
i
i

“thesis” — 2014/2/4 — 8:27 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DEIB

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

C-BASED HIGH LEVEL SYNTHESIS OF

PARALLEL APPLICATIONS TARGETING

ADAPTIVE HARDWARE COMPONENTS

Doctoral Dissertation of:
Vito Giovanni Castellana

Supervisor:
Prof. Fabrizio Ferrandi
Tutor:
Prof. Donatella Sciuto
The Chair of the Doctoral Program:
Prof. Carlo Ettore Fiorini

2013 - XXVI

i
i

“thesis” — 2014/2/4 — 8:27 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page I — #3 i
i

i
i

i
i

To my family

I

i
i

“thesis” — 2014/2/4 — 8:27 — page II — #4 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page III — #5 i
i

i
i

i
i

Acknowledgments

Hey I know it’s late, but we can make it if we run. The boss wrote these
words, which more or less summarize my last few years. This is what I
did: I ran. And this is what a PhD student is supposed to do, no matter how
late it is, no matter how far the objective, you have to move forward trying
to reach it. But sometimes, even for just a few seconds, it’s good to take a
look behind. If I do that, I realize how far these three years took me. The
journey has been amazing though. So I just want to say thank you to all the
traveling companion who made this journey so special, and who supported
me while trying to reach my goals.

Il mio primo ringraziamento va ad Antonino. A tuo modo hai saputo
amplificare la mia voglia di fare, di non arrendermi, e di raggiungere gli
obiettivi, anche quelli più improbabili. E sei stato oltre che un buon men-
tore, un grande amico.
Grazie a tutti gli amici e parenti, per essere sempre riusciti a farmi avvertire
la vostra prensenza e il vostro affetto.
Grazie a tutti coloro che mi hanno aiutato a sentirmi un pò a casa, anche
quando a migliaia di chilometri di distanza.
Grazie a Fabrizio. Grazie per avermi insegnato a domare le idee, e solo
dopo a seguirle. Grazie per aver reso più acuto e critico il mio giudizio, e
più profonda e ampia la mia preparazione. Per avermi bacchettato quando
ho sbagliato, e per avermi dato fiducia. Grazie per avermi trasmesso la tua
passione per quel che facciamo.
Grazie a Marco, molto più che un semplice amico. Hai condiviso con me
sogni e passioni, gioie e delusioni, mi hai offerto il tuo supporto quando ne

III

i
i

“thesis” — 2014/2/4 — 8:27 — page IV — #6 i
i

i
i

i
i

ho avuto bisogno, sei stato la chitarra che ha supportato la mia voce. E non
mi riferisco alle (tante) volte in cui ci siamo improvvisati musicisti..
Grazie a Michele, il miglior fratello che si possa desiderare. Grazie per la
tua discreta attenzione, per il tuo affetto, per aver saputo spesso essere an-
che amico e complice.
E infine, il GRAZIE più grande va ai miei genitori. Come non dirò mai
abbastanza, ogni mio successo è prima di tutto il vostro. Senza il vostro
amore, il vostro supporto e la vostra stima, ogni piccolo traguardo che ho
raggiunto sarebbe ancora lontano.
Thank you.

IV

i
i

“thesis” — 2014/2/4 — 8:27 — page V — #7 i
i

i
i

i
i

Abstract

THE EVER INCREASING COMPLEXITY of embedded systems is driv-
ing design methodologies towards the use of abstractions higher
than the Register Transfer Level (RTL). In this scenario, High Level

Synthesis (HLS) plays a significant role by enabling the automatic genera-
tion of custom hardware accelerators starting from high level descriptions
(e.g., C code). Typical HLS tools exploit parallelism mostly at the Instruc-
tion Level (ILP). They statically schedule the input specifications, and build
centralized Finite Stat Machine (FSM) controllers. However, the majority
of applications have limited ILP and, usually, centralized approaches do not
efficiently exploit coarser granularities, because FSMs are inherently serial.
Novel HLS approaches are now looking at exploiting coarser parallelism,
such as Task Level Parallelism (TLP). Early works in this direction adopted
particular specification languages such as Petri nets or process networks,
reducing their applicability and effectiveness in HLS. This work presents
novel HLS methodologies for the efficient synthesis of C-based parallel
specifications. In order to overcome the limitations of the FSM model,
a parallel controller design is proposed, which allows multiple flows to
run concurrently, and offers natural support for variable latency operations,
such as memory accesses. The adaptive controller is composed of a set of
interacting modules that independently manage the execution of an opera-
tion or a task. These modules check dependencies and resource constraints
at runtime, allowing as soon as possible execution without the need of a
static scheduling. The absence of a statically determined execution order
has required the definition of novel synthesis algorithms, since most of the

V

i
i

“thesis” — 2014/2/4 — 8:27 — page VI — #8 i
i

i
i

i
i

common HLS techniques require the definition of an operation schedule.
The proposed algorithms have allowed the design and actual implemen-
tation of a complete HLS framework. The flow features automatic paral-
lelism identification and exploitation, at different granularities. An analysis
step, interfacing with a software compiler, processes the input specifica-
tion and identifies concurrent operations or tasks. Their parallel execution
is then enabled by the parallel controller architecture. Experimental re-
sults confirm the potentiality of the approach, reporting encouraging per-
formance improvements against typical techniques, on a set of common
HLS benchmarks. Nevertheless, the interaction with software compilers,
while profitable for the optimization of the input code, may represent a lim-
itation in parallelism exploitation: compilation techniques are often over-
conservative, and in the presence of memory operations accessing shared
resources, force serialization. To overcome this issue, this work consid-
ers the adoption of parallel programming paradigms, based on the insertion
of pragma annotations in the source code. Annotations, such as OpenMP
pragmas, directly expose TLP, and enable a more accurate dependences
analysis. However, also in these settings, the concurrent access to shared
memories among tasks, common in parallel applications, still represents a
bottleneck for performance improvement. In addition, it requires concur-
rency and synchronization management to ensure correct execution. This
work deals with such challenges through the definition of efficient memory
controllers, which support distributed and multi-ported memories and allow
concurrent access to the memory resources while managing concurrency
and synchronization. Concurrency is managed avoiding, at runtime, multi-
ple operations to target the same memory location. Synchronization is man-
aged providing support for atomic memory operations, commonly adopted
in parallel programming. These techniques have been evaluated on several
parallel applications, instrumented through OpenMP pragmas, demonstrat-
ing their effectiveness: experimental results show valuable speed-ups, often
close to linearity with respect to the degree of available parallelism.

VI

i
i

“thesis” — 2014/2/4 — 8:27 — page VII — #9 i
i

i
i

i
i

Contents

1 Introduction 7
1.1 Main Contributions . 9
1.2 Dissemination of Results 10
1.3 Thesis Organization . 11

2 Background 13
2.1 Introduction to High-Level Synthesis 14
2.2 The Finite State Machine with Data-Path Model 15

2.2.1 Data-Path . 15
2.2.2 Finite State Machine 17

2.3 Typical High Level Synthesis Flows 19
2.3.1 Front End . 20
2.3.2 Synthesis . 21
2.3.3 Back-end . 26

2.4 Bambu: A Free Framework for the High-Level Synthesis of
Complex Applications . 26
2.4.1 Front-end . 28
2.4.2 Synthesis . 28
2.4.3 Back-end . 31

2.5 Conclutions . 31

3 Related Work 33
3.1 HLS Design Methodologies Characterization 34
3.2 Early Efforts . 35

VII

i
i

“thesis” — 2014/2/4 — 8:27 — page VIII — #10 i
i

i
i

i
i

Contents

3.3 First HLS Generation . 36
3.3.1 Architectural Models 38

3.4 Second HLS Generation 39
3.4.1 Architectural Models 40

3.5 Third HLS Generation . 48
3.5.1 HLS and EDA Industry 51
3.5.2 Architectural Models 54

3.6 Conclusions . 56

4 The Parallel Controller Architecture 59
4.1 Motivation . 60
4.2 Related Work . 63
4.3 The Parallel Controller Architecture 65
4.4 Adaptive Behavior . 71
4.5 Conclusions . 72

5 High Level Synthesis of Adaptive Hardware Components 73
5.1 Proposed High Level Synthesis Flow 74
5.2 Compilation and IR Generation 76

5.2.1 Extended Program Dependence Graph 77
5.2.2 Activating Conditions Computation 78

5.3 Module Binding . 79
5.4 Liveness Analysis and Register Binding 79

5.4.1 Preliminary Notions and Definitions 81
5.4.2 Schedule-Independent Liveness Analysis 82
5.4.3 Conflict Graph Creation 85
5.4.4 Algorithm Evaluation 86

5.5 Controller Generation . 89
5.6 Support for Complex Behaviors 90
5.7 Implementation Details: Integration in the Bambu Framework 91
5.8 Experimental Evaluation 92
5.9 Conclusions . 94

6 The Memory Interface Controller 97
6.1 Motivation . 99
6.2 Related Work . 102
6.3 Accelerating Memory Intensive and Irregular Applications . 103
6.4 Accelerator Design Template 106

6.4.1 Exploitation of the Parallel Controller Architecture . . 107
6.5 Memory Interface Controller Design 108
6.6 Experimental Evaluation 111

VIII

i
i

“thesis” — 2014/2/4 — 8:27 — page IX — #11 i
i

i
i

i
i

Contents

6.7 Conclusions . 114

7 Support for Annotated Parallel Specifications 115
7.1 Motivation . 117
7.2 Related Work . 118
7.3 Refined High Level Synthesis Flow 119

7.3.1 Front-end . 123
7.3.2 Flow Selection . 124
7.3.3 Synthesis . 124
7.3.4 FSM-based synthesis flow 125
7.3.5 Parallel Controller synthesis flow 126

7.4 The Distributed Memory Interface 126
7.5 Experimental Evaluation 130

7.5.1 Performance Evaluation 132
7.5.2 Area Evaluation . 134

7.6 Conclusions . 137

8 Conclusions 139
8.1 Novel Contributions . 140

8.1.1 The Parallel Controller Design 140
8.1.2 High Level Synthesis of Adaptive Hardware Compo-

nents . 140
8.1.3 Memory Interface Controller 141
8.1.4 Support for Annotated Parallel Specifications 141

8.2 Further Development . 142
8.3 Future Research Directions 143

Bibliography 143

IX

i
i

“thesis” — 2014/2/4 — 8:27 — page X — #12 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page 1 — #13 i
i

i
i

i
i

List of Figures

2.1 Typical Architecture composed of a Finite State Machine
(FSM) and a Data-path. 16

2.2 Typical HLS flow. 20
2.3 Pseudo-code, DFG and scheduled DFG of a program that

computes the average of 4 numbers. 23
2.4 Panda framework schematic overview. 26
2.5 PandA analysis flow. 27
2.6 Bambu Synthesis Flow. 29

3.1 Main Features Characterizing Design Methodologies in HLS. 35
3.2 Standard Structure of a Centralized FSM. 38
3.3 Parallel Decomposition of a Finite State Machine. 41
3.4 Cascade Decomposition of a Finite State Machine. 42
3.5 Generalized Decomposition of a Finite State Machine. . . . 42
3.6 Tipical HLS tools output including RTL and RTL test benches. 50
3.7 EDA revenue history, 1996 - present. 52
3.8 Maximum frame rate achieved for a video application on a

DSP processor and an FPGA plus HLS tools. 53
3.9 FPGA resource utilization on a wireless receiver, implemented

using HLS tools versus hand-written RTL code. 53
3.10 Example of Petri Net Specification of a Controller. 55

4.1 Example C specification. 61
4.2 Product STG for function loops, at basic block level. 62

1

i
i

“thesis” — 2014/2/4 — 8:27 — page 2 — #14 i
i

i
i

i
i

List of Figures

4.3 Product STG for function call_loops; calls are represented
by produced values. 63

4.4 N-inputs join module behavior: statei is high if the i-th to-
ken signal ini has already been collected. 66

4.5 2-inputs join module RTL schematic representation. 66
4.6 N-inputs Resource Manager behavior: requests are ordered

according to their priority. 67
4.7 3-inputs Resource Manager RTL schematic representation. . 67
4.8 Distributed Controller Modules: single-cycle(a), multi-cycle(b)

and unbounded operations(c) Execution Managers (EM). . . 68
4.9 Dependence graph for function call_loops, annotated with

Activating Conditions. 69
4.10 Distributed controller architecture for function call_loops. . 69
4.11 Runtime behavior of adaptive controller: execution trace of

function loops with k1 = k2 = 2, under resource constraint
(one instance available for each kind of functional unit). . . 69

4.12 Example specification (a) and corresponding parallel con-
troller implementation. Operations 3, 4 and 5 share FU C,
operations 6 and 7 share FU D. 70

4.13 Runtime schedules when considering dynamic variations on
FU latencies. Assumed priority for RMs: op3<op4<op5;
op6<op7. 71

5.1 Proposed High Level Synthesis flow. 75
5.2 Example C specification, after the compilation step. 76
5.3 Extended program Dependence Graph for function call loops,

annotated with Activating Conditions. Blue edges denote
data dependences, red edges control dependences, green edges
backward control flow dependes, purple edges forward con-
trol flow dependencies. 77

5.4 Scheduled CDFG (a), runtime schedule in the case of mis-
prediction for SFU 2 (b) and runtime schedule in the case
of misprediction for SFU 2, without the resource constraint
between nodes 2 and 4. 80

5.5 Example Dependencies Graph. 83
5.6 Liveness analysis results solving standard DF equations (a),

livep sets(b), for the example DG in Figure 5.5. 83
5.7 Proposed liveness analysis results for the example DG in

Figure 5.5. 85

2

i
i

“thesis” — 2014/2/4 — 8:27 — page 3 — #15 i
i

i
i

i
i

List of Figures

5.8 Conflict Graph obtained for the previous example, keeping
live_out and livep sets disjoint (a) and Conflict Graph ob-
tained unifying live_out and livep sets (b). 86

6.1 Schematic representation of Convey HC-1 platform. 100
6.2 Application Template . 103
6.3 Queue-based BFS implementation 104
6.4 Parallelized Application Template 105
6.5 Accelerator design template schematic representation. . . . 106
6.6 Top Level Memory Interface Controller Structure. 108
6.7 Memory Interface Controller schematic representation. . . . 109

7.1 Application template . 120
7.2 Application template for Partial Unrolling 120
7.3 Proposed High Level Synthesis Flow. 121
7.4 Example annotated parallel specification 122
7.5 Intermediate code produced during the compilation process. 123
7.6 EPDG with structural dependencies. 125
7.7 EPDG after dependences pruning. 125
7.8 Memory interface structure. 127
7.9 Example Call Graph (a) and associated memory interface

structure (b). The framed nodes in the CG are associated
with functions that directly perform memory accesses; ar-
biters include RMs and UNBD modules. 128

7.10 Memory interface for distributed and multi ported memories. 131

3

i
i

“thesis” — 2014/2/4 — 8:27 — page 4 — #16 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page 5 — #17 i
i

i
i

i
i

List of Tables

2.1 Typical HLS inputs and outputs 14
2.2 External synthesis and simulation tools supported by the Bambu

framework. 31

3.1 Regular Expression DAG Symbols. 47
3.2 Useful high-level languages features for C-based design and

synthesis. 49
3.3 EDA segments revenue analysis ($ MILLIONS). Source: EDAC

MSS Statistics Report and Desaisive Technology Research
analysis. 52

5.1 High Level Synthesis results: Register Binding. 87
5.2 Design Compiler Synthesis Results: comparison against unique

binding. 88
5.3 Design Compiler Synthesis Results: Comparison Against

Vertex Coloring. 88
5.4 Execution latencies (number of clock cycles) targeting adap-

tive and FSM-based accelerators. 92
5.5 Synthesis results: number of required Flip Flop(FF), LUT

and FF/LUT pairs targeting adaptive and FSM-based accel-
erators. 93

6.1 Resource requirements and complexity for a MIC managing
N input operations towards M memory banks. 110

6.2 Area evaluation of Memory Interface Controllers. 111

5

i
i

“thesis” — 2014/2/4 — 8:27 — page 6 — #18 i
i

i
i

i
i

List of Tables

6.3 Simulation results; input graph: 5000 nodes, average degree:
10. 112

6.4 Simulation results; input graph: 5000 nodes, average degree:
20. 113

6.5 Simulation results; input graph: 5000 nodes, average degree:
30. 113

6.6 Area evaluation of the generated designs. 114

7.1 Simulation results: execution latencies in terms of clock cy-
cles, and speedups for the proposed flow, interfacing single
and multi ported memories (4 channels). All the designs tar-
get an operating frequency of 100MHz. 133

7.2 Synthesis results: number of Flip Flop (FF) registers and
Logic Elements (LEs) required by the generated designs.
Area overhead ratios consider the number of required LEs. . 135

6

i
i

“thesis” — 2014/2/4 — 8:27 — page 7 — #19 i
i

i
i

i
i

CHAPTER1
Introduction

Since the inception of information technology, the synthesis of digital cir-
cuits has been a main concern for researchers and scientific community.
Over the years, the proposed design methodologies have been forced to
move to higher abstraction levels due to the constant improvements in sil-
icon technology and to the increasing complexity of applications and ar-
chitectures. Such factors, since early ’70s, made more inadequate lower
abstraction level methodologies such as Logic-level or Physic-level syn-
thesis, and led to their overcome in favor of High-Level Synthesis (HLS).
Over the years HLS has been able to capture and renew the interests of the
research community, even if in the past its adoption in industry has often
resulted in failures. However current systems complexity is quickly turning
HLS from an undeniably promising idea to an actual need. For example,
in [186] the authors report a study from NEC showing that a 1M-gate de-
sign typically requires about 300k lines of RTL code, which are difficult
to be handled by a human designer. Adopting high level description lan-
guages, such as C/C++, the code density dramatically reduces (up to 10X):
behavioral languages can describe 1M-gate designs in 30-40k lines of code.
Other reviews reported in literature indicate that working at a higher level
of the design hierarchy using high-level synthesis reduces the amount of

7

i
i

“thesis” — 2014/2/4 — 8:27 — page 8 — #20 i
i

i
i

i
i

Chapter 1. Introduction

code that must be developed by as much as two thirds [128]. Constant
improvements in HLS have finally led to the (at least partial) automation
of the design process, significantly decreasing the development cost. Fur-
thermore, the error rate is reduced by the presence of a proper verification
phase. While writing behavioral code is inherently simpler than writing
RTL code, separating the design intent from the physical implementation
avoids the tedious process of rewriting and retesting code to make archi-
tectural changes. This also facilitates the design space exploration process
since a good synthesis system produces several RTL implementations for
the same specification in a reasonable amount of time, allowing the de-
velopers to consider different solutions and trade-offs. Generally, it is re-
ported an overall reduction of the design effort, with respect to lower level
methodologies, of 50% or more [128]. This characteristics shorten the de-
sign cycle, thus increasing the chance for companies of hitting the mar-
ket window. Almost four decades of research have resulted in impressive
improvements in HLS methodologies: modern frameworks support C-like
programs as input specification, providing a wide language coverage; they
integrate engines for quick and efficient design space exploration; they are
able to exploit modern reconfigurable platforms, and directly interface with
the logic synthesis tools; finally, and most important of all, they provide
good Quality of Results (QoR), especially for specific domains. However
there are still several aspects which need further investigation, and several
opportunities for improvement, which motivate the work described by this
thesis. For example, most of the proposed design methodologies targeted
the same architectural model as a result of synthesis, i.e. the Finite State
Machine with Datapath (FSMD) model. FSMDs are composed by a data-
path, which includes the hardware resources which perform the computa-
tion, and a FSM controller, which manages the computation. As detailed
in the next chapters, FSMDs are inherently serial: they model execution
as a sequence of control steps, thus limiting parallelism exploitation within
a single execution flow. Architectural alternatives exist, but they have not
been comprehensively explored yet. This work investigates one of such al-
ternatives, i.e. parallel controllers. Parallel controllers are able to manage
multiple execution flows concurrently, thus overcoming one of the main
limitation of the FSM-based paradigms. A parallel controller design is pro-
posed, suitable for HLS. Such model allows the synthesis of adaptive ac-
celerators featuring dynamic scheduling. Typical FSMDs are built reflect-
ing a statically computed schedule; in the proposed architecture instead,
execution is managed through a set of communicating elements, which es-
tablishes directly at runtime if an operation can be executed. The absence

8

i
i

“thesis” — 2014/2/4 — 8:27 — page 9 — #21 i
i

i
i

i
i

1.1. Main Contributions

of a pre-computed execution ordering has required the definition of novel
algorithms for most of the steps composing the synthesis process. Typical
approaches in fact, are based on the definition of a static schedule, thus
resulting not applicable. The designed synthesis flow has been automated
through the definition and actual implementation of a complete C-based
HLS tool. Compared with existing approaches, the generated adaptive com-
ponents provide unique benefits. Among them, the most relevant are the
efficient management of variable latency operations, poorly supported by
statically scheduled FSMDs, and the support for coarse grained parallelism
exploitation. Coarse grained parallelism mostly occurs in the form of Task
Level Parallelism (TLP): however, exploiting and identifying TLP intro-
duce several challenges. TLP exploitation is a complex problem: usually
tasks share memory resources, and if they are allowed to execute at the
same time, concurrency and synchronization between them must be man-
aged. TLP identification, instead, is difficult because most of the adopted
specification languages are programming languages such as C/C++, which
have been designed for serial execution. This work has considered both
these aspects. The first one has been addressed through the definition of
a Memory Controller Interface (MIC). The MIC is a hardware component
which allows fine grained parallelism exploitation on memory accesses, au-
tomatically manages concurrency on shared resources, and supports atomic
memory operations for synchronization. It has been designed as a custom,
parameterizable IP, suitable for easy adoption in both RTL and HLS flows.
The second challenge has been considered introducing in the designed flow,
support for parallel programming APIs. This allow the input specification
to directly expose parallelism, and to take advantage of atomic memory op-
erations, supported by the MIC, for tasks synchronization. The resulting
HLS flow is then able to efficiently exploit TLP, identified through pragma
annotations in the input code. According to the particular characteristics
of the specification, it is also able to automatically adopt different synthe-
sis approaches: functions characterized by ILP only are synthesized with
FSM-based techniques, while code featuring TLP is synthesized targeting
the proposed adaptive architectures.

1.1 Main Contributions

The main contributions of this work may be summarized as follows:

• the definition of a parallel controller design, suitable for the HLS of
adaptive hardware components featuring dynamic scheduling: execu-
tion is managed through a set of components, interacting through a

9

i
i

“thesis” — 2014/2/4 — 8:27 — page 10 — #22 i
i

i
i

i
i

Chapter 1. Introduction

lightweight token-based communication schema. Each element es-
tablish directly at runtime when an operation can execute;

• the design of novel HLS algorithms for the automated synthesis of the
proposed architecture;

• the development of a complete C-based HLS tool, targeting the adap-
tive accelerator design;

• the design of hardware components for managing concurrency and
synchronization on shared memories, thus providing support for effi-
cient TLP exploitation;

• the support for parallel programming APIs, which allow efficient iden-
tification of TLP;

• the definition of a modular architecture which couples statically and
dynamically scheduled components, to best adapt to the characteris-
tics of the input specification;

• the experimental evaluation of each of the techniques proposed in this
thesis, comparing them to existing approaches.

1.2 Dissemination of Results

Techniques and methodologies described in this thesis work have been pre-
sented at several international conferences, leading to the publication of the
following papers:

1. C. Pilato, V.G. Castellana, S.Lovergine, F. Ferrandi, A Runtime Adap-
tive Controller for Supporting Hardware Components with Variable
Latency, in Proceedings of NASA/ESA Conference on Adaptive Hard-
ware and Systems (AHS-2011), San Diego, California, USA, June
2011

2. V.G. Castellana and F. Ferrandi, Speeding-Up Memory Intensive Ap-
plications through Adaptive Hardware Accelerators, in Proceedings
of High Performance Computing, Networking, Storage and Analysis,
2012 SuperComputing Companion (SCC), Salt Lake City, Utah, USA,
November 2012

3. V.G. Castellana and F. Ferrandi, Scheduling Independent Liveness Anal-
ysis for Register Binding in High Level Synthesis, in Proceedings of
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2013, Grenoble, France, March 2013

10

i
i

“thesis” — 2014/2/4 — 8:27 — page 11 — #23 i
i

i
i

i
i

1.3. Thesis Organization

4. V.G. Castellana and F. Ferrandi, Applications Acceleration Through
Adaptive Hardware Components, in Proceedings of Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW),
Boston, Massachussets, USA, May 2013

5. V.G. Castellana and F. Ferrandi, An Automated Flow for the High
Level Synthesis of Coarse Grained Parallel Applications, in Proceed-
ings of International Conference on Field-Programmable Technology
(ICFPT) 2013, Kyoto, Japan, December 2013

6. V.G. Castellana, A. Tumeo, F. Ferrandi, An Adaptive Memory Inter-
face Controller for Improving Bandwidth Utilization of Hybrid and
Reconfigurable Systems, in Proceedings of Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2014, Dresden, Ger-
many, March 2014

7. V.G. Castellana, A. Tumeo, F. Ferrandi, High Level Synthesis of Mem-
ory Bound and Irregular Parallel Applications with Bambu, Interna-
tional Workshop on Electronic System-Level Design towards Hetero-
geneous Computing, 2014, Dresden, Germany, March 2014

Informal proceedings and other dissemination activities:

• V.G. Castellana, C. Pilato, F. Ferrandi, Accelerating Embedded Sys-
tems with C-Based Hardware Synthesis, HiPEAC ACACES-2011, Fi-
uggi, Italy, July 2011 [Meeting proceedings, ISBN:978 90 382 17987]

• V.G. Castellana, A. Tumeo, F. Ferrandi, A Synthesis Approach for
Mapping Irregular Applications on Reconfigurable Architectures, High
Performance Computing, Networking, Storage and Analysis, 2013
SuperComputing (SC), Denver, Colorado, USA, November 2013 [Tech-
nical Program poster, extended abstract available online]

• V.G. Castellana, F. Ferrandi, C-Based High Level Synthesis of Adap-
tive Hardware Components, Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2014, Dresden, Germany, March
2014 [PhD forum presentation]

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 provides
a background for this work, introducing basic concepts and definitions. It

11

i
i

“thesis” — 2014/2/4 — 8:27 — page 12 — #24 i
i

i
i

i
i

Chapter 1. Introduction

also proposes Bambu as an example of modern HLS tools. The methodolo-
gies presented in this thesis have been developed within the Bambu frame-
work, and its release version, freely available on-line, has represented a
baseline for evaluation. Chapter 3 illustrates related work, tracking the
chronological evolution of HLS, and identifying which aspects need fur-
ther improvements, thus highlighting the contribution of this work to the
state of the art. Chapter 4 introduces the proposed parallel controller ar-
chitecture, describing all the designed components, and showing its adap-
tive behavior and main offered features through some examples. Chapter 5
describes the complete HLS flow for the automatic generation of the pro-
posed architecture, detailing each of the algorithm composing the synthesis
process. Chapter 6 presents the Memory Controller Interface, designed to
manage concurrency and synchronization for memory intensive specifica-
tions. Chapter 7 focuses on TLP identification and exploitation, proposing
refinements and improvements to the HLS flow, enabling efficient support
of parallel applications instrumented through pragma annotations. Chapter
8 concludes this thesis, identifying opportunities for further improvements
and promising future research directions.

12

i
i

“thesis” — 2014/2/4 — 8:27 — page 13 — #25 i
i

i
i

i
i

CHAPTER2
Background

This thesis work proposes novel adaptive architecture designs for the syn-
thesis of hardware accelerators, together with algorithms for their automatic
generation through a High Level Synthesis (HLS) flow. This chapter intro-
duces some preliminary concepts and definitions, useful to briefly build a
background for this work. As a representative of modern synthesis tools,
the Bambu framework is proposed. Bambu is a state of the art HLS tool,
producing Verilog implementations of behavioral specifications described
through C-code. Methodologies and techniques described in this work,
have been implemented customizing and extending this framework, and its
release version, freely available on the Internet, has represented a base-
line for evaluation. The remainder of this chapter is organized as follows:
Section 2.1 introduces the High-Level Synthesis process; Section 2.2 de-
scribes the Finite State Machine with Data-path model, which is the most
widespread design solution adopted in HLS. Section 2.3 formally char-
acterizes a typical HLS flow, which can be coarsely partitioned in three
main stages: the Front-end phase (2.3.1), the Synthesis phase (2.3.2), the
Back-end phase (2.3.3). Section 2.4 describes Bambu, which represents an
example of typical HLS tools targeting FSMDs architectures; Section 2.5
concludes the chapter.

13

i
i

“thesis” — 2014/2/4 — 8:27 — page 14 — #26 i
i

i
i

i
i

Chapter 2. Background

2.1 Introduction to High-Level Synthesis

High-Level Synthesis (HLS), also known as behavioral synthesis or algo-
rithmic synthesis, is a design process that, given an abstract behavioral
specification of a digital system and a set of constraints, automatically gen-
erates a Register-Transfer Level (RTL) structure that implements the de-
sired behavior [127]. In Table 2.1, the typical HLS inputs and outputs are
shown; their functionalities will be presented in the following.

INPUT OUTPUT
- Behavioral Specification - RTL Implementation of the

- Design Constraints Input Behavior
- Optimization Function (Controller+Data-path)

- Resource Library

Table 2.1: Typical HLS inputs and outputs

Inputs:

• The behavioral specification consists in an untimed or partially timed
algorithmic description in high-level language (such as C language),
that is transformed in a fully timed and bit-accurate RTL implementa-
tion by the behavioral synthesis flow.

• The design constraints represent targets that must be met for the de-
sign process to be considered successful. These include timing, area
and power constraints. Timing constraints usually identify a target
operating frequency for the final design, ruling all the synthesis pro-
cess. For example, design characteristics that may alter the timing
performance are the structure of steering logic interconnections and
the number of stages of pipelined components, implementing high la-
tency operations (e.g. division and multiplication). Area constraints
may be expressed specifying resource availability at different granu-
larities, e.g. indicating an upper bound for the number of logic cells to
be used, or the maximum number of instances which may be allocated
for each resource type. Power constraints set a power consumption
threshold for the final design.

• The optimization function is a cost function whose argument repre-
sents the design target to optimize. As for the design constraint, the
most common features desired to be maximized/minimized are execu-
tion time, area and power consumption. Clearly the optimization func-
tion, as it generally happens, can depend on two or more variables. In

14

i
i

“thesis” — 2014/2/4 — 8:27 — page 15 — #27 i
i

i
i

i
i

2.2. The Finite State Machine with Data-Path Model

such case, it is needed to manage a multi-objective optimization pro-
cess, where a global optimum solution could not exists at all. Instead,
a set of designs, all satisfying the constraints, for which is not possible
to establish who is better, can coexist. These solutions are defined as
Pareto optimal. Given a set S of feasible solutions, all functions of n
parameters, s∈S is Pareto optimal if there not exists another solution
s’∈S that improves one or more parameters without worsen at least
another one.

• The resource library contains a collection of modules from which the
synthesizer must select the best alternatives matching the design con-
straints and optimizing the cost function.

Output: it is a register transfer level description of the designed architec-
ture, usually consisting of

• a data-path, i.e. the entity which performs the computation between
primary inputs, which provide the data to be elaborated, and primary
outputs, which return the results of computation.

• a controller i.e. the entity which manages the computation, handling
the data flow in the data path by setting control signals values, e.g.
Functional Units, registers and muxes selectors (see Figure 2.1). Con-
troller inputs may come from primary inputs (control inputs) or from
data path components (status signals as result of comparisons). It de-
termines which operations have to be executed at each control step
and the corresponding paths to be activated inside the data-path.

Different controller implementations approaches are feasible; however, in
HLS the controller is usually designed as a centralized Finite State Machine
(FSM). The resulting architectural model, detailed in the following section,
is known as FSM with Data-path (FSMD).

2.2 The Finite State Machine with Data-Path Model

The most common architectural model in high level synthesis is the finite
state machine with data-path, as shown in Figure 2.1.

2.2.1 Data-Path

The data-path includes a set of hardware resources, i.e. storage, functional
and interconnection units, and defines how those modules are connected
each other [171]. All the RTL components can be allocated in different

15

i
i

“thesis” — 2014/2/4 — 8:27 — page 16 — #28 i
i

i
i

i
i

Chapter 2. Background

Figure 2.1: Typical Architecture composed of a Finite State Machine (FSM) and a Data-
path.

quantities and types, and can be customly connected at design time through
different interconnection schemes, e.g. mux or bus based. Different archi-
tectural solutions could be adopted, allowing optimizations such as:

• multicycling: if each instruction requires exactly one clock cycle, then
the clock cycle is lower-bounded by the higher required execution
time; to overcome this issue, expensive instructions in terms of de-
lay are executed through subsequent clock cycles;

• chaining: it is another solution to the previous problem; instead of
reducing the clock cycle, instructions requiring less time are executed
subsequentially in the same clock cycle;

• pipelining: instructions are divided in stages, and the clock cycle set
to the time required to execute the slower one; if stages are obtained in
a way such that there is no concurrency on the resources that execute
them, than different stages of different instructions may be executed
in the same clock cycle.

Formally, a data path DP can be described as a graph DP (M,T, I), where

• M = Mo ∪ Ms ∪ Mi is the set of nodes, corresponding to the DP
modules, i.e. instances of library components, where

– Mo is the set of functional units such as adders, ALUs and shifters;

16

i
i

“thesis” — 2014/2/4 — 8:27 — page 17 — #29 i
i

i
i

i
i

2.2. The Finite State Machine with Data-Path Model

– Ms is the set of storage elements, as registers, register files and
memories;

– Mi is the set of interconnect elements such as tristates, buses and
multiplexers;

• I ⊆M ×M is the set of graph’s edges, i.e. interconnection links.

2.2.2 Finite State Machine

The Finite State Machine (FSM) represent one of the most common mod-
els applied in architectural synthesis. Even though they can describe differ-
ent kinds of sequential machines, FSMs are typically used for synchronous
ones. Synchronous machines are characterized by the presence of an impul-
sive signal, i.e. the clock, propagated over the whole circuit, that determines
the moment in which the inputs must be evaluated to possibly cause the
transition from one state to another of the FSM. Hence, the order in which
the inputs are received does not affect the execution, provided they come
within the clock cycle. Instead, in the case of asynchronous machines, a
global temporization does not exists, and an explicit communication pro-
tocol is required to ensure the computation correctness. The asynchronous
machines can be classified in two main categories: level machines, in which
the system state transitions are caused by changes in the level of the input
variables, and impulsive machines, in which the presence or absence of im-
pulses causes such transitions.
Formally, a finite state machine is defined as the tupleM = (I, O, S, S0, R),
where

• I represents the input alphabet,

• O denotes the output alphabet,

• S denotes the set of states,

• S0 denotes the initial state,

• R denotes the global relation.

The global relation R is defined as R ⊆ S × I × S × O → {0, 1} such
that R(i, u, s, t) = 1 iff given as input i = (i1, i2, ..., in) ∈ I , M goes from
the current state s = s1, s2, ..., sk ∈ S to the next state t = t1, t2, ..., tk ∈ S
producing as output o = o1, o2, ..., ok ∈ O
The main FSM controller components are:

• a state register (SR), that stores the current state of the FSM model
describing the controller’s operation;

17

i
i

“thesis” — 2014/2/4 — 8:27 — page 18 — #30 i
i

i
i

i
i

Chapter 2. Background

• the next state logic, that computes the next state to be loaded in the
SR;

• the output logic, that generates the control signals.

State-Transition Graph

A finite state machine M can be represented by its corresponding state-
transition graph G(S,E) where

• nodes s ∈ S are the states of M,

• edges e ∈ E ⊆ S × S denote transitions between states.

State-Transition Relation

Given the global relationR and an input i,the state-transition relation deter-
mines the relationship between current state and next state. It is defined as
∆(i, s, t) = ∃oR(i, o, s, t). The state-transition function is usually denoted
by δ(i, s, t).

Output Relation

Given the global relation of M, the initial state S0 and an input i, the
output relation gives the output value of M. It is defined as Λ(i, o, s) =
∃tR(i, o, s, t). The output function is usually denoted by λ(i, o, s).
Starting from the above definitions, it is possible to classify the different
types of FSMs in three classes:

• Autonomous - The input alphabet is the empty set (e.g. counters).

• State based - Also known as Moore’s machines, their output relation
Λ depends only on the current state.

• Transition based - Also known as Mealy’s machines, their output re-
lation Λ depends on input values also.

The classical logic implementation of a FSM stores the states in storage ele-
ments (registers) while state-transition and output functions are synthesized
in combinational logic. Several encodings exist for identifying states in a
FSM; the most widespread are logarithmic (binary) and one-hot encodings.
In binary encoding, the different states are represented through variables: if
the number of states is N , the FSM implementation requires log2(N) 1-bit
registers However, this encoding requires combinational logic for mapping
variables values to states. One hot encoding instead demands more sequen-
tial resources, i.e. N 1-bit registers for representing N states. Furthermore,

18

i
i

“thesis” — 2014/2/4 — 8:27 — page 19 — #31 i
i

i
i

i
i

2.3. Typical High Level Synthesis Flows

one hot implementations are faster than binary implementations, since the
latter require decoding logic.

Now the Finite State Machine with Data Path can be defined as the tuple
< S, I ∪B,O ∪ A,∆,Λ >, where:

• S,∆,Λ denote the same sets defined for a FSM;

• I∪B denotes the input language; it is an extension of the set I defined
for the FSM, in order to include some of the state variables b ∈ B ⊆
Stat;

• O ∪ A represents the output language, including some assignments
a ∈ A ⊆ Asg

FSMDs can be adopted both to describe a design at RT level, or, at
higher levels of abstraction, to represent a producer/consumer process where
inputs are consumed and outputs are produced. Complex systems could be
viewed as processes compositions, where each process is modeled as FS-
MDs and communicates with the other ones. Communication is intent to
be between control units, between data paths and between control unit and
data path. The number of signals and the temporal relations between them
during communication define a protocol, e.g. request-acknowledge hand-
shaking protocol [13].

2.3 Typical High Level Synthesis Flows

High-level synthesis is typically composed of different tasks, summarized
in Figure 2.2. There exists many approaches in literature that perform these
activities in different orders, using different algorithms. In some cases,
several tasks can be combined together or performed iteratively to reach
the desired solution. Nevertheless, the HLS flow steps can be grouped in
three main macro-tasks:

• Front End:
performs lexical processing, algorithm optimization and control/data-
flow analysis in order to build and optimize an Internal Representation
(IR) to be used in the subsequent steps. Internal representations de-
scribe the specification highlighting specific properties, on which a
given task of the synthesis phase will focus on.

• Synthesis:
in this phase the design decisions are taken, to obtain a RTL descrip-
tion of the target architecture that satisfies the design constraints. The

19

i
i

“thesis” — 2014/2/4 — 8:27 — page 20 — #32 i
i

i
i

i
i

Chapter 2. Background

number and type of hardware modules is established and each instruc-
tion is scheduled and assigned to one of the available resources that
can execute it.

• Back End:
the resulting netlist is generated and reproduced in a hardware descrip-
tion language.

Figure 2.2: Typical HLS flow.

Next sections describe each task of the typical HLS-flow.

2.3.1 Front End

An Intermediate Representation (IR) can be described as an interface be-
tween a source language and a target language. Such notation should de-

20

i
i

“thesis” — 2014/2/4 — 8:27 — page 21 — #33 i
i

i
i

i
i

2.3. Typical High Level Synthesis Flows

scribe source code properties independently with respect to the source/tar-
get languages details. Given as input a behavioral specification, the front
end translates it in a proper IR, performing lexical processing, algorithm
optimization and control/data-flow analysis.

Compilation

The first step in the HLS flow consists in the source code parsing, that trans-
lates the high level specification into an IR, as common in conventional high
level language compilation, to abstract from language details. The result-
ing IR is usually a proper graph representation of the parsed code, and can
be optimized or transformed producing several additional representations
of the same specification.

Front-end Analysis and Algorithm Optimization

The previous step provides a formal model that exhibits data and control
dependencies between the operations. Such dependencies are generally
represented in a graph notation, for example in the form of Control Data
Flow Graphs. The control/data-flow analysis characterizes some properties
of the specification, identifying for example its loop and call structure, or
partioning it in Basic Blocks. The analysis step enables further optimiza-
tions to better exploit the available parallelism. These optimizations are the
same ones widely used in optimizing and parallelizing compilers [19], such
as dead code elimination and constant propagation, or translation in Static
Single Assignment (SSA) form.

Internal Representations Creation

The optimized code is finally reproduced in the form of IR(s) which will
be used in the synthesis steps. Common IRs include Control Flow Graphs
(CFGs), Data Flow Graphs (DFGs), Control Data Flow Graphs (CDFGs),
and Program Dependencies Graphs (PDGs). Flow graphs may represent the
input specification at different granularities, for example at the instruction
level or at the Basic Block level.

2.3.2 Synthesis

The HLS core consists of different steps strictly connected each other. They
can be summarized in:

• Scheduling,

• Resource Allocation,

21

i
i

“thesis” — 2014/2/4 — 8:27 — page 22 — #34 i
i

i
i

i
i

Chapter 2. Background

• Resource Binding.

A desirable feature for HLS is to estimate as soon as possible timing and
area overheads, so that later steps could optimize the design. A feasible ap-
proach is to start from one of the above mentioned tasks and consequently
accomplish the other ones. Then the obtained results could be used to mod-
ify the solution of previous steps: in this way the final solution, optimized
towards a performance metric, is built incrementally. Another possibility is
to fulfill the tasks partially, and complete them as results of other steps are
available. For example functional units could be allocated in a first time,
and the interconnection allocation could be performed after the binding or
scheduling tasks. Allocation, scheduling and binding are all NP-complete
problems, thus solving them as a unique task makes the synthesis a too
complex process to be applied to real-world specifications. The choice be-
tween different ordering possibilities is dictated from the design constraints
and tool’s objectives. For example, under resource constraints, allocation
could be performed first and scheduling could try to minimize the design la-
tency. Instead, in time constrained designs, allocation could be performed
during the scheduling; the scheduling process, in this case, could try to
minimize the circuit’s area while meeting the timing constraints.

Scheduling

The scheduling task introduces the concept of time: according to the data
and control dependencies extracted by the front end all the operations are
assigned to specific control steps. Also the concept of parallelism is in-
troduced: if dependences and resource availability allow it, more than one
instruction can be scheduled in the same clock cycle. A common approach
addressing the scheduling problem can be modeled as follows:

• input: DFG of the input specification;

• output: the scheduled DFG, i.e. a graph G(V0, E, C) where:

– v ∈ V0 are the nodes of the (C)DFG, i.e. the operations to be
executed;

– e ∈ E are the edges of the (C)DFG, representing the data flow;

– c ∈ C are control steps.

• scheduling procedure: a function θ : V0 → Π(C) assigns to each node
v ∈ V0 a sequence of cycle steps, where Π(C) is the power set of C,
i.e. the set of all the subset of C.

22

i
i

“thesis” — 2014/2/4 — 8:27 — page 23 — #35 i
i

i
i

i
i

2.3. Typical High Level Synthesis Flows

In the presence of control constructs such as loops, the input specification
is usually partitioned in Basic Blocks, which are sequences of code with a
single entry point and a single exit point. The scheduling routine then ap-
plies to each Basic Block separately. As mentioned before, the scheduling
process could be differently constrained, e.g. time or resource constrained.
For example, Figure 2.3 proposes the pseudo code of a simple specifica-

avg(a,b,c,d)
1: t1 = a+ b
2: t2 = c+ d
3: t = t1 + t2
4: avg = t/4

Figure 2.3: Pseudo-code, DFG and scheduled DFG of a program that computes the aver-
age of 4 numbers.

tion, togheter with its DFG and a possible scheduled DFG under resource
constraints (1 adder and 1 divider available), assuming that each operation
needs one control step to be executed.

Resources Allocation

A set of hardware resources is established to adequately implement the de-
sign, satisfying the design constraints. Allocation defines the number of
instances and the type of different resources from the ones available in the
resource library, which describes the relation between the operation types
and the modules. Since different hardware resources have different charac-
teristics, such as area, delay or power consumption, usually this informa-
tions is included in the resource library, to guide both the allocation and the
other related tasks. A library Λ(T, L) is characterized by:

• a set T of operation types;

• a set L of of library components (i.e. modules);

The library function λ : T → Π(L), where as usual Π(L) denotes the
power set of L, establishes which modules l ∈ L could execute operations
of type t ∈ T . On the other hand, the function λ−1 : L → Π(T) defines
the operation type set of l, written λ−1(l), i.e. the subset of operation types

23

i
i

“thesis” — 2014/2/4 — 8:27 — page 24 — #36 i
i

i
i

i
i

Chapter 2. Background

that a module l ∈ L can execute. Given two operation of type t1, t2 ∈ T , if
t1, t2 ∈ λ−1(l), then they can share module l. Moreover, λ(t1) ∩ λ(t2) de-
scribes the subset of modules that can be shared among operations of type
t1 and t2.
Having defined the data-path as a graph DP (Mo ∪Ms ∪Mi, I), thus allo-
cation task must determine the components belonging to each module set
Mk. This task defines the allocation functions for each module set.

Functional Units Allocation

The module allocation function µ : V0 → Π(M0) determines which module
performs a given operation. An allocation µ(vi) = mj, vi ∈ V0,mj ∈ M0

is valid iff module mj is an instance of lj ∈ λ(ti), with ti operation type of
vi, i.e. mj can execute vi.

Registers Allocation

Values produced in one clock cycle may be consumed in another one, and
in this case such values must be stored in registers or in memory. Liveness
analysis can allow different variables sharing a register, revealing if their
life intervals overlaps or not, in order to reduce the number of registers, and
the design overhead in terms of area. Even in this case, techniques devel-
oped in compiler theory are successfully applicable. In particular, after the
scheduling, each edge that crosses a cycle step boundary represents a value
that must be stored. Thus the scheduled DFG should be transformed to take
in account such situation. Given a scheduled DFG G(V0, E, C), the stor-
age value insertion is a transformation G(V0, E, C) → G(V0 ∪ Vs, E ′, C)
which adds nodes (storage values) v ∈ Vs such that each edge e ∈ E which
traverse a cycle step boundary is connected to a storage value. The register
allocation function could now be defined as ψ : Vs → Π(Ms); it identifies
the storage modules holding a value from the set Vs.

Resources Binding

The allocation task defines the set M of modules that composes the data
path. Each module m ∈ M is an instance of a library component l ∈ L.
Given a DFG G(V0, E), each operation v ∈ V0 must be bound to a spe-
cific allocated module m. This task takes the name of module or resource
binding. A resource binding is defined as a mapping β : V0 → M0 × N;
given an operation v ∈ V0 with type τ(v) ∈ λ−1(t), t ∈ L, β(v) = (t, r)
denotes v will be executed by the component t = µ(v) and r ≤ σ(t), i.e.
v is assigned to the r-th instance of resource type t. Module binding must

24

i
i

“thesis” — 2014/2/4 — 8:27 — page 25 — #37 i
i

i
i

i
i

2.3. Typical High Level Synthesis Flows

ensure that the resource assigned to an operation is available in the cycle
step in which the given instruction is scheduled. When the binding is per-
formed before scheduling, the scheduling task will take care of schedule
operations in order to avoid resource conflicts. Different approaches can
be followed to perform the binding; in the simplest case β is a one-to-one
mapping, associating each resource to one operation.

Interconnection Binding

The interconnect binding function is defined as ι : E → Π(Mi), and de-
scribes how the allocated resources are connected and which interconnec-
tion is assigned for each data transfer. If a resource is shared among differ-
ent operations, interconnections include steering logic, whose selectors are
managed by the controller. Different solutions could differently affect the
design in terms of delay, area occupancy or interconnections complexity.

Controller Synthesis

Once the data-path is built, it is possible to define the activation signals that
the controller should generate to activate the data path modules. Controller
synthesis can be performed following two main approaches:

• Microprogrammed Controller - each state of the FSM is coded as
a microinstruction that specifies the data path activation signals and
the next state; if the resulting microprogram is stored in a ROM, the
next state can be represented by the ROM address of the next microin-
structions (i.e. associated to the next state). If the CFG describing the
specification is linear, i.e. there are not conditional nodes, the next
state could be computed by a simple counter without indicating it in
every microinstructions.

• Hardwired Controller - the controller is synthesized as a combina-
tory circuit and registers.

Both the models represent the abstract model of the synchronous FSM. The
design complexity increases in the presence of hierarchical structures, or in
control dominated specifications. Most HLS flows synthesize hardwired
controllers.

25

i
i

“thesis” — 2014/2/4 — 8:27 — page 26 — #38 i
i

i
i

i
i

Chapter 2. Background

2.3.3 Back-end

During the netlist generation phase, the final architecture design is written
out as RTL code, usually described through a Hardware Description Lan-
guage such as Verilog or VHDL. To facilitate this task, resource libraries
usually include a HDL description of each available module.

2.4 Bambu: A Free Framework for the High-Level Synthesis
of Complex Applications

As detailed in next chapter, a multitude of tools implementing the described
typical HLS flow are available. Among them we consider as a represen-
tative the PandA open-source Framework [10]. PandA covers different as-

Figure 2.4: Panda framework schematic overview.

pects of the hardware/software co-design of embedded systems (Figure2.4),
including methodologies to support:

• high-level synthesis of hardware systems;

• parallelism extraction for software and hardware/software partition-
ing;

26

i
i

“thesis” — 2014/2/4 — 8:27 — page 27 — #39 i
i

i
i

i
i

2.4. Bambu: A Free Framework for the High-Level Synthesis of Complex
Applications

• the definition of metrics for the analysis and mapping onto multipro-
cessor architectures and on dynamic reconfigurability design flow.

The framework offers a complete freely available HLS tool: Bambu [1].
Bambu receives as input a behavioral description of the algorithm, written
in C language, and generates the Verilog description of the corresponding
RTL implementation as output, along with a test-bench for the simulation
and validation of the behavior. This HDL description is then compatible
with commercial RTL synthesis tools. From the software design point of
view, Bambu is extremely modular, implementing the different tasks of the
HLS process, and specific algorithms, in distinct C++ classes. The overall
flow acts on different IRs depending on the synthesis stage. The modu-
larity of Bambu has allowed a complete integration of the methodologies
and techniques described in this thesis, implementing only the algorithms
required for the generation of the proposed architectures, while sharing the
architecture independent components of the flow, such as the test-bench
generation routines. Bambu assists the designer during the HLS of complex
applications, aiming at supporting most of the C constructs (e.g., function
calls and sharing of the modules, pointer arithmetic and dynamic resolution
of memory accesses, accesses to array and structs, parameter passing either
by reference or copy).

Figure 2.5: PandA analysis flow.

27

i
i

“thesis” — 2014/2/4 — 8:27 — page 28 — #40 i
i

i
i

i
i

Chapter 2. Background

2.4.1 Front-end

Bambu has a compiler-based interface interacting with the GNU Compiler
Collection (GCC) ver. 4.7 (Figure 2.5) and builds the internal representa-
tion in Static Single Assignment form of the initial C code. In particular,
the source code is parsed, producing GENERIC trees: GENERIC is a lan-
guage independent representation, which interfaces the parser and the code
optimizer. The GENERIC code is then translated into the GIMPLE IR,
with the purpose of target and language-independent optimizations. GIM-
PLE data structures provide enough information to perform a static analysis
of the specification, stored in ASCII files. Following the grammar of these
files, a parser reconstructs the GIMPLE data structure, thus allowing further
analysis and the construction of additional internal representations, such as
Control Flow Graphs, Data Flow Graphs and Program Dependence Graphs.
The front end analysis process generates a call graph of the whole applica-
tion, and the afore mentioned IRs are generated for each call, after GCC
optimizations.

2.4.2 Synthesis

The synthesis process (figure 2.6) acts on each function separately. The
resulting architecture is modular, reflecting the structure of the call graph.
The generated data-path is a custom mux-based architecture based on the
dimension of the data types, aiming at reducing the number of flip-flops
and bit-level multiplexers. In its release version, Bambu generates the con-
troller as a centralized FSM. For each HLS step, the user can choose among
a variety of state of the art algorithms, through configuration files or com-
mand line options. The following sections briefly describe some of them,
composing the default flow.

Resource Allocation

Resource allocation associates operations in the specification to Functional
Units (FUs) in the resource library. During the front-end phase the specifi-
cation is inspected, and operations characteristics identified. Such charac-
teristics include the kind of operation (e.g. addition, multiplication, ...), and
input/output value types (e.g. integer, float, ...). Floating point operations
are supported through FloPoCo [61], a generator of arithmetic Floating-
Point Cores. The allocation task maps them on the set of available FUs:
their characterization includes additional features, such as latency, area,
and number of pipeline stages. Usually more operation/FU matchings are

28

i
i

“thesis” — 2014/2/4 — 8:27 — page 29 — #41 i
i

i
i

i
i

2.4. Bambu: A Free Framework for the High-Level Synthesis of Complex
Applications

Figure 2.6: Bambu Synthesis Flow.

feasible: in this case the selection of a proper FU is driven by design con-
straints. In addition to FUs, also memory resources are allocated. Local
data in fact, may be bound to local memories.

Scheduling

Scheduling of operations is performed through a LIST-based algorithm
[148], which is constrained by resource availability. In its basic formula-
tion, the LIST algorithm associates to each operation a priority, according
to particular metrics. For example, priority may reflect operations mobil-
ity with respect to the critical path. Operations belonging to the critical
path have zero-mobility: delaying their execution usually results in an in-
crease of the overall circuit latency. Critical path and mobilities can be
obtained analyzing As Soon As Possible (ASAP) and As Late As Possible
(ALAP) schedules. The LIST approach proceeds iteratively associating to
each control step, operations to be executed. Ready operations (e.g. whose
dependencies have been satisfied in previous iterations of the algorithm)
are scheduled in the current control step considering resource availability:
if multiple ready operations compete for a resource, than the one having

29

i
i

“thesis” — 2014/2/4 — 8:27 — page 30 — #42 i
i

i
i

i
i

Chapter 2. Background

higher priority is scheduled. After the scheduling task it is possible to de-
fine a State Transition Graph (STG) accordingly: the STG is adopted for
further analysis and to build the final Finite State Machine implementation
for the controller.

Module Binding

Operations that execute concurrently, according to the computed sched-
ule, are not allowed to share the same FU instance, thus avoiding resource
conflicts. In Bambu, binding is performed through a clique covering algo-
rithm [178] on a weighted compatibility graph. The compatibility graph is
built by analyzing the schedule: operations scheduled on different control
steps are compatible. Weights express how much is profitable for two oper-
ations to share the same hardware resource. They are computed taking into
account area/delay trade-offs as a result of sharing; for example, FUs that
demand a large area will be more likely shared. Weights computation also
considers the cost of interconnections for introducing steering logic, both
in terms of area and frequency. Bambu offers several algorithms also for
solving the covering problem on generic compatibility/conflict graphs.

Register Binding

Register binding associates storage values to registers, and requires a pre-
liminary analysis step, the Liveness Analysis (LA). LA analyzes the sched-
uled program, and identifies the life intervals of each variable, i.e. the se-
quence of control steps in which a temporary needs to be stored. Storage
values with non overlapping life intervals may share the same register. In
default settings, the Bambu flow computes liveness information through a
non-iterative SSA liveness analysis algorithm [29]. Register assignment
is then reduced to the problem of coloring a conflict graph. Nodes of the
graph are storage values, edges represent the conflict relation.

Interconnection Binding

Interconnections are bound according to the previous steps: if a resource
is shared, then the algorithm introduces steering logic on its inputs. It also
identifies the relation between control signals and different operations: such
signals are then set by the controller.

30

i
i

“thesis” — 2014/2/4 — 8:27 — page 31 — #43 i
i

i
i

i
i

2.5. Conclutions

2.4.3 Back-end

Netlist Generation

During the synthesis process, the final architecture is represented through
a hyper-graph, which also highlights the interconnection between modules.
The netlist generation step translates such representation in a Verilog de-
scription. The process access the resource library, which embeds the Ver-
ilog implementation of each allocated module.

Generation of Synthesis and Simulation Scripts

Bambu provides the automatic generation of synthesis and simulation scripts
based on XML configuration. Table 2.2 lists the tools already supported.

Table 2.2: External synthesis and simulation tools supported by the Bambu framework.

SYNTHESIS TOOLS SIMULATION TOOLS
- Xilinx ISE - Mentor Modelsim

- Xilinx VIVADO - Xilinx ISIM
- Altera Quartus - Xilinx XSIM

- Lattice Diamond - Icarus Verilog

This feature allows the automatic characterization of the resource li-
brary, providing technology-aware details during the High-Level Synthesis.

2.5 Conclutions

This chapter has introduced High Level Synthesis, describing which are
the inputs and outputs of the process, and providing a formal definition of
the main phases composing a typical HLS flow. Such flow has been also
characterized describing Bambu, showing how the different HLS tasks are
addressed in a state-of-the-art framework. The typical architectural model
generated through HLS consists of a data-path and a controller: the latter
is usually implemented as a Finite State Machine, built according to a stat-
ically computed schedule. One of the major contribution of this work, is to
provide an alternative model for the controller, which enables the synthe-
sis of adaptive accelerators featuring dynamic scheduling. The following
chapters will describe the limitations of the FSM design, and will detail
how the main tasks composing a HLS flow have been addressed, finally
allowing the definition and actual implementation of a complete HLS tool,
obtained customizing and extending the Bambu framework.

31

i
i

“thesis” — 2014/2/4 — 8:27 — page 32 — #44 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page 33 — #45 i
i

i
i

i
i

CHAPTER3
Related Work

High Level Synthesis has a long history behind: almost four decades of
continuous improvements characterize its evolution, turning HLS from a
revolutionary idea to a design approach adopted in industry. According to
the chronological classification proposed in [125], it is possible to recog-
nize three generations in HLS evolution, in addition to a prehistoric period.
Each of them has focused on different aspects of HLS, investigating dif-
ferent abstraction layers and specification languages, proposing several ar-
chitectural alternatives, defining and improving novel synthesis algorithms
and techniques. This chapter provides a general overview of the HLS evo-
lution, describing the peculiarities which have characterized each genera-
tion, and highlighting novelties and limitations of the proposed methodolo-
gies. Section 3.1 provides a brief characterization of HLS methodologies,
and accordingly, a coarse classification of design alternatives proposed in
literature. Sections from 3.2 to 3.5 describe each HLS generation, show-
ing how it has evolved year over year. Then, Section 3.6, concludes this
chapter, identifying the aspects needing improvements and future research
directions, thus highlighting how this work improves the State of the Art.

33

i
i

“thesis” — 2014/2/4 — 8:27 — page 34 — #46 i
i

i
i

i
i

Chapter 3. Related Work

3.1 HLS Design Methodologies Characterization

In order to characterize an HLS design methodology, three main aspects
must be considered: the application domain, the adopted specification lan-
guage and the final architecture obtained from the synthesis. Applications
can be coarsely classified into two categories according to their domain: it
is possible to distinguish between data-oriented and control-oriented appli-
cations. The first includes those applications performing computation on
a massive amount of data, as dataflow intensive specifications and Digi-
tal Signal Processing. It is the case, for example, of multimedia applica-
tions, since they work on a stream of data. The latter includes applications
designed for the control. For example, protocol handlers fall in this cate-
gory, since they implement the set of formal rules that must be observed
when two or more entities communicate. Applications falling in one rather
than the other category have different peculiarities, often making HLS de-
sign methodologies developed for one unsuitable for the other. Hence, one
of the most relevant challenge in developing an HLS methodology is to
make it adequate for both the application domains. Indeed, complex em-
bedded system designs often include heterogeneous components. Another
variable to define in designing an HLS methodology is the input language
adopted to describe the specification. From this point of view it is possible
to distinguish between two macro-categories: low abstraction level descrip-
tions and high abstraction level descriptions. The first category includes
languages such as Behavioral Hardware Description Languages (BHDL).
There exist several kind of HDLs adopted in HLS, from the primitive ISP
and KARL, developed both around 1977, to the more common Verilog and
VHDL. Such languages can precisely describe operations and circuit’s or-
ganization. For this reason, recent HLS tools consider RTL designs de-
scribed through HDLs as the result of the HLS process. The following
steps, turning such designs in physical implementations, are delegated to
vendor-provided (for FPGA designs) or other logic synthesis tool (such as
Synopsis Design Compiler). The category of high abstraction level de-
scriptions can be in turn divided into the one of high-level programming
languages, such as C, C++ or SystemC, and the one of graphical models,
such as extended Finite State Machines (FSMs) or Petri Nets (PNs). The
choice of the description language is often tightly related to the application
domain. For example, describing a control-oriented application as an ex-
tended FSM may result simpler than specifying it by means of an high-level
C-like language, often leading to better synthesis results. Finally, the target
architecture must be defined. As anticipated in Chapter 2, the architectural

34

i
i

“thesis” — 2014/2/4 — 8:27 — page 35 — #47 i
i

i
i

i
i

3.2. Early Efforts

model is usually composed by datapath and controller. The most com-
mon approaches adopt FSMs for the controller. In addition to centralazied
FSMs, which represents the dominant solution, architectural altenatives ex-
ist such as hierarchical, distributed and/or parallel FSMs.

Figure 3.1: Main Features Characterizing Design Methodologies in HLS.

Figure 3.1 summarizes the described HLS features. The three identified
variables are strictly related each other. A good design methodology should
find the right combination between the choice of the specification descrip-
tion and the definition of the final architecture, while obtaining good per-
formances for both the application domains. In the following sections HLS
chronological evolution will be tracked, focusing on the choice made about
these three features.

3.2 Early Efforts

The seventies provided the basic ideas on which HLS is based, hence liter-
ature refers to this years as prehistoric period. In 1974 M. Barbacci noted
that, theoretically, it is possible to “compile”a behavioral description of the
specification into hardware, without any information about its structural de-
scription, such as synthesizable Verilog, thus setting up the notion of design
synthesis from a high-level language specification [84]. His research group
at Carnegie Mellon University investigated description languages such as
Instruction Set Processor (ISP), Instruction Set Processor Language (ISPL),

35

i
i

“thesis” — 2014/2/4 — 8:27 — page 36 — #48 i
i

i
i

i
i

Chapter 3. Related Work

and Instruction Set Processor Specification (ISPS) [23], developed mainly
to describe DSP algorithms. They built a pioneering HLS tool, Carnegie-
Mellon University design automation (CMU-DA) [67], [146], considering
as input ISPS specifications. The target hardware circuit consisted of a
structural composition of data path, control and memory elements. CMU-
DA also supported hierarchical design and included a simulator of the orig-
inal ISPS language. Although the innovative flow drew interesting and
highly groundbreaking traits for the research, the methods used were very
preliminary, and the new approach had a negligible impact in that years on
the EDA industry.

3.3 First HLS Generation

The period from 1980s to early 1990s characterized the first generation,
that have seen a decomposition of the HLS tasks into several subtasks, such
as hardware modeling and controller generation, operation scheduling, re-
source allocation and binding. This characteristic was common in most of
the HLS tools developed in that period, mostly for research and prototyp-
ing. Examples include ADAM [82], [100], HAL [150], MIMOLA [126],
Hercules/Hebe [62], [63], [115], and Hyper/Hyper-LP [49], [157]. Even
if many of the mentioned subtasks are NP-hard problems, and strictly re-
lated each other, they are almost independent from a logical point of view,
representing different problems that can be faced with different techniques.
Such decomposition, nowadays still adopted, had the aim of simplifying
the whole problem solving, focusing on one problem at a time through a
divide et impera paradigm. Factorizing the problem allowed to obtain bet-
ter performing circuits as result of the synthesis process, addressing each
subtask with a different and appropriate methodology. For example, the list
scheduling algorithm [16] and its variants are still widely used to solve
scheduling problems with resource constraints [147]; the force-directed
scheduling algorithm developed in HAL [152] [151] is able to optimize
resource requirements under a performance constraint. The Sehwa tool
in ADAM is able to generate pipelined implementations and explore the
design space by generating multiple solutions [99], [145]. The relative
scheduling technique developed in Hebe is an elegant way to handle op-
erations with unbounded delay [113]. Conflict-graph coloring techniques
were developed and used in several systems to share resources in the dat-
apath [117], [150]. These improvements led to a successful appliance in
the design of filters and other DSP functions, leading to an early prolifera-
tion of commercial HLS tools. These include Cathedral and its successors

36

i
i

“thesis” — 2014/2/4 — 8:27 — page 37 — #49 i
i

i
i

i
i

3.3. First HLS Generation

[124], Yorktown Silicon Compiler [35], and BSSC [190]. However, most
of them used custom domain domain-specific languages, generally oriented
to describe DSP algorithms. For example, the Silage language used in
Cathedral/Cathedral-II, while providing support for customized data-types
and code transformations [49] [157], was specifically designed for the syn-
thesis of DSP hardware [124]. The first effort in adopting C-like languages
in HLS is represented by HardwareC [114], designed for use in the Her-
cules system. However, these efforts did not lead to wide adoption among
designers. In most commercialization attempts, the technology changed in-
put languages, application scope, and user interfaces many times, making
HLS methodologies no more behind the times. Such technological changes
led companies to stop HLS tools promotion on the market, although their
internal use went on. The fundamental aspect restraining first HLS genera-
tion spread was a limited acceptance by final users, i.e. the designers, that
found most drawbacks than advantages in using HLS. More in detail, such
limitations were concerning:

• neither necessary nor useful: concurrent changes in design technolo-
gies for integrated circuits, due to recent adoption of RTL synthesis,
were revolutionizing design methodologies. In such a scenario, auto-
matic placement and routing technologies offered by RTL synthesis
seemed more desirable, and the idea that HLS could fill a design pro-
ductivity need was considered unlikely.

• input languages: the type of input languages adopted in this first gen-
eration presented great difficulties, since they consisted in domain-
specific HDLs developed ad hoc. Adopting new input languages for a
new and unfamiliar design approach was an obstacle for many.

• quality of results: the resulting design was often inadequate, due to
primitive scheduling, simple underlying architectures and expansive
allocation criteria.

• domain specialization: methodologies and techniques implementing
the early tools were focused and properly worked on DSP design,
concentrating on dataflow and signal processing. They were not ap-
propriate for the vast majority of early Application-Specific Integrated
Circuit (ASIC) designs, which concentrated on control logic.

In conclusion, it is possible to say that early works in HLS were mainly
focused on scheduling heuristics for dataflow-dominated specifications as
shown in [149], [76], [36] and [130], with first attempts to automate the

37

i
i

“thesis” — 2014/2/4 — 8:27 — page 38 — #50 i
i

i
i

i
i

Chapter 3. Related Work

synthesis of data paths, as described in many works, the most important of
which are [179], [111], [91] and [147]. As well explained in [125], it was
the era in which the research mainly concentrated on datapath-domain-
specific applications.

3.3.1 Architectural Models

In this era the dominant model adopted for the final architecture consisted in
a composition of datapath and controller, typically designed as a centralized
Finite State Machine (FSM). Many works (e.g. [73], [69], [172] and [173])
identified the FSM as one of the fundamental concepts in the design of
synchronous electronic circuits. Such approach is still the most widespread.

Centralized Deterministic FSM

The centralized deterministic FSM approach is the simplest from the archi-
tectural model point of view. The controller is modeled by a single FSM.
As shown in Figure 3.2, the controller structure is composed by a combina-
tional block implementing the state transition function and the output func-
tion. The states are generally represented through edge-triggered registers,
responding to the change of state on the variation front rather than on the

Figure 3.2: Standard Structure of a Centralized FSM.

level of voltage. An important advantage of this structure is a simple clock-
ing scheme, with a single clock which is not gated, so that correct function
and timing can be easily verified. The maximum speed of such a struc-
ture is determined by the time required for changing the flip-flops output
and by the maximum propagation delay through the combinational block.
Since this delay directly corresponds to the size of combinational block,
decentralized approaches seems more desirable. Moreover, since the FSM
is intrinsically sequential, parallelism is allowed only for those operations
that are assigned to the same control step. In other words, the parallelism
extraction task is totally moved to scheduling and binding phases, often

38

i
i

“thesis” — 2014/2/4 — 8:27 — page 39 — #51 i
i

i
i

i
i

3.4. Second HLS Generation

leading to an explosion in the number of states [75]. Mitigating this issue
is one of the main goals of this thesis work.

3.4 Second HLS Generation

The period from mid 1990s to 2000s characterized the second-generation
in the HLS evolution. The substantial improvements in the synthesis tools
made their adoption in industry more practical. Major semiconductor de-
sign companies developed proprietary HLS tools. These include HIS from
IBM [25], Matisse from Motorola [116], Cyber from NEC [185], and CALLAS
from Siemens [28]. At the same time the major EDA companies, such as
Synopsys, Cadence, and Mentor Graphics, started to commercialize their
HLS tools. Synopsys offered Behavioral Compiler [110], Cadence’s Alta
group provided Visual Architect [90], and Mentor Graphics proposed the
Monet tool [71]. Although these tools were tried out seriously by a number
of users, the technology achieved a failure again. The main failure reasons
can be summarized as follows:

• input languages: behavioral Hardware Description Languages (HDLs)
were used as inputs. This choice was determined by the mistaken as-
sumption about who would use HLS, i.e. RTL synthesis users, that
were at least familiar with such languages. This led to a failure on
several fronts. First, RTL designers decided to keep their own tools,
instead of switching to new tools that neither provided substantial im-
provements in performance, nor gave substantial reductions in devel-
opment effort with the same quality of results. Second, algorithm and
software designers were discouraged by the need, that HLS adoption
would mean, of learning HDL. Third, using HDL as input language
implied simulation times as long as with RTL synthesis, hence HLS
adoption did not gave any advantage in terms of time. Finally, it re-
sulted impossible to exploit compiler-based language optimizations.

• quality of results: the resulting designs were still inadequate, as well
as unpredictable and widely variable. Moreover, formal validation
methods were not been proposed yet. Hence, understanding if the
synthesis results were correct resulted very hard.

• lacks in control-dominated specifications synthesis: designers often
used specialized datapath compilers in conjunction with RTL synthe-
sis, as shown for example in [79]. However, HLS could be applied
also to control-dominated algorithms. First attempts of applying this

39

i
i

“thesis” — 2014/2/4 — 8:27 — page 40 — #52 i
i

i
i

i
i

Chapter 3. Related Work

extension were proposed in this period, but with worse results with
respect to dataflow-dominated algorithms synthesis. Therefore, HLS
started to be considered a partial solution, giving quite good results
only in certain conditions. At that time, many researchers thought
that understanding the reasons of poor results in control synthesis was
not a right investment of their time. Among the causes for this lacks
there were the use of inappropriate or insufficient Intermediate Rep-
resentations (IRs), that did not include informations about the control.
Indeed, the most common IR adopted in that period was the DCFG,
as shown in [139] and [138].

The second generation was the first age of commercial EDA and behavioral-
synthesis tools driven by hardware description languages. From the re-
search point of view, many works of that period, as [160], [155] or [174],
were focused on new scheduling techniques and strategies. Moreover, about
the application domain, most works (e.g. [66]) were still focused on dat-
apath synthesis. However, there was some attempt in control-dependent
specifications synthesis, as in [158], [119] and [184].

3.4.1 Architectural Models

In early second generation, first attempts to modify the target architecture
were proposed. Indeed, researchers realized that using a centralized FSM,
synthesizing the controller, could lead to severe overheads in terms of both
area and performance (frequency). A first approach to solve such problems
consisted in FSM decompositions, leading to the definition of distributed
controllers, possibly organized in a hierarchical structure. Such decom-
positions aimed to reduce the area and/or the delay within an FSM. Many
works focused on this technique, such as [165] and [140]. In mid nineties,
a successive approach followed, based on the idea that the elements having
greater impact on area were the interconnections. Moreover, interconnec-
tions comported the critical path delay to increase, determining a longer
circuit clock cycle. The critical path delay in a RTL circuit with a datapath
and a controller is the register to register data flow path with the longest
delay. It consists generally of three components: controller delay, control
wire delay and datapath delay. Several techniques were proposed to reduce
the critical path delay, at different design levels. For instance, careful mod-
ule generation techniques at RTL level could produce faster modules, im-
proving the performance in the critical path. Moreover, logic minimization
methods could be used at the logic level reducing the number of gate levels
in the critical path. Unfortunately, these techniques did not provide benefits

40

i
i

“thesis” — 2014/2/4 — 8:27 — page 41 — #53 i
i

i
i

i
i

3.4. Second HLS Generation

in wiring delay reduction. Furthermore, especially at high frequencies, the
interconnect wiring delay results the dominant factor in the circuit delay.
On the other hand, as described in [96], the control path delay has been
found to be the slowest segment of the overall critical path delays. For all
these reasons, some mid-90s approaches, such as [96] and [51], performed
FSMs decomposition with the aim to reduce control path and control wire
delays. Finally, FSMs decomposition techniques were proposed to address
another problem, i.e. power overhead. In the following the main tech-
niques proposed in these years about FSM decomposition will be deeply
explained, after a brief overview on formal FSMs decompositions method-
ologies. After that, some considerations about distributed and hierarchical
controllers will be highlighted.

Formal FSM Decompositions Methodologies

Since sixties FSM decomposition problem was treated from a formal and
theoretical point of view. Three main decomposition techniques were iden-
tified: parallel decomposition, cascade decomposition and generalized de-

Figure 3.3: Parallel Decomposition of a Finite State Machine.

composition.
Parallel decomposition is the simplest technique. As shown in Figure 3.3,
the submachines M1 and M2 are supplied with the same input sequence
I . Such submachines operate independently, providing informations about
their internal state to a combinatorial circuit C, whose job is to generate the
output sequence O.
Cascade decomposition divides a given finite state machine into a sequence
of communicating components. In Figure 3.4 a FSM cascade decomposi-
tion is shown. Observe that the initial FSM is partitioned into two sub-
machines M1 and M2, each driven by the same input sequence I . The ob-
tained sub-machines do not operate independently. Indeed, M2 is supplied,
by means of auxiliary inputs (see the edge from M1 to M2 in Figure 3.4),
with information about the current internal state of M1. Such information

41

i
i

“thesis” — 2014/2/4 — 8:27 — page 42 — #54 i
i

i
i

i
i

Chapter 3. Related Work

Figure 3.4: Cascade Decomposition of a Finite State Machine.

influences the state transitions of M2, and enable M2 to generate the appro-
priate output sequenceO. The possibility of passing state information from
M1 to M2 makes cascade decomposition a more powerful technique than
parallel decomposition. Then the prior can be viewed as a generalization of

Figure 3.5: Generalized Decomposition of a Finite State Machine.

the latter.
Generalized decomposition produces a model in which each submachine is
provided with information about the current state of the other, as shown in
Figure 3.5. In this case the internal behavior of each machine depends both
by the behavior of the other and by the input sequence I . Parallel and cas-
cade decompositions can be viewed as particular cases of the generalized
one.
Among the works treating FSMs decomposition in a formal way there is
the one proposed by Hartmanis [97] in 1960, who applied an algebra on
partitions of states. This work focused on cascade decomposition. Such
methodology was extended in the few subsequent years in [123], [87] and
[98] to preserve the covers for the cascade decomposition found. Parallel
decomposition was considered [78], generalized decomposition in [165].

FSM Decomposition reducing area and delay within a FSM

From late eighties, researchers started to apply decomposition techniques,
formalized years before from a theoretically point of view, in FSMs design

42

i
i

“thesis” — 2014/2/4 — 8:27 — page 43 — #55 i
i

i
i

i
i

3.4. Second HLS Generation

for logic implementation, as reported in [165] and [140]. They found soon
that cascade decomposition has limited use in FSMs design, since specifica-
tions of centralized controllers in microprocessor chips do not usually have
good cascade decompositions. Obviously, also parallel decomposition re-
sulted inadequate, being less general than cascade one. Hence, they started
to develop techniques for the identification of factors (i.e. controller parti-
tions) producing a good generalized decomposition. In [165], for instance,
such factors were identified in sets of states and transition edges obtained
from a State Transition Table [167] specification of the initial FSM. These
factors were extracted and represented as factoring sub-machines. Then
the occurrences of these factors in the original machine were replaced by
calls to the factoring submachine. Procedures were defined to find all the
exact factorizations, i.e. those that maximally reduce the number of states
and transition edges in the original machine. An important result of this
research is expressed by the following theorem, that shows the significant
advantages of exact factorization in terms of area, due to the great reduction
in the total number of edges and states that such technique involves.

Theorem 1. A decomposed submachineMi, produced by factorization from
an original machine M, via an exact factor with NI(i) internal states and
NE(i) exit states in each occurrence Oi

F ∈M , will have

NR∑
i=1

(|e(i)| −NI(i))

edges less than the original machine M, where e(i) is the set of internal
edges in Oi

F ∈M , and NR is the number of possible factors for M.

Unfortunately, exact factorization often produced too small submachines,
resulting in useless decompositions. Moreover, exact factorization may not
exists at all for a given machine. Hence, techniques to find good, though
inexact, factors in an FSM were proposed.

FSM Decomposition reducing control path and control wire delays

Another group of researchers concentrated on the critical path reduction,
as [51] and [96]. More in detail, techniques to reduce control path and
control wire components of the overall delay were proposed. Researchers
focused on such components since the prior was found to be the slowest
segment of the critical path, and the latter was found to be the dominant
factor, especially at high frequencies.

43

i
i

“thesis” — 2014/2/4 — 8:27 — page 44 — #56 i
i

i
i

i
i

Chapter 3. Related Work

In [96] the authors identified control points in a machine, representing min-
imal partitions of a centralized controller, aiming to divide it into multiple
local controllers. Each control point can be viewed as the controller manag-
ing one operation in the machine. Hence, if an FSM contains N operations,
then N control points can be individuated inside that machine, one for each
instruction. The approach used a wire length extraction technique followed
by clustering of control points into local groups. Clustering was targeted at
minimizing wire lengths.
Papachristou and Alzazeri extended such work in [51]. They firstly parti-
tioned an RTL based controller output into control points, and then parti-
tioned the datapath around its constituent. At this point the control points
individuated were grouped so that all control points enabling the same kind
of operation were placed in the same datapath partition. Hence, in this
case, clustering resulted from datapath partitioning. In this way multiple
local controllers were generated, each controlling one datapath partition,
also said functional block. The last step of such technique was in the layout
phase, in which each controller were placed physically close to its corre-
sponding functional block, shortening wire lengths and thus reducing de-
lays, especially at high frequencies. Observe that such approach starts from
an RTL circuit, and thus it is not included in the HLS flow. Better results
can be obtained integrating this work in the RTL generation process. More-
over, datapath partitioning and close physical placement of local controllers
can be used to infer useful hints for resource binding.

Distributed Controller

As above mentioned, a distributed controller structure can be obtained by
FSM decomposition. From what said so far, it is possible to infer that the
objective of decomposition was to reduce the delay inside an FSM, or to re-
duce the critical path delay, rather than to reduce the power overhead. The
concept of parallelism extraction is not included in the aims of realizing a
pure distributed controller structure. As in the case of centralized FSM, the
task of individuating set of instructions that can be simultaneously executed
does not concern the controller. Consider, for example, the above described
technique proposed by Eppling in [96], or the one presented by Papachris-
tou et al. in [51]. From the analysis of these methodologies it is possible
to infer that pure decomposition can directly be applied on an RTL circuit,
without being included in a HLS flow. In other words, decomposition takes
as input a centralized FSM, that can be obtained through HLS, and manip-
ulate it to reduce area and delay. Scheduling and binding have been already
performed on the centralized FSM and do not change after decomposition.

44

i
i

“thesis” — 2014/2/4 — 8:27 — page 45 — #57 i
i

i
i

i
i

3.4. Second HLS Generation

Hence the set of possible states for the distributed machine is the same ob-
tained for the centralized one. However, in this case the state of the entire
machine has not to be explicitly represented, since can be obtained as a
composition of the submachines states, leading to a considerable reduction
in the number of total states.

Hierarchical Controller

Inside Hierarchical Controllers different subcontrollers are organized in a
hierarchical structure, usually in accordance with the hierarchical relation
obtained from the Hierarchical Task Graph (HTG) [131] of the specifica-
tion. In the multi-level hierarchy, a controller at one level distributes groups
of operations among its direct descendant. Each controller can start its com-
putation after the activation signal from its father has been received. When
a local computation is terminated, the corresponding subcontroller send a
signal to its father, implementing a synchronization mechanism that enable
controllers at higher levels to properly activate subcontrollers.
A hierarchical controller structure is completely compatible with distributed
one. Moreover, it is also compatible with parallel controllers, that will be
presented in the next. Hence, it is possible to implement distribute and
hierarchical controllers, or distribute, parallel and hierarchical controllers.

NFA-Regular Expressions Based Controller

Usually, machines such as protocol handlers or communication encoders,
results too complex to be described through a deterministic FSM model.
They need instead Nondeterministic Finite Automata (NFA) to be concisely
described. An NFA, or Nondeterministic Finite State Machine (NFSM)
[132], is a finite state machine in which for each pair {state, input } there
may be several next states. It was formally proved that for any given NFA it
is possible to construct an equivalent deterministic FSM through standard
methods, such as powerset construction or subset construction (see [167],
Theorem 1.19, section 1.2, and [103]). Obviously, the first step needed to
synthesize an application, described with an NFA-based model, is trans-
forming such description in its deterministic equivalent. For this reason,
NFAs have unfeasible complexity when implemented in hardware with
standard approaches, that simply transform it in a deterministic FSM. For
example, one of the most widespread techniques were based on the use of
Esterel [74], a synchronous reactive language allowing an inherently non-
deterministic machine description. Its commands reacted to inputs from the
outside world, by performing tasks and sending outputs. Each reaction to a

45

i
i

“thesis” — 2014/2/4 — 8:27 — page 46 — #58 i
i

i
i

i
i

Chapter 3. Related Work

specified input was allowed to occur independently of other reactions, cre-
ating an NFA model. However, the Esterel compiler, as above mentioned,
created a deterministic State Transition Graph (STG) [172] from the NFA
specification, often having unacceptable complexity. As a consequence,
various techniques were proposed to address this problem, based on the
concept of classical Regular Expressions (REs) [17]. It is well known that
any FSM can be specified as a regular expression, representing the set of all
the strings belonging to the formal language recognized by the automaton.
Even though this means that the classical regular expression description is
always allowed, such specification is not guaranteed to be as concise as
other types. This is the main reason why regular expressions alone are not
enough, and should be used together with a nondeterministic description.
Starting from such considerations, in [162] and [20], regular expressions
were used as a specification for Programmable Logic Array (PLA) designs,
to be converted into an NFA state transition diagram, which in turn was
directly encoded as product terms of a PLA implementation. However,
such technique may lose some of the informations present in the regular
expression. For example consider the regular expression e = (a|b)+(b|c)∗
over the alphabet Σ = {a, b, c}. Such expression can be partitioned in
two components: (a|b)+ and (b|c)∗. Such kind of decomposition, defined
natural partitioning in [14], can be useful to identify points in which the
machine can be divided in sub-machines, distributing the control for a pos-
sible FSM factorization. When the correspondent NFA state transition di-
agram is obtained from e, such information about natural partitions may
go lost. Indeed, both the partitions contain the character b. Hence, when
b is read, if we consider only the NFA representation, there is no way to
understand what natural partition this character belongs to. A subsequent
approach, proposed in [15], was the Production Based Specification one.
They considered, as specification language, the productions derived from
the grammar corresponding to the formal language recognized by the asso-
ciated automaton. Indeed, as described in [137], there exist three equivalent
models for the description of languages: automata, regular expressions and
grammars. Similarly, from the finite state machines point of view, there ex-
ist three equivalent models for a (deterministic or nondeterministic) FSM
description: the language it recognizes, the regular expression describing
such language and its associated grammar. The production based specifica-
tion model provided a hierarchical regular expression language augmented
with some unique operators. An algorithm for direct construction of the
circuit from a regular expression based tree was presented, which did not
require conversion of the RE to a NFA state transition diagram. This direct

46

i
i

“thesis” — 2014/2/4 — 8:27 — page 47 — #59 i
i

i
i

i
i

3.4. Second HLS Generation

construction often produced fast circuits, but with redundant state bit en-
codings.
Finally, Crews et al. [14] discussed techniques for high-performance con-
troller synthesis, from the complexity point of view. More in detail, they
proposed sequential optimization techniques whose complexity scales with
the number of state bits, rather than the number of states. This work aimed
to provide viable synthesis techniques for designs which are too large for
synthesis with conventional methods. The methodology proposed in [14]
started from classical regular expressions [17] specifications, deriving from
it an NFA description. Once obtained, the NFA model was encoded as a
tree-based extended regular expression. They assumed as controller speci-
fication regular expressions in the form of Directed Acyclic Graphs (DAGs)
[106]. Table 3.1 describes the notation adopted in the specification DAG.
DAG representation allows to specify any completely deterministic au-

Table 3.1: Regular Expression DAG Symbols.

symbol meaning nodes type
concatenation of events sequential non-leaf nodes

, (left then right)
|| OR (either event below) sequential non-leaf nodes

AND sequential non-leaf nodes
&& (events occur simultaneously)
∗ Kleene closure (0 or more) sequential non-leaf nodes
+ 1 ore more sequential non-leaf nodes

action designates an output activation sequential non-leaf nodes
boolean function combinational (terminal)

function (of inputs only) nodes

tomata without making use of traditional deterministic models, such as
STGs or actual state encoding. Moreover, from this specification, there
are direct gate level implementations which scale with the number of state
bits in the controller, which can be logarithmically smaller than the number
of machine states. Once obtained the DAG representation, they performed
natural partitioning, identifying proper sub-DAGs. For example, consider-
ing the manipulation rules they adopted to minimize the original ER, spec-
ified as follows

(A,B)||(A,C)→ (A), (B||C) (Rule 1)
(A,C)||(B,C)→ (A||B), (C) (Rule 2)
A||A→ A (Rule 3)
A, (A)∗ → (A)+ (Rule 4)
(A∗)∗ → (A)∗ (Rule 5)

47

i
i

“thesis” — 2014/2/4 — 8:27 — page 48 — #60 i
i

i
i

i
i

Chapter 3. Related Work

A, (A{action})→ (A,A){action} (Rule 6)

it is possible to identify a sub-DAG inside each open/close round-parentheses
pair. Minimization is the main optimization technique proposed in this
work. It aimed to remove unobservable states from the system. After that,
each unique action in the DAG was put into correspondence with a unique
output of the controller. The output was set high only if the sub-DAG below
the action accepted, i.e. when the sequence of inputs for that sub-machine
matched the entire sequence specified in the DAG. After reducing the num-
ber of terminals in the tree, the circuit was synthesized by traversing the
resulting DAG. The construction required one register for each path to a
terminal node. The circuit was generated recursively, by allocating regis-
ters at the terminals and constructing logic functions of the register outputs
(present state bits) according to the type of sequential operator at each node.
Logic functions were stored as Binary Decision Diagrams (BDDs) [21] dur-
ing construction.
Despite such methodologies presented some advantages in controller syn-
thesis for complex applications, regular expressions and nondeterministic
automata based approaches resulted too much computationally expensive,
mitigating their adoption.

3.5 Third HLS Generation

The early 2000s introduced the third (and current) HLS generation. The
most important feature characterizing this era is the adoption, as HLS in-
puts, of C-like specifications described through C, C++ and SystemC code
[181]. SystemC is a C++ class library which provides features and seman-
tics similar to HDLs such as Verilog and VHDL. These features include
structural hierarchy and connectivity, clock-cycle accuracy, four-level logic
and bus resolution functions, making SystemC specification more detailed
than behavioral code, and suitable for HLS. Nevertheless, SystemC still
exposes programmers to low-level details, and in recent years this aspect
slightly lowered its popularity in favor of behavioral C and C++.

Table 3.2 summarizes some of the most useful high-level languages fea-
tures for effective C-based design and synthesis, as identified in [56]. Sup-
port for C-based specifications in HLS:

1. extends the range of potential users to designers more familiar with
programming languages than with HDLs or Domain Specific Lan-
guages (DSLs)

48

i
i

“thesis” — 2014/2/4 — 8:27 — page 49 — #61 i
i

i
i

i
i

3.5. Third HLS Generation

Table 3.2: Useful high-level languages features for C-based design and synthesis.

Language Constructs Benefits

C

Arbitrary-precision integer types Bit-accurate designs, QoR
Floating point types Floating point arithmetic

Function calls Modular design hierarchy
Pointers Efficiency and flexibility
Structs Data encapsulation

C++

Fixed point types Fixed point arithmetic
Templates Parameterizable design

classes Object-oriented modeling
Pointers Efficiency and flexibility

SystemC
Processes Coarse grained concurrency

Clocks Multi-clock design
TLM Fast simulation

2. facilitates complex tasks such as HW/SW codesign, HW/SW parti-
tioning, and Design Space Exploration. For example, modern Systems-
on-a-Chip (SoCs) usually embed soft processors, which interface with
custom hardware: using the same description language for hardware
and software allows the designers to quickly explore and evaluate dif-
ferent system configurations. Other emerging platforms (i.e., hybrid
architectures) couple general purpose multi-core processors with re-
configurable devices to accelerate some portions of code. On these
systems, a unified description paradigm may facilitate the mapping of
software kernels to custom hardware

3. allows HLS to take advantage of optimizations techniques inspired
or based on software compilation (e.g. [86], [85], [153], [95], such
as expression rewriting, constant propagation, dead code and com-
mon subexpression elimination [19]. For this reason, several HLS
flows (e.g. Autopilot [192], LegUp [37], Bambu [1]) rely on software
compilers, such as GCC or LLVM, to generate the optimized Internal
Representations (IRs) starting from which they perform the hardware
synthesis

4. improves the design quality: designers can take advantage of rich con-
structs to maximize for example design reusability, modularity, as well
as synthesis QoR

5. reduces the verification effort, through the automated generation of
RTL test-benches starting from high-level test benches provided by
the user (Figure 3.6)

49

i
i

“thesis” — 2014/2/4 — 8:27 — page 50 — #62 i
i

i
i

i
i

Chapter 3. Related Work

Figure 3.6: Tipical HLS tools output including RTL and RTL test benches.

Another key aspect which has influenced the evolution of HLS in the last
years has been the rise of Field Programmable Gate Array (FPGA) de-
vices. FPGAs have constantly improved in capacitance, speed, and often
include hardware components such as embedded multipliers, local memo-
ries and even soft cores, which can be profitably exploited by target-aware
HLS frameworks [109]. For example soft cores may be exploited when
processing complex application whose complete hardware implementation
may not fit on the reconfigurable fabric: the user or HW/SW partitioning
techniques may identify critical portion of code to synthesize as custom
hardware, while the rest of the code executes, as software, on the proces-
sor [180]. Many recent HLS tools have been designed specifically target-
ing FPGAs; these include GAUT [141], ROCCC [83], [183], SPARK [86],
[85], LegUp [37], and Trident [177], [176]. While for FPGA designs the
adoption of automated synthesis flows is mainly exploited to quickly map
algorithms onto hardware with limited costs, in the ASIC industry HLS has
been considered mainly for DSE and fast prototyping [163]. Indeed HLS
represents an efficient means for design space exploration: it can generate
several design alternatives, with different characteristics, and provide an
estimates of the resource utilization and clock frequency without invoking
the logic synthesis tools. Thus it enables early design exploration, enabling
a fast identification of achievable cost-performance points. In rapid proto-
typing, a system can be quickly modeled in an FPGA, enabling for example
system simulation and system-level performance analysis. Moreover, area
and timing estimates can be used to assess the synthesis results and, as
necessary, to make improvements to the implementation by modifying the
high-level representation.

50

i
i

“thesis” — 2014/2/4 — 8:27 — page 51 — #63 i
i

i
i

i
i

3.5. Third HLS Generation

3.5.1 HLS and EDA Industry

Despite the interest of both the research and the design communities, most
of previous generation commercial HLS efforts have failed. [56] identifies
among the others, five main reasons for such failures:

1. Lack of comprehensive design language support: most of the ap-
proaches described in Section 3.3 and Section 3.4 raised only slightly
the abstraction level of the design process, using partially timed be-
havior HDL for specification. Early C-based approaches instead, had
a poor coverage of the considered languages

2. Lack of reusable and portable design specification: many tools forced
the users to embed in the specification details such as timing and in-
terface information, as well as design constraints.

3. Narrow focus on datapath synthesis: little effort if any was spent on
aspects such as interfaces with other hw/sw modules and system inte-
gration

4. Lack of satisfactory QoR: serious problems with timing closure be-
tween logic and physical design

5. Lack of a compelling reason/event to adopt a new design method-
ology: moving towards HLS despite of classical RTL design flows
appeared a risk, also because there was no evidence on the HLS effec-
tiveness in terms of QoR.

By mitigating these issues, third generation commercial tools have started
to to meet users’ needs and expectations. Most widespread frameworks in-
clude AutoESL’s AutoPilot [192] (recently acquired by Xilinx), Cadence’s
C-to-Silicon Compiler [5], Forte’s Cynthesizer [141], Mentor’s Catapult
C [31] [189], NEC’s Cyber Workbench [141], and Synopsys Synphony
C [12] (formerly, Synfora’s PICO Express, originated from a long-range
research effort in HP Labs [108]). This success is confirmed by market
statistics provided by the EDA Consortium (EDAC) Market Statistics Ser-
vice (MSS) [2]: Figure 3.7 reports EDA revenues for the major categories,
i.e. Computer-Aided Engineering (CAE), Printed Circuit Board & Multi-
Chip Module (PCB & MCM), IC Physical Design and Verification, and
Semiconductor IP and Services), from Q1 1996 through Q1 2013. CAE,
in which HLS is located and which represent the main source of income
in the EDA industry, while reaching its revenues peak in 2013, has seen a
slight decrease in sales between 2006 and 2010. However, more detailed

51

i
i

“thesis” — 2014/2/4 — 8:27 — page 52 — #64 i
i

i
i

i
i

Chapter 3. Related Work

Figure 3.7: EDA revenue history, 1996 - present.

Table 3.3: EDA segments revenue analysis ($ MILLIONS). Source: EDAC MSS Statistics
Report and Desaisive Technology Research analysis.

2006 2007 2008 2009 2010
High-level design and verification (ESL) 121.6 139.5 159.5 180 205
Year-over-year growth 16% 15% 14% 13% 14%
Percentage on CAE 5% 6% 7% 8% 9%
RTL design and verification (traditional) 651.2 696.9 634.6 625 625
Year-over-year growth 7% 7% -9% -2% 0%
Percentage on CAE 29% 28% 29% 28% 28%
Overall CAE segment 2213.4 2467 2199.7 2200 2250
Year-over-year growth 14% 11% -11% 0% 2%
Total EDA market 4078.3 4464.8 3853.7 3850 3960
Year-over-year growth 14% 9% -14% 0% 3%

52

i
i

“thesis” — 2014/2/4 — 8:27 — page 53 — #65 i
i

i
i

i
i

3.5. Third HLS Generation

analysis shows that the High Level Design and Verification segment, on the
contrary, has grown in this time-frame, as reported in Table 3.3. The RTL
design and verification segment has lost market share; however in 2010, the
latter has registered revenues for more than three times higher with respect
to the prior. This indicate that RTL remains the dominant specification and
synthesis level. Detailed statistics for the 2010-2013 time frame are not
reported, since released to consortium members only.

Recently, third-party companies such as Berkeley Design Technology
Inc. (BDTI) [3] offer HLS tool certification programs for the evaluation
of HLS tools for FPGAs, in terms of both QoR and usability. For exam-
ple, [33] analyzes productivity and QoR of the Autopilot tool for the syn-
thesis of DSP applications, comparing performance of the automatically
generated accelerators against mainstream DSP processors. For the con-

Figure 3.8: Maximum frame rate achieved
for a video application on a DSP proces-
sor and an FPGA plus HLS tools.

Figure 3.9: FPGA resource utilization on a
wireless receiver, implemented using HLS
tools versus hand-written RTL code.

sidered application, the HLS approach provided 40X better performance
(as shown in Figure 3.8) with FPGA resource utilization levels compa-
rable to hand-written RTL code (Figure 3.9). Moreover, the analysis re-
port a similar development effort for both the HLS and DSP-processor ap-
proaches, despite historically DSP processor programming resulted easier.
Similarly, [26], show that, in some high parallelizable signal processing ap-
plications, FPGAs could achieve up to 100X higher performance and 30X
better cost-performance than DSP processors. However, these results are
strictly related to the particular application domain.

53

i
i

“thesis” — 2014/2/4 — 8:27 — page 54 — #66 i
i

i
i

i
i

Chapter 3. Related Work

3.5.2 Architectural Models

Third HLS generation introduces a new controller architecture, i.e. paral-
lel controllers. In literature the two terms “distributed”and “parallel”have
been often used as synonyms. Despite many similarities, there exists a
subtle difference between them. Both the terms indicate the presence of
an underlying structure composed by sub-controllers that work simultane-
ously, possibly interacting each other to compute their next state. However,
the term distribution, only refers to this aspect, highlighting the distributed
nature of the design. Parallel controllers instead, are able to operate as com-
pletely independent modules, making their adoption particularly profitable
for parallelism exploitation at the process level, especially when statical
analysis cannot provide accurate information on the latency of each pro-
cess. It is difficult to obtain this behavior with a centralized FSM model,
since it is inherently serial: computation proceeds as a sequence of con-
trol steps, and the system in each given step is in a well defined state. In
parallel controllers instead, each sub-controllers is characterized by its own
state, and the overall system state can be obtained through the composition
of local states. In addition, identifying coarse-grained parallelism from a C-
like serial specification is a complex task. However, it can be addressed, as
demonstrated in [122] and in this thesis work, by choosing a proper IR for
the synthesis flow. Nevertheless, most of C-based HLS tools use CDFG-
based IRs: while allowing ILP exploitation, usually CDFG analysis fails
in recognizing available coarse grained parallelism, as in the presence of
concurrent loops or function call. For this reason, proposed approaches ex-
ploiting parallel controllers do not consider C-like specification, but adopt
description languages which directly expose coarse grained parallelism,
and which facilitate the management of the interactions between processes.
Relevant examples of such approaches describe specifications through Petri
Nets [39] [104] and Communicating sequential processes [92]. A Petri
Net [101] (PN) is a mathematical modeling language for the description of
distributed systems. Thanks to its ability in representing the parallelism in-
side an application, this model has been proposed as graphical specification
description language in HLS, as an alternative to high-level programming
languages. A Petri net can be viewed as a marked version of a Petri Net
Graph [101].

definition 3.5.1. A Petri Net Graph (PNG) is a 3-tuple (S, T, W), where:

• S is a finite set of places, i.e. nodes representing conditions

54

i
i

“thesis” — 2014/2/4 — 8:27 — page 55 — #67 i
i

i
i

i
i

3.5. Third HLS Generation

• T is a finite set of transitions, i.e. nodes representing events that may
occur

• W : (S × T)
⋃

(T × S)→ N is a multiset of arcs, i.e. it defines arcs
and assigns to each arc a non-negative integer arc multiplicity.

Observe that no arc may connect two places or two transitions.

definition 3.5.2. A Petri Net is a 4-tuple (S, T, W, M0), where:

• (S, T, W) is a Petri net graph

• M0 is the initial marking, a marking of the Petri net graph

A Petri net representation of a controller structure is equivalent to the one
obtained by dividing the specification of a controller into a number of con-
current processes, producing a set of sub-controllers. Then controllers are
implemented as FSMs and linked with control lines and/or semaphore bits.
An example of PN specification of a controller is shown in Figure 3.10.

Figure 3.10: Example of Petri Net Specification of a Controller.

Early work from Biliński et al. [112] [105], proposed to exploit the graph-
ical representation of concurrency provided by Petri nets to synthesize a
parallel controller structure. They based this choice on the observation that
such graphical representation is often easier to understand, hence it can re-
duce the likelihood of parallel synchronization errors. Examples of HLS
techniques based on Petri nets may be found in [161] and [57]. Similar
ideas are considered in [188], where the authors propose a methodology
for the HLS of multi-process behavioral descriptions; the HLS flow consid-
ers as inputs applications described through the concurrent communicating

55

i
i

“thesis” — 2014/2/4 — 8:27 — page 56 — #68 i
i

i
i

i
i

Chapter 3. Related Work

processes specification paradigm [92]. However, in these techniques the
user is required to provide low level details on synchronization between the
concurrent processes, reducing the benefits of HLS.

3.6 Conclusions

Latest generation HLS tools have demonstrated the maturity to be suc-
cessfully used in industry for specific domains, and showed significant
progress in providing wide language coverage, robust compilation tech-
nology, platform-based modeling, and system-level integration. However,
there are several aspects which need further improvements. To represent
the mainstream approach, HLS must provide good QoR in a wider range
of domains not limited to DSP. When considering complex applications,
in which parallelism does not occur in the form of ILP, the gap between
automatically generated and hand-written design is still significant. The
adoption of C/C++ as specification language can be identified as one of the
main reasons for this lack [135]: C/C++ offers the highest level of algo-
rithmic exploration, but is characterized by sequential execution semantics
which makes difficult to identify coarse grained parallelism. This limita-
tion is strengthened by the architectural model usually considered, based
on the implementation of centralized FSM controllers, whose execution
paradigm is also inherently serial. Literature shows design alternatives, i.e.
parallel controllers, which are particularly suitable for supporting parallel
execution. However, proposed approaches act on specifications described
through Petri nets or process networks, and this assumption nullifies the
valuable advantage of having a common description language for hardware
and software. This thesis work instead, proposes an HLS methodology
targeting a parallel controller architecture while adopting C code as specifi-
cation language. The proposed techniques improve parallelism exploitation
at different granularities, regardless of the application domain.
The designed flow embeds an efficient front-end analysis phase, which en-
ables automatic parallelism identification. However Task Level Parallelism
(TLP) extraction may still be limited when considering arbitrary sequen-
tial specifications. This aspect is highlighted, for example, in [56], which
suggest further investigations on parallel programming models. Languages
and APIs such as CUDA, pthreads and OpenMP can explicitly expose TLP,
and facilitate concurrency management through explicit synchronization
directives. In this work these opportunities have been explored, design-
ing the HLS flow also to target parallel applications, where concurrency is
specified through pragma insertion. Another feature that [56] recognizes

56

i
i

“thesis” — 2014/2/4 — 8:27 — page 57 — #69 i
i

i
i

i
i

3.6. Conclusions

as a research priority, is the support for complex memory hierarchies. To-
gether with exploitation of parallel programming paradigms, this represents
a crucial aspect for the emerging field of high-performance reconfigurable
computing [70]. Scientific applications common in HPC require efficient
access to gigabytes (often terabytes) of external memories, shared between
different processes (for task parallel applications) or hardware components
(e.g. host processors/accelerators in SoCs). Current HLS solutions lack in
a sufficient abstraction of the external memory accesses, often exposing the
programmer to low level details of bus interfaces [136]. This lack has been
alleviated through the definition of a custom Memory Interface Controller
(MIC), which introduces an abstraction layer between hardware acceler-
ators design and external memory structure. The MIC allows fine grained
parallelism exploitation on memory accesses, automatically managing con-
currency on shared resources, and embeds support for atomic memory op-
erations for synchronization. The MIC has been initially designed as a
custom IP, suitable for easy adoption in both RTL and HLS flows. Then
it has been explored an alternative design, hierarchically structured, which
facilitates the MIC allocation during the automated synthesis process, and
improves reusability of generated components. The contribution of this the-
sis work will be described in depth in the next chapters. Each chapter will
cover different aspects, and for each specific topic, it will provide additional
details on related work.

57

i
i

“thesis” — 2014/2/4 — 8:27 — page 58 — #70 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page 59 — #71 i
i

i
i

i
i

CHAPTER4
The Parallel Controller Architecture

The analysis of the State of the Art has shown how High Level Synthesis
has evolved over time, providing impressive improvements in each gener-
ation. Current C-based HLS frameworks provide wide language coverage,
integrate design space exploration engines, exploit embedded resources
provided by modern FPGAs, and most important of all provide good Qual-
ity of Results for specific domains. However, most of the improvements,
in terms of QoR, have been obtained progressively refining the different
algorithms composing the HLS process, developed considering the FSMD
as the golden model for the target architecture, and tailoring the research
around this assumption. This mimics the design of software compilers,
which aim at maximizing the exploitation of already designed hardware.
However, even if literature proposes several alternatives to the centralized
FSM model suitable for HLS, they have not yet been exhaustively explored.
Among them parallel controllers appear very promising, especially for par-
allelism exploitation. Nevertheless, proposed approaches in HLS targeting
parallel controllers have not considered the adoption of programming lan-
guages for specification, thus resulting in contrast with the current trends.
This thesis investigates the benefits of adopting parallel controllers in HLS,
whose design enables the synthesis of adaptive hardware components. The

59

i
i

“thesis” — 2014/2/4 — 8:27 — page 60 — #72 i
i

i
i

i
i

Chapter 4. The Parallel Controller Architecture

designed controller architecture [154] consists of a set of interacting con-
trol elements, which independently manage the execution of one or more
operations at runtime, without the need of a pre-computed schedule. This
induces the adaptive behavior of the generated hardware. This chapter de-
scribes the controller design, and shows how the proposed techniques can
improve both instruction level and coarse grained parallelism exploitation.
Section 4.1 motivate the approach, highlighting the limitations of the FSM
model which suggest alternative solutions; Section 4.2 analyzes the related
work, describing similar approaches and FSM-based techniques for mim-
icking adaptive behaviors; Section 4.3 details the proposed controller de-
sign; Section 4.4 highlights the adaptive behavior of the designed architec-
ture, through an illustratve example. Finally, Section 4.5 draws concluding
remarks.

4.1 Motivation

Common HLS approaches implement the controller as a centralized Fi-
nite State Machine (FSM), which is built according to the statically com-
puted schedule. The FSM-based execution paradigm is inherently serial:
the FSM executes the application in a sequence of control steps. Thus, it
can only exploit Instruction Level Parallelism (ILP) within a single execu-
tion flow. However, ILP is limited in most applications. Compiler-based
optimizations such as loop fusion, loop unrolling and function inlining al-
low extracting more ILP from loops and parallel function calls, but these
flattening strategies often provide limited benefits. First, they cannot al-
ways be applied; second, their adoption may heavily increase the com-
plexity (in terms of number of operations) of the compiled specification,
affecting the resulting designs in both area and performance. This is a
severe restriction for several application classes. In addition to programs
which present parallelism at the function call level, the mostly affected
are Control-Flow Intensive (CFI) specifications and applications that in-
clude Variable Latency Operations (VLOs) [134] [159]. CFI specifications
present parallel control constructs such as loops and conditionals. How-
ever, the typical scheduling techniques serialize those portions of code.
VLOs, such as memory accesses and speculative operations [64], affect
scheduling in a similar way. They require ways to notify execution com-
pletion at runtime, because their execution latency is not know before-hand,
at design-time. Usual approaches to support VLOs do not allow concur-
rent execution. They exploit a done signal, which modifies the execution
flow: while waiting for the done signal, the controller stalls all the other po-

60

i
i

“thesis” — 2014/2/4 — 8:27 — page 61 — #73 i
i

i
i

i
i

4.1. Motivation

i n t l o o p s (i n t k1 , i n t a1 , i n t a2) {
i n t i1 , i2 , x1 , x2 , r e s ;
f o r (i 1 =0; i1 <k1 ; i 1 ++) {

a1 = a1∗ i 1 ;
a1 = a1−k1 ;

}
f o r (i 2 =0; i2 <k1 ; i 2 ++) {

a2 = a2∗ i 2 ;
a2 = a2−k1 ;

}
r e s = a1 + a2 ;
r e t u r n r e s ;

}

i n t c a l l _ l o o p s (i n t k1 , i n t k2 , i n t k3 , i n t a1 , i n t a2) {
i n t f1 = l o o p s (k1 , a1 , a2) ;
i n t f2 = l o o p s (k2 , a1 , a2) ;
i n t f3 = l o o p s (k3 , a1 , a2) ;
i n t f4 = l o o p s (k1 , f1 , f2) ;
i n t f5 = l o o p s (k1 , f4 , f3) ;
r e t u r n f5 ;

}

Figure 4.1: Example C specification.

tentially concurrent operations. Sophisticated scheduling techniques [118]
can exploit parallelism also in these situations. They statically compute
all the possible runtime execution orderings, and build the corresponding
finite state machine. However, these approaches lead to very complex con-
trollers, with unsustainable area requirements and very low operating fre-
quencies, or even to controllers not feasible at all. Function loops (Figure
4.1), which presents two parallel for loops, is an example of CFI specifica-
tion. To execute the loops concurrently, a FSM-based HLS flow must iden-
tify and replicate operations associated with loop bodies for all the possible
situations that may happen at runtime. This allows exposing all the avail-
able parallelism within a single execution flow, as demonstrated through
the (Basic Block level) State Transition Graph (STG) of Figure 4.2. The
same issues affect the synthesis of function call_loops, where the paral-
lelism is coarse grained, in the form of concurrent function calls. In such
a case, the complexity of the STG needed to manage multiple execution
flows greatly increases. The STG shown in Figure 4.3 features 11 states
and 34 transitions, which only support a maximum of 3 parallel flows. In
general, the complexity of product FSMs, in terms of number of states and
transitions, grows exponentially with the number of concurrent flows. To
manage n concurrent flows, such complexity is O(2n) for both the number
of states and transitions [40]. This heavily affects the resulting design in

61

i
i

“thesis” — 2014/2/4 — 8:27 — page 62 — #74 i
i

i
i

i
i

Chapter 4. The Parallel Controller Architecture

Figure 4.2: Product STG for function loops, at basic block level.

both area and frequency, leading to unfeasible solutions for highly parallel
applications. This chapter proposes an adaptive parallel controller design,
suitable for the automatic generation of accelerators supporting parallel ex-
ecution and dynamic scheduling. The complexity of the controller only
grows linearly with the number of operations, and is independent from the
number of concurrent flows. In opposition to other HLS flows, which build
centralized FSMs, generated controllers consist of a set of communicating
modules, each one associated with an operation. The approach does not re-
quire the definition of any execution order (scheduling) at design time, and
allows run-time exploitation of parallelism. The controller modules start
execution of the associated operations as soon as all their dependencies
are satisfied and resource conflicts resolved. They communicate through a
lightweight token-based schema: a module receives a token signal when-
ever a dependency gets satisfied. When the controller has collected all the
tokens (i.e., all dependencies are satisfied), it checks for resource availabil-
ity. If the resource associated with the operation is free, execution starts.
The approach does not introduce any communication overhead, because it
does not use any sophisticated protocol. This activation mechanism, which
allows as soon as possible execution, enhances parallelism exploitation for
CFI specifications, specifications that include VLOs, and parallel function

62

i
i

“thesis” — 2014/2/4 — 8:27 — page 63 — #75 i
i

i
i

i
i

4.2. Related Work

Figure 4.3: Product STG for function call_loops; calls are represented by produced val-
ues.

calls.

4.2 Related Work

The majority of HLS approaches generate a centralized FSM for controlling
the data-path. However, these approaches do not efficiently deal with coarse
grained parallel or VLOs specifications. Partial solutions identify and an-
alyze all the possible behaviors at design time [118], and generate accord-
ingly the FSM. Nevertheless, this significantly complicates the controller
generation when there are many parallel control flows. Controller genera-
tion may not even be possible if worst cases for execution latencies are un-
known. There are several alternatives to centralized FSMs. As detailed in
Chapter 3, they include: distributed FSMs [165], parallel FSMs [105,112],
and hierarchical FSMs [80, 102]. So far, their main application has been

63

i
i

“thesis” — 2014/2/4 — 8:27 — page 64 — #76 i
i

i
i

i
i

Chapter 4. The Parallel Controller Architecture

reducing the critical path delay [51, 96]. The typical approach for design-
ing distributed controllers is FSM decomposition. FSM decomposition is
a top down approach, designed as a back-end process, that starts from a
centralized machine and divides it in sub-machines [165]. The proposed
approach does not use FSM decomposition. Instead, it relies on the gen-
eration of a set of communicating controllers. Parallel controllers enable
concurrent execution of statically identified parallel code portions: several
approaches implement parallel controllers starting from a description of
the specification that already identifies the parallelism in the application,
such as Petri nets [105, 112]. The proposed flow instead is able to synthe-
size C-code applications. [105] presents a formal controller decomposition
methodology for a Petri net specification. The model represents a token-
based architecture, but requires priority and synchronization schemes to
share variables and to implement sub-controllers communication, increas-
ing design costs. Hierarchical FSMs can activate, from the current FSM,
either the same or another FSM, similarly to procedures in software pro-
grams. [102] presents an approach to generate HDL descriptions of hierar-
chical FSMs starting from hierarchical Petri net specifications. Some ap-
proaches that employs Hierarchical FSMs can also activate multiple FSMs
in parallel [168], each one potentially exploiting different types of concur-
rency [80]. These solutions do not reuse functional units, require partition-
ing of the program to extract parallelism, and are able to support variable
latency operations only with complex modifications. Furthermore, support-
ing variable latency operations still has the same limitations of a centralized
FSM. The problem of supporting operations with variable latency is well
known in the computer architecture community. Approaches for dynamic
scheduling of independent operations dates back to the sixties, with score-
boarding and the Tomasulo algorithm [175]. [134] addresses the problem
of the local scheduling for functional units with variable latency, propos-
ing the design of a hardware scheduler that is also able to manage itera-
tive components, if the number of iterations is limited. From the point of
view of HLS, [113] proposes a “relative” scheduling formulation that sup-
ports operations with fixed and unbounded (variable) delays. However, the
scheduling is still static: it defines the start times of operations as offsets
from operations with unbounded delays. Del Barrio et al. [64,65] present a
controller design that enables efficient implementation of Speculative Func-
tional Units (SFUs) in a data-path during HLS. Centralized FSMs, which
employ a static execution schedule, cannot efficiently manage speculative
units, because if a misprediction happens, they have to wait until obtain-
ing the correct result, and cannot proceed with other parallel work, im-

64

i
i

“thesis” — 2014/2/4 — 8:27 — page 65 — #77 i
i

i
i

i
i

4.3. The Parallel Controller Architecture

pacting the overall performance. The design proposed in [64, 65] adopts
a pseudo-distributed approach, where a local controller for each SFU dy-
namically verifies if the speculation is correct by only checking the local
state. The proposed methodology is more general: it can support SFUs,
but also other types of variable latency operations, and it extracts paral-
lelism from complex specifications. Sharp and Mycroft [166] survey the
expressivity of current scheduling methods, and presents a new approach
that automatically generates scheduling logic to dynamically resolve con-
tention for shared resources. The authors then exploit static analysis tech-
niques to remove redundant scheduling logic. The proposed approach sup-
ports dynamic scheduling through a distributed controller: the only static
computation is the generation of the activation conditions that enable, at
runtime, to start the execution of an instruction as soon as its dependencies
have been satisfied. Moreira [133] introduces a technique to dynamically
identify the conditions enabling concurrent execution of tasks that exploit
parallelism at different levels of granularity. The approach operates on the
Hierarchical Task Graph (HTG), an intermediate program representation
that encapsulates the information on control and data dependencies. The
proposed HLS approach considers a similar intermediate representation,
and applies a similar technique to identify starting conditions at the instruc-
tion level. In [18], the authors propose an approach to support multimodal
functional units, while minimizing the size of the resulting circuit. Multi-
modal FUs implement multiple types of operations, usually with different
execution latencies. The approach still relies on the joint scheduling of mu-
tually exclusive tasks. Thus, it still is static and does not aim at exploiting
parallelism.

4.3 The Parallel Controller Architecture

The proposed HLS flow aims at generating accelerators that support dy-
namic scheduling through the construction of a parallel controller. In op-
position to typical FSM-based approaches, the design methodology does
not require the computation of a static schedule. The synthesized architec-
ture is able to dynamically determine the execution order of the operations,
according to the particular run-time conditions. This enables higher par-
allelism exploitation, because it potentially allows executing, every cycle,
operations that are ready to run (i.e., that have all dependencies satisfied),
independently from their effective execution delay and, more importantly,
from the execution delay of the operations they depend on. This adap-
tive behavior is obtained by analyzing data and control dependencies in

65

i
i

“thesis” — 2014/2/4 — 8:27 — page 66 — #78 i
i

i
i

i
i

Chapter 4. The Parallel Controller Architecture

the specification, and by consequently identifying the Activating Condi-
tions each operation is subject to. Activating conditions preserve execu-
tion correctness and identify when an operation is ready for execution, i.e.,
when all its dependencies have been satisfied. The flow combines the var-
ious Activating Conditions in logic functions, and then synthesizes them
as hardwired control functions for each operation. The different Activating
Conditions of each instruction are combined together through join and or
operators, which have similar semantics of the boolean and and or opera-
tors. However, the join operator (Figure 4.5, 4.4) also considers a temporal
element with respect to the boolean and.

j o i n (in1 , in2 , . . . , inN , out)
{
∀i ∈ [1, N]statei = ini + statei

out =
∏

i statei

if(out)
state = 0

}

Figure 4.4: N-inputs join module behav-
ior: statei is high if the i-th token sig-
nal ini has already been collected.

Figure 4.5: 2-inputs join module RTL
schematic representation.

The operands of the logic functions are token signal. They represent the
completion of the execution of a previous operation, which identifies the
satisfaction of a data dependency, or the outcome of a conditional operation,
which allows verification of control dependencies. Figure 4.9 shows the
dependence graph for function call_loops in Figure 5.2, annotated with the
Activating Conditions. A dedicated module, named Execution Manager
(EM), collects these tokens for each operation. Each EM:

Verifies when the execution of the operation can start This is obtained through
the logic implementing the Activating Conditions. When the dependencies
and resource constraints (as explained later) are satisfied, execution starts:
if the operation is implemented through a functional unit, which requires
an explicit start signal, the EM also generates the related token.

Manages execution temporization Three classes of operations are identified:
fixed latency operations, zero delay operations and variable latency opera-
tions. The EM manages temporization of fixed latency operations through

66

i
i

“thesis” — 2014/2/4 — 8:27 — page 67 — #79 i
i

i
i

i
i

4.3. The Parallel Controller Architecture

RM(req1 , req2 , . . . , reqN ,
ack1 , ack2 , . . . , ackN)

{
ack1 = req_1

∀i ∈ [2, N] acki = reqi & !acki−1

}

Figure 4.6: N-inputs Resource Manager
behavior: requests are ordered ac-
cording to their priority.

Figure 4.7: 3-inputs Resource Man-
ager RTL schematic representation.

simple counters. The EM considers zero delay operations (i.e., chained op-
erations) completed at the same clock cycle they started in. Finally, the EM
manages variable latency operations through explicit done signals. It con-
siders a variable latency operation running, until it receives the done signal.
The functional unit associated with the operation generates the done signal.

Sets the control signals Control signals are: selectors of steering logic and
multi-modal FUs; start signals for FUs that require explicit activation; write
enable signals for registers. At the opposite of FSM controllers, where
the values of these signals depend on the current states, in the distributed
architecture the EMs explicitly sets them.

Notifies execution completion The EM notifies execution completion through
token signals. The EM associated with dependent operations collects the
related token signals.

Checks for resource availability If an operation ready for execution is bound
to a shared functional unit, the EM sends an execution request to a Resource
Manager (RM). The RM is a lightweight arbiter associated with the shared
resource and designed to manage concurrency (Figure 4.7, 4.6). If the re-
source is available, the RM replies with a notification that it accepted the
request, so that execution can start. If multiple requests come at the same
time, the RM chooses the one to accept, according to a priority ordering.
If the shared resource is a variable latency unit, then the RM intercepts the
done signal coming from the data-path, and forwards it to the EM associ-
ated with the operation currently running. RMs are implemented through
simple combinational logic, thus they do not introduce additional clock cy-
cles of delay. The resulting adaptive controller is composed of one EM for

67

i
i

“thesis” — 2014/2/4 — 8:27 — page 68 — #80 i
i

i
i

i
i

Chapter 4. The Parallel Controller Architecture

(a) (b)

(c)

Figure 4.8: Distributed Controller Modules: single-cycle(a), multi-cycle(b) and un-
bounded operations(c) Execution Managers (EM).

each operation in the specification and of one RM for each shared resource.
Thus, the complexity of the controller linearly grows with the number of
operations.

Figure 4.8 shows schematic representations of the EMs associated with
single cycle (Figure 4.8a), multi cycle (Figure 4.8b) and variable latency
operations (4.8c). Each EM is composed of two modules: an Activation
Manager (AM), which implements the Activating Conditions, and an Op-
eration Manager (OM), which interfaces to RMs sending execution requests
(req signals) until accepted. The OM sends execution requests one clock
cycle after the AM activates it. Thus, it also manages temporization for sin-
gle cycle operations. The RMs always notify resource availability within

68

i
i

“thesis” — 2014/2/4 — 8:27 — page 69 — #81 i
i

i
i

i
i

4.3. The Parallel Controller Architecture

Figure 4.9: Dependence graph for func-
tion call_loops, annotated with Acti-
vating Conditions. Figure 4.10: Distributed controller architec-

ture for function call_loops.

Figure 4.11: Runtime behavior of adaptive controller: execution trace of function loops
with k1 = k2 = 2, under resource constraint (one instance available for each kind of
functional unit).

the same cycle of the request. For multi cycle and unbounded operations,
the EMs include CNT and UNBND modules, which presents similar be-
haviors. They are both activated when execution starts, and have the role of
setting control signals and inhibiting the RM from accepting new requests,
during the whole execution. The difference between the two modules is that
the CNT directly states when execution completes (it is a counter), while
the UNBD module collects done signals coming from the data-path. For
chained operations, the EM degenerates in the AM.

The described architecture can independently manage operations and
adaptively execute them as soon as possible. Figure 4.11 highlights the
adaptive behavior of the controller, proposing an execution trace for func-
tion loops in Figure 5.2, characterized by two parallel loops. Notice that the
number of iterations of both loops is statically unknown, thus most com-
pilation processes will not perform neither unrolling nor loop collapsing,

69

i
i

“thesis” — 2014/2/4 — 8:27 — page 70 — #82 i
i

i
i

i
i

Chapter 4. The Parallel Controller Architecture

(a) (b)

Figure 4.12: Example specification (a) and corresponding parallel controller implemen-
tation. Operations 3, 4 and 5 share FU C, operations 6 and 7 share FU D.

sequentializing the two portions of code. In this example, it is assumed that
one resource for each kind of operations is available. All operations require
one clock cycle, except for multiplications, which require 2 clock cycles.
The architecture checks resource availability at runtime, executing in turn
operations belonging to the two loops, as soon as shared resources become
available. To obtain the same behavior, a static scheduling approach needs
to merge the two loops. Instead, the proposed approach provides such be-
havior without any code transformation. Moreover, the as soon as possible
execution is preserved also when introducing variability in operations de-
lays, which most classical approaches fail to support without severe penal-
ties in terms of controller complexity. For example, function call_loops
presents concurrent function calls, whose latency is statically not known.
The proposed approach allows running these function concurrently, with a
low complexity architecture, as shown in Figure 4.10. It is remarked that
obtaining the same behavior with a static scheduling requires the synthesis
of a FSM characterized by 11 states and 34 transitions (Figure 4.3).

70

i
i

“thesis” — 2014/2/4 — 8:27 — page 71 — #83 i
i

i
i

i
i

4.4. Adaptive Behavior

4.4 Adaptive Behavior

This section propose a simple illustrative example to highlight the adap-
tive behavior of the target accelerator design, able to rearrange execution
order at runtime, even in the presence of VLOs. Figure 4.12a shows a
simple specification (through its DFG) and Figure 4.12b the corresponding
parallel controller architecture. Each operation is mapped on a variable la-
tency functional unit: FUs C and D are shared among operations 3,4,5 and
6,7 respectively. The variability on execution latency and the concurrency
on shared resources generate several feasible runtime schedules, which ex-
ploit the available parallelism. The parallel controller builds such sched-
ules directly at runtime, as shown in Figure 4.13 through same examples.
Operations 1 and 2 are associated to exclusively bound FUs, thus will al-

(a) (b)

(c) (d)

Figure 4.13: Runtime schedules when considering dynamic variations on FU latencies.
Assumed priority for RMs: op3<op4<op5; op6<op7.

ways run concurrently. However, their latency, affect the execution order
of the subsequent operations. If op1 completes firts, then op3 will execute
before op4 and op5 (figure 4.13a). If op2 completes first instead, op5 will
execute before the other operations mapped on FU C (figure 4.13b). If op1
and op2 complete execution in the same control step, then op5 will execute
first, since it has been assigned the maximum priority (figure 4.13c).

71

i
i

“thesis” — 2014/2/4 — 8:27 — page 72 — #84 i
i

i
i

i
i

Chapter 4. The Parallel Controller Architecture

4.5 Conclusions

This chapter presented a parallel controller architecture, for the design of
adaptive accelerators featuring dynamic scheduling. Its modularity and reg-
ularity make suitable its adoption in HLS flows. The proposed architecture
is able to exploit parallelism at different granularities, and provides natu-
ral support for variable latency operations, such as speculative operations,
memory accesses and function calls. The next chapter will describe a com-
plete C-based HLS flow for the automated generation of the proposed archi-
tecture, detailing the different algorithms designed to perform all the HLS
tasks.

72

i
i

“thesis” — 2014/2/4 — 8:27 — page 73 — #85 i
i

i
i

i
i

CHAPTER5
High Level Synthesis of Adaptive Hardware

Components

The parallel controller architecture, introduced in the previous chapter, al-
lows the design of adaptive components featuring dynamic scheduling. The
controller is composed of a set of interacting modules, each managing the
execution of a particular operation or task, enabling as soon as possible ex-
ecution once dependences are satisfied. This features provide efficient sup-
port for variable latency operation, poorly managed by statical approaches,
and in general for coarse grained parallelism exploitation, allowing multiple
execution flows to run concurrently. However, the automated synthesis of
such components from a C-like specification introduces several challenges.
To overcome some of these difficulties, previous approaches targeting par-
allel controllers considered particular specification languages, making them
difficult to be adopted in practice. The generation of the controller itself is
relatively trivial: what makes the synthesis process difficult is the absence
of pre-computed schedule. In fact, most of the techniques proposed in liter-
ature for the data-path synthesis are based on the definition of an execution
ordering among operations, and then address the HLS tasks under this as-
sumption. In order to obtain a complete HLS flow, this work proposes

73

i
i

“thesis” — 2014/2/4 — 8:27 — page 74 — #86 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

novel algorithms for the automated synthesis of hardware components fea-
turing dynamic scheduling [42] [46]. Such algorithms have been designed
as general as possible, in order to possibly be applied on similar flows. For
example, the liveness analysis algorithm [43] proposed in Section 5.4 can
be adopted in any dynamic scheduling approach, since it enables the def-
inition of conflict free bindings regardless of the runtime execution order.
This chapter describes the resulting C-based HLS flow for the automated
generation of the target architecture. The proposed techniques allowed the
actual design of a complete HLS tool, developed extending the Bambu HLS
framework. Section 5.1 overviews the proposed flow; Sections 5.2 describe
the front-end steps, useful to support the synthesis process; Sections 5.3
and 5.4 describe the designed binding algorithms; Section 5.5 details the
controller generation process; Section 5.6 explains how the designed flow
supports complex code behaviors, which include Static Single Assignment
(SSA) programs, nested loops and nested function calls. The input lan-
guage coverage is one of the key contributions of this work: as afore men-
tioned, other approaches featuring parallel controllers or dynamic execu-
tion for parallelism exploitation, are not suitable for the HLS of C-code
specifications, or reduce the domain of supported constructs. Section 5.7
summarizes the implementation effort, for the integration of the flow in the
Bambu framework; Section 5.8 evaluates the effectiveness of the method-
ology on a set of common HLS benchmarks, on both performance and area.
Section 5.9 concludes the chapter.

5.1 Proposed High Level Synthesis Flow

Figure 5.1 summarizes the proposed HLS flow. As in typical flows, it
is possible to distinguish three different phases: front-end, synthesis and
back-end. The front-end phase takes care of compiling the input specifica-
tion: this allows exploiting compiler optimizations such as constant propa-
gation and code motion techniques [95] [86]. The Front end also processes
the intermediate code produced during compilation (Figure 5.2) to con-
struct an Internal Representation (IR), which is then exploited to perform
the HLS tasks. The synthesis process considers a graph IR that represents
the program dependencies, i.e., data, control, and structural dependencies.
Structural dependencies are introduced between memory accesses if they
can access the same memory location, so to preserve the ordering between
stores and loads. The produced IR also embeds control flow information,
such as back-edges of loop constructs. This is required for the subsequent
step, the identification of the Activating Conditions associated with each

74

i
i

“thesis” — 2014/2/4 — 8:27 — page 75 — #87 i
i

i
i

i
i

5.1. Proposed High Level Synthesis Flow

Figure 5.1: Proposed High Level Synthesis flow.

operation. The synthesis phase mainly consists of allocation and binding
of FUs (modules), registers, and interconnections. Typical HLS techniques
address these tasks starting from the computation of the scheduling of the
operations. The next sections detail how FU and register binding tasks are
addressed without scheduling information. Instead, interconnection bind-
ing is simply performed as a result of FU and register binding. Finally,
the back-end phase produces the actual RTL implementation of the input
specification.

75

i
i

“thesis” — 2014/2/4 — 8:27 — page 76 — #88 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

i n t l o o p s (i n t k1 , i n t a1 , i n t a2) {
i n t i n t e r n a l _ 1 6 ;
i n t a2_14 , a2_2 , a2_13 , a1_8 , a1_9 , a1_1 ;
i n t i1_3 , i1_5 , i1_10 , i2_4 , i2_15 , i2_11 ;
i1_5 =0;
i2_11 =0;
BB_LABEL_4 :
a1_1 = g i m p l e _ p h i (a1 , a1_9) ;
i 1_3 = g i m p l e _ p h i (i1_5 , i1_10) ;
i f (i 1_3 < k1) {

a1_8 = a1_1 ∗ i 1_3 ;
a1_9 = a1_8 − k1 ;
i1_10 = (i n t) (i 1_3 + (1)) ;

go to BB_LABEL_4 ;
}
BB_LABEL_7 :
a2_2 = g i m p l e _ p h i (a2 , a2_14)
i2_4 = g i m p l e _ p h i (i2_11 , i2_15)
i f (i 2_4 < k1) {

a2_13 = a2_2 ∗ i 2_4 ;
a2_14 = a2_13 − k1 ;
i2_15 = (i n t) (i 2_4 + (1)) ;

go to BB_LABEL_7 ;
}
i n t e r n a l _ 1 6 = (i n t) (a1_1+a2_2) ;
r e t u r n i n t e r n a l _ 1 6 ;

}

i n t c a l l _ l o o p s (i n t k1 , i n t k2 , i n t k3 ,
i n t a1 , i n t a2)

{
i n t f5_10 , f2_6 , f3_8 , f1_4 , f4_9 ;
f1_4 = l o o p s (k1 , a1 , a2) ;
f2_6 = l o o p s (k2 , a1 , a2) ;
f3_8 = l o o p s (k3 , a1 , a2) ;
f4_9 = l o o p s (k1 , f1_4 , f2_6) ;
f5_10 = l o o p s (k1 , f4_9 , f3_8) ;
r e t u r n f5_10 ;

}

Figure 5.2: Example C specification, after the compilation step.

5.2 Compilation and IR Generation

The first step of the front-end phase is the compilation process. In the de-
signed flow, this task is performed interfacing with a software compiler
(e.g. GCC), which restructures the input code through different optimiza-
tions. The code obtained after the optimization process, as shown in Figure
5.2, is written in Static Single Assignment (SSA) form. SSA improves sev-
eral optimization techniques based on data-flow analysis, such as constant
folding and dead code elimination [19]. The optimized code is then pro-
cessed to generate an appropriate Internal Representation.

76

i
i

“thesis” — 2014/2/4 — 8:27 — page 77 — #89 i
i

i
i

i
i

5.2. Compilation and IR Generation

ENTRY

0: i1_5 = 0;

AC = ENTRY

1: a1_143 = a1 ;

AC = ENTRY

a 1

5: a1_9 = a1_8 - k1;

AC = 4 * 10T

k 1

10: if (i1_3 < k1)

AC = 9 * 3

k 1

11: i2_11 = 0 ;

AC = ENTRY

12: a2_147 = a2 ;

AC = ENTRY

a 2

16: a2_14 = a2_13 - k1 ;

AC = 15 * 21T

k 1

21: if (i2_4 < k1)

AC = 20 * 14

k 1

EXIT

AC = 23

2: i1_145 = i1_5;

AC = 0

i1_5

3: /* a1_1 = gimple_phi(a1_143, a1_144) */

AC = 1 + loop4

a 1 _ 1 4 3

9: /* i1_3 = gimple_phi(i1_145, i1_146) */

AC = 2 + loop4

i1_145

4: a1_8 = a1_1 * i1_3;

AC = 3 * 9 * 10T

a1_1

22: in ternal_1584_16 = (in t) (a1_1 + a2_2) ;

AC = 3 * 14 * 10F * 21F

a1_1

a1_8

7 : a1_144 = a1_9 ;

AC = 5 * 10T

a1_9

6: i1_10 = (int)(i1_3 + (1));

AC = 9 * 10T

8: i1_146 = i1_10;

AC = 6 * 10T

i1_10

i1_3

i1_3

i1_3

T

T

T

T

T

F

23: re turn in te rna l_1584_16;

AC = 22 * 10F * 21F

F

13: i2_149 = i2_11;

AC = 11

i2_11

14: /* a2_2 = gimple_phi(a2_147, a2_148) */

AC = 12 + loop7

a 2 _ 1 4 7

20: /* i2_4 = gimple_phi(i2_149, i2_150) */

AC = 13 + loop7

i2_149

15: a2_13 = a2_2 * i2_4;

AC = 14 * 20 * 21T

a2_2

a2_2

a 2 _ 1 3

18 : a2_148 = a2_14 ;

AC = 16 * 21T

a 2 _ 1 4

17: i2_15 = (int)(i2_4 + (1));

AC = 20 * 21T

19: i2_150 = i2_15;

AC = 17 * 21T

i2_15

i2_4

i2_4

i2_4

T

T

T

T

T

F

F

in te rna l_1584_16

Figure 5.3: Extended program Dependence Graph for function call loops, annotated with
Activating Conditions. Blue edges denote data dependences, red edges control depen-
dences, green edges backward control flow dependes, purple edges forward control
flow dependencies.

5.2.1 Extended Program Dependence Graph

The synthesis process considers as input an IR which highlights both data
and control dependencies in the program: the Extended Program Depen-
dence Graph (EPDG) [122]. The EPDG is a direct graph G(V,E), where
V denotes the set of operations in the program, and where each edge e ∈ E
represents a dependence between its source and target operations, thus
defining a precedence relation on their execution order when both source
and target must be executed. The EPDG extends the Program Depen-

77

i
i

“thesis” — 2014/2/4 — 8:27 — page 78 — #90 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

dence Graph: in addition to data and control dependencies, directly identi-
fied through typical flow analysis, it considers Control Flow Dependencies
(CFDs). CFDs are introduced to provide useful information on properties
which must be preserved during execution of loop constructs. Two main
classes of CFDs exist:

1. Backward CFDs. Let First(L) be the set of operations belonging
to loop L, which can be executed first in the loop, and Last(L) the
set of operations which can be executed last. These sets can be eas-
ily computed through dependence analysis; in the general case, their
cardinality can be greater than 1, especially for set Last(L). In case
of nested loops, these sets also consider operations belonging to inner
and outer loops. Backward CFDs are defined as edges e(i, j), with
i ∈ Last(L) and j ∈ First(L): they are introduced to identify loop
entry and exit points.

2. Forward CFDs. Given a loop-exit operation i for loop L, and opera-
tion j /∈ L control-independent with respect to i, a Inter-loop forward
CFD is defined between i and j if there exist an operation z ∈ L such
that j is data-dependent on z. Such flow dependences are also inserted
if j is a return statement, and after the definition of the other CFDs j
is still not reachable from i.

Figure 5.3 shows the EPDG obtained for function call_loops in Figure 5.2.

5.2.2 Activating Conditions Computation

Once the EPDG is built, it is analyzed in order to identify, for each opera-
tion, the corresponding Activating Conditions. ACs identify which condi-
tions must be satisfied at runtime to enable the execution of each operation.
The first formulation of the concept of ACs is proposed in [81], consid-
ering only data and control dependences. [122] extends such formulation,
considering also CFDs. In this flow, the latter is considered. Activating
conditions are composed of 3 parts, and defined as:

AC(i) = ACdata(i) join ACcontrol(i) join ACcontrol−flow(i). (5.1)

Each component corresponds to a particular kind of dependencies, and it is
in turn represented as a logic function. For example, the control_flow com-
ponent allows to support loops, and usually occurs in the formACcontrolf low(i) =
initi + loopi, where initi is the condition which enable the execution of i
associated to the first iteration of the loop, and loopi identifies when the
execution must be-repeated in subsequent iterations. The component loopi

78

i
i

“thesis” — 2014/2/4 — 8:27 — page 79 — #91 i
i

i
i

i
i

5.3. Module Binding

denotes the join of all the operation belonging to the set Last of the given
loop. Notice that this component occurs only for operations belonging to
the set First, as shown in Figure 5.3.

5.3 Module Binding

In typical approaches, operations that execute concurrently, according to
the pre-determined schedule, are not allowed to share the same hardware re-
source. This avoids resource conflicts. In the proposed flow, instead, RMs
dynamically resolve resource conflicts at runtime. The approach avoids
conflicts for any possible FU binding and for any possible runtime exe-
cution order, thus module binding does not influence the correctness of
the accelerator’s behavior. Binding is performed through a clique cover-
ing algorithm [178] on a weighted compatibility graph. The compatibil-
ity graph is built by identifying the operations that can profitably share
the same hardware resource, analyzing the dependences graph. The algo-
rithm assigns weights taking into account area/delay trade offs as a result of
sharing; for example, FUs that demand significant area will be more likely
shared. However, weights assignment is tuned with the aim of enhancing
performance: for example, function calls which are not conflicting (thus
they may run concurrently), are less likely to share hardware resources,
even if sharing is profitable in terms of area. The flow also considers the
cost of interconnections for introducing steering logic, both in terms of
area and frequency. This is required to meet timing constraints. In case
of multiple concurrent execution requests, RMs adopt the topological or-
dering of the operations sharing the FU on the IR graph as a priority or-
dering. This approach does not impose an execution order, because it does
not introduce any structural dependence: given two operations bound to the
same resource, if one of them is ready for execution before the other one, it
starts execution first regardless of the assigned priority. This characteristic
is highlighted in the execution traces proposed in Figure 4.11 and Figure
4.13.

5.4 Liveness Analysis and Register Binding

Common HLS approaches acquire liveness information assuming a partial
ordering relation between operations, obtained by means of a static sched-
ule [24] [32]. Liveness information is then captured in the form of a Con-
flict or Compatibility Graph, and register binding often addressed as a graph
coloring problem [48] [169]. Such techniques, where register binding ex-

79

i
i

“thesis” — 2014/2/4 — 8:27 — page 80 — #92 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

ploits the scheduling task results, are known as post-scheduling approaches.
On the other side, in pre-scheduling approaches allocation is performed be-
fore scheduling: in this case minimizing the number of allocated registers
may lead to the introduction of false dependencies in order to avoid re-
source conflicts. Despite of to the absence of a pre-computed schedule,
proposed register binding methodologies for dynamic scheduling architec-
tures are usually designed as post-scheduling approaches. Examples are
given in [65] and [64], where the authors propose a distributed controller
for managing Speculative Functional Units (SFUs) in HLS. SFUs exploits
a predictor for the carry signal, thus execution order may vary according
to the runtime prediction. Data-dependent operations will wait until the
needed results are correctly computed. Figure 5.4(a) provides an example

Figure 5.4: Scheduled CDFG (a), runtime schedule in the case of misprediction for SFU
2 (b) and runtime schedule in the case of misprediction for SFU 2, without the resource
constraint between nodes 2 and 4.

scheduled Data Flow Graph (DFG): since the results of SFUs 2 and 3 are
bound to the same register R2, a Write After Write dependency is intro-
duced between them. If at runtime all the predictions will be right, the
runtime schedule will reflect the static schedule (4 control steps). On the
contrary, in the case of misprediction on SFU 2, the inserted dependency
will delay the program execution (assuming a penalty of one control step)
as shown in Figure 5.4(b). Figure 5.4(c) shows the resulting runtime sched-
ule without introduced resource constraint. In order to reduce the impact
of structural dependencies, in [65] and [64], the register binding based on
the static schedule has been customized by means of a Least Recently Used
Register binding policy, which tries to bind different registers for close in
time operations. However this approach cannot provide a conflict free reg-
ister assignment. The binding approach based on the liveness analysis pro-

80

i
i

“thesis” — 2014/2/4 — 8:27 — page 81 — #93 i
i

i
i

i
i

5.4. Liveness Analysis and Register Binding

posed in this work instead, completely avoids any runtime resource conflict,
associating operations that may be executed concurrently to different regis-
ters. A similar idea has been introduced in [156], where register allocation
is performed through the coloring of a parallelizable conflict graph which
avoids the insertion of false dependencies. The parallelizable conflict graph
is built starting from a pre-computed conflict graph, adding edges between
storage values defined by possibly concurrent operations. Such approach
is heavily influenced by the initial conflict graph construction, which still
requires a statically defined ordering relation among operations. Obviously
this requirement induces severe restrictions to the number of feasible sched-
ules: a schedule which violates the previously selected ordering may lead to
incorrect execution. On the contrary, the register binding based on the pro-
posed methodology guarantees correctness without performance loss for
any possible runtime schedule.

5.4.1 Preliminary Notions and Definitions

Flow Graphs Denoting with V the set of vertices and with E the set of
edges, a node v ∈ V of a graph G(V,E) has out edges that lead to suc-
cessor nodes and in-edges that come from predecessor nodes. The set
out(v) represents the set of out edges, while in(v) represents the set of in
edges. Moreover pred(v) ⊂ V denotes the set of predecessors of node v
and succ(v) ⊂ V the set of successors of v. Given e ∈ E, source(e) ∈ V
represents the source node of e, while target(e) ∈ E represents the target
node. A directed path p = a → b is a sequence of edges e0, e1, ..., en such
that source(e0) = a, source(e1) = target(e0), ... , target(en) = b.

Uses and Defs Representing with V AR the set of variables in a subprogram
P , and with G(V,E) a graph representation of P : the set def(x) ⊂ V
of a variable x ∈ V AR is the set of graph nodes that define it; the set
use(x) ⊂ V of a variable x ∈ V AR is the set of graph nodes that use
it; the set def(v) ⊂ V AR of a graph node v ∈ V is the set of variables
that it defines; the set use(v) ⊂ V AR of a graph node v ∈ V is the set of
variables that it uses.

Liveness Analysis and Data-Flow Equations A variable x ∈ V AR is said to be
alive on edge e ∈ E if ∃ a directed path p from e to a node b ∈ use(x). A
variable x ∈ V AR is live-in at node v ∈ V if ∃e ∈ in(v) such that x is alive
on e; similarly x ∈ V AR is live-out at node v ∈ V if ∃e ∈ out(v) such that
x is alive on e. Live-in and live-out sets capture liveness information useful

81

i
i

“thesis” — 2014/2/4 — 8:27 — page 82 — #94 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

to perform register allocation and binding. Such information is obtained
from use and def through Data-Flow equations:

live_in(v) = use(v) ∪ (live_out(v) \ def(v)) (5.2)

live_out(v) =
⋃

s∈succ(v)

live_in(s) (5.3)

Liveness analysis is performed iteratively solving the Data-Flow (DF) equa-
tions, until the least fixed point is reached [19].

5.4.2 Schedule-Independent Liveness Analysis

DF equations as formulated in 5.2 and 5.3 require a graph representation of
the specification characterized by a single execution flow, which reflects a
given execution order. As discussed in the previous sections, for dynamic
scheduling architectures such an order is not statically computed. Thus in
these cases, a single flow representation will not adequately represent the
run-time execution order, and standard liveness analysis will produce inac-
curate information. However, even if a static schedule is not available, it
is always possible to partially define execution order according to the de-
pendencies between operations. If operation a depends on operation b, then
a must be executed after b. A convenient way to represent such relations
is the EPDG, since it captures information on control dependencies, data
dependencies and control flow. If there exist a path p = x → y between
two nodes x and y of the EPDG, then y will be executed after x. Such a
relation is not defined for all the possible pairs of nodes: if such a path does
not exist, then it is not possible to state, simply analyzing the EPDG, which
operation will be executed first; obviously in this case it is also not possible
to establish if the two operations will be executed concurrently.

In Figure 5.6(a) the results obtained through DF liveness analysis on an
example EPDG (Figure 5.5) are shown. Analyzing the live-in/live-out sets
it results that variables a1 and b1 are never simultaneously alive. According
to this result, these variables may be mapped on the same physical resource,
since their life intervals do not overlap, not ensuring correctness for all the
possible execution orders. For example, if operations 2 and 3 complete
their execution in the same control step, then a1 and b1 cannot be stored in
the same physical register. Notice that for nodes 2 and 3 it is not possible
to compute an order relation. Such nodes can be denoted as parallel nodes
because they may be executed concurrently. It is possible to define a binary
relation || among the nodes of the EPDG: given two nodes a and b, a||b iff
there is not a path p = a→ b or p = b→ a, i.e. they are parallel. In order

82

i
i

“thesis” — 2014/2/4 — 8:27 — page 83 — #95 i
i

i
i

i
i

5.4. Liveness Analysis and Register Binding

Figure 5.5: Example Dependencies Graph.

Figure 5.6: Liveness analysis results solving standard DF equations (a), livep sets(b), for
the example DG in Figure 5.5.

to guarantee correctness for liveness computation, even in the presence of
parallel nodes, two sets are defined:

parallel(x) = {y|@ a path p = x→ y and @ a path p = y → x} (5.4)

i.e. the set of parallel nodes with respect to node x, and

livep(n) =
⋃

s∈parallel(n)

live_in(s) ∪ live_out(s)

Sets livep(n) are introduced in order to take in account interferences
between variables alive at parallel nodes. The main reason for keeping
these sets separated from live_in(n) and live_out(n) is that this will fa-
cilitate the construction of the conflict graph representing the interferences
between storage values. The introduced sets are computed when the DF
equations (as in 5.2 and 5.3) have been already solved. Figure 5.6(b) re-
ports livep sets for the previous example. However, there is another issue

83

i
i

“thesis” — 2014/2/4 — 8:27 — page 84 — #96 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

to be considered, concerning death of variables. In the proposed example,
variable k results dead on exit on both nodes 2 and 3, since there are no
uses of k reachable from these nodes. Nevertheless, k cannot be consid-
ered dead until both 2 and 3 are completed; the equation defining livep is
modified in order to consider this aspect:

livep(n) =
⋃

s∈parallel(n)

live_in(s) ∪ live_out(s) ∪ dead(s, n) (5.5)

where

dead(s, n) = {x|@ a path n→ u, u ∈ use(x), x ∈ use(s)},

i.e. dead(s, n) is the subset of use(s) of variables that are not live out at s,
but are used on a parallel node. Applying these equations, the sets livep for
nodes 2 and 3 now include variable k. Even if the computation of livep sets
allows a conservative construction of a conflict graph, the DF equations,
in their standard formulation, produce over-conservative sets. For instance,
in the considered example variables a and b results alive on exit at node 1,
even if they have not already been defined, i.e. there is not a definition of a
and b reaching node 1. To avoid this issue, DF equations can be modified
as follows:

live_in(n) = use(n) ∪ (out(n) \ def(n)) (5.6)

live_out(n) =
⋃

s∈succ(n)

in′(s) , in′(s) ⊂ in(s) (5.7)

where
in′(s) = {x|∃ a path d→ n, d ∈ def(x)}

i.e. in(s) is the subset of in(s) of variables whose definition reaches node
n. The resulting sets, for the considered example, are shown in Figure 5.7.
Summarizing, in the proposed approach liveness information is obtained
iteratively solving the modified DF equations, as formulated in 5.6 and 5.7,
and then computing livep sets as in 5.5, which characterize the relations
between variables alive at parallel nodes.

Mutual Exclusiveness Parallel nodes have been described as nodes such that
there is not a path between them in the EPDG. According to this definition,
operations belonging to mutually exclusive branches will be detected as
parallel. This can be avoided refining the set parallel(x), defined in 5.4 as
follows: if node x lays on the i-th branch of a n-ary branch node d, then

84

i
i

“thesis” — 2014/2/4 — 8:27 — page 85 — #97 i
i

i
i

i
i

5.4. Liveness Analysis and Register Binding

Figure 5.7: Proposed liveness analysis results for the example DG in Figure 5.5.

any node y, laying on the j-th branch of d (j 6= i), is removed from the
set parallel(x). Mutually exclusive nodes can be detected considering the
control dependencies in the EPDG.

5.4.3 Conflict Graph Creation

Liveness analysis allows the definition of an interference relation among
the storage values: two variables interfere if their life-intervals overlap, and
thus they cannot be mapped on the same resource. Such a relation is usually
represented by means of a conflict graph. Overlapping life-intervals may be
detected looking at live-out sets. Given a node v in the EPDG, storage val-
ues belonging to live_out(v) interfere with each other, since the associated
variables are simultaneously alive. Equations 5.6 and 5.7 provide liveness
information about depending operations, i.e. operations whose execution
order is well defined. Equation 5.5 instead, provides liveness information
about independent operations, i.e. operations whose execution order is not
statically defined. Storage values belonging to livep(v) may not interfere
each other; on the contrary each storage value xp ∈ livep(v) interfere with
each storage value x ∈ live_out(v). This property avoids the insertion of
unnecessary interferences. Consider as an example the EPDG in Figure
5.6: it results 2||3, 2||5, 4||3, 4||5. Set livep for node 2 contains both b and
b1, but b and b1 will never be simultaneously alive. Thus, while storage val-
ues belonging to live_out(v) will be cliqued in the conflict graph, storage
values belonging to live_out(v)p will not. This is the reason for keeping
these sets separated. In Figure 5.8 the resulting Conflict Graphs for the con-
sidered example are shown for both separated and unified live_out sets: in
the latter case storage values k, a, a1, b, b1 are cliqued, and 5 registers are
needed to hold the program variables, while in the first case 3 register are
needed. Once the Conflict Graph is built, register binding may be addressed

85

i
i

“thesis” — 2014/2/4 — 8:27 — page 86 — #98 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

Figure 5.8: Conflict Graph obtained for the previous example, keeping live_out and livep
sets disjoint (a) and Conflict Graph obtained unifying live_out and livep sets (b).

through standard techniques such as vertex coloring algorithms.

5.4.4 Algorithm Evaluation

In order to validate the described methodology, a register allocator based
on the proposed liveness analysis has been implemented, and integrated in
the Bambu HLS flow (see Section 2.4. Such allocator performs the register
binding task by means of coloring an interference graph. The algorithm
has been evaluated on a set of common HLS benchmarks: crc32, ethernet,
gcd and sha1 are from [4], matmul and cftmdl are from [120], while the
others are from [170]. The synthesis targeted the parallel controller archi-
tecture. All the considered applications have been generated following two
approaches: adopting the proposed register binding, and allocating a regis-
ter for each storage value (unique binding). This comparison is motivated
by the fact that unique binding always produces a conflict free binding,
thus not impacting on performance regardless of the runtime schedule. For
the Functional Units (FUs) instead, the same binding has been adopted for
both the approaches, in order to isolate the effects of the register binding.
FUs sharing is managed through dedicated logic, without introducing false
dependencies imposing serializations. Memory access operations are not
allowed to execute concurrently. The resulting designs have been simu-
lated by means of ModelSim SE-64 6.6d [8]. For each benchmark, both
the approaches led to the same execution latency (in terms of clock cycles):
this result confirms the proposed methodology to produce a conflict-free
binding.

Synthesis Results
The approach has been compared with three different register binding algo-
rithms: unique binding, left edge and standard vertex coloring based bind-
ing.

86

i
i

“thesis” — 2014/2/4 — 8:27 — page 87 — #99 i
i

i
i

i
i

5.4. Liveness Analysis and Register Binding

Table 5.1: High Level Synthesis results: Register Binding.

Conflict-Free Non Conflict-Free
Reg # Reg # Reg # Reg Gain vs Loss vs

Bench Prop. Unique Coloring Left Edge Unique Col & LE
crc32 13 19 7 7 31.6 % 85.7 %

ethernet 13 42 8 8 69.0 % 62.5 %
gcd 15 37 9 9 59.5 % 66.67 %

sha-1 32 161 15 15 80.1 % 113.3 %
cftmdl 39 72 14 14 45.8 % 178.5 %
chem 176 341 176 176 48.4 % none

dir 65 121 63 63 46.3 % 3.1 %
lee 27 72 8 8 62.5 % 237.5 %

matmul 16 28 16 16 42.9 % none
mcm 46 94 30 30 51.1 % 53.3 %
Total 55.2 % 27.7 %

Table 5.1 compares the number of allocated registers. Moreover the
data-paths designs obtained through proposed algorithm, unique binding
and vertex coloring, have been synthesized by means of Synopsys De-
sign Compiler [11], using Nangate 45nm Open Cell Library [9]. Tables
5.2 and 5.3 report the obtained results, indicating non-combinational (SEQ
columns), combinational (CMB), interconnection (CON) and overall (TOT)
area costs in terms of library units. Percentage average gains adopting the
proposed approach are also shown.

Comparison with unique binding
The provided High Level Synthesis results show that the proposed bind-
ing allocates 55.2% fewer registers, on average, when compared with the
unique binding, that is the only other conflict free strategy. This result has
been confirmed by the synthesis experiments, that reported a 55.8% average
reduction in non-combinational area. In addition, despite the introduction
of steering logic due to the register sharing it is also observed, an average
reduction for both the combinational and interconnection parts: 0.48% and
6.92% respectively.

Comparison with non conflict-free approaches
In the conducted experiments, left edge and vertex coloring have been con-
sidered as non conflict-free approaches. In fact, they exploit standard live-
ness analysis, where the ordering relation for solving the DF equations is
dictated by the scheduling task. As a result, on the contrary with respect to
unique and proposed bindings, for these approaches parallelism exploita-
tion may be limited by resource conflicts introduced to ensure correctness.

87

i
i

“thesis” — 2014/2/4 — 8:27 — page 88 — #100 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

Table 5.2: Design Compiler Synthesis Results: comparison against unique binding.

Conflict-Free
Proposed Approach Unique Binding

Bench SEQ CMB CON TOT SEQ CMB CON TOT Gain
crc32 2189 5125 1716 9032 3262 5188 1903 10354 12.8%

ethernet 2189 5504 2040 9734 6837 5520 2747 15104 35.5%
gcd 2681 4899 2250 9831 6094 4796 2739 13630 27.8%

sha-1 5720 53394 14952 74067 28779 55310 19095 103184 28.2%
cftmdl 6971 32557 9681 49209 12870 32812 10675 56358 12.7%
chem 31460 486579 112141 630180 61133 487025 116870 665028 5.2%

dir 11619 156088 36421 204128 21629 156654 38171 216454 5.7%
lee 4826 30320 8447 43594 12870 30583 9763 53216 18.1%

matmul 2860 43901 10078 56839 5005 44026 10454 59486 4.45%
mcm 8222 89471 21846 119540 16803 90330 23491 130624 8.48%

Table 5.3: Design Compiler Synthesis Results: Comparison Against Vertex Coloring.

Conflict-Free Non Conflict-Free
Proposed Approach Vertex Coloring

Bench SEQ CMB CON TOT SEQ CMB CON TOT Gain
crc32 2189 5125 1716 9032 1251 7880 2168 11300 20.1%

ethernet 2189 5504 2040 9734 1430 5874 2045 9350 -4.11 %
gcd 2681 4899 2250 9831 1609 4600 1991 8200 -19.9%

sha-1 5720 53394 14952 74067 2681 86527 21469 110678 33.1%
cftmdl 6971 32557 9681 49209 2502 31114 8505 42121 -16.83%
chem 31460 486579 112141 630180 31460 486817 112235 630512 0.05%

dir 11619 156088 36421 204128 11261 156444 36455 204160 0.02%
lee 4826 30320 8447 43594 1430 29774 7747 38951 11.9%

matmul 2860 43901 10078 56839 2860 44020 10122 57002 0.3%
mcm 8222 89471 21846 119540 5362 89343 21399 116104 -2.9%

In the considered settings, the static schedule for solving the DF equations
has been computed through a list based scheduling approach [77]. Table 5.1
shows that left edge and vertex coloring lead to allocation of the same num-
ber of registers, that is the optimal one for the considered schedules. These
more aggressive register sharing techniques allocate on average 21.7% less
registers when compared with the proposed one, and 64.9% less registers
with respect to unique binding. In two cases (chem, matmul) the proposed
algorithm is able to obtain the same number of registers of left edge and
vertex coloring. However it must be taken into account that, since these
strategies do not consider the impact of interconnections [50] [94], mas-
sive sharing may not always lead to better results in area. This guess is

88

i
i

“thesis” — 2014/2/4 — 8:27 — page 89 — #101 i
i

i
i

i
i

5.5. Controller Generation

confirmed by the synthesis results for the vertex coloring based data-paths,
for which it is registered an impact in terms of combinational and intercon-
nection costs: adopting the proposed approach provides an area reduction
for both the components (3.67% and 2.03% on average respectively). The
effects of the multiplexers allocation arise more clearly considering, for ex-
ample, the results for the sha-1 benchmark, where vertex-coloring allows a
very aggressive register sharing. In this case it is reported an area reduction
of 38.29% for the combinational part, and 30.35% for the interconnections.
The greater number of allocated registers for results in a non-combinational
area increase of 27.31%: nevertheless the overall results, including combi-
national and interconnection costs, demonstrate an overall average area re-
duction of 1.81%. In the two designs in which the same number of registers
is used (chem and matmul), the area results are nearly the same for both the
approaches. These results demonstrate that while providing a conflict free
register binding, the proposed approach is not affected on average by area
overheads.

5.5 Controller Generation

The high regularity of the parallel controller architecture facilitates the au-
tomated synthesis process. It allocates a RM for each shared resource,
according to the module binding results. Then, it traverses the graph IR,
instantiating an EM for each operation. OM, CNT and UNBD modules
are allocated directly from the resource library; AMs, instead, are custom
synthesized for each operation, according to its Activating Conditions. To
simplify this process, ACs are encoded with the following simple grammar:

expr -> expr op expr
expr -> TOKEN_SIGNAL
op -> JOIN
op -> OR

where token signals and operators are terminals. Conditional operations
require the allocation of an additional component, which tokenizes the out-
put of the comparators. More in detail, this component samples the results
of comparisons only when the corresponding operation is running, produc-
ing single token signals. The number of outputs of this component is equal
to the number of branches of the conditional operations, each one denoting
a specific control condition.

89

i
i

“thesis” — 2014/2/4 — 8:27 — page 90 — #102 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

5.6 Support for Complex Behaviors

Nested Control Constructs In the typical FSM-based designs, the current
state of the controller completely represents the state of the whole acceler-
ator. At the opposite, in the proposed distributed architecture, all the states
of each EM constitute the overall state of the accelerator. In a given control
step, the state of an EM also accounts for the token signal already collected.
These aspects introduce some challenges when, to guarantee correctness, it
is required to reconstruct the global state of the accelerator. This happens,
for example, in the case of nested control constructs. Consider a simple
Activating Condition AC(x) = data1 ∗ cond1 ∗ cond2, with operation x
belonging to a loop body. If, in a certain iteration, cond1 and data1 are
satisfied and cond2 is not, in the next iteration x will start as soon as cond2
is satisfied, even if cond1 and data1 are not. Thus, the architecture detects
all these situations to obtain a correct behavior. Every time a new iteration
of a loop starts, it resets all the components that perform the join operations
for the Activating Conditions to their initial state. In addition, in case of
loop nests, it resets the modules that manage the inner loops, both when
they terminate and the control returns to higher level loops, and when outer
loops perform a new iteration.

SSA Programs During compilation, the input specification is translated into
a Static Single Assignment (SSA) form. This facilitates and enhances both
analysis and optimization steps. For example, SSA translation is usually
able to reduce the life time of variables, allowing more aggressive register
sharing. Once translated in SSA form, the code may present some par-
ticular operations, the phi functions. Phi functions are introduced if the
original code assigns variables under different control conditions. An ex-
ample can be found in Figure 5.2, which assigns variable i1_3 both outside
(line 5) and inside (line 13) the first loop, leading to the introduction of the
phi function (line 9). The main issues in supporting SSA programs with
a dynamic scheduling approach arise from the absence of the concept of
transition, which is exploited to establish the value of each phi function.
This limitation is overcome by analyzing the dependence graph. Two kind
of phi operands are identified: operands whose assignment is subject to
control dependencies, and operands assigned inside a loop body. In the
first case, the results of phi functions are written as soon as the assignment
is performed. In the second case, if the phi occurs in the loop itself, then
the result is written when the loop body completes a given iteration; other-
wise it is managed as in the previous case. As previously mentioned, the

90

i
i

“thesis” — 2014/2/4 — 8:27 — page 91 — #103 i
i

i
i

i
i

5.7. Implementation Details: Integration in the Bambu Framework

presence of phi functions also affects the register binding. The liveness an-
alyzer, as proposed in [43] and described in Section 5.4, has been tuned as
follows: given an operation x = phi(x1, x2), x is considered defined in
both x1 and x2 definition points. This does not increase the number of con-
flicts, because phi functions usually are defined with operations in mutual
exclusion, which in turn are treated as non conflicting.

Hierarchical Designs In the proposed HLS flow function calls are considered
as variable latency operations, mapped on custom Functional Units. The
flow can automatically generate such FUs from the specification, or include
them as custom components in the input component library. Another option
is to flatten the design by exploiting function inlining in the compilation
process. However preserving the hierarchical structure of the specification
is often more profitable, since modularity presents three main advantages.
The first is that the resulting architecture can also extract parallelism at
the function call level. The second is that it reduces the complexity of the
final architecture, by partitioning the design. Finally, it greatly enhances
reusability: each function is synthesized once, even if called several times.

5.7 Implementation Details: Integration in the Bambu Frame-
work

As mentioned in Section 2.4, from the software design point of view Bambu
is characterized by an extreme modularity, implementing each HLS algo-
rithm separately: the overall synthesis process is obtained as a composition
of such algorithms. The resulting flow acts on different IRs depending on
the synthesis stage, and on the selected algorithms. Such selection may
be tuned through configuration files or command-line options, provided by
the user. The software modularity of Bambu has mitigated the development
effort for the integration of the methodologies and techniques described in
this thesis, allowing the exploitation of the architecture independent com-
ponents of the flow, such as the back-end steps. When targeting the pro-
posed architecture, the tool automatically selects the proper algorithms for
its generation. The front end has been enriched, allowing the construction
of the Extended Program Dependence Graph, obtained analyzing the PDG,
produced in the baseline flow, and applying the rules introduced in Section
5.2.1. A subsequent front-end step processes the EPDG , and computes the
activating conditions. The following synthesis algorithms mainly adopts
the EPDG as the IR describing the specification. As described before, also
the liveness analysis algorithm exploits the EPDG as IR. The module bind-

91

i
i

“thesis” — 2014/2/4 — 8:27 — page 92 — #104 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

ing technique has been implemented specializing the weight assignment
routines; then, once obtained compatibility/conflict graphs, both register
and module binding are addressed exploiting the graph covering/coloring
algorithms provided by Bambu. As mentioned in Section 5.5, the controller
generation routine has required the integration of the controller modules in
the resource library: such modules have been described in Verilog. During
the synthesis process, the target architecture is described through a hyper-
graph IR, built incrementally during the synthesis flow. The adoption of
a common IR for describing both the FSM and the Parallel Controller ar-
chitectures has allowed to adopt the same netlist generation algorithms for
both the approaches. The developed flow preserves the wide language cov-
erage provided by the release version of Bambu, offering complete support
for most of the C language features (2.4).

5.8 Experimental Evaluation

In addition to the example proposed in Figure 4.1, the proposed flow has
been evaluated on a set of common HLS benchmarks: Test1 from [118],
BarcodeReader from [142], Bcnt, Blit and Des from the Powerstone suite
[164] and Adpcm-decode/encode and GSM from the CHstone suite [89].

Table 5.4: Execution latencies (number of clock cycles) targeting adaptive and FSM-
based accelerators.

Benchmark Proposed, #CC FSM-based, #CC Speed-Up
Loops 804 1607 2

Call-loops 2413 9637 3.99
Test1 52 108 2.08

BarcodeReader 1812 2846 1.57
Bcnt 3360 5156 1.53
Blit 56188 72280 1.29
Des 209194 274688 1.32

Adpcm-decode 806 990 1.23
Adpcm-encode 844 1038 1.23

GSM 22073 37213 1.69
Average Speed-Up 1.79

Area and latency of the resulting designs have been compared against
the release version (0.9.0) of Bambu, which is a representative of typical
FSM-based flows. In its default settings, it adopts a LIST-based algorithm
for the scheduling task and performs register binding by computing live-
ness analysis through a non iterative SSA data-flow algorithm [29]. Module

92

i
i

“thesis” — 2014/2/4 — 8:27 — page 93 — #105 i
i

i
i

i
i

5.8. Experimental Evaluation

Table 5.5: Synthesis results: number of required Flip Flop(FF), LUT and FF/LUT pairs
targeting adaptive and FSM-based accelerators.

Proposed Approach FSM-based approach
Benchmark # FF LUTS PAIRS # FF LUTS PAIRS Area Overhead

Loops 431 458 458 243 268 276 1.66
Call-loops 1378 1447 1515 371 427 514 2.95

Test1 765 628 745 377 384 400 1.86
BarcodeReader 1131 909 1126 436 503 537 2.09

Bcnt 1777 1520 2085 877 918 1211 1.72
Blit 2515 2603 2807 1832 1715 1964 1.43
Des 7777 4920 7950 5441 3919 5509 1.44

Adpcm-decode 8482 7573 9882 5693 6215 7492 1.32
Adpcm-encode 8939 8426 10829 5920 7343 8726 1.24

GSM 13412 14508 17236 9754 12036 13775 1.25
Average Area Overhead (LUT/FF pairs) 1.69

binding is addressed through clique covering. Two considerations motivate
this choice: first, statically scheduled designs, based on the construction
of a centralized FSM, represent the dominant solution in HLS; second, al-
ternative flows featuring concurrent execution of multiple flows, require
particular descriptions of the input specifications, such as Petri nets. This
is in contrast with the general trend of adopting programming languages
(i.e. C, C++) as specification languages. For both the approaches, the tar-
get operating frequency has been set to 200 MHz. Execution latency has
been evaluated by simulating the designs through Xilinx ISIM. Table 5.4
shows the simulation results. For every benchmark it is reported a signifi-
cant speed-up, which varies according to the characteristics of each specifi-
cation. For example for function loops, which presents two parallel loops, it
is reported a performance speed up close to 2x, since the proposed approach
allows to overlap their execution (as shown in Figure 4.11). A similar be-
havior characterizes benchmark Test1, which includes two parallel loops
embedding nested conditionals. The proposed technique is able to exploit
parallelism across basic block boundaries, providing a speed up greater than
2x. The maximum performance gain has been experienced when synthe-
sizing function call_loops: the approach takes advantage of coarse grained
parallelism, allowing the multiple function calls to run in parallel. Such
characteristic is also highlighted by simulation results for benchmark GSM,
which presents parallelism at function call level and shows a speed-up of
1.69x. When limiting coarse grained parallelism, obtained speedups are
relatively lower. This is the case, for example, of the ADPCM benchmarks,

93

i
i

“thesis” — 2014/2/4 — 8:27 — page 94 — #106 i
i

i
i

i
i

Chapter 5. High Level Synthesis of Adaptive Hardware Components

which mostly present parallelism in form of ILP. Area has been evaluated
by synthesizing the designs with Xilinx ISE ver 14.4., targeting a Zynq
xc7z020 device (package clg484). All the synthesis options were left to
their default values. Table 5.5 summarizes the synthesis results, reporting
the number of allocated Flip Flop (FF) Registers, LUT and FF/LUT pairs
for both the parallel controller and the FSM-based flow. The table shows
that the area overhead for the proposed flow ranges from 1.24x to 2.95x,
when comparing the number of required FF/LUT pairs. Similarly to the
latency, the area overhead is directly related to the available parallelism de-
gree in the application. This behavior depends on the binding strategies.
The register binding approach produces a conflict free binding, so paral-
lel operations do not share resources. Thus, more registers are allocated
as more parallelism is available in the specifications. Similarly, the mod-
ule allocation heuristic, which focuses on increasing performance, allocates
more resources as more operations can run concurrently. In fact the max-
imum overhead is paid when synthesizing call_loops: to run parallel calls
concurrently, the flow needs to allocate multiple instances of modules im-
plementing the loops function. Such redundancy obviously increases the
overall accelerator area, but allows increasing the performance of almost 4
times. A statically scheduled approach cannot provide the same speedup
within the same resource budget, while meeting timing constraints. Once
again, managing multiple flows with a statical schedule requires the con-
struction of complex product FSMs, which results in unfeasible complexity
for highly parallel applications. On average, the area overheads result rea-
sonable considering the speed ups obtained. For example, for the most area
demanding application, the GSM benchmark, the dynamically scheduled
accelerator design, with an area overhead of only 1.25x , provides a speed
up of 1.69x. Furthermore, the accelerator design still requires only a small
fraction (27%) of the resources available on the target device.

5.9 Conclusions

This chapter presented an automated flow for the generation of adaptive
accelerators. The proposed flow is able to exploit parallelism at differ-
ent granularities, including control constructs and function calls. The flow
also supports variable latency operations. In contrast with typical synthe-
sis flow, the generated architectures feature a distributed controller, sup-
porting dynamic scheduling. When compared to conventional designs, the
dynamically scheduled accelerators achieve significant speedups, causing
only limited area overheads with respect to the performance improvements

94

i
i

“thesis” — 2014/2/4 — 8:27 — page 95 — #107 i
i

i
i

i
i

5.9. Conclusions

obtained. However, the reported overheads identify opportunities for fur-
ther improvements. Currently, the designed binding strategies focus mainly
on performance: future works will investigate and refine such binding tech-
niques, exploring different performance/area trade-offs. Among the dif-
ferent offered features, the proposed approach appears very promising for
coarse grained parallelism exploitation, especially in the form of TLP. Next
chapters will propose hardware components and techniques to fully take
advantage of this characteristic.

95

i
i

“thesis” — 2014/2/4 — 8:27 — page 96 — #108 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page 97 — #109 i
i

i
i

i
i

CHAPTER6
The Memory Interface Controller

Previous chapters have described an adaptive accelerator design, based on
the definition of a parallel controller, together with a HLS flow for its au-
tomated synthesis. The parallel controller architecture improves coarse
grained parallelism exploitation, allowing multiple flows to run concur-
rently and managing each of them independently. This is a desirable fea-
ture, since several applications expose parallelism at the task level (TLP),
where each thread may be characterized by different runtime latencies. In
this domain, exploiting TLP is the key component for improving perfor-
mance. Hardware synthesis for TLP usually is based on the replication of
computing resources. Tasks/threads are designed as custom hardware com-
ponents, and then multiple instances of such modules are allocated in the
final design. The binding strategy adopted in the described HLS flow for
concurrent function calls, is an example of this common practice. This ap-
proach is supported by the constant improvements in silicon technology,
which progressively mitigate the pressure on the design flows of area con-
straints. However, not all the resources can be straightforwardly replicated:
this is the case of memory resources. Memory in fact, especially for parallel
applications, is usually shared among the multiple tasks, thus allowing their
parallel execution requires to manage concurrency on the shared resources.

97

i
i

“thesis” — 2014/2/4 — 8:27 — page 98 — #110 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

The memory bottleneck can considerably degrade performance, especially
for memory bound applications where the computation component is not
enough to hide the memory latency. Among these, irregular applications
represent the most affected class: they are memory bound, have poor lo-
cality, and usually perform several fine-grained memory accesses with un-
predictable access patterns. Their acceleration through custom hardware
components seems very promising, since general purpose systems fail in
overcoming the memory bottleneck. Solution based on caching require the
adoption of coherency protocols, and provide limited benefits, if any, in
the absence of locality. More suitable architectural approaches are mostly
based on memory distribution and or partitioning. These techniques allow
multiple operations to access the memory at the same time, but introduce
additional challenges:

1. memory addresses usually are not known statically, thus it is required
to identify the targeted memory locations at runtime;

2. tasks may access the memory in parallel, thus it is needed to manage
synchronization between them;

3. structural conflicts on shared memory resources have to be avoided.

Partial solutions addressing these issues have mainly focused on efficient
implementations of specific applications, such as graph exploration algo-
rithms, with strict assumptions on the target architectural model, including
the memory system. This lack of generality makes such techniques diffi-
cult to apply on both RTL and HLS synthesis flows. Focusing on the mem-
ory component, current design methodologies lack in efficient support of
memory hierarchies and sufficient abstraction of external memories, con-
straining the design process in several ways. This chapter describes a de-
sign methodology which aims at alleviating this gap, while addressing the
above mentioned challenges, through the definition of an adaptive Memory
Interface Controller (MIC) [45] [44]. The MIC introduces an abstraction
layer between hardware accelerators design and external memory structure;
it allows fine grained parallelism exploitation on memory accesses, auto-
matically manages concurrency on shared resources, and supports atomic
memory operations for synchronization. The MIC has been designed as
a custom, parameterizable IP, thus suitable for easy adoption in both RTL
and HLS flows. Since, as mentioned before, irregular applications repre-
sent the class of algorithms most affected by the memory bottleneck, this
work mainly focus on them. However, the proposed design techniques can
be profitably exploited for parallel applications in general, and are suitable

98

i
i

“thesis” — 2014/2/4 — 8:27 — page 99 — #111 i
i

i
i

i
i

6.1. Motivation

for adoption in HLS, as demonstrated in the next Chapter. The remainder
of this Chapter is organized as follows. Section 6.1 introduces the pro-
posed methodology, highlighting some characteristics of irregular applica-
tions and providing an overview on existing approaches for their accelera-
tion. Such techniques are detailed in Section 6.2. Section 6.3 remarks some
challenges introduced by irregular applications, through the Breadth First
Search (BFS) case study. Section 6.4 describes an accelerator design tem-
plate, adopted as target architectural model for the synthesis process, and
highlights the advantages of adopting the parallel controller architecture for
its implementation. Section 6.5 details the MIC design, which allows max-
imizing bandwidth utilization and supporting atomic memory operations.
Section 6.6 presents the experimental evaluation, providing an exploration
of the design space in terms of spatial parallelism (number of concurrent
kernels) and number of memories for the BFS case study. Finally, Sec-
tion 6.7 concludes the Chapter.

6.1 Motivation

Semantic databases, social network analysis, data mining, bioinformatics,
language understanding, pattern recognition and, in general, knowledge
discovery are new, emerging irregular applications. They feature irregu-
lar data structures such as graph, unbalanced trees or unstructured grids,
which employ pointers or linked lists [191]. These data structures pro-
vide a large amount of inherent dynamic parallelism, because the applica-
tion can potentially spawn new tasks for each explored element. However,
they also present very poor spatial and temporal locality, because any ele-
ment can point to any other element, leading to substantially unpredictable,
fine-grained, memory accesses. In addition, they usually are large, but
difficult to partition without generating load unbalance, and often require
synchronization at the level of the single element to coordinate accesses
among a multitude of tasks. Irregular applications are mostly memory
bandwidth bound, and the key in maximizing their performance is maxi-
mizing bandwidth utilization in presence of fine-grained memory accesses.
Modern multicore processors, which exploit complex and large caches,
mainly rely on data locality and regular computations to achieve high per-
formance. Therefore, they usually execute irregular applications poorly.
Multithreaded architectures, which focus on tolerating latencies by switch-
ing to other threads while performing memory accesses rather than reduc-
ing latencies through caches, usually provide higher performance with this
class of applications. Lately, several systems targeting irregular applica-

99

i
i

“thesis” — 2014/2/4 — 8:27 — page 100 — #112 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

Figure 6.1: Schematic representation of Convey HC-1 platform.

tions that employ hybrid architectures have appeared. Hybrid architectures
integrate both general purpose processors and reconfigurable logic, such
as Field Programmable Gate Arrays (FPGAs), to accelerate some specific
workloads. Solutions like the Convey HC-1 or the HC-2 include custom
personalities (hand-designed accelerators) for some irregular algorithms,
such as Breadth First Search (BFS) [52]. The Convey MX-100 [53] imple-
ments a full custom manycore, multithreaded processor architecture on the
FPGA, together with an OpenMP programming environment (CHOMP), to
speed up irregular applications. These platforms integrate complex, custom
memory controllers with multiple distributed or banked memories, which
support many concurrent fine-grained parallel memory requests, high band-
widths and large memory sizes. Figure 6.1 shows the schematic represen-
tation of Convey HC-1 platform, which is an example of such platforms.
Its co-processor board includes four user programmable Virtex5 LX 330s
FPGAs, called Application Engines (AEs), connected to eight Memory
Controllers through a 2,5 Gbyte/s link. Thus each AE can reach the peak
bandwith of 20 Gbyte/s when accessing the eight MCs concurrently. These
approaches demonstrated promising speed ups with respect to commodity
systems, providing alternative, smaller scale, solutions than fully custom
systems for irregular applications such as the Cray XMT multithreaded
supercomputer [72]. However, they still are custom designs, with hand-
developed accelerators or even processors, loaded on the reconfigurable
logic. Modifying them means rewriting the Register Transfer Level (RTL)
code, the software runtimes and the related interfaces towards the general
purpose processors. It is difficult to adapt them to specific or new appli-

100

i
i

“thesis” — 2014/2/4 — 8:27 — page 101 — #113 i
i

i
i

i
i

6.1. Motivation

cations, providing a better utilization of the reconfigurable logic depending
on the requirements, or to modify them so to support completely new re-
quirements. On the other end of the spectrum, High Level Synthesis tools
appear very promising for hybrid architectures [129]: the application de-
velopers can decide to offload some of the kernels (usually, the ones that
mostly constrain the application performance) to the reconfigurable logic,
and let the tool generate all the RTL code to synthesize. However current
HLS paradigms do not consider many of the issues in irregular applica-
tions [64,65,88]. They adopt very restrictive abstractions for memory, usu-
ally considering a single ported memory, sequentializing all the accesses. In
addition, they provide poor (if any) support for synchronization directives.
In fact, synchronization is provided through the interaction with off-the-
shelf soft processors or custom schedulers, which manage the execution
on the hardware modules. This interaction may considerably slow-down
execution latencies when compared to full custom hardware executions.
This chapter introduces an adaptive Memory Interface Controller (MIC)
which features complete concurrency and synchronization management on
the memory resources. The MIC dynamically maps memory operations
across multiple, distributed and/or multi-ported memories, such as those
available in hybrid systems. The accesses routing, towards a particular
memory port, is performed at runtime in order to efficiently support unpre-
dictable memory access patterns, which are typical in irregular applications.
Concurrency is managed through a lightweight arbitration scheme, which
avoid any structural conflict on shared resources, and which does not in-
troduce any delay penalty. Since accesses routing and resource availability
checks both occur at runtime, the MIC is able to issue several memory op-
erations at the same time, provided that they do not target the same memory
locations, thus improving the system memory bandwidth utilization. Syn-
chronization management is provided through embedded implementations
of atomic memory operations such as fetch-add and compare-swap, com-
monly adopted in parallel programming as synchronization directives. The
MIC structure is general, facilitating its integration on different target plat-
forms and possibly its customization. Moreover, its actual implementation
can be tuned through parameters, varying for example bitwidths, number
of memory accesses which can be concurrently managed and the number
of targeted memory banks. This characteristic also facilitates design space
exploration tasks. The MIC can be easily integrated in custom hand-written
designs, but can also be automatically allocated in typical HLS flows.

101

i
i

“thesis” — 2014/2/4 — 8:27 — page 102 — #114 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

6.2 Related Work

In the last few years, several approaches to accelerate irregular kernels,
such as graph traversal, with hybrid architectures and reconfigurable de-
vices have appeared. They mainly exploit hand-tuned hardware acceler-
ators. The most important examples are the Breadth First Search (BFS)
personalities for the Convey HC systems [52], and the new Convey MX
system, which couples a multithreaded custom processor on the reconfig-
urable logic with an OpenMP programming environment (CHOMP - Con-
vey Hybrid OpenMP) [53], providing significant speed ups for graph explo-
ration kernels [54]. Betkaoui et al. [27] present a reconfigurable hardware
methodology for efficient parallel processing of large-scale graph explo-
ration problems. The authors introduce an architecture for the Convey HC-
1. The proposed solution, demonstrated on the BFS algorithm, decouples
computation and communication while keeping multiple memory requests
in flight at any given time, taking advantage of the hardware capabilities
of the FPGAs and of the parallel memory subsystem. The authors design
the architecture by hand, and increase parallelism by replicating the basic
BFS kernel. They make the consideration that a HLS synthesis flow could
only generate the kernel itself. The proposed approach, instead, can be
completely integrated in a HLS framework. In [55], Cong et al present an
implementation of the fluid registration algorithm on a Convey HC-1 multi-
FPGA platform. The authors implement the algorithm through a HLS tool,
with additional source-code level optimizations including fixed- point con-
version, tiling, prefetching, data-reuse, and streaming across modules using
a ghost zone (time-tiling) approach. The paper suggests that further steps
are required to fully support the features of a hybrid architecture in an au-
tomatic tool. In [182] the authors show how ROCCC 2.0, a HLS tool, can
support the Convey HC-1 platform. The paper shows how Dynamic Time
Warping and Viola-Jones algorithms are converted from C specification to
a Hardware Description Language (HDL) specification, targeting the Con-
vey system. However, the approach still requires to perform optimizations
on the code to fully support the platform, and does not introduce new so-
lutions to support irregular applications. To the best of our knowledge,
current hardware synthesis methodologies do not address the issues of ir-
regular, and more in general, memory bound applications, in their entirety.
These include: abundant task level parallelism, unpredictable and parallel
memory accesses, fine grain synchronization through atomic memory oper-
ations. There are, however, some approaches that look at supporting some
of these features. [88] discusses how to extend ROCCC to support irregular

102

i
i

“thesis” — 2014/2/4 — 8:27 — page 103 — #115 i
i

i
i

i
i

6.3. Accelerating Memory Intensive and Irregular Applications

vo id a p p l i c a t i o n _ t e m p l a t e () {
/ / code b l o c k

f o r (i d = i n i t ; id <NUM_it ; i d = i d +1) {
k e r n e l (id , d a t a) ;

}
/ / code b l o c k

}

Figure 6.2: Application Template

applications. The authors introduce multithreading to tolerate long memory
access latencies, and describe how they customized the ROCC compiler to
generate concurrent hardware threads and to support customized state in-
formation for each dynamically generated thread. However, they do not
address atomic memory operations, and they test the toolchain only on a
very simple pointer chasing example. In [18], the authors propose an ap-
proach to support multimodal functional units, while minimizing the size of
the resulting circuit. Multimodal FUs implement multiple types of opera-
tions, usually with different execution latencies. The MIC, with support for
atomic operations, can be considered as a special multimodal FU. However,
the approach proposed in the paper does not look at increasing parallelism
exploitation. It uses a static scheduling technique, which jointly schedules
on the same multimodal FUs mutually exclusive tasks.

6.3 Accelerating Memory Intensive and Irregular Applications

Irregular applications typically expose coarse grain parallelism, usually lo-
cated in loops. The general template provided in Figure 6.2 can map most
irregular applications, such as graph problems [27]. There are several chal-
lenges when mapping these applications to hardware with automated syn-
thesis flows. First, hardware acceleration generally relies on fine grained
parallelism exploitation: ILP inside each kernel is usually limited. Fur-
thermore, the kernels are mostly memory bound, because the largest part
of parallel operations are memory accesses. As a result, hardware design
methodologies focused on ILP extraction provide limited speed ups. Multi-
ported, multi-banked or distributed memories can mitigate this issue by
allowing multiple concurrent memory accesses. However, the memory ac-
cess patterns are irregular. Thus, statically binding a memory operation to a
hardware resource is not possible. In turn, this makes concurrent execution
of memory operations non trivial. Synchronization issues among different
kernels are additional sources of complexity. In fact, different concurrent

103

i
i

“thesis” — 2014/2/4 — 8:27 — page 104 — #116 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

i n t b f s (u n i s g n e d ∗ o f f s e t s , u n i s g n e d ∗ edges) {
/ / n = number o f t o t a l v e r t i c e s
/ / e = number o f t o t a l edges
u n i s g n e d ∗q = m a l lo c ((1 + n) ∗ s i z e o f (u n i s g n e d)) ;
u n i s g n e d ∗ q n e x t = ma l l oc ((1 + n) ∗ s i z e o f (u n i s g n e d)) ;
u n i s g n e d ∗map = ma l l oc (n∗ s i z e o f (u n i s g n e d)) ;

i n i t (o f f s e t , edges , q , qnext , map) ;
u n i s g n e d q _ s i z e =q [0] ;
w h i l e (q _ s i z e ! = 0) {

i n t v i d ;
f o r (i t e r I d = 1 ; i t e r I d < q _ s i z e ; i t e r I d ++) {

u n i s g n e d v=q [i t e r I d] ;
i n t i ;

/ / b f s k e r n e l
f o r (i = o f f s e t s [v] ; i < o f f s e t [v + 1] ; i ++) {

u n i s g n e d n e i g h b o r = edges [i] ;
i f (atomic_CAS (map [n e i g h b o r] , 0 , 1) {

q n e x t [atomic_FA (q n e x t [0])]= n e i g h b o r ;
}

}
/ / end b f s k e r n e l

}
u n i s g n e d ∗qtmp = q ;
q= q n e x t ;
q n e x t =qtmp ;
q _ s i z e =q [0] ;
q n e x t [0] = 0 ;

}
f r e e (o f f s e t s) ; f r e e (edges) ; f r e e (q) ; f r e e (q _n ex t) ; f r e e (map) ;

}

Figure 6.3: Queue-based BFS implementation

kernels share the same memory resources, so a way to preserve consistency
is required.

The graph Breadth First Search (BFS) algorithm, a typical irregular ap-
plication kernel, presents all the previously mentioned aspects. Figure 6.3
shows a C implementation, with atomic constructs added where necessary,
of a queue-based BFS. The algorithm works on a graph represented in the
Compressed Sparse Row (CSR) format. In the implementation, q and qnext
respectively are the queues of vertices to explore in the current and in the
next iteration. The first location of each queue stores the number of ele-
ments in the queue itself. Map is the array that the algorithm employs, at
each iteration, to mark the vertices that it has already explored. This im-
plementation can be easily mapped on the general template of Figure 6.2,
identifying kernels which may execute concurrently (lines 17-24) . Each
one of the kernels iterates over the out edges of a given vertex: when it
traverses a new neighbor, the neighbor is marked in the map as visited and

104

i
i

“thesis” — 2014/2/4 — 8:27 — page 105 — #117 i
i

i
i

i
i

6.3. Accelerating Memory Intensive and Irregular Applications

vo id p a r a l l e l _ a p p l i c a t i o n _ t e m p l a t e () {
/ / code b l o c k

f o r (i d = i n i t ; id <NUM_it ; i d = i d +N) {
k e r n e l (id , d a t a) ;
i f (i d +1<NUM_it)

k e r n e l (i d +1 , d a t a) ;
i f (i d +2<NUM_it)

k e r n e l (id1 , d a t a) ;
. . .
i f (i d +N−1<NUM_it)

k e r n e l (i d +N−1, d a t a) ;

}
/ / code b l o c k

}

Figure 6.4: Parallelized Application Template

added to the next iteration queue. If multiple kernels run concurrently, they
perform write accesses to a shared data structure. Consequently, there must
be a way to to synchronize the accesses. In software parallel programming,
atomic operations, such as compare-and-swap and fetch-and-add (as shown
in Figure 6.3), provides synchronization. To overcome the highlighted is-
sues and to achieve significant speed ups, this work proposes a hardware
accelerator design, suitable for the synthesis of irregular applications, based
on the definition of an adaptive Memory Interface Controller. The MIC:

• allows concurrent execution of memory operations on multiple mem-
ory banks, also with an irregular access pattern;

• guarantees memory consistency when multiple kernels concurrently
access shared data structures; this is achieved by implementing atomic
operations through dedicated hardware modules;

• improves coarse grained parallelism exploitation, allowing multiple
kernels to run concurrently without the need of inter-processes com-
munication.

The methodology exploits coarse grained parallelism through “spatial’ mul-
tithreading (see Section 6.4), i.e. by replicating multiple times the same
kernel. The introduction of the MIC enables support of concurrent memory
accesses to different memory banks. The MIC dynamically steers memory
access requests to the proper memory ports, while managing concurrency
among them. The MIC also provides atomic operations, which are consid-
ered as a special type of memory operations.

105

i
i

“thesis” — 2014/2/4 — 8:27 — page 106 — #118 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

Figure 6.5: Accelerator design template schematic representation.

6.4 Accelerator Design Template

In this work we consider an accelerator structure, shown in Figure 6.5,
which maps on hardware the application template proposed in Figure 6.4.
Such specification template is obtained modifying the general one (Figure
6.2) through partial unrolling, with an unrolling factor of N . This better
exposes task level parallelism, and facilitates the implementation process.
Replicated kernel function calls are executed only within the bounds of the
outer loop. In the general case, checks for the bounds are explicit because
the number of loop iterations may not be statically known. For example, in
the BFS, it varies dynamically as new vertices are explored. If the upper
bound is static, then it is not necessary to insert checks. In the proposed
design each kernel call is modeled, from the caller module perspective, as
a common variable latency operation, and it is implemented as a stand-
alone processing unit. If a kernel function performs memory operations on
shared memories, it forwards execution requests to the caller. In case of
nested calls, forwarding is recursive, until the top level is reached. At the
top level, the MIC manages the memory accesses. Since multiple memory
operations may target the same memory locations at the same time, result-
ing in structural conflicts, memory accesses are also modeled as variable
latency operations. In fact, it is impossible to establish at design time if
and when a collision will occur. The introduction of the MIC adds an ab-
straction layer between the accelerator and the memory structure, which
decouples the problems of designing the two components. Varying for ex-
ample the number of available memory banks, or the scrambling function

106

i
i

“thesis” — 2014/2/4 — 8:27 — page 107 — #119 i
i

i
i

i
i

6.4. Accelerator Design Template

used to distribute data, have no impact on the accelerator implementation.
In fact the accelerator can be implemented as an independent module: the
designer or the synthesis tool may ignore mutual interferences between dif-
ferent kernels, or in general, memory accesses, since synchronization and
concurrency are managed by the MIC. This abstraction also facilitates the
design process: for example operation scheduling may be addressed in-
dependently for each kernel, without performing difficult inter-functional
analysis. In addition it allows trivial kernel replication. All these aspects
improve modules reusability and the efficiency of Design Space Explo-
ration tasks, while reducing their complexity. This is an important char-
acteristic, since several design choices affect the system performance: in
addition to the memory structure, other design choices which may alter the
quality of results are the number of allocated kernel instances, and the num-
ber of concurrent memory operations which the MIC should manage. HLS
has a significant role in DSE, since it usually allows the generation of sev-
eral alternative design solutions, with different performance trade/offs. As
demonstrated in Section 6.6, and detailed in Chapter 7, accelerators mod-
eled through the proposed design template can be successfully generated
through HLS frameworks.

6.4.1 Exploitation of the Parallel Controller Architecture

The parallel controller architecture represent a good candidate for imple-
menting the high level accelerator design template shown in Figure 6.5,
since it efficiently manages multiple concurrent execution flows. In addi-
tion, it also allows parallelism exploitation of variable latency operations:
regardless to the memory structure, concurrency makes memory operations
VLOs, even if an isolated memory access has a fixed latency. Variability
may grow further for complex memory structures, for example due to net-
work communications latencies. Allowing kernels to issue multiple mem-
ory operations is a desired feature for exploiting the available bandwidth.
Such parallelism is completely exploited by the parallel controller archi-
tecture. Centralized approaches instead can cope with very limited degrees
of parallelism. For example, if such degree is 8, a FSM implementation
requires hundreds of states and thousands of transitions. These consid-
erations apply also at the task granularity level, where the parallelism is
associated to the number of kernels. However, the design template do not
impose a particular architectural model for the kernels. If they expose lim-
ited parallelism at the level of memory operations, they can be designed as
FSM-based accelerators. In this case, memory bandwidth utilization may

107

i
i

“thesis” — 2014/2/4 — 8:27 — page 108 — #120 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

Figure 6.6: Top Level Memory Interface Controller Structure.

be improved increasing the number of allocated kernels. Chapter 7 will
analyze in depth these aspects.

6.5 Memory Interface Controller Design

The MIC has been designed with the objectives of dynamically addressing
irregular memory accesses to the corresponding memory port, while man-
aging their concurrency. Figure 6.6 shows the basic structure of the MIC.
Basically, the MIC takes in input memory access requests from N ports,
which have an address, a data and an operation type (load/store) line. It
routes requests towards one of the M output ports by evaluating their ad-
dresses. It serves a request as soon as the corresponding port is available.
In a similar way, it routes back M done signals (which notify termination
of an operation) and the results (in case of loads) to the requesting opera-
tion. The memory is composed of M different and independent banks, and
each output port accesses one bank (Figure 6.5). Each memory bank has
non-overlapping addresses. This is equivalent to having M different dis-
tributed memories. Figure 6.7 provides a schematic view of the controller
structure. The MIC associates each input operation i to a Control Element
(CE) and a module (PI) that analyzes the input address to establish the des-
tination port. This is obtained embedding in the PI design, the hardware
implementation of the scrambling function used to distribute data on the
multiple memory partitions. For each output j, it is allocated a Resource
Manager (RM), which has the role of managing concurrency. Each CE in-
tercepts execution requests and forwards them to the RMs, until they are
accepted (Section 4.3. A Port Index signal produced by the PI, working as
selector of the steering logic (connection 1), allows performing the routing
of the requests. Once a RM accepts a request, it sends back an ack signal
to the corresponding CE, disabling it, and to the UNBD module, which is
responsible of setting the selectors while the operation is running. These

108

i
i

“thesis” — 2014/2/4 — 8:27 — page 109 — #121 i
i

i
i

i
i

6.5. Memory Interface Controller Design

Figure 6.7: Memory Interface Controller schematic representation.

signals, according to the output of PIs (connection 2), drive the steering
logic that feeds the memory ports (connection 3). Figure 6.7 only shows
the connections and logic for the address line of an input port. All the other
input lines follow a similar approach, duplicating the steering logic and in-
terconnections. Similarly, the MIC routes done signals and results coming
from memory (read accesses), according to the requesting input port. In
this case, OPeration Index (OPI) modules provide the selectors for the in-
terconnections. OPIs identify the input port requesting the memory access.
The design of the MIC, thanks to its modularity and regularity, is not con-
strained by any particular characteristic of the ports (number or bitsize of
inputs/outputs).

Table 6.1 shows a high-level characterization of resources requirements
and complexity of the MIC, when varying the number of concurrent mem-
ory operations (N), the number of memory banks(M) and the number/size
of memory ports(n). Number and size of memory ports is not considered
as a parameter, since it is imposed by the targeted memory structure. We
can classify the allocated components as elements which generate routing
signals, and steering logic. The first have limited complexity: only the Re-
source Manager complexity increases with the number of input operations.
However, it is a lightweight module, which requires only N-1 two bit or

109

i
i

“thesis” — 2014/2/4 — 8:27 — page 110 — #122 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

Table 6.1: Resource requirements and complexity for a MIC managing N input operations
towards M memory banks.

Resource Number Complexity
CE N constant
RM M f(N)

UNBD N constant
PI N constant

OPI M f(N)
conn1,3,4 M f(N,M)

conn2 N f(N,M)

gates to be implemented. The main impact on area requirements of the
MIC, is due to the steering logic, in particular connection objects 3 and 4,
since they route signals of higher size (e.g. address, data, results), and both
their number and complexity grows with N and M.

Atomic operations Atomic operations indivisibly perform a sequence of op-
erations (read and write) on a given memory location, ensuring that its con-
tent is not modified by other operations during their execution. In the con-
sidered design, we obtain an atomic behavior by delegating management
of atomic operations to the MIC. When the MIC accepts the execution re-
quest of an atomic operation, it exclusively binds the associated memory
port to the operation, until its completion. The MIC manages atomic exe-
cution through dedicated hardware. For example, fetch-and-add operations
read the value at the specified address, add the provided operand to the
previously read value, and then store the result in the same memory lo-
cation. They return the old value they read. The MIC implements this
operation as follows. First, it performs the load operation. When the MIC
receives the done signal coming from the memory, it intercepts the signal,
buffers the loaded value, and calculates the sum. Then, it stores the result
of the sum into the memory. The subsequent done signal corresponds to
the completion of the whole atomic operation, thus it returns the buffered
value. The MIC implements other atomic operations following the same
approach. The MIC includes dedicated hardware to manage atomic op-
erations for each memory port, thus allowing concurrent execution of an
atomic operation per memory bank.

110

i
i

“thesis” — 2014/2/4 — 8:27 — page 111 — #123 i
i

i
i

i
i

6.6. Experimental Evaluation

Table 6.2: Area evaluation of Memory Interface Controllers.

M=2 M=4 M=8 M=16
N FF LUT FF LUT FF LUT FF LUT
2 4 216 4 344 4 721 4 1434
4 8 308 8 496 8 975 8 1894
8 16 623 16 997 16 1958 16 3905

16 32 1257 32 2061 32 4168 32 8030
32 64 2891 64 4875 64 10005 64 19147
2 76 384 148 609 292 1249 581 2434
4 80 570 152 838 296 1668 584 3278
8 88 1012 160 1482 304 2939 592 5771

16 104 1908 176 2857 320 5598 609 11194
32 136 4114 208 6348 352 12474 643 24726

6.6 Experimental Evaluation

The MIC has been designed, and implemented in Verilog, in two differ-
ent versions. The first only considers load and store operations, without
support for atomic operations. It takes in input memory addresses, input
data for store operations, selectors for identifying the operation type, and
a start signal. It produces in output done signals and, in case of load op-
erations, a result. The second version of the module extends the previous
one by providing support to fetch-and-add and compare-and-swap atomic
operations. There are additional selectors in input, and dedicated output
lines for providing the results. The same lines used for input data of store
operations provide the operands. Both the MIC implementations are cus-
tomizable, indicating number of input operations and number of memory
banks as parameters.

As a preliminary step, we evaluated the area of the designed modules,
varying both the number of inputs N (associated with the maximum number
of parallel memory operations) and the number of outputs M (associated
with the number of memory banks). The designs have been synthesized
with Xilinx ISE ver 14.4, targeting a Virtex 6 xc6vlx75t-3ff784 device. Ta-
ble 6.2 summarizes the synthesis results for both versions of the controller,
in terms of allocated Flip Flop (FF) registers, and LUT. The first 5 rows re-
fer to the interface controller supporting only loads and stores, the last five
rows, instead, to the design that also supports fetch-and-add and compare-
and-swap. The size of the address, data and result lines, have been set to
32 bits. The number of required resources increases almost linearly with
both the number of inputs and number of outputs. For the first design, the

111

i
i

“thesis” — 2014/2/4 — 8:27 — page 112 — #124 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

Table 6.3: Simulation results; input graph: 5000 nodes, average degree: 10.

M = 4 M = 8
kernels 2cc 5cc 10cc 2cc 5cc 10cc

1 306156 524376 888076 306156 524376 888076
4 113210 221920 403351 107696 201030 357887
5 98963 200221 370933 91536 176243 318709
6 88638 184015 346154 80379 156811 287159
7 81891 174452 330933 72959 143184 266953
8 77218 165959 317174 66055 132809 246044

number of FFs is negligible, because the modules allocated for managing
operations issue and temporization only require 2 FFs. The second design
also needs FFs (32 for each line) for buffering the fetch-and-add results. For
the second design it is also reported an increase in the number of LUTs, due
to the additional logic required to implement the atomic operations.

The proposed approach has been evaluated by exploring area and per-
formance when synthesizing the BFS algorithms with different parameters.
The choice is motivated by the fact that the BFS is considered one of the
most typical irregular application kernel. Different implementations, vary-
ing the number of allocated kernels and the number of available memory
ports, have been compared. Such designs have been automatically gen-
erated with the HLS flow described in Chapter 4, and manually modified
introducing the MIC in the obtained implementations. Each kernel per-
forms six memory accesses, and two atomic operations, i.e., one fetch-and-
add and one compare-and-swap. Since the kernels require access to the
whole memory, the MIC manages the memory accesses at the top level.
According to the program dependences, each kernel can issue up to two
concurrent memory operations. For this reason, two input ports of the MIC
are reserved to each kernel. All the accelerators have been synthesized tar-
geting an operating frequency of 100 MHz, and all were able to meet the
timing constraint. Performances have been evaluated, in terms of execution
latency, while also varying the size of the input graph and the latency model
of the memory operations (2, 5 and 10 clock cycles per operation).

Tables 6.3,6.4,6.5 report the simulation results (number of clock cyles)
for the different data sets, characterized as follows:

• Table 6.3: 5000 nodes, average out degree for node: 10, overall num-
ber of edges: 22767;

• Table 6.4: 5000 nodes, average out degree for node: 20, overall num-
ber of edges: 47597;

112

i
i

“thesis” — 2014/2/4 — 8:27 — page 113 — #125 i
i

i
i

i
i

6.6. Experimental Evaluation

Table 6.4: Simulation results; input graph: 5000 nodes, average degree: 20.

M = 4 M = 8
kernels 2cc 5cc 10cc 2cc 5cc 10cc

1 754146 1253058 2084578 754146 1253058 2084578
4 264826 505388 919541 253693 463188 823023
5 226582 454496 837274 213431 398821 717946
6 203785 417353 785667 187255 355475 646308
7 187423 397995 748200 167535 322705 590834
8 174418 380939 720322 151475 296591 545312

Table 6.5: Simulation results; input graph: 5000 nodes, average degree: 30.

M = 4 M = 8
kernels 2cc 5cc 10cc 2cc 5cc 10cc

1 1176994 1932928 3192818 1176994 1932928 3192818
4 405913 766858 1393948 391490 706281 1244692
5 350162 691134 1271945 329344 616505 1096587
6 311400 636499 1192199 286875 540074 977461
7 284709 600454 1132529 256882 491327 891643
8 265618 576155 1091994 231492 449192 821210

• Table 6.5: 5000 nodes, average out degree for node: 30, overall num-
ber of edges: 72887.

To preserve the irregularity, graphs have been randomly generated. All the
results refer to the execution of the complete BFS algorithm. First, the
specification has been synthesized allocating only one kernel function, and
interfacing it to a single bank memory. In these settings, parallelism ex-
ploitation is strictly bound to ILP. We compared the obtained latencies for
serial execution (1 kernel), and then progressively increasing the number of
allocated kernels (from 4 to 8), targeting a 4-bank and a 8-bank memory ar-
chitecture. For all the experiments, we verified speed-ups when increasing
the number of kernels. To demonstrate the effectiveness of the proposed ap-
proach in parallelizing irregular memory accesses, it must also been consid-
ered the relative speed-ups when varying the memory latency. Regardless
of the number of kernels, it is reported a significant speedup when increas-
ing the number of memory banks. The gains are higher with high latency
memories, because in such a case the execution latency is dominated by the
memory accesses. This is a valuable result, especially when considering
that the speed up increases when increasing the number of kernels, thus
providing higher concurrency on the memory resources.

Table 6.6 summarizes the area requirements (number of FF and LUT

113

i
i

“thesis” — 2014/2/4 — 8:27 — page 114 — #126 i
i

i
i

i
i

Chapter 6. The Memory Interface Controller

Table 6.6: Area evaluation of the generated designs.

1ker/M=1 4ker 5ker 6ker 7ker 8ker
FF,M=4 942 2466 3066 3415 4124 4563

LUT,M=4 1141 4981 6200 7218 8378 8911
FF,M=8 942 2611 3210 3559 4268 4706

LUT,M=8 1141 6367 7912 9305 10935 11586

slices) of the generated accelerators. It is remarked that the single kernel
implementation interfaces with a single banked memory. Thus, it is not
affected by the area overhead of the MIC. Two aspects mainly determine
the area utilization. The first one is associated with the number of allocated
kernels: each kernel requires 433 FF and 488 LUT slices. The second
component is the cost of the MIC: increasing the number of kernels slightly
increases the cost of the controller, because two 2 additional ports per kernel
are added to the MIC.

6.7 Conclusions

This chapter presented a synthesis approach targeting memory intensive
and irregular applications, based on the implementation of an adaptive Mem-
ory Interface Controller. Irregular applications present unpredictable and
fine-grained (single word) memory accesses, exploit large data sets, are
mostly memory bandwidth limited and have high synchronization intensity.
The MIC supports distributed and multi-ported memories, which provide
very high bandwidths for fine-grained memory operations; since it man-
ages both synchronization and concurrency among the memory resources,
it allows multiple accesses to execute at the same time, and introduces an
abstraction layer which facilitates the design of custom accelerators. It also
provides support for atomic memory operations. The approach has been
evaluated on the Breadth First Search (BFS) algorithm, exploring several
trade-offs in terms of number of kernels and number of memories, showing
how the MIC allows exploiting the parallelism available in the algorithm,
maximizing concurrency of memory operations, and thus improving the
system bandwidth utilization. The methodology has been designed in or-
der to be compatible with different specific target architectures or synthesis
flows (e.g. RTL vs HLS). Next Chapter will show how the HLS flow pro-
posed in Chapter 4 has been extended, taking advantage of the MIC, for
supporting and improving the synthesis of generic annotated parallel appli-
cations.

114

i
i

“thesis” — 2014/2/4 — 8:27 — page 115 — #127 i
i

i
i

i
i

CHAPTER7
Support for Annotated Parallel

Specifications

While most of the techniques proposed in literature focused on ILP to im-
prove performance, recent efforts in hardware design methodologies are
aiming at exploit parallelism at coarser granularaties. However, the synthe-
sis of Task Level Parallel applications introduces new challenges:

1. C-based specification are inherently serial, making it difficult to iden-
tify TLP;

2. the generated hardware should be able to manage multiple execution
flows;

3. tasks may share memories, thus requiring ways to manage concur-
rency;

4. parallel execution may involve synchronization among tasks (e.g., when
they share program variables).

The techniques described in Chapter 5 and 6 partially solve theses issues.
In the proposed HLS flow parallelism identification occurs through front-
end analysis: dependencies between operations are examined, allowing

115

i
i

“thesis” — 2014/2/4 — 8:27 — page 116 — #128 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

the identification of concurrent portions of code. However, most static
analysis techniques are still not able to provide an accurate characteriza-
tion of the program structure. The main limitation when processing C-
like code arise from the analysis of memory accesses. Most compilers
adopt (over)conservative approaches, serializing memory operation when-
ever there is no evidence that they target different locations. For modu-
lar designs, this often leads to serialization of function calls. The second
challenge, related to the management of concurrent flows, is completely
addressed by the designed parallel controller architecture. The last 2 issues
have been considered through the definition of the Memory Controller In-
terface. However, in the general case, it is required user intervention: for
example, there is not any automated technique for the identification of task-
synchronization points, since these may depend on the behavior of the input
program, and in addition, this in general would require, as for parallelism
identification, sophisticated alias analysis. A promising approach for miti-
gating these issues is the adoption of parallel programming paradigms (e.g.
OpenMP, CUDA) for specification. Parallel code, usually instrumented
through pragmas, directly expose the available TLP, and allows the pro-
grammer to explicitly indicate synchronization points. This does not rep-
resent a limitation for the users, since parallel programming has massively
been adopted in software development. This chapters investigates the op-
portunities offered by these paradigms in HLS, and proposes a refined HLS
flow for their exploitation [41] [47]. The flow takes advantage of different
architectural solutions, i.e. both FSM and parallel controllers, and exploits
a restructured design of the MIC, tuned to perfectly suit with a modular
synthesis process. The Chapter is organized as follows. Section 7.1 high-
lights the advantages of considering parallel programming paradigms, and
motivates the adoption of both static and dynamic controllers in the target
architecture design. Section 7.2 describes recent research effort in the defi-
nition of synthesis methodologies for TLP. Section 7.3 illustrates the refined
HLS flow, highlighting how the synthesis process proposed in Chapter 5 has
been extended. Section 7.4 analyzes how the Memory Interface Controller
design, presented in previous chapter, has been tuned to be effectively ex-
ploited in the proposed flow. Section 7.5 evaluates the methodology on a set
of parallel applications, instrumented through OpenMP pragmas. Section
7.6 concludes this chapter, suggesting further research directions.

116

i
i

“thesis” — 2014/2/4 — 8:27 — page 117 — #129 i
i

i
i

i
i

7.1. Motivation

7.1 Motivation

In the last two decades, researchers spent most of the efforts in exploiting
Instruction Level Parallelism (ILP). Hardware implementations that exploit
ILP can provide significantly higher performance than their software coun-
terparts. However, ILP is substantially limited in most applications [187]
and, as in microprocessor architecture design, further efforts to increase
its exploitation bring diminishing returns. For this reason novel HLS ap-
proaches are now looking at exploiting coarse grained parallelism, mainly
in the form of Task Level Parallelism (TLP). However, extracting TLP from
a inherently serial specification is non trivial. The front-end analysis pre-
sented in Section 5.2 potentially allows coarse grained parallelism identifi-
cation, as demonstrated through experimental results. However it is able to
detect only a portion of the available parallelism, since it is constrained by
the dependences identified during the compilation. More in detail, struc-
tural dependencies are often introduced to preserve memory consistency.
Alias analysis thus plays a significant role: most software compilers adopt
very conservative approaches even for relatively trivial situations. For ex-
ample, if multiple functions write in the memory on different locations,
they are often serialized even if they are completely independent, and if it
is possible to determine statically that the addressed locations do not over-
lap. This aspect represent one of the main factors mitigating parallelism
identification. For these reasons, as discussed before, early works investi-
gating TLP adopted particular specification languages such as Petri nets or
process networks, but so reducing their applicability and effectiveness in
HLS. To overcome this limitation, new generation HLS tools should sup-
port common parallel programming paradigms, for several reasons:

• they are widespread in software development;

• they still enable software execution, thus facilitating HW/SW co-design,
partitioning, and DSE;

• they directly expose TLP, identifying portions of code which may run
in parallel;

• they provide explicit synchronization directives, facilitating the syn-
thesis;

• even if they expose the programmer to lower details associated to syn-
chronization and concurrency, most of them hide architectural details.

117

i
i

“thesis” — 2014/2/4 — 8:27 — page 118 — #130 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

Among the multitude of such models currently available, [56] suggests
to chose device-neutral APIs, such as OpenMP. For example, several ap-
proaches considered CUDA as specification languages; while still able to
expose TLP and synchronization, it has been originally designed to model
applications mapped onto NVIDIA graphics processing units (GPUs), and
thus includes many GPU specific features which are not suitable, for ex-
ample, for FPGAs. For this reason this work targets OpenMP-like APIs.
The techniques presented in the previous chapters have been refined and
extended, leading to the definition of an improved and more flexible HLS
flow. In addition to the features already described, the proposed flow offers:

• support for annotated parallel specification, with the aim of exploiting
both ILP (within a task) and TLP (among multiple tasks);

• synthesis of modular, hierarchical components, with different design
approaches depending on the specification characteristics: behaviors
characterized by ILP only are synthesized as statically scheduled ac-
celerators, while in presence of TLP the flow generates dynamically
scheduled architectures, based on the adaptive parallel controller.

• a Hierarchical Memory Interface Controller (HMIC), based on the
MIC design, which better matches with the characteristics of the par-
ticular proposed flow, while preserving all the features offered by the
centralized implementation of the MIC.

7.2 Related Work

Several solutions for exploiting TLP involve the automated synthesis of ker-
nels on custom hardware, but require the introduction of custom schedulers
or processors for coordinating tasks. For example, the approach presented
in [93] maps tasks, identified by partitioning the input behavior, onto cus-
tom Processing Units (PU) and manages their execution through a top-level
controller. [38] similarly manages task execution through a Control Pro-
cessor (CP), which represents the top layer of a Multi-Level Computing
Architecture (MLCA) [107]. The lower level of the design is a set of PUs:
they may be custom accelerators or soft-cores. The CP has the main role
of scheduling and mapping tasks onto PUs, considering a top-level con-
trol program that consists of task instructions. Compared with these hybrid
solutions, the proposed approach generates custom accelerators able to ex-
ploit TLP without the intervention of external control units or soft-cores.
This avoids (high) latencies due to communication and synchronization. In

118

i
i

“thesis” — 2014/2/4 — 8:27 — page 119 — #131 i
i

i
i

i
i

7.3. Refined High Level Synthesis Flow

addition, thanks to modularity, the flow allows TLP exploitation at any level
of the call structure of the input program: each task may, in turn, include
multiple parallel sub-tasks. Recent work in HLS proposes synthesis flows
that consider parallel programming for the input description. Among the
most well know parallel APIs or languages we can find: CUDA, OpenMP,
OpenCL, pthreads [22] [56]. OpenMP has been among the first APIs iden-
tified as suitable for HLS. In [68], the authors draw preliminary guidelines
on the synthesis of OpenMP programs, analyzing pragmas’ semantics and
indicating which of them can be successfully exploited in hardware synthe-
sis. [34] proposes extensions to the set of OpenMP pragmas that could be
used for designing hardware accelerators. [121] discusses a HLS flow that
translates OpenMP programs in synthesizable Handel-C or VHDL. How-
ever, the flow imposes severe restrictions on the input specifications: for ex-
ample, it does not support global variables. Moreover, it does not consider
ILP exploitation: each kernel executes serially, and only performs one oper-
ation at a time. The LegUp framework [7] provides both a typical HLS flow,
for the synthesis of hardware accelerators, and a MLCA flow. The latter al-
lows the automatic generation of designs that couple a MIPS processor and
custom PUs. This approach enables the concurrent execution of parallel
kernels, identified from OpenMP and pthreads specifications. The proces-
sors is responsible for managing concurrency and synchronization among
the tasks. [143] and [144] describe techniques to automatically synthesize
CUDA kernels on FPGAs. In [143], the authors propose a framework that
translates a CUDA program into a parallel-c specification. The Autopilot
HLS tool then performs the actual synthesis of the generated C code. [144]
introduces a HLS framework for mapping CUDA kernels onto hardware
accelerators while considering different granularities of parallelism. [58]
proposes a synthesis approach that targets OpenCL applications. These ap-
plications are composed of a host C/C++ program and of several OpenCL
kernels. The approach compiles and executes the host program on x86 pro-
cessors, while it synthesizes and download the OpenCL kernels on a FPGA
device. An API binds the host function calls to the hardware kernels. Host
and FPGA accelerators communicate through PCI-E.

7.3 Refined High Level Synthesis Flow

The proposed flow allows the generation of hardware accelerators start-
ing from a parallel C specification. It takes advantage of emerging pro-
gramming models that explicitly express concurrency, for example through
pragma annotations, such as OpenMP [59]. One of the main motivation

119

i
i

“thesis” — 2014/2/4 — 8:27 — page 120 — #132 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

vo id a p p l i c a t i o n _ t e m p l a t e () {
/ / code b l o c k A
pragma p a r a l l e l
f o r (i d = i n i t ; i d < NUM_it ; i d = i d +1)

k e r n e l (id , d a t a) ;
/ / code b l o c k B

}

Figure 7.1: Application template

vo id a p p l i c a t i o n _ t e m p l a t e _ P U () {
/ / code b l o c k A
f o r (i t = i n i t ; i t < NUM_it % NUM_ACC; i t = i t +1)

k e r n e l (i t , d a t a) ;

f o r (; i t < NUM_it ; i t = i t + NUM_ACC)
pragma p a r a l l e l
f o r (i d =0; i d < NUM_ACC; i d = i d +1)

k e r n e l (id , d a t a) ;
/ / code b l o c k B

}

Figure 7.2: Application template for Partial Unrolling

is that the emergence of massively parallel architectures in the last decade
made parallel programming techniques more common. In addition, there
now exists several source-to-source compilers (e.g., [60]) that can (par-
tially) identify parallelism in a specification and automatically emit anno-
tated code. However, currently they cannot emit synchronization directives.
As discussed before, the framework described in this thesis is already able
to automatically extract portions of the available TLP, even in the absence
of parallelization directives; as most software compilers, it treats pragmas
as hints to guide the HLS process, and especially dependency analysis, im-
proving the final QoR.

Figure 7.1 shows an example of parallel code template, characterized by
the presence of a parallel loop. Without loss of generality, bodies of paral-
lel loops are modeled as function calls: this is coherent with most software
compilation approaches, which perform this code transformation during the
compilation process. The approach also allows exploiting loop unrolling,
avoiding an excessive growth of the number of operations, since loop bod-
ies are embedded in function calls. This is a crucial aspect, because the
tool can exploit loop unrolling to expose parallelism at the function call
level. Although complete unrolling is not always applicable nor profitable,
like when the number of iterations is not statically computable or when the

120

i
i

“thesis” — 2014/2/4 — 8:27 — page 121 — #133 i
i

i
i

i
i

7.3. Refined High Level Synthesis Flow

number of iterations is too high, simple code transformations allow partial
unrolling. Figure 7.2 shows a possible transformation applied to the appli-
cation template in Figure 7.1, enabling unrolling of factor NUM_ACC.
The transformation makes the bounds of the innermost loop, starting at line
7, constant values, enabling its parallelization also when NUM_it is un-
known at compile time.

Figure 7.3: Proposed High Level Synthesis Flow.

Figure 7.3 summarizes the refined HLS flow. We can coarsely divide it

121

i
i

“thesis” — 2014/2/4 — 8:27 — page 122 — #134 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

in two phases: the front-end phase and the synthesis phase. The main dif-
ferences with respect to the baseline approach presented in Chapter 4 refer
to the target architecture design. The flow generates hierarchical modules,
according to the specification call structure, and implements each module
following two approaches: a FSM based approach for components charac-
terized by ILP only, and the parallel controller approach, if multiple flow
may run concurrently. For simple single-flow behaviors indeed, FSM-based
approaches generate efficient implementations, since able to extract ILP
while exploiting static analysis to optimize the generated data-path. In
these settings the parallel controller design usually cannot provide substan-
tial benefits, and typically is slightly more area demanding. On the contrary,
for TLP specifications, the parallel controller design allows multiple flows
to execute at the same time, and it is much more efficient. Thus the flow
tries to take advantage of both the techniques. A dedicated step in the HLS
flow establishes which approach should be followed for the synthesis of a
given function (Section 7.3.2). The other differentiating component is the
memory interface design. The flow embeds in the final architecture a hi-
erarchical memory interface controller, obtained restructuring the MIC in
Chapter 6 to best adapt to the implemented HLS tool.

d e f i n e NUM_ACCELS 4
d e f i n e ARRAY_SIZE 10000
d e f i n e OPS_PER_ACCEL ARRAY_SIZE /NUM_ACCELS

i n t a r r a y [ARRAY_SIZE] = { . . . } ;
i n t o u t p u t [NUM_ACCELS] ;

vo id add (i n t id , i n t s t a r t i d x , i n t e nd idx) {
i n t sum =0;
i n t i ;
f o r (i = s t a r t i d x ; i < e nd i dx ; i ++)

sum += a r r a y [i] ;
o u t p u t [i d] = sum ;

}

vo id main () {
i n t i ;
pragma omp p a r a l l e l f o r num_th reads (NUM_ACCELS)
f o r (i = 0 ; i < NUM_ACCELS; i ++) {

add (i , i ∗OPS_PER_ACCEL , (i +1)∗OPS_PER_ACCEL) ;
}

Figure 7.4: Example annotated parallel specification

122

i
i

“thesis” — 2014/2/4 — 8:27 — page 123 — #135 i
i

i
i

i
i

7.3. Refined High Level Synthesis Flow

i n t a r r a y [1 0 0 0 0] = { . . . } ;
i n t o u t p u t [4] ;
vo id add (i n t accelnum , i n t s t a r t i d x , i n t e nd id x)
{

u n s i g n e d i n t i n t e r n a l _ 1 1 5 2 2 _ 1 3 ;
i n t i _ 9 ;
i n t i _17 ;
i n t sum_16 ;
i n t sum_8 ;
i n t ∗ temp_addrR_144 ;
i n t sum_15 ;
u n s i g n e d i n t TMR_idx_143 ;
i n t i n t e r n a l _ 1 1 5 2 7 _ 7 ;
i_17 = s t a r t i d x ;
i f (s t a r t i d x < e nd i dx)
{

BB_LABEL_3 :
sum_15 = g i m p l e _ p h i (sum_8 , 0) ;
i _17 = g i m p l e _ p h i (i_9 , s t a r t i d x) ;
i n t e r n a l _ 1 1 5 2 2 _ 1 3 = (u n s i g n e d i n t) (i _17) ;
TMR_idx_143 = i n t e r n a l _ 1 1 5 2 2 _ 1 3 << (2 u) ;
temp_addrR_144 = (i n t ∗) (a r r a y +TMR_idx_143) ;
i n t e r n a l _ 1 1 5 2 7 _ 7 = ∗ ((i n t ∗) (temp_addrR_144)) ;
sum_8 = (i n t) (sum_15 + i n t e r n a l _ 1 1 5 2 7 _ 7) ;
i _ 9 = (i n t) (i _17 + (1)) ;
i f (i _ 9 != e nd i dx)

go to BB_LABEL_3 ;
}
sum_16 = g i m p l e _ p h i (sum_8 , 0) ;
(o u t p u t) [accelnum] = sum_16 ;
r e t u r n ;

}
vo id main ()
{

add (0 , 0 , 2500) ;
add (1 , 2500 , 5000) ;
add (2 , 5000 , 7500) ;
add (3 , 7500 , 10000) ;
r e t u r n ;

}

Figure 7.5: Intermediate code produced during the compilation process.

7.3.1 Front-end

The first step of the front-end phase consists in the source code compilation,
which involves compiler optimizations and code transformations. Figure
7.4 shows an example of parallel specification. The compilation process
produces optimized intermediate code, as shown in Figure 7.5. The most
important optimizations applied include unrolling and constant propaga-
tion. These further facilitate the identification and subsequent synthesis of
the concurrent tasks (see main function in Figure 7.5). Step 2 is the con-

123

i
i

“thesis” — 2014/2/4 — 8:27 — page 124 — #136 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

struction of a Call Graph (CG). All the subsequent steps of the flow act on
a single function at a time. Step 3 acts as in the baseline flow, analyzing
control and data dependencies, and then building graph IRs of the program
(including the EPDG). Step 3 also includes an analysis of the memory oper-
ations, which in turn allows inserting structural dependencies (to guarantee
ordering of the memory accesses, if needed), or identifying local data which
can be bound on local memories allocated on the target device (Step 4).

7.3.2 Flow Selection

The designed tool is able to generate hardware modules following both
FSM and Parallel Controller based approaches. The first is a typical HLS
flow, which statically computes an operation schedule, according to re-
source and timing constraints, as briefly described in Section 7.3.4. The
second approach implements the parallel controller architecture, support-
ing dynamic scheduling and TLP exploitation. For each function, step 5
establishes which one of the two flows will perform the synthesis. The
selection is driven by information acquired through the analysis of the CG
and of the annotations in the source code. The flow selection process marks
as parallel the code occurring under a parallel section. If the current func-
tion calls other tasks identified as parallel in the CG (i.e. exposes TLP),
then the flow implements it with the distributed controller approach. A De-
sign Space Exploration (DSE) engine may perform autonomously the flow
selection, also for non-annotated specifications. For example, it may detect
parallelism at the level of concurrent memory accesses or unbounded oper-
ations in loop. These can be modeled as multiple execution flows, making
the distributed controller approach more profitable. However, the definition
of such a DSE engine is not in the scope of this thesis, and it is postponed
to future work.

7.3.3 Synthesis

The synthesis phase produces a hardware implementation of the input spec-
ification, which is described through a graph based IR. It takes in input
synthesis constraints, which include timing and resource constraints, and
a resource library. The resource library contains the description of all the
available modules, indicating the provided functionality, the actual HDL
description, and performance metrics such as area and combinational delay,
which affect the synthesis algorithms. The module description includes ad-
ditional tuning parameters, such as the number of pipeline stages needed to
reach a particular target frequency and to meet timing constraints. When the

124

i
i

“thesis” — 2014/2/4 — 8:27 — page 125 — #137 i
i

i
i

i
i

7.3. Refined High Level Synthesis Flow

Figure 7.6: EPDG with structural
dependencies.

Figure 7.7: EPDG after dependences pruning.

flow synthesizes a function, it updates the library with the module descrip-
tion, allowing the execution of a single synthesis process when multiple
calls of the same function occur.

7.3.4 FSM-based synthesis flow

The FSM-based flow produces statically scheduled hardware modules, man-
aged through a FSM controller. It exploits the synthesis algorithms of-
fered in the release version of Bambu, briefly described in Section 2.4.
Summarizing: the flow performs scheduling through a LIST-based algo-
rithm [148], which is constrained by resource availability; module binding
is addressed through a clique covering algorithm [178] on a weighted com-
patibility graph. It builds the compatibility graph by identifying the oper-
ations that can potentially share the same hardware resource and assigns
weights taking into account area/delay trade-offs as a result of sharing. Fi-
nally, the flow treats register binding as a coloring problem on a conflict
graph: two storage values conflict if their life intervals overlap. The flow
determines this information through a Non-Iterative SSA liveness analysis
algorithms [30].

125

i
i

“thesis” — 2014/2/4 — 8:27 — page 126 — #138 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

7.3.5 Parallel Controller synthesis flow

The front end may introduce structural dependencies to guarantee memory
consistency, especially in presence of accesses to shared memories. This
conservative approach may severely limit parallelism exploitation. This is-
sue is mitigated exploiting the information provided by the annotations in
the source code, which allows pruning the unnecessary structural depen-
dencies (step 7). Functions marked as parallel are assumed to be safely
executed concurrently. If not so, the application developer should insert
synchronization directives, as usual in parallel shared memory program-
ming approaches. Figures 7.6 and 7.7 compare initial and pruned EPDGs
for the main function in Figure 7.5, annotated with the Activating Condi-
tions (ACs) of the operations. The identification of ACs occurs after the
EPDG pruning step. The data-path synthesis algorithms adopts the pruned
IR as input, and proceeds as described in Chapter 4: the synthesis algo-
rithms at this point do not longer require to consider the pragmas in the
specification, since all the information on parallelism is embedded in the
IR.

7.4 The Distributed Memory Interface

One of the main challenges in exploiting TLP resides in managing con-
currency when accessing shared memories. This challenge is addressed
through the definition of a Hierarchical Memory Interface (HMI), which
exploits a restructured design of the MIC presented in previous chapter. The
hierarchical implementation of the MIC still avoids any structural conflict
on shared resources, while supporting atomic operations to enable synchro-
nized accesses. Hierarchy is exploited to preserve the design modularity.

Figure 7.8 shows the schematic representation of the HMI for the ex-
ample proposed in 7.4. Each synthesized function has a proper Memory
Interface (MI), which provides the following ports:

1. sel_store: write access request;

2. sel_load: read access request;

3. addr: the memory address;

4. w_data: data to write;

5. r_data: data loaded;

6. ready: notifies completion of a memory access.

126

i
i

“thesis” — 2014/2/4 — 8:27 — page 127 — #139 i
i

i
i

i
i

7.4. The Distributed Memory Interface

Figure 7.8: Memory interface structure.

Multiple MIs are chained, and they can perform only one memory oper-
ation at a time.

Signal propagation starts from the leaves of the CG. First, it interfaces
function modules at the same level in the CG. Then, it crosses the hierarchy,
until reaching the top level function module. The top level function module
is the only one that directly interfaces with the memory. The propaga-
tion scheme requires that only one function module at a time sets sel_store
and sel_load signals, which identify memory access requests. Standard ap-
proaches can ensure this behavior through scheduling, which guarantees
performing only one operation at a time. However, this often degenerates
in the serialization of function calls. This issue is avoided by integrating
additional control logic in the HMI that exploits the RM and the UNBD
modules, previously presented as building blocks for the parallel controller
architecture, and also adopted for the implementation of the centralized
MIC.

RMs intercept memory access requests (req). If a RM accepts a request,
it notifies a dedicated UNBD module, associated with the MI of each func-
tion. For example, in Figure 7.8, the module UNBD1 is associated with the
MI of module ADD1, while UNBD2 is associated with the MI of ADD2.
In this example, the caller (i.e., the main function) does not directly access

127

i
i

“thesis” — 2014/2/4 — 8:27 — page 128 — #140 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

memory, hence it is not part of the arbitration scheme.

(a)

(b)

Figure 7.9: Example Call Graph (a) and associated memory interface structure (b). The
framed nodes in the CG are associated with functions that directly perform memory
accesses; arbiters include RMs and UNBD modules.

Figure 7.9a shows an example of CG: framed nodes denote functions
(funA, funB, funD, funE), which directly access the shared memory. Fig-
ure 7.9b shows the associated HMIs. Function funC does not perform any
memory access, but the called functions (funD, funE) do. For this reason,
funC is involved in the management of memory concurrency at the caller
level (funA). This greatly enhances the modularity of the generated design.

128

i
i

“thesis” — 2014/2/4 — 8:27 — page 129 — #141 i
i

i
i

i
i

7.4. The Distributed Memory Interface

Atomic operations In parallel programming, thread synchronization is usu-
ally achieved through atomic memory operations, which access shared mem-
ory locations in mutual exclusion. The HMI design provides natural sup-
port for atomic operations, without additional overheads. Atomic memory
operations may include a set of operations. The flow synthesizes atomic
memory operations as function calls. However, to achieve atomicity, the
memory interface must reject any other memory access request during their
execution. This behavior is obtained by slightly modifying the intercon-
nection structure among MIs and control logic. In the basic design (Figure
7.8), when the interface accepts a memory operation, it activates the cor-
responding UNBD module. The UNBD module locks the shared resource,
until the Ready signals notifies the completion of the memory access. For
atomic memory operations, the Ready signal is substituted with the Done
signal, which notifies the completion of the whole function. As a result,
the UNBD module does not release the lock, thus ensuring atomicity. This
approach provides two main advantages. First, it is general: it allows ex-
tending the set of atomic operations, because they are synthesized through
the HLS flow itself. Second, it is independent from the target platform:
the accelerator design completely embeds concurrency management, with-
out relying on or being constrained by external hardware. Since the set of
atomic memory operation is limited, it is also possible to implement them
as hand-tuned custom IPs to include in the resource library.

Distributed and multi-ported memories In parallel applications, memory band-
width can easily become a bottleneck for the execution latency, especially
for memory bound and irregular applications. In fact, if concurrent ker-
nels execute subsequent memory accesses, with few (if any) computations
between them, then the kernels will be stalled for most of the application
execution latency, waiting for resource availability. Increasing the mem-
ory bandwidth may reduce this issue: this is typically obtained by adding
further memory banks (distributed or partitioned memories with multiple
ports) as the constraints (pins, power, etc.) allow. In these conditions,
multiple tasks can concurrently access distributed or partitioned memo-
ries, provided that they do not address the same partition. Distributed and
multi-ported memories are supported by extending the memory interface
as shown in Figure 7.10. Given N available memory partitions, the inter-
face provides N input and output ports for each data (e.g., address, data
to write) or control (e.g., LOAD/STORE selectors) signal, each associated
with a particular memory partition. The interface manages the concurrency
on the N memory ports through N dedicated arbiters. When a function

129

i
i

“thesis” — 2014/2/4 — 8:27 — page 130 — #142 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

module forwards a memory access request, the interface is responsible for
identifying the memory partition to address, and for routing accordingly
the request to the proper arbiter, which checks for resource availability. If
the memory interface accepts the request, it forwards data and control sig-
nals to the proper output ports through the steering logic. The memory
interface selects the partition by analyzing the memory address in input. In
our current flow, the memory interface identifies the proper line by filtering
log2(N) bits from the address (line selector module). It is not considered
a fixed tag size (which must consider an upper bound for N) to reduce as
much as possible the cost of the steering logic.

Differences between hierarchical and centralized MIC implementations There are
few differences between the hierarchical and the Centralized MIC (CMIC,
Chapter 6) designs. The HMIC, is characterized by a finer granularity: ar-
biters, which are completely embedded in the centralized MIC, appear in
the hardware description of synthesized modules at each level of the call
graph. The resulting structure is regular, efficient, and relatively easy to be
allocated through an automated tool. On the other hand, it requires a com-
plete integration in the HLS flow, for example for binding interconnections.
The CMIC instead, is easier to be directly integrated on existing RTL and
HLS synthesis processes, since it is designed as an IP allocated at the top
level. The other key difference refers to the management and implementa-
tion of atomic operations. The CMIC embeds their associated modules, in
the HMIC they are external components synthesized directly by the HLS
tool, or implemented as custom library components. Even in this case, a
tighter integration in the HLS flow is required.

7.5 Experimental Evaluation

The described techniques have been implemented further extending the
Bambu framework (Section 2.4). The resulting flow has been evaluated
on a set of parallel applications, instrumented with OpenMP pragmas [7].
All the applications are representative of the general template presented in
Figure 7.1, which exposes coarse grained parallelism. ADD features 5 con-
current kernels, while all the other applications present a parallelism degree
of 6. All the programs, except PERFECTHASH, have a very similar 2-level
hierarchy call structure. PERFECTHASH, instead, employs nested func-
tion calls. Area and latency of the resulting designs have been compared
against the release versions of Bambu (0.9.0) and LegUp (ver 3.0) [37].
Both are state-of-the-art HLS frameworks, implementing single execution

130

i
i

“thesis” — 2014/2/4 — 8:27 — page 131 — #143 i
i

i
i

i
i

7.5. Experimental Evaluation

Figure 7.10: Memory interface for distributed and multi ported memories.

flow approaches based on the construction of centralized FSMs. Both are
freely available on the Internet. The standard flow of Bambu 0.9 provides
a baseline for the proposed approach, and allows understanding the perfor-
mance benefits and area overheads only due to parallel execution. The use
of Bambu enables a better evaluation of the proposed methodology for the
HLS of parallel specification, independently from the framework design or
implementation details such as the front-end compiler, the technology li-
brary and others. For Bambu, code has been compiled with GCC at the O1
optimization level, which enables constant propagation and loop unrolling.
The target frequency has been left to its default value of 100 MHz. The
shared data is bound to external memories, and the latency model for the
memory accesses is of 2 clock cycles for loads and of 1 clock cycle for
stores. Nevertheless, the number of read operations is predominant in all
the synthesized applications. The approach has also been compared against
LegUp, because it has demonstrated to provide comparable or better QoR
with respect to industrial tools [37]. The LegUp framework also offers
support for parallel execution, which exploits both pthreads primitives and
OpenMP pragmas. However, while LegUp synthesizes concurrent kernels
as custom accelerators, it delegates the management of the generated ac-
celerators themselves to a soft-core processor. This introduces significant
overheads for both area and performance with respect to fully custom so-
lutions, making the approaches hardly comparable. In these settings, the
synthesized applications need on average more clock cycles to complete
execution, while operating at lower (more than 10x lower for some bench-
marks) frequencies when compared to fully custom accelerators. Thus, for

131

i
i

“thesis” — 2014/2/4 — 8:27 — page 132 — #144 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

a fair comparison, this feature has not been enabled. The applications have
been synthesized with LegUp using the default parameters. LegUp exploits
LLVM as the front-end, and considers O3 as optimization level. The syn-
thesis targets an operating frequency of 100 MHz. Global variables and
arrays are mapped to BRAMs (Block RAMs), directly integrated in the tar-
get reconfigurable device. There are three main aspects, which may affect
both area and performance, to carefully take into consideration when com-
paring the designs produced by LegUP and Bambu:

• the different targeted memories, i.e. local BRAMs for LegUp, external
memories for Bambu;

• the front-end compilers, i.e. LLVM for LegUp, GCC for Bambu;

• the target devices: LegUp is optimized for Altera devices, while Bambu
produces designs that are synthesizable on both Xilinx and Altera FP-
GAs.

To highlight the impact of memory accesses on the performance in par-
allel execution, each application has been synthesized through two accel-
erator designs with the proposed flow: one that interfaces with a single
memory bank, and another that interfaces with multiple memory banks.
Designs with multiple memory banks interface with 4 independently ac-
cessible banks.

7.5.1 Performance Evaluation

Execution latencies have been evaluated by simulating the designs with
Mentor ModelSim. Table 7.1 shows the simulation results, reporting the
execution latencies in terms of clock cycles for the accelerators synthesized
through Legup, Bambu, and the proposed flow. The proposed approach
provides a performance gain for all the benchmarks. However, for designs
with a single memory bank, the gain is extremely variable and depends on
the application characteristics. With this setup, HYSTOGRAM and LOS
provide the highest speedup with respect to the conventional Bambu flow
and LegUp. These two benchmarks present parallel kernels that perform
both computation and memory accesses. The parallel execution of the ker-
nels provides performance gains that are, however, reduced by the lack of
concurrency on memory operations. This issue heavily impacts memory
bound applications, such as MATRIXMULT and MATRIXTRANS: their par-
allel kernels are characterized by subsequent memory access, and few arith-
metic operations. For MATRIXMULT, it is reported a limited speedup with

132

i
i

“thesis” — 2014/2/4 — 8:27 — page 133 — #145 i
i

i
i

i
i

7.5. Experimental Evaluation

Ta
bl

e
7.

1:
Si

m
ul

at
io

n
re

su
lts

:
ex

ec
ut

io
n

la
te

nc
ie

s
in

te
rm

s
of

cl
oc

k
cy

cl
es

,a
nd

sp
ee

du
ps

fo
r

th
e

pr
op

os
ed

flo
w,

in
te

rf
ac

in
g

si
ng

le
an

d
m

ul
ti

po
rt

ed
m

em
or

ie
s

(4
ch

an
ne

ls
).

A
ll

th
e

de
si

gn
s

ta
rg

et
an

op
er

at
in

g
fr

eq
ue

nc
y

of
10

0M
H

z.

Sp
ee

du
p

Sp
ee

du
p

B
en

ch
m

ar
k

L
eg

U
p

B
am

bu
Pr

op
os

ed
vs

L
eg

U
p

vs
B

am
bu

Pr
op

os
ed

,4
ch

vs
L

eg
U

p
vs

B
am

bu
A

D
D

38
,0

09
30

,0
27

22
,0

19
1.

73
1.

36
6,

02
4

9.
46

4.
98

D
O

T
PR

O
D

U
C

T
29

,0
11

36
,0

31
25

,3
35

1.
15

1.
42

6,
04

1
5.

71
5.

96
H

IS
TO

G
R

A
M

28
1,

18
2

24
5,

50
7

89
,5

84
3.

14
2.

74
43

,5
70

9.
68

5.
63

L
O

S
18

8,
29

7
23

6,
28

6
82

,3
45

2.
77

2.
29

42
,0

36
5.

43
5.

62
M

A
T

R
IX

M
U

L
14

,5
92

18
,3

02
15

,2
62

0.
96

1.
2

5,
59

0
2.

93
3.

27
M

A
T

R
IX

T
R

A
N

S
36

,8
81

55
,3

40
45

,0
89

0.
82

1.
23

15
,5

66
3.

55
3.

56
PE

R
FE

C
T

H
A

SH
26

4,
02

0
33

6,
14

3
21

4,
41

9
1.

23
1.

57
86

,9
18

4.
56

3.
87

Av
er

ag
e

sp
ee

du
p

1.
62

1.
77

4.
29

4.
7

133

i
i

“thesis” — 2014/2/4 — 8:27 — page 134 — #146 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

respect to Bambu (1.2) and no performance gain with respect to LegUp.
The single memory bank prevents kernels to run concurrently, since there
is not enough computation to perform while waiting for the availability of
the memory. The results highlight the importance of designing HLS flows
that exploit both task-level and memory-level (data-level) parallelism. The
latter is obtained by taking advantage of memory structures that allow ex-
ecuting multiple memory operations in parallel. In fact, when targeting a
memory composed of 4 memory banks, the proposed flow provides signifi-
cantly improved performance. For most of the applications, it is obtained a
speedup close to the number of kernels (i.e., 5 for ADD, 6 for DOTPROD-
UCT, HISTOGRAM and LOS). This result demonstrates that the generated
accelerators can exploit all the available parallelism, saturating the mem-
ory bandwidth. The linear speedup also demonstrates that the memory in-
terface for multiple memory banks does not introduce any delay. Accel-
erators with multiple memory banks for MATRIXMULT, MATRIXTRANS
and PERFECTHASH show a slight reduction in the speedups with respect
to the other applications. The reasons are hot-spotting on the memory re-
sources and memory access patterns, in particular for PERFECTHASH. In
fact, when multiple memory operations address the same memory bank,
they cannot run in parallel. PERFECTHASH has an irregular memory ac-
cess pattern that generates a higher number of structural conflicts with re-
spect to the other benchmarks, which instead access the memory with more
regularly strided patterns. MATRIXMULT provides the lowest performance
gain also when interfacing to a memory composed of 4 banks. We also tried
to synthesize this application using 8 memory partitions, and obtained an
execution latency of 3850 cycles, with a speedup of 1.45 with respect to
the 4-bank design. On average, when targeting the multi-ported memory,
the flow provides a speedup of 4.7 with respect to accelerators generated
by Bambu with a single execution flow. This is a valuable result, since the
maximum speedup reachable is 5.86 in ideal settings, i.e., assuming that all
the computation is bound to parallel kernels and that there are only non-
conflicting memory accesses. Instead, in the considered benchmarks, even
if most of the computation is performed by the parallel tasks, there still is a
serial fraction of the code. In addition, as demonstrated by the simulation
results, conflicts on memory resources may degrade performance.

7.5.2 Area Evaluation

Area requirements of the accelerators have been evaluated by synthesizing
the designs with Altera Quartus version 11.1 SP2. The target device is an

134

i
i

“thesis” — 2014/2/4 — 8:27 — page 135 — #147 i
i

i
i

i
i

7.5. Experimental Evaluation

Ta
bl

e
7.

2:
Sy

nt
he

si
s

re
su

lts
:

nu
m

be
r

of
F

lip
F

lo
p

(F
F

)r
eg

is
te

rs
an

d
Lo

gi
c

E
le

m
en

ts
(L

E
s)

re
qu

ir
ed

by
th

e
ge

ne
ra

te
d

de
si

gn
s.

A
re

a
ov

er
he

ad
ra

tio
s

co
ns

id
er

th
e

nu
m

be
r

of
re

qu
ir

ed
LE

s.

Le
gU

p
B

am
bu

Pr
op

os
ed

A
re

a
O

ve
rh

ea
d

R
at

io
Pr

op
os

ed
,4

ch
A

re
a

O
ve

rh
ea

d
R

at
io

B
en

ch
m

ar
k

#F
F

#L
E

#F
F

#L
E

#F
F

#L
E

vs
L

eg
U

p
vs

B
am

bu
#F

F
#L

E
vs

L
eg

U
p

vs
B

am
bu

A
D

D
99

2
13

64
37

9
54

6
10

07
14

31
1.

05
2.

62
10

22
24

62
1.

8
4.

51
D

O
T

PR
O

D
C

U
T

12
12

18
41

52
1

70
4

17
93

24
61

1.
34

3.
5

18
11

37
14

2.
02

5.
28

H
IS

TO
G

R
A

M
16

81
28

11
19

02
26

58
55

80
86

66
3.

08
3.

26
56

04
10

51
4

3.
74

3.
96

L
O

S
18

09
31

28
12

14
19

99
59

08
99

47
3.

18
4.

98
59

62
12

28
3

3.
93

6.
14

M
A

T
R

IX
M

U
LT

15
77

30
28

76
1

12
59

22
29

34
64

1.
14

2.
75

23
34

56
01

1.
85

4.
45

M
A

T
R

IX
T

R
A

N
S

16
45

30
79

60
9

76
3

23
37

32
84

1.
07

4.
3

23
54

55
31

1.
8

7.
25

PE
R

FE
C

T
H

A
SH

48
3

91
1

62
0

75
5

23
81

30
95

3.
4

4.
1

24
53

51
08

5.
61

6.
77

Av
er

ag
e

A
re

a
O

ve
rh

ea
d

R
at

io
(L

E
s)

2.
04

3.
64

2.
96

5.
48

Av
er

ag
e

Pe
rf

or
m

an
ce

G
ai

n/
A

re
a

O
ve

rh
ea

d
ra

tio
0.

79
0.

49
1.

45
0.

86

135

i
i

“thesis” — 2014/2/4 — 8:27 — page 136 — #148 i
i

i
i

i
i

Chapter 7. Support for Annotated Parallel Specifications

Altera Cyclone II EP2C70F896C6 FPGA platform. All the designs gener-
ated by Bambu met the frequency constraint of 100 MHz when mapped
onto the target device. Three designs (LOS, MATRIXMULT and MA-
TRIXTRANS) generated by LegUp achieved a maximum frequency, on
average, close to 73 MHz, thus violating the timing constraint. Table 7.2
summarizes the synthesis results, reporting the number of allocated Flip
Flop (FF) registers and Logic Elements (LEs). Area overheads are com-
puted only considering the number of LEs, because they embed informa-
tion on both register and logic utilization. Indeed, on Cyclone II FPGAs,
each LE includes a 4-input look-up table and a register. Area evaluation
is mainly focused on Bambu, because the designs are more similar from
the architectural point of view. As expected, the area requirements for the
accelerators featuring parallel execution increase with the number and the
complexity of the replicated kernels. ADD, which only includes 5 paral-
lel kernels of limited complexity, presents the smallest area overhead ratio
(2.62). Kernel replication increases the overall area of a factor less than 3.
The reason is that only the kernel modules are replicated, thus impacting
just on a fraction of the overall area demands. For the other benchmarks,
our flow allocates 6 concurrent kernels. In this case, the resulting acceler-
ators are 3.8 times larger in average. The area requirements increase when
generating designs that interface with 4 memory banks. The reason is the
introduction of steering logic to dynamically route memory operations to
the proper memory bank. The flow must also replicate, for each memory
bank, the arbiters for managing concurrency on the shared memories. How-
ever, they have very low area requirements and, thus, do not significantly
impact on the overall area demands. In fact, both RM and UNBD mod-
ules require a number of combinational logic cells close to the number of
inputs. In addition, UNBD modules require a number of logic cell regis-
ters equal to the number of memory banks. In average, the proposed flow
generates accelerators 3.64 times larger for a single memory bank and 5.48
times larger for multiple memory banks with respect to Bambu. This allows
understanding the cost of the memory interface structure. However, per-
formance gains are, comparatively, much higher than the area overheads.
Table 7.2 also shows the area overhead/performance ratios, which are use-
ful to evaluate trade-offs between costs and benefits. For designs with a
single memory bank, the average ratio is 0.49. The ratio increases to 0.86
for designs with multiple memory banks. The metric confirms that, when
considering multiple memory banks, the additional area costs have much
higher returns in terms of performance improvement.

136

i
i

“thesis” — 2014/2/4 — 8:27 — page 137 — #149 i
i

i
i

i
i

7.6. Conclusions

7.6 Conclusions

This chapter has presented a methodology for the HLS of parallel C spec-
ifications. The designed framework generates hardware accelerators that
support concurrent execution flows, enabling TLP exploitation. TLP is ex-
ploited through the proposed adaptive controller, which can independently
manage operations and/or tasks. The framework identifies the parallel tasks
through annotations in the source code, and takes advantage of compiler
optimizations. It manages concurrency between tasks on shared memories
by synthesizing a hierarchical memory interface, which features custom
control logic that avoid structural conflicts. The hierarchical memory in-
terface supports multi-ported memories, enabling concurrent memory ac-
cesses, and provides support for atomic memory operations. The imple-
mented HLS tool generates significantly faster accelerators, with respect to
more conventional approaches, with an average speedup of 4.7. For some
applications, the speedups provided are close to linearity. The replication
of modules implementing the parallel tasks, and the insertion of steering
logic for the dynamic management of the memory resources, introduce
limited area overheads (average area increase of 5.48 times) with respect
to the performance improvements. The designed framework has demon-
strated encouraging experimental results. However, some opportunities for
improvement have been identified. Currently, OpenMP pragmas are not
considered in the compilation process, but treated as simple markers in the
input code. Preliminary work in this direction has provided support for
parallel sections pragmas, but a wider coverage of the OpenMP syntax is
needed. The possibility of directly compiling OpenMP code will enable
further optimization in the front-end phase. Another aspect that will be
investigated is the integration of a DSE engine in the flow selection step.
Currently the framework allows the expert user to select, at each hierarchy
level, the architecture to target, through configuration files. Techniques for
the analysis of the EPDG for the identification of coarse grained parallelism
have already been developed, but not still integrated in a DSE step. This
will provide better QoR for complex applications.

137

i
i

“thesis” — 2014/2/4 — 8:27 — page 138 — #150 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page 139 — #151 i
i

i
i

i
i

CHAPTER8
Conclusions

The increasing complexity of hardware systems design has encouraged the
design community to raise the abstraction level of synthesis methodolo-
gies above RTL. The Electronic System Level (ESL) design automation
has been identified as the main component for boosting the semiconductor
industry in the next generations: in these settings, High Level Synthesis
plays a central role, allowing the automatic synthesis of hardware compo-
nents from their behavioral description, usually provided as C-code. Re-
search efforts and constant improvements in HLS have made modern tools
suitable for adoption in industry, shortening the design cycle, reducing the
development costs, and providing Quality of Results often comparable with
hand-written designs. However, as highlighted by the analysis of the state
of the art, most of the proposed approaches are affected by common limi-
tations:

• they usually target architectural solutions based on the definition of
a centralized finite state machine, without properly exploring design
alternatives. On the other hand, techniques which consider promising
architectural models, such as parallel controllers, are constrained by
the adoption of particular specification languages;

139

i
i

“thesis” — 2014/2/4 — 8:27 — page 140 — #152 i
i

i
i

i
i

Chapter 8. Conclusions

• they focus on instruction level parallelism exploitation for improving
performance, and often ignore coarser granularities;

• they lack efficient support and abstraction for external and shared
memories;

• they provide limited support for parallel specifications, and the con-
sidered models for supporting Task Level Parallelism often require
the introduction of soft cores or custom schedulers in the resulting
designs, impacting on both area and performance.

This thesis work has considered all these aspects, proposing the design of
novel hardware components and synthesis methodologies to mitigate the
highlighted issues. Next section summarizes the main novel contributions.

8.1 Novel Contributions

8.1.1 The Parallel Controller Design

Chapter 4 presented a parallel controller architecture, as an alternative to the
typical centralized FSM model, commonly adopted in HLS. The controller
design consists of a set of interacting modules, communicating through a
lightweight token-based schema. Each element is associated with a partic-
ular operation or task, and is responsible for their execution. The controller
elements verify at runtime when resource and dependency constraints are
satisfied, enabling as soon as possible execution. The resulting accelera-
tors are thus adaptive, and feature dynamic scheduling. In opposition to
the FSM model, which is inherently serial, the adaptive architecture is able
to manage multiple execution flows, improving parallelism exploitation at
different granularities. It also provides natural support for variable latency
operations, such as speculative operations, memory accesses and function
calls.

8.1.2 High Level Synthesis of Adaptive Hardware Components

Chapter 5 described a complete HLS flow targeting the proposed adap-
tive accelerators. The flow takes advantage of both the architectural model
and a front-end analysis phase, which allows identifying most of the paral-
lelism available in the input specification. The absence of a pre-computed
scheduling has required the definition of novel algorithms to perform the
various steps of the HLS flow. They have been designed as general as
possible, making their adoption suitable also for other dynamic scheduling

140

i
i

“thesis” — 2014/2/4 — 8:27 — page 141 — #153 i
i

i
i

i
i

8.1. Novel Contributions

techniques. Among them, the proposed liveness analysis algorithm allows
the definition of conflict free bindings regardless of the runtime execution
order: its formal definition makes its adoption not limited to hardware syn-
thesis methodologies. The synthesis approach has been evaluated compar-
ing the dynamically scheduled accelerators to conventional designs, on a
set of typical HLS benchmarks: experimental results reported significant
speedups, causing only limited area overheads with respect to the obtained
performance improvements.

8.1.3 Memory Interface Controller

Chapter 6 introduced a synthesis approach based on the implementation of
an adaptive Memory Interface Controller (MIC). The MIC, designed as a
custom parameterizable IP, introduces an abstraction layer between hard-
ware accelerators design and external memory structure. It supports dis-
tributed and multi-ported memories, which provide very high bandwidths
for fine-grained memory operations; since it manages both synchronization
and concurrency among the memory resources, it allows multiple accesses
to execute at the same time, and introduces an abstraction layer which facil-
itates the design of custom accelerators. It also provides support for atomic
memory operations. Its adoption results particularly profitable for the syn-
thesis of memory intensive algorithms, and among them, in particular for
irregular applications. In fact, irregular applications present unpredictable
and fine-grained (single word) memory accesses, exploit large data sets, are
mostly memory bandwidth limited and have high synchronization intensity.
The approach has been evaluated on the Breadth First Search (BFS) algo-
rithm, exploring several trade-offs in terms of number of kernels and num-
ber of memories, showing how the MIC allows exploiting the parallelism
available in the algorithm, maximizing concurrency of memory operations,
and thus improving the system bandwidth utilization. To prove the suit-
ability of the design for HLS, the BFS kernels have been automatically
generated through the designed HLS flow: this has also highlighted the ca-
pability of the proposed approach to parallelize memory operations, mod-
eled as variable latency operations. However, the MIC has been designed to
be compatible with different specific target architectures or synthesis flows
(e.g. RTL vs HLS).

8.1.4 Support for Annotated Parallel Specifications

Chapter 7 presented a methodology for the HLS of annotated parallel C
specifications, taking advantage of (and improving) the already mentioned

141

i
i

“thesis” — 2014/2/4 — 8:27 — page 142 — #154 i
i

i
i

i
i

Chapter 8. Conclusions

proposed techniques. The resulting HLS framework generates hardware ac-
celerators that support concurrent execution flows, enabling TLP exploita-
tion. As opposed to other approaches, the generated components do not
require the instantiation of external custom schedulers or processors for
managing the concurrent execution, definitively improving performance
and area utilization. The generated designs are hierarchical, reflecting the
call structure of the specifications. According to the code characteristics,
the tool can choose to implement each function following both the paral-
lel controller approach, for TLP exploitation, or a more conventional FSM
based flow, for serial tasks. The framework identifies the parallel tasks
through pragma annotations in the source code, and takes advantage of
compiler optimizations such as constant propagation and loop unrolling,
which improve TLP identification. It manages concurrency between tasks
on shared memories by synthesizing a restructured hierarchical implemen-
tation of the MIC, which embeds custom control logic that avoid structural
conflicts. As its centralized counterpart, the hierarchical memory interface
supports multi-ported memories, enabling concurrent memory accesses,
and provides support for atomic memory operations. The implemented
HLS tool generates significantly faster accelerators, with respect to more
conventional approaches. For some applications, the speedups provided
are close to linearity. The replication of modules implementing the parallel
tasks, and the insertion of steering logic for the dynamic management of
the memory resources, introduce limited area overheads with respect to the
performance improvements.

8.2 Further Development

The proposed techniques provide unique features, such as the capability of
managing multiple execution flows and the support for variable latency op-
erations; in addition, the experimental evaluation have shown encouraging
results. However, some aspects need further improvements and investiga-
tions. First, when working at instruction level granularity, the designed
HLS flow generates accelerators with area overheads, which are acceptable
compared to the obtained performance improvements, but still consider-
able. For this reason, the proposed binding strategies should be refined
and improved. Additional effort is also required to improve the identifi-
cation of coarse grained parallelism, since it is constrained by, often over
conservative, dependences analysis. The framework is able to generated
accelerators coupling both FSM and parallel controllers, depending on the
code characteristics: automatic code partitioning techniques may be de-

142

i
i

“thesis” — 2014/2/4 — 8:27 — page 143 — #155 i
i

i
i

i
i

8.3. Future Research Directions

signed to identify, within a given function, serial portions of code which
may run concurrently, regardless of the call structure: this will improve
TLP identification and exploitation, increasing the QoR for complex appli-
cations. Focusing on the support for parallel specifications, the flow can
be improved through a complete support of OpenMP directives, currently
considered just as markers in the source code, and not involved in the com-
pilation process.

8.3 Future Research Directions

The techniques proposed in this thesis may provide significant benefits in
several application domains, and among them, especially in the emerging
field of High Performance Reconfigurable Computing (HPRC). HPRC ap-
plications are parallel, often irregular, and usually process large amounts
(Terabytes) of data. HPRC is quickly being supported by novel hybrid
architectures, such as the Convey platforms briefly introduced in Chapter
6, or the recently announced IBM Power8 system [6]. Hybrid architec-
tures couple commodity processors, reconfigurable devices, and large high-
bandwidth memory systems, shared among the various components. They
promise good performance through hardware acceleration, and equally im-
portant, reduced power consumption. Both these aspects may have tremen-
dous impacts, since operative costs of HPC systems are comparable or
higher, sometimes much higher, than the costs of the actual hardware. Hy-
brid platforms already proved their potentiality on several applications,
such as graph exploration algorithms. However, their exploitation still re-
quire great development effort, for the design, implementation and inte-
gration of the custom accelerators. While acceptable in specific domains,
this represent a strong limitation in others. For example, financial and risk
management algorithms, which can profitably be accelerated by means of
custom components, vary on a monthly basis. Knowledge discovery and
social network analysis, may require the definition of tens or hundreds of
different routines for processing the data. It is clear that HLS may have a
great impact in HPRC, and the techniques proposed in this work, for paral-
lelism exploitation and memory management, could represent a significant
contribution in this research direction.

143

i
i

“thesis” — 2014/2/4 — 8:27 — page 144 — #156 i
i

i
i

i
i

i
i

“thesis” — 2014/2/4 — 8:27 — page 145 — #157 i
i

i
i

i
i

Bibliography

[1] Bambu: A Free Framework for the High-Level Synthesis of Complex Applications.
http://panda.dei.polimi.it/?page _id=31.

[2] Bdti high-level synthesis tool certification program results,
http://edac.org/initiatives/committees/mss.

[3] Bdti high-level synthesis tool certification program results,
http://www.bdti.com/resources/benchmarkresults/hlstcp.

[4] C to verilog - automatic circuit design. http://c-to-verilog.com/howtos.html.

[5] Cadence c-to-silicon white paper, 2008 available: http://www.cadence.com/rl/resources/ tech-
nical_papers/c_tosilicon_tp.pdf.

[6] Hot Chips, Power8 discussed. https://www.ibm.com/developerworks/community/blogs/fe313521-
2e95-46f2-817d-44a4f27eba32/entry/hot_chips_power8_discussed.

[7] Legup official site: http://legup.eecg.utoronto.ca/.

[8] Modelsim - advanced simulation and debugging. http://www.model.com.

[9] Nangate open cell library. http://www.nangate.org.

[10] Panda framework official site. http://panda.dei.polimi.it/.

[11] Synopsys design compiler. http://www.synopsys.com.

[12] Synopsys synphony, [online] available: http://www.synopsys.com/systems/blockdesign/ hls/-
pages/default.aspx.

[13] A. Bardsley. "Implementing Balsa Handshake Circuits". PhD thesis, Univerity of Manchester,
2000.

[14] A. Crews and F. Brewer. "Controller Optimization for Protocol Intensive Applications". Proc.
of EURO-DAC, 1996.

[15] A. Seawright and F. Brewer. "Clairvoyant: A Synthesis System for Production-Based Speci-
fication". IEEE Trans. on VLSI, pages 172–185, June 1994.

[16] Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules for
parallel processing systems. Commun. ACM, 17(12):685–690, dec 1974.

145

i
i

“thesis” — 2014/2/4 — 8:27 — page 146 — #158 i
i

i
i

i
i

Bibliography

[17] Alfred V. Aho. "Algorithms for finding patterns in strings", chapter 5, pages 255–300. Else-
vier, Amsterdam, 1990.

[18] C. Andriamisaina, P. Coussy, E. Casseau, and C. Chavet. High-level synthesis for designing
multimode architectures. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 29(11):1736–1749, 2010.

[19] Andrew W. Appel. Modern Compiler Implementation in C: Basic Techniques. Cambridge
University Press, 1997.

[20] A.R. Karlin, H.W. Trickey, and J.D. Ullman. "Experience with a Regular Expression Com-
piler". ICCD, pages 656–665, 1983.

[21] B. Akers Sheldon. "Binary Decision Diagrams". IEEE Transactions on Computers, pages
509–516, June 1978.

[22] David Bacon, Rodric Rabbah, and Sunil Shukla. FPGA Programming for the Masses. Queue,
11(2):40:40–40:52, feb 2013.

[23] M.R. Barbacci, Department of Computer Science, Carnegie-Mellon University Electrical En-
gineering, G.E. Barnes, R.G.G. Cattell, and D.P. Siewiorek. The ISPS Computer Description
Language: The Symbolic Manipulation of Computer Descriptions. Carnegie-Mellon Univer-
sity, Computer Science Department, 1978.

[24] Rami Beidas and Jianwen Zhu. Scalable interprocedural register allocation for high level
synthesis. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference,
ASP-DAC ’05, pages 511–516, New York, NY, USA, 2005. ACM.

[25] R.A. Bergamaschi, R.A. O’Connor, L. Stok, M.Z. Moricz, S. Prakash, A. Kuehlmann, and
D. S. Rao. High-level synthesis in an industrial environment. IBM Journal of Research and
Development, 39(1.2):131–148, 1995.

[26] Berkeley Design Technology Incorporation. "FPGAs for DSP: An Independent Perspective".
Xilinx Workshop, Embedded Systems Conference, April 3, 2007.

[27] B. Betkaoui, Yu Wang, D.B. Thomas, and W. Luk. A reconfigurable computing approach
for efficient and scalable parallel graph exploration. In Application-Specific Systems, Archi-
tectures and Processors (ASAP), 2012 IEEE 23rd International Conference on, pages 8–15,
2012.

[28] J. Biesenack, M. Koster, A. Langmaier, S. Ledeux, S. Marz, M. Payer, M. Pilsl, S. Rumler,
H. Soukup, N. Wehn, and P. Duzy. The siemens high-level synthesis system callas. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 1(3):244–253, 1993.

[29] Benoit Boissinot, Florian Brandner, Alain Darte, Benoît Dupont de Dinechin, and Fabrice
Rastello. A non-iterative data-flow algorithm for computing liveness sets in strict ssa pro-
grams. In Programming Languages and Systems, pages 137–154. Springer, 2011.

[30] Benoit Boissinot, Florian Brandner, Alain Darte, Benoît Dupont de Dinechin, and Fabrice
Rastello. A non-iterative data-flow algorithm for computing liveness sets in strict ssa pro-
grams. In Programming Languages and Systems, pages 137–154. Springer, 2011.

[31] Thomas Bollaert. "Catapult Synthesis: A Practical Introduction to Interactive C Synthesis". In
Philippe Coussy and Adam Morawiec, editors, High-Level Synthesis, pages 29–52. Springer
Netherlands, 2008. 10.1007/978-1-4020-8588-8_3.

[32] P. Brisk, F. Dabiri, R. Jafari, and M. Sarrafzadeh. Optimal register sharing for high-level
synthesis of ssa form programs. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 25(5):772 – 779, may 2006.

146

i
i

“thesis” — 2014/2/4 — 8:27 — page 147 — #159 i
i

i
i

i
i

Bibliography

[33] Inc (BDTI By the staff of Berkeley Design Technology. "An Independent Evaluation of:
High-Level Synthesis Tools for Xilinx FPGAs". Technical report, Berkeley Design Technol-
ogy, Inc, 2010.

[34] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, and D. Jimenez-Gonzalez. OpenMP
extensions for FPGA accelerators. In SAMOS IX: International Symposium on Systems, Ar-
chitectures, Modeling, and Simulation, pages 17–24, 2009.

[35] R. Camposano. Design process model in the yorktown silicon compiler. In Design Automa-
tion Conference, 1988. Proceedings., 25th ACM/IEEE, pages 489–494, 1988.

[36] R. Camposano and W. Wolf. "High-Level VLSI Synthesis". Kluwer (now Springer), Dor-
drecht, 1991.

[37] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H. An-
derson, Stephen Brown, and Tomasz Czajkowski. LegUp: High-Level Synthesis for FPGA-
Based Processor/Accelerator Systems. In FPGA ’11: the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pages 33–36, 2011.

[38] D. Capalija and T.S. Abdelrahman. An Architecture for Exploiting Coarse-grain Parallelism
on FPGAs. In FPT 2009: International Conference on Field-Programmable Technology,
pages 285–291, 2009.

[39] Carl A. Petri. "Communication with automata". DTIC Research Report, 1966.

[40] V.G. Castellana and F. Ferrandi. Speeding-up memory intensive applications through adaptive
hardware accelerators. In High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, pages 1415–1416, Nov 2012.

[41] Vito Giovanni Castellana and Fabrizio Ferrandi. Applications acceleration through adaptive
hardware components. In Proceedings of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing Workshops and PhD Forum, IPDPSW ’13, pages 2274–
2277, Washington, DC, USA, 2013. IEEE Computer Society.

[42] Vito Giovanni Castellana and Fabrizio Ferrandi. An automated flow for the high level synthe-
sis of coarse grained parallel applications. In Field-Programmable Technology (FPT), 2013
International Conference on, pages 294–301, Dec 2013.

[43] Vito Giovanni Castellana and Fabrizio Ferrandi. Scheduling Independent Liveness Analysis
for Register Binding in High-Level Synthesis. In DATE 2013: Design, Automation and Test
in Europe, pages 1571–1574, 2013.

[44] Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. A synthesis approach for
mapping irregular applications on reconfigurable architectures. In The International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC), Technical
Program Posters, 2013.

[45] Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. An Adaptive Memory
Interface Controller for Improving Bandwidth Utilization of Hybrid and Reconfigurable Sys-
tems. In DATE 2014: Design, Automation and Test in Europe, 2014.

[46] Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. C-based high level syn-
thesis of adaptive hardware components. In DATE 2014: Design, Automation and Test in
Europe, PhD Forum, 2014.

[47] Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. High level synthesis of
memory bound and irregular parallel applications with bambu. In International Workshop on
Electronic System-Level Design towards Heterogeneous Computing, 2014.

[48] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins,
and Peter W. Markstein. Register allocation via coloring. Computer Languages, 6(1):47 – 57,
1981.

147

i
i

“thesis” — 2014/2/4 — 8:27 — page 148 — #160 i
i

i
i

i
i

Bibliography

[49] A.P. Chandrakasan, M. Potkonjak, J. Rabaey, and R.W. Brodersen. Hyper-lp: a system for
power minimization using architectural transformations. In Computer-Aided Design, 1992.
ICCAD-92. Digest of Technical Papers., 1992 IEEE/ACM International Conference on, pages
300–303, 1992.

[50] Deming Chen and Jason Cong. Register binding and port assignment for multiplexer opti-
mization. In Proceedings of the 2004 Asia and South Pacific Design Automation Conference,
ASP-DAC ’04, pages 68–73, Piscataway, NJ, USA, 2004. IEEE Press.

[51] Chris Papachristou and Yusuf Alzazeri. "A method of distributed controller design for RTL
circuits". Proc. of Design Automation and Test in Europe, 1999.

[52] Convey Computer. Convey computer doubles graph500 performance, develops
new graph personality. available at http://www.conveycomputer.com/files/2413/5095/9078/
sc11_graph500_release.final.pdf.

[53] Convey Computer. Convey MX Series. Architectural Overview. available at
http://www.conveycomputer.com.

[54] Convey Computer. New Convey MX Demonstrates Leading Power/Performance on
Graph 500 Benchmark. available at http://www.conveycomputer.com/files/9613/5284/0776/
sc12_graph500_release_final.pdf.

[55] J. Cong, Muhuan Huang, and Yi Zou. Accelerating fluid registration algorithm on multi-
fpga platforms. In Field Programmable Logic and Applications (FPL), 2011 International
Conference on, pages 50–57, 2011.

[56] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 30(4):473–491, 2011.

[57] J. Cortadella and W. Reisig. Applications and Theory of Petri Nets 2004: 25th International
Conference, ICATPN 2004, Bologna, Italy, June 21-25, 2004, Proceedings. Number v. 25 in
Lecture Notes in Computer Science. Springer, 2004.

[58] T.S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J. Wong,
P. Yiannacouras, and D.P. Singh. From OpenCL to High-Performance Hardware on FPGAs.
In FPL ’12: 22nd International Conference on Field Programmable Logic and Applications,
pages 531–534, 2012.

[59] L. Dagum and R. Menon. OpenMP: an Industry Standard API for Shared-Memory Program-
ming. IEEE Computational Science Engineering, 5(1):46–55, 1998.

[60] C. Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, R. Eigenmann, and S. Midkiff. Cetus:
A Source-to-Source Compiler Infrastructure for Multicores. IEEE Computer, 42(12):36–42,
2009.

[61] F. de Dinechin and B. Pasca. Designing custom arithmetic data paths with flopoco. Design
Test of Computers, IEEE, 28(4):18–27, 2011.

[62] G. De Micheli, D. Ku, F. Mailhot, and T. Truong. The olympus synthesis system. Design Test
of Computers, IEEE, 7(5):37–53, 1990.

[63] G. De Micheli and D.C. Ku. Hercules-a system for high-level synthesis. In Design Automation
Conference, 1988. Proceedings., 25th ACM/IEEE, pages 483–488, 1988.

[64] A.A. Del Barrio, S.O. Memik, M.C. Molina, J.M. Mendias, and R. Hermida. A distributed
controller for managing speculative functional units in high level synthesis. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 30(3):350 –363, march
2011.

148

i
i

“thesis” — 2014/2/4 — 8:27 — page 149 — #161 i
i

i
i

i
i

Bibliography

[65] A.A. Del Barrio, M.C. Molina, J.M. Mendias, R. Hermida, and S.O. Memik. Using specula-
tive functional units in high level synthesis. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, pages 1779 –1784, march 2010.

[66] M.K. Dhodhi, F.H. Hielscher, R.H. Storer, and J. Bhasker. "Datapath Synthesis Using a
Problem-Space Genetic Algorithm". IEEE Transac- tions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 14, no. 8, August 1995.

[67] S.W. Director, A.C. Parker, D.P. Siewiorek, and Jr. Thomas, D. A design methodology
and computer aids for digital vlsi systems. Circuits and Systems, IEEE Transactions on,
28(7):634–645, 1981.

[68] P. Dziurzanski and V. Beletskyy. Defining Synthesizable OpenMP Directives and Clauses. In
Marian Bubak, GeertDick Albada, PeterM.A. Sloot, and Jack Dongarra, editors, ICCS 2004:
Computational Science, volume 3038 of Lecture Notes in Computer Science, pages 398–407.
Springer Berlin Heidelberg, 2004.

[69] E. J. McCluskey. "Introduction to the Theory of Switching Circuits", chapter 2. McGraw-Hill,
1965.

[70] T. El-Ghazawi, E. El-Araby, Miaoqing Huang, K. Gaj, V. Kindratenko, and D. Buell. The
promise of high-performance reconfigurable computing. Computer, 41(2):69–76, 2008.

[71] John P. Elliott. Understanding Behavioral Synthesis: A Practical Guide to High-Level De-
sign. Kluwer Academic Publishers, Norwell, MA, USA, 1999.

[72] John Feo, David Harper, Simon Kahan, and Petr Konecny. ELDORADO. In CF ’05: Pro-
ceedings of the 2nd conference on Computing frontiers, pages 28–34, New York, NY, USA,
2005. ACM Press.

[73] Fredrick J. Hill and Gerald R. Peterson. "Introduction to the Theory of Switching Circuits".
McGraw-Hill, 1965.

[74] G. Berry and G. Gonthier. "The ESTEREL synchronous programming language: design,
semantics, implementation". Science of Computer Programming, 19(2):87–152, 1992.

[75] G. Lakshminarayana, K.S. Khouri, and N.K. Jha. "Wavesched: a novel scheduling technique
for control-flow intensive designs". IEEE Trans. on CAD, 18(5):505–523, May 1999.

[76] D. Gajski et al. "High Level Synthesis: An Introduction to Chip and System Design". Kluwer
(now Springer), 1992.

[77] Daniel D. Gajski, Nikil D. Dutt, Allen C.-H. Wu, and Steve Y.-L. Lin. High-level synthesis:
introduction to chip and system design. Kluwer Academic Publishers, Norwell, MA, USA,
1992.

[78] Geiger and Muller-Wipperfurth. "FSM decomposition revisited: algebraic structure theory
applied to MCNC benchmark FSMs". 28th ACM/IEEE Design Automation Conference (DAC
’91), pages 182–185, 1991.

[79] W. Geurts et al. "Accelerator Data-Path Synthesis for High-throughput Signal Processing
Applications". Kluwer Academic Publishers, 1996.

[80] A. Girault, Bilung Lee, and E.A. Lee. Hierarchical Finite State Machines with Multiple
Concurrency Models. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 18(6):742–760, Jun 1999.

[81] M. Girkar and C.D. Polychronopoulos. Automatic extraction of functional parallelism from
ordinary programs. Parallel and Distributed Systems, IEEE Transactions on, 3(2):166–178,
1992.

149

i
i

“thesis” — 2014/2/4 — 8:27 — page 150 — #162 i
i

i
i

i
i

Bibliography

[82] J. Granacki, D. Knapp, and A. Parker. The adam advanced design automation system:
Overview, planner and natural language interface. In Design Automation, 1985. 22nd Con-
ference on, pages 727–730, 1985.

[83] Zhi Guo, Betul Buyukkurt, John Cortes, Abhishek Mitra, and Walild Najjar. A compiler
intermediate representation for reconfigurable fabrics. International Journal of Parallel Pro-
gramming, 36(5):493–520, 2008.

[84] Rajesh K. Gupta and Forrest Brewer. "A Retrospective in High-Level Synthesis". Springer,
2008, chapter 2.

[85] S. Gupta, R.K. Gupta, N.D. Dutt, and A. Nicolau. "SPARK: A Parallelizing Approach to the
High-Level Synthesis of Digital Circuits". Kluwer, Dordrecht, 2004.

[86] Sumit Gupta, Rajesh Kumar Gupta, Nikil D. Dutt, and Alexandru Nicolau. Coordinated Par-
allelizing Compiler Optimizations and High-Level Synthesis. ACM Transactions on Design
Automation of Electronic Systems, 9(4):441–470, October 2004.

[87] H. P. Zeiger. "Loop-free synthesis of finite-state machines". PhD thesis, MIT, Department of
Electrical Engineering, Cambrige, Mass., September 1961.

[88] Robert J. Halstead, Jason Villarreal, and Walid Najjar. Exploring irregular memory accesses
on fpgas. In Proceedings of the first workshop on Irregular applications: architectures and
algorithms, IAAA ’11, pages 31–34, 2011.

[89] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii. Chstone: A benchmark program
suite for practical c-based high-level synthesis. In Circuits and Systems, 2008. ISCAS 2008.
IEEE International Symposium on, pages 1192–1195, 2008.

[90] A. Hemani, B. Karlsson, M. Fredriksson, K. Nordqvist, and B. Fjellborg. Application of high-
level synthesis in an industrial project. In VLSI Design, 1994., Proceedings of the Seventh
International Conference on, pages 5–10, 1994.

[91] C.Y. Hitchcock and D.E. Thomas. "A method of automatic data path synthesis". Design
Automation Conference, 1983.

[92] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, aug
1978.

[93] Chao Huang, S. Ravi, A. Raghunathan, and N.K. Jha. Generation of Heterogeneous Dis-
tributed Architectures for Memory-Intensive Applications Through High-Level Synthesis.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(11):1191–1204, 2007.

[94] Chu-Yi Huang, Yen-Shen Chen, Youn-Long Lin, and Yu-Chin Hsu. Data path allocation
based on bipartite weighted matching. In Proceedings of the 27th ACM/IEEE Design Au-
tomation Conference, DAC ’90, pages 499–504, New York, NY, USA, 1990. ACM.

[95] Q. Huang, R Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. Anderson. The Effect of
Compiler Optimizations on High-Level Synthesis for FPGAs. In FCCM 2013: the 21th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pages 89–
96, 2013.

[96] J. Eppling and D. Thomas. "Multiple Controller Synthesis for Reducing Control Path Delays".
SRC TECHCON, Sept. 1993.

[97] J. Hartmanis. "Symbolic analysis of a decomposition of information processing". In Inform.
Control, June 1960.

[98] J. Hartmanis and R. E. Stearns. "Algebraic Structure Theory of Sequential Machines".
Prentice-Hall, Englewood CIiffs, N. J., 1966.

[99] R. Jain, A. Parker, and N. Park. Module selection for pipelined synthesis. In Design Automa-
tion Conference, 1988. Proceedings., 25th ACM/IEEE, pages 542–547, 1988.

150

i
i

“thesis” — 2014/2/4 — 8:27 — page 151 — #163 i
i

i
i

i
i

Bibliography

[100] Rajiv Jain, K. Kücükcakar, M. J. Mlinar, and A. C. Parker. Experience with adam synthesis
system. In Proceedings of the 26th ACM/IEEE Design Automation Conference, DAC ’89,
pages 56–61, New York, NY, USA, 1989. ACM.

[101] James Lyle Peterson. "Petri Net Theory and the Modeling of Systems". Prentice Hall, 1981.

[102] João M. Fernandes, M. Adamski, and A.J. Proença. "VHDL generation from hierarchical petri
net specifications of parallel controllers". Proc. of IEEE Computer and Digital Techniques,
1997.

[103] John E. Hopcroft and Jeffrey D. Ullman. "Introduction to Automata Theory, Languages, and
Computation". Addison-Wesley Publishing, 1979.

[104] Jörg Desel and Gabriel Juhás. "What Is a Petri Net? Informal Answers for the Informed
Reader", pages 1–25. Hartmut Ehrig et al., 2001.

[105] K. Bilinski, E. Dagless, and J. Mirkowski. " Synchronous parallel controller synthesis from
behavioural multiple-process VHDL description". Proc. of European Design Automation
Conference, Sept. 1996.

[106] K. Thulasiraman and M. N. S. Swamy. "Acyclic Directed Graphs", chapter 5, Section 7. John
Wiley and Son, 1992.

[107] F. Karim, A. Mellan, A. Nguyen, U. Aydonat, and T. Abdelrahman. A Multilevel Computing
Architecture for Embedded Multimedia Applications. IEEE Micro, 24(3):56–66, 2004.

[108] V. Kathail, S. Aditya, R. Schreiber, B.R. Rau, D.C. Cronquist, and M. Sivaraman. Pico:
automatically designing custom computers. Computer, 35(9):39–47, 2002.

[109] K. Keutzer, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-level de-
sign: orthogonalization of concerns and platform-based design. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 19(12):1523–1543, 2000.

[110] D.W. Knapp. "Behavioral Synthesis: Digital System Design using the Synopsys Behavioral
Compiler". Prentice-Hall, Englewood Cliff, NJ, 1996.

[111] T.J. Kowalski and D.E. Thomas. "The VLSI design automation assistant: what’s in a knowl-
edge base". Design Automation Conference, 1985.

[112] Krzysztof Biliński, E.L. Dagless, J.M. Saul, and M. Adamski. "Parallel controller synthesis
from a Petri net specification". Proc. of European Design Automation Conference, 1994.

[113] D. Ku and G. De Micheli. Relative scheduling under timing constraints. In Design Automation
Conference, 1990. Proceedings., 27th ACM/IEEE, pages 59 –64, jun 1990.

[114] David Ku and Giovanni De Micheli. Hardwarec-a language for hardware design version 2.0.
Computer, 1990.

[115] David C. Ku and Giovanni De Micheli. Constrained resource sharing and conflict resolution
in hebe. Integration, the {VLSI} Journal, 12(2):131 – 165, 1991.

[116] K. Kucukcakar, Chih-Tung Chen, Jie Gong, W. Philipsen, and T.E. Tkacik. Matisse: an
architectural design tool for commodity ics. Design Test of Computers, IEEE, 15(2):22–33,
1998.

[117] F.J. Kurdahi and A.C. Parker. Real: A program for register allocation. In Design Automation,
1987. 24th Conference on, pages 210–215, 1987.

[118] G. Lakshminarayana, K.S. Khouri, and N.K. Jha. Wavesched: A Novel Scheduling Tech-
nique for Control-Flow Intensive Designs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18(5):505–523, 1999.

151

i
i

“thesis” — 2014/2/4 — 8:27 — page 152 — #164 i
i

i
i

i
i

Bibliography

[119] G. Lakshminarayana, A. Raghunathan, and N.K. Jha. "Incorporating speculative execution
into scheduling of control-flow intensive behavioral descriptions". Design Automation Con-
ference, 1998.

[120] Chunho Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: a tool for evaluating
and synthesizing multimedia and communications systems. In Microarchitecture, 1997. Pro-
ceedings., Thirtieth Annual IEEE/ACM International Symposium on, pages 330 –335, dec
1997.

[121] Y. Y. Leow, C. Y. Ng, and W.F. Wong. Generating Hardware from OpenMP Programs. In
FPT 2006: IEEE International Conference on Field Programmable Technology, pages 73–80,
2006.

[122] Silvia Lovergine and Fabrizio Ferrandi. Instructions activating conditions for hardware-based
auto-scheduling. In Proceedings of the 9th conference on Computing Frontiers, CF ’12, pages
253–256, New York, NY, USA, 2012. ACM.

[123] M. Yoeli. "The cascade decomposition of sequential machines". In IRE Trans. Electronic
Computers, April 1961.

[124] Hugo De Man. "Cathedral-II: A Silicon Compiler for Digital Signal Processing". IEEE
Design and Test, vol. 3, no. 6, 1986, pp. 13-25.

[125] Grant Martin and Gary Smith. "High-Level Synthesis: Past, Present, and Future". IEEE
Design & Test of Computers, pages 18–25, December 2009, vol. 26(4).

[126] P. Marwedel. The mimola design system: Tools for the design of digital processors. In Design
Automation, 1984. 21st Conference on, pages 587–593, 1984.

[127] Michael C. McFarland, Alice C. Parker, and Raul Camposano. "Tutorial on High-level Syn-
thesis". In Conference, in Proc. of 25th ACM/IEEE Design Automaton, pages 330–336, 1988.

[128] Michael Meredith. "A Look Inside Behavioral Synthesis". EE Times, aug 2004.

[129] B. Meyer, J. Schumacher, C. Plessl, and J. Forstner. Convey vector personalities - fpga ac-
celeration with an openmp-like programming effort? In Field Programmable Logic and
Applications (FPL), 2012 22nd International Conference on, pages 189–196, 2012.

[130] G. De Micheli. "Synthesis and Optimization of Digital Circuits". McGraw-Hill, New York,
1994.

[131] Milind Girkar and Constantine D. Polychronopoulos. "The hierarchical task graph as a univer-
sal intermediate representation". International Journal of Parallel Programming, 22(5):519–
551, 1994.

[132] M.O. Rabin and D. Scott. "Finite Automata and their Decision Problems". IBM Journal of
Research and Development, pages 115–125, 1959.

[133] J. Moreira. "On the Implementation and Effectiveness of Autoscheduling for Shared-Memory
Multiprocessors". PhD. thesis, Univ. of Illinois at Urbana-Champaign, 1995.

[134] Silva M. Mueller. On the scheduling of variable latency functional units. In Proceedings of
the eleventh annual ACM symposium on Parallel algorithms and architectures, SPAA ’99,
pages 148–154, New York, NY, USA, 1999. ACM.

[135] Nancy Wu, Gary Smith EDA. "ESL Synthesis: Tips for Implementing a Viable ESL-
Synthesis Flow". EDN Magazine, July 30, 2010.

[136] Stephen Neuendorffer and Kees Vissers. Streaming systems in fpgas. In Mladen Bereković,
Nikitas Dimopoulos, and Stephan Wong, editors, Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, volume 5114 of Lecture Notes in Computer Science, pages
147–156. Springer Berlin Heidelberg, 2008.

152

i
i

“thesis” — 2014/2/4 — 8:27 — page 153 — #165 i
i

i
i

i
i

Bibliography

[137] Noam Chomsky. "Three Models for the Description of Language". IRE Transactions on
Information Theory, pages 113–123, 1956.

[138] Ntsibane Ntlatlapa. "Verified High-Level Synthesis Front-End and Simulator Using Depen-
dence Flow Graphs". Technical report, Auburn University (Auburn, Alabama, USA), 1999.

[139] Ntsibane Ntlatlapa. "High-Level Synthesis using Dependence Flow Graphs as the Interme-
diate Form". Technical report, Auburn University (Auburn, Alabama, USA), January 20,
1998.

[140] P. Ashar, S. Devadas, and R. Newton. "Optimum and heuristic algorithms for an approach to
finite state machine decomposition". IEEE Trans. on CAD, 10:296–310, 1991.

[141] P. Coussy , C. Chavet , P. Bomel , D. Heller , E. Senn and E. Martin P. Coussy and A.
Morawiec. "High-Level Synthesis: From Algorithm to Digital Circuits". Springer, 2008.

[142] Preeti R Panda and Nikil D Dutt. 1995 high level synthesis design repository. In Proceedings
of the 8th international symposium on System synthesis, pages 170–174. ACM, 1995.

[143] A. Papakonstantinou, K. Gururaj, J.A. Stratton, Deming Chen, J. Cong, and W.-M.W. Hwu.
FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs. In SASP ’09: IEEE
7th Symposium on Application Specific Processors, pages 35–42, 2009.

[144] A. Papakonstantinou, Yun Liang, J.A. Stratton, K. Gururaj, Deming Chen, W.-M.W. Hwu,
and J. Cong. Multilevel Granularity Parallelism Synthesis on FPGAs. In FCCM 2011: IEEE
19th Annual International Symposium on Field-Programmable Custom Computing Machines,
pages 178–185, 2011.

[145] N. Park and A. Parker. Sehwa: A program for synthesis of pipelines. In Papers on Twenty-
five years of electronic design automation, 25 years of DAC, pages 595–601, New York, NY,
USA, 1988. ACM.

[146] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G. Leive, and J. Kim. The cmu
design automation system - an example of automated data path design. In Design Automation,
1979. 16th Conference on, pages 73–80, 1979.

[147] A.C. Parker, J. Pizarro, and M. Mlinar. "MAHA: A program for datapath synthesis". Proc.
23rd IEEE/ACM Design Automation Conference, pp. 461-466, Las Vegas NV, June 1986.

[148] P. G. Paulin and J. P. Knight. Scheduling and Binding Algorithms for High-Level Synthesis.
In DAC ’89: the 26th ACM/IEEE Design Automation Conference, pages 1–6, 1989.

[149] P.G. Paulin and J.P. Knight. "Scheduling and binding algorithms for high-level synthesis".
Proceedings of the 26th ACM/IEEE Design Automation Conference, 1989.

[150] P.G. Paulin, J.P. Knight, and E.F. Girczyc. Hal: A multi-paradigm approach to automatic data
path synthesis. In Design Automation, 1986. 23rd Conference on, pages 263–270, 1986.

[151] Pierre G. Paulin and J.P. Knight. "Force-Directed Scheduling for the Behavioral Synthesis of
ASICs". IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 1989, vol.
8, no. 6, pp. 661-679.

[152] Pierre G. Paulin and J.P. Knight. "Force-Directed Scheduling in Automatic Data Path Syn-
thesis". Proc. of the 24th Design Automation Conference, pages 195–202, June 1987.

[153] O. Penalba, J.M. Mendias, and R. Hermida. "Maximizing conditional reuse by pre-synthesis
transformations". Design Automation and Test in Europe, 2002.

[154] C. Pilato, V.G. Castellana, S. Lovergine, and F. Ferrandi. A runtime adaptive controller for
supporting hardware components with variable latency. In Adaptive Hardware and Systems
(AHS), 2011 NASA/ESA Conference on, pages 153–160, June 2011.

[155] M. Pinedo. "Scheduling Theory, Algorithms and Systems". Prentice Hall, 1995.

153

i
i

“thesis” — 2014/2/4 — 8:27 — page 154 — #166 i
i

i
i

i
i

Bibliography

[156] Shlomit S. Pinter. Register allocation with instruction scheduling. SIGPLAN Not., 28:248–
257, June 1993.

[157] J.M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast prototyping of datapath-intensive
architectures. Design Test of Computers, IEEE, 8(2):40–51, 1991.

[158] I. Radivojevic and F. Brewer. "A New Symbolic Technique for Con- trol-Dependent Schedul-
ing". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
15, no. 1, January 1996.

[159] V. Raghunathan, S. Ravi, and G. Lakshminarayana. Integrating variable-latency components
into high-level synthesis. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 19(10):1105–1117, 2000.

[160] M. Rim, Y. Fann, and R. Jain. "Global Scheduling with Code-Motions for High-Level Synthe-
sis Applications". IEEE Transactions on VLSI Systems, vol. 3, no. 3, pp. 379-392, September
1995.

[161] C. Rust, A. Rettberg, and K. Gossens. From high-level petri nets to systemc. In Systems,
Man and Cybernetics, 2003. IEEE International Conference on, volume 2, pages 1032–1038
vol.2, 2003.

[162] R.W. Floyd and J.D. Ullman. "The Compilation of Regular Expressions into Integrated Cir-
cuits". Jo. ACM, 1982.

[163] Soujanna Sarkar, Shashank Dabral, Praveen K. Tiwari, and Raj S. Mitra. "Lessons and Ex-
periences with High-Level Synthesis". IEEE Design & Test, Vol. 26 , Issue 4, pp 34-45, July
2009.

[164] Jeff Scott, Lea Hwang Lee, John Arends, and Bill Moyer. Designing the low-power m core
architecture. In Power Driven Microarchitecture Workshop, pages 145–150. Citeseer, 1998.

[165] S.Devadas and R. Newton. "Decomposition and Factorization of Sequential Finite State Ma-
chines". IEEE Trans. on CAD, 8:1206–1217, 1988.

[166] Richard Sharp and Alan Mycroft. Soft scheduling for hardware. In Proceedings of the 8th
International Symposium on Static Analysis, SAS ’01, pages 57–72, London, UK, 2001.
Springer-Verlag.

[167] Michael Sipser. "Introduction to the Theory of Computation". PWS Publishing Co., Boston
1997.

[168] V. Sklyarov and I. Skliarova. Design and implementation of parallel hierarchical finite state
machines. In Communications and Electronics, 2008. ICCE 2008. Second International Con-
ference on, pages 33 –38, june 2008.

[169] D.L. Springer and D.E. Thomas. Exploiting the special structure of conflict and compatibility
graphs in high-level synthesis. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 13(7):843 –856, jul 1994.

[170] M.B. Srivastava and M. Potkonjak. Optimum and heuristic transformation techniques for
simultaneous optimization of latency and throughput. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 3(1):2 –19, march 1995.

[171] Leon Stok. Data path synthesis. Integr. VLSI J., 18(1):1–71, dec 1994.

[172] Taylor L. Booth. "Sequential Machines and Automata Theory". John Wiley and Sons, 1967.

[173] Taylor L. Booth. "Digital Networks and Computer Systems". John Wiley and Sons, 1971.

[174] A.H. Timmer and J.A.G. Jess. "Exact Scheduling Strategies based on Bipartite Graph Match-
ing". Proceedings of the European Design & Test Conference, pp. 42-47, 1995.

154

i
i

“thesis” — 2014/2/4 — 8:27 — page 155 — #167 i
i

i
i

i
i

Bibliography

[175] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM Journal
of Research and Development, (11):25–33, 1967.

[176] J.L. Tripp, M.B. Gokhale, and K.D. Peterson. Trident: From high-level language to hardware
circuitry. Computer, 40(3):28–37, 2007.

[177] J.L. Tripp, K.D. Peterson, C. Ahrens, J.D. Poznanovic, and M.B. Gokhale. Trident: an fpga
compiler framework for floating-point algorithms. In Field Programmable Logic and Appli-
cations, 2005. International Conference on, pages 317–322, 2005.

[178] Chia-Jeng Tseng and D.P. Siewiorek. Automated Synthesis of Data Paths in Digital Systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 5(3):379–
395, 1986.

[179] C.J. Tseng and D.P. Siewiorek. "Automated synthesis of data paths in digital systems". Pro-
ceedings of the 20th Design Automation Conference, July 1986.

[180] Frank Vahid. What is hardware/software partitioning? SIGDA Newsl., 39(6):1–1, jun 2009.

[181] Diederik Verkest, Joachim Kunkel, and Frank Schirrmeister. "System Level Design Using
C++". Proc. of Design, automation & Test in Europe, Paris, France, pp. 74-83, 2000.

[182] J. Villarreal, A. Park, R. Atadero, W. A. Najjar, and G. Edwards. Programming the convey
HC-1 with ROCCC 2.0. In CARL 2010: The First Workshop on the Intersections of Computer
Architecture and Reconfigurable Logic, 2010.

[183] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing modular hardware accelerators
in c with roccc 2.0. In Field-Programmable Custom Computing Machines (FCCM), 2010
18th IEEE Annual International Symposium on, pages 127–134, 2010.

[184] K. Wakabayashi and T. Yoshimura. "A resource sharing and control synthesis method for
conditional branches". IEEE International Conference on Computer-Aided Design, 1989.

[185] Kazutoshi Wakabayashi. Cyber: High level synthesis system from software into asic. In
Raul Camposano and Wayne Wolf, editors, High-Level VLSI Synthesis, volume 136 of
The Springer International Series in Engineering and Computer Science, pages 127–151.
Springer US, 1991.

[186] Kazutoshi Wakabayashi. C-based behavioral synthesis and verification analysis on industrial
design examples. In Proceedings of the 2004 Asia and South Pacific Design Automation
Conference, ASP-DAC ’04, pages 344–348, Piscataway, NJ, USA, 2004. IEEE Press.

[187] David W. Wall. Limits of Instruction-Level Parallelism. In ASPLOS IV: the fourth interna-
tional conference on Architectural support for programming languages and operating sys-
tems, pages 176–188, 1991.

[188] Weidong Wang, A. Raghunathan, N.K. Jha, and S. Dey. High-Level Synthesis of Multi-
Process Behavioral Descriptions. In 16th International Conference on VLSI Design, pages
467–473, 2003.

[189] Tomonori Yamashita, Kazuhiro Matsuzaki, Takeshi Toyoyama, Masaoki Satoh, Akifumi
Adachi, and Fusako Sugawara. "Using high-level synthesis for FPGA development. Ap-
plying a C-based design methodology using Catapult C Synthesis at FUJITSU". Technical
report, Design Platform Development Center Corporate Product Technology Unit, FUJITSU
LIMITED.

[190] F.F. Yassa, J.R. Jasica, R.I. Hartley, and S.E. Noujaim. A silicon compiler for digital sig-
nal processing: Methodology, implementation, and applications. Proceedings of the IEEE,
75(9):1272–1282, 1987.

[191] Katherine A. Yelick. Programming models for irregular applications. SIGPLAN Not., 28:28–
31, January 1993.

155

i
i

“thesis” — 2014/2/4 — 8:27 — page 156 — #168 i
i

i
i

i
i

Bibliography

[192] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong. Autopilot:
A Platform-Based ESL Synthesis System. In Philippe Coussy and Adam Morawiec, editors,
High-Level Synthesis, pages 99–112. Springer Netherlands, 2008.

156

	Introduction
	Main Contributions
	Dissemination of Results
	Thesis Organization

	Background
	Introduction to High-Level Synthesis
	The Finite State Machine with Data-Path Model
	Data-Path
	Finite State Machine

	Typical High Level Synthesis Flows
	Front End
	Synthesis
	Back-end

	Bambu: A Free Framework for the High-Level Synthesis of Complex Applications
	Front-end
	Synthesis
	Back-end

	Conclutions

	Related Work
	HLS Design Methodologies Characterization
	Early Efforts
	First HLS Generation
	Architectural Models

	Second HLS Generation
	Architectural Models

	Third HLS Generation
	HLS and EDA Industry
	Architectural Models

	Conclusions

	The Parallel Controller Architecture
	Motivation
	Related Work
	The Parallel Controller Architecture
	Adaptive Behavior
	Conclusions

	High Level Synthesis of Adaptive Hardware Components
	Proposed High Level Synthesis Flow
	Compilation and IR Generation
	Extended Program Dependence Graph
	Activating Conditions Computation

	Module Binding
	Liveness Analysis and Register Binding
	Preliminary Notions and Definitions
	Schedule-Independent Liveness Analysis
	Conflict Graph Creation
	Algorithm Evaluation

	Controller Generation
	Support for Complex Behaviors
	Implementation Details: Integration in the Bambu Framework
	Experimental Evaluation
	Conclusions

	The Memory Interface Controller
	Motivation
	Related Work
	Accelerating Memory Intensive and Irregular Applications
	Accelerator Design Template
	Exploitation of the Parallel Controller Architecture

	Memory Interface Controller Design
	Experimental Evaluation
	Conclusions

	Support for Annotated Parallel Specifications
	Motivation
	Related Work
	Refined High Level Synthesis Flow
	Front-end
	Flow Selection
	Synthesis
	FSM-based synthesis flow
	Parallel Controller synthesis flow

	The Distributed Memory Interface
	Experimental Evaluation
	Performance Evaluation
	Area Evaluation

	Conclusions

	Conclusions
	Novel Contributions
	The Parallel Controller Design
	High Level Synthesis of Adaptive Hardware Components
	Memory Interface Controller
	Support for Annotated Parallel Specifications

	Further Development
	Future Research Directions

	Bibliography

