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ABSTRACT

HEREAS hardware is physically responsible for power consump-
tion, hardware operations are guided by software, which is in-
directly responsible of energy consumption. Research on Infor-

mation Technology (IT) energy efficiency has mainly focused on hardware.
This thesis focus on software energy consumption with the goal of provid-
ing a methodology to identify and reduce energy inefficiencies.

In our approach, we estimate the energy consumption of application
software independent of the infrastructure on which the software is de-
ployed. Our methodology make a distinction between the usage of com-
putational resources and the unit energy consumption of each resource. In
this way, usage of resources and unit energy consumption can be measured
independently. As thoroughly discussed in the thesis, this separation al-
lows the definition of energy consumption benchmarks for homogenous
clusters of transactions or software applications. These metrics can be used
to define classes of energy efficiency within each cluster, thus enabling the
comparison of the energy efficiency of similar applications/transactions.

Benchmarks are used to identify energy inefficient software applica-
tions. The thesis proposes a memoization-based approach to improve the
energy efficiency of inefficient software that does not require a refactoring
of code. Optimizing code has a direct beneficial impact on energy effi-
ciency, but it requires domain knowledge and an accurate analysis of the
algorithms, which may not be feasible and is always too costly to perform
for large code bases. We present an approach based on dynamic memo-
ization to increase software energy efficiency without a need for a direct
optimization of existing code. We analyze code automatically to identify
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a subset of pure functions that can be tabulated and automatically store
results. The basic idea of our memoization-based approach is to fetch pre-
viously computed results from memory to avoid computation. This idea
raises a number of research challenges. The thesis discusses a software
framework that provides a tool-set to apply memoization to any software
application tested on a sample of financial functions provided by a large
Italian corporation that have accepted to participate in the empirical testing
of our methodology as a pilot case set. Empirical results show how our
approach can provide significant energy and time savings at limited costs,
with a considerably positive economics impact.



SOMMARIO

RMAI da qualche anno si parla diffusamente dell’efficienza energe-
tica dell’IT, ma raramente si affronta il problema del ruolo rive-
stito dal software nel determinare il consumo energetico dell’IT.

Considerando che I’hardware ¢ fisicamente responsabile per il consumo di
potenza e che le operazioni hardware sono guidate dal software, allora pos-
siamo affermare che il software ¢ indirettamente responsabile del consumo
di energia. La ricerca relativa all’efficienza energetica nel mondo IT si ¢
concentrata principalmente su hardware. Questo lavoro di tesi pone I’at-
tenzione sul consumo di energia del software con I’obiettivo di fornire una
metodologia per identificare e ridurre le sue inefficienze energetiche.

E’ stata definita quindi una metodologia per la stima del consumo di
energia del software applicativo indipendentemente dall’infrastruttura su
cui viene installato il software. Il nostro approccio si basa sulla distinzione
tra I’utilizzo di risorse computazionali imputabili all’uso dell’applicazione
e il consumo unitario di ogni risorsa utilizzata. In questo modo, 1’utilizzo
delle risorse e il consumo unitario energetico possono essere misurati in
modo indipendente. Questa separazione permette la definizione di parame-
tri di riferimento del consumo di energia per cluster omogenei di transazioni
o di applicazioni software. Questi parametri possono essere utilizzati per
definire classi di efficienza energetica all’interno di ciascun cluster, permet-
tendo cosi il confronto dell’efficienza energetica di transazioni o operazioni
similari.

I parametri di riferimento precedentemente calcolati sono quindi utiliz-
zati per identificare le applicazioni software inefficienti dal punto di vista
energetico. Questo lavoro di tesi propone un approccio basato sulla me-
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moizzazione dinamica per migliorare I’efficienza energetica dei software
inefficienti, senza richiedere un refactoring di codice. L’eventuale ottimiz-
zazione manuale del codice di un’applicazione ha un impatto positivo di-
retto sulla efficienza energetica, ma richiede la conoscenza di dominio e di
una accurata analisi degli algoritmi, che non sempre ¢ fattibile ed ¢ molto
costosa da eseguire per le grandi basi di codice. Il nostro approccio basato
sulla memoizzazione permette di migliorare 1’efficienza energetica del soft-
ware senza la necessita di una ottimizzazione diretta del codice esistente.
Il codice viene analizzato automaticamente per identificare un sottoinsieme
di funzioni pure che possano essere tabulate per memorizzarne automatica-
mente i risultati. L’idea di base del nostro approccio ¢ quello di recuperare
dalla memoria i risultati precedentemente calcolati per evitare 1’'uso della
CPU per effettuare calcoli aggiuntivi. La tesi presenta inoltre il framework
che implementa la metodologia fornendo un set di strumenti per applicare
la memoizzazione a qualsiasi applicazione software. Il framework ¢ stato
testato su un campione di funzioni finanziarie fornite da una grande azien-
da italiana che ha accettato di partecipare come un caso pilota alla verifica
empirica della nostra metodologia. I risultati mostrano come il nostro ap-
proccio puo fornire un notevole risparmio energetico e di tempo a costi
contenuti, con un impatto economico molto positivo.
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CHAPTER 1

INTRODUCTION

In the last ten years IT systems have grown very fast, with a consequent
growth of the IT energy consumptions. This growth has raised a number of
considerable issues. First of all, energy costs have dramatically increased
and their impact on the overall IT infrastructural costs has become even
more significant. Second, energy requirements represent one of the scal-
ability issues of datacenters, since providers have difficulties at supplying
data centers with all the required energy. Moreover, information technology
contributes strongly to the green-house C'O, emissions. All these issues be-
long to a new filed of study: Green IT.

Although software does not directly consume energy, it affects the en-
ergy consumption of IT equipments. Software applications indicate how
information should be elaborated and to some extent guide the use of hard-
ware. Consequently, software is indirectly responsible of energy consump-
tion. Despite this, software engineering focuses on software performances
and quality. Energy efficiency is not even included among software quality
metrics [48]. Most enterprises focus on the trade-off between cost and qual-
ity, while neglecting software energy efficiency. Therefore there is a need to
analyze, quantify and optimize application software from the point-of-view
of the energy efficiency.
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Chapter 1. Introduction

The literature explains how optimizing software algorithms has a direct
and potentially beneficial impact on energy efficiency. However, there is
broad evidence of the practical hurdles involved in optimizing software al-
gorithms, tied to the technical skills of programmers, to the role of domain
knowledge, and to the need for massive code refactoring and related costs.
This thesis focus on software energy consumption with the goal of provid-
ing a methodology to identify and reduce energy inefficiencies at limited
costs.

The energy consumption of IT has attracted the attention of both aca-
demic and industrial communities in the last years. Green IT raises research
challenges at different infrastructure levels, including the selection of hard-
ware devices, data centers design, management and usage practices, and
software design and development. In our previous researches [15] [16] [17]
is shown the importance of software energy efficiency, as the ultimate cause
for the energy consumption of all other infrastructural levels. IT managers
seem to believe that software per se has a very limited impact on the energy
consumption of real-word systems. Their claim is that although the ap-
plications have different designs, they do not differ significantly from one
another in terms of hardware requirements and, thus, energy efficiency. It
is generally accepted that the operating system can make the difference in
energy consumption, not the application software itself [49]. However, as
a matter of fact these beliefs have never been empirically verified using a
systematic scientific approach and there is no clear evidence as to whether
application software has a tangible impact on energy consumption.

We propose a methodology to estimate the energy consumption of appli-
cation software independent of the infrastructure on which the software is
deployed. Our methodology makes a distinction between the usage of com-
putational resources by an application and the unit energy consumption of
computational resources. In this way, usage of computational resources
and unit energy consumption can be measured independently. The usage
of computational resources includes the usage of processor and input/out-
put (I/O) channels to execute transactions. Both measures can be easily
obtained with widely used testing platforms. Unit energy consumption can
be measured just once for each class of devices or extracted from their
datasheets. Our methodology can support the definition of benchmarks of
energy consumption for classes of functionally similar transactions or ap-
plications. These values can be used to define classes of efficiency within
a given sample of applications or to compare the energy performance of
similar applications.

These benchmarks are used to identify energy inefficient software ap-
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plications. In this thesis we present a methodology that applies memo-
ization techniques to improve the energy efficiency of inefficient appli-
cation software. Memoization is a programming technique that caches
the results of a software program in memory. Memoization increases en-
ergy efficiency when storing and fetching a value consumes less energy
than executing the corresponding software program. In general, process-
ing a complex computation-intensive function requires more energy than
caching results and reading them when needed, especially if the function is
frequently called with the same input values. Furthermore, these benefits
can be reaped without a need for code inspection and redesign, as they are
the result of an intelligent management of memory resources at run time.
Memoization has been extensively studied by the literature and has been
applied in different contexts, including dynamic programming [19] [33]
and incremental computation [25] [28]. However, applying memoization to
improve the energy efficiency of application software raises new research
challenges. First, a restrictive definition of the concept of pure function is
required to avoid manual inspection of code and enable large scale appli-
cability. Pure functions are good candidates for memoization. Second, the
benefits of memoization depend on the precision of results: the greater the
precision, the larger the size of memory required to store all possible re-
sults of a function. While this issue is neglected in existing literature, in the
context of application software precision represents a typical item of a Ser-
vice Level Agreement (SLA) and can be tuned at run time. Our methodol-
ogy obtains an energy-efficient management of memory resources in three
steps: 1) pure functions are identified as good candidates for memoization,
2) a subset of initial candidate functions is selected to make sure that each
selected function can improve energy efficiency when memoized, 3) avail-
able memory is allocated to different functions in order to minimize overall
energy consumption based on a set of SLAs. Note that the second step
includes an empirical performance model supporting the runtime estimate
of the energy benefits from the memoization of each candidate function.
The model includes two important parameters: a) the statistical distribu-
tion of the input values of each candidate function, b) the impact precision
requirements on the amount of memory required for the memoization of
the function. Both parameters are strongly affected by the application con-
text and represent important determinants of the overall feasibility of the
methodology.

We have developed a software suite to test our approach. The methodol-
ogy is tested on a set of well-known financial functions. The experimental
campaign is executed with automatically generated input workloads based
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Chapter 1. Introduction

on real parameters, including the range, mean, and standard deviation of
input parameters. Both the code and the workload parameters have been
provided by a large Italian corporation that have accepted to participate
in the empirical testing of our methodology as a pilot case set. Empirical
results show how our approach can provide significant energy and time sav-
ings at limited costs, with a considerably positive economics impact.

The presentation is organized as follows. Chapter 2 surveys the most
important works related to the recent researches on energy efficiency in
the IT field, also considering memoization approaches and software ap-
plications using these techniques. Chapter 3 describes an energy bench-
marking approach to estimate the energy consumption of application soft-
ware independent of the infrastructure on which the software is deployed.
This separation allows the definition of energy consumption benchmarks
for homogenous clusters of transactions or software applications. Then,
benchmarks are used to identify energy inefficient software applications.
Chapter 4 proposes a memoization-based approach to improve the energy
efficiency of inefficient software that does not require a refactoring of code.
Our approach increase software energy efficiency without a need for a di-
rect optimization of existing code. We also propose a mathematical model
to estimate the effectiveness of the memoization approach and the policy
for the memory allocation in order to maximize the effectiveness of the en-
ergy efficiency of the approach. Chapter 5 describes the proposed solution
and its implementation. The Green Memoization Suite (GreMe) allows
the analysis and the code modification of the bytecode. Then, the modi-
fied bytecode can be executed implementing the memoization technique.
Chapter 6 presents and discusses the experimental results obtained from
the application of the approaches described in Chapter 5. Finally, Chapter
7 draws some conclusions and proposes future research directions.

24



CHAPTER 2

STATE OF THE ART

The growth experienced by the Information Technology (IT) industry, es-
pecially in the last decade, has resulted as an impressive demand in terms
of energy needs, and hence environmental impact. However, the energy
efficiency of such technologies is far below expectations, resulting in non
negligible energy wastes. For these reasons, additional studies and tech-
niques have to be developed to improve the electric consumption of these
devices.

This Chapter discusses the recent researches on energy efficiency in the
IT field, also considering memoization approaches and software applica-
tions using these techniques. In Section 2.1, we introduce the Green IT
and Green Computing concepts and the fundamental aspects are described.
Section 2.3 illustrates the impact of the software on Green IT. Section 2.4
describes the recent memoization-based approaches and techniques.

2.1 Green IT: overview

Nowadays, Green IT is one of the most relevant and discussed topics in the
Information Technology industry. Two different kinds of costs are brought
by: the energetic and the maintenance ones. The increasing need for more
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Chapter 2. State of the art

electric power, related not only to servers and infrastructures but for exam-
ple also to conditioning systems, has a direct impact on the environment;
in fact, more power translates in more carbon emissions (due the industrial
processes that provide electricity) and hence influences in a direct way the
global warming.

2.1.1 Energy consumption overview

[40] provide an insight regarding the percentage of energy that the main
components of a data center require, identifying the main contributions
from servers (56%) and cooling systems (30%), while the rest of the power
is accountable to all the remaining components (network, lights, etc.). Per-
haps the most known and impressive research regarding the impact of the
IT, in terms of carbon emissions, is presented by Gartner Inc [4]. Accord-
ing to it, up to 2% of the total emissions of carbon dioxide is related to the
ICT. About the 23% of this quantity, according to Gartner, is accountable to
data centers, and hence is directly related to the power required by servers
and cooling systems.

The energy required to power all the world’s computers, data storage,
and communications networks is expected to double by 2020, according
to a McKinsey & Company analysis [11]. This would increase the total
impact of IT technology, in terms of global carbon emissions, up to 3%.

2.1.2 Energy efficiency overview

An important factor to consider when dealing with power consumption is
the energy efficiency. This measure defines the ratio between the use of a
device (for example, a common server) and the power required to achieve
it. Of course, greater ratios correspond to better utilization, and hence to a
better utilization of electrical consumption; however, in modern technolo-
gies, there is not a proportional relationship between workload of a machine
and its power required. In [9], the authors provide an overview about the
typical utilization of a server, and the energy associated to it. Figure 2.1
shows a representation of the average processor utilization, resulting from
the observation of more than 5000 servers for a period of six months.
Although the service provided could modify the shape of the distribu-
tion, it is evident how the servers are rarely idle or working at full capacity,
operating most of the time between 10-50% of their maximum level. This
is expectable, since services that average close to 100% of the servers ca-
pacities could result in difficulties to meet throughput and latency agreed in
the Service Level Agreement (SLA), for example due to software-hardware
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Figure 2.1: Average CPU utilization of more than 5,000 servers during a six-month pe-
riod. Servers are rarely completely idle and seldom operate near their maximum uti-
lization, instead operating most of the time at between 10 and 50 percent of their
maximum utilization levels.

failures or need for maintenance. On the other hand, a higher time in idle or
at very low capacity could represent a substantial waste of energy, since the
data center is evidently over dimensioned for the service provided. Having
identified the common operating region, it is possible to observe the energy
efficiency at these levels. Figure 2.2 compares the server power usage to the
correspondent energy efficiency; the values of this measure are astonishing
low, establishing below than 40% in the 20-30% utilization range.

This translates in an energy waste greater than 60% for the major part
of the time. Moreover, even when the server is in idle, it still consumes
about half of the energy required when working with full load. The energy
efficiency tends to assume better values when approaching the maximum
capacity of the machine, but as already said such intervals are almost never
met for a well-designed service. Moreover, since in a common server only
20% of the energy is required from the computation, while 80% accounts
for other elements (alimentation, fans, memory, etc.), for each Watt actually
used for computation the processor consumes SW, while the entire server
absorbs 16W and the data center a total around 27W [42].
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Figure 2.2: Server power usage and energy efficiency at varying utilization levels, from
idle to peak performance. Even an energy-efficient server still consumes about half its
full power when doing virtually no work.

The theme of energy efficiency is also explored in [13], which deeply
analyzes the contribution of different components at server level, as well as
data center level. In particular, it underlines the need for new practices to
improve such efficiency, or face a constant decrease of such ratio in the near
future (meaning even worse management of electrical power). Moreover, it
shows how from 2008 the cost for a server has been overcome by the one
relative to the energy required, not only in terms of the machine itself, but
also regarding external factors (such as the need for cooling). The relatively
cheap option of buying more servers to obtain higher throughput is hence
contrasted by the increasing cost of energy, resulting in reduced profits and
scalability problems for the companies that invested in such model.

[38] provide an overview of the energy efficiency of different compo-
nents of a data center. While only a few elements have values of such ratio
over (or even approaching) 50%, it is astonishing how the common proces-
sors fails to reach even 1% of energy efficiency; for a complete list of the
component considered in the paper, refer to Table 2.1. Techniques such as
Dynamic Voltage and Frequency Scaling (DVFES) [31] could improve the
result, but still it remains far beyond an acceptable level.

These figures provide an overview on how the typical model of IT ex-
pansion is unsustainable, both in terms of cost and energy consumption,
as well as towards environment pollution. Solutions at various levels must
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Table 2.1: Estimated energy efficiency of common IT components, with respect to the
maximum, theoretical efficiency

Component Estimated energy efficiency
Infrastructure 50%

System 40%

Server 60%

Processor 0.001%

Software 20%

Network 10%

Database 60%

IT use practices 30%

be adopted to reduce the energy needed from modern systems, and hence
accomplish the double benefit of increase energy efficiency and decrease
the pollution generated by energy needs. So, the focus should be not only
towards the search for more, innovative and low-impact forms of energy
production, but especially related to the better utilization of existing tech-
nologies, to improve the energy efficiency and reduce the global demand of
power required.

2.2 Green computing

The term Green Computing refers in general to environmentally sustainable
computing. A traditional definition is given by San Murugesan in [38].
In the paper, he defines Green Computing as "the study and practice of
designing, manufacturing, using, and disposing of computers, servers, and
associated subsystems - such as monitors, printers, storage devices, and
networking and communications systems - efficiently and effectively with
minimal or no impact on the environment". From this definition it is clear
that the areas of applications of such discipline include all the life-cycle of
the IT products, and more specifically production, use and disposing.

First of all, the identified devices (take for example a common PC) must
be designed and manufactured in such a way that the environmental impact
is as modest as possible; this includes not only the ability to manage fac-
tories and production chains in the most convenient way feasible, but also
to prolong the life of such devices as much as possible. In fact, the exten-
sion of the equipment lifetime is one of the biggest contribution to Green
Computing. The advantages of having a PC that is easily upgradable to
a better one, instead of realizing a completely new machine, are very ev-
ident in terms of environmental impact. Moreover, Gartner at [37] stated
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to "Look for product longevity, including upgradability and modularity",
making clear once again the importance of the cited aspects. Moreover,
minimizing the use of non-biodegradable components and encouraging the
use of sustainable resources are additional factors that could really improve
the environmental impact.

The disposing of electric and electronic equipment is another field that,
if not addressed in an adequate manner, can deeply impact the environment
in terms of pollution. In fact, lots of toxic materials (for instance lead,
mercury, chromium) need specific way of disposing due their highly dan-
gerous nature for the environment. For these means, the European Union
has developed in 2002 a specific law, under the name of Waste Electrical
and Electronic Equipment Directive (WEEE Directive), that regulates the
process of disposing of such material, from collections to effective dispose.
Moreover, it regulates another important factor that is very relevant in this
field: the recycling. Although the re-utilization of some components, such
as hard drive and memory disks, could still arise privacy issues (due the
fact that some data could still be present on such devices after the dismis-
sion from the original owner), many other parts (including batteries, ink
cartridges and generic computing supplies) can be recycled through certain
retail outlets, such as [5].

The last area to consider is the utilization of the equipment constituting
the IT industry. More in general, two main aspects that deeply influence
the environmental sustainability can be considered: the software optimiza-
tion (known also as Green Software, and better described in the following
section) and the power management. The latter is a key factor in terms of
energy savings (and hence reduction of carbon dioxide emissions related
to energy production), and must be carefully addressed to avoid waste of
energy that could become critical, especially for medium-large data centers
(which constitute the main element in terms of power demand).

2.3 Green software

An often neglected factor, even when dealing with required power issues, is
the one referred to the power consumption attributable to generic applica-
tion software. Even if software does not consume energy in the traditional
sense of the meaning, it is however true that its execution affects the global
power absorbed by the entire system that hosts it. Moreover, a sort of prop-
agation can be verified, in terms of power overhead required, due to power-
inefficient software. For example, an application could run temporally in-
efficient algorithms that increase both the time required from the task to be
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completed, as well as the power needed by the processor. More power to
the cpu means more heat generated by the component, and hence translates
in more cooling-power required to ensure the stability of the temperature in
which the system operates, thus resulting in more power needed also by the
cooling system. This simple example shows how the execution of generic
software can deeply impact not only the machine on which it runs, but all
the environment in which the system resides, and hence such issue must
be carefully addressed by programmers and administrators. Thus, the first
needs is to determine the energy consumption of applications running on
servers and to benchmark them in order to understand where optimization
are needed.

2.3.1 Software benchmarking

Even though hardware infrastructure is physically responsible for energy
consumption in data centers, the role of software cannot be neglected. Soft-
ware 1s the first cause for energy consumption, as it drives the operations
performed by the processor and thus influences the consumption of all the
layers of a computer infrastructure. In previous work, we found that the
Management Information Systems (MIS) application layer impacts on en-
ergy consumption up to 70 (w.r.t. idle consumption) and that different MIS
applications satisfying the same functional requirements may consume sig-
nificantly different amounts of energy (differences up to 145%) [15].
There are several consolidated methodologies to measure hardware en-
ergy consumption and efficiency. Hardware performs elementary opera-
tions, so it is easy to measure unit energy consumption through metrics
such as Joule per FLOP (Floating Point Operation) or MIPS (Million In-
structions Per Second) / Watt. Energy efficiency is usually assessed by
stressing servers and PCs with benchmark workloads that gradually in-
crease the usage of the processors and by measuring power with specific
hardware kits. SPEC [22] and TPC [20] are widely used benchmarks pro-
vided by independent organizations. In contrast, the estimation of software
energy efficiency remains largely unexplored. Software engineering litera-
ture proposes several metrics for software quality. However, these metrics
never include power consumption [17]. Some research works [39] have
analyzed the relationship between quality metrics and power consumption,
in the context of embedded systems. Not surprisingly, the 50 ISO software
quality parameters [48] do not include energy efficiency. A significant body
of literature has focused on time performance [30] [32] [44] [45] [50]. To
the best of our knowledge, no previous studies relate time performance to
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the energy efficiency of application software. In previous literature method-
ologies can be found to estimate software energy efficiency [18]. For exam-
ple, [27] investigates low power embedded systems and introduces accurate
power metrics to drive the hardware/software co-design. These works are
limited to embedded systems and cannot be extended to business applica-
tions, such as ERPs. In [18], software energy efficiency is addressed and
innovative energy consumption metrics are proposed. Their metrics can
be extracted from the flow graph of the software program. The main lim-
itation of this work is that metrics have been validated on matrix algebra
and multimedia programs, whose execution flows are easily predictable.
In [15], we have proposed a methodology to measure MIS software energy
consumption. This methodology consists in defining software benchmark
workloads and measuring the total energy consumed by the system to exe-
cute a given workload. The main drawback of this approach is that experi-
mental campaigns have to be executed on the same hardware infrastructure.
For this reason, applications can be compared only if they are executed on
the same machine. In (omitted-reference), we have extended our methodol-
ogy to measure the energy efficiency of MIS applications. This is obtained
by defining classes of functionally similar applications (e.g., ERPs, spread
sheets, etc.) and measuring the energy consumption associated with the ex-
ecution of the same benchmark workload. The comparison of normalized
values within the sample of applications allows the assessment of energy
efficiency. This methodology provides an assessment that depends on the
specific hardware infrastructure used for testing. More generally, there are
two main open issues in the literature. First, software causes energy con-
sumption, but the hardware infrastructure is responsible for the physical ab-
sorption of power. Thus, software energy efficiency metrics provide differ-
ent results on different hardware platforms. Second, while the elementary
tasks executed by hardware devices are easy to identify (e.g., operations,
instructions, I/O exchanged), the same is not true for application software.
In particular, the output of software depends on the input and cannot be
easily standardized. To the best of our knowledge, no hardware indepen-
dent benchmarks methodology has been previously proposed for software
energy efficiency.

2.3.2 Green optimization techniques

To increase the energy efficiency of software applications, some green op-
timization techniques can be applied. Traditional research focuses on soft-
ware for embedded systems, in which power consumption is critical. Max-
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imizing the energy source and hence the life of these components is a key
factor to develop reliable and efficient embedded and/or distributed sys-
tems. Researches on Low Power Software for embedded systems focus on
the software design for specific, integrated systems, ensuring energy sav-
ings and hence more competitive solutions. Additional techniques can also
be adopted to improve energy efficiency for this kind of systems; among
them there are Context Awareness (the ability to respond to changes in
the environment on which they operate, to ensure additional energy sav-
ings), Code Compressions (reduce the memory size required by the soft-
ware, which determine less accesses to the memory and hence less energy
required) and general optimizations that are usually focused on the memory
(another critical factor for embedded systems). From the point of view of
common application software, instead, not much has been proposed, due
the fact that usually system administrators fail to identify it as a source of
potential energetic inefficiency. The fact that often there are not immedi-
ate and tangible benefits in investing in such areas discourage the adoption
of techniques of code design and optimization that can, instead, effectively
bring financial savings due the reduction of energy needed.

The term Green Software identifies application code that is designed
and/or modified in such a way that its execution requires less energy com-
pared to another, equivalent version of the same software. Usually, this is
achieved exploiting techniques or implementing more efficient algorithms
in terms of time of execution; less time required usually means less work-
load for the processor, and hence guarantee a double benefit in terms of time
saving and energy absorbed. The authors at [47] have identified the follow-
ing 4 macro areas to achieve better software energy efficiency in modern
systems.

e Computational efficiency - To achieve computational efficiency, de-
signers can apply coding techniques that achieve better software per-
formance, such as efficient algorithms, multi-threading, and vectoriza-
tion. In particular, keep in mind that the choice of the algorithm and
data structures to be used must take in account the specific context in
which the software will operate; the same choice could lead to dif-
ferent performance if applied in different environments with different
requirements and/or goals.

e Data efficiency - Data efficiency reduces energy costs by minimizing
data movement. Data efficiency can be achieved by designing soft-
ware algorithms that minimize data movement, memory hierarchies
that keep data close to processing elements, and application software
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that efficiently uses cache memories.

e Context awareness - The information regarding the properties of the
environment in which the software is running can be used to perform
particular actions, aimed especially to reduce the power demand of the
system. Context awareness makes the devices "smarter" and defines
the behavior of applications as passive or active.

e Idle Efficiency - Idle Power is defined as the power consumed when
the system is running with software applications and services in ex-
ecution, but not actively performing any workload. The challenge is
to lower the idle floor by improving application idle efficiency, which
will lead to a significant decrease in power needed; this is usually
achieved exploiting the specific architectures of processors, and in
particular the operational states in which they could be at a specific
moment of time.

2.4 Memoization for green software

The technique studied in this work to achieve better energy efficiency for
application software is known as memoization. This approach is based on
the pre-computation of results of a given function, given a set of inputs, and
the tabulation of such values in memory. The application of such technique
generates a benefit when the time required to storing and fetching the result
of a function from the memory is less compared to the one required to com-
pute the value. Moreover, the energy required to access the memory is way
below the one required by the processor during the computation, resulting
in benefits also in terms of energy efficiency. It should also be noted that
the power required from the processor depends on the load, while the other
components (including memory) have an almost constant requirement in
terms of power (as shown in Figure 2.3); this is partially explained by the
fact that most of the power of traditional HD drives is used for spinning, and
not for reading and writing operations. Similarly, dynamic RAM banks are
periodically refreshed irrespective of reading and writing operations.

This concept leads to the conclusion that computational approaches that
rely more on disks and memory, in place of processors, could result in
lower power demands for the entire system. In general, as illustrated in the
following sections, this approach guarantees more energy efficiency when
dealing with computation intensive functions, executed multiple times with
a relatively small domain space for the inputs. An additional advantage
resides in the fact that there is no need for manipulation and/or redesign of
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Figure 2.3: Power consumption profiles for server hardware components. HD lines in-
dicate power absorbed by hard disks, CPU the power absorbed by the processor, and
ATX power absorbed by motherboard and other components.

the original code, since the entire framework relies only on the intelligent
use and management of memory at run time.

The term memoization was coined by Donald Michie in 1968 [36] and
is derived from the Latin word memorandum (to be remembered), and thus
carries the meaning of remembering a past result obtained from the com-
putation of a generic function. It should not be confused with the term
memorization, since memoization has a more specialized meaning in com-
puting.

Def. Memoization

Memoization is a programming technique which saves in the memory of
the system the result of computations of some functions, and allows them
to be available for future re-uses, without a need to compute such functions
again.

The basic idea of memoization is to create an n-dimensional table in which
each dimension correspond to a given input for the function; for exam-
ple, a function that needs two numbers as arguments will result in a bi-
dimensional table. In correspondence of each input combination, the result
that is obtained computing the function with the relative inputs is saved.
When such function is called again, the Lookup Process will search the ta-
ble and fetch the result, if available, in correspondence of the arguments
with which the function is invoked; if such value exists, it is immediately
returned to the caller, otherwise the function is computed and the new result

35



Chapter 2. State of the art

eventually saved in the table. A common example to show a typical utiliza-
tion of the memoization technique is referred to the recursive implementa-
tion of the function that computes the n-th value of the Fibonacci’s series.
Consider the following pseudo-code which represents such algorithm:

int fibonacci(int n){
if (n==1 |l n==2) return 1;
else return fibonacci(n—1) + fibonacci(n—2);

}

The result obtainable applying the memoization technique can be repre-
sented by the following pseudo code:

int fibonacci(int n){
int result = lookupTable(n);
if (result exists) return result;
else {

if (n==1 |l n==2) return 1;
else {
result = fibonacci(n—1) + fibonacci(n—2);

saveResult(n, result);
return result;

}

As stated before, suppose that the function int fibonacci (m) could
rely on a table, in the system’s memory, in which is possible to save the cor-
respondent pair <input, result>. The first task to perform when the
function is called is to search the table for the result corresponding to the
provided input; as already mentioned, this process will go under the label
of lookup or 1lookupTable, and will need only the original arguments
as inputs. If such value exists (and it is not an impossible result for the
function), it is returned to the caller. Otherwise, the function is normally
executed in order to calculate the result; just before returning the value,
the saveResult function will save such result in the table, in correspon-
dence of the provided input. This will be available for future computations
having the same input for the Fibonacci function.

As already discussed, this approach has the advantage of not requiring
a modification of the existing code, which remains exactly the same; the
instructions needed to implement such solution are added (or injected) be-
fore and after the original code, leaving the latter intact. This property is
highly desirable especially in situations where the source code is not avail-
able for various motivations (a common scenario in large companies), since
only the compiled application (for the present work, the Java bytecode) is
required.

Classical memoization approaches use large tables of precomputed re-

36



2.4. Memoization for green software

sults at runtime to replace potentially expensive dynamic computation. We
propose to reduce the size of these tables through approximations that ex-
ploit the natural robustness of certain application domains to noisy outputs.

The approach we propose to additionally explore is approximate mem-
oization, which extends classical memoization with the capability to in-
terpolate previously computed and stored results to produce approximate
outputs for never-before-seen inputs. Approximate memoization can en-
able programs to execute faster and more energy efficiently than the orig-
inal program (just as with classical memoization) but with tables of pre-
computed results that are drastically smaller than that of classical memo-
ization. Because approximate memoization produces approximate outputs,
this approach trades accuracy of the application’s results for increased per-
formance. The goal of this project then is to produce a framework that can
automatically identify and exploit computations within an application that
can profitably trade off these different concerns.

float f_classic_memo(int input) {
Float result = lookup(input);
if (result!=null){ return result.floatValue(); }
return f(input);

}

The function £_classic_memo implements a classical memoization of a
function £. On every input to the function, the implementation first queries
a table of precomputed results (indexed by the current input). If a result for
this input is available, then the function returns the result; otherwise, the
implementation invokes the function f to compute the result from scratch.

float f_approx_memo(int input) {
Neighbor n = nearest_neighbor (input, DIST);
if (n!=null){ return interpolate (n.getIlnput(), n.getVal(), input, linear(
SLOPE)); }
return f(input);

}

The function f__approx_memo implements an approximate memoization
of f that differs from the the classical approach in that it uses a precom-
puted result to approximate the result of £ for a bounded region around the
input associated with the precomputed result, this stands in contrast to clas-
sical memoization, which returns a result only if the input has been seen
before. The function implements this with a nearest neighbor query over
the table of precomputed results to identify the closest entry (n) within
a bounded distance (DIST) from the current input (input). Given this
entry, the implementation then uses linear interpolation to produce an ap-
proximate return value. Specifically, the implementation applies a linear
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interpolation of the precomputed value (n.getVal ()) along the direc-
tion given by the difference between the current input and the stored input
(n.getInput ()). Approximate memoization produces a new compu-
tation that may produce outputs that differ from that of the original com-
putation. The key technical challenge of this work is therefore identifying
and experimentally evaluating an appropriate approximate memoization ap-
proach that improves performance of the existing application and at the
same time satisfies the application’s maximum tolerable error (as specified
by a user).

2.4.1 Memoization related works

Memoization has been extensively studied in literature and applied to dif-
ferent contexts, including functional languages [41], incremental compu-
tation [25] [34] and dynamic programming [33]. The main objective of
these studies was to optimize the response time of software applications,
such as parsing and scientific applications, resulting in an improvement in
terms of performance. The exploiting of dynamic programming regards
the existence of overlapping subproblems in the process of combinatorial
optimization; in this context, the reuse of a solution of a subproblem for an-
other subproblem could reduce the overall time required. The central point
in such situations resides in the determination of whether a solution can be
reused or not, which depends on the context (usually an abstraction of the
computation history) in which the subproblem is encountered.
Memoization can be applicable also in executing instructions; this is par-
ticularly convenient when there are operations executed, more than once,
with the same operands. Similar to the proposed approach, it is possible
to save the correspondent result in a table on which, through a lookup pro-
cess, the following executions could be avoided (having the result already
available). Sohi and Sodani [46] propose an alternative approach called
Instruction Reuse, that consists in the re-utilization of the instructions in
the pipeline by matching their operands. Compared to the performance
objectives, little work has been proposed in terms of obtaining higher en-
ergy efficiency through power savings; among them it is possible to find the
work of Azam, Franzon and Liu [8], which denotes how performance and
power consumption can be improved at the cost of small precision losses in
computation, exploiting instruction memoization. The approach proposed
in this work is different, because it operates at a higher granularity (methods
instead of instructions), although the benefits still depend on the precision
of results required by the Service Level Agreement; intuitively, the greater
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the precision, the larger the size of memory required to store the results,
and hence the greater the time required to fetch such values.

More in general, automatic memoization has been applied in three main
ways: to prevent recursive repetition of function calls, to prevent repetition
over time of API functions, and to make persistent lookup tables. The first
case regards recursive functions; as known, these functions recursively call
themselves, changing their input parameters. A typical example can be the
already mentioned Fibonacci series. The implementation of the Fibonacci
function, that compute the n'* Fibonacci value of the series like the sum of
(n — 1) and (n — 2) values, is typical of a large class of algorithms that
have elegant recursive definitions. That implementation is simply unusable
for most real problems because of repetition and deep stack use. An alterna-
tive is to use memoization to convert the elegant, but inefficient, algorithm
into a computationally tractable one.

The second application field is that of API functions. In an interactive
system, the user may invoke calculations at different times that make use
the same functions with the same input parameters. In these cases, there is
no central routine that can manage the calling sequence. So, it can be useful
to have the routine in question that manage its own global data structure to
re-use previous results; from this point of view, memoization provides an
efficient, convenient, and reliable alternative.

The previous application fields show that memoization can eliminate
the repeated invocation of expensive calculations. In these cases, the memo
table is built during the execution of the application and perform optimiza-
tion for the subsequent invocation of the function. Memoization also can
be effectively applied to functions that are time-invariant with respect to the
output values and when the first invocation of a function is too expensive to
perform at run time. The results of these functions could be pre-calculated,
saved in persistent hand crafted lookup tables, and applied in cooperation
of memoization techniques. However, for temporary conditions, it would
not be useful the expended effort to build the tables, in most of the cases.

2.5 Pure function definition

Memoization can not be applied to every function; methods must satisfy
some properties in order to be declared as pure, and hence potential targets
of memoization. Considering a function with the common formulation of
1 to 1 input-output mapping, the following definition can be proposed.
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Def. Purity

A method is considered pure if it satisfies the following properties:

e it is side-effects free, meaning that its execution does not generate any
other effects, with the exception of the original result;

e it is deterministic, meaning that its output depends only from the ar-
guments passed to the method.

More in detail, the absence of side effects means that the method can only
create and modify objects that are not visible outside of the method itself;
every new instance of objects will be lost when the method returns the result
to the caller. Moreover, the method can not access or interact with third-
party components outside the environment of execution, meaning that, for
example, it can not generate network traffic, nor write on the file system.

Def. Side-effects free

A method is side-effects free if the only objects that it modifies are created
as part of the execution of the method itself.

The deterministic requirement for methods is equivalent to the one referred
to common mathematical functions: in correspondence of the same inputs,
the method should provide the same output. This property implies that the
result of a function can not depend on the status, or the value, of exter-
nal (global) elements and/or statuses; a method that, for example, produces
different results in correspondence of the same inputs but different hours
of the day, does not meet the deterministic requirement. While the concept
it is easy to understand when dealing with primitive types, the issue is not
trivial when considering, for example, instances of classes in Java. This
leads to additional considerations that must be taken in account when deal-
ing with such types, that have to consider not only the internal status of the
referred object, but also other factors (i.e., the memory location in which
they reside).

Def. Determinism

A method is deterministic if each call with equivalent inputs produces re-
sults that are identical between each other.

This work will present in the following chapter the definition of the op-
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erative concept of pure function, specifically related to the correspondent
Java implementation; the formulation will then be extended and modified
following the proposed work, that can better delineate the property (mainly
due the development of additional analysis tools). It should be noted any-
way that a precise and restrictive definition of purity for a method should
be always required, in order to avoid manual inspection of code and enable
the applicability of such technique on a large scale.

2.5.1 Pure functions related works

From the point of view of the automatic individuation of pure functions
(and hence methods that could successfully benefit from the application of
memoization techniques) in the Java language, some work has also been
proposed. In [51] the analysis is executed from a dynamic point of view,
observing the software during its execution in the Java Virtual Machine
(JVM). Different definitions of dynamic and static purity definitions are
given; however, the latter results too restrictive, rejecting potentially memo-
izable functions due over-conservative assumptions (for example, a method
can not instantiate new objects). A similar behavior is encounterable in
[52], where the analysis is still dynamic and performed by a Just In Time
(JIT) compiler; the same observations for the previously cited work hold.
In [26] the analysis is performed only on a subset of Java functions called
Joe-E. However, such approach is not feasible with the defined goals, since
the aim is to consider situations where, for example, the source code is
not available. Considering only such subset will be useful in terms of di-
dactic results, but can not satisfy real companies requirements. Moreover,
the majority of the cited works perform a dynamic analysis of the code;
such approach would be negative in terms of energy savings, since it will
require the execution of additional instructions each time that a method is
executed. This is why the proposed approach will perform a static analysis,
directly on the bytecode, to identify the purity of a method regardless of the
inputs (possible, on the other hand, with dynamic analysis) and eventually
to inject the required code to apply the memoization technique. Additional
contributions of this work of thesis include further analysis (in terms of
data dependencies within a method and sources of impurity) and bytecode
modification, that could allow partial memoization of impure methods.
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2.6 Memoization data structure

2.6.1 HashMap

A hashmap is a data structure used to implement an associative array, a
structure that can map keys to values. A hashmap uses a hash function to
compute an index into an array of buckets or slots, from which the correct
value can be found. Ideally, the hash function should assign each possi-
ble key to a unique bucket, but this ideal situation is rarely achievable in
practice (unless the hash keys are fixed; i.e. new entries are never added
to the table after it is created). Instead, most hash table designs assume
that hash collisions (different keys that are assigned by the hash function to
the same bucket) will occur and must be accommodated in some way. In a
well-dimensioned hash table, the average cost (number of instructions) for
each lookup is independent of the number of elements stored in the table. A
hash table also allow arbitrary insertions and deletions of key-value pairs,
at constant average cost per operation.

A critical statistic for a hash table is called the load factor. This is simply
the number of entries divided by the number of buckets, that is, n/k where
n is the number of entries and k is the number of buckets. If the load
factor is kept reasonable, the hash table should perform well, provided the
hashing is good. If the load factor grows too large, the hash table will
become slow, or it may fail to work (depending on the method used). The
expected constant time property of a hash table assumes that the load factor
is kept below some bound. For a fixed number of buckets, the time for a
lookup grows with the number of entries and so does not achieve the desired
constant time. A low load factor is not especially beneficial. As load factor
approaches 0, the proportion of unused areas in the hash table increases, but
there is not necessarily any reduction in search cost. This results in wasted
memory.

Hash collisions are practically unavoidable when hashing a random sub-
set of a large set of possible keys. For example, if 2,500 keys are hashed
into a million buckets, even with a perfectly uniform random distribution,
according to the birthday problem there is a 95% chance of at least two of
the keys being hashed to the same slot. Therefore, most hash table imple-
mentations have some collision resolution strategy to handle such events.
The most used technique to manage collisions is to use separate chaining
(Fig. 2.4). In the method known as separate chaining, each bucket is in-
dependent, and has some sort of list of entries with the same index. The
time for hash table operations is the time to find the bucket (which is con-

42



2.6. Memoization data structure

stant) plus the time for the list operation. This technique is also called
open hashing or closed addressing. To keep the load factor under a cer-
tain limit, e.g. under 3/4, many table implementations expand the table
when items are inserted. For example, in Java’s HashMap class the default
load factor threshold for table expansion is 0.75. Since buckets are usually
implemented on top of a dynamic array and any constant proportion for re-
sizing greater than 1 will keep the load factor under the desired limit, the
exact choice of the constant is determined by the same space-time tradeoff
as for dynamic arrays. Resizing is accompanied by a full or incremental
table rehash whereby existing items are mapped to new bucket locations.

keys buckets
000
001 | Lisa Smith | 521-8976
John Smith ooz
Lisa Smith 151
[83| john smith | 521-1234
Sam Doe = [188]| sandra Dee | 521-9655
154 | Ted Baker | 418-4165
Sandra Dee 155
Ted Baker 233
254 | SamDoe | 521-5030
255

Figure 2.4: A hashmap and the records it represents.

The main advantage of hash tables over other table data structures is
speed. This advantage is more apparent when the number of entries is large.
Hash tables are particularly efficient when the maximum number of entries
can be predicted in advance, so that the bucket array can be allocated once
with the optimum size and never resized.

2.6.2 QuadTree

Linear quadtrees have been very popular for two-dimensional spaces. One
of the major applications is in geographic information systems: linear quad-
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trees have been used both in production systems. For higher dimensions,
oct-trees have been used in three-dimensional graphics and robotics; in
databases of three-dimensional medical images, etc... [24]. A quadtree di-
vides terrain into four pieces, and divides those pieces into four pieces, and
so on, until it reaches a certain size, and stops dividing. It splits on all
(two) dimensions at each level and split key space into equal size partitions
(quadrants). The Quad node structure is based on keys and the value. It
adds a new node by adding to a leaf and if the leaf is already occupied, it
splits until only one node per leaf.
A new vertex is inserted to a valid quadtree as follows:

e If the quadtree has no root node, place the new vertex at the root node
and exit. Otherwise, start the current node at the root.

e Find the direction from the current vertex to the new vertex.

e If the current node has no child in that direction, make a new child
node there with the new vertex and exit.

e L et the current node’s child in that direction become the current node,
and repeat.

Thus, the time to insert a vertex is bounded by the maximum depth of the
quadtree. Deletion always involves removing a leaf node. It is required
to set the parent’s pointer to null that removes the leaf node from the tree.
Technique for pruning search space: based on location of the root, we can
safely ignore certain quadrants. Space subdivided repeatedly into congru-
ent quadrants until all quadrants contain no more than one data point [43].
Searching method retrieve the matching keys and the corresponding re-
quested values. Figure 2.5 show an example for Quadtree representation.

2.6.3 RTree

The R-tree is a height-balanced tree for indexing multi-dimensional keys.
Each node is associated with a Minimum Bounding Rectangle (MBR) that
encompasses the MBRs of all descendants of the node. The search opera-
tion traverses the tree to find all leaf nodes of which the MBRs overlap the
query rectangle. On insertion of a new entry, the R-tree finds the leaf node
that needs the least area enlargement of its MBR in order to contain the
MBR of the new node. Since this data structure fits for our use case, it is
detailed the search, insert, delete and intersect algorithms. A common real-
world usage for an R-tree might be to store spatial objects such as restaurant
locations or the polygons that typical maps are made of: streets, buildings,
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Figure 2.5: A quadtree and the records it represents.

outlines of lakes, coastlines, etc. and then find answers quickly to queries
such as "Find all museums within 2 km of my current location", "retrieve
all road segments within 2 km of my location" (to display them in a naviga-
tion system) or "find the nearest gas station" (although not taking roads into
account). In order to support spatial objects in a database system several
issues should be taken into consideration such as: spatial data models, in-
dexing mechanisms, efficient query processing, cost models. Here we have
an example how data takes place in R-tree and shows in two-dimensional
coordinate.

There are several good reasons for the popularity of these (quad tree,
interval tree, R-tree) methods, such as their simplicity, their robustness.
Specifically; quad tree has a simple data structure, versatile and easy to
implement, interval tree can be extended to an arbitrary amount of dimen-
sions using the same code base and R-tree query lookup, insert and deletion
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times are extremely low. Beside all the advantages, there are some reasons
why quad tree and interval tree are not suitable for our case as well as their
disadvantages. The disadvantage of quad tree is, if the points form sparse
clouds, it takes a while to reach them because of empty spaces, space ex-
ponential in dimension d, time exponential in dimension, e.g., points on
the hypercube vertices. However, quad tree divides the terrain into four
pieces while a new input arrives. It is an inappropriate solution for an in-
terval search. Though it accumulates the data in a specific area, the search
structure will not allow us to take benefit from the algorithm in the best
way. Moreover, Interval tree, is a massive memory footprint, which can
reach as much as 16 times the size of the original data [23]. Since effective
memory usage is one our primary priorities, we cannot endorse this algo-
rithm neither. Thus, we have taken decision to use R-tree data structure
for mortgage data case study that allows interval insertion in the nodes and
retrieve the result in height-balanced tree in d dimension. R-tree has some
disadvantages as well as advantages.

2.7 Conclusion

In this chapter, we analyze the literature related to the recent researches on
energy efficiency in the IT field, also considering memoization approaches
and software applications using these techniques.

There are three main open issues in the literature. First, software causes
energy consumption, but the hardware infrastructure is responsible for the
physical absorption of power. Thus, software energy efficiency metrics pro-
vide different results on different hardware platforms. Second, while the
elementary tasks executed by hardware devices are easy to identify (e.g.,
operations, instructions, I/O exchanged), the same is not true for applica-
tion software. In particular, the output of software depends on the input and
cannot be easily standardized. To the best of our knowledge, no hardware
independent benchmarks methodology has been previously proposed for
software energy efficiency. Finally, the memoization approach was exten-
sively used in order to speed up the time performance of applications, but it
is never used related to the energy efficiency point-of-view. In addition, the
pure function definitions are too strict to successful apply the memoization
technique to reduce the energy efficiency of software applications.
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CHAPTER 3

ENERGY BENCHMARKING
METHODOLOGY

As discussed in Section 2.3, the role of software in determining the energy
consumption of data centers cannot be neglected. Software is the first cause
for energy consumption, as it drives the operations performed by the pro-
cessor and, thus, influences the consumption of all the layers of a computer
infrastructure. This chapter focuses on software energy consumption with
the goal of providing a methodology to identify and benchmark energy ef-
ficiency.

In our approach, we estimate the energy consumption of application
software independent of the infrastructure on which the software is de-
ployed. This separation allows the definition of energy consumption bench-
marks for homogenous clusters of transactions or software applications.
These metrics can be used to define classes of energy efficiency within
each cluster, thus enabling the comparison of the energy efficiency of sim-
ilar applications/transactions.

In Section 3.1, the software energy consumption estimation de-coupling
the usage of computing resources and the consumption of energy by com-
puting resources is presented. In Section 3.2 a software energy benchmark-
ing is defined. Section 3.3 describe the empirical testing settings. Sec-
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tion 3.4.1 and 3.4.2 shown the results of the software estimation and the
software benchmarking, respectively. Finally, Section 3.5 introduce a new
metric in order to refine the software energy estimation using the test pa-
rameters, and presents the reduced error estimation accuracy.

3.1 Estimation of software energy consumption

The starting point of our methodology is the de-coupling of the usage
of computing resources and the consumption of energy by computing re-
sources. This separation allows us to assess the energy efficiency of soft-
ware applications independent of the hardware infrastructure. In an au-
tomotive context, the consumption of resources would correspond to the
number of kilometer along a route connecting two points, while the unit
energy consumed by the hardware infrastructure would correspond to the
liters of gasoline consumed by the car to drive one kilometer.

We model the usage of resources by a software application with three
main components: the usage of CPU, the usage of the database, and the
usage of the network. Our measures are always referred to the execution of
a specific benchmark workload, e.g. an ERP transaction.

The total energy consumed to execute a transaction is given by the fol-
lowing expression:

Epor = / U * By * dt + DB % Epp + NET « Expr (3.1

where U(y) s the percent usage of processor at time t, Béu) is the first deriva-
tive of the power absorption of the CPU with respect to the percent usage
(see Fig. 3.1(a)), DB is the number of bytes exchanged with the database,
Epp is the energy consumed to exchange 1 byte with the database, N T is
the number of bytes exchanged with the network, and F g7 is the energy
consumed to exchange 1 byte with the network.

If we assume that the power absorption of the CPU grows by linear with
the percent usage of the CPU, ﬁéu) becomes a constant, say (', and Eq. 3.1
can be simplified with the following expression:

Etot:'Y*B‘FDB*EDB“‘NET*ENET (32)

where y = fx [ Uy *dt, B = 57 and f is the clock frequency of the CPU.

v, DB and N E'T" evaluate the consumption of resources and, thus, the
efficiency of the application, while 3, Epp, and Eygr evaluate the unit
energy consumption and, thus, the efficiency of the device. As the usage of
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Figure 3.1: Plot of Uy and f,.

the processor is obviously influenced by the speed of the processor itself,
both v and [ are normalized by the clock frequency of the device.
If the function 52@ is not linear, as it is often the case with modern pro-

cessors, the model can be refined by approximating /Béu) as the combination
of two or more linear relationships. ( will be then substituted by [;, s,
..., By (see Fig. 3.1(b)).

It is important to note that vy, DB and N E/'T" are intrinsic characteristics
of the software application, while 3, Epg, and Exgr depend only on the
hardware infrastructure. The two sets of metrics can be measured on dif-
ferent test units. Once v, DB and N E'I" are known for a given transaction,
3.2 allows the estimation of energy consumption on any other hardware
infrastructure that has been previously profiled.

Previous work [15] has shown that the consumption of storage is almost
independent of usage, as dynamic RAMs are constantly refreshed and most
of the energy consumed by disks is used for spinning. Accordingly, we
decided to consider the consumption of the processor only (i.e., v and () in
the preliminary phase of our study.

3.2 Energy benchmarking methodology

The methodology described in the previous section allows us to estimate the
energy consumed by a software application or, more specifically, by a soft-
ware transaction. This can be applied, for example, to associate computing
and energy costs with business processes that are supported by a given set
of transactions. However, there are several situations in which it can be
useful to evaluate the energy efficiency of different transactions in order to
compare different applications with similar functional characteristics.
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The v, DB and N E'T metrics can be usefully employed to define bench-
marks for application energy consumption, as they provide the consumption
of resources independent of the hardware infrastructure. These metrics can
be used to compare a sample of homogeneous transactions of the same
application (e.g., transactions characterized by a high or low usage of re-
sources, or CPU/DB intensive transactions).

Our benchmarking methodology includes the following steps:

e Define the sample of transactions to be compared;

e Classify transactions in pre-defined categories with homogeneous char-
acteristics;

e Measure the resource usage (y) of each transaction;

e Compute the mean value p and the standard deviation o of the values
of v;

e Define thresholds for energy efficiency levels based on the values yi—o
and p + o, 1.e.

— Highly efficient transactions: v < y — o

— Medium efficient transactions:
p—o<ysputo

— Lowly efficient transactions: v > p + o

The same set of metrics may also be used to compare different appli-
cations that satisfy similar functional requirements. For example, a set of
ERP applications could be compared by analyzing the v, DB and NET
metrics computed for a set of commonly used transactions for which sim-
ilar benchmark workloads have been implemented. However, it should be
noted that in corporate contexts it is often unfeasible to consider the im-
plementation or the adoption of a different ERP system, due to the high
number of legacy constraints and for compliance and business continuity
issues. It may be more useful to compare the energy efficiency of different
implementations of the same transaction (e.g., with different level of cus-
tomization) and, in general, to assess the computing resource requirements
of different business processes.

3.3 Approach to empirical testing

We have validated our methodology in a real case study. In particular, our
test bed was an oil and gas company. The company is supported by a com-
plex SAP system that enables a huge number of transactions related to all
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the business processes, executed at multi-national level. We have focused
on a sample of transactions that are involved in the most commonly exe-
cuted processes. We have selected the three most used transactions of the
SAP ECC 6 (ERP Central Component), according to the Pareto principle.
These transactions support the Procurement cycle, including orders, bills
and requests for purchase of services. We have selected four additional
transactions non related to the procurement cycle, characterized both by an
intense usage of resources and by a high frequency. The final sample in-
cludes the following transactions: These seven transactions are classified as

Table 3.1: Classification of the benchmark transactions.

Functional area Transaction Category

Procurement cycle - Purchase order ME23N Low resource use
Procurement cycle - Billing MIR4 Low resource use
Procurement cycle - Payment FBLIN High resource use
Financial cycle F110 High resource use
Material management cycle MDO1 High resource use
Material management cycle ZM20_EP  High resource use
Material management cycle ZM26_EP  High resource use

High resource use or Low resource use, depending on their use of the CPU
resource (Tab. 3.1).

3.3.1 Definition of benchmark workloads

We measure the energy consumed by the execution of each transaction.
This requires the definition of benchmark workloads invoke transactions
automatically and stress the system. To create the benchmark test set we
used VirtualUserGenerator (VuGen) within HP LoadRunner. VuGen can
register, create and simulate real users’ actions. Our benchmark scripts
execute the SAP Logon, select the SAP test environment, perform the au-
thentication and execute one of our pre-defined transaction workloads. Fi-
nally, they log out and exit from the system. Our scripts are executed by
the web-application Performance Center of HP (HP Application Lifecycle
Management framework).

3.3.2 Experimental setting

We have executed our tests on a client-server architecture with three layers:
the presentation layer, constituted by the client (SAP Logon), which visu-
alizes the results provided by the application layer; the application layer,
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Figure 3.2: Hardware architecture for the experimental phase.

which implements the business logic; the data layer, based on the database
server to memorize the data provided by the application layer.

We measured the usage of resources and the energy consumption of the
application and data layers. The application layer is implemented on two
physical servers (AS1 and AS2) with a load balancing software, while the
data layer is implemented on a single physical server (DB1), as shown in
Fig. 3.2. AS2 server is used only for the background execution of trans-
actions, or when the load of AS1 is higher than a pre-defined threshold.
The DBMS is Oracle 10g (version 10.2.0.4) with 222.50GB of data. The
technical specifications of AS1/2 and DB1 are:

e AS1 and AS2, HP ProLiant BL460c G6 Server with two Intel Xeon
E5520 @2.27GHz, 24GB DDR3 @1.333MHz of RAM, two SCSI
146GB HD @15.000RPM and with a SUSE Linux Enterprise Server
10 (SP3) OS;

e DBI1 is similar to AS1/2, the only differences are the two CPUs Intel
Xeon E5500 @2.67GHz.

The power absorbed by the servers is measured by the HP ILO (Inte-
grated Lights-Out), which is an embedded technology that acquires the val-
ues of power every 10 seconds. These values are transmitted by means of
the SSH protocol and acquired by a script written in Java. Fig. 3.2 presents
the infrastructure that we have used to measure the usage of resources in our
testing environment. The load is distributed to AS1 and AS2 by the Load
Balancer (LB). The measurement infrastructure is implemented by the HP
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Performance Center, with the exception of the acquisition of the metrics
that is performed by the SiteScope application. The controller coordinates
the activities to be executed on the application servers. It also gathers and
organizes the metrics provide by SiteScope. Values are acquired every 5
seconds.

3.4 Empirical testing

3.4.1 Testing the approach to the estimation of software en-
ergy consumption

We have applied our methodology to the sample of SAP transactions de-
scribed in Table 3.1. We have estimated the energy consumed by each
transaction in addition to the idle by means of Eq. 3.2, by considering only
the processor as a first estimate. Then, we have measured actual energy
consumption by means of the experimental kit described in Section 3.3.2.
Tab. 3.2 shows that CPU usage is a good indicator of overall energy con-
sumption for CPU-intensive transactions. In particular, CPU usage and en-
ergy consumption have almost identical trends for CPU usage> 5%, while
they show discrepancies only for very low values of CPU usage. In Figures
3.3,3.4,3.5,3.6,3.7, 3.8, and 3.9, for each analyzed transaction, CPU and
Watt trends are plotted.
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Figure 3.3: CPU and Watt trends plotted for ME23N transaction.
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Figure 3.5: CPU and Watt trends plotted for FBLIN transaction.
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Figure 3.6: CPU and Watt trends plotted for F110 transaction.
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Figure 3.7: CPU and Watt trends plotted for MDOI transaction.
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Figure 3.8: CPU and Watt trends plotted for ZM20_EP transaction.

Table 3.2 presents the final results of our experimental campaign. Our
methodology estimates energy consumption with an average error of 2.61%.
This error can be considered acceptable in a business environment. Results
also confirm that the processor is the main driver of software energy con-
sumption, while databases and networks only contribute to the idle power
absorption and, thus, can be left out of the estimation methodology with a
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Figure 3.9: CPU and Watt trends plotted for ZM26_EP transaction.

Table 3.2: Results of the validation phase. E,, is the real energy consumption measured
with the ILO, Ej is the estimated energy consumption, AFE is the gap between E,, and
E,, and A% is the percent value of AE. Values are refer to the net energy (i.e. total
minus idle).

Transaction F,,[J] FEJ| AE[J] A%[%]

ME23N 9,610 9,727 117 1.2
MIR4 38,825 37,316 -1,509 -3.9
FBLIN 25,625 24,951 -674 -2.6
F110 16,887 16,958 71 0.4
MDO01 37,545 36,118 -1,427 -3.8
ZM20_EP 34,935 34,777 -158 -0.5
ZM26_EP 54,385 57,571 3,186 59

limited impact on the precision of estimates.

3.4.2 Validation of the energy benchmarking methodology
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Figure 3.10: Transactions clustered by efficiency.
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We have applied our benchmarking methodology to a sample of transac-
tions (see Section 3.3). We have grouped the transactions into two clusters
according to their perceived resource usage obtained by interviewing the
system administrator. The clusters are reported in Tab. 3.1. We have classi-
fied the transactions belonging to each cluster according to the parameters
w1 — o and p + o referred to the statistical distribution of  values. Fig. 3.10
shows the analysis of the High resource use cluster, where each transaction
is assigned to a class of efficiency.

Energy benchmarks can be useful to control the actual usage of re-
sources of a data center along the energy efficiency dimension. Current
accounting models are mainly based on data center floor space occupa-
tion, without considering the actual usage of computational resources and,
thus, energy consumption of a data center. Therefore, electricity may ac-
count for up to 15% of the operating costs [29] a more accurate monitoring
model may encourage significant organizational changes and allow greater
efficiency. These advantages acquire even more importance in a cloud envi-
ronment. The benchmarking methodology enables the comparison of func-
tionally similar transactions and applications. This provides new metrics
to evaluate software quality to select applications based on their energy
efficiency, and to assess the impact of customization software energy effi-
ciency.

3.5 Normalizing + to generalize the benchmarking methodol-
ogy

In Section 3.1, we propose a methodology to estimate the software energy
consumption through a resource usage metric . The validation phase was
executed on dedicated hardware; no validation was performed with differ-
ent processor types and varying other architectural parameters. Thus, a new
answer came in. Does the testbed influence the acquisition of the ~ metric?

3.5.1 Experimental settings

While the previous tests are executed in an industrial scenario, in this exper-
imental test we evaluate the w metric in a lab setting. We execute our tests
on a client-server architecture with three layers: the presentation layer, con-
stituted by the ERP client, which visualizes the results provided by the ap-
plication layer; the application layer, which implements the business logic;
the data layer, including the database server storing the data provided by
the application layer.
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Table 3.3: Classification of the parameters for each evaluated dimension.

Dimension Class Item
Number of concurrent users that executes
the transaction in the same time (u) [1; 3; 10; 20; 30; 35; 40; 45]
[New Business Partner; New Product;

Transaction typology (t) New Purchase Order; New Sales Order]

ERP application (e) [Openbravo; Adempiere; OffBiz]

Database size (number of tuples) (d) [0; 11;21; 31;41; 51; 100; 510; 10,000]

[Microsoft Windows (2007 Server,

Server OS on witch the erp run (o) 7 Home); Linux Ubuntu 10.04]
[IBM X3500 Server;

Hardware of the server (h) HP Pavillion Laptop]

We measure the usage of resources and the energy consumption of the
server. The DBMS is PostgreSQL (version 8.3.5) and the servlet container
is Apache Tomcat 6.0. The server’s technical specifications are:

e IBM Server System X3500 with two Intel Xeon Quad-core E5450
@3.00GHz, 17GB PC2-5300 DDR2 SDRAM, 420GB HD with Mi-
crosoft Windows 2007 server enterprise and Linux Ubuntu 10.04 32-
bit.

In addition, to evaluate the hardware impact on the v metric, we execute

our test on a laptop. The laptop technical specifications are:

e HP Pavillion dv6-3150el with Intel Core i5-460M @2.53GHz,4GB
DDR3 SDRAM, 320GB HD with Microsoft Windows 7 Home Pre-
mium and Linux Ubuntu 10.04 32-bit.

We measure power consumption with a specific measurement kit. The
current absorbed by the system is measured by means of an ammeter clamp.
Ammeter clamps have a Hall current sensor inside and allow non intrusive
measures. The analog signal acquired by the ammeter clamp is processed
by a NI USB-6210 DAQ (Data Acquisition Board) that is interfaced via
USB with a server different from the system that executes the workload.
The sampling frequency employed is 250 MHz.

Definition of benchmark workloads
We focuse our tests on a sample of different transactions.
e NBP - New Business Partner;

e NP - New Product;
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e NPO - New Purchase Order;
e NSO - New Sales Order;

These transactions support the Procurement cycle of three different ERPs
(Openbravo, Adempiere, OffBiz).

Like in previous tests, we measure the energy consumed by the execu-
tion of each transaction. This requires the definition of benchmark work-
loads that invoke transactions automatically and stress the system through
VirtualUserGenerator (VuGen) within HP LoadRunner.

3.5.2 Empirical analysis

Server IBM Laptop HP
* Windows Server * Windows 7
Test Stack
. — "
*  Linux Ubuntu *  Linux Ubuntu
Test Hardware
Openbravo Adempiere Openbravo Adempiere
* NBP Test *= NBP * NBP Test = NBP
Transazione I I Transazione i
* NSO = NSO * NSO * NSO

Ay
Test ERP

Figure 3.11: Empirical analysis scenarios.

Figure 3.11 shows the empirical scenarios used to evaluate the influence
of the six test dimensions (see Table 3.3) on the v metric (a.k.a. the used
resources metric).

We evaluate the energy consumption of each transaction by varying each
one of the six dimensions in isolation. As we will see in the following Sec-
tions, the first four dimensions (the number of concurrent users that exe-
cutes the transaction in the same time unit (u); the transaction typology (t);
the ERP application (e); the database population (d)) have been empirically
influence the v metric.

Scenario 1: Number of concurrent users

Table 3.4 presents the results of the first scenario. Results show that the
metric is influenced by the variation of the number of concurrent clients.
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Table 3.4: Results of the 15¢ scenario: Number of concurrent users u. Results for the
test on IBM server with Windows Server 2007 on transaction New Business Partner of
Openbravo ERP.

User T[s] v[%] v/ /user[%)]
1 36 40.02 40.02

3 38 170.27 56.76

10 38 640.01 64.00
20 42 1,326.76 66.34
30 48  2,007.91 66.93
35 50 2,337.01 66.77
40 55 2,750.61 68.77
45 57 3,091.79 68.71

Scenario 2: Transaction typology

This scenario shows that the v metric is influenced by the variation of the
transaction typology. Similar transactions of different ERPs (New Business
Partner on Openbravo, Adempiere and OffBiz) have a similar energy con-
sumption and, thus, s similar value of 7. Instead, changing the transaction
typology (e.g. high/low resource usage), has an impact on the ~ value.

Scenario 3: ERP application

This scenario shows that the v metric changes with the ERP application
tested. Different ERPs (Openbravo, Adempiere and OffBiz) have different
energy consumption and, thus, different values of ~.

Scenario 4: Database population

Table 3.5 presents the results of the fourth scenario. Results show that the
~ metric is linearly influenced by the variation of the database population.
Scenario 5: Server OS

Table 3.6 presents the results of the fifth scenario. Results show that the
metric is not influenced by the OS on witch the ERP is executed.
Scenario 6: Hardware

Table 3.7 presents the results of the sixth scenario. Results show that the
metric is not influenced by the variation of the hardware on witch the ERPs
are executed.
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Table 3.5: Results of the 4" scenario: Database population d. Results for the test on IBM
server with Windows Server 2007 on transaction New Business Partner of Openbravo
ERP with 10 concurrent users.

Tuple DB T [s] %] v/ user|%]
0 38 603.91 60.39

11 38 621.09 62.10

21 38 629.69 62.96

31 38 638.05 63.80

41 38 641.05 64.10

51 38 644.61 64.46

100 38 658.77 65.87

510 38 689.57 68.95
10,000 67 2,801.12 280.11

Table 3.6: Results of the 5'" scenario: Server OS s. Results for the test on transaction
New Business Partner of Openbravo ERP. Machine: IBM server. Concurrent users:
45.

oS T [s] y[%] v/ user|%)]
Microsoft Windows 2007 Server 57 3,091.79 68.71
Linux Ubuntu 10.04 56 3,088.94 68.64

Table 3.7: Results of the 6! scenario: Hardware h. Results for the test on transaction
New Business Partner of Openbravo ERP. OS: Linux Ubuntu 10.04. Concurrent users:
45.

Machine T [s] ~y[%] v/ user[%]
IBM server 56 3,088.94 68.64
HP Pavillion laptop 65 3,094.44 68.77
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3.5.3 w metric definition

The first four scenarios show that the first four dimensions (the number of
concurrent users that executes the transaction in the same time unit (u); the
transaction typology (t); the ERP application (e); the database population
(d)) influence the -y metric. If we choose the transaction typology and the
ERP application that we want to benchmark, we can define a new metric w
in order to normalize the energy consumption estimation. Eq. 3.2 can be
modified by adding the new w metric:

Eit(u,d) = (v 4+ w(u,d)) * 8 (3.3)
where w(u, d) is defined as follow:
w(u,d) = [(u—1) xp] + [(d — 1) * ] (3.4)

where p and ¢ are constants associated with the ERP application and the
transaction typology that have been chosen for testing.

3.6 Conclusion

In this chapter, we provide a methodology to identify and to benchmark
software energy efficiency. We introduce three different metrics in order
to decouple hardware from software energy consumption. -~y provide the
resource consumption related to the software application/transaction while
[ define the resource usage cost. The w metric is used to normalize the
energy consumption estimation of 7. w (defined in Eq. 3.4) is a parametric
function that needs to be defined for each transaction on each ERP on witch
we want to estimate the energy consumption through the constants p and q.
From our results, we can further assure that the + metric is not influenced
by the hardware architecture or by the OS that have been chosen for execute
the applications/transactions.

The combination of v and w can be used to estimate the energy con-
sumption of applications/transactions. Thus, these metrics can be used also
to define classes of energy efficiency within each cluster, thus enabling the
comparison of the energy efficiency of similar applications/transactions.
Benchmarks are used to identify energy inefficient software applications.
In the next chapter, we propose a memoization-based approach to improve
the energy efficiency of inefficient software that does not require a refactor-
ing of code.
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CHAPTER 4

GREEN MEMOIZATION APPROACH

In Chapter 3, we defined an energy benchmarking approach to estimate
the energy consumption of application software independent of the infras-
tructure on which the software is deployed. This separation allowed the
definition of energy consumption benchmarks for homogenous clusters of
transactions or software applications. Benchmarks are used to identify en-
ergy inefficient software applications.

In this chapter, we propose a memoization-based approach to improve
the energy efficiency of inefficient software that does not require a refac-
toring of code. Optimizing code has a direct beneficial impact on energy
efficiency, but it requires domain knowledge and an accurate analysis of the
algorithms, which may not be feasible and is always too costly to perform
for large code bases. We present an approach based on dynamic memo-
ization to increase software energy efficiency without a need for a direct
optimization of existing code. We analyze code automatically to identify
a subset of pure functions that can be tabulated and automatically store re-
sults.

Memoization is a programming technique to reuse computed values
across a program by storing them in memory. Stored values must be in-
dexed by the function and the input parameters that generate them. We
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choose to focus on Java programs. In general, Java is not commonly used
for computation intensive applications. However, this is often the case in
the financial domain. Moreover, we interviewed executives at large Euro-
pean banks and found out that while currently only 7%-8% of the codebase
of their institutions is written in Java (the larger part is still in COBOL),
Java tends to be used for most of the newly developed applications. A trend
can also be noted towards moving code from COBOL to Java due to the dif-
ficulty in recruiting expert COBOL programmers. We focused at the level
of methods, associating the return value of a Java method with its signature
and parameter values. To this end, only methods that are pure functions can
be effectively memoized.

In Section 4.1, a new pure function definition is presented. In Section 4.2
introduce the SLA concept inside the memoization approach. Section 4.3
proposes a mathematical model to estimate the effectiveness of the memo-
ization approach.

4.1 Pure Function Definition

As introduced in Section 2.5, pure functions are those functions that are
deterministic and side-effect free. The need the function is side-effect free
is related to the need that the execution of the function does not create any
visible effect except the generation of a result. The need for the determin-
ism characteristic is due to the fact that the function result depends only on
the invocation parameters. As analyzed in Section 2.5.1, in literature there
are several definition of purity. For our approach, these definitions are ei-
ther too loose or too tight. Thus, we need to provide a new definition of
purity to apply this concept to our approach.

From the strong purity definition, several weaker definitions can be de-
rived that are useful in applications - a popular one in the context of the Java
language is to identify as pure functions those methods that do not modify
any pre-existing object, but may create new objects. For our purposes, how-
ever, such a definition is not appropriate: the newly created object must be
different at each invocation, thus preventing a successful memoization. The
following definition solves the above issues.
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Def. Memoizable Pure Function

We say that a Java method m is a pure function if the following conditions
hold:

e Its signature does not include object parameters, except:

— this parameter;

— array parameters, if the base type is primitive;
e Its return type is a primitive type;
e All methods invoked within m are memoizable pure functions;

e For all instructions composing the body of m, the following conditions
hold:
— The instruction does not read or modify static variables;

— The instruction does not read or modify variables that are not
declared within the function;

— The instruction does not modify array values.

Analyzing our pure function definition we can observe that the following
operations are allowed; which constitute relaxations w.r.t. typical definition
of purity:

e The function can throw exceptions;

e The function can catch exception thrown by method executed within
the analyzed function;

e The function can instantiate objects if their accessibility is strictly
within the analyzed function.

These relaxations are strictly bound to the use of the pure functions
within the memoization approach. With respect to the generation of ex-
ceptions, the operation is allowed because if an exception is thrown, the
trade-off block will never be invocated and the passed input parameters
will never be saved in the memo-table. Thus, for each invocation of a func-
tions with input parameters that threw an exceptions, the lookup block will
return a miss on the memo-table and the normal execution will be run. Ex-
ceptions catching is an accepted operation too. In this case, the function
catches the exception thrown by another internal function and the related
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operations are managed in the try-catch block. For the allocation of objects
inside the analyzed functions, what is needec to maintain pure the function
is that the objects will not be returned as return values. If the object visibil-
ity is strictly related to the analyzed function, when the function terminate,
the object are managed by the Garbage Collector and are automatically
deleted. Thus, the JVM stack and, more in general, the program state are
not influenced outside the analyzed function.

Given our pure function definition, we analyze Java bytecode instruc-
tions in order to define the instructions that are not allowed to be present
inside a pure Java function.

e xastore and xaload, when the arrayref reference is not related to
a variable defined inside the analyzed method;

e invokevirtual, when the objectref reference is not related to
an object defined inside the analyzed method;

e invokeinterface, because during the static analysis is impossi-
ble to get the real implementation of the method that is invocated;

e getfield and putfield, because these instruction are used to
access to global variables declared outside the analyzed method;

e getstaticand putstatic,because these instructions act on static
variables that are related to the class and not to the object.

These bytecode instructions must never be used within a pure Java func-
tion. In addition to these instructions, other bytecode instructions are set
as unusable because for a conservative choice caused by our static analysis
approach.

As an example, consider the source code of the XIRR method reported
in Listing 4.1. The XIRR method computes the annualized internal rate of
return of a cash flow at arbitrary points in time. The analysis is conducted
on the bytecode, which is not shown for the sake of brevity. Initially, the
analysis assumes the target method to be pure.

The XIRR method takes as input two arrays, respectively of double and
int, representing the cash flow in terms of values and dates, and a guess
of the solution used to initialize the algorithm (a double). At the bytecode
level, the method signature is ([D[ID) D, where [D represents an array
of double. Since the array is composed of elements of primitive type, it
does not cause impurity according to Definition 4.1, and the same goes for
the other two parameters. Each element of the arrays will be treated as an
individual parameter for memoization purposes. Lines 2-4 declare variables

66



4.1. Pure Function Definition

Listing 4.1: XIRR method source code.

public static double Xirr(double[] value, int[] days, double guess){
int maxConvergenza = 50;
double adrd = 0.05, xirr = guess, sum;
char sign = "+’
for (int i = 1;
sum = 0;
for (int j=0; j<value.length; j++) {
sum += value[j] / Math.pow(l + xirr, days[j] / 365.0);
1
adrd = signAdrd();
xirr = xirr + adrd;
if (Math.abs(sum) < 0.0000001) { break; }
}

return xirr;

i <= maxConvergenza; i++) {

}

of primitive types, and therefore do not change purity. Then, the analysis
proceeds on to the two for loops. It checks the data accesses, both in read
and write. The analyzed method only writes to local variables of primitive
type, and accesses both array parameters only for reading. By Definition
4.1, the XIRR method is therefore pure, if we assume that signAdrd ()
is a pure function (which is the case).

4.1.1 Purity classification

During the purity analysis of the application under exam, we also evaluate
different purity classes. The sources of impurities that have been identified
include the following:

e the method signature;

e the return type;

e access to static variables;

e access to global variables;

e modification of object parameters;
e invocation of non pure methods;

e other sources of impurity.

Using the information obtained by the bytecode purity analysis, we also
define four main characteristics that classify a method in terms of purity:

e Pure methods;
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e Memoizable methods;
e Purifiable methods;

e Wrapper methods.

Pure methods A method is pure if all the sources of impurities checked are
positive; if at least one of them is not verified, the method presents sources
of impurities and hence can not be defined as such. Pure methods can be
memoized correctly, regardless the context in which they are invoked.

Memoizable methods In particular scenarios, a method can be memoized,
even if it is non pure. All the above sources of impurities should be verified,
with the exception of the one related to the invocations of non pure meth-
ods. A more relaxed constraint it is allowed. With this term are identified
methods that are not pure only due their return type. Moreover, it should
be verified that the returned object visibility should not continue after the
end of the calling method (hence, the object should not be returned again
by the method under exam). If this situation is verified for every non pure
method called, the calling function can still be memoizable, even if can not
be defined as pure. Obviously, a pure method is also always memoizable.

Purifiable methods A method is considered solvable if it is possible to ap-
ply bytecode modifications to transform it in an equivalent function that
is completely pure. Impurities that prevent the method to become solv-
able are the return type, writing on object parameters, the presence of non
pure/non solvable calls, and the impurities grouped under the flag other.
On the other hand, if the sources of impurities are related to the access in
reading to global variables (static and non static), or to the presence of calls
to wrapper methods, the original function can be transformed in a wrapper
that calls a completely pure (and hence memoizable) equivalent method.
An intermediate situation is the presence of impurities due to modification
of global variables. In this case, the pure section of the method can be
separated from the rest, intrinsically non pure. If the method presents such
sources of impurities, it can not be defined as solvable. However, it is gener-
ically refered with the term modifiable, indicating that it will consists in a
pure code section, followed by the set of non pure operations. The same
considerations can be applied for impurities related to the modification of
objects passed as parameter. Since this last case is not actually solvable,
the aspect will not be considered in terms of global solvability.
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Wrapper methods A method is considered a wrapper if the only operation
it performs is to invoke a pure method. Given the definition, the analyzer
will check the instruction list, in order to determine if no other operators
outside the method call, its stack and the return statement, are present. This
is the common scenario created by a resolution of a method which presents
impurities due the access in reading to global variables; the wrapper method
will only call the pure section of the method, providing on the stack the
global variables needed, and executing no other operations. Methods that
satisfy this property can be the target for bytecode modifications that allow
to call directly the pure section, expanding in this way the pure code section
for the calling method.

4.1.2 Differences w.r.t. traditional definition of purity

Analyzing the purity classification described above, we can state several
differences between the traditional definition of purity. The relaxation of
some constraints allow to expand the set of functions that can be effectively
considered pure. In particular, we state the following differences:

e Since it is now possible to identify the reference of instructions such
as rastore and xraload, the presence of the correspondent opcode
in the instruction list does not automatically prevent the method to be
pure; instead, only operators having as reference an address related to
a parameter determine the non purity of the function;

e related to the previous, is now possible to have mono and multidimen-
sional array as input and as return type. Impurities for such aspects are
now related only to the presence of generic objects in the signature;

e Instructions such as getfield and putfield determine the non
purity of the method only if they refer to an object passed as parame-
ter, or to the calling object itself. Operations having as target objects
defined within the function are now not a problem in terms of purity;

e invokevirtual instructions that refers to objects passed as param-
eter are not an issue, since the check has already been managed regard-
ing the signature. However, in a future scenario in which objects are
eligible as input, the check regarding the purity of the invoked method
is enough. invokeinterface instructions that target such objects
can still prevent the purity of the method; the subject could be studied
in future developments, since it is necessary to identify all interfaces
implemented by a class to correctly identified the referred method;
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e The management of static variables has not changed, since getstatic
and put static instructions do not require the address of the target
(the information are located directly in the instructions); hence, the
presence of such opcodes is enough to define the method as non pure.

4.2 Memoization Service Level Agreement (MSLA)

Service Level Agreements (SLAs) can be described as formal written con-
tracts developed jointly by a provider of services and its users. Since SLA
are living documents, the responsibilities, and expected performances are
recorded. In our financial application use case, the SLA is the precision of
decimals in the computed result. So, some important terms are highlighted
for this concept which is accuracy on the result, SLA precision and bias.

These terms have a specific meaning when they are applied to data on
which the decimals have significance, though accuracy and precision are
generally interchangeable with each other in common use. Accuracy is a
measure of how closure our estimate to the true result. On the other hand,
SLA precision is determined by the final user that is a measurement of
how close are the replicated estimates from each other. This is the same as
asking how much error is there around a mean estimate. Then, bias occurs
when our estimates are either systematically larger or smaller than the true
value.

4.3 Memoization Performance Model

The effectiveness of our approach depends on the energy required by the
function for a computation compared with the energy required to read a
memorized value, and on the hit rate of the stored values [7]. In turn, the
hit rate depends on the variance of the input parameters of the function and
on the size of the memory available for the memoization. We developed a
model that allows estimating the effectiveness of our approach taking the
execution time as a proxy of energy consumption. We consider execution
time because it is easier to assess the time performance of a function by
means of profiler tools rather than to evaluate its energy consumption, and
energy consumption is directly related to execution times for computation
intensive applications.
We define memoization effectiveness as:

n=— 4.1)
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where 7' is the average time required to satisfy a function call through our
approach and 7, is the time required to execute the function and compute
the result. If « is the hit rate then:

T = aThit + (1 - a>Tmiss (42)
Thit = T 4.3)
Tmiss = Tm + Te + ﬂn (44)

where T, is the time to read a memoized value that is stored in the memory,
and 7} is the time required to execute the trade-off module that decides
whether or not to store the new value of the function.

Initially, the trade-off module will allow to allocate the available mem-
ory to the different functions in order to maximize total energy efficiency
as estimated by means of the performance model described in this section.
After this initial tuning, the trade-off module is invoked with a given fre-
quency () to retune the memory allocation. In fact, a continuous execution
would deeply affect performances. Equation 4.2 combined with 4.3 and 4.4
leads to:

T, Ty
=0+ =a)(1+87) 4.5)

Equation 4.5 shows that the maximum effectiveness of the memoization
approach, obtainable when the trade-off module is not executed (5 = 0)
and when all the input values of the function are stored in the memory
(av = 1) is given by the ratio of the time to access the memory divided by
the time to execute the function. As 7}, and 7, can be easily measured,
this result can be used to identify a priori the set of functions that are worth
being memoized.

The hit rate o depends on the number of stored values on the statistical
distribution of the input parameters with which the function is invoked and
it influences the time required to satisfy the call. Let us suppose that we are
applying our approach to a function y = f(, that is invoked with a Gaussian
distribution of the input parameter x, with mean p and standard deviation o.
If = is a continuous variable, a sampling unit 7 will have to be determined.
The sampling unit should be decided according to the precision needed by
the final users.

To understand all the components that influence the parameter o we
define the number of values that can be memoized NV, as:

_ Sm
-
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where S,, is the size of the total available memory and S; is the size of
memory necessary to store a pair (z,y). The probability that the function
f is invoked with a value of the input parameter x that is tabulated is:

Nd*%
o x\/2

where er f is the error function defined as:

a=cerf(

) 4.7)

2 x
erf(r) == */ e’ x dt) (4.8)
™ Jo

Equation 4.5 combined with Equation 4.6 and Equation 4.7 allows to es-
timate the effectiveness of our approach for a given function with a specific
variance of the input parameter ¢ according to the available memory S,,

4.3.1 Performance Model with MSLA

Analyzing Equation 4.5 we can say that the hit rate « is influenced by the
parameter 7, because all the other parameters have fixed value. So we have
to define the sampling unit 7. As it is said before, the sampling unit is
decided according to the precision taken by the final users. We call that
precision value SLA (Service Level Agreement) and we define it as:

SLA = f(1) (4.9)
So 7 is an inverse function of S LA, particularly is defined as:
7= fYSLA) (4.10)

Given some training data, it is always possible to build a function that
fits exactly the data. But in the presence of limited memory usage, it is not
possible to use all the given sampling units by considering the repetition
of same samples which would lead to a poor performance. The general
idea behind the design of a model is thus to look for a fitted function with
memoization method. Typically, one would look, in a collection of possi-
ble models, for the one which fits well the data. But there is an important
question: how many sampling units (7) have to be used in order to have an
accurate function? The larger the sample size, the more precise is the es-
timate. Sample size will therefore depend largely on the reliability wanted
to place in the estimate. If the request is a very precise estimate, a larger
sample of inputs is needed than if a good approximation is wanted. Sta-
tistical methods requiring the collection of some pilot data, are available
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for calculating sample sizes necessary to achieve predetermined levels of
precision.

To achieve precision, the idea is saturating memory with input/output
data by executing the program during the tuning phase. It is needed again
to control the memory if the input values are same with a new input data.
In this way, the output value will be the same. Thus, in order to have good
accuracy in the function, the repeated data is not saved in the memory,
letting the other sampling units take place in it.

4.4 Conclusion

In this chapter, we proposed the use of memoization in Java methods to
reduce the energy consumption of pure functions without a refactoring of
code. To this end, we have introduced an appropriate definition of weak
purity and a purity classification that allow to expand the set of functions
that can be effectively considered pure. Then, Service Level Agreements
are introduced in the memoization concept to introduce the accuracy of
results of the modified pure functions. Finally, two model are defined in
order to estimate the effectiveness of the memoization approach, taking the
execution time as a proxy of energy consumption.
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CHAPTER 5

GREEN MEMOIZATION SUITE (GREME)

The architecture of Green Memoization Suite (GreMe) is showed in Figure
5.1. The architecture is composed of three main components: the first is
related to the static bytecode analysis (to individuate which function could
be potentially memoized) and the bytecode modification, necessary to in-
ject the required code portions; the second one deals with the execution of
the meta-model Decision maker; the last one is related to the man-
agement of data tables into the memory. Each one of these components is
further described in the following sections of the present chapter.

The static analysis examines the entire bytecode of an application, look-
ing for functions that satisfy the purity requirement. The information that
univocally characterize a method are saved in memory and, for the one that
effectively could gain benefits, the Bytecode modification module
is executed; it will modify the correspondent code, in order to inject the
necessary instructions to execute the meta-module Decision maker.

During the execution of the application, the JVM executes normally the
bytecode. When a modified pure function is invoked, the modified code
will be loaded instead of the original one. The Lookup function use the
Memory Management module in order to search inside the memory if
a result exist related to the function called and its input parameters. If the
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related result exists, the function returns directly the value; otherwise, it
will continue its normal execution and, just before the return statement, the
module Trade off will be invoked. The task performed by this com-
ponent is related to the possibility of saving the new result in the table,
following logics related to the optimization of the memory utilization.

5.1 Execution flow of Analysis and Code Modification

The Static pure function retrieval module takes as input a
set of compiled Java classes, analyses them, modifies them until it is pos-
sible (or useful), and returns the modified files, along with the analysis
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results. This is achieved through the sequential execution of five phases,
each one related to a specific task.

Java
Bytecode

Method
Analysis

Bytecode
Madification

Re-engineered
Method

Figure 5.2: Execution flow of the analysis and modification modules; Java bytecode
is analysed and, eventually, modified, in order to obtain a re-engineered equivalent
method.

First, the application requires the path of the package to be analysed.
Having the target of the operation, it builds the directories in which the re-
sults will be stored, as well as the SQL table in which the results of the first
analysis will be saved. For each class, the framework will consider each
method, with the exclusion of the constructors and the abstract methods
(not interesting for the proposed approach). Having loaded through BCEL
the necessary resources, each one of them can be univocally identified by
the triple <Classname, Methodname, MethodSign>, and hence the
application can start.

Before starting the analysis of the method itself, it is necessary to obtain
the list of the functions belonging to the Java API that are called within it;
this is achieved by the TreeManager class, which determines the entire
set of methods and extracts from it the subset of APIs called. Having the
full set of such functions, the application queries the table of Java API
(residing in the external database) for information about its purity; if it is
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already been analysed, the corresponding entry can be found in such table.
Otherwise, the application performs a full analysis on it (better described
in the following section) and save the results for future uses. At the end of
this phase, all the information related to the purity of the Java APIs needed
by the method are located in the local repository of MethodSummaries
(see Section 5.2.1 for additional details regarding the data structure).

Having all the resources needed, the application starts with the analysis
of the considered function. The tree of functions calls is generated by the
TreeManager class (in particular, the variant with no depth for the Java
API), its dimension evaluated and the relative graph plotted. Then, start-
ing from the bottom of the tree, each method identified by a TreeNode is
analysed. This is made from a double perspective: the first regarding the
data dependencies within it (to give an overview of the behaviour of the
method also in terms of its execution flow), and the latter that deals with
the sources of impurities that could be (eventually) present. The results
of such analysis consists in a MethodSummary object that (as the name
suggests) summarize all the information obtained, and in the dependencies
graph relative to the method. Moreover, the results in terms of purity are
used to update the tree graph representation of the method, in order to give
an initial, graphical overview of the location of the methods that prevent
the function to be fully pure (and hence memoizable). No further analy-
sis, at the end of this phase, can give additional information regarding the
method under exam. All the results obtained are stored in a specific table, in
the SQL database, that will not be further modified (it will always contain
the results of the first analysis performed, with no bytecode modification
executed).

Similarly to the previous phase, each node of the tree of functions calls
is considered, starting from the bottom. The applications looks in the lo-
cal repository for the MethodSummary that describes the correspondent
method and, based on the information referring to its purity, can execute
dedicated operations. In particular, the framework discriminates the fol-
lowing cases:

e the method is pure, and hence no additional operation is needed. The
applications goes on with the next node in the tree;

e the method is marked as DNM (Do Not Modify) or it is belonging to the
Java API, and hence no additional operations are possible. The first
situation arises when the the user explicitly marks a method to prevent
its modification (for example, functions that can be further modified,
but without benefits), while the second prevents the modification of
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Java API,

e the method presents impurities due the call of non pure functions
within it; however, the correspondent solver has been applied and no
additional modifications are available to solve the problem. Hence,
any additional operation on it will be useless in terms of purity;

e the method presents impurities due the call of non pure functions
within it; the CalledMethodSolver is started, in order to try to
solve them. If the method is effectively modified, the new tree is gen-
erated and analysed again to evaluate the global impact of the modified
class;

e the method presents impurities currently not solvable (in the specific,
operations on arrays passed as input, or other generic impurities as
illustrated in Section 5.2.2); no solvers are currently implemented to
deal with such sources of impurities. The application continues its
execution and considers the following element;

e the method is a wrapper (see definition in Section 4.1.1); no fur-
ther modifications are needed for a method if this property is verified.
Hence, the function is marked as Do Not Modi fy (if not already in
that list) and the application continues with the normal execution;

e the method presents impurities related to the access to global variables
(in reading only); this situation is dealt with the correspondent solvers
(FieldReadOnlySolver for fields, StaticReadSolvers for
static variables). After the modification, a new analysis is performed
(as already presented);

e the method presents impurities related to the access to global variables
(in writing); solvers for this situations are StaticPuritySolver
(for static variables) and FieldsCallerPurity (for fields of the
calling object). After the modification, a new analysis is performed
(as already presented);

e the method presents impurities related to its signature and/or its re-
turn type; if even after all the possible resolutions the method is still
affected by this kind of impurities, no additional operations are avail-
able to solve them. The method is flagged as Do Not Modify, and
the execution moves over to the next element.

Once the algorithm has reached convergence, and hence no additional op-
erations are possible (or needed), the application generates the final tree of
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functions calls; it also marks all the functions belonging to it as Do Not
Modi fy, in order to prevent them to be further modified (uselessly) when
the algorithm will be eventually re-executed for another method.

Two last operations have to be performed before the end of the algo-
rithm. The first one is related to the update of JAR archives which had
some classes modified. In order to accomplish that, the archive is extracted
in a temporary folder; then, the original classes are replaced by the modi-
fied ones, and the archive re compressed. If possible, the original JAR can
be directly replaced, and the temporary folder cleaned up. The informa-
tion about which archives and which classes are involved are stored in a list
managed by the solvers. The last operation regards the saving of the final
results in the external database; a new table is created (in order to preserve
the result of the first analysis) and all the information is stored into it.

5.2 Static Pure Function Retrieval Module

The Static pure function retrieval module performs a static
analysis of the bytecode of the application under exam. Given a set of rules
to identify the purity (see Section 4.1), it determines if a method could be
considered pure or not. In the first scenario, it saves the information that
univocally identifies a method for subsequent studies and modifications.
The user can hence decide which pure functions will be modified in the
following phase. The choice is also advised through the use of additional
information, such as the method main characteristics and a score that takes
in consideration the number of instructions that compose the function. At
the end of this phase, a list of the methods that will be effectively mod-
ified is compiled, and the Bytecode modification module can be
executed.

The architecture of the Pure function retrieval module, as
shown in Figure 5.3, is composed of four main components: bytecode anal-
ysis, bytecode modification, data management and main core. The present
section describes the main characteristics of these elements, while each one
of them will be presented more in detail in the next sections.

bytecodeAnalysis includes all the components related to the static
analysis of the bytecode. In particular, it provides the TreeManager
class to create and manage the tree of functions calls, the Analyzer
class to explore the data dependencies within a method, and the Pure-
FunctionAnalyzer to identify every cause of impurity that a function
could present. The entire component permits to obtain a full analysis of the
selected method, and provides the necessary results for the following phase.
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Figure 5.3: Architecture of the Pure function retrieval module.

mainCore

d

As explained later, it interacts directly with the data management, in order
to guarantee the integrity of the data that resides on the external database;
this also prevents the analysis to be re-evaluated from the beginning, if the
results are already available (following a past analysis). It also provides
the methods to correctly deal with Java Archives (JAR) files (extracting,
update, re-jaring).

bytecodeModification includes the necessary components to ef-
fectively modify a compiled Java class. For a subset of the impurities de-
fined (and evaluated) the correspondent solver has been implemented to
generate an equivalent version of the method under exam, with better char-
acteristics in terms of purity. In particular, the component can completely
solve impurities related to the reading of global variables (static and non
static), plus the calls to methods that have to the property to be wrappers
(see Section 4.1.1 for the definition); it also can partially solve impurities
related to the modification of variables defined outside of the scope of the
considered method. In this case, the new method will consist in a pure
section (ideally covering the largest part of the code, and hence that could
effectively benefit from the memoization), and an intrinsically non pure part
that manages the update of such values.

The dataManagement component provides the necessary methods
to interact with the external SQL database. It includes the functions to
connect, create new tables, query and save the results obtained from the
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framework. It could also be expanded with the implementation of specific
queries, in order to make available additional results, such as the occur-
rences of each kind of impurity for a given package, the average number of
methods solvable in pure equivalents, and other kind of statistics.

The mainCore component is responsible for the management and the
coordination of the elements that compose the framework. It receives the
requests related to the set of functions to be analyzed and manages all the
processes for the analysis and (eventual) re-engineering of such methods.

5.2.1 Data Dependency Analysis

This section focuses on the data dependencies graph and on the role it cov-
ers in the present work. The representation of a Java class in this form can
be very useful for a number of reasons related to the purity of a method, and
hence to its potential memoization. One of the main challenge in this pro-
cess is to build a dependencies graph from raw bytecode, without having the
source code for the selected method; the present work address this problem
and provide a complete and customizable graph for a generic Java method.
The next sections are structured as follows: Section 5.2.1 describes in gen-
eral terms the data dependencies graph, analyzing the main dependencies
that can arises when analyzing portion of code and its main applications.
Section 5.2.1 gives an overview of how the dependencies graph could be
useful for the present work, in particular from the point of view of purity
for a method, and memoization of a subsets of instructions that compose
it. Section 5.2.1 presents the developed work to obtain the dependencies
graph from a compiled Java class.

Dependencies graph description

The data dependencies graph is a directed graph that describes the list of
data that has to be ready (or available) in order to generate (or evaluate)
a given resource and/or operation. More formally, given a set of objects
S and a transitive relation R = SxS, with (a,b) belonging to R modeling a
dependency that can be represented textually by "a needs b to be evaluated
first", the dependencies graph is a graph G = (S,T) with T subset of R and R
being the transitive closure of T.

In computer science two of the most important types of dependency are data
and control dependencies, with general reference towards the list of state-
ments (instructions) that compose a program. A general data dependency
arises from two instructions which access or modify the same resource;
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since one of them has to be executed first, the latter is flow dependent with
respect to the former. In other words, the second statement has to wait until
the first one is fully executed, and only after that it can operate on the data
it needs (which could be eventually been modified by the previous instruc-
tion). Data dependencies can be further classified under other sub-types,
but for the work presented the above definition is fully sufficient.

A control dependency is verified when the execution of an instruction de-
pends on the result (or the evaluation) of another instruction executed be-
fore; the most common situation is a statement representing a condition and
another instruction executed only if such condition is true or false. More
formally, a statement S2 is control dependent on another statement S1 if
and only if the execution of S2 is conditionally determined by S1. A state-
ment is not control dependent with respect to any other instruction if its
execution is always determined irrespective of the outcome of all the in-
structions that preceed it.

Typical uses of data dependencies graphs in compiler technology include
the instruction scheduling (algorithms such As Soon As Possible and As
Late As Possible rely on this model to determine respectively the sooner
and the later temporal istant in which the instruction could be executed), or
for the elimination of dead code (when a variable is not usefull anymore,
because no other resources actually read or write to it, it can be removed
safely). More in general, data dependencies graphs found wide applica-
tions in many other different fields than the one of interest for this work;
for example, in manufacturing factories, the raw materials are processed
through series of intermediate stages, each one that can be modeled as a
node of the graph; with a pipeline-like view, the next stage is not accessible
nor workable until the previous one has been reached and completed.

Practical uses of the dependencies graph

The data dependencies graph can be useful in various scenarios when deal-
ing with functions that violate the purity constraints defined in Section
5.2.2. The resulting graph can be personalized in a manner that under-
lines where and what are the impurities in the analyzed code, for example
coloring in red the parts that affect the purity of the method. Considerations
about them include:

e the presence of static variables can be easily spotted since each node
representing a static variable has a key that starts with the letter s;
incoming arcs mean that its state is actually modified by some other
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variable (source of the dependency), and hence a side effect is pro-
duced. Outcoming arcs indicate that its value is being used by some
other entity (target of the dependency), and hence the value returned
by the method can be influenced not only by the parameters that it
has as input, but also from some external value not retrievable in the
lookup process;

e object parameters are also very easy to observe, since they correspond
to nodes having key starting with p and a suffix containing object.
The same observation about dependencies to and from static variables
can be applied for these entities, which are generally not supported
by memoization (unless setting some kind of serialized version of the
object, which will anyway results in an explosion of the table dimen-
sions). Outcoming arcs from this kind of nodes generally refer to
method invocations or access to a field of the object;

e in a similar fashion, the nodes corresponding to return values (which
have suffix return_value) can also be analyzed from two points
of view. First of all, it is immediately clear if the return value belongs
to a non-primitive class (matching the signature of the method), and
hence needs further considerations about its life-range in the calling
method; secondly, analyzing the graph backwards helps to understand
which subset of parameters effectively influence the return value. This
can be useful when dealing with functions having lots of input (that
will usually be translated in a dimensional prohibitive matching table),
but not all of them define the returned value; the ones not involved in
the process can be, from this point of view, discarded, resulting in a
feasible application of memoization;

e when analyzing non-static methods, side effects on the calling object
are easily spotted just observing the incoming arcs for the node rep-
resenting it (pO_this_object node, since it represent the implicit
object passed to the non-static method). Outgoing arcs from that node
are also signals of impurities, due the fact that represent reading access
to its field variables;

e since all the invoked methods will appear somewhere in the graph,
the impure ones can be highlighted (for example coloring the corre-
spondent arc in red). If no action is taken about their presence, the
fragments of instructions including them can not be considered pure.

Moreover, the data dependencies graph is a very powerful tool when
deciding to memoize only a part of the method (for example, because no
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actions are feasible to obtain a completely pure version of the method).
This task can be accomplished selecting a subset of the graph, in which the
incoming arcs will be the parameters of the new method, and the outgoing
arcs the returned values (they can potentially be more than one, because
the memoization allows multiple outputs). Clearly, the number of inputs
will be crucial, since it will define the dimension of the lookup table (along
with the distribution of their values). After selecting the desired subgraph,
the new method can be obtained by wrapping up the instructions included
in the considered range, and calling it in the original one (after building
for it the instruction stack required for the invocation). The main problem
in this algorithm is the enumeration of all possible subgraph for a given
graph; at the time of writing no algorithm that solves it in polynomial time
is available, although some works (such as [12]) claim that is possible to
reduce it to a quasi-polynomial time, or even polynomial (with not-so-low
powers anyway). It could be useful to reduce this problem to a smaller
version, with the introduction of some constraints that will help to identify
better candidates in terms of purity.

Building the dependencies graph: algorithm and implementa-
tion

This section shows how the problem of obtaining a data dependencies graph
from a compiled Java class, and hence from the list of bytecode instruc-
tions that compose it, has been addressed for the purposes explained in
the previous paragraph. Since at the moment of writing no tool is (freely)
available on the Internet, at our knowledge, the decision to build an util-
ity from scratch for the task has been taken. In fact, no external library
has been used with the exception of the ByteCode Engineering Library
(BCEL) [21], probably the most complete to interact at various levels with
the raw bytecode. An example of generic data dependencies graph obtain-
able from the application of the algorithm is reported in Figure 5.4. The
graph is created starting from the function function_F. During its ex-
ecution, function_F invokes both the sin and method_G functions;
the latter also invokes the sin function within its code. In Java, the mathe-
matical method sin is implemented as the call to a nat ive sin function,
which performs the effective computation.

The proposed algorithm The algorithm for generating the data dependencies
graph is different from the well-known related algorithm that will be useful
for the analysis related to the purity of function. Basically, the algorithm
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v sin(D)D 11

p0_implicit_object o

functionG(D)I 19 /p0

Figure 5.4: Example of generic data dependencies graph.

is structured in four consecutive steps (initialization, identification of the
nodes, analysis of the dependencies, finalization), plus the set up phase.
The only inputs required for the correct utilization of the tool are the full
path to the compiled Java class, the name of the method subject of the anal-
ysis, and a the method signature (which constitute the set of information
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Data: Method name, Class name, Method signature
Result: Dependencies graph for the method

Initialization;
for all bytecode instructions in the method do

‘ Node identification;
end
for all identified nodes do

‘ Dependencies identification;
end
Finalization;

Algorithm 1: Data dependencies graph realization algorithm.

required to univocally identify a Java method).

Data structures Various data structures are set up and used by the analyzer
in the process. In the following are described the most important and signi-
ficative classes used within the process.

e Dnode - It identifies a node in the dependencies graph, and hence
represents a generic variable in the correspondent source code;

e Darc - It identifies a connection (with direction) between two nodes
in the graph;

e BasicBlock - Used as the elementary entity in the control flow
graph;

e Btree - Each node of the Btree corresponds to a bytecode instruc-
tion;

e MethodSummary - Used to wrap up all the results obtained from the
analysis of a method.

Phase 1 - Initialization Three different operations are carried out in this phase
of the algorithm, each one resulting in a new resource that will be used to
correctly generate the full graph. The first one is the Control Flow Graph
(CFQG). It describes how the execution of a code fragment can be influenced
by jumps corresponding to branch instructions. A basic block is a portion
of code that has the important characteristic of having a single entry-point
and a single exit-point. In other words, there is no way that the execu-
tion jumps to somewhere in the middle of the basic block code. The first
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instruction of the block is always considered first, and each one of the fol-
lowing, until the end of the block, will be executed sequentially. Usually,
a block ends in correspondence of a jump, a branch instruction or a return
statement, while starting at the location of an instructions being target of
jumps or "fall-through" instructions following some conditional branches.
Given these definition, it can be stated that a block is characterized by the
set of the blocks whom execution preceed it (inputs), the set of the blocks
whom execution follow it (outputs), and the first and last instruction of
the relative code portion (boundaries). In order to generate the correct se-
quence of basic blocks, the algorithm used to build the CFG identifies all
the boundaries, each one with the right boundary. Starting from the first
instruction, each one of the following is analyzed; the end of the block is
always in correspondence of conditional branches, uncondinational jumps
or return statements. Depending on the kind of instruction, there can be an
arbitrary number of instruction behaving as entry point for other blocks. In
particular:

e a return statement means that the execution will terminate after that
block;

e an unconditional jump identifies the entry point of the following basic
block, as the instruction targeted by the jump; moreover, the instruc-
tion just preceding the target will be, by definition, the end of another
basic block;

e a conditional branch identifies entry points for two additional blocks:
one as described in the previous case, and another one given by the
normal fall-through of execution (the instruction immediately follow-
ing);

e the switch instruction is an extension of the previous case, which can
add an arbitrary number of blocks (with respect to the number of cases
it provides) to the graph.

Having the complete list of boundaries (entry points and end points), and
hence the full set of blocks that generate the graph, the last step is to com-
pute for each one of them the set of inputs and outputs. Usually, only one
set is computed, while the other one is obtained by inverse procedure; the
easiest way is to compute, for each block, the set of its outputs, considering
just its last instruction. The end point, in fact, provides all the information
needed to understand which and how many blocks can follow the object of
the analysis during the execution. As last task, for completeness, all the
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inputs are also computed. Now the graph is fully described and hence com-
plete; given an instruction anywhere in the code, the information about its
position can be used to understand at which basic block does the instruction
belong. The function printCFG can be used in order to obtain a textual
representation of the control flow graph; an additional functionality could
be implemented to generate a Graphviz-compatible file to provide also a
graphical representation. The second step in the set up phase is the ini-
tialization of the graph with the nodes referring to the parameters that the
examined method takes as inputs. The implemented function responsible
for the operation is initGraph, which has to take as input also the set
of types referred to the parameters. This information is used to determine
the starting memory location for each one of them. In fact, they are stored
sequentially starting from location 0 and each one of them has dimension
exactly equal to 1 (for characters and numbers, the correspondent register
contains the value of the variable; for arrays and objects in general, it con-
tains the memory address in which they reside). The only exception is the
textttdouble format, which occupies two consecutive locations. In the case
of having a method with signature IDI/V (parameter 1 and 3 integer,
parameter 2 double, return type void), the first parameter is allocated in
memory location 0, the second one (double) in memory location 1, and
the third one in memory location 3 (since the double type requires two
locations for itself).

The result of the operation is a set of nodes (each one having the name
in the format p+incremental number) representing all the parame-
ters given to the analyzed method. For each one of them the information
regarding the bytecode position in the method is set to -1 (indicating and
invalid location); if the parameter is an address value, the node name will
also terminate with the suffix _ob ject (this will be useful in phase 3 when
dealing with the dependencies).

The last operation to be performed in this phase is the generation of
the branch structure. All the instruction list is examined looking for every
type of conditional operation. In correspondence of each one of them, a
new node representing the condition is allocated. The name format for
themis cond+sequential number, each one of them have the correct
bytecode position and the start and end field working as boundaries for
the condition validity; moreover, for i f—else branches, the information
regarding the bytecode position of the else branch is also saved in the
node. Since for this kind of nodes is not correct to refer to a memory
location, the correspondent field is set to -1, in a similar fashion of what
happens to the method parameters. This operation could also be moved in
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phase 2 but, due the fact that it not introduces additional complexity (other
than another full scan of the instruction list), for simplicity reasons it is
preferable to execute it before dealing with the rest of the algorithm.

Phase 2 - Identification of the nodes The second phase of the algorithm, as the
name indicates, is responsible for the allocation of all nodes composing the
graph, and more in general of the individuation of all the operations that
generate data dependencies. The instruction list is examined sequentially,
and in correspondence of particular instruction types the relative operations
are performed. The following paragraphs explain in detail the behavior of
the algorithm, regarding the different sets of instructions examined.

Assignment - creation of new variables These operations are used every
time that a new variable (of any type) is allocated, or whom value is up-
dated. Each one of these instructions is translated in a new node in the
graph, having the bytecode position information correspondent to the in-
struction one. The name format for these nodes is v+sequential number,
with an additional suffix of _object if the instruction belongs to the
ASTORE class (and hence the variable is representing a memory address).
Two additional information are added in this process: the local memory
location which the instruction refers, and the number of instructions which
generates the relative expression. A particular case is given by the bytecode
instructions IINC (opcode 132), which increments a given integer variable
by another integer value; like the previous cases, this reflects in an addi-
tional node on the dependencies graph, but, due to its particular structure,
the number of additional instructions required for its correct execution is
0. To better understand the difference, in terms of bytecode, that this last
operation presents with respect to the others, refer to Table 5.1.

Table 5.1: Differences between the bytecode resulting from normal assignment of vari-
ables and the TINC operator; the first includes the standard stack of operators, while
the latter uses only a single instruction, with the relative parameters.

0 bipush 10

2 istore_1

3 iconst_3 int a = 10;
4  istore_2 int b = 3;
5 iload_1 int c;

6 iconst_5

7 iadd c=a+ 5

8 istore_3 b=Db+ 5

9 iinc 2 by 5

12 return
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Conditional branches As previously explained, the nodes referring to con-
ditional branches has been already generated and added to the graph. In this
phase, the information regarding the number of instructions that generates
the conditional expression is added; no additional changes are made. It
is also possible to know the type of branch that the instruction generates,
considering the parameters provided to it; this can be made in an automatic
way using the implemented function identifyBranchType.

Assignments on objects public field This instruction does not requires the
creation of a new node in the graph, but has nonetheless to be saved and
used later when dealing with dependencies. For this kind of operation the
usual information about bytecode position, memory location and instruc-
tion stack depth are saved in a separate structure. The difference from other
nodes resides in the local memory location; the information is not carried by
the examined instructions (like normal st ores), but resides in the ALOAD
instruction just before the beginning of the expression (as better shown in
Table 5.2). An additional check has to be made in case that the referenced
object is a static one; in this scenario, the memory location is not available
and hence the name of the static variable has to be saved instead.

Table 5.2: Bytecode representation of the PUTFIELD operator; such instruction includes
only the reference of the field (in the example, x), while the memory location of the
object modified (n) is carried by the relative ALOAD statement.

1 aload_1
2 bipush 10 n.x = 10;
4 putfield #42 <Dnode/x I>

Assignments on elements of arrays The behavior of instructions belonging
to this kind of class is similar to the one described in the previous paragraph.
In a similar fashion, no new nodes are added to the dependencies graph,
but the information are saved anyway in a separate structure. In this case,
the examined instruction is preceded first by an expression representing
the value to be assigned; this block of instructions is preceded by another
expression, indicating the index on which the operation is performed, and
the ALOAD instruction that points the structure which is going to be affected
(refer to Table 5.3 for an example of the relative bytecode). Multiple copies
of index-reference blocks are present in the event that the structure
is multidimensional; only the last ALOAD instruction is useful to gain the
memory location of the structure (the AALOAD operator, in fact, does not
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carry any information about that).The same attention must be used when
dealing with a static structure; in this case, the operations are the same
as described in the current paragraph, with a GETSTATIC statement to
determine the location of the interested variable (since it is literal and not
numerical).

Table 5.3: Bytecode representation of a generic store in an array; the memory location
of the array modified is carried by the relative ALOAD statement.

aload_1
iconst_3
bipush 8
iastore

a[3] = 8;

(O, RO IN NS

Static variables The management of static variables presents some dif-
ferencies. During this phase, each time a PUTSTATIC instruction is en-
countered, a new node is added to the graph; the format of the key used in
the hash map is s+tincremental counter (where the counter is dif-
ferent from the one used for non-static variables), while the name of the
node itself corresponds to the name of the static variable (which can be
obtained from the Constant Pool of the class). The node will have
the usual information about bytecode position and number of instructions
needed for the expression, while the memory location is set to an invalid
value, because it has no sense for this kind of variables. In the case that
a GETSTATIC instruction is encountered before any other PUTSTATIC
that refers to the same variable, a node that represents the variable must
be added to the graph. This new entity will have exactly the same charac-
teristics described before, with the exception of the number of instructions
needed for the expression (this can be seen as a parameter given as input to
the method).

Return instructions Each return statement of the method, except in the
case of return type equal to void, will result in a new node in the dependen-
cies graph. It will have the bytecode position as well as the instruction
stack depth information (like a normal STORE instruction), but its lo-
cal memory location will be set to an invalid value, since it is meaningless.
Moreover, to underline the fact that the node corresponds to a return value,
its name will have the suffix _retwvalue; hence, by construction, every
node in the graph with that suffix will correspond to a node without any
arc pointing out (there could not be any node which depends from a return
value).
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Invoke instructions When encountering a call to another method, the first
task performed from the analyzer is a local research to determine if the
called method has been already examined or not; in this second case, a the
basic information that describe it are retrived from the external database
(in such event, not all the described information for the MethodSummary
could result available). After that, the analyzer looks for the caller of the
method; that can be an object (identified by an ALOAD instruction, in the
case of a non-static method) or a class (if the method is static, and hence re-
ferred by an INVOKESTATIC instruction). The information is saved, and
in the case of an INVOKESTATIC instruction, the node corresponding to
the calling class is instantiated in the graph (if not already present). After
that, the analyzer creates the node corresponding to the method result in
the graph; its name follows the already mentioned format, with the addi-
tional suffix of _result. Moreover, in its notes, a list of the parameters
that effectively influence the return value of the method is created (the in-
formation is available in the MethodSummary object that describes the
considered method). An example of the obtained representation is shown
in Figure 5.5 and the related code fragment.

Figure 5.5: Dependencies graph generated from the call function. In this example, the
method calledFunction is invoked with the variables a, b (respectively v0, v1
on the graph), while the function is called from the implicit object. It produces a result,
that will be then returned by the original method.

pO_implicit_object

calledFunction(l1)1 8

public int call () {
int a = 3;
int b = 8;
return calledFunction(a,b);

}
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The last operation to be performed regards the eventuality that the called
method modify also objects passed to it as parameters (being them static
or non-static). If so, a new node corresponding to the modified instance of
the object is added to the graph; in the final result will be clear to which
method (and more specifically to which parameter) the new node refers.
The effective dependencies that the object undergoes can be retrieved in
the analysis result of the called method. The combination between the two
results permits to define exactly which are the dependencies related to such
entity.

Obtaining the local memory location from a load-store instruction With a few
exceptions, each node in the dependencies graph has an information re-
garding its memory location. This will be very useful in the next phase of
the algorithm, in order to obtain the dependencies from a node that con-
sider previous values in its expression (due to the potentially different flow
of execution). The function, dedicated to the process of gaining the local
memory location information from the considered instruction, is available
in class DataDependency, under the name of getMemLoc. Basically, it
analyzes the LOAD or STORE instruction and returns the index of the value
considered; in the case of an immediate instruction (such as 11oad_0 or
istore_2), the desired number is the one just following the underscore,
while for normal LOADs and STOREs it is indicated by the parameter fol-
lowing the instruction (for example, istore 8); for the particular case of
the I INC function, the register number is the first parameter (while the sec-
ond is the size of the increment). The function returns -1 if the instruction
passed as parameter does not provide a valid memory index.

Finding the instruction stack depth for anode One of the most relevant tasks
for this phase is the computation of the number of instructions needed by
each node to fully compose the relative expression. This information will
be needed in phase 3, since it identifies univocally, along with the bytecode
position of the variable, the entire set of instructions which could deter-
mine a dependency from other nodes; the only type of dependency that
will not be evaluated using this information is the one regarding condi-
tions, which will be managed with another methodology in the following
phase. The function implemented for the task is getVarDep, included in
the DataDependency class. The goal is accomplished examining one
by one, in inverse order, the instructions preceding the node bytecode po-
sition, and by the realization of a pseudo binary tree, whose leaves can
represent either a constant or a reference to another variable; it can also be
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said that these instruction compose the set of immediate instructions (e.g.
xconst_ + bytecode instructions), since each instruction belonging to the
set does not require any additional statement to be fully specified. In the
case of an expression given by an immediate instruction, the stack depth
for the node will be equal to 1. Other possible situations that can be found
when analyzing an expression includes:

e binary operations: the set regroups basically every mathematical and
logical operator that requires two operands; in terms of the binary tree,
an instruction belonging to the set will increment by one the depth of
the tree, and hence looking forward to two more immediate elements;

e loading from array: this operation requires two additional infor-
mation in order to be completed, the index and the reference to the
structure, and hence could be considered in some way as a binary op-
erator. The index expression is obtained by a recursive call of the
getVarDep function, while the reference of the structure is given by
an ALOAD instruction. The function also addresses the case of mul-
tidimensional arrays, looking for another index-expression each time
an AALOAD operation is encountered, instead of an ALOAD one. In
the binary tree view, a load from an array can be seen as a parent
node having the left child as index and the right one as the memory
reference (for the multidimensional case, just consider the last pair of
operands);

o allocation of new array: this case consists in the analysis of a number
of expressions given by the number of dimensions of the new struc-
ture. This is obtained by extracting this last information from the in-
struction considered and calling a correspondent number of times the
getVarDep function;

e unary operations: the set includes every instruction that needs just
one additional statement in order to be completed. From the point of
view of the pseudo binary tree, these operations are transparent, in the
sense that the analysis will not increase the tree depths. In fact, the
function will still look for an additional regular expression in order to
complete the branch;

¢ invoke instructions: when dealing with an invoke function instruc-
tion, the first thing is to extract from it the number of parameters that
the method will need as input. These correspond to a set of regular ex-
pressions, each one to be analyzed with the usual get VarDep func-
tion. This operation is enough for the INVOKESTATIC instructions;
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in the case of examining a INVOKEVIRTUAL instruction instead, an
additional instruction is needed, in order to get the memory reference
of the object calling the method (in the static case this parameter is
implicit and thus there is no need of an additional instruction for it).
The recursive call of the getVarDep function ensures that the ex-
pression is correctly evaluated, despite any number of consecutive
method calls in an expression. Another particular case involves the
INVOKESPECIAL instruction, when it refers to a new object initial-
ization; in this scenario, after having examined all the parameters for
the method, the analysis must continue until the encounter of a NEW
instruction (usually there could be some DUP instructions between the
two parts, not relevant for the binary tree). This is not important in
terms of dependencies, since this last set of instructions can not in-
clude any references to other variables, but it is just to ensure a correct
analysis of the node.

Phase 3 - Analysis of the dependencies This phase of the algorithm is respon-
sible for the correct identification of all the dependencies for each node of
the graph. In particular, it is structured in three more subsections, each one
addressing a different kind of entity that could depends on some other data.
The first one, and the most complex, deals with all the nodes belonging to
the graph set identified during phase 2. For each entry of the instruction list
constituting the method, the analyzer looks for any node having the same
bytecode position; if so, the information regarding the instruction stack
depth of the node is used to identify the set of instructions that could pro-
vide dependencies for the considered entity. In particular, the analyzer will
examine each one of such instruction and, if there are matches to a given
subsets of instructions that indicates dependency from some other data (for
example, load instructions), the method will find and build the entire sets of
dependencies defined by the instruction itself. In order to accomplish the
task, it will call the method getDepFromBasicBlocks, defined in the
DataDependency class and explained better in the following section.
Particular operations have to be performed if the considered node is created
as result of the invocation of a method, since the dependency must also ad-
dress the name of the method called (and eventually its signature). If a node
is instead passed as parameter, the analyzer will provide in the results the
number of parameter to which the node corresponds; moreover, if it is mod-
ified by the called method, there will be an additional node on the graph,
indicating that the input node (that must be of course an object) has been
someway altered within the called method (whose name will be reported in
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the dependency), and thus it can be considered a new instance with respect
to the previous one. When dealing with static variables, no differences are
present to what previously described. The second code subsection is re-
lated to operations toward arrays and objects in general. In these cases, the
result of the operation will not be translated in a new node in the graph;
the dependencies that they (eventually) determine will be reflected directly
on the node corresponding to the object. For example, an array could have
dependencies toward other variables that are present either in the index or
value expression related. Using an alternative approach, that instantiates
a new node each time an operation on the array occurs, will result in an
exploding growth of the graph dimension, that does not carry any significa-
tive additional information with itself (for our purposes). In the result is
also present an indication of the cardinality, in the case that the array is the
source of the dependency; for each expression, the result node will contain
the number of occurrences of each array in it (useful, for example, if con-
sidering the possibility to pre-evaluate some parts of such expression). The
last case to be considered is if the invocation of a method will affect also the
calling object (or possibly the calling class). If so, for each parameter used
in the method call that generates dependencies the correspondent stack of
instruction must be considered; then, the analysis will be executed in a very
similar fashion as for normal graph nodes. The information about which
parameters (eventually) modify the calling object is available as result of
the invoked method analysis performed during phase 2.

Considering the dependencies from conditional statements One of the out-
puts generated in phase 1 was the complete list of conditional branches,
each one with the bytecode position and the range of validity in the code;
hence, for each bytecode position, there could be from zero to n valid con-
ditions. Each node having exactly that position will thus have dependen-
cies from each one of the valid conditions (and hence the correspondent
condition nodes will have outgoing arcs towards such node). The func-
tion responsible for the task (updateBranchDep) is implemented in the
DataDependency class.

Obtaining the dependencies generated by an instruction The task is performed
with the method getDepFromBasicBlock, implemented in the already
cited DataDependency class. It requires as inputs, among some data
structures (such as the dependencies graph, the control flow graph, etc),
the memory location, the bytecode position and the block number in which
resides the instruction that generates the dependency (the source node on
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the graph); for the target of the dependency, the only requirement is the
key that univocally identifies the node in the dependencies graph. Basi-
cally, the algorithm performs a recursive search on the control flow graph,
in order to identify the previous variables that have the same memory lo-
cation on the stack as the input. In order to do this, the blocks that con-
stitute the flow graph are examined backwards (starting from the one in
which resides the original instruction), until all possible inputs have been
examined. To prevent infinite loops, a list of visited blocks has to be up-
date through the process. If no reference is found up to the first block of
the method, the desired variable is likely to be a parameter of the invoked
method, and hence the list of inputs must be considered. If, after this step,
still no reference has been encountered, the only motivation is that the Java
class has not been correctly compiled. When a match is found, the target
node’s dependencies list will be updated (this information will be used later
to build the set of arcs of the dependencies graph).To speed up the opera-
tions, an additional method in the same class has been provided, under the
name of getLastVarFromBlockMemLoc; as the name suggests, for a
given block number, bytecode position and memory location, it provides
the last variable meeting the requirements in the specified block. This can
be used in order to prevent an additional, full scan on the instruction list
of the block. When dealing with static variables, a slightly different ap-
proach is required, since the memory location information is meaningless
for them; instead, to identify univocally such variables, the information
about the name should be used. As already explained, it could be accessed
using BCEL, and in particular the getFieldName method on instruc-
tions dealing with static elements. Two methods have been implemented
in the DataDependency class to perform the search for dependencies;
they work in a very similar fashion as the ones described in the previous
paragraph, and hence will not be further examined. The only additional
information regards the name of the nodes added to the dependencies list;
for non-static variables, the node name (that is equal to the node key) is
enough, since it is univocal in the graph; for static variables this is not true
(as described in phase 2) and hence the key must always be considered
before the name.

Phase 4 - Finalization In this phase, the last operations required by the al-
gorithm are performed, and all the results are wrapped up and returned by
the application. First of all, the graph is completed by instantiating all its
arcs and then connecting them to the right nodes. This tasks are performed
respectively by the buildDarcs and completeGraph functions, both
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implemented in the DataDependency class; the first one instantiates the
arcs using the information residing in the dependencies list of each node
(which have been allocated in phase 3), while the second one connects both
kind of entities together. The result is a full specified graph, where each
node has two sets of arcs, inputs and outputs. Moreover, three additional
lists of information are developed for the method; they show the dependen-
cies from the parameters respectively toward the parameters of the method
themselves, the object which calls it, and the return value. In order to do
this, the getParamsDep instruction examines the graph, starting from
the point of interest (i.e., the return values) and navigates the graph back-
wards towards the parameters; if one of them is reached in the process, it
will be added to the correspondent list. This can be useful, for example,
in the analysis of pure function, in which not each one of the parameters
actually is involved in the definition of the result; it can be hence discarded,
resulting in a decrease of the dimensional space of the input.

Having the graph completed and fully descripted, this last phase provide
both a textual and graphical representation of it. In particular, the print—
DepGraph function prints on console the list of nodes belonging to the
graph, each one with all the corresponding information and the list of de-
pendencies. Moreover, a more intuitive and practical representation is avail-
able using the visualization tool Graphviz. The function buildDepGraph
take care of converting all the data results in the right format required by
files . gv; graphical preferences (for instance, colors and shapes) can also
be modified in a second time, using a common text editor and the syn-
tax provided by Graphviz. Once the file is completed, it can be compiled
by the tool, which automatically builds and exports the image represent-
ing the dependencies graph. The last operation take care of building the
MethodSummary object, in which all the results of the analysis are stored,
that will be returned by the method.

5.2.2 Purity Analysis Algorithm

The PureFunctionAnalyzer class is responsible for the analysis of
a method in terms of purity. It considers each kind of possible impuri-
ties that prevent the method to be considered pure, making it the target of
possible bytecode resolutions. The final analyzer relaxes some constraints
necessary to our previous work [6], in order to expand the set of pure func-
tions, without impacting the correctness of the process. All the information
resulting from this process are stored in a particular data structure called
PuritySummary, that will be associated to the MethodSummary cor-
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Data: Method name, Class name, Method signature
Result: Purity information for the method
Initialization;
for all the possible impurities do

Perform the relative check;
end
Determine the purity of the method;
Finalization;

Algorithm 2: Purity analysis algorithm.

responding to the method under exam.

Implemented Algorithm

The following paragraphs describe in detail each type of impurities, and
the techniques used to analyze a generic method; the obtained information
are used to determine the characteristics, in terms of purity, of the function
under exam. Such results are summarized in a PuritySummary object,
which will be related to the correspondent MethodSummary, in order
to group all the data available for the method. The full list of sources of
impurities that have been identified includes issues regarding:

e the method signature

e the return type

e access to static variables

e access to global variables

e modification of object parameters
e invocation of non pure methods

e other sources of impurity

Preliminary operations As first task, the analyzer retrieves the resources of
interest through the BCEL APISs; these include the properties of the method
under exam, as well as its instruction list. In the event that the latter can not
be retrieved for any reason, the method is assumed as non pure; on the other
hand, if the method is declared as nat i ve (meaning that it is implemented
in an independent way from the platform and accessible through the Java
Native Interface),itis considered pure.
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Signature check (flag sign) The traditional framework considers a method
pure if and only if all its parameters are of primitive types; this excludes
any kind of object or data passed for address, including for example array of
primitive types. The current implementation, instead, admits the presence
of mono or multidimensional array of primitive types (even if they could
determine an explosion in terms of space of the parameters domain), while
generic objects are still not suitable for this purpose.

Return type check (flag ret) The assumptions are exactly the same as for the
signature. Primitive types, array of primitive types and the VOID type are
allowed in terms of purity. Generic types determine the method as non pure,
but should be noted that the calling function could still be memoizable (see
Section 4.1.1 for additional details).

Static variables check (flags s_r,s_w) The access in read and/or write to static
variables prevents the method to be pure. In fact, these values can not be
retrieved from the memoization process, and hence the result obtained is
not reliable. To determine these conditions, the analyzer scans the entire
instruction list for the targeted bytecode instructions; in particular, the read-
ing of a static variable is determined by a GETSTATIC instruction, while
the writing is identified by a PUTSTATIC statement. The analyzer, more-
over, can provide a count of the variables involved, to give a measure of the
problem. The result of the operation consists in two flags, one related to
reading and one related to writing towards static variables.

Global variables check (flags £ r, £ w, £ c) Similarly to static variables, the
access to fields of objects, defined outside the scope of the method, is a
problem for the purity of a function. The additional complexity, in this case,
resides in the fact that such variables are not absolute (as static ones), but
are related to specific instances of objects. Hence, the analyzer has to look
for the correspondent bytecode instructions (GETFIELD and PUTFIELD),
plus the local address of the associated ALOAD statement. This is the only
way to determine if an access has been made towards a parameter, or an
object created within the method; obviously, this second case does not con-
stitute a problem in terms of purity.

To accomplish the task, the analyzer has to rebuild the expression of such
instructions; GETFIELDs immediately require the ALOAD instruction for
the object considered, while PUTFIELDs need also the expression of the
value between them and the ALOAD of reference. The result of the oper-
ation is composed of three flags: one identifying the presence of reading
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towards global variables, one related to writing, and one related to both
operations, but specifically performed only for the calling object (situation
possible only for non static methods, in which the address associated to the
ALOAD instruction is 0); this last discrimination is useful, since the resolu-
tion of this case is less expensive, compared to the modifications required
for writing access of fields belonging to objects passed as parameters.

Parameter objects check (flag obj) The assumptions described in the signa-
ture check process make possible the presence of multidimensional arrays
of primitive types as input. However, if their state changes following the
execution of the method, the memoization approach will prevent the cor-
rectness of the result. Hence, the analyzer will check that each access to
the mentioned parameters will be in reading only. In the presence of writ-
ing operations on them, the method can not be considered pure. More in
detail, the analyzer examines: each ASTORE instruction, to verify that the
memory location correspondent to the parameter is not used for other vari-
ables; each cell store, to verify that the considered array does not have
any of its cells changed by value. To ensure this last property, the regular
expressions required by the instruction should be considered. Such opcode
types require: the expression of the value to be saved, the expression of
the value of the index of the cell, and finally the expression of the array
interested by the change (the point of interest for this analysis). Operations
towards generic objects are not verified, since the impurity is already been
granted from the signature check.

Invoked methods check (flag invk) According to the traditional definition of
purity, a method can not be considered pure if at least one of the called
method is not pure. The analyzer checks each calling instruction, and looks
for the relative information in the local repository and (eventually) in the
database. If the method is not pure, its data is added to a local list of non
pure methods; clearly, the calling method will be pure under this point of
view if this list results empty at the end of the process. Moreover, the ana-
lyzer checks again the list in order to identify which subset of such methods
are however acceptable (for the difference between pure and memoizable,
see Section 4.1.1). If all the non pure methods are acceptable, the calling
method could be memoizable; on the other hand, if at least one of them
does not satisfy the requirement, the calling method can not be correctly
memoized. A called method is accepted if its only source of impurity is
related to the return type; however, it should be also verified that the object
returned by it is not further returned by the calling method. Failure in any
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one of these checks prevents the call to be acceptable.

Other impurities check (flag other) This check deals with the presence of
the last prohibited instruction of the traditional definition,the opcode IN-
VOKEINTERFACE. The presence of the instruction could be a problem in
terms of purity if it refers to an object passed as parameter to the calling
method. However, since the check is already performed with regards to the
signature, this information could be considered redundant. Other impurities
that could be eventually identified and that can not be actually solved should
be grouped under this section.

5.3 Bytecode Modification Module

Given the analysis results, the module execute the necessary instructions
that permits to inject the code needed by the Decision maker meta-
module. A function is identified by a methodId string, which is com-
posed by the className in which the method resides (comprehensive
of the full class path), the met hodName itself, and its signature. The in-
sertion of the Decision Maker module is performed at bytecode in-
struction level, and hence does not require an additional compilation of
the code. The definition of such component as meta-module refers to the
fact that it is, in reality, the full set of instructions that ensure the cor-
rect execution and integration of the proposed approach. Effectively, the
Bytecode modification module injects in the original method two
blocks of code: one related to the Lookup on the relative table (in which
the results of the function are stored), and another one related to the Trade
of f element. The result of the operation consists in a new version of the
method, which is now composed of three main blocks:

e Lookup block in which the result table is searched for a value in
correspondence of the provided inputs;

e original block of instructions of the method;

e Trade off block, which manages the results table through the API
provided by the relative module.

As depicted in Figure 5.2, in the first step Java bytecode methods are
statically analyzed to detect whether they are pure functions or not. Code
is analyzed by means of BCEL [21], a Java library for bytecode inspection,
in order to identify bytecode instructions classified as impure, i.e. which
make the method impure.
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As illustrated in the previous section, the proposed application need to
operate at bytecode level, to maximize the applicability of such operations.
It is hence necessary to understand the principles of the bytecode modifi-
cation, how it can be effectively applied, and the techniques that permits to
achieve the objectives of interest in terms of re-engineering of pure func-
tions.

5.3.1 General Concepts

The previous section has already introduced the BCEL library and how it
can be useful for bytecode analysis. In this section it is used to modify
the list of instructions that compose a method in a compiled Java class. In
particular, BCEL provides a set of APIs to manage the Instruction
Handles that form the instruction list, and that permits to create new in-
structions and move or delete existing ones. For the first task, the In—
structionFactory class exports various methods to create new byte-
code instructions, as well as a pool of instructions "off the shelf", ready to
be injected; for the second, the Inst ructionList class provides a wide
variety of functions to manage every single instruction handle, as well as
the entire list.

The following list reports some of the main aspects that have to be kept
in mind when approaching bytecode modification:

e there is not any kind of verifier at compile time when modifying the
instruction list of a method; hence, a syntactically wrong change usu-
ally results in a class that can not be executed, since it can not be
compiled. A good practice is to first verify the new dumped class, and
then check it for the expected behavior;

e after modifying a method and obtaining its correspondent instruction
list, a good strategy is to remove the old method and add the new one
to the class, instead of simply replacing it. This could in fact lead to
problems, especially regarding the local variable table, that prevent
the method to be executed;

e after defining the new method with all the resources it needs (instruc-
tion list, signature, visibility, etc), and before adding it to existent
class, some clean up methods have to be executed in order to guar-
antee the correct execution of the new function. In particular, for each
new method, these three operations have to be performed:

— setMaxStack (): computes maximum stack size by perform-
ing control flow analysis;
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— setMaxLocals () :computes maximum number of local vari-
ables;

— removeLineNumbers () :removes all line numbers.

It should also be noted that an additional, important assumption has been
made, prior the presented work; to prevent problems regarding the uncon-
trolled access to resources that could be modified, such as global variables,
the execution is always considered as single-threaded. The modifications
illustrated in the next sections can work as well as when considering a re-
source lock at method granularity; basically, the lock on a resource is taken
at the beginning of a function, and then released only after its termination.
In this way, no external process can actually read or write to the variables
involved, since it is not possible for them to acquire such lock. In a situ-
ation in where, instead, the lock is granted with smaller granularity (i.e.,
single operation), uncontrolled behaviors could arise, since the modifica-
tions presented grant a correct status of the considered variables only after
the completion of the method, and not during its execution.

5.3.2 Resolution of Impurities

In the following section, we describe how we act in order to automatically
modify the application bytecode to resolve the impurities founded during
the bytecode analysis. The impurities that can be resolved are: the use of
static variables, the use of field variables, and the invocation of non pure
methods. For each of these impurities are defined the steps in order to
create (or modify) a sub-function that can be considered as a pure function.

Static Variables

Primitive types of static variables are good examples of how bytecode mod-
ification can be used to deal with non pure methods. The objective of the
work is to wrap a subsection of the instructions that compose the original
method in a new, pure function (which can be eventually memoized), and
call it from the original method, in order to guarantee the original behav-
ior. In fact, at the end of the operations, no difference has to be spotted at
run time from the two versions, in terms of results and produced effects.
Having the graph that describes the data dependencies of a method (as a
result of the analysis presented in Section 5.2.1), it is quite easy to deter-
mine the presence of static variables that define the method as non pure;
in fact, they are translated in the graph as nodes having the name starting
with s, and are eventually underlined with a different color. The presence
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of outgoing arcs from such nodes means that their value is been used from
some computation, while incoming arcs identify changes in their states. As
already reported, at the end of the execution not only the result, but all the
static variables in play, must have a consistent value with respect toward
the original method.

The final result of all the operations described later consists in a new
method, having exactly the same signature as the original one, that is by
nature non pure (since it reads/write towards static variables). During its
execution, it calls a new method that consists of the computational part
of the original method; it is however been modified in such a way that it
will result pure, since all the non purities are now managed by the wrapper
(before and/or after the call to the pure method). In particular, the original
method will now have the following structure: the invocation of the pure
method, with the correspondent stack of parameters (the original ones, plus
the static variables loaded directly on the stack); the updates of the static
variables that have been modified during the execution (retrieved from the
array variable returned by the pure method); the return of the original value
produced by the method (also retrieved from the mentioned array). The
structure of the pure method will be the following: the creation of the array
structure, that will be returned by the method; all the original computation
that compose the original method; the saving of the return value and the
final values of the static variables modified in such array; the return of the
already mentioned array. The location of the variables within it will be
fixed for a better management of the method stack.

The following code snippets summarize the structure of the methods
resulting from the application of the presented solver.

originalFunction (original pars){
// Acquisition of required static variables
result_set = pureFunction(orig_pars, static_pars);

// Update of modified static variables
return final_result;

pureFunction (orig_params , static_pars){
// Original computation (using local variables)
// Results saving
return ;

}

The following paragraphs describe in detail the steps necessary to solve
the impurities presented. Each step describes the elementary operations
needed to achieve the final result, with both theoretical and technical (in
terms of BCEL instructions) references.
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Static variables mapping After all the resources needed with the BCEL li-
brary, such as the class and method to be modified, have been located, the
first operation is to build a mapping between the static variables considered
and local memory locations that can be used for operations upon them.
After having obtained the first available memory index (which can be de-
termined examining all the instruction list once), a new location is assigned
to each static variable (univocally identified by its name), remembering that
the type double actually requires two of that. The assignment is realized
with a first come, first served behavior; however, to facilitate another op-
eration examined later, all the static variables whose value is read before
any (eventual) modification are assigned first. The solver keeps a local
repository of Stat icReference that describes each one of the mapped
entries; it can be used in any time to retrieve all the information needed
regarding a static variable involved in the process.

Bytecode substitution Now it is possible to manage all the PUTSTATIC and
GETSTATIC instructions; in particular, each PUTSTATIC will be substi-
tuted by a correspondent store, and each GETSTATIC by a correspon-
dent 1oad. This will effectively remove the causes of impurity for the
original method. Moreover, during this step it is useful to save a list of
all (distinct) PUTSTATIC instructions that are removed, since they will be
needed later.

Data structure creation The next operation aims to create a structure that
will save the original returned results of the method, as well as the val-
ues of all the static variables that are modified during the execution. Since
the dimension of such structure is known at compile time, an array vari-
able is the optimal choice in terms of both memory occupation and access
speed; in fact, tests have demonstrated that the access time to an array is
faster at least 10 times with respect, for example, an hash map structure
(in which the computation of the hash required is the dominant factor in
terms of time). The bytecode instructions required to instantiate a new ar-
ray are: the dimension (equivalent to the total of static variables that will
need update, plus the original return value of the method), the NEWARRAY
instruction, and an ASTORE with the first available index of memory (that
will also be saved in the mapping defined in the first step, with an key equal
to ResultsArray). These three instructions will be injected right at the
beginning of the instruction list.
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Final values saving Having the support structure to save the final values of
the static variables modified in the execution, it is necessary to insert the
instructions that will effectively store the last value of each one of them in
the array of results. In order to do that, the following list of bytecode in-
structions are needed: ALOAD for the array (index available in the mapping
map, under ResultsArray), index of the element (the order is the same
as the PUTSTATIC instructions previously saved), the 1oad that retrieves
the value from the local variable mapped to the static one (index available in
the mapping), an eventual cast to manage conversions between types, and
aarray store statement (i.e., IASTORE); for the complete list of such
operators refer to the tables in appendix A. Regarding the original value
returned by the method, as first operation a store instructions must be
inserted before the final return, in order to have a local copy of the vari-
able (instead of immediately returning it); the index for this store is the
first available, and will be saved in the mapping as OriginalRetValue.
Then, it’s necessary to perform the same operations described for static
variables, in order to save that value in the array of results; in particular,
for convention it will be stored in position 0 of such array. This step of the
algorithm must be repeated for each return statement of the method, since
the information have to be available and correctly saved regardless of the
execution flow of the function.

Data structure saving The array of saved values will be the object returned
by the new, pure method. To save it, it is necessary to introduce an addi-
tional ASTORE before the last return statement of the method; as index, it
is possible to use the same as before (ResultsArray in the mapping).

Static variables update After that, it is possible to insert all the instructions
needed to effectively update the values of the static variables modified.
The bytecode instructions needed for each variable, in order to accomplish
that, are: ALOAD of the array of results, index of the element in the ar-
ray, eventual cast between types, array load statement, and the original
PUTSTATIC correspondent to the index (previously saved). The process
follows the conventions previously described. Moreover, it is necessary to
load on the stack the final return value of the method, which will be passed
to the original return. The operations needed are exactly the same as for
static variables, whithout, the PUTSTATIC instruction (remember that the
value of interest is stored in position O of the array).
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Pure method creation It is now necessary to effectively create the new, pure
method, and to adjust the instruction list of the original one (which will be
at the end a sort of wrapper for the pure one). First of all, the signature for
the new method must be defined. The parameters that it will require are the
original ones, plus all the the static variables that are read only (or, in any
case, read before they are be modified); the array of correspondent types
can be obtained combining the original parameters and the static variables
previously mapped. The return type will be generally a generic object, but it
could be more specific when dealing, for example, only with integer values
(in that case, the method will return an array of integers). The name of the
new method will be the original one plus the suffix Pure, while the class
will be clearly the same. The last operations regards the instruction list for
both the original and the new method. First of all, a copy of the current one
has to be made; different sets of instruction handles must be cut out from
each one of them, in order to realize the two, distinct methods. In particular,
for the pure one the last part of the instruction list must be removed; more
in detail, the section to be removed will begin with the ASTORE for such
array (index retrievable from the mapping under ResultsArray). The
wrapper method will behave in a specular manner, so the first part of the
instruction list (with the same limit defined) must be removed. The last task
is the effective creation of the pure method; using the MethodGen class,
and all the resources defined before (including the new instruction list), it
is possible to create the new, pure method instance. The new method will
have the original access flags (private, protected, public) and the additional
property of being static, if not already present. Note that at this point of the
algorithm the actual version of the new method is not complete and can not
even be compiled.

Return statements substitution As already explained, the new method will
return an array, and hence a variable of type object. It is necessary to intro-
duce, at the end of its instruction list, an ARETURN instruction. Moreover,
all the original returns eventually present in the method have to be changed
in ARETURN (if not already so); otherwise, the return type of the method
will be invalid and hence it can not be compiled.

Memory locations fixing Another operation to be performed on the new method
regards the fixing of memory location. Assume for example that the orig-
inal method has two parameters, plus the implicit caller. The new method
will require also an additional static variable (mapped for example on loca-
tion 7) as parameter. Since this will be in fact the fourth parameter, in the
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pure method it will have assigned the memory location 3 (assuming that
the original parameters are not of double type); the correspondent load
for such variable, defined in the mapping, has location 7. To address the
discrepancy, the following operations are performed. First, if the original
method is not static, all the local addresses must be translated backwards by
1 (since the address of the implicit caller, always in position 0, is not valid
anymore); after that, the application calculates the last address used by the
original parameters, and hence the first available for the new ones (corre-
sponding to the static variables). Moreover, the solver calculates the exact
amount of addresses needed by such parameters, and save the information
under the variable static_req. Having the result, all the local variables
having local address higher than the last used by the original parameters,
are translated forward exactly by static_reqg positions. The last task is
to change the addresses of the 1oad and store instruction inserted dur-
ing the substitution step, in order to be consistent with the new locations of
such variables. At the end, the mapping is updated to reflect the changes
operated during this phase. This method of addresses management has the
advantage of a better use of such locations, since all the values between 0
and the last one are effectively used (there is not any non-used location is
such range).

Branch instructions fixing The final operation that has to be performed for
the pure method is the fixing related to branch instructions. Ideally, since
the substitution of instructions has been 1 to 1, this is not required, but it is
good practice (and mandatory for the solvers presented later). In this case
there are no discrepancies between the number of instructions handled at
the start and at the end of the modification process, as far as the branch
instructions are involved. However, it is suggested to set again the target of
such kind of instructions in order to avoid potential conflicts. The operation
can be performed manually, or through the use of the redirectBranch
method provided by BCEL. Clearly, before any changes of the method, it
is necessary to save in a separate data structure the complete list of original
targets for the involved branch instructions.

Pure method invocation Two additional operations have to be executed with
regards to the original method (the non pure one): building the parame-
ters sequence that will compose the stack for the pure method call, and
inserting the call itself; these bytecode injections will be located exactly
at the beginning of the instruction list for the wrapper method. To build
the stack, all the 1 0ad instructions correspondent to the parameters of the
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pure method must be instantiated. Since the invoked method will be pure
by construction, and hence has been specified as static, the load correspon-
dent to the (eventual) caller it is not required, so the first operation is to
load all the original parameters, in the original order, on the stack; then,
the static variables must be loaded (the original GETSTATIC instructions,
in the right order, are required). In the event that the static variables con-
sidered are not public, the proposed solution will generate an I1legal
Access Exception, hence an alternative approach is required. Basi-
cally, it is necessary to implement the getters for the static variables needed,
in the class in which they belong. These methods will be static and public,
and return the value of the variables needed; hence, instead of putting di-
rectly the GETSTATIC instructions, it is necessary to call such functions
directly on the stack, providing the opcode instructions that generate the
invocations needed. The stack is now complete; the last operation is to
create the call for the pure method, hence the INVOKESTATIC correspon-
dent bytecode instruction must be inserted. All the resources needed by the
InstructionFactory class can be retrieved from the instance of the
pure method generated (name, class, array of types representing the param-
eters, return type).

Final operations Both methods are now completed and the instruction list of
each one is well-formed. For the wrapper method, is good practice to create
a new instance of the method, having exactly the same characteristics as the
original one (with the exception of the instruction list), as explained in Sec-
tion 5.3.1. For both methods, the clean up methods illustrated in the same
section must also be executed. As last operation, remove the old method
from the class and add the new ones. The class is then ready to be dumped
directly with a . class extension.

The presented solver could be extended in order to manage also array (mono
or multidimensional) of static variables. The concept used will be very sim-
ilar to the illustrated algorithm; however, the data structure needed to save
the values of such variables should be substituted by a more complex one,
since it is now necessary to save not only the location of the variable, but
also the index of the location within it. For example, it could be used an
array having n+1/ dimensions with respect to the static one, in order to save
the value, the location and all the indexes needed, or a simple array in which
each element is a tuple (properly formed) that contains all the required in-
formation.
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The presence of static objects, on the other hand, it is more difficult to
approach. The proposed algorithm, in fact, will operate on a copy of such
object; however, since it will be passed by address, the pure method will
operate directly on it, thus resulting non-pure. To effectively deal with such
situations, it is necessary to understand which operations are made upon
the object (or that influence the object itself), in order to correctly manage
them.

Field Variables

As explained in Section 5.2.2, the access to public fields of an object is a
factor that determines the non purity of a method; in fact, such variables are
by nature defined externally respect to the considered method, and hence
the method could be non deterministic (towards the parameters it takes)
and/or produces side effects (i.e., updates of such fields). Given the (con-
servative) assumption that a pure method can not take objects as parame-
ters, a subset of the problem of transform a non pure function in a pure one
can be individuated. The following section considers how the impurities
of a method, related to the access to the callers public fields (of primitive
types), can be solved in order to obtain a a subsection of the method which
respects the requirements of purity, and could be hence memoized. For the
resolution of the scenario in which are involved fields of objects passed as
parameters to the selected method, see the next section.

The final result of all the operations described consists in a new method,
having exactly the same signature as the original one, that is by nature non
pure (since it reads/write using static variables). During its execution, it
calls a new method, which consists in the computational part of the original
method; it is however been modified in such a way that it will result pure,
since all the non purities are now managed by the wrapper (before and/or af-
ter the call to the pure method). The structure of the result generated by the
algorithm is almost analogue to the one obtained for static variables, since
the methodology is very similar for the two cases. The original method will
have the following structure:

e the invocation of the pure method, with the correspondent stack of
parameters (the original ones, plus the field variables needed);

e the updates of the field variables that have been modified during the
execution (retrieved from the array variable returned by the pure method);

e the return of the original value produced by the method (also retrieved
from the mentioned array).
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The structure of the pure method will be the following:
e the creation of the array structure, that will be returned by the method;

e all the original computation that composes the original method; the
saving of the return value and the final values of the global variables
modified in the created array;

e the return of the already mentioned array.

The two solvers presented could be combined in order to manage situa-
tions in which there are accesses to the fields of static objects. The impuri-
ties are still managed by the wrapper method (on the stack before the call to
the pure method, and after its execution); the difference, during the substitu-
tion of instructions, will be related to the fact that instead of the ALOAD 0
instruction, the target of the GETFIELD statement will be a GETSTATIC
that refers to the static object.

The following code snippets summarize the structure of the methods
resulting from the application of the presented solver.

originalFunction (original pars){
// Acquisition of required field variables
result_set = pureFunction(orig_pars, field_pars);

// Update of modified field variables
return final_result;

}

pureFunction (orig_params , field_pars){
// Original computation (using local variables)
// Results saving
return ;

}

The implemented algorithm that achieves the result is very similar to
the one related to the management of static variables, with small changes to
address the differences between the two entities. The following description
reports all the steps required, in terms of operations; for additional infor-
mation refer, when it is possible, to the detailed description available in
Section 5.1.

Field variables mapping The first operation is basically the same of the al-
gorithm that manages static variables; this time the mapping will be in-
stead between fields of the calling object and memory locations. Keep in
mind that the access to a public field (bytecode instructions GETF IELD and
PUTF IELD) requires as additional information the memory location of the
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object which the instruction refers (ALOAD statement); in this case, the al-
gorithm looks for the correspondent ALOAD__0 instruction, which identifies
the calling object. PUTFIELD and GETFIELD instructions that refers to
other object are ignored by the algorithm, since (due the assumption that
no object is passed as parameter to the method) they will refer to variables
defined internally, and hence that do not influence the purity of the method.
The solver keeps a local repository of FieldReference that describes
each one of the mapped entries; it can be used in any time to retrieve all the
information needed regarding a field variable involved in the process.

Bytecode substitution it is now possible to apply the substitutions that will
eliminate the non purities caused by the access to field variables. More in
detail, for each GETFIELD that refers to the calling object, a correspondent
load instruction must be inserted; for each PUTFIELD that refers to the
calling object, a correspondent store must be inserted. Keep in mind
that the referred ALOAD_ 0 instruction must also be deleted, otherwise the
instruction list will not result well formed, and hence the class will not be
compiled nor executed correctly. In place of such instructions, the solver
inserts NOP statements, that will be useful later on when dealing with the
update of branch instructions.

Data structure creation The next step is the allocation of the array in which
all the last values of the modified fields and the original return value of the
method will be saved. The instructions to be inserted are exactly the same
as for static variables.

Final values saving After having initialized the support structure for all the
values of interest, it is possible to save them. The process is straight-
forward the same as for static variables; for convention, the original re-
turned value of the method is still saved in position O of such array, while
the other field variables follows the order used in the mapping defined dur-
ing the first step of the algorithm.

Data structure saving This operation insert the ASTORE instruction to save
the array previously defined.

Field variables update The following operation takes care of inserting the
instructions required to update the value of fields that have been modified,
as well as load on the stack the result of the method (which will be returned
by the final return of the wrapper). The process is basically the same as
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for static variables, using PUTF IELD instructions instead of PUTSTATIC
statements; in this case an additional ALOAD_ 0 has to be inserted as ref-
erence for the PUTFIELD instruction. The final result to successfully up-
date the value of a field will be: ALOAD_ 0 for the PUTFIELD instruction,
ALOAD of the array of results, index of the element in the array, eventual
cast between types, array load statement, and the original PUTFIELD
correspondent to the index (previously saved). The conventions are the
same as previously explained.

Pure method creation it is now necessary to effectively create the pure method
(which could be the target of the memoization process). It will have as in-
puts all the original parameters, plus the field variables mapped, and return
type as object (since it will return the array of saved values). It will include
all the computational part of the original method, that has been modified
in such a way that now results pure. Then, the instruction list for both the
pure method and the wrapper are defined, in the same way as for static vari-
ables. The operations required to achieve the goal are exactly the same as
described in Section 5.1.

Return statements substitution As already explained, the new method will
return an array, and hence a variable of type object. It is necessary to intro-
duce, at the end of its instruction list, an ARETURN instruction. Moreover,
all the original returns eventually present in the method have to be changed
in ARETURN (if not already so); otherwise, the return type of the method
will be invalid and hence it can not be compiled.

Memory locations fixing  To finalize the instruction list of the new, pure method,
a fixing of the memory location of some instruction handles must be per-
formed. The problem arises since the JVM automatically defines an index
of memory for the new parameters, that is not consistent with the mapping
previously defined. The problem (and its resolution) is described more in
detail in Section 5.1, since it is exactly the same situation that happens when
dealing with static variables. The instruction list for the pure method is now
complete and well formed.

Branch instructions fixing An additional operation that has to be performed
for the pure method is the fixing related to branch instructions. This situa-
tion differs with the one presented for static variables, since the substitution
of instructions has not been 1 to 1 (a 1oad/store instead of the corre-
spondent GETFIELD/PUTFIELD); however, since an additional NOP was

115



Chapter 5. Green Memoization Suite (GreMe)

inserted to compensate the total number of instruction handles, it is possible
to act exactly as for static variables. The only additional operation consists
in the call of the removeNOP method (provided by BCEL), which deletes
all such opcodes and takes care of managing the branch instructions influ-
enced by the process.

Pure method invocation Regarding the wrapping method, the last operation
to be performed on its instruction list is the invocation of the pure method.
In order to accomplish this, the stack of the parameters required by the new
method must be build, and the instruction responsible for the invocation of
such function must be inserted right after it. The stack is realized by loading
on the stack: the list of original parameters, in the same order; the list of
fields needed by the pure method, in the same order. Similarly as for static
variables, if a field is public, the pair ALOAD-GETFIELD is enough; if not,
it is necessary to implement an additional getter in the class of which the
object belong, and then call the function directly on the stack (providing
the ALOAD that refers to the caller, since such method can not be static).
The stack is now ready, and hence the bytecode invoke instruction must be
inserted.

Final operations Both methods are now complete and the instruction list of
each one is well-formed. For the wrapper method, is good practice to cre-
ate a new instance of the method, having exactly the same characteristics
as the original one (with the exception of the instruction list). For both
methods, the clean up methods illustrated in the same section must also be
executed. As last operation, remove the old method from the class and add
the new ones. The class is then ready to be dumped directly witha .class
extension.

The previous solver could be adapted to deal with the access of fields
belonging to objects passed as parameters. The additional complexity,
in this case, resides in the fact that it is necessary to understand when a
GETFIELD or PUTFIELD is related to an ALOAD instruction that refers
to an object given as input, and not instantiated by the method itself. The
FieldReference structure that univocally identifies a field takes in ac-
count also the location of the object which it belongs (that has to be com-
puted prior any modification). If the saving of the final values of the fields
involved follows the order of declaration, the presented array structure is
enough to store and retrieve the values of the fields to be updated; it is
just important to remember to relate the correct ALOAD instruction for each
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PUTFIELD needed.

An interesting scenario is the one in which either static variables or fields
are accessed only in reading (that is, their value at the end of the method is
exactly the one they had at the beginning). This situation can be solved with
less overhead, and permits to fulfill an important property. The algorithm
that solves the problem is a subset of the ones already presented; however,
there is no need to save and update any value, hence the return type of the
pure method can be exactly the original one (since it will return just the
original return value). This results in the external method being exactly a
wrapper, since no other operations is executed, with the exception of the
call to the pure method. As presented in the following section, it is possi-
ble, for a method that calls such wrapper (that clearly results non pure)
to call directly the pure method within it, translating to an higher level the
source of impurities. With the assumption of single threaded execution,
the methodology can be applied even when it is necessary to update global
variables, at the cost of an increased complexity in terms of resolution.

Invocation of Non-Pure Methods

The last case to consider, with respect to the operating definition of pure
function (see Section 5.2.2), deals with the presence of functions called
within a method. By definition, a method can not be considered pure
if at least one of the methods invoked during its execution is generically
non-pure. The implemented solver for such issue examines the instruc-
tion list of a method and analyzes every instruction that generate a call to
another method (in particular, the INVOKEVIRTUAL, INVOKESPECIAL
and INVOKESTATIC statements). For each one of them, the framework
searches the external database, looking for information about the purity of
such methods; in the eventuality that no information is available for the
considered function, the assumption is that the method is non pure until
further analysis. Three different situations could be verified in the process:

e the method is not pure; no additional operations can be performed,
since the method results non memoizable. The method that calls such
function will be considered non pure, unless further techniques are
applied (i.e., partial memoization);

e the method is pure; no additional operations need to be performed;

e the method is not pure, but it is only a wrapper for a pure method;
the issue can be solved with the algorithm presented in the following
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section. The idea is to substitute the call to the wrapper with the direct
call to the pure method that it has within it; in fact, by definition a
method can be considered a wrapper if it calls a pure method within
it, and does not execute additional operations.

The final result of the algorithm described below will be the original
method, having (when possible) the calls to non pure methods substituted
by calls to pure ones (with the relative stacks). No other modification is
introduced from the the solver.

The main difficult with this kind of resolution is the construction of the
stack for the substituted methods. In order to successfully inject the in-
structions required for the loading of the required resources, a correspon-
dence between the remote memory locations interested and the local ones
(with respect to the analyzed method) is necessary. The following algo-
rithm shows how such resolution is possible; the actual version is referred
to a pure function that takes fields as additional inputs. Similarly, and in
an easier way, it can be applied also for static variables (the decreased dif-
ficulty resides in the fact that the location for such variables is global, and
hence the instructions needed to load them, are exactly the same irrespec-
tive the context considered).

Resources initialization Similarly to the algorithms presented in this chapter,
the first operation is to retrieve all the resources needed to modify the byte-
code of the selected method. This set includes also the list of targets for
each branch instruction present in the instruction list; this variable will be
used when fixing the related instruction handles, following insertions/dele-
tions in such list.

New stack creation The first operation is to build the stack needed by the
pure method that will be called. For each parameter that will be located on
the stack, the correspondent instruction list is created; hence, the final result
will consist in a full set of such instruction lists, in the correct order. In the
event that the original called method has generic objects in its parameter list
(typically, they are required as reference for the GETFIELD instructions),
the solver removes them from the parameter list and recompiles the address
locations for them. Then, it adds on the stack the fields needed; to do
that, it creates the correspondent GETFIELD instruction, or the call to the
getter that provides the variable (if the field is not public, as illustrated in
Section 5.3.2). The references for such instructions must be computed,
since usually the calling method has assigned a different location for the
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objects needed. A similar approach is used for the required static variables;
however, this operation has reduced complexity since it is not necessary to
deal with the memory locations of the referred objects. At the end of the
process, the stack will consists in a sequence of instruction handles lists,
each one providing one parameter for the new invocation instruction.

Stack substitution The next step its the substitution of the original stack,
with the instruction list created as result of the previous phase. The dimen-
sion of the original stack is hence calculated, in order to remove it from
the method’s instruction list; the new sequence of instruction handles is in-
jected in its place. The difference in number of statements between the two
stacks is necessary for the next phase, and hence must be saved.

Branch instructions fixing Similarly to the solvers presented in this chap-
ter, it is necessary to deal with the branch instructions that compose the
method. However, this case is more complex, since the numerical differ-
ence between the original instruction list and the modified one is not known
beforehand. Hence, every time a stack substitution is verified, the target of
the instruction branches must be translated forward (or backward) in rela-
tion to the difference, in terms of number of instruction handles, between
the two versions (the variable saved at the end of the previous step). Every
branch instruction in the list is considered: if the target of such instruc-
tion is preceding the injection point, it is sufficient to set again the same
target; if, on the other hand, the target is subsequent the point of interest,
it must be set again according to the shift value previously saved. This
operation is possible implementing the correspondent code, or using the
redirectBranches method, provided by BCEL.

Invocation of the new method The last operation to be performed is the in-
sertion of the new invocation instruction. The old one is removed, while
the new one is first created, and then inserted exactly in the same place of
the old one (right after the stack previously instantiated). After that, the
solver starts to check again the instruction list and, if possible, iterate the
algorithm for the other calls that satisfy the requirements.

Extending the approach - Inlining

The described approach can be extended to reach even broader applicabil-
ity. The current version allows the substitution of a call to a method, if
the correspondent pure version exists (and hence, the called method can be
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considered as a wrapper). However, such approach could be applied in a
similar fashion even for methods that are not wrappers in a strict sense.
Consider for example the result produced by the solver of Section 5.3.2
for a method in which the value of some static variable has been modified.
The obtained method will be composed of a pure section (implemented in
a separate function) and a non pure code block, relative to the update of the
static variables. Hence, it can not be considered a wrapper according to
the definition of Section 4.1.1. A similar approach to the one proposed in
the current section could be however applied. The solver needs to translate
at the level of the caller not only the invocation of the pure method (provid-
ing the correspondent stack) but also the instructions required to update the
interested variables. The advantage consists in the fact that the execution of
the original method has now to perform one less function call, since it can
refer directly to the internal instructions of such function. This method-
ology, which can assume the name of inlining, can be considered an
additional step of optimization and re-engineering for a generic method.
The main difficulties in such operations reside, similarly as for the solver
of the current section, in the realization of the correspondence between the
memory addresses of the two methods involved.

Considerations about the modification of Java APIs

The current implementation of the framework, as described in Section 5.1,
does not permit the modification of methods belonging to the set of the
Java API; in fact, the question could be the object of legal issues (for ex-
ample, the Java 2 Runtime Environment APIs basically can not
be overwritten, while OpenJDK, being under GPL license, is not affected
by such considerations). However, in theory, such operations are possible,
since they do not differs with respect to the ones described in the present
chapter (methods and classes modification) and the previous one (jar up-
dates). On the other hand, exposing data structures that are not meant for
it, could be the source to other problems.

A couple of solutions are proposed to deal with the problem. The first
one consists in a direct modification of the original class/method, in the
same way as described in the chapter. The obtained version, however, will
be associated to a different class path, that will be used only for the execu-
tion of the application. In terms of code writing, the modifications result
hidden (since the original APIs are used), while at run time the applications
will rely on the modified versions. The same strategy could be used, for
example, when dealing with the resolution of impurities related to private
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fields; the getters introduced by the solvers will reside in a new version
of the class, used only at run time, while the original one will remain un-
changed for the coding phase. The second approach, on the other hand, cre-
ates new versions for the modified classes, while preserving the old ones.
Then, for a generic Java class, every call related to the old methods of such
class is redirected to the one created in the modified version of it. In this
way, no original APIs is effectively modified; instead, the calls to them are
redirect to the custom-created methods in external classes. Given these pro-
posals, is up to the user to decide if and how methods belonging to the Java
APIs have to be modified.

5.4 Decision Maker Meta-Module

Decision Maker is a meta-module (i.e. a module that is abstract). The
integration of Lookup and Trade off modules through the use of Bytecode
Modification. The Decision Maker is the set of bytecode instruc-
tions that allow the operation and integration of all modules of the pro-
posed approach. Bytecode Modification module adds Decision
Maker meta-module, directly going and writing the necessary bytecode in-
structions for the interaction between the other modules without usage of an
additional real module. Thus, effectively Bytecode Modification
module also deals with the insertion in two blocks of the bytecode instruc-
tion: a block for Lookup on the related function table and a block for Trade
off module call. It is interesting to note that a pure function returnType
className.methodName (params) implemented as in Figure 5.6
(in pseudocode), will be modified after the insertion of Decision Maker

public class className {

ReturnType methodMName (Parameters p){
EeturnIype result = noll:

ORICINAL CODE
WAaLoLoRaL WWELL i

i
erre

/ /ORIGINAL CODE }

return result;

Figure 5.6: className.methodName before inserting the Bytecode
Modification module.

meta-module, as shown in the pseudocode in Figure 5.7.
It is thus possible to see the code blocks highlighted in different colors:

121



Chapter 5. Green Memoization Suite (GreMe)

poblic class clazsName {

ReturnType methodName (Parameters p){
ReturnType result = nmll;

//BLOCCC di LOCEUE

5tring methodId = "className;methodName;methodSignature";

Object[] params = {p};

double alpha = 0.5;

TOParameters toparam = new IOParameters (params);

Return ret = MemoryManagement.gebtInstance() .lookupResult (methodId, toparam);

if (ret !'= nmll} {
MemoryManagement . getInstance ()} . setupFrequency (methodId, toparam);
return (ReturnType) ret.getpValue():

}

long compTimeStart = System.nsncTime|():

ffeffettua il calcolo di result

//ORIGINAL CODE

//BLOCCO di TRADE OFF
long finalTime = System.nancTime();
long priorityTemp = (finalTime - compTimeStart);

ret = new Return(result);

ICFunction tof = new TOFunction(signature, toparam, ret, alpha);
tof.setupTime (priorityTenp) ;

TradeOff. tradelff(tof) ;
MemoryManagement . getInstance(} . setupFrequency (signature, toparam);

return result;

Figure 5.7: className.methodName after the modification Bytecode
Modification module.
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e Green, Lookup block which makes search in the function table to
check if the result has already been tabulated to given input param-
eters of the function;

e Blue, the original function’s code block;

e Yellow, Trade off block that deals with table management by using
the API provided by Trade off module.

The execution flow of the function after Decision Maker meta-module
insertion has been shown in Figure 5.8. The blocks of the flow diagram re-
flect the previous highlighted colors to give an idea on how the operations
are distributed inside of the function.

Trade off

L; return -

Figure 5.8: The execution flow of a function after inserting Decision Maker meta-
module.
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Lookup block Lookup block deals with the search on function table of al-
ready computed result for the current inputs of the executing function. Par-
ticularly (referring to the Listing 4 the green block), the block performs the
following primary operations:

1.

5.

It generates a methodId string that will be used later to make a
Lookup on the table;

It creates an Ob ject array containing the values of the function pa-
rameters for the current implementation, and it uses this to instantiate
a TOParameters (see Section 5.5.1) object type, which is also re-
quired for the Lookup;

. It performs a Lookup on the table for running to see if there is a result

for the method (identified by methodId string) performed by input
parameters (saved in toparam);

. If Lookup returns a HIT:

(a) It updates the frequency of the function usage (increases by 1
with an internal counter) with methodId by calling toparam
parameters;

(b) The method returns the correct value taken from the table with the
function and the parameters which was called from the previous
Lookup;

It initializes compTimeStart variable for the calculation of the ex-
ecution time of the function’s original code.

Trade-off block The code has been internally changed juts for inserting be-
fore each return a call to Trade off module. The inserted code performs the
following operations:

1.
2.

It calculates the execution time of the original function;

It creates a Return object with the result given by the original func-
tion calculation;

. It creates TOFunction (see Section 5.5.1) object passing to signa-

ture, input parameters and result of the execution of the original func-
tion code;

. It calls the tradeoff passing to the just created TOFunction object;

. It increments the counter of the frequency to the current function call

with the parameters under consideration.
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5.5 Memory Management Module

5.5.1 Data Structures

During the process, the data is stored in RAM memory to access a more
rapid and less expensive from the energy point of view (in fact the data sav-
ing on database or hard fisk will be inefficient and even counterproductive
from time point of view and the energy consumption point of view).

For memory management, it has been used MemoryManagement class
(see Figure 5.9). It is structured mainly with a HashMap <String,
TOFunction> mMemory, which manages methodId and the related
TOFunction pairs. In addition, it has been memorized more information

MemoryManagement

-mInstance: MemoryManagement
-mMemary: HashMap <5String, TOFunction =
-mTotalMemary: long

-mFreeMemory: long

+getinstance(): MemoryManagement
HookupResult{String sign, TOParameters param): Return
+HnsertTOFunction(TOFunction tof): int
+updateTOFunction({TOFunction pFun); int
+removeTOFunctionEntries(String funlD, int quantity): int
+removeTOFunction(String funID): int
+getTOFunction(String funID): TOFunction
+verifySpace(TOFunction f): int

+setTotalMemory(long pTotalMemary): vaid
+resetMemory(): vaid

+getAveragelookupHitTime(String funID): double
+getAveragelookupMissTime(String funID): double
+getAverageTradeoffTime(String funID): double
+getAverageTotalExecutionTime(String funID): double
+getnMISS(String funID): lang

Figure 5.9: The MemoryManagement class.

about the execution times and the number of hit and miss on the tables in
memory. The MemoryManagement class allow the use of the allocated
memory to multiple pure-functions concurrently. Each pure function have
its tuple inside the mMemory data structure. When a memoized function
is called, the Decision Maker meta-module makes a lookup inside the
mMemory HashMap in order to find if exist the related TOFunction.

In TOFunction (see Figure 5.10), there exist another data structure
that maintain the following information:
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e mValues <TOParameters, Return> - mvValues, that manages TOPa—
rameters pairs (i.e., the values of passing parameters for each func-
tion call in object) and its return value is in Return type;

TOFunction

-mValues: HashMap <TOParameters, Return>
-mValues: RTree<TOParameters, Return=
-mFunctionld: String

-mPriority: float

-mExecTime: long

-mCallsMum: long

-mHitsMum: long

-mEntrySize: int

-nHITparams: long

-nMISSparams: long
-mAverageLookupHitTime: double
-mAveragelookupMissTime: double
-mAverageTradeoffTime: double
-mAverageTotalExecutionTime: double
-mAverage: double[n]

-mStandardDev: double[n]

+TOFunction{String pFunld, TOParameters pParam, Return pReturn)
+TOFunction{String pFunld, TOParameters pParam, Return pReturn, double[] pRangeAvg, double[] pRangeStandDev)
+setupFrequency(TOParameters top): void
HnsertEntry(TOParameters pInput, Return pReturn): void
+removeEntries(int guantity): void

+rangesverification(): boolean

+getAveragelookupHitTime(): double
+getAverageLookupMissTime(): double

+getAverageTradeoffTime(): double
+getAverageTotalExecutionTime(): double

+getnHITparams(}: long

“+getnMISSparams(): long

+toString(): String

+dear(): void

Figure 5.10: The TOFunction class.

The mValue data structure (inside the TOFunct ion class) can be an Hash—
Map or a RTree in order to respectively implement the precise lookup or
the memoized SLA lookup.

These two data structures map the TOParameters class (see Figure
5.11) to the return value (Return class). Both of the data structures allow
the lookup with respect to the TOParameters class. The TOParame—
ters class contains a set of ordered tuples that represents the input param-
eter of the function with their own values. The lookup on the mValues
structure try to find in exist an appropriate tuple that match the TOPara-—
meters used in the present call. If it is implemented a precise lookup,
the searched TOParameters must exactly match the TOParameters
inside the data structure. Otherwise, for the memoized SLA lookup, the
TOParameters provide a more relaxed lookup function in order to con-
sider the SLA defined for our application.
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TOParameters

-mHashCode: int
-nParams: int
-input: Object[n]

+TOParameters{Object[] input)
+getvalues(): Object[]
+hashCade(): int

+toString(J: String

Figure 5.11: The TOParameters class.

5.5.2 Memory Allocation Policy

If more than one function needs to be memoized, available memory should
be allocated to different functions so that the overall energy saving is max-
imized. We have to take into account the variability of typical parameter
ranges - in financial applications, the statistic distribution of parameter val-
ues may evolve (slowly, compared with the execution time of the functions
they are involved with), leading to suboptimal look-up tables or a need
to periodic re-compilation. Our goal is to maintain efficient memoization
tables across a long program life cycle, thus tables with memoized data
should dynamically evolve. Memory is allocated to memoized methods in
order to maximize the overall effectiveness of the approach. This is mea-
sured as the gain factor obtained for each function G; = 1/ f; weighed by
the frequencies of occurrence of that specific function:

Gior = Y Gifi (5.1)

where f; is the frequencies of occurrence of function <.

We developed a memory calibration algorithm that defines the portion
of memory to be assigned to each method that maximizes Gy,;. This al-
gorithm favors the methods that have a higher hit rate («), based on the
statistical distribution of their input parameters. Algorithm 2 allocates the
available memory incrementally to each function by blocks of S, ;) bytes.
S(d,) values are specific for each function i, according to the size of the
input parameters and results to be stored for each function. The algorithm
incrementally explores the possible allocation options of a new block of
memory and identifies the function that would lead to the highest effec-
tiveness gain if got assigned of that memory block. This is estimated by
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Input: A set F of pure functions f;(z;1,...,%in)
Output: Memory percentages P; for every function f;
Data: S;; = size(x;1) + - - + size(x;n) + size(fi(ziq, ..., Tin))
Data: The max memory S,
Data: The reserved memory .Sy, ; for f; function (initially 0)
Data: S; = %,,5,,,;
begin
while S; < Sy, do
get f; € F with max & Gy

m,i+Sa,i) °
Sm,i = Sm,i + Sd.i;

update .S;
end
foreach f; € F do
‘ update P; = Sé:’Ml
end

end
Algorithm 3: Memory calibration algorithm.

Gi = ((Stm,) + S(a,)))> where S, ;) is the memory already allocated to
function .

When the memoized application starts, the functions candidate for mem-
oization are known as they have been previously identified by the pure func-
tion analysis module. Their frequencies of occurrence, and the mean and
standard deviation values of their input parameters are estimated based on
previous domain knowledge. A first run of the algorithm defines the initial
allocation of the available memory space among the different functions. As
long as the application runs, memory is allocated to memoized functions
as the invocations happen, until the established portion of memory for each
function is consumed. The trade-off module is invoked with a given fre-
quency () in order not to create a time and power overhead. When it is
invoked, first it runs the memory calibration algorithm with the new values
of frequency of occurrence, mean and standard deviation. This leads to a
new allocation of the available memory space. Then it eliminates the low-
frequency entries in order to re-equilibrate the space according to the new
allocation.

5.6 Conclusion

In this chapter, we present the architecture of Green Memoization Suite and
analyze its main modules. The Static pure function retrieval
module performs a static analysis of the bytecode of the application un-
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der exam and, given a set of rules to identify the purity, it determines if a
method could be considered pure or not. Given the pure function analy-
sis results, the Bytecode Modification module execute the neces-
sary instructions that permits to inject the code needed by the Decision
maker meta-module. Finally, we illustrate the behavior of the Memory
Management module that allow the use of the allocated memory to mul-
tiple pure-functions concurrently in order to correctly manage the SLA def-
initions.
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CHAPTER 6

EXPERIMENTAL EVALUATION

This chapter presents and discusses the experimental results obtained from
the application of the approaches described in Chapter 5. Section 6.1 presents
the validation of the pure function re-engineering following the approaches
introduced in Section 5.2 and 5.3. Section 6.2 proposes the evaluation of
the two data structure (HashMap and RTree) used in our suite. Finally, in
Section 6.3 are reported the Trade-off module validation and the overall
memoization architecture evaluation.

6.1 Pure Function Re-Engineering Validation

Section 6.1.1 is dedicated to the validation of the bytecode analysis module
implemented. Several benchmarks have been analyzed, and the results ob-
tained have been compared to the manual examination of the correspondent
source code. The overall results are encouraging, with an average precision
of the result over 99% for all the applications considered. Section 6.1.2
focuses on the approaches proposed in Section 5.3, regarding how methods
can be effectively modified to obtain their equivalent pure versions. The
results obtained are still positive, with small impact related the overhead
introduced following the re-engineering of the code.
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The experiments have been conducted on an IBM eServer x3500 with
two Intel Xeon Quad-core x5450 @ 3.00 GHz (12 MB L2 cache), FSB
1,333 MHz, 17GB PC2-5300 DDR2 SDRAM. All the tests have been con-
ducted on Windows 2007, enterprise edition.

6.1.1 Bytecode analysis

As illustrated in Section 5.1, the analysis of the bytecode is the main chal-
lenge in terms of identification of pure functions. The proposed approach
relies on the results of both the dependencies and purity analysis, performed
as presented in Section 5.2 and 5.3. In order to test the precision of the re-
sults, three different sets of functions have been examined. Since the source
code of all the classes is available, and the number of methods within each
application is not prohibitive, a manual scan has also been performed, in
order to determine the validity and precision of the results. The modules
tested include in particular the generation of the tree related to the functions
calls, the analysis of the data dependencies within a method, the identifica-
tion of pure functions (or, if present, the specific sources of impurities).

The following list of conventions details the values presented. It has also
been adopted for all the other benchmarks presented in the section:

o the total methods value includes all the methods declared in the con-
sidered package, and excludes all the functions belonging to the set of
Java APIs;

e the value purifiable is evaluated as the percentage of solvable meth-
ods, on the total of non pure methods;

e the value modifiable is evaluated as the percentage of all the solvable
and modifiable methods , on the total of non pure methods.

e the distinction between pure and memoizable methods has been in-
troduced following the considerations made in Section 4.1.1. In fact,
when a method is not pure only due its return type, it can still be mem-
oizable if the visibility of such reference remains limited to the caller.
If the value is not explicated, it is assumed equal to the number of pure
methods;

e the solvable attribute refers to non pure methods that can be trans-
formed in completely pure ones. For a detailed definition of such
property, and the result following the relative modifications (see Sec-
tion 4.1.1);
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o the modifiable attribute refers to non pure methods that can be modi-
fied, in order to extract at least a pure code block from them. Typical
scenarios involve functions that update the value of variables defined
outside them (as illustrated in Section 5.3.2, 5.3.2);

o the modifiable_obj attribute refers to purifiable methods having the
additional source of impurity related to the modification of arrays
passed as parameters. The solver for this scenario has not been im-
plemented yet. However, the concepts are very similar to the modifi-
cation of global variables, as better explained in Section 5.3.2;

Non Linear Optimization Java Package

The Non Linear Optimization Java Package [2] is a set of
mathematical functions, the major part resulting from a translation of the
original FORTRAN versions; in particular, it implements routines that deal
with unconstrained optimization problems, as well as resolutions of non
linear equations. Table 6.1 and Figure 6.1 show the results, in terms of
purity, of all the methods that compose the package.

Table 6.1: Summarized analysis results for the Opt imizat ion library

Optimization
Total methods 70
Pure 5.71%
Purifiable 6.06%
Modifiable 33.33%

As observable, the library results poor from the point of view of purity
for its methods; only four methods can be identified as pure, and other 4
functions can be effectively reconduced to a pure form, bringing the total
percentage of pure methods up to 11.38%. However, a consistent incre-
ment can be experienced if considering the resolution of methods that are
non pure due the modification of arrays, passed as parameters. Considering
these functions, the percentage of methods that can be modified from the
proposed framework increases to an encouraging 33.33%. The manual ex-
amination of the source code has not produced altered results, determining
an accuracy of 100% in terms of identification of pure functions.

Table 6.2 shows the distribution of the sources of impurities, in terms of fre-
quency with which they appear (at least once) in each method of the library;
the detailed explanation for each flag is reported in Section 5.2.2. As a di-
rect consequent of the previous observation, more than 60% of the methods
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B Non pure

M Pure

H Purifiable

® Modifiable_obj
B Modifiable

0%

Figure 6.1: Purity analysis results for the Opt imization library

are not pure due the modification of array parameters. The other higher
contributes are, respectively, the invocation of non pure methods and the
presence of objects in the signature. The first, however, could include calls
to methods that can be purified, while the second kind of impurity can be
solved, for example, following the resolution for static or non static global
variables. The results show again the good margin of operation possible for
the library, in terms of bytecode re-engineering.

Table 6.2: Distribution of the sources of impurity for the Opt imization library

Optimization
Signature 41.43%
Return type 1.43%
Static read 25.71%
Static write 0.00%
Fields read 10.00%
Fields caller 2.86%
Fields write 0.00%
Objects 62.86%
Other 0.00%
Invocations 64.29%
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JOlden

The JO1lden suite is a set of methods derived directly from the original
Olden suite. Written in C, this group of applications has been used by
Martin Carlisle and Anne Rogers to evaluate a system that parallelizes pro-
grams with dynamic data structures. The original version relies upon par-
allel constructs, while the Java one (translated by the member of the Ar-
chitecture and Language Implementation [14]) is executed in a sequential
approach. The list of the applications included in the suite, along with a
brief description for each one of them, is reported in Table 6.3.

Table 6.3: List of benchmarks of the JO1den suite.

Benchmark Description

BH BarnesHut Nbody algorithm

BiSort Bitonic sorting algorithm

Em3d Electromagnetic waves simulation

Health Healthcare system simulation

MST Bentley’s algorithm for the minimum Spanning Tree of a graph
Perimeter Evalaute the perimeter of an image represented as a tree

Power Maximize the economic efficiency of a community

TSP Randomized algorithm for the Travelling Salesman Problem
TreeAdd Recursive algorithm for the sum of the nodes’ value of a tree
Voronoi Voronoi’s diagram for the realization of a random set of points

Figures 6.2, 6.3 and Tables 6.4, 6.5 summarize the results obtained from
the purity analysis of all the distinct benchmarks. The overall percentage
of pure methods is quite low, ranging from a 25% for the Bisort applica-
tion (which is, however, composed only from 12 methods) to 0% for other
benchmarks; when considering the entire suite, the pure methods can ac-
count for only 5.8% of the total. Instead, the results related to the number of
purifiable methods are a bit more encouraging, averaging a 13.01% overall.
Clearly, this figure refers only to the absolute number of methods satisfy-
ing such property, without any additional analysis to determine the effective
benefits that could be obtained by such modifications (performed, instead,
in Section 6.1.2). Considering also the methods that can be solved, at least
partially, in terms of purity, the results look even better, settling to a total
of 31.06%. The value related to non pure methods, due the modification
of array parameters, is not as relevant as for the considered optimization
library, accounting for a total of 5 methods, all defined within the Power
benchmark.

The manual examination of all the benchmarks included in the suite con-
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Table 6.4: Summarized analysis results for the JO1den benchmarks (part 1)

BH BiSort Em3d Health MST

Total methods 67 12 17 20 29
Pure 298% 25.00% 0.00% 5.00% 10.34%
Purifiable 16.42% 0.00% 11.76% 526% 11.54%

Modifiable 42.42% 22.22% 23.53% 26.32% 30.77%

Table 6.5: Summarized analysis results for the JO1den benchmarks (part 2)

Perimeter  Power TSP TreeAdd Voronoi
Total methods 38 23 6 13 67
Pure 13.15% 0.00% 0.00% 0.00% 4.48%
Purifiable 15.15% 13.04% 16.67% 23.08% 17.19%
Modifiable 18.18% 56.52% 33.33 % 30.77%  26.56%

firms the obtained results, with one exception related to the Em3d applica-
tion. In the class Node the method void updateFromNodes modifies
an object declared internally; however, the address of a global variable is
assigned directly to it, thus referring on an object defined outside the scope
of a method. Hence, the update of such value determines a side effect for
the application in execution, and can not be completely solved in terms of
purity. However, it is still possible to apply bytecode modifications to en-
sure that, at least a part, can be considered pure (the process is the same as
illustrated in Section 5.3.2). The results of such application should hence
account one purifiable method instead of two, and three modifiable meth-
ods instead of two. Even with this discrepancy, the implemented analysers
can still manage to correctly identify 99.66% of the total functions that
compose the suite.

The distributions of sources of impurities (shown in Tables 6.6, 6.7
present various results, strictly related to the kind of application which they
refer to. For example, it is evident how the BH benchmark is heavily im-
pacted by operations on global variables (in both read and write). More-
over, almost 40% of the total functions return an object, not admissible in
terms of purity. The largest part is in fact constituted by methods that op-
erate on custom-defined vectors, and return such kind of variable. Similar
situations are experienced by the Perimeter, TreeAdd and Voronoi
benchmarks, each one of them having more than 50% of the methods pre-
senting such characteristic.

Operations on global static and non static variables are very common for
the set of selected benchmarks. In fact, an average higher than 50% of the
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Figure 6.2: Purity analysis results for the J01den benchmarks (part 1)

total methods perform operations of reading fields, usually belonging to
the calling object, but also on objects passed as parameters to the method.
The reading access to static variables is another common factor for some
of the applications. For example, for BiSort, Em3d, Perimeter and
TreeAdd, such value accounts more than 30%. Less common are the
update of values related to fields, static variables and arrays passed as pa-
rameters. Only BH, BiSort and Perimeter present results of at least
10% for impurities related to fields, with the latter as the only one that
overcomes the 10% threshold for operations of writing on static variables.
The impurities related to the modifications of arrays passed as parameter
are not significative for this set of benchmarks, with only the Power and
Perimeter applications holding statistical importance (more than 10%
of the total methods).

Java Grande

The Java Grande benchmark suite [1] is a set of applications designed
to provide ways of measuring and comparing alternative Java execution
environments, in ways which are important to Grande applications. A
Grande application is one which uses large amounts of processing, /O,
network bandwidth, or memory. This set include not only applications in
science and engineering, but also corporate databases and financial simu-
lations. The sequential benchmarks of Java Grande (Section 3), related to
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Figure 6.3: Purity analysis results for the J01den benchmarks (part 2)

large scale applications, have been considered. Table 6.8 describes briefly
the applications used to verity the bytecode analyzers implemented.

Figure 6.4 and Table 6.9 summarize the results obtained from the purity
analysis of the presented benchmarks. As observable, the methods that can
be considered pure are only a minor part (1.69%) for the MonteCarlo
benchmark, while the others have not even a single pure function imple-
mented. The results are quite better if considering the methods that can be
manipulated in order to obtain an equivalent, pure version. MonteCarlo
presents again the higher contribution (25.99%), while the average settles

Table 6.6: Distribution of the sources of impurity for the JO1den suite (part 1)

BH BiSort Em3d Health MST
Signature 52.24% 33.33% 23.53% 45.00% 41.38%
Return type  38.81% 833% 41.18% 40.00% 34.48%
Static read 10.45% 33.33% 3529% 15.00% 17.24%
Static write 5.97% 8.33% 11.76% 5.00% 10.34%
Fieldsread  76.12% 41.67% 58.82% 70.00% 51.72%
Fields caller 40.30% 33.33% 23.53% 30.00% 27.59%
Fields write  10.45% 25.00% 0.00% 5.00%  0.00%
Objects 4.48% 0.00% 0.00% 0.00%  0.00%
Other 7.46% 0.00% 5.88% 0.00%  0.00%
Invocations  53.73% 50.00% 58.82% 55.00% 37.93%
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Table 6.7: Distribution of the sources of impurity for the JO1den suite (part 2)

Perimeter Power TSP TreeAdd Voronoi

Signature 42.11% 21.74% 50.00% 30.77%  37.31%
Return type 55.26% 17.39% 50.00% 38.46%  52.24%
Static read 3947% 13.04% 50.00% 30.77% 8.96%
Static write 1842%  4.35% 16.67% 7.69% 4.48%
Fields read 36.84% 69.57% 16.67% 46.15%  43.28%

Fields caller 1579% 43.48% 16.67% 23.08% 7.46%
Fields write 13.16%  0.00%  0.00% 0.00% 1.49%
Objects 13.16% 21.74%  0.00% 0.00% 1.49%
Other 13.16%  0.00%  0.00% 0.00% 0.00%
Invocations 50.00% 43.48% 50.00% 76.92%  52.24%

Table 6.8: List of benchmarks of the Java Grande suite, Section 3, used.

Benchmark Description

Euler Computational Fluid Dynamics
Moldyn Molecular Dynamics simulation
MonteCarlo  Monte Carlo simulation

Ray Tracer ~ 3D Ray Tracer

on a value of 12.58% of the total. However, as presented in the following
section, the number of purifiable methods for the MonteCarlo bench-
mark does not effectively reflect the impact that it has on the global ap-
plication, mainly due the nature of the method themselves. Considering
instead the results relative to the modifiable methods, the values are more
encouraging; each application reaches at least the 25% of the methods that
compose them, while MonteCarlo presents a spike again, up to 62.64%.
At a first glance, hence, bytecode modification looks not only possible, but
also that could provide some impact on the overall applications.

Table 6.9: Summarized analysis results for the Java Grande suite, Section 3

Euler Moldyn MonteCarlo Ray Tracer

Total methods 35 27 63 177
Pure 0.00% 0.00% 1.69% 0.00%
Purifiable 14.29% 3.70% 25.99% 6.35%
Modifiable 28.57%  33.33% 62.64% 25.40%

The manual examination of the source code of the applications confirms
the results obtained for all the benchmarks, with the exception of Euler.
Due to the complex expressions present in two methods within the Tunnel
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Figure 6.4: Purity analysis results to the Java Grande suite, Section 3

class, the analyser can not identify the ob ject ref related to the operation
on the matrix field, which is however the calling object. Hence, since this
is the only code portion that present such impurity, it fails to individuate the
update of a global variable as a source of impurity for both methods. The
correct results would have two more methods in the modifiable group, and
only three methods as purifiable (resulting in a decrease from 14.29% to
8.57% for such percentage). Even with this discrepancy, the implemented
analysers can correctly identify 99.34% of the total functions that compose
the suite.

The distribution of sources of impurities (shown in Table 6.10) under-
lines the reading from local variables (especially non static ones) as one of
the major cause of impurity. Each method presents this characteristic for
at least 50% of its methods, up to 74.60% for the Ray Tracer applica-
tion. Such benchmark, however, presents also the highest value in terms
of function having an object as return type; 38.10% of its methods have
such property, that, as already explained, it is usually a consistent obstacle
in terms of purity. Other significant results include the number of func-
tions that read from static variables (e.g. Moldyn has almost 60% of its
methods presenting such behaviour), while the update of such values is far
less common (each benchmark has below 10% of the total methods with
such characteristic, with the exception of the Moldyn application). The
impurities related to the modifications of arrays passed as parameter are
not numerically significative for this set of benchmarks.
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Table 6.10: Distribution of the sources of impurity for the Java Grande suite, Section
3

Euler Moldyn MonteCarlo Ray Tracer

Signature 42.86%  18.52% 20.34% 55.56%
Return type  14.29% 0.00% 11.86% 38.10%
Static read 3143%  59.26% 14.12% 22.22%
Static write 0.00% 25.93% 1.13% 3.17%
Fieldsread 71.43%  55.56% 53.11% 74.60%
Fields caller 28.57%  51.85% 44.63% 34.92%
Fields write 8.57% 0.00% 0.00% 3.17%
Objects 5.71% 0.00% 0.00% 3.17%
Other 0.00% 0.00% 0.00% 3.17%
Invocations  57.14%  66.67% 30.51% 65.08%

6.1.2 Bytecode modification

The Bytecode modification module has been extensively tested in
order to guarantee the correctness of the produced results. Necessary condi-
tion for the application of the bytecode re-engineering approach is the fact
that the new versions have to behave exactly as the original one, in terms
of produced effects. The property has been tested on a number of func-
tions, both ad-hoc generated and belonging to the considered benchmarks,
showing no discrepancy between the two versions, and hence confirming
the goodness of the implementation. Equally important is the evaluation of
the overhead that such modifications could introduce. In fact, the typical
operations performed by the solver presented in Section 5.3 are responsi-
ble for bytecode transformations that could results in less-efficient versions
(in terms of time of execution). For example, the introduction of an ad-
ditional function call generally slows down the execution, as well as the
saving in temporary variables for values needed by the caller. Since one of
the main aspects of the proposed work is to enable non pure functions to
be memoized, through the use of such transformations, a small overhead
is generally considered acceptable, while higher values could not be effec-
tively balanced by the application of the memoization technique. In any
case, the effects on the global application should be evaluated with a run
time profiling, to determine wherever the re-engineering of the considered
methods produces effectively a benefit (in terms of both execution time and
energy saving).
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Optimization

Since the package is not a benchmark application, but a set of mathematical
functions, it is not possible to consider the global impact of the proposed
modifications; however, it can be useful to evaluate the behaviour of the
single functions, with respect to the original versions.

The set of functions selected for the first test are the following:

e f to minimize ofthe FminTest class;
e fmin of the Fmin class.

Summarily, the first one is not pure due the access to fields of the caller
(only in reading), while the latter is not implicitly pure since calls various
time such function within its execution; moreover, its signature contains an
object, used as caller for f_to_minimize.
The designed solver is the FieldsReadOnlySolver, that loads on the
stack the required fields, and isolates the pure code block within another,
pure method. The overhead introduced by such operation is practically
negligible, since the execution time increases only by 0.07% (attributable
mainly to the new invocation inserted). The behaviour of the calling fmin
function does not really reflect such result, since the execution time experi-
ences an overall decrease of 0.33%; however, given the dimension of such
variation, it can be classified under environmental uncertainty.
The second step of resolution is the direct call, for fmin, of the pure func-
tion equivalent to f_to_minimize. This operation, which is performed
by the CalledMethodSolver, introduces the source of impurity rela-
tive to the access to global variables, but eliminates the calls to the original,
non pure, £_to_minimize. The execution time, after such modification,
is almost the same as the original one; this is expectable, since the number
of invocations has remained the same.
To solve the last impurities, it is necessary to execute the FieldsRead-
OnlySolver again; this will wrap the pure part of the fmin function in
a separate method, while the external one will manage the load of required
fields. The insertion of an additional call impacts as a negligible 0.23%
on the total time of execution. Globally, the sequence of transformations
does not introduce a consistent overhead (with respect to the original ver-
sions) and hence can be accepted, regardless the effective application of the
memoization. The described results are summarized in Table 6.11.

The second set of functions selected for testing are the following:

e f to_minimize ofthe UncminTest_f77 class;
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Table 6.11: Summarized overhead results for the Optimization library (part 1); the
T_exec values reported refer to the execution of the functions 107 times.

Method T_exec (ms) Variation Notes

f to_min 5516.2 Original

f_to_minl 5520.2 0.07%  After modif. 1

fmin 6309.6 Original

fmin 6288.7 -0.33%  Original (calling £_to_minl)
fmin2 6306.5 0.05%  After modif. 2

fmin3 6323.9 0.23%  After modif. 3

e fstocd f77 ofthe Uncmin_f£77 class.

Conceptually, the methods behave similarly to the previous pair of func-
tions; the f_to_minimize function, in particular, is very similar to the
homonymous one. The second method presents impurities related to the
signature, the modification of arrays passed as parameter, and clearly the
internal calls to the non pure f_to_minimize function. The steps of
the resolution for this scenario are very straightforward to those described
in the current section: a first modification to extract the pure part from
f_to_minimize, the implementation of the direct calls to it from fst o—
cd_£77, and the extraction of the fields required for such method. The
function f£stocd_£77 will not still result pure, due the updates operated
on the cited arrays, but such additional resolution could be eventually im-
plemented, depending on the calling application in which it is used. The
results associated to such operations are reported in Table 6.12, following
the conventions presented before. Similarly to the previous case, the over-
head values are quite encouraging, with a maximum of 2.27% for the final
version of the £stocd_£77 method. However, when deciding to not solve
the impurities related to arrays, it is more convenient to stop the resolution
process at step 2. This avoid the insertion of an additional call, that will not
make anyway the method completely pure. In this case the overhead is still
more restrained (below 0.50%).

JOlden

One of the advantage of operating with the benchmarks of the JO1den
suite resides in the fact that such applications are developed with a small
number of methods; hence, the modification of even a little number of func-
tions should provide a notable impact on the entire benchmark. From a set
of such applications, a subset of purifiable methods has been considered
and solved (based on observations presented more in detail in the following
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Table 6.12: Summarized overhead results for the Optimization library (part 2); the
T_exec values reported refer to the execution of the functions 107 times.

Method T_exec (ms) Variation Notes
f to_min 4525.4 Original
f to_minl 4448.5 -1.70%  After modif. 1
fstocd _£77 13259.5 Original
fstocd_£77 13261.5 0.02%  Original (calling £_to_minl)
fstocd_£f772 13316.7 0.43%  After modif. 2
fstocd_£773 13561.0 2.27%  After modif. 3
section).

BH The BH benchmark is one of the biggest of the suite, in terms of num-
ber of methods; nonetheless, only two functions out of 67 are identified
as pure. Not every method, of the twelve flagged as purifiable, is suitable
for the transformations proposed. However, a subset of good candidates
has been individuated and re-engineered, in accordance with the proposed
approach. The following list presents each method considered, with con-
siderations about the relative sources of impurities, along with the transfor-
mation that have been performed upon it.

e MathVector.value: the method is basically a getter for an element of
global array. Usually, getter for fields of primitive type should not be
considered for modification; however, the present function is called
within other methods, and constitutes an element of impurity. Hence,
an alternative is to implement the getter getData (), which returns
the entire array, and then retrieve from it directly the desired element.
While this solution does not impact the value method, it will be
useful when dealing with the other functions that call it;

e MathVector.dotProduct: this is a good example of application of the
previous solution. This method executes a loop in which it retrieves
the elements of the interested (global) array, through the call of the
non pure function value. Hence, such array can be passed to it as
parameter, through the use of the previously defined getData ().
The resolution is assimilable to the one performed by the Fields—
ReadOnlySolver, dealing instead with non primitive fields;

e MathVector.absolute: the method is very similar to the previously
descripted dotProduct, refer to it for further details on the modifi-
cations applied;
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e MathVector.distance: the method is very similar to both dot Product
and absolute; however, it also reads from the fields of an object
passed as parameter. The pure method, hence, will receive as input
both the required fields, using the getData defined function;

e Node.oldSublIndex: it calls the original value function, which is
non pure. It can, however, be modified in order to call directly the pure
equivalent of such method, providing the field array as input. More-
over, it reads from the field of an object parameter. This is addressed
as described for the di st ance method;

e all other methods calling dotProduct, absolute, distance:
regardless of the other sources of impurities for such methods, the
calls to the three cited methods can be substituted with the correspon-
dent one to the equivalent, pure methods. This operation should not
introduce consistent overhead, since the number of calls to functions
remains unchanged (this consideration is valid for every other bench-
mark considered in the current section);

e all the other methods flagged as purifiable are not considered, since
they can be assimilated to getter and/or are not relevant for the pu-
rification of other functions(this consideration is valid for every other
benchmark considered in the current section).

The result associated with such operations are encouraging. For both
size of benchmarks considered (A,B), respectively with inputs of 10° and
5*10°, not only the overhead introduced does not affect the execution times,
but it even slightly improves them (the detailed results are shown in Table
6.13). Hence, it is possible to assume that the modifications described will
result in minimal impact on the overall performance of the application, if
not even in a small improvement. Ideally, the application of the memoiza-
tion should further improve such results, determining a consistent impact
overall.

Table 6.13: Overhead results for the BH benchmark; the modifications of the select meth-
ods result in even a slight improvement of the execution time.

T_exec (ms) Variation

Original (size A) 21207
Modified (size A) 20452 -3.56%
Original (size B) 426068
Modified (size B) 412336 -3.22%
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Em3d The Em3d benchmark has only one method that can be purified;
however, since it is assimilable to a getter, and it is not determinant for the
impurities of other methods, its resolution is not suggested. From the set
of modifiable methods, instead, one method can be a good candidate (the
others are basically setters).

e Node;computeNewValue: the method presents a loop in which it ac-
cesses two global entities, an array of double and an array of Node
(class defined within the benchmark). The latter, moreover, access to
another global variable, declared within it, adding hence additional
complexity to the sequence of reads. The implemented solution deals
with the first array as already illustrated, and with the second through
an additional operation. The wrapping method needs to initialize such
values, accessing all the needed variables and storing them in a new
array; then, such data structure is used in the calling of the (now) pure
method, along with the other array and the original parameters. In this
way, the code block that effectively performs the computation results
pure.

As expectable, the overhead related to the re-engineered method ac-
counts not only the additional call to the pure method, but most of all the
operations required to instantiate the array of parameters needed. The pro-
posed solution has been tested providing the benchmark with inputs of size
A and B, respectively of <10°, 10, 100> and <10°, 10, 1000>
(format corresponding to <number of nodes, out-degree of-
each node, number of iterations>). The results (Table 6.14)
shows effectively an increment of the time required for the execution be-
tween 13% and 15%; this overhead can not be considered negligible, and
else additional profiling has to be taken in account. A solution could be
the analysis of the behaviour of the benchmark, after the application of
the memoization; if the method Node; computeNewValue is called fre-
quently with the same values (for the arrays interested by the modification
process) the overall result could be a benefit for the application, otherwise
the original version is preferable.

Perimeter The Perimeter application does not offer much in terms of
purifiable methods. Only two among them look suitable for effective re-
engineering, in order to extend the set of pure functions.

e QuadTreeNode; checkOutside: the method performs small com-
putation, and returns a value based on some comparisons. Such opera-
tions involve two static variables, and hence can be addressed with the
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Table 6.14: Overhead results for the Em3d benchmark; the modifications of the select
method result in a not negligible overhead on the execution time of the application.

T _exec (ms) Variation

Original (size A) 8674
Modified (size A) 9866 13.74%
Original (size B) 71684
Modified (size B) 81929 14.29%

procedure illustrated in Section 5.3.2. While the method itself does
not benefit in an impressive way due such modifications, other func-
tions calling it can now refer to the pure, memoizable version.

e QuadTreeNode; checkIntersect: this function is a direct ex-
ample of the benefits obtained with the previous operation. The method
is a sequence of invocations to the checkOut side, and presents no
other source of impurity. Hence, substituting such calls with those re-
ferring to the new, pure version of the function, the method check—
Intersect results now pure from this point of view. The additional
impurity introduced by the operation (the presence of static variables
in the stack for such invocations), is addressed in the same way illus-
trated for the previous case. Any other call to both methods consid-
ered can now be substituted with the one correspondent to the pure
versions.

The application has been tested with a fixed input of 10° (number of lev-
els in the quadtree), cycled respectively 10 times for size A, and 10° times
for size B. The results, shown in Table 6.16, show an almost negligible
impact of the overhead introduced, in terms of overall performance. In the
limits of the environmental noise present, it looks like that the modifications
can translate even in a slighter improvement; in fact, only considering the
checkIntersect method, at each execution of such function the JVM
can save an average of ten GETSTATIC instructions, substituted instead by
local DLOAD to load the required values.

Power All the methods flagged as purifiable, for the Power benchmark,
can be effectively modified, since there are not getters among them. In
particular, the list of such functions includes:

e Demand;findG: this method performs very small computation, but it
involves the reading of two static variables. Hence, the normal reso-
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Table 6.15: Overhead results for the Perimeter benchmark; the introduced overhead
does not impact in a significative way on the execution time of the application.

T_exec (ms) Variation

Original (size A) 21192
Modified (size A) 20544 -3.06%
Original (size B) 206319
Modified (size B) 207749 0.69%

lution can be applied, and the new, pure method implemented in the
class;

e Demand;findH: this method behaves similar to the previous one. The
resolution process is also practically the same;

¢ Root;reachedLimit: the computation performed by this function in-
volves the use of several field variables, defined to the calling ob-
ject. Among them, two are of primitive type (double), while the
others refer to fields of type Demand, on which another double
field is retrieved. The pure method, hence, will have all the four re-
quired double fields as parameters, while the wrapping one will re-
trieve such values and load them on the respective stack. Since such
variables are defined as protected, all other methods outside the
current class must retrieve them through the self-implemented getters
(and not directly).

Even if the modified methods result small in terms of computation, the
values obtained by the tests performed are encouraging. In fact, the over-
head introduced accounts for an aggravation, in terms of time required by
the execution, lower than 1% for both input sizes. In other terms, the per-
formance of the original and the re-engineered version are practically the
same, with the difference that the latter allows additional, presumable ben-
efits following the application of memoization. Size A of the benchmark
has been performed in correspondence of 10 times the normal execution,
while size B iterated the elementary case up to 100 times.

TSP The Travelling Salesman Problembenchmark is very small
in terms of number of methods; however, three out of 13 of them (corre-
sponding to a notable 23.08%) are flagged as purifiable, and effectively are
good candidates. The considered methods are summarized in the following
list:
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Table 6.16: Overhead results for the Perimeter benchmark; the introduced overhead
does not impact in a significative way on the execution time of the application.

T _exec (ms) Variation

Original (size A) 5488
Modified (size A) 5479 -0.16%
Original (size B) 54290
Modified (size B) 54693 0.74%

e Tree;distance: this method operates using four different global vari-
ables. Two of them are related to the calling object, while the other
two are referred to the object of type Tree that the method has as
input. The method can be purified, translating externally all the impu-
rities, as illustrated in Section 5.3.2. The resulting method will call a
new, pure function, providing the required values on the stack;

e Tree;median: the function presents an impurity related to the pres-
ence of a random-generated value within it. That is accomplished by
the function Random; nextRand, which is belonging to the set of
Java APIs. However, since such variable does not have any kind of de-
pendencies towards other values, the call to the non pure method can
be extracted. The resulting pure method will have an additional pa-
rameter as input, corresponding to the random-generated value; such
variable will be provided on the stack by the original method, using
the same Random; nextRand function to create it;

e Tree;uniform: the characteristics of this method are very similar to
those described for the previous one. Refer to theTree; median
description for additional details.

The results obtained from the two sets of measurements are very inter-
esting. Overall, for both tests (size A corresponding to 10 iterations, size B
to 50, each one of them for an input of 10° number of cities), an improve-
ment higher than 10%, in terms of execution time, has been experienced
(Table 6.17.

Since the modifications relative to the Tree; medianand Tree;uniform
can not be responsible for such variations (the number and type of instruc-
tions performed are practically the same), the reason for such consistent im-
provement should be located in the re-engineering of the Tree; distance
function. The original function reads from four different global variables,
two times for each; hence, the new method will reduce by half the number
of GETFIELD (and correspondent ALOAD) instructions required, with the
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Table 6.17: Overhead results for the TSP benchmark, the re-engineering of the consid-
ered functions determines an overall, average improvement of more than 10% for the
benchmark.

T_exec (ms) Variation

Original (size A) 23112
Modified (size A) 20570 -11.00%
Original (size B) 115711
Modified (size B) 103400 -10.64%

only DLOAD now needed. Assuming that the loading instructions take prac-
tically the same time to be executed, at each invocation four less GETFIELD
are required. Using a smaller input, and considering a version of the bench-
mark in which only the Tree; distance has been modified, the time
saving has still a value around 10.11% (correspondent approximately to
27ms), confirming the above observation. Moreover, with the analysis
tool perf4j [3], it can be noticed that such function has been executed
10030070 times in this scenario. Hence, that will be exactly the number
of GETFIELD instructions that the JVM does not need any more to per-
form. Correlating the values, it is possible to state that the reduction of
around 10° GETF IELD instructions translates in approximately 2.69ms not
required by the execution anymore. For more complex functions, this ap-
proach could also be used to provide an estimate of the impact that the re-
engineering method can have on the overall application; in this case, this is
not significant, since the Tree; distance function performs very small
computation, which would require more accurate tools for the analysis.

Voronoi Along with the first benchmark considered, Voronoi is the biggest
application, in terms of number of methods implemented, of the JO1den
suite. Following the purity analysis, 11 out of 67 methods have been flagged
as purifiable; however, only five of them can be effectively modified (the
others being only getters).

e Vec2;cprod: the method reads from global variables, two belonging
to the calling object and the other two referring to the only parameter.
The resolution is approached in the same way as described for other
methods considered in the current section;

e Vec2;dot: the method is very similar to the already considered Vec2; -
cprod, and the resolution performed exactly the same;

e Vec2;magn: the method is similar to those considered, with the dif-
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ference that it only reads from two fields of the calling object. The
resolution is however following the same approach;

e Vertex;ccw: the impurities related to this function are the same as
considered for the other methods described. In this case, the original
function has two object as parameters, from which it read two fields
each. Hence, the pure function will have a total of six parameters,
corresponding to the six values required by the computation;

e Vertex;incircle: the impurities of this function constitute an exten-
sion of the Vertex; ccw case. In fact, not only the method has three
object as parameters, but from each of them (including the caller) it
reads three different fields. The resolution process is the same as de-
scribed for the previous method, and the new pure method will need
twelve parameters to be correctly executed.

The tests, executed with input of 10° nodes, confirm the results obtained
from the other applications of the suite. For both case executed (size A
corresponding to 20 loops, size B corresponding to 50 loops), the average
overhead introduced accounts no more than 1.50%, as shown in Table 6.18.
Unlike the TSP case, there is not a consistent saving in terms of GETFIELD
or GETSTATIC instructions, but the resulting version is almost equal, in
terms of time needed for the computation, with respect to the original one;
however, since it allows the application of memoization, it is expectable
that the overall results will be better. The only concern is related to the
space of parameters; for the last method considered, the pure equivalent
requires twelve values as input. That could result prohibitive in terms of
memory needed by the result table, but this can only be determined only
following a run time profiling of the application.

Table 6.18: Overhead results for the Voronoi benchmark; the overhead introduced
by the re-engineering of the considered methods accounts for no more than a 1.50%
increase of the time of the execution.

T_exec (ms) Variation

Original (size A) 22685
Modified (size A) 22954 1.19%
Original (size B) 55774
Modified (size B) 56599 1.48%
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Java Grande

The applications of this set are generally more computationally expensive
than those present in the JO1den suite. Hence, testing the proposed ap-
proaches on them could potentially lead to different results, with respect
to those obtained in the previous sections. Of the four application tested
in section 5.1.3, only two have been selected (Euler and Ray Tracer),
while the others do not have effective margin to propose modifications. In
particular, even with almost a 26% of methods identified as purifiable, the
MonteCarlo benchmark is not suitable for re-engineering, since all the
methods flagged as such are in reality only getters.

Euler Two methods have been selected for the tests regarding the Euler
application:

e Vector2;dot: this function performs small computation using two
fields of the calling object. The resolution is straightforward with re-
spect to the same scenario analysed in the section;

e Vector2;magnitude: also for this function, the impurities are related
to the access on global variables (this time also of the only parameter).
The new pure method will have a total of four values as input, up from
the original two.

The benchmark provide two set of data as inputs, respectively size A and
size B. The results (Table 6.19) show a small increase on the overall per-
formance, ranging from -0.48% (size A) to -2.75% (size B). Examining the
code of the modified methods, the Vector2; dot function can be identi-
fied as the main contributor to such values. In fact, during its computation
it reads two times from the same fields, while the re-engineered version
halves the number of GETFIELD required. The Vector2; magnitude
method, instead, performs only one access to each of the field considered
in the resolution, and hence does not provide much impact under this point
of view.

RayTracer Only one out of four total methods flagged as purifiable is not
a getter, and hence can be a target for re-engineering. However, it can be
useful to observe the behaviour of the application, in terms of performance,
following the modification of just a method within it.

e Vec;dot: this method operates on two custom defined vectors, that
constitute its set of parameters. The computation it performs involves
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Table 6.19: Overhead results for the Euler benchmark; the re-engineering of the con-
sidered functions determines an overall, average improvement of about 1.5% for the
benchmark.

T_exec (ms) Variation

Original (size A) 2696
Modified (size A) 2683 -0.48%
Original (size B) 5672
Modified (size B) 5516 -2.75%

the access to three fields of such objects (corresponding to the three
spacial coordinates), for a total of six reads. The resolution is del-
egated to the already described FieldsReadOnlySolver class,
which will define the new pure method. Clearly, all the calls to the
original Vec; dot will then be redirected to the new, pure function,
through the action of the CalledMethodSolver class.

Similarly to the previous results, the overhead introduced is very modest
and can be assimilated to environmental noise. As shown in Table 6.20,
in fact, the average decrease in performance can be estimated in around
1.60%, an acceptable value when considering the enabling which now the
benchmark has. A run time profiling will be needed if considering the
choice to re-engineer such method in order to apply the memoization.

Table 6.20: Overhead results for the Ray Tracer benchmark; the overhead introduced
by the re-engineering of the considered method accounts for no more than a 1.60%
increase of the time of the execution.

T_exec (ms) Variation

Original (size A) 2944
Modified (size A) 2970 0.88%
Original (size B) 32354
Modified (size B) 33134 2.41%

6.2 Data Structure Validation

In this section, we show prove how memoization approach works good
with R-tree structure and we validate it measuring power consumption of
test functions as well as our use case functions.
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6.2.1 Settings

The aim of choosing the memoizable functions is observing the energy con-
sumption in the following steps:

e Original function execution;
e Function execution by adding memoization and Trade off block;

e Function execution by adding memoization and Trade off block, using
precision.

We used 512MB of the RAM memory available for the tests to verify
the R-tree structure within memory management. The data are obtained by
measuring the energy consumption of the server during the stress tests. The
tests are done in three phases, the generation and saving the inputs of the
functions, execution of original function and, lastly, execution of memoized
functions.

We measured power consumption through a specific measurement kit.
The current absorbed by the system is measured by means of an ammeter
clamp. Ammeter clamps have a Hall current sensor inside and allow non
intrusive measures. The analog signal acquired by the ammeter clamp is
processed by a NI USB-6210 DAQ (Data Acquisition Board) that is in-
terfaced via USB with a server different from the system that executes the
workload. The sampling frequency employed is 250 MHz. Data acquisition
is performed by a software tool developed ad hoc for this study using Lab-
VIEW. The tool acquires and stores samples of current energy consumption
every 4 microseconds (i.e., with a sampling frequency of 250 MHz). We
automatically evaluated the execution time of each workload by sensing the
difference of power absorption w.r.t. the idle state.

To evaluate the general approach, we have selected Implied Vola-
tility,Black and Scholes,Fourier SeriesandUnicredit
functions. We have done the phase of memory allocation with 1 million of
data. For Fourier series the allocation is done with 100.000 data.

6.2.2 Evaluation

Based on the performance evaluations on the financial functions and the
mortgage program, we sometimes reach a good result, but sometimes not.
The reasons of bad results are the followings:

e R-tree method is a big structure for complicated systems. If a function
is simple to compute, its performance may deteriorate. So, Hash tables
give better results than R-tree structure.
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Figure 6.5: The energy consumption and timing graph for Fourier Series

e The important parameters depend exponentially form the number of
dimensions. Therefore, R-tree so far operates efficiently if the number
of dimensions is fairly small.

We obtained different results on R-tree structure and Hash table in the
financial application tests. Without considering error rate on the inputs, we
reached for Black and Scholes 51 times, for Implied Volatility 14.6 times
and for Fourier Series 1.56 times worse computation time. Then, giving
1% of error on each input of every function allows us to retrieve for Black
and Scholes 51 times worse, for Implied Volatility 11 times worse and for
Fourier Series 5.22 times better computation time. Increasing the precisions
bring better results at all.

On the other hand, the situation alters on the mortgage functions. For
fre0r009.a200_elaboration the computation time of R-tree structure and
Hash map are similar. As we used the first 50.000 records on the entire
data set, we continued to do test for that amount. Since we have not given
any precision values on the inputs, we only monitor without giving any
error rate.

From Figure 6.6, we can observe that both structure programs termi-
nate equally, however, we obtained a less power consumption in R-tree for
this function which is 181.1 mWatt and 195.65 mWatt for Hash. While we
analyze fre0r002.d220_normalizza_tasso_001 function, we derive also pre-
cision rates and compare with Hash table. The power consumption for each
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Figure 6.6: The energy consumption and timing graph for freOr009.a200_elaboration.

condition is near to 170 mWatt. For Hash map, the whole energy consump-
tion is 706.215 J, for R-tree without any precision value is 694.745 J, for
R-tree giving 1% precision is 705.637 J and for R-tree giving 5% precision
is 683.003 J. The results are quite similar and determining the best solution
is hard after having these measurements on this function.

As a result, from the mortgage program, it is hard to decide which data
structure is better since the function conditions vary. The pure mortgage
functions that we use as a test set deliver us the idea of both structure works
similar on timing point of view. However, on the side of test financial
application, we investigate that Hash map works better then R-tree structure
if precision is not under consideration.

6.3 Memoization Architecture and Trade-Off Module Valida-
tion

In this section, we validate the memoization architecture and the trade-off
module. In Section 6.3.2, we tested our approach on the four functions
described in Section 6.3.1.

6.3.1 Settings

We developed a tool to automatically generate casual input parameters ac-
cording to a Gaussian distribution with given mean,standard deviation, and

156



6.3. Memoization Architecture and Trade-Off Module Validation

mw —— Original —— Memoization —— Memoization & 1% precision —— Memoization & 5% precision
270

250

230 "

210 [ I

w0 | | u ‘ UH | i
) A v qu m R HH ||

W ‘< i HU |H\ H‘m’m J“\

I
170
ontl

™

"\
bt ﬂﬂ"%"m"w&*“"i"“""’”if”“" A

150

130

110

90

70

“»

00:00:00
00:01:41
00:03:23
00:05:05
00:06:47
00:08:29
00:10:11
00:11:53
00:13:35
00:15:17
00:16:59
00:18:41
00:20:23
00:22:05
00:23:47
00:25:29
00:27:11
00:28:53
00:30:35
00:32:17
00:33:59
00:35:41
00:37:23
00:39:05
00:40:47
00:42:29
00:44:11
00:45:53
00:47:35
00:49:17
00:50:59
00:52:41
00:54:23
00:56:05
00:57:47
00:59:29
01:01:11
01:02:53
01:04:35
01:06:17
01:07:59
01:09:41
01:11:23

Figure 6.7: The energy consumption and timing graph for freOr002.d220_normalizza_-
tasso_001.

precision, determined as explained in the previous section. We executed
each function a high number of times, using the input parameters generated
by our tool: 100,000 for Implied_Volatility, XIRRand Fourier,
40,000,000 for Black_Scholes. Each function has been evaluated in
isolation, without intervention of the memoized values replacement policy.
In this case, the maximum memory assigned to JVM and memoization was
set to 1GB.

Benchmark Functions Selection

Not all the pure functions detected should be memoized: some of them
are not computationally intensive enough, and memoization would actually
cause a slowdown if it was applied. We filter out these functions by analyz-
ing the T,,, /T, ratio. The value of T,,, (access time in memory) depends on
hardware parameters of the memory hierarchy, but also on the software im-
plementation and the size of the hash tables needed to hold the memoized
values, and the Java runtime employed.

From the JavaGrande (Section 2) benchmark suite, LUFact and Crypt
are discarded at this point: LUFact is a memory intensive benchmark, and
Crypt has a very small memoizable function. The Fourier benchmark, on
the other hand, is selected for memoization.

From the Financial set, three functions pass the selection stage, so the
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set of functions that will be memoized is composed of the following:

e ITmplied_Volatility, which computes the volatility of a stock
option given the market price and an option pricing model [35];

e Black_Scholes, which computes the price of put and call op-
tions by solving a partial differential equation according to the Black-
Scholes-Merton model [10];

e XIRR, which computes the annualized internal rate of return of a cash
flow at arbitrary points in time;

e Fourier, which computes the first N Fourier coefficients for func-
tion f(x) = (z + 1)*.

The Implied_Volatility and Black_Scholes functions are
widely used in financial applications to estimate prices and volatiliy of
stock options. Similarly, the XIRR function is included in several banking
applications to evaluate investments or credit plans. It is a computational
intensive routine as it requires to find the zeros of a polynomial. The poten-
tial impact of the memoization approach on these functions is very high.

We do not have sufficient data to estimate the impact of the functions in
our sample on the total consumption of a financial institution. However, it
should be noted that the initial set of financial functions that we considered
is limited, as we had to rely on open source publicly available code, and
that our approach can be easily extended.

The chosen benchmark functions are different in size, complexity, and
structure and, thus, constitute a good experimental set.

Benchmark Functions Preliminary Analysis

Before conducting our experiments, we analyzed the selected benchmark
functions by applying the performance model presented in Section 4.3. Our
model estimates memoization effectiveness based on time performance.
According to our model the effectiveness of the memoization approach for
a given function depends on the original execution time, the available mem-
ory, the precision required, and the distribution of the input parameters.
Table 6.21 reports for each function the number of considered input pa-
rameters (/N,), the estimated 7 for different values of the statistical mean of
the combined variance of the input parameters, expressed as a percentage

of the combined ¢ and p values (F [%]) For the sake of simplicity, we
assume 5 = 0 in Equation 4.5 for this estimate.
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Table 6.21: Estimation of effectiveness of the memoization approach for the selected

benchmarks.
N, T, (ns) T (ms) T,,/T. Sg(bytes) 7 at different values of £ %
5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00%
Implied_Volatility 5 2,957,629 2,000 0.07% 40 0.07% 3.07% 14.87% 27.86% 38.61% 47.02% 53.60%
Black_Scholes 5 3,581 1,600  44.69% 48 44.69% 4574% 53.51% 64.79% 75.32% 84.08% 91.19%
XIRR 2 1,642,074 21,000 1.28% 312 1.53% 14.41% 32.73% 4732% 5590% 62.78% 67.92%
Fourier 3 6,442,008 1,500 0.02% 24 0.02%  138% 10.02% 21.75% 32.39% 41.10% 48.10%

Table 6.22: Black Scholes: input preliminary analysis.

Parameter Mean o T Ng; «;

Spot Price [] 8 1 0.01 1900 0.9985

Strike Price [] 8 1 0.01 1900 0.9985
Volatility [%] 1 0.5 0.01 400 0.9658

Time to maturity [days] 15 15 1 359 1.0000
Combined values (Ng, o*, ) 518,396,000,000 0.9630 0.1145

The values of 7 in Table 6.21 are estimated for S,,, = 1Gb, which corre-
sponds to the amount of memory available for memoization that we adopted
in our experiments, and for values of 7 (i.e., sampling precision) compatible
with real life requirements for each function. TT—m represents the maximum
theoretical effectiveness, which is obtained when all the possible input val-
ues of the function are memoized (o = 1).

Table 6.21 shows that all the functions in our sample are good candidates
for memoization, as the expected savings are high even in the case of high
variance of the input parameters.

To validate our approach and experimentally evaluate energy consump-
tion savings, we identified for each function a value for the variance of input
parameters that can be reasonable in real life. For example, let us consider
in greater detail the Black_Scholes function. This function has five
input parameters [10]:

e the spot price of the underlying asset;

e the strike price;

e the volatility of returns of the underlying asset;
o the risk free rate;

e the time to maturity.

Within a restricted timeframe the variation of the risk free rate is not
significant. Accordingly, we assumed this input parameter fixed. In a real
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world scenario, memoization tables would be recomputed when the risk
free rate changes.

Table 6.22 reports reasonable parameter choices for the Black_Scholes
function, their corresponding «; values according to Equation 4.7. The re-
sulting combined a* is 0.9630, so the effectiveness 7 is equal to 0.1145, i.e.
11.45%, according to Equation 4.5. According to Table 6.21, we expect
the average execution time of the function, when memoization is applied is
approximately 45.74% of the original time.

We performed similar analysis on all the functions of our sample and
we identified realistic values of o, u, and 7, which we used to generate
workloads for our experimental campaign on energy consumption.

6.3.2 Analysis of Experimental Results of the Memoization Ar-
chitecture

We tested our approach on the four functions and benchmark workloads
described above, comparing it with the baseline (unmodified code). Ta-
ble 6.23 reports the results of our experimental campaign. Energy con-
sumption is computed as the integral of the additional power absorption
w.r.t. the idle over the time required to process the workload. Energy con-
sumption effectiveness, similarly to n, is computed as the ratio of the energy
consumed when using our approach and the energy consumed when exe-
cuting the original functions. As our approach is based on dynamic filling
of memoization tables, the first times that the benchmark workload is ex-
ecuted most of the output values are not yet stored in the look-up table.
After a transition period, the system reaches a stable state. The length of
the transition period depends on the variance of the input parameters of the
function. Table 6.23 reports values relative to a stable state.

Figure 6.8, 6.9, 6.10, and 6.11 show the values of the power absorbed
by the whole system over time for all the experiments that we conducted,
both for stable states and for transition states, when look-up tables had not
been completely filled.

The results are overall encouraging. The memoization approach reduces
the total energy consumption from 62.1% (Black_Scholes) to 99.9%
(Fourier), with an average saving of 86%. The time performance sav-
ings range from 64.7% to 98.8%, with an average value of 87.3%. Note
that time and energy savings are different by definition, as instant power
consumption varies over time, but 7 values provide an acceptable estimate
of the energy consumption effectiveness. It is also interesting to note that
the effectiveness indices 7 estimated by means of our performance model
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are fairly accurate and in all cases are conservative.

The largest savings are obtained with the Implied_Volatility
function. This function is highly computation intensive and recursive. More-
over, it includes many computation intensive operations within a cycle, and
calls another memoizable function (Black_Scholes). This makes the
memoization approach very convenient as the same result is re-used many
times by the algorithm. Generally, the more complex is the function, the
greater are the savings obtained. In fact, both the XIRR and Fourier
functions lead to significant savings, as they involve complex computations.
Contrarily, our approach is not very convenient for the Black_Scholes
function. This function is quite simple and requires few computational op-
erations. The execution of the decision module introduces an overhead
that translates into a higher average power (approximately +30%). This is
scarcely compensated by the reduction of the execution time, enabled by
the substitution of computational operations with memory accesses. As a
result, the total energy consumption is reduced by 62.1%. It should also
be noted that even tough the hit rate probability drops geometrically with
the number of input parameters (see Equation 4.7), our approach may still
bring significant savings even when applied to functions with more than
one input parameter.

Table 6.23: Execution times and energy consumption for the selected benchmarks.

Function Execution Execution time Energy Energy consumption ~ Energy consumption

time as-is (s) w/ memoization (s) n Nmeasured cOnsumption as-is (J)  w/ memoization (J) effectiveness (%)
Implied Volatility 295.76 7.48 3.07% 2.53% 7,375.03 19.39 0.26%
Black Scholes 143.22 50.41 45.74% 35.20% 4,923.23 1,865.20 37.89%
XIRR 164.21 19.60 14.41% 11.94% 4,155.84 705.50 16.98%
Fourier 644.20 7.78 1.38% 1.21% 16,655.84 16,655.84 0.06%

6.3.3 Validation of Trade-off Module

We employ the same set-up used in Section 6.3.1. In this case, we use a mix
of invocations of the 4 benchmark functions, with different frequencies.
We measured the execution time and energy consumption of the following
scenarios:

e original code;

e memoization engine with statical allocation of memory (no trade-off
module);

e memoization engine with dynamical allocation of memory driven by
the trade-off module.
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Figure 6.8: Total power consumption for Implied_Volatility memoized function.
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Figure 6.9: Total power consumption for Black_Scholes memoized function.
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Figure 6.10: Total power consumption for XIRR memoized function.
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Figure 6.11: Total power consumption for Fourier memoized function.
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Figure 6.12: Memory allocation distribution during the execution of the first test (40
million calls, functions invoked with equal and constant frequencies) with trade-off
module active.

We perform two different kinds of tests. First, we evaluate the impact of
the trade-off module on the initial allocation of memory, keeping the func-
tion invocation frequencies constant. Second, we evaluate the behaviour of
the trade-off module when the function invocation frequencies change over
the time.

For the first test, we initialize memory allocation (with a total reserved
memory of 1GB). The functions are invoked with an equal frequency, with
a total of 40 million calls. In the scenario with memoization engine active
and trade-off module disabled, calls are memoized as long as the memory
allocated to each function is not full. In the third scenario, the trade-off
module alters the memory allocation during the execution. Figure 6.12
reports the evolution of memory allocation in this scenario. It is evident
that the trade-off module greatly helps effectively allocate memory even
in a context where function invocation frequencies do not change. In fact,
whereas the previsional model is based on statistical estimations of the hit
rate under the hypothesis that input parameters follow a Gaussian distribu-
tion, the trade-off module considers the actual values.

For the second test, we start with the optimal memory allocation defined
by the trade-off module at the end of the first test. We then change the
function invocation frequencies to the following relative distributions (with
a total number of invocations of 1 million):
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e 25% Fourier,25% Implied_Volatility,25%Black_Sch-
oles, 25% XIRR;

e 70% Fourier,10% Implied_Volatility,10% Black_Sch-
oles, 10% XIRR;

e 10% Fourier,70% Implied_Volatility,10% Black_Sch-
oles, 10% XIRR;

e 10% Fourier,10% Implied_Volatility,70% Black_Sch-
oles, 10% XIRR;

e 10% Fourier, 10% Implied_Volatility,10% Black_Sch-
oles, 70% XIRR.

In the scenario with the trade-off module disabled, the allocation of the
memory never changes, leading to a reduced effectiveness of the approach.
On the other hand, when the trade-off module steps in, the allocation of the
memory is changed dynamically to maximize effectiveness.

Table 6.24 and Table 6.25 report the energy consumption and the ex-
ecution time for this test as a function of invocation frequencies relative
distribution. The mean energy savings between the as-is case and case with
memoization and trade-off is 96.8%, with a peak of 98.79%. Instead, the
mean execution time saving is 97%, with a peak of 99%. The five invoca-
tions frequencies scenarios described above were performed a number of
times sufficient to obtain measures with relative error less than 5% with
confidence at 95%. Figures 6.13, 6.14, 6.15, 6.16, and 6.17 show the power
consumption for the second tests for the 3 different scenarios considered.
The results show that the overhead introduced by the trade-off module is
largely repaid by the benefits it brings in terms of both energy consumption
and execution time.

Table 6.24: Energy consumption for the selected benchmark tests.

Tests Energy Energy w/ Savings Energy w/ Savings Total savings
F_IV_BS_X as-is memoization as-is vs memoization + memo Vs as-is vs
(%) J) (@) memo (%) trade-off (J) memo+TO (%) memo+TO (%)
25252525 47,556.58 5,539.93 88.35% 574.97 89.62% 98.79%
70_10_10_10 141,296.21 49,921.74 64.67% 1,345.75 97.30% 98.79%
10_70_10_10  19,859.22 2,639.37 86.71% 410.80 84.44% 97.93%
10_10_70_10  25,536.81 19,827.62 22.36% 418.14 97.89% 98.36%
10_10_10_70  31,626.52 24,135.51 23.69% 3,175.51 86.84% 89.96%
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Table 6.25: Execution times for the selected benchmark tests.

Tests Execution  Execution time Savings Execution time Savings Savings
F_IV_BS_X time as-is  w/ memoization as-is vs w/ memoization memo vs as-is vs
(%) (s) (s) memo (%)  + trade-off (s) memo+TO (%) memo+TO (%)
25.25.25.25 1,659.63 216.74 86.94% 18.37 91.52% 98.89%
70_10_10_10  5,125.10 1,840.10 64.10% 51.30 97.21% 99.00%
10_70_10_10 781.64 103.35 86.78% 17.66 82.91% 97.74%
10_10_70_10 890.14 746.80 16.10% 15.45 97.93% 98.26%
10_10_10_70  1,130.42 933.55 17.42% 100.83 89.20% 91.08%
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Figure 6.13: Total power consumption for the five tests of the trade-off module: Test 25%
Fourier, 25% Implied Volatility, 25% Black_ Scholes, 25% XIRR.
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Figure 6.14: Total power consumption for the five tests of the trade-off module: Test 70%
Fourier, 10% Implied Volatility, 10% Black_Scholes, 10% XIRR.
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Figure 6.15: Total power consumption for the five tests of the trade-off module: Test 10%
Fourier, 70% Implied Volatility, 10% Black_Scholes, 10% XIRR.

167



Chapter 6. Experimental Evaluation

360 T T T
Memoization + Trade-off ———
Memoization -------

No memoization --------

350 1

Power [mW]

Il Il Il Il Il Il Il Il
200 300 400 500 600 700 800 900
Time [s]

Figure 6.16: Total power consumption for the five tests of the trade-off module: Test 10%
Fourier, 10% Implied Volatility, 70% Black_Scholes, 10% XIRR.
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Figure 6.17: Total power consumption for the five tests of the trade-off module: Test 10%
Fourier, 10% Implied Volatility, 10% Black_Scholes, 70% XIRR.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis work approaches the green IT problem from the software energy
efficiency point-of-view. As illustrated in this thesis, although software
does not directly consume energy, it has an impact the energy consumption
of IT equipments. Consequently, software is indirectly responsible of en-
ergy consumption. Thus, there is a need for optimizing the code of applica-
tion software. The literature explains how optimizing software algorithms
can influence on software energy efficiency. However, there is broad evi-
dence of the practical hurdles involved in optimizing software algorithms,
tied to the technical skills of programmers, to the role of domain knowl-
edge, and to the need for massive code refactoring and related costs. This
thesis focuses on software energy consumption and provides a methodol-
ogy to identify and reduce energy inefficiencies automatically.

As a first step, we have designed a methodology to estimate the energy
consumption of software applications based on their usage of computing
resources. This methodology has been validated on a sample of commonly
used SAP transactions in a large multinational company. Our methodology
can be useful to control the actual usage of resources of a data center along
the energy efficiency dimension. Current accounting models are mainly
based on data center floor space occupation, without considering the actual
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usage of computational resources and, thus, energy consumption of a data
center. We introduced three different metrics in order to decouple hardware
from software energy consumption.  provided the resource consumption
related to the software application/transaction while 5 defined the resource
usage cost. From our results, we can further assure that the « metric is not
influenced by the hardware architecture or by the OS that have been chosen
for execute the applications/transactions.

The combination of v and w can be used to estimate the energy con-
sumption of applications/transactions. Thus, these metrics can be used also
to define classes of energy efficiency within each cluster, thus enabling the
comparison of the energy efficiency of functionally similar applications/-
transactions. This provides new metrics to evaluate software quality and
to select applications based on their energy efficiency. It can also help to
assess the impact of software customization on energy efficiency. Bench-
marks are used to identify energy inefficient software applications.

The benchmarking methodology allows you to compare the energy be-
havior of various software applications, and then provides additional qual-
ity parameters to assess market solutions and software vendors. It may also
be a valuable additional tool to evaluate both performance of the internal
development groups or system integrators (e.g. related to ERP transactions
customization). While for a large company ERP system change could re-
sult in very high costs, to control and optimize the operation of the system
integrator may prove to be an effective lever to reduce operating costs. In
fact, ERP systems customization can be the cause of significant losses in
efficiency.

Our methodology can be also useful to control the actual usage of re-
sources of a data center along the energy efficiency dimension. Current
accounting models are mainly based on data center floor space occupa-
tion, without considering the actual usage of computational resources and,
thus, energy consumption of a data center. Electricity may account for up
to 15% of the operating costs [29] and, thus, a more accurate monitoring
model may encourage significant organizational changes and allow greater
efficiency. These advantages may acquire an even greater importance in a
cloud environment.

It may also be of interest to apply the methodology for estimating the
IT resources’ consumption of a particular business process, for the treat-
ment of specific document or transaction used by a particular user profile.
In addition, the energy consumption values of different applications and
transactions recorded in various business settings allow you to define the
market benchmark and to compare them between different organizations
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from the point-of-view of application software energy efficiency. Although
there are several benchmarking initiatives related to devices energy effi-
ciency (from electrical appliance to ICT device as computers, monitors and
printers) there are not similar initiatives in the field of software applica-
tion. The benefits related to these initiatives (e.g. Energy Star) are varied.
Most notably the introduction of labeling of merit and the promotion of
agreements from suppliers to deliver products and services more environ-
mentally friendly . The environmental labels are a valuable tool in the
hands of the consumer (or the office staff purchases in the case of busi-
nesses) in order to fairly assess the products and services that are acquired
without possessing advanced technical skills and without having to make
costly qualifying. Whether labeling efficiency of the application software
is applied to packages sold by the software house (or to the services inte-
gration and customization offered by other market players) would allow a
more responsible choice and a more comprehensive evaluation of its suppli-
ers. The methodology presented in this thesis allows to estimate the energy
consumption of applications and thus constitutes the first step towards these
types of initiatives.

As a second step, we have proposed the use of memoization of Java
methods to reduce energy consumption of the inefficient software applica-
tions. To this end, we have introduced an appropriate definition of weak
purity and constructed a prototype that performs pure functions identifica-
tion as well as automated memoization.

Our framework includes the identification of pure functions and the re-
engineering of non pure ones in equivalent versions, with at least a pure
code section within them. The first element performs the analysis of generic
functions at the bytecode level, from a twofold perspective (data depen-
dencies and purity identification), in order to determine whether a method
could be effectively considered pure. The second component, modifies the
code structure of these methods, in order to obtain an equivalent version
with better characteristics in terms of purity. It is able to transform a non
pure function in an equivalent pure one, without impacting on the correct-
ness of the result.

The validation of the bytecode analysis module has shown significant
results. All the pure functions of the three selected benchmark suites are
correctly identified, without any false negative-positive, resulting in a cor-
rectness of 100%. The analysis related to the source of impurities for the
same functions, on the other hand, fails to reach such value, settling how-
ever over 99%, globally. The motivations for such discrepancy reside in the
presence of particularly complex bytecode expressions, which are not cor-
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rectly addressed from the analyzer. However, the corresponding extension
of the implemented algorithm can meet the complete correctness require-
ment.

The results obtained from the bytecode modification module are very
encouraging. Firstly, the correctness of the modified methods has been
tested, demonstrating the accuracy of the approach in terms of bytecode
manipulation. In particular, we have found that the modified modules show
the same input-output behavior as the original code. Then, both the im-
pact of code redesign and the time performance of modified modules have
been evaluated. Experimental results have shown that the decrease of per-
formance consequent code redesign is very modest (generally within a 5%
threshold). For some methods, even small improvements have been ob-
tained (up to 10% for the TSP benchmark). The reasons for these results
can be found in the efficient re-engineering of code, which minimizes the
use of global variables. However, not all methods flagged as modifiable
have been effectively redesigned. A first selection has been performed, in
order to determine the most suitable subset of functions. In fact, it has been
demonstrated that some re-engineering approaches are not convenient for
methods that do not perform significative computation. We also developed
a trade-off algorithm that effectively allocate limited memory resources to
different functions in order to maximize overall energy savings. The ex-
perimental campaign shows that, by selecting computation intensive pure
functions as memoization candidates, it is possible to reap significant ben-
efits in terms of both time and energy performance.

Our results showed that our memoization approach is useful in order to
reduce both time and energy consumption of software applications. Our
novelty approach is also interesting because we face the use of memoiza-
tion from a different point-of-view. We analyze and implement a solution
that can be applied directly to third-parts Java software applications. In
fact, our approach, can act directly to the Java bytecode without the need
of the source code. In this thesis is proved that our suite can analyze and
modify any Java software application in order to find pure function that can
be memoized. In addition these functions can be directly modified on the
bytecode level introducing the bytecode instructions that perform the mem-
oization approach. Thus, without any knowledge related to the application
domain and without highly-skilled (and expensive) developers, the any soft-
ware application that satisfies purity characteristics can be optimized from
the energy point-of-view.
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7.1 Future works

A limitation of our work is that we have considered software transactions in
isolation, i.e. without saturating the computational units. Contexts charac-
terized by highly parallel applications should be further investigated. More-
over, we have assumed that the characteristics of the hardware architecture
can influence unit power absorption only, but not the flow of instructions.
This is usually a good approximation in a corporate context where market
standard hardware devices are deployed. However, in future work, we will
further investigate the impact of more custom hardware architectures on
resource usage and, consequently, on software energy efficiency.

Our software suite implementation presents some limitations, which will
be addressed in future work. An additional approach that can be imple-
mented could operate only on subsections of methods. In this case, it is
necessary to isolate the set of operations that will be implemented in sepa-
rate functions, along with the variables needed for the computation. Con-
sidering the dependency graph, this operation corresponds to the identifi-
cation of a subset of nodes that constitutes a subgraph, in which the in-
coming arcs define the required variables, and the outcoming ones define
results. However, to effectively implement such an approach, it is neces-
sary to solve the problem of the enumeration of all possible subgraphs for a
given graph, and consider only the good candidates for the operation; oth-
erwise, a random choice could not only result in a worse, new version of the
function, but even compromise the correctness of the execution. A last, sig-
nificant improvement of the proposed work would be the implementation
of a measure that numerically defines how convenient is the re-engineering
of a method (for example, towards its possible memoization). The assess-
ment should consider the impact of the bytecode modifications needed to
purify the function (in terms of computation overhead) and an estimate of
the function’s results. In addition to that, the proposed approach could be
strengthened by studying the dynamic detection of pure functions.
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