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Abstract

High altitude Alpine regions are hotspots of biodiversity and are very sensi-
tive to the occurring climate change, displaying a warming rate higher than
the global average. The most evident response of Alpine species is an uphill
movement towards higher elevations. Summit species are the most vulner-
able because they cannot shift over the ridges or the perennial snow. This
thesis’s aim is to develop innovative models for the occurred and expected
responses of high altitude Alpine fauna to the climate change.

We developed both species distribution models and dynamic demo-
graphic models. Species distribution models describe the relationship be-
tween environmental variables and the suitability of a territory to host a
given species. Temporal dynamics is instead taken into account in demo-
graphic models, which show how the abundance of individuals changes in
time. In both cases, there is a need for appropriate methods that identify,
from data, which environmental and/or climatic variables have an important
influence on the spatial distribution and on the demographic parameters of
the target species. The identification of the best predictive models has been
carried out by using standard selection criteria (e.g. the Akaike Informa-
tion Criterion). When the model selection was uncertain we relied on mul-
timodel techniques to produce predictions. Namely, we used the Bayesian
Model Averaging (BMA) or, alternatively, the multimodel inference based
on the Akaike weights. Three high altitude species, which are vulnerable to
climate change, have been chosen for our study: Alpine ibex (Capra ibex),
Alpine marmot (Marmota marmota) and black grouse (Tetrao tetrix). The
choice has also been motivated by data availability.

In the Alpine marmot case study, we investigated the fine scale charac-
teristics that determine the suitability of the habitat for the species in a high
altitude Alpine valley near the Stelvio National Park (North-western Italy).
Since there were no available data on marmot distribution in the valley, we
performed field surveys to locate burrows. Using available data, we devel-
oped species distribution models using BMA applied to logistic regression.
Results show that the position of marmot burrows is mainly dependent on
the vegetation type, thus suggesting that the speed of marmot uphill shift is
limited by the colonization dynamics of the vegetation.

As for the black grouse, we studied the influence of spatial position,
population density and meteorological conditions on four demographic
rates (growth rate and three components of fertility) that characterize the
populations of 17 Alpine districts in the Piedmont region (Italy). Our re-
sults are mostly consistent with past results obtained for lowland popula-
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tions. The meteorological variables that have the main influence on the
demographic rates are linked with key periods of the black grouse life cy-
cle; namely the breeding season, the hatching period and the winter season
(usually characterized by a high mortality). Moreover, we found that direct
density dependence is the main driver of population growth rate.

Alpine ibex populations are characterized by a strong age and sex struc-
ture, that has never been considered in a population dynamics model. On
the other hand, past studies show that the main drivers of population growth
rate are the population density and the accumulation of snow during winter,
while survival and fertility are not constant with the age, but are typically
smaller and more variable for the youngest and the oldest individuals. Us-
ing the Gran Paradiso National Park (Italy) population data, we developed
models that, alongside with density and snow depth, take into account the
age and sex-structure of the population at different levels of complexity.
We first separate the population into four subgroups according to the sex
and/or the maturation state of the individuals, and we accordingly define
four demographic rates: survival of adult males, adult females and kids,
and weaning success. The model identification procedure shows that pop-
ulation density and snow depth are still crucial for the separate population
groups, and that intraspecific competition occurs mainly among the indi-
viduals of the groups that share the same environment for most of the year.
Moreover, our results show that weaning success and survival of kids are
maximal for intermediate levels of snow depth. We also developed models
that take into account the fine age structure of the population, thus allowing
the incorporation of senescence. Results show that the inclusion of senes-
cence is particularly important for adult females survival and for the ability
of adult females to breed their kids. Moreover, we found that the effect of
the population density and the snow depth on survival and fertility increases
with the age of the adults.

Overall, our approach permitted to detect and take into account the en-
vironmental (climatic, vegetational, etc.) and the population-specific (den-
sity, senescence, etc.) characteristics that drive the species distribution and
the demography of the case-study species. Making models that take into
account the specificity of each species is a key step to understand the ex-
pected impacts of climate change on the Alpine biome. However, a lot of
work is still needed in this field, in particular to include the interactions be-
tween species, which is certainly of paramount importance to explain their
spatial and temporal distribution.
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CHAPTER1
Introduction

1.1 Climate change and the Alps

1.1.1 Alps: properties and vulnerabilities

Mountain environment is characterized by one of the highest richness in
ecosystems, and a particular vulnerability to climate change and anthro-
pogenic disturbance (Fischlin et al., 2007). Geographically, mountains rep-
resent about 22% of all land, but through their ecosystem services they can
influence all continental mainlands (ibidem). One of the main reasons for
the high abundance in the number of different ecosystems is the temperature
gradient which occurs for a variation in the altitude. The mean temperature
changes in fact much more rapidly with a change in altitude than with a
change in latitude; for example Wang et al. (2011) recently estimated, for
an Himalayan plateau, an altitude gradient of -4.8◦Celsius per 1000 m and
a latitude gradient of -0.87◦Celsius per 1000 m. Mountain regions are thus
characterized by many climatic types within a short horizontal distance,
and thus by an high species richness (Väre et al., 2003; Moser et al., 2005;
Spehn, 2005).

Among the mountain regions, Alps are particularly relevant because
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Chapter 1. Introduction

they host a huge quantity of endemic species (Theurillat & Guisan, 2001;
Korner & Spehn, 2002). Moreover, they are regarded as one of the most
important regions for the preservation of biodiversity in Europe (Theurillat
et al., 2003) and they are included in the set of global biodiversity conser-
vation priority regions (Ginsberg, 1999).

The actual configuration of the alpine environment is the result of the
interplay among natural conditions and centuries of anthropogenic forcing.
For example, traditional pastoral practices have lowered the timberline by
100 to 400 m (Ellenberg, 1996), thus increasing the available habitat for the
species that dwell on the alpine pastures, as the alpine marmot (Marmota
marmota) and the Black grouse (Tetrao tetrix). However, the recent aban-
donment of the alpine pastures, together with the climate warming, have
caused an expansion of the woods and an upward shift of the tree line,
and a consequent shrinking of alpine pastures (Schweiger et al., 2012).
The abandonment of mountain fields, together with the intensification of
the exploitation in other areas, has caused serious effects on local biodi-
versity (Dirnböck et al., 2003; Laiolo et al., 2004; Martin & Possingham,
2005). Moreover, the expansion of shrubs caused a decrease in several
grassland species, together with a possible change in the host-parasite in-
teraction (Chemini & Rizzoli, 2003).

(a) Worldwide (b) alpine biome

Figure 1.1: Expected effects of different drivers in changing the biodiversity for the
year 2100. Panel a) is an average of the estimates for each biome, made relative
to the maximum change; Panel b) reports the effects on the alpine biome only.
Adapted from (Sala et al., 2000)
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1.1. Climate change and the Alps

More generally, Sala et al. (2000) shows that, worldwide, the major
driver of the expected biodiversity loss for the year 2100 is the land use
change (see figure 1.1.a). However, if the direct effect of the increase in
the CO2 concentrations is summed up with the climate change, the in-
crease in the greenhouse gasses becomes the main driver of biodiversity
loss (Maclean & Wilson, 2011). Moreover, Sala et al. (2000) predict also
that, if we focus on the alpine biome, the major driver of the expected bio-
diversity loss is the change in climate, as reported in figure 1.1.b. In fact,
climate changes are known to be most extreme in alpine regions (Beniston
et al., 1997). Moreover, high Altitude ecosystems are determined by low
temperatures and host organisms highly specialised and that live close to the
limits of their physiological tolerances. Thus, alpine communities are more
like to be at risk from the predicted changes (Grabherr et al., 2000; Walther
et al., 2005) and alpine ecosystems are expected to show the effects of cli-
mate change earlier and more clearly than other ecosystems (IPCC, 2007a;
Pauli et al., 2007; Pickering et al., 2008).

1.1.2 Global climate change

Climate is warming at an extremely rapid rate, which is expected to in-
crease in the near future. The climate warming has been principally caused
by human activities, mainly through a variation in the greenhouse gasses
balance (IPCC, 2007b). Diffenbaugh & Field (2013) recently estimated a
potential increase in temperatures comparable in magnitude to the largest
warming in the last 65 million years, and orders of magnitude faster. On
the same line, the just published Fifth Assessment Report (AR5) of the first
working group of the IPCC confirms the six main observed changes in the
climatic system (IPCC, 2013):

i an unequivocally warming of the of the ocean and the atmosphere
(figure 1.2.a); the average surface warming, combining land and
ocean, is 0.85 ◦C from 1880 to 2012;

ii a variation in the regime of precipitations, with changes in many ex-
treme weather and climate events (figure 1.2.d);

iii a decrease in the ice and snow cover, with a shrinkage of the mass
and the extension of the glaciers, and a reduction of the spring snow
cover in the Northern Hemisphere (figure 1.2.b);

iv a rise in the sea levels (figure 1.2.f);
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Chapter 1. Introduction

Figure 1.2: Set of figures adapted from (IPCC, 2013) and showing the main ob-
served changes in the climate system linked to the global climate change. We
refer the reader to the original text for an accurate description of the method-
ologies used to develop these plots.
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1.1. Climate change and the Alps

v an increase in the atmospheric concentration of the greenhouse gasses
as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O),
which reached the maximum concentration of the last 800000 years
(figure 1.2.e).

vi an acidification of the oceans, caused by the absorption of about 30%
of the emitted anthropogenic carbon dioxide .

1.1.3 Evidences of climate change on the Alps

Effects on the abiotic components

The global climate warming is not uniform worldwide, but presents asym-
metries among the different regions of the Earth, in which warming is oc-
curring at different rates. On the Alps, the climate warming appears to be
stronger than the average global signal (Beniston, 2006; Calmanti & Motta,
2007; Auer et al., 2005; Rebetez & Reinhard, 2008; Keiler et al., 2010) and
high altitude environment can be seen as early indicator of climate change
(Grabherr et al., 2003). Past studies report an increase in temperature on
the mountains that is at least two times higher than the global average (Diaz
& Bradley, 1997; Böhm et al., 2005). According to Beniston (2006), tem-
peratures on the Alps have risen up of about 2 ◦C in the 20th century. The
variation in the regime of precipitations is instead more complicated and
spatially variable, and do not present a clear long term trend; however, the
decrease in the amount of snowfall registered in the Northern hemisphere
has been also recorded on the Alps, and has been already documented for
many alpine regions (e.g. see Jacobson et al., 2004; Terzago et al., 2010).
The warming in the Alps is projected to continue at a rate greater than the
global average, with an amount of precipitations that slightly increases in
winter and strongly decreases in summer. However, the increase in winter
precipitations does not compensate the temperature warming, which can
drastically reduce the snow cover duration. Hantel & Hirtl Wielke (2007)
predict, for the Alps, that each increase of 1 degree Celsius can cause a
reduction of the length of the snow cover period of 30 days at a altitude of
700 m a.s.l. and an increase of the snowline of about 150 meters.

The cryosphere, composed by glaciers and permafrost, is sensitively re-
sponding to the change in temperatures and precipitation regimes. Glaciers
have lost approximately 30-40% of the area and half of the mass (Haeberli
& Beniston, 1998; EEA European Environmental Agency, 2004), and are
predicted to shrink very rapidly with the temperature warming. Beniston
(2006) predicts a reduction of the mass of the mountain glaciers between
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Chapter 1. Introduction

50% and 90% by the end of the current century, while small glaciers will
disappear (Paul, 2004). The estimated upward shift of the glacier limits is
between 60 and 140 meters for each ◦Celsius of temperature increases (Vin-
cent, 2002; Maisch, 2000). In agreement with the expected global trend of
shrinking in the thickness and the extension of permafrost (IPCC, 2013;
Haeberli, 2009), alpine observations report an increase in the temperature
of permafrost (Guglielmin & Camusso, 2004). The reduction of permafrost
can probably cause an increase in the frequency and the intensity of land-
slides and avalanches (Beniston, 2006; Bocchiola & Rosso, 2008).

The variation in the snow cover and the cryosphere will cause major
changes in the water regime. The expected effect is an initial increase in
the glacier runoff and in the peak flows, followed by a significantly dimin-
ished runoff total as the glaciers continue to shrink, especially in spring and
summer (Hagg & Braun, 2004). The impacts of such variations will not be
limited to the mountain areas, because they will affect the downstream flow
reducing the amount of water available for both the mountain and lowland
stakeholders needs (e.g. agriculture, drinking water, hydroelectric power).
On the other hand it will also increase the hydrogeological risks such as
floods and erosion (Beniston, 2006).

Effects on the biome: flora and fauna

The climatic change and its impacts on the abiotic components of the alpine
habitats have strong consequences on the alpine biome, which have been
already documented in many studies. The expected impacts are strong on
both the fauna and the flora, because Alps host species that are adapted to
extreme environments, characterized by low temperatures, and that lives
on the limit of their capabilities (Eisenreich, 2005; Körner, 1999; Thuiller,
2007).

Hughes (2000) lists four main categories of direct biological conse-
quences of global warming (see figure 1.3): (i) effects on physiology, (ii) ef-
fects on phenology, (iii) effects on distributions, and (iv) adaptation through
evolution. The latter effect (iv) occurs at the evolutionary time scale and
can be considered a short term strategy for adaptation to climate change
only for organisms characterized by short generation times and rapid pop-
ulation growth. Quintero & Wiens (2013) estimate in fact that, to match
the changes predicted for the current century, the climate ecological niche
should evolve, for many species, more than 10000 times faster than the
rates that are usually observed. As summarized in figure 1.3, the listed di-
rect biological consequences can lead to a change in the species interaction

6



1.1. Climate change and the Alps

Figure 1.3: Schematic graph, published in Hughes (2000), of the potential path-
ways of community change caused by the increase in the atmospheric green-
house gasses. We report here the original caption, which summarizes the mean-
ing of the nodes and the links of the graph:“Potential pathways of community
change owing to the enhanced greenhouse effect. Increased CO2 concentration
will act on species directly (via physiology) and indirectly (via climate changes)
(first tier). Individual species might potentially respond in four ways (second
tier), resulting in changes in species interactions (third tier). These changes
might then lead either to extinctions or to further shifts in ranges (fourth tier),
ultimately leading to changes in the structure and composition of communities.”
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and, consequently, to the extinction of some species and a further variation
in the species distribution. These variations finally cause changes in the
structure and the compositions of the ecological communities.

One of the major driver that impacts the phenology (i.e. the life cycle)
(iv) and physiology (ii) of alpine plants is the snow condition. An ear-
lier snowmelt leads in fact to an anticipation of the growing phase and of
the flowering in spring (Inouye, 2008; Pettorelli et al., 2007; Inouye, 2008,
e.g.). However, many alpine species are strongly dependent on the pho-
toperiod and will not be able to simply anticipate their life cycle (Keller &
Körner, 2003). A study conducted on the Rocky Mountains in Colorado
by Inouye (2008) reports that earlier snowmelt increased the mortality of
buds caused by frost, with potential effects on all the food chain. Effects on
physiology are expected mainly for particularly sensitive environments, as
for valley characterized by snowbed vegetation, which density and primary
production are strongly affected by snow conditions (Carbognani et al.,
2012). Moreover, a general increase of evapotranspiration is predicted, and
will probably lead to increased drought (Fischlin et al., 2007).

The most evident effect of climate warming on the biome is probably the
change of the distribution of the species (ii). At a global level, species are
moving longitudinally away from the equator towards the poles at a very
fast rate (Parmesan & Yohe, 2003; IPCC, 2007a; Thomas, 2010). Chen
et al. (2011) recently estimate a shifting speed of 16.9 km decade-1. On the
mountain environments, the longitudinal shifting is substituted by a shift-
ing toward higher elevations; the median uphill (or upslope) shifting is es-
timated to be 11.0 m decade-1 (Chen et al., 2011). In figure 1.4 we summa-
rize the possible results of an uphill shifting of the original upper boundary
(dashed line in the figure) and/or lower boundary (dotted line in the figure)
for a single species. Of course, if there is an uplift of the upper boundary
only, the result is an enlargement of the area in which the species is dis-
tributed (mountain sketch b in the figure). Conversely, if the upward shift
involves only the lower boundary, the area of distribution shrinks (moun-
tain sketch c). On the other hand, shifting uphill often means a reduction
of the geographical range of the species, because mountains have a pseudo-
conical shape for which tops are smaller than bases; mountain sketch d in
figure 1.4 shows in fact the reduction of the distribution (grey area) for the
case in which the altitude uplift is equal for the lower and the upper bound
of the species distribution. However, the uphill shift of the upper bound of
distribution is possible only for species that live in the warmer zones of the
mountains, far below the peaks, while is not possible for species that live
in the proximity of the ridges (Fischlin et al., 2007). An uplift of the lower
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1.1. Climate change and the Alps

distribution boundary over the ridges determines the local extinction of the
species (mountain sketch e in the figure). Moreover, the uphill shift of the
species has the potentiality to cause non-linear effects on the population
dynamics. If the areal of distribution decreases, the population abundance
is in fact likely to drop, while the distance between sub-populations in-
creases. This increase in patchiness can lead, for example, to the ignition
of a type-D extinction vortex (Gilpin & Soulé, 1986). Of course, as already
mentioned above in the comments of figure 1.3, a change in the distribution
of a species have the potential of being a contributory cause of a variation
in the ecological communities.

Exctinction line

a) b) c)

d) e)

Figure 1.4: Four remarkable possible results of uphill shifting for a single species.
In the sketches of the mountains, the dashed and the dotted line represent, re-
spectively, the upper and the lower bound of the species distribution, while the
grey area is the actual distribution. a) Initial state; b) Upshift of the upper
boundary only; c) upshift of the lower boundary only; d) equal upshift of the
lower and the upper boundary; e) Upshift of the lower boundary over the moun-
tain ridges, which are indicated with a dashed-dotted line (Physical Extinction
line).

On the Alps, there are clear evidences that alpine plants are shifting
upwards (Walther et al., 2005); the rapidity of the responses varies with
the vegetation type, and is faster for ruderal plants as rockfield pioneers
(Grabherr et al., 1994) and snowbed vegetation (Bahn & Körner, 2003).
The lower edge of nival and sub-nival plants is contracting and there is a
concurrent expansion of alpine pioneer species at their leading edge (Pauli
et al., 2007). Parolo & Rossi (2008) showed that, in Central Alps, upper
limit of vascular plants shifted between 1950s and 2000s at a speed of 23.9
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m decade-1 (mean of 52 species), with a speed that is even faster for fast
migrants, thus suggesting that the upward shift is limited by the dispersal
ability. Moreover, they also registered an increase in the number of species
which is maximal between 2800 and 3100 m. Cannone et al. (2007) re-
port, matching the distribution of the plant communities of 1953 and 2003,
an upslope shift and an expansion of the shrubs, together with a reduction
of the alpine meadows and the snowbed vegetation, which results partic-
ularly sensitive to the change. The response of the treeline is slower and
more complex (Leonelli et al., 2010) because it involves many site-specific
factors such as, for example, the abandonment of pastures. However, the
most important factor in controlling the treeline position at global scale is
the soil temperature (Körner, 2004), and the air temperature can be used, in
the Alps, as a proxy of the treeline elevation (Ellenberg, 1996). The differ-
ent rates of uphill movement leaded to a variation of the community com-
position at high alpine sites (Keller & Körner, 2003), with an increase of
species richness (Pauli et al., 2007; Parolo & Rossi, 2008). This increase in
species richness is expected to be only temporary, because climate warming
is likely to reduce alpine biodiversity by pushing the summit species out of
their ranges (McCarthy, 2001; Theurillat & Guisan, 2001). Moreover, cli-
mate warming increases the risk of invasions by indigenous species. For
example, Walther et al. (2002) shows that the decrease in the number of
frost days favoured the invasions of evergreen broad-leaved vegetation in
southern Switzerland.

Effects on the alpine fauna. In analogy with the plants, the registered and
the expected effects of climate change on the fauna are mainly related to
changes in the physiology, phenology and spatial distribution. However, for
the alpine fauna there are fewer study about the impacts of climate change
than for flora. Theoretically, the shifting response of fauna can be faster
than the response of vegetation, because mobile species do not need to wait
until the following generation to change position. This characteristic in-
creases the plasticity of the ecological niche of the animals, and makes them
more efficient in responding to the extreme events. However, a mismatch
in time or space of the responses in trophically interacting species can have
dangerous consequences at ecological and evolutionary time scales (e.g.
see Schweiger et al., 2008).

The upward shift in fauna has been registered, for example, in the pine
processionary moth (see figure 1.5.b), with an altitude expansion of 110-
230 meters between 1972 to 2004 (Battisti et al., 2005). Studies performed
in the Stelvio National Park (Lombardy, Italy) have also shown one of the
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firsts impacts of climate change on alpine communities; the retreat of the
glaciers is in fact the main driver of the changes in spider (Gobbi et al.,
2006) and carabid (Gobbi et al., 2007) communities. Among the mam-
mals, the males of the Alpine ibex have shown, in the Swiss National Park,
a increase in the summer altitude of about 250 meters in 19 years (Herfindal
et al., 2012), thus increasing the overlap between the male and the females
territory. In such situation, it is likely that the interspecific competition
increase, thus leading to a reduction in survival or fertility. On the same
species, the Alpine ibex, many studies have been conducted to understand
the role of climate in driving the population dynamics of the Gran Par-
adiso National Park (GPNP) population (e.g. Jacobson et al., 2004; Lima &
Berryman, 2006). The main reported effect is a decrease in winter survival
associated to high winter snow depths. Moreover, we further improved the
study of the ibex population in GPNP, and we therefore address the reader
to chapters 5 and 6 for a deeper description of this case study.

(a) Change in phenology (b) Upshift

Figure 1.5: Two examples of registered impacts of climate change on phenol-
ogy and species distribution. a) plot retrieved from Tafani et al. (2013): the
decrease in winter snow depth can explain the reduction of litter size for the
Alpine marmot; b) plot retrieved from Battisti et al. (2005): evidences of an up-
hill shifting of the lower boundary of the processionary moth in northern Italy
between 1975 and 2004.

In the climate change context, the study of the habitat preferences is cru-
cial to predict the effects, on the species, of habitat modifications. Habitat
loss and fragmentation can in fact reduce the carrying capacity and increase
the possibility of local extinctions. Revermann et al. (2006) studied the fu-
ture suitability of the habitat for the rock ptarmigan (Lagopus mutus), an
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high altitude small grouse, on the Swiss Alps. The future projections, de-
veloped according to the climatic scenarios of the 4th assessment report,
show that the suitable habitat can decrease to less than one third until 2070.
The reduction of the available habitat can also be driven by the competition
with other species, as for the mountain hare (Lepus timidus), for which the
predicted suitable habitat is shrank both by the climatic variation and the
competition with the European hare (Lepus europaeus).

As for phenology, an example of recorded change is presented in Tafani
et al. (2013) for an high altitude rodent: the Alpine marmot (Marmota mar-
mota). The authors show that the dimension of the litter decreases over time
as a consequence of the decrease in the snow cover, probably because an
higher snow cover in winter increases the burrow isolation and, thus, the
winter survival (see figure 1.5a). In fact, the Alpine marmot hibernates
during winter and its energy consumption during hibernation is strongly
dependent on the temperature in the burrow, as we will further describe in
chapter 3.

1.2 Objectives and thesis structure

This thesis aims at studying the habitat preferences and the population dy-
namics of the high altitude alpine fauna in the climate change context. Also,
we investigate the sensitivities of three species on the occurred and expected
impacts of climate change in the fragile high altitude environment.

We study the habitat preferences using Species Distribution Models
(Guisan & Thuiller, 2005; Meynard & Quinn, 2007), which describe the
relationship between environmental variables (geomorphology, vegetation,
climate, anthropic influence ...) and the potentiality of a territory to host
a species. In particular, in chapter 3 we develop small scale species dis-
tribution models, which are more apt to identify the abiotic and the biotic
variables that determine the habitat preferences. Knowing the potential re-
sponse on the abiotic and biotic factors to the climate change, this type of
models permits to surmise the potential indirect impacts on the species un-
der study. However, species distribution models identify all the area that
are potentially suitable for the species, thus they are static and developed
under the hypothesis that the population is at its carrying capacity.

Temporal dynamics are instead taken into account in population dy-
namics models, which study how the number of organisms of a species, in
a certain place, changes over time. This variation is mainly driven by three
demographic processes (Begon et al., 2009): birth, death and migration.
Given the number of individuals at time t (Nt), the number of individuals
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at time t+1 (Nt+1) is the result of the realization, between time t and t+1,
of the three demographic processes listed above:

Nt+1 = Nt +Births−Deaths+ Immigrants− Emigrants

where births, deaths, immigrants and emigrants are expressed in number of
individuals. The science that studies the individuals of the same species,
how they make up the populations in which they exist and how these pop-
ulations change over time is called population ecology. Our focus, in this
thesis, are the birth and death processes, while we do not explicitly take
into account migration processes. In chapters 4, 5 and 6, we investigate
the effects of the climatic variables on the demographic parameters, such
as the fertility and the survival, of the populations under study. While in
chapter 4 the main target are the identification of the most important cli-
matic variables and the detection of the density dependence, in the subse-
quent chapters we focus on investigating the nonlinear effects of climate
and their relationship with the intrinsic characteristics of the population,
namely density and age structure.

The methodological fil rouge that lies beneath all the chapters is the
identification of the model structures and of the explanatory variables that
are more likely to explain the processes under study. This analysis, often
called model selection, is the subject of chapter 2. Model selection includes
the formulation of ecological competing hypothesis, their translation into
mathematical models, the model identification (or parameter calibration),
and, finally, the choice of the best model (or models, if the selection of a
single best model is not safe). Of course, to tackle the listed problems, there
are many possible strategies and many methodologies, that is not possible,
nor useful, to extensively describe in this work. Therefore, in chapter 2 we
mainly concentrate on the description of the model selection methods that
are used in following chapters of the thesis.

Chapters 3 - 6 present study cases and are focused on analysing the habi-
tat preferences (chapter 3) or the population dynamics (all others) of three
high altitude species, which are reported to be sensitive to climate change,
and which are chosen considering the possibility of recovering data:

• Alpine marmot (Marmota marmota), a small mammal for which we
developed species distribution models; the study on Alpine marmot is
described in chapter 3.

• Black grouse (Tetrao tetrix), a tetraonid bird for which we studied the
influences of density and meteorological variables on its demographic
parameters (chapter 4);
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• Alpine ibex (Capra ibex ibex), a large long living mammal for which
we developed dynamical models considering the population structure
at different levels of detail in chapters 5 and 6.

In the following, we summarize the main contents of each of the application
chapters.

Chapter 3 We study the interaction between the presence of Alpine mar-
mot and the fine scale characteristics of the environment. In the climate
change context, in which there are evidences of a fast variation in the distri-
bution of the alpine vegetation, it is important to investigate these interac-
tions to better understand how the expected changes in the alpine flora can
affect the distribution of the fauna. This species has been chosen because
marmots are highly sedentary and live in burrows which are dug deep in the
ground. Therefore, its habitat needs are strongly dependent on the condi-
tions surrounding the burrows. The position of burrows is thus likely to be
affected by climate change through the modification of abiotic (e.g. tem-
perature, permafrost) and biotic (e.g. vegetation) factors. Moreover, Alpine
marmot has contrasting needs that can potentially determine very different
responses to climate warming. Since there are no available data, field stud-
ies were carried out in collaboration with the Stelvio National Park.

Chapter 4 We investigate the relationships between the demographic rates
of the Black grouse and the interplay among population density, climate
and geographical position of the population. The case study are the Black
grouse populations in the alpine districts of the Piedmont region. Even if
it is not considered a threatened species, Black grouse abundances have
shown a declining in the last decades. However, there are still few publica-
tions that investigate, for the alpine populations of this tetraonid, the effects
of climate on the population dynamics. Published studies focus mainly on
populations living in “lowlands”, thus in an environment which is struc-
turally different from the Alps. For lowland populations, changes in phe-
nology caused by climate change have already been registered (Ludwig &
Alatalo, 2006). Since there are fewer informations on the interaction be-
tween climate change and alpine populations of grouse, the starting point
is an high uncertainty about which climatic factors are the most important
in driving the population dynamics. Unfortunately, the quality of the avail-
able data is not optimal, because data series are relatively short in time and
have a coarse spatial resolution. These conditions make the model selec-
tion and model averaging methods described in chapter 2 particularly suit-
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able. To investigate the potential effects of climate change on the species,
the constructed models are used to make future projections of the popula-
tion abundance, using exogenous variables derived from the downscaling
of global climate change scenarios. The chapter is based on contributions
presented at two conferences (Mignatti et al., 2013a,b), and co-authored by
R.Casagrandi, A.Provenzale and M.Gatto.

Chapter 5 We develop dynamical models for the Alpine ibex population
of the Gran Paradiso National Park (Italy). Ibex survival has been shown
to be sensitive to both the amount of snow fallen during winter and the age
of the individual, but the influence of population structure on demographic
parameters has never been considered in a population dynamics model. In
this case, the decision about which meteorological variables are included
in the model is based on previous studies, which underline the detrimental
effect of winter snow depth on growth rate. We investigate the role of den-
sity and winter snow depth in affecting five demographic rates calculated
using the yearly censuses: growth rate, fertility, survival of adult females,
survival of adult males and survival of kids. Moreover, nonlinear effects
of the climatic variable and the density are tested. The chapter is based
on Mignatti et al. (2012), co-authored by R. Casagrandi, A. Provenzale, A.
von Hardenberg and M. Gatto.

Chapter 6 Senescence, the process for which fertility and survival de-
crease in old individuals, is a commonly reported process for long living
mammals as the Alpine ibex. Using the same case study of chapter 5,
we present a method to take into account the complete age structure of
the population and the senescence processes in modelling the dynamics of
long-living mammals for which a relatively long data series is available. In
other words, the survivals and the fertilities that in chapter 5 are defined for
each population compartment (e.g. the survival of the adult females com-
partment), here are defined as age-specific (e.g. the survival of females of
age 2, age 3, ...). However, the complete age structure is not available in
the census data. The proposed methodology permits to reconstruct the age
structure of the population starting from the censuses and without using
Capture-marked-recapture data. Using developed models, we investigate
the interplay among density dependence, age structure and climatic influ-
ence in driving the population dynamics of Alpine ibex.
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CHAPTER2
Model Selection and Multimodelling

Aim of this chapter is to describe the model selection techniques that will
be used in the thesis to choose the best models for representing the systems
under study. Modelling has here two main objectives, and the term “best”
used in the previous sentence embraces both. The first objective is to select
models that have a good predictive ability, while the second objective is to
select models that can help in the ecological interpretation of the system.
It is therefore important to focus the attention both on the formulation of
the ecological hypothesis and on the mathematical and statistical methods
to be adopted. The formulation of ecological hypothesis is necessarily and
strongly problem-dependent, therefore it is only marginally discussed in
this chapter, while it is specifically treated for each application in each of
the following chapters.

Of course, the chapter is not intended to be an exhaustive dissertation
on the model selection per se, which would be impossible since a massive
quantity of books and papers have been (fully or partially) devoted to this
argument. We rather concentrate on the most important concepts that are
needed to understand the methodologies used in the applications presented
in this thesis.

The traditional way of estimating model parameters assumes that the
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Chapter 2. Model Selection and Multimodelling

model structure (or meta-model) is a-priori known, and that it is the true
model that generated the data (Box et al., 1994). If the system under study
is too complex or involves mechanisms that are not deeply understood,
the a-priori knowledge is often too weak or too complicated to define a
unique model structure. Effects of climate change on the species distribu-
tion and population dynamics is a prototypical example of such a complex
phenomenon. In fact, even if one restricts the focus on the effects of a vari-
ation in temperatures, only some specific effects of this variation on some
particular biological parameter of the species might have been studied (e.g.
see the studies on the hibernation of marmots in Arnold (1988); Arnold
et al. (1991); Ruf & Arnold (2000)). Unfortunately, though, the overall
effects of this process on population dynamics and habitat preferences are
usually less (or not) known. A variation in the climatic conditions have in
fact both direct effects on the species (e.g. thermoregulation, water needs),
and indirect effects, since it can influence either the biotic and the abiotic
components of the ecosystems.

However, as brilliantly summarized by Box & Draper (1987):

“essentially, all models are wrong, but some are useful.”,

thus, scientists can formulate competing hypotheses on the subject of the
study and translate them into mathematical models that can be rigorously
compared. Once the set of competing models (M = {m1, . . . ,mz}) is
defined, the objective of model selection is to find the most useful model
among all the wrong (sensu Box & Draper, 1987) candidates, taking into
account that its maximum complexity must be limited by the number of
available observations (principle of parsimony). The model selection per-
mits to simultaneously contrast several hypotheses against data, and it is a
sound alternative to the classical null hypotheses testing, in which only two
alternative hypothesis can be confronted at a time.

Johnson & Omland (2004) provides an interesting review of the model
selection approach in the context of ecology and evolution, which we used
as a starting hint to define the following model selection steps:

step 1. Formulate ecological competing hypotheses.

This step is based on the prior knowledge that the scientist might have
of the system, taking into account his/her personal experience and/or
the previous works published on the matter. It involves the descrip-
tion of the most important physical mechanisms that can influence the
system under study.
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This step is important to avoid the testing of “all” the possible models,
thus limiting the backward hypothesis formulation, on which Burn-
ham & Anderson (2002) put a particular warning:

“Even in a very exploratory analysis it seems poor practice
to consider all possible models; surely, some science can
be brought to bear on such an unthinking approach (oth-
erwise, the scientist is superfluous and the work could be
done by a technician).”

step 2. Translate the competing hypotheses into competing models

Roughly speaking, at this step we need to:

• identify the dependent variable (or variables), i.e. the effects;

• identify the possible explanatory (independent) variables, i.e.
the causes or the covariates;

• identify the possible functional forms that link the independent
and the dependent variables.

The difference between the dependent and the independent variables
is not always as sharp as it would be desired. For example, in an au-
toregressive model the value of a dependent variable at time t depend
on itself at the previous time steps. The different functional forms
and the inclusion of different sets of explanatory variables leads to
the definition of the competing model structures.

In the cases where the number of candidate model structures based on
our a-priori knowledge is too large, it is a good practice to reduce the
model space at this step through a pre-analysis of data. This typically
happens when there are weak prior informations about the system.
For example, in chapter 3, before model selection, if two explana-
tory variables are too correlated with each other, we remove one of
the two. Another example is reported in chapter 4: in this case we
reduced the number of explanatory variables by removing those that
are not significantly correlated with the dependent variable. More-
over, we reduced the possible functional forms properly aggregating
data (see the specific chapter for the methodological details).

step 3. Calibrate the model parameters

Once the set of candidate model structures is designed, each model
must be fit to the observed data to calibrate its parameters. The model
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fitting is usually performed through the optimization (minimization
or maximisation) of a suitable figure of merit. Two paradigmatic ex-
amples of figure of merit are the Likelihood and the sum of squared
errors. A notable counterexample is the Bayesian fitting, which does
not involve any optimization, as will be clear at the end of the next
section.

step 4. Choose the best model(s)

The objective is to find which model is the more supported by the
data. Several methods have been proposed to solve this problem. The
simplest way is to directly match the figures of merit used for the
model fitting, or other indicators of fitting performances (e.g. the R2

statistic). This approach does not consider the Occam’s razor princi-
ple of parsimony, which states to “shave away all the unnecessary”.
Indeed, a too complex model has structurally a good model fitting on
the data used for calibration but it has also a poor predictive power. In
the case of nested models (models that can be obtained by restricting
a parameter in a more complex model to be zero) a model selection
strategy is to perform a series of null hypothesis testing, matching a
couple of models at each iteration (stepwise regression). For exam-
ple, the likelihood ratio test uses the χ2 statistic. These methods have
several problems, e.g. the order of comparison can influence which
is the best model selected. For this and other reasons (see Whitting-
ham et al., 2006) model selection criteria are to be preferred over
the stepwise regression or analogous methods. Two notable exam-
ples of model selection criteria are the Akaike Information Criterion
(described in section 2.2) and the Schwartz Information Criterion (de-
scribed in section 2.2).

When model selection does not clearly select a single model, multi-
model approaches permit to make inferences based on a set of com-
peting models.

step 5. Use the model

Remembering the famous quote of Box & Draper reported above, the
developed model must be useful in some way. Once the model has
been selected, it can be used to make inferences on new data, either
to test the predictive power of the model or to know the outcome
in points that are actually unknown. Moreover, the choice of a par-
ticular model against its competitors permits to confirm or deny the
initial ecological hypothesis, or to provide the basis of some back-
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ward interpretation. As stated while describing step 2, the backward
interpretation is not always recommended. However, it is sometimes
useful to “let the data speak” if a clear interpretation of the results can
be produced.

Steps 1 and 2 are clearly problem-dependent and are specifically defined
for each problem, thus they are described in the following chapters for each
specific case study. Conversely, steps 3 and 4 are less problem specific, and
are described in sections 2.1 and 2.2, respectively.

2.1 The estimation problem

Broadly speaking, given the structure of a mathematical model and a set
of observations, the estimation problem consists in assigning a value to the
parameters of the model, so that the model fits the data in the best way it
can. This generic definition can be applied both to statistical and dynamical
models. According to this definition, the estimation problem typically takes
the form of an optimization problem (but we describe below a remarkable
exception), in which the objective function to be minimized is a measure
of the distance between the observations and the model (or the predictions
of the observations, made by using the model). Here, we summarize three
paradigmatic approaches to perform the estimation of the parameters. The
first two approaches, least squares and maximum likelihood are basically
optimization problems, while the latter, the Bayesian estimation, can not
be confined in this definition. Section (2.2) is useful to understand the
model selection criteria and the estimation choices made in chapters 5 and
6, while the other section of the chapter present and discuss the Multimodel
inference and the Bayesian Model Averaging that will be used, respectively,
in chapters 6 and chapters 3 and 4.

2.1.1 Least squares

The sum of squared errors (SSE) is probably the most used figure of merit
in many scientific fields. Given a set of n observations, y = [y1, ..., yn]
and the corresponding estimates produced by a model (ŷ = [ŷ1, ..., ŷn]),
the sum of squared errors is calculated as:

SSE =
n∑
i=1

(yi − ŷi)2 (2.1)

With the terminology least square methods (LS) the literature refers to
set of standard approaches that aim at minimizing the SSE. The key for the
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success of LS methods is that they are particularly simple to computed for
linear regression models of the type:

y = β0 +Xβ + ε (2.2)

where X is the (n × k) design matrix, i.e. the matrix having as columns
the values of the k explanatory variables. β0 is the unknown intercept, β
is the (k × 1) vector of unknown coefficients and ε is the (n × 1) vector
of the error terms, which are often modelled as independent identically
normally distributed random variables with mean 0 and variance σ2: εi ∼
N(0, σ2). The vector of the unknown parameter is θ = {β0,β, σ}, which
is characterized by the length K = k + 2. The parameter estimates θ̂ are
those that minimize the squared error

∑n
i=1 ε

2
i , and define a regression line

that is the “best fit” (Burnham & Anderson, 2002). In this case, the SSE
can be computed as:

SSE =
n∑
i=1

(yi − β̂0 − xiβ̂)2 =
n∑
i=1

(εi)
2 (2.3)

where β̂0 and β̂ are, respectively, the LS intercept LS vector of estimated
coefficients, while xi is the vector of values of the explanatory variables
for the ith observation.

2.1.2 Maximum Likelihood estimation

Maximum Likelihood (ML) was explicitly developed as a technique by R.A.
Fisher between 1912 and 1922 (Aldrich, 1997) and it is almost as widely
used as the LS. As suggested by its name, this technique aims at finding the
values of the parameters for which the model likelihood reaches its maxi-
mum value. For a single observation, the likekihood is the probability that
the model generates exactly the measured observation: Pr(yi|model,θ).
In words, this is the probability of observing yi given the model structure
and the parameter vector. For example, assuming that the yi ∼ N(µ, σ2)
and the unknown parameters are θ = (µ, σ), then:

Pr(yi|model,θ) =
1√

2πσ2
exp

(
−(yi − µ)2

2σ2

)
(2.4)

For a set of data, the Likelihood is the probability of all the measured
data, given the model structure and its parameters. If all the individual

30



2.1. The estimation problem

outcomes are independent then the Likelihood is:

L(θ|y,model) = Pr(y|model,θ) =
n∏
i=1

Pr(yi|model,θ) (2.5)

Notice that equation 2.5 is a product of probabilities. Thus, being each
of the terms of the product a product of values smaller than 1, the exact
value of the likelihood can be numerically difficult (or impossible) to cal-
culate. It is therefore often and more safely calculated the Loglikelihood

logL(θ|y,model) =
n∑
i=1

log[Pr(yi|model,θ)] (2.6)

The value of θ that maximizes the Likelihood is usually called Maxi-
mum Likelihood Estimation (MLE), and is indicated as θ̂. θ̂ is an asymp-
totically unbiased estimator of θ, and it is also asymptotically normally
distributed (Wasserman, 2000)

To clarify the concepts, focus again on the example of the linear regres-
sion model reported in equation 4.5, for which the SSE has been shown. In
that case the vector θ has K = k + 2 parameters, namely the intercept β0,
the k parameters of the vector β and the unknown error variance σ2. Since
the errors are supposed to be normally distributed, given the parameter vec-
tor θ, the probability of the ith observation is

Pr(yi|θ) =
1√

2πσ2
exp

(
− ε2

i

2σ2

)
(2.7)

Consequently, the Likelihood measured on the entire dataset is the prod-
uct of these over the n observations:

L(θ|y) = Pr(y|θ) =
n∏
i=1

1√
2πσ2

exp

[
−1

2

(εi
σ

)2
]

=

(
1√

2πσ2

)n
exp

[
−1

2

n∑
i=1

(εi
σ

)2
] (2.8)

Since the ML estimator of the error variance is σ̂2
ML = SSE/n (see for

example Gnanadesikan & Wilk, 1970), the maximised Likelihood is:

L(θ̂|y) =

(
1√

2πσ̂2
ML

)n

exp

[
−1

2
n

]
(2.9)
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or, equivalently, as Log-likelihood

logL(θ̂|y) = −1

2
n log(σ̂2)− 1

2
n log(2π)− n

2
(2.10)

In the Loglikelihood calculations the two constant terms are often omitted,
leading to the approximation logL(θ̂|y) ≈ −1

2
nlog(σ̂2).

By contrasting equations 2.3 and 2.10, it is easy to see that the maximum
of both functions is obtained for the same parameter setting. More gener-
ally, assuming that the errors are independently and normally distributed,
then the MLE and the LS methods produce the same values for the esti-
mates of the structural parameters (but not for σ2) for linear and nonlinear
models (Burnham & Anderson, 2002). In the linear case, the LS estimator
of σ2 is in fact σ̂2

LS = SSE/(n − (k + 2)), while the corresponding ML
estimator is σ̂2

ML = SSE/n.

2.1.3 Bayesian approach

The Bayesian method has been invented by Reverend Thomas Bayes (Bayes,
1736). The central idea of the method is that, before using of the observa-
tions, we do have beliefs on the system that are determined by our a priori
knowledge, which depends on our past experiences and past observations.
The existing beliefs are called prior, and are usually defined as probabilis-
tic distributions. For example the prior over the parameters is Pr(θ) and
represents how likely are the different values of θ (King et al., 2010). The
“new” observations that come in can modify our prior, which has to be
taken into account. The distribution of a quantity of interest calculated
using both the prior and the observations is called posterior, because it is
defined after having incorporated the new informations. The posterior dis-
tribution of the parameters, given the observations, is Pr(θ|y). Of course,
the posterior distribution (and in some cases the prior distribution) of the
parameters depends also on the design matrix (X), but here we simplify the
notation omitting this dependency. However, we will explicit the use of X
in the next section, while describing the g prior (see below).

Given the observations (y) and the prior(Pr(θ)), Bayesian parameter
estimation calculates the joint distribution of all the posterior values of the
parameters using the Bayes’ theorem:

Pr(θ|y) =
Pr(y|θ)Pr(θ)∫
Pr(y|θ)Pr(θ)dθ

=
L(θ|y)Pr(θ)∫
L(θ|y)Pr(θ)dθ

∝ L(θ|y)Pr(θ)

(2.11)

32



2.1. The estimation problem

As stated by the equation, the Bayesian estimation of the parameters:
i) returns the posterior distribution of the parameters and not a point as
the MLE and the LS methods (which, by contrast, return the confidence
intervals); ii) does not need to solve any optimization problem. However,
other computational problems arise from this method, since an analytical
computation of the posterior is seldom available and in most of the cases
Bayesian estimation problems have to be solved numerically. King et al.
(2010) states in fact:

“The optimisation of classical analysis has been replaced by
integration for the Bayesian approach”

For example the expected values of the model parameters is calculated as:

θ =

∫
θ

θPr(θ|y)dθ (2.12)

while the predictive distribution of yi is computed as:

P̂ r(yi|y) =

∫
θ

θPr(yi|θ)Pr(θ|y)dθ (2.13)

To solve these problems of computing the posterior and the desired in-
tegrals, the main idea is to employ simulation procedures which result in
samples from the posterior distribution, from which the posterior distribu-
tion can be approximated. A noteworthy method that follows this idea is
the so called Markov Chain Monte Carlo (MCMC). For a description of
MCMC the reader can refer, for example, to chapter 5 of the book by King
et al. (2010) and the references therein. Another interesting approach is the
Integrated Nested Laplace Approximation (INLA, Rue et al., 2009), which
is much faster than MCMC and applies to latent Gaussian models, which
are additive Bayesian models with Gaussian priors (ibidem).

Parameter prior

Integrating priors in the analysis is a peculiar characteristic of Bayesian
statistic, and constitutes the main difference with the Frequentist approach.
The prior is subjective by definition, since it represents prior beliefs on the
system. However, the importance of the prior in influencing the posterior
decreases with the evidence provided by the data. Thus, if the data are
compelling, the posterior will be dominated by the likelihood. Conversely,
if data bring little evidence, the posterior is likely to be near the prior (Win-
tle et al., 2003).
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Unfortunately, prior beliefs are often lacking because the system under
study is little known and/or an expert opinion is not available. In these
cases, a typical choice is to assign an “uninformative” prior to the parame-
ters, such as the Jeffrey’s prior (Kass & Raftery, 1995, see). Actually, it is
impossible to define a completely uninformative prior. For example, the lo-
cally uniform prior, namely a uniform prior defined over R (Pr(θ) ∝ 1 for
range [− inf,+ inf]) brings the information that each point in R is equally
likely to be the parameter value.

A convenient choice is to adopt a conjugate prior, which is characterised
by the interesting property of leading to posterior distributions of the same
family of the prior. The main advantage is that the marginal distributions
can be expressed in closed form, thus they can be often calculated analyti-
cally or, in the other cases, rapidly computed using a numerical method.

A convenient (informative) conjugate prior for the linear regression
model (equation 4.5) is the Zellner g-prior (Zellner, 1983). Papers by Fer-
nandez et al. (2001) and George & Clyde (2004) provide the details for
using the g-prior. The prior on the β parameters is defined as a normal dis-
tribution depending on the design matrix X , the variance of the residuals
σ2 and a hyperparameter (i.e. a parameter of the prior distribution) g; the
prior on σ and β0 are instead defined with improper distributions:

Pr(β|σ,X) ∼ N (βp, gσ
2(XTX)−1)

Pr(σ) ∝ σ−1

Pr(β0) ∝ 1
(2.14)

where βp is the prior expected values of the parameters. Notice that g is
the only hyperparameter that must be defined a priori. In linear regression
models, the g prior leads to the conditional posterior:

Pr(β|y, σ,X) ∼ N
(

1

g + 1
(βp + gβ̂),

gσ2

g + 1
(XTX)−1)

)
(2.15)

where β̂ is the maximum likelihood estimate of the parameters.
The expected values of the parameters is then a weighted sum of the

prior and of the maximum likelihood estimate of the parameters, where the
weights depend on the value assigned to g:

Pr(β|y, X) ∼ N
(

1

g + 1
βp +

g

g + 1
β̂

)
(2.16)

Ley & Steel (2009) reports a useful discussion of the possible values of g. If
the value of g is set proportional to the number of observations the weights
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of the prior and the likelihood depends on the available information. In the
Unit Information Prior (UIP), for example, g is equal to the sample size.
Using UIP, the log Bayes factors behave asymptotically like the Schwarz
criterion (BIC) (Fernandez et al., 2001). In chapter 4 we use a Zellner g
prior with g = n, while in chapter 3 we avoid the definition of a prior
through the use of the BIC approximation of the Bayes factor and the
MLE approximation for the Likelihood.

2.2 Model selection

Once the models belonging to the model set M have been identified, we
pass to step 4 at page 28. The objective becomes that of selecting the “best”
model, i.e. the one that better represents the system under study. The best
model should have a good fitting on the data used for calibration and, po-
tentially, good predictive performance on new data. This means that the
goodness of fit can not be the only measure used to select the best model,
but also the model simplicity must be taken into account. In fact, while the
model fitting generally increases with the model complexity, the predictive
power of a model has a maximum for an intermediate model complexity.
Therefore, the best model is a model that has a good fit and also respects
the Occam’s razor principle of parsimony.

Model selection criteria are rules that permits to simultaneously com-
pare a set of models by taking into account both the goodness of fit and
the principle of parsimony. In the model selection criteria, the model com-
plexity is generally taken into account through the number of parameters
included in the model. In the following subsections, we present four model
selection criteria that we use in the applications’ chapters: the Akaike’s
Information criterion (AIC) and it’s second order approximation version
(AICc), the Bayesian Information criterion (BIC, also called Schwartz In-
formation crition) and the Structural Risk Minimization (SRM). Moreover,
we present the Bayesian method for model selection. The presented crite-
ria are apt at analysing small data series, as is typical for several ecological
problems like those that are tackled in the following chapters. Of course,
there are other interesting selection criteria which have been proposed in
literature, such as the Akaike’s Final Prediction Error (FPE Akaike, 1970)
and the Deviance Information Criterion (DIC Spiegelhalter et al., 2002).
The former is one of the first Akaike’s attempts to develop a selection crite-
rion while the latter is a recent criterion specifically proposed for Bayesian
models. For a detailed description of these criteria we refer the reader to
the provided references.
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Akaike’s Information criterion

The Akaike’s Information criterion (AIC, Akaike, 1973, 1974) is a model
selection criterion developed in the context of the information theory. This
criteria is based on the Kullback-Leibler distance (Kullback, 1959), which
is a measure of the distance between two models. The AIC is an estimate
of the K-L distance between the candidate model and the “true” model that
generated the data, and it is defined as:

AIC = −2 logL(θ̂|y) + 2K (2.17)

where K is the length of the parameter vector θ, and θ̂ is the MLE estimate
of he parameter vector. The AIC takes into account the model complexity
through the number of parameters K, and how well the model fits the data
through the Loglikelihood.

The numerical value of the AIC has not a value per se but only if the
goal is to compare at least two different models. The selected model is
then the one that, among the candidates, is characterised by the minimum
value of AIC (AICbest). These competing models can have a different
model structure and a different parameter setting, but they must have some
common features:

1. the same response variable y;

2. the same error structure;

3. the same dataset used for calibration.

As stated in the previous section, if the model errors are independently
normally distributed with a constant error variance, logL(θ̂|y) can be ap-
proximated, up to a constant, by −1

2
nlog(σ̂2). In this case, AIC can be

calculated as:
AIC = n log

(
σ̂2
)

+ 2K (2.18)

As mentioned above, ecological problems are often characterised by
relatively small datasets. For small sample sizes, Sugiura (1978) developed
a second order bias correction for the AIC:

AICc = AIC +
2K(K + 1)

n−K − 1
(2.19)

The second order bias correction tends to zero for n going to infinity. Burn-
ham & Anderson (2002) suggest to use the AICc instead of the AIC when
n/K < 40.
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Even if the best model is defined as the one that minimizes the AIC
(or the AICc), when the distance between the best model and other mod-
els is sufficiently small, there is no a clear evidence in favour of a single
model, or, said in another way, some of the models can be indistinguishably
good. To overcome this problem, and following the principle of parsimony,
Richards (2005) propose the following alternative procedure to select the
best model. We define AICbest as the minimum AIC value among the
AIC values of all the models in the model set. Given a model mj ∈ M,
∆AICj = AICj − AICbest is a measure of the distance between the best
model and mj . The strategy is than to select the model with the mini-
mum number of parameters among those models that are characterized by
∆AICj < 4.

Bayesian Information Criterion

The Bayesian Information Criterion (BIC), also called Shwartz’s Informa-
tion Criterion has been developed by Schwarz (1978) as an alternative to
the AIC. The difference between the two information criteria is that the
BIC imposes a smaller penalty on the number of parameters than the AIC,
thus generally leading to select less complex models. BIC is defined as:

BIC = −2 logL(θ̂|y) +K log(n) (2.20)

where, as above, K is the length of the parameter vector θ, and θ̂ is the
MLE estimate of the parameter vector. The BIC can be applied under the
same conditions listed for the AIC.

As for the AIC, the best model according to BIC is the one that min-
imizes the criterion. Raftery (1995) proposes a rule to deal with the cases
in which there are models that have a BIC value near the minimum BIC
(BICbest). The distance from the model mj to the model with the min-
imum BIC is ∆BICj = BICj − BICbest The rule is then to choose
the model with the minimum number of parameters among the models for
which ∆BICj < 2.

As we discuss in section 2.2, the BIC has some interesting properties
and, under certain hypothesis, it is an estimator of the posterior probability
of the models.

Structural Risk Minimization

The Structural Risk Minimization, developed by Cherkassky et al. (1999) in
the Statistical Learning Theory framework (see Vapnik et al., 1994, for an
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overview), is probably the less used (and known) selection criterion among
those described here. Despite its weak popularity it has interesting perfor-
mances in model selection when the available dataset is small. The crite-
rion has been introduced in ecological modelling and tested against BIC
and AIC by Corani & Gatto (2007), which also provide a clear and concise
description of the criterion.

The key idea is that the elements of x are independently drawn from a
fixed but unknown distribution Pr(x) and y is drawn independently form
an unknown distribution conditional on x. Pr(x, y) is the joint probability
of x and y. The best model is the function f(x,θ) which minimizes the risk
functional:

R(θ) =

∫
X

∫
y

(y − f(x, θ))2Pr(x, y)dxdy (2.21)

The quantity can not be computed because Pr(x, y) is not known. How-
ever, for regression problems, Cherkassky et al. (1999) define a distribution-
independent upper bound for the risk functional:

max

0,
R(θ)emp

1−
√

d
n
− d

n
log( d

n
) + ln(n)/2n

 (2.22)

Where d is the Vapnik-Chervonenkis dimension (VC-dimension) andR(θ)emp
is the empirical risk, which corresponds to the fitting error of the model
(R(θ)emp = SSE/n). The VC-dimension is a measure of the model com-
plexity, which corresponds, in the linear case, to the number of parameters
of the model (k). The upper bound in equation 2.22 holds with a probability
of 1 − 1/

√
n. According to the SRM criterion, the best model is the one

that minimizes equation 2.22. SRMbest is the value of SRM associated to
the best model.

As for BIC and AIC, it is possible that models other than the best
one have a value of the criterion near SRMbest. Mignatti et al. (2012a)
propose to consider all the model which differ less than 6% from the best
one, namely the models mj for which SRMj/SRMbest < 1.06.

Bayesian model selection

The idea in the Bayesian model selection is to choose, as best model, the
one with the highest posterior probability. As for the posterior probability
of the parameters (equation 2.11), the posterior probability of the jth model
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is calculated using the Bayes’ formula:

Pr(mj|y, X) =
Pr(y|mj, X)Pr(mj)∑

mj∈M Pr(y|mj, X)Pr(mj)
(2.23)

where Pr(mj) and and Pr((y)|mj, X) are, respectively, the prior proba-
bility and the marginal likelihood of model mj .

The marginal likelihood of model mj is then:

Pr(y|mj, X) =

∫
Pr(y|βj ,mj, X)Pr(βj|mj, X)dβj (2.24)

Where Pr(y|θj,mj, X) is the likelihood for mj under parameters θj . Of-
ten, the integral in equation 2.24 can not computed analytically, thus requir-
ing numerical methods. We refer the reader to Raftery et al. (1997) for the
details about the computation of the marginal likelihood in case of linear
regression.

Here, we use the solution of equation 2.24 calculated for two specific
cases:

i- the linear regression with Zellner g-prior for the parameters;

ii- the logistic regression.

The former is the base of the models developed to study the dynamics of
the black grouse and presented in chapter 4 while the latter is the structural
shape of the models used to classify the suitability of the territory for the
Alpine marmot in chapter 3

Linear regression models have the structure presented in equation 4.5,
and the prior probability of their parameter is fixed here as in equations
2.14. Moreover, to take into account the principle of parsimony the ex-
pected value of the parameter prior βp is set to 0. Under this hypothesis,
the marginal Likelihood is:

Pr(D|mj, g,X) ∝ (y − y)′(y − y)−
n−1
2 (1 + g)−kj

(
1− g

1 + g

)−n−1
2

(2.25)
which takes into account the model complexity through the model size kj .
(George & Clyde, 2004) show that for known σ2 model selection with this
prior exactly corresponds to the use of BIC.

The logistic regression is a model structure that permits to model the
probabilities on a transformed scale (see Dalgaard, 2008). Logistic re-
gression is a generalised linear model in which the response distribution
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is the binomial distribution and the link function is the logit. If Pr(c1) is
the probability of the event (or class) c1 that to be modelled, the logit is
logit(c1) = log (Pr(c1)/(1− Pr(c1))). The logit link permits to describe
the relation between Pr(c1) and the independent variables as a linear func-
tion:

logit(Pr(c1)) = β0 +Xβ (2.26)

where the symbols have the same meaning as for the linear regression. A
deeper description of the logistic regression model for the specific problem
of modelling the distribution of a species is given in chapter 3. A conve-
nient approximation for computing the models’ marginal likelihood in the
generalised linear models is based on the BIC, described here in section
2.2. The marginal likelihood of model mj can be approximated as:

Pr(D|mj) ≈
exp(−BICi/2)∑

mj∈M exp(−BICi/2)
. (2.27)

This approximation is convenient from a computational viewpoint and gen-
erally accurate, thus, it is often adopted (e.g see Wintle et al., 2003; Link
& Barker, 2006; St-Louis et al., 2012). Using this approximation there is
no need to define a specific model prior (Kass & Raftery, 1995). The esti-
mation of the parameters for each single model is approximated using the
maximum likelihood estimation.

One of the most debated points of the Bayesian Model selection is how
to choose the model prior. This debate is enhanced by the fact that often,
as for the model parameters, the prior information on which is the prior
probability of a model is not available. Therefore, there are many attempts
to define model priors that can be considered “uninformative”, as we further
discuss at the very end of the chapter.

2.3 Multimodel

The selection of a single best model can be uncertain because many mod-
els can perform rather similarly for the chosen criterion. This problem is
referred to with the wording Model Uncertainty. Models with similar per-
formances could (i) include only few common covariates, and (ii) lead to
drastically different predictions. Effect (i) is critical if the aim is to dis-
cuss the ecological relevance of the covariates, while effect (ii) is a serious
drawback when models are used as forecast tools. In these cases, several
authors have suggested to incorporate model uncertainty into statistical in-
ference (Buckland et al., 1997; Link & Barker, 2006, e.g. see), applying
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a multimodel approach. In the multimodel approach, final inferences are
calculated as the weighted sum of the inferences produced by each sin-
gle model in the set. The multimodel methods have been developed sev-
eral years ago and are popular in statistic. However, they are still seldom
used and known in ecological applications. We present here the two most
used multimodel methodologies: i) the Multimodel Inference based on the
Akaike weights and ii) the Bayesian Model Averaging.

Although the multimodel is theoretically a generic approach, several
computational problems arise in the analysis of complicated models, espe-
cially using Bayesian Model Averaging. Therefore, multimodel approaches
have been mainly used on sets of linear regressors or on generalised lin-
ear models. In this section we therefore discuss the multimodel approach
mainly focusing on these two families of models, in which the different
model structures arise from the selection of different sets of explanatory
variables. Consider, for example a simple linear regression model structure
with no interaction terms, of the type:

y = β0,j +Xjβj + εj (2.28)

which is a version of equation 4.5 slightly modified to account for the fact
that we refer to the particular model mj . Thus, for example, Xj is the
(kj×n) design matrix containing only the kj explanatory variables included
in the model mj . Given k covariates, the model spaceM is then composed
by 2k candidate model structures, which are composed combining the k
available covariates in all the possible ways.

2.3.1 Multimodel Inference

A way to avoid excessive reliance on the single best model is the multi-
model inference, thoroughly analysed in the influential book by Burnham
& Anderson (2002). Briefly speaking, multi-model inference is realized by
assigning to each competing model in the model set M a weight which
depends on its AIC or BIC score: models with better AIC (or BIC) scores
get higher weights when the multi-model inference is computed.

For example, the Akaike weight is defined, for the model mj , as:

wj =
exp(−1

2
∆AICj)∑

mj∈M exp(−1
2
∆AICj)

(2.29)

The prediction of the observation yi made using a single model (mj) is
ŷi,j . Using the Akaike weights, the multimodel prediction made using the
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entire model setM is then:

ŷi,M =
∑
mj∈M

ŷi,jwj (2.30)

The equations 2.29 and 2.30 can be computed using all the competing
models or, as suggested by Burnham & Anderson (2002), using only the
models that are more likely to be good models, thus the model for which
∆AICj is relatively small (e.g. ∆AICj < 4).

2.3.2 Bayesian Model Averaging

Bayesian Model Averaging (BMA) (Hoeting et al., 1999) is a theoretically
sound solution to model uncertainty. BMA overcomes model uncertainty
by combining different competing models. The weights of the combina-
tion are the posterior probabilities of the competing models. BMA has
been introduced in ecology by Wintle et al. (2003) to analyse presence-
absence data, which is still the most common ecological application. For
this specific application, BMA has shown in many works better perfor-
mances than the single model approach (Wintle et al., 2003; Thomson et al.,
2007; Hamilton et al., 2009; St-Louis et al., 2012).

The link between multi-model inference and BMA has been discussed
by Link & Barker (2006) showing that multi-model inference can be seen
as a special case of BMA, in which the prior probabilities of the models are
turned into posteriors on the basis of their AIC (or BIC) scores. Therefore
multi-model inference can be fully interpreted within the BMA framework.

BMA addresses model uncertainty by combining the inferences of mul-
tiple models, and weighting them by the models’ posterior probability. The
BMA prediction is obtained by marginalizing the model variable (Hoeting
et al., 1999):

Pr(yi|D) =
∑
mj∈M

Pr(yi|D,mj)Pr(mj|D) (2.31)

where M denotes the model space and D the available dataset: D =
{y, X}. In the logistic regression case, the prediction to compute is the
probability of observing one of the two classes, namely, following equation
2.26, Pr(c1).

Equation 2.31 requires an extensive summation over 2k models. To keep
the computation feasible, Markov Chain Monte Carlo methods (MCMC)
are generally adopted to sample the model space, without thus implement-
ing all the 2k models. For small kj it is possible to exhaustively treat the
model space.
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Having used more than one model, instead of using a single model, it
can be difficult to make the proper ecological considerations on which of
the initial hypothesis is the more supported by the data. However, BMA
provides also a measure that permits to rank the contribution of each co-
variate to the final prediction. The posterior probability of inclusion of the
qth covariate (xq) is in fact a direct measure of its importance. It is com-
puted by summing the posterior probabilities of the model structures which
do include xq:

Pr(βq 6= 0) =
∑

mj∈Mq

Pr(mj|D) (2.32)

whereMq denotes the set of model structures which do include xq.
The posterior mean of the coefficient βq referring to covariate xq is

estimated as (Hoeting et al., 1999):

E[βq|D] =
∑

mj∈Mq

β̂qjPr(mj|D) (2.33)

where β̂qj is the estimate of the coefficient of covariate xq within model
mj .

Priors over the models

If a strong knowledge about the system is available, it is possible to di-
rectly assign a prior probability to each model. However, this information
is seldom alternative.

An attractive solution for linear and generalised linear models is to de-
termine the prior probability of each model through the probability of in-
clusion of the explanatory variables included in set of the k available co-
variates. A simple approach is to set the prior probability of the models
using the independent Bernoulli prior. Under this prior, each covariate is
independently included in the model with identical probability δ. Denot-
ing by kj the number of covariates included by model mj and by k the
total number of covariates, the prior probability of model mj is (Clyde &
George, 2004):

Pr(mj) = δkj(1− δ)k−kj (2.34)

which depends on the single parameter δ. This prior is also called bino-
mial prior, because the model size, measured as the number of covariates
included in the model, turns out to be binomially distributed with an ex-
pected value of kδ.
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By setting δ=1/2 one obtains a uniform prior over the models. This
choice was initially considered as a non-informative choice, but it is infor-
mative when analysed from the viewpoint of the model size. The distri-
bution is in fact quite concentrated around the value of k/2 value (Ley &
Steel, 2009), as can be seen in the example of figure 2.1. The same figure
reports also the distribution of the model priors obtained using the remark-
able priors described hereinafter.

If the objective is to be uninformative with respect to the model size, it
has been recommended the adoption of a hierarchical prior (Ley & Steel,
2009; Clyde & George, 2004). In this case, parameter δ is treated as a
random variable, with its own prior distribution. The hierarchical prior
results in posterior inferences which are less sensitive on the value chosen
for δ. A possible choice for the distribution of δ is a Beta, which generates a
Beta-binomial distribution of the prior model size, with 2 hyperparameters.
If both hyperparameters are fixed to 1, the expected model size is k/2 (as
for the uniform prior defined above), but the distribution of the prior model
size is flat (see Ley & Steel, 2009) The prior probability of modelmj which
includes kj covariates is:

Pr(mj) =
1/(k + 1)(

k
kj

) (2.35)

where 1/(k + 1) is the probability of the model size to be equal to kj and(
k
kj

)
is the number of possible model structures which contain kj covariates.

Alternative prior over the models have been also proposed. For instance
the K-L prior (Burnham & Anderson, 2002) yields posterior model proba-
bilities which correspond to the AIC weights adopted in multi-model infer-
ence (Link & Barker, 2006). The K-L prior tends to favour complex models
over simple ones, especially on large data sets:

Pr(mj) =
exp[kj log(n)/2− kj]∑

mj∈M exp[kj log(n)/2− kj]
(2.36)

The Occam prior favours instead simple models:

Pr(mj) =
exp[−kj]∑

mj∈M exp[−kj]
(2.37)

,while the complex prior favours more complicated models:

Pr(mj) =
exp[kj]∑

mj∈M exp[kj]
(2.38)
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Figure 2.1: Prior probabilities of the models as a function of the model size, ob-
tained setting k = 5 and n = 100. Five remarkable model priors (described
in the main text) are presented using different colours and markers according
to the legend. The model priors are: uniform over the models, uniform over
the model size (i.e. beta-binomial with hyperparameters fixed to 1), Kullback-
Leibler, Occam, Complexity. Panel a) prior probability of a single model having
a specific model size. Panel b) prior probability of the model size, i.e. sum of
the priors of all the models having a specific model size.

The predictive performances of these different priors depends on the
specific case study and sometimes the results are presented under different
sets of priors. In fact, the discussion about which is the best prior to adopt
is still open. For example, we proposed a methodology that, extending the
binomial prior, permits to automatize the sensitivity on the model prior in
the linear regression (Mignatti et al., 2012b) and in the logistic regression
(Corani & Mignatti, 2013b,a).

Among this variety of priors, we chose to use, for the problems in chap-
ters 3 and 4, the uniform prior, in which each model has the same prior
probability.
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CHAPTER3
Fine scale site selection of Alpine Marmot

3.1 Abstract

As described in the introduction (chapter 1) in the mountain environment
there are clear evidences of a recent upslope of many plant taxa, that is
faster for summit species. The different speed at which this upslope occurs
according to the plant type leads to potentially complicated rearrangements
of the habitats. To figure out the possible impacts of these variations on the
alpine fauna, it is important to better understand the habitat preferences of
the alpine animal species. We investigated the fine scale site selection of
the Alpine marmot in an high altitude Alpine valley, at the upper edge of its
distribution. To retrieve presence-absence data of marmot burrows in the
valley we performed fieldworks in two consecutive years (2010 and 2011).
The models were developed using the Bayesian model averaging applied to
logistic regression, and matching two alternative classification thresholds.
As potential explanatory variables, we included both variables linked with
the geomorphology of the valley and the vegetation types. To study the in-
fluence of vegetation on the probability of presence of marmot burrows, we
used a fine scale vegetation map specifically developed for the study area.
The developed models have a very good predictive ability, which is more
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balanced if the prevalence threshold is adopted. Environmental variables
that are more important in modelling the distribution of burrows are the
vegetation cover, the curvature and the aspect, while the altitude has a less
important role. The Alpine marmot shows in fact a preference for southerly
exposed slopes of the valley characterized by a moderate concavity. The
importance of the variables obtained from the vegetation map confirms the
strong relationship between the presence of marmot and the availability of
the appropriate vegetation. In particular, the areas covered with pioneer
vegetation are strongly avoided and the areas with no vegetation cover are
moderately avoided, while the other vegetation covers present in the valley
(shrubs, meadows and snowbed vegetation) favour the presence of burrows.
The obtained results, and in particular the different role of the pioneer and
the snowbed vegetation, which are both fast upshifting summit species, un-
derline the importance of understanding the pattern of vegetation change to
estimate the potential upshift of the upper bound of Alpine marmot distri-
bution.

3.2 Introduction

The study of interactions between the habitat type and the presence of the
species is a central issue in ecology (Guisan & Zimmermann, 2000). As
described in the introductory chapter of this thesis one of the main effect
of the climate change already registered on the Alps is the upward shifting
of many plant species, thus resulting in an increase of the altitude of the
tree line (Körner et al., 2007), an even faster uplift of snowbed vegetation
(Bahn & Körner, 2003) and rockfield pioneers (Grabherr et al., 1994), and
an increase of the species richness on many high altitude summits (Bahn
& Körner, 2003). To understand the possible effects of climate change
on the high altitude fauna, it is therefore important to disentangle the spe-
cific roles of topographic characteristics (especially of the altitude, which
can be seen as a proxy of the temperature) and of the vegetation types in
driving the choice of the habitat. To this aim we choose to study the dis-
tribution of marmot burrows in an high altitude Alpine valley, which is not
affected by human disturbance and for which a fine scale vegetation map
is available. The study area is located nearby the Stelvio National Park
(Northwestern Alps, Italy), in which a rapid expansion of the area covered
by shrubs has been already registered in the last 50 years (Cannone et al.,
2007). Moreover, in the last two decades the valley has been the subject of
several geological studies (see the description of the study area at section
3.3.1).
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The Alpine marmot (Marmota marmota) is a rodent endemic to Europe
and mainly distributed in the Alps (Herrero et al., 2008), that inhabits bur-
row systems at high altitude and hibernate during winter. During the hiber-
nation period, which occurs between October and March, the alpine mar-
mot relies on the body fat stored during the short summer (Arnold, 1992).
Moreover, the dependency on the body fat continues also after the termi-
nation of hibernation in spring (Arnold & Walter, 1990) and an insufficient
reserve of fat in spring can prevent the reproduction in either sexes. If the
temperatures are low in spring and reproduction takes place too late off-
spring survival is reduced because newborns do not have the necessary time
to accumulate body fat (Armitage et al., 1976). In winter, the consumption
of fat resources increases as the temperatures decrease in the hibernacula,
and individuals can interrupt the hibernation and return to euthermy if tem-
peratures are too low (Arnold et al., 1991). The social hibernation of Alpine
marmot is thus explained as a mechanism to increase the probability of win-
ter survival. The winter survival of the individuals and their reproductive
success depend therefore on climate via winter temperatures, availability
of food resources and length of the growing season (Allainé et al., 1994).
All these conditions are likely to improve with a moderate increase in tem-
peratures. On the other hand, Alpine marmots are well adapted to cold
environments and they have poor thermoregulatory abilities in dumping the
excess heat (see Hayes, 1976, for another species of marmot). As a con-
sequence, the animals reduce the time spend in above ground activity and
foraging in hot summer days (Melcher et al., 1990). Türk & Arnold (1988)
reports an increase in the activities until 25 degree Celsius, than a decrease.
This behaviour is important in limiting the lower bound of the vertical dis-
tribution of the species, because at low altitudes the time available to store
sufficient fat for hibernation can be too limited (Türk & Arnold, 1988).
Moreover, the decrease in winter snow cover can lead to a decrease in the
litter size (Tafani et al., 2013). These particular and contrasting needs act
in determining the habitat preferences of the Alpine marmot.

Past quantitative studies on the habitat preferences revealed that Alpine
marmot is a generalist species that can live in a wide range of environmen-
tal conditions (Allainé et al., 1994; López et al., 2010), and usually inhabits
meadows covered with grass or shrubs (Borgo, 2003; Cantini et al., 1997;
López et al., 2010). The altitude range is really variable on the Alps, from
1000 to 3000 m a.s.l. (Lenti Boero, 2003), with the highest suitability for
intermediate altitudes (1700-1900 m a.s.l., Cantini et al., 1997). Past stud-
ies conducted on the Alps found also a preference for southerly exposed
slopes with high solar radiation and an intermediate slope (Cantini et al.,
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1997; Allainé et al., 1994; Borgo, 2003). Allainé et al. (1994) conducted
also a study on the quantity (and not quality) of the plant cover and anthro-
pogenic disturbance, and found a maximal suitability for medium level of
plant cover and low levels of human disturbance. The presence of big boul-
ders or tall grass favours the presence of winter hibernacula (Borgo, 2003;
López et al., 2010).

Species distribution models (Guisan & Thuiller, 2005; Meynard &
Quinn, 2007) quantify the relationship between the characteristics of the
habitat and the presence of a species. They can be developed at different
spatial scale according to the aim of the study (Schweiger et al., 2012); for
example, for habitat connectivity the models developed at the landscape
scale are usually preferred, while fine scale models are more appropriate to
study the habitat preferences (Graf et al., 2005).

The objective of this chapter is to identify the fine scale environmental
variables that have the main influence on the presence of marmot burrows in
a high altitude Alpine valley, at the upper limit of marmot distribution. To
this aim, we performed a census of the marmot burrows and developed a lo-
gistic regression model which takes into account, as explanatory variables,
a fine classification of the vegetation and the topographic characteristics of
the area.

In Corani & Mignatti (2013b,a) we used the same presence/absence
dataset to test a novel Bayesian classification methodology. However, for
that work the fine vegetation map was not available and we used only a map
reporting a coarse classification of the vegetation. The results presented in
this chapter confirm the preferences reported in literature and provide new
insights on the importance of both the vegetation cover and the topography.

3.3 Materials

3.3.1 Study area

The study area is “La Vallaccia”, an Alpine valley in Northwestern Italy,
near the Stelvio National Park (see Figure 3.1). The valley has an altitude
comprised between 2100 and 3100 m above sea level, and has been chosen
because many informations are available on its geological and vegetation
characteristics. In particular, the status of the permafrost is constantly mon-
itored and a model that predicts the presence of permafrost is available for
the area (Guglielmin, 2003; Guglielmin & Camusso, 2004). Moreover, a
detailed map of the vegetation, reporting the main vegetation associations
in the valley, has been developed by N. Cannone (personal communication)
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and is reported in figure 3.2. Another important factor that determined the
choice of the “La Vallaccia” is the limited human disturbance, since no
marked trails are present, and only a winter mountaineering route is re-
ported in the tourist maps.

3.3.2 Field surveys

The field surveys where performed in two consecutive summers in July and
August by myself together with professor Casagrandi, professor Gatto and
three bachelor students. Surveys aimed at the identification of the position
of the Alpine marmot burrows and at the classification of the character-
istics of their surrounding territory. The areas of the valley in which we
performed the censuses were chosen in order to explore the different habi-
tat present in the valley, taking into account the objective of collecting data
in areas characterized by different altitude, slope, aspect, vegetation asso-
ciations and geological formations.

Each census area was exhaustively explored by the operators, to as-
sure with an high expectation that all the excavations were detected. Each
found burrow was geo-referenced using a GPS receiver (MobileMapper R©

Thales), and positional data were post-processed to obtain sub-metric pre-
cision. Census areas and position of the burrows are reported in Figure 3.1.
The burrows were also assigned to two alternative categories (called types),
main burrows or refugees according to their depth measured using a walk-
ing stick or by hand. The former category was assigned if the bottom of
the burrow was not reached, while the latter was assigned if the bottom was
reached. Winter burrows were not distinguished from main burrows since
the censused were performed in summer. Moreover, the activity status of
the burrows (used or abandoned) was assigned according to evident traces
of recent use. Other informations were recorded to characterize the burrows
and their surroundings, as we summarize in table 3.1. The recorded values
refer to a square of 5m x 5m designed around the burrow, fixing the position
of the square so that the burrow is at the intersection of its diagonals, and
two of its sides are parallel to the maximum slope direction. However, a
full description of the data collected during censuses is out of the scope of
this chapter, since we used only the positioning of the burrows to develop
the species distribution models.

The total area censused in the two years was around 94 hectares and
data about 446 burrows were collected, among which 412 are reported to
be active. To develop the species distribution model, we divided the area
into cells of 10 x 10m, thus obtaining a dataset of 9429 observations. The
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Figure 3.1: Map of the marmot censuses. The census areas are shown with a
transparent mask, while the burrows are shown as small circles.
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Table 3.1: Data collected to characterize the burrows and their surroundings, sub-
divided in three categories. The entrance data refer to the burrows only, while
the data belonging to the other categories refer to the 5mx5m square designed
around the burrow. The values that can take the the entrance data type and
the activity are described in the main text. The predominant grain size has 4
categories: sand (<2mm), gravel (2-60mm), shingle (60-250mm) and blocks
(>250mm). The vegetation context has 6 categories: woodland, continuous
Alpine meadows, discontinuous Alpine meadows, shrubs, dwarf shrubs and pi-
oneer vegetation. The geomorphological localization has 4 categories: slopes,
scree slopes, valley floor and morainic ridge.

Entrance data Geomorphological data Vegetation data
Date Aspect Vegetation context

GPS coordinates Slope % of tree cover
Type Predominant grain size % of shrub cover

Activity Geomorphological localization % of grass cover
List of predominant species

fraction of presence (prevalence) is 0.046.

3.3.3 Environmental data

The environmental data used in the study were calculated using the infor-
mation from five meteorological stations and from two digital maps: the
digital terrain model (DTM), available with a resolution of 10 x 10m and
a fine scale vegetation map (Nicoletta Cannone, Università dell’Insubria,
personal communication).

The original categories of the vegetation, reporting a fine description of
the vegetation biocenoses, were redefined into six categories, which are
more general and likely to be more representative to model the habitat
choices of the Alpine marmot:

• Alpine shrubs (including also dwarf shrubs);

• Alpine meadows;

• Mosaic of Alpine meadows and Alpine shrubs;

• Snowbed vegetation;

• Pioneer vegetation;

• No vegetation cover.

57



Chapter 3. Fine scale site selection of Alpine Marmot
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Figure 3.2: Map of the vegetation cover, where the categories are defined accord-
ing to the description given in the main text.

The air temperature and the snow depth variables were used to calibrate
the permafrost (soil temperature) model and were taken from five different
meteorological stations located near the “Vallaccia” Valley, as summarized
in table 3.2. Meteorological data were provided by the regional environ-
mental agency ARPA Lombardia upon request.

Table 3.2: List of the meteorological stations used to calibrate the permafrost
model.

Station name Snow depth Air temperature Elevation (m a.s.l.)
Livigno, La Vallaccia available available 2650
Livigno, San Rocco not available from June to October 1865
San Colombano, Oga available available 2290
Valdidentro, Cancano not available from June to October 1940
Valfurva-S.Caterina available not available 2135
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3.4 Methods

The covariates obtained by the DTM and the meteorological data are al-
titude, slope, aspect (the direction in which the slope faces) topographic
ruggedness index (TRI, Riley et al., 1999), hillshade, curvature and soil
temperature. The aspect, usually reported as the the angle from North, was
divided into two sub-variables, called northitude and eastitude. The northi-
tude is calculated as the cosine of the angle from North, while the eastitude
as the sine of the same quantity. The northitude is therefore an indirect
measure of the attitude of a slope to receive the sunlight in the hottest hours
of the day, and it assumes the value +1 if the slope is northerly exposed
while a value of -1 if it is southerly exposed. The eastitude measures the
distribution of the sunlight during the day, assuming a value close to +1 if a
slope is sunny mostly during the sunrise, and close to -1 if it is sunny dur-
ing sunset. The TRI is measured in meters and measures the topographic
heterogeneity of the terrain. Hillshade and curvature were calculated using
the default functions of ArcGIS10 R©. The hillshade is an estimate of the
light received per unit area in each cell. A positive curvature indicates the
surface is upwardly convex, while a negative curvature indicates the sur-
face is upwardly concave. The soil temperature is a yearly mean value and
was calculated starting from the DEM and the data of air temperature and
snow depth, using the model developed by Guglielmin (2003). As a pre-
processing step we removed too highly cross-correlated covariates, namely
those that have a Pearson correlation coefficient (ρ in this chapter) larger
than 0.8 or smaller than -0.8 (|ρ| > .8).

The Alpine marmot is a mobile species, which uses a wide territory
for its activities. Therefore we hypothesize that the decision of digging a
burrow in a given cell depends also on the conditions of the surrounding
cells. The value of each environmental variable is therefore averaged over
a circular area designed around each cell, which we refer to as the buffer
area. The dimension of the buffer area has been set to according to the
typical extension of the Alpine marmot home range, which is comprised
between one and three hectares (Perrin & Berre, 1993; Lenti Boero, 2003).
We therefore tested three different options for the buffer area size: one,
two and three hectares. The values of the covariates, previously defined on
the cell basis, were therefore recalculated as their mean value in the buffer
area. We used a different aggregation strategy for the categorical vegetation
variables. Using the buffer area they were in fact redefined as the % of
cells with a given vegetation cover in the buffer area. Moreover, the %
of vegetation cover covariates were log-transformed, and one of them was
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alternatively removed from the dataset, in order to reduce their correlation
and avoid singularities.

Following the concept of ecological niche, it is often unlikely that the
best environment for a species occur at the maximum or a minimum of
the values of an environmental variable, while it is more probable to have a
range of intermediate values that are suitable for the species. The covariates
obtained from the DTM were therefore potentially included in the models
both linearly and quadratically. However, we did not consider the quadratic
terms of the aspect variables, because the preference on intermediate values
is already potentially included having defined the two quantities Northitude
and Eastitude.

The goal is to predict the outcome of the binary class variable C, whose
classes c0 and c1 denote, respectively, the absence or presence of a species.
To achieve this goal we used the BMA (see section 2.3.2 for a description)
applied to the logistic regression . The main aspects of the logistic regres-
sion are described in section 2.2. To calculate the marginal likelihood of
each model we used the BIC approximation (see equation 2.27 at page 40),
which is implemented in the R package “BMA”. Usually, the logistic re-
gression returns, as prediction, the most probable class, i.e. the class c1

(presence) is returned if Pr(c1) > 0.5. However other choices are possible
for setting the probability threshold τ above which the class c1 is returned,
as we explain below.

Since both the predictions and the observations of the classes are boolean
(i.e. 1=presence or 0=absence), there are four possible configurations for
each validation point: (i) right predicted presence (true positive), (ii) wrong
predicted presence (false negative), (iii) right predicted absence (true neg-
ative) and wrong predicted absence (false negative). From now on we will
use TP to indicate the number of true positives in a validation set, FP for
the number of false positives, TN for the number of true negatives and FN
for the number of false negatives, as summarized in Table 3.3.

Actual
Predicted 0 1

0 True Negative (TN ) False Negative (FN )
1 False Positive (FP ) True Positive (TP )

Table 3.3: Contingency table.

Starting from the contingency table, two measures that separately con-
sider the two types of errors are:
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i the true positive rate, or sensitivity, calculated as TP/(TP + FN);

ii the false negative rate, or sensitivity, calculated as TN/(TN + FP ).

The accuracy (ACC) is instead a measure that combines both the error
types, and it is defined as the fraction of correct predictions: ACC =

TP+TN
TP+TN+FP+FN

.
Accuracy, sensitivity and specificity are functions of the chosen thresh-

old τ and generally, if τ is changed in order to increase sensitivity, speci-
ficity decreases. As said above, the usual value of τ is 0.5, because it cor-
responds to choice the most probable class. Nevertheless, there are other
possible choices of τ , considering that the two types of error could imply
a different cost. The costs matrix is the matrix reporting the costs (or util-
ities) of predicting a certain class for an instance, given the actual class of
the same instance:

Actual
Predicted 0 1

0 c00 c01

1 c10 c11

Table 3.4: Costs matrix.

The value of the threshold τ can in fact be easily calculated once the
costs (or benefits) matrix has been fully defined (Elkan, 2001):

τ =
c10 − c00

c10 − c00 + c01 − c11

(3.1)

where cij are the elements of the cost matrix, thus the cost of predicting j
when the actual value is i.

A common alternative for the cost matrix is to use c11 = c00 = 0,
c10 = π and c01 = 1 − π, where π represents the prevalence (frequency of
occurrence) of the positive values in the dataset. This definition of costs is
used in the Kolmogorov-Smirnov statistic, as explained in terms of sensi-
tivity and specificity by Hand (2010). In this case, following Eq. 3.1, the
threshold value becomes τ = π. We here compare the performances of
the classifications obtained using, alternatively, the thresholds τ = 0.5 and
τ = π. The prevalence is in fact an important characteristic of the dataset,
which has been shown to systematically affect the predictive accuracy of
the logistic regression models on ecological datasets (Manel et al., 2001).
For example, in the present case study, in which the prevalence is below
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5%, a model that returns always absence would have a very high value for
the accuracy, of more than 0.95. It is therefore useful to use also other
measures of performance.

To overcome the problem of defining a classification threshold, some
alternative threshold-independent measures have been proposed, among
which the AUC (Area Under the “Receiver Operating Characteristic”
Curve) is the most used. AUC value lies between 0 (completely wrong
classifier) and 1 (perfect classifier), and is > 0.5 if the classifier works bet-
ter than a random guesser. The Receiver Operating Characteristic (ROC)
is a plot of the sensitivity, given a specific value for the 1-specificity, thus, it
is a curve plotted using all the possible threshold values τ . Figure 3.3 report
an example of ROC curves retrieved from Hand (2010) and concerning the
performances of two competing medical treatments. In the ROC plot, the
chosen classifier works better than random, for a given 1-specificity, only
if the curve is above the 45 degrees line, which correspond to a perfectly
random classifier.

Figure 3.3: Examples of two ROC curves, retrieved from Hand (2010).

Even if the AUC is a sound alternative to measure the performances of a
binary classifier, it has the lack of being equivalently defined regardless the
threshold value actually used to perform the classification. The AUC is in
fact an aggregate measure that equivalently weights all the possible values
of τ , so that it could misrepresent the performance of a classifier, that must
be defined giving a specific τ value (Hand, 2010).
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Experimental settings

The % of vegetation type variables sum up to one for every instance and,
thus, each of them can be calculated as a linear combination of the others.
As already stated, to reduce the correlation among the % of vegetation type
we log-transformed them. Moreover, to avoid singularities that would pre-
vent to solve the system, we excluded one of the % of vegetation variables
from the pool of explanatory variables. For each buffering area, we there-
fore repeated the calibration of the models six times alternatively excluding
one of the % of vegetation type variables. The repeated calibrations were
also used to calculate an estimate of the variance of the parameters. After
having calibrated the BMA models, we used them to predict the probability
of presence of burrows in all the valley.

To evaluate the performances of the models and to compare the two
threshold choices, we performed a cross validation based on bootstrap sam-
plings of the dataseries. Naming n the number of observations in the
dataset, for each bootstrap sampling we executed the following procedure:

1. take a bootstrap sample of the data, i.e. a sample of size n with re-
placement. we also stratified the sample with respect to the pres-
ence/absence data, thus the bootstrap sample has the same prevalence
of the original dataset;

2. calibrate the BMA model using the bootstrap sample;

3. evaluate the statistics (sensitivity, specificity, accuracy, AUC) on the
training set, thus on the instances belonging to the bootstrap sample.

4. evaluate the statistics on the validation set, thus on the instance which
are exclude fro the bootstrap sample.

We repeated the procedure using 600 different bootstrap samplings.

3.5 Results

From the pool of environmental data described above, we removed three
of them because they are highly correlated with other variables. When two
covariates have an high Pearson’s correlation coefficient, we removed the
one that has a less straightforward ecological interpretation. The removed
variables were: TRI, correlated with the slope (|ρ| = 0.98); hillshade, cor-
related with the northitude (|ρ| = 0.94) and the soil temperature, highly
correlated with the altitude (|ρ| = 0.99).
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3.5.1 Prediction performances

The performances of the models obtained when the most probable class is
returned in classification (i.e. τ = 0.5) are summarized in figure 3.4. The
plots show the performances on both the training and the validation boot-
strapped sets. The values of the accuracy (fraction of correctly classified
instances) and the specificity (fraction of correctly classified absences) are
extremely high (above 0.9), while the sensitivity (fraction of correctly clas-
sified presences) is very low. However, the AUC, which its an integral over
all the possible threshold values, is remarkably high, with a value near 0.9.
The prediction performances of the models are therefore good regardless
the chosen threshold. Moreover, the model is much robust for predictive
aims, because the values obtained on the training and the validation sets
are really similar. Furthermore the performances do not change sensitively
with the size of the buffer area.
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Figure 3.4: Performances of the models obtained when the most probable class is
returned (τ = 0.5). The measures of performance are: AUC, accuracy (ACC),
sensitivity (Sens) and specificity (Spec). For each indicator, we report the value
obtained on the training set (same set of points used in calibration) in black and
on the validation set (set of points not used in calibration) in grey. Training and
validation sets are defined using bootstrap as explained in the main text.

Results obtained using the prevalence threshold (τ = π) are reported in
figure 3.5 and show that in this case there is a dramatic increase on the sen-
sitivity with respect to the results obtained using τ = 0.5. The median value
of the sensitivity is in fact in this case above 0.9, thus it is almost 9 times
the value obtained than using τ = 0.5. The cost of this strong increase in
sensitivity is a decrease in the specificity and in the accuracy. However, the
decrease in specificity from a value near one to a value around 0.8 is far less
pronounced than the increase in the sensitivity. Since the most of data are
absence, this result in specificity leads to a similar decrease in the accuracy.
However, the decrease in the accuracy is an expected result, because accu-
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racy is a measure based on the hypothesis of equal costs for false negative
(predict an absence in an actual presence cell) and false positive (predict a
presence in an actual absence cell) errors, which is not the case since we
used a τ different from 0.5. Overall, even if the number of misclassified
cells is larger using the prevalence threshold, the errors are better balanced
among false positives and false negatives. Moreover, if the aim is to find
the existing burrows, it is reasonable that the cost paid for a false negative
should be set to be higher than the cost paid for false positives, thus leading
to a τ smaller than 0.5 (see equation 3.1).
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Figure 3.5: Performances of the models obtained when the prevalence is used as
the classification threshold (τ = π). Metrics, box colours and box types are as
in figure 3.4.

As stated by equation 2.32 (page 42) while describing BMA, the im-
portance of single covariates can be measured as the sum of the posterior
probabilities of the models in which the given covariate is included. Table
3.5 reports the percentage of inclusion and the values of the covariates ob-
tained using the three different buffer areas. The variables that have a very
high probability of inclusion (>0.7) using all the buffer area sizes are nor-
thitude, squared curvatures and the % of pioneer vegetation, all included
with a negative effect. However, for the other covariates the probability of
inclusion can change drastically from a buffer area size to the other and
there are no covariates that always have a very small probability of inclu-
sion. Even if the probability of inclusion quantitatively varies for the dif-
ferent buffer area sizes, the effects of the single covariates are qualitatively
coherent since the signs of the parameters are consistent.

To study the effects of the covariates on the probability of presence,
figures 3.6 and 3.7 report the habitat suitability curve of each environmen-
tal variable. The habitat suitability curves show how the probability of
presence changes with the value of a specific covariates, while the other
variables are fixed to a given value (the mean value in this case), thus, the
curves indicate how the environmental variables drive the habitat prefer-
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Table 3.5: Tables of the posterior probability of inclusion and the parameter val-
ues obtained with BMA (defined in section 2.3.2 at page 41) and for the models
considering the three different buffer areas. The left part of the table report the
results obtained using all available data, while the right part lists the results
obtained with the bootstrap samples of the dataset. The % inc. is calculated as
100 times the posterior probability of inclusion.

all the data bootstrap
% inc. parameter value % inc. parameter value

one hectare
Intercept 4.76 · 101 ± 2.05 · 101 5.67 · 101 ± 6.11 · 101

Altitude 51 −3.80 · 10−2 ± 1.55 · 10−2 54 ± 40 −4.49 · 10−2 ± 4.49 · 10−2

Altitude2 50 6.95 · 10−6 ± 2.90 · 10−6 51 ± 40 8.22 · 10−6 ± 8.36 · 10−6

Slope 59 2.52 · 10−2 ± 1.22 · 10−2 49 ± 33 3.60 · 10−2 ± 4.59 · 10−2

Slope2 19 −6.80 · 10−5 ± 2.08 · 10−4 22 ± 19 −1.90 · 10−4 ± 8.25 · 10−4

Curvature 68 6.08 · 10−1 ± 1.55 · 10−1 72 ± 35 6.87 · 10−1 ± 4.46 · 10−1

Curvature2 72 −6.83 · 10−1 ± 1.78 · 10−1 69 ± 35 −7.61 · 10−1 ± 4.88 · 10−1

Northitude 100 −1.42 ± 9.30 · 10−2 100 ± 1 −1.49 ± 3.31 · 10−1

Eastitude 95 −1.00 ± 1.17 · 10−1 84 ± 29 −9.71 · 10−1 ± 4.43 · 10−1

Shrubs 67 5.00 ± 7.38 · 10−1 72 ± 37 4.96 ± 4.84

Mosaic 41 3.21 ± 2.93 · 10−1 41 ± 44 3.18 ± 4.81

No veg. 97 −4.97 · 10−1 ± 4.61 · 10−1 81 ± 31 −1.89 · 10−1 ± 4.45

Pioneer veg. 99 −1.17 · 101 ± 1.37 98 ± 10 −1.21 · 101 ± 3.53

Alpine meadows 43 3.12 ± 2.25 · 10−1 45 ± 44 2.98 ± 4.37

Snowbed veg. 49 3.73 · 10−1 ± 3.93 · 10−1 56 ± 42 3.97 ± 4.93
two hectares

Intercept 6.17 · 101 ± 2.21 · 101 5.40 · 101 ± 6.60 · 101

Altitude 51 −4.81 · 10−2 ± 1.67 · 10−2 51 ± 39 −4.32 · 10−2 ± 4.84 · 10−2

Altitude2 50 8.73 · 10−6 ± 3.12 · 10−6 47 ± 38 7.75 · 10−6 ± 8.96 · 10−6

Slope 55 7.90 · 10−2 ± 3.60 · 10−2 63 ± 36 8.51 · 10−2 ± 8.88 · 10−2

Slope2 33 −9.85 · 10−4 ± 6.91 · 10−4 30 ± 28 −8.71 · 10−4 ± 1.61 · 10−3

Curve 59 7.21 · 10−1 ± 2.21 · 10−1 55 ± 39 7.01 · 10−1 ± 6.16 · 10−1

Curve2 99 −2.25 ± 2.39 · 10−1 92 ± 19 −2.17 ± 7.75 · 10−1

Northitude 100 −1.84 ± 1.09 · 10−1 100 ± 0 −1.79 ± 3.75 · 10−1

Eastitude 66 −9.27 · 10−1 ± 1.97 · 10−1 63 ± 40 −8.62 · 10−1 ± 6.52 · 10−1

Shrubs 81 4.45 ± 7.95 · 10−1 74 ± 37 6.00 ± 5.56

Mosaic 50 2.33 ± 6.55 · 10−1 56 ± 42 4.30 ± 5.46

No veg. 38 −9.20 · 10−1 ± 6.04 · 10−1 57 ± 40 8.66 · 10−1 ± 4.93

Pioneer veg. 91 −9.39 ± 1.26 93 ± 19 −1.01 · 101 ± 3.67

Alpine meadows 38 1.19 ± 3.46 · 10−1 44 ± 44 3.12 ± 4.82

Snowbed veg. 96 4.74 ± 7.25 · 10−1 85 ± 28 6.55 ± 5.57
three hectares

Intercept 5.42 · 101 ± 1.92 · 101 5.31 · 101 ± 6.48 · 101

Altitude 62 −4.16 · 10−2 ± 1.48 · 10−2 60 ± 35 −4.18 · 10−2 ± 4.70 · 10−2

Altitude2 53 7.16 · 10−6 ± 2.80 · 10−6 52 ± 34 7.14 · 10−6 ± 8.73 · 10−6

Slope 67 1.34 · 10−1 ± 4.22 · 10−2 73 ± 32 1.42 · 10−1 ± 1.24 · 10−1

Slope2 45 −1.61 · 10−3 ± 8.19 · 10−4 40 ± 32 −1.53 · 10−3 ± 2.33 · 10−3

Curvature 29 3.50 · 10−1 ± 1.85 · 10−1 26 ± 34 3.46 · 10−1 ± 5.32 · 10−1

Curvature2 100 −3.31 ± 3.47 · 10−1 93 ± 18 −3.16 ± 1.09

Northitude 100 −2.24 ± 1.22 · 10−1 100 ± 0 −2.18 ± 4.74 · 10−1

Eastitude 61 −1.02 ± 2.20 · 10−1 57 ± 42 −9.41 · 10−1 ± 7.91 · 10−1

Shrubs 74 4.31 ± 8.17 · 10−1 67 ± 40 6.04 ± 6.10

Mosaic 53 2.90 ± 7.46 · 10−1 61 ± 41 5.07 ± 5.93

No veg. 17 −3.87 · 101 ± 4.48 · 10−1 40 ± 41 1.81 ± 5.19

Pioneer veg. 89 −9.22 ± 1.24 92 ± 20 −1.00 · 101 ± 3.54

Alpine meadows 32 1.01 ± 2.98 · 10−1 40 ± 43 3.23 ± 5.18

Snowbed veg. 96 5.97 ± 8.35 · 10−1 88 ± 24 7.98 ± 6.18
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ence. Although we here present the results obtained using a buffer area of
two hectares, we found that the curves are similar for all the buffer areas.

The linear and the quadratic terms of the altitude are included in the
model with a posterior probability around 0.5 using all the buffer areas. The
coefficients for the altitude are negative in the linear term and positive in
the quadratic term. However, the habitat suitability curve reported in figure
3.6.a suggests that the suitability decreases with the altitude and reaches a
minimum at the highest elevations in the valley. According to literature,
the most suitable altitudes for the species ranges approximately between
1650 m a.s.l. and 1950 m a.s.l. (Cantini et al., 1997; Borgo, 2003) with a
maximum of about 3000 m a.s.l.. Since the valley ranges between 2200 and
3100 m a.s.l., at the higher limit of the marmot altitude range, the decrease
of the suitability with the altitude is in line with findings of past studies.

The slope is included with a positive linear term and a negative quadratic
term; the suitability is therefore maximal for intermediate values of slope.
However, the quadratic term of slope is included with a low probability
(always below 0.5), and the habitat suitability curves reported in figure 3.6.b
show that the suitability is practically an increasing function of the slope for
the interval of slopes present in the study area is considered. In this case,
we have conflicting results reported in literature, with an optimal slope that
varies from 0 to 60◦ (López et al., 2009).

For the curvature, the linear term is included with a positive effect and
the quadratic term with a negative effect, thus the maximum of the suitabil-
ity is reached for intermediate values of the curvature; the peak is in fact
evident in all the habitat suitability curves of figure 3.6.c. The peak of the
habitat suitability curves occur at positive values of the curvatures, i.e. con-
vex terrains, which favour the presence of burrows. The two terms have a
probability of inclusion that, with the size of the buffer area, decreases for
the linear term and increases for the quadratic term. Strongly convex and
concave terrains are therefore strongly avoided.

The northitude negatively influences the presence of burrows, thus sug-
gesting that marmot prefers southerly exposed slopes, as previously re-
ported in several studies (e.g. Borgo, 2003). Differently from what is re-
ported in literature, in our case the Alpine marmot shows a preference for
the westerly exposed slopes, since the parameter of eastitude is negative.
This result can be partially due to the valley shape, because easterly exposed
areas mainly located at a high elevation in the valley and are characterized
by absence of vegetation and low suitability.

The vegetation covers that reduce the probability of presence are the
pioneer vegetation and the no vegetation cover. The former has a clear neg-
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Figure 3.6: Habitat suitability curves: probabilities of presence of burrows as
functions of each non-vegetation covariate, obtained fixing the remaining co-
variates at their average value. The different curves represent bootstrap per-
centiles: black thick solid line is the 50th percentile, black dashed lines the
quartiles and grey dotted lines the 5th-95th percentile. Results refer to a buffer
area of 2 hectares.
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Figure 3.7: Habitat suitability curves: probability of presence of burrows as a
function of each vegetation covariate, obtained fixing the remaining covariates
at their mean value. Curves have the same meaning as in figure 3.6.
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ative effect using all the buffer area sizes, and the probability of presence
decreases rapidly even if a small portion of pioneer vegetation cover is in-
cluded in the buffer area (see figure 3.7.d). The effect of the no vegetation
cover is less strong. A cell is in fact clearly avoided if there is an high pro-
portion of bare ground in close proximity, since the probability of inclusion
of this variable in the model is 0.97 for a buffer area of one hectare (see
table 3.5). This covariate is instead less important if a larger buffer area is
considered. The habitat suitability curves of figure 3.7.c show that, from
the 5th to the 75th percentile, the probability of presence slightly decreases
with the % of no vegetation. However, for a small fraction of the bootstrap
extractions, an high percentage of no vegetation cover favours the presence
of the species (see the 95th percentile of figure 3.7). This result suggests
that a consistent subset of the presence data has a relevant % of no vegeta-
tion cover in the surrounding. A possible interpretation of this result is that
marmots can take advantage of the loose soil for digging in scree slopes.

The other vegetation covers, namely Alpine meadows, shrubs, snow-
bed vegetation and mosaic of shrubs and meadows favour the presence of
marmot burrows. This result is in line with the preferences reported in the
literature for which Alpine meadows and shrubs are the preferred type of
vegetation cover (Borgo, 2003). The result on the snowbed vegetation is
instead completely innovative since in literature there are no species distri-
bution studies that report a fine classification of the vegetation as the one
used here. Moreover, the posterior probability of inclusion of the snow-
bed vegetation covariate is near one for the buffer areas of two and three
hectares, while it is below 0.5 for a buffer area of one hectare. This result
suggests that the presence of alpine valley vegetation favours the presence
of the species even it is not in the immediate surrounding of the burrows.
The suitability curves of the vegetation covers that favour the presence of
the species have all a similar shape. In all the cases there are some bootstrap
extractions for which the given % of cover can strongly drive the probabil-
ity of presence. The 95th percentile of the bootstrapped suitability curve is
in fact widely variable from near zero to one. However, the majority of the
bootstrap extractions have a less strong effect, as can be seen in the other
percentiles reported in figure 3.7.a,b,e and f.

The results of the predictions on the entire area are reported in figure
3.8 for the model that consider a buffer area of two hectares, while they
are reported in the appendices for the other buffer area sizes. The mapped
predictions are the mean of the predictions of the six models calibrated
alternatively excluding one of the vegetation variable, as explained in the
methodological section. The results show that the predictions are similar
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Figure 3.8: Map of the predicted probability of presence of the burrows in all the
valley, made using the results of the model that consider a buffer area of two
hectares. The positions of censused burrows are reported as grey circles.

for all the buffer areas, even if the predictions obtained with larger buffer
area sizes are, as expected, spatially more smoothed. As suggested by the
good results obtained with the performances criteria, in all the prediction
maps, the probability of presence is consistently higher were the presence
of burrows were actually observed.

3.6 Discussion and conclusions

In this chapter, we used fine scale habitat characteristics and presence-
absence data we personally collected in two campaigns of 2011 and 2012
to develop marmot burrows distribution models in a high altitude Alpine
valley. In particular, the availability of an accurate vegetation map of the
valley permits to study the precise role of the different soil covers.

The developed models have good performances using both the AUC
(Area Under the “Receiver Operating Characteristic” Curve) and the accu-
racy (fraction of correctly classified instances), and show a good predictive
ability. However, if the classical threshold of 0.5 is used for classification,
the sensitivity (fraction of correctly classified presence) of the models in
prediction is very low. The alternative prevalence threshold permits to have
more balanced performances among sensitivity and specificity, with a small
reduction of the overall accuracy. Thus, to effectively predict the presence
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of marmot burrows in unexplored areas, the results strongly suggest the use
of prevalence threshold rather than the 0.5 threshold

The most important variables are the aspect, the curvature and the veg-
etation cover. The Alpine marmot prefers in fact southerly exposed slopes
and ground that are moderately convex. The former result is coherent with
the preferences reported in literature, for which the Alpine marmot gen-
erally prefers southerly exposed slopes that are warmer in the hibernation
period. A possible explanation of the curvature effects is that burrows ex-
cavated on concave terrains are more likely to be affected by flooding. On
the other hand, burrows on strongly convex grounds can be greatly exposed
to predation or other risks.

Surprisingly enough, the altitude is an important covariate but not a ma-
jor factor in the developed species distribution models for our case study,
in contrast with what is reported in the majority of previous studies. A
possible explanation is that the altitude is usually included also as a proxy
for the vegetation cover, which is instead explicitly included here as an in-
dependent set of covariates. This hypothesis is supported by the fact that,
if a coarse vegetation map is used in place of the fine scale map, altitude
becomes one of the most important variables to be included in the model
(Corani & Mignatti, 2013b,a). Moreover, a similar variable result is re-
ported also in a study conducted on the Pyreneese by López et al. (2010),
for which the altitude is in the pool of potential covariates but is not selected
in the final model.

The results on the vegetation show that the pioneer vegetation and the
no vegetation cover are strongly avoided while alpine meadows, shrubs and
snowbed vegetation favour the presence of burrows. The crucial role of the
vegetation against the altitude in affecting the probability of presence of the
species is clear. This suggests that the potentialities for upward shift of the
areal of distribution of marmots could be mainly regulated by the changes
in the vegetation, rather than by the direct effect of the changes in temper-
ature. In this sense, the uplift of the tree line, which occurs both for the
increases in temperature and the abandonment of pastures (Gehrig-Fasel
et al., 2007), directly reduces the territory suitable for the Alpine marmot
invading Alpine meadows and shrublands. On the other hand, the invasion
of the Alpine meadows in new areas at high altitude follows precise succes-
sional stages (Caccianiga & Andreis, 2004), in which pioneer or snowbed
species are usually the first invaders. This two vegetation covers are both
responding very fast to the climatic change (Grabherr et al., 1994; Bahn
& Körner, 2003), but we showed that they have a clear different impact
on the distribution of Alpine marmot. Moreover, the snowbed vegetation is
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extremely sensitive to the variations of the snow cover period, and are there-
fore regarded to be particularly vulnerable to predicted decrease in snowfall
(Carbognani et al., 2012). It is therefore very important to understand the
patterns of changes in the vegetation to understand the potential impact on
the distribution of the Alpine marmot.

The work presented in this chapter highlights how, for a high altitude
species, the potential distribution of the fauna is strongly dependent the
vegetation. In the climate change context, the potential intensity and tim-
ing of variation in the distribution of fauna due to changes in the meteoro-
logical conditions is therefore likely to be mediated by the response of the
vegetation. It is also clear that the availability of suitable territories might
strongly influence also the population dynamics of the species. However,
considering all these aspect for modelling the dynamics is often hard be-
cause of deficiencies in data or in the existing literature. Being aware of
these limitations, in the next chapters we study the dynamics of two high
altitude alpine species using the meteorological variables as a proxy for all
the potential variations in the status of the environment.
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3.A Appendix I

(a) One hectare

(b) Three hectares

Figure 3.9: Map of the predicted probability of presence of the burrows in all the
valley, made using the results of the models that consider a buffer area of one or
three hectares. The positions of censused burrows are reported as grey circles.
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CHAPTER4
Interplay between population density and

climate on the dynamics of the black
grouse in the Piedmont region

4.1 Abstract

Because of its particular environmental needs and sensitivity to the human
disturbance, Tetrao tetrix may be a key species in studying the effects of cli-
mate change on the Alpine fauna. Previous studies outlined the importance
of (a) winter snow, that must be sufficiently abundant to let individuals dig
their dens, (b) not so cold winters and (c) good meteorological conditions
in the post-hatching period. However, the majority of the studies on how
the climate affects black grouse dynamics are conducted on the “lowland”
populations at the northern latitudes, while less is known about Alpine pop-
ulations, at the Southern edge of the species distribution. The population
abundance of black grouse in the Italian Alps constantly declined in the last
decades.

Here we study the influence of geographical localization, population
density and meteorological conditions on four demographic parameters of
the black grouse populations in 17 Alpine districts of the Piedmont region
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(Italy), using census data from 1999 to 2009. The demographic parameters
under study are the annual growth rate and three components of fertility:
the percentage of nesting females, the brood size and the breeding success.

First, we cluster the districts where demographic parameters are similar
and we properly reduce the number of meteorological variables that can
affect the population dynamics. Then we develop predictive models using
Bayesian Model Averaging techniques (BMA) and project the population
abundance and the demographic parameters in future decades, using a real-
ization of a regional climatic model based the IPCC climate scenario A1B
(Protheus model).

Overall, the results show that density dependence is, in all districts, the
major driver of population growth rate. Quite surprisingly, we found that
male population density significantly and positively affects the breeding
success and the brood size, but not the percentage of nesting females.

As for climate, the growth rate decreases with the increasing of the
mean temperature measured in the second half of April, just before the
critical period of the formation of leks. The results provide quantitative
support for the importance of meteorological conditions in the post hatch-
ing period for the percentage of nesting females (positively affected by high
temperatures), the breeding success and the brood size (negatively affected
by high precipitations). Moreover, the breeding success is positively af-
fected by high precipitations in late November of the previous year, while
the brood size is negatively affected by high precipitations in late January,
which probably decreases food availability.

Using climatic simulations based on the IPCC scenario A1B as forcing
of the best multivariate model, we found that climate change should not
cause, per se, a major risk of extinction for the population, even though it
might be responsible for relevant changes of the dynamics.

4.2 Introduction

The black grouse (Tetrao tetrix) is a large tetraonid mainly distributed in
the northern part of Eurasia, but also present on the Alps, which represent
the southern edge of its areal distribution. The species has a direct econom-
ical relevance because it is a game bird. Many populations are reported
to have decreased in the last years in the western-central part of Europe
(Storch, 2007), in Scotland (Geary et al., 2012) and on the Italian Alps
(Brichetti & Fracasso, 2004). However BirdLife International (2012) clas-
sify the species in the least concern category.

The Alpine populations of black grouse show a preference for patchy
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habitat in which dwarf shrub and rock covers are available. As a conse-
quence, the species has, in the past, expanded its areal distribution on the
Alps with the lowering of the timberline caused by pasturing (Schweiger
et al., 2012). Nowadays, the abandonment of the pastures and the increase
in temperatures have caused an upward shift of the vegetation, thus to a
shrinking of the habitat suitable for the species. The altitude range is ap-
proximately 2000-2400 m a.s.l. (Cattadori & Hudson, 1999). In winter, to
reduce the energetic consumption, black grouse stays in holes dug in the
snow. These peculiar needs make the species particularly sensitive to hu-
man disturbance, such as the land use change, road network in the forests
and tourism (Ortigosa et al., 2003), and winter outdoor activities (Arlettaz
& Patthey, 2007; Patthey et al., 2008).

The life cycle, sketched in figure 4.1 is differentiated by sex. The mat-
ing season occurs between April and May, when the females reach the leks
where the males sing. The females that successfully mate, move to areas
suitable for nesting to lay their eggs, which hatch after 3-4 weeks. The hens
and their chicks live together until autumn, when the young males leave
their mother. In autumn, some of the females visit the “autumnal leks”,
probably to evaluate the breeding potentiality for the following spring. The
female juveniles disperse in two different periods, in October and in the
subsequent spring (Marjakangas & Kiviniemi, 2005; Caizergues & Ellison,
2002). Males have the same dispersion period. However they tend to re-
main near their birthplace. They in fact disperse less frequently and at a
shorter distance then females. During winter, males and females live to-
gether is sexually mixed groups. The first days after hatching, in June,
are the period characterized by the highest mortality rate for both hens and
chicks. Hens are in fact more susceptible to predation (Hannon & Martin,
2006), while the chicks are sensitive to cold and humidity because of their
lack in thermoregulation (Boggs et al., 1977). Moreover, since the Black
grouse is a ground nesting bird, high rainfalls can wash away the eggs from
the nests.

Only few studies have been published on the influence of climate on
the population dynamics of black grouse, and mainly on lowland popula-
tions. Moreover, the different studies have sometimes contrasting results,
reporting negative or positive effects on the same (or analogous) variable.
Loneux et al. (2003) published a study in which they attempt to model the
dynamics of a lowland population in Belgium using linear autoregressive
models which include exogenous meteorological variables. They identify
a positive effect of high precipitations in January and high temperatures in
June. The former effect is probably linked with the availability of a snow
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Figure 4.1: Sketch of the main events in the yearly life cycle of
Black grouse, adapted from http://blackgrouseresearch.jyu.fi/
index.html. Moreover, we report the timing of the two yearly censuses per-
formed in the Piedmont Alpine districts.

surface tick enough to dig the winter shelters. Conversely, high winter tem-
peratures (from November to March) and high precipitations in September
seems detrimental for the population. Precipitations in June are also taken
into account with a negative sign. However, the model proposed by the
author is probably overfitted, because only 36 years of data are available,
while 13 parameters have to be estimated.

A negative effect of high precipitations in June on the breeding suc-
cess of the females (number of chicks per female) is reported for a Scottish
population (Summers & Green, 2004). Selås et al. (2010) found a delayed
negative effect of warm summer temperatures on the breeding success. An
interesting effect of climate change on the population dynamics is described
in Ludwig & Alatalo (2006) for a declining population of black grouse in
Sweden. The spring warming caused an anticipation of the egg-laying and
hatching. Since the early summer warming was less strong, the chicks have
to face colder post-hatching conditions, thus leading to an overall decrease
of the breeding success and to a consequest decrease in the population abun-
dance. The importance of snow depth and snow melting has been studied
for other species of grouse (Novoa et al., 2008; Clarke & Johnson, 1992;
Wang & Hobbs, 2002).

According to the Ph.D. thesis of Viterbi (2012), both density and climate
affect the black grouse population in the Orsiera-Rocciavrè Park (Piedmont,
Italy). In particular, they found that local populations suffer the high pre-
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cipitation in the first half of June (critical post-hatching period) and benefit
from high daily temperature range in December.

We here study the dynamics of the Piedmont populations of black
grouse using censuses performed in 17 Alpine districts. In particular we
concentrate on growth rate obtained by spring counts of males, and on three
fertility components calculated using summer censuses. Before analysing
the joint effects of population density and climatic conditions on the growth
rate, we study their independent role. Projections of the future climatic con-
ditions given by a regional model are used to assess the future status of the
population.

4.3 Materials

4.3.1 Population data

The study area is located in the Alpine territory of the Piedmont Region,
North-Western Italy (see figure 4.2). This territory is administratively di-
vided into 17 Alpine districts in six provinces: one in Biella (BI1), one
in Vercelli (VC1), three in Verbano-Cusio-Ossola (VCO1, ..., VCO3), five
in Turin (TO1, ..., TO5) and seven in Cuneo (CN1, ..., CN7). Hunting is
permitted in the districts in autumn.

VCO2

VCO3

VCO1
VC1

BI1
TO5

TO4

TO3

TO2

TO1 CN1
CN2

CN3

CN4

CN5

CN6

CN7

Figure 4.2: Map of the 17 Alpine districts of the Piedmont region.
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The counts of the black grouse populations are performed two times a
year in each district, in spring and in late summer. Spring censuses estimate
male population density in each district (Mt,c), where t is the year and c is
the district. Counts are carried out during lek formation, in suitable areas
characterized by the presence of important leks. Operators are distributed in
fixed points inside the census areas. The late summer censuses are carried
out using hunting dogs to estimate the number of females (Ft,c), nesting fe-
males (Bt,c) and juveniles (Jt,c). Summer data are less reliable than spring
data, and counts of females and juveniles suffer from the risk of underes-
timation. Moreover, the original dataset does not report some important
details, such as the paths travelled by the dogs, that would be useful to esti-
mate the detectability and correct the counts (e.g. see the distance sampling
techniques described in Dahlgren et al., 2012). However, for each detected
nest, there is an high confidence that the number of juveniles is correctly
reported; therefore, the mean number of juveniles per nest is not expected
to be affected by underestimates in the counts. Furthermore, it is interesting
to analyse also the other summer data to detect if there are strong signals
in the data series. Male density data are available from 1998 to 2010 in the
district TO1, and from 1999 to 2010 in all the other districts. Late summer
censuses are available from 1996 to 2010 for Ft,c and Jt,c, with only few
data before 1999 (only TO1 in 1996 and 1997, and 11 districts in 1998) and
only few missing data since 1999 (TO4 and TO5 in 1999, TO2 in 2000).
Bt data are available only from 2001, with two missing data: BI1 in 2001
and TO5 in 2002.

Male density data for all the districts are reported in figure 4.3, in which
no clear trends can be detected. Moreover, the inter-cluster (intra-annual)
variability appears to be wider than the inter-annual variability. Late sum-
mer censuses are instead not directly reported here, because they are given
only as absolute values, while the census area change both among districts
and among different years for the same district. It has therefore no sense to
directly compare the values of the abundances (Jt,c, Ft,c and Bt,c), which
we instead used to calculate comparable rates.

Despite the fact that spring censuses are performed in the proximity of
important leks, and thus an overestimation in densities is expected, the den-
sities are comparable with those reported for an Alpine French population
(Caizergues & Ellison, 2002) (12-37 birds/km2).

To study the dynamics we calculated, using the available data, four com-
ponents of the fitness; the instantaneous growth rate and three fertility com-
ponents:
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Figure 4.3: Boxplots of the temporal dynamics of male densities (Mt,c) measured
in the 17 Alpine districts. The median values are plotted as circles with an inner
dot, the interquartile ranges with thick lines, the entire range of data with thin
lines, excluding outliers (empty triangles). Outliers are defined as points larger
than the 75th percentile plus 1.5 times the interquartile range, or smaller than
the 25th percentile minus 1.5 times the interquartile range.

• The instantaneous growth rate:

log(λt,c) = log

(
Mt+1,c

Mt,c

)
(4.1)

• the percentage of nesting females:

ψt,c = 100
Bt,c

Ft,c

• the breeding success:

ρt,c =
Jt,c
Ft,c

• the brood size:
φt,c =

Jt,c
Bt,c

Fitness components for the 17 districts are reported in figure 4.4, while
their mean values and standard deviations for all the 17 districts are listed
in table 4.6. The global temporal mean of the growth rate (log(λ)) is close
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to 0 in each district, with a minimum of log(λTO4) = −0.045 years-1 and
a maximum of log(λCN3) = 0.069 years-1. The overall mean breeding
success (ρ =∼ 2.4 Juveniles/Female) is higher than the value reported in
literature for other populations in the Alpine region, which is between 1 and
2 juveniles per female (see Caizergues & Ellison, 2000; Barnagaud et al.,
2011, for a French population and Ortigosa et al. (2003) for a population
of Trentino, Italy). Also the overall average brood size (φ =∼ 3.9 Juve-
niles/Breeding hen) is higher than the value reported in literature ( ∼ 3
in Barnagaud et al. (2011) and 3.42 in Ortigosa et al. (2003)). The mean
percentage of nesting females (ψ ∼ 58%) is instead similar to the values
reported for the French and the Italian populations.
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Figure 4.4: Boxplots of the temporal dynamics of the demographic parameters
measured in the 17 Alpine districts. The median values are plotted as circles
with an inner dot, the interquartile ranges with thick lines, the entire range of
data with thin lines, excluding outliers (empty triangles). Panels: a) istanta-
neous growth rate; b) breeding success; c) percentage of nesting females; d)
brood size.
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4.3.2 Meteorological data

The historical meteorological data used for model calibration were pro-
vided by the Regional Environmental Agency (ARPA) of the Piedmont re-
gion as spatially distributed values referring to cells with a side of 0.125
degrees (about 14 km). For the future projections, we used the climatic pre-
dictions given by a realization of the regional climatic model PROTHEUS
(Artale et al., 2010; Dell’Aquila & Calmanti, 2012), based on the IPCC
scenario A1B and provided by A. Provenzale. This model has a spatial res-
olution of 30 km (about 0.27 degrees) and its predictions are available until
2049.

The meteorological variables available in both datasets are the daily
amount of precipitation (Pt(τ)), the maximum (TMax,t(τ)) and the mini-
mum (Tmin,t(τ)) temperature, where τ is the day of the year and t the year.
The mean daily temperature and the daily temperature range were calcu-
lated, respectively, as Tm,t(τ) = (TMax,t(τ) + Tmin,t(τ))/2 and ∆Tt(τ) =
TMax,t(τ)− Tmin,t(τ). The meteorological data were then standardized us-
ing the reference period 1991-2009.

The values assigned to a district for each meteorological variable were
calculated by elaborating its values in cells of the meteorological model
that overlap with the suitable territory of the district. We define as "suit-
able" area (Ac) the portion of territory of district c in which the probability
of presence of the species is greater than 0.5, according to a suitability map
provided by R. Viterbi from the Institute of Atmospheric Sciences and Cli-
mate, CNR, Turin. Let us callAl,c the fraction of suitable area of the district
c that also belongs to the cell l. The value of the generic climatic variable
Xc,t(τ), for the day τ of the year t and for the district c, was calculated as:

Xc,t(τ) =
∑
χc

Al,c
Ac

Xt,l(τ) (4.2)

where χc is the set of climatic cells overlapped with the suitable area of the
district c.

To develop the models, we used the semi-month averaged meteorolog-
ical variables, thus we averaged the meteorological values in the first half
(1st-15th day, labelled as 1) and in the second half (16th-last day, labelled
as 2) of each month, except for February (in which the first and the sec-
ond half are, respectively, 1st-14th and 15th-last day). Therefore, as an
example, with the notation PApr1,t+1 we name the standardized precipita-
tion averaged in the first half of April of year t+ 1. This averaging permits
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to balance the necessity to have narrow temporal window reflecting the ne-
cessity of the species, and to filter out the high frequencies.

We limited the potential semi-months that can influence the growth rate
at time t using a specific temporal window: from the first half of January of
year t to the second half of April of year t+1. The temporal window closes
just before the counts of Mt+1, thus avoiding the inclusion of anti casual
effects of climate. Similarly, we defined a temporal window that limits the
potential influence of climate on the fertility components. This window
starts in the first half of September of year t− 1 and ends in the second half
of August of year t, thus including the entire 1 year period between two
consecutive late summer censuses.

4.4 Methods

The strategy described in the previous section leads to the definition of
many meteorological variables that can potentially influence the demo-
graphic parameters. Since there is uncertainty about which of these vari-
ables have to be included in the model, the model space obtained consid-
ering all the possible combinations of the variables is huge. Moreover, for
each Alpine district and each fitness component, only few years of obser-
vations are available.

Since there are only few observations, the alternative of separately mod-
elling each district would probably lead to the choice of really simple mod-
els (see chapter 2), thus to the risk of excluding weak (but important) ef-
fects. On the other hand, if data from all districts are aggregated, there is
a considerable quantity of data for calibration, but the information on the
spatial position of data is completely discarded (i.e. all the districts are
considered as equivalent).

A theoretically sound solution to overcome this problem would be to
use the so-called mixed models (Bolker et al., 2009), in which the Alpine
district (thus, spatial position) is included as a random categorical vari-
able. However, a well established selection criteria that permits to discern
among models with different fixed and random structures is still not avail-
able (Vaida & Blanchard, 2005). Moreover, the possible inclusion of ran-
dom effects on the intercept or on the covariates further increases the model
space dimension. Therefore, we decided to use an alternative approach, in
which we reduce both the number of possible meteorological variables and
the possible model structures. We used a clustering algorithm to decide
which parameters can be regarded as common among groups of districts
that have a similar behaviour, thus increasing the data to parameters ratio.
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Overall, the methodology used to develop the predictive models for each
component of fertility consisted therefore of two main steps:

1. a screening, in which the most important meteorological variables
are selected, and data from different Alpine districts are potentially
merged (cluster analysis);

2. calibration of the model parameters using Bayesian Model Averaging
technique (BMA).

To select the most important meteorological variables, we studied the
separate effect of each meteorological variable using the Pearson’s coef-
ficient for the linear correlation. The adopted criterion is to include, in
the multivariate analysis, only the meteorological variables that are signif-
icantly linearly correlated with the given fitness component. The signif-
icance threshold is set to 0.2 to include also variables that have a weak
effect per se but can be important when included in a multivariate model.

The clustering procedure aims at simplifying the model complexity with
respect to a model that treats all the districts separately. More precisely, the
basic model to perform the clustering is a linear regression in which the
only explanatory variable is the male density (Mt):

yt,c = β0,c + βM,cMt,c (4.3)

where yt,c is one of the defined demographic parameters in year t and in
district c, while β0,c and βM,c are district specific intercept and slope. The
complete clustering procedure is summarized in the flowchart of figure 4.5,
and can be briefly described as follows. To better clarify the entire process,
the details of the steps applied along this procedure to the four demographic
parameters are provided in section 4.5 for the growth rate and in appendix
4.A for the fertility components.

Conceptually, the clustering is performed on two different levels: i) a
clustering on the values of the slope (βM,c), thus grouping districts that
have similar density-dependence and ii) a clustering on the intercepts (β0,c),
grouping districts with a similar intrinsic value of the given fitting compo-
nent:

i) Clustering for the same density dependence (slope)

If, using data from all the districts, I) the overall correlation between
male density (Mt,c) and the demographic parameters is significant
(Pearson’s p value < 0.05) and II) there is evidence to suppose that
the slope is not the same for all the districts (through an F -test), then

89



Chapter 4. Black grouse dynamics

STA
RT

Read values of y
t,c  and M

t,c

        Calculate Pearson correlation coe�
cient 

betw
een Y

t,c  and M
t,c (R) and its p value (p)

p < 0.05?

A
N

O
VA

 for y
t,c

 
F-test to check if β

M
,c  

  is the sam
e in all districts

N
O

YES

p value of the 
A

N
O

VA
 < 0.05?

p value of the  

F - test < 0.05 ?

SLO
PE CLU

STERIN
G

Calculate Pearson correlation coe�
cient 

betw
een y

t,c  and M
t,c  (R) and its p value (p)

For each 
slope cluster

p < 0.20?
β

M
,c  = 0 

N
O

CLU
STERIN

G
 IN

TERCEPT

Slope clusters: 
c w

ith sam
e β

M
,c  

Intercept clusters: 
c w

ith sam
e β

0,c

EN
D

A
N

CO
VA

 
Indep. var: y

t,c ; regressor: M
t,c

p value of the 
A

N
CO

VA
 < 0.05?

YES

N
O

N
O

YES
Sam

e slope in all
districts: β

M
,c =β

M

YES

YES

N
O

Figure
4.5:

F
low

chartofthe
m

ain
aspects

ofthe
algorithm

used
to

cluster
the

data
from

differentA
lpine

districts.The
m

eaning
ofthe

variables
included

in
the

blocks
is

explained
in

the
text

90



4.4. Methods

the slope βM,c is not regarded to be the same for all the districts. Dis-
tricts are therefore grouped according to their value of β̂M,c (box
“SLOPE CLUSTERING” in figure 4.5), where β̂M,c is the maxi-

mum likelihood estimation (MLE) of the slope, separately calibrated
for each district.

The possible results of this first step are:

• a unique cluster that groups all the districts and has β̂M,c = 0;

• a unique cluster that groups all the districts and has β̂M,c 6= 0;

• a set of clusters (cluster a, cluster b,. . .), each of which can
have β̂sl

M = 0 or β̂sl
M 6= 0. sl is the index of slope clusters. β̂sl

M is
set to zero if, considering only the districts belonging to cluster
sl, the correlation between Mt,c and yt,c is not significant. The
significant threshold is set to 0.20 to take into account that only
a subset of observations is used.

The cluster index (sl) is omitted in the first two cases.

ii) Clustering on the intrinsic value of the fitness component (intercept)

For each slope cluster, an Analysis of Variance (ANOVA) or an Anal-
ysis of Covariance (ANCOVA) is performed to assess if all the dis-
tricts have the same intercept. The ANOVA is performed if β̂sl

M = 0,
while the ANCOVA if β̂sl

M 6= 0. If the test is passed (p < 0.05),
districts are clustered on the basis of the value of the intercept (clus-
ter sl1, cluster sl2,. . .). Intercept clusters are therefore sub-clusters
of slope clusters (box “INTERCEPT CLUSTERING” in figure 4.5).
At the end of the procedure, the districts belonging to the same cluster
(cluster {sl, in}, where in is the index of intercept clusters) have the
same intercept and the same slope:

∀c ∈ cluster {sl, in} ŷt,c = β̂sl,in
0 + β̂sl

MMt,c (4.4)

In the blocks “INTERCEPT CLUSTERING” and
“SLOPE CLUSTERING” , we used the agglomerative hierarchical clus-

tering (Jain & Dubes, 1988). The adjective agglomerative means that, at
the first step, each object (district) is in its own cluster and the algorithm
gradually merges the atomic clusters into larger and larger clusters until a
unique cluster is formed. The decision of which clusters are merged first
is based on the pairwise distances between clusters. For simplicity, we
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summarize here the main concepts referring to the procedure used for the
“SLOPE CLUSTERING”. The procedure for clustering intercept is in fact
completely analogous.

When the hierarchical cluster starts, the distance di,j between each pair
of atomic clusters is calculated as the distance between the MLE estimates
of the slopes β̂M,i and β̂M,j . Moreover, if the distance between two clusters
is significant (p value of the t-test<0.05), its value is set equal to max

i,j
(di,j).

The matrix containing all the pairwise distances is the proximity matrix
(D = di,j). The couple of nearest clusters (say a and b) are then merged
together to form a new (non-atomic) cluster, and the new proximity matrix
is calculated substituting the clusters a and b with a unique cluster. We
calculated the distance between two non-atomic clusters (or a non-atomic
cluster and an atomic cluster) using the furthest neighbour strategy. Using
this strategy, the distance is calculated as the maximum distance among
all the pairwise distances between the elements of the two clusters. The
algorithm is repeated until all the atomic clusters are merged, and a single
cluster is obtained.

The entire procedure can be summarized in a cluster tree (see figure
4.7 for an example) in which the leaves of the tree are the atomic clusters.
At each merging step, a branch of the tree is drawn to connect the merged
clusters; the length of the branch represents the distance between the two
merged clusters. For each branch of the resulting tree, we calculated an
inconsistency coefficient (Jain & Dubes, 1988, see) using a depth of three
links. To define the final clusters, we cut the tree branches where the in-
consistency coefficient is bigger than 0.95 times the highest inconsistency
coefficient of the entire tree.

After having completely defined the clusters, and having selected the
meteorological variables, we performed a BMA analysis (see section 2.3.2)
in which the basic model has a simple linear regression model structure
with no interaction terms:

yt,c = β0 +
∑
Xi

βjxj,t,c + εt,c (4.5)

where yt,c and xj,t,c are, respectively, the fitness component and the value
of the j − th covariate at time t in district c, Xi is the set of the covariates
included in the i− th model (mi) and εt,c a white noise.

To account for the intercept clustering, for each cluster cluster {sl, in}
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(but the first one, already included in β0), a new covariate is defined as:

∆Interceptc,t,sl,in =

{
1, if c ∈ cluster {sl, in}
0, if c 6∈ cluster {sl, in}

(4.6)

To take into account of this covariate, it is added to the set of potential
covariates Xi.

Similarly, a covariate is added to Xi for each slope cluster (cluster sl).
The slope covariates are defined as:

slopesl,t,c =

{
Mt,c, if c ∈ cluster sl

0, if c 6∈ cluster sl
(4.7)

If only one slope cluster is defined, slopea = Mt,c. The other covariates
potentially included in the model are the meteorological variables that sig-
nificantly (with α = 0.2) correlate with the given fitness component.

Using the BMA models and the meteorological variables given by the
realization of the Protheus model, we calculated the future projections of
the male densities and the demographic parameters. The equations used for
the simulations are:

ˆlog(Λt) = β̂0,λ + X̂t,λβ̂λ + Ẑt,λ

M̂t+1 = Λ̂tM̂t

ˆlog(Φt) = β̂0,φ + X̂t,φβ̂φ + Ẑt,φ
ˆlog(Ψt) = β̂0,ψ + X̂t,ψβ̂ψ + Ẑt,ψ

ˆlog(Pt) = β̂0,ρ + X̂t,ρβ̂ρ + Ẑt,ρ

(4.8)

where ˆlog(Λt), ˆlog(Φt), ˆlog(Ψt) and ˆlog(Pt) are, respectively, the vec-
tor of the predicted values for the growth rate, the brood size, the percentage
of nesting females and the breeding success in the different Alpine districts
at time t. X̂t,y is the matrix of covariates included in the model of the
quantity y (each row contains the value, at time t, for a district), β̂y is the
vector of the β parameters calculated using BMA and Ẑty ∼ (0, Σy) are
multivariate normal noises where Σy is the variance-covariance matrix of
residuals of the BMA model for y. Therefore, the simulations include a re-
alistic spatial effect via the variance-covariance matrix Σ. The matrix X̂t,y

is expressed using the hat because it contains the simulations of the male
density. We initialized the simulation setting M̂2010 = M2010. To recon-
struct the future projections, simulations are repeated 1000 times extracting
the noise from the distributions of Ẑty.
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4.5 Results

4.5.1 Growth rate

Correlation with climatic variables

Figure 4.6 summarizes with colours different from white which of the many
meteorological variables have a significant (even if potentially weak, p <
0.20) correlation with the growth rate. More precisely, red and blue indi-
cate respectively positive or negative correlation while the colour intensity
is proportional to the value of the Pearson’s coefficient. So, the darker the
colour, the stronger the correlation. These plots permit to visual inspect if
some specific period of the year have a clear influence on population fitness
and if there is any seasonal pattern. In spite of the huge number of tested
meteorological variables, only few of them are significantly correlated with
the growth rate. The more significant correlations are with the precipita-
tions in the second half of October of year t (POct2,t, R = 0.19, p = 0.012)
and in the first half of January of year t (PJan1,t, R = 0.19, p = 0.012),
and the mean temperature in the second half of April of year t (TmApr2,t,
R = −0.18, p = 0.016). However, the significant correlations appear to be
connected only with those specific semi-months, since there are no sets of
consecutive semi-months that influence the species in the same way. As we
will see later, the situation is different with other fertility components, for
which a seasonal effect is more clearly visible.

The most important meteorological variables highlighted by the univari-
ate analysis are linked with important periods of the species’ life cycle. The
second half of April is in fact just before the lek formation, while October
overlaps with one of the two dispersion periods and January is critical for
the survival, since black grouse need good snow conditions to dig winter
shelters and the food availability is scarce.

Density dependence and clustering

Studying the influence of population density on growth rate is complex, be-
cause of the intrinsic correlations between the two quantities (see eq.4.1).
Therefore, besides the calculation of the correlation between growth rate
and population density made pooling data from all districts (see the cluster-
ing procedure), we also calculated the correlation between growth rate and
population density in each Alpine district.

The growth rate and total male density are significantly and negatively
correlated (R = −0.43, p < 0.001). Moreover, the correlation is significant
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Figure 4.6: Correlations between the growth rate log(λt,c) and the semi-monthly
meteorological variables: the average of the standardized precipitation P ; the
average of the standardized daily temperature range ∆T ; the average of the
standardized mean temperature Tm. Every cell in the plot refers to a single
correlation between the growth rate and a meteorological variable. For each
month label on the x-axis, the left column of cells refers to the first half of the
month while the right column of cells to the second half of the month. Red
[blue] cells indicate a positive [negative] and significant (p < 0.20) correla-
tion, and the intensity of the colours is proportional to the Pearson correlation
coefficient. On the top of the figure, we reported the timing of the spring cen-
suses used to calculate log(λt,c) = log(Mt+1,c/Mt,c).

(with α = 0.05) also for 11 out of 17 single districts. We note that p-values
of the other 6 districts (BI1, CN6, T01, T03, VC1 and VCO2) are also small
(p = 0.12, p = 0.12, 0.19, 0.13, p = 0.10 and p = 0.11, respectively).

The slopes of the regression lines between the male density and the
growth rate does not significantly differ among the districts (F = 1.23,
p = 0.25). Interestingly, the analysis of covariance performed under the
hypothesis of "same slopes" for all districts shows that intercepts are not
identical (F = 2.92, p = 0.0003). Thus, we clustered the districts on the
basis of the value of their intercepts, performing the “intercept clustering”
described in the methodological section and reported in figure 4.5.

The described algorithm leaded us to define two clusters for the inter-
cepts, as summarized in figure 4.7. One of the two clusters includes districts
CN3, CN4, TO2 and TO5, while the other cluster includes all the other dis-
tricts. For simplicity of notation, we will refer to cluster 1 for the former
cluster (red cluster in figures 4.7 and 4.8) and cluster 2 for the latter (green
cluster in the figures). Even if the districts CN3 and CN4 are adjacent and
the districts TO2 and TO5 belong to the same province (Turin), it is not
possible to find a clear geographical structure in the two clusters. Since
both clusters are characterized by lines with different intercepts but same
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Figure 4.7: Clusters identified in the univariate growth rate - male density model,
obtained using the algorithm explained in the main text. Panel a) the cluster
tree; Panel b) map of the Alpine districts. The districts belonging to the same
cluster are coloured with the same colour (red or green).

slope, a Ricker-like model can be written for each of them:

log(λt,c) =

{
β1

0 + βMMt,c + εt,c, if c ∈ cluster 1

β2
0 + βMMt,c + εt,c, if c ∈ cluster 2

(4.9)

Fitting this model, the coefficient of determination R2 is 0.28, and the cor-
relation between growth rate and density is significant for both clusters
(p < 0.001). The values of the model parameters are: β̂2

0 = 0.52 ± 0.065,
β̂1

0 = 0.798 ± 0.101 and the common slope is β̂M = 0.132 ± 0.015. The
carrying capacities, measured as the non-trivial equilibrium of the equation
4.9 (M = −β0,c

βM
) solved for each cluster, are 3.97 for cluster 2 and 6.04

for cluster 1. Notice that both the equilibria of the deterministic version
of the Ricker model are stable since 0 < β0,c < 2. In figure 4.8 we show
the growth rate as a function of the male densities, together with the best fit
models.

BMA Model

In the multivariate model, the number of potential covariate is k = 12, thus
leading to 2k = 4096 possible models, while the number of observations
is 169. The model space was exhaustively explored and the expected pos-
terior model dimension, measured as the number of included independent
variables, was 3.25.
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Figure 4.8: Scatter plot of the growth rate [log(λt,c)] as function of the male den-
sity Mt,c, and regression lines based on the two groups formed using the clus-
tering algorithms described in the text. Using the colour of figure 4.7, the red
triangles and the red dashed line represent, respectively, data and regression
line for the group composed by districts CN3, CN4, TO2 and TO5. Green stars
and solid green line represent data and regression line for the other cluster of
districts.
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BMA measures the importance of single covariates to the final pre-
diction as the sum of the posterior probabilities of the models in which
the given covariate is included (see chapter 2). The posterior probabil-
ity of inclusion of the single covariates is summarized in table 4.1, to-
gether with the posterior probability of the 5 best models. The variables
with the highest posterior probability of inclusion are: the male density
(Mt,c), which negatively affects log(λt,c); the categorical variable that per-
mits to adjust the intercept using the clusters found in the univariate anal-
ysis (∆Intercept); the mean temperature in late April (TmApr2,1), which
negatively affects log(λt,c) and the amount of precipitations in early Jan-
uary of year t+1 (PJan1,t+1) included with a negative effect. Notice that the
ranking of variables changed between the univariate (correlation) and the
multivariate (BMA) analysis. For example, the meteorological variables
POct2,t and PJan1,t, which are the most correlated variables in the univariate
analysis, have a posterior probability of inclusion lower than 0.10. On the
other hand, the variable TmApr2,1, which is measured just before the pe-
riod of lek formation, is the most important meteorological variable in both
univariate and multivariate analysis.

Both male density and ∆Intercept have a posterior inclusion probabil-
ity close to 1, and are included in the best five models of table 4.1. This
confirms the importance of accounting for density dependence and sepa-
rating the districts in two clusters. Notice that, following equation 4.5, the
density is included as in the Ricker model. The coefficient of determination
obtained on the training set with the BMA model is R2 = 0.35 while the
R2 of the density dependence only model is 0.28. Therefore, the inclusion
of the climatic conditions significantly improved the predictive ability of
the model. Moreover, the values of the model parameters are similar in the
univariate analysis and in the BMA. More precisely, in BMA the intercepts
are slightly higher (β0,c = 0.53 for cluster 2 and β0,c = 0.83 for cluster 1),
while the slope is a bit steeper (βM = −0.136, see again table 4.1).

Future projections

Figure 4.9 shows the results of the 1000 stochastic future projections for the
growth rates and the male densities in the two clusters. For each simulation,
the values assigned to each cluster are the average of the values obtained
in all the districts belonging to the cluster. The difference between the
1000 simulations is due to a different extraction of the environmental noise
from the variance-covariance matrix of residuals, while the variability of
the climatic model is not taken into account because only a realization of
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Figure 4.9: Data (solid line) and future projections of the male densities (Mt)
and the growth rate (log[λt]) in the two clusters of figure 4.7, made using
the BMA model and the meteorological projections given by the PROTHEUS
model. Panel a and b refer to cluster 1, while panels c and d to cluster 2.
The median value of the 1000 simulations are black dashed lines, interquartile
ranges are coloured areas (following figure 4.7), while the fifth and the 95th
percentile are grey dashed lines.
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4.5. Results

the process is available. Even if the projections of the growth rate show
a high uncertainty, the projections of the male density never goes below 4
males/100 ha (cluster 1) or 3 males/100 ha (cluster 2). Demographic simu-
lations on both clusters, have in some years quite unusual behaviours, such
as for the growth rate drop in 2006 and the consequent drop of the male
density in 2017. Figure 4.10 reveals why: for example in 2016, the partic-
ular realization of the PROTHEUS model used for the simulations shows
a very high value of TmApr2,t, which is the most important meteorological
variable in the model. Although such an effect had no serious consequences
in the present case, it reveals that climate change might seriously affect the
dynamics if the unfortunate conditions occur for some consecutive years.
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Figure 4.10: Boxplot of the values of the standardized meteorological variable
TmApr2,t given by a realization of the PROTHEUS model. The intra-annual
variability is given by the variability among districts.

4.5.2 Fertility components

Correlation with meteorological variables

Figure 4.11 summarizes the results obtained calculating the Pearson’s cor-
relation coefficients for the correlation between the fertility components
and the meteorological variables. In the figure, only the significant (α =
0.5) correlations are reported. Notice that, even if the value of α used in the
plot for the fertility components is much higher than for the growth rate,
many variables are found to influence the fertility rates of the population
(see figure 4.6 for comparison).

101



Chapter 4. Black grouse dynamics

Sept-1 Octt-1 Novt-1 Dect-1 Jant Febt Mart Aprt Mayt Junt Jult Augt

P

∆T
Tm

Br
ee

di
ng

 s
uc

ce
ss

 (ρ
t)

Br
oo

d 
si

ze
(φ

t)
%

 o
f n

es
tin

g
fe

m
al

es
 (ψ

t)

{Breeding and nesting{2nd dispersion{1st dispersion

Summer census (t-1) Summer census (t)

P

∆T
Tm

P

∆T
Tm

Figure 4.11: Correlations between the fertility components and the semi-monthly
meteorological variables: the average of the standardized precipitation P ; the
average of the standardized daily temperature range ∆T ; the average of the
standardized mean temperature Tm. Every cell in the plot refers to a single
correlation between the growth rate and a meteorological variable. For each
month label on the x-axis, the left column of cells refers to the first half of the
month while the right column of cells to the second half of the month. Red
[blue] cells indicate a positive [negative] and significant (α = 0.05) correla-
tion, and the intensity of the colours is proportional to the Pearson correlation
coefficient. On the top of the figure, we reported the timing of the late sum-
mer censuses used to calculate the fertility components and of some important
events in the black grouse life cycle.
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The percentage of nesting females is significantly correlated with only
few meteorological variables and, as for the growth rate, it is not possible
to clearly identify intervals of consequent semi-months that affect this rate.
The variable that is more positively correlated with the percentage of nest-
ing females is the mean temperature in early June (TmJun1,t, R = 0.27,
p = 0.0017), thus, even our Alpine populations confirm the importance of
the post-hatching period in influencing the number of females that success-
fully nest, as it was found in lowland populations.

As for the brood size, the most important variables, are the amount of
precipitations in early August of year t, PAug1,t, which negatively affects the
rate (R = −0.33, p = 1.1 · 10−4), and precipitation in early November of
year t−1 (PNov1,t−1), which has a positive effect (R = 0.28, p = 0.0013) on
the rate. The former underlines both the risks of high precipitations, which
can be the cause of nests destruction, and the importance of summer con-
ditions in the survival of chicks, which are not yet able to thermoregulate.
The latter suggest that snowy late autumns favours the conditions at which
the hens access the breeding season, possibly increasing the availability of a
good snowpack to dig the winter shelters. Even if with a weaker effect, the
temperature ranges are important in all the late spring/early summer period
with a positive effect. This result confirms the importance of clear skies
and sunny days in the breeding period, including mating, nesting, hatching
and weaning.

The same effect of the late spring temperature ranges is present in the
results obtained for the breeding success. Moreover, ∆TJun2,t is the me-
teorological variable mostly (and positively) correlated with the breeding
success (R = 0.29,p = 5.64 · 10−5). On the other hand, PJun1,t is the mete-
orological variable mostly negatively correlated with this rate (R = −0.24,
p = 0.001), thus confirming the negative effects of high precipitations in
the nesting success and the chick survival.

Density dependence and Clustering

The clustering procedure performed as explained in the methodological
section identified a unique cluster for the percentage of nesting females,
three clusters for the breeding success and eight clusters for the brood size
(with 4 different slopes and 8 different intercepts). Moreover, we found that
the male density is significantly correlated with the brood size (R = 0.27,
p = 3.709 · 10−4) and the breeding success (R = 0.15, p = 0.038), but
it is not correlated with the percentage of nesting females (R = −0.05,
p = 0.506). The results of the statistical tests carried out to create the
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clusters are reported in appendix 4.A.
The compositions of the clusters is summarized in Figure 4.12, where,

for a given fertility component, the same colours are used to identify the
same clusters in the clustering trees (a,b), the geographical maps (b, e) and
the regression lines between the male density and the fertility components
(c, f). Clusters are labelled with letters (used to identify slope clusters) and
numbers (used to identify intercept clusters).

For the breeding success, three clusters are defined, having the same
slope but different intercepts:

• cluster 1: VC1, TO4, CN5, CN3, CN2;

• cluster 2: TO5, CN7, CN6, CN1, CN4, BI1;

• cluster 3: VCO1, TO2, TO3, VCO3, VCO2, TO1.

For the brood size, the eight clusters are labelled with the same letter
when they have the same slope:

• cluster a1: CN2, CN5, TO1. The slope βa
M = 0.

• cluster b1: CN1.

• cluster b2: TO4.

• cluster c1: CN3,CN6

• cluster c2: CN4

• cluster c3: VC1, TO3, TO2, VCO3,VCO1

• cluster d1: VCO2

• cluster d2: CN7, TO5, BI1

In many cases, adjacent districts belong to the same cluster; see clusters
formed by districts {TO1, TO2, TO3} and {VCO1, VCO2, VCO3} accord-
ing to their values for the breeding success, or {VC1, VCO1, VCO3} for
the brood size. The articulated clustering structures that we obtained under-
line the importance of considering the spatial structure of the information
to develop an accurate predictive model, in particular for the brood size.

104



4.5. Results

d)
e)

distance betw
een slopes

Alpine district

VCO
2

VCO
3

VCO
1

VC1

BI1
TO

5

TO
4

TO
3

TO
2

TO
1

CN
1CN
2

CN
3CN
4

CN
5

CN
6

CN
7

0
0.2

0.4
0.6

0.8

CN
3

TO
3

VCO
1

TO
2

CN
4

VC1

VCO
3

CN
6

CN
1

TO
4

CN
2

TO
1

CN
5

CN
7

BI1

TO
5

VCO
2

0
0.5

1
1.5

2

VCO
1

VCO
3

TO
2

TO
3

VC1

CN
3

CN
6

CN
4

0.2
0.4

0.6
0.8

1

C
N

7

TO
5

B
I1

V
C

O
2

distance betw
een intercepts a)

b)

distance betw
een intercepts

Alpine district

0
0.2

0.4
0.6

0.8
1

TO
1

VCO
2

VCO
3

TO
3

TO
2

VCO
1

CN
2

CN
3

CN
5

TO
4

VC1
BI1

CN
4

CN
1

CN
6

CN
7

TO
5

VCO
2

VCO
3

VCO
1

VC1

BI1
TO

5

TO
4

TO
3

TO
2

TO
1

CN
1CN
2

CN
3CN
4

CN
5

CN
6

CN
7

1
2

3
4

5
6

7
8

9
10

2

2.5 3

3.5 4

4.5 5

5.5 6

6.5 7

M
ale density (M

t,c )

Brood size (φt)

f)

1
2

3
4

5
6

7
8

9
10

0.5 1

1.5 2

2.5 3

3.5 4

4.5

Breeding success (ρt)

M
ale density (M

t,c )

c)

C
luster 3 

C
luster 1 

C
luster 2 

C
luster a1 

C
luster b1 

C
luster b2 

C
luster c1 

C
luster d1 

C
luster d2 

C
luster c2 

C
luster c3 

Figure
4.12:

C
lusters

identified
for

the
breeding

success
(rh

o
t ,firstrow

ofplots)and
the

brood
size

(p
h
it ,second

row
ofplots),

obtained
using

the
algorithm

explained
in

the
m

ain
text.Panela

and
d)reportthe

cluster
tree;Panelb)and

e)the
m

ap
ofthe

A
lpine

districts;Panelc)and
f)the

scatter
plotofthe

fertility
com

ponentas
function

ofthe
m

ale
density

M
t,c ,and

regression
lines

based
on

the
groups

form
ed

using
the

clustering
algorithm

s.
The

districts
belonging

to
the

sam
e

cluster
are

coloured
w

ith
the

sam
e

colour.

105



Chapter 4. Black grouse dynamics

BMA model

The potential number of covariates to be included in the model is 31 for
the %of nesting females, 50 for the breeding success and 46 for the brood
size. According to BMA, the posterior model dimension (pmd), measured
as the mean number of covariates included in the model, and the coefficient
of determination R2 are, respectively: pmd = 1.10 and R2 = 0.268 for
the percentage of nesting females, pmd = 3.90 and R2 = 0.552 for the
breeding success, pmd = 8.23 and R2 = 0.640 for the brood size.

In the BMA, the importance of the independent variables is measured as
their posterior probability of inclusion, calculated as the sum of the poste-
rior probability of the models in which they are included. Table 4.2 reports
such values for the variables with a posterior probability of inclusion greater
or equal than 0.15, together with the compositions (variables included) and
the posterior probability of the five best models for each fertility compo-
nent. For all the fertility components, and in particular for the brood size,
the posterior probability of the models is widely spread in the model space,
thus supporting the choice of a multimodel approach.

For the percentage of nesting females, the model with the greater poste-
rior probability is the constant model. Thus, the variability of this fertility
component is weakly explained by the meteorological conditions and the
male density. However, the most important meteorological variable is the
mean temperature in early June (TmJun1,t), included with a positive sign.
This result confirms the results obtained in the univariate analysis on the
importance of the post hatching period.

For the model of breeding success, the most important meteorological
variables are the amount of precipitations in the second half of November
of year t-1 (PNov2,t−1) with a positive effect and in the first half of June of
year t (PJun1,t) with a negative effect. The latter effect further underlines
the detrimental effect of high rainfalls in the post-hatching period, while
the former effect is of difficult interpretation and is probably linked to the
conditions at which the individuals access the winter. Moreover, the two
∆Intercept variables have an high probability of inclusion, confirming the
importance of considering the three defined clusters. Conversely, the male
density has a small probability of inclusion (0.056), thus the density depen-
dence has a negligible effect on the breeding success.

For the brood size, the importance of the eight clusters defined above is
confirmed by the presence, in the variables with the highest posterior inclu-
sion probability, of all the 7 ∆Intercepts, and the slope variables slopeb,
slopec and sloped, which represent the presence of the variable Mt,c for the
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clusters b, c and d. The most important meteorological variables are the
amount of precipitations in the second half of January (PJan2,t), the second
half of May(PMay2,t) and the first half of June (PJun1,t) of year t. The im-
portance of rainfall in late May and early June can be interpreted along the
same line of the early June rainfall for the breeding success. On the other
hand, too abundant rainfalls in January are probably snowfalls, which, if too
abundant, can completely cover the shrubs and reduce the food availability.

Future projections
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Figure 4.13: Data and future projections of percentage of nesting females
made using the BMA model and the meteorological projections given by the
PROTHEUS model. Data are shown with a black solid line, median value of
the 1000 simulations as black dashed lines, interquartile ranges as coloured
areas, the fifth and the 95th percentile as grey dashed lines.

The future projections, obtained using equations 4.8 are reported, for
each defined cluster, in figures 4.13, 4.14 and 4.15 for, respectively, the the
percentage of nesting females, the breeding success and the brood size.

For the percentage of nesting females the simulated values oscillate
around 62%, showing a small variability both among the different years and
the different simulations. The effect of climate seems therefore to be very
limited for this rate. In fact, the percentage of nesting females is the fitness
component for which the developed models have the lowest explanatory
power. However, the highest peak in the simulations occurs in the years
2035 and 2036, in which the realization of the Protheus model predict an
high value for the variable TmJun1,t, which is the most important for this
rate (see table 4.2). The future values of TmJun1,t are reported in figure
4.16.

Simulations for the breeding success are instead more variable, but even
in this case no clear trends can be detected for the future, and the rate is
predicted to oscillate around values already reached in the past. In this
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Figure 4.14: Data and future projections of the breeding success made using
the BMA model and the meteorological projections given by the PROTHEUS
model. Data are shown with a black solid line, median value of the 1000 simu-
lations as black dashed lines, interquartile ranges as coloured areas (as figure
4.12), the fifth and the 95th percentile as grey dashed lines.
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Chapter 4. Black grouse dynamics

case, the effect of the meteorological variables on the system have a larger
effect that in the case of the percentage of nesting females. However, the
peaks of the single most important variable, PNov2,t−1, shown in figure 4.16,
do not corresponds to the peaks obtained simulating the breeding success.
Thus, in this case, the main oscillations cannot be guessed looking only at
the most influential meteorological variable.
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Figure 4.15: Data and future projections of the brood size made using the BMA
model and the meteorological projections given by the PROTHEUS model.
Data are shown with a black solid line, median value of the 1000 simulations
as black dashed lines, interquartile ranges as coloured areas (as figure 4.12),
the fifth and the 95th percentile as grey dashed lines.

For the brood size, the simulations are more highly variable than for the
other two fertility rates. Moreover, they are, in many years and for all the
clusters, out of the historical range of data. In particular, for clusters b1
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and b2 (in light blue and dark blue in figure 4.15), the expected brood size
is clearly smaller than recorded in the past. The simulations have a high
variability at the end of their temporal extent, between 2040 and 2050, as
a consequence of the high variability that is predicted by the Protheus re-
alization in the same years for the variable PJan2,t (see figure 4.16). This
meteorological variable is the most important, according to the BMA anal-
ysis, for the model of brood size, and can influence the conditions at which
the females or the males access the leks.
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Figure 4.16: Boxplots of the values of the most important standardized meteoro-
logical variable according to the BMA models for the fertility components.
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4.6 Discussion and conclusions

In this chapter, we studied the influence of density dependence, spatial po-
sition and meteorological variables on the growth rate and the fertility com-
ponents of the black grouse populations in the Piedmont region.

Growth rate is clearly affected by density dependence in all districts
and in almost each district. Moreover, the parameter that measures the in-
traspecific competition is not significantly different among districts, thus
showing that density dependence is mostly an intrinsic trait of the popula-
tion, weakly affected by the different environmental conditions that occur
in different geographical positions. Two clusters of districts characterized
by a different carrying capacity can be found. The cluster with the highest
carrying capacity includes only 4 out 17 of districts, which positions do not
suggest a clear spatial structure.

The meteorological variable with the greatest influence on the growth
rate is, in both the univariate and the multivariate analysis, the mean tem-
perature measured in late April of year t, just before the period of lek for-
mation. The growth rate decreases in fact with the increase of tempera-
tures in late April. A possible explanation is that an higher mean temper-
ature in the first half of April leads to an anticipation of the lek formation,
thus to an hatching period occurring when conditions are not optimal for
the newborns. A similar effect is in fact described by Ludwig & Alatalo
(2006) for a Finnish population of black grouse. In the present case, this
hypothesis is supported by the fact that, during the study period, mean tem-
peratures increased significantly (Mann-Kendall test) in the in late April
(p = 2.00 · 10−11), while they decreased in early June (p = 5.02 · 10−6), as
we show in figure 4.17. In the same period the population abundance de-
creased, at least in the cluster of districts with a low carrying capacity (see
the bottom right panel of figure 4.9). The meteorological variable ranked
2nd for importance in BMA is the amount of precipitations in early January,
which has a negative effect on the growth rate. Our hypothesis is that too
high precipitations in the middle of winter (much probably snow) makes
the search for food more difficult for the individuals.

The results on the fertility components confirm the importance of the
environmental conditions in the critical post-hatching period, about early
June. In fact, high precipitations in the post-hatching period are detrimental
for the brood size and the breeding success, while high temperatures favour
the nesting and lead to an increase in the percentage of nesting females.
These results confirm what was found in lowland populations; heavy rain
can in fact wash away the eggs from the nests, and cause thermoregulation
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Figure 4.17: Mean temperature data in the in late April (panel a) and early June
(panel b) of year t. For each available year, the value measured in each Alpine
district is shown as a grey star. The dashed grey line is the linear fitting.

problems to chicks just after hatching (Hannon & Martin, 2006); more-
over, the availability of insects in summer (Thacker et al., 1997) decreases
if summer precipitations are abundant. High precipitations in late January
are also detrimental for the brood size, thus likely confirming the impor-
tance of the winter conditions in determining the status of the population,
as we found for the growth rate. On the other hand, the breeding success
is favoured by high precipitations in early winter, probably because of the
presence of a snowpack suitable for sheltering.

Quite surprisingly, male density significantly and positively affects brood
size and breeding success, even though its effect is weak and its contribu-
tion in the predictive models remains limited. Nevertheless, this result on
fertility helps to understand the density dependence effects on the growth
rate described above. In fact, the negative effect on growth rate contrast
with the positive effect on fertility components. Therefore, it is likely that
the male density might negatively affect the growth rate by reducing the
winter survival, rather than by affecting fertility.

The future projections of the demographic parameters and of the popu-
lation densities suggest that, although some strong inter-annual variability
is clearly visible, the expected climatic conditions for the next 40 years will
not directly represent a major danger for the conservation of black grouse.
However, they also show that the oscillations caused by changes in the me-
teorological conditions are consistent. It would be therefore interesting to
repeat the simulations including the variability of climate forecasting, using
more than only one realization of the climatic model.

Another important improvement of this work would consist in repeat-
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ing the analysis properly redefining the meteorological variables that might
influence the rates. For example, we could use indicators that better repre-
sent the occurrence of extreme precipitation events, such as the maximum
quantity of precipitation in a given period, or the mean precipitation ob-
tained by using only the rainy days rather than all the semi-month (which
include also non-rainy days). Another example could be the use of mini-
mum temperatures in winter, which can probably better represent the risk
of death for the species. The definition of such indicators needs to take into
account the results of the present and the past studies, as to involve experts
of the species, to better understand which mechanisms can “a-priori” affect
the species.

Density, meteorological variables and other effects linked to geographi-
cal position affect the demographic rates of black grouse in different ways.
To assess the potential future status of the population, it is therefore useful
to consider all these aspects, if data are available, not focusing on popu-
lation growth rate only. Indeed, the study on the fertility components per-
mitted us to have a better understanding on the effects of both climate and
density on the population dynamics.

In the next two chapters, we present the study of the dynamics of a
long-living species: Capra ibex ibex. In that case, the need for separating
the effects of climate and density on the different components of the fitness
is enhanced by the fact that the individuals can change their sensitivity to
environmental conditions according to the age or the sex. Moreover, the
age-structure can mask the effects of density dependence and climate if
only the total number of individuals is considered for studying the popula-
tion dynamics. In the next chapters, we tackle the problem of considering
a coarse (chapter 5) and a fine (chapter 6) age structure in modelling the
population dynamics.
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4.A Clustering details for fertility components

Here we report the details of the statistical tests performed in the clustering
procedure summarized in the flowchart of figure 4.5. The results are re-
ported for the breeding success (ρt), the brood size (φt) and the percentage
of nesting females (ψt).

Percentage of nesting females

• Using all the data (from all the 17 Alpine districts) pooled together,
the percentage of nesting females is not significantly correlated with
the male density (R = −0.052, p = 0.506).

• In the ANOVA, the F-test is not passed (F = 1.624, p = 0.071), thus
there is no evidence for estimating different intercepts.

• All the districts are clustered together in a unique group.

Breeding success

• Using all the data (from all the 17 Alpine districts) pooled together,
the breeding success is significantly and positively correlated with the
male density (R = 0.145, p = 0.038).

• The F − test on the slope is not passed (F = 0.880, p = 0.593), thus
we define a unique slope for all the districts.

• In the ANOVA, the F-test is passed (F = 5.246, p = 4.855 · 10−9),
thus the intercept significantly differ among the districts.

• Intercept clustering is therefore performed. Three clusters are de-
fined, having the same slope abut three different intercepts, as re-
ported in the main text.

Brood size

• Using all the data (from all the 17 Alpine districts) pooled together,
the brood size is significantly and positively correlated with the male
density (R = 0.272, 3.709 · 10−4).

• The F − test on the slope is passed (F = 2.049, p = 0.014), thus
there is evidence that the slope is not the same in all the clusters.
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4.A. Clustering details for fertility components

• The slope clustering procedure produces four clusters (cluster a, . . . ,
cluster d):

– cluster a, including districts CN2, CN5 and TO1.
The correlation with density is, for this cluster, not significant
using α = 0.2 (R = 0.190, p = 0.32). Therefore we set βaM = 0.
In the ANOVA, the F-test is not passed (F = 2.224, p = 0.127),
thus the intercept is the same for all the districts.

– cluster b, including districts CN1 and TO4.
The correlation with density is, for this cluster, significant using
α = 0.2 (R = 0.729, p = 0.0003).
In the ANCOVA, the F-test is passed (F = 7.996, p = 0.0116),
thus the intercept is not the same for all the districts, and an inter-
cept clustering is performed. Two intercept clusters are obtained:
cluster b1 including only the district CN1 and cluster b2, in-
cluding only TO4.

– cluster c, including districts CN3, CN4, CN6, TO2, TO3, VC1,
VCO1 and VCO3.
The correlation with density is, for this cluster, significant using
α = 0.2 (R = 0.329, p = 0.0031).
In the ANCOVA, the F-test is passed (F = 19.62, p = 2.813 ·
10−14), thus the intercept is not the same for all the districts,
and an intercept clustering is performed. Three intercept clus-
ters are obtained: cluster c1 including districts CN3 and CN6,
cluster c2 including only CN4 and cluster c3, including dis-
tricts VC1, TO3, TO2, VCO3 and VCO1.

– clusterd, including districts BI1, CN7, TO5 and VCO2.
The correlation with density is, for this cluster, significant using
α = 0.2 (R = 0.197, p = 0.193).
In the ANCOVA, the F-test is passed (F = 7.095, p8.29 · 10−4),
thus the intercept is not the same for all the districts, and an inter-
cept clustering is performed. Two intercept clusters are obtained:
cluster d1 including only VCO2 and cluster d2 including dis-
tricts CN7, TO5 and BI1.
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Chapter 4. Black grouse dynamics

4.B Additional tables

The following tables report the posterior probability of inclusion of the in-
dependent variables and posterior expected values of the parameters for the
fertility components. In the header of the table, xi is the name of the inde-
pendent variable, PIP its probability of inclusion, βj the posterior mean of
the parameter βj and σβj its standard deviation. sign(βj) is the probability
that βj is positive, conditioned on the fact of being included in the model.
Table 4.6 report the mean values of the demographic quantities.
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4.B. Additional tables

Table 4.3: BMA for the percentage of nesting females ψt.

xi PIP βj σβj sign(βj)

Intercept 1.000 59.44 - -
TmJun1,t 0.177 1.758 4.067 1.000
POct1,t−1 0.101 -0.304 0.989 0.000
PNov2,t−1 0.084 0.369 1.336 0.999
POct2,t−1 0.072 -0.341 1.347 0.002
∆TMar2,t 0.066 0.412 1.707 0.998
TmSep1,t−1 0.054 -0.545 2.554 0.000
PMar2,t 0.053 -0.773 3.620 0.001
∆TJul1,t 0.046 0.289 1.496 1.000
TmJun2,t 0.038 0.360 2.064 0.999
PAug2,t 0.038 0.388 2.229 1.000

∆TNov2,t−1 0.036 -0.187 1.098 0.001
TmDec1,t−1 0.027 -0.199 1.414 0.023
TmAug1,t 0.027 0.143 1.124 0.914
PMar1,t 0.023 -0.187 1.479 0.005
TmJul2,t 0.022 0.210 1.717 0.987
∆TJan1,t 0.022 0.090 0.747 0.995

∆TSep1,t−1 0.021 -0.074 0.616 0.008
TmNov1,t−1 0.018 0.124 1.191 0.979
PMay1,t 0.018 -0.057 0.520 0.005
PApr2,t 0.018 0.096 0.943 0.969
TmApr2,t 0.017 0.115 1.109 0.987
TmApr1,t 0.016 -0.144 1.494 0.028
TmOct2,t−1 0.016 -0.111 1.144 0.011
∆TMay1,t 0.015 0.057 0.614 0.961
∆TMar1,t 0.015 0.052 0.543 0.990
PSep1,t−1 0.014 0.040 0.433 0.994
TmFeb1,t 0.013 -0.044 0.514 0.035
∆TJun1,t 0.011 0.034 0.444 0.967
∆TAug1,t 0.010 0.022 0.450 0.843
TmMay2,t 0.009 -0.073 1.111 0.107
∆TOct2,t 0.007 0.010 0.374 0.749
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Chapter 4. Black grouse dynamics

Table 4.4: BMA for the breeding success ρt.

xi PIP βj σβj sign(βj)

Intercept 1.000 1.888 - -
∆Intercept3 1.000 0.660 0.109 1.000
PNov2,t−1 0.753 0.235 0.152 1.000

∆Intercept2 0.657 0.211 0.170 1.000
PJun1,t 0.202 -0.045 0.096 0.000
TmFeb1,t 0.136 -3.96E-02 0.109 0.001
TmJul2,t 0.084 4.23E-02 0.161 0.992
TmMar1,t 0.074 -1.60E-02 0.066 0.034
∆TFeb2,t 0.056 1.47E-02 0.069 1.000

Mt 0.053 2.54E-03 0.012 1.000
TmAug1,t 0.052 1.77E-02 0.096 0.874
TmFeb2,t 0.040 -7.92E-03 0.046 0.018
TmJan2,t 0.037 -7.80E-03 0.047 0.016
TmJul1,t 0.036 1.41E-02 0.094 0.939

∆TNov2,t−1 0.031 -6.40E-03 0.046 0.081
∆TJun2,t 0.030 7.47E-03 0.053 0.992

∆TDec1,t−1 0.030 -6.02E-03 0.042 0.004
TmDec1,t−1 0.029 -7.65E-03 0.055 0.018
TmNov1,t−1 0.028 -1.31E-02 0.100 0.039

∆TJan1,t 0.028 4.57E-03 0.033 0.996
∆TMay2,t 0.023 2.67E-03 0.024 0.941
TmJun1,t 0.022 5.89E-03 0.054 0.867
TmMar2,t 0.022 5.62E-03 0.048 0.973
PNov1,t−1 0.021 3.27E-03 0.034 0.903
TmAug2,t 0.020 5.06E-04 0.062 0.456

∆TSep2,t−1 0.018 1.48E-03 0.017 0.957
∆TOct2,t−1 0.018 3.12E-03 0.030 0.999
TmNov2,t−1 0.016 -2.64E-05 0.021 0.324
TmJun2,t 0.016 2.78E-03 0.031 0.978
PMar1,t 0.015 -2.88E-03 0.035 0.023
TmApr1,t 0.014 2.85E-04 0.028 0.642
TmDec2,t 0.013 1.91E-03 0.033 0.800
∆TApr1,t 0.012 1.15E-03 0.020 0.790
∆TJul1,t 0.012 6.70E-04 0.016 0.789
∆TJan2,t 0.012 9.22E-05 0.018 0.606
∆TAug1,t 0.012 7.31E-04 0.016 0.812
∆TMar1,t 0.012 -2.86E-05 0.015 0.561
∆TJul2,t 0.012 3.54E-04 0.018 0.671
∆TAug2,t 0.011 3.12E-05 0.014 0.655
PAug1,t 0.011 -1.23E-03 0.031 0.206

∆TFeb1,t 0.010 1.14E-03 0.019 0.948
PMay1,t 0.010 -2.99E-05 0.010 0.336
PAug2,t 0.010 1.56E-03 0.027 0.877

∆TMar2,t 0.010 4.50E-04 0.019 0.649
∆TMay1,t 0.010 4.82E-04 0.014 0.762
PDec2,t 0.009 2.29E-03 0.055 0.854
PJun2,t 0.009 1.93E-03 0.044 0.803
PMar2,t 0.009 5.60E-04 0.032 0.741
POct2,t−1 0.009 -1.77E-04 0.009 0.383
PJul2,t 0.008 1.22E-03 0.036 0.736
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4.B. Additional tables

Table 4.5: BMA for the brood size φt.

xi PIP βj σβj sign(βj)
Intercept 1.000 3.853 - -

∆Interceptc2 0.973 1.361 0.582 1.000
∆Interceptd1 0.901 -0.771 0.339 0.000
∆Interceptb2 0.716 -1.627 1.354 0.000

slopeb 0.601 0.293 0.267 0.994
∆Interceptc1 0.591 0.536 0.502 0.999
∆Interceptb1 0.569 -1.159 1.140 0.025
∆Interceptc3 0.547 -0.386 0.385 0.006

sloped 0.508 0.061 0.070 0.999
PJan2,t 0.445 -0.618 0.781 0.000
slopec 0.423 -0.038 0.057 0.076
PMay2,t 0.244 -0.045 0.090 0.002
PJun1,t 0.188 -0.063 0.148 0.000

∆Intercepta 0.177 -0.059 0.148 0.003
PNov1,t−1 0.132 0.043 0.128 0.988
TmMar2,t 0.129 0.059 0.187 0.948

∆TNov1,t−1 0.125 -0.031 0.097 0.005
∆TJan1,t 0.116 0.035 0.114 0.991
PAug1,t 0.110 -0.060 0.201 0.003
TmJul1,t 0.104 0.068 0.240 0.965
∆TMay2,t 0.102 0.023 0.084 0.959
TmAug2,t 0.097 0.050 0.189 0.987
TmOct1,t−1 0.090 -0.048 0.196 0.062
TmNov1,t−1 0.089 -0.050 0.197 0.034
TmMay2,t 0.079 0.055 0.232 0.993
∆TJun1,t 0.076 0.021 0.091 0.971
PNov2,t−1 0.073 0.012 0.059 0.981
POct1,t 0.055 0.006 0.032 0.961
TmJan2,t 0.048 -0.005 0.063 0.288
∆TFeb2,t 0.045 0.007 0.048 0.952
TmFeb1,t 0.044 -0.007 0.049 0.072
TmFeb2,t 0.040 -0.002 0.049 0.339
∆TDec1,t 0.039 -0.004 0.040 0.207
TmAug1,t 0.039 -0.002 0.070 0.595
TmApr2,t 0.038 0.005 0.078 0.602
TmApr1,t 0.036 -0.006 0.086 0.288
∆TJul1,t 0.035 -0.005 0.048 0.181
PAug2,t 0.034 -0.003 0.075 0.412

∆TOct2,t 0.032 -0.001 0.031 0.423
PDec2,t 0.031 0.004 0.126 0.597

∆TAug2,t 0.030 -0.002 0.035 0.313
TmJun2,t 0.029 0.005 0.060 0.821
∆TAug1,t 0.029 3.52E-05 0.035 0.525
∆TJul2,t 0.025 -0.002 0.040 0.293
∆TJun2,t 0.025 0.000 0.042 0.481
∆TMar1,t 0.025 0.000 0.026 0.536
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CHAPTER5
Structured population models for Alpine

ibex (Capra ibex) dynamics in the Gran
Paradiso National Park

5.1 Abstract

Past analysis showed that the population dynamics of Alpine ibex are regu-
lated by both population density and winter snow accumulation. However,
recent time series of the ibex counts in the Gran Paradiso National Park
shows interesting trends in comparison with historical snow data: while
the winter snow depth has steadily decreased since the beginning of the
1980s, the ibex population experienced rapid growth during the 1980s and
the early 1990s, followed by a strong decrease.

To explain these dynamics we build novel age structured population
models in which demographic parameters depend on density and snow
depth. They include a nonmonotonic effect of snow depth and density on
the vital rates, the age and sex structure of the population, and spatial seg-
regation between females and males. Using information criteria (AICc,
BIC and SRM ) and data from 1961, we select the best models and find
that:
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Chapter 5. Structured population models for Alpine ibex dynamics

1. snow and population density interact in determining the demography
of both males and females at all age classes, thus confirming that
unfavourable climatic conditions intensify the density dependence of
the population;

2. the effect of snow is nonmonotonic on weaning success and rate of
demographic variation of kids, which are maximal at intermediate
values of snow depth;

3. accounting for spatial segregation between sexes improves the fitting
of the models, which suggests that the different use of space made by
males and females influences intra-specific competition.

When the selected models are recalibrated on past data and used to sim-
ulate recent trends, they underestimate both the rapid growth of the 1980s-
1990s and the recent decline of the population. However, using the novel
sex and age-structured models, we find out that the underestimation of the
peak is mainly due to deficiencies of adult demography models, while the
overestimation of the recent population abundance is caused by shortcom-
ings in the models of recruitment.

5.2 Introduction

The population dynamics of ungulates is strongly determined by both den-
sity dependence and environmental drivers (Forchhammer et al., 2002;
Lande, 1993; Post et al., 1997; Sæ ther & Saether, 1997), which may oper-
ate in an interacting way (Gaillard & Yoccoz, 2003). Jacobson et al. (2004)
were first in showing that the population dynamics of Alpine ibex (Capra
ibex ibex) is significantly affected by a specific environmental variable, the
average snow depth during winter. Since Alpine ecosystems are extremely
sensitive to climate change (Fischlin et al., 2007) and snow depth has been
decreasing in the Alps in recent years (e.g. Terzago et al., 2010), studying
how population dynamics of high-altitude species is influenced by abiotic
disturbances and trends is of paramount importance.

The exceptionally long time series of Alpine ibex counts in the Gran
Paradiso National Park (GPNP) provides a unique opportunity to study the
complex interplay between population density and climatic conditions op-
erating in the species dynamics. To reproduce the dynamics of the popula-
tion and to possibly make predictions into its near future, different models
have been proposed. The simple but powerful approach put forth by Jacob-
son et al. (2004) explored various possible relationships of total ibex popu-
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5.2. Introduction

lation increase with both total animal density and snow depth. The analysis
performed by the authors revealed that the population rate of increase is sig-
nificantly different in years characterized by low vs high snow depth. This
observation led the authors to include in their model suite what they called
threshold-models, in which different functional relationships are used for
years of high and low snow depth. The process of parameter calibration
and model selection actually picked up two threshold models as the best
candidates. Both models acceptably reproduce the increase of the 1980s
and the population peak occurring at the beginning of the 1990s, while the
subsequent decline is only partially captured (see Fig. 3 in Jacobson et al.,
2004). Unfortunately, if used to simulate more recent trends emerging from
newly available data, such models largely overestimate the total abundance
of ibex (see also the last three simulated years in Jacobson et al., 2004).

The models proposed by Jacobson et al. (2004) have been expanded in
various ways. For example, Corani & Gatto (2007) found that a slightly
modified version of Jacobson et al.’s threshold models, obtained by intro-
ducing two different values of the intrinsic rate of increase at low and high
snow depth, had better performances in terms of model selection criteria.
Other authors tried to avoid the use of thresholds and proposed smoother
functional forms for the rate of increase. Bianchi et al. (2006), for example,
used local linear models instead of a piecewise linear system while Lima
& Berryman (2006) proposed nonparametric, nonlinear versions of the dy-
namic model using the so-called Generalized Additive Modeling (GAM)
approach of Hastie & Tibshirani (1990). Although these models provided
technical insights into the potential limitations of the approach followed in
Jacobson et al. (2004), none of them neither significantly altered the main
biological assumptions of the original study nor was able to reproduce the
population dynamics during the low-density phase in the last ten years.

In the present chapter we follow the lines suggested by Yoccoz & Gail-
lard (2006) and improve over existing models by incorporating peculiarities
of the ibex life cycle that have never been included in previous modelling
attempts, despite their ecological importance (Jacobson et al., 2006). The
most evident among these characteristics are sexual dimorphism and age
structure. Also, we contrast the threshold models by Jacobson et al. (2004)
and Corani & Gatto (2007) with differentiable models (hereafter called con-
tinuous models) where we use second-order polynomial approximations of
nonlinear unknown functional forms.

The effects of sex and age are quite strong in Alpine ibex and must be
taken into account to understand how density and environmental drivers
might affect the various fitness components of ibex populations (Gaillard
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et al., 1998, 2000). According to sex and age, in fact, animals live in
spatially segregated groups, using different habitat types. Males and fe-
males usually join only during the very narrow breeding season, from mid-
November to mid-January (Nievergelt, 1974). Kids live with their moth-
ers throughout their first year of life while male yearlings gradually depart
from female groups and form bachelor groups (2-3 years old) that join adult
males (Villaret & Bon, 1995). Recruitment and juvenile survival are usu-
ally considered more sensitive to both density and environmental variabil-
ity than adult survival. Among adults, female survival is larger and more
buffered against limiting factors than male survival (Gaillard et al., 1998;
Toïgo et al., 2003, 2007), although the difference is perhaps smaller for
ibex than for other large mammals (Toïgo et al., 1997). Since males and
females (with kids) are almost always spatially segregated, it is reasonable
to imagine that intraspecific competition can involve members of the same
sex only. In the present work, this hypothesis will be contrasted against
the alternative that intraspecific competition occurs among all individuals
in the population.

Data for kids, yearlings, adult males and adult females are actually
available, although they have never been used to formulate structured pop-
ulation models (Appendix E of Jacobson et al. (2004)). Here we fill the
gap and use this detailed information to build models for the rate of demo-
graphic variation in kids and adults (both males and females), and for the
weaning success. These sex- and age-structured models not only allow the
demographic projection in time of specific population compartments, but
can reveal which demographic processes are most influenced by biotic (e.g.
population density) or abiotic (snow) factors.

5.3 Material and methods

5.3.1 Population and data

The GPNP is located in the Northwestern Italian Alps (45◦ 25’ N, 7◦ 34’ E).
The wardens of the GPNP perform two counts every year, one in late spring
and one in the autumn, counting the population by walking over estab-
lished routes. The numbers of ibex in the two counts are highly correlated
(von Hardenberg et al., 2000); also, the autumn counts include all summer
newborns (discounted for neonatal mortality). Therefore we will use the
autumn counts for our analysis. Details on the counts techniques used to
obtain the data are provided in Appendix A of Jacobson et al. (2004). In
the same Appendix, on the basis of the correlation between the two count
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series, the authors suggest that counts are reliable.

The replication of counts within the same year, together with outliers
identification, has been suggested by Largo et al. (2008) as a methodology
to make the ibex counts more reliable and to avoid huge underestimates
of the population size. The authors define as obvious outliers the data of
years with a growth rate > 1.35. In the GPNP case, this value is never
exceeded. Nevertheless, the minimum and the maximum of the growth
rate occur in two consecutive years, in 1976 (Nt+1/Nt = 0.64) and in
1977 (Nt+1/Nt = 1.28). Counts of 1977 are then candidate to be a no-
table underestimate of the actual population size. We therefore compared
these growth rate values with those obtained using spring counts, which are
Nt+1/Nt = 0.61 in 1976 and Nt+1/Nt = 1.25 in 1977. Thus, the growth
rate values are comparable using the two different counts and we therefore
decided to include 1977’s data in the analysis. Moreover, 1976 is the year
characterized by the largest snow depth in the time series, so that a very low
growth rate is not surprising.

Data of the ibex population in the Park are available from 1956 till today
and constitute one of the longest continuous existing time series of moun-
tain ungulate counts worldwide. In addition, the data are structured in age
and sex classes, which, for clarity, we will call hereafter population com-
partments. Fig. 5.1a shows the total number of ibex (autumn counts) while
Fig. 5.1b reports the counts of each of four population compartments: kids
(0− 1 years), yearlings (1− 2 years), adult (> 2 years) females and males.

Fig. 5.1a reports the mean winter snow depth (St) measured at the IREN
ENERGIA meteorological station at Lake Serrù (45◦ 16’ N, 7◦ 8’ E, 2 240
m), averaged from November of year t to May of year t+1. In the threshold
models by Jacobson et al. (2004), the critical value of S̄ = 154 cm is chosen
as the average plus half a standard deviation of the snow time series in the
period 1961-2000.

From 1961 to 1982 the total number of ibex in GPNP fluctuated around
a mean value of about 3 300 individuals. Then, an interesting temporal pat-
tern clearly emerged: the total abundance in fact displayed a rapid increase
(from ca. 3 250 individuals in 1982 to almost 5 000 in 1993) and then a
sharp decrease, with only ca. 2 700 ibex surviving in 2008. This unimodal
variation of the population size occurred under a monotonically decreas-
ing trend of snow depth, somehow suggesting that the interaction between
climatic conditions and population numbers is not at all as simple as one
might hope for.
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Figure 5.1: Available data for Alpine ibex in the GPNP. (A) Fall counts of the
total population abundance (solid) and mean winter snow depth St (dashed)
estimated at Serrù station as the average from November of year t to May
of year t + 1. (B) Number of ibex in the four population compartments: adult
males (solid), adult females (dashed), yearlings (dotted) and kids (dash-dotted).
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5.3.2 Unstructured and sex- and age-structured models

The use of thresholds (Jacobson et al., 2004; Corani & Gatto, 2007, as
done by) represents a form of non-linearity in the demographic growth rate
model. We wish to extend this approach in order to better capture the non-
linearities of the system. To this end we consider continuous models that
incorporate all the quadratic terms in the explanatory variables. In its com-
plete form, a model of this type has the polynomial expression

log

(
Nt+1

Nt

)
= β0 + β1Nt + β2St + β3StNt + β4S

2
t + β5N

2
t + ρt (5.1)

where Nt is the total population density, St is the mean winter snow
depth and ρt is a stochastic factor representing environmental noise and un-
modeled processes. In previous models, the parameters β4 and β5 were set
to zero. Continuous models of this kind can be viewed as a 2-nd order Tay-
lor expansion of a more general model log (Nt+1/Nt) = f (Nt, St) around
the average ibex density and snow depth.

The second extension formulated here is the introduction of sex- and a
simplified age-structure. Since adult counts are not partitioned into yearly
age classes, the models we propose are not fully age-structured; however,
they provide a first attempt toward the bottom-up approach to ibex demog-
raphy invoked by Jacobson et al. (2006) and Yoccoz & Gaillard (2006).
Moreover, in the next chapter, we describe the first attempts to consider the
complete age structure of eh population starting from the available censuses

According to the counts data reported in Fig. 5.1, in each year t the
population is partitioned into four compartments: kids Kt, yearlings Yt,
adult males Mt and adult females Ft. Juvenile classes Kt and Yt include
animals of both sexes that are not yet reproductive. At year t, the rate of
demographic variation of kids (σK,t), males (yearlings and adults, σM,t) and
females (yearlings and adults, σF,t), as well as the weaning success wt can
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be defined as

σK,t =
Yt+1

Kt

(5.2a)

σM,t =
Mt+1

Mt + 1
2
Yt

(5.2b)

σF,t =
Ft+1

Ft + 1
2
Yt

(5.2c)

wt =
Kt+1

Ft+1

(5.2d)

Definitions of the rates of demographic variation σM and σF implicitly en-
tail the assumptions of balanced sex ratio at birth and no ratio distortion in
the juveniles (kids and yearlings). For the realism of these assumptions, see
Stüwe & Grodinsky (1987) and Toïgo et al. (1997).

By using the same approach introduced above for the unstructured
counterparts, structured models are defined through nonlinear relationships
between the logarithms of rates (5.2) and two covariates: the average snow
depth St and the density DC,t of animals that is relevant for intraspecific
competition within each compartment C (see below). As in the unstruc-
tured case, such nonlinear relationships can be continuous, i.e.

log (σC,t) = β0,C+β1,CDC,t+β2,CSt+β3,CStDC,t+β4,CS
2
t +β5,CD

2
C,t+ρC,t

(5.3)
with C (= K, F, or M) and

log (wt) = β0,w+β1,wDw,t+β2,wSt+β3,wStDw,t+β4,wS
2
t +β5,wD

2
w,t+ρw,t

(5.4)
or, alternatively, they may be discontinuous. In this latter case, they

contain fewer terms (β4 = β5 = 0), but the parameters β0, β1, β2, β3 can
take different values in years characterized by snow depths above or below
the critical threshold S̄.

Apart from the short breeding season, Alpine ibex live in groups spa-
tially segregated by age and/or sex (Villaret et al., 1997). Therefore, in ad-
dition to accounting for dependence on total density (DC,t = Dw,t = Nt),
we also consider the case of sexually-segregated density dependence. Al-
though not all male yearlings depart from their mothers, we consider the
simple hypothesis of two separate groups, one with “males” (adult males
plus male yearlings) and the other with “females” (mothers with all kids
plus female yearlings). For eqs. (5.3) and (5.4) above, this translates into
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considering Dw,t = DF,t = DK,t = Ft+Kt+Yt/2 and DM,t = Mt+Yt/2.
Note that Eq. (5.4) is dynamical, in the sense that weaning success in the
spring of year t + 1 is dependent on the state of the population in the au-
tumn of year t and average snow depth in the winter between year t and
year t+ 1. In fact, meteorological conditions and population density of the
year preceding births can well describe the physiological state of mothers
during the reproduction period (see the ‘tap-hypothesis’ in Grøtan et al.,
2008).

5.3.3 Model evaluation

The number of candidate models that emerge from the scheme outlined in
the previous section is quite large. In fact, we define two families of mod-
els: unstructured and sex- and age-structured. Every unstructured model
is fully characterized by the function relating the total population growth
rate (log (Nt+1/Nt)) to the different covariates. Every structured model
instead requires the mathematical description of 4 demographic quanti-
ties (log (σK), log (σM), log (σF ) and log (w)) that can be either related
to the density of the entire population (no spatial segregation) or to the
compartment-specific density of “males” or “females”, as defined in the
previous section (spatial segregation). Each of the above rates can be re-
lated to the covariates by either a continuous formulation (like in eq.s 5.1,
5.3 and 5.4) or a threshold formulation. Independent of the chosen formula-
tion, candidate models include all possible combinations obtained from the
most complex formulation in which one or more terms are dropped, with
the only exception of the constant term β0. Simple combinatorics reveal
that there are 32 continuous formulations and 8 threshold formulations for
the suite of unstructured models. For the structured case, because of the two
different hypotheses on density dependence (with or without spatial segre-
gation) and considering that some of the models depend on snow only, we
have a total of 74 potential model candidates for each of the 4 demographic
parameters.

To orient ourselves inside the model space, we use standard model se-
lection techniques: the second order Akaike’s Information Criterion (AICc,
equation 2.19), the Bayesian Information Criterion (AICc, equation 2.20)
and a criterion based on Structural Risk Minimization (AICc, equation
2.22), which are described in section 2.2. we use here multiple criteria
rather than a unique selection method, because their different way of ac-
counting for model parsimony can produce a difference in the results that
is worth investigation.
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In general, model selection does not provide one winner model, but a
hierarchical set of optimal models, i.e. a set of models that are “near” the
model that shows the best value for the criterion. The number of these opti-
mal models vary between criteria and is not known a priori. The strategies
used to define the set of optimal models are reported, for each criterion, in
section 2.2. In this case, we merge the results obtained using the three cri-
terion, qualifying as best models those with the lowest number of estimated
parameters among the models that meet all these conditions: ∆AICc < 4,
∆BIC < 2 and SRM < 1.06SRMbest. In principle, it might be possible
that no model satisfies simultaneously the three conditions, but this is not
our case.

For the best models we also calculate the adjusted R2, which is a varia-
tion of the classical coefficient of determination that takes into account the
model complexity:

R̂2 = 1− n− 1

n− k − 1

SSE∑n
i=1(yi − y)2

(5.5)

where k is the number of parameters of the model, n the number of obser-
vations, y the mean value of the observations and SSE the sum of squares
of residuals (see equation 2.1).

To evaluate errors of parameter estimates we use bootstrap (Efron,
1979). The bootstrap method provides an unbiased estimation of each pa-
rameter (but see caveats in Efron et al., 1993) and an estimation of their
variances. The statistics reported in Appendix I are obtained by calibrating
the parameter values over 1 000 bootstrap samples, each consisting of n
data values drawn with replacement from the original n-sized dataset.

In order to assess the predictive ability of the best models over longer
time scales, we repeat the same parameter tuning and simulation experi-
ments performed in Jacobson et al. (2004). To compare our results with
theirs, we recalibrate all parameters of the selected models using only the
first 20 years of data (1961-1980). Then, based on the recalibration, we
simulate the ibex population trends until 2005 with both unstructured and
structured models.

Simulating population trends after 1980 with the unstructured models is
quite simple, because it is sufficient to initialize the systems with N1981 and
use the snow depth series S1981, S1982, . . . , S2004 as inputs. To predict the
total population abundance with structured models is more cumbersome,
because the different rates of demographic variations and the weaning suc-
cess of the structured models must be aggregated into one global model.
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The main advantage of structured models is to provide information on
the role played by covariates in each specific demographic process (i.e.
adult rates of demographic variation, kid rate of demographic variation,
weaning success). Also, structured models can be used to understand
whether simulations of any particular population compartment deviate from
data significantly more than others, thus pointing out the weakest links of
the chain in the global model. To specifically investigate this point, we
have performed additional simulations with global models in which part of
the state variables are computed via the model equations, while others are
directly equated to data. More precisely, we have predicted the number of
adult males and females from yearling counts using the following equations

M̂t+1 =

(
M̂t +

Yt
2

)
σ̂M,t

F̂t+1 =

(
F̂t +

Yt
2

)
σ̂F,t

(5.6)

where Yt is the measured number of yearlings in year t, whileM̂t and F̂t
are the model-predicted numbers of adult males and females, respectively,
and σ̂M,t and σ̂M,t are the best-estimated rates of demographic variations.
Similarly, we have predicted the number of kids from the mother counts
and the number of yearlings from the kid counts using

K̂t = Ftŵt

Ŷt+1 = Ktσ̂K,t
(5.7)

where ŵt and σ̂K,t are the best estimates of weaning success and rate of
demographic variation of kids.

The estimated total population abundance N̂t can be derived by simply
summing the abundances of all compartments. A direct comparison of the
long-term prediction obtained from structured vs unstructured models is
then possible. As an index of predictive ability we use the root mean square
error between N̂ and N :

RMSEN =

√√√√∑2005
t=1982

(
Nt − N̂t

)2

2005− 1981

To better evaluate the performance of the different models throughout
the simulation period, it is also convenient to define the root square error
averaged from the beginning of simulation (year 1981) to year k, i.e.
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RMSEN(k) =

√√√√∑k
t=1982

(
Nt − N̂t

)2

k − 1981

5.4 Results

In subsection 5.4.1 we present the models selected and their performance
for one-step-ahead predictions, while in subsection 5.4.2 we illustrate the
results when using the same models in long-term simulations.

5.4.1 Predictions

By using the selection criteria described in the previous section, we ob-
tained the best models reported in Tab. 5.1. Within the family of unstruc-
tured models, the two selected systems are both discontinuous, in agree-
ment with the original findings of Jacobson et al. (2004). NT1 includes
pure density dependence and the interaction term StNt, while NT2 includes
pure snow-dependence and the interaction term. This latter model has the
same structure as the model selected by Corani & Gatto (2007). Interest-
ingly enough, the inclusion of higher order terms in the continuous systems
(eq. 5.1) for the total growth rate does not result in better performance of
the unstructured models.

The picture emerging from the analysis of structured models is more
complex. First, we notice that the set of best models among the potential
candidates is indeed very small (see again Table 5.1). Most interesting is
the fact that the best density-dependent models selected by our procedure
tend to be those with spatial segregation. That is, the dynamics of “males”
is influenced more by “males” than by the entire population and the same is
true for “females”. The only exception is the rate of demographic variation
of kids, for which both a model incorporating the segregation hypothesis
(KC1, in which Dt = “females”) and one excluding segregation (KC2, in
which Dt = total population density) pass the model selection. As for the
rate of demographic variation of males, three models that do not incorpo-
rate the spatial segregation hypothesis would also satisfy the ∆’s criteria
described above, but have been excluded because they are not as parsimo-
nious as the others. While for females and kids two alternative models
are selected, the rate of demographic variation of males and the weaning
success have a unique best functional formulation.
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Chapter 5. Structured population models for Alpine ibex dynamics

For structured models, there is no systematic prevalence of threshold
over continuous formulations. More precisely, while threshold models are
best for adult compartments (male and female rates of demographic vari-
ation), continuous models are selected for kid demography and weaning
success. These include the linear and quadratic terms in the snow depth St
and the interaction term DtSt. A closer look at the signs of the best esti-
mates of parameter values (see Appendix I, Tables 5.7, 5.8 and 5.9) reveals
that the coefficients β2 multiplying St are positive while the coefficients β4

multiplying S2
t are negative, an indication that kid demography and wean-

ing success have a nonmonotonic dependence on snow depth (see Fig. 5.2).
This suggests that years characterized by particularly low snow depth can
be detrimental to the juvenile compartments of the Alpine ibex, a result that
is in keeping with the recently observed drop of the relevant rates (see von
Hardenberg et al., 2009).

In terms of adjusted R2, the best performances are provided by models
for the total population and for the rate of demographic variation of females,
while the models for male and kid demography and weaning success dis-
play a poorer fit to the data lower explained variance.

Most coefficients of variation of the estimated parameters, as shown
in the Appendix I (Tables I.1-7) are of the order of 10−1 (see also the
Discussion), thus showing that best fits are rather robust. Using the boot-
strapped parameter distributions, we assessed the predictive ability of the
best models under parameter uncertainty. First, we performed one-step-
ahead predictions, whose distribution (5th-95th percentile) was obtained
from the 1 000 parameters of the bootstrap analysis. The result is shown in
Fig. 5.3. Despite all models are calibrated on data over the entire period
1961-2004, the predictive ability deteriorates at the end of the 1970s. In
fact, while data fall within the prediction range during the first part of the
time series, deviations of predictions from data are more frequent after the
beginning of the 1980s. Particularly evident is the mismatch in the case of
the rate of demographic variation of kids.

5.4.2 Long-term simulations

Having selected two best models for the rates of demographic variation
of females and kids and one best model for the other rates, we obtained
four structured global models, namely STR1 (consisting of models MT ,
FT1, KC1 and WC), STR2 (MT , FT2, KC1 and WC), STR3 (MT ,
FT1, KC2 and WC) and STR4 (MT , FT2, KC2 and WC). Similarly
to the case of unstructured models, the initial condition is considered as
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Figure 5.2: Models for kid rate of demographic variation (panel A) and weaning
success (panel B) vs snow depth, where asterisks indicate the data and the the
dotted vertical line corresponds to the snow threshold value of 154 cm. The
continuous line shows the fit from models KC1 (A) and WC (B) while dashed
lines correspond to optimal threshold models. As all the models include both
the snow depth and the interaction between snow depth and density, curves are
computed using the mean value of the population density over the entire study
period.
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Figure 5.3: One-step ahead prediction ranges of the best models (5th to 95th per-
centile and mean, grey bars) vs the logarithm of observed vital rates (solid
lines). Parameters, whose values and statistics are in tables of Appendix I, are
calibrated by using 1 000 bootstrap samples from data along the entire times-
pan. Panels (A) and (B) represent the total annual growth rates predicted by
unstructured models NT1 and NT2, respectively. The other panels report results
of structured modelling: (C) Female rate of demographic variation predicted by
model FT1 (left axis) and FT2 (right axis); (D) Male rate of demographic vari-
ation (model MT), (E) Kid rate of demographic variation predicted by model
KC1 (left axis) and KC2 (right axis), and (F) weaning success (WC). The struc-
ture of each model is summarized in Tab. 5.1.

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

-0
.6

-0
.4

-0
.20

0.
2

0.
4

Growthrate[log(Nt+1/Nt)]

U
ns
tr
uc
tu
re
d
po
pu
la
tio
n
m
od
el
N
T
1

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

-0
.6

-0
.4

-0
.20

0.
2

0.
4

YE
A
R

Growthrate[log(Nt+1/Nt)]

U
ns
tr
uc
tu
re
d
po
pu
la
tio
n
m
od
el
N
T
2

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

-0
.6

-0
.4

-0
.20
0.
1

Survival[log(σM)]

M
al
es
’m
od
el
M
T

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

-1
.7

-1
.3

-0
.9

-0
.5

Weaningsuccess[log(w)]

W
ea
ni
ng
su
cc
es
s
m
od
el
W
C

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

-3

-2
.5-2

-1
.5-1

-0
.50

K
id
s’
m
od
el
s
K
C
1
an
d
K
C
2

Survival[log(σK)]

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05-2-1

.5

-1-0
.5

00.
5

1

Survival[log(σK)]

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

-0
.9

-0
.5

-0
.10.
3

Fe
m
al
es
’ m
od
el
s
FT
1
an
d
F
T
2

Survival[log(σF)]

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05-0

.5

-0
.1

0.
3

0.
7

Survival[log(σF)]

YE
A
R

YE
A
R

YE
A
R

YE
A
R

YE
A
R

A
)

C) E)

B) D
)

F)

140
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known (X̂1981 = X1981 for all X’s) as well as the snow depth time-series
St over the entire simulation horizon (from 1981 to 2004). Fig. 5.4 shows
the distributions of values (in terms of 5th-95th interpercentile and 25th-75th

interquartile) simulated with the best models under parameter uncertainty
(evaluated via bootstrap). The plots reveal that the unstructured models
NT1 and NT2 reproduce the recent trends in quite a similar way. The
main difference is that model NT2 exhibits more oscillations than NT1.
In terms of RMSEN , the performances of the two unstructured models are
comparable (RMSEN = 506 for NT1 and 531 for NT2), and they are
both significantly more effective than the model by Jacobson et al. (2004)
(RMSEN = 852) which did not include the double estimate of β0.

The structured global models neither perform qualitatively better than
the unstructured model, nor provide quantitatively significant improve-
ments (RMSEN = 577 for STR1, 570 for STR2, 524 for STR3 and 520
for STR4). As in the case of unstructured models, trends simulated with
structured models underestimate the peak and overestimate the abundances
of recent years (Fig. 5.4).

The temporal evolution of RMSEN(k) for the best structured and un-
structured models is shown in Fig. 5.5. Structured models perform better
than unstructured ones in terms ofRMSEN(k) along almost the entire sim-
ulation period, with the exception of the first and last years. On the other
hand, recent data are systematically included between the 5th and 95th per-
centile of all simulations obtained with unstructured models (see Fig. 5.4),
while this is not true for simulations obtained with structured models. How-
ever, unstructured models display very high variability of long-term pre-
dictions, simulating unrealistic abundances as high as 10 000 individuals or
more.

Even though structured models do not significantly improve the predic-
tion of total population numbers, it is useful to explore what is the contri-
bution of the different compartments to the simulated dynamics. The first
three panels of Fig. 5.6 show the simulated numbers of adult males and
females obtained from models (5.6) while considering the time series of
yearlings Yt as a known input. The two best models FT1 and FT2 perform
rather similarly and both underestimate the population peak of the 1990s
but reproduce fairly well the subsequent decreasing trend. The model for
males is more precise than the two models for females. Observations are
almost always included between the 5th and the 95th percentiles of boot-
strapped simulations for both males and females. Simulations for the adult
male compartment are more variable than those for females. This is ex-
pected because the coefficients of variation of the estimated parameters of
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Figure 5.4: Simulation ranges for the dynamics after 1980 of the total number of
ibex obtained with unstructured models NT1 (A) and NT2 (B), and with global
models STR1 (C), STR2 (D), STR3 (E) and STR4 (F). Parameter values are
calibrated by using 1 000 bootstrap samples over the first 20 years of data. The
dark gray areas include the 25th to 75th percentile, while light gray areas are for
the range 5th to 95th percentile. The thick continuous line stands for data while
the thin dashed line corresponds to the reference simulation obtained with the
unbiased parameters reported in Tables of Appendix A.
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Figure 5.5: Temporal evolution of RMSEN (k) as defined in the main text. All
parameter values as in the reference simulations of Fig. 5.4.
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model MT are higher than unity when snow depth is below threshold (see
Tab. 5.6). Panels (d), (e), and (f) of Fig. 5.6 focus on the juvenile compart-
ments of kids and yearlings and are obtained with the first and second of
equations (5.7). While the counts data are often included in the prediction
range before and during the population peak, they are frequently below the
5th percentile starting from the mid-1990s, especially in the case of year-
lings.

5.5 Discussion and conclusions

The models proposed and analysed in this study relate the total annual
growth rate (unstructured models) or the rates of demographic variation
and weaning success (structured models) to population density and snow
depth. For the unstructured models the idea is not new, but here we account
for richer functional forms than those available in the literature. As for the
novel compartment-structured approach, we propose models aimed at in-
cluding the likeliest factors impacting on the juvenile and adult ibex rates
of demographic variation and on mother weaning success.

The sexually-segregated density dependence hypothesis almost system-
atically improves the model performance and is specifically selected for
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Figure 5.6: Simulations for adult males and adult females obtained with mod-
els (5.6) using parametrization as in FT1 (panel A), FT2 (panel B) and MT
(panel C) respectively. Panels (D), (E) and (F) represent simulated kids and
yearlings obtained with models (5.7). Parameter values and curve types are as
in Fig. 5.4.
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the female and male rates of demographic variation and for the weaning
success. For kids, one of the two selected models is based on sexual seg-
regation, while the other is not. With the only exception of one model
for adult female demography, all the structured models selected among the
many potential candidates include the interaction term between snow depth
and density (StDt). This result reinforces the evidence that climate strongly
intensifies density dependence of ibex in GPNP, in accordance with the re-
sults of Jacobson et al. (2004). In fact, not only the total annual growth
rate, but every single vital rate appears to be crucially dependent on the
joint effect of snow depth and population density.

In contrast to what happens for the rate of demographic variation of
adult males and females, the best models for kids and weaning success are
continuous rather than threshold-like. Also, they reveal that an intermediate
value of snow depth is optimal for both demographic parameters. This non-
monotonic snow dependence is presumably related to different biological
mechanisms. Winters with high snow cover are detrimental to all ibex,
and especially adults, because food is scarcer than in low-snow winters and
more energy is required to move in the high snowpack and dig out the dry
grasses from below the snow. High ibex densities amplify the snow effect
as in this case intraspecific competition becomes more severe. In addition,
winters with large snow cover have a correspondingly higher probability
of avalanches and the associated ibex casualties. This mechanism, where
high winter snow is detrimental to ibex, have been thoroughly discussed in
Jacobson et al. (2004).

Here, however, another effect has been discovered. Winters with very
low snow cover (such as the winters in the last twenty years) are also detri-
mental to ibex, but this time through their effects on kid survival and wean-
ing success. This seems to reflect a major sensitivity of juveniles to a lack
of snow during winter. Pettorelli et al. (2007) have shown that, possibly be-
cause of climate change, the green-up of GPNP vegetation became faster.
Indeed, the annual maximal increase in the normalized difference vegeta-
tion index (NDVI), a satellite-based measure that is strongly correlated with
the net primary productivity, appeared to increase over time. This may lead
to a shorter period of availability of high-quality forage over a large spatial
scale, decreasing the opportunity for mountain ungulates to exploit high-
quality forage. Kid rate of demographic variation might thus be influenced
either directly or possibly via the state of mothers during lactation.

Although simulations obtained with the best structured and unstructured
models show quite high variability within the range of bootstrapped param-
eter values, the actual time series of animal counts is not always included
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in that range. Reference simulations made using unbiased parameters (see
again Fig. 5.4) show that all models underestimate the population peak
(occurred from the mid 1980s to the mid 1990s) and overestimate recent
counts.

The long term simulations of each single compartment show an under-
estimation of the adult compartments during the growing phase of the peak
and an overestimation of the juvenile compartments (kids and yearlings)
during the population decline started from the mid-nineties. These results
indicate that weaknesses in modelling adult rates of demographic varia-
tion are responsible for the underestimation of the population peak in the
1990s, while the overestimation of the recent declining trend can be mainly
ascribed to inadequate modelling of recruitment and rate of demographic
variation of kids.

Our findings suggest that mechanisms other than direct climate effects
and population density could influence the dynamics of ibex in GPNP. As
mentioned above, the recent drop of kid survival might also be related to the
state of pastures. Another important, yet poorly explored factors are para-
site infections and interspecific competition. In fact, emergence of parasitic
infections that critically affect demography of ungulates have been recorded
in different Arctic populations (Kutz et al., 2004). Such epidemics appear
to be favoured by climate warming. Modelling their effects on ibex popula-
tion dynamics is thus a promising avenue for investigation (see for example
Ferrari et al., 2010). As for interspecific competition, it is known that ibex
share their habitat with chamois (Rupicapra rupicapra) in the GPNP. Actu-
ally, the populations of chamois and ibex showed similar trends until 1993
(Picollo, 2002). After that year, however, chamois stayed approximately
constant, while ibex started to decrease. Therefore, testing whether com-
petition between the two species (documented in the literature since long
time, see Pfeffer & Settimo, 1973) might be responsible for the decrease of
ibex is worth exploring.

Finally, a big step ahead and a possible remedy to the shortcomings
of currently available models would consist in formulating age-structured
models that consider a more realistic subdivision into yearly classes of indi-
viduals of the same sex. Models at this finer scale would include the effects
of senescence on male and female rates of demographic variation. These
have been clearly documented, e.g. in a French population of ibex (Toïgo
et al., 2007). As reported for other species of large herbivores (Gaillard
et al., 2000), it is plausible that old ibex suffer much more than young in-
dividuals in years characterized by particularly unfavourable environmen-
tal conditions. Compartmented models, like those proposed in the present

146



5.5. Discussion and conclusions

chapter, cannot account for animal senescence, because all adults are in-
cluded in the same class independent of their age. To develop complete
age-structured models, one could integrate the count data with capture-
mark-resight (CMR) data collected on cohorts of individually marked ani-
mals ( currently under way at GPNP).

Even if CMR data are not available, other strategies can be used to re-
construct the age structure of the population and to use it in the dynamical
models. The main focuses of the subsequent chapter are indeed the study
of the effect of senescence in Alpine ibex dynamics and the reconstruction
of the full age structure of the population.

147



Chapter 5. Structured population models for Alpine ibex dynamics

Bibliography

Bianchi, M., Corani, G., Guariso, G. & Pinto, C. 2006: Prediction of un-
gulates abundance through local linear algorithms. Environmental Mod-
elling and Software 21(10): 2004–2007. doi:10.1016/j.envsoft.2006.04.
001.

Corani, G. & Gatto, M. 2007: Structural risk minimization: a robust
method for density-dependence detection and model selection. Ecog-
raphy 30(3): 400–416. doi:10.1111/j.2007.0906-7590.04863.x.

Efron, B. 1979: Bootstrap methods: another look at the jackknife. The
annals of Statistics 7(1): 1–26.

Efron, B., Tibshirani, R. & Tibshirani, R. 1993: An introduction to the
bootstrap. Chapman & Hall/CRC. ISBN 0412042312.

Ferrari, N., Rosà, R., Lanfranchi, P. & Ruckstuhl, K.E. 2010: Effect of sex-
ual segregation on host-parasite interaction: model simulation for abo-
masal parasite dynamics in alpine ibex (Capraibex). International journal
for parasitology 40(11): 1285–1293. doi:10.1016/j.ijpara.2010.03.015.

Fischlin, A., Midgley, G.F., Price, J., Leemans, R., Gopal, B., Turley, C.,
Rounsevell, M., Dube, P., Tarazona, J. & Velichko, A. 2007: Ecosys-
tems, their properties, goods and services. In: Climate Change 2007: Im-
pacts, Adaptation and Vulnerability. Contribution of Working Group II
to the Fourth Assessment Report of the Intergovernmental Panel on Cli-
mate Change / Parry, M.L., Canziani, O. In Notes, Cambridge University
Press, Cambridge, UK, chap. 4, (pp. 211–272).

Forchhammer, M., Post, E., Stenseth, N. & Boertmann, D. 2002: Global
climate change and phenotypic variation among red deer cohorts. - Pop-
ulation Ecology 44: 113–120.

Gaillard, J.M., Festa-Bianchet, M. & Yoccoz, N.G. 1998: Population dy-
namics of large herbivores: variable recruitment with constant adult sur-
vival. - Trends in Ecology & Evolution 13(2): 58–63.

Gaillard, J.M., Festa-Bianchet, M., Yoccoz, N.G., Loison, A. & Toigo, C.
2000: Temporal variation in fitness components and population dynamics
of large herbivores. Annual Review of Ecology and Systematics 31: 367–
393.

148



Bibliography

Gaillard, J.M. & Yoccoz, N.G. 2003: Temporal variation in survival of
mammals: a case of environmental canalization? Ecology 84(12): 3294–
3306.

Grøtan, V., Sæther, B., Filli, F. & Engen, S. 2008: Effects of climate on
population fluctuations of ibex. - Global Change Biology 14(2): 218–
228. doi:10.1111/j.1365-2486.2007.01484.x.

von Hardenberg, A., Bassano, B., Percacino, V., Jacobson, A., von Hard-
enberg, J. & Provenzale, A. 2000: Preliminary analysis of the temporal
variability of the Alpine ibex population in the Gran Paradiso National
Park. - Ibex Journal of Mountain Ecology 5: 201–210.

von Hardenberg, A., Bassano, B. & Provenzale, A. 2009: Temporal vari-
ability in juvenile survival explains the strong population decline in
the Alpine ibex Capra ibex population in Gran Paradiso National Park
(North-Western Italian Alps). In V World Conference on Mountain un-
gulates. Granada (ESP).

Hastie, T. & Tibshirani, R. 1990: Generalized additive models. Chapman
& Hall/CRC. ISBN 0412343908.

Jacobson, A., Provenzale, A., Von Hardenberg, A., Bassano, B. & Festa-
Bianchet, M. 2004: Climate forcing and density dependence in a moun-
tain ungulate population. Ecology 85(6): 1598–1610.

Jacobson, A.R., Festa-Bianchet, M., Provenzale, A., von Hardenberg, A. &
Bassano, B. 2006: Comment on Lima & Berryman (2006): the Alpine
ibex revisited. Climate Research 32(2): 137.

Kutz, S.J., Hoberg, E.P., Nagy, J., Polley, L. & Elkin, B. 2004: “Emerging”
Parasitic Infections in Arctic Ungulates. Integrative and Comparative
Biology 44(2): 109. doi:10.1093/icb/44.2.109.

Lande, R. 1993: Risks of Population Extinction from Demographic and
Environmental Stochasticity and Random Catastrophes. - Global Change
Biology 142(6): 911–927.

Largo, E., Gaillard, J., Festa-Bianchet, M. & C 2008: Can ground counts
reliably monitor ibex Capra ibex populations. Wildlife Biology .

Lima, M. & Berryman, A. 2006: Predicting nonlinear and non-additive
effects of climate: the Alpine ibex revisited. Climate Research 32(2):
129.

149



Chapter 5. Structured population models for Alpine ibex dynamics

Nievergelt, B. 1974: The Behaviour of Ungulates and its relations to Man-
agement, Geist & Walther (Eds.), IUCN Publ., chap. A comparison of
rutting behaviour in the Ethiopian and Alpine ibex., (pp. 324–340).

Pettorelli, N., Pelletier, F., von Hardenberg, A., Festa-Bianchet, M. &
Côoté, S.D. 2007: Early onset of vegetation growth vs. rapid green-up:
impacts on juvenile mountain ungulates. Ecology 88(2): 381–390.

Pfeffer, P. & Settimo, R. 1973: Deplecements saisonniers et competition vi-
tale entre mouflons, chamois et bouquetins dans la reseve du Mercantour
(Alpes Maritimes). Mammalia 37(2): 203–219.

Picollo, M. 2002: Effetti della variabilitá climatica su ecosistemi alpini.
Master’s thesis, Facoltá di Scienze Matematiche, Fisiche e Naturali, Uni-
versitá degli studi di Torino.

Post, E., Stenseth, N., Langvatn, R. & Fromentin, J. 1997: Global climate
change and phenotypic variation among red deer cohorts. - Proceed-
ings of the Royal Society of London. Series B: Biological Sciences 264:
1317–1324.

Sæ ther, B. & Saether, B.E. 1997: Environmental stochasticity and popula-
tion dynamics of large herbivores: a search for mechanisms. Trends in
Ecology &amp; Evolution 12(4): 143–149.

Stüwe, M. & Grodinsky, C. 1987: Reproductive biology of captive Alpine
ibex (Capra i. ibex). Zoo biology 6(4): 331–339.

Terzago, S., Cassardo, C., Cremonini, R. & Fratianni, S. 2010: Snow Pre-
cipitation and Snow Cover Climatic Variability for the Period 1971–2009
in the Southwestern Italian Alps: The 2008–2009 Snow Season Case
Study. Water 2(4): 773–787.

Toïgo, C., Gaillard, J. & Michallet, J. 1997: Adult survival pattern of the
sexually dimorphic Alpine ibex (Capra ibex ibex). Canadian Journal of
Zoology 75(1): 75–79.

Toïgo, C., Gaillard, J.M. & Töigo, C. 2003: Causes of sex-biased adult sur-
vival in ungulates: sexual size dimorphism, mating tactic or environment
harshness? Oikos 101(2): 376–384.

Toïgo, C., J.M., G., Festa-Bianchet, M., Largo, E., Michallet, J., Mail-
lard, D., Töigo, C. & Gaillard, J.M. 2007: Sex-and age-specific sur-
vival of the highly dimorphic Alpine ibex: evidence for a conservative

150



Bibliography

life-history tactic. Journal of Animal Ecology 76(4): 679–686. doi:
10.1111/j.1365-2656.2007.01254.x.

Villaret, J. & Bon 1995: Social and spatial segregation in alpine ibex (Capra
ibex) in Bargy, French Alps. - Ethology 101(4): 291–300.

Villaret, J., Bon, R. & Rivet, A. 1997: Sexual segregation of habitat by the
alpine ibex in the French Alps. Journal of Mammalogy 78(4): 1273–
1281.

Yoccoz, N.G. & Gaillard, J.M. 2006: Age structure matters for Alpine ibex
population dynamics: comment on Lima & Berryman (2006). Climate
Research 32(2): 139.

151



Chapter 5. Structured population models for Alpine ibex dynamics

5.A Appendix I

The following tables contain parameter values of the selected best models,
together with their statistics. The labelling scheme of models and parame-
ters is explained in the main text (see as references eqs. 5.3 and 5.4 in the
main text). Since there is no risk of confusing βi,C with βi,w or viceversa,
we omit the second subscript in the tables. For threshold models, the super-
scripts refer to parameters calibrated using data of years with snow depth
lower (L) or higher (H) than the threshold of S̄ = 154 cm used in (Jacob-
son et al., 2004). The column “Best fit” indicates the best fitted value of
the parameter obtained by minimizing the square errors (data until 1980),
while “Unbiased value” stays for the bias-corrected parameter as suggested
in Efron et al. (1993). The column µ±SE represents the mean± the stan-
dard deviation of the parameter values obtained by using the bootstrapped
1 000 samples (see main text for details). CV is the coefficient of variation.

Table 5.2: Parameters for the logarithm of the total annual growth rate qualifying
the unstructured threshold model NT1

Parameter Best fit Bootstrap analysis
µ± SE CV Unbiased value

βL0 4.46·10−1 4.26·10−1 ± 2.20·10−1 5.16·10−1 4.66·10−1

βL1 -1.08·10−4 -1.04·10−4 ± 7.21·10−5 6.94·10−1 -1.12·10−4

βL2 - - - -
βL3 -7.13·10−6 -6.19·10−6 ± 1.94·10−5 3.14 -8.07·10−6

βH0 1.05 1.05 ± 1.76·10−1 1.68·10−1 1.04
βH1 -1.86·10−4 -1.87·10−4 ± 6.92·10−5 3.70·10−1 -1.86·10−4

βH2 - - - -
βH3 -7.32·10−5 -7.39·10−5 ± 2.00·10−5 2.71·10−1 -7.25·10−5
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Table 5.3: Parameters for the logarithm of the total annual growth rate qualifying
the unstructured threshold model NT2

Parameter Best fit Bootstrap analysis
µ± SE CV Unbiased value

βL0 9.59·10−2 9.43·10−2 ± 6.86·10−2 7.26·10−1 9.76·10−2

βL1 - - - -
βL2 3.25·10−1 3.03·10−1 ± 2.04·10−1 6.72·10−1 3.46·10−1

βL3 -1.08·10−4 -1.01·10−4 ± 5.76·10−5 5.71·10−1 -1.14·10−4

βH0 3.71·10−1 3.80·10−1 ± 1.41·10−1 3.73·10−1 3.62·10−1

βH1 - - - -
βH2 3.46·10−1 3.38·10−1 ± 1.71·10−1 5.05·10−1 3.55·10−1

βH3 -1.69·10−4 -1.68·10−4 ± 3.58·10−5 2.13·10−1 -1.70·10−4

Table 5.4: Parameters for the logarithm of the adult female rate of demographic
variation of the age-structured model FT1

Parameter Best fit Bootstrap analysis
µ± SE CV Unbiased value

βL0 1.34·10−1 1.64·10−1 ± 1.57·10−1 9.56·10−1 1.04·10−1

βL1 -1.23·10−4 -1.39·10−4 ± 7.29·10−5 5.26·10−1 -1.08·10−4

βL2 4.64·10−2 4.81·10−2 ± 4.68·10−2 9.73·10−1 4.46·10−2

βL3 - - - -
βH0 9.13·10−1 1.06 ± 2.65·10−1 2.49·10−1 7.63·10−1

βH1 -4.08·10−4 -4.82·10−4 ± 1.33·10−4 2.75·10−1 -3.35·10−1

βH2 -1.23·10−1 -1.20·10−1 ± 3.86·10−2 3.21·10−1 -1.26E-0.1
βH3 - - - -

Table 5.5: Parameters for the logarithm of the adult female rate of demographic
variation of the age-structured model FT2

Parameter Best fit Bootstrap analysis
µ± SE CV Unbiased value

βL0 1.91·10−1 2.16·10−1 ± 1.54·10−1 7.14·10−1 1.66·10−1

βL1 -1.53·10−4 -1.65·10−4 ± 8.35·10−5 5.05·10−1 -1.40·10−4

βL2 - - - -
βL3 2.39·10−5 2.46·10−5 ± 2.75·10−5 1.12 2.32·10−5

βH0 6.66·10−1 8.29·10−1 ± 2.96·10−1 3.57·10−1 5.02·10−1

βH1 -2.96·10−4 -3.75·10−4 ± 1.68·10−4 4.48·10−1 -2.16·10−4

βH2 - - - -
βH3 -5.59·10−5 -5.46·10−5 ± 2.60·10−5 4.77·10−1 -5.71·10−5
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Table 5.6: Parameters for the logarithm of the adult male rate of demographic
variation of the age-structured model MT

Parameter Best fit Bootstrap analysis
µ± SE CV Unbiased value

βL0 -2.51·10−2 -2.28·10−2 ± 1.04·10−1 4.56 -2.73·10−2

βL1 - - - -
βL2 - - - -
βL3 -4.89·10−5 -4.92·10−5 ± 2.27·10−3 1.46 -4.85·10−5

βH0 3.22·10−1 3.27·10−1 ± 1.54·10−1 4.70·10−1 3.16·10−1

βH1 - - - -
βH2 - - - -
βH3 -1.96·10−4 -2.00·10−4 ± 6.38·10−5 3.19·10−1 -1.92·10−4

Table 5.7: Parameters for the logarithm of the kid rate of demographic variation
of the age-structured model KC1

Parameter Best fit Bootstrap analysis
µ± SE CV Unbiased value

β0 -3.65·10−1 -4.20·10−1 ± 2.46·10−1 5.85·10−1 -3.11·10−1

β1 - - - -
β2 9.85·10−1 1.12 ± 4.03·10−1 3.59·10−1 8.47·10−1

β3 -1.88·10−1 -2.01·10−1 ± 1.12·10−1 5.59·10−1 -1.75·10−1

β4 -4.07·10−4 -4.45·10−4 ± 1.58·10−4 3.55·10−1 -3.69·10−4

β5 - - - -

Table 5.8: Parameters for the logarithm of the kid rate of demographic variation
of the age-structured model KC2

Parameter Best fit Bootstrap analysis
µ± SE CV Unbiased value

β0 -4.72·10−1 -5.19·10−1 ± 2.35·10−1 4.53·10−1 -4.25·10−1

β1 - - - -
β2 1.15 1.21 ± 3.78·10−1 3.13·10−1 1.08
β3 -2.33·10−1 -2.47·10−1 ± 1.08·10−1 4.37·10−1 -2.19·10−1

β4 -2.53·10−4 -2.55·10−4 ± 6.47·10−5 2.54·10−1 -2.51·10−4

β5 - - - -
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Table 5.9: Parameters for the logarithm of the kid rate of demographic variation
of the age-structured model WC

Parameter Best fit Bootstrap analysis
µ± SE CV Unbiased value

β0 -9.42·10−1 -9.31·10−1 ± 2.15·10−1 2.31·10−1 -9.54·10−1

β1 - - - -
β2 7.60·10−1 7.75·10−1 ± 4.04·10−1 5.21·10−1 7.44·10−1

βb -1.43·10−1 -1.24·10−1 ± 1.11·10−1 8.99·10−1 -1.63·10−1

β3 -2.11·10−4 -2.37·10−4 ± 1.18·10−4 4.98·10−1 -1.85·10−4

βc - - - -
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CHAPTER6
The role of senescence in the population

dynamics of Alpine ibex

6.1 Abstract

In the previous chapter we emphasized the joint role played by population
density and climatic conditions in determining ibex population dynamics.
Here we extend the study investigating whether they can be affected by tem-
poral variations in the age-structure of the population. It is in fact known
from past studies that survival rates decrease with age in both sexes and old
individuals become more sensitive to harsh conditions (senescence). More-
over, the fertility increases with age for young females (maturation) and
decreases for old females (senescence). Available census data for Gran Par-
adiso National Park (GPNP) population do not include age-specific counts,
so we build the age-structure of the adults by accumulating data on dif-
ferent cohorts of yearlings. We contrast models characterized by different
families of senescence and maturation functions and, within these families,
by different parameters on abiotic (snow depth) and/or biotic (population
density) factors. We selected the best models according to the second order
Akaike’s Information criterion (AICc). Since model selection is highly un-
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certain, we produced the predictions using multimodel inference based on
Akaike’s weights. The structures of the best models suggest that consider-
ing maturation and senescence is particularly important to model the adult
females survival and the survival of kids, but less important for the survival
of adult males and the weaning success. The role of snow depth and den-
sity found in the previous chapter is almost completely confirmed, even if
the nonlinear effects are less strongly detected. Nevertheless, considering
the population structure decreases the importance of density dependence,
because the fraction of old individuals and the population density increases
at the same time. The work highlights how one of the important drivers of
Alpine ibex dynamics in GPNP is the variation of the population structure.
However, to confirm the hypothesis, the results should be matched with real
data on the population structure (e.g. CMR data).

6.2 Introduction

The main shortcoming of the models discussed in literature and those pro-
posed in the previous chapter for the dynamics of the Alpine ibex in the
GPNP is the poor predictive power on the recent decreasing trend of the
population (e.g. see figure 5.6 at page 143). The results obtained using
the age and sex structured models presented above have shown that this
drawback is mainly due to some lacks in the models for the compartment
of juveniles. Recent studies have confirmed that the main cause of the ibex
drop is the decrease in the survival of kids (A. Provenzale, personal com-
munication). As mentioned in the previous chapter, one of the possible
explanation for this phenomenon is the worsening of the state of the pas-
tures (Pettorelli et al., 2007). Another sound alternative hypothesis is that
the dynamics were influenced by the variation of the population structure
and the increase of the fraction of senescent individuals.

Senescence is defined as the decrease of vital functions of an individual
(or its cells) near the end of its typical lifespan. In particular, we use here
the term senescence to intend a decrease with age of (i) the survival, (ii)
the weaning success and (iii) the ability of the mothers to breed their kids
to adulthood. Moreover, individuals of many species usually have, at the
beginning of their life, a period before the full development characterized
by a high mortality and a low production of offspring. Along with these
effects, senescent and young individuals are also less able to face harsh
environmental conditions. Most of the studies on senescence are focused
on the human species and the age-related changes in the risk of mortality
(Monaghan et al., 2008). However, senescence on other components of
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the fitness have been found for different phyla of the animal kingdom (see
Benton et al. (2008) for an example on mites and Martin & Service (1995)
for an example on birds).

Gaillard et al. (2000) show that, regardless of the environmental condi-
tions, female survival and fecundity are high in large herbivores and have
a low variability in adults, while they are lower but more variable for kids
and old adults, and moderately variable for prime-age adults. They show
also that the overall population dynamics are more affected by a variation
in the adult survival (less variable) than in recruitment (more variable) thus
leading to a damped effects of detrimental conditions in the short period
(see also Gaillard & Yoccoz, 2003). However, if detrimental conditions
occurs for many consecutive years, the long term dynamics can be driven
by the variations in recruitment, as happened in the Alpine ibex population
of the GPNP. Other authors report evidences of senescence in ungulates,
underlining how adverse climatic conditions and high densities affect more
older individuals than younger (White et al., 2011; Garrott & Eberhardt,
2003; Mysterud et al., 2001).

Unfortunately, in long living mammals, it is often hard to distinguish be-
tween density dependence and senescence of the population, because popu-
lations at high densities have, usually, also a high proportion of old individ-
uals (Festa-Bianchet et al., 2003). The recruitment tends in fact to decrease
as the density increases, thus leading to a population with many senescent
individuals, and a smaller growth rate. Festa-Bianchet et al. (2003) found
that, if the age structure is taken into account, often the strength of the de-
tected density dependence effect decreases.

Toïgo et al. (1997) specifically studied the senescence in the survival of
males and females for a French population of Alpine ibex. They confront
different Gompertz or Weibull functions, as suggested by Gaillard et al.
(2004), and found that in both cases the Gompertz model better fits their
data. Moreover, they show that the decrease of survival with age is steeper
for males than for females, and females survival is more bufferd against
environmental variations. Functions to model the age-specific fecundity
of mammalian population are typically unimodal with a maximum for the
mature adults. For example, Gage (2001) proposes the use of three compet-
ing models: the Gamma distribution, the Hadwiger function, and the Brass
polynomial. However, it is very rare to find studies that model (and not
only describe) the age-specific fecundity of ungulates. Loison et al. (2002)
reports, for a reintroduced population of ibex, a fertility of 43% at the age
of two and a fertility of 87% from year three onwards. On the other hand,
Giacometti & Ratti (1994) report, for a Swiss population, a fecundity rate
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that is lower for old females (14-16 years), intermediate for young females
(3 years) and higher for mature adult females (4-13 years).

In this chapter, we develop a state space model for the dynamics of
the Alpine ibex population of the GPNP. The model permits to reconstruct
the structure of the population of the last years through the accumulation
of several cohorts of yearlings. Moreover, proposed models potentially
include functions that describe the interplay between population density,
snow depth, development time and senescence in determining the age spe-
cific survivals and fertilities.

6.3 Methods

6.3.1 The state-space model

A generic state-space model is a model representation that includes both
a measurement and a state transition process. The measurement equations
describe the relationship between the state of the system and the measure-
ments, while the transition equations describe how the state of the system
evolves through time. We modelled our system including the age structure
of the population in the state vector, and using the censuses as our measure-
ments. According to the results of the last chapter, we hypothesize that the
male density does not affect neither reproduction nor male survival. Thus,
to simplify the description of the model, we first define the equations for
the female population only.

Following the available censuses, we define the measurement vector as
yt = [log(Kt), log(Yt), log(Ft)]

′, where Kt, Yt and Ft are, respectively, the
number of kids, yearlings and females measured at year t and the symbol ’
stays for transposed.

The state vector is xt = [FII,t . . . FXX,t, F1,t, . . . , F20,t]
′, where Fj,t is

the number of female kids made by a female of age j if j is a Roman
numeral; conversely, if j is an Arabic numeral, Fj,t is the number of females
of age j at year t. Notice that the state vector includes the age structure of
the population. Moreover, kids (females of age 0) are partitioned according
to age of the mother. The age of an adult female can in fact influence not
only its own survival rate and its weaning success, but also the chances
of its offspring to survive the first year of life, for example because of an
age-dependent ability of parental care. Notice also that F1,t are female
yearlings.
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The state transition and the observation equations are defined as

xt+1 = Φt(•)xt + wt (6.1)
yt = log(Htxt) + vt (6.2)

where wt and vt are the process and measurement noise vectors and
Φt(•) is defined as the square matrix:



II III . . . XX 1 2 . . . 19 20

0 0 . . . 0 1
2
σ1(·)f2(·) 0 . . . 0 0

0 0 . . . 0 0 1
2
σ2(·)f3(·) . . . 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 . . . 0 0 0
. . . 1

2
σ19(·)f20(·) 0

σKII(·) σKIII(·) . . . σKXX(·) 0 . . . . . . 0 0

0 0 . . . 0 σ1(·) 0
. . . 0 0

0 0 . . . 0 0 σ2(·)
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 . . . 0 0 0 . . . σ19(·) 0



(6.3)

where the age specific fertilities, fj(·), and survivals, σj(·) and σKj (·),
are functions of the the population density (Dt = Ft + Yt/2 + Kt) and of
the mean winter snow depth (St). Φt(•) is a Leslie-like transition matrix
properly designed to take memory of the mother’s age for each kid. The
survival functions identified by a Roman number represent the probability
of survival for a kid as dependent on the age of its mother; for example,
σKXIX(·) is the survival of a kid whose mother has 19 years. The weaning
success rates fj(·) are defined as the number of kids per females, and are
multiplied by 0.5 because we hypothesize a balanced sex ratio for both kids
and yearlings. Notice also that the last age class (20 years) is not fertile and
its survival is equal to zero. In the measurement equation, Ht is defined as:

Ht =


II . . . XX 1 2 . . . 20

2 . . . 2 0 . . . . . . 0
0 . . . 0 2 0 . . . 0
0 . . . 0 0 1 . . . 1

 (6.4)

6.3.2 Weaning success and survival functions

The fertilities and the survival functions reported in equation 6.3 are func-
tions that depend on the age (j) of the individuals or, for kids only, of their
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mothers. To limit the degrees of freedom, we constrained the weaning suc-
cess and the survival of kids to vary with age according to specified func-
tional forms, suitably chosen to take into account the contributes of senes-
cence and maturity. Moreover, fertilities and survivals potentially varies
with the population density (Dt) and the mean winter snow depth (St). The
equations for weaning success and survival can be therefore written has:

σKj (·) = σ(j,Dt, St) (6.5)
σj(·) = σ(j,Dt, St) (6.6)
fj(·) = f(j,Dt, St) (6.7)

where functions are time-dependent if Dt and/or St are included in the
model.

To model the variation of adult survival with age, we used monotonic
descending functions, under the hypothesis that from age 2 the survival can
only decrease, as described in Toïgo et al. (2007). For weaning success
and survival of kids, j is the age of their mothers. Under the hypothesis
that, as shown in literature (e.g. see Loison et al., 2002), from the first
year of maturity a female needs some years to reach its maximal fertility
rate, and that after the peak there is a decrease due to senescence, we tested
unimodal functions for weaning success. For the variation of kids survival
with the age of the mother there are few informations in literature, thus
we tested both monotonically decreasing and unimodal functions. Using
the unimodal functions, we are assuming that the ability of a female to
take care of its offspring increases with the age, reaches a maximum, then
decreases as senescence occurs. Using a monotonic function we are instead
considering that this ability can only decrease in time. For kids’ survival,
the candidate functional forms are the same used for weaning success and
adult survival.

Adult survival functions

Using age-structured data from a French population of Alpine ibex, Toïgo
et al. (1997) calibrated age-dependent adult survival functions based on
the Gompertz and the Weibull distributions. To compute the discrete-time
survival, the authors use an approximate solution of the Weibull and the
Gompertz functions (Gaillard et al., 2004). However, the integrals of the
Weibull and the Gompertz functions can be solved analytically without ap-
proximations, as we show below. We consider five different competing
age-dependent model structures for the survival:
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• constant survival between age 1 and 8, then a Gompertz function until
age 20;

• constant survival between age 1 and 8, then a Weibull function until
age 20;

• a Weibull function from age 1 to age 20;

• a Gompertz function from age 1 to age 20;

• constant survival from age 1 to age 20.
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Figure 6.1: Examples of the age-dependent survival functions, obtained using
four of the five tested senescence functions listed in the main text: panel a)
Weibull; panel b) constant survival from age 1 to age 8, then Weibull; panel c)
Gompertz; panel b) constant survival from age 1 to age 8, then Gompertz. We
show the value of the functions obtained using different values of the senescence
parameter, while the other parameters are kept constant.
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Weibull: The hazard rate of the Weibull distribution is

h(t) =
η

λη
t(η−1) (6.8)

where η > 0 is the shape parameter and λ > 0 is the scale parameter.
The shape parameter determines if the failure (death) rate increases (η >
1), decreases (η < 1) or is constant (η = 1) over ages, thus η defines
the senescence rate. Starting from the hazard rate, the probability that an
individual has at birth to survive until age j is:

p(j) = e−
∫ j
0 h(t) dt = e−( jλ)

η

(6.9)

and the discrete time survival between age j and j + 1 is

σ(j) =
p(j + 1)

p(j)
=
e1−( j+1

λ )
η

e1−( jλ)
η = e

jη−(j+1)η

λη (6.10)

Gompertz: The hazard rate of the Gompertz distribution is of the form:

h(t) = λe(ηt) (6.11)

where η is the shape parameter (senescence factor) and λ is the scale pa-
rameter. Over the age, the mortality rate increases if η > 0, decreases if
η < 0 and it is constant if η = 0. The probability at birth to survive until
age j (p(j)) and the survival between age j and j + 1 (σ(j)) are defined as

p(j) = e−
∫ j
0 h(t) dt = e−[λη (eηj−1)] (6.12)

σ(j) =
p(j + 1)

p(j)
= e

λ
η (eηj−eη(j+1)) (6.13)

Weaning success functions

For the weaning success (number of kids per females), we used distribu-
tions that are potentially unimodal, because we expect, starting from the
age of maturity, an increase in the weaning success due to maturation and
then a decrease due to senescence. The two candidate functional forms are
the Gamma and the Beta distributions, along with a model in which the
weaning success is constant over the ages.
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Figure 6.2: Examples of the age-dependent weaning success functions, obtained
using two of the three tested senescence functions listed in the main text: panel
a) Gamma; panel b) Beta. We show the value of the functions obtained using
different values of the parameter η for the Gamma (see equation 6.16) and a
for the Beta (see equation 6.19), while the other parameters are kept constant.

Gamma: The Gamma model assumes that the continuous weaning suc-
cess rate is:

ψ(j) =

G0(j−j0)(η−1)e
−( j−j0d )

dηΓ(η)
, if j > j0

0, if j ≤ j0

(6.14)

where j0 is the age at first reproduction, G0 is the gross reproduction
rate, d is a scale parameter,η is a shape parameter and Γ(η) =

∫∞
0
tη−1e−tdt

is the Gamma function. For Alpine ibex, the system is discrete because the
reproduction occurs only once a year in a specific period. The correspond-
ing cumulative function is

Ψ(j) = G0

∫ j

j0

ψ(t) = G0
γ(η, (j − j0)/d)

Γ(η)
(6.15)

where γ(η, (j−j0)/d) =
∫ (j−j0)/d

0
tη−1e−tdt is the lower incomplete gamma

function. Thus, in the discrete time case the Gamma weaning success model
becomes:
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f(j) =

{
G0

Γ(η)
(γ(η, (j − j0)/d)− γ(η, (j − 1− j0)/d)) , if j > j0

0, if j ≤ j0

(6.16)
According to literature (see the introduction of this chapter), the females

start to be fertile at the age of two, therefore we fixed j0 = 1. Since j0

is fixed, the free parameters are the senescence parameter (η), the scale
parameter d and the gross reproduction rate (G0).

Beta The Beta function is here properly modified to be defined between
the age of first reproduction j0 and the last fertile age jl. The weaning
success in a continuous system is described by the Beta as:

ψ(j) =

{
Goz(j)(a−1)[1−z(j)](b−1)

B(a,b)
, if j0 ≤ j ≤ jl

0, else
(6.17)

where z(j) = (j − j0)/(jl − j0), G0 is again the gross reproduction rate,
while b and a are two shape parameters. The corresponding cumulative
function, for j0 ≤ j ≤ jl is

Ψ(j) = G0Iz(j) (a, b) (6.18)

where Iz(j) is the regularized incomplete beta function. Thus, the discrete
time form of the weaning success is

f(j) =

{
G0

(
Iz(j) (a, b)− Iz(j−1) (a, b)

)
, if j0 ≤ j ≤ jl

0, else
(6.19)

We here fix the reproductive limits to j0 = 2 and jl = 16, according to
the biology of the species. Fixing these two parameters, the parameters to
be calibrated are the gross production rate and the two shape parameters.

Dependence on climate and density

The dependencies on the snow depth and on the population density are
taken into account in two different ways: i) as a multiplicative factor or ii)
to determine the value of the shape parameter η (a for the Beta distribution)
of the function. Let g(j) be a generic weaning success or survival function,
the multiplicative models are defined as

g(j, St, Dt) = f(j) ∗ e(β1Dt+β2St+β3StDt+β4S2
t+β5D2

t ) (6.20)
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In the other case (ii), the density and the snow depth affect the senescence
parameters; in other words we are assuming that old individuals suffer the
harsh conditions more than young individuals, as reported for many un-
gulates (see the introduction of this chapter). Thus, parameter η becomes
function of the density and the snow depth:

η(St, Dt) = η0 + β1Dt + β2St + β3StDt + β4S
2
t + β5D

2
t (6.21)

To define the model set, for each age dependent survival or weaning
success function, we consider the complete model as expressed in equations
6.20 or 6.21 and all the possible models defined setting to zero one or more
βi terms.

6.3.3 Model identification

The aims of our model are to reconstruct the complete age structure of the
population and to simulate the population dynamics. The use of a clas-
sical Kalman filtering techniques is not possible here because several re-
quirements to apply the filter are not satisfied by the system. In particu-
lar the initial state, the parameter values and the variance-covariance ma-
trices of measurement and process errors are unknown, and the model is
not linear. Several methods have been developed to overcome these prob-
lems. For example the extended and the unscented Kalman filters are suit-
able for nonlinear systems with Gaussian noises (Julier & Uhlmann, 1997),
while particle filtering techniques, based on Montecarlo method, deal both
with model nonlinearities and non-Gaussian noises. De Valpine & Hast-
ings (2002) specifically developed a method for fitting nonlinear and non-
Gaussian models of population abundance, where the probability calcula-
tions are carried out numerically. Even using these advanced methods, the
problem of estimating the initial conditions is till open and can be solved
only under particular circumstances. If the parameters of the model are
known and under the hypothesis that the system is at the equilibrium, the
initial population can be approximated using the stationary distribution. If
these conditions are not satisfied (as for the system under study in this chap-
ter), another interesting possibility is to treat the initial state of the system
as an additional unknown parameter and to recursively estimate it, like sug-
gested in Dennis et al. (2006).

However, even estimating the initial state of the system is not an effi-
cient solution for the system under study. In fact, the state vector xt has
39 elements and, consequently, so that the vector wt. If these vectors are

167



Chapter 6. Role of senescence in Alpine ibex dynamics

treated as parameters to be estimated, the dimensionality of the model in-
creases excessively, especially taking into account that only 44 years of data
are available for calibration. Therefore we decided to simplify the problem
setting wt = 0 and incorporating all the noise in the measurement error
vt, thus saving the calibration of 39 parameters. The measurement error is
distributed as vt = N3 (0, Σ), where:

Σ =

 σ2
K 0 0
0 σ2

Y 0
0 0 σ2

F

 (6.22)

Moreover, to avoid the definition of 38 more parameters for the initial
state (Y0 is measured, thus its estimate can be avoided), we used the first 18
years of yearlings counts to accumulate cohorts and completely reconstruct
the adult population structure and the structure of kids at year 19. Thus, we
used only the last 26 years of data to calibrate and test the model. Note that,
using this strategy, we saved the calibration of more than two parameters
for each year used to accumulate the cohorts and therefore we strongly
improved the ratio between data and parameters to be estimated.

In order to calibrate the models, we need to define the figure of merit
that has to be optimized. The problem is indeed much more complicated
than in the previous chapter, in which we easily calibrate the sub-models
of weaning success, kids’ survival and adult females survival. The same
separation of sub-models is not straightforward in this chapter, because the
age structure of the adult population is not measured, nor the age of the
mothers is available to define the structure of kids.

If the sub-models are not separated, one of the alternatives is to use
a figure of merit which represent the overall dynamic of the population,
such as the population growth rate. One of the main issue in adopting
such strategy is that it would lead to estimate of many parameters with
relatively few data. Moreover, calculating a unique figure of merit at each
time step (t), thus merging the separate counts of kids, yearlings and adults,
most of the information contained in the counts is discarded. On the other
hand, it is also possible to define more than one figure of merit, separately
looking at the different measures (Kt,Yt and Ft). However, this implies to
solve a multi-objective problem, which is computationally too expensive.
Moreover, having more than one objective, some of them can be conflictual,
i.e. impossible to be contemporary optimized. In this case, a good solution
for the optimization is to find many Pareto optimal solutions instead of a
unique optimum.
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To overcome all these problems, we developed a method to perform
a sequential optimisation of three sub-models: (i) adult females survival,
(ii) weaning success and (iii) survival of kids. The main idea is to first
calibrate the adult survival model and to reconstruct the age-structure of
the adult females (F2,t, ..., F20,t), using the counts of yearlings as inputs.
Starting from the reconstructed structure of adult females, it is then possible
to calibrate the model of weaning success and to reconstruct the structure
of kids (i.e. fraction of kids having a mother of a given age, FII,t...FXIX,t).
Using the kids’ structure it is finally possible to calibrate the parameters of
the models for the survival of kids. This permits to avoid the definition of a
single score and allows to separately use the counts of kids, yearlings and
females. Thus, we aimed at separately minimizing three sum of squared
simulation errors calculated as:

• SSEF =
∑

t

(
log(F̂t)− log(Ft)

)2

for the adult female survivals

• SSEK =
∑

t

(
log(K̂t)− log(Kt)

)2

for weaning success

• SSEY =
∑

t

(
log(Ŷt)− log(Yt)

)2

for the kids’ survival

where the hatted variables are the simulated values of the corresponding
measured variables (not hatted). The three submodels used for sequential
optimisation are summarized in figure 6.3 and explained in detail in the
following three subsections.

To select the best models for each sub-model, we used the second order
Akaike’s Information Criterion (AICc, equation 2.19 at page 36). We se-
lected as best all the models that have AICc ≤ AICcbest + 4. If more than
one model was selected, predictions were made using theAICc multimodel
inference as described in section 6.3.3 at page 171. We decided to use this
approach, which is more empirical than a rigorous BMA, because the sys-
tem is strongly nonlinear and the model posteriors are thus extremely hard
to be computed.

First sub-model: adult females survival

The first identification step is the calibration of the model for the adult
females survival. The state space model is defined as a sub-model of equa-
tions 6.1, 6.3 and 6.4, properly modified to include the counts of yearlings
as a forcing factor. The state transition equation for this sub-model thus
becomes:

xFt+1 = ΦF
t (•)xFt +Bt(•)Yt (6.23)
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First sub-model:
adult females survival

Dt =

{
Ft +Kt + 1

2Yt if t < 1980

F̂t +Kt + 1
2Yt if t ≥ 1980

x̂Ft+1 = Φ̂Ft (•)x̂Ft + B̂tYt

log(F̂t) = log(HF
t x̂

F
t )

SSEF
K1961...2004

F1961...1979

S1961...2004

Y1961...2004

F̂1980...2005

F1980...2005

Second sub-model:
weaning success

Dt =

{
Ft +Kt + 1

2Yt if t = 1979

F̂t + K̂t + 1
2Yt if t ≥ 1980

x̂Kt = Φ̂Kt (•)x̂Ft

log(K̂t) = log(HK
t x̂

K
t )

SSEK
K1979

S1979...2004

Y1979...2004

F1979

K̂1980...2005

K1980...2005

x̂F1980...2005

Third sub-model:
survival of kids

Dt =

{
F̂t + K̂t + 1

2Yt if t = 1980

F̂t + K̂t + 1
2 Ŷt if t ≥ 1981

x̂Yt+1 = Φ̂Yt (•)x̂Kt

log(Ŷt) = log(HY
t x̂

Y
t )

SSEY

x̂K1980...2005 x̂F1980...2005

S1980...2004

Y1980

Ŷ1981...2005

Y1981...2005

Figure 6.3: Block diagram of the three submodels used for the sequential opti-
mization described in the main text.
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where xFt = [F2,t, . . . , F20,t]
′ is a subset of the state vector xt, Bt(•) =

[σ1,t(•), 0, . . . , 0] is a 19x1 matrix, and ΦF
t is the squared matrix:

ΦF
t =


0 0 . . . 0 0

σ2,t(·) 0 . . . 0 0

0 σ3,t(·)
. . . 0 0

... . . . . . . . . . ...
0 0 . . . σ19,t(·) 0

 (6.24)

The output equation of this sub-model is:

log(Ft) = log(HF
t x

F
t ) + vFt (6.25)

where vFt ∼ N(0, σ2
F ), and HF

t = [1, . . . , 1] is a 1x19 vector.
The starting year for simulation is 1961 because is the first year in which

snow depth data is available. Following the logic of iteratively replenishing
the state vector with a plausible age structure of adults, the initial state
vector is set to xF1961 = [0, . . . , 0]′. Equation 6.23 permits to estimate xF1962

as
x̂F1962 = [Y1961σ1,1961, 0, . . . , 0]

Iteratively applying equation 6.23, the state vector xFt is completely recon-
structed in 1980, and an estimate of Ft can be therefore calculated, in the
same year, as F̂t = HF

t x̂
F
t . The sum of squared simulation errors, to be

minimized, is then calculated using all the time steps in which the popula-
tion is completely reconstructed, thus from 1980 to the first year after the
last data on snow depth:

SSEF =
2005∑
t=1980

(
log(F̂t)− log(Ft)

)2

(6.26)

Second sub-model: weaning success

According to the equations of the state-space model, the complete structure
of kids xKt can be calculated only when the structure of adult females xFt is
completely defined, thus from 1980 to 2005. The state transition equation
for the survival sub-model is:

xKt = ΦK
t (•)x̂Ft (6.27)

where xKt = [KII,t, . . . , KXIX,t]
′, and ΦK

t is the [19× 19] squared matrix:
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ΦK
t =


1
2
f2,t(·) 0 . . . 0

0 1
2
f3,t(·)

. . . 0
... . . . . . . ...
0 0 0 1

2
f20,t(·)

 (6.28)

Notice that, with respect to the matrix in equation 6.3, the survivals of adult
females do not appear in this matrix, but they have already been used to
calculate the estimate x̂Ft .

The output equation of this sub-model is:

log(Kt) = log(HK
t x

K
t ) + vKt (6.29)

where vKt ∼ N(0, σ2
K), and HF

t = [2, . . . , 2]′ is a 1x19 vector that permits
to sum the kids, either males and females, produced by each mother.

Naming K̂t the estimate of Kt, produced by using equations 6.28 and
6.29, the sum of squared simulation error, to be minimized, is calculated
as:

SSEK =
2005∑
t=1980

(
log(K̂t)− log(Kt)

)2

(6.30)

Third sub-model: survival of kids

Starting from the reconstructed structure of kids x̂Kt , we calibrated the mod-
els of kids survival. The state transition equation for this sub-model is de-
fined as:

xYt+1 = ΦY
t (•)x̂Kt (6.31)

where xYt = [F1,t] and ΦY
t = [σKII(·), σKIII(·), . . . , σKXX(·)]. The output

equation of this sub-model is:

log(Yt) = log(xYt ) + vYt (6.32)

where vYt ∼ N(0, σ2
Y ). The sum of squared simulation errors, to be mini-

mized, is calculated as:

SSEY =
2005∑
t=1981

(
log(K̂t)− log(Kt)

)2

(6.33)

where Ŷt is the estimate of the number of yearlings at time t, and it is
available only starting from 1981, one year after the structure of kids is
completely reconstructed. Therefore, the calibration of the model is, for
this sub-model, based on 25 years of data instead of 26.
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Adult male sub-model

In analogy with the first sub-model of female survival, starting from mea-
sured yearlings, we also developed a model for the adult male survival. The
strategies for model development were the same used for adult females,
with only few differences. The first difference is that, for male survival, the
density considered for density dependence isDt = Mt+1/2Yt, to take into
account the spatial segregation of adult males (see chapter 5). The second
difference is that the maximum life length for males is set to 16 years, so
that the age structure of adults is completely defined 4 years before female,
thus in 1976. Therefore, the sum of squared errors is calculated as:

SSEM =
2005∑
1976

(
log(M̂t)− log(Mt)

)2

(6.34)

where Mt and M̂t are, using the usual convention, the measured and the
estimated numbers of adult males at year t. Notice that, for adult males, 30
years of data are available for calibration.

Optimization strategy and simulations

The widespread nonlinearities of the system made the parameter calibra-
tion of the models particularly complicated. First of all we calibrated all
the models using the genetic algorithm implemented in the GA toolbox
in MATLAB R©. We started from different initial points, and constrained
the survivals and the fertilities, where needed, to have ecologically feasible
values (i.e. to be less than one). Then, for a given rate and a given func-
tional form, we used all the parameter sets of the last generation of the ge-
netic calibration as starting points of a nonlinear least-squares curve fitting
(Coleman & Li, 1994). Finally, we chose for each sub-model the parameter
setting that minimizes the sums of squared errors as defined above, in equa-
tions 6.26, 6.30, 6.33 and 6.34. Once the sets of best models were selected,
we estimated the standard deviations of all the models’ parameters repeat-
ing the calibration using 2000 bootstrapped samples of the dataset. For
each bootstrap sample, the final predictions are obtained as the weighted
sum of the predictions produced by each best model, where the weights of
the model predictions are the AICc weights (see the multimodel inference
section 6.3.3 at page ).

Finally, to check the performances of the complete model, we simu-
lated the entire system as described by the equations 6.1, 6.3 and 6.4. In
these simulations, the measured number of yearlings Yt is used to “feed”
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the model only until the adult females structure is completely reconstructed
(i.e. 1980), and the weaning success and kids’ survival functions can there-
fore be used to predict the number of kids and yearlings. The parameters
used for the simulations of the entire systems are those calibrated with the
bootstrap samples.

6.4 Results

Following the procedures described in the methods, we found that the
model selection is highly uncertain for all the sub-models. In fact, in all
the cases there are many competing models that have a ∆AICc smaller
than four. More specifically, 23 best models were selected for the survival
of females, 20 for the survival of males, 25 for the weaning success and
27 for the kids’ survival. Moreover, even for the same sub-model, a simi-
lar fitting can be reached using models that include competing senescence
functions.

In analogy with the concept of posterior inclusion probability described
for the BMA (see the theory at section 2.3.2 at page 41 and the applications
in chapters 3 and 4), we measured the importance of the covariates (density
and snow depth) summing the AICc weights (wm, where m is the index
of the model) of the models that include the given covariate, as reported
in table 6.1. In the first part of the table we report the sum of the AICc
weights of the best models that include the covariate listed in the first col-
umn, namelyDt, St, St∗Dt, S2

t andD2
t . The rows corresponding to Stot and

Dtot report the sum of the AICc weights of the best models in which at list
one covariate calculated using, respectively, the snow depth or the popula-
tion density, is included. The full structures of the best models are reported
in the appendices, tables 6.2, 6.3, 6.4 and 6.5. We calculated the impor-
tance of each possible senescence function using the same strategy, thus
summing theAICc weights of the best models that include the given senes-
cence function. We remark that the number of possible model structures is
the same for all the senescence functions. Given the senescence function
and the choice between model of the type described in equation 6.20 or in
equation 6.21, the different model structures are in fact obtained combining
the density and the snow depth covariates in all the possible ways, obtain-
ing 25 model structures. Thus, we gave the same a-priori weight to all the
possible senescence functions and it is therefore possible to compare the
sum of the AICc weights as described above.

For the survival of adult females, five different types of senescence
functions are selected in the pool of best models: Gompertz, multiplica-
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Table 6.1: Characteristics of the best models selected for the four submodels. In
the first part of the table we report, for each of the submodels, the number of
best models that include the covariate listed in the first column. Alongside the
number of models, in parenthesis, the sum of their AICc weights is reported.
The meaning of the covariates is presented in the main text. The last line of the
first part reports the weighted mean of the model dimensionality, made using
the AICc weights. In the second part of the table we show, in analogy with
the first part, the number of models that have the maturation and senescence
functions listed in the first column. If the name of the function is followed by
“M”, the model is “multiplicative”, thus snow depth and density enter as in
equation 6.20, otherwise they enter as in equation 6.21. In the header, F surv.
is the survival of females, M surv. the survival of males, and K surv. the survival
of kids. npar in the weighted mean number of free parameters, obtained using
the Akaike’s weights.

F surv. M surv. Weaning success K surv.

C
ov

ar
ia

te
s

D 8 (0.27) 8 (0.31) 7 (0.26) 0 ( - )
S 7 (0.23) 9 (0.41) 5 (0.13) 5 (0.10)

S ·D 14 (0.67) 8 (0.29) 5 (0.12) 5 (0.11)
S2 7 (0.26) 14 (0.79) 5 (0.14) 5 (0.10)
D2 10 (0.34) 7 (0.39) 12 (0.45) 3 (0.07)
Stot 23 (1.00) 20 (1.00) 14 (0.38) 15 (0.31)
Dtot 23 (1.00) 17 (0.76) 7 (0.72) 8 (0.18)

Se
ne

sc
en

ce
fu

nc
tio

ns

No senescence 8 (0.26) 9 (0.51) 14 (0.58) 1 (0.02)
Gompertz 9 (0.49) 11 (0.49) 1 (0.06)

Gompertz M 1 (0.03) 5 (0.12)
Weibull 5 (0.21)

Weibull M 2 (0.06) 5 (0.23)
Weibull 8+ M 3 (0.17)

Beta 1 (0.07)
Beta M 4 (0.19) 4 (0.12)
Gamma 3 (0.10) 1 (0.06)

Gamma M 4 (0.13) 4 (0.11)
npar 4.68 4.68 3.95 3.73
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tive Gompertz, multiplicative Weibull from age 8 onwards and constant
(or no senescence). Despite the large number of senescence functions, the
Gompertz is far more likely than the others, with a score of 0.49 (out of 1),
followed by the constant function (

∑
wm = 0.29), i.e. no senescence. The

contest between the Gompertz and the no senescence is by far in favour of
Gompertz, because the mean value of theAICc weight of the models with a
Gompertz senescence function is much larger than the mean AICc weight
of the constant model. The number of Gompertz models in the pool of
best models is in fact only one more than the number of “constant” models,
while the AICc weights sum is almost the double. The importance of the
Gompertz model, with a non multiplicative effect of snow depth and den-
sity (see equation 6.21), confirms our hypothesis that the harsh conditions
affects more the older individuals.

As in the best models of the previous chapter, population density and
snow depth are included in all the best models for females survival (

∑
wm

for Stot and Ntot), and they are more likely to be included through the in-
teraction term St ·Dt (

∑
wm = 0.67). The simulations separately obtained

with each of the 23 best models for females are reported in figure 6.4.a,
and show that, despite the differences in the structure of the models, the
simulations follow almost the same patterns and predict quite well the pop-
ulation dynamics. In the appendix (figure 6.8.a), we report the simulations
of the female populations obtained using the Akaike’s multimodel infer-
ence and 2000 bootstrap extractions of the calibration set. Even if data are
not always included in the 5th-95th percentiles, the general patterns are well
reproduced.

For the male survival, only two senescence functions are included in
the pool of best models: Gompertz and constant. The sum of the AICc
weights is similar for the two senescence functions. The snow depth is the
most important variable (

∑
wm = 1 for Stot), especially in its quadratic

term (
∑
wm = 0.79 for S2). Of course, even the population density is

important, as known from previous modelling attempts in literature, with a
score of 0.72. More specifically, the density dependence is always included
if the senescence function is the constant, thus suggesting that the effects of
density and senescence are difficult to disentangle looking at the counts data
(Festa-Bianchet et al., 2003). As a consequence, the term of interaction be-
tween the snow depth and the population density has a smaller importance
than in the models developed in the previous chapter. In figure 6.4.d, we
report the simulations separately obtained with each of the 20 best models
for male survival. In this case, the simulations obtained with the best mod-
els are even less different from each other than in the case of adult females
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Figure 6.4: Simulations of the population abundance made, separately for each
population compartment, using the best models selected for the different rates.
Black dashed lines represent measured data while grey thin lines the simu-
lations obtained using the best models. panel a) simulations of the number
of adult females made using the 23 best models for female survival; panel b)
simulations of the number of kids made using the 20 best models for weaning
success and the adult females structure obtained using the best models of fe-
males survival; panel c) simulations of the number of yearlings made using the
27 best models for the survival of kids and the kids’ mothers structure obtained
using the best models of weaning success; panel d) simulations of the number
of males made using the 25 best models for male survival.
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survival. The populations dynamics are well reproduced, especially in the
first ten years of the simulations, while the very peak observed in the data
is not reached by the simulations. These behaviours are confirmed by the
multimodel bootstrap simulations reported in figure 6.8.d.

In the weaning success models the senescence is less important than in
the models for the survival of adults. The most likely senescence function
is in fact the constant (

∑
wm = 0.58), while the remaining score is spread

through the Beta (multiplicative), and the Gamma (multiplicative or not).
The population density is very important for this rate (

∑
wm = 0.72), es-

pecially on its quadratic term, while the snow depth has a more marginal
effect (

∑
wm = 0.38). This result is surprising because in the previous

chapter, in which the fine age structure is not taken into account, the best
model for weaning success includes three terms calculated using the snow
depth. The simulations separately made using the best models are shown
in figure 6.4.b, and have an higher variability than the simulations for the
adult population. The bootstrap simulations (figure 6.8.b) reproduce the
data fairly well, with the exception of the late 80’s, characterized by a par-
ticularly high weaning success. The last simulation year shows a drop in
the bottom of the simulation range, as a consequence of the same drop in
the simulation of adult females.

For the survival of kids, 27 models have a ∆AICc < 4 and they have a
wide variety of senescence functions: Gompertz, Weibull, Beta and Gamma
in both their multiplicative and non-multiplicative version, and the costant.
The most likely types of models are those including a Weibull senescence
function, thus highlighting the importance of considering a decrease with
age in the ability of the mothers to successfully breed their offspring until
the first year of life. Density and snow depth are included in the best models
with a small weight and, confirming what we found in the previous chapter,
snow depth is more important than density in driving the survival of kids.
The simulations separately made using the best models (figure 6.4.c), show
that there is only a small variability among the predictions of the different
models, and the first part of the dataseries is not well reproduced. How-
ever, this shortcoming is also due to the errors made in the models of adult
females survival and fertility, since the starting population of kids is the
population reconstructed using these model compartments.

Since we used the multimodel approach to investigate the role of the
covariates and of the senescence functions, it is interesting to look at the
shapes of the senescence functions with the same approach. Using the
AICc weights, the survival [or the weaning success] corresponding to an
individual of age j [or with a mother of age j], is therefore calculated as the
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weighted mean of the survival [or the weaning success] obtained with each
of the best models. To investigate the role of snow and density in shaping
the age-survival [or age-weaning success] curves, we tested five different
combination of values, based on the historical values of the variables:

1. maxDmaxS = {max
t
Dt,max

t
St}

2. maxDminS = {max
t
Dt,min

t
St}

3. meanDmeanS = {1/n
∑
t

St, 1/n
∑
t

Dt}

4. minDmaxS = {min
t
Dt,max

t
St}

5. minDminS = {min
t
Dt,min

t
St}

where n is the amount of available time steps. The obtained curves are
reported in figure 6.5.

The functions for adult females survival, in figure 6.5.a, show that the
survival is really high for the first year of life and it can drastically drop,
according to the values of density and snow depth, in the older ages. The
numerical results are similar to those reported in literature (see Toïgo et al.,
1997), in particular in the conditions meanDmeanS. The drop in survival at
age eight can be explained with the inclusion of three models for which the
survival starts to decrease at that age (Weibull 8+ M). A high snow depth
can strongly decrease the survival of old individuals (see the lines for which
the minimum value of snow was considered) while the effect of density is
less strong. For example if the value of snow is at its minimum, the survival
tends to be high whether density is low or high. Notice that, if both density
and snow depth are minimal, the survival function is quite flat.

The weaning success functions, showed in figure 6.5.b, are really inter-
esting because they are the result of an ensemble in which either constant,
Beta and Gamma functions are considered, even if with different weights.
The weaning success has in fact an impressive drop after age 16, at which
the constant and the Beta functions go to zero, but there is still a low wean-
ing success at the older ages because of the inclusion of the Gamma func-
tions. Overall and consistently with previous studies (see Giacometti &
Ratti, 1994; Largo et al., 2008), the weaning success value is ∼ 0.4 and the
highest weaning success occurs at the mature stages, between 4 and 8 years.
In this case, the density is the major driver of the variability of the function,
since the curves calculated using the maximum [minimum] value of density
are consistently below [above] the curve calculated using meanDmeanS.

The results obtained for the survival of kids are reported in figure 6.5.c
and show that survival of kids can decrease with the age of the mother. The
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(c) Kids’ survival
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Figure 6.5: Multimodel maturation and senescence functions for the four different
rates: panel a) survival of adult females; panel b) weaning success; panel c)
survival of kids; panel d) survival of adult males. The curves are obtained using
the AICc weighted sum of the curves defined by each of the best models. For
each panel, we report the response to the different values of snow depth and
male density, as described in the main text.

survival of kids is smaller if the values of snow depth and density are high,
the former with a stronger effect than the first. This results highlights the
importance of the population structure over the environmental conditions
in driving the variations in the survival of kids. However, the results are
also driven also by the errors in the models of fertility. Thus, it would be
interesting to further investigate this compartment, possibly matching the
obtained results with some field data, which are not available at present.

For male survival we report the survival functions in figure 6.5.d. As for
females, the survival is high (but more variable) in the early ages and it de-
creases rapidly for older ages if snow is high. Otherwise, if the snow depth
is low, the survival is smaller at younger ages and varies only a little during
the lifetime. Moreover it is worth noticing that, due to the nonlinearities in
the inclusion of snow depth and density, the effects of the maximum and
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minimum densities are opposite if snow is maximal or minimal. In fact, if
snow is minimal, a high density favours the survival, while it is the opposite
for maximal values of the snow depth. Overall, the values obtained for the
male survival are similar to those reported in Toïgo et al. (2007).
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Figure 6.6: Dynamics of the reconstructed adult population structure, dividing
the population into three age classes (young adults, middle-age adults and old
adults) as reported in the legend. The panels report the proportion of individ-
uals belonging to each age class: panel a) structure of adult females; panel b)
structure of adult males; panel c) structure of kids’ mothers.

Using the models selected for survivals of males, we were able to fully
reconstruct the population structure. In Fig.6.6, we report the reconstructed
structure of adult females, adult males and kids’ mothers. The adults are
divided in three categories which differ between females and males: young
adults, middle-age adults and old (or senescent) adults. For females, the
model predicts that young adults passed from ∼ 60% to ∼ 40% in the pe-
riod 1980-2005, while the senescent part of the population passed from ∼
5% to ∼ 25% in the same period. The middle-age adult population seems
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instead to remain at ∼ 35% in all the period. Dynamics of the male struc-
ture show an even steeper decrease, with a really small portion of senescent
adults at the beginning of the simulation (∼ 2%), which increases up to
∼ 30% at the end of the simulation. The young adults show a similar
but opposite variation, passing from ∼ 68% to ∼ 36%. As for females,
the proportion of middle-age males is quite consistent during the study pe-
riod. The structure of the kids’ mothers has a similar but less pronounced
change, with an increase of older mothers from ∼ 1% to ∼ 14%, a de-
crease of younger mothers from ∼ 74% to ∼ 58% and a proportion of
middle-age adults that always remains around 25%. The recent variation
in the population structure suggest that the Alpine ibex population of the
GPNP is getting older and that, as a consequence, the contribute of old fe-
males to recruitment is increasing. As we discuss in the next section, these
dynamics suggest that taking into account population structure is important
to understand recent population trends.

Using the selected best models, we can simulate the dynamics of the
entire population starting from the first year in which the adult population
is completely reconstructed. In these “complete” simulations the number
of yearlings used to reconstruct the adult population is the estimate given
by the models of weaning success and the survival of kids. In figure 6.7 we
report the simulated population abundances for the four population groups
and for the total population, calculated as the sum of the simulations for the
other compartments. The simulations are produced using the 2000 boot-
strapped calibrations of the parameters described at the end of the method-
ological section of this chapter. The simulations show that the generic pat-
tern is reproduced and there are only few observations out of the 5th to 95th

percentile range. However this is not true if the interquartile range is con-
sidered, thus highlighting that the models have a low probability to generate
the measured data. Moreover, the most important shortcoming is the lack in
reproducing the growth phase in the population peak, similarly to the mod-
els proposed in the previous chapter. Nonetheless, the simulations between
1995 and 2005 well reproduce the data, at least for adults and kids.

6.5 Discussion and conclusions

In this chapter, we improve our previous study of the Alpine ibex population
dynamics in GPNP, using a modelling approach that permits to consider the
fine age structure of the population, even if data report a coarser age struc-
ture. Using the fine age structure, we investigated the interplay of matura-
tion time, senescence, density dependence and environmental drivers (snow
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Figure 6.7: Simulations of the complete model, made using the parameters cali-
brated separating the submodels. The variability of the simulations is obtained
using the 2000 bootstrapped calibration of the parameters. The dark grey ar-
eas include the 25th to 75th percentile, while light grey areas are for the range
5th to 95th percentile. The thick continuous line stands for data while the thin
dashed line corresponds to the 50th percentile.
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depth) in driving the population dynamics.
Our results show that there is a high uncertainty in the selection of the

best model among the set of candidates. In part, this is perhaps due to the
fact that only a relatively small fraction of the dataset has been used for
calibration, thus novel data would be needed to better discriminate among
models. Also, the high model uncertainty suggests the use of a multimodel
approach. The pool of best models selected for each rate (adult female
survival, adult male survival, survival of kids and weaning success) gives
information on the main mechanisms that is worth to take into account to
model the system under study.

Taking into account the effects of senescence clearly improves the mod-
elling of the adult females survival and the survival of kids, which varies
with the age of the mothers. Conversely, for adult male survival and wean-
ing success, even models that do not consider senescence or maturation
are likely to be selected as best models. For adults, continuous senescence
functions are more likely than discontinuous, thus supporting the idea that
senescence does not occur suddenly in the life history of the individuals,
but it is a continuous process that, however, accelerate with the age.

In the adult survival components, if models with senescence functions
are selected, the multiplicative models have a marginal role, thus highlight-
ing that harsh conditions do not equally effect the individuals of all ages,
but are particularly detrimental for older individuals.

The information about the fine age structure can potentially change the
role of density and snow depth in driving the dynamics with respect to the
results of the previous chapter. For the survival of females, the results of
the previous chapter are confirmed, since both snow depth and density are
fundamental, and are more likely to be included through the interaction
term. For male survival, the role of snow depth is confirmed but the ef-
fects of density dependence is less clear. In fact, while density is always
included in models without senescence, the evidences for its inclusion are
smaller if senescence is taken into account. The decrease in survival that
occur at high densities can in fact be the consequence of both an actual den-
sity dependence and/or a high average age of the population. This effect,
for which the density dependence effect is overestimated if senescence is
not considered, is known as apparent density dependence (Festa-Bianchet
et al., 2003).

The models selected for the survival of kids confirm that snow depth is
more important than density in this compartment, even if none of them ap-
pears to have a crucial role once the structure of kids is taken into account.
For the weaning success, taking into account the senescence of the mothers
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reduces the importance of snow depth and population density, while previ-
ous results are confirmed if models without senescence are used. However,
simple models tend to be selected because the time series used for calibra-
tion is short. As a consequence, the unimodal effect of snow described in
the previous chapter is not reported.

The analysis of the variation of the population structure in time shows
that, during the population increase and decrease that characterize the
1990’s peak discussed in the previous chapter, the proportion of old individ-
uals increased while a corresponding decrease in young adults occurred. In
the meanwhile, the proportion of middle age adults remained almost stable.
This innovative result suggests an evolutionary strategy for which the frac-
tion of middle-age adults, which are the part of the population that mostly
contributes to reproduction, tends to be preserved even if the environmental
conditions and the population density change. This strategy could help the
population to overcome unsuitable periods. The analysis of the variation of
population structure shows also an asymmetry between the change in adult
females structure and the structure of kids’ mothers. The proportion of old
individuals increased in fact much more rapidly in the adult females than in
the mothers, thus suggesting that a change in the adult female structure can
strongly alter the productivity of the population. In this sense, the change
in the population structure can explain the recent decrease in the number of
kids and yearlings.

To confirm the obtained results they should be matched with the pop-
ulation structure retrieved from the CMR data, which are existing but not
publicly available (Apollonio et al., 2013). Moreover, it will be interesting
to include more recent data in the analysis. Another interesting improve-
ment would be to properly redefine the optimization to directly fit the entire
model, and not the submodels separately. This could also permit to use also
the first years of data in calibration, for example fixing the initial conditions
through simulation, using past data (before 1960) randomly generated un-
der appropriate assumptions. Using all the available data for calibration
would also permit to better identify the nonlinear effects of snow on the
juvenile compartments, as done in the previous chapter.
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6.A Appendix I

We report in this appendix the main characteristics of the best models
(∆AICc<4) selected for the weaning success (table 6.4) and the survival of
females (table 6.2), males (table 6.3) and kids (table 6.5).

The first column report the type of maturation/senescence function in-
cluded in the model: “G” for Gompertz, “W” for Weibull, “β” for the Beta,
“γ” for the Gamma and “No sen” for the constant. If the dependency on
the snow depth is multiplicative (see equation 6.20), an “m” is added to
the label reported in the first column. Moreover, for adult survival, the text
“8+” is added after the “W” or the “G” if the survival is considered to be
constant until age 8.

Columns from 2 to 5 summarize the dependencies on population density
and snow depth, showing the sign of the coefficient β that multiplies the
covariate. If the covariate is not included in the model, a blank space is left.
We remark here that, while in multiplicative and constant models a negative
sign corresponds to a negative effect on survival or weaning success, the
same sign has the effect of reducing the strength of senescence in non-
multiplicative models (see equation 6.21). In analogy, a positive sign has
the opposite effects.

The other columns report: SSE the sum of squared errors, K the num-
ber of parameters including error variance, AICc the value of the AICc
criterion, ∆AICc the difference between the AICc of the given model and
AICc,best, w the Akaike’s weight.
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Chapter 6. Role of senescence in Alpine ibex dynamics
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Figure 6.8: Simulations of the separate submodels, made using the parameters
calibrated using the 2000 bootstrapped samples of calibration data. The dark
grey areas include the 25th to 75th percentile, while light grey areas are for the
range 5th to 95th percentile. The thick continuous line stands for data while the
thin dashed line corresponds to the 50th percentile.
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Figure 6.9: Simulations of the total population, made summing the simulations
of the separate submodels reported in figure 6.8. The dark grey areas include
the 25th to 75th percentile, while light grey areas are for the range 5th to 95th

percentile.The thick continuous line stands for data while the thin dashed line
corresponds to the 50th percentile.
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CHAPTER7
Conclusions

Using data about three remarkably important high altitude species of fauna
in the Alps, we developed models to study either their species distribution
or their population dynamics. High altitude Alpine regions are character-
ized by a great ecological importance and a strong sensitivity to climatic
conditions. Moreover, high altitude environments are regarded as early in-
dicators of climate change. Climate change is affecting the mountain biota
in several interacting ways, rather direct, e.g. through the increase in tem-
peratures and the variation of the precipitation regime, and indirect through
the variation of the abiotic components of the environment (e.g. the reduc-
tion of the glaciers). The ecological responses to these pressures depend
on the specific characteristics of each species. Moreover, the responses of
the single species can lead to a variation in the interaction among different
species at the same or at different trophic level, and to a more general vari-
ation of the ecological communities. In this context characterized by many
interacting effects and a high uncertainty, it is difficult to define a priori, for
each problem, a single deterministic model to describe the system under
study. In each of the tackled case studies, the starting point is in fact a sub-
stantial uncertainty on which specific characteristics of the species and/or
which environmental variables are the most important to be included in the

197



Chapter 7. Conclusions

models.
The study of species distribution and demographic rates has been car-

ried out considering, in the pool of potential drivers, climatic variables or
environmental variables that have already been shown to be clearly affected
by the climate change. In particular, for the models of species distribution,
we used precise information on the vegetation type; uphill shift of vege-
tation and changes in flora communities are in fact two of the most evi-
dent impacts of climate change on the Alpine biome. On the other hand,
in the dynamical models we included meteorological variables as poten-
tial drivers of the demographic rates. The three high altitude species under
study, chosen according to their already known sensitivities to the environ-
mental conditions, are: the Alpine marmot, a small mammal that hibernates
during winter; the black grouse, a tetraonid bird that lives just above the tree
line; the Alpine ibex, a long-living large mammal that uses several different
types of habitat during the year.

In the following paragraphs we summarize the main results obtained
in modelling each of the three species, and in the last two paragraphs we
present the more general conclusion of the thesis.

In chapter 3 we studied the fine scale species distribution of the Alpine
marmot in a high altitude valley which is not affected by human distur-
bance. The positional data of the burrows were personally collected in a
valley near the borders of the Stelvio National Park (Italy). The availability
of a high resolution vegetation map permitted to study the fine scale influ-
ence of vegetation type on the suitability of the habitat for the marmots. We
found, in fact, that the vegetation cover is one of the most important factors
that determines the suitability of the habitat for the Alpine marmot. More-
over, including the fine scale vegetation in the study reduces the importance
of the Altitude, which can be considered a proxy of the temperatures. The
upper bound of the altitude range of Alpine marmot appears to be regulated
by the transition between the Alpine meadows and the pioneer vegetation.
The potential speed of uphill shifting of Alpine marmot distribution can be
therefore limited by the rapidity of vegetation changes, which follow pre-
cise successional stages. The most important topographical variables are
related to (i) sun exposure, which can regulate both winter conditions and
snowmelt in spring, and (ii) a burrow position favourable to defend against
predators and to avoid extreme weather conditions. For each burrow, we
also collected many local characteristics that it would be useful to include
in the species distribution model to (partially or completing) substitute the
variables retrieved from the digital terrain map. However, to use that in-
formation in modelling, a similar collection of data have to be carried out
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also in locations of the valley in which marmot is not present. To study the
dynamics of colonizations, it would also be interesting to track the changes
in the position of the upper bound of marmot distribution in the valley,
alongside with the existing monitoring of the vegetation status.

The dynamical models developed for both the Alpine ibex and the black
grouse underline the sensitivity of the most fragile population compart-
ments on the meteorological conditions and the expected climate changes.
In both cases, the density dependence is a key mechanism for driving the
dynamics, thus highlighting the limited carrying capacity of the extreme
Alpine environment.

In chapter 4, we studied the influence of climate, density dependence
and spatial position on the demographic rates of the black grouse, using
wildlife monitoring data about the 17 Alpine districts of the Piedmont re-
gion (Italy). Currently, few studies have investigated the role of the climatic
influence on the Alpine populations of Tetrao tetrix, while most of the stud-
ies refer to lowland populations. The considered demographic rates are the
population growth rate, calculated using the male portion of the population,
and three fertility rates, calculated using the information on the number of
females, hens and chicks. Our results show that, despite the different envi-
ronment, the effect of meteorological conditions on the demographic rates
are mostly consistent with the results published for lowland populations.
In fact, high temperatures in the breeding season reduce the growth rate
while the fertility decreases with the amount of rainfalls in hatching pe-
riod, when the newborns are more sensitive to harsh conditions. The winter
precipitations, which have not a clear role in the past studies, are likely to
negatively affect the population growth rate and the condition of the birds,
probably through a reduction of the food availability in the critical winter
period. Notice that the most important climatic variables that affect the
demographic rates are linked with key periods of the life cycle (breeding,
hatching, winter survival), thus they are likely to interfere with the phenol-
ogy of the species. The study of the influence of population density on the
demographic rates show that the direct (negative) density dependence is the
main driver for growth rate, while a weak but significant inverse (positive)
density dependence influences the fertility rates. Matching the two results,
since the productivity is not negatively affected by population density, the
negative effect of population density on growth rate is likely to be caused
by an adult survival that, for the effects of the intraspecific competition, de-
creases as densities increase. Our approach permitted also to separate two
group of districts that are characterized by a different carrying capacity.
Future projections show that the variations in climate have the potentiality
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to strongly affect dynamics, even if no clear future trends are detected in
the values of the demographic rates. However, only one realization of the
regional climatic model was available. Therefore, to confirm the obtained
results and to calculate the extinction risks linked with the climate change,
it would be useful to repeat the projections under different realizations of
the climatic models, maybe using the updated scenarios provided in the
fifth assessment report of the IPCC.

In chapters 5 and 6 we studied the dynamics of the Alpine ibex popu-
lation in the Gran Paradiso National Park, extending the models proposed
in literature along many directions. Past studies on the same population
concentrate only on the growth rate of the total population and found a neg-
ative effect of high winter snow depth. Despite the fact that the winter snow
depth is constantly and clearly decreasing in the study area, the initial in-
crease in the number of individuals was followed by a strong unexpected
decrease. Alpine ibex is a long living mammal characterized by a strong
age and sex structure; we therefore developed dynamical models that take
into account of the population structure with different levels of precision.

In chapter 5 we consider four population groups according to the age
and the sex of the individuals, as reported in the population counts. We
relate the growth rate and the demographic rates (adult male survival, adult
females survival, weaning success and survival of kids) to the linear and
non linear effects of winter snow depth and population density. Ibex popu-
lation is divided into spatially segregated groups composed by individuals
of the same sex; we found that the demographic rates related to a specific
population group are more likely to be affected by the density of that group
only and not of the total population. The values of all the demographic
rates are clearly determined by the interaction between population density
and snow depth. Moreover, we found that the nonlinear effects of snow
depth are important for the juvenile compartments. Weaning success and
survival of kids are in fact favoured by intermediate levels of snow depth.
However, considering the population groups instead of the total population
does not satisfactorily explain the occurred dynamics, especially the recent
population decline.

We therefore developed, as presented in chapter 6, more sophisticated
models that permit to reconstruct the complete age structure of the popu-
lation. Using that models, we studied the effects of maturation time and
senescence (decrease of the individual fertility and/or survival with the
age) to determine the population dynamics. Maturation and senescence
are mechanisms which have been reported for many long living mammals,
and specifically for ibex. However, they were never explicitly included
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in models for the Alpine ibex population dynamics. Our results underline
that taking into account senescence is particularly important to explain the
survival of adult females and their ability of breeding kids, while is less
important for adult males and weaning success. Moreover, harsh environ-
mental conditions are likely to enhance the senescence rate, and, thus, their
effects are stronger in old individuals. The simulation of the population
structure dynamics shows that the number of old individuals increased in
the last 25 years of the study, at the expense the fraction of young adults.
The stability in the fraction of middle age adults, which are characterized
by both an high survival and an high weaning success, can be interpreted as
a strategy to damp the short term effects of harsh conditions. However, this
strategy might start to be ineffective if harsh conditions occur for several
consecutive years. Even if they can not be directly compared with models
of chapter 5, the models that consider the complete age structure reproduce
quite well the recent population decrease. However, as explained in the dis-
cussion of the specific chapter, they still have much room for improvement,
especially in the estimation of the initial age structure of the population.

Overall, the results of the population dynamics models developed for
black grouse and Alpine ibex highlight the particular sensitivity of the more
fragile population compartments to the climate change. Meteorological
conditions are in fact critical for black grouse in the breeding and the hatch-
ing period, while for Alpine ibex the juvenile compartments show a very
specific preference for intermediate levels of snow depth and the old indi-
viduals respond in a more pronounced way to the environmental variations.

The methodologies adopted in this thesis are a sound solution to tackle
the problem of studying the spatial distribution and the demography of the
species in the climate change context, even using very different datasets.
Our models permit in fact to investigate the role of climate-sensitive vari-
ables, such as the status of the vegetation and the meteorological variables,
in affecting the spatial and temporal dynamics of the case-study popula-
tions, taking also into account the peculiar characteristics of each species.
Using model selection criteria we were able to find the most likely math-
ematical laws and the most important variables that drive the systems un-
der study. This kind of analysis is crucial for conservation purposes for
several reasons. Without precise modelling studies that include the pecu-
liarities of the species it is in fact difficult to predict and understand the
expected impacts of climate change on the populations. Indeed, using the
species specific results to make generalizing conclusions can be misleading
because each species has different characteristics and different vulnerabili-
ties. Our results highlight which are the most critical areas (for marmot and
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grouse), periods of the year (for grouse and ibex) or periods of life cycle
(for grouse and ibex) on which is worth to put more effort in future studies.
These results can in fact serve, for example, as a basis to design future data
collections focusing the available and unfortunately limited resources on
precise population characteristics or population compartments. Moreover,
our models can be used to predict the expected species distributions and
population dynamics using future projections of the explanatory variables,
such as meteorological variables or vegetation status.

On the other hand, the addressed topic is complex and the proposed ap-
proaches have some structural limitations related to the data quality and the
simplifications applied to design models. In fact, available long term data
of ecological populations were not usually collected with the specific aim
of studying the responses of the given species to the climate change. A
clear example provided in this thesis are the counts of black grouse, which
were performed as a support for the management of the species and to de-
cide hunting regulation. The use of poor quality data can be only partially
compensated by the use of modern statistical techniques, thus, availability
of good quality data is a crucial factor in determining the quality of research
in this field. Moreover, to improve our knowledge on the expected impacts
of climate change we should consider both the interaction and the synergies
among the climatic pressures and the ecological responses. To do that, the
ecologists need to work alongside with the experts of other earth science
disciplines, such as climatology and glaciology. For example, if the aim is
to predict the future status of a species at a population level, the reliability
of ecological models strongly depends on the availability of good climatic
models properly downscaled. Considering all these issues, a lot of work is
still needed to study the spatial and the temporal dynamics of the Alpine
ecological populations at high altitude, both at the level of single popula-
tions, as done in this thesis, and at the level of interspecific interactions.
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