf

Cfr Cff

] [
sr

sf

]
+

[
Drr 0

0 Dff

] [
sr

sf

]
+

[
Kvr 0

0 Kvf

] [
sr

sf

]
=

[
τm +Kvrsr − τ

τa

] (3.39)

where
τm = Mrr(q̈rd + λrėr) +Mrf (−λf ėf ) + Crr(q̇rd + λrer)

+ Crf (−λfef ) +Drr(q̇rd + λrer)
(3.40)
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τa = Mfr(q̈rd + λrėr) +Mff (−λf ėf ) + Cfr(q̇rd + λrer)

+ Cff (−λfef ) +Dff (−λfef ) +Kffef +Kvfsf
(3.41)

The following function is considered [37] to analyze the asymptotic stability of error
dynamics shown in equation (3.39).

Ẏ =


2(
√
Y a(t) + b(t)) Y (t) > 0

2b(t) Y (t) = 0 b(t) > 0

δ Y (t) = 0 b(t) ≤ 0

(3.42)

where

a(t) =
‖sr‖2

‖sr‖2 + ε
(sTf τa) (3.43)

b(t) =
−ε

‖sr‖2 + ε
(sTf τa) (3.44)

and δ is a small positive constant. The above function Y (t) ≥ 0 for all t ≥ 0 . Let
k =
√
Y or k2 = Y , then k(t) can be checked to satisfy differential equation

k̇ =
1

k

(
k‖sr‖2 − ε
‖sr‖2 + ε

)
(sTf τa), k 6= 0 (3.45)

Equation [3.45] is a differential equation to check the variable Y (t) is always positive
and k(t) is defined to be its root.

The control law with parameter estimates is chosen as

τ = τm +Kvrsr + τf (3.46)

where

τf =
(1 + k)sr
‖sr‖2 + ε

(sTf τa) (3.47)

With this proposed controller the error dynamics of the system is obtained as[
Mrr Mrf

Mfr Mff

] [
ṡr

ṡf

]
+

[
Crr Crf

Cfr Cff

] [
sr

sf

]
+

[
Drr 0

0 Dff

] [
sr

sf

]
+

[
Kvr 0

0 Kvf

] [
sr

sf

]
=

[
−τf
τa

] (3.48)

The error dynamics written in compact form is

M(q)ṡ+ C(q, q̇)s+Ds+Kvs =

[
−τf
τa

]
(3.49)

The asymptotic stability of the error dynamics shown in equation [??] is analyzed
using Lyapunov function [37]

V =
1

2
sTM(q)s+

1

2
Y

=
1

2
sTM(q)s+

1

2
k2

(3.50)
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Figure 3.5: Adaptive control architecture.

Differentiating equation (3.50) with respect to time yield

V̇ = sTM(q)ṡ+
1

2
sTṀ(q)s+ kk̇

= sT
(
−Cs−Ds−Kvs+

[
−τf
τa

])
+

1

2
sTṀ(q)s+

(
k‖sr‖2 − ε
‖sr‖2 + ε

)
(sTf τa)

= −sTDs− sTKvs+

(
k‖sr‖2 − ε
‖sr‖2 + ε

)
(sTf τa)

−
(

(1 + k)‖sr‖2 − ‖sr‖2 − ε
‖sr‖2 + ε

)
(sTf τa)

= −sTDS − sTKvs for k > 0

(3.51)

Here Kv and D are positive definite, which is clear as V̇ < 0. Thus, the system is
asymptotically stable whenever k > 0 and Kv > 0.

3.4 Adaptive Control

The control architecture of adaptive control is shown in Figure [3.5]. The Lyapunov
function is used to show the asymptotic stability of closed loop system.

Consider a nominal model

M(q)q̈ + C(q, q̇)q̇ +Dq̇ +Kq = Bτ (3.52)

Position error along the trajectory is defined as

e =

[
er

ef

]
=

[
qrd − qr
qfd − qf

]
(3.53)
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where qrd and qfd are the desired rigid and flexible coordinates. qfd is set to zeros to
suppress vibrations.

e =

[
qrd − qr
−qf

]
(3.54)

Lets define the sliding surface s as

s = ė+ λe =

[
ėr + λrer

ėf + λfef

]
(3.55)

where

λ =

[
λr 0

0 λf

]
(3.56)

The error dynamics of the system with newly defined signal Sr and Sf can be derived
as [

Mrr Mrf

Mfr Mff

] [
ṡr

ṡf

]
+

[
Crr Crf

Cfr Cff

] [
sr

sf

]
+

[
Drr 0

0 Dff

] [
sr

sf

]
+

[
Kvr 0

0 Kvf

] [
sr

sf

]
=

[
τm +Kvrsr − τ

τa

] (3.57)

where
τm = Mrr(q̈rd + λrėr) +Mrf (−λf ėf ) + Crr(q̇rd + λrer)

+ Crf (−λfef ) +Drr(q̇rd + λrer)
(3.58)

τa = Mfr(q̈rd + λrėr) +Mff (−λf ėf ) + Cfr(q̇rd + λrer)

+ Cff (−λfef ) +Dff (−λfef ) +Kffef +Kvfsf
(3.59)

The dynamics of the flexible manipulator is expressed in terms of linear type para-
metric model as

W1Θ1 = Mrr(q̈rd + λrėr) +Mrf (−λf ėf )
+ Crr(q̇rd + λrer) + Crf (−λfef ) +Drr(q̇rd + λrer)

(3.60)

W2Θ2 = Mfr(q̈rd + λrėr) +Mff (−λf ėf ) + Cfr(q̇rd + λrer)

+ Cff (−λfef ) +Dff (−λfef ) +Kffef +Kvfsf
(3.61)

where W1 and W2 are n× r1, m× r2 regression matrix for appropriate r1, r2 > 0; and
Θ1, Θ2 are unknown constant parameters.

To design adaptive controller for the error dynamics show in equation [3.57], the
following function is considered [37]

Ẏ =


2(
√
Y a(t) + b(t)) Y (t) > 0

2b(t) Y (t) = 0 b(t) > 0

δ Y (t) = 0 b(t) ≤ 0

(3.62)

where

a(t) =
‖sr‖2

‖sr‖2 + ε
(sTfW2Θ̂2 + sTfKvfsf ) (3.63)
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b(t) =
−ε

‖sr‖2 + ε
(sTfW2Θ̂2 + sTfKvfsf ) (3.64)

and δ is a small positive constant. The above function Y (t) ≥ 0 for all t ≥ 0 . Let
k =
√
Y or k2 = Y , then k(t) can be checked to satisfy differential equation

k̇ =
1

k

(
k‖sr‖2 − ε
‖sr‖2 + ε

)
(sTfW2Θ̂2 + sTfKvfsf ), k 6= 0 (3.65)

Equation [3.65] is a differential equation to check the variable Y (t) is always positive
and k(t) is defined to be its root.

The control law with parameter estimates is chosen as

τ = W1Θ̂1 +Kvrsr + τf (3.66)

where

τf =
(1 + k)sr
‖sr‖2 + ε

(sTfW2Θ̂2 + sTfKvfsf ) (3.67)

In which, Θ̂1 and Θ̂2 are the estimates of Θ1 Θ2 respectively.

W1Θ̂1 = M̂rr(q̈rd + λrėr) + M̂rf (−λf ėf )
+ Ĉrr(q̇rd + λrer) + Ĉrf (−λfef ) + D̂rr(q̇rd + λrer)

(3.68)

W2Θ̂2 = M̂fr(q̈rd + λrėr) + M̂ff (−λf ėf )
+ Ĉfr(q̇rd + λrer) + Ĉff (−λfef ) + D̂ff (−λfef ) + K̂ffef

(3.69)

With this proposed controller the error dynamics of the system is obtained as[
Mrr Mrf

Mfr Mff

] [
ṡr

ṡf

]
+

[
Crr Crf

Cfr Cff

] [
sr

sf

]
+

[
Drr 0

0 Dff

] [
sr

sf

]
+

[
Kvr 0

0 Kvf

] [
sr

sf

]
=

[
W1Θ̃1 − τf
W2Θ̃2

] (3.70)

The error dynamics written in compact form is

M(q)ṡ+ C(q, q̇)s+Ds+Kvs =

[
W1Θ̃1 − τf
W2Θ̃2

]
(3.71)

where Θ̃1 = Θ1 − Θ̂1 and Θ̃2 = Θ2 − Θ̂2 are the parameter estimation error.
The adaptation law is derived as

˙̂
Θ1 = −K1W

T
1 sr (3.72)

˙̂
Θ2 = −K2W

T
2 sf (3.73)

where K1, K2 are positive definite matrices. The asymptotic stability of the error dy-
namics is derived using Lyapunov function

V =
1

2
sTM(q)s+

1

2
Θ̃T

1K
−1
1 Θ̃1 +

1

2
Θ̃T

2K
−1
2 Θ̃2 +

1

2
Y

=
1

2
sTM(q)s+

1

2
Θ̃T

1K
−1
1 Θ̃1 +

1

2
Θ̃T

2K
−1
2 Θ̃2 +

1

2
k2

(3.74)
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Differentiating equation [3.74] with respect to time yields

V̇ = sTM(q)ṡ+
1

2
sTṀ(q)s+ ˙̃ΘT

1K
−1
1 Θ̃1 + ˙̃ΘT

2K
−1
2 Θ̃2 + kk̇

= sT

(
−Cs−Ds−Kvs+

[
W1Θ̃1 − τf
W2Θ̃2

])
+

1

2
sTṀ(q)s− sTrW1Θ̃1 − sTfW2Θ̃2

+

(
k‖sr‖2 − ε
‖sr‖2 + ε

)
(sTfW2Θ̂2 + sTfKvfsf )

= −sTDs− sTKvs+

(
k‖sr‖2 − ε
‖sr‖2 + ε

)
(sTfW2Θ̂2

−
(

(1 + k)‖sr‖2 − ‖sr‖2 − ε
‖sr‖2 + ε

)
(sTfW2Θ̂2 + sTfKvfsf ) + sTfW2Θ̂2

− sTfW2Θ̂2

= −sTDS − sTKvs for k > 0

(3.75)

Here Kv and D are positive definite, which is clear as V̇ < 0. Thus, the system is
asymptotically stable whenever k > 0 and Kv > 0.

3.5 Simulation Results

A spatial RRR manipulator shown in Figure [3.6], is considered to demonstrate the
performance of model based controllers. The manipulator have three flexible links and
three rigid revolute joints. Each flexible link is discretized using two finite element
beams with six degrees of freedom on each node and one degree of freedom for rigid
body rotations i.e. θi where i = 1, 2, 3. The damping effects on links and joints are
ignored. The physical parameters of a RRR spatial manipulator are presented in Table
[4.1]. Uniform cross-section and material properties are assumed on each link.

Table 3.1: The physical parameters of a RRR flexible manipulator.

Parameter Link 1 Link 2 Link 3
Link Length (m) 1 4.0 3.5
C/s Area (m2) 0.028 0.0020 0.0008

Moment of Inertia (m4) 8.33×10−7 6.24×10−7 5.37×10−7

Polar moment of Inertia (m4) 1.66×10−6 1.24×10−6 1.07×10−6

Tensile Modulus (MPa) 206000
Shear Modulus (MPa) 79300

Density (Kg/m3) 8253

The reference trajectories of joint 1, joint 2, and joint 3 are shown in Figure [3.7].
The simulation results of PD controller, Stable inversion controller, nonlinear con-
troller, and Adaptive controller are compared. Figure [3.8], Figure [3.9], and Figure
[3.10] show the error along joint trajectory θ1, θ1, and θ1 respectively. Figure [3.11],
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Figure 3.6: Spatial RRR flexible manipulator with three flexible links and three rigid joints.

Figure 3.7: Reference trajectory.
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Figure 3.8: Error along joint θ1 trajectory.

Figure 3.9: Error along joint θ2 trajectory.
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Figure 3.10: Error along joint θ3 trajectory.

Figure 3.11: Elastic displacements of endeffector X4Y4Z4 along X-Direction.
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Chapter 3. Control of flexible manipulators

Figure 3.12: Elastic displacements of endeffector X4Y4Z4 along Y-Direction.

Figure 3.13: Elastic displacements of endeffector X4Y4Z4 along Z-Direction.
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3.5. Simulation Results

Figure [3.12], and Figure [3.13] show the endeffector X4Y4Z4 elastic displacements
along X, Y, and Z direction respectively.

The PD controller is designed based on rigid link manipulator dynamics to study the
effect of link flexibility in control design. Thus, the simulation results of PD controller
showed good trajectory tracking at joint space but it is not very efficient to damp the
endeffector vibrations. It can be seen in Figure [3.11] - [3.13].

The stable inversion control showed better trajectory tracking compared to PD con-
trol, however this method is incapable of damping the vibrations in case of unmodeled
dynamics such as unknown payload mass. Moreover, stable inversion control have
good performance for planar flexible link manipulators compared to spatial flexible
link manipulators. These results are shown in chapter [4].

Nonlinear control and adaptive control showed good trajectory tracking at the joint
space and also efficient to damp the endeffector X4Y4Z4 vibrations compared to PD
controller and stable inversion control as it can be seen in Figure [3.11] - Figure [3.13].
The endeffector vibrations along Z-direction is damped quickly where as the endef-
fector vibrations along X-direction and Y-direction are taking long time to damp the
vibrations because these vibrations are out-of-plane with respect to actuators at the
manipulator joints. To improve the damping properties of the out-of-plane bending
vibration additional control effort is required along this direction.

Overall, the adaptive control showed better performance compared to PD controller,
stable inversion control and nonlinear control.
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CHAPTER4
Experimental Results

4.1 Introduction

A single link flexible manipulator shown in Figure [4.1] is designed to demon-
strate the performance of the model based controllers that are developed for the trajec-
tory tracking. The experimental setup consists of Quanser SRV02 rotary servo plant,
Quanser Q8 terminal board, universal power module (UPM), single link flexible ma-
nipulator, and a strain guage. The schematic layout of experimental setup is shown in
Figure [4.3].

A strain gauge is mounted close to clamped end of flexible link to measure tip dis-
placements. It is shown in Figure [4.2]. The physical parameters of single link manip-
ulator are presented in Table [4.1].

The Quanser SRV02 rotary servo plant consists of actuator and external load gear.
The actuator consists of DC motor equipped with internal planetary gearbox. The inter-
nal planetary gearbox is connected to external load gear. The assembly of DC motors,
internal planetary gear box and external load gear introduce friction and damping at the
joint.

The friction model and damping properties are identified using experimental method.
The coulomb and viscous Friction model is considered to accurately model the friction
behaviour at the joint. The offset value and gain for friction model are computed based
on series of experiments by measuring constant angular velocities for given input volt-
age.

4.2 Model Validation

Lets consider the equations of motion of a flexible link manipulator which can be
written as
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Chapter 4. Experimental Results

Figure 4.1: Experimental setup of a single link flexible manipulator

Table 4.1: The physical parameters of single link planar manipulator.

Parameter Name Nominal Value
Motor Inertia (Im) 2.08e-3 Kgm2

Motor Viscous Damping (Bm) 4e-3 Nm/(rad/s)
Payload Mass (Mp) 0.1 kg
Dimension of Link (LxHxW) 0.52x0.045x0.002 m
Tensile Modulus 206000 MPa
Density (ρ) 8253 Kg/m3

[
Mrr Mrf

Mfr Mff

] [
q̈r

q̈f

]
+

[
Crr Crf

Cfr Cff

] [
q̇r

q̇f

]
+

[
Drr 0

0 Dff

] [
q̇r

q̇f

]
+

[
0 0

0 Kff

] [
qr

qf

]
=

[
Br

Bf

]
τ

(4.1)

where qr and qf are the rigid and elastic coordinates.
Using the equation [4.1] the feedforward compensator is defined as

τ = Mrrq̈r +Mrf q̈f + Crrq̇r + Crf q̇f +Drrq̇r (4.2)

For the given reference trajectories qr, q̇r and q̈r, the input torque applied at manip-
ulator joint can be computed by equation [4.2]. The values of elastic coordinates qf , q̇f
and q̈f is set to zero because these values are not known apriori.

The out response of the feedforward compensator is shown
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4.3. Friction Compensator

Figure 4.2: Strain guage mounted on flexible manipulator

Figure 4.3: Experimental setup of a single link flexible manipulator

4.3 Friction Compensator

The friction at the manipulator joint plays a major role in the position control. The
friction model can be identified using the Newtons first law of motion. The equations
of motion of a Qunaser servo plant is defined as

Tm(t)− Tf = Jmω̇(t) (4.3)
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Chapter 4. Experimental Results

where Tm is the motor torque, and Tf is the friction torque. Jm is the motor inertia, and
ω(t) is the angular velocity at the load shaft.

From equation [4.3], if the angular velocity is constant then friction torque is equal
to motor torque i.e.

Tm(t) = Tf (4.4)

The torque applied by the servo motor at the manipulator joint can be defined as

Tm(t) =
ηgκgηmκt(Vm − κgκmθ̇)

Rm

(4.5)

where Vm is the input voltage and θ̇ is the angular velocity of load shaft. The Quanser
servo plant parameters are listed in Table [4.2]

Table 4.2: Quanser servo plant parameters.

Parameter Description Value
κt Motor torque constant 7.68E-3 Nm
ηm Motor efficiency 0.69
κg Total gearbox ratio 70
ηg Gearbox efficiency 0.90
κm Back-emf constant 7.68E-3 V/(rad/s)
Rm Motor armature resistance 2.6 Ω

From the equation [4.3] the friction torque is equal to motor torque when the angular
velocity is constant. Hence, the frictional torque can be computed using equation [4.5].
The angular velocity θ̇ is measured at different constant angular velocities by increasing
the input voltage Vm. The measured angular velocity for the given input voltage is
shown in Table [4.3].

Table 4.3: The experimental data: angular velocity measurement vs input voltage.

Voltage Angular velocity Motor torque
(volts) (rad/s) (Nm)

0.0 0 0
0.1 0 0.0128
0.2 0.095 0.0257
0.3 0.171 0.0385
0.4 0.253 0.0514
0.5 0.331 0.0642
1.0 0.756 0.1284
1.5 1.182 0.1926
2.0 1.614 0.2568
2.5 2.053 0.3210
3.0 2.489 0.3852
3.5 2.924 0.4494
4.0 3.372 0.5136
4.5 3.815 0.5778
5.0 4.243 0.6420
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4.4. Experimental Results

The coulomb and viscous friction model is considered to fit the measured data.

Ff (θ̇) = Fcsgn(θ̇) + βθ̇ (4.6)

where Ff is the total frictional torque, Fc is the coulomb friction torque, β is the
viscous friction coefficient and θ̇ is the angular velocity.

From Table [4.3] the motor begins to rotate between the input voltage 0.1 V and 0.2
V. To find out the precise value of input voltage where the motor begins to rotate, the
angular velocity θ̇ is measured for very small increments of voltage. It is noticed that
at input voltage 0.11 V the motor begins to rotate. Thus the coulomb friction torque is
defined as this point.

The coulomb frictional torque value is computed as

Fc = 0.0141Nm (4.7)

The viscous friction coefficient β is computed using the slope of frictional torque plot-
ted in Figure [4.4]. It is defined as

β =
change in the friction torque

change in the angular velocity
= 0.1496 (4.8)

Figure 4.4: Frictional torque Ff vs angular velocity plot using experimental data.

4.4 Experimental Results

The following model based controllers are experimentally verified on single link
flexible manipulator.

1. PD Control

2. Stable Inversion Control

3. Adaptive Control
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Chapter 4. Experimental Results

Figure 4.5: The joint trajectory response of open loop system.

Figure 4.6: The joint trajectory response.

The performance of the model based controllers are tested in the presence of addition
payload mass on the tip.

Figure [4.6] show the comparison between PD controller, stable inversion controller,
and adaptive controller without payload mass. Figure [4.7] show the trajectory tracking
error. Figure [4.8] show the tip displacements along the trajectory.

Figure [4.9] show the comparison between PD controller, stable inversion controller,
and adaptive controller in the presence of additional payload mass. Figure [4.10] show
the trajectory tracking error. Figure [4.11] show the tip displacements along the trajec-
tory.

The experimental results show that stable inversion controller and adaptive con-
troller have accurate trajectory tracking without payload mass on tip. In the presence
of additional payload mass Mp = 0.1 Kg, adaptive control showed better tip trajectory
tracking compared to PD controller, and stable inversion controller.
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Figure 4.7: The error along joint trajectory.

Figure 4.8: Tip displacement along the trajectory.

The advantage of the stable inversion control is that it does not require measure-
ment of the tip displacement because these values are estimated off-line using Iterative
learning method. The stable inversion control showed good trajectory tracking and min-
imized vibrations without payload mass as it is seen in Figure [4.7] and Figure [4.8],
but for additional payload mass the stable inversion control is not efficient to damp the
vibrations because the estimated off-line elastic displacements heavily depend on the
accuracy of the dynamic model which is unknown a priori in case of unknown payload
mass.

The adaptive control measures tip displacement along the trajectory and minimizes
the tip vibrations. It has tip displacements and joint trajectory error as a feedback in the
control. Thus, adaptive control showed better performance in trajectory tracking and
vibration suppression in the presence of additional payload mass.
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Chapter 4. Experimental Results

Figure 4.9: The joint trajectory response in the presence of additional payload mass.

Figure 4.10: The error along joint trajectory in the presence of additional payload mass.

66



i
i

“thesis” — 2014/1/10 — 13:24 — page 67 — #75 i
i

i
i

i
i

4.4. Experimental Results

Figure 4.11: Tip displacement along the trajectory in the presence of additional payload mass.
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CHAPTER5
Conclusions

The goal of this thesis was to develop systematic approach for dynamic modeling
and control of spatial flexible manipulators. The thesis work on flexible manipulators
was divided into two parts. The first part was focused on dynamic modelling of spatial
flexible manipulators while the second part was focused on control design of spatial
flexible manipulators for trajectory tracking.

A general purpose multi-body code has been developed to obtain a nonlinear dy-
namic model of spatial flexible manipulators for model based control design and simu-
lation purposes. Both link and joint flexibilities can be included in the dynamic model-
ing. The flexible links are discretized to get a finite dimensional dynamic model.

The deformation of each link is assumed to be due to both bending and torsion. The
deformation of the joints is assumed to be due to pure torsion. The deformation of each
link is assumed to be small relative to the rigid body motion. Thus, the configuration of
each link is defined as the sum of rigid and elastic coordinates using a floating reference
frame. The dynamic model is first derived using the principle of virtual work along with
finite element method in generalized coordinates for general purpose implementation.
Then, the system of equations in generalized coordinates is converted into independent
coordinate form using a recursive kinematic formulation based on the topology of a
manipulator.

The advantage of general purpose multi-body code is that it uses minimum set of
equations that define the dynamics of flexible manipulator, which is required in control
design to reduce computation cost. In addition, it allows the dynamic modeling of
any arbitrary manipulator configuration that consists of rigid links, flexible links and
flexible joints.

Numerical simulation results of an open chain RRR spatial manipulator with flexible
links and flexible joints was presented to show the effects of flexibility on robot manip-
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ulator dynamics. The simulations results showed that the link and joint flexibility can
alter the motion of endeffector in workspace. Thus, Ignoring the link or joint flexibility
can cause poor estimation of dynamic parameters and, eventually, poor performance of
the control design.

Model based controllers were developed for trajectory tracking and vibration sup-
pression of spatial flexible link manipulators. The following model based controllers
were designed for an open chain RRR spatial flexible link manipulator:

1. PD Control

2. Stable Inversion Control

3. A Nonlinear Control

4. Adaptive Control

Among them, PD control and Stable inversion control are derived using feedback
linearization technique. A nonlinear control and Adaptive control are derived using
sliding mode technique.

The simulation results of PD controller showed good trajectory tracking at joint
space. However, it is not very efficient to damp the endeffector vibrations. The stable
inversion control showed better trajectory tracking compared to PD control, however
this method is incapable of damping the vibrations in case of unmodeled dynamics
such as unknown payload mass. Moreover, stable inversion control can have good
performance for planar flexible link manipulators compared to spatial flexible link ma-
nipulators.

Nonlinear controller and adaptive controller showed good trajectory tracking at the
joint space and also efficient to damping the endeffector vibrations compared to PD
controller and stable inversion controller.

Experimental results on a single link flexible manipulator showed that the adaptive
controller has better trajectory tracking and vibration suppression compared to PD con-
trol and stable inversion control in the presence of additional unknown payload mass
on the endeffector.

Through the present work, the state of the art developed for planar flexible links
manipulators was extended to a spatial flexible link manipulators. It is learnt that the
spatial flexible link manipulators require additional control effort to damp the out of
plane vibration modes. These vibration modes are due to out of plane bending effect.
The future work on spatial flexible link manipulators can be focused to improve the
damping properties of out-of-plane vibration modes. Further studies can be focused on
the additional actuator and its positions to damp the out-of-plane bending modes.
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