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Abstract

The presence of multiple, institutionally independent but physically in-
terconnected actors is a distinctive feature of the complexity character-
izing most of the decision-making problems in environmental contexts.
As dealing with many conflicting stakeholders requires to replace the
concept of optimality by that of Pareto efficiency, the presence of many
decision makers requires some kind of coordination and a cooperative at-
titude of the involved parties, who agree on adopting a fully coordinated
strategy to maximize the system-level performance. These assumptions
are often unpracticable in real world contexts, where the decision mak-
ers generally belong to different institutions or countries. In these situ-
ations, they independently pursue local interests and produce negative
externalities leading to a low system-wide efficiency. Game theory and
simulation-based approaches are generally used to analyze these issues
from a descriptive standpoint, while their prescriptive use in decision
support systems to design coordination mechanisms between the origi-
nally self-interested decision-making actors remains a challenge.
This thesis contributes a novel decision analytic framework based on
multi-agent system (MAS) to study water resources planning and ma-
nagement problems in complex decision-making contexts. The aim of
the proposed decision analytic framework is to combine descriptive and
prescriptive methods, which provide informative tools to represent the
actual decision-making context as well as decision support procedures to
recommend proper coordination mechanisms. The adoption of an agent-
based framework naturally allows the representation of a set of decision
makers or stakeholders (agents), which act in the same environment and
need to coordinate to maximize the system-wide efficiency in the use of
the available water. This agent-based perspective aims to move beyond
the traditional centralized approach to water resources management and
to explore different levels of cooperation, from fully coordinated strate-
gies and full information exchange to completely uncoordinated prac-
tices. Moreover, coupling the agent-based modeling scheme with state-
of-the-art Control Theory techniques allows a better understanding of
the feedbacks between agents objectives, agents decisions, and the envi-
ronment they share, as well as the description of their co-evolution and
co-adaptation under change.
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The proposed framework is demonstrated in different problems charac-
terized by distinctive decision-making contexts, which require to adopt
different tools and methodologies. The framework is first applied in
a hypothetical water allocation planning problem to discuss the issue
of balancing system-wide efficiency and solutions practicability. MAS
methods based on distributed constraint optimization problems are used
to support a watershed authority in evaluating different levels of coor-
dination. Then, the advantages of coordination mechanisms based on
the exchange of information are estimated in two real world case studies.
The first one assesses the value of cooperation and information exchange
in transboundary river basins. The second one shows the potential of
co-adapting water demand and supply in agricultural water systems, un-
der current and projected hydroclimatic conditions. Finally, in the last
application, the framework combines tools to identify and refine the cur-
rent operation of the Conowingo reservoir in the Lower Susquehanna
system, for balancing evolving demands and system uncertainties. It
also introduces a novel method based on input variable selection tech-
niques to support the identification of effective policy mechanisms for
environmental protection.

Part of this thesis’ contributions has appeared (or has to appear) in the
following main publications:

• M. Giuliani and A. Castelletti (2013), Assessing the value of coop-
eration and information exchange in large water resources systems
by agent-based optimization, Water Resources Research, 49, 3912-
3916.

• M. Giuliani, A. Castelletti, F. Amigoni, and X. Cai (2013), Agent-
based distributed optimization as a tool to balance efficiency and
practicability in watershed management, Journal of Water Re-
sources Planning and Management, (under review).

• M. Giuliani, J.D. Herman, A. Castelletti, and P.M. Reed (2013),
Many-Objective Reservoir Policy Identification and Refinement to
Reduce Institutional Myopia in Water Management, Water Re-
sources Research, (under review).

• M. Giuliani, Y. Li, A. Castelletti, and C. Gandolfi (2013), Co-
adapting water demand and supply to changing climate in agri-
cultural water systems, Global Environmental Change, (in prepa-
ration).
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Riassunto

La presenza di diversi attori decisionali, istituzionalmente indipendenti
ma fisicamente interconnessi, è uno degli aspetti che rendono i prob-
lemi decisionali in campo ambientale particolarmente complessi. La pre-
senza di molti interessi conflittuali richiede infatti di sostituire al con-
cetto di ottimalità quello di efficienza Paretiana. Inoltre, la presenza
di molti decisori richiede di assumere un’attitudine cooperativa delle
parti coinvolte al fine di massimizzare le performance a livello di sistema
attraverso l’adozione di soluzioni completamente coordinate. Tuttavia,
queste ipotesi risultano essere inapplicabili in molti contesti reali, dove
i decisori spesso appartengono a istituzioni o Paesi diversi. In questi
casi, le loro strategie spesso considerano solamente interessi locali, pro-
ducendo esternalità negative che riducono i benefici a livello di sistema.
Questa problematica viene solitamente studiata nel campo della teoria
dei giochi con approcci di tipo descrittivo. Al contrario risulta general-
mente più difficile adottare approcci prescrittivi di supporto alle decisioni
che suggeriscano meccanismi di coordinamento tra gli attori decisionali
originalmente indipendenti.
La ricerca presentata in questa tesi introduce un nuovo framework ana-
litico e decisionale basato sulla teoria dei sistemi multi-agente per studi-
are la pianificazione e gestione delle risorse idriche in contesti decisionali
complessi. Tale framework si propone di combinare metodi descrittivi
e prescrittivi con lo scopo di fornire strumenti informativi che rappre-
sentino il reale contesto decisionale e, allo stesso tempo, procedure di
supporto alle decisioni che suggeriscano efficaci meccanismi di coordina-
mento. L’utilizzo di un framework di tipo multi-agente permette infatti
la rappresentazione di un insieme di agenti (decisori o portatori di inter-
esse) che agiscono all’interno dello stesso ambiente e devono coordinarsi
per massimizzare l’efficienza a livello di sistema nell’utilizzo delle risorse
idriche disponibili. Questa prospettiva a livello di agente introduce in-
oltre la possibilità di esplorare diversi livelli di cooperazione tra gli agenti,
superando le limitazioni dell’approccio tradizionale di tipo centralizzato.
La combinazione di modelli multi-agente con tecniche di ottimizzazione
sviluppate all’interno della teoria del controllo permette infine sia di anal-
izzare i feedback esistenti tra obiettivi e decisioni degli agenti e il sistema
nel quale agiscono, sia di simularne il co-adattamento e la co-evoluzione
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in condizioni socio-economiche e climatiche in rapida evoluzione.
Le potenzialità dell’approccio proposto sono dimostrate applicando il
framework a diversi problemi caratterizzati da contesti decisionali di-
versi, che quindi richiedono strumenti e metodologie differenti. La prima
applicazione riguarda un ipotetico problema di allocazione delle risorse
idriche in cui è necessario bilanciare l’efficienza delle soluzioni a livello
di sistema e la loro applicabilità a livello di agente. L’utilizzo di metodi
sviluppati all’interno della teoria dei sistemi multi-agente e basati sulla
formalizzazione di problemi di ottimizzazione distribuita permette di
supportare l’autorità di bacino nella valutazione di diversi livello di co-
ordinamento. Il secondo e terzo caso di studio si concentrano sull’analisi
dei benefici ottenibili attraverso metodi di coordinamento basati sullo
scambio di informazione. Nel primo caso viene fornita una stima del
valore economico della cooperazione e dello scambio di informazione in
bacini internazionali. Nel secondo caso viene dimostrato il potenziale
di strategie basate sul co-adattamento dei sistemi di water supply e di
water demand nella gestione delle risorse idriche in campo agricolo, sia
in condizioni climatiche attuali che future. Nell’ultima applicazione del
framework, l’attuale gestione del serbatoio idrico di Conowingo, situato
lungo il Susquehanna River, viene prima identificata e successivamente
modificata attraverso la proposta di soluzioni in grado di bilanciare tutti
gli interessi conflittuali coinvolti e che risultino robuste rispetto alle in-
certezze legate alle condizioni idro-climatiche. In questo contesto viene
anche proposto un nuovo metodo basato su tecniche di input variable
selection per l’identificazione di meccanismi di protezione ambientale.

Parte dei contributi di questa ricerca è stata presentata (o è in fase di
preparazione) nelle seguenti pubblicazioni:

• M. Giuliani and A. Castelletti (2013), Assessing the value of coop-
eration and information exchange in large water resources systems
by agent-based optimization, Water Resources Research, 49, 3912-
3916.

• M. Giuliani, A. Castelletti, F. Amigoni, and X. Cai (2013), Agent-
based distributed optimization as a tool to balance efficiency and
practicability in watershed management, Journal of Water Re-
sources Planning and Management, (under review).

• M. Giuliani, J.D. Herman, A. Castelletti, and P.M. Reed (2013),
Many-Objective Reservoir Policy Identification and Refinement to
Reduce Institutional Myopia in Water Management, Water Re-
sources Research, (under review).
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• M. Giuliani, Y. Li, A. Castelletti, and C. Gandolfi (2013), Co-
adapting water demand and supply to changing climate in agri-
cultural water systems, Global Environmental Change, (in prepa-
ration).
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1 Introduction

1.1 Complexity in water resources systems

The use of mathematical models to support decision-making in water
resources systems is rapidly expanding in the last years due to the re-
cent advances in terms of scientific knowledge of the natural processes,
efficiency of the optimization techniques, and availability of computa-
tional resources (Washington et al., 2009). However, the problem re-
mains challenging because of three main sources of complexity: i) the
complexity of most of the natural processes, further complicated by the
incoming climate change impacts, which requires using more and more
realistic process-based models that are unsuitable to support decision-
making processes, as a large numbers of model evaluations is required to
run sensitivity analysis, scenario analysis, and optimization algorithms
(e.g., Washington and Parkinson, 2005; Carnevale et al., 2009); ii) the
complexity of the socio-economic framework, which generally involves
a myriad of conflicting and non-commensurable objectives, representing
the interests of multiple stakeholders such as domestic and irrigation sup-
ply, flood protection, hydropower production, with additional challenges
due to environmental protection, water quality targets, recreational in-
terests, and energy markets (e.g., Chaves and Kojiri , 2007; Soncini-Sessa
et al., 2007b; Fernandez et al., 2012); iii) the complexity of the decision-
making institutional context due to the presence of several institutionally
independent, but physically interconnected, decision makers both within
national jurisdictions and in transboundary contexts (e.g., Yoffe et al.,
2003; Wolf et al., 2006; Zeitoun and Mirumachi , 2008).
This thesis contributes a novel agent-based decision analytic framework
(see Section 1.3.2) focused on the challenges related to the complexity
of the decision-making institutional context. The proposed framework
aims to support sustainable water resources planning and management
in complex environmental systems, characterized by the presence of mul-
tiple decision makers and many conflicting stakeholders. Depending on
the specific application, the complexity of the natural processes and of
the socio-economic context are also addressed. In such multi-objective
contexts, the traditional concept of optimality is replaced by that of
Pareto efficiency (Pareto, 1964): a solution is Pareto optimal (or non-
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1 Introduction

dominated) if there not exists any other solution which gives a better
value for one objective without worsening the performance in at least one
other objective. According to classic Operational Research and Control
Theory principles, the traditional approach to water resources mana-
gement adopts a centralized perspective and aims at the maximization
of the system-wide efficiency, possibly defined by multiple criteria. To
attain such an efficient use of the available resources, the presence of
many decision makers requires some kind of coordination and a coop-
erative attitude of the involved parties, who agree on adopting a fully
coordinated strategy on water allocation and distribution in time and
space, as well as full knowledge of the current system conditions. These
assumptions are often unpracticable in real world contexts. The central-
ized management, though interesting from a conceptual point of view
as it allows to quantify the best achievable performance and to obtain
insights on strategies to foster cooperation (e.g., Anghileri et al., 2012),
turns out to be of limited practical meaning given the real political and
institutional setting (e.g., Waterbury , 1987; Whittington et al., 2005; Wu
and Whittington, 2006). Totally uncoordinated practices, where all the
decision makers independently pursue their local objectives, represent
a more realistic picture of most real institutional contexts, where these
individualistic behaviors generally induce negative externalities leading
to a low system-wide efficiency (e.g., Hardin, 1968; Madani , 2010).
This situation has a Prisoner’s Dilemma structure. Table 1.1 shows
the Prisoner’s Dilemma in a matrix form, with the payoffs representing
the utility for each player (i.e., player-1 on the rows and player-2 on the
columns) in case of cooperation (C) or non-cooperation (NC). Although
the players can gain more from cooperation (i.e., (C,C) represents the
best solution at the system-level), non-cooperation is the strictly domi-
nant strategy, meaning that no matter if the other player selects to co-
operate or not, it is always better to non-cooperate (i.e., 4>3 and 2>1).
The outcome (NC,NC) is a Nash Equilibrium (Nash, 1951): given the
options of other players, no player can improve his payoff by changing
his strategy alone. Nash stability differs from Pareto-optimality. The
former is about what is good for an individual without considering what
is good for the whole system and the latter is about what is good for the
system without considering the interests of the single individuals. The
problem structure and outcome might change when other players are in-
volved, such as river basin authorities promoting negotiation processes to
incorporate, at different levels, cooperative agreements or coordination
mechanisms (e.g., Madani and Lund , 2012). These challenges are widely
recognized in many research fields, such as economics and game theory,
which, however, mainly provide descriptive tools based on what-if or
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Table 1.1: Prisoner’s Dilemma.

cooperation (C) non-cooperation (NC)
cooperation (C) 3,3 1,4

non-cooperation (NC) 4,1 2,2

scenario analyses. An extended analysis of the impacts of self-interested
decision makers in the design of decision support systems is still missing.
The proposed agent-based decision analytic framework represents a novel
approach which combines descriptive and prescriptive methods in order
to provide informative tools representing the actual decision-making con-
text (e.g., removing the simplifying assumption of fully cooperative deci-
sion makers), as well as decision support procedures, which recommend
proper coordination mechanisms between the originally self-interested
decision-making actors.

1.2 Planning and management problems

Decision-making processes in water resources systems comprise two dif-
ferent types of problems, namely planning and management, which can
be solved using mathematical models and Systems Analysis methods
(e.g., Loucks et al., 1980; Soncini-Sessa et al., 2007a, and references
therein). In planning problems the decision variables up represents “una
tantum” actions, meaning decisions that are taken once, without con-
sidering how they might influence analogous decisions in the future. A
typical example is the construction of a canal which requires to design its
maximum capacity. Planning does not necessarily mean infrastructural
interventions. Other common planning problems concern the definition
of minimum environmental flow requirements, the allocation of water
rights, or the design of reservoir rule-curves. Note that the absence of
dynamics in this type of decision does not imply, however, that also the
system has to be non-dynamic. In management problems, instead, it
is required to take sequential decisions ut on the basis of the current
system conditions as described by the state vector xt. The optimal solu-
tion of a management problem is a feedback operating policy p defined
as a sequence of operating rules providing, step-by-step, the vector of
management decisions ut = mt(xt). Typical examples of management
problems are the design of optimal operating policies for water reservoirs
or groundwater pumping systems, where the optimal policy provides at

3



1 Introduction

each time step the optimal release (or pumping) decision as a function
of the reservoir (groundwater) level.
The mathematical formulation of a generic planning problem is given
in eq. (1.1), while eq. (1.2) defines a generic management problem.
Both the problems are formulated with respect to a vector J(·) of q
operating objectives

[
J1, . . . , Jq

]
and are subject to appropriate con-

straints c1(·), . . . , cr(·) ≤ 0. The problems are also dynamically con-
strained by the evolution of the system, which can be modeled as xt+1 =
ft(xt,u

p,ut, εt+1), where εt+1 is a vector of stochastic disturbances.
Given the multi-objective nature of the problems, their resolution does
not yield a single optimal solution, but a set of Pareto-optimal solutions.
The image in the objective space of the Pareto-optimal solutions is the
Pareto front.

up∗ = arg min
up

J(·) (1.1)

p∗ = arg min
p

J(·) (1.2)

The k-th objective expresses the cost paid by k-th stakeholder over the
time horizon [0, H] (see, for more details, Castelletti et al. (2008a)):

Jk = lim
H→∞

Ψε1,...,εH

[
ΦH−1
t=0

(
gkt+1(xt,u

p,ut, εt+1)
)]

(1.3)

where gkt+1(·) is the k-th immediate cost function associated to each sys-
tem transition, Φ is an operator for aggregation over time, and Ψ is a
filtering criterion to deal with the uncertainties generated by the distur-
bances εt+1. Assuming that Φ computes the average value over time and
Ψ the expected value over the realizations of the stochastic disturbances,
eq. (1.3) represents a measure of vulnerability. Conversely, if Ψ filters
the effects of the disturbances by considering the worst-case realization,
eq. (1.3) represents a measure of robustness. These formulations of plan-
ning and management problems are general and can represent almost all
the operational water science problems.

1.3 Agent-based water resources management

1.3.1 Literature review

Distributed Artificial Intelligence

The theory of multi-agent system (MAS) has emerged from a sub-field of
researchers in artificial intelligence (AI), called distributed artificial intel-
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ligence (DAI). DAI community started forming in the early 1980s when
the complexity of AI problems exceeds the capabilities (i.e., knowledge,
computing resources, perspective) of a single entity (agent). Particu-
larly complex, large, or unpredictable problems require indeed to develop
multiple, specialized, and modular components (agents), which are also
able to interoperate via techniques based on negotiation or cooperation
(O’Hare and Jennings, 1996; Jennings et al., 1998).
The DAI concept of MAS is relatively simple and general: an agent
can be defined as a computer system, capable of independent actions to
meet its design objectives, and a multi-agent system consists of a number
of agents which interact in the same shared environment (Wooldridge,
2009). Figure 1.1 provides an abstract view of a MAS, where each agent
can be associated to a portion of the system that the agent observes
and controls. Given its observation along with the information provided
through the interactions with the other agents, each agent executes one
of the actions available in its repertoire and modifies the environment.
Depending on the characteristics of the environment, the specific struc-
ture of the agents as well as the methods defining their behaviors can be
different. Russell and Norvig (1995) suggest four major distinguishing
properties for characterizing MAS environments:

- deterministic or stochastic: an environment is deterministic if any
action has a guaranteed outcome, and stochastic if there is uncer-
tainty on the effects of the action;

- static or dynamic: a static environment can be assumed to remain
unchanged (except by the effects of agents actions), while a dy-
namic environment is characterized by multiple processes evolving
in time and beyond agents control;

- discrete or continuous: an environment is discrete if it has a finite
number of possible states, and continuous if there are infinite states;

- accessible or inaccessible: an environment is accessible if each agent
can obtain complete, accurate, and up-to-date information about
the environment state, and inaccessible otherwise.

The most complex class of environments, also referred to as “open en-
vironments” (Hewitt , 1986), includes environments that are stochastic,
dynamic, continuous, and inaccessible. Interestingly, these properties
can be easily mapped into typical features of water systems, which are
i) non-deterministic, due to the presence of stochastic external drivers
(e.g., rainfall, temperature, etc.); ii) dynamic, as they evolve in time;
iii) continuous and spatially distributed; iv) accessible or inaccessible
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agent 
interaction 
organizational relationship 

Environment 

sphere of influence 

Figure 1.1: Multi-agent system representation.

depending on the degree of information sharing among the agents.
These characteristics then influence the complexity of the agent design
process, which tries to find an effective balance between the following
features (Wooldridge and Jennings, 1995):

- reactivity : agents are able to perceive the environment and timely
respond to its changes;

- proactiveness: agents are able to exhibit goal-directed behaviors;

- social ability : agents are capable of interacting with other agents
(e.g., from data and information sharing to social activities such
as coordination or negotiation).

Purely reactive agents act using a stimulus-response type of behavior and
respond to the present state of the environment (Sycara, 1998). They
do not look at history or plan their strategy over the future. This char-
acteristic allows the design of simple “if-then” agents behaviors. Yet,
they make decisions based on local information only and do not predict
the effect of their decisions on global behavior. This myopic behaviors
can lead to unpredictable and unstable system situations (Thomas and
Sycara, 1998).
Economics-based mechanisms have been instead utilized to model proac-
tive agents as utility maximizers (Shoham and Leyton-Brown, 2009).
These approaches, such as market mechanisms, are becoming increas-
ingly attractive as they allow a flexible MAS design according to ready
available underlying economics models, with well established roots in
game theory and artificial intelligence (Vidal , 2009). According to this
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approach, it is assumed that the agent’s preferences are captured by a
utility function, which defines a map from the states of the environment
to a real number. Cooperative agents select their actions in order to
maximize the total utility at the system-level. A self-interested agent
instead chooses a course of action that maximizes its own utility. In
a society of self-interested agents, it is desired that if each agent maxi-
mizes its local utility, the whole society exhibits good behavior (i.e., good
local behavior implies good global behavior). However, in many situa-
tions the self-interested agents generally overuse and congest the shared
resources leading to the “The Tragedy of the Commons” described by
Hardin (1968). In these contexts, Sycara (1998) defines the goal of MAS
research as the design of mechanisms for self-interested agents such that
the overall system behavior will be acceptable, which is called mechanism
design (Maskin, 2008).

Environmental Applications

From the first works developed in DAI, the applications of MAS have
rapidly covered a variety of domains, ranging from manufacturing to pro-
cess control, air-traffic and robot control, or information management.
MAS approaches have become a widely used tool in several environmen-
tal modeling contexts (e.g., Athanasiadis, 2005). The primary goal of
most of these studies, also referred to as multi-agent simulations (for
a review, see Bousquet and Le Page, 2004, and references therein), is
to simulate complex systems in order to evaluate macro-level properties
emerging from lower-level interactions among the agents.
Agent-based modeling offers several advantages with respect to other ap-
proaches (Bonabeau, 2002; Bousquet and Le Page, 2004): i) it provides
a more natural description of a system; ii) it relaxes the hypothesis of
homogeneity in a population of actually heterogeneous individuals; iii)
it allows an explicit representation of spatial variability; iv) it captures
emergent global behaviors resulting from local interactions. Purely re-
active agents (see the previous section) are largely adopted to define
behavioral rules which react to environmental changes (Le et al., 2012).
However, the prescriptive use of MAS models in decision support sys-
tems remains a challenge due to their mathematical complexity, which
requires to shift toward a descriptive standpoint (Galán et al., 2009),
developing what-if analyses with respect to a limited number of mana-
gement alternatives and modeling simple decision mechanisms based on
linear programming (Schreinemachers and Berger , 2011).
Ecology was the first environmental discipline that adopted MAS ap-
proaches due to their similarity with individual-based models (e.g., Hus-
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ton et al., 1988). The aim of these works is to study the behavior of a
population, where the processes involved are modeled at the agent level
to take into account the heterogeneity of the individuals (Bousquet et al.,
1999). MAS tools are also used to study land use change and agricultural
systems (Berger , 2001; Berger and Ringler , 2002; Naivinit et al., 2010;
Schreinemachers and Berger , 2011; Le et al., 2012; Ralha et al., 2013) ac-
cording to the “representative independent farm approach” (Hanf , 1989),
which consists of a number of independent farm models added up to com-
pose a sector result. Agent-based models are used to represent human-
landscape systems where a set of human agents interact with each other
and with the environment. The impacts at the system level of changes
in agricultural technologies, marked dynamics, and policy intervention
are estimated via scenario-based analysis (Schreinemachers and Berger ,
2011).
In the water resources literature, MAS approaches have been used to
model watersheds as spatially distributed, coupled natural-human sys-
tems, where the water is shared between the multiple water users (agents).
Berger et al. (2007) illustrate the potentiality of MAS as a planning tool
to evaluate ex-ante different policy scenarios and estimate their effects for
different groups of water users. Similarly, scenario-based experiments are
used to study domestic water management problems (e.g., Galán et al.,
2009) and water distribution for irrigation purposes (e.g., van Oel et al.,
2010). MAS tools have been also used to support negotiation (e.g., Becu
et al., 2003; Feuillette et al., 2003) in order to facilitate agreements be-
tween conflicting stakeholders, focusing more on the representation of
the social aspects of stakeholders interactions than on the policy mech-
anisms. The combination of MAS and role-playing games (e.g., Bar-
reteau et al., 2001; Guyot and Honiden, 2006) was demonstrated to be
particularly effective to directly involve the stakeholders in participated
decision-making processes. In a role-playing game, each player is asked
to choose step-by-step the action that the agent has to perform and the
results of the model simulation then facilitates discussion and negotia-
tion.
The descriptive standpoint generally adopted in multi-agent simulations
is similar to the one used in game theory (e.g., Madani , 2010, and ref-
erences therein), and is more focused on the properties of the outcome
situations instead of the mechanisms leading to better solutions, as it
would be typical in a prescriptive, optimization-based approach based
on proactive MAS. In the water resources field, the first contribution
adopting proactive MAS was presented in Yang et al. (2009), where the
multiple distributed water users are modeled as self-interested agents act-
ing in a distributed decision process to solve a water allocation problem
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by means of penalty-based decentralized optimization method. A similar
approach was then adopted by Ng et al. (2011) to optimize pre-season
farmers decisions about crop types and best management practices under
different scenarios of markets for conventional crops, carbon allowance,
and second generation biofuel crops, according to predictions of future
prices, costs, yields, and weather. Huskova and Harou (2012) propose an
agent-based model to estimate the effectiveness of an optimization-driven
water market in mitigating increasing water scarcity in England. Agent-
based modeling is also adopted by Nguyen et al. (2013) to assess the
outcomes of different market structures on emission trading. Agents are
heterogeneous in their costs and relative size, have imperfect information
about their own costs and the costs of others, which can be diminished
but not eliminated by investments to improve their information, and are
boundedly rational. By solving stochastic optimization problems, the
agents decide whether to participate in trading and, if they do, their
bidding strategies.

1.3.2 A novel agent-based decision analytic framework

This thesis proposes a novel decision analytic framework based on multi-
agent systems to overcome the difficulties related to the complexity of
the institutional decision-making contexts in water resources systems. A
precise definition of MAS can be difficult due to the many competing,
mutually inconsistent answers offered in different disciplines (Shoham
and Leyton-Brown, 2009). Consequently, in this thesis MAS is consid-
ered more as a mindset than a technology (Bonabeau, 2002), which relies
on the general definitions given in Wooldridge (2009) and Shoham and
Leyton-Brown (2009): an agent is defined as a computer system situ-
ated in some environment and capable of autonomous actions to meet
its design objectives; multi-agent systems are those systems that include
multiple autonomous entities with either diverging information or diverg-
ing interests, or both.
The selection of a framework based on MAS naturally allows the rep-
resentation of multiple decision makers or stakeholders (agents), which
act in the same environment, thus influencing each other, and need to
coordinate to maximize the system-wide efficiency in the use of the avail-
able water. The adoption of this agent-based perspective aims to move
beyond the traditional centralized approach to water resources manage-
ment and to analyze different levels of cooperation (e.g., Watkins, 2006),
from fully coordinated strategies and full information exchange to com-
pletely uncoordinated practices where all the decision makers indepen-
dently pursue their local objectives.
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Figure 1.2: Representation of the conflict between the system-wide ef-
ficiency and the practicability of watershed management
strategies.

As suggested in Figure 1.2, a trade-off exists between system-wide ef-
ficiency and the associated practicability in real decision-making pro-
cesses: the fully cooperative centralized approach aims at the maxi-
mization of the former while neglecting the latter, thus leading to so-
lutions which are the most efficient but impracticable, for example the
failure of international initiatives such as the ZAMCON Protocol for
the management of the Zambezi River (Tilmant and Kinzelbach, 2012).
At the other extreme, real world management practices are often non-
coordinated and, therefore, they usually result in very low efficiency in
the utilization of water resources. It is worth noting that the utopia
point (i.e., the absolute optima of both efficiency and practicability rep-
resented by the white square in Figure 1.2) is usually not feasible, except
for rare cases where the two objective functions are actually orthogonal
and not conflicting. Yet, there exists room between these two extremes
to design intermediate, distributed solutions (i.e., the grey points), more
efficient than the uncoordinated ones and more realistic, and thus more
practical, than the centralized ones. Different policy mechanisms such
as regulatory constraints or economic incentives are usually applied to
explore this space (Pannell , 2008). However, these mechanisms mainly
rely on the empirical experience of the authority in charge to promote

10



1.3 Agent-based water resources management

negotiated solutions, while mathematical and technological tools to iden-
tify such distributed solutions are nearly undeveloped and, therefore, the
applicability of them has been so far limited.
The aim of the proposed agent-based framework is to provide tools to
describe the decisions made by each agent as well as insights for the
design of proper coordination mechanisms driving the originally uncoor-
dinated decision-making structure toward a system-wide efficient situa-
tion. Moreover, coupling the agent-based modeling scheme with state-
of-the-art Control Theory techniques allows a better understanding of
the feedbacks between agents objectives, agents decisions, and the envi-
ronment they share, as well as the description of their coevolution and
coadaptation under change.
The main components of the proposed framework are illustrated in Fig-
ure 1.3. Given a complex water system as the one represented in the fig-
ure, which includes multiple reservoirs and four conflicting objectives, the
agent-based model of the system is firstly developed. The two decision
makers operating the two reservoirs are modeled as active agents, while
passive agents represent the stakeholders who do not make decisions but
represent other interests affected by the operation of the reservoirs (i.e.,
flooding issues and domestic water supply). According to the definition
of proactive agents, an objective function is associated to both active and
passive agents. Three alternative scenarios (represented on the right side
of the figure) are then considered: i) an upper-bound alternative, where
the agents are fully cooperative, exchange complete information, and
solve a four-objective optimization problem to attain the maximum of
the system-wide efficiency (i.e., the four-objective Pareto front); ii) a
lower-bound alternative, where the agents are completely self-interested
and the active agents act according to local objectives only, thus pro-
ducing negative externalities on the interests of the passive agents and
resulting in uncoordinated solutions at the sytem-level; iii) intermediate
solutions obtained through mechanism design strategies which preserve
the originally uncoordinated decision-making structure of the problem
(i.e., the active agents consider their local objectives only) and introduce
some coordination mechanisms (e.g., information exchange, normative
constraints, or economic incentives) aimed to improve the system-wide
efficiency. Finally, the upper and lower bound alternatives provide a ref-
erence to evaluate the performance of the mechanism design solutions in
terms of system-wide efficiency as well as agent-level practicability.
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Figure 1.3: Illustration of the agent-based decision analytic framework.

1.4 Overview of the chapters

1.4.1 Chapter 2

Chapter 2 provides the reader with background information and the novel
contributions in terms of tools and methodologies used in the applica-
tions of the agent-based decision analytic framework presented in this
thesis. Section 2.1 frames the proposed framework in the multi-objective
decision-making literature, highlighting the advantages of adopting an
a posteriori decision-making method. Section 2.2 describes the recent
advances in visual analytics which support effective exploration and un-
derstanding of complex, high dimensional decision and objective spaces.
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Section 2.3 introduces two MAS methods (i.e., distributed constraint
satisfaction and distributed constraint optimization) to solve distributed
optimal planning problems. They have been developed within the dis-
tributed artificial intelligence community and their application in en-
vironmental contexts is still missing. Section 2.4 reviews the state-of-
the-art methods to solve water management problems, focusing on two
approaches (i.e., on-line control and direct policy search) able to scale to
large-scale systems and many-objective optimization problems. These
features are suitable for the application of the agent-based framework
in complex water management problems, where MAS tools are nearly
unexplored. Finally, Section 2.5 introduces the direct policy condition-
ing method to support the identification of effective mechanism design
alternatives.

1.4.2 Chapter 3

Chapter 3 introduces the problem of balancing system-wide efficiency
and solutions practicability working on a hypothetical water allocation
planning problem. Two extreme situations, corresponding to the central-
ized and uncoordinated strategies in Figure 1.2, are first computed. An
extensive analysis of the intrinsic conflict between efficiency and practi-
cability is developed, by highlighting the limitations (i.e., low practica-
bility) of centralized and fully cooperative solutions in systems character-
ized by the presence of distributed decision making institutions. Then,
different levels of coordination are explored by means of MAS methods
based on distributed constraint optimization problems. These methods
allow the development of constraint-based mechanism design strategies
to explore the “gray area” in Figure 1.2. Finally, alternative mechanism
design strategies based on economic incentives are also discussed. This
chapter is adapted from a paper under review for publication in the
Journal of Water Resources Planning and Management (Giuliani et al.,
2013a).

1.4.3 Chapter 4

In Chapter 4, the agent-based decision analytic framework is applied
in a real world management problem to assess the value of coopera-
tion and information exchange in transboundary systems. The Zambezi
River basin is used as a case study to estimate the benefits potentially
achievable by the downstream country (i.e., Mozambique), under differ-
ent levels of cooperation with the two upstream countries (i.e., Zambia
and Zimbabwe). The differences in the system-level benefits attained

13



1 Introduction

under different scenarios of cooperation provide an estimate of both the
economic value of full cooperation, measured as the benefits obtained
by full cooperation with respect to the one with coordination only, and
the economic value of information exchange, measured as the benefits
obtained with coordination with respect to the ones with no coopera-
tion. Chapter 4 represents the first application adopting an agent-based
perspective to study real world water management problems in non-
cooperative decision-making contexts. Instead of adopting a priori be-
havioral rules, the agents’ behaviors are defined according to an on-line
control approach for solving management problems at the agent and at
the system-level. Moreover, it contributes a novel procedure to assess
the role of information exchange and the benefits that can be achieved
with this simple upstream-downstream coordination mechanism. Finally,
both the values of full cooperation and information exchange are esti-
mated in a multi-objective context, which requires to work on the Pareto
front to a posteriori derive the economic value of the ecological objec-
tives, whose monetization is usually affected by high uncertainty. This
chapter is adapted from a journal paper published in Water Resources
Research (Giuliani and Castelletti , 2013).

1.4.4 Chapter 5

In Chapter 5, the application of the agent-based decision analytic frame-
work shows the potential for a co-adaptation strategy between the agents
(i.e., farmers and water managers) decisions to improve the effectiveness
of agricultural water management practices. The proposed co-adaptation
aims to match the needs of the farmers with the design of water supply
management policies, under current and projected climate. The Lake
Como serving the Muzza-Bassa Lodigiana irrigation district (Italy) is
used to illustrate the methodology on a real world case study. Although
many studies have assessed climate change impacts on agricultural prac-
tices and water management, most of them assume few scenarios of water
demand or water supply separately, while an analysis of their reciprocal
feedbacks is still missing. Chapter 5 proposes an integrated procedure to
model water supply and demand as coupled human (farmers and water
managers) and natural (crops) systems, where people and nature interact
reciprocally, form complex feedback loops, and co-evolve under changing
conditions. The proposed co-adaptation strategy closes the loop between
the two systems (demand and supply) by cross-conditioning farmers and
water managers decisions. It allows the farmers to decide the most prof-
itable crop option on the basis of an expected water supply. Knowing
the farmers decisions, the water supply strategy (i.e., the Lake Como re-
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gulation) is then optimized with respect to the actual irrigation demand
of the crops. By iteratively running this procedure, the farmers and the
water manager will exchange information until the system converges to
an equilibrium. The analysis is performed under current and future cli-
mate conditions, in order to assess the potential for the adaptation loop
to enhance the efficiency of agricultural water management practices and
foster crop production as well as to mitigate climate change adverse im-
pacts. This chapter is adapted from a paper under preparation for Global
and Environmental Change (Giuliani et al., 2013d).

1.4.5 Chapter 6

In Chapter 6, the agent-based decision analytic framework combines
reservoir policy identification, many-objective optimization under uncer-
tainty, and visual analytics to characterize current water reservoir oper-
ations and discover key tradeoffs between alternative policies for balanc-
ing evolving demands and system uncertainties. Moreover, this chapter
contributes a novel method based on input variable selection techniques
to support the identification of effective mechanism design strategies.
These tools are demonstrated on the Conowingo Dam, located within
the Lower Susquehanna River, USA. The Lower Susquehanna River is
an interstate water body that has been subject to intensive water mana-
gement efforts due to the presence of many stakeholders (agents) affected
by the Conowingo Dam operation. The Lower Susquehanna system in-
cludes competing demands from urban water supply, atomic power plant
cooling, hydropower production, and federally regulated environmental
flows. To provide effective support to the Susquehanna River Basin Com-
mission and avoid policy inertia and myopia, the current regulation of
Conowingo Dam is identified and refined to balance the conflicting objec-
tives as well as the uncertainties related to the hydroclimatic variability.
Then, alternative policy mechanisms are designed by directly constrain-
ing the decision space in order to dynamically condition the reservoir op-
erating policy and better balance the primary operating objectives (i.e.,
guaranteeing the public water supply and maximizing the hydropower
revenue) with environmental protection and recreational interests. This
chapter is adapted from a paper under review for publication in Water
Resources Research (Giuliani et al., 2013c) and a paper in preparation
for the 2014 IFAC World Congress (Giuliani et al., 2014).
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2.1 Multi-objective decision-making

Contemporary water resources problems often involve multiple, conflict-
ing, and non-commensurable objectives. In such multi-objective con-
texts, the traditional concept of optimality is replaced by that of Pareto
efficiency, which imposes to explicitly consider the preference structure
of the parties involved. Yet, the legacy planning strategies that have pre-
dominately shaped modern water reservoir operations are termed a pri-
ori multi-criteria decision analysis (MCDA) methods (Cohon and Marks,
1975). As reviewed by Chankong and Haimes (1983), these methods first
elicit (or assume) a priority ranking or weighting of objectives, which is
then used to reduce the multi-objective operations problem into a single-
objective optimization that sought one “compromise” solution. However,
these approaches were recognized as making very strong assumptions
(linearity, perfect foresight, limited if any uncertainty, convexity, well de-
fined understanding of planning alternatives and preferences, etc.) that
could cause severe biases (Haimes and Hall , 1977).
Again following the classification of Cohon and Marks (1975), an alter-
native approach to a priori MCDA methods are a posteriori generat-
ing techniques, where the full set of Pareto-optimal solutions are gen-
erated prior to eliciting the decision makers (DMs) preferences. The
underlying benefit of the a posteriori approach is that DMs do not have
to state what is preferred in absence of their understanding of what
is attainable (assuming a well formulated management problem). The
core limitation in this approach is the computational cost of identify-
ing the Pareto front. Classically, these approaches have required simi-
lar weighting based methods as used in MCDA a priori methods, with
the distinguishing difference that the single-objective optimization is re-
peated for every Pareto-optimal point generated by adapting the weight-
ing of the objectives (Chankong and Haimes, 1983; Soncini-Sessa et al.,
2007a; Coello Coello et al., 2007). Interactive approaches (e.g., reference
point method (Wierzbicki , 1980), Pareto race (Korhonen and Wallenius,
1988)) have been developed in order to interactively explore the Pareto
space without having to fully compute it in advance, thus mitigating
the associate computational burden (e.g., Deb et al., 2006; Thiele et al.,
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2009). The complexity and high number of questions to be posed to the
DM remain an unsolved problem (Larichev , 1992).
More recent strategies have transitioned to multi-objective evolutionary
algorithms (e.g., Nicklow et al., 2010; Reed et al., 2013) or multi-objective
reinforcement learning (e.g., Castelletti et al., 2013b) to avoid the limi-
tation of generating a single Pareto-optimal point per optimization run
while also broadening the number and complexity of objectives that can
be resolved.
This thesis relies on a posteriori decision-making and the proposed deci-
sion analytic framework exploits the recent advances in visual analytics
(Section 2.2) to allow the exploration and understanding of complex,
high dimensional information through highly interactive visual tools. In
what follows, it is always assumed to deal with multi-objective problems,
whose solution is a Pareto front.

2.2 Visual analytics

The solution of multi-objective planning and management problems yield
a set of Pareto-optimal solutions. Adopting the a posteriori decision-
making approach described in the previous section, the DM selects one
or more preferred solutions only after the generation of the entire Pareto-
optimal set by analyzing the corresponding Pareto front. However, effec-
tive tools to explore these large objective spaces are necessary to support
more informed decisions as well as effective stakeholders negotiations.
Recent advances in visual analytics (e.g., Thomas and Cook , 2005; Keim
et al., 2006; Kollat and Reed , 2007; Lotov and Miettinen, 2008) allow the
exploration of large multidimensional spaces, thus favoring the adoption
of a posteriori decision-making approaches. The idea of searching and
visualizing the Pareto front for two objectives was firstly introduced by
Gass and Saaty (1955). Then, Louie et al. (1984) and Haimes et al.
(1990) proposed to use decision maps to show three-objectives tradeoffs
as collections of two-objective tradeoff curves with different values of the
third objective.
The concept of interactive decision maps (Lotov et al., 1998, 2004) was
then introduced to inform the DM in problem with more than three ob-
jectives. Several slices of the multi-dimensional Pareto front displayed in
different colors are superimposed in the same two-objective plane. Ani-
mations of the figure for different values of the other objectives allow the
analysis of the influence of the remaining objectives. Figure 2.1 shows
an example of a five-dimensional interactive decision map.
More recently, the framework proposed by Kollat and Reed (2007) al-
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Figure 2.1: Example of interactive decision maps.

lows the user to visualize up to seven design objectives simultaneously
using scatter and glyph plots with the AeroVis software. Up to three
objectives can be plotted on the spatial coordinate axes. Glyphs color,
size, orientation, and transparency allow the visualization of additional
objectives. The software allows multiple interactive analyses, such as
i) quickly change which variables are plotted; ii) specify thresholds of
interest for each objective and “brush out” solutions that fail to meet
DMs requirements; iii) perform non-domination sorting with respect to
specified objectives; iv) mark interesting solutions across different linked
views. Figure 2.2 shows an example of a six-dimensional AeroVis plot.
Parallel axes plot (Inselberg , 1997) serve as a complementary visual tool
for understanding key tradeoffs. Each Pareto-optimal solution is shown
as a line crossing the parallel axes, representing the different objectives,
at the values of their corresponding performance. The ideal solution
would be a horizontal line running along the top/bottom of all of the
axes, with the conflicts designated as diagonal lines between two adja-
cent axes. Figure 2.3 shows the same solutions of Figure 2.2 using a
parallel axes plot.
Three-dimensional virtual reality facilities can be used to visualize high-
dimensional Pareto front as well as to analyze (e.g., by means of ro-
tation, zooming, and other navigation possibilities) the corresponding
Pareto-optimal set aiding the selection of a particular compromise solu-
tion (Madetoja et al., 2008). Figure 2.4 shows an example of a 3D virtual
reality system used to analyze a three-objectives Pareto front in a virtual
reality laboratory.
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Figure 2.2: Example of AeroVis plot from Giuliani et al. (2013c).
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Figure 2.4: Example of 3D virtual reality system (Madetoja et al., 2008).

Transitioning to higher dimensional many-objective formulations may
reveal that lower dimensional results represent extreme corners of the
objective space that have little interest for DMs (e.g., Kollat et al., 2011;
Kasprzyk et al., 2012; Woodruff et al., 2013, and references therein).
Moreover, many-objective representations of tradeoffs can help in reduc-
ing the negative impacts from two forms of decision bias (Brill. et al.,
1990). The first one, cognitive myopia (Hogarth, 1981), occurs in low
dimensional optimization when stakeholders inadvertently ignore alter-
natives that could strongly influence their decision preferences; the sec-
ond one, cognitive hysteresis (Gettys and Fisher , 1979), refers to the
challenge that lower dimensional, highly constrained problem represen-
tations often reinforce DM’s preconceptions.
An example of how adding problem objectives can fundamentally change
the interpretation of the results is given in Figure 2.5 (adapted from
Woodruff et al., 2013). Figure 2.5a shows the Pareto-optimal solutions
of a three-objective problem according to a single-objective perspective
(e.g., objective J1). In this view, a solution minimizing J1 appears the
unique optimum. In Figure 2.5b, a second objective is added and the
solution minimizing J1 corresponds to the minimum also of J2. If only
J1 and J2 were considered, a DM would assume that no conflict exists
and select the solution that minimizes both objectives (the red point).
However, adding J3 as a third objective disrupts this view of the prob-
lem. Figure 2.5c shows the emergence of significant tradeoffs between
the three objectives due to the constraint J1 + J2 + J3 = 1. For any
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Figure 2.5: Example of how adding problem objectives can fundamen-
tally change the interpretation of the results: in panels (a)
and (b) the set of solutions does not show any tradeoff, while
in panel (c) a clear tradeoff emerges.

fixed value of J3, the first two objective are strongly conflicting. The
idea that J1 and J2 are in agreement represents a misconception and a
decision bias which arises from using formulations with fewer objectives.
The solution that the DM had thought ideal (the red point correspond-
ing to J1 = 0, J2 = 0) is actually an extreme point of the Pareto front
(J1 = 0, J2 = 0, J3 = 1), and a compromise solution that might be
potentially interesting for the DM is probably far from there.

2.3 MAS for optimal planning

A wide variety of MAS methods have been developed in the distributed
artificial intelligence (DAI) community for planning problems (see Sec-
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tion 1.2), such as distributed scheduling (e.g., Sycara et al., 1991), dis-
tributed planning (e.g., Hirayama and Yokoo, 1997), distributed sensor
and robots networks (e.g., Modi et al., 2001; Shen et al., 2002), satel-
lite constellation (e.g., Barrett , 1999), or distributed resources allocation
(e.g., Conry et al., 1991). Conversely, as anticipated in Section 1.3.1,
most of the MAS applications in the environmental community adopts
reactive agents and performs scenario analysis, while proactive agents
solving optimization problems are nearly unexplored. In the water re-
sources field, Yang et al. (2009) adopt a MAS approach to solve a water
allocation problem among multiple, spatially distributed water users.
According to an agent-based distributed formulation and assuming one-
to-one correspondence between agents and objectives, Problem (1.1) can
be reformulated as a sequence of q local problems, each one defined as:

up∗
i = arg min

up
i

J i(up
i ,u

p
−i) (2.1a)

subject to

ci,1(up
i ,u

p
−i), . . . , ci,r(u

p
i ,u

p
−i) ≤ 0 (2.1b)

up
i ∈ Di (2.1c)

where i = 1, . . . , q, up
i are the decision variables of the i–th agent and

up
−i the ones of all the other agents except i. The i–th agent’s decisions

are optimized with respect to its local objective function J i(·), which
however depends also on the decisions of the other agents. It is worth
noting that also the constraints in eq. (2.1b) depend on both the up

i and
up
−i.

In such distributed problems, the agents look at their local objectives
only, without considering the potentially negative externalities that their
decisions produce for the others. The two main approaches developed
within the DAI field for investigating how agents can instead coordinate
their decisions are distributed constraint satisfaction problems (DCSPs,
see Yokoo and Hirayama (2000)) and distributed constraint optimiza-
tion problems (DCOPs, see Modi et al. (2005)). The DCSP formulation
defines a distributed feasibility problem with Boolean constraints, which
can be only satisfied or unsatisfied, while the DCOP is a distributed
optimization problem dealing with objective functions represented as a
weighted sum of costs or valued constraints. According to these formu-
lations, each agent solves a local planning problem with respect to its
objective, subject to a set of constraints conditioning its decisions. The
constraints represent either physical constraints (e.g., canal capacity)
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or normative constraints (e.g., minimum environmental flow). The aim
of these latter is to condition the individualistic, local decisions of the
agents in order to increase the efficiency of the uncoordinated solution.
In practice, normative constraints impose some cost on combinations of
values selected by agents which produce negative externalities, so that
agents are “forced” to select combinations of values that minimize that
cost (i.e., that are good from a global standpoint). Moreover, the adop-
tion of DCSP- and DCOP-based methods ensures global solution quality
operating efficiently in a distributed search process which attempts to
narrow the number of exchanged messages. These characteristics have
an important practical consequence, namely the possibility of defining a
weak coordination mechanism between the agents with limited transac-
tion costs associated to the agent interactions. This represents a signif-
icant advantage in real world application, as ex post assessments of the
role of transaction costs showed that they are ubiquitous and nontrivial
(McCann and Easter , 1999; McCann et al., 2005).

2.3.1 Distributed constraint satisfaction problems

Formally, a DCSP consists of n decision variables, up = [up1, . . . , u
p
n], each

assigned to a different agent, where the values of the variables are taken
from finite, discrete domains D1, . . . ,Dn, and of a number of Boolean
constraints over the values of these variables c1(up), . . . , cr(u

p), where
cj(u

p) ∈ {true, false} ∀j. According to the planning nature of the prob-
lem, the decision variables do not change in time (e.g., the assignment
of water rights is done once and can be modified only by reformulating
a new planning problem).
A solution of a DCSP is an assignment of values to all the variables
such that all the constraints are satisfied. DCSPs are solved by employ-
ing distributed algorithms, like those surveyed in Yokoo and Hirayama
(2000), which assume that the constraints are binary (i.e., each con-
straint involves only two variables) and agents can reliably communicate
to exchange the values they select for their variables. Similar to the case
of centralized CSPs, these distributed algorithms can be divided in two
classes: backtracking algorithms and iterative improvement algorithms.
In a backtracking algorithm, such as the asynchronous backtracking al-
gorithm (Yokoo et al., 1992), a value assignment to a subset of decision
variables that satisfies all of the constraints within the subset is first con-
structed. This value assignment is called a partial solution. A partial
solution is then expanded by adding new decision variables one by one,
until it becomes a complete solution. When no values satisfying all of
the constraints with the partial solution are available, the value of the
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most recently added variable to the partial solution is modified. This op-
eration is called backtracking. In iterative improvement algorithms, such
as the distributed breakout algorithm (Hirayama and Yokoo, 2005), a
tentative initial value is assigned to all the decision variables and no par-
tial solution is constructed. Then, a flawed solution is revised according
to some heuristic process (e.g., a variable value is changed so that the
number of constraint violations is minimized). Iterative improvement al-
gorithms are usually efficient as they do not require an exhaustive search
in revising a flawed solution, but they can be incomplete, meaning that
they do not guarantee to find a feasible solution; algorithms based on
backtracking are instead often complete.

2.3.2 Distributed constraint optimization problems

A DCOP consists of n decision variables, up = [up1, . . . , u
p
n], each as-

signed to a different agent, where the values of the variables are taken
from finite, discrete domains D1, . . . ,Dn, and of a number of valued
constraints over the values of these variables c1(up), . . . , cr(u

p), where
cj(u

p) ∈ R ∀j. A solution of a DCOP is an assignment of values to all
the variables such that a given objective function g is maximized or mini-
mized. Usually, the objective function is a weighted sum of the functions
representing the costs for constraint violations and is minimized, namely
minup g = minup

∑r
j=1wj · cj(up), where wj is the weight of cj(up).

Probably, the most known (though not the most efficient for all prob-
lems) distributed algorithm for solving DCOPs is Adopt (Modi et al.,
2005), which performs a global search of the solution space and provides
theoretical guarantees on the global solution quality (see Section 2.3.3).
Also in the case of Adopt, agents are responsible for choosing the values
of their variables. Extensions of the basic formulations of DCSP and
DCOP allow each agents to control multiple variables as well as to con-
sider agents solving multi-objective optimal planning problems. Note
that a DCSP is a special case of a DCOP, where the constraints are
Boolean and, therefore, they can be only satisfied or unsatisfied. A solu-
tion of a DCSP can be only feasible or unfeasible. Conversely, a DCOP
allows the identification of solutions with a certain degree of quality or
cost, depending on the value of the objective function g.
To better clarify the difference between DCSP and DCOP, let consider
the simple problem represented in Figure 2.6, where each variable upi
(i = 1, 2, 3) is assigned to an agent and has the same domain Di = {0, 1}.
The objective function of each agent is J i = 10 if upi = 1 and J i = 0
if upi = 0. The two links in the figure represent two inequality con-
straints defined as up1 6= up3 and up2 6= up3. In the case of the DCSP,
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Figure 2.6: Example of a DCSP/DCOP problem. Panel (a) shows the
constraint graph, where each link represents an inequality
constraint. Panel (b) reports the values assigned to the con-
straints in the DCOP formulation.

the constraints are Boolean. The problem has two feasible solutions
{up1 = 1, up2 = 1, up3 = 0} and {up1 = 0, up2 = 0, up3 = 1}, which are consid-
ered equally good as they both satisfy all the constraints and no mea-
sure of quality is defined. Conversely, the DCOP formulation allows the
definition of valued constraints to differentiate solutions with different
degrees of quality. Assuming the values of the constraints are defined
as in Figure 2.6b, the DCOP has one optimal solutions only, namely
{up1 = 1, up2 = 1, up3 = 0}, which corresponds to a cost for constraint
violations g(up1, u

p
2, u

p
3) = c(up1, u

p
3) + c(up2, u

p
3) = 0 and to the maximum

of system-level benefit (i.e., J1 + J2 + J3 = 20). Note that, the DCOP
problem has another feasible solution {up1 = 0, up2 = 0, up3 = 1}, with a
higher cost for constraint violations g(up1, u

p
2, u

p
3) = 2 and a lower system-

level performance (i.e., J1 +J2 +J3 = 10). Finally, the DCOP has other
two solutions, which are the ones considered unfeasible in the DCSP for-
mulation, which assume an infinite cost in the DCOP formulation and,
consequently, will never be considered. The DCOP formulation is there-
fore more flexible as it allows to discard the same unfeasible solutions
as in the DCSP problem and also to distinguish between the feasible
solutions depending on their system-level performance.

2.3.3 Asynchronous distributed optimization algorithm

Adopt (Asynchronous Distributed OPTimization) is probably the most
known distributed algorithm for DCOP problems (Modi et al., 2005). It
can find either an optimal solution or a bounded-error approximate one
using only asynchronous and local communication, meaning that agents
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Figure 2.7: Example of Adopt distributed search: panel (a) represents
the constraint graph as well as the values associated to each
constraint; panel (b) shows the communication graph, where
the agents are prioritized in a depth-first search tree.

do not broadcast messages to every agent but only to neighboring agents
in the attempt to limit the number of exchanged messages.
The main feature of Adopt is to perform a distributed backtrack search
(see Section 2.3.1) using an “opportunistic” best-first search strategy,
which allows each agent to change variable value whenever it detects
there is a possibility that some other solution may be better than the
one currently under investigation. This search strategy increases asyn-
chrony because an agent does not need global information to make its
local decisions. Moreover, it allows partial solutions to be abandoned be-
fore sub-optimality is proved. Consequently, Adopt needs to efficiently
reconstruct previously considered partial solutions through the use of
backtrack threshold. These two key ideas yield efficient asynchronous
search for optimal solutions. Finally, Adopt provides a built-in termi-
nation detection mechanism based on a bound interval related to the
cost of the optimal solution. When the lower bound equals the upper
bound, the cost of the optimal solution has been determined and the
agents can terminate the search. Bound intervals are used to search for
bounded-error approximation of the optimal solution.
Figure 2.7 reports an example of Adopt distributed search for a problem
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involving four agents. The agents are organized in a constraint graph,
whose nodes are the agents and edges connect agents that share a con-
straint, which are called neighboring agents (Figure 2.7a). The objective
is to find an assignment to all the variables such that the total cost
function g =

∑4
j=1 cj is minimized. In this example, the optimal so-

lution is up = [1, 1, 1, 1], corresponding to a total cost g = 0. Adopt
assumes that constraints are at most binary (i.e., they involve one or
two variables/agents). No restrictions are placed on the topology of the
constraints, so loops are allowed. However, Adopt requires a preprocess-
ing phase to prioritize the agents in a depth-first search tree (e.g. Korf ,
1985; Collin and Dolev , 1994), in which each agent has a single parent
and multiple childrens. The result is a communication graph (Figure
2.7b) where the constraints are defined between an agent and any of its
ancestors or descendents, but no constraints are allowed between agents
in different branches of the DFS tree. When the algorithm starts, all
the agents choose their variable values concurrently. Variable values are
sent down through constraint edges via VALUE messages. An agent
sends VALUE messages only to neighbors lower in the DFS tree and
receives VALUE messages only from neighbors higher in the DFS tree.
A second type of message, named THRESHOLD message, is sent only
from parent to child. A THRESHOLD message contains a backtrack
threshold, initially zero. Upon receipt of any type of message, an agent
i) calculates cost and possibly changes variable value and/or modifies its
backtrack threshold; ii) sends VALUE messages to its lower neighbors
and THRESHOLD messages to its children; iii) sends a third type of
message, named COST message, to its parent. A COST message con-
tains the cost calculated by the children agent plus any cost reported
to this latter by its children. To summarize: variable value assignments
(VALUE messages) are sent down the DFS tree, while cost feedback
(COST messages) percolate back up the DFS tree. THRESHOLD mes-
sages are sent down the tree to reduce redundant search.
The dimensionality of the problem can limit the applicability of Adopt
to attain optimal solutions because, although the number of messages
exchanged by the agents grows approximately linearly with the number
of agents, its worst-case time complexity is exponential in the number
of agents. However, there exist approximated algorithms able to find
quasi-optimal solutions when the number of agents increases, such as
the distributed breakout algorithm (Hirayama and Yokoo, 2005).
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2.4 MAS for optimal management

So far, optimization-based MAS approaches have been mainly adopted
in planning problems (e.g., Yang et al., 2009). However, several water-
related applications, such as water reservoir regulation or groundwater
pumping systems management, require to take sequential decisions given
the current conditions of the system and can be formulated as manage-
ment problems (see Section 1.2). For example, the optimal reservoir
operation can be designed solving Problem (1.2) and deriving an oper-
ating policy p, defined as the sequence of operating rules which step-
by-step provide the release decisions ut = mt(xt) for each dam outlet
over the time interval [t, t + 1) depending on the state vector xt (e.g.,
reservoir storage and inflow forecast). The use of MAS to design water
management policies is nearly unexplored. In this thesis, state-of-the-art
Control Theory methods are combined within the proposed agent-based
framework to support water resources management.
Stochastic dynamic programming (SDP, see Bellman (1957)) is the most
flexible and accurate method for solving Problem (1.2). However, SDP
and dynamic programming (DP) family methods (e.g., Powell , 2007)
suffers from a dual curse which prevents its practicable application in
large-scale complex systems: i) the curse of dimensionality (Bellman,
1957), namely the computational cost of dynamic programming grows
exponentially with state, decision, and disturbance vectors and would
be inapplicable with medium-to-high order dynamical models (e.g., wa-
ter reservoir networks with more than 2/3 storage units); ii) the curse
of modeling (Tsitsiklis and Van Roy , 1996), meaning the use of in-line
model-based computations that make impossible the direct, model-free
use of exogenous information into the controller and the use of process-
based simulation models (e.g., hydrodynamic and ecological). DP-based
approaches have another limitation as they are single-objective methods.
They can be thus used to solve multi-objective problems only by refor-
mulating them as a family of parametric single-objective problems and
reiteratively running a single-objective optimization for different values
of the parameter to explore the Pareto front. This remarkably affects the
computational requirements as the number of single-objective problems
to solve grows exponentially with the objectives number. The two most
common scalarization techniques are the weighted sum and ε-constraint
methods (Gass and Saaty , 1955; Haimes et al., 1971). The former is
based on a linear combination of the objectives. With the latter, the
conversion to a set of single-objective problems is obtained by transform-
ing all the objectives, but one, into constraints. The weighting method
is usually preferred as it ensures to find Pareto efficient solutions only,
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while the ε-constraint method might provide semi-dominated solutions
and, moreover, it does not satisfy the time-separability requirements of
SDP. According to the weighting method, Problem (1.2) can be refor-
mulated as:

p∗ = arg min
p
λ · J(p) (2.2)

where λ is the vector of weights, such that they sum to one (i.e.,
∑q

k=1 λk =
1) and are non-negative (i.e., λk ≥ 0 ∀k). By solving Problem (2.2) for
different values of the weights λ, a finite subset of the generally infinite
Pareto-optimal policy set is obtained. However, the accuracy in the ap-
proximation of the Pareto front might be scarce, with a limited solution
diversity due to the non-linear relationships between the values of the
weights and the corresponding objectives values.
Many approaches have been proposed to overcome the limits of DP fam-
ily methods depending on the specific features of the problem under
study, such as approximate dynamic programming, implicit stochastic
optimization, direct policy search, on-line approaches (for a review see
Labadie, 2004; Castelletti et al., 2008a; Celeste and Billib, 2009, and ref-
erence therein). The adoption of on-line approaches (see Section 2.4.1)
can be particularly suitable in large-scale systems where the curse of di-
mensionality is the main limiting factor and the optimization problem
involves few objectives. Conversely, when the problem takes a many-
objective nature, namely it involves more than four or five objectives
(Farina and Amato, 2002; Fleming et al., 2005), direct policy search ap-
proaches coupled with multi-objective evolutionary algorithm (see Sec-
tion 2.4.2) is preferable. However, these approaches generally do not
provide any theoretical guarantee on the optimality of the resulting so-
lutions. Interesting multi-objective approximate dynamic programming
methods that ensure some anticipated favorable properties of the policy
obtained are recently proposed by Castelletti et al. (2013b) and Giuliani
et al. (2013b).

2.4.1 On-line control

Model predictive control (MPC, see Bertsekas (2005) and references
therein), also referred to as naive feedback control (NFC, see Bertsekas
(1976)), is an on-line control approach based on the sequential reso-
lution of multiple, single-objective, open-loop control problems defined
over a finite, receding time horizon (Mayne et al., 2000; Castelletti et al.,
2008b), which allows to overcome the SDP limits related to the curse
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of dimensionality. However, their extension to multi-objective problems
(e.g., Pianosi and Soncini-Sessa, 2009; Galelli et al., 2012) relies on the
same scalarization techniques adopted for DP family methods (see the
previous section), which can be prohibitive when the number of objec-
tives increases.
The fundamental idea of on-line control is to exploit, at each time t,
a forecast over the finite horizon [t, t + h] of the external drivers (e.g.,
the inflow), called nominal value. The forecast is obtained by a model
predictor that uses all the information available at time t (e.g., precipi-
tation, inflow at previous time). The corresponding sequence of optimal
decisions u∗t , . . . ,u∗t+h−1 is then obtained by solving a mathematical pro-
gramming problem assuming that the realization of the disturbances will
be equal to the predicted nominal value. However, only the control u∗t
is actually applied. At time t+ 1, a new problem is formulated over the
horizon [t+1, t+1+h] on the basis of the updated information available,
namely the state of the system at time t+ 1 as well as updated forecasts
of the external drivers (Castelletti et al., 2008b). This feedback can par-
tially compensate the effects of the disturbances, as it is very unlikely
that the actual realization of the disturbances is equal to the predicted
nominal values, with the system actually not evolving as expected. The
availability of good forecast reduces the distance between expected and
actual conditions, thus allowing to obtain decisions close to optimality.
However, if the quality of the predictions is low, also the obtained deci-
sions will have poor performance as the realizations of the disturbances
are very different from the predicted nominal values and the system is ac-
tually not evolving as expected. In such a case, there is the possibility of
explicitly taking into account the stochasticity of the disturbances by re-
placing the NFC approach with an open-loop feedback control (OLFC).
The OLFC formulation of the control problem does not rely on pre-
dicted nominal values but describes the disturbances according to their
probability distribution and computes the objectives through some func-
tions to filter the disturbances (e.g., the expected values). As with the
NFC approach, the problem is solved over a finite horizon [t, t+ h] and,
at the next time instant, the problem is reformulated over the horizon
[t+1, t+h+1] according to the current condition of the system and, pos-
sibly, with the probability distributions of the disturbances conditioned
on exogenous information available at that time. Finally, it is possible
to further improve the performance of the OLFC policy by adopting a
partial open-loop feedback control (POLFC) formulation (e.g., Pianosi
and Soncini-Sessa, 2009), which explicitly assumes that in the future the
state of the system will be measured and a new problem will be reformu-
lated. The POLFC problem, therefore, computes at each time step the
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optimal control for the first step and the optimal policy for the follow-
ing steps. POLFC problems are functional problems and so they have a
greater computational complexity than OLFC and NFC problems. Yet,
this increased complexity is usually reflected in a better performance.
Indeed, usually the performance of these three approaches are ordered
as CL ≤ POLFC ≤ OLFC ≤ NFC (Bertsekas, 1976), where CL is the
Closed-Loop solution of Problem (2.2).
Adopting an MPC approach, Problem (2.2) can be reformulated as:

u∗ = arg min
ut,...,ut+h−1

λ · J(·) (2.3a)

subject to

xt+1 = ft(xt,ut, εt+1) (2.3b)

ut ∈ Ut (2.3c)

Though being largely adopted in process-engineering problems (see Scat-
tolini , 2009, and references therein), MPC is less applied in the water
resources management (e.g., Niewiadomska-Szynkiewicz et al., 1996; Pi-
anosi and Soncini-Sessa, 2009; Anand et al., 2011; Galelli et al., 2012)
due to the difficulties of obtaining accurate forecasts of the several dis-
turbances affecting the natural system. Moreover, on-line approaches
are mainly used to overcome the limitation of DP family methods and
maintain the traditional centralized perspective adopted in the water ma-
nagement literature, while their application in non-cooperative settings
such as the ones considered in this thesis is nearly unexplored.

2.4.2 Direct policy search

Direct policy search (DPS, see Schmidhuber (2001); Rosenstein and Barto
(2001)), also known as parameterization-simulation-optimization in the
water resources literature (Koutsoyiannis and Economou, 2003), is a
simulation-based approach where the operating policy is first parameter-
ized within a given family of functions (e.g., linear or piece-wise linear)
and then the parameters optimized with respect to the operating objec-
tives (see also Oliveira and Loucks, 1997; Momtahen and Dariane, 2007;
Celeste and Billib, 2009; Pianosi et al., 2011; Ostadrahimi et al., 2012;
Guo et al., 2013). Following Nalbantis and Koutsoyiannis (1997), DPS
can be seen as an optimization-based generalization for multi-objective
problems of well known simulation-based, single-purpose heuristic oper-
ating rules (for a review, see Lund and Guzman, 1999). Prior studies
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(e.g., Baglietto et al., 2006; Momtahen and Dariane, 2009; Castelletti
et al., 2012a) have adopted the DPS approach mainly to overcome the
computational and dimensional limitations of DP family of methods,
without considering the realities of the current systems’ operations and
have thus rarely been adopted. However, beside the computational ad-
vantages, DPS results particularly useful in studying existing system
by describing the current system operation in terms of a parametrized
operating policy. This latter can be then refined according to an en-
larged many-objective perspective. This policy identification and refine-
ment procedure aims to design improved solutions, which better address
the tradeoffs between original and potentially new objectives given sig-
nificant hydroclimatic uncertainties and maintain some features of the
current operation (e.g., satisfaction of regulatory constraints or the op-
erators’ current preference structure) to increase their practicability in
current water system operations.

Policy identification

Although real world decision makers (DMs) generally do not accept the
validity of sophisticated decision support tools (e.g., Yeh, 1985; Labadie,
2004; Castelletti et al., 2008a, and references therein), in making their
decisions they necessarily look at the current or expected systems con-
ditions (e.g., current water level, forecasted inflow) when they close
the loop between their operating decisions and the system’s conditions
(Soncini-Sessa et al., 2007a). For example, in the case of water reser-
voir operators, this is done either implicitly, while they are tracking the
reservoir rule curve, or explicitly, when their operation relies on empiri-
cal operating rules (e.g., those reviewed by Lund and Guzman (1999)).
In both cases, their decision mechanism can be formalized as an operat-
ing policy p. Modeling the DM behavior means identifying this policy
p by assuming that the operating rules ut = mt(xt) belong to a given
class of functions, namely ut = m(xt,θ), where θ is a vector of unknown
time-varying parameters. The values of θ can be determined by looking,
when available, at the historical system operation, which in the case of
reservoir operation is given by the time series of levels and associated re-
leases. Hence, the historical policy can be identified (parametrized) via
regression by estimating the parameters θ that minimize some distance
metrics between historical releases and modeled ones (Guariso et al.,
1986; Corani et al., 2009). This explicit policy identification approach
can be adopted only when the historical time series are available. A
more general procedure, which does not require historical data, is based
on the assumption that the DMs are rational proactive agents acting to
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maximize their benefit, which can be expressed by a specific objective
function. Optimizing the rule parameters with respect to this objective
function yields a policy that implicitly captures the actual DM behavior.
In the water reservoir literature, a number of parameterizations of oper-
ating rules have been proposed, such as the New York City rule (Clark ,
1950), the well known spill-minimizing “space rule” (Clark , 1956; John-
son et al., 1991), or the Standard Operating Policy (Draper and Lund ,
2004). However, many rules in practice are based largely on empirical or
experimental successes and they were designed, mostly via simulation, for
single-purpose reservoirs (Lund and Guzman, 1999). In complex many-
objective problems, a priori knowledge can be counterproductive, since
it might restrict the search for the optimal policy to a subspace of the
decision space that might not include the optimal solution. The adop-
tion of universal approximators such as artificial neural networks or ba-
sis functions (e.g. Barron, 1993; Kurková and Sanguineti , 2001; Zoppoli
et al., 2002) partially overcomes this limitation by providing flexibility
to the shape of the operating rule. In this work, gaussian radial basis
functions (RBFs) are selected to model the operating rule as they are
capable of representing functions for a large class of problems (Tsitsiklis
and Van Roy , 1996; Menache et al., 2005; Busoniu et al., 2011). With
RBFs, the k-th release decision in the vector ut (with k = 1, . . . , n) is
defined as:

uk =
N∑
i=1

wk
i ϕi (2.4)

whereN is the number of RBFs and wi is the weight of the i-th RBF (ϕi).
The weights are formulated such that they sum to one (i.e.,

∑n
i=1wi = 1)

and are non-negative (i.e., wi ≥ 0 ∀i). The single RBF is defined as
follows:

ϕi(x) = exp

− M∑
j=1

(xj − cj,i)2

b2j,i

 (2.5)

where M is the number of input variables (x) and ci,bi are the M -
dimensional center and radius vectors of the i-th RBF, respectively. The
centers of the RBF must lie within the bounded input space and the radii
must strictly be positive (i.e., using standardize variables, ci ∈ [−1, 1]
and bi ∈ (0, 1]). The parameter vector θ is therefore defined as θ =
[(c1, . . . , cM ), (b1, . . . , bM ), (w1, . . . , wn)]N1 .
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Policy refinement

Once the historical operating policy has been identified, the same fam-
ily of functions can be used to refine (optimize) it in a multi-objective
perspective, thus exploring the original operation for different tradeoffs.
Technically, the policy parameters (θ) are determined by solving the
following multi-objective problem:

θ∗ = arg min
θ

J(θ) (2.6a)

subject to

xt+1 = ft(xt,ut, εt+1) (2.6b)

ut = m(xt,θ) (2.6c)

θ ∈ Θ (2.6d)

DPS methods search for the optimal policy directly in the policy space,
with the operating objectives that are optimized by moving the values
of the policy parameters (e.g., Rückstiess et al., 2010; Kormushev and
Caldwell , 2012), as opposed to dynamic programming family methods
that evolve in the objective space. In addition to overcome the curse of
dimensionality and the curse of modeling limiting DP family methods,
DPS offers other advantages as it does not require the system to be a
discrete automaton, the objective function to be separable in time and
the disturbances uncorrelated in time discretization. However, it does
not provide any theoretical guarantee on the optimality of the result-
ing operating policies, which are strongly dependent on the choice of the
class of functions to which they belong and on the ability of the optimiza-
tion algorithm to deal with non-linear models and objectives functions,
complex and highly constrained decision spaces, and many conflicting
objectives.

Stochastic hydrology generation

The DPS approach designs Pareto-optimal policies by solving Problem
(2.6) where the values of the objectives are obtained via simulation of the
system under the corresponding parametrized policy. This simulation-
based optimization approach requires in principle to simulate the system
over a wide range of system conditions. Consequently, the use of observed
records to perform simulation over historical conditions tends to bias the
resulting policies. Conversely, the optimization performed over a broad
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ensemble of synthetic hydroclimatic variables derives more robust solu-
tions.
A large number of methods for synthetic hydroclimatic data genera-
tion has been proposed in literature (e.g., Box and Jenkins, 1970; Lall
and Sharma, 1996; Yates et al., 2003). According to Rajagopalan et al.
(2010), these methods can be classified as parametric approaches, which
assume a standard functional form for the observed data, and nonpara-
metric approaches, which instead define empirical distributions. In this
thesis, the nonparametric K-Nearest Neighbor resampling method pro-
posed by Nowak et al. (2010) is used. This data-driven method captures
the observed statistics, is consistent with the lag correlation structures
in the observed data, and ensures summabililty and continuity across the
daily time scale.
The procedure is based on the generation of annual data and their dis-
aggregation to daily values. The synthetic annual data Z are generated
through an autoregressive model of the first order calibrated over the
historical time series. The historical data are also used to compute the
proportion matrix P , which contains the proportion of the annual data
occurring in each day of the year. Then, K nearest neighbors of one
generated annual value Z are identified, with K =

√
Ny being Ny the

number of years in the historical time series. A weight is assigned to
each of the K-nearest neighbors as follows:

W (i) =

(
1
i

)(∑K
i=1

1
i

) (2.7)

where i is the neighbor index, with i = 1 identifying the nearest neighbor.
According to the probabilities defined by their weights, one of the K-
nearest neighbors is randomly selected. Finally, the proportion vector
corresponding to the selected year y is used to disaggregate the generated
annual flow Z to obtain daily data d = Z ·py. The procedure is iterated to
generate an ensemble of daily streamflows for each Z, and then repeated
for multiple synthetic annual data.

Multi-objective evolutionary algorithms

Multi-objective evolutionary algorithms (MOEAs) are iterative search
algorithms that evolve a Pareto-approximate set of solutions by mim-
icking the randomized mating, selection, and mutation operations that
occur in nature (Goldberg , 1989; Back et al., 2000; Coello Coello et al.,
2007). These mechanisms allow MOEAs to deal with challenging multi-
objective problems characterized by multi-modality, nonlinearity, and
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discreteness (see Nicklow et al. (2010) for an extensive review of MOEA
applications in water resources).
The self-adaptive Borg MOEA (Hadka and Reed , 2013) is used in this
thesis. It employs multiple search operators that are adaptively se-
lected during the optimization based on their demonstrated probabil-
ity of generating quality solutions. The Borg MOEA has been shown
to be highly robust across a diverse suite of challenging multi-objective
problems, where it met or exceeded the performance of other state-of-
the-art MOEAs (Hadka and Reed , 2012; Reed et al., 2013). In addition
to adaptive operator selection, the Borg MOEA assimilates several other
recent advances in the field of MOEAs, including an ε-dominance archiv-
ing with internal algorithmic operators to detect search stagnation, and
randomized restarts to escape local optima. The flexibility of the Borg
MOEA to adapt to challenging, diverse problems makes it particularly
useful for addressing DPS problems, where the shape of the operating
rules and the parameters values are problem-specific and completely un-
known a priori.
According to the DPS approach, the Borg MOEA starts with a popu-
lation of N individuals, representing N randomly generated parameter
vectors θ. The algorithm evaluates the fitness of each individual by
simulating the system according to the operating policy defined by the
corresponding value of θ and evaluating the objective vector J(θ). Then,
a new population is generated by selection, crossover and mutation with
respect to the best individuals (i.e., the ones obtaining the highest values
of fitness) according to the Pareto dominance criterion. This process is
then repeated for a given number of iterations until a good approxima-
tion of the Pareto front is obtained.

2.5 Direct policy conditioning to support
mechanism design

The aim of mechanism design is the identification of mechanisms to con-
dition the decisions of self-interested agents such that the overall system
behavior will be acceptable (Sycara, 1998; Maskin, 2008). Most of the
mechanism design strategies is generally based on regulatory constraints
or economic incentives (Pannell , 2008). Yet, these strategies mainly
rely on the empirical experiences of the institutions in charge to pro-
mote negotiated solutions, while mathematical and technological tools
to support the definition of these mechanisms are nearly undeveloped.
A typical example related to water reservoir operation is the definition of
minimum environmental flow (MEF) constraints to guarantee adequate
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conditions downstream of artificial reservoirs, possibly with seasonal or
monthly varying values. Most major reservoirs have had their rule curves
defined in prior decades (U.S. Army Corps of Engineers, 1977), consid-
ering one of four primary uses: generation of power, flood risk reduction,
irrigation or drinking water supply. In more recent years, bilateral nego-
tiation processes have been adopted to include new operational targets
(e.g., environmental protection, recreation and transportation). Tradi-
tionally, the four primary uses take precedent over all other concerns and
these secondary objectives are optimized assuming the four primary uses
form constraints. However, the resulting reservoir operations are often
inefficient as they fail to explore the full set of tradeoffs between evolving
multi-sector objectives and preferences in the water system.
This thesis contributes a novel method, called direct policy conditioning
(DPC), to define effective mechanism design strategies for complex wa-
ter management problems by directly constraining the operating policy
space. This mechanism allows the design of dynamic constraints that,
like the operating policy, are able to exploit the feedback provided by
the system conditions. Conversely, the MEF constraint does not consider
the system conditions (e.g., the current reservoir storage) and provide a
static (i.e., fixed) constraint on the reservoir release. The DPC method
relies on the direct policy search (DPS) approach described in Section
2.4.2. In multi-objective problems, the DPS approach searches the set of
Pareto-optimal solutions of the problem, designed explicitly considering
a suite of conflicting operating objectives. This set, therefore, repre-
sents the best achievable performance at the system-level. The DPC
method, instead, maintains the original preference structure and designs
the control policy considering only the primary objectives. The Pareto-
optimal set is used to formulate a set of constraints for the DPC policy
design problem in order to account for the secondary objectives. These
constraints are defined in the decision space of the policy parameters
and, therefore, directly influence the operating policy space (Figure 2.8).
Conversely, traditional MEF constraints are defined with respect to the
release decisions and does not directly act on the real decision space.
The DPC method is based on a three-step procedure: i) multi-objective
problem formulation (including all the operating objectives, both pri-
mary and secondary) and solution via multi-objective DPS to design a
set of Pareto-optimal policies representing the best ideal achievable per-
formance and the associated policy parameterizations (see Section 2.4.2);
ii) identification via input variable selection techniques of the subset of
optimal control policy parameters that are more related to the secondary
objectives, actually excluded in the design of the reservoir regulation; iii)
design of a control policy considering only the primary objectives, subject

38



2.5 Direct policy conditioning to support mechanism design
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Figure 2.8: Illustration of the difference between decision space, operat-
ing policy, release decision, and objective space. The pro-
posed direct policy conditioning acts in the decision space,
while traditional MEF constraints are defined with respect
to the release decision ut.

to a set of dynamic constraints accounting for the secondary ones.

2.5.1 Iterative Input Selection algorithm

Generally, IVS problems arise every time a variable of interest has to be
modeled as a function of a subset of potential explanatory variables, or
predictors, but there is uncertainty about which subset to use among a
number, usually large, of candidate sets available (George, 2000). The
goal of IVS is threefold (Guyon and Elisseeff , 2003): i) improving model
performance by avoiding the interference of redundant information and
more effectively exploiting the data available for model calibration; ii)
providing faster and more cost effective models; iii) assisting in the in-
terpretation of the underlying process by enabling a more parsimonious
and compact representation of the observational data. In this thesis,
IVS techniques are used to characterize the complex relationships and
feedbacks between operating objectives, management decisions, and the
system dynamic evolution.
Many approaches have been proposed in literature, especially to support
emulation modeling (for a review, see Castelletti et al., 2012b). Accord-
ing to Maier et al. (2010), two families of methods have been developed
depending on whether they implicitly or explicitly assume an underlying
model in the selection process. Model-free methods (e.g., Peng et al.,
2005; Bowden et al., 2005; Hejazi and Cai , 2009) do not explicitly use
any model and rank the candidate input variables with respect to a sta-
tistical measure representing how strong the relationship is between each
input and the output under investigation. The most significant variables
can then be selected according to some pre-defined criterion. Model-
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based methods (e.g., Das, 2001; Guyon and Elisseeff , 2003) are instead
explicitly based on models, whose performance is evaluated for each vari-
able that is added or removed from the selected set.
The model-free, forward-selection, iterative input selection (IIS) algo-
rithm (Galelli and Castelletti , 2013) is used in this thesis. Given the
output variables vo and the set of candidate inputs vi, the IIS algorithm
first ranks these latter with respect to a statistical measure of signifi-
cance and adds only the best performing input v∗ to the set of selected
variables V. This operation aims to avoid the inclusion of redundant
variables, as one an input is selected, all the inputs highly correlated
with it may become useless in the next iterations. Then, the algorithm
estimates a model of vo with input V, such as v0 = m̂(V), and esti-
mates the model performance with a suitable distance metric D (e.g.,
the coefficient of determination) as well as the model residuals, which
become the new output at the next iteration. The algorithm stops when
the best variable returned by the rank is already in the set V, or when
over-fitting conditions are reached. Among the many alternative model
classes, IIS relies on extremely randomize trees (Extra-Trees), a tree-
based method proposed by Geurts et al. (2006) that was empirically
demonstrated to outperform other models in terms of modeling flexibil-
ity, computational efficiency, and scalability with respect to the input
dimensionality. Moreover, the Extra-Trees structures can be exploited
to infer the relative importance of the input variables and, therefore,
they can be used as an input ranking procedure (Wehenkel , 1998; Fonte-
neau et al., 2008; Castelletti et al., 2011b). A tabular version of the IIS
algorithm is given in Algorithm 1.

2.5.2 Direct policy conditioning formulation

The aim of DPC is to effectively condition the operating policies designed
only considering the primary objectives (e.g., hydropower production,
flood prevention, water supply) in order to take into account the sec-
ondary objectives (e.g., environment, recreation). This conditioning is
defined by exploiting the reference provided by the Pareto-optimal solu-
tions of Problem, namely the set of optimal operating policy parameters
θ∗. To guarantee the flexibility of the resulting policy, the conditioning is
applied to a subvector of parameters θ̃ ⊆ θ, which is identified through
the iterative input selection (IIS) algorithm described in the previous
section. Given a dataset of candidate inputs (i.e., policy parameters)
and the corresponding output variables (i.e., the secondary objectives),
the IIS algorithm identifies the set of input variables that are more re-
lated to the selected outputs. The dataset required for IIS experiments
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Algorithm 1 Iterative Input Selection
Inputs: a dataset F of candidate inputs vi and the output variable
to explain vo.
Initialization:
Set V ← 0, v̂o ← vo, Dold ← 0
Iterations: repeat until stopping conditions are met
- select the most relevant input v∗ ∈ vi to explain v̂o

- if v∗ ∈ V, return V end if
- V ← V ∪ v∗
- m̂(·)← Extra-Trees(F , vo,V)
- v̂o ← vo − m̂(·)
- ∆D ← D(vo, m̂(·))−Dold

- Dold ← D(vo, m̂(·))
- until ∆D < εD
return V

can be generated via random sampling of the policy parameters’ space
or, alternatively, the Pareto-optimal set can be directly used. In the
first case (i.e., random sampling), a set of policy parameters vectors is
randomly sampled in Θ. Each vector defines a randomly generated op-
erating policy. The system is hence simulated following the randomly
generated policy to compute the operating objectives. The combination
of the randomly sampled policy parameters and their performance in
terms of the secondary objectives forms the IIS dataset. In the second
case (i.e., Pareto-optimal set), the dataset used is composed by the set
of Pareto-optimal policy parameterizations, obtained solving the multi-
objective problem with respect to all the operating objectives, and their
corresponding performance in the secondary objectives.
Given the Pareto-optimal set θ∗ and the extracted subvector θ̃, the DPC
problem can be formulated as:

θ∗ = arg min
θ

Jp(θ) (2.8a)

s.t.

θ ∈ Θ′ ⊆ Θ (2.8b)

Θ′ = {θ ∈ Θ : θi = θ∗i ± γ,∀θi ∈ θ̃} (2.8c)

where the objective function vector Jp includes only the primary objec-
tives and the subvector θ̃ is constrained to take values in a neighborhood
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of size γ of the optimal values θ∗. These constraints impose the optimal
values of the policy parameters according to the signature identified by
the IIS algorithm. The aim of this conditioning is to partially consider
the secondary objectives in the design of the control policy targeted only
to the primary objectives.
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test problem

The purpose of this chapter is to apply the agent-based decision analytic
framework (Section 1.3.2) to evaluate different levels of coordination in
a simple, non-dynamic water allocation problem. The Y-shaped hypo-
thetical water system described in Yang et al. (2009) is used to illustrate
the methodology. In the considered case study, six agents represent six
conflicting water users sharing the same river. Although the illusory
simplicity of this planning problem, the considered case study actually
includes multiple sources of complexity characterizing many real world
problems, such as the upstream-downstream asymmetry, the presence
of agents deciding in parallel and in series, the difference between pri-
mary objectives associated to real decisions (e.g., water supply demands
driving the amount of water to divert from the river or hydropower pro-
duction defining the releases from the dam) and secondary environmental
concerns. In this chapter, multi-agent system (MAS) are not adopted
only as a modeling tool, but MAS distributed optimization methods are
explicitly employed. The two situations corresponding to a centralized
solution where all the agents cooperatively maximize the total benefit of
the system (i.e., the sum of the benefit of each agent) and, on the other
extreme, an uncoordinated solution where the agents consider their local
objective functions only are first considered. Then, a constraint-based
mechanism design strategy based is proposed, where a watershed author-
ity is in charge of imposing soft (normative) constraints on the originally
self-interested agents’ decisions to drive the solutions in the space in-
between these two extremes. The resulting problem is a distributed,
constrained planning problem which can be effectively managed through
MAS methods (Section 2.3) based on distributed constraint satisfaction
problems (DCSP, see Yokoo and Hirayama (2000)) and distributed con-
straint optimization problems (DCOP, see Modi et al. (2005)). Adopt
algorithm is used to solve DCSP and DCOP problems. Moreover, al-
ternative mechanism design strategies based on economic incentives are
discussed. Finally, the agent-based framework allows the analysis of the
consequences of individualistic behaviors by the agents on the system
benefit, in order to identify potentially critical situations in case of wa-

43



3 Agent-based mechanism design test problem

ter scarcity.
This chapter is adapted from a journal paper under review for publication
in the Journal of Water Resources Planning and Management (Giuliani
et al., 2013a).

3.1 Problem formulation

The proposed mechanism design strategy is tested on a numerical case
study firstly introduced by Yang et al. (2009) and then further analy-
zed by Giuliani et al. (2012a). The system is composed by a Y-shaped
river with one mainstream and one main tributary, see Figure 3.1. The
mainstream provides water to a city for municipal and industrial uses
and to an irrigation district downstream. Moreover, the river is dammed
for creating an artificial reservoir (just downstream with respect to the
city water supply diversion) in order to produce hydropower energy. A
second agricultural district diverts water for irrigation purposes from the
tributary. Finally, two river stretches just downstream with respect to
the irrigation diversions are particularly interesting from an ecological
point of view as they are identified as primary fish habitats. The agent-
based model of the system therefore comprises six agents representing
the different water-related interests:

A1: municipal water supply to the city;

A2: hydropower production;

A3: irrigation water supply to the agricultural district on the tributary;

A4: irrigation water supply to the agricultural district on the lower main-
stream;

A5: ecological preservation in the tributary;

A6: ecological preservation in the mainstream.

A quadratic concave objective function is associated to each agent, which
preserves the nonlinear characteristics of a real objectives: J i = aiu

2
i +

biui + ci (the values of the parameters are reported in Table 3.1). For
the sake of readability, in this chapter the decision variables of the plan-
ning problem are denoted as u instead of up as in Problem (1.1). The
quadratic formulation of the objective functions allows to obtain negative
benefits for values of the decision variables very different from the op-
timal ones. These negative benefits represent potential costs the agents
may have to pay in extreme situations. The six agents have different

44



3.1 Problem formulation

mainstream

tributary

city

dam for
hydropower production

ecological 
point of interest

ecological 
point of interest

farmers

farmers

Passive Agent
Active Agent

Figure 3.1: Schematic map of the system.

nature: a first group (i.e., A1-A2-A3-A4) includes active agents (shown
in blue in Figure 3.1), who really make decisions about the amount of
water to divert from the river or to be released from the dam in or-
der to explicitly maximize the corresponding objective function J i (with
i = 1, . . . , 4); agents A5-A6 are instead defined as passive agents (shown
in green in Figure 3.1), who do not make decisions but represent the
ecological interests through the functions J5 and J6, which are explicitly
optimized only in the centralized case.

Table 3.1: Values of parameters defining agents objective functions
(Yang et al., 2009). Coefficients ai, bi and ci are dimensionless.

Parameter Value Parameter Value Parameter Value
a1 -0.20 b1 6 c1 -5
a2 -0.06 b2 2.5 c2 0
a3 -0.13 b3 6 c3 -6
a4 -0.15 b4 7.6 c4 -15
a5 -0.29 b5 6.28 c5 -3
a6 -0.056 b6 3.74 c6 -23

Assuming for simplicity a non-dynamic situation (all the variables, both
flows and reservoir storage, are expressed as volumes [L3]), the water-
shed optimization problem, subject to hard (physical) constraints, can
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be formulated as:

max
u1

J1(u1) s.t. u1 ≤ Q1 (3.1a)

max
u2

J2(u2) s.t. u2 ≤ S +Q1 − u1 (3.1b)

max
u3

J3(u3) s.t. u3 ≤ Q2 (3.1c)

max
u4

J4(u4) s.t. u4 ≤ u2 +Q2 − u3 (3.1d)

J5(u5) s.t. u5 = Q2 − u3 (3.1e)

J6(u6) s.t. u6 = u2 + u5 (3.1f)

where Q1 is the mainstream inflow, Q2 the tributary inflow, and S the
reservoir storage. The constraints expressed above are all physical con-
straints. Three hydrological scenarios are defined representing different
water availability situations, namely high, medium, and low flow con-
ditions, see Table 3.2. In the first case (i.e., high flow scenario), the
water available allows each active agent to achieve its optimal solution;
in the medium flow scenario, instead, the water available in the system is
insufficient to satisfy all the agents demands, thus producing upstream-
downstream water sharing interactions, which are further tightened up
in the low flow scenario.

Table 3.2: High, medium, and low flow scenarios.

Hydrological variable High flow Medium flow Low flow
Q1 [L3] 80 40 15
Q2 [L3] 40 20 8
S [L3] 10 8 3

The fully cooperative centralized solution of Problem (3.1) is compared
to three different distributed alternatives:

- an uncoordinated solution where each active agent acts independently
considering its objective only. The upstream agents are in a favor-
able condition as they can decide what is the best for themselves
while the downstream agents can use only the water remaining.
The objective of the passive agents are not considered.
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- A DCSP solution where the active agents try to maximize their objec-
tive functions, but the assignment of values to the decision variables
has to be feasible (i.e., all the constraints imposed on the problem
have to be satisfied). The interests of the passive agents are par-
tially considered by means of the soft (normative) constraints that
a watershed authority might impose on the agents decisions.

- A DCOP solution where the active agents decisions, which aim to
optimize their objective functions, have to satisfy the hard (physi-
cal) constraints and are influenced by soft (normative) constraints
aiming to protect the interests of the passive agents. The soft
constraints may be violated. However, it is guaranteed that the
solution found minimizes the sum of soft constraints cost viola-
tions.

3.2 Results

The proposed agent-based decision analytic framework requires first to
compute the two extreme solutions of Problem (3.1), namely the cen-
tralized and the uncoordinated one, for each hydrological scenario. It is
assumed that the goal of a centralized management strategy is to maxi-
mize the total system benefit, meaning the sum of the benefit of the six
agents explicitly considering also the ecological objectives and assuming
the same importance for each agent. This ideal solution, which rep-
resents the most efficient management strategy, is then compared with
the other extreme situation where the agents act independently by opti-
mizing their local objective functions only, without considering the po-
tentially negative externalities that their decisions produce on the other
agents’ objectives, in particular with respect to the ecological passive
agents. In this scenario, Problem (3.1) is solved as a sequence of opti-
mization problems from the upstream agents to the downstream ones.
The comparison between the system benefit for these two extreme so-
lutions is represented in Figure 3.2. Not surprisingly, the centralized
solution (red bars) produces higher benefits than the uncoordinated one
(blue bars) in all the considered scenarios, and the gap between the two
solutions increases when water availability decreases and the conflicts
among different water users become stronger and stronger.
Given these two extreme reference solutions and according to the pro-
posed coordination mechanism, the watershed authority imposes the fol-
lowing set of normative constraints in order to protect the environment,
especially in the medium and low flow scenarios in which upstream agents
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Figure 3.2: Comparison of system benefits for centralized, uncoordi-
nated, and DCSP/DCOP solutions.

overuse the available water producing externalities over the downstream
agents suffering water shortage:

α1 − u1 ≤ 0

α2 −Q1 + u1 ≤ 0

α3 − u3 ≤ 0

α4 − u4 ≤ 0

α5 −Q2 + u3 ≤ 0

α6 − u2 − (Q2 − u3) + u4 ≤ 0

(3.2)

where α1 = 12 is the minimum water demand of the city, α2 = 10 is
the minimum flow requirement for hydropower production, α3 = 8 and
α4 = 15 are the minimum water demands of the farmers on the trib-
utary and on the lower mainstream, respectively, α5 = 6 and α6 = 10
are the flow requirements for the protection of the fish habitats on the
tributary and on the lower mainstream, respectively. The hard (phys-
ical) constraints in Problem (3.1) are obviously non-violable, while the
normative constraints defined in eqs. (3.2) may be violated by either
some self-interested agents or the nature in case of very low flow con-
ditions (e.g., in the low flow scenario, the tributary flow is equal to 8,
the minimum demand of the farmers is 8 and the environmental flow
requirement is 6: in such a case, if agent A3 diverts only 2 in order not
to violate the environmental constraint, there is still a violation of the
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farmers minimum demand as u3 ≥ 8, being u3 = 2).
It is important to point out that there is a significant difference between
the agent-based solutions and the centralized one: this latter, indeed, as-
sumes full cooperation and coordination between the agents, who are no
longer decision entities but actually become actuators of the decisions
made by a centralized authority. By imposing normative constraints,
the distributed nature of the decision process is instead preserved in the
agent-based solutions. The development of mechanism design strategies
aims to obtain an approximation of the ideal centralized solution, which
remains different from the institutional (agents vs. actuators) as well as
from the mathematical formulation (four single-objective problems vs. a
unique six-objective optimization problem) points of view.
The new distributed and constrained optimization problem formulation
can be effectively managed through DCSP and DCOP algorithms de-
scribed in Section 2.3 in order to obtain distributed solutions in-between
the two extreme situations so far described. In both DCSP and DCOP
formulations, the distributed optimization problem is subject to a new
set of constraints, comprising the hard (physical) ones already defined
in Problem (3.1) along with the soft (normative) constraints introduced
in eqs. (3.2). Both DCSP and DCOP problems are solved using the
implementation of Adopt (see Section 2.3.3) provided by FRODO, an
open-source framework for DCOP (Léauté et al., 2009). The problem is
solved as a sequence of optimization problems from upstream to down-
stream, where each active agent is considering its local objective function
only or, possibly, according to a depth-first search tree, in which each
agent has a single parent and multiple children. In the DCSP formu-
lation, where the constraints are Boolean, all the constraints have to
be satisfied and, therefore, there is no difference between physical and
normative constraints. On the other hand, the DCOP formulation deals
with physical and normative constraints in different ways, and violations
of these latter are allowed. In particular, for DCOP, the cost of violation
of the soft constraint u1 − α1 ≤ 0 is 0, when actually u1 − α1 ≤ 0, and
u1 − α1, otherwise. In a similar way, the costs for the other soft con-
straints can be calculated. In the computation of the weighted sum of the
constraints violation costs, which is minimized in the DCOP solutions,
equal weights are assumed for each soft constraint (namely, wj = 1 ∀j).
A graphical comparison of the system benefit for the centralized and the
uncoordinated solutions with respect to the results obtained solving the
new distributed constrained problem adopting the proposed DCSP- and
DCOP-based approaches is represented in Figure 3.2 by green and yellow
bars, respectively. In the high flow scenario, the uncoordinated, DCSP,
and DCOP solutions are all equivalent because in this scenario, charac-
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terized by high water availability, each active agent is actually able to
maximize its objective function; yet the centralized solution outperforms
all the other solutions because it explicitly optimizes the ecological objec-
tive functions (J5 and J6) which are included in the computation of the
system benefit but not optimized in the other cases. In the medium flow
scenario, the DCSP and DCOP solutions have a system benefit that is
higher than the uncoordinated solution and they are equivalent because
it is possible to find out a solution that does not violate any normative
constraint. Finally, in the low flow scenario, the DCSP solution does
not exist because it is impossible to satisfy all the normative constraints
due to very low water availability; the DCOP solution, instead, largely
outperforms the uncoordinated one and it is almost equivalent to the
centralized one.
More details are provided in Figure 3.3, where the benefit of each agent is
represented separately. The centralized solution, which is globally bet-
ter than all the others in the high flow scenario, is able to effectively
deal with the upstream-downstream relationships between the different
agents: the benefits of A2, A3 and A4 are slightly lower than in other
solutions in order to generate more significant benefits for the ecological
agents A5 and A6. The medium flow scenario provides the most inter-
esting results, as it emphasizes the improvement in the ecological agents’
benefits in the DCSP and DCOP solutions (which are equivalent in this
scenario) with respect to the uncoordinated solution. The imposition of
the normative constraints defining minimum water requirements for each
agent, indeed, allows to partially take into account also the interests of
the passive agents, thus leading to a higher system benefit. Finally, in
the low flow scenario, where even the centralized solution is not able to
guarantee a positive benefit to the ecological agents, the DCOP solution
(the DCSP one does not exist) is able to balance at least the benefits of
the active agents avoiding the upstream overuse of water (e.g., see the
differences between the couples of upstream-downstream agents (A1, A2)
and (A3, A4 ) in the uncoordinated solution and in the DCOP one).
Given the results in Figure 3.3 and assuming that the benefit is mea-
sured in monetary terms, the possibility of developing mechanism de-
sign strategies based on economic incentives can be also assessed. Let
consider again the medium flow scenario: by comparing the agents de-
cisions in the uncoordinated (u = [15, 21, 20, 21]) and in the centralized
(u = [15, 33, 12, 21]) scenarios, it is evident that the different benefits are
due to the decisions of A2 and A3, which produce negative externalities
on the benefits of A5 and A6. Hence, there exists the chance to push
agents A2 and A3 to change their decisions in order to favor A5 and
A6 by compensating their losses. Let first focus on the tributary sub-
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Figure 3.3: Agents benefits in the three considered scenarios.

problem, where A3 is diverting u3 = 20 in the uncoordinated scenario,
corresponding to a local benefit J3 = 62.00 and an environmental ben-
efit J5 = −3, while in the centralized scenario u3 = 12, corresponding
to J3 = 47.28 and J5 = 28.68. In this case, an incentives-based solution
might require A3 to decrease its decision in order to increase the benefit
for A5 and, then, compensate this decision, and the corresponding loss,
by mean of a monetary payment. A potential solution might be the fol-
lowing: as in the DCSP and DCOP solutions A3 chooses u3 = 14 , with
a local benefit J3 = 52.52, and is compensated by an economic incentive
equal to its loss (i.e., 62.00-52.52=9.48) in order not to decrease its fi-
nal benefit. Then, if the incentive was paid by the watershed authority,
the benefit for A5 would be equal to 24.24. Another possibility is that
agent A5 has to directly compensate A3 without any external action. In
such a case, the final benefit for A5 would be 24.24-9.48=14.76, which is
still higher than the benefit obtained in the uncoordinated scenario. In
the same way, agent A2 may be pushed to increase its release decision
to u2 = 25 by compensating its losses with respect to benefit achiev-
able in the uncoordinated scenario (i.e., 26.04-25=1.04). Again, if the
compensation was paid by the watershed authority, the benefit for agent
A6 would be 8.80, while if A6 had to compensate A2, its final benefit
would be 8.80-1.04=7.76. Yet, even if this mechanism may appear easy
to be implemented, two major concerns have to be pointed out: first,
these compensation measures require to clearly define who has to com-
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pensate the upstream agents that change their decisions. This problem
is very complex and goes beyond the scope of this application. Second,
the quantification of a “sufficient compensation” is another complex issue
and, sometimes, the compensation of the losses might be impracticable
(see the conflict between hydropower revenue and irrigation supply de-
scribed in Anghileri et al. (2012)).
The results presented in Figure 3.2 consider the imposition of a single
set of normative constraints by the watershed authority. The solutions
obtained with the DCOP approach improve the uncoordinated solutions
increasing the system benefit. However, some agents might consider the
imposed constraints as a too restrictive decision by the watershed author-
ity and, consequently, they might decide not to consider these constraints
in order to increase their local benefits. The effects of these individualis-
tic behaviors then involve the entire system and, usually, tend to decrease
the benefits of the other agents. In particular, the consequences of the
individualistic behaviors in the low flow scenario is analyzed because it
is assumed that this kind of strategies is more likely to be adopted in
water shortage conditions.
According to several environmental MAS applications (e.g., Charness
and Rabin, 2002; Jager and Janssen, 2003; Yang et al., 2009; Poteete,
2010), the consequences at a system level produced by individualistic
behaviors of the agents can be assessed by modifying Problem (3.1) in-
troducing a parameter βi which multiplies the objective function of the
i-th agent (βi = [0, 10]). These coefficients represent the “selfishness” of
the i-th agent, meaning his preference for his local benefit against the
total benefit of the system. According to this formulation, the origi-
nal problem is defined by setting βi = 1 ∀i. On the other hand, it is
possible to represent an individualistic behavior of the i-th agent by in-
creasing the value of βi. Results are represented in Figure 3.4 where the
benefit of the individualistic agent is reported on the x axis, while the
benefit of all the remaining agents is on the y axis. The obvious optimum
would be a solution that maximizes both. However, it is evident looking
at Figure 3.4 that there exists a trade-off between the maximization of
the local objective functions through individualistic behaviors and the
maximization of the system benefit: the solutions obtained by moving
βi represent a set of Pareto efficient alternatives. The knowledge of this
set is particularly relevant as it overcomes the difficulties limiting the a
priori calibration of βi. This process is indeed not straightforward and
requires additional, subjective preference information, further biased by
the existence of non-unique preference representation. Moreover, look-
ing at the trade-offs existing between the Pareto efficient alternatives,
the watershed authority might estimate the marginal costs of individ-
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Figure 3.4: Individualistic behaviors of the active agents for different val-
ues of βi.

ualistic behaviors for the system benefit in order to identify critical as
well as tolerable cases. An example of critical behavior is represented
by solutions A and B in Figure 3.4b, where the individualistic behavior
of agent A2 produces a limited increase of the local benefit (around 1.5)
corresponding to a higher decrease of the other agents benefits (almost
8). On the other side, an individualistic behavior that might be tolerated
is represented in Figure 3.4d by solutions C and D, where the increase
in the local benefit (almost 10) is higher than the negative effect on the
other agents (around 5).
In order to prevent the individualistic behaviors just analyzed, the wa-
tershed authority might try to modify the set of normative constraints
imposed to the agents in order to better explore the space between the
two extreme centralized and uncoordinated solutions, looking for another
compromise between system efficiency and practicability. The system
benefits obtained solving Problem (3.1) in the medium-flow scenario with
the different sets of normative constraints reported in Table 3.3 are repre-
sented in Figure 3.5: it can be observed that more strict/weak constraints
yield to solutions that are closer to the centralized/uncoordinated one.
In particular, the original set of constraints α1 allows to obtain a solu-
tion almost equivalent to the centralized one. Yet, the rigidity of these
constraints might induce some individualistic behaviors. More flexible
constraints slightly decrease the system benefit and the solutions move
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towards the uncoordinated one, which is the most preferable for the ac-
tive agents.

Table 3.3: Different sets of normative constraints αi (expressed in [L3]).

Parameter Set 1 (original) Set 2 Set 3
α1 12 6 3
α2 10 5 3
α3 8 4 2
α4 15 7 4
α5 6 3 2
α6 10 5 3

A conflict therefore arises in the mechanism design process because the
definition of strict constraints, allowing to approach the centralized so-
lution with good performance for the passive ecological agents and with
respect to the system-wide efficiency, produces a decrease in the benefits
of the active agents who can decide to adopt individualistic behaviors.
Conversely, weak constraints which should be accepted by the active
agents yield to practicable solutions with lower benefits for the passive
ecological agents and, consequently, lower system-wide efficiency. To an-
alyze such a conflict, two indices measuring system-wide efficiency and
practicability are necessary. Efficiency is measured in terms of the result-
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ing total system benefit (i.e., the sum of the benefits of the six agents),
while practicability is defined as the percentage of available water which
is not constrained by the normative constraints (e.g., in the medium flow
scenario and soft constraints α1, the total available water is Q1 +Q2 +S
= 68, the constrained water is equal to α1 + α2 + α3 + α4 + α5 + α6

= 61, hence practicability is (68-61)/68=7/68=0.1029). In the central-
ized solution, all the decisions are made by the centralized authority
and imposed to the agents, meaning that all the water is constrained
and the practicability is equal to 0. In the uncoordinated management,
there are no soft constraints and, consequently, practicability is 100%.
Looking at Figure 3.6, representing the solutions obtained by varying the
set of normative constraints in the space of efficiency and practicability
(measured by the system benefit and the percentage of not-constrained
water, respectively), it is evident that it is not possible to simultane-
ously maximize both efficiency and practicability. However, the analysis
of this trade-off curve coupled with the assessment of the individualistic
behaviors effects can support the watershed authority in designing an
effective coordination mechanism. Finally, note that the two extremes
of the trade-off curve in Figure 3.6 correspond to the centralized and
uncoordinated solutions (as in Figure 1.2) which are probably the less
interesting strategies because, usually, the best compromise solution is
set in the middle of the Pareto front.

3.3 Discussion and final remarks

In this chapter, a simple application of the agent-based decision ana-
lytic framework is used to show the key features characterizing decision-
making problems that involve multiple and self-interested decision mak-
ers. In particular, the framework is used to develop constraint-based
mechanism design strategies to drive the inefficient uncoordinated prac-
tices toward solutions that are balanced with respect to efficiency and
practicability. The approach is tested on a hypothetical non-dynamic
problem, characterized by the presence of several human and ecological
agents.
Results show that it is possible to identify distributed solutions by ap-
plying constraint-based mechanism design strategies adopting the DCSP-
and DCOP-based approaches. These coordinated solutions are more ef-
ficient than the uncoordinated ones and more realistic and politically
practicable in real decision-making processes than the centralized mana-
gement. Yet, the ideal, fully cooperative centralized solution remains the
most efficient alternative (i.e., it produces the highest system benefit),
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but the improvement of the DCSP/DCOP solutions with respect to the
uncoordinated management is substantial. The proposed framework al-
lows also the identification of potential incentives-based solutions, which
have to be further analyzed in order to establish if an economic compen-
sation is feasible and who has to compensate the upstream agents.
Moreover, the considered case study allows the analysis of individualistic
behaviors by the agents. Especially in situations of water scarcity, it is
possible that some agents might consider not to comply with the nor-
mative constraints imposed by the watershed authority, thus producing
negative externalities on the benefits of the other agents. The analysis
of the trade-offs between increasing the local benefit and the negative ef-
fects for the remaining agents allows to identify critical situations which
have to be carefully considered in designing the normative constraints.
Finally, different sets of normative constraints are considered to estimate
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the trade-off curve between efficiency (i.e., the total system benefit) and
practicability (i.e., the percentage of available water which is not con-
strained by the normative constraints) and the corresponding solutions
confirm that the proposed DCSP- and DCOP-based approaches success-
fully identify coordination mechanisms which produce solutions in the
space in-between the two extreme situations of centralized and uncoor-
dinated management.
In conclusion, it is worth analyzing the scalability of the proposed meth-
ods with respect to the dimensionality of the problem as well as of the
number of the agents. In general, the dimensionality of the problem is not
a limiting factor in the uncoordinated scenario, which requires to solve
a sequence of optimization problems, one for each active agent. Some
limitations arise in the centralized, fully cooperative solution. However,
the most advanced optimization techniques, such as Borg MOEA (Hadka
and Reed , 2013; Reed et al., 2013) described in Section 2.4.2, are able to
find optimal solutions for challenging problems characterized by many-
objective formulations, multi-modality, nonlinearity, discreteness, severe
constraints, stochastic objectives. For DCSP/DCOP the dimensionality
of the problem can limit the applicability of Adopt algorithm because,
although the number of messages exchanged by the agents grows approxi-
mately linearly with the number of agents, its worst-case time complexity
is exponential in the number of agents. However, there exist approxi-
mated algorithms able to find quasi-optimal solutions when the number
of agents increases, as distributed breakout algorithm (Hirayama and
Yokoo, 2005).
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4 Upstream-downstream
coordination in transboundary
systems

The purpose of this chapter is to apply the agent-based decision analytic
framework (Section 1.3.2) to estimate the value of cooperation and infor-
mation exchange in large-scale, transboundary river basins characterized
by multiple and originally non-cooperative decision makers (agents). The
Zambezi River basin is used to illustrate the methodology. It represents
one of the largest river basins in Africa and is shared by eight countries:
Angola, Botswana, Malawi, Mozambique, Namibia, Tanzania, Zambia
and Zimbabwe. The four largest reservoirs in the basin (Ithezhithezhi,
Kafue-Gorge, Kariba, and Cahora Bassa) are mainly operated for max-
imizing the economic revenue from hydropower energy production, with
considerable negative effects on the aquatic ecosystem in the Zambezi
delta due to the alteration of the natural flow regime (e.g., Beilfuss and
dos Santos, 2001; Tilmant et al., 2010). Currently, the four reservoirs
are managed by independent and non-cooperative decision makers. This
uncoordinated situation is comparatively analyzed with respect to a first
level of cooperation (i.e., coordination) by introducing information shar-
ing among the agents. Moreover, the ideal, fully cooperative centralized
solution with complete information exchange among the agents is also
analyzed. The optimization of the agents’ decisions is done according
to a model predictive control scheme (MPC, see Section 2.4.1), which
is particularly suitable for large scale systems. In particular, given the
increasing ability in forecasting techniques producing accurate forecast
of the inflows processes in the Zambezi River basin, MPC seems partic-
ularly promising for this specific problem.
This chapter is adapted from a journal paper published in Water Re-
sources Research (Giuliani and Castelletti , 2013).
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4.1 Water management in transboundary
systems

The presence of multiple, institutionally independent but physically in-
terconnected decision makers is a distinctive feature of many water re-
sources systems, especially in transboundary river basins: water flows
and, by moving, creates a hydrological interdependency between basin
users (Alam et al., 2009). More than 250 rivers in the world belong to
trans-national basins, accounting for about 60% of freshwater worldwide
(UNEP , 2002). Yet, disputes arise over contested use of water at different
spatial and institutional scales. While control over water resources might
not be achieved through water wars (Zeitoun and Warner , 2006), sub-
national disputes often occur (Wolf , 1998; Julien, 2012) and, whether
violent or not, they increase the pressure on water resources along with
climate-change induced water scarcity, increasing water demand, and de-
creasing quality.
Most of the world’s largest and disputed trans-national river basins has
been studied assuming a centralized decision-making framework, explor-
ing the potential for a more efficient water management at the system-
wide scale: the Nile (e.g., Guariso and Whittington, 1987; Wu and Whit-
tington, 2006; Block and Strzepek , 2010)), the Zambezi (e.g., Gandolfi
et al., 1997; Tilmant et al., 2010, 2012)), the Euphrates-Tigris (e.g.,
Kibaroglu and Unver , 2000; Altinbilek , 2004)). Yet, centralized manage-
ment assumes a cooperative attitude and full information exchange by
the involved parties, and these rarely correspond to the actual socio-
political setting in a river basin. When decision makers belong to differ-
ent countries or institutions, or even sectors, it is very likely that they
act considering only their local objectives, producing global externalities
that negatively impact on other objectives (Bernauer , 2002).
Similarly, although data and information sharing at the basin level is
considered a precondition to achieve cooperation (Gerlak et al., 2011), a
full information exchange practice is far from being applied in most of
transboundary basins. Especially upstream countries have a tendency to
restrict information exchange, as it is not in their local interest to give
full access to the available information, thus ensuring a favorable position
with respect to the countries with no access to information (Timmerman
and Langaas, 2005).
According to Watkins (2006), three levels of cooperation can be identi-
fied in a water resources system: coordination by information sharing,
collaboration by developing adaptable national plans, and full coopera-
tion by developing joint ownership of infrastructure assets. Given the
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lower bound in terms of system-level efficiency represented by the case
of completely independent and non-cooperative agents, the role of infor-
mation exchange is analyzed by introducing coordination as first level
of cooperation. The advantage of this basic level of cooperation is its
intrinsic feasibility, as the independent, local optimal strategy of each
agent is guaranteed. Indeed the practicability of cooperative solutions
requires that the benefits to any participant are at least equal to what
that participant would obtain by acting unilaterally (Wu and Whitting-
ton, 2006), and the glue for any stable cooperation among multiple de-
cision makers has to be the self-interest of each participating actor (Wa-
terbury , 1997). Conversely, more sophisticated cooperation strategies
require to design compensation measures (e.g., international incentives),
which modify the benefits of the agents to satisfy this condition of in-
dividual rationality (Sheikhmohammady et al., 2011; Madani and Lund ,
2012). Non-cooperation and coordination are then comparatively analy-
zed with respect to a reference scenario of full cooperation and complete
information exchange among the agents, which is equivalent to the ideal
centralized solution of the problem. The differences in the system-level
benefits achievable under the different scenarios allow to estimate both
the economic value of full cooperation (VFC), measured as the benefits
obtained by full cooperation with respect to the ones with coordination
only, and the economic value of information exchange (VIE), measured
as the benefits obtained with coordination with respect to the ones with
no cooperation.

4.2 Problem formulation

4.2.1 The Zambezi River basin case study

The Zambezi River basin (Figure 4.1) is located in south-east Africa. It
is shared by eight countries and drains a catchment area of 1.39 million
km2. The river flows eastwards for 2,750 km, from the headwaters, in the
Kalene hills in north-west Zambia, to the Indian Ocean in Mozambique.
The river consists of three sections: upper from the sources to Victoria
Falls; middle, from the Falls to Cahora Bassa, including the junction
with Kafue River tributary; lower, from Cahora Bassa to the Indian
Ocean, including the Shire River tributary flowing from Lake Malawi.
The northern part of the basin belongs to the tropical summer rainfall
zone, while moving south the climate becomes more arid.
Because of the high runoff generated in the upper parts of the basin,
combined with a fall of more than 1,000 meters during its course to
the ocean, the river provides a good opportunity for hydropower energy
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Figure 4.1: The Zambezi River basin.

production. Two dams are located on the tributary Kafue River, which
belongs entirely to Zambia and has a catchment area of 155,000 km2.
The Government of Zambia built the Kafue Gorge dam in 1972 and,
then, coupled it with the Itezhitezhi dam in 1977, which integrates the
insufficient storage at Kafue Gorge due to the high losses for evapora-
tion caused by the presence of the Kafue Flats, an extensive floodplain
area where the river flows slowly for 250 km (it takes about two months
from Itezhitezhi dam to reach the Kafue Gorge one) with an average
gradient of 2.7 cm/km. The operation of Itezhitezhi dam is governed by
hydropower generation needs at Kafue Gorge Dam, except for an eco-
logical constraint in March imposing a minimum flow of 300 m3/s to
preserve the Kafue Flats ecosystem (Beilfuss and dos Santos, 2001). In
the lower Kafue catchment there are several agricultural users with an
associated water demand of nearly 15 m3/s; however, more than half
of this flow returns to the system (Beilfuss and dos Santos, 2001) and,
therefore, it is assumed as negligible in this work. Kariba and Cahora
Bassa are the two largest reservoirs on the mainstream. Kariba dam,
divided in North and South Banks, belonging respectively to Zambia
and Zimbabwe, was completed in 1959; the two countries jointly manage
the reservoir through the Zambezi River Authority comprising ministries
from both Zambia and Zimbabwe. Cahora Bassa dam was filled in 1974
in Mozambique and controls a large portion of the flow in the lower sec-
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tion.
Kariba and Itezhitezhi-Kafue Gorge reservoirs regulate almost 90% of
the flow in the middle Zambezi, while Cahora Bassa controls a large
portion of the flow in the Zambezi delta. According to Beilfuss and dos
Santos (2001), the flows to the delta observed after the completion of
Cahora Bassa (i.e., 1974-1999) have been reduced during the entire flood-
ing season with respect to the condition before the construction of the
dam (i.e., 1930-1974), including a 64% reduction in the mean monthly
flow during February-April. The Zambezi runoff measured at Muturara
(Dona Ana gauging station) decreased from 3,200 m3/s between 1930
and 1958 to 2,200 m3/s over the past 25 years. Many works have re-
cently studied the ecology of the Zambezi River basin and the effect on
these large storage operation on the ecosystem (e.g., Timberlake, 2000;
Beilfuss, 2001; Beilfuss and Brown, 2010; Tilmant et al., 2010)). As
in Tilmant et al. (2010), this work focuses on the delta region where
a target pulse of 7,000 m3/s during the peak flow season in February
and March was established to restore part of the natural seasonal flow
regime. The river discharge in the delta can be actually disaggregated
into the releases from Cahora Bassa reservoir and the contribution from
the lower Zambezi catchment tributaries, among which the Shire River
is the largest one. The Shire River is the outflow of Lake Malawi, the
only natural lake in the Zambezi basin, and its average annual runoff
at Chiromo station is 483 m3/s. Since 1960, Lake Malawi outflow has
been partially regulated by the Liwonde Barrage aiming to maintain dry
season flows in the Shire River for run-of-river hydropower generation.
The regulation of Liwonde Barrage in not considered in this application
and the Shire River is considered as an inflow.

4.2.2 The agent-based model

The agent-based model of the Zambezi River system (Figure 4.2) com-
prises six agents representing the six water-related interests in the sys-
tem, namely the five hydropower plants and the environment in the delta.
The five agents associated to the power plants (Itezhitezhi (AITT ), Kafue
Gorge (AKG), Kariba North Bank (AKAn), Kariba South Bank (AKAs),
and Cahora Bassa (ACB)) are active-controller agents (shown in blue in
Figure 4.2), who operate on a dynamic portion of the system having an
internal state (the reservoir storage) and, therefore, decide according to
a closed-loop control scheme. The agent in the delta (AE) is, instead,
a passive agent (shown in green in Figure 4.2), who does not make any
decision but represents the ecological interest in the delta region. Ac-
cording to the real political and institutional setting in the basin, the
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Figure 4.2: Agent-based model of the Zambezi system.

agents are grouped in three coalitions of two agents sharing a common
strategy: Itezhitezhi and Kafue Gorge dams require to be jointly op-
erated by agents AITT and AKG for hydropower production at Kafue
Gorge; the regulation of Kariba North and South Banks for hydropower
production is established by the Zambezi River Authority, represented
by agents AKAn and AKAs; the regulation of Cahora Bassa is designed
by the last coalition including agents ACB and AE and has to consider
both hydropower production and ecological preservation of the delta.
Only the last coalition is interested in the protection of the environment
in the delta as, according to the agent-based model of the system, this
coalition represents the interests of Mozambique country.
The water system dynamics is described by the mass balance equations
of the reservoirs storages with a monthly time step, as follows:

sITT
t+1 = sITT

t + (εITT
t+1 − rITT

t+1 ) ·∆− eITT
t

sKG
t+1 = sKG

t + (εKG
t+1 + rITT

t+3 − rKG
t+1) ·∆− eKG

t

sKA
t+1 = sKA

t + (εKA
t+1 − rKA

t+1) ·∆− eKA
t

sCB
t+1 = sCB

t + (εCB
t+1 + rKA

t+1 + rKG
t+1 − rCB

t+1) ·∆− eCB
t

(4.1)
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where εit+1 (m3/month) (i=ITT;KG;KA;CB) is the inflow to the i-th
reservoir in the interval [t, t+ 1); ∆ is the integration time-step; the re-
lease rit+1 (m3/month) is given by the release function rit+1 = f(sit, u

i
t, ε

i
t+1),

where uit (m3/month) is the decision (control) and rit+1(·) is a non-linear
function describing the stochastic relation between the decision ut and
the actual release rt+1 (Piccardi and Soncini-Sessa, 1991); finally, eit
(m3/month) is the mean monthly losses for evaporation. In particular,
the evaporation at Kafue Gorge is calibrated (Gandolfi et al., 1997) to
take care also of the significant evaporation losses in the Kafue Flats.
According to the monthly time step adopted, river branches are modeled
as plug-flow canals with negligible travel time, except for the Itezhitezhi-
Kafue Gorge connection which requires two months.
At the basin-wide level, reservoir operation aims at satisfying four dif-
ferent objectives: to maximize the hydropower production (TWh/year)
at Kafue Gorge (JH,KG, associated to the agents AITT -AKG), at Kariba
North and South Banks (JH,KA, related to agents AKAn-AKAs), at Ca-
hora Bassa (JH,CB) and to protect the ecosystem in the Zambezi delta
(JE), both associated to agents ACB-AE . Previous studies considered
the environmental requirements in the delta region as an additional con-
straint (Gandolfi et al., 1997), or as an economic objective by monetizing
river flows through a marginal benefit function (Tilmant et al., 2010).
The environmental objective is instead represented by a specific objective
function JE (associated to agent AE) defined as the average water deficit
in the delta with respect to the target peak flow of 7,000 m3/s in February
and March. The cooperative solution of the problem at the basin-wide
level yields a set of Pareto-optimal or trade-off solutions between the
two main objectives, namely total hydropower energy production JH,tot

and ecological preservation JE , and enables a trade-off analysis. On
the other hand, in both the coordinated and non-cooperative scenarios
the multi-objective problem is defined at the agent (actually coalition
of agents) level. The first coalition (agents AITT and AKG) operates
Itezhitezhi and Kafue Gorge and solves a single-objective problem with
respect to JH,KG (i.e., maximization of hydropower production at Ka-
fue Gorge). The second one (agents AKAn and AKAs) operates the two
power plants at Kariba solving again a single-objective problem with re-
spect to JH,KA (i.e., maximization of hydropower production at Kariba).
The third coalition, representing the Mozambique interests (agents ACB

and AE), operates Cahora Bassa dam and solves a two-objective problem
related to the maximization of hydropower production at Cahora Bassa
JH,CB as well as the protection of the Zambezi delta JE . In sum, two
single-objective optimization problems are formulated for the upstream
agents and a two-objective optimization problem for the downstream
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agents, yielding to a Pareto front in the downstream objectives space
JH,CB and JE .

4.2.3 Cooperation and information exchange

Three different scenarios of cooperation/information-exchange are com-
paratively analyzed: i) fully cooperative and informative agents, who
agree to establish a joint action strategy and exchange all the infor-
mation; ii) coordinated agents, where the agents exchange full infor-
mation (i.e., hydrological data and management objectives) on their
sub-systems but do not cooperate to find a globally optimal solution;
iii) non-cooperative and non-informative agents, where agents are com-
pletely individualistic and do not share any information. Realistically,
there exists another situation where the agents partially exchange in-
formation: they may share hydrological data but do not reveal their
management objectives (Giuliani et al., 2012b). Depending on the sce-
nario adopted, the formulations of the optimization problems solved by
the agents to design their optimal decisions are different as described
next.

Fully cooperative and informative scenario

Under this scenario, the agents, beyond sharing information, agree on
sharing also the operating objectives in order to establish a joint mana-
gement strategy for the entire system. This is equivalent to the central-
ized approach commonly adopted in most of the water resources litera-
ture, in which the management problem is formulated as a q-objective,
stochastic, periodic, non-linear, closed-loop optimal control problem as
described in Section 2.4.
To overcome stochastic dynamic programming (SDP) curse of dimen-
sionality (Bellman, 1957), which prevents the use of SDP in the large-
scale system of the Zambezi River, a model predictive control (MPC, see
Section 2.4.1) approach is adopted. The fully cooperative problem can
be therefore formalized as an open-loop control problem defined over a
receding horizon h equal to 3 months as follows:

u∗ = arg min
ut,...,ut+h−1

λ · J(·) (4.2a)

subject to

xt+1 = ft(xt,ut, εt+1) (4.2b)

ut = [uITT
t , uKG

t , uKAn
t , uKAs

t , uCB
t ] ∈ Ut (4.2c)
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The inflows prediction needed to solve Problem (4.2) can be obtained in
different ways. Among the set of alternative modeling approaches (au-
toregressive models, neural networks, extremely randomize trees, etc.),
linear periodic PAR(1) models (e.g., Salas et al., 1980) were identified
because they are able to provide good forecasts of the inflow processes
according to the adopted monthly time step, see the explained variance
in Table 4.1. In particular, the interannual variability characterizing the
inflows in the Zambezi system (e.g., Rocha and Simmonds, 1997; Mazvi-
mavi and Wolski , 2006) has limited impacts on the considered objectives
and can be captured by autoregressive models.

Table 4.1: Model prediction performance measured with the Nash-
Suttcliffe efficiency index over the validation period 1974-1980
(Cahora Bassa inflows are synthetically generated).

Inflow R2

Itezhitezhi 0.772
Kafue Gorge 0.772

Kariba 0.770
Cahora Bassa 0.992
Shire River 0.768

Non-cooperative scenario

Under this scenario, the agents look at their local objectives and do not
share information on the respective sub-systems. Problem (4.2) is there-
fore solved as a sequence of local problems. The i-th agent’s problem (or
the problem of the i-th coalition of agents) becomes:

u∗i = arg min
ui
t,...,u

i
t+h−1

λi · Ji(·) (4.3a)

subject to

xi
t+1 = ft(x

i
t,u

i
t, ε

i
t+1) (4.3b)

ui
t ∈ U i

t ⊂ Ut (4.3c)

where the i-th agent considers local objective functions Ji only and the
decisions are limited to a subset U i

t of the entire feasible decision set Ut.
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Moreover, the i-th agent is able to observe only the state variables xi
t be-

longing to its portion of the system. In this scenario the upstream agents
are in a favorable condition as they can independently decide what is the
best for themselves, while the downstream agents will be affected by and
have to adapt to these decisions. This two-step approach is the most
common in real-world problems (e.g., Goor et al., 2007; Anghileri et al.,
2012). Without information exchange, the information available to the
i-th agent comprises only the variables directly observed and controlled
by the agent himself. Everything else is a stochastic driver for its sub-
system. Conversely, the introduction of information exchange enlarges
the information system on which the decisions of the downstream agents
are made as described in the next section.

Coordinated scenario

Under this scenario, the agents look at their local objectives but now
also share information on the respective sub-systems. On the basis of
this information, which comprises hydrological data and the other agents’
operating objectives, the downstream agents can develop a model of the
upstream sub-system ψ(·) equivalent to the one used by the upstream
agents to optimize their decisions. According to this model, the down-
stream agents can simulate off-line the upstream optimal behavior and
exploit an enlarged information system to make more informed decisions.
According to this scenario, the i-th agent’s problem (or the problem of
the i-th coalition of agents) becomes:

u∗i = arg min
ui
t,...,u

i
t+h−1

λi · Ji(·) (4.4a)

subject to

xi
t+1 = ft(x

i
t,u

i
t,w

i
t, ε

i
t+1) (4.4b)

ui
t ∈ U i

t ⊂ Ut (4.4c)

wi
t = ψ(I−it ) (4.4d)

where wi
t are the variables affecting the i-th agent sub-system dependent

on the decisions of the other agents, which can be described by the model
ψ based on the exchanged information I−it related to the sub-system
observed by the other agents.
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4.3 Results

The fully cooperative, coordinated, and non-cooperative management
of the Zambezi River systems are evaluated by simulating the agent-
based model (Section 4.2.2) over the historical time series of inflows on
the period 1974-1980. Apart from the Middle Zambezi Catchment that
required a process of synthetic time series generation, the data used in
this work, represented in Figure 4.3, were provided by the Global Runoff
Data Centre (http://www.bafg.de/).

1943 1953 1963 1973 1983 1993 2003

Shire River
Cahora Bassa

Kafue Gorge
Ithezithezi

Kariba

years

Figure 4.3: Available inflows data (source: Global Runoff Data Centre):
the validation-simulation period is in black, the data used in
the calibration of the AR models are in dark grey, missing
data are in light grey

4.3.1 Fully cooperative solutions

In order to evaluate the tradeoff relationships between hydropower pro-
duction and ecological preservation of the Zambezi delta, the Pareto
front in the objectives space JH,tot and JE was approximated by solv-
ing Problem (4.2) for different combinations of weights λ. Figure 4.4
shows the obtained Pareto efficient solutions: with solution SH , which
considers only the hydropower objective, the energy production is equal
to 34.03 TWh/year and the corresponding average flow deficit in Febru-
ary and March is equal to 3,143 m3/s. This result is comparable with
the value obtained by Gandolfi et al. (1997) on the basis of the models
were calibrated. The resulting energy production seems instead overes-
timated, in particular at Kafue Gorge and Kariba, with respect to the
one obtained by Tilmant et al. (2010) using models calibrated on histo-
rical productions. Adopting the same correction, an energy production
equal to 30.3 TWh/year is estimated, which is consistent with the hi-
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Figure 4.4: Fully cooperative (centralized) Pareto front in the objectives
space JH,tot and JE .

storical productions. However, the real decision makers acting in the
system do not look at hydropower production only, but implicitly con-
sider and weight also other minor objectives (e.g., irrigation supply in the
Kafue catchment). Moreover, the decision makers can also store water
when the power plants are unavailable deciding to turbine later with a
higher head. Hence, it seems reasonable that the historical production is
lower than the obtained values. The introduction of the environmental
objective alters the decision makers objectives balance. For this reason,
although the values used by Gandolfi et al. (1997) probably overestimate
the hydropower production, they provide a solid ground to project the
decision makers behavior in a multi-objective context. Moreover, the
primary aim of this work is not to improve the efficiency of hydropower
energy production system in the Zambezi River basin, but rather to as-
sess the differences in the objective values due to different scenarios of
cooperation and information exchange as explained next.
The hydropower production for solution SE , which considers only the
ecological objective, is lower than that for SH and equals 29.05 TWh/year,
with the flow deficit decreased to 703 m3/s. The comparison of the av-
erage monthly flows in the Zambezi delta for these two solutions (Figure
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Figure 4.5: Comparison of average monthly flows in the delta (panel (a))
along with their different contributions for the two extremes
solutions of the fully cooperative Pareto front SH in panel
(b) and SE in panel (c).

4.5a) shows a distinctive difference in the flows in February and March
due to the ecological objective. Although solution SE , aiming at mini-
mizing the difference with respect to the target peak flow of 7,000 m3/s
in February and March, does not obtain a null deficit, it is able to restore
a peak flow close to the natural condition. However, this release strategy
reduces water availability in the rest of the year, while the hydropower-
based regulation of Cahora Bassa dam produces almost constant flows in
the delta. It is also worth noting that the water released for environmen-
tal purposes is actually wasted with respect to hydropower production,
as shown in Figure 4.5b-c, where the different contributions to the flows
in the delta are separated: SE spills a significant volume of water in
February and March trying to guarantee the target flow, while spillway
outflows are obviously more limited for SH .
The tradeoff between the two objectives can be estimated by pair com-
parison of the solutions in the objectives space: the improvement in one
objective is compensated by the worsening of the other. As an exam-
ple, the difference in hydropower production between SH and SE (34.03
- 29.05 = 4.98 TWh/year) is balanced by the decrease of average wa-
ter deficit in the delta in February and March (from 3,143 m3/s to 703
m3/s). Note that the curvature of the tradeoff curve is almost constant
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and does not significantly change near the extremes. This unexpected re-
sult can be explained by the limited length of the peak flow season when
the environmental flow target has to be satisfied: the aggregation of the
hydropower production along the entire year mitigates the negative im-
pacts of the ‘unproductive water’ released in the peak flow season. The
curvature of the Pareto front obtained by computing the two objectives
only in February and March changes moving along the front.
The economic cost of the water deficit in the delta can be estimated
by considering the hydropower revenue instead of the energy produc-
tion. According to Tilmant et al. (2010) and Whittington et al. (2005),
a constant price of electricity equal to 80 US$/MWh is assumed, which
is independent from the actual power production as a detailed model of
the entire South African Power Pool (SAPP) would be too complex and,
moreover, the energy produced in the Zambezi system is low compared
to that of South-Africa. By the analysis of the last prices available on
the SAPP website, it seems that the proposed value is slightly overes-
timated. However, the reference price found in the literature is used to
enable comparison with previous works. The Pareto-optimality concept
guarantees that the decrease in the hydropower revenue associated to a
given solution with respect to solution SH is compensated by the corre-
sponding reduction of the environmental costs in the delta. Therefore,
the cost of the water deficit νλ of the solution Sλ associated to the vector
of weights λ in the objectives space can be estimated as the slope of the
line connecting that solution to solution SH (Wu et al., 2010), as follows

νλ =
|JH,tot(SH)− JH,tot(Sλ)| × 106 × 80

|JE(SH)− JE(Sλ)|
US$

m3/s
(4.5)

Comparing solution SH with the other extreme of the Pareto front SE

(obtained with λ = [.0001, .9999] in order not to consider multiple op-
tima), the yearly economic cost of the water deficit in the delta is νE

= 4.98×106×80 / 2,440 = 1.6319×105 US$/(m3/s). The value of νλ

is actually different for each point of the Pareto front as each solution
corresponds to a different balance of the two objectives and its range
of variability is between 0.1805×105 and 1.6319×105 US$/(m3/s), while
the mean value is ν̄ = 1.0825×105 US$/(m3/s).
It is interesting to observe that both the average value ν̄ and the whole
range of variability of νλ are very close to the upper bound of the
marginal-benefit functions proposed in literature to monetize the benefits
associated with the flows in the delta, namely 1.7143×105 US$/(m3/s)
corresponding to 1000 US$/ha (Woodward and Wui , 2001; Brander et al.,
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2006; Tilmant et al., 2010). This result suggests that the explicit consid-
eration of an environmental objective is equivalent to assigning a high
economic value to the ecological preservation of the aquatic ecosystems.
From a practical point of view, this result also confirms the findings of
Whittington et al. (2005): water resources management does not suffi-
ciently consider the environmental requirements which assume secondary
importance. Indeed, the range of wetland economic valuation spans from
this upper bound to a lower bound of only 100 US$/ha, corresponding
to 1.7143× 104 US$/(m3/s) that is much lower than the obtained νλ.

4.3.2 Coordinated and non-cooperative solutions

In order to assess the role of information exchange, the system was then
simulated under different levels of cooperation, in particular assuming
the non-cooperative scenario and the coordinated one, which basically
differ in the degree of information sharing (see Problems (4.3)-(4.4)).
The agents’ objectives are then evaluated one by one. Figure 4.6 shows
a graphical representation of the objectives, comparing the agent-based
solutions in these two scenarios with a fully cooperative compromise so-
lution. This latter is shown for demonstration purposes and was selected
among the set of Pareto optimal solutions obtained in the cooperative
scenario by adopting the criterion of the minimum distance with respect
to the Utopia point (Eschenauer et al., 1990), which identifies the abso-
lute optima of all the objectives and is usually an unfeasible solution.
Not surprisingly, all the agent-based solutions produce the same perfor-
mance in the upstream objectives JH,KG and JH,KA in every scenario
(the blue and red circles in Figure 4.6 have the same size), because
the upstream agents act independently. Moreover, these solutions out-
perform the centralized one for the upstream objectives (blue and red
circles are bigger than the green one). On the other side, looking at
the downstream objectives JH,CB and JE , the fully cooperative solution
outperforms the others (the green point is placed in the bottom-left part
of the figure): the joint management is clearly able to better exploit the
upstream-downstream relationships in order to guarantee a good com-
promise among all the agents’ objectives.
For both the coordinated and non-cooperative scenarios, a set of Pareto
optimal solutions (Figure 4.7) between the downstream objectives JH,CB

and JE are obtained by changing the vector of weights λi in the opti-
mization problem of agents ACB and AE . The interesting evidence is
that increasing the degree of information exchange improves the per-
formance of the downstream agents in both the objectives: the non-
cooperative Pareto front obtained with non-information sharing (blue
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Figure 4.6: Projection of the 4D Pareto front in the objectives plan
JH,CB and JE . Circle size represents the upstream agents’
objectives JH,KG + JH,KA (the bigger the circle, the bet-
ter is the solution). The agent-based solutions in the non-
cooperative (blue circles) and in the coordinated (red circles)
scenarios are compared with a fully cooperative compromise
solution (the green circle).

points) is dominated by the coordinated one, which assumes complete
information sharing (red points). To quantify the role of information
on the whole Pareto front, it is possible to look at the values of the
hypervolume indicator (Zitzler et al., 2003) in the two scenarios. The
hypervolume indicator measures the volume of objective space domi-
nated by a given Pareto front, thus allowing the comparison of Pareto
fronts obtained with different methods respecting the dominance rela-
tionships (Knowles and Corne, 2002). High values of this indicator are
obtained for Pareto fronts that are both converged and diverse. The
hypervolume indicator is equal to 0.426 in the case of non-cooperation,
while it is equal to 0.495 for coordinated agents. These results confirm,
from a quantitative point of view, the general superiority of the solutions
obtained by simple cooperation through full information exchange: the
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Figure 4.7: Pareto front in the downstream agents’ objectives space
JH,CB and JE for different scenario of information sharing
(i.e., non-cooperation and coordination).

non-information sharing solutions are indeed Pareto-dominated by the
coordinated ones and information exchange allows to improve both the
considered objectives. Moreover, these advantages for the downstream
agents are obtained without affecting the upstream decisions and thus
the corresponding benefit. Finally, observe that the improvement by
information exchange varies along the Pareto front, meaning that the
role of information sharing might depend upon the objective considered.
Specifically, the improvements in the two extreme solutions are equal to
0.27% (hydropower only) and 12.04% (environment only), thus suggest-
ing that the information exchange, and consequently the cooperation,
has a higher marginal value for the environmental objective.

4.3.3 Value of full cooperation and information exchange

The above analysis demonstrates that even a basic level of cooperation,
only based on the exchange of information among the agents, might
increase both the benefits for the downstream agents and the overall
utility at the basin-wide level with respect to a non-cooperative setting.
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An economic evaluation of the improvements potentially achievable by
cooperation and information exchange might represent an effective basis
to identify the most suitable policy mechanisms (e.g., economic incen-
tives) to be implemented in order to favor a more cooperative attitude
(Whittington et al., 2005). From the comparative analysis of the solu-
tions obtained respectively with the fully-cooperative and the coordina-
tion scenarios against the non-cooperative one, it is possible to infer the
economic value of full cooperation (VFC) and of information exchange
(VIE) associated to the differences in the performance at the basin-wide
level.
To this end, the physical objectives (energy production and flow rate
deficit) must be converted into monetary values. In the case of the hy-
dropower energy production, the conversion is made by assuming again
the African energy price equal to 80 US$/MWh (Tilmant et al., 2010;
Whittington et al., 2005). For the water deficit in the delta, the cost can
be computed using the values νλ previously estimated on the fully coop-
erative Pareto front. Since the marginal value of the information varies
along the Pareto front and depends upon the objective considered, the
two extreme solutions of the Pareto front are first considered and, sub-
sequently, a compromise solution is analyzed.
For the hydropower extreme of the Pareto front (points SH

1 and SH
2 in

Figure 4.7), the annual energy production of the coordinated strategy is
0.0471 TWh/year more than the one in the non-cooperative case. This
difference corresponds to 3.76×106 US$/year, which is the economic VIE
for hydropower energy production. Dually, considering the other extreme
which only minimizes objective JE (points SE

1 and SE
2 in Figure 4.7),

the reduction of the flow deficit is equal to 262.428 m3/s. Hence, the
VIE for an ecological management of Cahora Bassa is estimated adopt-
ing the value of νE previously identified for solution SE (1.6319×105

US$/(m3/s)) and equals 42.82×106 US$/year.
Finally, it is interesting to estimate the role and the economic value of
cooperation by comparing one solution for each of the three considered
scenarios. Since the fully cooperative solutions were obtained by solv-
ing Problem (4.2) in a centralized way, while the agent-based solutions
are derived assuming different levels of cooperation in the resolution
of Problems (4.3)-(4.4), the selection of which solutions to compare is
not straightforward. Therefore, for each scenario, the “most interesting”
solution is again identified according to the criterion of the minimum
distance from the Utopia point (Eschenauer et al., 1990). The three
selected solutions are reported in Table 4.2. It is evident that the fully
cooperative solution is worse for the upstream agents, especially for the
Kariba hydropower production, but enables improved performance for
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the downstream agents’ objectives that are more damaged in the other
scenarios by the individualistic strategies adopted upstream, as already
shown in Figure 4.6. The economic values of full cooperation and infor-
mation exchange were then estimated by looking at the monetary gain
corresponding to the four objectives in the three considered solutions
(assuming the average cost of the water deficit ν̄): the fully cooperative
solution guarantees a monetary gain equal to 2.42×109 US$/year, which
is significantly higher than 2.39×109 US$/year and 2.37×109 US$/year
given by the coordinated and non-cooperative solutions, respectively.
These results allow to estimate a VIE and a VFC equal to 15.7×106

US$/year and 28.2×106 US$/year, respectively. On the basis of this
information, the agents (and hence the real decision makers) might re-
consider their behaviors and introduce a complete information exchange
which produces advantages to the downstream agents without affecting
the benefits for the upstream ones. Moreover, given the reference of the
fully cooperative solutions along with the VFC, the knowledge of the best
performance ideally achievable can be used to get insights on strategies
to foster more sophisticated cooperation and negotiation strategies.

Table 4.2: Solutions selected in the Pareto space according to the mini-
mum distance from Utopia point criterion.

Scenario JH,KG JH,KA JH,CB JE

[TWh/year] [TWh/year] [TWh/year] [m3/s]
Non-cooperation 7.67 10.45 14.56 2,178
Coordination 7.67 10.45 14.40 1,916

Full cooperation 7.63 8.51 16.42 1,689

4.4 Discussion and final remarks

In this chapter, the agent-based decision analytic framework is used to
study different degrees of cooperation and information exchange among
multiple decision makers and/or stakeholders in the large-scale, trans-
boundary Zambezi River basin. The framework also allows to econom-
ically quantify the value of full cooperation and the of information ex-
change, which might be a fundamental information to set up a negotia-
tion process.
The agent-based model of the Zambezi River comprises five active agents,
representing the managers of the five main hydropower plants in the sys-
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tem, and a passive agent modeling the ecosystem of the river delta. Three
different scenarios of cooperation and information exchange among the
agents have been evaluated: i) fully cooperative and informative agents,
who agree to act coordinately and exchange all the information, which
is equivalent to assume a centralized decision maker who manages si-
multaneously the entire system; ii) coordinated agents who exchange
information, without, however, actively cooperate to find a globally op-
timal solution; iii) non-cooperative and non-informative agents, who are
completely individualistic and do not share any information.
Results show that it is possible to improve the conditions of the down-
stream agents representing the Mozambique interests (i.e., hydropower
production at Cahora Bassa and protection of the ecosystem in the Zam-
bezi delta) with respect to the actual non-cooperative setting by intro-
ducing coordination among the agents. This simple mechanism allows
the downstream agents to more effectively adapt to the upstream strate-
gies only because they know these strategies. Pareto front solutions
obtained in the coordinated scenario outperform the corresponding so-
lutions with no-cooperation at all. According to the concept of Pareto
dominance, coordination is therefore worthwhile in large water resources
systems as it allows to obtain solutions that are better (at least for one
objective) with respect to the non-cooperative one.
The multi-objective nature of the analysis allowed to estimate the trade-
offs between hydropower energy production and the protection of the
Zambezi delta. The explicit consideration of an environmental objective
corresponds to assign a high economic value to the ecological preserva-
tion of the aquatic ecosystems in the delta, close to the upper limit of
the range of wetland valuation proposed in literature. Moreover, it is
interesting to observe that the role as well as the economic value of in-
formation exchange changes according to the considered Pareto-efficient
solution and, in particular, the marginal value is higher for the environ-
mental objective.
More in general, information exchange might have a primary role in re-
balancing the upstream/downstream asymmetry in the Zambezi River
basin, as it allows the downstream agents to better adapt to the upstream
management strategies, with no consequence for these latter. Compared
to ideal centralized solution (full cooperation and information exchange),
the stability of this coordinated solution is guaranteed as each agent can-
not improve its benefit acting unilaterally.
Finally, the economic Value of Full Cooperation and Value of Informa-
tion Exchange are estimated by comparing one solution for each scenario:
the economic gain achievable at the system-level by moving from coor-
dination to the ideal full cooperation is 28.2×106 US$/year, while the
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introduction of the information exchange as a first level of cooperation,
i.e. coordination, with respect to the non-cooperative scenario produces
an economic gain equal to 15.7×106 US$/year. Adopting the historical
production based calibration of the models as in Tilmant et al. (2010),
the energy production is lower, resulting in different VIE and VFC. In
particular, the fully cooperative, coordinated and non-cooperative solu-
tions guarantee monetary gains equal to 2.14×109 US$/year, 2.087×109

US$/year and 2.073×109 US$/year, respectively. The corresponding VIE
is equal to 14.7×106 US$/year, while the VFC is 58.4×106 US$/year, as
the fully cooperative solution is better than the coordinated one in the
downstream objectives, which do not vary, and is worse in the upstream
objectives, which are reduced. Consequently, the gap between the co-
ordinated and the fully cooperative solutions increases. Note that, in
reality, VIE depends on two factors: first, the agents (institutions) have
a constrained capacity, which limits their ability in the exploitation of
the shared information, depending on the accuracy of the models they
use. The costs to develop these models is assumed as negligible with
respect to the benefits produced by the use of the models to optimize
the operation in the system. Furthermore, VIE tends to decrease in
time, because by acquiring experience over time, the agents have more
data available for the identification of more and more effective forecast
models. The availability of better forecasts allows the agents in the non-
cooperative scenario to obtain a performance closer to the ones in the
coordinated scenario, with the gap decreasing in time, meaning that the
value of information exchange decreases as well. The accuracy of the
forecast models is however limited and VIE does not tend to zero.
In conclusion, it is worth summarizing the limitations of the proposed
approach, in particular with respect to the computational costs and the
scalability for larger systems . The centralized solution is by far the
more expensive, while the non-cooperative one is the more flexible. As
the problem scales up, a number of algorithms can be adopted to mitigate
the computational burden, ranging from approximate dynamic program-
ming (e.g., Powell , 2007) for relatively small systems to simulation-based
optimization methods (e.g., Koutsoyiannis and Economou, 2003). For
each algorithm using the weighting method, the associated computa-
tional costs grow exponentially with the number of objectives considered.
The number of weights combinations required to accurately approximate
the real continuos Pareto front might change from problem to problem.
Clearly, the higher the accuracy the higher the computational costs. The
interaction with the decision maker usually helps in refining the approx-
imation (adopting a more dense sampling of the weights space) in the
region of interest for the decision maker. Without such a direct interac-
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tion, the weights can be selected to ensure that the shape of the front
was reasonably represented.
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5 Co-adaptation in agricultural
water systems

The purpose of this chapter is to apply the agent-based decision analytic
framework (Section 1.3.2) to demonstrate the potential of co-adapting
water demand and supply in agricultural water systems. According to
IPCC (2001), adaptation to climate change can be defined as an adjust-
ment in ecological or socio-economic system in response to observed or
expected changes in climatic stimuli and their effects, in order to mitigate
adverse impacts of change or take advantage of new opportunities. Ef-
fective adaptation strategies hence involves decisions made across scales,
from individuals to governments at local, regional, and national level,
and international agencies (Adger et al., 2005). In this chapter, the Lake
Como serving the Muzza-Bassa Lodigiana irrigation district (Italy) is
used to illustrate the methodology. A distributed-parameter, dynamic
model of the irrigation district allows the simulation of crop growth
and yield over a range of hydroclimatic conditions, irrigation strategies,
and water-related stresses. The proposed co-adaptation strategy aims to
cross-condition the decisions of farmers and water managers: the farmers
decide the most profitable crop option on the basis of an expected water
supply; knowing the farmers decisions, the water supply strategy (i.e.,
the regulation of Lake Como) is optimized with respect to the actual
irrigation demand of the crops. By iteratively running this procedure,
the farmers and the water manager will exchange information until the
system converges to an equilibrium, where water supply and demand are
considered as coupled human (farmers and water managers) and natural
(crops) systems (Liu et al., 2007). The proposed approach is tested in
two different climatic scenarios, namely current and projected conditions,
to assess the potential for the co-adaptation to enhance the efficiency of
agricultural water management practices and foster crop production, as
well as to mitigate climate change adverse impacts.
This chapter is adapted from a paper under preparation for Global and
Environmental Change (Giuliani et al., 2013d).
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5.1 Agricultural water management adaptation
to climate change

Agriculture is the main land use in the world and also the sector charac-
terized by the highest water demand (FAO , 2003; Jury and Vaux , 2007;
Phalan et al., 2013), with 24% of the total harvested cropland that is
under irrigation (Portmann et al., 2010). To meet projected growth in
human population and per-capita food demand, agricultural production
will have to significantly increase in the next decades along with the cor-
responding irrigation consumptions (e.g., Tubiello et al., 2007; de Fraiture
and Wichelns, 2010). Yet, water availability, which is often a key factor
in determining crop productivity, is expected to decrease over the next
century due to climate change impacts (IPCC , 2007), with 3.1 billion ur-
ban dwellers expected to experience water shortages by 2050 (McDonald
et al., 2011). Squeezing more crop out of the same drop will be one of the
biggest challenges of this century (Marris, 2008) in order to guarantee
adequate irrigation supply in cropping regions where precipitations are
expected to decline. If current crops, such as rice, cotton, or sugar cane,
were not irrigated, their production would indeed decrease by up to 60%
(Siebert and Döll , 2010). Consequently, irrigated areas are expected to
expand over the next years (Neumann et al., 2011), producing a further
increase of the related water consumptions. This means that competi-
tion for water between agriculture and the other sectors is destined to
increase (Falkenmark , 2013).
The impacts of climate change on water resource systems has been in-
tensively studied in the literature (see the review by Leavesley , 1994, and
references therein), mostly focusing on the hydrological cycle and the un-
derlying natural processes to analyze the changes in the distribution of
river flows and groundwater recharge over space and time, according to
projected changes in temperature and precipitation (e.g., Di Baldassarre
et al., 2011; Escaler et al., 2012). The effects on the natural, economi-
cal, and social sphere are also studied (e.g., Schaefli et al., 2007; Ajami
et al., 2008; Hingray et al., 2007). Climate variability has been demon-
strated the most significant factors influencing year to year crop produc-
tion (e.g., Mall et al., 2006; Kang et al., 2009), because crops’ growth
is strongly dependent on water availability and temperature. However,
crops’ growth processes are also strongly affected by farmers practices as
well as water supply management strategies. Agricultural water systems,
therefore, comprise a natural (crops) component coupled with a human
(farmers and water managers) component, and both are subjected to
changing climatic conditions. As a consequence, these coupled systems
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are co-evolving under change. However, although several studies have
assessed climate change impacts on agricultural water systems, most of
them considers the two problems separately. Moreover, current practices
are generally established according to historical agreements and norma-
tive constraints and, in the absence of dramatic failures, the shift toward
a more efficient integrated water management is not easily achievable.

5.1.1 Water demand adaptation

Farmers practices are composed by many different activities which are
planned and scheduled periodically, most of them at the beginning of
the agricultural season. Since water is becoming more and more scarce,
farmers are called to modify these practices to maximize production and
farm revenue (e.g., Marques et al., 2005; John et al., 2005; Ng et al.,
2011). Many options are potentially available for marginal modifications
of existing agricultural systems (e.g., Seo et al., 2005; Mall et al., 2006;
Deressa et al., 2009): i) the change of cultivar types and rotations by re-
placing crops sensitive to climate and water stresses with more resistant
ones (Howden et al., 2007); ii) the shift of sowing and harvesting dates to
match crops’ temperature requirements, such as early planting to avoid
heat and drought stresses in the late summer (Rosenzweig and Tubiello,
2007); iii) the adoption of high efficiency irrigation techniques (Cai and
Rosegrant , 2004) along with the implementation of other practices (e.g.,
conservation tillage) to conserve soil moisture and face drought condi-
tions (Bindi and Howden, 2004). According to McCarl (2006), the im-
plementation of adaptation strategies would allow a substantial increase
in the crop yields with respect to a no-adaptation baseline.

5.1.2 Water supply adaptation

Farmers and water demand adaptation is only one part of the equation,
because changes in the water supply management strategies significantly
affect crop productivity, particularly in irrigated agricultural systems.
Different operations of the water supply system, especially in the case
of water reservoirs, can significantly alter the amount of water available
for the farmers both in time and space. On-demand regulation of water
reservoirs and irrigation canals is a promising option to improve the
efficiency in the utilization of the available water (Mareels et al., 2005;
Galelli and Soncini-Sessa, 2010). The adaptation of the supply system
to the undergoing change is also a key factor in mitigating projected
climate impacts (Anghileri et al., 2011). However, prior studies in this
area (e.g., van Oel et al., 2010; Ng et al., 2011; Garcia-Vila and Fereres,
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2012) assume irrigation as an external input and evaluate few scenarios
of water availability, while an analysis of the feedbacks between water
supply and demand is still missing.

5.2 Problem formulation

5.2.1 The Lake Como system case study

Lake Como is a regulated lake in Northern Italy (Figure 5.1). Its storage
is about 254 Mm3 and it is fed by a 3,500 km2 catchment, characterized
by the typical Alpine hydrological regime with scarce discharge in winter
and summer, and peaks in late spring and autumn due to snowmelt and
rainfall. The lake inflow and effluent is the Adda River, serving eight
run-of-river hydroelectric power plants and feeding a dense network of
irrigation canals, which supports five irrigation districts with a total
surface of 1,400 km2. The regulation of the lake aims also to prevent
flooding along the lake shores, especially in Como city.
The Muzza-Bassa Lodigiana district is one of the irrigation districts
served by the Adda River, located south-east of the city of Milan in the
Pianura Padana region (Figure 5.1). It has an area of about 700 km2 and
irrigation is practiced with the border method (or free-surface flooding).
Major crops are cereals (especially corn) and permanent grass. The dis-
trict is divided in 66 irrigation units, which represent the decision-making
authority selecting the crop to grow. The irrigation supply is provided
by the Muzza main canal, which originates from the River Adda, and is
hence controlled by the regulation of the Lake Como.

The model of the Lake Como

The Lake Como is modeled focusing on its storage capacity and the
downstream system, with an approximated representation of the up-
stream catchment and the small artificial reservoirs operated for hy-
dropower production. The lake dynamics is defined by a mass balance
equation as follows:

st+1 = st + nt+1 − rt+1 (5.1)

where st is the lake storage, nt+1 and rt+1 are the inflows and the outflows
in the time interval [t, t + 1), respectively. In particular, the release is
given by the release function rt+1 = Rt(st, ut, nt+1) which accounts for
any possible deviation of the actual release from the decision ut due to
unintentional spills or any other physical or legal constraints (Piccardi
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Figure 5.1: Schematic map of the system: Lake Como, Adda River, and
the Muzza-Bassa Lodigiana irrigation district.

and Soncini-Sessa, 1991). Lake Como management is driven by multiple
objectives, such as flood prevention, hydropower production, irrigation
supply. This work focuses only on irrigation supply. The water supply
objective JS is defined as the quadratic daily average water deficit over
the simulation horizon H with respect to the irrigation demand w, as
follows:

JS =
1

H

H∑
t=1

βt
(
max(wt − qMt+1, 0)2

)
(5.2)

where βt is a time-varying coefficient taking into consideration the dif-
ferent relevance of the water deficit in different periods of the years and
qMt+1 is the flow diverted from the Adda River in the Muzza main canal,
namely qMt+1 = min(αM · rt+1, q

max), with αM representing the water
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allowance of the Muzza district and qmax = 110 m3/s the capacity of
the canal. This quadratic formulation aims to penalize severe deficits
in a single time step, while allowing for more frequent, small shortages
(Hashimoto et al., 1982).

The model of the Muzza district

The dynamic model of the Muzza district includes three main modules,
devoted to specific tasks: i) a distributed-parameter water balance mod-
ule which simulates water sources, conveyance, distribution, and soil-crop
water balance (Facchi et al., 2004) ; ii) a heat units module which sim-
ulates the sequence of growth stages as a function of the accumulation
of heat units, according to the growing degrees principle (Neitsch et al.,
2011); iii) a crop growth module which estimates the optimal and actual
yields depending on possible stresses experienced during the agricultural
season due to insufficient water supply from rainfall and irrigation (Ste-
duto et al., 2009; Raes et al., 2009).
The water balance module partitions the irrigation district with a reg-
ular mesh of cells with a side length of 250 m, which allows the rep-
resentation of the space variability of crops, soil types, meteorological
inputs, and irrigation distribution. Each individual cell identifies a soil
volume which extends from the soil surface to the lower limit of the root
zone. This soil volume is subdivided into two layers, modeled as two
non-linear reservoirs in cascade (Figure 5.2): the upper one (evaporative
layer) represents the upper 15 cm of the soil; the bottom one (transpira-
tive layer) represents the root zone and has a time-varying depth. The
water percolating out of the bottom layer constitutes the recharge to the
groundwater system. The dynamics of the water contents θ(i)

1,t and θ
(i)
2,t

in the evaporative and transpirative layers for each cell i are described
by the following mass balance equations:

θ
(i)
1,t+1 = θ

(i)
1,t + (R

(i)
t+1−C

(i)
t+1)−Q(i)

r,t+1−E
(i)
t+1−Q

(i)
u,t+1 + I

(i)
t+1 (5.3a)

θ
(i)
2,t+1 = θ

(i)
2,t +Q

(i)
u,t+1 − Tr

(i)
t+1 −Q

(i)
g,t+1 (5.3b)

where Rt+1 is the rainfall, Ct+1 the canopy interception, Qr,t+1 the sur-
face runoff, Et+1 the evaporation, Qp,t+1 the percolation to the transpira-
tive layer, It+1 the irrigation supply, Trt+1 the transpiration, Qg,t+1 the
outflow to the groundwater system, all in the time interval [t, t+ 1). In
particular, canopy interception and surface runoff are computed through
the Braden (1985) formula and the Curve Number method (USDA-SCS ,
1972), respectively. Evaporation and Transpiration are computed using
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Figure 5.2: Representation of the soil volume along with the processes
modeled for each cell of the distributed-parameter water bal-
ance module.

the FAO-56 dual crop coefficient method (Allen et al., 1998). The former
is defined as a function of the reference crop evapotranspiration ET0t+1

and θ1,t, while the latter depends on ET0t+1, θ2,t and the basal coefficient
Kcb, which is strongly related to the crop growth stage. Drainage dis-
charges Qp,t+1 and Qg,t+1 are determined considering a simplified model
based on a Darcian-type gravity flow in the unsaturated soil (Gandolfi
et al., 2006).
The heat units module defines the relationships between the temperature
and some variables and parameters related to the crop growth stage (e.g.,
root length, basal coefficient, leaf area index), which also influence the
water balance module. According to the heat units theory, crops growth
stage at time t in the i-cell is defined as a function of the cumulated
heat units (HU (i)

t ). A range is defined for each crop: the minimum is
the base temperature Tb, which determines the day of sowing (i.e., when
HU

(i)
t > Tb), and the maximum is the cutoff temperature, over which

the heat units are no longer cumulated.
Finally, the crop growth module first estimates the maximum yield achiev-
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able in optimal conditions and, then, reduces it to take into account the
stresses due to insufficient water supply from rainfall and irrigation ex-
perienced during the agricultural season. The yield response to water
stresses is estimated in each cell i according to the empirical function
proposed in the AquaCrop model (Steduto et al., 2009; Raes et al., 2009)
and based on the approach proposed in the FAO Irrigation & Drainage
Paper n. 33 (Doorenbos et al., 1979):

1− Y
(i)
real

Y
(i)
opt

= ky

1−
Tr

(i)
real,tot

Tr0
(i)
tot

 (5.4)

where Yreal and Yopt are the actual and optimal yield, Trreal,tot and Tr0tot
the actual and optimal transpiration during the whole growth period, and
ky is a crop-specific coefficient relating yield decline and water stress. In
particular, the optimal yield is computed as the product of the crop
optimal Harvest Index (HIopt) and the optimal biomass produced at the
end of the agricultural season (B(i)

opt), assuming that no nutrient stresses
happened:

Y
(i)
opt = HIopt ·B(i)

opt (5.5)

where the biomass Bopt is a function of the crop Water Productivity, the
transpiration Trt+1, the reference evapotranspiration ET0t+1, and an
adimensional stress coefficient taking into account the negative effects of
cold conditions.
The dynamic model just introduced is used by the 66 irrigation units
in the Muzza district to optimize the choice of the crop to grow by
maximizing the expected economic revenue at the end of the year, as
follows:

Jk
D = π ·

Nk∑
i=1

Y
(i)
real k = 1, . . . , 66 (5.6)

where π is the price of the cultivated crop, Nk is the number of cells
belonging to the k-th irrigation unit, and Y (i)

real the actual yield in the i-
th cell. The profitability of farmers crop choices is strongly influenced by
crop prices (e.g., Marques et al., 2005). However, a detailed description
of market prices’ dynamics goes beyond the scope of this work, as it
would require to model local as well as global factors (e.g., Kantanantha
et al., 2010). Fixed crops prices are assumed as in Paudel and Hatch
(2012), using the values published online by EUROSTAT.
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Hydroclimatic Scenarios

In this work, the effectiveness of the co-adaptation strategy is evaluated
in two hydroclimatic scenarios, namely current and projected conditions.
The generation of the projected time series of hydroclimatic variables in
climate change conditions is based on the application of a cascade of
models: the worst emission scenario provided by the Intergovernmental
Panel on Climate Change (IPCC , 2000) is used as input for a general
circulation model (GCM), which provides the boundary conditions for a
regional circulation model (RCM). In particular, the HadAM3H model
(Pope et al., 2000) is used as GCM and the RACMo model (Lenderink
et al., 2003) as RCM. Since the spatial resolution of RACMo is too rough
to provide representative climatic scenarios at the basin scale, a statis-
tical downscaling method based on quantile mapping (Déqué, 2007; Boé
et al., 2007) was applied to correct RCM outputs as in Anghileri et al.
(2011).
This statistical downscaling method compares historical measured data
with the outputs obtained from RACMo simulations over the historical
(backcast) period (i.e., 1961-1990), in order to estimate a site-specific
quantile-quantile correction function. By assuming that this relation-
ship will not change in the future, it can be applied to the RACMo
output over the projected (forecast) period (i.e., 2071-2100). The down-
scaled variables are then used as inputs for a standard rainfall-runoff
model to obtain the projected time series of inflows. The data used for
the downscaling were obtained from the PRUDENCE project (Chris-
tensen and Christensen, 2007). Figure 5.3 shows the difference of the
downscaled hydroclimatic variables under projected climate change con-
ditions with respect to their current values. Although the annual volume
of water available (Figure 5.3a) does not significantly change, its differ-
ent distribution during the year is expected to negatively impact on the
agricultural water supply. The irrigation demand is indeed high in the
late-spring and summer period, when projected water availability is low.
Moreover, the projected climate change impacts show an increase of the
temperature in the Muzza irrigation district (Figure 5.3b), producing
higher evapotranspiration rates and, consequently, an increase of the ir-
rigation water demand.

5.2.2 The co-adaptation problem

The proposed co-adaptation strategy aims to coordinate farmers and wa-
ter managers adaptation options, see Sections 5.1.1-5.1.2. In this section,
the two optimization problems associated to the coupled water supply
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Figure 5.3: Effects of climate change on the mean inflows to the Lake
Como (panel (a)) and mean temperature in the Muzza irri-
gation district (panel (b)).

and demand systems are formulated. The water supply manager is mod-
eled as an active agent acting according to a daily operating policy p
which, given the current storage of the lake st, provides the volume
ut = mt(st) to be released over the time interval [t, t+ 1) (i.e., the next
24 hours). The optimal operating policy p∗ is designed by formulat-
ing and solving a stochastic, periodic, non-linear, closed-loop optimal
control problem (see Castelletti et al., 2008a, and references therein) of
a dynamic system which evolves according to the model defined in eq.
(5.1):

p∗ = arg min
p
JS(p, w) (5.7)
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in which JS(p, w) is the water supply objective as defined in eq. (5.2),
which depends on the operating policy p and the irrigation demand w.
Since the focus of this work is the irrigation supply, the problem associ-
ated to the water supply agent is a single-objective problem. The exten-
sion to multipurpose water reservoirs considering more objectives (e.g.,
flood protection, hydropower production or environmental preservation)
is however straightforward. Among the set of optimization methods
available to solve the management problem formulated in eq. (5.7), see
Section 2.4, the optimal operating policy of the Lake Como is designed
using stochastic dynamic programming (SDP, see Bellman (1957)), as
it is the most adopted and accurate method for solving optimal control
problems, offering performance guarantee and proof of convergence.
The water demand problem regards the pre-season decisions of the farm-
ers on the crops pattern ucrop. Each irrigation unit, which represents the
decision-making authority in charge of selecting the crop to grow, is mod-
eled as an active agent. The optimal crop pattern can be obtained by
solving 66 non-linear optimization problems (one for each agent) based
on the dynamic model of the Muzza district described in Section 5.2.1:

uk∗crop = arg max
uk
crop

Jk
D(ukcrop, p) k = 1, . . . , 66 (5.8)

where Jk
D(ukcrop) is the objective function of the k-th agent as defined

in eq. (5.6), which depends on the agent crop choice ukcrop ∈ Ucrop and
the operating policy p adopted by the water supply agent. The set Ucrop
comprises five different crops representing the most commonly grown in
the Pianura Padana agricultural system, namely tomato, grass, corn,
soybean, and rice. On the basis of the solution of Problem (5.8) for each
agent, representing the optimal crop pattern u∗crop for the entire district,
it is possible to derive the actual irrigation demand w = w(u∗crop) that
the water supply system has to satisfy. Due to the complexity of pro-
ducing accurate long-term hydroclimatic forecast required by the model
to solve Problem (5.8) at the beginning of the agricultural season, it is
assumed that the farmers have a perfect forecast of the future hydrocli-
matic conditions. The resulting performance will therefore represent an
upper-bound solution. The introduction of forecast errors may result in
suboptimal farmers’ decisions and performance degradation.
The aim of the proposed co-adaptation strategy is to cross-condition
the decision-making problems of the agents (i.e., water manager and
farmers), as shown in Figure 5.4. The procedure starts by deriving the
optimal operating policy of the Lake Como p0 on the basis of an a priori
demand w0. Then, the water supply system is simulated over a horizon
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co-adaptation 
loop

water manager

expected water supply
(irrigation + precipitation)

agricultural district

real water demand

Figure 5.4: Illustration of the co-adaptation loop between water supply
and demand.

of one year according to p0 to obtain the trajectories of the expected
releases and the water available for irrigation q0

irr. This latter is used as
input for the model of the water demand subsystem (i.e., the dynamic
model of the Muzza district). This model allows the simulation of the
irrigation water distribution, the computation of the hydrologic balance
in the root zone, and the estimation of optimal and actual crop growth
on a daily basis. For a given q0

irr, the farmers optimize the choice of the
best crop pattern u∗crop0 for the coming year (i.e., the one producing the
highest revenue). Moreover, the model estimates the water requirements
of the crops from which the real water demand of the whole district can be
derived. On the basis of this new water demand (i.e., w1 = w1(u∗crop0)),
the release policy of the lake can be re-designed. The procedure is then
iterated, with the optimization and simulation of the new policy p1, the
farmers’ optimization u∗crop1 and the estimation of a new demand w2.
The iterations are stopped when the system converges to an equilibrium.
It is assumed that convergence is obtained when the number of farmers’
decisions changing between two consecutive iterations is lower than a
desired threshold (i.e., 13 agents, corresponding to 20% of the Muzza
irrigation units).
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5.3 Results

The effectiveness of the proposed co-adaptation loop is tested in cur-
rent and projected hydroclimatic scenarios, namely the years 1999 and
2099, which are assumed as representative of average conditions. Be-
side the hydroclimatic conditions, the co-adaptation and co-evolution of
agricultural water management is influenced by a number of exogenous
variables dependent on the socio-economic context. Since most of the
agricultural districts in the Pianura Padana region has currently to grow
mainly corn and grass for sustaining livestocks, a constraint is defined
according to historical land use data to limit the agents’ decisions and
guarantee to grow corn and grass in a fixed number of cells of the Muzza
district. More detailed analysis on the role of the socio-economic con-
text are beyond the scope of this work and will be the subject of future
research.

5.3.1 Co-adaptation in current conditions

In order to assess the effectiveness of the proposed co-adaptation loop,
the performance of the current practices has to be estimated. On the
supply side, without any interaction between the farmers and the water
manager, the operation of Lake Como is designed by the water supply
agent trying to minimize the water supply objective JS , see eq. (5.2),
according to the a priori trajectory of irrigation demand illustrated in
Figure 5.5.
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Figure 5.5: A priori irrigation demand of the Muzza district.

On the demand side, historical land use data show that the farmers in
the Muzza district mainly grow corn and grass. A baseline alternative
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corn
grass

Total revenue: 144 M€ 
Irrigation deficit: 390 (m /s)3       2

Figure 5.6: Baseline alternative: current crop pattern is defined by a mix
of corn and grass.

(Figure 5.6) is therefore designed by assigning corn and grass to around
78% and 22% of the cultivated area, respectively. Under this alternative,
the water supply objective (i.e., the daily average squared water deficit)
is equal to 390 (m3/s)2 and the total economic revenue at the end of the
agricultural season is equal to 144 million of e.
In the baseline alternative, both the water supply and demand practices
represent an approximation of the current condition with no guarantee
of being the optimal solution for the integrated agricultural water system
as there is no interaction between agents’ decisions. The adoption of the
co-adaptation loop directly connects the decision-making problems of the
agents to promote coordinated practices aimed to improve the system-
level efficiency. The proposed co-adaptation strategy allows the selection
by the farmers of the crop with the highest expected economic revenue
on the basis of an expected water availability, which is dependent on
the water supply management. Given the crop choices, the water supply
agent can tune the management policy with respect to the actual water
demand of the planted crops. Results show that, in current hydroclimatic
conditions, tomato is selected by 59 agents, with only 7 agents deciding
to grow rice (Figure 5.7). The estimated total economic revenue is equal
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tomato
rice

corn
grass

Total revenue: 1978 M€ 
Irrigation deficit: 170 (m /s)3       2

Figure 5.7: Co-adaptation alternative in current hydroclimatic
conditions.

to 1,978 million of e, almost ten times higher than the one attained
in the baseline alternative. This significant improvement is produced
by two factors: i) most of the agents selects to grow tomato, which
is the best crop in terms of productivity (i.e., 78,400 kg/ha) as well
as the one characterized by the highest price (i.e., 0.6 e/kg); ii) the
accurate tuning of the irrigation management by the water supply agent
on the basis of the actual water demand of the selected crop, which
produces a significant decrease of the irrigation deficit (i.e., from 390
(m3/s)2 to 170 (m3/s)2) and, consequently, of the water-related stress. It
is worth noting that the low value of water deficit along with the agents’
decisions to grow tomato, which is a crop characterized by a high water
demand and particularly sensitive to water stresses (i.e., its parameter ky
describing the yield response to water stress in eq. (5.4) is equal to 1.35),
suggests that the amount of water available in the current hydroclimatic
conditions is not a limiting factor, especially assuming to regulate the
lake for irrigation purposes only. However, this shift from corn and grass
toward tomato will require significant costs for converting the farmers’
equipments, with a largely reduced final profit for the farmers. The
medium-long term profitability of this solution therefore requires further
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corn
grass

Total revenue: 56 M€ 
Irrigation deficit: 2990 (m /s)3       2

Figure 5.8: Baseline alternative in climate change conditions.

analysis, including the projected profitability of tomato over the next
years affected by climate change conditions.

5.3.2 Co-adaptation in climate change conditions

The previous section shows the effectiveness of the proposed co-adaptation
loop to enhance the efficiency of agricultural water management prac-
tices and foster crop production. The benefits achievable with the pro-
posed co-adaptation strategy are expected to be more relevant in climate
change conditions, characterized by less water available and increased
temperature, which might negatively impact on a priori historical prac-
tices.
To estimate the potential worsening of the current situation, the base-
line alternative (i.e., a mix of corn and grass, with a water supply policy
defined with respect to the a priori irrigation demand) is re-evaluated
via simulation over the projected hydroclimatic conditions in 2099. Re-
sults are reported in Figure 5.8. With no-adaptation of either the crop
pattern or the water supply, the performance of the baseline significantly
degrades. The total economic revenue reduces to 56 million of e, with
an irrigation deficit equal to 2990 (m3/s)2. These results demonstrate
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Total revenue: 105 M€ 
Irrigation deficit: 1402 (m /s)3       2

tomato
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Figure 5.9: Co-adaptation alternative in climate change conditions.

that climate change impacts represent significant concerns for the Lake
Como system and adaptation strategies are essential to sustain adequate
agricultural productions.
The activation of the co-adaptation loop can contribute to mitigate the
negative impacts of climate change on both the water supply and de-
mand sides. The results of the co-adaptation alternative in projected
conditions are represented in Figure 5.9. A clear trend is evident with
respect to the co-adaptation alternative in current conditions, with most
of the farmers selecting to grow rice (56 agents) instead of tomato (10
agents). This behavior can be explained by the lower sensitivity of rice
to water stresses (i.e., its ky parameter is equal to 0.6) with respect to
that of tomato. This property allows high levels of production, yield-
ing to a total revenue equal to 105 million of e, although a high irri-
gation deficit (i.e., 1402 (m3/s)2). The results support the possibility
to effectively adopt deficit irrigation strategies in future water scarcity
conditions as suggested by Zhang and Oweis (1999), meaning that the
supply of less water than the full irrigation requirements actually pro-
duces limited yield reductions. Moreover, deficit irrigation might be also
unavoidable due to the expected decrease of water availability in the
summer months combined with the projected increase of the tempera-
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Figure 5.10: Comparison of the a priori historical demand of the Muzza
irrigation district with the actual irrigation demands esti-
mated with the co-adaptation alternatives in current and
climate change conditions.

ture (Figure 5.3). Finally, warmer temperatures are expected to induce
an extension of the agricultural season as illustrated in Figure 5.10, which
shows a trend of sowing dates moved up in March and harvesting delayed
in October and November.

5.4 Discussion and final remarks

In this chapter, the agent-based decision analytic framework is used to
estimate the potential for a co-adaptation strategy of water supply and
demand in the Lake Como system. The analysis aims to assess the ben-
efit achievable in current as well as projected hydroclimatic conditions,
affected by climate change impacts. Both the water manager regulating
the Lake Como and the farmers selecting the crop pattern to grow are
modeled as agents, sharing the same environment subject to the same
changing conditions. The proposed co-adaptation strategy explicitly con-
nects the decision-making problems of the agents by cross-conditioning
their decisions: the farmers select the crop to grow as the one with the
highest revenue on the basis of an expectation of irrigation water supply;
knowing the selected crop pattern, the water manager optimizes the ma-
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nagement of the irrigation supply system to match the actual demand of
the crops.
Results show that it is possible to significantly foster the crop produc-
tion by co-adapting the agents decisions, with an increase of the total
revenue from 144 to 1,977 million of e. This gain is obtained by grow-
ing tomato (i.e., the crop with the highest productivity and price) and
accurately supply water to limit water-related stresses. The irrigation
deficit is equal to 170 (m3/s)2 with co-adaptation, significantly lower
than the one in the baseline alternative (i.e., 390 (m3/s)2). However,
the costs required for converting the farmers’ equipments might signif-
icantly reduce the final profit in the short-term. Under climate change
conditions, the performance of the baseline and of the co-adaptation al-
ternative degrade. Without any form of adaptation, the current practices
represented by the baseline alternative attain a total revenue equal to 56
million of e, representing a decrease of 60% with respect to the revenue
in current conditions. By co-adapting the agents’ decisions, the negative
impacts of climate change are mitigated. Most of the farmers grows rice,
obtaining a total revenue equal to 105 million of e, which corresponds
to an increase of 87% with respect to the no-adaptation baseline. In this
case, the conversion of farmers’ equipment might have a lower impacts
due to the long-term horizon of the investment.
The proposed co-adaptation strategy represents a promising step toward
the enhancement of water resources exploitation in agricultural systems.
However, many aspects of the proposed approach require further investi-
gations. The results illustrated in this chapter are obtained by simulating
the system over a single year for each hydroclimatic scenario, considered
as representative of normal conditions, assuming a perfect-forecast of the
hydroclimatic conditions in the coming year for the selection of the best
crop to grow. The introduction of non-perfect forecasts and the repeti-
tion of the experiments over multiple years will allow the validation of
the results over a broader set of uncertain conditions, depending on the
natural hydroclimatic variability. Moreover, the study is focused on the
management of the Lake Como for irrigation supply only. Potentially
negative effects, for example in terms of flooding in the Como city, will
have to be considered. The adoption of a multi-objective water supply
management is expected to further degrade the performance in terms
of agricultural production. The flexibility of the co-adaptation loop to
conflicting water supply interests will be analyzed. Finally, the repre-
sentation of the socio-economic system is very simple. Future efforts will
concentrate on introducing dynamic crop prices and different scenarios
of flexibility of the socio-economic framework.
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6 Mechanisms design in complex
river basin management
problems

The purpose of this chapter is to apply the agent-based decision ana-
lytic framework (Section 1.3.2) to support water reservoir operations in
managing growing water demands as well as hydroclimatic uncertainties.
The procedure is demonstrated on the Conowingo reservoir, an interstate
water body shared by Pennsylvania (PA) and Maryland (MD) in the
Lower Susquehanna River, characterized by the presence of many con-
flicting stakeholders (agents). Currently that dam provides water supply
to Chester (PA) and Baltimore (MD), cooling water for the Peach Bot-
tom atomic power plant, and minimum regulated flows as defined by
the Federal Energy Regulatory Commission (FERC) to protect fishery
resources. In low flow conditions, FERC requirements tend to drawdown
storage levels, increasing the conflict between the other stakeholders’ ob-
jectives and reducing the recreational value (e.g., boating and fishing
activities) of the system. This system represents a complex river basin
management problem, where the decision-making process is not spatially
distributed as in the other applications (i.e., there is one water reservoir).
However, the adoption of the informative and decision-making supportive
tools of the agent-based decision analytic framework allows the charac-
terization of the complex interactions between the stakeholders affected
by the Conowingo dam operation. The combination of reservoir policy
identification and many-objective optimization under uncertainty (Sec-
tions 2.4.2) supported by visual analytics techniques (Section 2.2) suc-
cessfully captures current reservoir operations and discovers key tradeoffs
between alternative policies. Moreover, this chapter contributes a novel
method, called direct policy conditioning, to design policy mechanisms
for environmental protection through input variable selection techniques
(Section 2.5).
Part of this chapter is adapted from a journal paper under review for
publication in Water Resources Research (Giuliani et al., 2013c) and a
paper for the 2014 IFAC World Congress describing the direct policy
conditioning method is under preparation (Giuliani et al., 2014).
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6.1 Policy inertia and myopia in water reservoir
regulation

River basin management has traditionally been challenged by multi-
ple competing water demands, including domestic and irrigation sup-
ply, flood protection, and hydropower production. Additional challenges
arise with environmental regulations for flows, water quality targets,
recreational interests, and energy markets (e.g., Brown and Carriquiry ,
2007; Fernandez et al., 2012), emphasizing the need to rethink the way
freshwater resources are distributed, managed, and used (Gleick , 2002).
Concerning water storage systems, such a paradigm shift is not eas-
ily achievable: the possibility of re-designing water reservoir regulation
is strongly limited by historical agreements and regulatory constraints
(Fernandez et al., 2013). The limited flexibility of water laws, for exam-
ple in the United States, creates policy inertia, where water institutions
are highly unlikely to change their current practices in absence of a dra-
matic failure or water conflict (Sheer , 2010). Yet, no guarantee exists
that historical management policies will not fail in coming years, espe-
cially as water managers face growing water demands and increasingly
uncertain hydrologic regimes (Milly et al., 2008). There is a significant
need to better understand the consequences of current reservoir opera-
tions while discovering alternative policies that better balance competing
objectives and performance uncertainties.
Prior studies in this area have often neglected the challenging realities of
reservoir operations, assuming complete flexibility when designing opti-
mal operation via optimization models (e.g., Yeh, 1985; Labadie, 2004;
Castelletti et al., 2008a, and references therein), and mostly focusing
either on improving system-wide performance, by including hydrocli-
matic information to better condition the decisions (e.g., Klemeš , 1977;
Tejada-Guibert et al., 1995; Hejazi et al., 2008), or on solving increasingly
larger systems, by addressing the associated curse of dimensionality (e.g.,
Cervellera et al., 2006; Castelletti et al., 2010a, and references therein).
Reservoir operators generally reject the validity of using optimization
models to directly inform actual real-time operations, in particular when
they include uncertainty explicitly (Celeste and Billib, 2009). Conse-
quently, these tools are rarely employed in real operational contexts
(Teegavarapu and Simonovic, 2001). Instead, operators prefer simpler
tools, such as rule curves (Loucks and Sigvaldason, 1982; Loucks et al.,
2005), even though these tools are not able to adapt release decisions
when the system deviates from the “normal” hydroclimatic conditions
assumed in the design of the rule (Maass et al., 1962; Howard , 1999).
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The more uncertain the hydrologic system, the more frequent the devi-
ations from the assumed baseline flow conditions and, accordingly, the
lower the effectiveness of rule-curve-based operations. This is particu-
larly critical given that rule curves are rarely redesigned to account for
changing hydroclimatic conditions. Closing the loop between real opera-
tional decisions and evolving river conditions (e.g., Soncini-Sessa et al.,
2007a) will be key to effectively adapt to increasingly variable and ex-
treme hydrologic conditions.
In addition to this inflexibility, traditional rule curves also suffer from my-
opia: they fail to explore the full set of tradeoffs between evolving multi-
sector objectives and preferences in river basins. Most major reservoirs
have had their rule curves defined in prior decades, where planning meth-
ods required strong a priori assumptions on the preferences (or priorities)
of a representative, idealized decision maker across a limited number of
operating objectives (U.S. Army Corps of Engineers, 1977). Just as a
changing hydrological context poses a challenge, evolving objectives and
preferences for reservoir operations can be another mode of failure for
fixed rule curves. Although these issues have long been recognized, only
recently have a posteriori methods coupled with visual analytics emerged
to address them for complex engineered river basin systems, see Sections
2.1-2.2.

6.2 Problem formulation

6.2.1 The Lower Susquehanna case study

The Susquehanna River (Figure 6.1) is the longest river on the eastern
United States, draining a catchment area of about 71,000 km2 through
New York, Pennsylvania, and Maryland, ultimately contributing 50% of
the freshwater flowing into the Chesapeake Bay. The Conowingo reser-
voir is an interstate water body shared by Pennsylvania and Maryland
in the Lower Susquehanna, about 16 km from the Susquehanna River
mouth. The dam, which was completed in 1928 for hydropower gener-
ation purposes, is the largest non-federal dam in the U.S. regulating a
large share of the flow in the Lower Susquehanna with substantial im-
pacts on multiple stakeholders. The Conowingo reservoir contributes to
the water supply of Chester (PA) and Baltimore (MD). Conowingo re-
leases are also critical for cooling the Peach Bottom atomic power plant
and downstream releases are subject to minimum flow requirements de-
fined by the Federal Energy Regulatory Commission (FERC) to protect
fishery resources. Moreover, in 1968 the reservoir was connected to the
Muddy Run Pumped Storage Hydroelectric Facility, which cycles water
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Figure 6.1: Map of the Susquehanna River basin.

back and forth from Conowingo for additional power generation. Finally,
the Conowingo reservoir provides valuable recreational and ecosystem
services.
The FERC minimum flow requirements introduced in 1988 protect fish-
ery resources threatened by the hydropower management of the dam.
The Conowingo reservoir is unique as a high valued river basin system
that is being adaptively managed by the SRBC in collaboration with
its core service constituencies (Federal Energy Regulatory Commission,
1989). In average flow conditions, water availability is generally sufficient
to maintain hydroelectric operations, water supply, meet environmental
flow requirements, and sustain recreational activities. Yet, in low flow
conditions challenging tradeoffs emerge for Conowingo operations to sup-
ply water to Baltimore, Chester, and the Peach Bottom atomic power
plant, while seeking to minimize negative impacts on the recreational and
touristic interests. The normal level of the Conowingo reservoir along
with the critical levels for water supply and the target level for recreation
are reported in Table 6.1.
The interstate Susquehanna River Basin Commission (SRBC) actively
coordinates conflicting water demands and water related interests be-
tween the basin’s stakeholders. However, growing regional water de-
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Table 6.1: Reference levels for the Conowingo reservoir (ft).

Normal level 108.5
Touristic weekend recreational level 106.5
Critical level for Peach Bottom 103.5

atomic power plant
Critical level for Chester 100.5

water supply
Critical level for Baltimore 91.5

water supply

mands and climate change are significant concerns for the SRBC. As a
recent example, the SRBC coordinated a regional planning effort assess-
ing a set of alternative modifications to the FERC requirements to miti-
gate the negative impacts of the low reservoir levels (Swartz , 2006). The
effort represents a substantial participatory negotiation process, with the
SRBC promoting a direct involvement of the stakeholders to evaluate
the different alternatives with the support of OASIS model simulations
(Randall et al., 1997; Sheer and Dehoff , 2009), a general purpose water
resources model that uses a linear program solver to allocate water to
meet multi-sector demands. Given the results of the modeled alterna-
tives, the possibility of including the 800 cfs leakages from the closed dam
gates toward meeting the downstream minimum flow requirements has
been selected as the most critical action in managing the Conowingo dam
during drought periods. The result of this intensive planning effort is the
identification of alternative management strategies for implementing the
credit for leakages and specifying the hydrologic conditions under which
this credit is warranted. According to Swartz (2006), the most promising
alternatives are summarized below:

- Baseline, representing the current situation where the Conowingo
reservoir provides public water supply and the downstream releases
are regulated by Exelon for hydropower production, subject to the
downstream FERC minimum flow requirements (i.e., to release at
least the maximum between the minimum environmental flow and
the inflow registered at Marietta) without including the credit for
the leakage;

- Automatic Credit, which proposes to automatically include the
credit allowance in meeting the FERC minimum flow requirements.
Yet, the credit is never available in April, May, or June, in order

105



6 Mechanisms design in complex river basin management problems

to protect fish migration.

- Critical Level, which proposes to allow the 800 cfs credit only when
the elevation of the Conowingo reservoir drops below a critical level
equal to 104.5 ft. That stage was selected because it guarantees
operations at Peach Bottom and Muddy Run facility. The credit
is never available in April, May, or June.

- Minimum Flow, which proposes to consider the FERC minimum
flow requirements as absolute constraints independently from the
flows at Marietta. The credit for the leakage is always counted in
this scenario, but in April, May or June.

All of these alternatives have been designed to manage credit for leakages
and the minimum flow requirements only, according to the historical
agreements and the regulatory constraints. However, there is currently a
limited understanding of the potential benefits achievable by significant
modifications of the current Conowingo reservoir operating policy as well
as the impacts of uncertainties in the basin’s hydrologic regimes. This
chapter builds on the adaptive management efforts of the SRBC and
contributes a set of candidate policies that could aid the dam operator in
balancing its multi-sector demands and hydroclimatic uncertainty. The
study is focused on the identification and refinement of the operating
policy for the Conowingo dam, while a fixed weakly rule is assumed for
the operation of Muddy Run according to the hydropeaking strategy
reported in Swartz (2006) and illustrated in Figure 6.2.
The model of the system (Figure 6.3) is mainly based on the repre-
sentation of the dynamics of the two water reservoirs defined by the
mass balance equations of the water volume sit stored in each reservoir
(i=Conowingo, Muddy Run):

sCO
t+1 = sCO

t + qCO
t+1 − rCO

t+1 − ECO
t+1 − qpt+1 + rMR

t+1

sMR
t+1 = sMR

t + qMR
t+1 − rMR

t+1 − EMR
t+1 + qpt+1

(6.1)

where qCO
t+1 is the inflow to the Conowingo reservoir in the interval [t, t+

1), which is composed by the flow measured at Marietta gauging station
and the lateral contribution between Marietta and the reservoir and qMR

t+1

is the inflow to Muddy Run. The release rit+1 is given by the release func-
tion rit+1 = f(sit, u

i
t, q

i
t+1), where uit is the release decision and rit+1(·) is

a non-linear function describing the stochastic relation between the de-
cision uit and the actual release rit+1 (Piccardi and Soncini-Sessa, 1991).
The Conowingo release rCO

t+1 is composed by four different releases, one
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Figure 6.2: Weakly rule defining Muddy Run facility hydropeaking
operation.

for each reservoir outlet (i.e., the atomic power plant, Baltimore and
Chester water supply, and the downstream releases connected to the
Conowingo hydropower plant). The water pumped from Conowingo to
Muddy Run is represented by qpt+1. Finally, E

i
t+1 is the loss for evapora-

tion in the two reservoirs. The decision time step is equal to 4 hours to
balance the need of following the hourly dynamics of the energy prices
and the specification of a time step sufficiently long to not be impacted
by the mechanics of turbines operation (e.g., cavitation, ramp up).
The multiple stakeholders (agents) interests affected by the Conowingo
dam operation are modeled using the following six objectives, computed
over a simulation horizon H:

- Hydropower revenue: the annual economic revenue from energy
production at the Conowingo hydropower plant (to be maximized)
defined in eq. (6.2) as the product of the hourly energy production
HPt (MWh) and the hourly energy price ρt (US$/MWh). The
hydropower production is defined as HPt =

(
ηgγwh̄tq

Turb
t

)
· 10−6,

where η is the turbine efficiency, g = 9.81 (m/s2) the gravitational
acceleration, γw = 1000 (kg/m3) the water density, h̄t (m) the net
hydraulic head (i.e., reservoir level minus tailwater level), qTurb

t

(m3/s) the turbined flow. According to Exelon (2010), the energy
prices are defined by the 7-hour moving average of the historical
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Figure 6.3: Schematic representation of the main components of the
Lower Susquehanna model.

energy price trajectory in PJM energy market;

Jhyd =

H∑
t=1

(HPt · ρt) (6.2)

- Water supply to Baltimore, Chester, and the Atomic Power Plant:
the daily average volumetric reliability (to be maximized) defined
as

JV R,i =
1

H

H∑
t=1

(
Y i
t /D

i
t

)
(6.3)

where Y i
t (m3) is the daily delivery, Di

t (m3) is the correspond-
ing demand (Figure 6.4a-c), and i = (Baltimore, Chester, Atomic
Power Plant);

- Recreation: the storage reliability (to be maximized) in the week-
ends of the touristic season (i.e., from Memorial Day to Labor
Day), defined as

JSR = 1− nF
2Nwe

(6.4)
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Figure 6.4: Public water supply demands for the Peach Bottom atomic
power plant (a), Baltimore (b), and Chester (c), and the
FERC minimum flow requirements (d).

where nF is the number of days during which the reservoir level
is below the target level of 106.5 ft (which guarantees boating and
recreational activities) and Nwe is the number of weekends in the
touristic season;

- Environment : the daily average shortage index with respect to the
FERC minimum flow requirements (to be minimized), defined as

JSI =
1

H

H∑
t=1

(
max(Zt − Yt, 0)

Zt

)2

(6.5)

where Yt (m3) is the daily release and Zt (m3) is the corresponding
FERC flow requirement (Figure 6.4d). The quadratic formulation
aims to penalyze severe deficits in a single time step, while allowing
for more frequent, small shortages (Hashimoto et al., 1982).

6.2.2 Many-objective policy identification and refinement
under uncertainty

In this chapter, the first goal of the agent-based decision analytic frame-
work is to provide support to the SRBC in re-designing the operation of
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AND REFINEMENT

Figure 6.5: Illustration of the proposed procedure combining reservoir
policy identification, policy refinement with many-objective
optimization under uncertainty, and visual analytics.

the Conowingo reservoir using a combination of reservoir policy identifi-
cation, policy refinement with many-objective optimization under uncer-
tainty, and visual analytics according to the procedure shown in Figure
6.5.
First, the current baseline operating policy is identified in the form of a
radial basis functions (RBFs) policy, mapping relevant information into
release decisions. According to the implicit policy identification approach
(Section 2.4.2), the dam operator is modeled as a rational agent seeking
to maximize primary operating objectives (i.e., guaranteeing the public
water supply and maximizing the hydropower revenue), subject to the
FERC minimum environmental flow requirements. The baseline policy
is hence defined as a multi-input (i.e., time and reservoir level) single-
output function (i.e., downstream release decision) with four RBFs, ac-
counting for 20 parameters. The three water supply withdrawals are set
equal to the corresponding demands. This hypothesis means that they
are always satisfied if the level in the reservoir is sufficiently high to ac-
tivate the corresponding outlets. The quality of the identified baseline
policy is validated by its ability to replicate historical release dynam-
ics (i.e., the flows measured at the USGS gauging station downstream
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of the Conowingo dam). Subsequently, this baseline policy is refined
via many-objective optimization, and the associated tradeoffs visually
explored. The Pareto-optimal policies are defined as multi-input multi-
output functions with four RBFs (accounting for 32 parameters), which
provide the four release decisions, corresponding to the downstream re-
lease as well as the ones for the public water supply, as a function of time
and reservoir level. Visual analytics plays a key role in the proposed
framework by allowing to comparatively analyze the current policy in
the context of the full tradeoffs surface as well as in the corresponding
operating policy decision space. Two different formulations of the Lower
Susquehanna River management problem are considered. The first for-
mulation, which will be termed the historical formulation, is defined in
eq. (6.6), where the operating objectives (see eqs. (6.2)-(6.5)) are evalu-
ated over the historical realization of the hydroclimatic variables, namely
inflows and evaporation rates.

θ∗ = arg min
θ

J(θ) (6.6)

To assess the vulnerability of the solutions to hydroclimatic uncertain-
ties, in the second formulation, which will be termed stochastic formu-
lation, the same objectives are instead evaluated over an ensemble Ξ
of stochastic inflows and evaporation rates realizations generated with
the K-nearest neighbor resampling methods described in Section 2.4.2.
Figure 6.6 illustrates the annual flow duration curves for both the histo-
rical flows (1930–2001) as well as the stochastic ensemble at the Marietta
gauging station. Although the stochastic ensemble directly models the
autocorrelation and variability within historical record, the generated
equally plausible water years clearly cover a far broader range of hydro-
climatic conditions. This is especially true for the low flow conditions
that have the most critical impact on the Conowingo dam’s operations.
The uncertainty introduced by the stochastic ensemble is then filtered
adopting a minimax approach (eq. (6.7)) which minimizes the objectives
in the worst-case realization. This approach identifies robust operating
policies able to guarantee certain performance. Good solutions must
indeed robustly perform for rapidly increasing numbers of Monte Carlo
samples during the search process because new, independent samples are
used to evaluate the objectives in successive iterations of the algorithm
search. If a solution survives to the final generation, it has already been
evaluated for a rapidly increasing number of realizations based on its
ability to survive and propagate in the search population (Miller and
Goldberg , 1996).
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Figure 6.6: Annual Flow Duration Curves of the flows at Marietta gaug-
ing station. The historical records (1930–2001) are in blue,
the generated stochastic ensemble in gray.

θ∗ = arg min
θ

max
Ξ

J(θ) (6.7)

The proposed policy identification and refinement procedure employs
the Borg MOEA to optimize the operating policies via direct policy
search (DPS, see Section 2.4.2). The default algorithm parametrization
suggested by Hadka and Reed (2013) is used as the Borg MOEA has
been demonstrated to be relatively insensitive to the choice of param-
eters, showing a high probability of attaining successful search if the
algorithm is run for a sufficient number of iterations (Hadka and Reed ,
2012; Reed et al., 2013). Epsilon dominance is used to set the resolu-
tion of the operating objectives. In this work, epsilon values are equal
to 0.5 for hydropower revenue, 0.05 for Baltimore, Chester, and Atomic
Power Plant volumetric reliability, 0.05 for recreational storage relia-
bility, 0.001 for the environmental shortage index. The computational
requirements for this study were dominated by the optimization under
stochastic hydroclimatic conditions. In the stochastic optimization, each
function evaluation performed by the Borg MOEA comprises 50 Monte
Carlo simulations over a one year horizon. The stochastic optimization
was run for 1 million function evaluations. To improve solution diversity
and avoid dependence on randomness, the solution set from each formu-
lation is the result of 30 random optimization trials (i.e., 30 seeds with
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50 million simulations each yields 1.5 billion simulations in total). The
final Pareto-optimal policies are obtained as the set of nondominated
solutions identified from the results of all the optimization trials.
The stochastic optimization was performed on the Texas Advanced Com-
puting Center (TACC) Stampede Cluster. The 6,400 nodes of the TACC
Stampede system each contain two Intel Xeon E5 processors and one In-
tel Xeon Phi Coprocessor, for a total of 102,400 processing cores. Each
optimization run was parallelized to be run on 4096 processing cores si-
multaneously. In total, approximately 200,000 computing hours were re-
quired to complete the study, ensuring the best possible approximation
to the Pareto-optimal solution set within the limits of computational
tractability. It should be noted that the computational experiment is
more rigorous than would be necessary in practice. Parallel search is
used to maximize the exploration of the problem’s decision space while
minimizing the time required to attain the search results. The Borg
MOEA was robust in solving the problem with far fewer function evalu-
ations (100,000-200,000) and showed limited variability across multiple
random search trials.

6.2.3 The agent-based model

The policy identification and refinement procedure described in the pre-
vious section aims to support the design of improved operating poli-
cies able to address many competing demands and system uncertainties.
Problem (6.6), and its stochastic extension (eq. 6.7), assumes the point
of view of the SRBC and considers all the stakeholders (agents) affected
by the Conowingo dam operation as equally important. An objective
function is indeed defined for each agent (Section 6.2.1), yielding to the
formulation of six-objective management problems. Yet, it is very un-
likely that primary objectives such as the public water supply have the
same strategic role of the recreational interests. The adoption of an
agent-based perspective allows a more realistic representation of the ac-
tual decision-making structure of the Lower Susquehanna problem. In
the agent-based model illustrated in Figure 6.7, each stakeholder is mod-
eled by one agent, but they are differentiated in active agents (shown in
blue) and passive agents (shown in green). Four active agents represent
the primary objectives, namely public water supply to Chester and Bal-
timore, atomic power plant cooling, and hydropower production. These
active agents can be also associated to the four controlled releases of the
Conowingo reservoir. Two passive agents represent instead the Environ-
ment and Recreation objectives. Although the environmental protection
is a significant concern for the SRBC, it is modeled by a passive agent
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Figure 6.7: Agent-based model of the Lower Susquehanna system.

as the FERC requirements introduced in 1988 represents an important
example of mechanism design where a watershed authority, namely the
SRBC, tries to protect the environment threatened by the operation of
the system, originally driven only by the primary objectives. Also the
alternatives recently negotiated by SRBC and described in Section 6.2.1
are alternative mechanism design options to attain a better system-level
performance by constraining the Conowingo reservoir operation.

In this chapter, the second goal of the agent-based decision analytic
framework is to identify effective mechanism design strategies through
the application of the direct policy conditioning method (Section 2.5).
The stochastic Pareto-optimal policies designed with the 6-objective
problem formulation provide a reference for the best achievable perfor-
mance. At the other extreme, a lower bound solution is also considered
as representative of the conditions before 1988, with no flow require-
ments. This solution is designed by solving a four-objective problem
which considers only the interests of the four active agents. Finally, the
current policy and the SRBC negotiated alternatives represent empirical
mechanism design solutions to be contrasted with the solution obtained
with DPC.
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6.3 Results

6.3.1 Identification of the baseline alternative

In order to discover operating policies that could improve the manage-
ment of the Lower Susquehanna, it is pivotal to accurately model the dy-
namics and preferences currently guiding the operation of the Conowingo
Dam. The current Conowingo operations are identified using the implicit
policy identification approach (Section 2.4.2) and validated by running
a simulation over historical hydroclimatic conditions (i.e., inflows and
evaporation rates) and comparing the resulting releases with respect to
the flows measured at the USGS gauging station downstream of the
Conowingo dam (USGS gauge 01578310).
The results of the policy identification are reported in Figure 6.8. Fig-
ure 6.8a shows the trajectory of the daily Conowingo reservoir level in
1999, with the attained values varying between the minimum and maxi-
mum elevations of 101.2 ft and 110.2 ft. This range of storage levels fall
within the feasible limits imposed on Conowingo Dam. Year 1999 was
selected as it represents a highly challenging dry period, where opera-
tions in the system are actively managing the tradeoffs for Conowingo in
low flow conditions. The simulated and observed trajectories of releases
along with the cumulative releases are shown in Figures 6.8b and 6.8c,
respectively. Both figures show that the implemented implicit model-
ing approach effectively captures the historical operation of the system.
Note that the over-estimation of the peaks (spills) in Figure 6.8b can be
explained by the 4-hour time step of the model which keeps the spillways
open longer than in reality. Figure 6.8d shows the release decisions for
different reservoir levels according to the estimated policy: the concave
shape serves to maximize hydropower production, which depends on the
turbined flow and the net hydraulic head (i.e., reservoir level minus tail-
water level), with higher releases in the hours with higher energy prices.
The baseline policy identified and illustrated in Figure 6.8 provides a
highly flexible tool for contrasting how the Conowingo Dam’s current
operations perform relative to alternative operating policies designed via
many-objective policy refinement. Figure 6.9 compares the baseline per-
formance with the 6-objective historical Pareto-optimal policies, where
Recreation, Atomic Power Plant, and Environment are plotted on the
primary axes, with the black arrows identifying the directions of increas-
ing preference. The orientation of the cones represents the reliability of
meeting Chester’s water supply demands, with the best solutions repre-
sented by upward cones. The size of the cones is proportional to reliabil-
ity of meeting Baltimore’s water supply demands, with the best solutions
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Figure 6.8: Trajectories of Conowingo reservoir level in 1999 under the
estimated baseline policy (panel (a)). Comparison of releases
and cumulated releases in 1999 (panels (b)-(c), respectively)
obtained via simulation of the estimated baseline policy with
the ones measured downstream of Conowingo dam. Repre-
sentation of the estimated baseline policy (panel (d)).

represented by the largest cones. Finally, the hydropower revenue is rep-
resented by the color of the cones where maximum revenues are red. So
in the figure, the ideal solution is a large red cone oriented upward near
the ideal point designated as the black circle in the bottom-right corner of
the figure. The baseline policy is identified by the boxed cone. This pol-
icy is very good in terms of hydropower production, with a revenue of 79
million US$, and water supply to Baltimore and Chester, with volumetric
reliability equal to 1.0 in 1999. It also demonstrates good performance
in terms of reliably meeting the Environment objective (i.e., the FERC
minimum environmental flow constraint), while it struggles to reliably
provide water for cooling the atomic power plant attaining a volumetric
reliability of 0.85. The Peach Bottom atomic power plant has the high-
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Figure 6.9: Comparison of the performance over historical hydrocli-
matic conditions of the baseline alternative and the historical
Pareto-optimal policies.

est intake (Table 6.1) and therefore suffers water shortages when the
reservoir level decreases (see the trajectory in Figure 6.8a). Finally, the
baseline policy has a very poor performance in terms of Recreation, with
a storage reliability equal to 0.0. The results shown in Figure 6.9 demon-
strate that is possible to exploit publicly available historical streamflow
observations to discover the implicit structure of preferences driving the
historical reservoir operation: hydropower revenue, water supply, and
low flow environmental concerns are most strongly emphasized in the
baseline operating policy for Conowingo. This can occur because either
these concerns are easily satisfied or they are strongly shaping manage-
ment preferences (or both).
Figure 6.9 also shows the optimized policies that compose the deter-
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Figure 6.10: Parallel axes plot comparing the performance over historical
hydroclimatic conditions of the baseline alternative and the
historical Pareto-optimal policies.

ministic historical formulation’s Pareto-optimal set. The objective cal-
culations in these results are based on the historical realization of the
hydroclimatic variables. The current operating policy performs very well
in most objectives relative to the Pareto-optimal alternatives except for
the Recreation and Atomic Power Plant objectives. Although Recreation
may be viewed as a less critical concern, the reduced reliability of pro-
viding cooling water to the Peach Bottom atomic power plant is likely a
far more critical concern. However, an increase in this meeting cooling
water needs will negatively impact on the reliability of the water supply
to Baltimore and Chester (i.e., a strong tradeoff between these objec-
tives). Figure 6.10 presents a parallel axes plot (Inselberg , 1997) to serve
as another visual tool for understanding key interacting tradeoffs for the
Lower Susquehanna. This parallel axes plot representation shows each
solution as a line crossing the six axes, representing the six objectives, at
the values of their corresponding performance. In the plot, the objective
values are normalized between their minimum and maximum values and
the axes are oriented so that the direction of preference is always upward.
Consequently, the ideal solution would be a horizontal line running along
the tops of all of the axes. The conflicts are designated as diagonal lines
between two adjacent axes. Figure 6.10 shows clear tradeoffs, especially
when seeking to maximize the hydropower revenue represented by red
solutions. Attaining high reliability for the atomic power plant cooling
water supply strongly conflicts with contributing to Baltimore’s water
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supply and maintaining sufficiently high reservoir levels for recreation.
Baltimore’s water supply contributions from Conowingo Dam also face a
strong conflict with meeting the Environment objective (or FERC regula-
tions), probably because Baltimore has the highest public water demand
(Figure 6.4).
Overall, when evaluated using solely the observed historical record for
the Lower Susquehanna system, Conowingo Dam’s current baseline pol-
icy effectively addresses several of the system’s primary operating objec-
tives and raises some concerns about reliably providing cooling to the
Peach Bottom atomic power plant. However, these results are evaluated
over a single realization of historical hydroclimatic conditions and are re-
flective of the current approach used to model and manage the basin. A
key question still remains unanswered by these results. Are the history-
based reliabilities for the multi-sector services provided by Conowingo
overconfident and biased by neglecting hydroclimatic uncertainties?

6.3.2 Policy performance over stochastic hydroclimatic
conditions

In order to reply to the above question, all of the alternatives illustrated
in Figures 6.9-6.10 are re-evaluated via simulation over an ensemble of 50
stochastic hydroclimatic realizations, with the objective values computed
according to the minimax approach defined in eq. (6.7). The comparison
between the performance differences between the historical and stochas-
tic conditions is presented in Figure 6.11. Note that this performance
evaluation is actually biased toward allowing the history-based to main-
tain high levels of performance given that the re-evaluations use only 50
hydroclimatic scenarios versus the full 10,000 realizations illustrated in
Figure 6.6. Consequently, degradations in performance are of significant
concern. Figure 6.11 illustrates how the stochastic re-evaluation degrades
the prior results. The performance of the baseline solution is significantly
worse under stochastic conditions, with substantial degradation in hy-
dropower revenue (from 79 to 39 million US$), environmental shortage
index (from 0.023 to 0.106), and reliability of the atomic power plant
supply (from 0.85 to 0.63). On the other hand, it maintains high reli-
ability for both Baltimore and Chester, while the Recreation reliability
remains equal to zero. The performance of the historical Pareto-optimal
policies also strongly degrade when moving to the stochastic simulation.
The parallel axes plot compares the historical evaluation (green) with
the stochastic re-evaluation (red). Significant reductions in performance
occur for hydropower revenue (with the best solutions degrading from 79
to 53 million US$), environment (with the shortage index of the worst
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Figure 6.11: Comparison of the historical performance of the baseline
policy and the historical Pareto-optimal solutions and their
re-evaluation over an ensemble of 50 stochastic realizations.

solutions increasing from 0.198 to 0.368), and recreation (with the high-
est reliability decreasing from 0.96 to 0.57). These results clearly show
that the intrinsic uncertainties in the natural processes strongly impact
the policies’ performance, with some objectives more sensitive than oth-
ers to hydroclimatic variability. The analysis over a single realization
of historical hydroclimatic conditions is therefore weak, indicating that
stochasticity must be explicitly considered in the design of effective water
management strategies for the Lower Susquehanna.

6.3.3 Stochastic Pareto-optimal policies

Growing water demands and low flow conditions are significant concerns
for the SRBC that shaped recent adaptive management efforts to identify
a set of potential modifications to the current baseline operation seek-
ing to better balance the multi-stakeholders demands within the Lower
Susquehanna (as summarized in Section 6.2.1). Figure 6.12 compares the
relative performance of the baseline policy and these modified alterna-
tives via simulation over the same 50 stochastic hydroclimatic scenarios
discussed above. The proposed alternatives do offer significantly differ-
ent performance across the six objectives illustrated in the parallel axes
plot. The critical level alternative (red) has the same performance in
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Figure 6.12: Performance of the alternatives negotiated by the SRBC
over an ensemble of 50 stochastic hydroclimatic realizations.

all objectives as the baseline solution (dashed black line). Interestingly,
the minimum flow alternative (green) produces results that are counter
to the goal of the negotiated agreements, obtaining lower performance
than under the baseline operation in many objectives and demonstrat-
ing that the Conowingo reservoir is unable to meet the environmental
requirements in drought conditions. Finally, the automatic credit alter-
native (blue) Pareto-dominates the baseline solution, making it the most
promising alternative. Overall, the results of Figure 6.12 are consistent
with the those attained in the SRBC facilitated negotiation (Swartz ,
2006).
However, this set of solutions has been identified by focusing solely on
how to manage the credit for conveyance leakages. Figure 6.13 illustrates
the effects of broadening the scope of the analysis to compare the perfor-
mance of this set of alternatives with those achievable via policy refine-
ment by using many-objective optimization under uncertainty. It shows
the 6-dimensional objective space, with the baseline and the three alter-
natives proposed by the SRBC represented by the opaque boxed cones,
while the stochastic Pareto-optimal policies are shown with transparency.
Figure 6.13 suggests that the alternatives proposed by the SRBC are es-
sentially equivalent to the baseline policy in this broader scoped problem
formulation (i.e., the cones are almost overlapped). These results illus-
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Figure 6.13: Comparison of the performance over stochastic hydrocli-
matic conditions of the baseline policy, the alternatives ne-
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trate how the policy inertia (i.e., the resistance to changing operating
policies) can induce policy myopia. Moreover, Figure 6.13 shows the
potentiality of an a posteriori decision-making approach for providing a
broader contextual understanding of objective tradeoffs and alternative
reservoir policies. The analysis over stochastic hydroclimatic conditions
clarifies the potential refinement of the baseline policy, especially in those
objectives which are more sensitive to system uncertainties. The perfor-
mance of the baseline solution can be significantly improved in terms of
Hydropower, Atomic Power Plant, Environment, and Recreation at the
cost of a small reduction in the reliability for Baltimore and Chester,
which have the option to obtain water from other sources. Depending
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on the SRBC structure of preference, the hydropower revenue can be
increased from 39 to 74 million US$, the reliability of the atomic power
plant supply from 0.63 to 0.97, the storage reliability from 0 to 0.85, and
the environmental shortage index can be reduced from 0.106 to 0.023.
To better understand the stochastic Pareto-optimal policies and pro-
vide useful information for the SRBC and the stakeholders (agents)
involved in the problem, the dynamic behavior of the Lower Susque-
hanna system under these alternative regulations is analyzed. Figure
6.14 shows the trajectories of downstream release, reservoir level, and
atomic power plant supply in 1999. The historical trajectory is shown
as a thick black line and the stochastic Pareto-optimal solutions are col-
ored for the respective Hydropower revenue, Environment, Recreation,
and Atomic Power Plant objectives in panels (a), (b), (c), and (d) re-
spectively. Figure 6.14a shows the downstream release trajectories (in
logarithmic scale). The main difference between the current baseline
operations for the Conowingo Dam and the high-revenue trajectories
(red) is the latter’s high releases during the summer, when the reser-
voir level is generally low and higher releases are needed to maximize
energy production. The ability to sustain summer releases is also critical
for maintaining high levels of performance for the Environment objec-
tive as shown by the red trajectories in Figure 6.14b. Here, the red
policies are able to provide higher releases in the summer by allowing
small and short duration deficits with respect to the minimum flow re-
quirements (dotted black line) as induced by the quadratic formulation
of the shortage index objective (Hashimoto et al., 1982). These results
highlight that FERC regulations may strongly reduce the sustainability
of the basin’s multi-sector services. The adoption of RBFs policies pur-
posefully avoided overly constraining the problem formulations to attain
a broad scope of operating policies and their consequent tradeoffs for
the Conowingo Dam. Figure 6.14c shows the Conowingo reservoir level
trajectories. A clear pattern is evident in summer (the recreation ob-
jective is formulated with respect to the touristic season only) with the
red policies generating periodic peaks during the weekends. The base-
line policy produces consistently draws down and consequently performs
very poorly in terms of Recreation. Finally, Figure 6.14d represents the
atomic power plant supply trajectories. The red trajectories, especially
in summer, are slightly less than the water demand and this conservative
strategy avoids the reservoir level drawdown obtained with the baseline
regulation (see panel (c)), thus ensuring the possibility of using the outlet
located at 103.5 ft. for a longer period.
To illustrate how the agent-based proposed decision analytic framework
could be exploited to provide direct recommendations to the SRBC, the

123



6 Mechanisms design in complex river basin management problems

Figure 6.14: Comparison of the trajectories of the downstream release,
level, and atomic power plant supply under the baseline
alternative (thick black line) and the stochastic Pareto-
optimal policies over historical hydrology.

analysis of the trajectories shown in Figure 6.14 is coupled with the
investigation of their corresponding reservoir policies as illustrated in
Figure 6.15. In particular, since the policies are time-varying, the anal-
ysis is focused on the shape of the summer operating rules, in a week
day for hydropower and in a weekend for the other objectives. As shown
in Figure 6.14, the summer is the most critical period of the year, when
most of the challenging tradeoffs emerges. Each line therefore defines the
release decisions as a function of the reservoir water levels (for a fixed
time instant). Most of the stochastic Pareto-optimal policies represent-
ing the downstream releases (Figure 6.15a-c) is more conservative and
releases less water than the baseline alternative except for high water
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Figure 6.15: Comparison of the baseline alternative (thick black line)
with the stochastic Pareto-optimal policies colored with re-
spect to their respective performance.

levels conditions, thus saving water to face droughts. Note the inversion
of the colors between panel (a) and panel (c), confirming the strong con-
flict existing between Hydropower and Recreation. The best policies for
this latter (red lines in panel (c)) do not release when the level is below
108 ft to maximize the storage reliability, but they strongly reduce the
corresponding hydropower revenue (blue lines in panel (a)). Conversely
the best policies in panel (a) are poorly performing in panel (c), with
the baseline policies, which is similar to blue stochastic Pareto-optimal
solutions, that attains a storage reliability equal to zero. The policies
for the atomic power plant release (Figure 6.15d) are more flat. Again,
the best policies (dark red) are more conservative that the baseline and
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releases slightly less than the water demand. This strategy results to
be particularly effective in uncertain conditions, and allows significantly
improvements in the performance of the baseline policy marked on the
colorbars. Moreover, Figure 6.15 shows the full range of options avail-
able to the SRBC to achieve a desired level of performance on the multi-
objective tradeoff surface.

6.3.4 SRBC recommendations

To further illustrate how the SRBC could refine the current operation of
Conowingo Dam, the management preferences identified on the baseline
policy are used to eliminate (or “brush out”) Pareto-optimal policies that
fail to meet the SRBC requirements. The full stochastic Pareto-optimal
set contains 1490 solutions. This set of solutions provides a rich context
for understanding complex management tradeoffs and dynamics. Figure
6.16 illustrates how to obtain a smaller subset of interesting candidates
policies to improve upon the Conowingo Dam’s current baseline opera-
tions. The following criteria are applied to select the policies shown in
Figure 6.16: Hydropower revenue ≥ 60 million US$/year, Atomic Power
Plant reliability≥ 0.90, Baltimore reliability≥ 0.85, Chester reliability≥
0.90, and environmental shortage index ≥ 0.10. The underlying idea is to
select solutions that outperform the baseline policy, as well as the other
alternatives negotiated by the SRBC, at the cost of a small reduction in
the reliability for Baltimore and Chester. All the selected alternatives
represent potentially interesting compromise solutions which effectively
balance the competing multi-sector demands in the Lower Susquehanna
system according to the preference structure associated to the baseline
operation, which considers Recreation as a secondary objective. Among
the set of policies selected in Figure 6.16, one policy is selected to be
further analyzed.
Results show that adopting the recommended solution instead of main-
taining the current reservoir regulation, the SRBC would potentially at-
tain an increase in the hydropower revenue equal to 22 million US$/year,
0.07 in recreational storage reliability, 0.29 in the Atomic Power Plant
reliability, and a reduction of 0.05 in terms of environmental shortage
index. These values correspond to a relative improvement of 56% in Hy-
dropower, 47% in Environment, and 46% in Atomic Power Plant. The
increase in Recreation is limited (i.e., from 0 to 0.07) as the current pref-
erence structure does not prioritize this objective. However, as shown in
Figure 6.15c, there exists a large opportunity for obtaining higher stor-
age reliability by adopting other policies with different balances of the
objectives. In general, the recommended solution exhibits the potential
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Figure 6.16: Identification of a set of potential candidate policies that
might replace the baseline. The criteria adopted are the fol-
lowing: Hydropower revenue≥ 60 million US$/year, Atomic
Power Plant reliability ≥ 0.90, Baltimore reliability ≥ 0.85,
Chester reliability ≥ 0.90, environmental shortage index ≥
0.10

to significantly outperform the baseline regulation with careful modi-
fication of summer releases, producing a policy that is more robust to
hydroclimatic uncertainties and also better addresses the tradeoffs across
the Conowingo Dam’s multiple stakeholders objectives.

6.3.5 Direct policy conditioning

Although the recommendations proposed in the previous section signifi-
cantly improve the performance of the baseline policy in addressing sys-
tem uncertainties and objective tradeoffs, the recommended policies are
designed by assuming the SRBC effectively controls the Lower Susque-
hanna system and represents all the stakeholders (agents) involved. The
many-objective optimization problem indeed considers six objectives, one
for each agent. The stochastic Pareto-optimal policies therefore repre-
sents the best achievable performance at the system-level, possibly fil-
tered as in Section 6.3.4, but they do not consider the actual decision-
making structure of the Lower Susquehanna problem, which can be bet-
ter represented by the agent-based model described in Section 6.2.3,
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Figure 6.17: Representation of the 32 parameters values defining the
stochastic Pareto-optimal policies.

comprising four active agents (i.e., hydropower and public water sup-
plies) and two passive agents (i.e., environment and recreation). The
adoption of direct policy conditioning (DPC, see Section 2.5) provides
potential mechanism design strategies to better constrain the individu-
alistic policy which reflect only the interests of the active agents in order
to protect the environment. The performance in terms of environmental
shortage index under stochastic hydroclimatic conditions (Figure 6.13)
is indeed a significant concern under the baseline policy as well as the
alternatives negotiated by the SRBC, which are all based on the FERC
minimum flow requirements.
The decision space of the Lower Susquehanna management problem is
shown in Figure 6.17, where each axis represents one parameter of the
stochastic Pareto-optimal policies. Each line represents one RBFs oper-
ating policy, colored for the respective performance in the Environment
objective. Given the complexity of this 32-dimensional decision space, it
is difficult to recognize an environmental signature in the values of the pa-
rameters, meaning a clear range for each parameter associated to a good
performance in terms of environmental shortage index. The adoption
of input variable selection techniques aims to support the identification
of the subset of parameters that are more related to the Environment
objective as described next. The iterative input selection (IIS) algorithm
(Section 2.5) is used in this work.

Iterative input selection

In order to identify the most significant decision variables with respect
to the Environment objective, the IIS algorithm is first run working
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Figure 6.18: Representation of the IIS results on the Sobol samples.
Panel (a) shows the set of selected variables and their con-
tributions in explaining the Environment objective. Panel
(b) represents the values of the selected decision variables
for different policies

with a dataset generated with a design of experiments that samples the
RBFs parameter space using the quasi-random Sobol sequence (Sobol ,
2001) coupled with the cross-sampling method proposed by Saltelli et al.
(2008). In this work, 10,000 parameter sets are generated from the Sobol
sequence, with the cross-sampling method creating a total of 660,000
parametrizations of the RBFs policies. Each policy is then simulated
to obtain the corresponding performance. The Environment objective is
selected as output to explain, while the candidate input for IIS are the
parameters of the RBFs policies. Figure 6.18a shows the 18 parameters
selected by the IIS algorithm and their contribution in explaining the
output (i.e., Environment objective) variance. Not surprisingly, IIS se-
lects all centers and radii of the RBFs, which are strongly affecting the
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Figure 6.19: Representation of the IIS results on the Pareto-optimal
set. Panel (a) shows the selected variables and their con-
tributions in explaining the Environment objective. Panel
(b) represents the selected decision variables for different
policies.

policy shape and, consequently, the release decisions impacting on the
Environment objective. Figure 6.18b shows the values of the selected pa-
rameters in the reference policy (i.e., the one with the best performance
in terms of environmental shortage index) with respect to the sampled
parameter sets. Moreover, the RBFs parameters in the lower bound pol-
icy (i.e., the one considering only the active agents objectives) are shown
to highlight the main differences with respect to the reference policy.
The IIS algorithm is also run working directly on the parametrizations of
the Pareto-optimal policies. The underlying idea is that the information
content of the Pareto-optimal set might be more informative than a ran-
domly generated dataset in conditioning the operating policies. Figure
6.19a shows the parameters selected and their contribution in explaining
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the Environment objective. In this case, less parameters are selected
(i.e., only 8), with a lower explained variance (i.e., 60% with respect to
75%). Figure 6.19b compares the values of the selected parameters in the
reference and lower bound policies with respect to the entire stochastic
Pareto-optimal set. Note that most of the selected parameters are RBFs
radii related to the time variable (i.e., bit), while no parameters related to
the Conowingo level are selected. These results suggest that the time of
the releases is the most significant factor affecting the Environment ob-
jective, while the level importance decreases when moving from random
parametrizations to the stochastic Pareto-optimal set.

Direct policy conditioning policies

In this section, the effectiveness of DPC in developing mechanism de-
sign strategies which preserve the actual decision-making structure and
better protect the passive agents objectives (i.e., the Environment) is
demonstrated. The historical formulation of the Lower Susquehanna
DPS problem given in eq. (6.6) is conditioned by reducing the active
agents decision space. The decision variables (i.e., the RBFs parameters)
selected by the IIS algorithm are constrained to be close to the values
assumed in the reference policy with the best performance in terms of
environmental shortage index under stochastic hydroclimatic conditions.
Figure 6.20 reports the comparison of DPC policies (shown opaque) with
respect to the baseline and the SRBC negotiated alternatives (repre-
sented by the almost overlapping boxed cones). The performance of the
stochastic Pareto-optimal policies are show with transparency, while the
lower bound policy is represented by the dashed circled cone. All the
DPC policies overcome the performance of the lower bound policy with
respect to the Environment objective. Moreover, most of these policies
meet or improve the performance of the baseline and the SRBC negoti-
ated alternatives in terms of environmental shortage index, demonstrat-
ing that the constraints imposed in the RBFs parameters decision space
represents an effective alternative to the classical minimum environmen-
tal flow constraints. Finally, the flexibility of this dynamic condition-
ing mechanism, which exploits the feedback represented by the system
condition by means of the corresponding operating policies, allows the
identification of solutions attaining higher performance than the baseline
in terms of Hydropower revenue and Atomic Power Plant.
Figure 6.21 illustrates two candidate solutions designed with the pro-
posed DPC approach working on the Sobol samples (cyan line) and on
the stochastic Pareto-optimal set (blue line). These policies are com-
pared with the baseline and the SRBC alternatives. The lower bound
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Figure 6.20: Performance of the DPC policies (opaque cones) over
stochastic hydroclimatic conditions. The baseline policy
and the alternatives negotiated by the SRBC are identified
by the boxed cones, the lower bound policy by the dashed
circled cone, while the stochastic Pareto-optimal policies
with transparency.

policy and the stochastic Pareto-optimal policies are also shown as they
represent the two extreme solutions. Results show that adopting the
DPC solution derived from the Pareto-optimal set (Sobol samples) in-
stead of maintaining the current reservoir regulation, the SRBC would
potentially attain an increase in the hydropower revenue equal to 18.6
(17.6) million US$/year, 0.29 (0.33) in the Atomic Power Plant reliabil-
ity, and a reduction of 0.038 (0.032) in terms of environmental shortage
index. These solutions therefore exhibits the potential to outperform
the baseline regulation, producing a robust policy that reflects the ac-
tual decision-making structure of the Lower Susquehanna system and
successfully protects the environment by means of effective conditioning
of the Conowingo reservoir operating policy.
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Figure 6.21: Comparison of the performance over stochastic hydrocli-
matic conditions of the DPC policies, the baseline policy,
and the alternatives negotiated by the SRBC.

Figures 6.20-6.21 represent the performance of the operating policies with
respect to the six operating objectives, with the different mechanism de-
sign strategies aiming to guarantee effective environmental protection.
However, these figures are focused on the system-level performance (i.e.,
the Environment objective) and do not provide any information on the
practicability of the illustrated solutions. Let assume that the number
of decision variables subject to constraints is a proxy to estimate the
practicability of the operating policies, with less constraints correspond-
ing to more practicable (acceptable) solutions for the active agents. The
lower bound policy, representing the situation before the introduction
of the FERC flow requirements, is therefore the most practicable solu-
tion (i.e., zero constraints). At the other extreme, the reference solution
(i.e., the stochastic Pareto-optimal policy with the lowest environmen-
tal shortage index) is a fully constrained solution with fixed values for
all the 32 decision variables. The baseline policy and the other alter-
natives proposed by the SRBC impose a constraint on the downstream
release decision, thus involving 20 RBFs parameters. The DPC solutions
are instead defined with more soft conditioning mechanisms (i.e., 18 or 8
constraints in the case of IIS run on Sobol samples or Pareto-optimal set,
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respectively). Figure 6.22 represents these policies in the practicability-
Environment (i.e., system-wide performance) space and demonstrates a
clear tradeoff between these two metrics. These results show that DPC
solution designed according to the environmental signature identified on
the Pareto-optimal set is able to attain a good environmental perfor-
mance with limited conditioning, thus representing a potentially highly
practicable solution.

6.4 Discussion and final remarks

In this chapter, the agent-based decision analytic framework is applied
to support water reservoir operation dealing with many competing de-
mands and hydroclimatic uncertainty in the Lower Susquehanna system.
The approach demonstrates the potential to overcome policy inertia and
myopia by providing the Susquehanna River Basin Commission (SRBC)
with the full range of opportunities to improve the current reservoir op-
eration according to a multi–objective and stochastic perspective.
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The adopted implicit policy identification method captures the current
operation of the dam and defines the historical policy by fitting radial
basis functions to existing system dynamics. After identifying the hi-
storical baseline policy, the combination of evolutionary many-objective
optimization with visual analytics allows the discovery of improved oper-
ating policies. The optimization was performed over stochastic samples
of inflows and evaporation rates to ensure robustness of the solutions.
Results show that the system’s current history-based operations are neg-
atively biased to overestimate the reliability of the reservoir’s multi-
sector services. The a posteriori analysis of the stochastic Pareto-optimal
solutions and the set of alternatives negotiated by the SRBC shows that
these latter are essentially equivalent to the historical policy, with neg-
ligible differences in performance compared to the stochastic Pareto-
optimal policies. Moreover, the proposed framework has successfully
identified a subset of alternative reservoir policies that are robust to hy-
droclimatic uncertainties while being capable of better addressing the
tradeoffs across the Lower Susquehanna competing demands. The com-
parison of the historical performance with the one that would be attained
with the recommended policy provides an estimate of the regret that the
SRBC would experience by maintaining the current policy. By adopting
the recommended policies, the expected hydropower revenues increase
by 22 million US$, with significant advantages also in Environment and
Atomic Power Plant objectives. The improvement in Recreation is in-
stead limited as the current preference structure does not prioritize this
objective. These advantages are obtained at the cost of a small reliability
reduction for Baltimore and Chester reliability, which have the option to
obtain water from other sources.
Finally, the adoption of the direct policy conditioning (DPC) method
exploits the reference provided by the stochastic Pareto-optimal poli-
cies to identify alternative operating policies for the Conowingo reservoir
which better represent the actual decision-making context, modeled by
four active agents and two passive agents. The federal minimum flow
requirements and the alternative negotiated by the SRBC can be con-
sidered as examples of mechanism designs, aimed at the protection of the
environment, which is a critical concern under stochastic hydroclimatic
conditions. Results show that the DPC policies exhibits the potential
to outperform the baseline alternative in terms of Environment and also
Hydropower revenue, Atomic Power Plant reliability, and Recreation.
Moreover, these policies are designed with more soft conditioning than
the FERC flow requirements (i.e., they define less constraints) and, there-
fore, might represent highly practicable solutions.
The results presented in this chapter are obtained assuming stationary
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hydroclimatic conditions and only considering the uncertainty in the hy-
droclimatic variables. Broadly, there are many uncertain factors that can
influence the system including shifting objectives, evolving demands, and
climate change. Moreover, although the minimax approach used to filter
the system uncertainties guarantee certain performance over different hy-
droclimatic conditions, other filtering criteria might be used depending
on the risk aversion of the SRBC, such as the Laplace criterion (Laplace,
1951), which looks at the expected performance, the Hurwicz criterion
(Hurwicz , 1951), which considers a weighted combination of the worst
and best case, or the Savage criterion (Savage, 1951), which minimizes
the regret of adopting a wrong decision. Depending on the adopted fil-
tering criterion, the set of optimal solutions varies.
Future efforts will concentrate on estimating the robustness of the poli-
cies under conditions of deep uncertainty (Kasprzyk et al., 2012), such
as enlarging the variability of the hydroclimatic variables, introducing
non-stationarity and climate change effects, and considering uncertain
water demands and energy prices. Furthermore, the potential of DPC
in designing policies for different objective tradeoffs can be assessed.
Finally, the application of DPC in the definition of coordination mecha-
nisms in multireservoir systems, such as the Zambezi River basin, seems a
promising method to support mechanism design strategies in large-scale,
transboundary water management problems.
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7 Conclusions and future
research

The aim of this thesis was to introduce a novel agent-based decision
analytic framework to study water resources planning and management
problems in complex decision-making contexts, involving multiple deci-
sion makers and many conflicting stakeholders. The proposed framework
combines descriptive and prescriptive methods in order to provide infor-
mative tools, which represent the actual decision-making context, as well
as decision support procedures, which recommend proper coordination
mechanisms.
The first application of the framework to a hypothetical water allocation
planning problem presents an extensive analysis of the intrinsic conflict
between system-wide efficiency and solutions practicability, when multi-
ple decision-making actors are involved. Results show that approaches
relying on distributed constraint optimization problems are able to sup-
port a watershed authority in the identification of mechanism design
strategies based on normative constraints or economic incentives. The
imposition of different sets of constraints allows the exploration of the
trade-off curve between system-wide efficiency and agent-level practica-
bility. The adopted agent-based methods shows the potential to design
coordination mechanisms that produce solutions in the space in-between
the two extreme situations of centralized and uncoordinated manage-
ment.
The second application of the framework to the Zambezi River basin ma-
nagement problem demonstrates the effectiveness of a simple coordina-
tion mechanism based on the exchange of information. The introduction
of full information sharing between Zambia, Zimbabwe, and Mozambique
allows the downstream country (i.e., Mozambique) to better adapt to the
upstream strategies, with no consequence for these latter. The stability
of this coordinated solution is guaranteed, as each country cannot im-
prove its benefit acting unilaterally. The comparison of the system-level
performance in three scenarios of cooperation, namely full cooperation,
coordination, and non-cooperation, provides an estimate of the value of
cooperation and information exchange, which might represent a funda-
mental information to set up a negotiation process.
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The exchange of information was successfully applied also in the Como
system to promote the activation of co-adaptation strategies of the water
supply management and farmers’ practices. The aim of this approach
is to cross-condition the decisions of farmers and water managers: the
farmers select the crop to grow as the one with the highest revenue on the
basis of an expectation of irrigation water supply; knowing the selected
crop pattern, the water manager optimizes the management of the irri-
gation supply system to match the actual demand of the crops. Results
show that the proposed approach successfully enhances the efficiency of
agricultural water management practices and fosters crop production.
Moreover, co-adaptation is demonstrated to be effective in mitigating
climate change adverse impacts.
In the last application, the proposed framework effectively combines
reservoir policy identification, many-objective optimization under un-
certainty, and visual analytics to characterize the current Conowingo
reservoir operations and discover key tradeoffs between alternative poli-
cies in the Lower Susquehanna system. Results show that the current
history-based performance are negatively biased and overestimated. The
a posteriori analysis of the stochastic Pareto-optimal solutions allows the
identification of a sub-set of alternative reservoir policies that are robust
to hydroclimatic uncertainties, while being capable of better addressing
the tradeoffs across the Lower Susquehanna competing demands. More-
over, the adoption of the direct policy conditioning method successfully
exploits the reference provided by the stochastic Pareto-optimal poli-
cies to identify alternative mechanism design options for environmental
protection. Results show that the direct policy conditioning solutions
are able to meet or exceed the performance of the alternatives based on
the classical minimum environmental flow constraint in terms of envi-
ronmental protection, hydropower revenue, and reliability of the atomic
power plant cooling, thus representing a potential compromise solutions
with respect to system-level efficiency and practicability.

In conclusion, the proposed agent-based decision analytic framework
represents a promising contribution to address the complexity of the
decision-making institutional contexts. It allows the exploration of dif-
ferent levels of cooperation between the decision makers through an
agent-based modeling approach, where agents’ decisions are designed by
state-of-the-art Control Theory techniques. Moreover, the proposed co-
ordination mechanisms, based on information exchange and direct policy
conditioning, successfully influence the originally uncoordinated agents
and increase the system-level performance.
Finally, this thesis suggests several directions for future investigations,
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which can be summarized as follows:

• development of new methods and algorithms based on distributed
constraint optimization problems to deal with multi-objective and
dynamic (management) problems and their application to real world
case studies;

• elaboration of more realistic models in terms of description of the
processes and agents’ decisions, in order to better represent the cur-
rent baseline conditions as well as to provide more credible support
to the decision makers;

• design of effective mechanisms to promote negotiation processes for
the identification of improved solutions at the system-level, possi-
bly supported by game-theoretic analysis, which might have prac-
tical impact from a policy-making point of view;

• improvement of the interaction with the real decision makers and
stakeholders to better capture their interests and more effectively
communicate the results of the research works.
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