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Abstract

Model-Driven Engineering relies on collections of models, which are
the primary artifacts for software development. To enable knowl-
edge sharing and reuse, models need to be managed within reposito-
ries, which requires the ability of their effective and efficient search
for retrieving artifacts that meet the user’s need. The search ap-
proaches should go beyond simple keyword search, considering the
structural and hierarchical nature of models. In this way, an MDE
developer should be able not only to search models via keywords,
but also to sketch the idea he has in mind in his favorite language
and retrieve all models that contain a similar design.

This thesis addresses the problem of designing search systems for
repositories of models by examining two major categories: keyword-
based and content-based search (also known as query-by-example).
From these categories, one keyword-based approach, that employs
classical information retrieval techniques, and two content-based ap-
proaches, that use representation of models as graphs, have been
proposed and implemented. They are contrasted, with respect to
the architecture of the system, the processing of models and queries,
and the way in which metamodel knowledge can be exploited to im-
prove search. A thorough experimental evaluation is conducted to
examine what parameter configurations lead to better accuracy and
to offer an insight in what queries are addressed best by each system.
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Sommario

Il Model-Driven Engineering si basa su collezioni di modelli, ovvero
sugli artefatti primari usati durante lo sviluppo software. Per per-
mettere di condividere e riutilizzare conoscenza già a disposizione,
i modelli devono essere gestiti per mezzo di archivi. Ciò richiede
l’abilità di recuperare i suddetti modelli in modo efficace ed effi-
ciente, cos̀ı che i risultati di ogni ricerca incontrino i bisogni dell’utente.
Di conseguenza, considerare approcci più complessi della semplice
ricerca per keyword diventa essenziale: ogni ricerca deve tenere
conto anche della natura strutturale e gerarchica dei modelli. Uno
sviluppatore MDE dovrebbe essere in grado non solo di cercare mod-
elli tramite l’utilizzo di keyword, ma anche di disegnare una bozza
del modello che ha in mente, nel suo linguaggio preferito, e recuper-
are tutti i modelli che contengono un design simile.

Questa tesi affronta il problema di progettazione di sistemi di
ricerca per archivi di modelli, esaminando due categorie principali:
la ricerca keyword-based e la ricerca content-based (conosciuta an-
che con il termine ”query-by-example”). Nel nostro lavoro proponi-
amo un approccio keyword-based (che impiega tecniche di infor-
mation retrieval classiche) e due approcci content-based (che us-
ano la rappresentazione di modelli come grafi). Gli approcci pro-
posti vengono confrontati considerando le architetture dei sistemi,
l’elaborazione di modelli e di query, ed il modo in cui la conoscenza
sui metamodelli può essere sfruttata per migliorare la ricerca. Infine,
presentiamo una valutazione sperimentale estesa, volta ad esam-
inare le configurazioni dei parametri che portano ad un’accuratezza
migliore dei risultati e ad identificare le query che meglio vengono
trattate da ogni sistema.
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Chapter 1

Introduction

1.1 Problem Statement

The increased complexity and pervasiveness of software requires
raising the level of abstraction, and automating labor-intensive and
error-prone tasks to increase efficiency and effectiveness in software
development [94].

An approach that advocates software abstraction through the
use of models is Model-Driven Engineering (MDE), widely used
in academia and industrial organizations across different domains.
MDE promotes the use of models in any engineering activity as ab-
stractions that provide a simplified or partial representation of real-
ity, useful to accomplish a task or to reach an agreement on a topic.
Model-Driven Software Engineering specifically considers software
models, i.e., abstractions of the static or dynamic properties of a
software system. Studies demonstrate that the benefits of MDE in
industry are perceived in terms of quickly responding to change of
requirements, of streamlining communication among stakeholders
[94] thanks to more accessible organizational knowledge [63], and of
improving the quality of code design and test case development [5].

The adoption of MDE in academic and business organizations
resulted in an increasing number of models collections, stored in
model repositories [44]. To name but a few: the MIT Process Hand-
book [93] contains over 5000 business process model entries; the
AtlanMod Metamodel Zoos [9] provide a collection of more than
three hundred metamodels; the ReMODD repository [106, 45] is
collecting case studies, models and metamodels in different mod-
eling languages. In the industry, several MDE tool vendors pro-
vide repositories that contain application and component models
authored with their tools: examples include the WebRatio Store
[123]; the Mendix App Store [90], the CodeCharge Studio market-
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place [128], the Genexus marketplace [7], and the Outsystems Agile-
Network component repository [98].

Reuse and sharing of software requires the ability of effectively
retrieving artifacts that meet the user’s need, which is the goal of
software search systems. Besides the software repositories inside or-
ganizations, several on-line tools exemplify the state-of-the-art in
sharing and retrieving code, e.g., Google code, Snipplr, Koders, and
Codase1. In the simplest case, the user submits keywords, which are
matched to the code, and receives as a response the programs that
contain the search terms. Advanced systems offer more powerful
functionality: 1) expressive query languages, e.g., regular expres-
sions (in Google Codesearch) or wildcards (in Codase); search over
syntactical categories, like class names, method invocations, and
variables (e.g., in Jexamples and Codase); result restriction based on
metadata (e.g., programming language, license type, file and pack-
age names). In the simplest systems the result set is a plain list of
unranked hits, but more sophisticated interfaces offer classical IR-
style ranking based on term importance and frequency or even com-
posite scores compounding number of matches in the source code,
recency of the project, number of downloads, activity rates, and so
on; for example, in SourceForge users can receive results ranked by
any combination of relevance of match, activity, date of registration,
and recency of last update.

Model repositories are not yet as well developed and widespread
as source code repositories. The latter enable code-level reuse and
thus a reduction of development time and costs, and may improve
software quality, as novice programmers can learn from the code
produced by more experienced ones. The same advantages could
be achieved in MDE, if repositories allowed for efficient retrieval of
models relevant to the user’s needs. Most industrial repositories of-
fer rather elementary interfaces, where users can only search exact
models by matching keywords against the model’s description or ex-
plore the available content via taxonomical navigation and facets.
These repositories do not incorporate the model structure in the
search process, and they do not allow users to find models similar
in structure or vocabulary to the query. More powerful approaches
may foster early stage model reuse and promote the dissemination
of modeling best practices across projects and development teams:
for example, a developer wishing to implement a given application
requirement may find in the company’s repository models that solve
similar tasks and reuse them entirely or some design pattern embed-

1Sites: http://code.google.com, http://www.snipplr.com, http://www.koders.com,
http://www.codase.com
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ded therein. This type of search can not be achieved using struc-
tured query languages since although they utilize model structure,
they are limited only to exact search [26, 75]. Furthermore, struc-
tured search requires the user to learn a new query language in order
to create queries. Model search approaches should exploit in more
depth the main difference between source code and models, that is,
the high level, structural, and often visual nature of a model repre-
sentation. Ideally, an MDE developer should be able not only to
search models via keywords, but also to sketch the idea he has in
mind in his favorite language and retrieve all models that contain a
similar design, properly ranked according to their relevance to the
query. Therefore, similarity search techniques are essential to al-
low developers’ needs be formulated in the same language in which
solutions are expressed.

Model search is most useful during the initial phases of appli-
cation development: the translation of software requirements into
design artifacts and the transformation of coarse design models into
detailed models. In the former case, requirements can be expressed
concisely as keywords and used to find relevant models; in the latter
case, coarse design models can be used for retrieving more detailed
ones.

With the notable exception of Business Process Models reposi-
tories, where research has investigated similarity measures for the
specific syntax and semantics of process models [122, 96, 103, 105],
content-based search and multimodal search (e.g., keyword plus con-
tent based search) are still not the state-of-the-practice for model
repositories.

1.1.1 Motivating Example

To better motivate the need for search in model repositories, let us
consider the scenario depicted in Figure 1.1: Alice is a developer
in a company adopting MDE for the design and implementation of
Web-based information systems. Alice is currently working on the
development of a novel customer management system and she has to
address the requirement of allowing authentication of users through
the OAuth2 protocol. Let’s assume her company already had several
experiences in the development of system exploiting open authen-
tication techniques; therefore, the model repository contains some
project where this specific functionality has been designed already.
Alice might be or not be aware of such previous work, but the reuse
of existing models or the adherence to modeling patterns used in

2http://www.oauth.net

3



Alice

Models Repository

Search

authenticate user oauth

Model Repository Search UI

Retrieved: 10 Models

1. submit 
query

4. select 
results

M
odel Search System

1
Visualize

Project Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic Analysis

Project 1

Project 2

Project 3

Project 1- Fragment 1 (Preview)
Project Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic Analysis

Project 2- Fragment 1 (Preview)
Project Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic Analysis

Project 1- Fragment 2 (Preview)

Project Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic AnalysisProject Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic AnalysisProject Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic Analysis

Project Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic Analysis
Project Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic Analysis

Project Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic AnalysisProject Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic Analysis

Project Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic AnalysisProject Analysis

Content Processing

Project 
Repository

Index

Indexing

DSL 
Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features
Model Segment 

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query 

Linguistic AnalysisLinguistic Analysis

Import
Open

2
Visualize

Import
Open

3
Visualize

Import
Open

2. query
 repository

3. return 
results

Figure 1.1: Example of interaction between a developer and a search system
for model repositories: the user submits her query (1), which is applied upon
the repository (2); in turn, the repository returns the matching project frag-
ments (3), among which the user can select the one that fits better the new
requirements (4).

previous successful projects will facilitate her job and improve uni-
formity of modeling style across the company. The goal of a model
search system is to assist Alice in the retrieval of existing, similar
solutions, and thus allow reuse and knowledge sharing.

Alice can express her information need with the textual query
“authenticate user oauth”, or she can draw a coarse modeling pat-
tern in her preferred modeling language using corresponding model
elements and labels that indicate user authentication through OAuth.
The search system looks up the repository and returns a list of re-
sults at the appropriate granularity, as shown in Figure 1.1. The
result set comprises concise previews of the retrieved model frag-
ments; for a better understanding, results are ordered according to
their relevance to the query and the parts of the model that match
the query are highlighted. Alice might want to zoom in and visual-
ize one of the results to better inspect the matching parts, or open
the fragment in its original context. If she finds something useful for
her current task, she might import the matching parts or the entire
model in her workspace.

1.2 Research Objectives

The goal of this research is to study the implications of building
search systems for software models expressed according to Domain
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Specific Languages, so to increase the reuse of modeling artifacts and
promote the discovery of existing design patterns and the application
of modeling best practices from previous projects. We study two dif-
ferent scenarios of model search: keyword-based search, which pro-
ceeds in continuity with classical Information Retrieval approaches
and source code search techniques; and content-based search, which
introduces the query-by-example paradigm into model search. The
illustrated research aims at addressing the following questions:

Q.1 How can we search model repositories in order to unlock their
hidden value and allow efficient reuse of models?

Q.2 How can we adapt text- and content-based search techniques
to model repositories, so to exploit metamodel knowledge and
improve the quality of results?

Q.3 How do different text- and content-based search techniques be-
have in terms of performance under different technical config-
urations of their characteristic parameters?

Q.4 How do users perceive the quality of results retrieved with text-
and content-based search?

1.3 Contributions

To address the above questions, the thesis overviews the require-
ments of model search and investigates keyword-based and content-
based techniques for search of model repositories. Keyword-based
and content-based search techniques are extended with the injec-
tion of metamodel knowledge in the search process, to test its ef-
fect on retrieval performance. Three approaches (one text- and two
content-based) are implemented, configured and technically evalu-
ated on a real world collection of 341 industrial models, with a panel
of 10 queries. Models in the experimental repository are encoded in
the Web Modeling Language (WebML) [28], a DSL for Web appli-
cations. Furthermore, the same text-based approach was adapted
and configured for assessing its performance on a publicly avail-
able repository of 84 UML models (class diagrams) with a set of 20
queries.

Performance of the proposed text- and content-based search ap-
proaches is assessed by a technical evaluation based on a gold stan-
dard defined by experts. Moreover, the text- and one of the content-
based approaches (A-star graph-based) applied on the WebML repos-
itory, are also evaluated with two user studies, which engaged 25
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MDE practitioners in the subjective evaluation of utility and qual-
ity of search results. Different variants of the technical configura-
tions of the two systems have been evaluated and compared. The
user studies examine the relationship between the performance of
the systems and the user-perceived utility of retrieved results.

The contributions of the thesis can be summarized as follows:

• We extend state-of-the-art methods for keyword-based search
in order to incorporate metamodel-specific information. We
show that augmenting the IR index with metamodel knowledge
leads to a performance improvement with respect to conven-
tional, metamodel-agnostic text-based IR techniques. The ap-
proach is validated on two different (WebML and UML) model
repositories.

• We implement content-based search by means of graph match-
ing; to do so, we extend standard techniques for sub-graph
isomorphism (the A-star algorithm) by considering a formu-
lation of the matching score function that takes into account
metamodel-specific information. We also investigate how the
locality of the match between the query and the project graph
affects performance.

• We propose and implement a new content-based search method
that employs graph matching. The method uses approximative
representation of graph nodes as points in multidimensional
space, obtained by multidimensional scaling. These points are
used to build an index to allow efficient and scalable search.
The method also uses neighborhood information for finding
similar subgraphs of a project graph with respect to a query
graph. The metamodel information is incorporated in the in-
dex, and it is considered while performing search, as well as in
the scoring function used to rank the subgraphs.

• We evaluate keyword-based and content-based search systems
with respect to retrieval accuracy (precision and recall), rank-
ing accuracy, and stability of the results across different queries,
using gold datasets created by experts.

• We report the results of a user study that assesses how model-
driven practitioners appreciate keyword-based and content-based
search considering the WebML repository.
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1.4 Dissertation Organization

The thesis is organized in the following way:

• Chapter 2 presents the fundamentals of search over model repos-
itories, thus responding to question [Q.1 ], and it gives the char-
acteristics of the WebML and UML modeling languages used
as case studies to verify the proposed approaches;

• Chapter 3 discusses the architecture and configuration of the
keyword-based search system for WebML and UML models,
addressing the text-based search part of question [Q.2 ];

Chapter 4 focuses on content-based search, or more precisely
graph-based search, describing the architecture and configura-
tion of the A-star graph-based search and the multidimensional
scaling graph-based search, replying to the content-based part
search of question [Q.2 ];

Chapter 5 presents the configurations and results of the exper-
imental evaluation conducted on the proposed keyword-based
and on the content-based search systems, thus addressing ques-
tions [Q.3 ] and [Q.4 ];

• Chapter 6 describes the state-of-the-art for searching reposi-
tories of software artifacts considering source code, software
components and models. The chapter also gives focus on the
current algorithms for searching graph data;

Chapter 7 brings out the conclusions and the directions for
future work.
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Chapter 2

Fundamentals of Search in
Software Model
Repositories

In MDE, models are used to formalize requirements, structure, and
behavior of the addressed system; they comply with the syntax of
a modeling language, which can be formalized as a metamodel [74].
Each model element has a type (i.e., a higher order concept) defined
in the metamodel, and is related to other elements by means of typed
relationships, also defined in the metamodel. One or more concrete
syntaxes can be associated to a metamodel. The syntax can be ei-
ther textual or graphical and defines the way in which the models
are represented concretely. Elements and relationships in models
are typically enriched with textual labels, provided by the model
developer to describe some relevant domain properties or functions
of the concept. During the development process, models are typi-
cally organized into projects, i.e., logical containers that aggregate
models and artifacts of the same system or application domain; like-
wise, projects developed by the same organization are collected in
repositories.

Model repositories are accessed primarily through search, i.e.,
the retrieval of relevant artifacts upon the expression of a user’s
need. Search is the main access method for retrieving models since
it allows flexibility in the way the user need is expressed (keywords,
or coarse model fragments), making the querying process easier and
more straightforward. At the same time, model search can also
consider the visual and structural nature of the model, offering the
possibility to find both exact and similar models with respect to
a user’s need, which cannot be achieved with the structured query
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languages that perform only exact search.
In this chapter, we give an overview of the fundamentals of model

search (Section 2.1), which addresses research question [Q.1], and we
present the features of the WebML and UML modeling languages,
used as a case study to verify the proposed approaches (Section 2.2).

2.1 Fundamentals of Model Search

The search process can be schematically represented as a chain of
four main steps, as shown in Figure 2.1.

Query 
Processing

Search Indexing

Results

User Project 
Repository

Content 
Processing

Query

Figure 2.1: Main steps of a model-driven search process.

Starting from a repository of projects, the Content Processing
transforms each model into a format suitable for efficient indexing
and effective search. The Indexing step stores the processed models
into persistent data structures that contain information amenable to
search, typically encoded as index terms or as index data structures.

Users express their information needs as queries defined in a given
format. Among the available query paradigms, we focus on two spe-
cific forms: (i) Keyword-based queries (also called text-based
queries) are expressed as bag of words; users translate their in-
formation need from their abstract representation (e.g., “find all
the projects that model the shopping cart operations of a book e-
commerce application”) into keywords or simplified phrases (e.g.,
“book shopping cart e-commerce”). (ii) Content-based queries are
expressed as model fragments; users ask the system to “find a model
like this” and thus formulate their queries in the same language in
which the targeted models are expressed. This way of searching is
also called query-by-example.

Queries are subjected to a Query Processing step, in which they
undergo a transformation toward an internal format, which maps
them to the same representation space as the index. For instance, a
keyword query could be transformed into a set of stemmed words,
or a model fragment could be mapped into a labeled graph.

The Search step inspects the index in order to (i) retrieve the
models that match with the user query, (ii) rank the matching mod-
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Figure 2.2: Architecture of a model-driven information retrieval system.

els according to their relevance with respect to the query, and (iii) re-
turn them to the user as a result set where more relevant hits are
displayed in more prominent positions.

Figure 2.2 expands the view of the activities contained in each of
the steps summarized in Figure 2.1. Activities can be metamodel-
dependent, when they exploit knowledge defined in the metamodel
(in Figure 2.2 they have an input data flow from the metamodel
artifact), or metamodel-independent.

2.1.1 Content and Query Processing

The model search process, shown in Figure 2.2, requires both the
repository projects and the queries to be properly analyzed to ex-
tract information relevant for indexing and searching. The Query
Processing workflow comprises query analysis techniques that are
the same as those for projects; therefore we can limit the explana-
tion to the Content Processing tasks.

The Project Analysis task starts the analysis workflow by extract-
ing general metadata, such as the project identifier in the collection,
its name, authors, etc, useful for result presentation. The Project
Segmentation activity splits each project into smaller units more
suitable for analysis; the segmentation strategy is defined by the
system designer, and can occur: (i) manually, by identifying project
by project the most meaningful segmentation units; (ii) automati-
cally based on metamodel-driven or collection-specific rules, which
may take into account model types, concepts or relationship types,
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and element frequencies in the collection. For instance, UML class
diagrams could be partitioned considering as segments the bottom
elements of the package hierarchy.

Each segment is processed by a Segment Analysis task, which
extracts relevant features for each model element contained in the
segment, such as name, type, relationships with other elements, or
any other property defined in the metamodel and relevant for search
purposes. The extracted textual features might be normalized by
applying metamodel-independent Linguistic Analysis transforma-
tions (e.g., language translation, tokenization, stemming, stop-word
removal, etc.).

2.1.2 Indexing

The normalized features extracted from each element are the inputs
to the Indexing step, as index documents [85]. The index stores
the project metadata, the segment-to-project mapping, and a rep-
resentation of the extracted model element features, optimized for
storage and search purposes. The index can be organized according
to one of the following options:

• Flat index: the index is structured as a single field which
stores all the extracted features of an index document. A flat
index does not allow the representation of model relationships,
as the model structure cannot be enforced.

• Multi-field index: the index is divided into multiple fields,
each storing a different subset of the indexable information.
Each field can be searched separately, i.e., query matching can
be restricted to the selected fields. A multi-field index may
be used to encode metamodel information, by associating each
field to features (e.g., normalized words) appearing in a dis-
tinct model concept or relation. In this way, a query could
be restricted only to selected model concepts. Furthermore,
each index field can be assigned a weight that quantifies its
importance according to some a priori knowledge (e.g., the sig-
nificance of the metamodel concept associated with the field).

• Structured index: the index is organized as a (semi) struc-
tured document (e.g., mapping each segment to a graph or to
an XML document) so as to preserve the relationships among
model elements. Structural elements can be assigned a weight
that quantifies their importance.
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Orthogonally to the adopted index structure, terms can be as-
signed a term weight that reflects their significance. Increasing the
index complexity, from flat to multi-field, to structured indexes,
gives more precise representations of projects and queries, to the
price of more complex storage structures, query language, and match
algorithms.

2.1.3 Search

The search workflow consists of two tasks. The Matching task finds
the documents in the index that match the internal representation
of the user’s query. The matching technique applied depends on the
index structure. For flat and multi-field indexes, matching occurs
by verifying the presence of query terms in the index; in structured
indexes, matching verifies if the query internal representation is at
least partially contained in an indexed segment.

The Ranking task sorts the found matches with respect to their
relevance to the query, calculated as a numerical matching score.
The ranking techniques also differ according to the index structure.
For flat and multi-field indexes, the score can be calculated using
text-based similarity measures such as cosine similarity or TF/IDF
[85]. For structured indexes, ranking is based on ad hoc structural
similarity metrics. More details about the latter case are provided
in Chapter 4.

2.2 Software Model Repositories

To make the architecture of Figure 2.2 concrete, it is necessary to
instantiate it on a specific set of modeling languages and query
paradigms. In this thesis, we focus on both text-based and content-
based queries over repositories of models describing a specific class
of applications – Web applications, in a single modeling language,
i.e., the Web Modeling Language (WebML) [28]. Furthermore, we
also applied the text-based approach on a repository of UML mod-
els. In the following sections, we give a brief overview of the WebML
and UML languages.

2.2.1 WebML

WebML is a visual Domain Specific Language that supports the
high-level specification of Web applications, from the perspectives
of the composition and navigation of the Web front-end, and of
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the data accessed by it [27]; the language has a well-established
industrial implementation and customer base [2].

The choice of WebML as the target language for experimentation
is motivated by several reasons:

• the availability as the base for experimentation of a real-world
industrial project repository created by professional developers.

• The generality and interest of the modeling domain (i.e., in-
teractive application front-ends), in which WebML is just a
representative of a family of DSLs that comprises several other
languages with a similar purpose and structure, both in the
academia (e.g., OOH [51], UWE [76], OOHDM [107], WADE
[50]) and in the industry (e.g., Rational Web Application Ex-
tension [36], Mendix, CodeCharge and Outsystems); the inter-
action front-end modeling domain recently became an OMG
standard [22].

• The visual nature of the language, which makes it well suited
to the “query by example” paradigm of content-based search.

• The nature of the WebML metamodel, which comprises differ-
ent families of containers and modeling elements, with a rich
set of relationships.

It consists of a Data Model, representing the data content, and a
Web Model, describing the pages that compose it, the topology of
links between pages, the layout and graphic requirements for page
rendering, and customization features for one-to-one content deliv-
ery. The Data Model describes the Web Site content in terms of
entities, attributes and relationships, exploiting the famous entity-
relationship (ER) model. Entities are units of data, while relation-
ships give the associations between entities.

The Web Model specifies the organization of the front-end inter-
faces of a Web application. The main WebML constructs are pages,
units and links, organized into areas and site views. Site view is a
coherent hypertext, fulfilling a well-defined set of requirements The
main WebML constructs are pages, units and links, organized into
areas and site views. A site view is a coherent hypertext, incorpo-
rating a well-defined set of requirements for a specific category of
users. Site views can contain Areas, logical containers that group
pages with a homogeneous purpose and can be nested recursively.
Pages are contained in areas and site views, and represent the inter-
face elements that are actually shown to the users. Site views, areas,
and pages form the coarse structure of the front-end, which is then
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detailed by adding content and business logic components, called
Units. There are two main types of units: content units and op-
eration units. Content units are elements that express the content
of a Web page, permitting different ways of content organization.
WebML defines the following standard content units:

• Data unit gives information for a single object of a given entity.

• Index unit presents a list of properties of instances of an entity,
without their detailed information.

• Scroller unit allows browsing of an ordered set of instances,
enabling access to the first, last and next element in the set.

• Multichoice unit shows a list of entity instances with check-
boxes, allowing multiple instance selection at a time.

• Hierarchical index unit shows nested indexes of different entity
instances.

• Entry unit builds entry forms and is used to collect the user
input.

• Set unit stores parameters into the HTTP user session.

• Get unit retrieves parameters from the HTTP user session.

Operation units denote operations on data or arbitrary business
actions; they can be activated as a result of a link navigation, per-
forming manipulation with data, or execution of an external service.
They can be placed outside of the pages, and linked to other oper-
ation units, or linked to units in the pages. WebML defines the
following operation units:

• Create unit creates a new entity instance.

• Delete unit deletes objects of a given entity.

• Modify unit modifies one or more objects of an entity.

• Connect unit creates new instances of a relationship.

• Disconnect unit deletes instances of a relationship.

• Login and logout unit perform the login and logout operations
specifying the controlled access to the site.

• Sendmail unit allows sending e-mail messages.

• Selector unit performs queries and retrieves attributes of entity
instances.
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• Switch unit evaluates a condition that triggers the navigation of
one of its multiple outgoing OK-links. It is used for conditional
execution of operations or navigation towards different pages.

Operation units can be clustered into transactions, executed au-
tomatically, where either the whole sequence of operations is exe-
cuted successfully, or the sequence is undone. Units are connected
through links forming a hypertext structure. WebML defines the
following link types:

• Navigation link allows navigating hypertext front-ends.

• Transport link passes parameters between units.

• Normal link is activated by the user in order to change page
content or to move to another page.

• Automatic link is activated without user interaction, when the
page that contains the source unit of the link is accessed.

• OK and KO links are outgoing links from every operation unit
corresponding to the operation’s success and failure.

Figure 2.3c contains an excerpt of the WebML metamodel taxon-
omy for content units: Data Units retrieve and present information
about a single object; Index Units model the presentation of ordered
sets of objects; Entry Units model Web input for data submission.

WebML models can be represented with a graphic notation or,
equivalently, with an XML syntax. Figure 2.3a depicts an excerpt
of a WebML model from an e-commerce application: the Search
Products area contains a Search Products page where the user can
enter data to search for a product; the search form is denoted by the
Search Product List entry unit, while the returned product list is de-
noted by the Products List index unit; the link between the Search
Product List unit and the Products List unit represents the naviga-
tion action of the user upon form submission, and it also specifies
that the parameter required to execute the product search is passed
to the index unit. Figure 2.3b contains the XML representation of
the model fragment in Figure 2.3a, which comprises also the non
displayed metadata of the model elements, e.g., their internal ID.

WebML models are designed by means of the WebRatio tool [2],
or by any UML editor, using the WebML MOF metamodel; We-
bRatio has a basic in-memory project search facility, whereby the
developer can execute keyword search within a single project. A
repository of WebML models has been recently opened [123], which
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Figure 2.3: Example of WebML model, (a) its XML representation (b) and an
extract of the WebML metamodel (c).

can be browsed with an interface that organizes projects taxonomi-
cally and with tag clouds; basic keyword search is supported, with
keywords matched in the textual description of projects.

This thesis explores both keyword-based search and content-based
search over WebML repository and illustrates the techniques adopted
in the indexing, analysis, and querying processes.

2.2.2 UML

Unified Modeling Language (UML) is a general purpose modeling
language that allows specification, visualization, and documenta-
tion of models of software systems, including their structure, design
and meeting application requirements in scalability, robustness, se-
curity, extendibility [97]. UML is built to model any type of appli-
cation, hence, it can run on different hardware, operating systems,
programming languages and networks. UML is formulated by us-
ing object-oriented concepts, which makes it suitable for modeling
object-oriented applications. However, it can be also applied to
model non-object oriented applications, as well as, Transactional,
Real-Time and Fault-Tolerant systems. UML is an Object Man-
agement Group (OMG) standard which contains specifications for
providing a way to share UML models between different modeling
tools; it defines an infrastructure as a metamodel to provide a foun-
dation for the UML superstructure that defines the UML model
elements. The specification also defines OCL, a simple language for
writing constraints and expressions for UML model elements [101].

UML was selected as another target language for testing the tex-
tual search due to the following reasons:

• General-purpose modeling language accepted as an OMG stan-
dard widely used in many domains.
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• The visual nature of the language.

• The availability of an open source repository of real-world UML
models.

In general, a UML model consists of one or more diagrams, each
expressing different aspects of an application design. OMG stan-
dard defines thriteen diagrams divided into three groups. Static
diagrams describe the static structure of the application; Behav-
ioral diagrams represent the application behavior, and Interaction
diagrams consider different interactional aspects. More specifically,
structure diagrams include the following types of diagrams:

• Class diagrams use classes and interfaces to capture details
about the entities that are constituent part of the system (ap-
plication) and the static relationships between them.

• Component diagrams show the organization and dependencies
involved in the system implementation at different levels of
details with respect to a designer’s decision.

• Composite structure diagrams are result of the increasing com-
plexity of systems and are used to link class diagrams and com-
ponent diagrams, demonstrating how different system elements
are combined together to form complex patterns.

• Deployment diagrams reflect how different parts of the system
are executed and assigned to different pieces of hardware.

• Package diagrams are special type of class diagrams, that focus
on how different classes and interfaces are grouped together.

• Object diagrams use class diagrams syntax to show the con-
nection between the instances and classes at a specific time
instance.

Behavioral diagrams include the following types of diagrams:

• Use case diagrams capture functional requirements of a system,
providing an implementation-independent view allowing focus
on the designer needs.

• Activity diagrams capture the flow from one activity to the
next, where one activity represents a behavior invoked as a
result of the method call.

• State Machine Diagrams capture the internal state transitions
of a model element. The element size can vary from a single
class to an entire system.
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Interaction diagrams, derived from the behavioral diagrams, in-
clude the following diagrams:

• Sequence diagrams consider the type and order of messages
passed between elements.

• Communication diagrams focus on the objects involved in a
particular behavior and the nature of the exchanged messages

• Timing diagrams are used for modeling real-time systems, and
they focus on detailed timing specifications considering external
interruptions and processing times.

• Interaction Overview Diagrams are a simplified version of ac-
tivity diagrams, focusing more on the elements involved in per-
forming an activity.

Since in this thesis, we experiment with a dataset of UML class
diagrams, we will give their overview here. Class diagrams are a
fundamental type of UML diagrams as they allow static modeling
of applications through concepts, represented as classes, and the
relationships between them. A class denotes a set of objects with
common features [15]. Each class that is a constituent part of the
UML diagram is characterized with a unique name, a set of at-
tributes, representing a set of class features (details) and a set of
operations, associated to a set of class objects. Each attribute has
a type, which can be either a primitive one, such as integer, float-
ing point, etc. or it can be a relationship to other complex objects.
Operations define the way of invoking a specific behavior. UML
specification makes a clear distinction between an operation, and a
method which represents an implementation of an operation. The
implementation can be provided by the class itself, or it can be in-
herited from a superclass. The flexibility of the UML specification
allows the attributes and operations to be optional.

Since classes by themselves do not give a complete view of the
system design, relationships among them need to be considered as
well. UML provides several type of relationships [101]:

• Dependency is the weakest type of relationship where one class
uses another class for some short amount of time.

• Association is a stronger type of relationship where one class
preserves the relationship with another class for an extended
time period.

• Aggregation is a stronger form of association that implies own-
ership.
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• Composition is a strong type of relationship, capturing a whole-
part relationship, i.e. the relationship that one class is part of
another class. The part piece of the relationship is involved in
only one composition relationship at a given time.

• Generalization expresses that the target part of the relationship
is more general than the source part.

• Association class is used to represent complex relationships be-
tween classes. The association class has name and attributes,
just as any other class.

UML also allows to define interfaces that declare properties and
methods, without their implementation. A class is realizing an in-
terface if it provides implementation of the declared operations and
properties.

Figure 2.4 is an example of UML class diagram and its corre-
sponding XMI representation, taken from the AtlanMod metamodel
zoo, which describes metamodel of a XML file. XML file typically
consists of one or more elements. The diagram differentiates between
two types of elements: root, a parent of all the other elements, and
a node. The node class that has some attributes, uses the com-
position relationship to express the parent-child relationship among
XML elements, i.e., one element may contain multiple nodes. The
text class, that gives the textual content of an element, and the at-
tribute class, that provides additional information about elements
are also nodes. Therefore, their relationships with the node class
are modeled as generalization relationships.

In this thesis, keyword-based search is applied over UML reposi-
tory.
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Element

Root

/Node/

startLine[0-1] : Integer
startColumn[0-1] : Integer
endLine[0-1] : Integer
endColumn[0-1] : Integer
name : String
value : String

Text Attribute

Parent[0-1]

children[*](ordered)

<uml:Model xmi:version="2.1" 

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" 

xmlns:uml="http://www.eclipse.org/uml2/2.1.0/UML" 

xmi:id="_gylnsOiaEd6gMtZRCjS81g" name="Metamodel">

  <packagedElement xmi:type="uml:Package" 

  jxmi:id="_gylnseiaEd6gMtZRCjS81g" name="XML">

    <packagedElement xmi:type="uml:Association" 

    xmi:id="_gylnv-iaEd6gMtZRCjS81g" name="A_Element_Node" 

    memberEnd="_gylnvuiaEd6gMtZRCjS81g _gylnwOiaEd6gMtZRCjS81g">

      <ownedEnd xmi:id="_gylnwOiaEd6gMtZRCjS81g" name="parent" 

      type="_gylntuiaEd6gMtZRCjS81g" isUnique="false" 

      association="_gylnv-iaEd6gMtZRCjS81g">

        <upperValue xmi:type="uml:LiteralUnlimitedNatural" 

        xmi:id="_gymOxuiaEd6gMtZRCjS81g" value="1"/>

        <lowerValue xmi:type="uml:LiteralInteger" 

        xmi:id="_gymOx-iaEd6gMtZRCjS81g"/>

      </ownedEnd>

    </packagedElement>

    <packagedElement xmi:type="uml:Class" 

    xmi:id="_gylns-iaEd6gMtZRCjS81g" name="Node" 

    isAbstract="true">

      <ownedAttribute xmi:id="_gylnuOiaEd6gMtZRCjS81g" 

      name="startLine" type="_gylnwuiaEd6gMtZRCjS81g" 

      isUnique="false"/>

      <ownedAttribute xmi:id="_gylnueiaEd6gMtZRCjS81g" 

      name="startColumn" type="_gylnwuiaEd6gMtZRCjS81g" 

      isUnique="false"/>

      <ownedAttribute xmi:id="_gylnuuiaEd6gMtZRCjS81g" 

      name="endLine" type="_gylnwuiaEd6gMtZRCjS81g" 

      isUnique="false"/>

      <ownedAttribute xmi:id="_gylnu-iaEd6gMtZRCjS81g" 

      name="endColumn" type="_gylnwuiaEd6gMtZRCjS81g" 

      isUnique="false"/>

      <ownedAttribute xmi:id="_gylnvOiaEd6gMtZRCjS81g" 

      name="name" type="_gylnw-iaEd6gMtZRCjS81g" 

      isUnique="false">

      <ownedAttribute xmi:id="_gylnveiaEd6gMtZRCjS81g" 

      name="value" type="_gylnw-iaEd6gMtZRCjS81g" 

      isUnique="false"/>

    </packagedElement>

    <packagedElement xmi:type="uml:Class" 

    xmi:id="_gylntOiaEd6gMtZRCjS81g" name="Attribute">

      <generalization xmi:id="_gymOwOiaEd6gMtZRCjS81g"

      general="_gylns-iaEd6gMtZRCjS81g"/>

    </packagedElement>

...

</uml:Model>

(a) (b)

Figure 2.4: An Example of UML Class Diagram (a) and its corresponding XMI
representation (b).
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Chapter 3

Keyword-Based Model
Search

In keyword-based search, the input query consists of a bag of key-
words. Each project from the repository is transformed into a set of
terms, used to form the index. Keywords are matched against the
index, and a TF/IDF based measure is used to compute the rank
of the matching elements in the result set. This chapter describes
the keyword-based approach on two different model repositories, ad-
dressing the text-based search part of question [Q.2]. Section 3.1
illustrates the keyword search on WebML models, while Section 3.2
presents the keyword search on repository of UML models. Keyword
search evaluation is provided in Chapter 5.

3.1 WebML keyword-based search

Illustrative example

Table 3.1 presents an example of textual query on a WebML model
repository. Suppose the user is looking for a model that supports
search and management of product lists in a Web-based system. He
could formulate his information need as a keyword query like Man-
age Search Product List. Table 3.1 shows the top-3 results returned
by our system in response to such query. Each of them consists of a
model fragment (a WebML area), with decreasing matching score.
The first result is a very relevant match, as the model fragment ac-
tually describes all the typical content management operations (cre-
ation, deletion, and modification) and contains a form for searching
products. The subsequent matches are less precise: the second one
misses some features, such as product search and updates; the third
one only occasionally mentions products. The result set highlights
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Table 3.1: Example of keyword-based query and top-3 results in WebML model
repository(with respective score values).

Query Manage Search Product List

Res. ID Model Score

Result 1

Manage Products

Home Manage Products

Product Details

Search Product

Product List

Product Details

Modify Product

New Product

Discount ListDelete Product

__

Product Data Categories

[ ? ]

Create

+

Modify

+__

Product Data

Categories

[ ? ]

Product

[ ? ]

3.9799

Result 2

Products Area

Home Products Product Details

Product Data

Category Products
Current Offers

Product News

[ ? ]

Categories

Category

Product List

2.2482

Result 3

Manage Offers
Offer Details

Offer Details
Modify Offer

New Offer

News

Delete Offer

__

Offer Data
Create

+

Modify

+__ Offer Data

Offer

[ ? ]

Products

[ ? ]

Home Offers

Categories
Product Data

Producs

[ ? ]

2.2896

the model elements that contain at least one of the search keywords
and the match score is computed based on the number of matching
and non-matching model elements.

Content Processing

The Project Analysis activity extracts only the project identifier,
used to reference (at retrieval time) segments produced by the same
project, and the project name, used for result presentation. Segmen-
tation is performed by using a metamodel-driven rule that considers
Areas as segmentation units. Recall that WebML areas are logical
containers of pages with similar purpose, thus guaranteeing a good
degree of functional cohesion. For each resulting segment, the Seg-
ment Analysis task extracts the name attribute for each area, page,
unit, and link; this attribute has a special role, because it represents
an external label defined by the developer and used by the code gen-
erator to produce the rendition of the front-end (e.g., a menu item,
a link anchor or button text, the heading of a page fragment, or a
page name) and thus carries a high relationship to the semantics of
the model element it denotes, and to the application domain where
the element is applied. A reference between the extracted term and
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the originating model element type is also kept, to be used later
in the indexing step. Finally, the Linguistic Analysis task tokenizes
the text, removes highly frequent words that bear little information,
and stems the remaining words, creating the terms to be stored in
the index.

Indexing

To explore how the injection of metamodel information in the in-
dex impacts the retrieval performance of keyword-based search, two
types of indexing strategies for WebML projects have been exploited,
both based on a multi-field index:

• Metamodel-independent strategy: for each project, the index
comprises two fields: one field (Area Name) is reserved for the
area name, and the second field (Area Content) contains the
index terms extracted by the Content Processing step. An ad-
ditional auxiliary field, used only for result presentation, con-
tains the identifier of the project to which the indexed area
belongs. Figure 3.1a shows an example of WebML area, and
Figure 3.1b the corresponding indexed representation in the
metamodel-independent strategy.

• Metamodel-dependent strategy: the index field structure is the
same as in the previous case, but a weight is added to each term
based on the metamodel concept it comes from. Weights are
configured manually offline by their fine-tuning. As a result,
in the experimental evaluation chapter we show several weight
configurations that give the most distinctive results. Figure
3.1c shows the model fragment of Figure 3.1a indexed accord-
ing to the metamodel-dependent strategy, where the numerical
values appended to textual terms are the applied weights.

Query Processing

The query is a bag of keywords, subjected to the same linguistic
analysis pipeline performed on the projects.

Search

As for indexing, a metamodel-independent and a metamodel-dependent
indexing and ranking approaches are employed.

The metamodel-independent approach uses the classic TF/IDF
measure of IR [85], which combines the frequency of a query term
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Manage Products

Modify Product

Product Data

Modify Data

+__

Show Product Details

Product List

(a)

manage products

modify product

product data 

modify data 

show product details 

product list

Area Name Field

Area Content Field

manage|1.5 products|1.5

modify|1.2 product|1.2 

product|1.0 data|1.0

modify|1.0 data|1.0

show|1.2 product|1.2 details|1.2 

product|1.0 list|1.0

Area Name Field

Area Content Field

(a) WebML model (b) Metamodel-

independent indexing

(c) Metamodel-

dependent indexing

showManage Products

Show Product Details
Modify Product

Product Data

Product List

Product

O
K

Modify Data

Product

[OID=?]

(b)

manage products

modify product

product data 

modify data 

show product details 

product list

Area Name Field

Area Content Field

manage|1.5 products|1.5

modify|1.2 product|1.2 

product|1.0 data|1.0

modify|1.0 data|1.0

show|1.2 product|1.2 details|1.2 

product|1.0 list|1.0

Area Name Field

Area Content Field

(a) WebML model (b) Metamodel-

independent indexing

(c) Metamodel-

dependent indexing

showManage Products

Show Product Details
Modify Product

Product Data

Product List

Product

O
K

Modify Data

Product

[OID=?]

(c)

Figure 3.1: Example of WebML model(a) and different text indexing techniques:
Metamodel-independent indexing (b) and metamodel-dependent indexing (c).

in a document and its inverse frequency in the document corpus,
so to penalize terms that occur frequently in a document and boost
terms that occur rarely in the entire collection. The total TF/IDF
score for a query and a document is computed as a sum of the scores
of each query term. The total score is used to produce the ranking
of the documents with respect to a given query, with higher score
documents ranking higher in the result list.

In this work we propose a metamodel-dependent extension of
TF/IDF that incorporates metamodel knowledge into a new para-
metric weighting term mtw, as reported in Equation 3.1:

score(q, d) =
∑
t∈q

√
tf(t, d) · idf(t)2 ·mtw(m, t) (3.1)

where:

• q is a query, d is the indexed document (a WebML Area, in this
experimental setting), and t is a term from the query q;

• tf(t, d) is the term frequency, i.e., the number of times the
query term t appears in the document d;

• idf(t) is the inverse document frequency of t, i.e., a value cal-

culated as 1 + log |D|
freq(t,d)+1

, which measures the informative

potential of the term in the entire document collection by cal-
culating the ratio between the number of documents and the
frequency of the term in the considered document; as a result,
rare terms in the collection are considered more relevant than
frequent ones;

• mtw(m, t) is the Model Term Weight of a term t, i.e., a metamodel-
specific boosting value that depends on the concept m contain-
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ing the term t. For instance, in the example of Figure 3.1c,
the weight for a term t associated with a Page element is set
to be higher than the weight given to terms coming from other
elements: mtw(page, t) is set to 1.2, whereas mtw for all the
others WebML concepts is set to 1.0.

3.2 UML keyword-based search

Illustrative example

Analogously, we show an example of text query over the UML model
repository. The user is searching for class diagrams that model pack-
aging a program into jar file which has a manifest that contains a
classpath. This might be expressed in keywords as Jar Manifest
Classpath. The top-3 results that the system retrieves upon execu-
tion of this keyword query is given in table 3.2. The found matches
within a project represent a single class, highlighted in table 3.2.
The project ranked first has a match with respect to the query in
the class name (Jar) and in two of the class’s attributes (jarfile
and manifest). The project ranked second has matches only in the
two attributes’ names (classname and jar) with two of the query’s
keywords. Finally, the project ranked third has matches only in at-
tributes’ names (classname, classpath and classpathref) that match
only one keyword.

Content Processing

The content processing is performed in the same way as in the case
of WebML models, except the Segmentation and the Segment Anal-
ysis task. Two types of Segmentation are applied. The first type
considers the entire project as a segment, while the second type uses
classes as segmentation units since they represent the main building
element of the class diagrams. The Segment Analysis phase takes
from each segment the name of each class, attribute, relationships’s
opposite end, the project id and name to which the class belongs
to. The segment analysis also preserves information about the type
of each extracted model element (class, attribute, relationship)and
the type and multiplicity of each relationship, which are used in the
indexing phase. Linguistic analysis is applied on the extracted text
like for the WebML models.
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Table 3.2: Example of keyword-based query and top-3 results in UML model
repository (with respective score values).

Query Jar Manifest Classpath

Res. ID Model Score

Result 1

jarfile : String
basedir[0-1] : String
compress[0-1] : String
encoding[0-1] : String
manifest[0-1] : String

Jar

/ArchiveTask/

1.0348

Result 2

classname : String
jar[0-1] : String
fork[0-1] : String

Java

\ExecutionTask\

refId : String

ClassPath

classpath[0-1]

0.8063

Result 3

type[0-1] : String
classname[0-1] : String
classpath[0-1] : String
classpathref[0-1] : String
from[0-1] : String
to[0-1] : String

Mapper

/Basic/

file[0-1] : String
preservelastmodified[0-1] : String
tofile[0-1] : String
todir[0-1] : String
overwrite[0-1] : String
filtering[0-1] : String
flatten[0-1] : String
includeemptyDirs[0-1] : String

Copy

mapper[0-1]

0.2251
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Indexing

For UML projects, the influence of segmentation and utilization of
metamodel knowledge in the index is investigated, which results in
four different indexing techniques:

• Project metamodel-independent strategy: The segmentation unit
is the entire project, and the index is single-field flat index that
consists of the project name, names of all the containing classes,
names of their attributes, and names of the relationships’ op-
posite ends. This index has no metamodel knowledge. Figure
3.2a represents this index for the model in Figure 2.4.

• Class metamodel-independent strategy: The segmentation unit
is class. The index is multi-field and it contains one field for
the project name and id, another field for the class name and
id, and a third field for the names of the class elements, such as
names of attributes and relationships. This type of index with
no metamodel awareness is given in Figure 3.2b for the class
Node from the model in Figure 2.4.

• Class metamodel-dependent strategy: It uses class as a segmen-
tation unit and a multi-field index, as in the Class metamodel-
independent strategy. Metamodel knowledge is injected by
adding weights to each name which depends on the concept
importance in the metamodel. The weights are assigned man-
ually by fine-tuning as in the case of the WebML metamodel-
dependent strategy, and the weight configurations are shown in
the experimental chapter. Figure 3.2c represents class metamodel-
dependent index for the model in Figure 2.4.

• Class neighborhood metamodel-dependent strategy: This index
also exploits class as segmentation unit. Besides the informa-
tion the class metamodel-dependent index has, this strategy
considers also the neighboring classes, i.e. those classes con-
nected through a relationship with the class being indexed. A
set of penalty weights is assigned to each relationship (through
fine-tuning), such that the weight of the imported concepts is
obtained by multiplying the metamodel concept weight with
the penalty weight depending on the relationship type and its
multiplicity. In this way, the imported terms have lower weights
with respect to the non-imported terms representing the same
metamodel concept. An example index for the model in 2.4 is
given in 3.2d.
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Element

Root 

Node

Text 

Attribute

startLine

startColumn

endLine

endColumn

Name

Value

Children

Parent

Content field

(a)

XML

Node

startLine

startColumn

endLine

endColumn

endLine

Name

Value

Parent

Class name field

Project name field

Class content field

(b)

XML|1.0

Node|1.7

startLine|1.0

startColumn|1.0

endLine|1.0

endColumn|1.0

endLine|1.0

Name|1.0

Value|1.0

Parent|1.5

Class name field

Project name field

Class content field

(c)

XML

Node

Class name field

Project name field

Class content field

XML|1.0

Node|1.7

startLine|1.0

startColumn|1.0

endLine|1.0

endColumn|1.0

endLine|1.0

Name|1.0

Value|1.0

Parent|1.5

Text|0.9

Attribute|0.9

Element|0.75

Class name field

Project name field

Class content field

(d)

Figure 3.2: Different text indexing techniques for a UML model from Figure
2.4: Project metamodel-independent indexing (a) Class metamodel-independent
indexing (b) Class metamodel-dependent indexing (c)and Class neighborhood
metamodel-dependent indexing(d).

Query Processing

The query represents a set of keywords, and query processing is
performed in the same way as for the WebML projects.

Search

All four indexing strategies are implemented and tested on UML
projects. The two metamodel-independent approaches, i.e. Project
metamodel-independent and Class metamodel independent tech-
niques, employ the TF/IDF measure just like the metamodel-independent
approach for WebML, while the two metamodel-dependent approaches
(Class metamodel-dependent and the Class neighborhood metamodel-
dependent strategies)use the same extended TF/IDF measure that
considers the metamodel information for the case of WebML mod-
els. The only difference is that the indexed document is an entire
project or a class, depending on the segmentation.
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Chapter 4

Graph-Based Model Search

In content-based model search, queries are expressed as model frag-
ments, and projects (or fragments thereof) are processed to preserve
relationships among model elements. Models, including WebML
models, can be represented conveniently as graphs [54, 103], which
offer an abstract representation of the model elements and of their
relationships. In content-based search, graphs serve as an internal
representation of the models, and they are invisible to the user (the
user is unaware of them). The query is specified as a model fragment,
which is automatically transformed into graph. On the other end,
the models from the repository are also transformed into graphs.
The end result is represented as a ranked list of models similar to
the query. In this chapter we show how project graphs are searched
by using query graphs by employing two different graph-based ap-
proaches, thus answering the content-based search part of question
[Q.2]. Section 4.1 proposes a solution for graph-based search us-
ing the A-star algorithm, while Section 4.2 proposes an efficient
search for finding graph patterns by applying multidimensional scal-
ing, representing graph nodes as points in multidimensional space.
The evaluation of the approaches is given in Chapter 5.

Illustrative example

Table 4.1 shows a sample content-based query specified as a coarse
WebML model; the query expresses a draft model consisting of a
page and some operation units for searching a project by title and
creating it (if not existing) or otherwise updating it. The top-3 re-
sults are shown; each result consists of a model fragment (a WebML
area): the first one is a very precise match, where both structure
and textual information fit with the query; the subsequent matches
have lower scores because of the decreasing number of matching el-
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Table 4.1: Example of content-based query and top-3 results (with respective
score values).

Query

Project Details

Project DetailsTitle

[ ? ]
Modify

+__

Create

+
Exist

Res. ID Model Score

R1

Project Dictionary

Project Dictionary Project Details

Filter

Project List

Project Details

Exist

Title

[ ? ]

Project

Create

+

Modify

+__

0.906

R2

Project Dictionary

Project Dictionary Project Title Details

Filter

Project List

Title Details

Exist

Title

Create

+

Modify

+__

Client

[ ? ]

0.847

R3

Project Dictionary

Project Dictionary Level Details

Confidentiality 
Levels

Level Details

Exist

Level

Create

+

Modify

+__

0.828

ements, either due to the imperfect structural overlap of the query
and project models or to mismatches in the labels of the model el-
ements. Note a difference with respect to the matches obtained for
keyword-based search, exemplified in Table 3.1: in the text-based
case, some matches appear only because a label in the model ele-
ment matches a keyword in the user’s query; in the content-based
case, matches must adhere both to the textual content and to the
structure of the query: for example, in the top result listed in Table
4.1 the Project Dictionary area is not part of the match, even if it
contains the word project that is part of the query, because it does
not correspond to any element appearing in the user’s query.
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4.1 A-star Graph-Based Search

A-star graph-based search uses the A-star algorithm which is a clas-
sical solution to the problem of finding graph similarity between a
query and a project graph. More specifically, the search verifies if
a project graph contains a subgraph similar to a query graph with
respect to the similarity of their corresponding nodes and edges. In
this thesis, we apply the A-star graph-based search to WebML model
graphs considering also information from the WebML metamodel,
i.e., the type of each metamodel concept present in the model.

Content and Query Processing

The WebML models from the repository are first split into areas, as
in the case of keyword-based search described in Chapter 3. Subse-
quently, they are translated into directed labeled graphs, according
to a mapping proposed in this work. The resulting graphs are used
to build the index. Since content-based queries are also WebML
models, they can be transformed in the same way as the projects.

A WebML graph is a triple g = (N,E,L), where N is a set of
nodes, E is a set of edges, and L is a set of labels representing
metadata about the nodes. Each WebML element maps to a graph
node, identified with the same XML ID and annotated with its name
and metamodel type. Therefore, each graph node is associated with
a pair of labels lN , lT , that represent the name and the type label
of the corresponding WebML construct. Two types of relationships
between the WebML elements are mapped into graph edges: (i) con-
tainment relationships, which connect container elements (e.g., site
views, areas and pages) with the elements they comprise; for ex-
ample, a containment relationship exists among an area and all the
pages contained in it. And (ii) navigational Links, which model
the navigation between pages and the functional dependency (i.e.,
parameters) between units. For each link, an edge that connects
the nodes mapping its source and destination unit is added to the
graph.

Figure 4.1a shows the graph representation of the WebML frag-
ment in Figure 2.3a: the Search Product area (id = area1), the
Search Products page (id = page1), the Search Product List entry
unit (id = enu1) and the Products list index unit (id = inu1) are
mapped to nodes labeled with the name attribute and the type,
and identified with the same ID of the corresponding WebML ele-
ments. The edges connecting area1 and page1, page1 and enu1, and
page1 and inu1 represent containment relationships in the original
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page1

enu1 inu1

Search Products
Page

Products List
Index Unit

area1
Search Products

Area

Search Product List
Entry Unit

(a)

<graphml>
  <graph edgedefault="directed">
    <node id="area1">
      <name>Search Products</name>
      <type>Area</type>
      <occurence>1</occurence>
    </node>
    <node id="page1">
      <name>Search Products</name>
      <type>Page</type>
      <occurence>3</occurence>
    </node>
         ...
    <edge id="edge inu1">
      <source>page1</source>
      <target>inu1</target>
    </edge>
    <edge id="edge link ln1">
      <source>enu1</source>
      <target>inu1</target>
    </edge>
  </graph>
</graphml>

(b)

Figure 4.1: Pictorial (a) and XML (b) representations of the graph correspond-
ing to the WebML example of Figure 2.3.

model; the edge that connects enu1 with inu1 represents the link
connecting the two units. Figure 4.1b shows the equivalent XML
representation of the graph in Figure 4.1a.

Differently from the case of keyword-based search, no linguis-
tic analysis is performed on the text extracted from the WebML
model. This is justified by the mechanism used for query-to-project
matching, described in details in Section 4.1, which exploits a string
similarity measure to compare graph nodes.

Search

As both projects and queries are represented as graphs, search is
performed by verifying whether the query graph is contained in a
project graph. In a query-by-example scenario, the query graph will
be normally smaller than the project graph. Therefore the goal is
to find whether the query graph is a part of the project graph; this
graph matching problem can be tackled by computing subgraph iso-
morphism [25], i.e., an injective mapping that identifies a subgraph
in the project graph that has corresponding nodes and edges in the
query graph, preserving the graph structure and label equality con-
straints.

Subgraph isomorphism is known to be NP-complete [37]; how-
ever, query processing does not require finding an exact match be-
tween the query graph and a subgraph in the project, a case that
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Figure 4.2: An example of a query graph.

would be very rare due to differences in model concept naming and
linking. A sufficient objective is to find a subgraph in the project
graph that is equivalent, or similar, to the query graph. Therefore,
it is necessary to consider a heuristic algorithm that matches graphs
by means of an approximate measure of similarity [25]. A classical
solution to this problem exploits the A-star algorithm and the graph
edit distance similarity measure [109, 53, 105], explained in the rest
of this Section.

Graph edit distance A metric that computes the similarity of two
graphs is the graph edit distance, defined as the minimum number
of edit operations that transform one graph into the other [105].
Indeed, the less transformations are applied, the more similar two
graphs are. Given a comparison graph G1 (i.e., the query) and
a compared graph G2 (i.e., the project), the graph edit distance
considers the following types of edit operations, namely:

• Node substitution: it substitutes (maps) nodes from G2 that
are similar to nodes from G1, under an externally provided
notion of node similarity.

• Node insertion: it inserts non-similar nodes from G1 into G2.

• Node deletion: it deletes from G2 all non-similar nodes. A
deletion from one of the two graphs can be treated equivalently
as an insertion in the other graph.

• Edge insertion/deletion: it inserts into G2 all edges that do not
connect two similar (substituted) nodes of G1; or, equivalently,
it deletes from G1 all edges that do not connect two similar
nodes of G2.

To exemplify the operations of the graph edit distance, we com-
pare the query graph in Figure 4.2 with the project graph in Figure
4.1a. In this example, we consider that a node from the query graph
is similar to a node from the project graph iff they have the same
metamodel type and exactly the same name. A more flexible node
similarity function will be introduced in a following paragraph. The
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node “Search Products” of type “Page” in the query graph is similar
to the node having the same name and type in the project graph.
The other query node “Search Product Info” of type “Entry Unit”
has no similar nodes in the project; therefore, it is inserted into
the project graph. All the other nodes of the project graph are
non-similar and thus deleted. Since only one node from the query
graph is similar to a corresponding node in the project graph, the
edge outgoing from it in the query graph is inserted in the project
graph, and all the four edges from the project graph are deleted. In
summary, the query graph is obtained from the project graph as a
result of 1 node substitution, 1 node insertion, 3 node deletions, 1
edge insertion and 4 edge deletions.

The graph edit similarity, defined in Formula 4.1, quantifies, in
the [0, 1] range, graph similarity by normalizing the operations con-
sidered in the graph edit distance:

GSim(G1, G2) = 1− wnI ·fnI(G1,G2)+weI ·feI(G1,G2)+wnS ·fnS(G1,G2)
wnI+weI+wnS

.

(4.1)
where fnI , feI are the fractions of inserted nodes and of inserted

edges, calculated as the ratio of inserted nodes Ni (edges Ei) in both
graphs with respect to the total number of nodes (edges) in both
graphs.

fnI(G1, G2) =
| Ni |

| N1 +N2 |
feI(G1, G2) =

| Ei |
| E1 + E2 |

. (4.2)

The values of fnI ,and feI increase as the number of non similar
nodes or edges grows.

The average distance of substituted nodes fnS is defined as:

fnS(G1, G2) =
2 ·

∑
(n1,n2)(1− sim(n1, n2))

| Ns |
. (4.3)

that is the sum of one minus the node similarities of all substi-
tuted nodes, normalized with respect to the total number of sub-
stituted nodes in both graphs. The average distance increases if
the node pairs are less similar, and is 0 iff only identical nodes are
substituted.

Formula 4.1 assigns to each edit operation a cost (weight), which
gives the corresponding operation more or less influence on the result
of the graph edit similarity computation. The constant values wnI ,
wnS, and weI range in the [0,1] interval and respectively represent
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the weights for node insertion, node substitution, and edge inser-
tion. A higher value for an operation increases its contribution in
the calculation of the distance between two graphs, i.e., the penalty
incurred when one instance of that operation is applied to align the
query and the target graphs. Weighting more insertion components
of the graph edit distance emphasizes the dissimilarity due to graph
topology; increasing the weight of the node substitution augments
the penalty for considering equivalent nodes that do not match ex-
actly. Weight values have been fine-tuned and the most distinctive
results have been reported in Chapter 5.

As an example, the comparison of the query graph in Figure 4.2
with the project graph in Figure 4.1a results in fnI = 4/6 = 0.67,
because the total number of nodes in both graphs is 6 and the to-
tal number of node operations (deletions and insertions) is 4, while
feI = 5/5 = 1, because the total number of edges in both graphs
is 5 and the total number of edge operations (deletions and in-
sertions) is also 5. The average distance of substituted nodes is

fnS = 2·(1−1)
2

= 0, because the pair of substituted nodes has similar-
ity 1 (they are identical). If the weights for this example are chosen
to be, for example, wnI = 0.3, wnS = 0.8, and weI = 0.5, then
the final graph edit similarity between the two graphs is GSim =
1− 0.3·0.67+0.5·1+0.8·0

0.3+0.5+0.8
= 0.562.

Node similarity. A central aspect in the evaluation of the sim-
ilarity of two graphs is the calculation of the similitude of two nodes
in order to determine whether they match, i.e., they can be consid-
ered similar, and thus be substituted (since they are interchange-
able), instead of inserted. The node similarity can be computed by
evaluating a distance function that considers the properties of the
evaluated nodes. In our approach, differently from previous work,
we adopt a distance function that considers both the metamodel
type of the model element associated with the graph node and its
textual label, as shown in Equation 4.4:

Dist(n1, n2) = λ·stringDist(namen1 , namen2)+(1−λ)·typeDist(n1, n2)
(4.4)

Dist(n1, n2) is calculated as the weighted linear combination of
two distances, where:

• stringDist is a string distance metric, normalized in the [0,1]
range, quantifying the similarity between the nodes’ labels; our
experiments, detailed in Chapter 5, compared the performance
of two state-of-the-art string distance metrics, respectively the
Levenshtein distance [80], and the n-gram distance [64].
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• typeDist is the distance between two concepts in the meta-
model, considered as a graph, normalized with respect to the
maximum node distance in the metamodel graph.

• The parameter λ ∈ [0, 1] determines the relative importance of
the name and type distance. λ = 0 takes into account only
type contribution, while λ = 1 takes into account only the
name similarity 1

To exemplify the computation of the node distance, let us con-
sider the Search product List and the Products List units of Figure
4.1a. According to the WebML metamodel excerpt of Figure 2.3c,
the type distance between an Entry Unit and an Index Unit is 0.75
(because the distance between the two classes is 3 and the max-
imum node distance in the graph is 4), while the string distance
stringDist(“SearchProductList”, “ProductsList”), calculated us-
ing the Levenshtein distance, is 0.58. Therefore, with λ = 0.5 the
distance between the two nodes is 0.66.

Variations of the λ parameter value allow for different similarity
evaluation scenarios. A high value of λ describes the situation in
which a user considers two model elements similar only by looking
at their names. For instance, the data unit “Product” would be
considered “similar” to an index unit “Products”, even if the former
displays one object, whereas, the latter presents a list of objects.
Conversely, a low value of λ would emphasize the semantic similarity,
at a metamodel level, of model elements. In this case, an index
unit “Product list” would be considered equivalent to an index unit
named, e.g., “Offer List”.

A-star algorithm The A-star algorithm is a method to compute
subgraph isomorphism through graph similarity [113, 109]. Different
variations exist; the version used in this work follows the template
described in [92], and then modified and applied for searching repos-
itories of business process models in [105]. Our approach is inspired
to the latter work, but significantly extends it with metamodel-
aware weights, distances, and parameters, which were not consid-
ered in the original algorithms.

The algorithm finds the optimal mapping between two graphs,
using a best-first search of the solution space (the space of all map-
pings between the query graph and the project graph); it proceeds
iteratively by searching the least-cost extension of a given initial par-
tial graph mapping until a complete graph mapping is found; cost is

1As with the weight values, the λ parameter has also been fine-tuned, and the corresponding
characteristic values are demonstrated in the experimental chapter.
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computed with the graph edit similarity function, which drives the
extension of the current partial mapping into the next expanded
mapping that yields the maximal graph edit similarity between the
query graph and the project graph.

The pseudo-code of algorithm 1 illustrates the A-star proce-
dure. It uses:

• the sets of nodes of the query graph (N1) and of the project
graph (N2).

• A variable open, which is initialized with the set of all allowed
mappings for an initial arbitrarily selected node n1 of the query
graph; the set of allowed candidate mappings is used to expand
the current partial solution; a mapping is allowed if it contains
node pairs with similarity above a given threshold, or node pairs
where the query graph node is mapped to the conventional node
deletion symbol ε.

• A variable map, which contains the current partial mapping so-
lution having the maximal graph edit similarity s(map); s(map)
is evaluated as in Equation 4.1 by considering all node pairs
contained in map as substituted, the remaining query nodes as
inserted, the unmapped project nodes as deleted, and counting
inserted/deleted edges accordingly.

A-star starts from an initially empty current mapping and a node
n1
q in the query graph, and creates all the possible partial mappings

(n1
q, n

1i
p ) from this node to every node in the project graph. Addi-

tionally, an extra mapping with a dummy node ε is created, (n1
q, ε),

denoting the case where n1
q is deleted. The partial mapping (n1

q, n
1i∗
p )

or (n1
q, ε) with the maximal graph edit similarity is selected, and

added to the current candidate solution mapping. Then, the al-
gorithm proceeds with the next node from the query graph, and
creates partial mappings with every other non-mapped node from
the project graph. At each round, the current candidate solution
mapping is expanded with the mapping of the nodes that produces
the maximal graph edit similarity. The algorithm finishes when the
current candidate solution mapping contains all the nodes from the
query graph. The returned value is the maximal graph edit similar-
ity for the query and the project graphs.

The best case complexity of the algorithm occurs when the nodes
of the project and of the query graph have the same labels, and the
query graph is an exact copy of the project graph. Therefore, for a
query graph with m nodes and a project graph with n nodes, the
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Algorithm 1 A-star algorithm

Require: open ← (n1, n2) | n2 ∈ N2 ∪ {ε}, sim(n1, n2) > threshold ∨ n2 = ε ,
for some n1 ∈ N1

while open 6= ∅ do
select map ∈ open, such that s(map) is max
open← open−map
if dom(map) = N1 then

return s(map)
else

select n1 ∈ N1, such that n1 /∈ dom(map)
for all n2 ∈ N2 ∪ {ε}, such that (n2 /∈ cod(map) and sim(n1, n2) >
threshold) xor (n2 = ε) do
map′ ← map ∪ {(n1, n2)}
open← open ∪map′

end for
end if

end while

best case complexity is O(n2m). The worst case occurs when the
query graph is very different from the project graph, both in terms
of labels and structure; in such a case, many edit operations are
necessary to transform one graph into the other, resulting in expo-
nential complexity. For a query graph with m nodes and a project
graph with n nodes, the worst case complexity is O(nmn). To re-
duce the search space, and limit space and memory requirements,
a pruning rule is used: only nodes with similarity greater than the
threshold parameter are allowed as candidate mapping pairs.

Let us consider the comparison of the query graph in Figure 4.2
and the project graph in Figure 2.3, assuming a threshold for node
similarity of 0.7, and the parameter λ = 0.5, which gives equal
importance to name and type similarity. In the first step, if we start
with the query node page1, this node can form two possible partial
mappings:

< ("Search Products:Page","Search Products:Page") >
< ("Search Products:Page","ε") >

The first pair is the mapping with the maximal graph edit simi-
larity and thus is selected and expanded into new partial mappings
that include the second query node enu1. The following ones are
the possible mappings of cardinality 2:

< ("Search Products:Page","Search Products:Page"),
("Search Product Info:Entry Unit","Search Product List:Entry Unit") >

< ("Search Products:Page","Search Products:Page"),
("Search Product Info:Entry Unit","ε") >

At the second round, the algorithm selects the former complete
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mapping, which has the maximal graph edit similarity, and termi-
nates, because all query nodes are mapped. The computed map-
ping specifies that in order to transform the query graph into the
project graph, both query nodes are substituted, and the project
graph nodes (“Manage Products: Area”,“Products List Index

Unit”) are deleted (or equivalently inserted into the query graph).
The edge in the query graph is substituted with the edge between
the corresponding nodes in the project graph and the remaining
edges from the project graph are deleted (or equivalently inserted
into the query graph).

A-star algorithm with local search The original A-star algorithm
can map query nodes to graph nodes arbitrarily positioned through-
out the project. The cost of including in the match nodes that are
far apart in the project graph is proportional to the number of edges
that must be inserted to connect such nodes; the relative contribu-
tion of edge insertion in large graphs with many edges may be lim-
ited, and so A-star tends to accept matches where query nodes are
associated with projects nodes far apart in the project graph. The
locality of matches may impact the retrieval performance, which
raises the issue whether highly connected matches are preferable to
more distributed ones. To investigate the effects of locality con-
straints, we evaluate a variant of A-star, which attempts at boost-
ing more cohesive matches by imposing an additional constraint for
adding a node to the current partial mapping: only those nodes that
are at the shortest distance with respect to already mapped nodes
are used to extend the current mapping.

The pseudocode of the local search variant is listed in Algorithm
2. At the beginning, the set of partial mappings for the initial query
node (n1) contains all the nodes (n2) from the project graph with
similarity to n1 greater than the threshold, plus the mapping with
the node deletion symbol (ε). For every node n2 in the project
graph, denoted as graph2, the shortest path to every other node in
the graph is computed using the Dijkstra algorithm [40] and saved
in the variable path set. In the next step, the algorithm proceeds
as the A-star algorithm, by selecting the partial mapping with the
maximum graph-edit similarity. Then, the partial mapping is ex-
tended: the next query node is mapped to viable candidate project
nodes; these are the project nodes with similarity above thresh-
old and positioned at the shortest distance, defined as the minimum
distance between an unmapped project node with similarity above
threshold and an already mapped project node. When multiple
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paths exist with minimal length, all of them are considered and
their source nodes treated as candidates. After identifying all nodes
above threshold and within minimum distance, the algorithm ex-
pands the current mapping so to maximize the graph edit similarity
and proceeds like the normal A-star algorithm.

Notice that, since the local search constrains the candidate matches,
it happens that: (1) the number of matches computed by local A-
star is smaller or equal than that of the original A-star; and (2)
A-star and local A-star differ only when there are multiple matched
node pairs between a query graph and the project graph.

A-star graph-based search limitations. One limitiation of the A-star
graph-based search is that it does not use any indexing to allow for
efficient search. Every node from the query graph is compared to
every node from every project graph, which is an acceptable solu-
tion for smaller model repositories that do not contain large graphs.
Since the complexity of the A-star algorithm itself directly depends
on the number of nodes in the graphs, and the number of graphs
in the repository, this approach is not efficient and it does not scale
to larger repositories. Another limitation of the A-star approach is
that it finds only a single match in a graph. Although it represents
an optimal match, other potentially interesting matches in the same
graph might exist, especially in large graphs, concerning that the
user need is defined as a coarse model initially.
A greater difference in size between a query and a project graph,
might result in low similarity values, due to the high number of
graph edit distance operations that need to be performed, even if
the query has all the matches. This raises the need of finding a
solution that will find subgraphs in the project graph similar in size
to the query graph.
Lastly, the A-star graph-based search considers only the model el-
ement type as a metamodel property, and incorporates it in the
search part of the approach. Additional metamodel properties can
also be taken into account while performing graph search.

4.2 Multidimensional Scaling Graph-Based Search

Multidimensional scaling content-based search allows search of all
similar subgraphs in the project graph with respect to a query graph
by taking the project graphs’ nodes and representing them as points
in multidimensional space. In this way, pruning of nodes is permit-
ted during search, thus making the search process more efficient and
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Algorithm 2 A-star algorithm with local search

Require: open ← (n1, n2) | n2 ∈ N2 ∪ {ε}, sim(n1, n2) > threshold ∨ n2 = ε ,
for some n1 ∈ N1

for all n2 ∈ N2 do
path set← Dijkstra Shortest Path(graph2, n2)

end for
while open 6= ∅ do

select map ∈ open, such that s(map) is max
open← open−map
if dom(map) = N1 then

return s(map)
else

select n1 ∈ N1, such that n1 /∈ dom(map)
min path set← ∅
min length←∞
for all path ∈ path set do

if source(path) /∈ cod(map) then
if sim(n1, source(path)) > threshold then

if target(path) ∈ cod(map) then
if length(path) == min length then
min path set← min path set ∪ path

else
if length(path) < min length then
min path set← ∅
min path set← min path set ∪ path
min length = length(path)

end if
end if

end if
end if

end if
end for
source nodes← extract source nodes(min path set)
for all n′ ∈ source nodes ∪ ε do
map← map ∪ {(n1;n′)}
open← open ∪map

end for
end if

end while

scalable with respect to the A-star algorithm graph-based search.
Furthermore, the search is performed in a more realistic setting
without the necessity of splitting the project graph, thus allowing for
multiple matches in a graph with sizes comparable to those of the
query graph. The approach also includes metamodel information
in the graphs incorporating Data Model references and relationship
types, which have not been considered in the A-star graph-based
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search.

Content and Query Processing

The rich syntax of WebML models can be captured more accurately
by representing them as multi-labeled graphs whose nodes contain
multiple labels. In this way, with respect to the previous represen-
tation, besides the name and the type of the model element, we also
consider the WebML Data Model by extracting the entity or rela-
tionship associated to a model element. This information represents
the entity or relationship to which the model element refers (in case
the model element contains this kind of reference). For example,
the container elements-site view, area and page do not contain any
reference to the Data Model. Furthermore, the type of the links
that connect model elements is associated to the edges’ labels of
the multi-labeled graphs, while the containment edge originating
from the containment relationship is assigned a “containment” la-
bel. Queries, being model fragments (as in the A-star graph-based
search), are also transformed as the project models into graphs.

More formally, a multi-labeled WebML graph G=(N,E) is a di-
rected labeled graph, where:

• N = {n1, , nm} is a set of nodes, such that each node nk rep-
resents a WebML model element and is associated a list of
labels NLk = (nid, nname, ntype, nentity,, nrelationship), where nid
is the element id, nname is the element name, ntype is the ele-
ment type, nentity is the entity used by the model element, and
nrelationship is the relationship used by the model element. In
case the entity or the relationship is not specified, the node will
contain only the specified labels.

• E = {e1, , en} is a set of directed edges, such that each edge
ei from node nk to node nj represents a relationship between
WebML model elements, and it has an associated label ELitype
that corresponds to a WebML relationship type. Two cate-
gories of WebML relationships are considered, described in Sec-
tion 4.1, namely, containment relationships and links, diversify-
ing further among the different types of WebML links defined in
Section 2.2.1. As a result, ELitype can have the following values:
ELitype ∈ {containment, normal, automatic, transport, OKlink,
KOlink}.

Figure 4.3a shows the graph representation of the WebML frag-
ment in Figure 2.3a according to the above-mentioned formal de-
scription. WebML model elements are mapped to nodes preserving
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  <graph edgedefault="directed">

    <node id="area1">

      <name>Manage Products</name>

      <type>Area</type>

      <occurence>1</occurence> </node>

                  ...          

    <node id="inu1">

      <name>Products List</name>

      <type>Index Unit</type>

      <entity>Product</entity>

      <occurence>3</occurence> </node>

                                     ...
    <edge id="edge inu1">

      <source>page1</source>

      <target>inu1</target> 

      <type>containment</type></edge>

    <edge id="edge link ln1">

      <source>enu1</source>

      <target>inu1</target> 

      <type>normal</type></edge>

  </graph>
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Figure 4.3: Pictorial (a) and XML (b) representations of the graph correspond-
ing to the WebML example of Figure 2.3.

the same id, labeled with name and type. The inu1 index unit
contains another label Product representing the entity to which the
index unit refers to. The edges that represent the containment rela-
tionships are annotated with the containment label, while the edge
representing normal link connecting enu1 with inu1 is annotated
with the normal label, corresponding to the link type. The cor-
responding XML representation of the WebML graph is given in
Figure 4.3b.

Considering the formal model-to-graph transformation provided
above, we deal with multi-labeled graphs,i.e., graphs whose nodes
are annotated with multiple labels. Therefore, we address the prob-
lem of graph-based search of models, as a problem of multi-labeled
graph search. Single-labeled graph matching algorithms perform in-
efficiently when applied on multi-labeled graphs [126]. As a result,
new approach that considers multi-labeled model graphs is proposed
based on multidimensional scaling. Here we provide an overview of
the approach which will be explained below in more details. The ap-
proach first considers project graphs and applies multidimensional
scaling to transform their nodes as points in space considering node
labels that represent specific metamodel features, denoted here as
feature classes. These points are put in multidimensional grids (one
grid per feature class) with respect to points’ positions which are
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used to build the index to provide for efficient search. On the search
side, the query nodes are also transformed into points that are used
to query the grids. A query point retrieves all the points which are
within a specified distance to that query point, searching only grid
buckets that are within this distance. The retrieved points are col-
lected for all the feature classes, and their corresponding nodes are
tested by checking if their label’s real distance is within the speci-
fied distance. This constraint is used to further prune results. The
neighborhood of the filtered nodes is then further checked in order
to keep only nodes that are in the proximity of each other. Finally,
all nodes that passed the neighborhood constraint are used to locate
project subgraphs in the larger project graphs that are compared to
the query graph.

Indexing

In the case of multi-labeled graphs, each node contains multiple la-
bels conforming to classes of features, where each label corresponds
to one feature class. Furthermore, each node can by represented by
a set of points in multidimensional spaces, where each point corre-
sponds to a feature class label. For each feature class, the trans-
formation of a node label to a point in multidimensional space is
based on a node label’s distances to the corresponding labels of other
nodes. These computed distances help to find for a graph node, its
“nearby” graph nodes with respect to a single feature class. How-
ever, using brute force to locate these “nearby” nodes is inefficient
and consequently, there is a need of building an index which will
allow for efficient search by placing the points corresponding to a
feature class in a multidimensional grid. This procedure should be
performed for every feature class such that the total number of grids
corresponds to the number of feature classes.

In many fields, such as social sciences, information retrieval,
geology and archaeology, there exist datasets where it is possible
to quantify the similarity between their individual objects, called
proximity data. Multidimensional scaling (MDS) is defined as a
process of mapping high-dimensional objects of a dataset into low-
dimensional space while preserving (dis)similarity relationships of
objects, and it is typically used for data visualization [95]. However,
in this thesis it is used as a basis for performing the indexing because
it permits efficient representation of graph nodes as points in multi-
dimensional space, which is justified in more detail in the following
discussion. In MDS the (dis)similarity between objects is evaluated
as a distance between objects in high dimensional space. The most
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common distance metric for MDS is the Minkowski distance based
on representation of objects as points in multidimensional space,

computed as: dL(xi, xj) = (
d∑

k=1

||xi,k − xj,k||L)1/L

More specifically, the most used instance of the Minkowski met-
ric is the Euclidian distance for L=2 [95]. Out of many existing
MDS algorithms,for e.g. [24, 32, 42], the ones that use the spring
model, described below, perform better. The non spring model MDS
algorithms have higher complexity (O(N3) and O(N4)) and are non-
iterative which means that they need to re-run enitrely if a small
subset of additional data needs to be considered. Furthermore, non
spring model MDS algorithms represent the data as a linear combi-
nation of the original dimensions which leads to a slower convergence
to the optimal solution [29].

In the spring model, attractive and repulsive spring-based forces
act between each pair of objects to improve inter-object separation
(distances) in space [95]. The system is initialised by placing tha
dataset objects in random positions, which makes the springs con-
necting these objects to be stretched or compressed. When the sys-
tem is left by itself, the attractive and repulsive spring forces tend
to move the system iteratively, until a state of an equilibrium is
reached, which authors of [95] argue is a state of minimal energy. In
each iteration the position of every object is improved with respect
to a previous iteration. When the object positions do not change
between consecutive iterations, a state of equilibrium is achieved.

For our dataset we choose the Chalmers algorithm, proposed in
[29], since it has better complexity than other existing MDS ap-
proaches. The Chalmer’s algorithm employs caching and stochastic
sampling to perform each iteration of a spring model in linear time.
Instead of doing all the possible pairwise N(N − 1) computations,
the advantage of this algorithm is that it computes force calculations
between each object o and the members of two sets, described below,
whose size is bounded by a constant [29]. As a result, the compu-
tational cost in each iteration is linear with respect to N . The first
set is stored as a list of neighbors of o that contains all the objects
found so far to have lowest high-dimensional distance with respect
to o. The second set is reconstructed in each iteration and contains a
random selection of objects not already in the neighbor set. In each
iteration, random objects are selected and each of them is tested
to determine whether it has a high-dimensional distance lower than
one or more of the current neighbors. In this case, the new object
is swapped with an object from the neighbor set. Otherwise, the
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object is added to the second (random) set. In each iteration, the
neighbor set becomes more representative of the most similar ob-
jects to an object. The forces of the system are computed as being
proportional to the difference between the high-dimensional (real)
distance and the low-dimensional (current) distance computed by
their current positions in the space. The system needs to minimize
the difference between these two distances. A loss function, known
as stress, is defined, to indicate the amount of energy in the system,
computed as a measure of the sum of squared errors of distances
between objects [29]:

Stress =

∑
i<j(dij − gij)2∑

i<j g
2
ij

(4.5)

In Equation 4.5, dij is the real high-dimensional distance between
objects i and j, and gij is the low-dimensional distance. For each
object, three properties are maintained: position, velocity and force.
In each iteration the force of an object is calculated which is then
used to subsequently update the velocity, which is then used to
update the object’s position.

The number of force calculations required during one iteration of
the algorithm is reduced from n(n−1) to n(Vmax+Smax), where Vmax
is the maximal size of the neighbor set and Smax is the maximal size
of the random set and they are constant values, which means that
the computational cost of an iteration is linear with respect to the
number of objects n. The number of iterations necessary to produce
a stable layout is commonly proportional to the dataset size, which
makes the overall algorithm complexity O(n2) [95].

However, the gain in performance comes with a drop in qual-
ity because the Chalmers algorithm can only approximate the true
distances but can never compute them exactly. While querying,
pruning is used to eliminate all irrelevant points; nonetheless, there
is no guarantee that all the relevant points will be retrieved.

In the following, we propose an indexing algorithm, with pseu-
docode given in Algorithm 3, where we applied the Chalmers algo-
rithm on the multi-labeled nodes of the model graphs, denoted as
nodes. In our model graphs, there are maximum three labels per
node, each representing a different feature class: name, type and en-
tity/relationship. These classes of features are forming the feature
set, given as features in the pseudocode. Note that the entity/re-
lationship set of labels, representing the entity/relationship feature
class, is smaller than the others since, not every model element con-
tains these properties. Since a model element in general might have
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Algorithm 3 Indexing algorithm

Require: nodes,features
for all f ∈ features do
grid[f ]← grid(f, dim,width)
points← Chalmers(nodes, f, dim, iterations,maxCacheSize)
for all p ∈ points do
bucket← findId(p.coordinates, dim, grid[f ])
insertPoint(p, bucket)

end for
end for

a reference to entity or relationship of the Data Model, but not both
of them, we consider the entity/relationship as one feature class be-
cause they are both parts of the Data model. For each feature class
f a new grid, grid, is constructed with a fixed number of dimen-
sions dim. Each grid consists of dim-dimensional buckets, and the
bucket width parameter width determines the total number of buck-
ets in the grid. The Chalmers algorithm is applied for each distinct
feature class independently with its own parameters: number of it-
erations of the algorithm iterations, maximal size of the random set
(denoted as maxCacheSize in our pseudocode) and number of di-
mensions, dim, to compute coordinates of points that represent the
nodes. Once the positions of the points for each dataset are found,
after the specified number of iterations, each point is used to find
the bucket id, bucket, in the grid where the point will be inserted.
The number of dimensions in the grid is identical to the number of
dimensions of the points. All of the above-mentioned parameters
are fine-tuned and the most characteristic results are reported in
Chapter 5.

The complexity of the indexing algorithm is O(n2) (where n is
the number of nodes in the nodes set) and it depends directly on the
Chalmers algorithm complexity, since the number of feature classes
in the outer for loop in the pseudocode of Algorithm 3 is fixed.

Besides the grid structure, two index structures are built,used as
auxiliary structures in the search algorithm:

• Neighborhood index is an inverted index that keeps track of the
neighborhood of each node, such that for each node, its 2-hop
neighborhood considering both ancestors and descendants can
be found.

• Project index is an inverted index on graph nodes based on the
project they belong, that allows a node to find its corresponding
project graph name during the search.
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Search

The search part consists of finding all similar subgraphs in the
project graphs with respect to a query graph, such that the dimen-
sions of the similar subgraphs are comparable to the query graph.
In a large graph, several subgraphs similar to a query graph might
exist. Since a similarity between graphs is required through dis-
covering correspondences between their nodes and edges, allowing
node and edge mismatches, the graph-edit distance measure as pre-
sented in Section 4.1, is applied for its computation. However, the
graph edit distance in this case is modified to consider multi-labeled
graphs.

Graph-edit distance Graph-edit distance is computed between a
query graphQ(NQ, EQ) and a subgraph of the project graphGs(Ns, Es)
and it is defined as a minimum number of operations that transform
the query graph into the project subgraph. The operations consid-
ered are:

• Node substitution: a node in the project subgraph Gs is sub-
stituted with a node in the query graph Q under the notion of
node distance, calculated as specified below.

• Edge substitution: an edge in the project subgraph, is substi-
tuted with an edge in the query graph under the notion of edge
distance, as specified below.

• Node deletion: it deletes all the nodes from the query graph
that do not have corresponding similar nodes in the project
subgraph.

• Node insertion: it inserts all the nodes from the project sub-
graph that do not have corresponding similar nodes in the query
graph.

• Edge insertion: it inserts all the edges from the project sub-
graph that do not have corresponding similar edges in the query
graph.

• Edge deletion: it deletes all the edges from the query graph
that do not have corresponding similar edges in the project
subgraph.
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The graph-edit distance is defined, in the simplest way by summing
the contributions of each considered operation:

dist(Q,Gs) =
∑

(n1,n2)

dist(n1, n2) +
∑

(e1,e2)

dist(e1, e2)+ | nodeIns | +

+ | nodeDel | + | EdgeIns | + | EdgeDel | (4.6)

where |nodeIns|, |nodeDel|, |EdgeIns| and |EdgeDel| represent the
number of node insertions, node deletions, edge insertions and edge
deletions respectively. The contribution of the node substitution is
given by the sum of the distances of all substituted node pairs, while
the contribution of the edge substitution is given by the sum of the
distances of all substituted edge pairs.

With respect to the graph-edit distance presented in our other
graph-based approach in Section 4.1, here we consider the edge sub-
stitution operation since we introduce edge labels, in order to include
more metamodel information in the search. Furthermore, the condi-
tions for node substitution are different due to the additional node
label representing the entity/relationship feature class. Also, we use
a simplified version of the graph-edit distance formula which is not
normalized.

In the following, to better show the difference between the two,
we give an example of graph-edit distance computation between a
query graph in Figure 4.2 and a project graph in Figure 4.3a, the
same graphs used in the graph-edit distance example as in Section
4.1 with an exception that the edge in the query graph should have
the label “containment”. As in the previous example, we will con-
sider that two nodes are similar iff they have the same metamodel
type, exactly the same name and exactly the same entity or rela-
tionship, if the reference to the Data model is specified. In our
multidimensional scaling approach, a more flexible notion of node
similarity is employed. Therefore, as in the previous example, the
“Search Products” node in the query graph is similar to the corre-
sponding node having the same name and type in the project graph.
Since the substituted nodes are identical, the distance of each of the
individual labels representing the name and type feature classes is 0,
which means that the corresponding node distance is 0. The other
query node “Search Product Info” has no similar nodes in the project
and, it is deleted from the query graph, i.e. | V ertexDel |= 1. The
remaining three nodes from the project graph are inserted into the
query graph, i.e. | V ertexIns |= 3. Since there is only one pair
of substituted nodes, there are no candidates for similar edges that
might be substituted. The only edge from the query graph is deleted,
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dau1 inu1

Products List Info

Product

Index Unit

Product Details

Product

Data Unit

Figure 4.4: An example of two nodes for similarity computation.

i.e. | EdgeDel |= 1, and all the four edges from the project graph
are inserted in the query graph, i.e. | EdgeIns |= 4. The final graph
edit distance between the two graphs is Dist = 0+3+1+4+1 = 9.
The bigger the distance is, the less similar are the graphs. If the
distance is 0, the graphs are identical.

With respect to the A-star graph-based search that computes
graph edit similarity in the range [0, 1] by normalizing the graph-
edit operations, here we use graph-edit distance, a metric opposite
to the graph-edit similarity metric, without normalizing graph-edit
operations. The graph-edit distance range between a query graph
Q(NQ, EQ) and a project graph Gs(Ns, Es) is [0, |NQ|+ |Ns|+ |EQ|+
|Es|].

Node distance. Distance between a node n1 in a query graph
Q, and a node n2 in a project subgraph Gs is defined as a mapping
of their label sets, which depends on the distance of each individual
label:

• Name label distance, distName(n1, n2), computed by a string
distance metric, as defined in Section 4.1.

• Type label distance, distType(n1, n2), computed as type dis-
tance as stated in Section 4.1.

• Entity label distance, distEntity(n1, n2), when specified, is de-
termined by a string distance metric.

• Relationship label distance, distRelationship(n1, n2), when spec-
ified, is determined by a string distance metric.

The string distance metric used for this part of the work in the ex-
perimental section is the Levenshtein distance. The node distance
is determined by summing the distance contributions of each indi-
vidual label (feature class):
dist(n1, n2) = distName(n1, n2) + distType(n1, n2) +

+ distEntity(n1, n2) + distRelationship(n1, n2)
The Figure 4.4 represents two nodes annotated with the labels

representing name, type and entity feature classes, that we will use
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to demonstrate the node distance computation. According to the
node distance specification, the distance of each individual label
should be considered. The name labels of the two nodes are “Prod-
uct Details” and “Products List Info”, and their distance computed
by utilizing the normalized Levenshtein distance is 0.44. The type
distance between “Data Unit” and “Index Unit” is 1, according
to the WebML metamodel excerpt shown in Figure 2.3c where the
distance between the two classes is 4 and the maximum node dis-
tance in the graph is 4. The entity label distance is 0 since both
nodes have identical entity labels “Product”. Finally, the node
distance is computed as the sum of the distances of each label:
sim(n1, n2) = 0.44 + 1 + 0 = 1.44.

Edge distance. An edge e1 in the query graph Q is similar
to an edge e2 in the project graph Gs if the nodes incident to e1

are similar to the nodes incident to e2, and these two edges have
a similar edge label. In order to better explain edge distance, we
introduce the links set that contains edge labels corresponding to
all WebML link types, as described in Section 2.2.1, where links =
{normal, transport, automatic, OKlink,KOlink}. Two edge labels
are similar if they are identical, or if they both belong to the links
set. Conversely, the distance of two edges e1 = (n1i, n1j) and e2 =
(n2k, n2l), can be quantified as:

dist(e1, e2) =



0, iff n1i corresponds to n2k,

n1j corresponds to n2l, EL1type = EL2type;

0.5, iff n1i corresponds to n2k,

n1j corresponds to n2l, EL1type 6= EL2type,

EL1type, EL2type ∈ links;
1, otherwise

This type of distance diversifies between the containment edges
and the edges which represent links among model elements. This
means that if two edges have the same label, their distance is 0. If
both edges do not have an equal type, but their types belong to the
links set, their distance is 0.5. If one of the edges has a type from
the links set and the other edge is of type containment, then their
distance is 1.

Search algorithm The search algorithm provides an efficient search
of the index and pruning of candidate nodes based on their real
distance and neighborhood constraints. In this way, only project
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subgraphs with localized matches, whose size is comparable to that
of the query graph are considered for graph edit distance computa-
tion.

The querying part is carried out node by node, transforming each
node object from the query graph into maximum three points cor-
responding to each of the name, type, and entity/relationship node
feature class. The pseudocode of the Search algorithm is given in
Algorithm 4. Note that we will use the terms node and its represent-
ing point interchangeably. The node transformation for each feature
class f is performed using a modified version of the Chalmer’s al-
gorithm for querying, denoted as ChalmersQuery. This version of
the algorithm takes only one query node instead of an entire node
array, and it first positions randomly the query node according to
the points present in the corresponding grid. In each succesive it-
eration, the query position is improved by minimizing the stress
function with respect to the points indexed in the grid. The com-
plexity of the Chalmer’s Query algorithm is O(1), since the new
point corresponding to the query node is positioned with respect to
a constant number of pivot points as denoted by the neighbor set
and the random set. Each point has the same number of dimen-
sions as the points from the project graphs in the corresponding
grids. The query point queries the corresponding grid to find buck-
ets that are within the acceptable distance distance, a parameter
specified by the user. Since the grids are independent, different ac-
ceptable distances can be assigned for each feature class. The query
point is positioned in a grid bucket, and only buckets that are within
the acceptable distance distance are searched for candidate points
considering the relative position of the query point. In this way,
an efficient pruning is achieved, since not all grids are checked, but
only those within an acceptable distance. Once all the points are
retrieved for each label type (feature class), a union is performed
on all points for the three different feature classes, thus merging
the results obtained from all the three grids. A final check is done
with the prune function to verify if the returned nodes have also
high-dimensional (real) distance which is within the acceptable dis-
tance, which further reduces the number of nodes. For the name
and entity/relationship label, the Levenshtein distance, defined in
Section 4.1 is used as a real distance, while the type label uses the
metamodel type distance defined in Section 4.1. In this way, for
each query node we obtain a set of candidate points, denoted as
real, used in the next phase of the algorithm, thus making it more
efficient, since it will be performed only on the set of the filtered
nodes, and not the entire node set.
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The next phase of the algorithm performs full outer join of the
candidate nodes for each query node from the real set iteratively,
such that in each iteration a new query node is considered, until
all query nodes are examined. The join process is handled by the
join function. In the first iteration, two candidate lists of different
query nodes are checked for join. Each node from the first list is
checked for join with every node from the second list. A node from
the first candidate list joins a node from the second candidate list if
they belong to the same project graph and if they are in the 2-hop
neighborhood of each other. For each successive iteration, join is
performed between a list of tuples of joined nodes, joinedList, and
a candidate list corresponding to the next query node. Each tuple
of already joined nodes is checked for join with each node from the
list of candidate nodes associated to the next query node. A join is
carried out if the node to be joined to an already existing tuple be-
longs to the same project graph and it is in the 2-hop neighborhood
of at least one already joined node from that tuple. For checking
the project graph and 2-hop neighborhood of each node, the cor-
responding project and neighborhood indexes are employed. Thus,
every tuple contains only nodes that belong to the same project and
that are in close proximity to each other. Full outer join handles the
cases where a candidate node does not join already existing tuple,
and in this case it forms a tuple consisting only of the candidate
node, or an already existing tuple does not join any candidate node
in an iteration, allowing a possibility for joining them in a successive
iteration.

Each tuple resulting from the join actually represents a set of
substituted nodes in a project graph which are within an acceptable
distance with respect to the matching query nodes. The substituted
nodes help to identify a subgraph in the larger project graph whose
nodes are in the vicinity of each other and whose size is comparable
to the size of the query graph. The found subgraph will be compared
in terms of graph edit distance to the query graph. The set of nodes
to be inserted in the query graph is identified from the intersection
of their neighborhoods and it is found with the findInsertedNodes
function. The edges connecting corresponding substituted nodes
in the project subgraph and query graph are examined for edge
distance as defined previously. If the edges have distance less than
1, then they are substituted. The edge substitution is determined by
the findSubstitutedEdges function. All other edges in the project
subgraph that are not similar or that connect inserted nodes (or
connect inserted with a substituted node) are considered inserted
edges, a condition checked by the findInsertedEdges function. The
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substituted nodes and edges, and inserted nodes and edges are used
to build the project subgraph using the buildGraph function.

Algorithm 4 Search algorithm

Require: NQ, feature
for all nq ∈ NQ do
candidates← ∅
for all f ∈ feature do
queryCoordinates← ChalmersQuery(nq, f, dim, iterations,maxCacheSize)
buckets← findBuckets(queryCoordinates, grid[f ], distance)
points[f ]← findCandidates(queryCoordinates, buckets, grid[f ])
candidates← candidates ∪ points[f ]

end for
real[nq]← prune(nq, candidates)

end for
first← true
for all nq ∈ NQ do

if first then
joinedList← real[nq] join real[nq + 1]
first← false

else
joinedList← joinedList join real[nq + 1]

end if
end for
for all tuple ∈ joinedList do
insertedNodes← findInsertedNodes(tuple)
substitutedEdges← findSubstitutedEdges(tuple)
insertedEdges← findInsertedEdges(tuple, insertedNodes)
subgraph← buildGraph(tuple, insertedNodes, substitutedEdges, insertedEdges)

end for

The complexity of the first phase of the search algorithm, which
includes finding a set of candidate nodes for each query node, is
O(m), where m is the number of nodes in the query graph. In order
to determine the complexity of the second phase of the search algo-
rithm, we start from the most complicated join function. The join
function performs join between two lists of candidate nodes corre-
sponding to different query nodes in the first iteration, or between
a list of tuples of joined nodes, joinedList, and a list of candi-
date nodes corresponding to a query node for all successive itera-
tions. The join function actually checks for join each node from
the first list with each node from the second list, or each tuple from
the joinedList with each node from the candidate list respectively.
Therefore, the complexity of the join function is O(n2) where n is
the number of candidates for a query node. Finally, the overall com-
plexity of the search algorithm which finds all subgraph matches for
a query graph is O(mn2), where m is the number of query nodes in
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the outer for loop. This represents an improvement over the A-star
graph-based search, whose complexity for a query graph and only
one project graph is O(mn2) (without considering the entire set of
project graphs).

If there exist nodes in the query graph which do not have a match
in the tuple, then they represent the deleted nodes. Query graph
edges that do not have a matching pair in the project subgraph
are deleted. Deleted nodes and edges, besides the inserted nodes
and edges, and substituted nodes and edges, serve in the graph
edit distance computation where the query graph and the project
subgraph are compared. The computed score is used to rank the
project subgraphs based on the graph edit distance with respect to
a query graph.
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Chapter 5

Experimental Evaluation

This chapter presents the experiments on different model search sce-
narios constructed according to the techniques described in the pre-
vious chapters. Section 5.1 describes the experimental settings and
the datasets; Section 5.2 specifies the metrics used in the evaluation;
Section 5.3 technically evaluates the keyword- and content-based
systems, analyzing performance under different system configura-
tions using quality indicators based on gold standards created by a
panel of experts, answering to research question [Q.3] announced in
Chapter 1; Section 5.4 illustrates a user study, where WebML practi-
tioners were asked to assess how much the proposed keyword-based
and A-star graph-based methods could help them in the reuse of
existing modeling artifacts, thus responding to question [Q.4]. Sec-
tion 5.6 introduces potential threats to validity of the experimental
evaluation and the approaches.

5.1 Experimental Settings and Datasets

5.1.1 Test bed

The experiments were performed on two repositories of software
models, WebML and UML. The WebML repository is provided by
WebRatio1; the company that develops the homonymous MDD tool
for WebML modeling and automatic generation of Web applications.
The repository contains 12 real-world WebML projects from dif-
ferent application domains (e.g., trouble ticketing, human resource
management, Web portals, etc.). The projects are encoded as XML
files conforming to the WebML DTD, and their domains and size
are presented in Table 5.1. For the keyword-based and the A-star
graph-based approaches, we segmented projects at the area level,

1www.webratio.com
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which resulted in 341 areas. However, the multidimensional scaling
approach uses segmentation at project level, considering projects in
their entirety. As a result of the multidimensional scaling appplied
on the project graphs, the name and the type grid contain 19012
points each, while the entity/relationship grid contains 8380 points.
Fewer number of points in the entity/relationship grid is due to the
fact that not every model element contains the entity or relationship
feature as already explained in Section 4.2.

Table 5.1: WebML repository. Project ID, domain, and number of contained
areas.

Project ID Domain Number of areas

1 Administration 23
2 Human resource management 53
3 Call center web portal 56
4 Calendar management 3
5 Bank account management 58
6 E-commerce 15
7 Rent-a-car 2
8 Adminstration 30
9 Company intranet 58
10 Web portal 5
11 Candidate evaluation 24
12 Trouble ticketing 12

An evaluation set of 10 queries was built as follows: first, to en-
sure a good coverage of all the system features that we wanted to test
in the experiments and the coherence between the evaluation set and
the repository content, we defined several exemplary models, satis-
fying the following properties: (i) they implemented theoretical [28]
and real-world WebML modeling patterns; (ii) they used a broad
mix of the WebML metamodel concepts; and (iii) they were based
on a vocabulary (of labels) consistently used in the experimental
project repository. Out of this initial set, a group of three experi-
enced model developers were consulted to select the 10 exemplary
models which, in their opinion, better represented the typical user
need of MDD developers in their everyday activities. Finally, the
exemplary models were transformed into keyword-queries, by select-
ing as keywords all the significative labels; and into content-based
queries, by mapping each WebML model into a graph as explained
in Section 4.1.

The keyword-based search was also applied on a repository of
UML models, consisting of 84 UML class diagrams taken from the
AtlanMod zoos [9], a publicly available repository of metamodels.
The class diagrams are actually metamodels which can be also de-
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scribed as models about a model, according to [8]. Main disad-
vantage of this dataset is that majority of the projects are small
in size (not containing many classes) which makes it inappropri-
ate for testing the graph-based approaches. However, to the best
of our knowledge, this is the only publicly available repository of
UML models that contains bigger collection of UML models. We
tested keyword-based search on this dataset by considering the en-
tire project as a segmentation unit and by employing segmentation
at the class level.

A set of 20 queries was built for testing the UML repository,
adopting a similar principle used in the creation of queries for the
WebML repository. A set of exemplary models was constructed,
considering the frequency of the terms present in the repository for
labeling the model elements, as well as different types of relation-
ships present in the repository. Note that UML class diagrams do
not have diversity in terms of modeling patterns (and model ele-
ments) as WebML models have. From this set of models, the same
model developers selected 10 of them as queries considering their
typical user need, as in the WebML case. The queries were then
transformed into keyword queries, selecting the labels of the model
elements as keywords. This set of queries is defined at project level
granularity. An additional set of 10 classes was selected from the
exemplary models considering their attributes and relationships to
represent queries at class level granularity, to test the case where
segmentation is performed at class level. The second set of queries
are transformed into keyword queries, considering the class name
and its attributes as keywords.

5.1.2 Gold Standard Creation

The gold standard for the comparison of the retrieval methods (ex-
cept the multidimensional scaling method) for both WebML and
UML datasets, was constructed by manually assessing the extent to
which each WebML area, or UML class diagram respectively, in the
repository contained a model similar to those in the evaluation set;
the three experts assigned a relevance score expressed in a tertiary
scale where, (i) 0 relevance means no similarity, (ii) 1 means that
some textual xor structural similarity exists, and (iii) 3 corresponds
to a judgment of strong similarity (textual and structural). The
final relevance was calculated as the average of the three judgments,
rounded to the nearest integer. To reduce fatigue and learning bias,
the evaluation tasks were spread over multiple days.

Figure 5.1 exemplifies the kind of judgements about query-area
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matches expressed by evaluators for the WebML dataset. The query
(Figure 5.1(a)) looks for an area that implements a creation/modi-
fication pattern for new/existing products; the area shown in 5.1(b)
contains a pattern that performs the same action, but using slightly
different labels. Given that the query’s structural pattern is present
in the project, and there is also a partial textual similarity (the terms
product and title are present both in the query and in the matching
area), a relevance value of 3 qualifies this match. Figures 5.1(c) and
(d) show examples of areas where the relevance with respect to the
query is 1 and 0, respectively. As it can be noticed, the area with
similarity 1 contains a pattern that verifies the existence of a store
in order to be created or modified. This area has only structural
pattern similar to the query, and no textual similarity. Finally, the
project with similarity 0 has nothing in common with the query.

The gold standard dataset ranks for each query the areas, ac-
cording to the average relevance score of the match, breaking ties
with a deterministic rule.
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Figure 5.1: Example of a WebML query (a), area with similarity 3 (b), area
with similarity 1 (c) and area with similarity 0 (d).
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The multidimensional scaling graph-based method uses the same
set of WebML queries and projects. However, since the method
finds set of similar graphs in the entire set of WebML projects for
a query, and it does not use the area as segmentation unit, but an
entire project, the existing ground truth can not be used as it is
in the evaluation. Moreover, building a new ground truth for the
same set of queries considering the entire projects instead of the
areas will make all projects equally relevant. Namely, since we are
evaluating a similarity of a query with a project, due to the small
size of the dataset in terms of number of projects, and large size of
individual projects in terms of number of model elements, almost
every project will be similar to every query. This means that the
query-to-project graded relevance would disappear, which will flat-
ten the results Therefore, we decided to adapt the existing ground
truth in the following way: The relevance of each found subgraph
from a project graph is evaluated by finding the relevance of each
project node with respect to the area to which the corresponding
model element belongs in the existing ground truth. Then, these
relevances are averaged to obtain the overall relevance of a project
subgraph with respect to a query graph. For example, if the found
subgraph has three nodes, and the first node belongs to an area
that has relevance 1 in the ground truth with respect to the query
(meaning that the node’s relevance is also 1), the second node has
relevance 0, and the third node has relevance 3, the relevance of
the project subgraph with respect to a query graph is the average
relevance, i.e. 1.33. The relevances are computed for each result set
individually and they are used as a ground truth for the result set
in its evaluation.

5.1.3 Experimental scenarios

As a baseline for comparing the retrieval accuracy of both the WebML
text-based and A-star graph-based approaches, we use randomly
generated result sets. For the WebML dataset, a random result set
is a sequence of areas randomly extracted from the projects in the
repository, ordered randomly. The value of each performance indi-
cator in the baseline case is calculated by averaging, for each query,
the results of 10 random area extraction and ranking steps.

In the same way, two random result sets are generated for the
UML case corresponding to the considered segmentations at project
and class granularity. For the project granularity, projects were ran-
domly extracted from the repository, while for segmentation at class
granularity level, classes were randomly extracted from all classes
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belonging to the projects in the repository. The performance indi-
cator values were calculated identically as in the case of the WebML
repository.

We could not compare the performance of our implementation
directly with existing works in model search for various reasons:
some works are not metamodel-aware at all, and therefore cannot
be ported to other modeling languages; some others assess their
quality upon non public data sets; and finally, others do not provide
publicly available systems to compare with.

WebML Keyword-based search Figure 5.2a summarizes the evalu-
ation scenarios for keyword based search. Experiments were con-
ducted under a (i) metamodel-independent, and a (ii) metamodel-
dependent configuration. The index of the metamodel-independent
experiment contains equally weighted terms, regardless of the meta-
model type of the element of origin. Conversely, the indexes of the
metamodel-dependent experiments weight terms according to the
category of the metamodel type of the element where the term ap-
pears.

We categorize the five WebML model primitives relevant for match-
ing the query to the projects into structural and navigational. Figure
5.2b shows such classification: site views, areas, and pages represent
mainly modularization constructs used to group more detailed ele-
ments; units and links embody the composition and navigation as-
pects of the user interface and denote the functions triggered by the
user’s navigation. The top-down order of elements in Figure 5.2b
follows the element containment relations: siteviews contain areas,
which in turn contain pages, which in turn contain units, connected
through links.

Assuming 1.0 as the minimum term weight, we assigned weights
in the [1,2] range2. We tested two different weight configurations
as illustrated in Figure 5.2a. The first one, named Structural, gives
more importance to structural metamodel concepts, assigning higher
weights to terms associated with site views, areas and pages. The
second configuration (named Navigational) reverts the weight distri-
bution and assigns more weight to links and units. Table 5.2 shows
the two weight assignments used in our experiments.

UML Keyword-based search The UML keyword-based search con-
siders the following four scenarios, given in Figure 5.3, based on the

2Higher weight values would introduce too much bias in the evaluation of Equation 3.1,
causing the relative weight (with respect to the overall score) of the term to dominate other
factors.
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Figure 5.2: (a) Configurations for the WebML keyword-based search scenario;
(b) Classification of WebML metamodel concepts.

Table 5.2: WebML keyword-based search: weight configurations for the
metamodel-dependent experiment.

Metamodel concept Structural Configuration Navigational Configuration

site view 2.0 1.0
area 1.8 1.2
page 1.5 1.5
unit 1.2 1.8
link 1.0 2.0

employed types of indexing as explained in Section 3.2: (i) project
metamodel-independent, (ii) class metamodel-independent, (iii) class
metamodel-dependent, and (iv) class neighborhood metamodel-dependent
experiment. The metamodel-independent experiments give equal
weights to the index terms, regardless of the metamodel type, as
in the WebML case. The difference between the two metamodel-
independent indexes is in the number of index fields which depends
on the segmentation granularity (project or class). The metamodel-
dependent experiments give weights to terms based on the meta-
model type in the range [1 − 2], as in the WebML case. We report
one weight configuration where higher weight is assigned to a class,
than to its relationships that connect it with the other classes and
the attributes that the class contains. Other weight configurations
with slightly changed weight values have also been tested, but they
did not produce any significantly different results. Therefore, only
one weight configuration has been reported. The weight assigned to
a relationship is lower than the weight assigned to a class, and it
depends on the relationship’s type and cardinality. The stronger the
relationship is, it has a higher weight. Attributes are assigned the
lowest weight as the least relevant. Table 5.3 gives the weight con-
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Figure 5.3: Configurations for the UML keyword-based search scenario.

figurations assigned to the metamodel types used in this evaluation.
Besides weights given according to the relevance of the metamodel
type which represents the class metamodel-dependent experiment,
the class neighborhood metamodel-dependent experiment uses a set
of penalty weights assigned to each relationship, to penalize the
terms imported from the neighboring classes with respect to the
terms from the same class. This set of weights is in the range 0− 1
thus lowering the weight of the imported terms. The penalty weights
are assigned based on the strength of the relationship type and the
cardinality, such that stronger relationships have higher weights and
they are less penalized. In the case of the generalization relationship
the penalty depends on the import direction, i.e. importing from
parent class to a child class is considered more relevant than import-
ing in the opposite direction (e.g. in the generalization “monopoly
is a game”, more importance is given when importing from game to
a monopoly than the converse-monopoly is a game; However, not
every game is a monopoly). The penalty configuration shown in this
evaluation is given in Table 5.4.

Table 5.3: UML keyword-based search: weight configuration for the metamodel-
dependent experiments.

Metamodel concept Weight Configuration

class 1.8
generalization 1.7
composition 1-1 1.6
composition 1-N 1.5
association 1-1 1.4
association 1-N 1.3
attribute 1.0
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Table 5.4: UML keyword-based search: penalty configuration for the class neigh-
borhood metamodel-dependent experiment.

Metamodel concept Penalty Configuration

generalization (import parent class into child class) 0.9
generalization (import child class into parent class) 0.75
composition 1-1 0.6
composition 1-N 0.5
association 1-1 0.4
association 1-N 0.3

A-star graph-based search The A-star graph-based scenario tested
four configuration dimensions: (i) the wnI (node insertion), wnS
(node substitution), and weI (edge insertion) weights of the graph
edit distance operations, (ii) the parameter λ, which determines the
importance of the string distance and type distance in the node sim-
ilarity function; (iii) the string similarity function used to calculate
the node similarity; and (iv) the adoption of locality constraints in
the subgraph isomorphism algorithm. In all the reported experi-
ments, after an initial set-up phase with the A-star algorithm, we
fixed to 0.6 the node similarity threshold for the pruning rule that
discards non-allowed matches, as the value proved best in all the
considered settings. Table shows the penalty values used in the
experimental evaluation.

The first set of experiments aimed at understanding the impact
of the weights assigned to the graph edit distance operations, and
we considered three configurations (summarized in Table 5.5):

• Maximal Substitution boosts the contribution of the node sub-
stitution.

• Maximal Substitution and Insertion emphasizes both insertion
of nodes/edges and their substitution.

• Maximal Insertion stresses only the insertion of nodes/edges.

Table 5.5: A-star graph-based search: different weight configurations.

weights Maximal substitution Maximal substitution and insertion Maximal insertion

weI 0.1 1.0 1.0
wnI 0.1 1.0 1.0
wnS 1.0 1.0 0.1

The second set of experiments examined the influence of the λ
parameter in the node similarity function. We varied the values of λ
from λ = 0 to λ = 1, with step 0.25. The λ values and corresponding
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experiment names are reported in Table 5.6: recall that higher values
of λ give more importance to name similarity w.r.t. metamodel type
similarity.

Table 5.6: A-star graph-based search: different λ values.

Only type contribution λ = 0
High type contribution λ = 0.25
Intermediate type contribution λ = 0.5
Low type contribution λ = 0.75
No type contribution λ = 1.0

The third set of experiments analyzed the impact of the adopted
string distance metrics. String distance metrics are similarity func-
tions that do not consider prior knowledge and thus exhibit per-
formance that is strongly related to the specific application domain
[19]. We compared two frequently used functions: the Levenshtein
distance [80], and the n-gram distance [64].

The Levenshtein distance is a string-edit distance that, given
two strings, finds the minimal number of string edit operations that
transform one string into the other, normalized with the length of
the longer string. For two identical strings, the Levenshtein distance
is 0, and the corresponding similarity value is 1.

The N-gram distance is a string token distance which finds the
common number of n-grams (substrings of the original string with
fixed length n) for two strings, normalized with the total number
of n-grams. The N-gram distance has values in the [0,1] interval,
where 0 means no similarity, and 1 is an exact match.

Finally, the fourth set of experiments assessed the effect of ap-
plying locality constraints in the selection of candidate mappings in
A-star. In particular, we evaluated the original version (Algorithm
1) and the local version (Algorithm 2) of A-star.

Multidimensional scaling graph-based search As for the other algo-
rithms, the evaluation of the multidimensional scaling graph-based
search is performed by fine-tuning of its parameters, showing only
those values that produce the most distinctive results. As a re-
sult, the multidimensional scaling graph-based search evaluation is
achieved by firstly tuning and evaluating the Chalmer’s algorithm.
The Chalmer’s algorithm is an iterative algorithm, used for index-
ing project graph nodes and retrieving candidate nodes which has a
set of parameters that need to be tuned: number of iterations, max
Cache Size which is the size of points in the random set, and number
of dimensions used to represent points in space. The values used for
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configuring the Chalmer’s algorithm, max Cache Size and number
of iterations, are presented in Table 5.8 and Table 5.7 respectively,
while the number of dimensions is in the range [1− 5].

Table 5.7: Multidimensional scaling graph-based search: different number of
iterations.

Number of iterations 25 50 100 200

Table 5.8: Multidimensional scaling graph-based search: different values of max
Cache Size.

Max Cache Size 10 20 40 80 160

Chalmer’s algorithm tuning is performed by varying the values of
its parameters discussed above. The tuning is done for each feature
class individually. The Chalmer’s algorithm is applied to transform
name node labels from all the nodes in the project graphs into points
in space using a configuration of parameter values. A random point
is extracted from this set of points, and it is used to query the set of
points, by extracting all points which are within a value delta which
represents a distance. The value of delta is varied in the range
[0.05 − 0.3] with increments of 0.05. The retrieved points are used
to measure the precision and recall of the Chalmer’s algorithm by
comparing the number of retrieved points, whose Euclidian distance
with respect to the query point is within the delta value, and the
number of nodes whose real distance between the corresponding
name labels of the retrieved nodes, represented by the retrieved
points, and the query node is within the delta value. In our case,
we would like to have a good trade-off between precision and recall.
However, we consider the recall more significant since the number of
relevant points that are retrieved is important for the next phases of
the graph-based seach algorithm we propose. The goal is to obtain
the best possible performance of the Chalmer’s algorithm for each
feature class using minimal number of iterations, minimal number
of dimensions for point representation, minimal number of points in
the random set (maxCacheSize), and minimal delta value.

The points obtained from the Chalmer’s algorithm for each fea-
ture class are placed in a grid, such that for each feature class there
is a corresponding grid. The grid parameter that needs to be tuned
is its number of buckets. Therefore, depending on the number of di-
mensions of each grid, which is identical to the number of dimensions
for the points representation selected in the process of Chalmer’s al-
gorithm tuning, we tested different bucket widths in the range [0−1]
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for each feature class, assuming that each grid dimension goes from
0 to 1. The evaluation is performed in the similar way as previously
through precision and recall, by extracting a random point from a
set of points for a feature class and considering it as a query point
used to retrieve points from the corresponding grid within a distance
delta 3 with respect to the query point.

Final parameter that needs to be tested while a node is querying a
grid is the acceptable distance, which retrieves all the points within
the specified Euclidian distance with respect to a query node for
a specific feature class. Since, its value can be different and can
be specified individually for each feature class, we use the following
notation: nameDist represents acceptable distance for the name
feature class, typeDist refers to the acceptable distance for the type
feature class, and dataDist corresponds to the acceptable distance
for the entity/relationship feature class (since entity and relationship
are constituent elements of the Data Model, hence the name). Table
5.9 represents the configuration values of the acceptable distances for
the evaluation of the multidimensional scaling graph-based search
scenario.

Table 5.9: Multidimensional scaling graph-based search: different acceptable
distances configurations.

Name distance Type distance Data distance

0.4 0.4 0.2
0.4 0.4 0.4
0.6 0.4 0.2
0.6 0.4 0.4

5.2 Evaluation Metrics

Performance is evaluated using three standard information retrieval
measures: (i) 11-point interpolated average precision; (ii) Mean
Average Precision (MAP); and (iii) Discounted Cumulative Gain
(DCG).

Precision and recall are the two most used IR evaluation mea-
sures. Precision considers the fraction of retrieved documents that
are relevant, regardless of the ranking, while recall measures the
fraction of relevant documents that are retrieved.

The 11-point interpolated average precision combines precision
and recall by measuring the best precision that can be obtained at

3delta distance values are the ones obtained from the Chalmer’s algorithm tuning phase
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11 standard levels of recall (0.0, 0.1,...1.0) [85]. At each each recall
level ri, the interpolated precision is obtained as an average over
the sample queries and represents the highest precision that can
be obtained for recall values rj ≥ ri. The 11-point precision value
decreases for increasing recall, as for a growing number of retrieved
results, the likelihood of irrelevant matches typically increases.

Mean Average Precision (MAP) [85] is a single figure quantifi-
cation of the average precision across recall levels and queries: for
each query, the average precision is computed as the average of the
precision value obtained in the set of top-k documents that are re-
trieved to get to the j-th relevant document. More precisely, if the
set of relevant documents for a query qj ∈ Q is {d1, . . . dmj

}, where
mj is the number of relevant documents, and Rjk is the ordered set
of the first k ranked results, then:

MAP(Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk) (5.1)

When the first k positions of the result set contain no relevant doc-
uments, the precision value in Equation 5.1 is 0. In our case, MAP
is calculated up to the top 10 matching projects.

Finally, the Discounted Cumulative Gain (DCG) [66] is a graded
relevance measure that evaluates the ability of an IR system to re-
trieve highly relevant documents at high positions in the result set.
DCG considers the fact that the lower a document is ranked in a
result set, the less likely it is for such a document to be examined
by a user. DCG is computed as:

DCGp =

p∑
i=1

2reli − 1

log2(1 + i)
(5.2)

where reli is the relevance of the document at the i-th rank po-
sition obtained from the gold standard dataset evaluation.

5.3 Quantitative Evaluation

5.3.1 WebML keyword-based search

Table 5.10 shows the values of MAP for different indexing structures.
All index structures achieve good performance (with peak MAP
value of 81%), significantly better than the random baseline. Adding
metamodel-dependent weights to the index slightly increases the
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performance for the tested queries (4% MAP increase in the best
case).

Figure 5.4a and Figure 5.4b show the results of DCG and 11-
point precision. Also these measures support the conclusion that the
different configurations of the index for the textual search exhibit a
comparable average behavior. Boosting the weight of more specific
elements (units and links) over high-level ones (site views, areas)
provides slightly improved performance: the average performance
of the navigational configuration increases by 2% for DCG and 5%
for 11-point precision with respect to the structural configuration,
and 7% for DCG and 3% for the 11-point precision with respect to
the metamodel-independent configuration.

Table 5.10: WebML keyword-based search: values of MAP

Experiment MAP

Random 0.19

Metamodel-independent 0.77
Metamodel-dependent Structural Configuration 0.78
Metamodel-dependent Navigational Configuration 0.81
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Figure 5.4: WebML keyword-based search: 11-point precision (a) and DCG (b).

Figure 5.5a and 5.5b explode Figure 5.4 to examine the average
and median values over the sample queries, and the upper and lower
quartiles (gray area). The growth of the DCG values slows down at
higher rank positions. Since DCG depends not only on the precision
and recall but also on the rank order of the retrieved documents,
the slow down at higher ranks shows that even if relevant documents
are retrieved they are not ranked optimally, w.r.t the gold standard,
when one looks at larger result sets.

The comparison of the metamodel-dependent and the metamodel-
independent index structures in Figure 5.5b shows that the latter
exhibits an average DCG value consistently higher than the median,
thus indicating the presence of several outliers and, therefore, a less
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uniform ranking behavior across sample queries. The distribution
of differences in the 11-point average precision graph, i.e., the gray
area between the lower and upper quartile in Figure 5.5a, at lower
levels of recall shows that the structural setting has more perfor-
mance fluctuation in finding the top matches than the navigational
one.
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Figure 5.5: WebML keyword-based search: average, median, lower and upper
quartile of: 11-point precision (a) and DCG (b) for Metamodel-independent,
Structural, and Navigational index configurations.

5.3.2 UML keyword-based search

We first present the result of MAP in Table 5.11. Note that the
project index structure cannot be directly compared to the class in-
dex structures, since they are queried with different sets of queries
which express different user needs. It can be observed that all in-
dexing structures have high performance with project metamodel-
independent index performing the best with MAP of 98%. Regard-
ing the class granularity indexes, it can be noticed that adding
metamodel information to the index slightly increases MAP (by
3%), while adding neighboring information decreases performance
(by 25% ). All of the experiments perform much better with respect
to the random baseline algorithms corresponding to the project and
class granularity.

Figures 5.6a and 5.6b show the results of the DCG for project
and class index structures, respectively, while the figure 5.7 illus-
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Table 5.11: UML keyword-based search: values of MAP

Experiment MAP

Project metamodel-independent 0.98
Class metamodel-independent 0.93
Class metamodel-dependent 0.96
Class neighborhood metamodel-dependent 0.71
Random project 0.22
Random class 0.02

trates the 11-point precision results. The results are consistent with
respect to the MAP results, verifying that adding metamodel in-
formation slightly increases the performance, while adding infor-
mation from neighbor classes decreases performance. Although in-
cluding neighborhood information in the index incorporates more
structural information in it, the drop in performance is due to the
content of the retrieved result set (average 38% of drop for DCG
and 32% of drop for 11-point precision with respect to the class
metamodel-independent experiment, and 45% of drop for DCG and
35% for 11-point precision, with respect to the class metamodel-
dependent experiment). The reason for the worse performance is
that while querying the index, besides retrieving a class, the method
returns the neighbor classes to this class, which evidently are not
deemed relevant to the query by the evaluators when building the
ground truth. The best performing index structure is the project
metamodel-independent index, which always retrieves the most rel-
evant document at the first position as it can be noticed from the
DCG figure (Figure 5.6a). The better performance of project metamodel-
independent index over class index structures might be explained
with the fact that users are more likely to search for entire projects
than a single class inside a class diagram.
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Figure 5.6: UML keyword-based search: DCG for project metamodel-
independent index(a) and DCG for class indexes (b).

Figure 5.8a shows that the median, the first and the third quar-
tile are identical with the curve expressing the average which reaches
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Figure 5.7: UML keyword-based search: 11-point precision.

the maximum precision value of 1 for lower levels of recall (up to
40% of recall). This means that all the retrieved models are rele-
vant across the queries for lower recall levels. A slight fluctuation
across queries’ performance can be noticed for higher recall levels,
demonstrating the stability of the project metamodel-independent
experiment. A similar behavior is observed for the DCG, given in
Figure 5.8b, confirming the equally good performance for all queries
at high ranks.

Class metamodel-independent and the class metamodel-dependent
experiments, whose performance is given in Figures 5.9 and 5.10 re-
spectively, perform similarly. Moreover, the metamodel-dependent
experiment performs slightly better, with less variability in the query
performance due to the smaller area between the first and the third
quartile. An interesting comparison can be made between the class
neighborhood metamodel-dependent experiment (quartiles shown in
Figure 5.11) and the other above-mentioned class granularity exper-
iments. The class neighborhood metamodel-dependent experiment
has bigger area between the first and the third quartile with respect
to the class granularity experiments, indicating that there is more
variability in the queries’ performance even at lower recall levels.
The average DCG value is higher than the median, with the de-
crease of the rank, and the average 11-point precision is also higher
than the median as the recall levels increase, revealing existence of
outliers.

5.3.3 A-star graph-based search

The evaluation of the A-star graph-based search first examined the
influence of the λ parameter with respect to each weight configu-
ration in the graph edit distance, adopting the Levenshtein string
distance metric.

Table 5.12 summarizes the MAP values for different λ values and
graph edit distance weight configurations. Figure 5.12a and Figure
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Figure 5.8: UML keyword-based search: average, median, lower and upper quar-
tile of: 11-point precision (a) and DCG(b) for Project metamodel-independent
experiment.

(a) (b)

Figure 5.9: UML keyword-based search: average, median, lower and upper quar-
tile of: 11-point precision (a) and DCG(b) for Class metamodel-independent
experiment.

(a) (b)

Figure 5.10: UML keyword-based search: average, median, lower and upper
quartile of: 11-point precision (a) and DCG(b) for Class metamodel-dependent
experiment.

5.12b respectively show the 11-point interpolated average precision
and DCG results for the various weight configurations; each curve
in one diagram corresponds to a specific value of λ.

From Table 5.12 and Figure 5.12a and 5.12b, it emerges that
neither the metamodel type alone nor the element label alone are
the best options for node matching. When the Only type contribu-
tion configuration is used, the 11-point precision graphs show that,
regardless of the adopted weights configurations, very few relevant
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Figure 5.11: UML keyword-based search: average, median, lower and up-
per quartile of: 11-point precision (a) and DCG(b) for Class neighborhood
metamodel-independent experiment.

Table 5.12: A-star graph-based search: values of MAP for different values of λ
and weight configurations in the graph edit distance.

Experiment Maximal substitution Maximal subst. & insertion Maximal insertion

Random 0.19

Only type contribution (λ=0) 0.34 0.32 0.29
High type contribution (λ=0.25) 0.56 0.34 0.24
Intermediate type contribution (λ=0.5) 0.74 0.55 0.38
Low type contribution (λ=0.75) 0.72 0.83 0.86
No type contribution (λ=1) 0.74 0.7 0.73

documents are retrieved (curves show low precision values), which is
confirmed by the DCG graphs and MAP values. Adding a “touch”
of metamodel type knowledge to the node similarity function leads
to better performance: the Low Type Contribution configuration
(λ=0.75) emerges in most cases as the most viable trade-off between
label and metamodel type information (up to 13% better than No
type contribution and up to 57% better than Only type contribution
in the MAP table).

The greater relative importance of element names over types in
the best performing case is explained by the occurrence of false
positive matches: overemphasizing metamodel types quickly leads
to cases in which some project graph nodes representing a modeling
concept present in the query (e.g., a given type of operation on
data) are considered similar and thus matched to project nodes that
operate on content unrelated to the query.

The DCG graphs (Figure 5.12b) suggest a correlation between
the value of λ and the graph edit distance weight configuration pol-
icy. The spread among the curves at different values of λ is very
limited for the Maximal Node Substitution configuration, and more
sensible for the other two configurations. This shows that Maximal
Node Substitution, which gives importance only to node substitu-
tion operations (i.e., similarity depends on finding as many “right”
model elements as possible, and not, or less, on how the model ele-
ments are arranged or on missing model elements), makes the rank
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Figure 5.12: A-star graph-based search: 11-point interpolated average precision
(a) and DCG (b) for different λ values and weight configurations (maximal
substitution, maximal substitution and insertion, and maximal insertion).

order of results less sensitive to the name-type tradeoff in the node
similarity metrics, but for the case of λ=0 which remains dominated
in all weight configuration policies. Symmetrically, the policies that
emphasize node/edge insertions (Maximal substitution and insertion
and Maximal insertion) achieve better MAP figures, but the rank-
ings they produce are more sensitive to the tuning of λ. A possible
interpretation of this phenomenon is that the Maximal substitution
and insertion and the Maximal insertion policies, which penalize
node and edge insertions in graph similarity, require the “right”
node similarity function, to compensate the fact that even slight
topological differences (e.g., differences in containment and linking,
or missing model elements) in the query and the project model can
push a relevant match down in the result list (and hence, the DCG
curves for “wrong” λ values are more separated from the curve at
the “right” value λ=0.75).

Figure 5.13 shows the average, median, and lower and upper
quartile for 11-point precision and DCG curves. It confirms the
performance improvement obtained when considering insertion op-
erations, because in both the 11-point precision and DCG the distri-
bution of differences shows less variations with respect to the Max-
imal Node Substitution configuration. However, Figure 5.13 also
shows that the distribution of results is wider than the one shown
in Figure 5.4 for WebML keyword-based search; this means that the
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Figure 5.13: A-star graph-based search: average, median, and lower and upper
quartile of 11-point precision (a) and DCG (b), with λ = 0.75

performance of the A-star graph-based scenario varies more across
the sample queries.

Table 5.13: A-star graph-based search: values of MAP for different string dis-
tance metrics.

Experiment Maximal substitution Maximal substitution and insertion Maximal insertion

Levenshtein distance 0.72 0.83 0.86
2-gram distance 0.72 0.75 0.78
3-gram distance 0.60 0.63 0.59

String similarity function comparison Figure 5.14 shows the third
experiment with A-star graph-based search, which evaluates the
adoption of different string similarity functions. We set λ to 0.75
(Low type contribution) and evaluated the Levenshtein distance and
the N-gram distance under the three graph edit distance configura-
tions. The best results are obtained when using the Levenshtein dis-
tance. N-gram distance was tested for 2-grams and 3-grams. With
respect to the Levenshtein distance, 2-grams respectively decrease
the 11-point precision and DCG, for an average of 22% and 13%,
while 3-grams decrease, on average, the 11-point precision by 43%
and the DCG by 32%. Noteworthy, the three graph edit configura-
tions perform consistently with both the Levenshtein and the n-gram
distances, as the Maximal Insertion configuration outperforms the
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Figure 5.14: A-star graph-based search: 11-point interpolated average precision
(a) and DCG (b) for of Levensthein, 2-gram, and 3-gram string distances (λ =
0.75)

others. The performance behavior of each string distance metric is
further confirmed by the MAP results reported in Table 5.13.

In summary, the best performance in both precision and ranking
is obtained for a moderate metamodel type contribution in node sim-
ilarity evaluation (Low type contribution a.k.a λ=0.75), Levenshtein
distance for name similarity, and weight assignment configurations
that appraise both node similarity and model topology. Therefore,
textual similarity remains fundamental to achieve good results also
in A-star graph-based search, but metamodel-dependent informa-
tion and the topology of the query must be exploited to retrieve
more relevant results and sort them in a more proper order.

A-star graph-based search with locality constraints

As a last experiment, we compared A-star graph-based search with
and without locality constraints for candidate mapping nodes. For
both the original A-star and A-star with locality constraints we set
λ to 0.75 (Low type contribution) and used Levenshtein distance in
the node similarity function. Table 5.14 reports the MAP values for
A-star and A-star with locality constraints. Figures 5.15 and 5.16
chart the 11-point precision and DCG curves. As can be noted in
the above mentioned results, the application of locality constraints
slightly worsens on average the performance of graph-based search.
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Figure 5.15: A-star graph-based search: 11-point interpolated average precision
(a) and DCG (b) with locality constraints (λ = 0.75, Levensthein distance)
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Figure 5.16: A-star graph-based search: average, median, and lower and upper
quartile of 11-point precision (a) and DCG (b), with λ = 0.75, Levenshtein
distance, and locality constraints.

Inspection of results reveals the following behavior:

• Locality constraints prevent the selection of disconnected match-
ing nodes. This promotes in the result set matches with pat-
terns that conform to the majority of the elements in the query
and penalizes matches with projects that, although topically
relevant, contain only partial reusable patterns scattered in
different places of the model. This effect, in our experimental
query panel and project repository, tends to favor local A-star.

• Some queries that perform well with A-star worsen their per-
formance when locality of matching is applied, because the rel-
evant results end up having less matching nodes, which lowers
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their rank score and thus diminishes their separation from not
so relevant results; then it may happen that a less relevant
result overcomes a more relevant one in the result list. This
behavior tends to favor the original A-star.

• The two abovementioned effects compensate each other, with
a slight predominance of the cases where locality worsens the
performance.

Table 5.14: A-star graph-based search: MAP values for A-star algorithm with
local search.

Experiment Maximal substitution Maximal substitution and insertion Maximal insertion

A-star 0.72 0.83 0.86
A-star + locality constraint 0.70 0.72 0.77
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Figure 5.17: Comparison of response time at varying number of indexed projects
for WebML keyword-based search and A-star graph-based search.

Query Execution Time The last quantitative experiment compares
the performance of the WebML keyword-based and A-star graph-
based search approaches with respect to response time required for
query execution. All the experiments have been conducted on a ma-
chine equipped with Intel dual Core Processor 2.4GHz, 6GB RAM,
and Windows 7 (64-bit) operating system; the reported values are
averaged over 10 executions.

Figure 5.17 shows the query execution time for all the 10 queries
considered in the experiments with respect to the index size. As
expected, A-star graph-based search is considerably slower than
WebML keyword-based search, which executes in quasi-constant
time. Despite the exponential complexity of graph matching, the
A-star graph-based approach shows a quasi-linear correlation with
respect to the index size for the considered repository. Notice that
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no query execution optimization (including optimized indexing of
the repository) has been adopted during experiments and therefore
we expect a wide range of possibilities for improving the performance
of the content-based system.

5.3.4 Multidimensional scaling graph-based search

Chalmer’s algorithm tuning The evaluation of the multidimensional
scaling graph-based search starts with fine-tuning of the Chalmer’s
algorithm used as a base for indexing. Since Chalmer’s algorithm
has three parameters to be tuned, precision and recall are evalu-
ated by varying one of its parameters at a time, while the other two
remain fixed. Chalmer’s algorithm is tuned for each feature class
individually, to select the best parameter settings that are used in
the proposed multidimensional scaling graph-based search method.

Figure 5.18 shows the precision and recall of the Chalmer’s al-
gorithm by varying the number of dimensions for the name feature
class, with 25 iterations and maxCacheSize of 10. It can be noticed
that while precision increases, with the increase of the number of
dimensions, recall decreases. Considering the delta value, both pre-
cision and recall curves converge after delta = 0.25. This happens
because after some delta, the number of retrieved points becomes
the same regardless of the dimensions number. One observation
that can be made is that, for delta = 0.15 there is a good trade-off
between precision and recall when the number of dimensions is 3.
Therefore, these two values will be fixed while changing the other
two parameters. Note that we also tested further increase of the
number of dimensions(up to 12), which does not further improve
performance and recall, and therefore those results are not shown.
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Figure 5.18: Chalmer’s algorithm: Precision (a) and recall (b)for name feature
class considering different number of dimensions.

Figures 5.19a and 5.19b represent precision and recall considering
the maximal cache size and the number of iterations for the name
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feature class. Varying the maximal cache size does not significantly
change performance, and therefore, a small value for the cache size
should be chosen. We choose the value of 14, at the intersection
of the precision and recall curves. It can be also noticed that the
variation of the number of iterations does not influence the perfor-
mance, so the number of iterations can be low for achieving a good
precision/recall balance. As a result, we select 25 iterations.

 10  20  40  80 160
0.4

0.5

0.6

0.7

0.8

0.9

1

max Cache Size

 

 

precision
recall

(a)

 25  50 100 200
0.4

0.5

0.6

0.7

0.8

0.9

1

iteration number

 

 

(b)

Figure 5.19: Chalmer’s algorithm: Precision and recall for name feature consid-
ering maxCacheSize (a) and number of iterations (b).

Finally, for the name feature class the selected parameters for
constructing the index with the Chalmer’s algorithm are: 3 dimen-
sions, 25 iterations and 14 points in the random set (maxCacheSize),
with delta = 0.15.

In the following, we are showing the parameter configuration for
the type feature class. Figure 5.20 illustrates the precision and re-
call with respect to the number of dimensions with 25 iterations
and 80 points in the random set. Increase of the number of di-
mensions increases precision for small values of delta, while recall
remains constantly high and close to one, regardless of the num-
ber of dimensions or delta values. Therefore, since the choice of
the dimensions number depends entirely on precision, we select 5
dimensions and delta = 0.10.
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Figure 5.20: Chalmer’s algorithm: Precision (a) and recall (b)for type feature
class considering different number of dimensions.
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Figures 5.21a and 5.21b show the precision and recall with re-
spect to the cache size and number of iterations, for delta = 0.10
and 5 dimensions for representing points in space. Although pre-
cision and recall do not vary much considering the cache size, the
peak values are achieved when the value for the maxCacheSize is 40,
and we choose it as a value that will be applied in our algorithm.
Precision and recall are both close to one regardless of the number
of iterations. We choose 25 iterations for the Chalmer’s algorithm
for this feature class in the indexing phase.
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Figure 5.21: Chalmer’s algorithm: Precision and recall for type feature class
considering maxCacheSize (a) and number of iterations (b).

For the type feature class, the value of the parameters selected for
the Chalmer’s algorithm used to build the index are: 5 dimensions,
25 iterations and 40 points in the random set, with delta = 0.10.

Figure 5.22 presents the precision and recall with respect to the
number of the dimensions for the entity/relationship feature class.
Precision and recall values do not change much as the number of di-
mensions increases. However, precision increases as the delta value
increases. The recall, on the other hand, does not change its value
across the different delta values. In fact, it is always close to 1.
Based on the precision curves, we choose to represent the points
corresponding to the entity/relationship feature class in 2 dimen-
sions (choosing 1 dimension is trivial). Regarding the delta values,
for delta = 0.2 the precision has a high value. It is also a value
where the precision is almost identical for all the dimensions.

Figures 5.23a and 5.23b illustrate the precision and recall with
respect to the cache size and number of iterations, while delta =
0.20 and number of dimensions for representing points in space is
2, as chosen previously. Considering the cache size, since the recall
is almost 1, and the precision is almost constant (a small drop in
the value when maxCacheSize=80 is due to the randomness of the
algorithm) across different cache sizes, cache size of 10 is chosen
as a maximumCacheSize for the entity/relationship feature class.
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Figure 5.22: Chalmer’s algorithm: Precision (a) and recall (b)for entity/rela-
tionship feature class considering different number of dimensions.

The same behavior can be noticed for the precision and recall with
respect to the number of iterations, which results in selecting the
lowest number of iterations for this feature class, i.e. 25, for the
indexing algorithm.
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Figure 5.23: Chalmer’s algorithm: Precision and recall for entity/relationship
feature class considering maxCacheSize (a)and number of iterations (b).

The parameter values chosen for the Chalmer’s algorithm for in-
dexing the entity/relationship feature class are: 2 dimensions, 25
iterations and 10 points in the random set with delta = 0.20.

The chosen parameter values for every feature class show that
Chalmer’s algorithm performs well when performed on the WebML
dataset, achieving high values of precision and recall. This gives a
good motivation to use it in the indexing phase of our algorithm.

Bucket Width Evaluation Once the Chalmer’s algorithm parame-
ters for each feature class have been determined, and the nodes are
transformed into three sets of points, they need to be placed in grids
that construct the index. Each grid consists of buckets, whose num-
ber depends on the bucket width and number of dimensions of the
points to be placed in the grid. Bucket width selection should be
done carefully, since choosing a small bucket width increases expo-
nentially the number of buckets which increases exponentially the
space complexity. In our experiments, as it can be noticed in Figure
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Figure 5.24: Precision and recall considering bucket width for name feature class
(a), type feature class (b) and entity/relationship feature class (c).

5.24, we found that the number of buckets in the grid does not sig-
nificantly change the precision and recall of the Chalmer’s algorithm
when querying the grid, since the same set of points is just placed in
the grid’s buckets. Small variations in the recall values are due to the
randomness of the algorithm. Therefore, a small bucket width would
not bring any advantage. The experiments were performed for each
feature class for different bucket widths, considering that the num-
ber of dimensions is already fixed by the Chalmer’s algorithm, and
assuming that each grid dimension goes from 0 to 1. Considering
the experimental results from Figure 5.24 and the above-mentioned
recommendations for bucket width selection, we choose the following
bucket widths: for the name feature class, we select a bucket width
of 0.1. Since each name point has 3 dimensions, we obtain 10 buckets
per dimension, and the resulting name grid contains 1000 buckets;
for the type feature class, we choose 0.1 as a bucket width which
results in a type grid with 100000 buckets since the corresponding
points have 5 dimensions; for the entity/relationship feature class we
choose bucket width of 0.05 and considering that the corresponding
points are two dimensional, the total number of buckets in the grid
is 400.

The selected bucket widths are used in the grids of the multidi-
mensional scaling graph-based search algorithm.
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Multidimensional scaling graph-based search evaluation The evalu-
ation of the algorithm is performed by using the distance configu-
rations from Table 5.9. Using smaller distance values (close to the
delta values fixed by the Chalmer’s algorithm) for the name and
type feature classes does not retrieve a sufficient number of can-
didate points, since in the later stages of the alghorithm further
pruning is applied (based on the neighborhood of the correspond-
ing nodes and nodes belonging to a same project),their number will
decrease even more. Conversely, further increase of the distance
values (above the values shown in the table 5.9) will retrieve in-
creased number of candidate points, including more points which
are less similar with respect to the query node, which will decrease
performance respectively.

The results for the MAP considering the top 150 generated results
are given in Table 5.15. The MAP values show that increasing the
data distance does not significantly change results, while increasing
the name distance changes more significantly the MAP by decreasing
it.

Table 5.15: Multidimensional scaling graph-based search: values of MAP

name distance type distance data distance MAP

0.4 0.4 0.2 0.43
0.4 0.4 0.4 0.44
0.6 0.4 0.2 0.31
0.6 0.4 0.4 0.29
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Figure 5.25: Multidimensional scaling graph-based search: DCG where
nameDist = 0.4, typeDist = 0.4 and dataDist = 0.2 (a) and nameDist = 0.4,
typeDist = 0.4 and dataDist = 0.4 (b).

Figures 5.25 and 5.26 present the results for DCG for the con-
sidered distance configurations. Each experiment has its own ideal
DCG, since the ground truth is formed from the retrieved subgraphs
as explained in details in Section 5.1.2. The DCG results are consis-
tent with the MAP results, as increasing the name distance worsens
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Figure 5.26: Multidimensional scaling graph-based search: DCG where
nameDist = 0.6, typeDist = 0.4 and dataDist = 0.2 (a) and nameDist = 0.6,
typeDist = 0.4 and dataDist = 0.4 (b).

the results. The best performing configuration nameDist = 0.4,
typeDist = 0.4 and dataDist = 0.4 has 52% and 56% better DCG
than nameDist = 0.6, typeDist = 0.4 and dataDist = 0.2 and
nameDist = 0.6, typeDist = 0.4 and dataDist = 0.4 respectively,
and 9% better DCG than nameDist = 0.4, typeDist = 0.4 and
dataDist = 0.2. Figure 5.27 shows the 11-point precision results for
the considered distance configurations which confirm the results ob-
tained with the other metrics. It can be noticed that the best perfor-
mance is obtained for namedistance = 0.4 and typedistance = 0.4,
while changing the typedistance from 0.2 to 0.4 insignificantly in-
fluences performance (by 3% worse). Increasing the name distance
value to 0.6 decreases significantly 11-point precision (by 102% per
average).
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Figure 5.27: Multidimensional scaling graph-based search: 11-point precision.

The ground truth shows that although the algorithm retrieves
relevent subgraphs, which can be seen from the ideal DCG curves, it
does not put them at high ranking positions. This is also confirmed
by the 11-point precision curves, considering the relevance of the first
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150 ranked results, which remain constant at medium recall values
0.3-0.6 when nameDist = 0.4, and 0.2-0.5 when nameDist = 0.6
respectively, showing that the retrieved instances are still relevant
at those recall values. We also experimented by using the similar
scoring function for graph edit distance as for the A-star algorithm,
by computing it as a weighted average distance in the [0, 1] range,
but there was no any performance improvement. Other types of
scoring functions will be tested in future.

The performance of the algorithm can be explained by the loose
conditions of the algorithm regarding the concept of similarity. Namely,
the selection of candidate nodes is performed based on three appro-
priate distances (name, type and data distance). A node is chosen
to be a candidate if at least one of the distances with respect to
the query node is within the given distance values. These candi-
date nodes are joined with other candidate nodes considering the
neighborhood information and the project, to form local subgraph
patterns of the big project graph. However, the algorithm allows,
to form not only subgraph patterns where each node satisfies all the
three distance values, but also subgraph patterns where each node
satisfies only one type of distance. For example, if all the candidate
nodes of a pattern are within the type distance criteria, the corre-
sponding pattern matches the query structurally, since their nodes
are of similar types; It is also possible to have matches, where each
node is within a different distance criteria. This kind of alternative
matches are still reusable, although they have not been assumed
relevant by the ground truth which is reflected in the results.

(a) (b)

Figure 5.28: Multidimensional scaling graph-based search: average, median,
lower and upper quartile of: 11-point precision (a) and DCG(b) for nameDist =
0.4, typeDist = 0.4 and dataDist = 0.2 configuration.

Figures 5.28, 5.29, 5.30 and 5.31 show the fluctuation of results
across queries for DCG and 11-point interpolated precision for the
examined distance configurations. The big area between the first
and third quartile for both DCG and 11-point precision in Figures
5.28 and 5.29 for the configurations nameDist = 0.4, typeDist = 0.4
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(a) (b)

Figure 5.29: Multidimensional scaling graph-based search: average, median,
lower and upper quartile of: 11-point precision (a) and DCG(b) for nameDist =
0.4, typeDist = 0.4 and dataDist = 0.4 configuration.

(a) (b)

Figure 5.30: Multidimensional scaling graph-based search: average, median,
lower and upper quartile of: 11-point precision (a) and DCG(b) for nameDist =
0.6, typeDist = 0.4 and dataDist = 0.2 configuration.

(a) (b)

Figure 5.31: Multidimensional scaling graph-based search: average, median,
lower and upper quartile of: 11-point precision (a) and DCG(b) for nameDist =
0.6, typeDist = 0.4 and dataDist = 0.4 configuration.

and dataDist = 0.2, and nameDist = 0.4, typeDist = 0.4 and
dataDist = 0.4, show that there is a great variability in perfor-
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mance of the individual queries,i.e, there are some queries that per-
form well, while others perform bad. This is further confirmed with
the values of the first and third quartile, which correspond to the
minimum and maximum value at recall = 0 for 11-point precision,
and the first rank position for the DCG. The size of the area does
not decrease with the increase of the ranking position for DCG,
while it decreases slightly for 11-point precision as recall increases,
showing that the performance of the queries continues to vary until
high levels of recall and at least until the 10th rank position.

The other two worse performing configurations in Figures 5.30
and 5.31 have less fluctuation in results across the queries which
means that all of them do not perform well, also demonstrated with
the low value of the median. For the 11-point interpolated precision,
the third quartile has still high values for lower levels of recall (0.1),
explained with the fact that there still exist some queries that re-
turn relevant results at those recall levels. Ragarding the DCG, the
variability of the results increases with the increase of the ranking
position.

We performed further analysis of the 11-point interpolated aver-
age precision for the individual queries considering the best distance
configuration nameDist = 0.4, typeDist = 0.4 and dataDist = 0.4,
and in Figure 5.32 we show the two best performing queries . As it
can be noticed, the algorithm reaches a maximum precison of 1 at
lower levels of recall (up to 0.3) for Query 6, and until recall of 0.8
for Query 2. For the other queries, the algorithm performs worse
which influences the overall algorithm performance averaged across
all the queries.
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Figure 5.32: Multidimensional scaling graph-based search:11-point interpo-
lated average precision for the best performing queries for nameDist = 0.4,
typeDist = 0.4 dataDist = 0.4 configuration: Query 2 (a)and Query 6(b).

Figure 5.33 shows examples of good and bad performing queries,
and their highly ranked matches, highlighted by red color, consid-
ered relevant or irrelevant by the ground truth, demonstrating that
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regardless of the ground truth relevance, the algorithm generates
potentially reusable matches. Query 2 in Figure 5.33(a) that ex-
presses how to enter and create a new publication record consider-
ing its type, is the best performing query, that has a partial match
with the sample pattern. The query’s page and two of its units
match with the corresponding elements of the pattern based only
on the type equality of the model elements. Figure 5.33(b) shows
Query 6, the second best performing query, which expresses how to
ask for information by sending a mail, and a sample of its corre-
sponding relevant match which is its exact copy. Finally, Query 7
that expresses how to manage appointments by showing their list in
Figure 5.33(c), represents a bad performing query whose model ele-
ments completely match with the corresponding structural pattern.
Although considered irrelevant by the ground truth, this pattern
completely corresponds to the query and can be reused.

New publication

Publication Type

Publication 
Type

Enter New Publication Create new 
publication

Publication

Publication

Select 
Language

Select Language

Language

(a)

Mail

Ask for information

info

Compose mail

OK
Mail

Compose mail
Ask for information

info

OK

(b)

Manage Appointments

Appointments List

Appointment

Manage Appointments

Office List

Office List

Office

Office areas and roles management

(c)

Figure 5.33: Multidimensional scaling graph-based search: Example of a) good
performing query and its corresponding relevant result, b) good performing
query and its corresponding irrelevant result, c)bad performing query and its
irrelevant result.
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Query Execution Time The last experiment measures the perfor-
mance of the multidimensional algorithm considering the query ex-
ecution time, varying the size of each of the three node grids rep-
resenting different feature classes (name, type and entity/relation-
ship). The values are averaged over ten executions and over the
queries and they are represented in Figure 5.34. The experiments
have been performed on the same machine used to perform the same
type of experiment on the WebML keyword-based search and A-star
graph-based search (Intel dual Core Processor 2.4GHz, 6GB RAM,
Windows 7 (64-bit) operating system).
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Figure 5.34: Multidimensional scaling graph-based search:Query Execution
Time at varying number of indexed nodes for multidimensional scaling graph-
based search.

As it can be noticed from Figure 5.34, multidimensional scaling
graph-based search increases its execution time exponentially with
the growth of the index size until 70% of the index size is reached;
Further increase of the index size, causes the execution time to grow
linearly. Another important observation is that the multidimen-
sional scaling performs more efficiently than the A-star graph-based
search whose execution time is given in Figure 5.17, which shows
that using an index optimizes the performance and makes the mul-
tidimensional scaling algorithm scalable for larger data sets. Opti-
mizations can be applied to the multidimensional scaling in order
to further improve its efficiency.

5.4 User Study

The evaluation reported in Sections 5.3.1 and 5.3.3 compared the
results of the WebML keyword- and A-star graph-based search sys-
tems with a gold data set constructed manually by experts and
aimed at assessing the ability of each system to extract models sim-
ilar to the user need, under the notion of structural and topical
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similarity provided by the experts. To evaluate the user-perceived
utility of both systems during a development task, we conducted
a controlled study organized in two distinct sessions, with the help
of 25 industrial software developers (7 females and 18 males). Par-
ticipants were volunteers with at least one project developed using
WebML, with limited experience in exact model search and database
structured search, engaged as follows:

• First, users had to fill-in a pre-experiment questionnaire, to pro-
vide demographic information and self-assess their experience
with WebML on a 3-point Likert scale, ranging from 1 (novice)
to 3 (expert). Of the 25 participants, 9 evaluated themselves
as expert, 9 as practitioner, and 7 as novice.

• Before the start of the study, participants watched a video tuto-
rial showing how to perform two different evaluations, described
next.

• Next, users accessed an ad hoc Web application and performed
the actual evaluation

• Finally, users filled-in a post-experiment questionnaire, where
they could provide feedback in free text format.

A pool of 10 tasks, defined in collaboration with the WebML experts
and inspired to the development of the exemplary models used for
the gold standard creation, was exploited in the user study. The
following is an example of such tasks:

Assume you have to design a new Web application for
the management of an e-commerce system. One of the
requirements is the management of the sales operation;
specifically, the site should contain a Web page devoted
to the search of products in the catalogue; upon submis-
sion of the search conditions, the same page should show
the list of products matching the user query. You want to
identify existing projects (or fragments thereof) that can
be reused to fulfill this requirement.

Given a task description, the queries representing it in textual
and WebML format were defined and respectively submitted to the
WebML keyword-based and to the A-star graph-based system, set-
up in their best configuration (the Metamodel-dependent Naviga-
tional configuration for WebML keyword search and the Maximal
Insertion with λ = 0.75 and Levenshtein string similarity for A-star
graph-based search, as discussed in Section 5.3). Results of query
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processing were collected and used for building the user evaluations
described in the following sections.

User Study 1: single system evaluation

The first session elicited the users’s judgement on the utility for
reuse of each result computed by one of the two systems. Given
a task such as the one exemplified above, users were presented the
top-5 results, without disclosing which system they originated from.
Users had to assess each result using a tertiary scale, where: (i) 0
meant not useful for reuse, (ii) 1 meant partially useful, and (iii) 3
meant very useful. Figure 5.35 shows the interface created for per-
forming the User Study 1; it contains the task description and one
result at a time, with commands for zooming the model, evaluating
it, and scrolling to the other results of the top-5 result set. Each user
evaluated the result sets of 10 tasks, assigned by mixing an equal
number of responses to keyword- and content-based queries. To re-
duce learning bias and fatigue, the experiment was designed using
a graeco-latin square scheme [116, 69], with system type (keyword-
based and content-based) and task as dependent variables. To min-
imize the impact of prior experience in WebML projects, tasks were
assigned to participants randomly. To reduce bias due to the rank
position, the order of presentation of results in the interface was
random.

Figure 5.35: User Study 1: Interface of the evaluation system.

For each system, task, and result position, votes were averaged
to calculate a global DCG curve for the keyword- and content-based
systems, reported in Figure 5.36. Figure 5.37 shows the DCG curves,
broken down task-by-task. Note that the DCG curves determined
with the User Study 1 compare the result sets produced by the
search systems with the best ordering of results emerging from the
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user’s votes based on the perceived reusability of the project frag-
ments with respect to the task description; conversely, the DCG
curves previously shown in Sections 5.3.1 and 5.3.3 compare the re-
sults calculated by the system under multiple configurations with the
gold standard created by the experts, who evaluated the technical
quality of matches based on the degree of textual and/or structural
relevance of the WebML area.
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Figure 5.36: User Study 1: DCG curves averaging the user evaluations (top-5
results).
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Figure 5.37: User study 1: Task-by-task DCG curves (top-5 results).

User Study 2: system to system comparison

The second user study focused on the direct comparison of the top-
5 result sets produced by the WebML keyword- and A-star graph-
based search systems. The experiment complements the first user
study by including in the evaluation also the ranking performance
of the two systems. To this end, we designed a pairwise comparison
task, with the intent of reducing the cognitive effort that otherwise
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would be required for the separate evaluation of two ranked sets of
models; the face-to-face appraisal of whole result sets supports not
only the judgement about the relevance of the retrieved models, but
also the direct comparison of the order in which these are presented.
Given a task, users reviewed two result sets and indicated the one
that in their opinion was globally more useful in terms of reuse,
considering both the utility of the returned results, and their ranking
positions. Figure 5.38 shows the evaluation interface developed for
the second experiment: the description of the task is shown in the
middle of the page, with the two result sets to be compared placed
at its left and right. Figure 5.39 reports the direct comparison of
the preferences for one system or the other, task by task.

Figure 5.38: User Study 2: Interface of the evaluation system.
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Figure 5.39: User Study 2: Task-by-task preferences for the two systems.

Analysis of Results

Coherently with the gold standard evaluation, both user studies
show that the A-star graph-based search system provides, on aver-
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age, better results than the keyword-based system, which suggests
a correlation between the performance of a retrieval system and the
user-perceived utility for reuse.

The DCG curves of Figure 5.36 show values similar to the ones
described in Section 5.3.3, but with higher values for the A-star
graph-based system; the histogram of Figure 5.39 show that the re-
sult lists produced by the content-based system have been preferred
60% of the times. Further analysis can be done by considering the
task-by-task performance in Figure 5.37 and 5.39. The former shows
how well the ordering of the result set of a single system adheres
to the preferences expressed by the users; the latter shows, task-by-
task, which system the users preferred, when confronted simultane-
ously with the result sets produced by both ones. Four situations
emerge:

• Content-based search is better for Task 1, Task 2, Task 6 and
Task 9. Note that in Task 1 keyword- and content-based search
get an equal share of preference in the direct comparison of
result sets, but the DCG curve shows that the ordering of re-
sults is closer to the user’s judgement for content-based search.
Figure 5.40a reports an example of content-based query in
this class: it expresses an object management pattern (dis-
tinct pages for the creation, modification, and deletion of in-
stances) over the document entity. The better performance of
content search is due to the nature of the query, which exploits
a very characteristic design pattern and thus benefits from the
match computed using graph similarity. Conversely, the corre-
sponding keyword-based query contains rather frequent words
(“document” occurs 81 times in the repository, “create” occurs
112 times, “modify” occurs 127 times, and “delete” occurs 118
times), which do not produce selective matches in the text re-
trieval system.

• Keyword search is better for Task 3 (depicted in Figure 5.40b)
and Task 4. In this case the selectivity of textual terms domi-
nates the characteristics of the structural pattern. For instance,
for Task 3 the total number of occurrences of the term “de-
fault” in the repository is 5, while the term “subject” occurs
9 times. The specificity of these terms, which are rare in the
repository, makes the keyword-based search more selective than
the content-based counterpart, even if the content-based query
exhibits a fairly articulated model. The greater number of pref-
erences obtained by Task 4 in the second user study is justified
by visual bias in the comparison of result sets (see point (2) be-

99



low), which diminishes the perceived utility of the retrieved set
of results.

• Comparable results for Task 7, Task 8 and Task 10. In this
case both systems exhibit a comparable performance, with no
clear winner or discordance between the direct comparison of
results sets and the appreciation of each result in isolation.
As an example, Figure 5.40c shows Task 10, which features a
fairly complex structural model and good keyword selectivity
(terms such as “dictionary”, 44 occurrences, and “contract”, 5
occurrences).

• No satisfactory results are retrieved for Task 5 (shown in Fig-
ure 5.40d), which expresses a need formulated either as a model
fragment with rather general structure and labels or as a bag
of keywords having low selectivity. In such a case, both A-star
graph matching and TF-IDF text matching do not perform
well, as no distinctive feature of the query allows for high-
confidence retrieval.

Further analysis of the results of the two user studies, also con-
firmed by the feedback provided by the users, show that:

1. In some cases (e.g., Task 1, Task 2, Task 6, and Task 8) the
main contribution to the utility of the result set is due only to a
very relevant top-1 result, as shown by the DCG curve starting
at the highest value for x=1 (i.e., 3) and then flattening out. In
this case, the system retrieves a very good match to either the
keyword-based or the content-based query, but then the other
results are judged much less useful.

2. Some other tasks (Task 4 and Task 9) instead retrieve results
that are perceived as good all over the result set, as shown by
a steadily increasing DCG curve both in keyword-based and
content-based search. In the direct comparison of the result
sets, users tend to assign higher preference to content-based
results though, even when the precision and order of the re-
sult set is judged better for keyword-based search (this is the
case of Task 4). Post-experiment comments from the users sug-
gest that the favorable perception for content-based search is
influenced not by the relevance per se of the result, but by a vi-
sual bias induced from the highlight of the matching elements.
Content-based search results match mostly elements that ap-
pear visually also in the content-based query and in its neigh-
borhood, whereas keyword-based search matches all elements
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Figure 5.40: Example of task with a) good performance in content-based search,
b) good performance in keyword-based search, c) equivalent performance, and
d) unsatisfactory overall performance.

that contain at least one keyword. In the abovementioned
tasks, it was easier for the users to appreciate the reusabil-
ity of the content-based result than of the keyword-based one,
which had many highlighted elements and resulted confusing.

3. Another factor that blurs the perceived differentiation between
keyword- and content-based search is the size of the returned
model element. Tasks like Task 7, Task 8, and Task 10 hap-
pen to match well with rather large WebML areas, making it
more difficult for the users to perceive the utility for reuse.

5.5 Discussion

Relevance of Metamodel information

Overall, the results of the experimental evaluation show that the in-
clusion of metamodel-dependent information in the model-search
process is beneficial for performance; this is demonstrated both
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in the WebML keyword-based search system, where the evaluated
Metamodel-dependent strategies outperform the Metamodel-independent
one, and in the A-star graph-based search system, where the in-
jection of metamodel information in the node similarity function
provided a considerable performance boost. However, in keyword-
based search, the very simple approach of extracting the text content
from projects and indexing it with off-the-shelf IR tools still yields
acceptable results (MAP = 0.77). The same can be observed with
the multidimensional scaling graph-based search algorithm which in-
troduces additional metamodel knowledge with respect to the other
algorithms in the indexing and search process. The evaluation of
the multidimensional scaling algorithm demonstrates that the per-
formance improves if all the available metamodel knowledge is used
(i.e. both the type of the model element and the Data Model infor-
mation).

For UML keyword-based search, the inclusion of metamodel in-
formation slightly improves the performance for the class granular-
ity indexing strategies, while including neighborhood information
slightly worsens the results. However, metamodel-independent in-
dexing techniques have achieved very high performance, especially
for the project granularity case (MAP = 0.98).

WebML Keyword- Vs. A-Star Graph-Based Search

We compare WebML keyword-based search and A-star graph-based
search in their most performing settings, respectively the metamodel-
dependent navigational configuration and the Low type contribution,
maximal insertion configuration that uses Levenshtein distance.

The MAP values suggest that A-star graph-based search (MAP =
0.86) is overall more precise than WebML keyword-based search
(MAP = 0.81); however, results from 11-point interpolated average
precision show that the best WebML keyword-based experiment at
recall = 0 slightly outperforms A-star graph-based search, as the
former features a precision of 1. A-star graph-based search provides
better precision for (0.1, 0.2, 0.3) recall levels (up to 30% of rele-
vant projects); for greater recall levels the WebML keyword-based
search consistently outperforms A-star graph-based search. A simi-
lar performance profile resulted from the first experiment of the user
study, where the DCG curves resulting from the evaluation of the
top-5 results show that, on average, the A-star graph-based system
is perceived as performing slightly better for reuse purposes.

Therefore, we might conclude that, in the evaluated setting, content-
based search is suitable for applications where precision matters the
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most. On the other hand, keyword-based search can prove suitable
in applications where recall is important (e.g., recommendation sys-
tems). Obviously, these considerations must be taken with care,
because comparing information retrieval results across diverse sys-
tems and query paradigms can only give a coarse indication of the
respective capabilities.

Multidimensional Scaling Vs. A-Star Graph-Based Search

Although the multidimensional scaling graph-based and A-star graph-
based search are configured for the WebML dataset they have a dif-
ferent purpose; The multidimensional scaling graph search efficiently
finds all the small localized patterns in a project graph considering
additional metamodel information from the WebML Data Model,
while the A-star graph search finds the most similar subgraph in an
area. The evaluation demonstrated that A-star graph based search
performs better than the multidimensional scaling graph based search
for all the applied evaluation metrics. Regarding the execution time,
as expected, multidimensional scaling search is more efficient than
the A-star graph search, thus overcoming the problem of scalability
at the price of performance loss. However, multidimensional scaling
still finds some well matching structural patterns that can be reused.

Therefore, if precision matters, and the size of the dataset is not
a concern, A-star graph-based search is more suitable. In case where
efficiency matters, the multidimensional scaling graph-based search
should be preferred. As previously, these considerations should be
taken with a caution, because both of these algorithms are searching
for different types of matches.

Search system design guidelines

The user study revealed possible sources of cognitive bias that may
alter the perception of the utility of the retrieved results, even if
they are relevant from a technical standpoint (i.e., they do contain
the queried keywords or model fragment). These results suggest two
recommendations for the designers of model search systems:

• Project segmentation: project segments should be semantically
meaningful as potential units of reuse and have comparable
size. Good example are WebML areas, while classes, used as
project segments for the UML dataset, might be small and do
not capture the model structure.
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• Matching results highlight : keyword-based search may be an in-
teresting tool to recall more potentially relevant matches than
content-based search, but it suffers from the visual overhead
induced by the matches of many model elements of different
types. As a possible countermeasure, the interface should sup-
port commands for toggling the highlight of selected metamodel
types. In this way, the user could selectively turn on the high-
light for the type of model element he is looking for (e.g., only
for pages, or units of a given kind), exploiting metamodel in-
formation also for the visualization of results.

Project design guidelines

As a final remark, the findings about the performance of model-
based search systems can be read also as recommendations for project
developers and DSL designers. In general, using selective and precise
textual labels for model elements is the first best practice to con-
sider; given the importance of the text match component in both
WebML and UML keyword- and A-star graph-based search, using
scarcely descriptive labels for model elements obviously degrades
search. For the WebML dataset, most of the reviewed projects
contained no comments associated with model areas, pages, and
meaningful patterns, even if this feature is supported by WebML
and WebRatio. Another best practice for WebML models is the ad-
herence to standardized design patterns: many functions (e.g., the
interfaces for performing CRUD operations on data, composition
and sending of messages, and so on) can be modeled in standard
ways, but the projects exhibited a lot of semantically equivalent but
slightly different variants for doing the same thing. This (not so
necessary) variability impacts the calculation of the graph edit dis-
tance in the A-star and the multidimensional-scaling graph-based
search, which is sensitive to link and containment topology. Last,
DSLs that are designed to be extensible and incorporate third-party
components, like WebML, should care for preserving the precision
of the metamodel: a good classification taxonomy of custom compo-
nents can help the metamodel type part in finding candidate nodes
for content-based search.

5.6 Threats to Validity

The thesis proposes a set of approaches for applying metamodel-
based search to model repositories, verified with concrete experi-
ments over repositories of models. All of the experiments were per-
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formed on models conforming to a specific DSL, namely WebML.
Furthermore, keyword search was also tested on a repository of a
general-purpose modeling language, i.e., UML class diagrams. How-
ever, the quantitative results from the experiments, are relevant for
the WebML and UML case, and cannot be directly generalized to
other languages. Still, the discussed method for studying the con-
figurations of the search systems and for tuning their parameters
can be reused, as it was already demonstrated by applying keyword
search on a UML repository. Also, as discussed in Sections 2.2.1 and
2.2.2, WebML is a representative of a family of languages for interac-
tive application modeling, while UML is a general purpose modeling
language, widely adopted and used across different domains. This
makes the experiments described in the thesis, although not directly
portable to other languages, potentially useful for supporting the
evaluation of the search system in other languages for model-driven
interactive application development. While it would have been good
to evaluate the system on other larger repositories, finding realistic
and sufficiently rich datasets has been challenging. Indeed, models
are the core asset of MDE companies, which are therefore reticent
to share them. Anyway, the WebML repository we have been able
to collect contains a considerable amount of model artifacts (a total
of 19,246 searchable elements have been counted) and covers a wide
spectrum of application domains. Based on the user feedback and
on our empirical assessment of the repository, we think that the ob-
tained results are accurately describing the system behavior for the
WebML modeling language. The UML repository contains 84 class
diagrams where the majority of projects is small, which makes them
inappropriate for content-based search. However, the richness of the
terms present in the UML repository’s vocabulary makes it suitable
for keyword-based search, thus configuring and testing the keyword
search on two different repositories. Although classes might be small
units for project segmentation, they served to investigate how small
segments influence the performance.

Another potential threat comes from the quality of the testbed
and of the gold standard. We applied all the known techniques for
reducing the bias of evaluators and we were not included in the set
of experts evaluating the data. The same care has been applied to
the definition and execution of the user study. While the projects
in the WebML repository could not be chosen (they were provided
by WebRatio), the selection of the queries for the experiments was
performed based on various language and dataset objective char-
acteristics, to minimize the introduction of bias from our side, in
consultation with experienced model developers. The selected num-
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ber of tasks (10) has been deemed a reasonable compromise between
the effort required for constructing the gold standard and the cover-
age of several aspects of the DSL and of typical design patterns that
we observed in the provided repository. When designing queries, it
is important to consider the repository content (in terms of vocab-
ulary and design patterns) in order to build the ground truth and
thus, enable the evaluation of our approaches. In general, for pur-
poses of using the repository, a user can create a query in a specific
modeling language without having any knowledge of the repository.

For the UML repository, the projects were selected randomly
out of a publicly available dataset, in order not to influence the
choice of projects, and to be more similar to the WebML case. The
same criteria applied to the WebML dataset were considered when
creating queries.

One might argue that the ground truth in the multidimensional
scaling graph-based approach evaluation is altered. However, the
ground truth is not modified, it is just used to find the relevance of
subgraphs generated in the result set, as in the other methods. The
same subgraph will always have the same relevance.

The result of the user study could have been influenced by the
number and expertise of the involved participants. However we be-
lieve that number of involved users (25) suffices for a meaningful
evaluation, while the levels of expertise were fairly distributed.

Finally, a last factor that could have influenced the user study
is the user interface we built for the purpose. This interface may
have introduced exogenous complexity to the evaluated variables,
e.g., due to factors such as the limitations of a browser-based inter-
face, the system response time, the cognitive load associated with a
new interface, time pressure, and the kind of interaction commands
allowed. To minimize the impact of such factors, we provided equal
training to all the participants, and did not pose a time limit for
the execution of the evaluations. However, as we have commented
in Section 5.5, model-driven search surely poses challenges in the
system interface design, related to model complexity and size and
highlight of matches, which we consider interesting future research
directions to explore.
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Chapter 6

Related Work

This chapter describes the state-of-the-art techniques for search-
ing artifacts in software repositories and graph data. Section 6.1
focuses on searching artifacts from software repositories and it in-
cludes source code search, software components search and model
search. The model search section (Section 6.1.3) is divided into
approaches that perform keyword-based search and content-based
search on models. The model content-based search (in Section
6.1.3) incorporates graph search techniques, structural query lan-
guages and content-based approaches that use specific algorithms
for searching models. Finally, section 6.2 provides an overview on
the current approaches for searching graph data.

6.1 Search of Artifacts in Software Repositories

6.1.1 Source Code Search

The need for searching source code for improving the process of soft-
ware development and supporting software reuse resulted in emer-
gence of several on-line tools and research works that implement and
explore this problem. Some examples of existing on-line tools for
sharing and retrieving source code are Google code, Snipplr, Koders,
and Codase1. As explained in [21],the most basic solution is the
case where queries in form of keyword(s) are simply matched to the
code and the results are the exact locations where the keyword(s)
appear in the matched code snippets. However, online tools allow
advanced search by using regular expressions (Google Codesearch),
wildcards (Codase); supporting search of specific syntactical cate-
gories, like class names, method invocations, variable declarations

1Sites: http://code.google.com, http://www.snipplr.com, http://www.koders.com,
http://www.codase.com

107



(Jexamples and Codase); making the search more specific by indi-
cating fixed set of metadata (e.g., programming language, license
type, file and package names). Source code online tools also have
to consider a way to compute a relevance score between the query
and the matched source code, and present the corresponding results
to the user [21]. Regarding this aspect, some approaches retrieve a
list of matches without providing ranking, while others implement
IR-style ranking using the standard TF/IDF measure, or ranking
which besides the matches with the source code takes into account
the project properties such as recency of the project, number of
downloads, activity rates etc.

Research works for source code search are based on IR techniques
[52] and techniques which employ the source code structure in the
search [11, 61].

Sourcerer [11] is an infrastructure for large scale indexing and
analysis of open-source code, upon which code search engines and
services can be built. Sourcerer crawls the internet looking for Java
source code from public web sites, open source repositories and ver-
sion control systems. The code is parsed, analyzed and stored in
three forms: managed repository, containing versioned copy of the
original project content; Code Database that stores models of parsed
projects based on a metamodel, and Code Index which stores key-
words extracted from the code. The metamodel for structural infor-
mation is based on the Chen’s entity relationship metamodel.

Maracatu [46] is a search engine for retrieving source code com-
ponents from (CVS) development repositories. The search engine
indexes Java source code components with the Lucene search en-
gine, combining text mining and facet-based search. A filtering pre-
cedes the search to exclude components which do not satisfy the
constraints, and then the keyword search is performed. A visualiza-
tion of the retrieved component is provided before its download.

Exemplar (EXEcutable exaMPLes ARchive) [87] is an approach
for finding highly relevant software projects from large archives of
applications. It uses information retrieval and program analysis
techniques to retrieve applications by linking high-level concepts to
the source code of applications via standard third-party Application
Programming Interface (API) calls used by the applications. It does
not only find query keyword matches in the descriptions and source
code of applications, but keywords are also matched with words in
the help documentation for API calls. The matches of the API calls
are compared against the functions’ names invoked in the applica-
tions. The ranking is obtained by considering the word occurences,
number of relevant API calls and the dataflow connections between
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them.
CodeBroker [127] is a system that uses techniques to autonomously

locate components in a repository which are task-relevant and per-
sonalized to the background knowledge of the developer (informa-
tion delivery). The main inspiration for the information delivery
concept comes from the fact that reuse is often unsuccesful because
of users’ lack of knowledge and their inability to create a well-defined
query. CodeBroker utilizes doc comments and program’s signatures,
discourse models that partially describe the developer’s tasks, and
user models that represent users’ backgound knowledge about the
repository thus personalizing information delivery with respect to
the developer’s unique needs. The component repository contains
indexes from a standard Java documentation and links to the Java
documentation, and reuse queries are extracted autonomously by
monitoring development activities. Information delivery reduces the
cost of software reuse, making unanticipated (unknown) components
easily accessible, and motivates developers to change the design ap-
proach towards reuse.

A method for finding traceability links between source code and
free text documentation expressed in natural language, by using
probabilistic and vector space information retrieval model is pro-
posed in [6]. The query consists of identifiers extracted from the
source code component to retrieve documents relevant to the com-
ponent. In the probabilistic model, free-text documents are ranked
according to the probability of being relevant to a query based on a
stochastic model that assigns a probability to every string of words
taken from a prescribed vocabulary. The vector space model treats
documents and queries as vectors in an n-dimensional space, where
n represents the number of indexing features (words in the vocab-
ulary). Documents are ranked against queries by computing a dis-
tance function between the corresponding vectors.

The work in [104] proposes an approach for code search that uses
an open set of program transformations to map retrieved code into
a user specification. The user specifies its query through keywords,
class or method signatures, test cases, contracts and security con-
straints. The keywords are used to select an initial set of candidate
matches which is then transformed into a more appropriate resul-
tant set using Abstract Syntax Trees (AST). This set is restricted by
checking the solutions against the static specifications. Each solu-
tion is then augmented with an additional dependent code from the
original file. The final solutions are checked against dynamic speci-
fications such as test cases. Depending on the test result, additional
transformation might be applied. The solutions are formatted using
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adaptive formatting and presented to the user.
CodeGenie [79] is a tool that utilizes test-driven approach to

search and reuse code available in large-scale source code reposito-
ries. Developers design test cases for a desired feature first, which
CodeGenie uses to automatically search for an existing implemen-
tation. The suitability of the candidate results is checked by incor-
porating the result into the developer’s project and tested using the
original tests. CodeGenie is built on top of Sourcerer [11] which
handles code searching and wrapping. Test cases improve the qual-
ity of the found results since they test code results retrieved from
many different sources.

The work in [71] proposes a source code search using ontologies to
model and connect source code fragments extracted from reposito-
ries found on the Internet. The approach allows to search and reason
across project boundaries while dealing with incomplete knowledge
and ambiguities. Source code is modelled using Description Logic
(DL) and Semantic Web reasoners supporting complex queries and
handling missing knowledge. The knowledge base is built incremen-
tally without the need to re-visit fragments or compile the source
code, and it can be visited by web crawlers.

Assieme [60], is a web search interface that allows for common
programming search tasks by combining information from web-accessible
Java Archive (JAR) files, API documentation and pages that include
explanatory text and source code. The approach finds (and resolves)
implicit references to JAVA packages, types and members within the
sample code on the Web, using relevant data collected from differ-
ent sources on the Web. The interface provided by Assieme allows
programmers to quickly examine different APIs that might be ap-
propriate for a problem, obtain more information for a particular
API and see API’s usage samples. This way programmers can ob-
tain solutons faster and using fewer queries with respect to a general
Web Search interface. Assieme uses information regarding the ex-
tracted code to form a ranking score, which depends on the ratio
between the text length that surrounds the code samples, and the
code sample length,favouring pages that contain more text.

Portfolio [88] is a source code search system that provides re-
trieval and visualization of functions,and supports the analysis of
chains of dependencies of the retrieved functions with the help of
navigation and association models.It supports programmers in find-
ing relevant functions that implement high-level requirements re-
flected in query terms, determining how these functions are used
in a highly relevant way with respect to a query, and visualizing
dependencies among retrieved functions to show their usage. This
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is achieved by combining Natural Language Processing (NLP) and
indexing techniques with PageRank and Spreading Activation Net-
work (SAN) algorithms. NLP and indexing techniques help to find
initial focus points with respect to the query’s keywords, PageRank
models the behavior of the programmers, and SAN elevates highly
relevant function calls chains to the top of the search results.

Strathcona tool, described in [61], locates relevant code in an
example repository based on heuristically matching the structure of
the code under development to the example code. The approach ex-
tracts automatically necessary information to query the repository,
freeing the developer of learning any query language, or writing the
code in a particular style. The repository is generated easily from ex-
isting applications, and consists of a relational database that stores
the code structure through classes,methods, fields, inheritance re-
lations, types instantiated by the code and the calls between the
types. The examples returned by Strahcona are subsets of the code
provided to the repository. The tool employs three types of heuris-
tics: inheritance heuristics,that matches on the parents and types of
fields of a class, calls heuristics based on the targets of the method
calls, and uses heuristics based on the types a developer declares
and uses within a method.

SNIFF [31] is a novel code search technique which allows flexible
searching for code while using plain English to obtain a small set
of code snippets to perform a desired task. The method uses the
API documentation provided in the library methods to annotate
undocumented publicly available Java user code with plain English
meaning. The annotated code is then indexed for performing search
with free-form queries. The approach takes a type-based intersec-
tion of the candidate code snippets obtained from the query search,
removing irrelevant lines of code and keeping the code lines which
co-occur (through presence of keywords or issues related to correct
implementation), to generate a set of small and highly relevant code
snippets. SNIFF eliminates the requirement of previous knowledge
about API, thus achieving a more effective search.

Coogle [108] is a search engine that extends the idea of using
similarity measures for determining the similarity of Java classes. It
transforms abstract syntax tree representations of the Java classes’
source code into intermediary FAMIX tree representations, a pro-
gramming language-independent model representations of object-
oriented source code. As a result, the similarity of these trees is
determined by tree similarity algorithms: bottom-up and top-down
maximum common subtree isomorphism, and tree edit distance.
Coogle has been implemented as an Eclipse plug-in. The evalua-
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tion of the effectiveness of the proposed algorithm showed that the
tree edit distance produces the best results.

6.1.2 Component Search

Software components represent a cohesive and compact unit of soft-
ware functionality with a well defined user interface, ranging from
simple programming classes to more complex web services [62]. Soft-
ware component search supports their reuse by assembling retrieved
software components into applications which improves the quality
and decreases costs of software development. In the following part of
this subsection are given examples of component search works that
search software components in general [48], or search for specific
type of software components [65, 102].

Agora [110] is a specialized search engine that automatically in-
dexes and generates a worldwide database of software products clas-
sified by component model. The users can search for components by
describing specific properties of a component’s interface. The sys-
tem combines Web Search Engines with an introspection process,
which corresponds to a component’s capability to provide informa-
tion about its own interface. Agora supports data collection which
includes finding components on the Internet, collecting their inter-
face information and record it in a local database, to allow data
search and retrieval. Special functions let users narrow the search
criteria which depends on the characteristics of the component type.
Agora also uses lexicons to facilitate search in a specific domain, ap-
pending it to the query.

The work in [48] proposes an approach for searching software
components by associating algebraic specification to each software
component. It allows user queries to be represented with syntactic
declarations and results for sample execution. Standard program-
ming notation can be used for the queries which is subsequently
translated in algebraic notation. The search process exploits a multi-
level filtering strategy, implemented incrementally in order to allow
backtracking to lower ranked components. The result of each level
gives partial matches: early stages of filtering narrow the search
space by using simple procedures, middle levels find partial signa-
ture matches, and the final filter uses semantic information with
term rewriting. Indexes may also be used to speed up early and
middle filtering.

SPARS-J is a software component search system which treats
source files of Java classes as components [65]. For this purpose, it
uses a component rank model that represents a software component
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library as weighted directed graph, such that graph nodes corre-
spond to components, and graph edges represent cross-component
usage. Graph nodes are ranked by their weights , defined as eigen
vector elements of an adjacent matrix for a directed graph. In
this way, the resulting rank (the component rank) allows for highly
ranked components to be quickly seen by the user. The results show
that a class frequently invoked by other classes has a high rank, with
respect to nonstandard classes.

The approach [102] is used to discover web services using a vec-
tor space search engine to index descriptions of already composed
services. The approach joins detached document repositories to a
single one and execute queries upon the vector search space. A ser-
vice description in form of WSDL file or UDDI registry contains
different types of data: plain-text user comments, endpoint URLs,
types and their attribute names, messages, and XML comments.
Keywords are extracted from this data and a vector is generated for
the document based on the keyword frequencies. The query proces-
sor takes a query string and splits it into a list of keywords used to
build a corresponding query vector. The query vector is projected
into a local term space and a cosine similarity is used to evaluate
the query vector with respect to the document vectors.

Merobase 2 is an open-source search engine for software com-
ponents: source code, compiled software components,web services,
physical and logical containers, that references over 10 million com-
ponents. Merobase specializes in finding components based on their
interface, rather than the strings they contain in the source code.
It supports searches using the Merobase Query Language (MQL)
which allows to look for components with a particular name or con-
tain a given string in the source code. Components can also be
searched based on a particular logical (function-oriented or logical-
oriented) abstraction. Merobase also supports constraints to narrow
down the search. The queries can also be formulated in a program-
ming language syntax or in UML-like operating systems.

The technique introduced in [17] uses an ant colony algorithm
for generating rules to store and search components in a software
repository. The user query is interpreted as a set of keywords and
WordNet is used to further expand the query for synonyms and iden-
tification of relations among these keywords. Generating rules for
component classification is an important step in identifying software
components for a given context. An ant colony algorithm selects
terms and it derives their inter relationships. If a term contributes

2http://www.merobase.com
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to a given context, a rule is generated. Rule quality is evaluated
on the basis of various parameters. If quality of two consecutive
rules converges, it is included in the list of rules for a corresponding
context.

Automatic Tags Extraction (ATE) retrieval proposed in [130], is
an approach for retrieving components from large-scale component
repositories by automatically extracting component tags from appli-
cation domain terms, high-frequency, high-weight and facet terms in
the application’s document description. Then, ATE uses improved
Vector Space Mode(VSM) similarity algorithm to retrieve from the
index constructed from the extracted tags. Queries are submitted
in a natural language which is semantically expanded to improve
the retrieval keywords used to extract functional terms. An index
is used to find intersection of functional terms in order to identify
appropriate components (which have all the functional terms) for
the candidate set. Similarity is calculated for each candidate com-
ponent, reading tag information from the tag index and comparing
it to the retrieval keywords allowing to sort the results.

The tool in [55] proposes a software component repository that
uses components’ aspects to index and query components accord-
ing to their high-level systemic characteristics. The aspects describe
the required and provided services, and related and non-functional
constraints for capabilities like their user interface, persistence, dis-
tribution, security and collaborative work. Index on component’s
capabilities is generated through use of high-level component charac-
terisations. The tool considers user queries about component capa-
bilities and it considers the context in which queries are performed.
A partial automatic query reconstruction is also enabled, based on
the reuse context of the component. New components can be added
to the repository’s index automatically, generated from their high-
level aspect characterizations.

Woogle [41] is a search engine for web services that supports
finding similar web service operations and finding operations that
compose with a given one, in addition to the simple keyword search.
A novel clustering algortihm is used that groups names of parame-
ters of web service operations into semantically meaningful concepts,
which are then leveraged to determine input similarity. The similar-
ity is determined by considering textual descriptions of operations
and web services, and similarity between the parameter names of
operations. Clustering is based on the heuristic, that parameters
express the same concept if they occur together often. Woogle al-
lows for template search and composition search. Template search
lets the user specify the functionality, input and output of the web
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service operation, and returns a list of operations that fulfill the
requirements. Composition search on the other hand, returns com-
position of operations that achieve the desired functionality specified
in the search.

Use of domain-independent and domain-specific ontologies for
retrieveing web service from a repository is proposed in [117]. The
domain-independent relationships are derived using an English the-
saurus after tokenization and part-of-speech tagging. The domain-
specific ontological similarity is determined by associating seman-
tic associations with web service descriptions. Domain-independent
cues, give a breadth of coverage for common terms, while domain-
specific ontological information allow finding deeper relationships
based on industry and application specific terms allowing calcula-
tion of the overall similarity score. Semantic and ontological match-
ing are combined with attribute hashing, an indexing method for
fast retrieval of services, where candidate attributes are identified
for each query attribute, without linear searching of all attributes.
The terms in the set of related entities for an entity in the service
repository are used as a key to index hash table, meaning that the
query entity is a key of the hash function, thus allowing retrieval of
ranked relevant services.

6.1.3 Model Search

Model search approaches utilize the underlying model structure for
retrieving models from model repositories. Regarding the model
type, a majority of model search approaches are for Business Process
Models, although few works exist for searching UML models too.
Besides traditional keyword querying [84, 43], query by example
(content based search) is used to incorporate model structure in the
query [121, 13].

Keyword Model Search

Keyword search uses a set of keywords to query model reposito-
ries, and it is inspired by traditional information retrieval based on
frequency of occurence of search terms. However, there exist works
which include the model structure in the matching process [131, 84].

The next couple of works focus on keyword search of UML mod-
els.

Moogle is a model search engine that uses UML or Domain Spe-
cific Language (DSL) metamodels to create indexes for evaluation
of complex queries [84]. It also formats the search results in a more
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readable way by removing irrelevant tags and characters. Model el-
ement’s type, attributes and hierarchy with respect to other model
elements can be used as a search criteria. Models are searched by
using keywords, by specifying the types of model elements to be re-
turned (advanced search), and by using filters organized into facets,
containing values that can be combined in the search (browsing).
Moogle uses the SOLR ranking policy of the results. The results are
formatted allowing more important info to be higlighted for the user
which is more clear with respect to the original XMI format. How-
ever, the result preview is not very expressive and requires knowl-
edge of the model content in order to understand the result. Unlike
our approach, Moogle supports only text queries which are refined
by specifying the type of the desired model element to be returned.

The approach in [131] proposes an UML model querying method
based on structure pattern matching. The system requires a target
model pattern and UML system model for querying. The target
model, described in a textual query language, stored in a textual
file, is parsed and matched with the system UML model. The struc-
ture matching considers the model structure, which includes the
relations among classes, and features for each model element. More
specifically, the matching algorithm checks for class structure match-
ing, based on the match of the classes general information, their
attributes and operations, and relation structure matching which
defines the match in the model structure. Different model elements
and feature values have different discrimination property of models
depending on their frequency in the model, such that rare model
elements and features allow pruning of unmatched elements. This
approach considers the UML model structure, but it also requires
specifying a model pattern in a query language.

CORE [43], a tool for Collaborative Ontology Reuse and Evalu-
ation receives an informal description of a semantic domain as a set
of terms, and determines which ontologies from an ontology repos-
itory most appropriately describe the given domain by automatic
use of similarity measures. A set of terms is manually assigned,
and the user can expand these terms by using WordNet. The user
selects a subset of available comparison techniques, and as a re-
sult, a ranked list of ontologies is retrieved for each criterion. A
global aggregated measure is used to define a unique ranking, which
uses rank fusion techniques. When human judgement is required,
Collaborative Filtering Approach is applied allowing manual user
evaluation. Although CORE is used for retrieving ontologies only,
the idea for using semantic similarity for search might be used in
our future work.
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The following two methods use Information Retrieval techniques
for finding workflows. The work [112] is more restrictive since all
query keywords need to match a workflow, while [34] composes work-
flows out of existing repository which differs form a user goal we
set,i.e., to find existing models or model fragments in the reposi-
tory.

WISE [112] is a Workflow Information Search Engine which al-
lows querying a repository of workflow hierarchies using simple key-
words. Query results, displayed graphically, are defined as a mini-
mal view of each relevant workflow hierarchy containing matches to
all query keywords. The result set is constructed dynamically by
categorizing workflow hierarchy nodes based on the matches to the
query keywords.

Auspice [34] is a system for automatic composition of work-
flows, given a keyword query. The approach indexes data sets and
Web Services on their tagged keywords and metadata, generates
ontology based on concepts relationships, and uses them to con-
struct the workflows. An IR-based retrieval model evaluates the
index relevance considering the query keywords. The concepts are
mapped onto query keywords to construct sets of unsubstantiated
concepts,containing targeted concept elements, and a set of value-
substantiated concepts, that have been assigned a value from the
query. The two sets together with the ontology are used to find and
compose workflows that derive some user-targeted concept with the
support of the given attributes specified in the query parameters set.
The resulting workflows are ranked according to a score computed
as a function of the number of concepts relevant to the query. The
system not only returns previously defined workflows, but it also
identifies and composes web services and data sets to respond to
the information received by the query.

A model driven information retrieval system that uses classi-
cal information retrieval techniques for obtaining information from
WebML metamodels in a project repository is proposed in [21]. The
realized prototype applies metamodel-aware extraction rules to an-
alyze models. It has a visual interface to perform keyword-based
queries, performed on whole projects, subprojects, or concepts, and
inspect results, presented as a paginated list of matching items with
a possibility of snippet visualization. The index is populated with
information extracted from the models. The keyword search part of
the thesis extends this research work, by implementing the architec-
ture and evaluating different configurations using ground truth for
two datasets: WebML and UML.
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Content-Based Search

Some content-based search works use graph representation of models
thus proposing graph search solutions [105, 135] which might include
indexing [78, 125], while others define querying languages for bet-
ter expressing the user need [26, 12]. There are also content-based
approaches that apply specific search algorithms [86] that do not
belong to any of the above-mentioned categories. Based on that, we
divided the content-based search state-of-the-art into graph model
search works, works that describe structured query languages and
other content-based approaches.

Graph Model Search

In [105], four graph mathing algorithms for computation of sim-
ilarity of business process models represented as graphs are evalu-
ated.
The greedy algorithm marks all possible graph nodes as open pairs,
and in each iteration, selects an open pair that maximizes the sim-
ilarity induced by the mapping, and adds the pair to the mapping.
The algorithm iterates until there is no open pair left. Main dis-
advantage of this algorithm is the suboptimal mapping as a result
of choosing an open pair which can be local maximum, discarding
pairs that might increase similarity in later stages.
Exhaustive algorithm with pruning evaluates recursively all possible
mappings, and when the recursive tree reaches a size of ’pruneat’
(algorithm parameter), the algorithm prunes it, keeping only the
mappings with highest similarity, whose number depends on the
’pruneto’ parameter. The number of mappings increases exponen-
tially, but it is controlled with the pruning parameters.
Process heuristic algorithm is a variation of the exhaustive algorithm
and it is based on the assumption that nodes closer to the start of
a model should be mapped to nodes closer to the start of the other
model. This leads to higher-quality pruning and the mappings do
not increase as rapidly as in the previous algorithm.
A-star algorithm takes the partial mapping map with the maximum
graph edit similarity in each iteration. Every node from the first
graph is paired with every node from the second graph that does
not appear already in the mapping. Additionally, it is created a
mapping considering the case when the node from the first graph is
deleted. The algorithm finishes when all nodes from the first graph
are mapped. The memory requirements of the algorithm can be re-
duced by considering possibility of node mapping only if the textual
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similarity between node labels is greater then a determined cut-off
value. As a result of the evaluation, A-star has slightly better aver-
age precision compared to the other algorithms, while greedy algo-
rithm has the fastest execution time, as expected. Three similarity
metrics for querying business process models are presented in [39]:
label matching similarity, structural similarity, which considers the
topology of models, and behavioral similarity, which focuses on the
causal relations between models. Label matching metric computes
optimal matching between process models’ nodes by comparing their
labels. The structural similarity metric uses the representation of
process models as graphs and existing techniques for comparison
based on graph-edit distance. The behavioral similarity metric rep-
resents the causal relations between tasks in models as causal foot-
prints which provide abstract representation of the models’ behav-
ior. All three metrics outperform text-based search engines, while
the structural similarity metric outperforms the other two proposed
metrics. Although the A-star algorithm of the graph-based part of
our work is inspired by the abovementioned approaches, the exist-
ing works are restricted to queries over BPM models, which have a
simpler syntax and semantics than a DSL for interactive application
front-ends modeling.

The following are examples of graph-based search over business
process models. Although they use different search approaches, all
of them search for similar non-exact models, allowing mimatches in
nodes and edges between a query graph and a model graph.

An example of graph matching on process models is presented
with the framework for process modeling and deployment [83]. It
consists of a constraint-based process modelling approach, Business
Process Constraint Network and a repository for case specific pro-
cess models, called a process variant repository (PVR). This frame-
work provides an effective approach for structuring and querying
PVR. The query is a (sub)graph, expressing information needs, for-
mulated with respect to the criteria for selection of one or more
process variants. The query can be similar to a structural defini-
tion of a variant, but may not be identical. Therefore, a selective-
reduce method is proposed, which uses graph reduction techniques
for finding a match. The result is a collection of variants matching
the criteria which can be ranked in case of partial matching.

The work [122] presents a framework for comparing complex pro-
cess models combining metrics for comparing whole or partial pro-
cess models, graph partitioning to compare the component parts of
process models at different levels of abstraction, visualization tech-
niques inspired by relief maps for intuitive model presentation, and
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statistical significance tests to give meaning to metrics and evalu-
ate the confidence. Graph partitioning based on Edge Betweenness
and Spectral Partitioning is used to recursively split process models
into logical subgraphs and calculate the similarity metrics between
them as they are complete process models, which are then used to
match pairs with the lowest distance. The respective metrics are
based on the frequency distribution of the data attributes and on
the weighted average of the difference between the weighted edges
and weighted nodes. Statistical tests were performed considering
the frequencies of nodes and edges in the models.

The work in [54] introduces a BPEL ranking platform for ser-
vice discovery employing graph matching, which finds a set of ser-
vice candidates satisfying user requirements and ranks them using
a behavioral similarity measure. A graph error-correcting match-
ing algorithm is used for approximate matching, starting from the
subgraph-edit distance, and then extending it by adding new graph-
edit operations that consider the difference of granularity levels that
could appear in the two models: decomposing a vertex into two ver-
tices, and joining two vertices into a single vertex. The approach
considers two types of vertices: activity nodes, representing business
functions, and connector nodes, expressing control flow constraints.
When comparing process graphs, the approach checks how mapped
activities are connected and defines rules for comparing different
types of activities.

Another behavioral similarity measure for artifact-oriented busi-
ness processes, using the Petri Net notation, is proposed in [82]. It
computes the similarity between business core data by measuring
the similarity between key artifacts, the similarity between task de-
pendency relation sets of the task paths according to the lifecycle
features of the core artifact, and the similarity between attribute
assignment sequence sets in the task execution path.

The work [122] presents a framework for comparing complex pro-
cess models by (i) combining metrics for comparing whole or partial
process models,(ii) performing graph partitioning to compare the
component parts of process models at different levels of abstrac-
tion, (iii) incorporating visualization techniques inspired by relief
maps for intuitive model presentation, and (iv) applying statistical
significance tests to give meaning to metrics and evaluate their confi-
dence. Graph partitioning based on Edge Betweenness and Spectral
Partitioning is used to recursively split process models into logical
subgraphs, calculate the similarity metrics between them as they
were complete process models, which is then used to match pairs
with the lowest distance. The respective metrics are based on the
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frequency distribution of the data attributes and on the weighted
average of the difference between the weighted edges and weighted
nodes. Statistical tests were performed considering the frequencies
of nodes and edges in the models.

In [96] a technique for process models retrieval based on clustering
of related pairs is discussed, which combines semantic, string-based,
and an hybrid metric for comparing process models. The proposed
approach finds node label based differences between two process
models by disaggregating them into similarity related subgraphs.
The approach considers string-based similarity, semantic similarity,
as well as hybrid-similarity approaches for computing label-based
similarity. Related cluster pairs concept combines node similarity
and structural characteristics used to compute the overall process
similarity based on a dynamic wieghted average that depends on
a weighting function which specifies the intensity of the weighting.
The main differences with respect to our work is the focus on busi-
ness processes and the use of comparison mainly based on node
labels rather than on structural information.

The approach in [30] proposes a technique for assisting business
process design by considering the context of the neighborhood ac-
tivities, by recommending to the designer activities which are close
to the process under design, based on an existing collection of busi-
ness process models represented as graphs. A context is defined as
a business process fragment around an activity, including the as-
sociated activity and connection flows associating the activity with
its neighbors. The neighborood context of a selected activity finds
similar neighborhood contexts of other activities considering how
many connection flows separate the activity from a neighbor. The
matching between neighborhood context graphs also incorporates
the behavioral similarity of the associated activities. Although this
work restricted to Business Process Models acknowledges the neigh-
borhood context, it does not consider graphs whose nodes have mul-
tiple labels.

The following works use indexing for efficient search of business
process models, pruning the quantity of models on which graph
match will be performed. The work [68], and its extension [67], use
Petri Net representation of models instead of graphs. In comparison
to the graph-based part of our work, these approaches are limited
to business process models, and although they introduce filtering
as another step in the processing to achieve more efficient search,
we consider multiple labels, and map the graph search problem into
multidimensional spaces using multidimensional scaling.

An indexing approach for business process models based on met-
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ric trees (M-Trees), and a graph edit distance as similarity metric
is given in [78]. The index is a hierarchical search structure that
partitions the search space by using the distance between charac-
teristic feature values of objects, and saves comparison operations
during search with the help of a distance function by excluding the
partitions from further exhaustive search. Search in metric spaces
takes a query process model and a query radius which describes
the acceptable distance of a matched process model compared with
the query. The triangle inequality allows pruning subtrees without
calculating the distance between the query and the pivots of the
subtrees.

A technique for efficient querying of bussiness process models is
[125]. It applies model features used to efficiently estimate model
similarity between them and classify them according to their rel-
evance with respect to the query based on the ratio of common
features. Features are selected as representative abstractions of
Bussines Process Models and they include structural features, that
depend on the structural role of the feature in the graph, as well as
labels. The approach uses M-tree index on node labels for finding
similar items with respect to an item to a given degree, an inverted
index that maps node labels to nodes, and a parent-child index that
stores the relation between smaller child features and larger par-
ent features, and matches two child features if their parent features
match. A greedy algorithm besed on graph-edit distance is used to
evaluate the candidates filtered by the indexes.

The work in [103] presents an approach for clustering business
processes based on their underlying topic, semantic and structural
similarities. The approach considers high-level topic information
collected from process description documents and keywords as well
as detailed structural features such as process control flows in find-
ing similarities among business process models. The proposed clus-
tering method has two levels: the first level is based on the topic
similarities and it uses a topic language modeling approach, while
the second level is based on pairwise structure similarities between
all the processes. For a given query process, the approach returns
the top-k most similar processes based on the clustering.

An approach for efficient querying of bussiness process model
repositories modeled as Petri nets is proposed in [68]. It uses B+-
tree indexes based on transition paths, such that every tree contains
paths with length n and all the models that contain it. The querying
consists of two stages: the first stage utilizes the indexes to find
candidate matches, while the second stage uses an adaptation of
the Ullman’s subgraph isomorphism algorithm to Petri nets.
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The work in [67] introduces a structural technique for efficient
retrieval of BPM models represented as Petri nets, with the help
of an edge-based index which filters promising candidates. During
query processing, a number of edges that needs to be contained
according to a given similarity threshold is evaluated and used to
obtain the candidate models from the index. A similarity based on
Maximum Common Edge Subgraph is computed between a query
condition model and all the candidates that passed the filter. Since
the size of the candidate set is much smaller than the size of the
entire repository, query efficiency is improved.

The following three approaches are examples of graph-based search
on workflows, used to find similar workflows. Work [135] uses specfic
algorithm, while [16] and [47], employ subgraph-isomorphism tech-
niques.

An inexact process matching approach that enables two workflow
processes to be matched with a similarity degree [0,1] is brought out
in [135]. The similarity is obtained from the matching degrees of
the coresponding sub-processes and activities of the processes, and
is characterized through definition of process specialization relation-
ship and activity specialization relationship. The matching degree
between two activities depends on the longest activity-distance be-
tween them in an Activity Specialization Graph (ASG) defined by
the activity-ontology repository. In each ASG, nodes are activities,
while arcs represent activity specialization relationships.

The work in [16] proposes a model for representing semantic
workflows, focusing on business and scientific workflows, as seman-
tically labeled graphs with a related model for knowledge intensive
similarity measures (similarity measure model). Workflow similarity
computation is performed based on the A-star search, considering
similarity computation and case selection. Semantic workflows are
enriched by using metadata and constraints to individual workflow
elements, formalized by ontologies. Each graph’s node and edge
is semantically labeled with metadata in a semantic description.
The similarity measure of workflows depends on the node similar-
ity expressed through their similarity in semantic descriptions and
the edge similarity of the workflow graphs which considers not only
semantic descriptions, but also the similarity of nodes they link.
Aggregation function is used to combine the individual similarity to
obtain the overall workflow similarity.

The potential of workflow discovery using subgraph isomorphism
matching is investigated in [47]. The approach uses a Graph Matcher
which has the ability to find workflows similar to the input and re-
turns the result formatted into HTML page. The workflows, as well
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as the workflow which is the user input, are parsed into a form the
Graph Matcher understands. The tool is tested within the workflow
environment on a real corpus.

Structured Query Languages

The work in [75] defines extensions of OCL (Object Constraint
Language) for allowing queries over complex model repositories. It
proposes MoScript, a textual language for model querying and man-
agement. Users can write scripts with MoScript that contain queries
and manipulation instructions (e.g., transformations on sets of mod-
els) upon models and store them back in the repository. The Mo-
Script scripts can perform description and automation of complex
modelling tasks, allowing several consecutive manipulations on a
set of models. MoScript can use rich metadata to validate model
manipulations. While the approach is metamodel-independent, the
user is left in charge of writing complex OCL-like queries that only
retrieve exact, non-ranked models.

The work in [26] studies the problem of answering queries over
UML Class Diagrams (UCD) and restricted class of OCL constraints
by relating it to the problem of query answering under guarded
Datalog±, a powerful Datalog-based language for ontological mod-
eling, in order to verify whether an instance of a system modeled by
the UML class diagram satisfies a specific property. An expressive
fragment of the UML class diagrams with a limited form of OCL
constraints, named Lean UCD is identified to enable controllable
query answering with respect to the time complexity.

An approach for querying UML models using the detailed seman-
tics of the UML and OCL is presented in [4]. The formed queries are
as powerful and concise as the queries formed with the help of rela-
tional algebra. Therefore, some OCL extensions are added, like for
e.g., new operation definitons (project and product,) and concepts,
to avoid adding additional UML model elements and modifying the
UML model.

Another approach for specifying model queries on UML models
based on lexical similarity and structural arrangements (indirect re-
lationships)through graphical notation is described in [115]. Joint
Point Designation Diagrams are used to represent queries graphi-
cally, simplifying the complex and excessive textual notation. Ob-
ject Constraint Language (OCL) meta operations,appended to the
UML meta model’s classes, are deployed in order to retrieve an ac-
tual set of model matching elements. Queries should be specified in
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terms of user model entities and properties for user’s comprehensi-
bility.

BP-QL [12] is a language for querying business processes, based
on the intuitive model of BPs, an abstraction of the Business Process
Execution Language (BPEL) specification. It contains a graphical
user interface allowing simple formulation of queries over a model.
It allows retrieving paths and querying over different levels of gran-
ularity, as well as, controlling distributed querying. BPs are visually
represented as directed labeled graphs. For querying BPs, BP pat-
terns are offered, and flow paths are retrieved as answers.

As in the case of graph query languages, our approach departs
quite radically from the mentioned ones, as none of these systems
considers query-by-example scenarios, and they require knowledge
of the query languages used to specify a query, which is not suitable
for end users.

Other Content-Based Model Search Approaches

Other works use specific algorithms for model search.
For example, an approach for finding similarity between busi-

ness process models is introduced in [10]. It uses the BPMN-Q
query language expansion, allowing users to make structure related
model queries to retrieve models from a repository. For further ex-
pansion of the BPMN-Q queries, the enhanced Topic-based Vector
Space Model is applied (eTVSM). eTVSM is a vector space model
that exploits semantic document similarities through the WordNet
knowledge. In this way, an ontology is constructed from the repos-
itory and the BPMN-Q query is expanded by constructing other
queries based on the substitution of the seed query activities with
similar ones. Each expanded query is used for retrieving relevant
process models from a repository. This work also requires knowl-
edge of a specific lanugage for performning queries.

The following methods use behavioral porperties of business pro-
cess models for their search. Our work instead, compares retrieval
techniques based on purely textual representations and on graph
representations upon which graph similarity is computed.

Calculation of the degree of similarity of business process models,
constructed with the Event-driven Process Chains (EPCs) language,
considering their linguistic and behavioral aspects is illustrated in
[121]. The essential behavioral constraints imposed by a process
model are captured by the causal footprint, thus avoiding to calcu-
late the model state space. The similarity is computed by using the
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vector space model. The match between functions from different
EPCs are determined by their semantic similarity score as well as
the semantic similiarity score of surronding events.

The work in [114] addresses the problem of querying business pro-
cess models represented as Petri nets, allowing for queries to express
behavioral requirements. The approach proposes using a temporal-
order preserving complete finite prefix (TPCFP) that considers all
temporal relations between tasks and reduces the state space for
the processes. TPCFP is generated for every process model in a
repository and it is used to determine whether the process models
are compatible to a given temporal query. A linear temporal logic
formulae are applied as a behavioral query language whose formal
semantics are defined over TPCFP. Query evaluation over TPCFP
is performed using depth-first search strategy. This work requires
users to be knowledgeable about temporal logic in order to retrieve
business process models.

The work [91] analyzes similarity between process model behav-
iors, defined in terms of causal footprint. This raises the level of
abstraction of the models and thus allows comparison of models
specified in different business process modeling notations. Similar-
ity is calculated with a vector model that considers nodes, look back
links and look ahead links of the causal footprints as features.

With respect to our work, the following techniques leverage on
semantic descriptions of the models. This means that models need
to be enriched with annotations from ontologies for improving the
retrieval performance.

In [86], a framework for querying in the business process modeling
phase, the most important phase of the business process engineering
chain is presented. It allows querying a library of business process
artifacts enabling their reuse, support of the decision making, and
querying of the model guidelines. The querying is based on Business
Process Ontology (BPO), the same ontological model for process
description. The query can be static, with constraints related to
the process’s static view, and graphical, with requirements from
the dynamic view of the process. Flexibility in querying is enabled
by allowing users to specify further constraints or eliminate some
constraints with respect to their needs.

The problem of discovering business processes by using abstract
business processes (ABP), encoded into annotations which seman-
tically describe business processes is described in [13]. Abstract
business processes represent class of equivalent business processes,
sharing the same set of activities and flow structure. Business pro-
cesses are semantically annotated by using business process ontol-
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ogy which is created and populated automatically. The query takes
the form of an abstract business process, designed by selecting con-
cepts from the task ontology and connecting them using a control
flow graph. Ontologies allow more refined way to identify similari-
ties which are semantically close, increasing the recall and allowing
reuse of business process models.

The work [73] proposed the use of semantic business processes
and offer an approximate query engine based on iSPARQL to per-
form the process retrieval task and to find inter-organizational match-
ing between business partners. It simplifies the design and imple-
mentation of Semantic Web applications. It has been shown through
an experimental data set, the MIT Process Handbook, that the com-
bination of different similarity string learning approaches improves
the performance of retrieval. As a result, the broader use of statisti-
cal reasoning might improve the overall performance of the semantic
web.

The following works propose content-based search over UML
models. While [18] requires knowledge of a specific language to
perform search, [49] and [14] require the query to be specified as a
partial or complete UML model.

ReDSeeDS (Requirements-Driven Software Development System)
is a web search engine designed to support reuse of software arti-
facts based on their requirements. In this way, the new artifacts
are compared to the ones stored in the repository. The syntax of
the artifacts is described by an Essential MOF (EMOF) compliant
metamodel which allows storing the abstract syntax of all artifacts
as typed, attributed, directed and ordered graphs (TGraph). The
requirements are specified by the Requirements Specification Lan-
guage (RSL), whose components are requirement statements and
use cases [18]. The requirements statements are specified by natural
language sentences, and the use cases are described by scenarios con-
taining statements in structured English. The similarity of require-
ments is determined by combining information retrieval methods
and similarity measures considering the semantic and word order
similarity, as well as structural similarity. The semantic similar-
ity uses a domain vocabulary and a central terminology containing
WordNet with some additions.

Rebuilder [49] is an environment for retrieving UML class models
based on the WordNet ontology used to group UML model elements
in categories. The approach applies indexing of models by assigning
to each model a context synset, a set of cognitive synonyms each

127



expressing a distinct concept 3. The query is content-based, consist-
ing of partial UML packages classes or interfaces. The query also
specifies the number of models to be retrieved.
The search process starts by finding a synset for the query model.
Then, a spreading activation algorithm is initiated to visit nearby
synset nodes,incorporating all the models retrieved during spread-
ing. The algorithm finishes when the number of models specified in
the query is found, or all nodes have been alredy visited. This way,
all models found during the algorithm execution are ranked with
respect to their similarity to the query, and they are included in the
result. With respect to our approach, this work is limited to UML
model queries only.

The work in [14] proposes structural and behavioural retrieval
technique that takes into account the heterogeneity of the com-
ponents repository (abstraction level, technology, domain). The
approach combines formal and semi-formal specifications used to
describe components and to make the retrieval process more effi-
cient. The components are not indexed directly, but through in-
dexing their UML representation: class diagram, use case diagram,
sequence diagram and communication diagram. Class diagram fo-
cuses on the structural aspects of the component, while the use case
diagram, sequence diagram and communication diagram describe
the behavioural property of the component. This representation is
independent with respect to the components’ abstraction levels. In-
dexing is based on two types of models: UML and relational model.
The query is expressed in UML format, which represents a semi-
formal language, so the user does not need to be familiar with formal
methods.

EMF Compare [120] is an approach for comparing models based
on complete comparison of their elements. The proposed frame-
work shows the semantic differences in models represented as trees,
by comparing the elements’ attributes, and computing their edit
distance. Each attribute has a weight depending on the volume
of information it contains. Models are compared recursively, and
when elements are compared, the algorithm proceeds to their chil-
dren. The tool provides visualization of model differences, their
origin and types. EMF Compare can be applied for any modeling
language, provided it is supplied with its metamodel, but it can com-
pare only two models at the same time, and it is not being adapted
for querying entire repositories.

3http://www.http://wordnet.princeton.edu
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6.2 Graph Search Techniques

Graphs allow universal representation of data from various applica-
tion domains, such as social networks, computational biology, soft-
ware models, computer vision, software bug localization, to name
just a few. They are capable of storing heterogenous data and
modeling complex structures and ineractions within them. Based
on these different applications, graphs can vary in size (from sev-
eral to several million nodes) and structure, which explains the fact
why different applications have different requirements for managing
graph data. The emergence of massive and complex structural data
modeled as graphs, raises the need for existence of efficient tools
for their search using graph indexes [33, 77, 100] to enable quickly
pruning of graphs that violate the query requirement [3]. Besides
indexing, another challenge in managing graph data is processing
queries, typically expressed as graphs, especially because increased
data complexity leads to increased complexity in query structure.
Some works formalize the concept of graph querying by proposing
graph query languages [57, 99], but there also exist approaches that
simplify the querying process by using simple keywords [133, 70]. A
classical formulation of the problem of searching graphs is through
finding an exact or approximate correspondence between a query
graph and a data graph, known as graph matching. The problem of
graph matching is related to the problem of (sub)graph isomorphism
which finds a mapping that preserves structure and labels between
a query graph and a subgraph of the data graph, or more gener-
ally, it finds a maximal common subgraph with maximum number
of common nodes belonging to the graphs. Since in real datasets
there is a presence of noise and incompletness, a more practical so-
lution would be to use approximate matching [119], and determine
mapping similarity. Nevertheless, most graph matching variants are
NP-complete, and many approaches use pruning techniques in or-
der to decrease the number of necessary NP-complete operations.
In the following, we represent current state-of-the-art methods for
searching graph data.

The work in [23] extends the subraph isomorphism concept, to
match graph queries approximately over databases of graphs. The
queries may contain don’t care symbols (which match any attribute
value in a corresponding position) and variables. Variables may indi-
cate which attribute values are desired to be returned as a query an-
swer, or they can express constraints on the attribute values. Node
matching condition is based on node type correspondence, satisfying
all the constraints imposed by the query, while each query edge is
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included in the final result. The algorithm terminates when the first
match is found. Although this work considers approximate match-
ing of graphs, it does not provide efficient search solutions.

TALE (Tool for Approximate Subgraph Matching of Large Queries
Efficiently) is a general tool for approximate subgraph matching of
large graph queries studied in [119]. It queries graph databases
and uses novel indexing method considering the neighbours of each
database node, thus, capturing the local structure around each node.
A database node matches a query node, only if the two nodes match
and their neighborhoods also match. The algorithm consists of de-
termining important nodes in the query and probing them against
the index,thus finding the best matching node pair. The degree cen-
trality measure establishes the node importance, such that, nodes
with high degrees are more important than low degree nodes. The
match is expanded through the neighboring nodes of the matched
nodes until no more nodes can be added to the match. With re-
spect to the graph-based part of our work, this approach performs
subgraph matching for large graph queries.

Closure-tree [59] is an index structure for efficient graph quer-
ing using subgraph and similarity queries. Subgraph queries find all
the graphs that contain subgraph through pseudo subgraph isomor-
phism, while similarity queries use graph edit similarity, measured
through graph edit distance using heuristic methods for graph map-
ping: state search, bipartite method or neighbor biased matching.
Graphs are organized hierarchically in the index, such that each
node summarizes its descendants by a structure called Graph Clo-
sure in order to enable effective pruning. Children of the leaf nodes
are database graphs. Graph Closure has characteristics of a graph,
except that instead of singleton labels on vertices and edges, mul-
tiple labels are allowed for each node descendant. However, this
approach is not suitable for graphs whose nodes originally contain
multiple labels, since this might complicate the index structure.

MuGram [77] is a multi-labeled graph matching approach that
handles graphs with multiple labels for both vertices and edges.
It uses an indexing technique which besides the labels’ informa-
tion contains neighborhood information for each vertex which al-
lows pruning incompatible candidates at early stages of matching.
The matching process is based on neighborhood connectivity check
that ensures that the graph invariant property for each query ver-
tex is captured by the matching reference vertex. An index on the
query graph is maintained to avoid repeatable processing of the
query graph for each query vertex. The approach has been tested
on different types of graphs representing protein networks, scientists’
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network and an email network.
DELTA [126] studies the problem of subgraph indexing and match-

ing in multi-labeled graphs by storing the label set of each vertex
into high-dimensional box stored in an R-tree, such that each dimen-
sion in the R-tree corresponds to a label category. R-tree calls for
efficient vertex matching procedure, transforming the graph query
into a spatial range query. For each vertex, the work uses two in-
dexes: an index on the vertex labels, and a neighborhood index.
The matching is performed such that for each query vertex, both
indexes are used to find matching candidates. The approach con-
siders two types of queries: existence query that checks whether
the query is subgraph isomorphic to the database graph, and loca-
tion queries, which find all query matches in the database graph.
The matching is expanded through Breadth First Search for loca-
tion queries that find all query graph matches in a database graph,
and through Depth First Search for existence queries that evaluate
subgraph isomorphism between a query and a database graph. The
multidimensional scaling graph-based model search algorithm is in-
spired by the works on multi-labeled graphs, but with respect to
our method, they are tested on graph databases and they do not
consider similarity, but only exact matching.

The following approaches are based on indexing graph features
which are not suitable for our graphs representing WebML mod-
els. Namely, due to the hierarchical nature of WebML models,
some metamodel concepts will be completely disregarded in forming
matches, thus loosing the model structure.

FG-Index [33] is a nested-inverted indexing technique based on
a set of frequent subgraphs from a graph database. If a query is
a frequent graph in the database, the results returned by the in-
dex represent the exact answer set. For an infrequent query, the
FG-index returns an exact set of candidate answers, close to the
exact answer set. The obtained answer set is a subject to subraph
isomorphism, but since the query is infrequent, the number of tests
is small. For compressing the set of frequent graphs, a notion of
δ-Tolerance Close Frequent Subgraphs is introduced for tuning the
index size in a parametrized way.

SAGA [118] is an approximate subgraph matching tool for biolog-
ical graphs that computes graph similarity by allowing node gaps,
node mismatches and graph structural differences. SAGA uses in-
dex based on small fragments of graphs in the database. The query
graph is broken into small fragments that search the index to find
most similar fragments in the database. The found matched frag-
ments represent candidate matches that are assembled together to

131



build a larger match. Each candidate match is examined to form a
set of real matches calculating the real subgraph matching distance.
In[81], a subgraph query processing is presented that generalizes ex-
act edge matches to path matches constrained by a path length. The
order of the matching vertices is optimized by choosing the next ver-
tex to be matched to minimize the search space. The work proposes
three different type of indexing: distance index, that considers the
distance among all pair of vertices on the graph; Frequent Pattern
Index based on the Frequent Generalized Subgraph (FGG), a fre-
quent subgraph pattern whose frequency is greater than a threshold;
Star index based on a star structure in the graph where one vertex
is chosen as central and all its incident edges to the other vertices
are considered.

The paper [132] studies the graph similarity join problem that
returns pairs of graphs such that their distances are not larger than a
threshold. The indexing is based on q-grams extracted as paths from
graphs with length q, inspired by the n-gram string distance, used to
generate a set of candidates with respect to a query. Mismatched q-
grams are analysed and used to build filtering techniques to improve
the graph similarity join. A verification algorithm is performed that
employs multiple filters to quickly prune unpromising candidates
and graph-edit distance computation based on the A-star algorithm.

Lindex [129] is a lattice-structure index for efficient and fast an-
swering of subgraph queries, reducing the subgraph-isomorphism
comparisons. Each node in a lattice represents a graph, where any
pair of graphs has at least upper bound and a greatest lower bound.
Nodes in the index represent key-value pairs, where the key repre-
sents a subgraph in the database, and the value is a list of database
graphs containing the key. An edge between two index nodes in-
dicates that the key in the parent node is a subgraph of the key
in the child node. The query answering algorithm identifies a set
of maximal subgraphs in the index and obtains a candidate set of
answers by intersecting direct value sets of these subgraphs. The
candidate set is pruned by identifying supergraphs of the query and
eliminating graphs in the database that contain these supergraphs
(from the candidate set).

The work in [111] proposes a connected substructure similarity
search that retrieves graphs that approximately contain the query
graph. The approach applies graph indexing technique, callled GrafD-
Index, based on graphs’ distances to the features, which prunes un-
promising graphs and includes graphs that have a similarity greater
than a threshold. The problem of connected substrucure similarity
search is defined through finding the maximum connected common
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subgraph(MCCS) between the query and the database graphs, and
the measure of similarity depends on the distance between the query
and the MCCS.

An approach for approximate search of medical images by con-
tent that represents images as attributed relational graphs is given
in [100]. It also considers the fact that images besides known ob-
jects also contain unknown(unlabeled) objects which are used to
build an index. The index is obtaned by splitting the graphs into
smaller subgraphs that contain a fixed number of unlabeled objects.
All subgraphs (subimages) are mapped into points in multidimen-
sional feature space, stored in an R-tree, thus transforming the im-
age search into spatial search. The query is an image that is matched
against the R-tree to retrieve all the images that contain subimages
that contain the query within a fixed tolerance. This method is
restricted to images.

The approach [124] introduces an indexing technique for graph
databases in order to facilitate the subgraph isomorphism and pro-
cessing similarity queries. The index contains two data structures:
Directed Acyclic Graph (DAG) where each node represents a unique
induced subgraph from the database graphs, and a hash table that
enables a lookup function to quickly locate a node in the DAG iso-
morphic to a query graph. The approach considers different query
types: Subgraph isomorphism query which finds a node in the DAG
isomorphic to the query and report all its descendants; Similarity
query which finds all graphs for which the subgraph mismatch score
is less or equal to the query’s range; Near-neighbor query that finds
all graphs that share a subgraph common to the query whose size
is at least the difference between the size and query range; Query
for greater ranges that uses branch-and-bound technique to find a
mapping which meets the range requirement; Query for far neigh-
bors that finds all graphs which share no labels common to the query
graph. However, this method works on small database graphs whose
size is around 20 nodes.

The following works focus on efficient answering of graph queries.
The work in [136] addresses the problem of answering pattern

match queries over a large data graph reducing the search space sig-
nificantly. Main feature of a pattern match query is that it specifies
the vertex labels and the connection constraints between the ver-
tices. A set of candidate matches in the data graph is found using a
graph embedding technique by transforming vertices into points in a
multidimensional space, thus converting the problem into a distance-
based multi-way join over the vector space. At the end, each can-
didate match is checked for approximate subgraph match. The al-
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gorithm that handles the distance-based join, called D-join, uses
block-nested loop join and hash join to handle the high-dimensional
space. This work considers reachability queries, that check whether
a node is available from another node in a large graph, which is a
different user need with respect to ours.

The work [1] introduces the notion of similarity skyline of a graph
query defined by the subset of graphs of a graph database most
similar to the query in a Pareto sense. The similarity between graphs
is modeled by a vector of scalars in order to achieve a d-dimensional
comparison between graphs in terms of d-distance measures and
retrieve only results that have maximal similarity.In other words,
the skyline contains all graphs in the graph database which are not
dominated by any other graph with respect to a query. A graph
dominates another graph if it is not less similar to a query in all
the dimensions, and strictly more similar to the query than the
other graph in at least one dimension. The approach suggests usage
of several indexes, each of which should be dedicated to measure a
local distance between two graphs related to one aspect in the graph
structure. However, it does not give any concrete details concerning
indexing, concentrating only on the querying part.

Corese search engine [38] uses ontology-based approach for web
querying, using semantic metadata. The query language is based on
RDFs and the queries can also be approximate. Queries are trans-
formed into RDF graphs related to the same RDF schema as one
of the annotations to which it is going to be matched. The Corese
approximation evaluates the semantic distance of classes or proper-
ties in the ontology hierarchies. In this way, not only web resources
whose anotations are specializations of the query are retrieved, but
also those whose annotations have a structure upon which the query
can be projected and whose concepts and relations are close to those
of the query in the ontology hierarchy. Approximate answers can
also be retrieved by using specific RDF properties, and by querying
for variable length relation paths between concepts. This work is
limited to RDF graphs only.

The following top-k approaches propose efficient search of top-k
graphs considering a query graph.

The work [134] explores the problem of finding the most simi-
lar top-k graphs with respect to a query graph using a new maxi-
mum common subgraph measure, capturing the common and differ-
ent structure of the graphs. The approach uses two distance lower
bounds, based on edge frequency, with different computational costs
to reduce the number of MCS computations. An index based on the
triangle property of graph similarities is used in order to obtain
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tighter lower bound. Three types of indexes are considered with dif-
ferent trade-offs between construction cost and pruning, ordered by
their increasing pruning power: (Disjoint Partition Index) DPIndex
partitions the graphs into non-overlapping clusters choosing random
graphs as cluster centers, and assigning the non-center graphs to its
nearest center; Overlapping Partition Index that allows each graph
to belong to multiple clusters, and General Similarity Index which
treats each graph as a center. In this work, the search is based on
edge frequency only, without considering the nodes. Neighborhood
Based Similarity Search (Ness) proposed in [72], is a method that
uses an information propagation model to convert a large network
into a set of multidimensional vectors that finds the top-k set of
approximate matches with respect to a query based on the vertex
labels and vertex neighborhood information. The similarity mea-
sure discounts how the graph vertices are exactly connected, but
focuses on the proximity of the vertex labels in the graph, an in-
formation encoded in a neighborhood vector. The search algorithm
is a scalable and iterative approach that finds the top-k query em-
beddings in a graph based on subgraph similarity search, such that
it first matches individual nodes of the query graph with the indi-
vidual nodes of the big graph and while propagating only the labels
of the matched nodes, it recomputes their neighborhood vectors.
The approach uses two types of indexing: hash table corresponding
to each label, and an index built on the neighborhood vector for
each vertex used in the case when the labels are not very selective.
The difference of this approach with respect to our multidimensional
scaling graph work, is that it is not designed for graphs with labeled
edges and the search is performed to find the top-k embeddings in
one large network graph. Top-k embeddings might also be a new
direction in our future work.

The following approaches propose specific algoirthms for graph
search.
TurboISO [58] is a subgraph search method which uses candi-

date region exploration and combine and permute strategy (Com-
b/Perm). The candidate region exploration finds candidate sub-
graphs that contain embeddings of the query graph and computes a
robust matching order for each candidate region that has been ex-
plored. The Comb/Perm strategy is based on the concept of neigh-
borhood equivalence class (NEC), where each query vertex belong-
ing to the same NEC has identically matching data vertices by label
and a set of adjacent query vertices. Thus the query graph is rewrit-
ten into a NEC tree by performing breadth-first search (BFS) from
a given start query vertex. The Comb/Perm strategy avoids finding
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all possible enumerations during subgraph isomorphism, considering
only the combination for each NEC, thus making the approach effi-
cient. If a chosen combination does not contribute to the solution,
all its possible permutations are also pruned. This method consid-
ers only exact matches in labels, while in our work based on the
user need expressed as a content-based query, we consider similar
matches.

The approach [89] uses similarity flooding as a graph matching
algorithm to perform schema matching. The algorithm compares
two graphs as input, and produces a mapping between the corre-
sponding graph nodes. The main criteria used in this algorithm
is that two nodes or edges from two graphs that are compared, are
similar if their adjacent elements are similar. A matrix for similarity
propagation is used to construct mapping between node pairs whose
similarity is above a given threshold value. The algorithm output
is checked and corrected by a human, and its accuracy is measured
by the number of adjustments. This algorithm operates and is re-
stricted to directed labeled graphs, and does not produce optimal
results on graphs with unlabeled edges. Furthermore, it requires
human participation in the verification of the obtained results.

The keyword graph approaches, use keywords as queries, and
they are not appropriate for expressing the query-by-example need
necessary in our work.

The work in [70] proposes a bidirectional search algorithm for
schema-agnostic text search on weighted directed graphs, which ef-
ficiently extracts from a data graph, a small number of the best
answer trees. An answer tree for a keyword query that contains a
set of terms, is a minimal rooted directed tree, embedded in the
data graph, containing at least one node from each set of nodes
that matches a query term. The bidirectional algorithm can simul-
taneously exploit forward paths from nodes that represent potential
roots of answer trees towards other keyword nodes, and backward
paths from the keyword nodes to the roots of the answer trees. In
order to achieve that, the approach uses prioritization scheme based
on spreading activation, i.e., favoring expansion of those paths that
have less branching.

The work [133] explores the diversity of user information need
when searching graphs differentiating between exploratory search,
where the user is unfamiliar with the graph structures, and known-
item search, where the user has as a target a set of trees, or par-
ticular pattern. The problem of known-item search is addressed by
expressing the query as a set of keywords. The answers to the query
represent minimum connected trees, that represent subtrees of an
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unlabeled directed weighted graph containing at least one matched
vertex for every query keyword. Matched Vertex Pruning (MVP)
index is used to capture the query-independent local neighborhood
information in the graph by pruning matched vertices that do not
participate in the answer trees with heights less than a threshold.
The approach is independent on the graph search algorithm and
minimizes the index access times.

6.2.1 Graph Query Languages

G-Log is a graph based language for database query evaluation,
which combines the expressive power of logic, the modeling power of
objects, and the representation power of graphs [99]. It is a declara-
tive language, which does not suffer from the copy-elimination prob-
lem properties like some database languages and it is computation-
ally complete. The database schemas, instances and rules are rep-
resented by directed labeled graphs. G-Log queries over a database
are expressed by programs, consisting of a number of rules. The
program can be written as a single set of rules, in a fully declarative
manner, or arranging the rules in sequences, using the procedural
style. All sentences in first-order-logic can be written in G-Log. The
rule is represented as a graph and made of colored patterns. Rules
in G-Log always have two schemas associated to them, the source
scheme, which is the scheme of the instances that can be given as
input to the rule, and the target scheme, which is the scheme of the
output instances of the rule.

XML-GL is a graphical query language for querying XML data
[35]. XML documents have an intuitive hierarchical structure, and
if references between elements are considered, the labeled directed
graph with suitable graphic conventions, becomes their most nat-
ural representation. XML-GL allows visually expressing different
types of queries like, selection,aggregation, grouping, arithmetic cal-
culations, union,difference, cartesian product. An XML-GL query
consists of two sets of labeled graphs:

• A query left-hand side (LHS) which expresses the information
of interest to be retrieved;

• A query right-hand side (RHS) which expresses the desired
structure and content of the output XML document, and it
is connected to the LHS;

The results of an XML-GL query are XML documents and they
are presented by using the nested relational data model, represent-
ing the containment of elements and properties,as well as element
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linking. Additional expressive power is obtained by allowing com-
plex queries made of multiple graphs. In this case, the complex
query is decomposed into its components, and every component is
evaluated separately.

GraphDB [56] is an object-oriented based query language orginally
designed for spatially embedded networks. It provides explicit path
objects and it allows to define graph operations whose argument
graphs (subgraphs of the database graph) can be specified by reg-
ular expressions over link class names. Four fundamental tools are
defined necessary to formulate a query: derive statement which ex-
tends the standard “select...from...where” for graphs, rewrite for
manipulations of extended sequences, unionfor transfroming het-
erogenous collections of objects into homogenous collection,and a
collection of graph operations such as shortest path search.

Another object-oriented query language is Graph-Oriented Ob-
ject Database Model (GOOD) [57], which uses graph transforma-
tions for querying, such as node insertion/deletion and edge inser-
tion/deletion as a function of pattern matches. It also supports
object identity and it allows abstraction over objects that share the
same set of properties. The language provides method mechanism
for executing operation sequences.

These visual query languages establish the rules to build a query,
which requires from the users to be knowledgeable about a specific
language. Moreover, in the query-by-example scenario of our work,
using an existing graph query language would not be an appropriate
solution to define a query in form of a model or partial model.

6.3 Overview of Related Work

Our approach to keyword-based search is inspired by information
retrieval techniques and it is related to works like [84]. With re-
spect to this work, we focus on the comparison with content-based
search and thus adopt a rather straightforward approach to indexing
and search, which uses only the knowledge present in the text con-
tent and in the metamodel. The extension to a semantically richer
treatment of the domain knowledge, e.g., for term expansion and
domain-driven clustering of projects, can be easily envisioned for our
approach. As for the A-star algorithm(s) for graph-based search, our
approach mostly draws inspiration from graph-based works in the
context of business process models, most notably, [105, 39]. With
respect to BPM-oriented content-based search, DSL-oriented search
shares the mix of label and structural knowledge exploited in in-
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dexing and searching, but must cope with a richer language syntax
and semantics, which we have considered in the design of parameter
configurations. The multidimensional scaling algorithm for graph
search is motivated by the works that propose efficient search of
multi-labeled graphs, such as [77, 126]. Although these approaches
are designed for graphs where at least the vertices contain multiple
labels, and they include a mechanism for neighborhood check, they
only work for exact labels, and do not consider the concept of graph
similarity. Moreover, these approaches are not created to search for
models.
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Chapter 7

Conclusions and Future
Work

In this thesis we have addressed the problem of designing search
systems for repositories of models. We have contrasted two ma-
jor approaches for the implementation of search: keyword-based
and content-based. Keyword-based search employed classical infor-
mation retrieval techniques expanded with injection of metamodel
knowledge. For content-based search we focused on graph search ap-
proaches, and we propose and implement two of them: A-star graph-
based search and multidimensional scaling graph-based search. Ex-
tensive experimentation has been conducted with a sample of 10
queries against a real-world repository of WebML models, for which
a gold standard set has been constructed that embodies what ex-
perts consider good responses to both keyword-based and content-
based queries. Keyword-based search has also been configured and
evaluated on a repository of UML models for a sample set of 20
queries, for which the ground truth has been built considering the
same criteria used in the WebML groundtruth construction.

Experiments have shown that even traditional text indexing tech-
niques can deliver good performance for keyword-based queries, es-
pecially evident in the UML repository, while adding metamodel
knowledge to the index can improve accuracy. For A-star graph-
based search, the conclusion is that matching the textual content of
projects is still important, but the system benefits from an appro-
priate injection of metamodel knowledge regarding both the types
of the elements and the structure and topology of models. Further-
more, A-star graph-based search results exhibited greater variability
and dependency on the queries than keyword-based results. Consid-
ering the multidimensional scaling graph-based seach, incorporating
additional metamodel information improves performance and gen-
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erates alternative matching patterns. The multidimensional scal-
ing graph search has increased efficiency with respect to the A-star
graph-based search, due to the use of similarity-based indexing, at
the price of performance loss.

These results have been gathered in the context of a mid-scale
experiment and cannot be generalized in an absolute way. They
provide insight about (i) what expert modelers consider suitable
queries and responses and (ii) the way in which two different classes
of information retrieval systems can be configured to respond to
the expectations of these searchers. Nonetheless, we believe that
the results presented in this thesis provide a number of interesting
observations about the usage of keyword-based and content-based
techniques for model search and therefore respond to the research
questions we initially defined in Section 1.2.

Future work will develop along several complementary lines:

• On the search systems side, both keyword-based and content-
based approaches will be further explored. The keyword-based
approach will be expanded with a better exploitation of se-
mantics and domain knowledge, both at query time (e.g., by
means of keyword expansion), and at indexing time (e.g., by
means of text feature extraction and project topical clustering).
The content-based approach also lends itself to several inves-
tigation directions: exploring new graph similarity functions
and new graph matching algorithms, providing more eficient
and scalable search, that will be compared to the presented
approaches. More specifically, we plan to explore other scor-
ing functions to improve multidimensional scaling graph-based
search performance. Automatic fine-tuning of the parameters
of the Chalmer’s algorithm, used in the indexing phase of mul-
tidimensional scaling graph-based search, will be performed by
exploring optimization methods.

• On the usage of metamodel information, several additional op-
tions for embodying such knowledge in the search system can
be evaluated. Besides using metamodel knowledge to segment
projects and to influence the matching and ranking of the IR
system, it is also possible to use it for mining relevant infor-
mation from the project repository, such as term distribution,
and for automating concept weighting based on the analysis of
concept centrality in the collection of model element graphs.

• On the Web engineering side, it would be interesting to pro-
ceed with the analysis of other DSLs, and to compare search
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techniques for other general purpose and domain specific lan-
guages. We also plan to investigate how the introduction of
explicit reuse-oriented constructs, e.g., WebML reusable mod-
ules, alters the structure of projects and the modeling style of
developers, and thus impacts content-based search.

• On the evaluation side, a general-purpose task crowdsourcing
system could be employed to design user studies and deploy
them on top of open social networks and/or closed groups [20].
Several types of search result evaluation questions could be
formulated as crowd tasks, to gather a large scale collection
of queries and expert-validated result relevance scores, exploit-
ing both open groups (e.g., LinkedIn MDE groups) and closed
communities (e.g., the WebRatio developers network).
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