
i
i

“thesis” — 2014/1/30 — 16:53 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DEPARTMENT OF ELETTRONICA, INFORMAZIONE E

BIOINGEGNERIA
DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

REQUIREMENTS VERIFICATION

OF

VARIABILITY-INTENSIVE SYSTEMS

Doctoral Dissertation of:
Amir Molzam Sharifloo

Supervisor:
Prof. Carlo Ghezzi

Tutor:
Prof. Gian Paolo Cugola

The Chair of the Doctoral Program:
Prof. Carlo Fiorini

2014 - IIV

i
i

“thesis” — 2014/1/30 — 16:53 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2014/1/30 — 16:53 — page 1 — #3 i
i

i
i

i
i

Acknowledgement

My special thanks goes to my supervisor Prof. Carlo Ghezzi, who provided
me with a continuous support through all days of my PhD. I am thankful of
Prof. Axel Van Lamsweerde for his insightful comments on the first draft.
I have been grateful to work with Paola Spoletini and Antonio Filieri, who
generously shared their expertise with me. Moreover, I would like to thank
Prof. Patrick Heymans (University of Namur), Emmanuele Letier (Univer-
sity College London), Axel Legay (Inria Rennes), and Andreas Medzger
(Universitat Duisburg-Essen), for their hospitality during the periods I vis-
ited their research groups.

I was grateful to do my PhD in a big research group DEEPSE, where
people go beyond work relations and build good friendships. Thus, I am
honored to remember these names: Danilo Ardagna, Elisabetta Di Nitto,
Raffaella Mirandola, Alessandra Viale, Luciano Baresi, Mauro Caporuscio,
Salvatore Distefano, Matteo Pradella, Marcello Bersani, Michele Ciavotta,
Daniel J. Dubois, Andrea Mocci, Alessandro Margara, Liliana Pasquale,
Marco Funaro, Joel Greenyer, Giordano Tamburrelli, Luca Cavalaro, Mikhail
Afanasov, Nicoló Calcavecchia, Luca Ferrucci, Srdjan Krstic, Santo Lom-
bardo, Claudio Menghi, Alfredo Motta, Diego Perez, Federica Panella, Va-
lerio Panzica La Manna, Mehdi Pourhashem, Mario Sangiorgio, Alessan-
dro Sivieri, Leandro Sales, Matteo Miraz, Guido Salvaneschi, Manuel Maz-
zara, Pantea Saeedi, Yu Zhou, Vania Neves, Pasqualina Potena, Andrea
Ciancone, Giovanni Gibilisco, Marco Miglierina, Alessandro Rizzi.

i
i

“thesis” — 2014/1/30 — 16:53 — page 2 — #4 i
i

i
i

i
i

To my parents for lifelong support,

to my sisters for lifelong company,

to my brother-in-law for our brotherhood,

to my girlfriend for being there,

and

to patience, enthusiasm, and continuation.

i
i

“thesis” — 2014/1/30 — 16:53 — page I — #5 i
i

i
i

i
i

Abstract

THE objective of this thesis is to devise techniques to verify differ-
ent properties of Variability-Intensive Systems. By Variability-Intensive
System, we refer to a specification from which various systems can

be derived. Adaptive systems and software product lines are two impor-
tant examples of such systems. In the former case, system switches among
different configurations at run time, while in the later case, each valid con-
figuration is released as a single product at development time. Incomplete
specifications of system behavior, which are incrementally developed dur-
ing development, are another kind of specifications that evolve over time,
and may lead to different releases. We classify variability in two classes:
open and closed. Accordingly, the thesis is divided into two main parts,
which are dedicated to these two types of systems. Open variability refers
to the cases where the specifications of alternatives are unknown, which is
the case of incomplete specifications. This is exactly opposite in the case
of closed variability for which the specification is complete, that is the case
of software product lines.

Part II presents a novel approach for specification and verification of in-
complete software models against temporal logic properties and in particu-
lar CTL. An incomplete model may represent a partial design of a system
at early development stages, in which some components are not yet speci-
fied. The unknown components can be viewed as variation points of such
specification, and can be bound with different components depending on
later design decisions. Similarly, an adaptive system with multiple vari-
ation points may be represented as an incomplete specification, in which

I

i
i

“thesis” — 2014/1/30 — 16:53 — page II — #6 i
i

i
i

i
i

variability is replaced with appropriate alternatives. We show the applica-
bility of this approach in the context of Statecharts and Labeled Transition
Systems and provide algorithms and tool support.

Part III focuses on verification of stochastic software product lines (SPLs)
for non-functional properties, namely reliability and energy consumption.
We propose two modeling approaches to capturing stochastic behavior of
SPLs. One approach enriches UML Sequence Diagrams with variability
and stochastic information to represent high-level system scenarios. Sec-
ond modeling, instead, extends Markov models with variability elements.
Moreover, we propose three model-checking algorithms for the latter for-
malism, and discuss their performance and application. Finally we cus-
tomize our framework to build model-based adaptive systems, which can
continuously monitor, check, and satisfy non-functional requirements. In
this case, we discuss the application of Dynamic SPLs.

II

i
i

“thesis” — 2014/1/30 — 16:53 — page III — #7 i
i

i
i

i
i

Sommario

L’OBIETTIVO di questa tesi è sviluppare tecniche per verificare diver-
se proprietà dei Variability-Intensive Systems.

La prima parte si occupa con gli definizioni base che serve per segui-
re altre due parti. Con Variability-Intensive Systems, ci riferiamo ad una
specifica dalla quale i vari sistemi possono essere derivate. Adaptive Sy-
stems e Software Product Lines (SPL) sono due importanti esempi di tali
sistemi. Nel primo caso, il sistema cambia tra diverse configurazioni in fa-
se di esecuzione. Nel secondo caso ogni configurazione valida è rilasciato
e come un singolo prodotto in fase di sviluppo. Specifiche incomplete di
comportamento del sistema, che sono progressivamente sviluppate durante
lo sviluppo, sono un altro tipo di specifiche che si evolvono nel tempo, e
possono portare a versioni differenti. Classifichiamo la variabilità in due
classi: aperta e chiusa. Di conseguenza, la tesi è divisa in due parti prin-
cipali, che sono dedicati a questi due tipi di sistemi. La variabilità aperta
riguarda i casi in cui le specifiche di altre alternative sono sconosciute, che
è il caso di specifiche incompleti. Questo è esattamente opposta in caso
delle SPL che la variabilità è chiusa e la specifica è completa.

La seconda parte presenta un nuovo approccio per la specifica e la veri-
fica di modelli di software incompleti rispetto le proprietà logiche tempo-
rali e particolarmente CTL. Un modello incompleto può rappresentare un
disegno parziale di un sistema nelle prime fasi del sviluppo, in cui alcu-
ni componenti non sono ancora stati specificati. I componenti sconosciuti
possono essere visti come punti di variazione di tale specifica, e possono

III

i
i

“thesis” — 2014/1/30 — 16:53 — page IV — #8 i
i

i
i

i
i

essere associati con diversi componenti a seconda delle decisioni di pro-
gettazione successivi. Analogamente, un sistema adattivo con più punti di
variazione può essere rappresentato come una specifica incompleta, in cui
la variabilità è sostituita con alternative appropriate. Mostriamo l’applicabi-
lità di questo approccio nel contesto dagli Statecharts e Labeled Transition
Systems e forniamo algoritmi e strumenti di supporto.

La terza parte si concentra sulla verifica delle linee di prodotti software
stocastico per requisiti non-funzionali, vale a dire affidabilita e il consumo
di energia. Proponiamo due approcci di modellazione per rappresentare
il comportamento stocastico di SPL. Il nostro approccio arricchisce dia-
grammi di sequenza UML con punti di variabilità e informazioni stocastici
a rappresentare scenari di sistemi di alto livello. Inoltre la modellazione
estende i modelli di Markov con elementi di variabilità. Inoltre, propo-
niamo tre algoritmi di controllo per quest’ultimo formalismo, e discutiamo
le loro prestazioni e applicazioni. Infine abbiamo personalizzato il nostro
framework per costruire Adaptive Systems basati su modelli, che possono
monitorare, controllare e soddisfare i requisiti non-funzionali. In questo
caso, si discute l’applicazione della dinamica alla SPL.

IV

i
i

“thesis” — 2014/1/30 — 16:53 — page V — #9 i
i

i
i

i
i

Contents

I Foundation 1

1 Introduction 3
1.1 Problem Formulation . 3
1.2 Contributions . 7
1.3 Thesis Organization . 8

2 Variability-Intensive Systems 9
2.1 Incomplete Specifications 11
2.2 Adaptive Systems . 11
2.3 Software Product Lines . 12

3 Formal Verification 15
3.1 Formal Specification . 17

3.1.1 Transition Systems 17
3.1.2 Probabilistic Models 18

3.2 Formal Languages for Requirements Specification 20
3.2.1 Computational Tree Logic 21
3.2.2 Probabilistic Computational Tree Logic 22
3.2.3 Reward Temporal Logic 23

3.3 Model Checking Techniques 24
3.3.1 CTL Model Checking 25
3.3.2 PCTL Model Checking 25

V

i
i

“thesis” — 2014/1/30 — 16:53 — page VI — #10 i
i

i
i

i
i

Contents

II Modeling and Verification of Open Variability 29

4 Verification of Incomplete Specifications 31
4.1 Introduction . 31
4.2 Incomplete Model Checking (IMC) 33

4.2.1 Incompletely Labeled Transition System 34
4.2.2 Next-Free CTL and Path-CTL 35
4.2.3 Next-Free CTL model checking of ILTS 36
4.2.4 Sketching the correctness of Next-Free CTL model

checking . 42
4.2.5 Path-CTL model checking 44

4.3 Experimental Results . 45
4.3.1 Tool Support and Applicability 45
4.3.2 Scalability . 46

4.4 Verification of open adaptive systems at run time 46
4.5 Related Work . 48
4.6 Conclusion . 50

5 AGAVE: A Methodology for Incremental Verification 51
5.1 Overview . 52
5.2 Statecharts . 54
5.3 Verification . 57

5.3.1 Statecharts-to-ILTS Transformation 59
5.3.2 ILTS/Path-CTL Verification 62

5.4 Railway Crossing System 62
5.5 Experimental Evaluation 65
5.6 Related work . 67
5.7 Conclusion . 68

III Stochastic Modeling and Verification of Closed Variability 69

6 Modeling and Verification of Stochastic Software Product Lines 71
6.1 Motivating Running Example 72
6.2 Stochastic Variable Sequence Diagrams 74
6.3 Featured Discrete-Time Markov Chains (FDTMCs) 77
6.4 Model to Model Transformation 79
6.5 FDTMC Model Checking 84

6.5.1 Enumerative Verification 84
6.5.2 Parametric Verification 85
6.5.3 Approximative Verification 86

VI

i
i

“thesis” — 2014/1/30 — 16:53 — page VII — #11 i
i

i
i

i
i

Contents

6.6 Experiments . 88
6.7 Related Work . 90

6.7.1 Quality Analysis of SPLs 90
6.7.2 UML for SPLs . 93
6.7.3 Model Checking of SPLs 93

6.8 Conclusion . 93

7 Achieving Non-Functional Requirements at Run time 95
7.1 Introduction . 95
7.2 Running Example . 97
7.3 Self-Adaptive Systems for NFRs Satisfaction 98
7.4 Dynamic Software Product Lines 99
7.5 The Proposed Approach 100

7.5.1 Design Time . 101
7.5.2 Run time . 108

7.6 Conclusion . 113

IV Conclusion 115

8 Conclusion and Future Work 117
8.1 Reviewing Research Questions 117
8.2 Limitations and Future Work 120

Bibliography 123

VII

i
i

“thesis” — 2014/1/30 — 16:53 — page VIII — #12 i
i

i
i

i
i

Contents

Publication

The content of this thesis is largely taken from the following papers devel-
oped through the years of my PhD. The authors are ordered alphabetically.

Part II:

• Carlo Ghezzi, Claudio Menghi, Amir Molzam Sharifloo, and Paola
Spoletini. On Requirement Verification for Evolving Statecharts, Re-
quirements Engineering Journal, pages 1-25, 2013.

• Carlo Ghezzi, Claudio Menghi, Amir Molzam Sharifloo, and Paola
Spoletini. On Requirements Verification for Model Refinements, Re-
quirements Engineering Conference, 2013.

• Carlo Ghezzi, Amir Molzam Sharifloo, Claudio Menghi. Towards Ag-
ile Verification, Perspectives on the Future of Software Engineering,
pages 31-47, 2013.

• Amir Molzam Sharifloo and Paola Spoletini. LOVER: Light-weight
fOrmal Verification of adaptivE systems at Run time, 9th International
Symposium on Formal Aspects of Component Software, pages 170-
187, 2012.

Part III:

• Carlo Ghezzi and Amir Molzam Sharifloo. Model-Based Verifica-
tion of Quantitative Non-Functional Properties for Software Product
Lines, Elsevier Journal of Information and Software Technology, Vol-
ume 55, Issue 3, pages 508-524, 2013.

• Carlo Ghezzi and Amir Molzam Sharifloo. Dealing with Non-Functional
Requirements for Adaptive Systems via Dynamic Software Product-
Lines, Software Engineering for Self-Adaptive Systems II, pages 191-
213, 2013.

• Carlo Ghezzi and Amir Sharifloo. Verifying Non-Functional Proper-
ties of Software Product Lines. Software Product-Line Conference,
pages 170-174, 2011.

• Carlo Ghezzi and Amir Molzam Sharifloo. Quantitative Verification
of Non-Functional Requirements with Uncertainty. International Con-
ference on Dependability and Computer Systems, pages 47-62, 2011.

VIII

i
i

“thesis” — 2014/1/30 — 16:53 — page IX — #13 i
i

i
i

i
i

Contents

• Maxime Cordy, Patrick Heymans, Carlo Ghezzi and Amir Molzam
Sharifloo, Axel Legay, Pierre-Yves Schobbens. Formal Modeling and
Verification of Non-Functional properties for Software Product Lines.
Technical Report, 2013.1

1The verification techniques and experiments presented in Chapter 6 originate from this unpublished paper.

IX

i
i

“thesis” — 2014/1/30 — 16:53 — page 1 — #14 i
i

i
i

i
i

Part I

Foundation

1

i
i

“thesis” — 2014/1/30 — 16:53 — page 2 — #15 i
i

i
i

i
i

i
i

“thesis” — 2014/1/30 — 16:53 — page 3 — #16 i
i

i
i

i
i

CHAPTER1
Introduction

”The formulation of the problem is often more essential than its solution,
which may be merely a matter of mathematical or experimental skill.”
Albert Einstein

1.1 Problem Formulation

Modern software is increasingly complex. That is why it is often designed
and implemented through an iterative and incremental process. The devel-
opment process is conducted in a series of iterations, through which a high-
level design is refined into detailed specification and finally in machine-
readable code. As the result, a large-scale problem is gradually tamed while
the evolution is carried out by elaborating and implementing functionalities
of interest.

Similarly to iterative-incremental development, the research on adap-
tive systems deals with some kind of evolution triggered by the need to
adapt and modify functionalities at run time [68]. Techniques to develop
adaptive systems continuously monitor the changes in the operational en-
vironment of a software system in order to adapt their behavior and satisfy

3

i
i

“thesis” — 2014/1/30 — 16:53 — page 4 — #17 i
i

i
i

i
i

Chapter 1. Introduction

the requirements. Adaptation is often realized through introducing some
degree of dynamism into the system such that it switches among different
configurations depending on the changing environment. There exist dif-
ferent techniques to design and develop adaptive systems [77]. In most
cases, the ability to adapt is embeded via adding variation points which can
be realized by different alternative implementations. For example, a con-
crete service realizing an interface can be rebound at run time following
a service-oriented architecture [37]. This implies that system specification
may dynamically evolve over time.

Research on Software Product Lines (briefly SPLs) is another research
direction where variability and evolution play the central roles [21,72]. Re-
lying on planned modularity and reusability, and techniques to introduce
variation points and alternatives, engineers derive a large number of differ-
ent products from a shared SPL specification. In this case, the specification
contains all the functionalities while each product takes only a subset.

Although the research on iterative-incremental development, adaptive
systems, and SPLs are conducted by different communities, they are linked
via the common concern of variability. That is why we take the name of
Variability-Intensive Systems (briefly VIS) to refer to the system specifica-
tions produced in these disciplines 1, from which a large number of sys-
tems can be derived. In particular, we are interested to guarantee that a VIS
specification satisfies its requirements. This is drastically crucial for safety-
critical systems, where any violation may lead to expensive penalties. This
urges to employ verification techniques able to check specifications before
any real implementation and execution. Formal verification, in particular
model checking, has interestingly progressed through the last two decades
and has been been successfully applied in industry [5]. Model checking is
an expensive task in terms of time and computation since it exhaustively ex-
plores the state-space of specification; however, advanced model checkers
(e.g. NuSMV [15]) are able to handle quite large specifications exceeding
million states.

Through the thesis, we initially focus on a model-checking problem
that has not been properly investigated in the literature. We study the
problem of model-checking incomplete specifications of system behavior.
These specifications are widely produced through early stages of iterative-
incremental development, since system specification is gradually refined
and documented. This can be also the case in adaptive systems, where
some parts of the system are left unspecified at design time. Thus, one of
main driving research questions of the thesis is defined as the following:

1VISs are further discussed in Chapter 2

4

i
i

“thesis” — 2014/1/30 — 16:53 — page 5 — #18 i
i

i
i

i
i

1.1. Problem Formulation

RQ.1. Given an incomplete system specification, how to check whether
or not the system behavior satisfies the expected requirements?

There exist a few works in the literature that address the analysis of
incomplete models [31, 75, 88, 89]. In particular, Salay et al. [75] tackle
the problem of expressing uncertainty in requirements models. They study
this problem for early-stage specifications and propose an approach based
on partial modeling technique [31, 76]. Indeed, a proper solution provides
suitable formalisms to express incomplete behavior specifications, as one
of the basic inputs of a model checker. Accordingly, it is necessary to be
able to formally specify incomplete behavior specifications.

RQ.1.1. How to formally specify an incomplete system behavior?

According to [75], due to the incompleteness existence the property
analysis outputs three values: True, False, and Maybe. This is quite sat-
isfactory for the cases leading to True or False, which refer to property
satisfaction and violation respectively. Regarding Maybe, it is essential to
describe the condition, in which this result leads to True. Such condition
can be viewed as a set of constraints defined over unspecified elements.
Unlike [75] that mainly deals with First-Order Logic properties, our focus
would be on the verification of temporal properties that allows to reason
about critical system properties such as safety and liveness [4]. To do that,
we need to know how to compute and specify the constraints:

RQ.1.2. What language can fully specify the set of constraints that lead
to the satisfaction of a temporal property?

RQ.1.3. How can we generate constraints over unspecified elements of
an incomplete specification to guarantee that the original property holds?

Having the constraints generated, they should be used to compute the
verification result when the missing parts of the specification are avail-
able. To avoid redundant computations, it is important to avoid re-doing
the whole verification from the scratch by only checking whether or not
the constraints are satisfied. This is summarized as the following research
question.

RQ.1.4. As the system specification evolves, how can we re-use the re-

5

i
i

“thesis” — 2014/1/30 — 16:53 — page 6 — #19 i
i

i
i

i
i

Chapter 1. Introduction

sults of previous verifications to calculate the new results?

Model checking SPLs has been studied in the recent years [18–20, 23].
Most importantly in Classen et al. [19,20], efficient techniques are proposed
to concisely represent SPLs and model-check them against LTL and CTL
temporal properties [4]. Using these techniques, behaviors of all valid prod-
ucts of an SPL are represented within a supermodel. However, the body of
the literature lacks methods to capture stochastic behaviors of SPLs, and
similarly the model-checking techniques for stochastic SPLs are missing.
Such techniques would allow us to reason about Non-Functional Require-
ments (e.g. reliability and energy consumption) of all products of a single
SPL all at once.

RQ.2. How to specify and model-check stochastic behaviors of SPLs
against non-functional requirements?

Due to the variety of Non-Functional Requirements (briefly NFRs), dif-
ferent formalisms are used to capture behavioral specifications. In this the-
sis, we focus on reliability and energy consumption as two important NFRs.
The existing formalisms for SPLs do not support modeling stochastic be-
haviors, so further research is needed in this direction. Moreover, we would
like to provide both high-level and low-level specifications. The former is
used as an abstract means to communicate among different stakeholders,
while the latter is the main input to the model-checker for further automatic
analysis.

RQ.2.1. What are the suitable (high-level and low-level) formalisms to
capture the stochastic behaviors of SPLs?

As for each formalism, efficient verification algorithms are demanded
to check the satisfaction of NFRs. The existing verification algorithms for
stochastic models [52] are mostly limited to single behavior analysis and
cannot handle variability of SPLs.

RQ.2.2. How to efficiently verify non-functional requirements of a SPL?

As mentioned earlier, variability is the key concept that relates three do-
mains of incomplete system specifications, adaptive systems, and SPLs.
Variability may appear in incomplete specifications as unknown system
components that can be later elaborated depending upon different design

6

i
i

“thesis” — 2014/1/30 — 16:53 — page 7 — #20 i
i

i
i

i
i

1.2. Contributions

alternatives. We call this kind of variability open, since the alternatives are
not limited to a predefined set. In terms of SPLs, the alternatives for each
variation point are identified and clearly enumerated; and accordingly vari-
ous products are derived by picking different alternatives . We refer to this
kind of variability, in which the alternatives are known, as closed. Variabil-
ity in the context of adaptive systems can be closed or open depending on
the adaptation policy. In the former, a certain set of alternatives are spec-
ified at design time and conditionally deployed at run time, while in the
latter system is allowed to explore and hire new alternatives at run time.

1.2 Contributions

The contributions of this thesis target the motivating research questions on
modeling and verification of VISs. We study these problems for both open
and closed variability in Parts II and III. Note that Part I gives the necessary
background, so it can be skipped if readers are familiar with the preliminary
concepts.

Part II focuses on the techniques to verify an incomplete specification
against temporal properties, that are appropriate to express safety and live-
ness requirements. We chose Computational Tree Logic (CTL) as our prop-
erty language due to its power in expressing temporal properties. However,
the general idea of our approach is extensible to other temporal languages
e.g. LTL [4]. We motivate the need for verification of temporal proper-
ties for incomplete specifications through a running example Secure In-
formation Retrieval. We introduce a new formalism Incompletely Labeled
Transition Systems (ILTS), as a new variation of Labeled Transition Sys-
tems (LTS), to capture incompleteness. A new verification technique IMC
is presented to verify ILTS against CTL, which is able to deal with un-
specified components. Unlike the standard CTL model checking that is
unable to handle unspecified components 2, IMC is able to produce con-
straints for such components to guarantee the satisfaction of a property. We
study the scalability of IMC by running our prototype implementation on
the enlarged versions of SIR system. Moreover, we show how IMC can be
applied to efficiently check open adaptive systems at run time.

Since ILTS formalism is rather low-level, we extend our approach to
Statecharts that are well-known to specify system behavior within a user-
friendly and compact notation. The new technique is able to verify incom-
plete Statecharts, and by increasing the verification reusability it alleviates
the time to re-verify slightly modified specifications. We discuss the appli-

2We use the term component as a part of specification that can be plugged and unplugged.

7

i
i

“thesis” — 2014/1/30 — 16:53 — page 8 — #21 i
i

i
i

i
i

Chapter 1. Introduction

cability of the approach through the classic Railway Cross case study, and
report on its performance. In this work, Incompleteness refers to models
in which the inner behavior of some states are unspecified, and are delayed
to further refinements. The missing behaviors are abstracted away as states
what we later call Transparent states. The verification of incomplete State-
charts results in constraints that are indeed proof obligations to ensure that
initial properties are satisfied.

Part III is dedicated to representing stochastic behaviors of SPLs and
verifying them against a set of NFRs, namely reliability and energy con-
sumption. We initially focus on scenario-based specifications, in which
augmented Sequence Diagrams linked to feature diagrams and enriched
with stochastic information are used to succinctly represent a stochastic
SPL behavior. To support the stochastic verification of SPLs, we introduce
a new variation of Markov models - FDTMCs - that relies on the notion of
features as the first-class concept. We describe three different techniques
to verify FDTMCs against two stochastic temporal logics: PCTL and Re-
ward logic, that are popular to express reliability and energy consumption
properties. We study efficiency of the approaches through two case studies.
Later, we investigate the verification of non-functional properties for closed
adaptive systems, and present an approach based on Dynamic SPLs.

1.3 Thesis Organization

The remainder of the thesis is structured as below. Chapter 2 gives a brief
introduction to VISs. Chapter 3 provides an overview on the fundamental
concepts of model checking. Chapter 4 motivates the notion of incom-
plete model checking and describes the verification of CTL properties in
such setting. Chapter 5 extends this approach to Statecharts and presents a
methodology to incrementally design and verify state-based specifications.
Chapter 6 discusses stochastic formalisms and verification techniques for
SPLs, and Chapter 7 presents a dynamic model for SPLs to build and ver-
ify adaptive systems. Finally, Chapter 8 concludes the thesis by explaining
how our research questions are addressed, and discusses the current limita-
tions and future work.

8

i
i

“thesis” — 2014/1/30 — 16:53 — page 9 — #22 i
i

i
i

i
i

CHAPTER2
Variability-Intensive Systems

"Nothing endures but change." Heraclitus

Evolution is the key in software engineering through both system de-
sign and maintenance. It is quite common that the initial design provides
a big picture of system upon which stakeholders reach a common under-
standing and communicate requirements and constraints. Such high-level
description can be viewed as the system skeleton, which may be referred
as architecture [86] or system metaphor among developers. The initial de-
scription is further elaborated and may be modified as the implementation
is progressed, and meanwhile different design choices are applied and their
impacts are evaluated. The inevitable fact is that many changes may be
applied to specifications, which may lead to unforeseen defects and can
diminish the quality of both specification and implementation.

A modular design allows developers to isolate the impact of changes and
to prevent the propagation of local changes to the whole system. Modular
software construction is supported by a variety of methods and techniques,
e.g. component-based software engineering [45], feature-oriented software
engineering [3], aspect-oriented programming [27]. Modular specifica-

9

i
i

“thesis” — 2014/1/30 — 16:53 — page 10 — #23 i
i

i
i

i
i

Chapter 2. Variability-Intensive Systems

tions allow us to specify a large system though composing modules, which
interact with each other and are hierarchically decomposed into fine-grain
modules. Following such hierarchical and compositional approach not only
simplifies implementation, testing, and project management, but also en-
ables the possibility to outsource system components and rely on external
services offered by third parties.

Identifying and managing variability are of most important to tackle evo-
lution. Through a modular design, invariant and variable modules can be
identified and production activities can be accordingly customized such that
variability would be effectively managed. Consider a system comprising
three components A, B, and C. Components A and B are reutilized from
a legacy system, and so they are well-tested. Component C is still abstract
and is to provide a new functionality for users. There might be different
design/technology alternatives to build component C, which requires a de-
veloper to carefully explore their pros and cons, and select the one that
better fits the requirements and global system expectations. Modularity
gives us the capability to highly focus on the uncertain parts of systems,
which might vary. When the alternative choice of a variable module is se-
lected, analyzed and stabilized, then it is considered as invariant. This way
a system can be hierarchically and incrementally designed, elaborated, and
implemented such that the variability is properly viewed and a design ra-
tional is settled. This also alleviates any efforts for future changes, in case
it turns out that a design decision is not effective as expected. Modeling
variability has been studied within software engineering community in the
past years. In this regard, there have been dedicated workshops such as
VAMOS 1 and conferences e.g. SPLC 2, which are the meeting points for
researches to present and discuss their innovations.

In this thesis, we consider three kinds of specifications and refer to them
as Variabilty-Intensive Systems (VIS), in which variability is treated as a
first-citizen concept: Incomplete Specifications, Software Product Lines
(SPLs), and Adaptive Systems. Incomplete specifications are those in which
some system modules are unspecified. This kind of specifications are the
intermediate artifacts at design time. Unlike incomplete specifications, in
which variation points are identified but not alternatives, SPLs provide al-
ternatives for each variation point as well. Variation point is the term used
to refer to a module or attribute of system that is subject to vary. SPLs are
able to represent a large number of variation points and alternatives, and
are of special interest by industry. Unlike incomplete specifications and

1International Workshop on Variability Modelling of Software-intensive Systems
2Software Product Line Conference

10

i
i

“thesis” — 2014/1/30 — 16:53 — page 11 — #24 i
i

i
i

i
i

2.1. Incomplete Specifications

SPLs that resolve variability at design time, adaptive systems leave varia-
tion points to run time to support dynamic binding and to enable a system to
dynamically modify its behavior on-the-fly. The rest of this chapter briefly
introduces the three kinds of VISs.

2.1 Incomplete Specifications

Incomplete Specification refers to intermediate system models that are de-
veloped during development process, and demonstrate how a system be-
haves. To tame the boosting complexity of modern systems, derived from
the variety of features requested by customers and increasing number of
design and technology choices, developers apply iterative process models
through which a system is incrementally designed and implemented. This
is done by starting from a high-level abstract model in which the behav-
ior of some components are not well-known, which will be elaborated and
captured later as the design is progressed. We refer to these intermediate
abstract models as incomplete specifications. An incomplete specification
is completed as soon as the behavior of unspecified components are pro-
vided.

In the literature, partial models also refer to usage scenarios of a soft-
ware system. Through a scenario execution, system may perform different
operations while interacting with users and its environment. They are called
partial because each scenario demonstrates only some of the behaviors that
a system may exhibit [33]. Chechik et al. [31, 75] discusses uncertainty at
early requirements modeling and annotate some elements of models with
Maybe tags, referring to the fact they may or may not exist in the model.
We show two examples of incomplete specifications in Sections 4 and 5.

2.2 Adaptive Systems

Software maintenance is a response to the needs that a released software
system cannot properly address a variety of users requirements. Tradition-
ally software maintenance is considered a manual task that is performed
through human intervention. However, software can be found everywhere,
in many devices and a variety of domains. It is economically unreasonable
to keep the maintenance as a manual human work. There are cases that
human intervention is not even possible e.g. repairing autonomous robots
in space exploration projects. Hence, many maintenance techniques have
been pushed to software from human; load balancing and fault tolerance
are two examples.

11

i
i

“thesis” — 2014/1/30 — 16:53 — page 12 — #25 i
i

i
i

i
i

Chapter 2. Variability-Intensive Systems

Developing self-adaptive systems is a new approach to dealing with the
challenges raised by software maintenance. ”Self-adaptive software modi-
fies its own behavior in response to changes in its operating environment.
By operating environment, we mean anything observable by the software
system, such as end-user input, external hardware devices and sensors, or
program instrumentation." [68]. Accordingly, the main characteristic of
a self-adaptive system is that the system is continuously looking for any
change in both its operating environment and its internal elements, and is
actively responding to them in order to satisfy its main goals [58].

The adaptation process is often implemented through a closed loop in
which system observes the environment, collects and analyzes data and
diagnoses violations from requirements and accordingly plans to prevent
from them. This process resembles the IBM’s vision of autonomic comput-
ing [50]. Adaptations are either architectural or parametric [64]. While the
former deals with system-level changes, e.g. component replacement, the
latter deals with tuning system parameters, e.g. database pool size, in order
to full requirements and reach a higher efficiency. Adaptation planning may
be online or offline. Offline plans are static adaptation scripts provided at
design time and mainly based on a priori knowledge. On the contrary, on-
line planning applies learning techniques by using collected run-time data
to generate and update plans at run time.

Through the thesis, we only focus on component-based adaptations in
which some parts of systems may change and the rest of the system re-
mains invariant. Our techniques don’t touch adaptation planning so it can
be performed in any preferred manner.

2.3 Software Product Lines

"A Software Product Line (SPL) is a set of software-intensive systems shar-
ing a common, managed set of features that satisfy specific needs of a par-
ticular market or mission, and that are developed from a common set of
core assets in a prescribed way” [21]. A development approach inspired by
SPL principles aims at improving productivity and reducing the time and
cost needed to develop a family of products. SPL engineering attempts to
produce a large number of products that share a set common features in a
systematic manner such that each specific product is tailored for a category
of users.

Feature is a basic concept in developing SPLs. Apel and Kastner [3]
refer to a feature as a unit of functionality that satisfies a requirement. Fea-
ture Diagrams (FDs) are a visual formalism to capture features and their

12

i
i

“thesis” — 2014/1/30 — 16:53 — page 13 — #26 i
i

i
i

i
i

2.3. Software Product Lines

relationships of a SPL, and we will use them in the second part of the thesis
to model SPL variability. FDs are used to specify the valid products that
can be derived from a SPL. In principle, they are trees in which features
are the nodes, shown by rectangles, and the relationships are actually the
decomposition of features depicted by edges. Given a parent feature, a de-
composition edge constrains the combination of the child features. Figure
2.1 shows the FD for the vending machine that we further discuss in Chap-
ter 6. Accordingly, the vending machine is decomposed into three features
- Beverage, Payment, and Taste - by using AND operator. AND decompo-
sition imposes the existence of the child features, unless they are optional.
Taste is an optional feature which is indicated by adding a circle in the di-
agram. On the contrary, Beverage and Payment are mandatory features. A
feature may be decomposed by OR operators, which are either inclusive or
exclusive. Inclusive OR - shown as OR - are the case in which at least one
of the child features are included in a product, while exclusive OR - shown
as XOR - requires that only one child feature is allowed in a valid product.

Vending Machine

Beverage

Soda Tea

TastePayment

Legend

AND

OR

XOR

Optional
Cash Free

Figure 2.1: The vending machine’s FD

Some variation of FDs provide cross-cutting relations - requires and ex-
cludes -, that are useful to model feature dependencies. The presence of
a feature may require the presence of another feature in any valid product.
Similarly two features may have conflicting natures, and their inclusion to-
gether may be shown by excludes relation.

FDs are nice formalisms to capture and visualize variability and com-
monality of SPLs; however, they provide no information about behavior. To
fill this gap, behavioral formalisms have been proposed for SPLs. FTSs [20]
are a variation of Transition Systems that are proposed to capture behaviors
of all products of a SPL via a compact representation. FTS’s transitions are

13

i
i

“thesis” — 2014/1/30 — 16:53 — page 14 — #27 i
i

i
i

i
i

Chapter 2. Variability-Intensive Systems

annotated with feature expressions, which are boolean expressions used to
enable and disable transitions. In order to derive each product, the boolean
expressions are evaluated and depending on the value, the transitions eval-
uated false are eliminated from the resulting TS of a product.

Classen et al. [19, 20] presents efficient algorithms for model checking
LTL and CTL properties of all products of SPL at once; however, FTSs are
expressive enough to capture stochastic behaviors of SPLs. In chapter 6,
we discuss behavioral modeling of SPLs and provide formalisms and later
verification techniques to deal with variability.

14

i
i

“thesis” — 2014/1/30 — 16:53 — page 15 — #28 i
i

i
i

i
i

CHAPTER3
Formal Verification

"If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is." John Louis von Neumann

Software systems have been pervading every aspect of the human life.
Society became totally dependent on software, both in terms of the func-
tionalities it supports and of their quality, which may ultimately affect their
usefulness. It is thus crucial that we can guarantee assurance that a given
software satisfies a set of predefined properties, which represent the func-
tional and non-functional requirements the system must fulfill. Functional
requirements concern the effect of operations the system is expected to de-
liver whereas non-functional requirements concern their qualities, such as
performance, availability, usability, energy consumption, and cost. Soft-
ware verification aims at ensuring that a system executes according to some
specified desirable functional and non-functional behavior. Verification is
a most important activity performed during software development and evo-
lution. In practice, it is normally achieved by testing [71], i.e., by sam-
pling a representative set of behaviors that are deemed to provide useful
information about the running conditions that will be encountered by the

15

i
i

“thesis” — 2014/1/30 — 16:53 — page 16 — #29 i
i

i
i

i
i

Chapter 3. Formal Verification

software when it will be operational. Formal verification, instead, aims
at mathematically proving that given properties, which specify the desired
requirements, are indeed satisfied by the system.

Model checking is recognized as a successful kind of formal verification.
Given a system modelM and a formal property φ, model checking system-
atically and exhaustively checks whether φ holds for M [4]. The model
may be an abstraction generated from code, e.g. C or Java; or it may be
a high-level specification that is developed during design to support some
reasoning about the system under construction (the system-to-be). It repre-
sents the system’s behavior in an abstract, yet precise and non-ambiguous,
mathematical form. The property specifies instead the requirements the
system must satisfy. The overall idea behind model checking is to explore
the state space of the model, and ensure that the properties of interest are
satisfied by considering all possible behaviors.

Formal verification has now become mature. It has already been used
in practice in several application domains and has been adopted in several
industrial settings [5]. In particular, model-checking techniques have been
substantially improved over the years, and can in principle complement
testing to achieve improved assurance. Figure 3.1 shows the classic model-
checking process, in which system specification and the property of interest
are fed to a model checker. The result of model checking is True, in case
the property is satisfied by the specification, or False, when the property
doesn’t hold. In the latter case, counterexamples are generated to provide
examples of traces that lead to the violation.

True False
(Counterexamples)

RequirementsSpecification

Model Checker

Figure 3.1: Model Checking Process

16

i
i

“thesis” — 2014/1/30 — 16:53 — page 17 — #30 i
i

i
i

i
i

3.1. Formal Specification

Model-checking techniques highly depend on the type of properties to
be checked. The remainder of this chapter briefly provides the basic con-
cepts existing in the literature upon which the proposed techniques are built.
System specification is an abstract model that represents system behavior
comprising the information that is required to check properties. Depending
on the system characteristics, different specification languages may be cho-
sen. Section 3.1 gives a brief discussion on formal specifications that are
extended for variability-intensive system in the successive chapters. We
discuss languages used to formally express temporal properties, to spec-
ify requirements, in Section 3.2. Finally the basic concepts behind model
checking of temporal properties is given in Section 3.3

3.1 Formal Specification

System specification is an important input of a model-checking task that
abstracts away irrelevant details and represents the information served to
check the properties of interest. Behavioral specifications provide an ab-
stract model of system that represents how system operates and interacts
with its environment. Transition systems are one of the common modeling
formalisms that are often used in computer science. They nicely show a
system behavior in terms of states and transitions, which together demon-
strate how system evolves through the occurrences of actions. In the fol-
lowing, we initially give the formal definition of transition systems, and
then present Markov chains as the extension capable of representing prob-
abilistic behaviors.

3.1.1 Transition Systems

A transition system is defined as a tuple 〈S, s0, Act,→, L〉 over atomic
proposition AP where

• S is a set of states;

• s0 is the initial state;

• Act is a set of actions;

• →⊆ S × Act× S represents the transitions between states;

17

i
i

“thesis” — 2014/1/30 — 16:53 — page 18 — #31 i
i

i
i

i
i

Chapter 3. Formal Verification

• L : S → ℘(A) is a labeling function;

Labeling function L associates each state with a set of atomic proposi-
tions, which are true in that state. Each state represents the state of a system
at a certain point through the execution. The system is initially in state s0,
and switches to a new state by taking one of the outgoing transitions and
performing its action. Here we consider only one initial state, but it can be
a set of states. In case, there are more than one outgoing transition, one
of them is non-deterministically chosen. The execution is followed by vis-
iting states and taking transitions, and is terminated when a state with no
outgoing transition is reached. Actions and propositions out of interest are
not captured, this is why sometimes a transition system has no action or is
labeled only with a few propositions. By removing the actions from TS, a
new formalism called as Labeled Transition Systems (LTS) is defined. An
LTS is a quadruple tuple 〈S, s0,→, L〉 over atomic proposition AP where

• S is a set of states;

• s0 is the initial state;

• →⊆ S × S represents the transitions between states;

• L : S → ℘(A) is a labeling function;

Figure 3.2 shows an LTS for a simple traffic light. There are three states
labeled with G, Y, and R stand for Green, Yellow, and Red respectively. The
initial state is G, and actions which are to turn off and turn on different lights
are omitted for simplicity. Using temporal logic1, we can intuitively express
some properties that hold for this traffic light. For example, GFgreen is a
liveness property that is true saying that there is always a possibility to show
green light.

3.1.2 Probabilistic Models

Probabilistic models provide a very expressive power to specify uncertain
and unpredictable behaviors in a quantitative manner. Using randomiza-
tion in distributed protocols of computer networks is one of the examples

1Temporal Logic is briefly presented in Section 3.2.

18

i
i

“thesis” — 2014/1/30 — 16:53 — page 19 — #32 i
i

i
i

i
i

3.1. Formal Specification

G Y R

Figure 3.2: Transition system for a traffic light

leading to unpredictable behaviors. Other examples of stochasticity are in
the description of user request submission rates in interactive environments.
Probabilistic model checking has been developed in the recent past to ver-
ify models that exhibit stochastic behaviors. It has been used in various
domains from biological systems to sensor networks. It can be also used
for verifying and predicting non-functional properties of software systems,
such as reliability, performance, and various kinds of "costs", including
energy consumption of computational functions. The underlying models
used in probabilistic model checking are different kinds of Markov mod-
els, including Discrete-Time Markov Chains (DTMCs), Continuous-Time
Markov Chains (CTMCs), Markov Reward models, etc. Recently, there
have been great improvements in the tools and techniques for probabilistic
model checking. PRISM is a widely used probabilistic model checker that
is currently used both in research and in industrial settings [4, 52].

DTMCs are LTLs with augmented probabilities over transitions, where
the sum of probabilities on outgoing transitions of every states equal to
one. This is a way to deal with non-determinism among outgoing transi-
tions. DTMCs are widely used to represent and reason on reliability aspects
of software systems. Figure 3.3 shows a DTMC to model the probabilis-
tic failure of a traffic light. The DTMC is constructed upon the transition
system in Figure 3.2, by adding state F, in which the traffic light is failed.
Accordingly, each time the color of traffic light is changed with a probabil-
ity of 0.999, the system may fail with the probability of 0.001. The traffic
light keeps working until it terminates in state F.

DTMCs with Rewards also label transitions with real numbers repre-
senting rewards or costs of a transition (which may, for example, model
the energy consumption or execution time of actions). Rewards may be
associated with states, which has the same expressivity of assigning them
to transitions and can be simply transformed to such DTMC. In this case,
they represent the cost/reward of remaining in a state. Figure 3.4 shows the
DTMC with Reward for traffic light example, in which states are associ-
ated with execution time. This model can be used to reason about the time
spent in different states. Similarly this value can represent the average en-

19

i
i

“thesis” — 2014/1/30 — 16:53 — page 20 — #33 i
i

i
i

i
i

Chapter 3. Formal Verification

G Y R

F0.001

0.001

0.001

0.999

0.9990.999

Figure 3.3: DTMC for modeling failure in traffic light example

ergy consumed in each state, so it allows us to calculate the average energy
consumption given a certain number of steps.

G Y R

F0.001

0.001

0.001

0.999

0.9990.999

30 5 60

Figure 3.4: DTMC with Rewards for traffic light example

3.2 Formal Languages for Requirements Specification

Requirements are initially expressed in natural language or informal mod-
els through requirements elicitation phase. That is to communicate them
among different stakeholders including users, developers and managers.
However, requirements are specified formally to avoid ambiguity in nat-
ural language, and to allow the application of automatic tools for further
analysis. The choice of a language mainly depends on the type of require-
ments. For example, if requirements are to specify a functionality in terms
of pre-condition and post-conditions, then boolean formulae and first-order
logic might be convenient choices. However, if the properties constrain
system execution and traces, then temporal logics may come to the scene.

Properties like safety, liveness, and robustness can conveniently be ex-
pressed using temporal logics such as LTL and CTL. LTL is designated for
properties over a linear time, whereas CTL is based on branching time. Un-

20

i
i

“thesis” — 2014/1/30 — 16:53 — page 21 — #34 i
i

i
i

i
i

3.2. Formal Languages for Requirements Specification

like the linear time, CTL allows to describe properties over unpredictable
environments, where different operations may occur given a state. Our
focus in this thesis is on CTL for classic temporal properties and its prob-
abilistic variation, PCTL. The reason behind this choice is the existence of
simpler and more intuitive model-checking algorithms for branching time
logics.

Quantitative temporal logics e.g. Reward Logic [52] are good to for-
mally express non-functional properties like cost and energy consumption
of a given behavior, while probabilistic temporal logics like PCTL and CSL
are suitable for reliability and performance, respectively. We will show
the applicability of these logics to constrain non-functional requirements of
SPLs.

Since specifying requirements in a formal form requires a background in
logic, which might go beyond the expertise of many engineers, a couple of
pattern systems have been proposed [9, 25, 39]. For example, Grunske [39]
presents a pattern system ProProST and tool support to map a structured
natural language grammar to probabilistic temporal logic CSL. Using Pro-
ProST, requirements can be written in a structured form of natural language,
while the formal specification is automatically produced by the tool.

In the below, we present the formal logics that are used to express re-
quirements through the chapters of this thesis.

3.2.1 Computational Tree Logic

CTL is a branching-time logic in which the model of time is a non-deterministic
tree, leading to different paths [16]. It can be used to specify different prop-
erties on all or some of program executions. For example, a safety require-
ment may be expressed by constraining that an error state is unreachable
by any execution paths. Quantifiers All and Exists are added to specify
properties over paths, which are shortened as A and E resepectively.

The formal syntax of CTL is as below.

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | EΨ | AΨ

Ψ ::= XΦ | ΦUΦ

where Ψ and Φ stand for path formulae and state formulae, respectively.
Every atomic proposition a ∈ AP is a state formula and ∧ and ¬ are the
usual boolean operators [4].

The semantics of CTL is defined on a Transition System, where states
are labeled with atomic propositions or their boolean combinations. A path

21

i
i

“thesis” — 2014/1/30 — 16:53 — page 22 — #35 i
i

i
i

i
i

Chapter 3. Formal Verification

is defined as a subsequence of states. X stands for the next path operator.
AXΦ intuitively means Φ holds in all successor states, while EXΦ holds
when Φ holds at least in one of successor states. Formula Φ1UΦ2 holds for
a path if there is some state along the path in which Φ2 holds and Φ1 holds
in the preceding states. Consequently, AΦ1UΦ2 holds if Φ1UΦ2 holds for
all paths, whereas to satisfy EΦ1UΦ2, it is enough if there exists only one
path for which Φ1UΦ2 holds. Other operators like Always and Eventually
can be derived from Until [16].

The safety requirement mentioned earlier can be expressed as¬EFerror,
where F stands for Eventually, and it means that there is no path that
reaches the state labeled with error.

3.2.2 Probabilistic Computational Tree Logic

Sometimes it is not possible to absolutely guarantee the correctness of a
system property, e.g. "connection never fails". There are real-world system
properties e.g. reliability that are expressed in a quantitative way. A car
rental company may guarantee its service in a quantitative way due to un-
foreseen problems. For example, the car arrives on time with a probability
greater than 0.95. An Internet Service Provide offers a very cheap Internet
tariff with a probability of 0.1 connection failure per hour and an expensive
tariff with a probability of only 0.0001 connection failure per hour.

Probability theory is a common way to dealing with such uncertainty.
Markov chains are the most popular operational models to capture proba-
bilistic behaviors to analyze reliability and dependability of software sys-
tems. Discrete-Time Markov Chains (DTMCs) are transition systems with
probabilities over transitions, where the sum of probabilities on outgoing
transitions of every state equals to one. This is a way to deal with non-
determinism among outgoing transitions. DTMCs are formalism that are
nicely applied to reason about reliability models of software systems. There
are variations of temporal logics to express probabilistic properties. Prob-
abilistic CTL, hereafter PCTL, is a variation of CTL that uses probability
operator instead of path quantifiers. PCTL is defined by the following syn-
tax:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P./p (Ψ)

Ψ ::= XΦ | ΦU≤tΦ
where p ∈ [0, 1], ./∈ {<,≤, >,≥}, t ∈ N ∪ {∞}, and a represents an
atomic proposition. Similarly to CTL, the temporal operator X is called
Next and U is called Until.

22

i
i

“thesis” — 2014/1/30 — 16:53 — page 23 — #36 i
i

i
i

i
i

3.2. Formal Languages for Requirements Specification

The satisfaction relation for PCTL is defined for a state s as:

s |= true

s |= a iff a ∈ L(s)

s |= ¬Φ iff s 2 Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= P./p(Ψ) iff Pr(s |= Ψ) ./ p

A complete formal definition of Pr(s |= Ψ) can be found in [4]; details
are omitted here for simplicity. Intuitively, its value is the probability of the
set of paths starting in s and satisfying Ψ. Given a path π, we denote its i-th
state as π[i]; π[0] is the initial state of the path. The satisfaction relation for
a path formula with respect to a path π originating in s (π[0] = s) is defined
as:

π |= XΦ iff π[1] |= Φ

π |= Φ1U
≤tΦ2 iff ∃0 ≤ j ≤ t.(π[j] |= Φ2 ∧ (∀0 ≤ k < j.π[k] |= Φ1))

From the Next and Until operators it is possible to derive others. For exam-
ple, the Eventually operator (often represented by the F) is defined as:

F≤tφ ≡ true U≤tφ

It is customary to abbreviate U≤∞ and F≤∞ as U and F , respectively.
PCTL can naturally represent reliability-related properties for a DTMC

model of the application. For example, we may easily express constraints
that must be satisfied concerning the probability of reaching absorbing fail-
ure or success states from a given initial state. These properties belong
to the general class of reachability properties. Reachability properties are
expressed as P./p(F Φ), which expresses the fact that the probability of
reaching any state satisfying Φ has to be in the interval defined by con-
straint ./ p.

3.2.3 Reward Temporal Logic

While PCTL is much suitable to constrain the reachability probability over
paths, it is not expressive to specify properties that deal with rewards and
costs obtained/spent by execution a transition or visiting a state [52]. In-
deed a path can represent the execution of a sequence of operations, and
some interesting non-functional requirements may be defined over the total
reward/cost collected by firing a set of transitions. For example, one may

23

i
i

“thesis” — 2014/1/30 — 16:53 — page 24 — #37 i
i

i
i

i
i

Chapter 3. Formal Verification

define a requirement to constrain the maximum energy consumption used
by system to reach a specific state. This can be particularly of interest for
energy-restricted devices like smart-phones. Reward logic allows to specify
properties over the reward/cost attached to transitions or states of DTMCs.

Reward logic uses one of the following patterns, in which R is the reward
operator. ∼ r represents a comparison relation (≤ r,≥ r, and = r) in which
r is a real number.

R∼r[C
≤t] | R∼r[Fφ] | R∼r[S]

R∼r[C≤t] is called a cumulative reward property and corresponds to the
cumulated reward along a path. However, the path is limited by t which is
the path length. The accumulation manner leads summing the rewards over
the path.
R∼r[Fφ] represents a reachability property for a path starting from an

initial state and ending in states where φ holds. φ is a state formula in this
case.
R∼r[S] is to verify steady-state properties. In fact, this property is not

related to paths but rather to the long-run of system. The semantics is used
to constraint the average reward accumulated by starting from state S in the
long-run.

3.3 Model Checking Techniques

The research on model checking of temporal properties has been active
through the recent decades. The advent of efficient model-checking tech-
niques beside the continuous advances in hardware technologies make their
application to real-world cases more feasible last decades.

Model checking exhaustively searches the state space of system behav-
ior to check whether or not a certain property holds. Counterexamples may
be reported as the output in the case the property is not satisfied. There
exists a variety of model checking algorithms for different temporal logic
languages. For example, there are basic model checking algorithms for
LTL and CTL, that are well-known for years. These algorithms are usually
based on explicit representation of state space. Symbolic model check-
ing is an attempt to handle large systems by applying efficient data struc-
tures. In this regard, Binary Decision Diagrams (BDDs) [10] have been
of most interest to represent objects such as transition systems and system
states. There exist symbolic model checkers for different temporal logics,
e.g. NuSMV [15].

24

i
i

“thesis” — 2014/1/30 — 16:53 — page 25 — #38 i
i

i
i

i
i

3.3. Model Checking Techniques

In the sequel, we overview the basics of model-checking approaches for
CTL and PCTL, which are later referred in the successive chapters.

3.3.1 CTL Model Checking

Given a transition system TS and a property φ the mode-checking problem
for CTL is to check whether or not TS |= φ. CTL model checking can
be performed through a recursive procedure that calculates Sat(φ), which
stands for the satisfaction set of CTL sub-formulae of φ. The property
holds if and only I ⊆ Sat(φ), which means if all initial states belong to the
satisfaction set of φ.

To compute Sat(φ), the parse tree of φ is constructed and the satisfac-
tion set of each node is calculated through a bottom-up approach. While
the leaves of parse tree are propositions, the inner nodes are boolean and
temporal operators. Initially the satisfactory states of each leave is com-
puted by checking the satisfaction of its propositions. The satisfaction set
of inner nodes are calculated with obtaining the satisfaction set of children,
each of which is a sub-formula of φ, and applying functions that follow the
semantics of their operators.

Algorithm 1 presents the recursive evaluation to compute the satisfaction
set of φ. It takes as inputs a subtree T of the parsing tree, formula ϕ,
and LTS M on which ϕ is evaluated. T is a binary tree, where a node
representing a unary operator has a single child, while a node representing
a binary operator has two children. We use T.S to refer to the set of states
inM that satisfy the formula represented by the current subtree, T.left and
T.right to refer to the left and the right subtrees of the current tree (when
the root is a binary operator), and T.son to refer to the subtree of the current
tree (when the root is a unary operator). The elements of M are referred as
M.S and M.L (labeling function). The set X (initialized in line 2) is used
as a local set to store the elements that satisfy ϕ.

The boolean and leads to the intersection set of the satisfaction states of
the children nodes. As for Until operator (φ1∪φ2), the satisfaction states of
φ2 are added as well as all the states of Sat(φ1) that make a path leading to
a state in which φ2 holds. Finally, Always operator returns all the states of
the only child node which also belong to at least one Strongly Connected
Component (SCC) of TS.

3.3.2 PCTL Model Checking

Given a DTMC modelM and a PCTL property φ, the model checking prob-
lem of φ is to check whether the initial states I is a subset of Sat(φ). Model

25

i
i

“thesis” — 2014/1/30 — 16:53 — page 26 — #39 i
i

i
i

i
i

Chapter 3. Formal Verification

Algorithm 1 Recursive calculation of the satisfaction set

1: evaluate(ϕ, T,M){
2: X = ∅;
3: switch (ϕ){
4: case true : X = M.S;
5: case ϕ ∈ AP :
6: for all s ∈M.S
7: if (AP ∈ L(s))
8: X = X ∪ {s};
9: case ϕ = ϕ1 ∧ ϕ2 :

10: for all s ∈ Sat(ϕ1) ∩ Sat(ϕ2)
11: X = X ∪ {s};
12: case ϕ = Eϕ1Uϕ2 :
13: X = Sat(ϕ2);
14: X ′ = ∅;
15: while(X ′! = X){
16: X ′ = X;
17: for all s1 ∈ T.left.S
18: if(∃s′ ∈ X|(s1, s′) ∈M.Transitions)
19: X = X ∪ {s1}
20: case ϕ = EGϕ1 :
21: for all subS ∈ Scc(T.son.S)
22: X = X ∪ subS ;
23: T.S = X;
24: }

Checking of PCTL properties follows a bottom-up approach similarly to
CTL model checking to calculate the set of satisfaction states; however, the
probabilistic operator PJ needs to be treated differently. Given initial state
s, s |= φ holds if the calculated probability is in the bound indicated by J .

Sat(PJ(φ)) = {s ∈ S|Pr(s |= φ) ∈ J} (3.1)

To compute Pr(s |= φ), we need to provide procedures over path oper-
ators Next and Until. Regarding Next operator, the probability is computed
as the sum of probabilities over transitions that lead to successive state s′,
in which φ holds:

∑
s′∈Sat(φ) P (s, s′) where P is the probability matrix of

DTMC M .
The treatment of Next operator is extended to deal with bounded Until,

in which the length of the path is limited with the bound n. The reachability
probability of state s within the bound n is obtained by P n that stands for n
times of matrix multiplication of P. The case of unbounded Until requires
solving a linear equation system. The interested reader is referred to [4] for

26

i
i

“thesis” — 2014/1/30 — 16:53 — page 27 — #40 i
i

i
i

i
i

3.3. Model Checking Techniques

an explanatory discussion.

27

i
i

“thesis” — 2014/1/30 — 16:53 — page 28 — #41 i
i

i
i

i
i

i
i

“thesis” — 2014/1/30 — 16:53 — page 29 — #42 i
i

i
i

i
i

Part II

Modeling and Verification of
Open Variability

29

i
i

“thesis” — 2014/1/30 — 16:53 — page 30 — #43 i
i

i
i

i
i

i
i

“thesis” — 2014/1/30 — 16:53 — page 31 — #44 i
i

i
i

i
i

CHAPTER4
Verification of Incomplete Specifications

"To demonstrate that all human knowledge is incomplete and all human
truth partial is not to demonstrate that all human knowledge is ignorance
and all human truth false or some ambiguous thing between true and false."
David Potter

4.1 Introduction

System specification is the key means to understand how a system oper-
ates and how it interacts with its environment. As an abstraction of the real
implementation, by avoiding unnecessary details, it is useful to reason and
predict system behaviors. As a consensus, specification analysis techniques
mostly depend on the fact that the specification is complete; however, there
are many cases through software development process in which specifi-
cation might be incomplete but still some kind of reasoning and quality
assurance would be beneficial. Specification-based reasoning is of impor-
tance in model-driven software engineering, where the development starts
with abstract models and the implementation is generated through incre-
mental refinements. As a matter of fact, earlier detection of design flaws

31

i
i

“thesis” — 2014/1/30 — 16:53 — page 32 — #45 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

Figure 4.1: The activity flow of Secure Information Retrieval

leads to cheaper corrections. Thus, analyzing specifications and checking
the satisfaction of requirements play a key role in reducing maintenance
cost.

Beside the ability to check incomplete specifications against system re-
quirements, it is also important to reuse the results of previous analysis to
speed up the whole procedure. For example, some parts of a specification
may change frequently, because the design team is unsure about possible
alternatives, while the rest may remain invariant.

Let us consider the following case as an example of incomplete speci-
fication. Secure Information Retrieval (SIR) is an information system that
receives requests, in form of questions, from the clients and responds to
them via encrypted messages. The system behavior, in terms of the inter-
actions among the components, is illustrated in Figure 4.1.

A request received from a client is processed by Request Processor com-
ponent. First, the validity of the request is checked and then the requested
information is retrieved by querying on different data centers. The results
are composed as a message to be sent to the client. This message is en-
crypted by an Encryptor component. The encrypted message is checked
against a set of security standards by a Certifier component. The certified
message is logged and sent to the client. For security and reliability reasons,
the following set of properties shall be guaranteed by the system.

Security property: any message shall be encrypted before being sent out
over the network;

Reliability property: the system shall recover from any failure.

As illustrated in Figure 4.1, Encryptor component is shown with a dif-

32

i
i

“thesis” — 2014/1/30 — 16:53 — page 33 — #46 i
i

i
i

i
i

4.2. Incomplete Model Checking (IMC)

ferent color, since the designer is not able to make a final decision about its
realization, and so this decision is postponed to next development stages.
It can be also the case that some components are bound and frequently re-
bound at run time, which usually occurs in adaptive systems. However, it is
useful to check weather or not the design, even though incomplete, has the
potential to satisfy the properties. It can be the case that the design violates
the properties regardless of missing decisions. In this case, whatever com-
ponent we plug to the system, the properties are violated. The situation can
be completely different, where the design always satisfies the properties re-
gardless of the missing decisions. However, in many cases such satisfaction
depends on the missing parts of the design specification.

Our goal is to take the initial steps to address the problem of verify-
ing incomplete specifications. We first briefly present the model checking
process of an incomplete specification. Then we realize this process by
focusing on CTL properties.

4.2 Incomplete Model Checking (IMC)

The conventional model checking takes two inputs: specification and re-
quirements. Specification represents the system under study, while the re-
quirements are the properties that system is supposed to satisfy. Given each
property of interest, the model checker explores the state space of the spec-
ification and checks whether or not the property holds. Although specifica-
tion is an abstract model of system and does not contain many details but it
is complete in the abstraction level and contains the necessary information
for the model-checking purpose.

Unlike conventional model-checking approaches, IMC deals with in-
complete models, where some parts of the system are unspecified. IMC
allows the designer to verify the incomplete system specification and to cal-
culate a set of constraints for the unspecified parts. These constraints guide
further design decisions to avoid deviating from global system properties.
Figure 4.2 shows IMC as well as conventional MC.

Although IMC can be viewed as a general process to verify incomplete
specification against a variety of properties, our focus is on temporal prop-
erties expressed in CTL. In the next section, we introduce a variation of
LTS to capture incomplete specifications. Then, we provide a formal defi-
nition for the logics that are used to express properties. Later, we present a
model-checking algorithm to verify such incomplete specifications against
CTL properties.

33

i
i

“thesis” — 2014/1/30 — 16:53 — page 34 — #47 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

True False
(Counterexamples)

RequirementsSpecification

Model Checker

True
False

(Counterexamples)Constraints

RequirementsIncomplete
Specification

Incomplete
Model Checker

Figure 4.2: Two model checking styles: Conventional (Left) versus Incomplete (Right)

4.2.1 Incompletely Labeled Transition System

An Incompletely Labeled Transition System (ILTS) is a Labelled Transition
System (LTS) in which the set of states is partitioned in R, the set of reg-
ular states, and T , the set of transparent states, that are special states that
can represent more complex components and are considered as unknown.
Formally, an ILTS is specified as a tuple 〈S, s0,→, L〉 over the alphabetAP
of atomic propositions, where

• S is a set of states, which is partitioned in two sets: R (Regular) and
T (Transparent) , i.e., S = R ∪ T and R ∩ T = ∅;

• s0 is the initial state;

• →⊆ S × S represents the transitions between states;

• L : R → ℘(AP) is the labeling function that associates a subset of
atomic propositions to each regular state.

The transparent states represent unknown components that, once speci-
fied, can be modeled using a special kind of LTS, namely LTS with single
final state, i.e., a tuple 〈S, s0, sF ,→, L〉, where sF ∈ S is the final state.
The initial and final states represent the unique entry and exit points in and
from the component, respectively. For simplicity, our ILTS excludes ac-
tions; instead, in the next chapter we discuss incompleteness in Statecharts
which not only include actions but also hierarchy and concurrency together.

34

i
i

“thesis” — 2014/1/30 — 16:53 — page 35 — #48 i
i

i
i

i
i

4.2. Incomplete Model Checking (IMC)

3
{¬e,¬f}

2
{¬e,¬f}

4
{¬e,¬f}

1
{¬e,¬f}

7
{¬e,f}

8
{e,¬f}

6
{e,¬f}

11
{e,¬f}

9
{e,¬f}

10
{e,f}

14
{e,¬f}

13
{e,f}

0
{¬e,¬f}

12
{e,¬f}

15
{e,¬f,s}

Legend
e = encrypted

f = failed

s = sent

5
{?}

Figure 4.3: The ILTS of the Secure Information Retrieval system

Figure 4.3 shows the ILTS of SIR system, which is driven from the activ-
ity flow, shown in Figure 4.1. Transparent state 5 represents the unavailable
specification of Encryptor. The other states are labeled regarding the three
message attributes: encrypted, failed, and sent.

4.2.2 Next-Free CTL and Path-CTL

We define Next-Free CTL as a proper subset of CTL that excludes Next
operator. Hence, the syntax of the language becomes:

φ→ φ ∧ φ | ¬φ | E φ U φ | E G φ | p

where p ∈ AP , EU and EG are the CTL operators whose semantics is
briefly recalled below. Comparing to the definition in chapter 3, we elimi-
nated the quantifier A, because it can be simply obtained by ¬E¬.

Let’s recall the semantics of Next-Free CTL on a state of LTS M =
〈S, s0, L〉 (M, s |= ϕ means that ϕ holds in a state s of the LTS M) as
follows:

• M, s |= p ⇔ p ∈ L(s);

• M, s |= ¬ϕ ⇔ M, s 2 ϕ

• M, s |= ϕ1 ∧ ϕ2 ⇔ M, s |= ϕ1 and M, s |= ϕ2;

• M, s |= Eϕ1∪ϕ2 ⇔ if there exists a path π starting from s such that
∃sk ∈ π |M, sk |= ϕ2 and ∀si ∈ π with i < k, M, si |= ϕ1;

35

i
i

“thesis” — 2014/1/30 — 16:53 — page 36 — #49 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

• M, s |= EG ϕ ⇔ if there exists an infinite path π starting from s
such that ∀si ∈ π, M, si |= ϕ.

Notice that the classical boolean connectives (∨, ⇒ and ⇔) and the
temporal operators AU , AG, EF , and AF can be derived from the above
sets of operators. As an example, let us consider the security and reliabil-
ity properties presented in Section 4.1, using the set of atomic propositions
AP = {s, e, f}, the meaning of which was explained above. The prop-
erty “All messages are encrypted before being sent out over the network”
can be expressed as A(¬sUe), meaning that there is no sending until the
encryption is performed. The reliability property (“The system eventually
recovers from any failure”) can be instead expressed as ¬EFEGf , mean-
ing that there does not exist a path in which eventually there will be a path
in which there is a failure forever.

We formally define Path-CTL by adding a temporal operator to Next-
Free CTL that allows the designer to predicate also on finite sequences of
events. Path-CTL will be used to describe the constraints that has to be
guaranteed by the transparent components to assure the requirements va-
lidity. The syntax of the language is formally defined as follows:

φ→ φ ∧ φ | ¬φ | E φ U φ | E G φ | Ep G φ | p

where p ∈ AP , EU and EG are the CTL operators (the above set of deriv-
able operators is still derivable)), EPG is a fresh temporal operator, that
indicates that the arguments, on which it is applied, holds at least in a pos-
sible scenario starting from the present until the end of the system behavior,
i.e, the final state.

We can define the semantics of Path-CTL on M , a labelled transition
system with a unique final state sF , as defined above. If ϕ is a formula
M, s |= φ means that φ holds in a state s of the LTS M . Omitting the
qCTL operators, we just need to define the semantics of EpG as follows

M, s |= EpG φ ⇔ if there exists a path π, starting from s and ending in
the final state sF of M , such that, for all si in π, M, si |= φ.

4.2.3 Next-Free CTL model checking of ILTS

Here we present our model-checking algorithm for incomplete models, de-
scribed as ILTS, against properties expressed Next-Free CTL. Note that we
excluded Next operator from CTL in this version of the algorithm. The

36

i
i

“thesis” — 2014/1/30 — 16:53 — page 37 — #50 i
i

i
i

i
i

4.2. Incomplete Model Checking (IMC)

complete support of CTL is postponed as a future work. The basic idea be-
hind the algorithm is to modify the standard CTL model checking in order
to deal with transparent states. The algorithm takes as inputs a Next-Free
CTL property and an ILTS. If the ILTS is a regular LTS, it behaves as the
traditional approach on regular LTS, while if the ILTS contains transparent
states, it computes the set of Path-CTL formulae that shall be guaranteed
by the components modeled as transparent states.

More precisely, the algorithm works as follows. First, the Next-Free
CTL formula is parsed and its parsing tree is derived. As usual, the leaves
of the tree are propositions and the inner nodes are boolean and temporal
operators. Similarly to CTL model checking, a bottom-up approach is ap-
plied to the tree to calculate the satisfactory states for each sub-formula,
starting from the leaves of the tree. For each node of the tree, the set of the
states in which the sub-formula holds is calculated by applying Algorithm
1.

The algorithm is invoked for every subtree of the parsing tree. The al-
gorithm takes as inputs a subtree T of the parsing tree (possibly the parsing
tree itself), the formula ϕ, and the ILTS M on which the original formula
is evaluated. The tree T is a binary tree, where a node representing a unary
operator has a single child, while a node representing a binary operator has
two children. We use T.S to refer to the set of states in M that satisfy the
formula represented by the current subtree, T.left and T.right to refer to
the left and the right subtrees of the current tree (when the root is a binary
operator), and T.son to refer to the subtree of the current tree (when the
root is a unary operator). The elements of the ILTS M are referred as M.S
(states), M.R (regular states), M.T (transparent states), M.Transitions
(transition relation), and M.L (labeling function).

The algorithm uses the set X (initialized in line 2) as a local set to
store the elements that satisfy ϕ. Moreover, the set of constraints that are
needed to satisfy the formula ϕ in a transparent state s are saved in a ma-
trix constr. Each element constr(ϕ, s) is a set of constraints in the form
[(ψ1, state1), . . . , (ψn, staten)], meaning that the formula ϕ holds in s if
the Path-CTL formula ψ1 holds in state1, . . ., and the Path-CTL formula ψn
holds in staten. For example, constr(EGa, s) = {[(EGa, s)], [(EpGa, s), (EGa, s′)]}
means that the formulaEGa holds in the transparent state s either if the for-
mula itself holds in the correspondent component or if the formula EpGa
holds in the correspondent component and EGa holds in the component
represented by the transparent state s′. Roughly speaking, the elements of
the set are conjunctions and the set is seen as a disjunction of such con-
junctions. The evaluation algorithm is based on a switch on the value of

37

i
i

“thesis” — 2014/1/30 — 16:53 — page 38 — #51 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

Algorithm 1 Node evaluation

1: evaluate(ϕ, T,M){
2: X = ∅
3: switch (ϕ){
4: case ϕ ∈ AP :
5: for all s ∈M.S { constr(ϕ, s) = ∅; }
6: for all s ∈M.S {
7: if (s ∈M.R && p ∈ L(s)) {
8: X = X ∪ {s};
9: }elseif(s ∈M.T){

10: X = X ∪ {s};
11: constr(ϕ, s) = constr(ϕ, s) ∪ {(Θp, s)}; }}
12: case ϕ = ¬ϕ1 :
13: for all s ∈M.R− T.son.R{
14: X = X ∪ {s}; }
15: for all s ∈ (T.son.S ∩M.T) ∨ (s ∈ T.son.R ∧constr(ϕ1, s) 6= ∅){
16: X = X ∪ {s};
17: constr(ϕ, s) = buildNeg(constr(ϕ1, s)); }
18: case ϕ = ϕ1 ∧ ϕ2 :
19: for all s1 ∈ T.left.S{
20: for all s2 ∈ T.right.S{
21: if (s1 = s2){
22: X = X ∪ {s1};
23: if(constr(ϕ1, s1) 6= ∅ ∨ constr(ϕ2, s1) 6= ∅){
24: constr(ϕ, s) = ANDCombine(constr(ϕ1, s1), constr(ϕ2, s1)); }}}}
25: case ϕ = Eϕ1Uϕ2 :
26: for all s2 ∈ T.right.S{
27: X = X ∪ s2
28: if(s2 ∈ T.right.S){constr(ϕ, s2) = resolveRightUntil(ϕ2, s2)}
29: X ′ = ∅;
30: while(X ′! = X){
31: X ′ = X;
32: for all s1 ∈ T.left.S{
33: if(∃s′ ∈ X|(s1, s′) ∈M.Transitions)
34: X = X ∪ {s1}
35: π = buildPath(s1, T.right.S)
36: {constr(ϕ, s1) = resolveLeftIUntil(constr(ϕ1, s1), π); }}}}

38

i
i

“thesis” — 2014/1/30 — 16:53 — page 39 — #52 i
i

i
i

i
i

4.2. Incomplete Model Checking (IMC)

Algorithm 1 The rest of node evaluation algorithm

37: case ϕ = EGϕ1 :
38: S′ = ∅;
39: for all s ∈M.T{
40: S′ = S′ ∪ {{s}};X = X ∪ {s};
41: constr(ϕ, s) = resolveOutSCC(constr(ϕ1, s); }
42: for all subS ∈ ℘(T.son.S){
43: if(subS is a scc){
44: S′ = S′ ∪ {subS};X = X ∪ subS ;
45: for all s ∈ subS{
46: constr(ϕ, s) = resolveInSCC(constr(ϕ1, s), subS); }}}
47: for all sub ∈ S′ ∪M.T{
48: X ′ = sub
49: X ′′ = ∅;
50: while(X ′′! = X ′){
51: X ′′ = X ′;
52: for all s1 ∈ T.son.S{
53: if(∃s′ ∈ X ′|(s1, s′) ∈M.Transitions)
54: X ′ = X ′ ∪ {s1}
55: π = buildPath(s1, T.right.S)
56: constr(ϕ, s1) = resolvePathGlobally(constr(ϕ1, s1), π); }}
57: X = X ∪X ′; }
58: }
59: T.S = X;
60: }

the most external operator in ϕ (line 3). Considering the grammar of Next-
Free CTL, there are five different cases: atomic propositions (lines 4–11),
negated formulae (lines 12–17), conjunctions (lines18–24), EU formulae
(lines 25–36), and EG formulae (lines 37–58).

If ϕ is an atomic proposition and T is a leaf, the value of constr(ϕ, s) is
initialized for all s. Note that this is the only case in which constr(ϕ, s) is
based on the value of the sub-formulae. Then, all the regular states labeled
with ϕ are added to the set of states X in which the formula holds (lines
7-8). Moreover all the transparent states are added to X (line 10), together
with an update of the correspondent constr slot. In particular, for each
transparent state s, the constraint Θp is added to constr(ϕ, s)(line 11). The
symbol Θ represents a yet non-identified Path-CTL operator, of which the
kind will be resolved in the rest of the algorithm. The operator Θ indicates
that a propositional formula, that is apparently evaluated on a state, will be
evaluated on a component. If the propositional formula is inside a temporal
formula, Θ will be resolved by the semantics of the outer operators.

39

i
i

“thesis” — 2014/1/30 — 16:53 — page 40 — #53 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

If T is a subtree of which the root is a ¬ operator, i.e., ϕ is a formula of
the form ¬ϕ1, all the regular states that are not in the set of states in which
ϕ1 holds are added to the set X of states in which ϕ holds (line 13-14). The
transparent states are always added to the set of states in which a formula
holds together with a set of constraints (that however could also be unsatis-
fiable). Thus, every transparent state s is added toX . Moreover, the regular
states in which the formula ϕ1 conditionally holds are added toX . For both
these kinds of states, the correspondent slot constr(ϕ, s) is updated through
the function buildNeg(constr(ϕ1, s)) (lines 15-17). This function consid-
ers the “negation” of the set of constraints for ϕ1 in s. At this stage, ¬Θp is
changed to Θ¬p, since the constraint comes from an untimed sub-formula.
Note that the set represents a disjunction of constraints, while each element
in square bracket represents a conjunction of constraints and this has to be
considered in negating the set. For example the negation of constr(EGa, s)
considered above is {[(¬EGa, s), (¬EpGa, s)], [(¬EGa, s), (¬EGa, s′)]}.

When ϕ is a formula of the form ϕ1 ∧ ϕ2 and T is a subtree of which
the root is a ∧ operator, all the states that are both in the set of states in
which ϕ1 and ϕ2 hold are added to the set X of states in which ϕ holds
(line 19-23). If an added state contains a constraint w.r.t. the consid-
ered sub-formula, the correspondent constraint is built using the function
ANDCombine (constr(ϕ1, s1), constr(ϕ2, s1)) (lines 23-24). This func-
tion basically considers the “conjunction” of the two sets, by simplifying
the elements on the same state in the same constraint. At this stage, the con-
junction of the elements Θp and Θp′ is considered as Θ(p∧p′), because both
the constraints come from an untimed formula. For example, if ϕ = EGa∧
EaUb, constr(EGa, s) is defined as shown above and constr(EaUb, s) =
{[(EaUb, s)], [(EpGa, s), (EaUb, s′)]}, then constr(EGa ∧ EaUb, s) be-
comes {[(EaUb, s), (EGa, s)], [(EpGa, s), (EGa, s), (EaUb, s

′)],
[(EaUb, s), (EpGa, s), (EGa, s′)], [(EpGa, s), (EaUb, s′), (EGa, s′)]}

If T is a subtree of which the root is an EU operator and ϕ is a for-
mula of the form Eϕ1Uϕ2, the procedure is in two steps. First, all the
states that are in the set of states in which ϕ2 holds (T.right.S) are added
to the set X of states in which ϕ holds. (line 26-27). If an added state
s is transparent, the constraint of s for ϕ is updated using the function
resolveRightUntil(ϕ2, s). This function transforms the elements of the
form (x, s) that appears in constr(ϕ2, s) into (Eϕ1Ux, s). Note that the
algorithm only changes the constraints connected to the current states and
not the others on adjacent states of a constrained sequence. At this stage,
if x has the form Θp or contains a Θ, the operator Θ is deleted. Second,
X is updated by using ϕ1 (lines 29-36). More precisely, we update X by

40

i
i

“thesis” — 2014/1/30 — 16:53 — page 41 — #54 i
i

i
i

i
i

4.2. Incomplete Model Checking (IMC)

adding the states, in which ϕ1 holds (condition in line 32) and from which
it is possible to reach a state in X (condition in line 33). The idea is that ϕ1

holds in such states (these states can be either regular or transparent) and
from them it is possible to reach directly one of the states in X . For each
added state, the path π that connects it to a state in the set in which ϕ2 holds
is computed (line 35). The path π is used to enrich the set of constraints
that make ϕ hold in it. For this purpose, the algorithm uses the function
resolveLeftIUntil(constr(ϕ1, s), π), which adds to constr(ϕ, s) a con-
straint composed by the conjunction of all the constraints x that makes ϕ1

true in the transparent states of π (except the last one), and updates them
in EpGx. Again, if the original constraints contain Θ, the operator Θ is
automatically deleted.

Finally, if T is a subtree of which the root is an EG operator, i.e., ϕ
is a formula of the form EGϕ1, all the transparent states are added to the
set X of the states in which ϕ holds. Moreover, these states are added as
singleton to the set S ′ that contains all the sets that represent strongly con-
nected components, in which ϕ1 always holds. Since, the added states are
transparent, the correspondent set of constraints is updated using the func-
tion resolveOutSCC(constr(ϕ1, s)) (lines 39-41). This function adds the
constraint EGϕ1 to each of these states. For all the non-elementary pos-
sible subset in which ϕ1 holds; if the subset is a strongly connected com-
ponent, the set of the subset is added to S ′ and the states to X . If there
exist transparent states in the added subset, their constraints are updated
with the function resolveInSCC(constr(ϕ1, s), subS) (lines 42-46). This
function, for all the states in the subsets, adds a conjunction that includes
the constraint EpGx for each state, where x is the constraint that makes ϕ1

hold in that state. Obviously, if the components only contain regular states,
this constraint is empty.

As the last step, analogously to what is done for operator EU , X is
updated by using ϕ1 and S ′ (lines 47-57). More precisely, starting from
each SCC in S ′, the set of the states in which ϕ1 (condition in line 53)
holds and from which it is possible to reach a state in which ϕ holds
(condition in line 54) is added to X . Once a transparent node is added,
the path π that connects it to the SCC in which ϕ1 holds is computed
(line 56), and the set of constraints that make ϕ hold, is updated using
resolvePathGlobally(constr(ϕ1, s1), π). This function works analogously
to function resolveLeftIUntil(constr(ϕ1, s), π). In all the functions con-
sidered for this case, the operator Θp is automatically deleted.

After the evaluation algorithm is performed on the whole parsing tree,
if the satisfactory set of the states for the root contains the initial state of

41

i
i

“thesis” — 2014/1/30 — 16:53 — page 42 — #55 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

M , then the property ϕ holds constrained to const(ϕ, s0). If there is still
an unresolved Θ in this set of constraints, it means that the initial state is a
transparent state and also the propertyϕ is untimed. In this case the untimed
property that follows Θ has to hold in the initial state of the component,
which later would represent the transparent state.

4.2.4 Sketching the correctness of Next-Free CTL model checking

Here we informally describe the correctness of our algorithm by showing
the equivalence between the standard checking of CTL and the two-stage
checking performed by IMC. Our "proof” technique is based on the se-
mantics of CTL and Path-CTL. Basically, we show that checking a CTL
property ϕ on an ILTS with Algorithm 1 and imposing the obtained Path-
CTL formulae to the components that are bound to the transparent states in
the ILTS is equivalent to check the same property ϕ with the classic CTL
algorithm on an LTS, obtained by substituting the transparent states in the
original ILTS with their correspondent LTS.

Consider an LTS M and an ILTS M ′, obtained by removing k indepen-
dent LTSs MT

i (with 1 ≤ i ≤ k) - starting from si0 with final state siF - from
M and replacing each of them with a transparent state sTi . An example,
with k = 2, is shown in Figure 4.4, where the LTS MT

1 and MT
2 in M are

abstracted through sT1 and sT2 in M ′. A path π of M is called compatible
with a path π′ of M ′ if and only if π contains exactly the same (and in
the same order) regular states of π′ and, instead of the transparent states of
π′, it contains one of the possible paths that cross the graph obtained by
substituting the transparent states with the actual components.

Our aim is to show that checking a CTL formula ϕ on M is equivalent
to checking ϕ on M ′ using IMC approach.

Let us start by considering formulae of the form Eϕ1Uϕ2. Checking
the validity of this formula corresponds to check if M, s0 |= Eϕ1Uϕ2

holds, i.e., if there exists a path π starting from the initial state s0 such that
∃sk ∈ π | M, sk |= ϕ2 and ∀si ∈ π with i < k, M, sj |= ϕ1. Regarding
the correctness of Algorithm 1, it is enough to show that, given a generic
path π′ inM ′, it satisfiesEϕ1Uϕ2 and the components corresponding to the
transparent states in M ′ satisfy the constraints obtained by IMC if and only
if there exists a path π of M , compatible with π′, that satisfies Eϕ1Uϕ2.

A generic path π′ in M ′ can be as follows:

1. π′ does not contain any transparent state sTi ;

2. the last state of π′ is a transparent state;

42

i
i

“thesis” — 2014/1/30 — 16:53 — page 43 — #56 i
i

i
i

i
i

4.2. Incomplete Model Checking (IMC)

S0

S1

S2
S3 S4

S0 SF... S6

S7

S8

S0 SF... S9S5

...

...

M

M

1 1

2 2

S0

S1

S2
S3 S4

S6

S7

S8

S9S5

...

...

S1
T

S2
T

M

M'

T

2

1

T

Figure 4.4: An example of LTS and its corresponding ILTS.

3. π′ contains transparent states, but the last state is not transparent;

4. π′ contains transparent states, including the last position.

Obviously, case (4) is a generalization of cases (2) and (3), but since
they are more intuitive, we will treat them separately (even if the proof for
these cases are included in the proof for case (4)).

The first case is naive. Since there is no transparent state, Algorithm
1 behaves exactly as the classical model checking. The second case cor-
responds to π′ containing only a transparent state at the end. Our algo-
rithm will produce “yes” only if for all sx in π′ (excluded the last s|π′|)
M ′, sx |= ϕ1, exactly as required by the classical model checking algo-
rithm. Moreover our algorithm will impose that Eϕ1Uϕ2 holds in the com-
ponent corresponding to s|π′| and this will happen only if exists a path π
in M compatible with π′ that satisfies Eϕ1 ∪ ϕ2. The third case considers
a path π′ that contains a number of transparent states, but not at the end.
Our algorithm will produce “yes” only if for all non-transient state sx in π′

(excluded the last s|π′|) M ′, sx |= ϕ1, and M ′, s|π′| |= ϕ2. Moreover our
algorithm will impose that EpGϕ1 holds in the component corresponding
to the transparent state of π′. All these requirements are satisfied if there
exists a path π in M compatible with π′ that satisfies Eϕ1Uϕ2.
The last case is the most general case and corresponds to π′ containing a

43

i
i

“thesis” — 2014/1/30 — 16:53 — page 44 — #57 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

number of transparent states, including the end. Our algorithm on such
a path would first label the state with ϕ, using only ϕ2. Among all the
possible constraints that the labeling imposes, for the proof, we are only
interested to the sets that include all the states through the end of π′1. So, if
π′ = s0, s1, ..., sn and the sequence of transparent states in it is [s′1, . . . , s

′
m],

for all 0 ≤ i ≤ n − 1, the set constr(ϕ2, si) can contain the constraint
[(subϕ2 , s

′
j), (subϕ2 , s

′
j+1), . . ., (subϕ2 , s

′
m−1), (ϕ2, s

′
m)], where s′j is the

first transparent state after si in π′ and subϕ2 is a subcondition needed to
make ϕ2 true in the current state. Moreover, constr(ϕ2, sn) contains the
constraint [(ϕ2, sn)], where sn is exactly the last transparent state s′m. When
our algorithm starts the labeling using also ϕ1, each of the above constraints
can be used to compute constr(Eϕ1Uϕ2, s0), adding constraints of the
form [(EpGϕ1, s

′
1), . . ., (EpGϕ1, s

′
j−1), (E(ϕ1Usubϕ2), s

′
j), (subϕ2 , s

′
j+1),

. . ., (subϕ2 , s
′
m−1), (ϕ2, s

′
m)]. Moreover, if such a constraint exists, the al-

gorithm checks that all the regular states before the j-th transparent state
satisfy ϕ1 and all the regular states after the j-th transparent state satisfy
subϕ2 . A compatible path π satisfies Eϕ1 ∪ϕ2 if and only if it satisfies one
of the previous constraints.

An analogous reasoning can be applied to EG ϕ, while the atomic
proposition case and boolean connectors need to be treated differently.
When ϕ ∈ AP , ϕ holds in M if s0 is labeled with ϕ. If s0 is a regular state,
then our algorithm will check exactly the same. If instead s0 is included in
an LTS substituted with a transparent state, the algorithm will come up with
the constraint, that is exactly the same condition checked by the classical al-
gorithm. Moreover, our algorithm deals with the boolean connectors as the
classical one, only modifying the previously obtained constraints according
to the connector semantics.

4.2.5 Path-CTL model checking

To verify a Path-CTL property on an LTS with unique final state, we need
to observe that LTS with a unique final state is a particular case of LTS,
while the final state does not influence the verification of classical CTL
properties. Since Path-CTL is Next-Free CTL with an extra temporal oper-
ator EpG, we only need to extend the classical CTL algorithm to deal with
this new operator. Algorithm 2 shows a fragment of an evaluation func-
tion to deal with formulae ϕ of the form EpGϕ1. The fragment uses the
same notation and structure of Algorithm 1. The idea is that, starting from
an LTS with final state M , the algorithm builds M ′ by deleting the states

1We are looking at the satisfiability using the whole path; all the subpaths are considered separately as one of
the possible four mentioned scenarios.

44

i
i

“thesis” — 2014/1/30 — 16:53 — page 45 — #58 i
i

i
i

i
i

4.3. Experimental Results

where ϕ1 does not hold (line 3). Then, a state s of M ′ is added to the set of
states in which ϕ holds (line 7) if the final state sF belongs to M ′ (line 4)
and there exists at least a path from s to sF in M ′ (line 6). This check can
be done easily with a breadth-first search in O(|M ′.S|), making the overall
evaluation O(|M ′.S|2).

Algorithm 2 Checking formulae of the form EpGϕ

1: case(ϕ = EpGϕ1) :
2: S′ = {s ∈M.S|s ∈ T.son.S};
3: M ′ = M |S←S′ ;
4: if sF ∈ S′{
5: for all s ∈ S′{
6: if SearchPaths(s, sF ,M ′){
7: X = X ∪ {s}; }}}

4.3 Experimental Results

In this section, we present the applicability and scalability of the proposed
approach in practice.

4.3.1 Tool Support and Applicability

We have developed a prototype tool to verify ILTSs against properties ex-
pressed in CTL according to the algorithm presented earlier. The inputs of
the tool are two files, which contain an ILTS and the CTL property. The
tool is capable to verify the property and report the output as a set of solu-
tions2. Solutions consist of Path-CTL properties that constrain the transpar-
ent states. The tool is also able to verify LTSs against constraints generated
as Path-CTL.

To demonstrate the applicability of our approach, we used the tool to
verify the ILTS of the example against two requirements. Regarding the
security property A(¬s ∪ e), the model checker returns two solutions that
constrain a possible specification of the transparent state (state 5) to satisfy
at least one of the solutions. The first solution is {S5 |= A(¬s∪ e)}, which
means that the same property shall hold also in S5. The second solution
is {S5 |= ApG¬s}. This property enforces the paths between the start
and end states of S5 specification to be labeled with ¬s, which prohibits
Encryptor component to send any message over the network. Applying

2The tool is available online: https://sites.google.com/site/amirsharifloo/
tool-lover

45

https://sites.google.com/site/amirsharifloo/tool-lover
https://sites.google.com/site/amirsharifloo/tool-lover

i
i

“thesis” — 2014/1/30 — 16:53 — page 46 — #59 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

the verification algorithm to the second property returns only one solution:
{S5 |= ¬EFEGf}. Therefore, any component that is bound at run time to
play the role of Encryptor shall satisfy this Path-CTL property.

4.3.2 Scalability

To see how our approach scales up with respect to the number of regular
and transparent states, we performed a scalability experiment. To do so, we
generated different models by concatenating the running example. Con-
catenation here means to produce a new ILTS by simply connecting the last
state (state 15) of the ILTS to the first state of another copy of the ILTS.
For example, the first concatenation results in an ILTS with 30 states in
which two states are transparent. This way we generated larger models and
applied the tool to verify the properties.

Figure 4.5 illustrates the result, which is obtained by running the ex-
periment 100 times and computing the average. The result shows that the
verification time of both properties exponentially grow. However, the ver-
ification time of the nested property grows faster as the number of states
increases. The machine we used for the experiments had the following
characteristics: OS = Mac, CPU=2.4 GHz Core 2 Duo, and RAM=4 GB.

Although in general the verification cost of the algorithm exponentially
grows with respect to the number of transparent states, the specification
topology is a key parameter that can significantly affect the total amount of
the computation. Obviously, it is more than a simple verification performed
by an LTS model checker, since the algorithm calculates constraints, con-
sidering the combinations. Moreover, our tool is a prototype and the result
can be improved by applying further optimizations. Moreover, the con-
straints can be checked in parallel in order to speed up the verification.

4.4 Verification of open adaptive systems at run time

We show that IMC can be interestingly applied to formally check the prop-
erties of open adaptive systems, in which parts of specification may dynam-
ically change at run time. We propose LOVER 3 as a two-phase framework,
in which the verification process is divided into phases: design time and run
time. At design time, the changing components of the system are identified
and abstracted away from the specification by replacing them with transpar-
ent states. The new specification, that represents the invariant behavior of
the system, is verified against the system properties. As the result, a set of

3LOVER stands for Light-weight fOrmal Verification of self-adaptivE systems at Run time

46

i
i

“thesis” — 2014/1/30 — 16:53 — page 47 — #60 i
i

i
i

i
i

4.4. Verification of open adaptive systems at run time

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

$#" '!" $!#" $#!" $(#" %)!" %*#"

!"
#$%

&'
()

*+
(,

"+
-.
"&
/0+

*1,2"#+)3+.4'4".+

+,-."∪"/0"

-121" 3"

Title Suppressed Due to Excessive Length 11

Table 1. The verification time for the properties (in seconds)

Transparent State A(¬s ∪ e) ¬E♦E�f

1 15 0.105637 0.079811

4 60 0.76972 0.702177

7 105 3.156306 5.841801

10 150 8.659444 24.611509

13 195 19.197839 70.304578

16 240 36.051059 161.264

19 285 59.829017 326.778

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

$" %" &" '" #" (")" *" +" $!" $$" $%" $&" $'" $#" $(" $)" $*" $+"

∀,-."∪"/0"

∀-1 2"

Fig. 4. The verification time for the properties (in seconds)

5 Related Work

6 Conclusion

Blabla

Acknowledgments

This research has been partially funded by the European Commission, Pro-
gramme IDEAS-ERC, Project 227977-SMScom.

References

Figure 4.5: The verification time for the properties (The table provides the precise values
shown in the diagram.)

constraints for changing components are produced that guarantee the satis-
faction of the properties. At run time, the dynamic components are verified
against the constraints in order to check the satisfaction of the properties.

Differently from the classic model checking, LOVER deals with incom-
plete models, where a set of components are unspecified at design time and
are known only at run time. Obviously, the classical techniques could be
applied by checking the system every time the bindings (unspecified at de-
sign time) are resolved or changed. Indeed, the time and space required
for the verification could be considerable, and since some bindings are re-
solved only while the system is operating, the total overhead in resolving
them should be kept as small as possible.

To overcome these limitations, we propose LOVER that allows the de-
signer to verify the incomplete system specification at design time and gen-
erates a set of constraints for the unspecified components. Those constraints
are verified at run time whenever the component specifications become
available. An overall view of LOVER is given in Figure 4.6. At design
time, the incomplete system is described as a particular kind of LTS, where
some states are transparent w.r.t. the labels. This model is then checked
against a desired Next-Free CTL property. The result of the verification
could be "yes”, "no” or "conditionally yes”. The last option gives the set
of constraints that has to be satisfied by the unspecified components such
that the whole system satisfies the given property. These constraints are ex-
pressed in Path-CTL, an extension of Next-Free CTL that allows the speci-
fication of properties also over finite paths. The constraints are verified by
a Path-CTL model checker, which can be obtained by a simple extension to
any CTL model checker, such as NuSMV [15].

47

i
i

“thesis” — 2014/1/30 — 16:53 — page 48 — #61 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

ILTS

qCTL False

True

Conditionally True
{Path-CTL}

D
es

ig
n

Ti
m

e
R

un
 T

im
e Path-qCTL

Checker LTS

False

True

ILTS/qCTL
Checker

LTSLTS

U
pd
at
ed

C
om

po
ne
nt
s

Figure 4.6: LOVER Framework

4.5 Related Work

Modeling evolvable specifications is studied by Sampath et al. [78], in
which a new formalism called Structured Transition Systems is presented
to ease the evolutionary requirements modeling and refinement. On the
contrary, we exploit the application of an existing formalism like State-
charts as a widely known formalism that comes with nice features support-
ing modularity and incremental refinement. Shaker et al. [80] propose a
feature-oriented approach to specifying the requirements of Software Prod-
uct Lines (SPL) in order to facilitate the process of adding new features to
existing specifications. This way the specification of SPL is more flexible
to possible changes. However, the approach still lacks the support for any
analysis.

Analyzing models with unknown elements during development lifecycle
has been studied in the past years. Salay et al. [75] addresses the problem
of expressing uncertainty in requirements specifications. In particular, they
study this problem for early stage specification e.g. i* models [90] and
class diagrams, and propose an approach grounded upon a previous work
on partial modeling [31,76] to reason on the models. They describe how to
construct partial models from possible design alternatives. The main idea
is to annotate the elements of models, that exist in only some of alternative,

48

i
i

“thesis” — 2014/1/30 — 16:53 — page 49 — #62 i
i

i
i

i
i

4.5. Related Work

with Maybe tags and then to apply SAT-based analysis techniques to check
First-Order Logic properties. The analysis output produces three possible
values: True, False, and Maybe.

Uchitel et al. [89] discuss how scenarios can be viewed as partial models
of system behaviors that can be incrementally added during the develop-
ment iterations. Moreover, they describe how to detect enabled, prescribed,
and unknown system behaviors by merging various system scenarios. En-
abled behaviors are the behaviors that system is supposed to perform, while
the prescribed behaviors are prohibited. The unknown behaviors do not vi-
olate any conditions but are not declared and cannot be inferred from the
specification. To specify such behaviors, PLTL (Partial LTL) is used to de-
scribe the system specification. In [88], the authors take a further step by
synthesizing scenarios and safety properties to construct behavioral models
in the form of Modal Transition Systems.

Bianculli et al. [8] present an approach to deriving forbidden behaviors
of external services given a requirements specification. More precisely,
they use a behavioral model, that describes the set of traces that leads to
error state, and given a set of external services and their fine-grain opera-
tions, they provide a heuristic technique to produce the behaviors, in terms
of LTS, that external services shall avoid.

Adler et al. [1] propose an approach to modularly design and model
adaptive embedded systems such that the system specification is suitable
for verification analysis. The approach distinguishes between the part of
the system that supports the functionality and the part that manages the
adaptation, and focuses on specifying the adaptation behavior in order to
verify the stability property of the adaptation process. Theorem proving
techniques e.g. Isabelle/HOL are employed to verify the properties. The
approach is extended in [79] to verify system properties with respect to
environment constraints. To this end, the interaction among the system
and the environment is modeled and is verified that the system properties
are guaranteed assuming a maximal environment. This approach assumes
that all the environmental behaviors can be predetermined in advanced so
the verification of the properties are performed at design time. Although
applying modular techniques reduces the verification costs, the approach
assumes that the whole knowledge on the specification and the adaptations
is available at design time.

Păsăreanu et al. [22,34] propose an approach to automatically generating
assumptions for the environments of a component, and apply the technique
for compositional verification. The output of the approach describes the en-
vironments in which a component will satisfy the expected properties. Our

49

i
i

“thesis” — 2014/1/30 — 16:53 — page 50 — #63 i
i

i
i

i
i

Chapter 4. Verification of Incomplete Specifications

approach is different in the point that there exists a couple of unspecified
components that make the specification incomplete and the verification un-
feasible. What we do is to enforce those components with some constraints
such that the global properties hold.

4.6 Conclusion

Incomplete Model Checking allows us to reason about partial specifica-
tions, and extends classic model checking by synthesizing constrains such
that the global properties hold. The application of such model checking
technique goes beyond design-time verification, and can effectively apply
to check adaptive systems with dynamic components. It is important to note
that IMC works the same as classic model checking in case the specification
is complete.

50

i
i

“thesis” — 2014/1/30 — 16:53 — page 51 — #64 i
i

i
i

i
i

CHAPTER5
AGAVE: A Methodology for Incremental

Verification

"Most People like to believe something is or not true. Great scientists toler-
ate ambiguity very well. They believe the theory enough to go ahead; they
doubt it enough to notice the errors and faults so they can step forward and
create the new replacement theory." Richard Hamming

In this chapter, we extend IMC paradigm presented earlier to provide
an incremental verification environment AGAVE, that enables developers
to use model checking as they refine system models. Unlike ILTS spec-
ifications, AGAVE is designated to handle also high-level models, which
more often appear in iterative and incremental software development. The
methodology deals with incomplete specifications, where some parts are
left unspecified and may later be further elaborated at development time,
or even may be left as components dynamically deployable at run time.
Following this approach, the verification not only is able to check whether
or not a specification can satisfy a given property but also generates a set
of sub-properties for the missing components to ensure satisfaction of the

51

i
i

“thesis” — 2014/1/30 — 16:53 — page 52 — #65 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

global property. In the next iterations and when the developer is ready to
elaborate the missing components, one only needs to care about the sub-
properties of the components and not the system’s global properties. This
is a great advantage that simplifies modeling, encourages exploration and
verification of alternative designs, supports decision making based on rig-
orous analysis, and drastically reduces the verification cost. AGAVE can
be very useful to define the expected properties that must be exhibited by
off-the-shelf components (COTS) to be hired from a third party, following
a design by contract approach [65].

AGAVE consists of an incremental process model through which the
verification is decomposed and performed in iterative steps. To realize this
approach, we explain how the Statecharts language can be equipped with
incremental verification by providing a model-checking algorithm. State-
charts are chosen because of their expressive power as well as their hierar-
chical decomposition, which naturally support incremental refinement.

5.1 Overview

Incremental development consists of a series of developments of partial (in-
complete) system models, where additional details are progressively added.
A typical way is to progress through subsequent refinement steps, which
allow engineers to develop a complete and detailed system model start-
ing from a high-level abstract model and progressing through refinements
where a more detailed structure is given, down to the desired level of detail.

AGAVE is intended to support the iterative and incremental develop-
ment of system models, by providing an analysis method that can be ap-
plied incrementally while the model is built. The overall idea is to use a
state-based modeling formalism to specify the system and to proceed with
incremental steps. Initially, system is represented as a model M , in which
all its most significant components and their interactions are represented.
Together with the system, the set Φ of properties the system under analysis
should meet are specified. At this stage, the components that need to be
further detailed are represented as simple states, marked with a T to indi-
cate that they will be specified later with a state-based model as well1. Then
model M is verified against each property in Φ. This form of delayed and
separate specification can be used to support both progressive knowledge
acquisition and also to manage the separate exploration of possible design
alternatives.

1Since a state can represent both a system state and a component, in the paper we will use states and compo-
nents as synonyms.

52

i
i

“thesis” — 2014/1/30 — 16:53 — page 53 — #66 i
i

i
i

i
i

5.1. Overview

If a system is fully specified, verification either succeeds or it fails. How-
ever if it contains unspecified components, it generate a set of properties
that they must satisfy to get the property holds in the whole system. This
way, once these components are specified, the verification algorithm does
not check again the whole specification, but just their new specification
against the properties previously generated. This procedure is recursively
repeated every time an unspecified state is refined.

The overall approach is exemplified in Figure 5.1. The level 1 of model
M is verified against a high-level requirement formalized by a property ϕ.
M includes two unspecified components C1 and C2. As a result of verifica-
tion, the algorithm produces a set of properties that have to be satisfied by
C1 and C2. In the second step, once C1 and C2 are specified, their models
are checked against the properties derived in the previous step. Notice that,
while in the figure it seems that a single property is derived for each compo-
nent, the set may contain more than one property for each state. At level 2,
the model that refines C2 does not contain any unspecified components, and
hence it is verified by classic model-checking techniques, while the model
that refines C1 is analyzed by applying the AGAVE approach, which com-
putes the properties that must be satisfied by the model that eventually will
refine the unspecified state C11.

Derived property P2 Derived property P1

C2C1

II. AN OVERVIEW ON THE APPROACH

In general, the design phase consists in a series of subse-
quent refinement steps, that allows the designer to model the
system starting from an high level of abstraction, in which a
general structure of the model is given, to the a level of
detail, that describes the behavior of all the components
of the system. If a verification technique is used during
the design, this incremental approach requires to verify the
system every time a new component is specified or to apply
an assume-guarantee method [?], that need the designer
to add assumption to its system. Both the approach are
inconvenient: the first can be extremely expensive in terms
of time and the second can be unfeasible in this context
since the different components are not know at each level
of refinement.

To cope with these limitations, we propose XXX, a
methodology for supporting the design phase of complex
systems, by providing an analysis method that can be applied
incrementally while the model is built.

EG('1) '2)
Outline
• Incremental modeling consists in specifying systems

refining them with subsequent steps of refinement (at
each step the introduced components are unknown and
not detailed)

• Our proposal is an approach to incremental modeling
and verifying systems. The approach consists on model-
ing a level of abstraction identifying those components
that need to be further specified (transparent states).
Then the model is checked with a modified model
checking algorithm (LOVER) that check the model
against a property, generating the properties that the
transparent states must satisfied for the original prop-
erty to be true in the model. This process is repeated
on the model of the transparent states (once they
are specified) against the properties generated in the
previous step. If the model contains transparent state,
new constraints, that will be checked on the model,
once it is specified.

• advantages from the modeling point of view (different
levels of abstraction help to focus to the big picture but
also to the details) and from the verification point of
view (more efficient, no need to re-run the verification
on the flat model at each refinement)

• formalisms used: statechart and CTL (explain why
statechart is suitable for incremental verification)

• generalization: analogously to what happen for incre-
mental modeling, when an adaptive systems is specified
some components are unknown and are known only at
runtime

• further generalization: verification of statechart (hierar-
chical state are seen as transparent and the verification
becomes more efficient).

III. MODELING FORMALISMS

A. Statecharts

Statechart is a structured graphical formalism used to
describe reactive systems, such as communication protocols,
digital control unit and aboard software systems. Statecharts
extend finite state machines considering hierarchy, concur-
rency, and communication, that allow the designer to model
complex systems in a more compact way. In particular,
hierarchy is used to model the system at different level of
granularity by redefining states through a (sub)statechart or
the composition of (sub)statecharts. Concurrency describes
the possible parallel behaviors of two or more statecharts
running in parallel at the same time; such behaviors are
synchronized through communication.

In this paper, we consider the original definition of Stat-
echarts which includes its most popular features, ignoring
some elements, such as time actions, history, special events
(e.g., events generated when a state is entered or exited) and
special actions (e.g., start action, history clear, deep clear)1.

Figure 1. Statechart example

B. Syntax

Given a set of atomic propositions AP , the two subsets
E and I partition it. They represent the environmental and
internal propositions, respectively. Intuitively, If a system is
defined over AP , E are propositions of which the truth value
cannot be controlled, while E are controlled. A condition c
over I is defined as c ! i | ¬c | c ^ c, while an
action a has the form a ! i = 0 | i = 1 | neg(i),
where i 2 I and neg is an operator that negate the truth
value of i. C and A are a fine set of conditions and of
actions over I , respectively. Formally, a statechart is a tuple
S = hQ, Q0, St, ⇢,E ,C ,A, ⌧i, where

• Q is a finite set of states that can be themselves
Statecharts, often call chart-states [9];

• ⇢2 is the hierarchical relation, used to decompose states
into sub-states;

1[Paola: because . . .]
2[Paola: Ho do you define it? ✓ Q ⇥ }(S)? How the relation specify

the kind of hierarchy? Moreover the set of sub charts should be part of the
tuple... am I wrong?]

C11

YES NO

……..……..

Level 1

Level 2

Level 3

Original property P

Developer

Developer Developer

Developer

Figure 5.1: An overview of the AGAVE methodology.

AGAVE provides advantages both from the modeling and the verifi-

53

i
i

“thesis” — 2014/1/30 — 16:53 — page 54 — #67 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

cation viewpoints. Indeed, from the modeling aspect, working at different
abstraction levels helps progressively delving into details that need to be ex-
plored. Concerning verification, AGAVE supports dealing with incremen-
tal verification. Alternative refinements can be separately verified without
flattening the entire specification and completely re-analyzing it, even if a
change has only been made in refinement step.

The AGAVE approach is conceptually independent of the details of the
specific state-machine based modeling formalisms and property languages.
To be practically usable and effective, however, AGAVE is further devel-
oped for Statecharts and Path-CTL property language.

Statecharts [43] are a structured graphical formalism used to describe
reactive systems, such as communication protocols, digital control units,
and software systems. It is a state-based formalism that is well-suited for
incremental modeling, due to its hierarchical structure.

The idea is that the input Statechart model is preprocessed and all the
composite states, i.e. the state that represent themselves a Statechart, are
seen as transparent, ignoring that they are already present in the model.
AGAVE is applied on the transformed model and this process is recursively
re-iterated on the Statecharts using the properties derived by AGAVE in the
previous steps. The iterative process terminates when the verification is
performed on all the composite states.

5.2 Statecharts

Statecharts are an extension of finite state machines, enriched with hierar-
chy and concurrency. The former is used to model the system at different
levels of abstraction by refining states through a sub-Statechart or the com-
position of sub-Statecharts. The latter supports the definition of two or more
Statecharts running in parallel, synchronized through the use of global con-
trolled variables. Given their structured and parallel nature, Statecharts are
a suitable tool for modeling complex systems in a compact way.

Since the original work by Harel [43], which introduced Statecharts in-
formally, the increasing popularity of the formalism over the years prompted
different definitions of the semantics and proposals for extensions [44, 54,
61]. Hereafter, we consider the basic elements of the original definition of
Statecharts which include its most popular features, ignoring time actions,
history, special events (e.g., events generated when a state is entered or ex-
ited) and special actions (e.g., start action, history clear, deep clear) and we
refer to the STATEMATE semantics, proposed by Harel [44].

Before formally introducing Statecharts, some preliminary definitions

54

i
i

“thesis” — 2014/1/30 — 16:53 — page 55 — #68 i
i

i
i

i
i

5.2. Statecharts

are needed. Given a set of atomic proposition AP , a condition c and an
action a, over AP , are defined, respectively, as

c → p | ¬c | c ∧ c,

a → p = false | p = true | neg(i),

where p ∈ AP and neg is an operator that negates the truth value of p.
C(AP) and A(AP) are the set of conditions and actions over AP , respec-
tively.
AP is, in general, partitioned in two subsets: E, representing events,

and I , representing the internal controlled propositions of the system i.e.,
AP = E ∪ I and E ∩ I = ∅. A Statechart over AP is defined as a tuple
S = 〈Q, q0, qF , St, ρ, τ〉, where

• Q is a finite set of states that can be themselves Statecharts, also called
chart-states [92];

• q0 ∈ Q is the initial state;

• qF ∈ Q is the final state;

• St is a finite set of Statecharts;

• ρ ⊆ (Q−{q0, qF})×{AND,OR}×℘(St) is the hierarchical relation,
used to decompose states into sub-states (℘(St) denotes the power set
of St). More precisely, each state of S can be decomposed through an
and- or an or-decomposition of one or more Statecharts;

• τ : (Q − {qF}) × E × C(I) → (Q − {q0}) × A(I) is the transition
relation that associates a triple composed of a state in Q, an event
e ∈ E, and a condition c over I with a pair composed of a state in Q
and an action over I . Each transition is represented by a directed arc
between states and is labeled with an ECA rule (event, condition, and
action—these will be defined below).

Given a state q ∈ Q and a ρ-related Statechart s ∈ St, q is called parent
of s (and of the states in s), and s is the child of q. The ρ-related State-
chart is also called a sub-Statechart. States that are not ρ-related with any
Statecharts are called basic states, and all the others are called composite.
As defined in the ρ relation, composite states can be refined into and- or
or-decomposition of Statecharts. The root states are those states that be-
long to a Statechart with no parents; they can be simple or composite. By
definition, initial and final states are basic and they do not have incoming

55

i
i

“thesis” — 2014/1/30 — 16:53 — page 56 — #69 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

and outgoing transitions, respectively. The former is often represented as a
simple large dot and the latter as an encircled dot.

A Statechart transition is labeled with an ECA rule, defined as a triple:
event e, condition c, action a. The event e is an element of the set E ⊆ AP ,
and represents an environmental proposition that has to be true to enable
the transition to fire. Since elements in E are events, they are true only
when explicitly indicated, and their truth value cannot be controlled. The
condition c and the action a are elements of C(I) and A(I), respectively,
and are built as defined above. Informally, c is a boolean expression on
propositions in I ∈ AP , which as to be true for the transition to be enabled,
and a represents the set of changes actuated if the transition is performed.
As a shortcut in the graphical notation, either the event or the condition, as
well as the action can be missing.

Basically, Statecharts are finite state automata, in which the execution
starts from the initial state by firing a transition. Transitions are triggered
by an event and are guarded by a condition on the internal propositions.
Once a transition to a new state is executed, the action indicated on the fired
transition is performed, modifying the values of some internal proposition.

The composite states represent the components that are hierarchically
specified through decomposition. If the current state s is or-decomposed,
being in s means being in one of the states of the refining sub-Statechart.
In addition, outgoing transitions from s become active only when the ex-
ecution of the sub-Statechart is over; that is, it has reached its final state.
If the state s is and-decomposed state, s is refined by a set of two or more
sub-Statecharts, that become active when s is the current state. Similarly
to the case of or-decomposition, outgoing transitions from s become active
only when all the sub-Statecharts in the decomposition have reached their
final state.

More formally, the STATEMATE semantics describes the behavior of
a system as a sequence of configurations. A configuration c describes a
snapshot of the system (i.e., the current state(s), the values of the internal
variables, and the active events). Since the current state may be a com-
posite state, the configuration should also include the configuration of the
executing sub-Statecharts. Formally, the set cs of active states must satisfy
the following rules:

• cs must contain the root state of the Statechart that contains the current
basic state(s);

• If cs contains an or-decomposition, it must also contain exactly one

56

i
i

“thesis” — 2014/1/30 — 16:53 — page 57 — #70 i
i

i
i

i
i

5.3. Verification

state of the sub-Statechart 2;

• If cs contains an and-decomposition, it must also contain one state for
each sub-Statechart;

The initial configuration c0 contains the initial state q0 as active state and
the initial values of the internal propositions are all set to false, if they are
not explicitly initialized.

If the system configuration is c, the system may evolve by firing a tran-
sition. A transition is triggered by an external event and by the satisfaction
of its condition. All the transitions outgoing the set of basic current states
in the current configuration are executable once triggered. As for the tran-
sitions outgoing a composite current state, we need to distinguish between
the case of an or-decomposition or an and-decomposition. In the former
case, the outgoing transition from the composite state can be executed only
if the sub-Statechart is in the final state. In the latter case, it can be executed
only if all sub-Statecharts are in a final state.

Moreover, the STATEMATE semantics regulates the sequence of con-
figurations following these assumptions:

• The changes that occur during a transition can be sensed only after its
completion. This means that if an action a is performed during the
transition between configuration n and configuration n+ 1, the result
of the action is visible in configuration n+ 1.

• The occurrence of an event is visible only for the duration of the tran-
sition in which it happens. If an event e occurs in configuration n and
causes a transition to configuration n+1, the event is no longer visible
in configuration n+ 1.

• In each configuration a maximal subset of non-conflicting transitions
is always executed, i.e., given the current configuration, the maximal
number of enabled transitions is fired.

5.3 Verification

This section describes how formally specified requirements can be verified
by AGAVE for system models described through Statecharts. We discuss
verification in the context of an iterative and agile development style, where
some states can be temporarily left unspecified and where the designer can

2According to STATEMATE, or-decomposition has an exclusive semantics.

57

i
i

“thesis” — 2014/1/30 — 16:53 — page 58 — #71 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

quickly explore alternative decompositions to evaluate their possible im-
pact on requirements satisfaction. We assume that the Statechart may con-
tain basic states, composite states, and unspecified states, that are states
whose internal structure is currently unknown and will be specified later.
Composite and unknown states are called transparent. If a transparent state
is refined by a sub-Statechart, this is allowed to have transparent states to
support partial specification at all levels.

Together with the Statechart specification M , we provide a set of prop-
erties Φ expressed in Path-CTL, which describe the requirements the spec-
ification is expected to satisfy. M is verified against every ϕ ∈ Φ using
the Algorithm 1. The verification, however, may not yield a definite result
(TRUE or FALSE), since the result may depend on the yet unknown behav-
ior of transparent states. In this case, the algorithm calculates the set of con-
straints for the future refinement of the transparent states to guarantee the
satisfaction of the initial property. The algorithm behaves in the same way
for unknown and composite states, but in the latter case, the constraints pro-
duced by the algorithm, can be immediately checked on the sub-Statechart.
Hence, this technique allows the developer not only to verify partially spec-
ified systems, but also to deal efficiently with the verification of completely
defined Statecharts, by splitting the verification in multiple levels.

This approach performs the exploration of possible different refinements
efficiently in an incremental manner that only analyzes the alternative re-
finements.

Algorithm 1 Statechart Verification

1: function CHECK(M , ϕ)
2: ilts = transformSC2Ilts(M)
3: result = verify(ilts, ϕ)
4: if result.isUnconditional() = T then
5: return result;
6: end if
7: for (trans_state,sub_p) in extract(result.cons) do
8: if trans_state is composite then
9: subSC = load_subSc(trans_state, M)

10: sub_result = CHECK(subSC, sub_p)
11: if sub_result.isUnconditional() = F then
12: result = update(result, sub_result)
13: end if
14: end if
15: end for
16: return result
17: end function

58

i
i

“thesis” — 2014/1/30 — 16:53 — page 59 — #72 i
i

i
i

i
i

5.3. Verification

Algorithm 1 works through a number of steps. First (line 2), the model
M, which represents a particular level of the Statechart, is translated into the
equivalent labeled transition system (ILTS). This ILTS is verified against
the property ϕ and the verification outcome is returned as result. If no con-
straint is generated (result.isUnconditional equals true), the algorithm
exits.

Otherwise, result.cons contains the set of constraints that shall be sat-
isfied by the unknown components to make the property hold, and the rest
of the algorithm iteratively extracts and analyzes each of these constraints
(line 7–15). The constraint (sub_p) of each transparent state (trans_state)
is checked by recursively invoking the same algorithm, feeding the gener-
ated constraint and the corresponding Statechart subSC. The verification
result is updated and gradually completed with the outcomes of these inner
verifications.

5.3.1 Statecharts-to-ILTS Transformation

Hereafter, we discuss how to transform Statecharts (with transparent states)
into an equivalent ILTS representation. To do that, we first need to ap-
ply two preprocessing steps. The first step eliminates transparent states
by mapping each of them onto two basic states connected by an unlabeled
transition, similarly called transparent transition. A transparent transition
represents the internal behavior of the corresponding transparent state. The
set of incoming transitions that reach the original transparent state are con-
nected to the source state of the transparent transition, while the outgoing
transitions depart from the destination state, as shown in Figure 5.2.

... ...

S1

t i1

t i2

t ik

t o1

t o2

t ok

... ...

S 1

t i1

t i2

t ik

t o1

t o2

t ok

S 1

tt1
1 2

Figure 5.2: Replacing transparent states with transparent transitions

The second preprocessing regards and states. and states refine a state
into two or more sub-Statecharts that are executed in parallel. Our algo-
rithm replaces these sub-Statecharts with a single Statechart whose set of
states is the Cartesian product of the sets of states of the sub-Statecharts,

59

i
i

“thesis” — 2014/1/30 — 16:53 — page 60 — #73 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

and transitions represent all possible interleavings. Transparent transitions
in the source Statecharts remain transparent also in the generated target
Statechart.

At this point, we can generate an equivalent ILTS through two basic
steps: producing the graph and labeling the ILTS states.

To produce the ILTS graph structure, each transition of the Statechart is
transformed into an ILTS state. If the transition is transparent, the gener-
ated state is also transparent and labeled with T . Since ILTS states represent
transitions of the original Statecharts, two states are connected in the ILTS
only if the corresponding transitions can be executed sequentially, one after
the other, in the original Statechart. The algorithm also creates two ad-
ditional ILTS states: the initial and the final one, respectively connected
to all the ILTS states that represent transitions of the original Statechart
connected to the initial and final state of the Statechart. Figure 5.3 shows
a Statechart fragment and the corresponding target ILTS structure (drawn
with dashed lines)3.

S1 S2

S3

S4

12t 23t

24t

Figure 5.3: Transforming transitions into states

Once the structure is created, we need to perform the (possibly incom-
plete) labeling of ILTS states. We recall that the labels of ILTS states de-
scribe the set of propositions that are true in the states, if they are known.
The labeling is performed according to the following procedure. First, each
state in the target ILTS is labeled with the events that trigger the correspond-
ing transition in the source Statechart. Concerning the actions associated
with a Statechart transition, since they can modify the values of a set of
atomic propositions, the ones that are true are used to label the correspond-
ing ILTS state (let us call it s).

At this stage, we need to perform further labeling of s, since we only
took into account the actions, which tell us which atomic propositions
changed by performing the corresponding Statechart transition and this may
obviously not include all the propositions true in s. To complete the label-

3Note that in the example, the initial and the final states are not created since they are not present in the
original Statechart.

60

i
i

“thesis” — 2014/1/30 — 16:53 — page 61 — #74 i
i

i
i

i
i

5.3. Verification

ing, we also need to add the propositions in the previous states (the ones
whose outgoing transitions lead to s) that must be propagated to s because
they did not change during the transition. Notice that, in general, since a
state may be reached with different paths, after the labeling, it may contain
contradictory propositions (e.g., one may contain p and another ¬p). In this
case, we need to replace the state with the duplicate states s11 and s21, one
including label with p and the other including ¬p. The successor states of s
are then connected to s11 and s21 and possible further propagation with state
duplication may then occur.

Finally, we need to consider the case of an ILTS transparent state st. For
simplicity, let us first assume that the possible refinements of transparent
states in the source Statechart do not modify the truth value of propositions.
This assumption does not mean that the transitions of the sub-Statechart
cannot modify such values, but just requires that after its completion the
propositions are set back to their initial values.

Let us further assume that there is only one ILTS state (si1), whose out-
going transition leads to the transparent ILTS state st. Then, all the basic
ILTS states so2, so3, . . . , son that directly follow the transparent state st are
labeled with the set of atomic propositions that are true in si1, with the ob-
vious exception of the propositions modified by the Statechart transitions
associated with the ILTS states so2, so3, . . . , son. If we now consider the
case when more than one ILTS state (si1, si2,. . . , sin) preceeds st, as for
the non transparent ILTS state, contradictory situations have to be consid-
ered. If for example, si1, si2,. . . ,sin contain contradictory propositions, we
need to duplicate st and handle this case similarly to the propagation case
described earlier. It is also possible to relax the first assumption, consid-
ering the case in which the transparent transition can modify the value of
some atomic proposition. To sketch the approach consider the case, where
a transparent ILTS state st, associated with the transparent transition tt of
the original Statechart and connected to the state so2, can modify the value
of the atomic proposition p. Then so2 is split in two states: s1o2 where p is
true, and s2o2 where p is false. This splitting is motivated by the need for
considering all the possible value of p after the execution of the component
in st, since this value is not a priori known.

After all states have been fully labeled, we need one final state to take
into account the effect of the condition of the original Statechart’s transi-
tions. For each transition t of the original Statechart, represented as a state
in ILTS (s), we check the labeling of the previous ILTS states (say si1).
If this labeling is consistent with the condition of the transition t, then the
connection between si1 and s is kept. If this is not the case, the connection

61

i
i

“thesis” — 2014/1/30 — 16:53 — page 62 — #75 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

is removed. If all the incoming connections to a state are removed, the state
itself is also removed.

5.3.2 ILTS/Path-CTL Verification

The model-checking algorithm verifies the Path-CTL properties against the
ILTS previously generated. The Path-CTL properties could be the one de-
rived by a previous step of the verification or the original stated in Φ. Notice
that, even if the properties in Φ were stated on the Statechart and not on the
ILTS, they do not need to be changed, since the paths on the ILTS are equiv-
alent to the possible sequences of configuration in the original Statechart.

Because of the and-decomposition of Statecharts, that are resolved by
performing the Cartesian product, and the duplication caused by the split-
ting in the labeling procedure, a transparent state s in the original Statechart
may be represented by different transparent states in the ILTS. In order to
check the derived property for the transparent component on the correct
element, the algorithm must aggregate the constraints of these ILTS trans-
parent states, generating a single constraint for the original Statechart state
s. Basically the aggregation consists in a disjunction of the generated con-
straints, simplified by removing the duplicated constraints.

5.4 Railway Crossing System

In this section, we describe the application of our approach through an ex-
tension of the classic Railway Crossing System (RCS) [73]. The main goal
of RCS is to control trains and gates, such that a train never crosses a gate
when it is open (a high-level is shown in Fig. 5.4). This requirement is a
safety property, whose violation may lead to accidents.

There are three sensors (A, B, and C) placed on the track to detect when
a train approaches, crosses and leaves the gate. Another property that shall
be satisfied is that the train can cross the gate only if it obtains permission
from a central authority ("central station"). The central station manages
the railway lines, and it has its own policies to regulate the dispatching
of permissions. For example, if an emergency situation is detected and
the train is approaching, the central station will not give to the train the
permission to cross, and the train has to stop.

The high-level modeling of this system leads to the first-level Statechart
in Figure 5.5, which consists of two concurrent components: gate and train,
which interact together via transponders. The gate may be in one of two
states s4 and s5. The gate can switch between these two states by acting on
the variable open, and according to the modes of the train. If the train is

62

i
i

“thesis” — 2014/1/30 — 16:53 — page 63 — #76 i
i

i
i

i
i

5.4. Railway Crossing System

Sensor A Sensor B Sensor C

Figure 5.4: Railway Crossing System

switched to approaching mode, transition t4 is activated and the gate can be
closed. When the train returns to traveling mode, transition t5 is activated
and the gate can be opened.

RCS

Train

s1

Gate

s2

s3

t1:
e1[traveling]/
approaching

¬traveling

t2:
e2[approaching

¬open]/
crossing

¬approaching

t3:
e3[crossing]/

travelling
¬crossing

s4

s5

t5:
[traveling]/

open

t4:
[approaching]/

¬open

s7

t6:
[]/

askPermit

s9

t10:
Timeout

[¬permit]/

t8:
e4[]/

permit

Level 1

Level 2

t7:
[]/

askPermit

s8
t9:

[permit]/
ackToCentralStation

e1: sensor A passed
e2: sensor B passed
e3: sensor C passed
e4: permission received
from the central station

t11

T

T
s10

t11:
e5[]/

failure

t12:
[]/

¬failure

t13:
[]/

alarm

Figure 5.5: The Statecharts of RCS

The train modes are represented by three boolean variables: traveling,
approaching and crossing, which change as the three sensors are passed.
At the beginning, the train is in traveling mode (state s1). When the train
passes sensor A, event e1 is generated, and the train moves to approaching
mode (state s2). Analogously, when sensor B is passed, it generates event
e2 and the train switches to crossing (state s3). This transition is performed
only when the gate is closed. Finally, when event e3 is generated, the train
has completely crossed the gate, and the mode is changed back to travel-
ing. State s2 is considered as a transparent state, since its refinement is
postponed to next modeling phase. In fact, when the train starts approach-
ing, different operations can be executed and different component can be
activated.

In our case, the train, once approaching, must communicate with the

63

i
i

“thesis” — 2014/1/30 — 16:53 — page 64 — #77 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

central station to receive the permission before crossing the gate. This re-
quirement can be expressed by two Path-CTL ϕa = AF (crossing) and
ϕ′a = ¬E(¬permit U crossing), where AF stands for all path eventually
andEU stands for exists a path until. The former is a liveness property stat-
ing that in any case the train will cross the gate, while the latter is a safety
property stating that there is no behavior in which the train crosses without
receiving the permission. Furthermore, we consider another reliability re-
quirement which guarantees that the system recovers from any failure. This
property can be expressed in Path-CTL as ϕb = ¬ EF (EG failure). Due
to lack of space, we only focus on ϕ′a and ϕb in the rest of the paper.

To reduce development risks and anticipate possible requirements vio-
lations in an early development stage, we would like to check if the high-
level specification (though incomplete) satisfies these requirements. The
algorithm described in the previous section transforms the first-level Stat-
echart shown in Fig. 5.5, into the ILTS illustrated in Fig. 5.6. The ILTS
is checked against the property ϕ′a and ϕb. The first property leads to the
following constraints for state s2: ϕ′a1 = ¬E(¬permit U crossing) and
ϕ′a2 = ¬(EpG(¬permit)). ϕ′a holds in the Statechart only if both of these
constraints are satisfied by a further refinement of s2. The verification of
the second property ϕb = ¬ EF (EG failure) reproduces the same prop-
erty for s2, which means that its satisfaction is guaranteed if the property
holds in s2.

S2

S2
¬open,

approaching

¬open,
approaching

open,
approaching

open,
traveling

open,
traveling ¬open,

approaching

¬open,
crossing

¬open,
traveling

Figure 5.6: The ILTS for the first refinement of the running example

State s2 represents a component that is in charge of controlling the train
when it is approaching. In the second refinement, s2 is elaborated as the
second level of the behavior shown in Fig. 5.5. First, the train requests the
central station for permission to cross the gate (t6). If it is granted, event
e4 is generated, and transition t8 is executed. The system moves to state s8,

64

i
i

“thesis” — 2014/1/30 — 16:53 — page 65 — #78 i
i

i
i

i
i

5.5. Experimental Evaluation

from which an acknowledge message is sent to the central station (transition
t9). Instead, if the central station does not grant the permission before a
timeout, the system moves to the state s9, a transparent state that will be
later refined. One may say that the train has to stop until the permission is
issued by the central station, but it could be an invalid assumption. Thus
the refinement is postponed to further requirements elicitations.

Once the second level of the Statechart in Fig. 5.5 is specified, we check
whether it satisfies the system requirements: ϕ′a and ϕb. AGAVE does not
check again the whole Statechart, but checks only s2 against the derived
constraints. The verification of ϕ′a1 and ϕ′a2 against the corresponding ILTS
of s2 (shown in Fig. 5.7) results in reproducing respectively the same prop-
erties for s9. ϕ′a requires both of these properties to be satisfied. On the con-
trary, the verification of the reliability property ϕb = ¬ EF (EG failure)
returns false because there is the possibility that the system infinitely re-
mains in the failure mode.

permit

S9 timeout¬permit,
timeout

permit,
ack

¬permit,
askPermit

¬permit,
failure

¬permit,
failure,
alarm

¬permit,
¬failure

¬permit,
askPermit

Figure 5.7: The ILTS for the second refinement of the running example

5.5 Experimental Evaluation

AGAVE is supported by a prototype verification tool, as a Java standalone
application 4. The tool takes as input two XML files, one representing the
model of the system (a Statechart) and one representing the property to ver-
ify (in Path-CTL). The tool supports the syntax and semantics described
in Section 5.2, and follows the steps of the algorithm presented in Sec-
tion 5.3. The output of each verification task is either “true”, “false”, or

4Available at https://sites.google.com/site/amirsharifloo/tool-agave.

65

https://sites.google.com/site/amirsharifloo/tool-agave

i
i

“thesis” — 2014/1/30 — 16:53 — page 66 — #79 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

“conditional”. In the conditional case, a set of constraints on transparent
states is reported as well.

To grasp a better understanding of how the incremental approach is sup-
ported by AGAVE can reduce the verification time, we provide the result
of an experiment. We assumed that RCS example (Section 5.4) is extended
through more refinement steps by providing specifications for each trans-
parent state. We use the first level of the RCS Statechart introduced as
refinement at each stage. All the experiments have been carried out on
a machine with the following characteristics: CPU 2.53GHz, RAM 4GB,
and operating system Windows 7.

Figure 5.8 shows the total time required to verify the new models intro-
duced at each refinement. To demonstrate the advantage of the incremental
approach, Figure 5.8 also shows the time needed for the traditional veri-
fication (one may call integrative), which considers the whole integrated
specification at the end of each refinement. As the number of the refine-
ment levels increases, the time of traditional approach rapidly grows (note
that the scale is logarithmic). In particular, it reaches 1,93 minutes when a
six-level Statechart is analyzed, while AGAVE requires only 328 millisec-
onds. The main reason of this difference is that the traditional approach
at each step verifies the whole integrated specification, while AGAVE only
checks the sub-Statecharts of the composite states against the constraints
generated by the previous verifications (Figure 5.9). Notice that our tool
is a prototype and the result can be improved by applying further optimiza-
tions, which will be the goal of future work.

1!

10!

100!

1000!

10000!

100000!

1000000!

1 ! 2 ! 3 ! 4 ! 5 ! 6 !

Ve
rifi

ca
tio

n
tim

e
[m

s]
!

Statechart Level!

AGAVE! Integrative Approach!

Figure 5.8: The verification time required for each level of the Statechart

66

i
i

“thesis” — 2014/1/30 — 16:53 — page 67 — #80 i
i

i
i

i
i

5.6. Related work

0!

100!

200!

300!

400!

500!

600!

1! 2! 3! 4! 5! 6!

Ve
rifi

ca
tio

n
sp

ac
e
!

[N
um

be
r o

f s
ta

te
s]
!

Statechart Level!

AGAVE! Integrative Approach!

Figure 5.9: The number of states analyzed for each level of the Statechart

5.6 Related work

There have been many work addressing the verification of Statecharts [24,
35, 73, 92]. However, to the best of our knowledge, there is no work in
the literature dealing with verification of incomplete specification of State-
charts. Zhao and Krogh [92] discuss the verification of CTL properties by
introducing Statechart Kripke Structure as the underlying analyzable model
that is derived from Statecharts. The states are marked by considering the
values of variables. The approach explores all execution paths and applies
MATLAB Simulink for the analysis.

There exist approaches to transforming Statecharts to hierarchical au-
tomata and then applying different verification techniques [24, 35]. Gnesi
et al. [35] present an approach through which Statecharts are mapped on hi-
erarchical automata and then a model checking environment, called Jack, is
used to check ACTL properties. Dong et al. [24] transform Statecharts into
Extended Hierarchical Automaton (EHA) to check Linear-time Temporal
Logic (LTL) properties.

Clark et al. [17] present an approach to verifying Statecharts by using
SMV. Although the approach uses the notion of modules in SMV to have
a straight-forward mapping, the analysis does not take into account any
compositional or reusable verification. Alur and Yannakakis [2] study the
verification reuse of hierarchical state machines to avoid re-doing the whole
verification when some state machines change. This approach has similar-
ities with AGAVE; however, they take a bottom-up approach and calculate
the verification results starting from the lately-specified components that
show up at the end of refinements. On the contrary, AGAVE can be viewed

67

i
i

“thesis” — 2014/1/30 — 16:53 — page 68 — #81 i
i

i
i

i
i

Chapter 5. AGAVE: A Methodology for Incremental Verification

as a kind of assume-guarantee method [46], [47], [70], applied to high-level
models and incomplete refinements.

However, the existing assume-guarantee methods view a system as a col-
lection of cooperating components, each of which has to guarantee certain
properties. A component is verified independently from the others assum-
ing a certain behavior of the components it interacts with [70]. Differently
our approach considers the whole specification as the system behavior and
employes the model-checking techniques, which produce constraints for
unspecified components.

5.7 Conclusion

This chapter presents AGAVE, a methodology that aims to support devel-
opers in the iterative and incremental system specification. AGAVE offers
a technique to verify temporal logic properties of incomplete models, ex-
pressed in state-based formalisms, where some parts are unspecified. These
unspecified parts may be later refined and elaborated during the develop-
ment or left as components dynamically deployable at run time.

The methodology exploits the hierarchy of the model, applying the ver-
ification iteratively. At each stage, a set of properties are deduced that have
to be satisfied by the refinements to guarantee the satisfaction of the origi-
nal property. AGAVE has been implemented for Statecharts and Path-CTL
temporal logic. We have evaluated it through a case study and demonstrated
the benefits of such approach by performing state space and performance
analysis.

68

i
i

“thesis” — 2014/1/30 — 16:53 — page 69 — #82 i
i

i
i

i
i

Part III

Stochastic Modeling and
Verification of Closed Variability

69

i
i

“thesis” — 2014/1/30 — 16:53 — page 70 — #83 i
i

i
i

i
i

i
i

“thesis” — 2014/1/30 — 16:53 — page 71 — #84 i
i

i
i

i
i

CHAPTER6
Modeling and Verification of Stochastic

Software Product Lines

"Give me a place to stand and with a lever I will move the whole world."
Archimedes

Engineering SPLs has been of interest for both industry and academical
research. The advantage of establishing an SPL and producing variety of
products, that share a common set of features, has been proved by modern
companies 1. A development approach inspired by SPL principles aims at
improving productivity and reducing the time and cost to develop a family
of products. Reusability is the key point to achieve such benefits through
different software engineering disciplines from requirements engineering
[63] to implementation and testing [53].

Devising model-checking techniques for SPLs is of importance, due
to the fact that a design flaw is propagated to many products. To reach
such aim, the first step is to represent an SPL specification via a compact
and user-friendly notation, instead of individual modeling of each prod-

1Product Line Hall of Fame: http://splc.net/fame.html

71

http://splc.net/fame.html

i
i

“thesis” — 2014/1/30 — 16:53 — page 72 — #85 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

uct. Such representation shall come with a clear semantics, which would
allow us to reason about product behaviors. Classen et al. [20] took the
initial steps by introducing FTS as an extension of transition systems. They
expanded their work by providing model-checking techniques capable of
verifying all products at once for LTL and CTL properties [19]. Although
not so formal, there exist several proposals to capture behaviors of SPLs
by using high-level models such UML diagrams [38, 93]. High-level mod-
els provide more intuitive representations and simplify understanding and
communication among stakeholders. The succinctness is the main advan-
tage of such modeling approach w.r.t. FTS.

In this chapter, we take a further step in modeling SPL behaviors and
formally verifying their properties. In contrast to the existing techniques,
we focus on stochastic properties, which are more appropriate for speci-
fying non-functional requirements (hereafter NFRs). In particular we de-
scribe how to model variability and stochasticity in UML Sequence Dia-
grams (SDs). Walking through our running example, the classic example
of SPL vending machine is represented by UML SDs and Feature Diagrams
(FDs). Regarding NFRs, our focus is on reliability and energy consump-
tion. We discuss how SDs annotated with stochastic information are used
to reason about the satisfaction of these two NFRs.

Figure 6.1 illustrates our framework. As shown, the framework consists
of both modeling and verification of NFRs for SPLs. It is described how
stochastic SPLs are modeled by SDs, and how they are transformed into
a new variation of Markov models, which are suitable for model check-
ing. In this direction, we introduce Featured Discrete-Time Markov Chains
(FDTMCs), and later show how they can be model-checked for predict-
ing NFRs satisfaction of all products of an SPL. In the following sections,
we first briefly overview our running example, and then present the model-
ing, transformation, and verification techniques employed within the frame-
work.

6.1 Motivating Running Example

As a running example, we recall the SPL of the vending machine earlier
introduced in Chapter 2. The example refers to a product line that produces
beverage vending machines. Figure 2.1 shows the feature model for the
product line. The general scenario starts by inserting coins and receiving
changes by the user. Then she chooses a beverage, which is consequently
prepared and delivered by the vending machine. As illustrated in the feature
model, a vending machine may have the capability to prepare tea, soda, or

72

i
i

“thesis” — 2014/1/30 — 16:53 — page 73 — #86 i
i

i
i

i
i

6.1. Motivating Running Example

Stochastic
Variable SDs Feature Model

Featured
Discrete-Time

Markov Models

Non-Functional
Requirements

Model to Model
Transformation

Probabilistic
Model Checker

results for each valid product

Figure 6.1: The Variable SD for the whole product line of the vending machine

both. It may require a cash payment or may simply offer a free drink.
Similarly, it may support a feature to add flavor.

Different vending machines can be derived from this feature model. For
example, one may support tea and cash. The other may offer the features
soda, free and taste. Figures 6.2 and 6.3 show the high-level interactions
of system components for these two products. As illustrated in Figure 6.2,
each action is represented by a message, and is annotated with reliability
and energy consumption values. Initially, the user inserts coins and then
receives the change. Message Pay shows the act of inserting coins and re-
ceiving the change. Regarding the annotations, the message is annotated
with prob="0.998", which means that the action of payment is successfully
performed with a probability of 0.998. Moreover, the message is annotated
with energy="10", which means 10 "units of energy" are consumed to ac-
complish this action. Then the system calculates the difference between
the money inserted and the product’s price, and returns it as a change to the
user. The message Return represents this action. The scenario continues
with two possible choices taken by the user. She may cancel the order or
may choose tea, which is followed by a set of actions eventually leading to
beverage delivery.

As mentioned earlier, we are interested in specifying and verifying relia-
bility and energy consumption properties of each product. For example, an

73

i
i

“thesis” — 2014/1/30 — 16:53 — page 74 — #87 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

Figure 6.2: Product 1 (cash and tea)

important property is the average energy consumption of a specific instance
of the vending machine. Similarly, one might be interested in knowing how
reliable the functionality of beverage delivery is. Later, we describe how to
formally specify and verify such properties for all products derived from an
SPL.

6.2 Stochastic Variable Sequence Diagrams

To capture the behavior of an SPL, we augment UML SDs with variability.
Hereafter the resulting diagrams will be called Variable SDs. The behav-
ioral variability is identified and modeled as variation points and alterna-
tives within this kind of SDs. Variable SDs consist of a set of main ele-
ments of UML SDs and a set of stereotyped elements to specify variability.
The notation supports the following building blocks: lifelines, messages,
and combined fragments. It also supports the following types of messages:
synchronous, asynchronous, and reply; they are indicated by a line with
solid arrowhead, a line with an open arrowhead, and a dashed line with an
open arrowhead, respectively. Messages play a major role; they are used
to represent both communication and computation. We use self-messages
to indicate the execution of internal actions by a lifeline, while inter-object
messages stand for a communication. Figure 6.4(a) demonstrates these var-

74

i
i

“thesis” — 2014/1/30 — 16:53 — page 75 — #88 i
i

i
i

i
i

6.2. Stochastic Variable Sequence Diagrams

Figure 6.3: Product 2 (free, soda, and taste)

ious message types. Notice that if an object sends a synchronous message,
it remains blocked until it receives a reply message. Instead, when an object
sends an asynchronous message, it continues with the rest of the actions it is
expected to perform. A reply message is a kind of asynchronous message,
as far as the issuer is concerned.

Messages are transmitted according to partial order semantics, which
includes two rules: (1) the actions of a lifeline are ordered from top to
down, (2) a message cannot be received before it is sent. Sets of messages
can be grouped together in combined fragments, graphically represented by
a box. The official specification of UML comprises many different types of
combined fragments. Hereafter we focus on the four major fragments: (1)
Alternative, (2) Option, (3) Loop, and (4) Parallel.

Mutually exclusive choices between two or more sequences of mes-
sages are represented using Alternative. Each Alternative contains a set
of operands (each of which is a group of messages) separated by a dashed
line. Each operand is associated with a condition and is executed if the
condition evaluates to true (Figure 6.4(b)). Note that the condition of Alter-

75

i
i

“thesis” — 2014/1/30 — 16:53 — page 76 — #89 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

(a) Simple diagram (b) Alternative (c) Option

(d) Loop (e) Parallel

Figure 6.4: Sequence diagrams

native is evaluated only once when all the lifelines participating in it have
reached the Alternative. In fact, we follow the proposal by Alur [2] and
apply a synchronous approach, which is also used for the other fragments
(Option and Loop) whose execution is conditional.

Option fragment is used to model a sequence that occurs if and only if a
certain condition evaluates to true (Figure 6.4(c)). SDs represent iterating
sequences of messages through loops. A Loop is associated with a condi-
tion and the sequence of messages included in the fragment is executed as
long as the condition evaluates to true (Figure 6.4(d)). The Parallel frag-
ment represents parallel computations (Figure 6.4(e)).

As aforementioned, Variable SDs are able to capture the variability in a
behavior. To do that, SDs are augmented with variation points and alterna-
tives which are linked to the elements of the SPL feature diagram. More
precisely, variation points are represented by stereotyped Option or Alter-
native fragments. The operands of those fragments contain the alternative
behaviors for variation points. Each variation point is linked to a feature in
the SPL feature diagram, which shares the same name. The relationships
in the feature model define the semantics of variation points in the Vari-
able SD. An Alternative fragment is used to show an OR relation between

76

i
i

“thesis” — 2014/1/30 — 16:53 — page 77 — #90 i
i

i
i

i
i

6.3. Featured Discrete-Time Markov Chains (FDTMCs)

a feature and its children. Similarly, an Option fragment is used to illus-
trate an optional feature. These fragments are discriminated with tags on
the top-right side. Options are tagged with the keyword Optional point, and
Alternatives are tagged with Variation point.

Figure 6.5 shows the Variable SD of the running example. As shown,
the Option fragment Taste is an optional feature. Alternative fragments are
used to model variation points in which we may select a feature among
several of them. An Alternative may represent an inclusive OR, which
means that at least one of the operands is included in any derived product.
The Alternative tagged with "Beverage" is an example for this kind. An
Alternative may also support an exclusive OR semantics, which means that
one and only one of the operands can be included in a product. "Payment"
feature is an example of this kind.

For the sake of stochasticity modeling and quality analysis, the elements
of SDs are annotated by MARTE profile [62]. We annotate all messages of
a diagram with two MARTE properties: energy and prob. The former –a
non-negative real number– represents the energy needed for message trans-
mission. The latter represents the probability that a message transmission
is successfully performed. Note that since self-messages represent inter-
nal operation, these properties represent the energy consumption and the
reliability of the operation, respectively.

Combined fragments, except Parallel and those dedicated to capturing
variability, are annotated with execution probabilities. The probabilities
are added to resolve the non-determinism introduced by these fragments. A
probability attached to an Option indicates the likelihood that the optional
behavior is performed during a random execution trace. Similarly, each
loop is annotated with a probability, which expresses the probability that
the loop may iterate. Since Alternative fragment includes more than one
operand, each operand is annotated with an execution probability 2.

Variable SDs provide a unified representation for all products of an SPL;
however, they are not suitable for formal analysis of requirements. For this
reason, we transform them into FDTMCs, which are later analyzed through
model checking.

6.3 Featured Discrete-Time Markov Chains (FDTMCs)

To capture variability in SPLs we define Featured DTMCs (Hereafter FDTMC)
as extension of DTMCs, which allow us to represent different probability

2The sum of the probabilities for an Alternative fragment must be always 1.0.

77

i
i

“thesis” — 2014/1/30 — 16:53 — page 78 — #91 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

Figure 6.5: The Variable SD for the whole product line of the vending machine

distributions over each transition. More precisely, the probability distribu-
tion of a transition varies depending on the enabled features. In other words,
the probability distribution is a function of features, which themselves are
boolean values. An FDTMC is defined as a tuple (S, ν, d,Π, P,Ξ,W)
where

• S is a countable, non-empty set of states;

• ν is a vector of size |S| that records the initial probability distribution
of every state;

• d is a feature diagram;

78

i
i

“thesis” — 2014/1/30 — 16:53 — page 79 — #92 i
i

i
i

i
i

6.4. Model to Model Transformation

• Π : Fd → [0, 1] is a total function called probability profile;

• P : S × S → Π is the transition probability function, which assigns a
probability value to every transition;

• Ξ : Fd → R+
0 is a total function called reward profile;

• W : S × S → Ξ is the transition reward function, which assigns a
reward value to every transition;

where Fd is a feature expression that is valid w.r.t feature diagram d.
Note that any instance of FDTMC must ensure the satisfaction of the usual
probability axioms. In particular, the sum of the probability of each ran-
dom outcome must be equal to one. It implies that the sum of the initial
probability of all the states must be one :

∑
s∈S ν(s) = 1. For every state,

the probability sum of its outgoing transition must be one as well. Since
features can influence transition probabilities, this assertion must hold for
all the valid products. The actual value of a product is thus determined
according to the considered product and the probability profile Π.

6.4 Model to Model Transformation

This section explains how StochasticVariable SDs (hereafter SVSDs) are
transformed into FDTMCs. Given an SVSD, we generate two FDTMCs:
one representing reliability model and another for energy consumption.
The procedure of both transformations are the same with only difference in
mapping messages. As for reliability model, each message is transformed
in two transitions to represent both success and failure. Regarding an en-
ergy model, a message is transformed into only one transition annotated
with energy profile. In the following, we first describe the procedure for
reliability models and then discuss its variation for energy consumption.

To apply the transformation, first we need to find the order in which
actions are performed (which in our case corresponds to finding the order
in which messages are transmitted) by iteratively performing a search in the
diagram to find performable actions. We start in an initial state in which
lifelines are initiated, and then we find the next performable actions (self-
message or message) and transform them into transitions of target FDTMC.

Algorithm 1 illustrates the algorithm to extract performable actions. For
simplicity, let us assume that the SVSD does not include any combined
fragment. To find the actions, the method goes through each lifeline and
checks the upcoming actions that the lifeline is supposed to perform. If the
action is a self-message, it is performable without any condition. In case it

79

i
i

“thesis” — 2014/1/30 — 16:53 — page 80 — #93 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

Algorithm 1 Retrieving performable actions

1: RetrievePerformableActions(SD sd){
2: var Action[] actions;
3: foreach (lifeline[i] ∈ sd.lifelines){
4: if (¬lifeline[i].IsFailed() & &¬lifeline[i].IsF inished())
5: actions.add(RetrievePerformableActions(lifeline[i]));
6: }
7: }
8: RetrievePerformableActions(Lifeline l){
9: var Action[] actions;

10: while (){
11: switch (l.currentaction.type){
12: case ”RECEIV E” :
13: if(¬IsAlreadySent(l.currentaction)){
14: return actions;
15: else;
16: l.moveToNext();;
17: case ”SEND −ASY N” :
18: actions.add(l.currentaction)
19: l.moveToNext())
20: case ”SELF −MSG” ‖ ”SEND − SY NC” :
21: actions.add(l.currentaction);
22: return actions;
23: }
24: }
25: }

is a receive action, it is necessary to check whether the sender lifeline has
transmitted the message. If it has done so, receiving is performed and also
the next action is checked. If the action sends a message, the type of mes-
sage is considered. If it is synchronous, it is added as a performable action.
If it is asynchronous, not only it is added to the list of performable actions,
but also the next performable action sought. The reason is that sending an
asynchronous message does not block a lifeline, so it can continue imme-
diately with the next action.

Transforming messages to transitions depend on the type of properties
that one would like to check. In case of a reliability property, the actions
on the SVSD are annotated with their success probability P (1 − P is the
probability of failure). Algorithm 2 describes how to map an SD onto a
FDTMC. Method Transform invokes method RetrievePerformableAction
(discussed earlier) to extract actions given the execution locations of each
lifeline. Each action is transformed into two transitions, representing suc-

80

i
i

“thesis” — 2014/1/30 — 16:53 — page 81 — #94 i
i

i
i

i
i

6.4. Model to Model Transformation

cess and failure. If an action is performed correctly, the corresponding
lifeline in the SVSD moves to the next action and a success transition is
added to the FDTMC. Otherwise, the receiver lifeline involved in the action
is failed and a failure transition is added (Figure 6.6(a)). In Algorithm 2,
the methods Create_Success and Create_Failure are responsible for adding
these transitions to FDTMC.

After performing any action, the FDTMC transitions from the current
state to a new state. If there is more than one performable action, we add
new transitions to represent the interleaving. For instance, Figure 6.6(b)
shows that N transitions are added to the FDTMC. Each of these transi-
tions assumes that one particular action is performed before the others. The
probability of each transition equals to 1/N, N being the number of per-
formable actions.

To simplify the exposition, Algorithms 1 and 2 describe the method to
find and transform performable actions of a diagram without combined
fragments. To cope with these fragments, we follow the rules described
below:

Option. If the action we are considering is the first action of an Op-
tion fragment, two different traces may exist. The first trace occurs if the
condition of the Option is true (with probability Opt) and its actions are
performed. On the other hand, the second trace occurs if the condition is
evaluated to false (with probability of 1-Opt) and the actions are ignored.
In the latter case, each lifeline involved in the Option moves to the location
after the Option, and performable actions are retrieved from there. In the
corresponding FDTMC, two new transitions and states are added as shown
in Figure 6.6(c).

Alternative. Transforming an Alternative fragment is quite similar to
an Option, with the difference that one of the operands is chosen and its
actions are performed. The probability attached to each transition op1, .. ,
opN (Figure 6.6(d)) is the probability that the operand is chosen.

Loop. If the first action of a Loop is visited, a strategy similar to Option
is used to map the first iteration. However, when the last action of the Loop
is performed, two traces may be executed depending on the condition of
Loop: either Loop is iterated once more or it is exited (Figure 6.6(e)).

Parallel. In case an action is the first action of a Parallel fragment, all
its operands are activated and shall be performed in a parallel manner. To
cope with such situation, we consider all interleavings between the actions
of the operands.

The mapping of variation points expressed through Alternative and Op-
tion is similar to the above; however, instead the probabilities over the

81

i
i

“thesis” — 2014/1/30 — 16:53 — page 82 — #95 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

Algorithm 2 Ttransforming Variable SD to FDTMC

1: TransformSDtoDTMC(Lifeline l){
2: var FDTMC dtmc;
3: var State initialState;
4: var Action[] actions;
5: dtmc.add(initialState);
6: Transform(sd, dtmc, initial_state, actions);
7: }
8: Transform(SD sd, FDTMC dtmc, State current_state, Action[] actions){
9: while (¬sd.IsF inished()){

10: actions.add(RetrievePerformableActions(sd));
11: if (actions.size == 0)
12: return; //the procedure terminates
13: if (actions.size == 1){
14: action = actions.get(0);;
15: Create_Success(current_state, action, actions, sd, dtmc);
16: Create_Failure(current_state, action, actions, sd, dtmc);
17: }else if (actions.size > 1){
18: var float branchProb = 1/actions.size;
19: foreach(action ∈ actions){
20: var State middle_state = new State;
21: middle_tra = new Transition(current_state, middle_state, branchProb);
22: dtmc.add(middle_state);
23: Create_Success(current_state, action, actions, sd, dtmc);
24: Create_Failure(current_state, action, actions, sd, dtmc);
25: dtmc.add(middle_tra)};
26: }
27: }
28: }

added transitions are replaced with probability profiles. The probability
profile for an Option fragment with a feature expression fx is shown in the
below.

Πx = (fx : 1)or(¬fx : 0) (6.1)

This profile is assigned to the transition entering the first state of the
Option. Similarly the transition jumping over the Option behavior is aug-
mented with a negated profile, as shown below. Note that given a product
only one of the profile returns one, and so the sum of both transitions is
always equal to one.

Π¬x = (fx : 0)or(¬fx : 1) (6.2)

82

i
i

“thesis” — 2014/1/30 — 16:53 — page 83 — #96 i
i

i
i

i
i

6.4. Model to Model Transformation

(a) Message (b) Interleaving (c) Option (d) Alternative (e) Loop

Figure 6.6: Transformation rules for DTMC

In principle, Option is a special case of Alternative, when there is only
one alternative behavior. We extend the above approach to the transitions
produced for an Alternative fragment. Considering an Alternative with N
alternating behaviors, the probability profile for each behavior is as the be-
low. Note that in case of an inclusive Alternative, where more than one
operand is enabled, the probability of each operand is equal. Regarding an
exclusive Alternative, only one of the operand is enabled which would take
probability of one.

Πx = (fx :
fx∑
N fi

)or(¬fx : 0) (6.3)

Figure 6.7 shows the FDTMC of the reliability model for our SPL vend-
ing machine. An SVSD is transformed into a FDTMC to verify energy
consumption properties specified in Reward logic. This transformation is
very similar to the transformation we described for reliability models. On
the contrary, each message is transformed into a transition annotated with
a reward profile which specifies the energy consumption of an operation.
Note that there is no failure or success transition in the target models, be-
cause they are produced only for reliability analysis. The number of the
transitions in the target models depends on the complexity of the behavior.
If the behavior contains many interleavings, alternative branches and loops,
then the corresponding FDTMC would have a complex structure with many
transitions.

83

i
i

“thesis” — 2014/1/30 — 16:53 — page 84 — #97 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

init

(Free) 1 (Cash) 1

F

0.002

0.002

0.002

0.995

0.998

0.005

0.998

0.998

0.001

0.005
0.999

S

0.995

0.50.5

(tea) t+s
t (soda) t+s

s

0.9990.999

0.9970.995

0.997 0.995

(taste) 1
(¬ taste) 1

0.99

0.998
0.99

0.001

0.005

0.003

0.01
0.002

0.01

0.005

0.995

Figure 6.7: The FDTMC for the vending machine SPL

6.5 FDTMC Model Checking

Here we discuss how to verify a FDTMC against PCTL and Reward logic,
which paves the way to check reliability and energy consumption properties
for all products of a SPL. We present three verification approaches, each of
which is efficient for a certain kind of SPLs.

6.5.1 Enumerative Verification

This procedure, called enumerative, consists of projecting FDTMC to Markov
models of each product, and then model checking each projection indi-
vidually, where the number of Markov models is equal to the number of
products. Regarding reliability properties, FDTMC is projected to DTMCs
by simply providing the enabled features of each product. This informa-
tion can be derived from the associated feature diagram, which guarantees

84

i
i

“thesis” — 2014/1/30 — 16:53 — page 85 — #98 i
i

i
i

i
i

6.5. FDTMC Model Checking

only the DTMCs of valid products are generated. Having the DTMCs pro-
duced, we model-check each of them against the reliability property by
using a probabilistic model checker (e.g. PRISM). As for energy consump-
tion analysis, we project FDTMC to DTMCs with Rewards and apply the
probabilistic model checker fed by energy requirements expressed in Re-
ward logic. Although this method takes the advantage of efficient existing
model checkers, it clearly ignores the commonalities between the products.
Given a large number of products, numerous DTMCs would be generated.
To handle such cases, we propose another approach based on parametric
model checking of Markov models.

6.5.2 Parametric Verification

We can convert an FDTMC into a parametric DTMC (similarly a para-
metric DTMCs with Rewards) where the parameters are the features, and
then can reuse existing methods for model-checking parametric DTMCs.
Converting probability profiles to parametric expressions is the crux of this
approach. To do so, we represent the function Π(α) as the parametric ex-
pression obtained from probability profile α:∑

pi∈P(N)

ε(pi)× Π(α, pi) (6.4)

Regarding a particular product p, every term of this sum except one is equal
to 0; the remaining term is equivalent to Π(α, p). Note that if several prod-
ucts share the same value for α, we can drastically simplify the above sum.
In particular, if the value of α depends only on a feature f , then we can
rewrite Equation 6.4 as f × α1 + (1 − f) × α0 where α1 (resp. α0) is the
value of α when the feature f is enabled (resp. disabled). The second form
of variability makes the reward earned through the execution of a transition
depend on features as well. To cope with it, we use a technique similar
to the previous one, that is, we define the reward of a given transition as a
parametric expression over the set of features, that is, we represent Ξ(s) by
the expression: ∑

pi∈P(N)

ε(pi) + Ξ(α, pi) (6.5)

As for the previous case, this sum will more likely appear in a simplified
form in practice. By performing the above two transformations, we reduce
FDTMC verification to parametric DTMC verification, where the parame-
ters are all Boolean variables that model the presence or absence of features.

85

i
i

“thesis” — 2014/1/30 — 16:53 — page 86 — #99 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

In consequence, we are able to use existing parametric model-checkers like
PARAM [40] and the tool of Filieri et al. [32]. Given a parametric model,
they return a rational expression containing parameters. In our context, the
parameters are variables corresponding to the features. The expression rep-
resents the probability or the reward we seek. To determine the probability
or the reward of a given product, we simply replace, in the expression, each
feature by 1 if it belongs to the product, or by 0 if it does not. Then, we
obtain an actual real value.

6.5.3 Approximative Verification

In this section, we present an approximative approach to checking stochas-
tic properties of FDTMCs. The motivation behind this approach is to find
an approximative result within a time limit. First we describe the algorithm
to deal with PCTL and then Reward logic.

PCTL Verification

Let us first recall PCTL property language. PCTL is defined by the follow-
ing syntax:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P./p (Ψ)

Ψ ::= XΦ | Φ1U
≤tΦ2| Φ1UΦ2

where p ∈ [0, 1], ./∈ {<,≤, >,≥}, t ∈ N ∪ {∞}, and a represents an
atomic proposition. Since U≤t can represent Next operator by considering
(t = 1), and infinite Until by (t = ∞), we focus on the verification of
bounded Until formulae and consider the others as particular cases.

The algorithm first starts with parsing the property, and building the
parsing tree, in which the leaves are atomic propositions and the inner nodes
are the operators. Similarly to CTL model checking [4], the set of satisfying
states is assigned to each node of the tree through a bottom-up evaluation.
Differently from CTL, a probability satisfaction is also calculated for each
state. While the atomic propositions and boolean operators are treated as in
CTL verification, we apply a different way to deal with Until operator. To
tackle the time limit, we set two parameters: the path length and the max-
imum number of considered paths, by which the algorithm can be guided
to explore the state space. This way, we enforce the algorithm to check
the property based on a limited number of paths, which are shorter than a
threshold.

Let us consider the case in which each transition profile in FDTMC
contains only a probability and a constraining feature expression. Given

86

i
i

“thesis” — 2014/1/30 — 16:53 — page 87 — #100 i
i

i
i

i
i

6.5. FDTMC Model Checking

φ1U
≤φ2, a bounded search is performed to find a set of paths, with the

length less or equal t, on which all the states satisfy φ1 and the last states
satisfy φ2. We call the probability that a certain path is executed path proba-
bility, which is calculated by the product of the probabilities of its compris-
ing transitions. Moreover, every path is constrained with a path constraint,
which is a boolean expression obtained as the conjunction of the feature
expressions of its comprising transitions. Given a state s, the probability of
having the formula satisfied equals to the sum of the path probabilities of
the set of paths, which start from s and end in a state satisfying φ2

3. The
property is constrained by the disjunction of the path constraints.

Considering FDTMCs with profiles, the procedure is the same except
that instead of a single probability/constraint a path profile is calculated for
each path. Each profile contains a set of probability/constraint elements,
which are calculated by the cartesian products of all transition profiles vis-
ited over the path. Similarly, a profile is calculated for a property satisfac-
tion given an initial state.

Reward Logic Verification

The approach to verifying Reward properties of an FDTMC is similar to
PCTL verification but deals with calculating rewards. Here we focus on
reachability reward properties, though our approach is simply extendible
to other reward operators. The reachability reward is expressed as below,
where ∼ r represents a comparison relation (≤ r, ≥ r, and = r) in which r
is a real number.

R∼r[Fφ]

R∼r[Fφ] represents a reachability property for a path starting from an
initial state and ending in states where φ holds. The calculated reward is
compared with r, and so the result is either True or False. If r is replaced
with a question mark, then the calculated reward will be returned instead.
To calculate the reward, similarly to PCTL verification, we generate a set of
paths regarding a time limit. Given a set of paths, we calculate the profile
that contains a set of reward values, each of which constrained by a fea-
ture expression. A path reward is calculated by accumulating the reward
obtained in each state visited on the path.

3Note that the satisfaction probability of a state in which φ2 holds is one.

87

i
i

“thesis” — 2014/1/30 — 16:53 — page 88 — #101 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

6.6 Experiments

In this section, we report the results obtained by evaluating the performance
of the three FDTMC verification techniques in terms of verification time.
We consider two technical case studies as our benchmarks, which we sys-
tematically extend to obtain larger models. The first case study is an ab-
stract model of failure-recovery systems, in which the system goes through
successive degradation states to eventually reach an absorbing failure state.
In every degradation state, however, instead of going to the next degrada-
tion state, the system may completely break and reach a second absorbing
failure state. In every degradation state, the system may also partially re-
cover and reach the previous degradation state. Apart from the initial state
and the two absorbing states, the probability of the transitions leaving each
state depends on the presence and absence of specific features. The model
is extended by adding new degradation states and features.

The second case study is an abstract model of a service provider sys-
tem that gives the opportunity to its users to invoke different services. The
execution of a service is modeled by a sequence of states. During such exe-
cutions, the system may fail and suddenly reach a failure (absorbing) state.
After any service execution, the system may keep executing more services
or may go to an absorbing successful-termination node. Each service re-
quires a specific feature to be started, hence the variability within such a
system. Unlike the first model, the behavior of the features are completely
independent in this model. We enlarge the model by gradually adding new
services, which also increases the number of features.

For both examples, we checked the probability with which system reaches
a failure state is below 0.1. This reachability property can be expressed in
PCTL as P<0.1

(
� failure)

)
. All the benchmarks were run on a Dual In-

tel(R) Xeon(R) CPU E5530 @2.40GHz with 4Gb of RAM. To perform
the enumerative verification, all the DTMCs modeling a specific product
are first derived from the FDTMC and then verified one-by-one by using
the PRISM model checker4 [52]. For the parametric approach, we use the
parametric model checker developed by Filieri et al. [32], and then evalu-
ate the resulting expression by using JEP Java library5. For the bounded
approach, we use a prototype we developed from scratch.

The total verification time of the enumerative approach is the sum of
the model-checking times to verify each single product by PRISM. We ex-
cluded the time to produce individual DTMCs as well as the time taken for

4http://www.prismmodelchecker.org/
5http://www.singularsys.com/jep/

88

http://www.singularsys.com/jep/

i
i

“thesis” — 2014/1/30 — 16:53 — page 89 — #102 i
i

i
i

i
i

6.6. Experiments

Algorithm 1 Feature-aware bounded search

Require: An FDTMC, two PCTL state formulae Φ1 and
Φ2, an integer bound k ≥ 0.

Ensure: For each s ∈ S, Π(s |= Φ1U
kΦ2).

1: Stack ← [];
2: for s • 1s|=Φ2

�= 0 do

3: Π(s |= Φ1U
kΦ2) ← 1s|=Φ2

;
4: for s� • Π(s�, s) �= 0 do
5: Stack ← push(Stack, (s�, 1, s));
6: end for
7: end for
8: while Stack �= [] do
9: (s�, i, s) ← pop(Stack);

10: if i ≤ k then
11: new ← (1 − 1s�|=Φ2

) ⊗ 1s�|=Φ1
⊗ �

su
Π(s�, su) ⊗

Π(Φ1UΦ2)(su);
12: if new �= Π(s |= Φ1UΦ2) then
13: Π(Φ1UΦ2)(s

�) ← new;
14: for s�� • Π(s��, s�) �= 0 do
15: Stack ← push(Stack, (s��, i + 1, s�));
16: end for
17: end if
18: end if
19: end while
20: return Π(Φ1UΦ2)

fication of the same execution path. Unlike the parametric
method, our feature-aware search does not require to evalu-
ate a rationale expression for each of the products. Instead,
it returns a Boolean formulae encoding which products sat-
isfy the PCTL formula.

6. EXPERIMENTS
In this section, we report the results obtained by eval-

uating the performance of the three FDTMC verification
techniques in terms of verification time. We consider two
technical case studies as our benchmarks, which we system-
atically extend to obtain larger models. All the models are
available on http://info.fundp.ac.be/~mcr/splc13/.

The first case study is an abstract model of failure-prone
systems. In this model, the system has to go through suc-
cessive degradation states to eventually reach an absorbing
failure state. In every degradation state, however, instead
of going to the next degradation state the system may com-
pletely break and reach a second absorbing failure state. In
every degradation state, the system may also recover and
reach the previous degradation state. Apart from the ini-
tial state and the two absorbing states, the probability of
the transitions leaving each state depends on the presence
of absence of a specific features. The model is extended by
adding new degradation states and features.

The second case study is an abstract model of a service
provider system that gives the opportunity to its users to
invoke different services. The execution of a service is mod-
elled by a sequence of states. During such executions, the
system may fail and suddenly reach a failure (absorbing)
state. After any service execution, the system may keep ex-
ecuting more services or may go to an absorbing successful-
termination node. Each service requires a specific feature to
be started, hence the variability within such a system. Un-
like the first model, the behaviour of the features are com-

!" #" $" %" &'" &!" &#" &$"
()*+,-./0," 12#" 32&'4" $#" !325!%" 432&34" &&42'!3" !!$2!11" #4!244$"
6.-.+,7-89" '2!&#" '2!35" '21%$" &2!'#" !'2541" %'2##1" &!52'4%" 1'!2!#%"
:;*)<,<" '2'##" '2'3%" '21#5" &21'#" &&2$#4" !&2%&" ##25#!" &'#25&4"

'"
4'"

&''"
&4'"
!''"
!4'"
1''"
14'"
#''"
#4'"
4''"

ve
ri

fic
at

io
n

tim
e

(s
ec

.)

number of features

Figure 5: The verification time of failure-recovery
case study

pletely independent in this model. We enlarge the model
by gradually adding new services, which also increases the
number of features.

For both examples, we checked that the probability that
system reaches a failure state is below 0.1. This reachability
property can be expressed in PCTL as P<0.1

�
�∪(failure)

�
.

All benchmarks were run on a Dual Intel(R) Xeon(R) CPU
E5530 @2.40GHz with 8Gb of RAM, equipped with GNU
Linux Ubuntu server 11.04 64bit. To perform the enumera-
tive verification, all the DTMCs modelling a specific prod-
uct are first derived from the FDTMC and then verified
one-by-one by using the PRISM model checker1 [19]. Re-
garding the parametric approach, we use the parametric
model checker developed by Filieri et al. [12], and then eval-
uate the resulting rational function by using JEP Java li-
brary2. For the bounded approach, we use a prototype we
developed from scratch. The latter is available on http:

//info.fundp.ac.be/~mcr/splc13/ as well.
The total verification time of the enumerative approach

is the sum of the model-checking times to verify each single
product by PRISM. We excluded the time to produce indi-
vidual DTMCs as well as the time taken for creating PRISM
input files. As for the parametric approach, the verifica-
tion time is obtained by summing the parametric verification
time and the time spent to evaluate the rational function for
each single product. Since the bounded approach verifies all
products once together, its verification time equals to the to-
tal time taken by the prototype tool. In all the experiments,
we set the bound of the algorithm such that the maximum
precision error is always less than 10−3.

Figure 5 shows the verification times for the failure-recovery
case study. In this case, the number of features f grows from
2 to 16. It turns out that the bounded approach outperforms
the others in almost every case. The verification time of the
enumerative approach grows exponentially with the number
of features. We also observed that the parametric approach
suffers from the growing complexity of the rational function.

Table 1 reports the time each of the verification techniques
takes to verify the models of the service provider case study.
The results show that the enumerative approach takes a
longer time, while the other two techniques exhibit a simi-
lar performance. On contrary to the first case, parametric

1http://www.prismmodelchecker.org/
2http://www.singularsys.com/jep/

Figure 6.8: The verification time of failure-recovery case study

creating PRISM input files. As for the parametric approach, the verification
time is obtained by summing the parametric verification time and the time
spent to evaluate the expression for each single product. Since the bounded
approach verifies all products together, its verification time equals to the
total time taken by the prototype tool. In all the experiments, we set the
bound of the algorithm such that the maximum precision error is always
less than 10−3.

Figure 6.8 shows the verification times for the failure-recovery case
study. In this case, the number of features f grows from 2 to 16. It turns
out that the bounded approach outperforms the others in almost every case.
The verification time of the enumerative approach grows exponentially with
the number of features, as expected. We also observed that the parametric
approach suffers from the growing complexity of the rational function.

Table 6.1 reports the time each of the verification techniques takes to ver-
ify the models of the service provider case study. The results show that the
enumerative approach takes a longer time, while the other two techniques
exhibit a similar performance. In contrast to the first case, the parametric
approach outperforms the bounded technique.

The results of our experiments suggest that the enumerative approach
is increasingly inefficient as the number of features (and hence of prod-
ucts) increases. Still, if a verification task only deals with a small number
of products, the enumerative approach is a reasonable choice. The cost
of the parametric approach is highly dependent on the complexity of the

89

i
i

“thesis” — 2014/1/30 — 16:53 — page 90 — #103 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

Table 6.1: The verification time of service provider case study (in seconds)

Features Enumerative Parametric Bounded
2 4,207 0,237 0,111
4 6,932 0,267 0,306
6 14,57 0,336 0,314
8 29,224 0,408 0,519

10 57,215 0,53 0,676
12 119,544 0,572 1,636
14 227,91 0,99 1,931
16 466,185 1,126 2,966

rational function that is produced by the parametric model checker. This
complexity varies depending on the topology of the model. In the first
case, where feature-dependent transitions occur sequentially, the verifica-
tion time grows faster than in the second case, where the features are scat-
tered around the model. The approximative algorithm exhibits a good per-
formance in both experiments.

Our theory is that the parametric approach performs better in models
where feature-dependent transitions do often not occur in sequence, that is,
when there is a limited number of feature interactions. On the contrary, if
many of these sequences occur in the model then the size of the function
returned by the parametric algorithm will sharply grow. In such cases, our
approximative approach should instead be used.

6.7 Related Work

Our work touches a number of different areas, so we briefly discuss related
work in each area in different subsections. First, the recent work on quality
analysis of SPLs is overviewed. Then we provide a short discussion on
the approaches using UML for modeling SPLs. This is followed by a brief
discussion of the recent work on model checking applied to SPLs.

6.7.1 Quality Analysis of SPLs

Analysis of quality attributes (QAs) of software systems has been exten-
sively studied in the last years. However, most work has been done on anal-
ysis of single systems. Lincke et al. [59] highlight the importance of QA
prediction models, and discuss how they impact on QA evaluation. Göbel
et al. [36] present a component model COMQUAD to separate functional

90

i
i

“thesis” — 2014/1/30 — 16:53 — page 91 — #104 i
i

i
i

i
i

6.7. Related Work

and non-functional aspects of component-based systems. The existing tech-
nologies, like Enterprise JavaBeans and CORBA Components, are used to
describe non-functional aspects and to dynamically bind components to the
running applications.

Different techniques have been proposed to evaluate the reliability of
a software application. For example, Rodrigues et al. [74] present an ap-
proach to predicting reliability of component-based systems. The behavior
of system is specified through scenarios in which components interact with
each other. Message Sequence Charts are used to model scenario-based
behaviors of components, which are then translated into probabilistic La-
beled Transition Systems (LTSs). The resulting LTSs are synthesized and
analyzed to calculate the system reliability. Immonen and Niemelä [48]
provide a comprehensive survey of reliability prediction techniques exist-
ing in the literature. The techniques are reviewed and evaluated to see how
they can be applied to software architecture. The authors conclude that
none of the existing approaches address variability in software architec-
ture. Accordingly, the literature lacks reliability prediction techniques for
SPLs.

Despite the importance of quality analysis, there has been a limited work
addressing this issue in the area of product line engineering [57]. Etxeberria
et al [30, 57] propose a method, including a set of activities, to support and
manage QAs in an SPL development lifecycle. The authors in [67], pro-
pose a framework to capture and elicit QAs of software product lines. Es-
sentially they argue that different stakeholders of a product may expect dif-
ferent QAs, and this variability shall be identified and documented. More-
over, they describe how to map such varying requirement to software ar-
chitecture. Jarzabek et al [49] integrate goal-modeling and feature-oriented
modeling, and provide a notation feature-softgoal interdependency graph
(F-SIG) to specify the interdependency between QAs and various features.
However, the approach doesn’t address variability modeling in system be-
havior, and is limited to feature models.

Zhang et al [91] study the prediction of QAs for SPLs by exploiting the
application of Bayesian Belief Networks (BBNs). The QAs and features
are enumerated and the impact of features on QAs is specified in terms of
probabilistic values (by using BBNs). The overall quality of each configu-
ration is calculated by solving the BBNs. In [6], Bartholdt et al. propose a
methodology to evaluate quality of different products of an SPL. The under-
lying model used in the methodology is limited to feature models. QAs of
each alternative are estimated (e.g. reliability of alternative A is 0.95), and
the overall quality of each product is calculated by using a defined aggre-

91

i
i

“thesis” — 2014/1/30 — 16:53 — page 92 — #105 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

gation function. The aggregation function varies depending on the nature
of QA, and in the simplest case is a summation. However, a challenging
part of the approach is how to obtain the aggregation functions, and how
to know if they are relevant and precise. Moreover, the approach only fo-
cuses on feature models, which are not suitable for evaluating a class of
QAs like reliability, performance and energy consumption. The reason is
that analysis of these properties is typically performed based on behavioral
models [52].

An approach to estimate performance attributes of different products of
an SPL is presented by [85]. The approach is applied to behavioral models
specified in UML. The annotated UML diagrams are transformed into Lin-
ear Queueing Networks that can be analyzed by existing tools. However,
the approach is based on analysis of each product independently, which can
be very expensive in case of a large number of products. On the contrary,
the authors of [29] focus on the importance of quality analysis of product
lines and discuss how it can be more scalable through architecture evalua-
tion as the common part of a software product line. In particular, as for per-
formance analysis they suggest that execution graphs can be derived from
code and mathematical formulae can be created by analyzing the graph. In
the formulae, variable parts of the architecture are represented by variable
performance properties. Having those formulae, it is very simple to eval-
uate each product by replacing the variables with real values. However, it
is not discussed how to obtain those formulae in an automatic and precise
way.

In the contrast to the model-based approaches, there exist some work on
evaluation QAs of SPLs by using source code. Siegmund et al. [81,82] pro-
pose techniques to measure QAs of SPLs using the source codes. In [82],
they focus on three QAs: maintainability, binary size, and performance.
Furthermore, an optimization approach is proposed to select a product that
satisfies a set of requested QAs. Since measuring all the possible configu-
rations of large-scale SPLs is very expensive, an approximative approach is
proposed in [81]. Similarly, Sincero et al. [83, 84] present an approach and
provide the tool support to configure products of an SPL based on QAs.
Since testing QAs of all the products is expensive, a limited number of
products are selected for the evaluation. The reason beyond such approach
is that some features do not affect QAs. Features are labeled as selected,
blocked, and open, depending on their impact on QAs. The selected fea-
tures must exist in any product, and open features are optional. By exclud-
ing the blocked features in deriving products, the number of products is
reduced and as a consequence the evaluation cost decreases. Obviously, the

92

i
i

“thesis” — 2014/1/30 — 16:53 — page 93 — #106 i
i

i
i

i
i

6.8. Conclusion

approaches based on available source code are not applicable in the early
stage of development, when only models of the system exist.

6.7.2 UML for SPLs

There exist different papers on the application of UML for product fami-
lies. Gomaa [38] provides guidelines to use UML in developing software
product lines. He also describes how to use different UML diagrams such
as Use Cases and Communication Diagrams to model SPLs. In [93], Ziadi
et al. discuss the use of stereotyping techniques to extend UML to specify
variability. The main advantage is that the current modelling tools can be
used also for extensions. Cengarle et al. [12] discuss variability modeling
in UML and provide mathematical models for that.

Since we are only using SDs in our approach, we only focus on repre-
senting variability in this kind of diagram. We follow a slightly changed
version of the approach used by [85], and use the stereotypes <<variation
point>> and <<optional point>>, which are shown by Alternative and
Option combined fragments respectively. Moreover, variation points are
linked to a feature model used to organize features and variants.

6.7.3 Model Checking of SPLs

Formal verification and model checking techniques provide a powerful tool
to investigate the correctness of software systems. Recently, there has been
an interest in proposing approaches for model checking of SPLs. Classen
et al. [20] present an approach to verify all products of a product line in
an efficient way in comparison to independent model checking of all prod-
ucts. The approach supports verification of LTL formulae. The result shows
that the approach is able to reduce the model checking time up to 7 times.
In [55], the authors propose an approach to verify CTL formulae against
an SPL. They use variable I/O automata to specify product line behavior,
provide an algorithm to verify CTL properties, and pinpoint the products
which are not able to satisfy properties. The work we referred to mainly
focuses on verification of functional properties. They do not support quan-
titative analysis of non-functional properties, for which probabilistic model
checkers are specilized.

6.8 Conclusion

Through this chapter we described our approach to modeling stochastic
software product lines using both high-level and mathematical notations.

93

i
i

“thesis” — 2014/1/30 — 16:53 — page 94 — #107 i
i

i
i

i
i

Chapter 6. Modeling and Verification of Stochastic Software Product Lines

Moreover, we presented different verification techniques to check non-functional
properties of all products of an SPL. To achieve this aim, we presented new
model-to-model transformation as well as model checking techniques.

94

i
i

“thesis” — 2014/1/30 — 16:53 — page 95 — #108 i
i

i
i

i
i

CHAPTER7
Achieving Non-Functional Requirements at

Run time

"Again, you can’t connect the dots looking forward; you can only connect
them looking backwards. So you have to trust that the dots will somehow
connect in your future. You have to trust in something - your gut, destiny,
life, karma, whatever. This approach has never let me down, and it has
made all the difference in my life." Steve Jobs

7.1 Introduction

In this chapter, we extend our approach of model-checking SPLs to build
adaptive systems that can continuously check the satisfaction of NFRs and
achieve them by planning and applying suitable adaptations. The proposed
solution is based on a holistic approach that covers both design and the run-
time phases of the application lifetime. A design-time verification phase is
integrated with continuous run-time verification and reconfiguration that
support the adaptation. This is similar to Incomplete Model Checking ap-

95

i
i

“thesis” — 2014/1/30 — 16:53 — page 96 — #109 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

proach described earlier, but targets NFRs, namely reliability and energy
consumption.

First, at design time, software application is designed as a dynamic soft-
ware product line (DSPL). An SPL defines a family of software products
that can be viewed as configurations. In our case, configurations differ in
the way they satisfy the same requirements in different contexts. The dif-
ferent contexts are represented during design as variation points in product-
line terms. The product line, in our approach, is dynamic in the sense that
the different instances are generated dynamically at run time. Moreover,
our notion of a “product” is unconventional, in the sense that it does not
refer to code, but to higher-level models. The models we refer to are the
ones that are used by software engineers during design to reason about the
NFRs of interest for applications.

All our reasoning and manipulation is performed at the model level.
In particular, models are also used to describe configurations. The way
models are transformed into implementations and then into deployed units
is ignored here. We simply assume that this can be done by following some
systematic model-driven development strategy. We focus instead on how
design models and specify variation points and variants, and finally how
to check NFRs and plan adaptations at run time. The method we propose
starts from a high-level specification of the system and of the environment,
given in terms of SVSDs.

At design time, SVSDs –that describe the entire (model level) prod-
uct line– are transformed into parametric DTMCs, and then verified against
NFRs. Environment conditions are in fact also described as part of the mod-
els. The main contribution is to show how to avoid separate verification of
each configuration through a novel approach that exploits commonalities
among different configurations, which are factored out to support efficient
verification. At run time, whenever the (model of the) currently running
instance of the application is found to violate the requirements, because of
environmental changes, another instance is identified (and the correspond-
ing target implementation is deployed) that does satisfy the requirements
under the new external conditions.

We continue this chapter with a running example, which motivates the
type of problems we address. Then we briefly overview the advanced tech-
niques in the literature, and then present our approach.

96

i
i

“thesis” — 2014/1/30 — 16:53 — page 97 — #110 i
i

i
i

i
i

7.2. Running Example

7.2 Running Example

In the following, a running example is described for which we aim at build-
ing an adaptive system.

“The Happy Hour Organizer (HHO) is a system to help people socialize
as they move around in a modern city. The system is developed in order
to make organization of daily social events easy and as automatic as possi-
ble. One of the scenarios that this system supports is about “grouping” in
impromptu meetings. To achieve that, the system helps people, who have
the same interests, to find each other and perform a social activity (which
we call Happy Hour). For instance, someone may like to meet other people
who study the same foreign language to practice in conversation. Thus they
may have a nice evening in a bar while sharing their knowledge about the
language. To organize such impromptu meetings, the HHO application run-
ning on the user’s smartphone looks into a social network and searches for
other people around city and especially near her place. The system obtains
the user’s current position, and takes it into account while selecting and
contacting people. The application finds a group of people and commu-
nicates with their devices to make an agreement on the appointment time.
Later, the application searches and books a place like a bar or pub in which
the event can be held.

The system is to satisfy two NFRs concerning reliability and energy
consumption. More precisely, the whole scenario shall be performed with
a reliability higher that 0.95 and maximum energy consumption of 1000."

The running example described above includes variation points both in
the system and environment. For example, the mobile system needs to
detect the current position of the user through a locator device. This func-
tionality can be performed via two embedded components: GPS or GSM.
Another example is the communication service between different devices,
which can be performed either via WiFi or SMS. These two are examples
of internal variabilities developed as a part of system. Examples of the
variation points in the environment are the social network and the place
booking services. Many external applications exist to support these ser-
vices, and their invocation corresponds to external variation points, whose
variants can be found in the environment. Different variants may be visible
or not depending on the physical location; they may appear and disappear
over time; they may provide low or high-level QoS. Therefore, it is im-
portant for the system to switch between the variants which can better fit
HHO’s functional and non-functional requirements. Indeed, the main chal-
lenges are how to select a configuration and how to make sure that it con-

97

i
i

“thesis” — 2014/1/30 — 16:53 — page 98 — #111 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

tinuously satisfies the non-functional properties. One issue is that different
non-functional requirements may have a conflicting nature. For example,
a reliable component may consume more energy than an unreliable one.
Therefore, finding a set of variants that altogether provide a good quality
with respect to the requested properties can be a difficult task.

7.3 Self-Adaptive Systems for NFRs Satisfaction

The Rainbow framework described by Garlan et al. [14] represents one of
the earliest attempts to support self-adaptation of software systems. Adap-
tations are prescribed as script rules for different foreseen problems at de-
sign time. Calinescu and Kwiatkowska [11] introduce a framework to im-
plement autonomic systems in order to optimize satisfaction of NFRs. The
framework mainly relies on policies specified by users, which are defined
over configurable parameters. Adaptation planning is performed by exhaus-
tively searching for optimal values of configurable parameters. Maximum
size of a queue and connection database pool are two examples of con-
figurable parameters. This approach does not support architectural adap-
tation. This can be a shortcoming because most of modern systems are
comprised of black box components and only architectural adaptations are
possible [64]. Adding and replacing components are two examples of ar-
chitectural adaptations. Also the approach applies classical model checking
against all possible configurations. This may result in inefficiencies due to
large number of possible configurations.

To make adaptation planning flexible, Kim et al. [51] and Elkhodary et
al [26] exploit the use of learning algorithms. In particular, Kim et al [51]
investigate the use of reinforcement learning techniques to enact dynamic
adaptation plans at run time. They propose an approach to Q-Learning-
based action planning in which in any given situation an appropriate adap-
tation is selected. After performing an adaptation, the system receives a
reward that represents the effectiveness of the applied adaptation. The re-
ward is used to tune the parameters of the learning functions which select
the next adaptations. The main problem of the learning-based approaches
is the learning period that the algorithms require for tuning parameters.

The above approaches and their characteristics are summarized in Table
7.1. An approach like the one pioneered by [14] uses design-time incom-
plete knowledge to provide adaptation rules, while others like [51] [26] are
based on run-time learning. Both of them may lead to failure in adaptation
planning. Prescribing adaptation plans at design time can be very risky due
to incomplete knowledge. On the other hand, applying only run-time ap-

98

i
i

“thesis” — 2014/1/30 — 16:53 — page 99 — #112 i
i

i
i

i
i

7.4. Dynamic Software Product Lines

proaches needs a long learning time after system deployment. Our aim is
to reach a balance between design time and run time. We embed adapta-
tion points into system models and make sure that possible configurations
can satisfy NFRs with respect to design-time assumptions. If design-time
assumptions are not violated, then the running system is guaranteed to sat-
isfy the requirements. However, in case the assumptions are violated, we
apply light-weight run-time planning techniques. To be more clear, at run
time we collect environmental data, update models, and apply evolutionary
techniques to find candidate configurations. We ensure that a selected re-
configuration improves NFRs satisfaction. Our verification-based run-time
approach is efficient because we use parametric verification techniques that
are computationally expensive only at design time. Thus, the run-time over-
head of planning is minimized.

Table 7.1: Model-based approaches to build adaptive systems

Approach Specification Planning Adaptation Run-time Overhead
Garlan et al [14] static design time architectural rule reasoning

Calinescu et al [11] behavioral run time parametric exhaustive search
Kim et al [51] static run time architectural learning

Another distinctive feature of our approach is the use of high-level be-
havioral models for system modeling and NFRs analysis. This is impor-
tant specially due to the nature of NFRs like reliability and cost, which are
highly dependent on system behaviors. For example, the number of repeti-
tions of an activity can have an impact on reliability of a system scenario.
Behavioral models can precisely predict future satisfaction of NFRs. Ca-
linescu et al. [11] also base their approach on the use of formal models of
NFRs, but they do not focus on architectural adaptations. To achieve this
goal, we exploit the application of DSPLs in the design of adaptive system.

7.4 Dynamic Software Product Lines

DSPL is a new type of SPL [21] in which variation points may be frequently
rebound at runtime [41]. While SPL aims at improving productivity and
reducing the time and cost for developing a family of products, DSPL is
a way to build self-adaptive software. The main difference between an
SPL and a DSPL is the binding time of variation points to variants. In
an SPL the binding is established before run time, while in a DSPL the
binding is established later at run time. Indeed, while SPLs are used to deal

99

i
i

“thesis” — 2014/1/30 — 16:53 — page 100 — #113 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

with variability of the market, DSPLs are applied to cope with changing
environments and individual requirements.

According to Cetina et al. [13], “DSPLs encompass systems that are ca-
pable of modifying their own configuration with respect to changes in their
operating environment by using run-time reconfigurations”. According to
Hallsteinsen et al. [42] [41], DSPLs support dynamic variability, frequent
run-time binding, and user requirements change. Moreover, they may pro-
vide the capabilities for context-awareness, self-adaptation, and autonomic
decision making. In [56], context-awareness, resource-aware decision mak-
ing, permanent service delivery, and consistent dynamic reconfiguration are
considered as the major properties of DSPLs.

There exist a few research efforts aiming at modeling and developing
DSPLs. Morin et al. [66] describe how DSPLs may be architected to man-
age dynamic adaptations. Trinidad et al. [87] model a DSPL by using fea-
ture models. Bencomo et al. [7] discuss how to capture and model vari-
ability of adaptive systems through SPL modeling approaches. They use
feature models to provide a structural view of system variability, and ap-
ply transition diagrams to specify system reconfigurations in response to
environmental changes. In [60, 69], the authors discuss the application of
aspect-oriented methods in developing DSPLs.

Lee and Kang [56] point out the importance of DSPL to address unex-
pected changes in environment and focus on dynamic reconfiguration as
important means. They describe how to use feature models to represent
variation points and how to switch between different configurations with
respect to system context. Our approach follows a similar path, although
our main focus is on using a DSPL-based software architecture to achieve
run-time adaptations that enable continuous satisfaction of NFRs. Addi-
tionally our approach relies on efficient formal analysis of NFRs, which
dynamically supports architectural adaptation planning.

7.5 The Proposed Approach

The overall view of the approach is shown in Figure 7.1. As illustrated, the
framework covers both design time and run time. During design time, the
aim is to design a DSPL, specify architectural models, and analyze them
against expected NFRs. At run time, while the DSPL starts operating in
environment it keeps monitoring quality data that may affect NFRs satis-
faction. The requirements are continuously verified with respect to run time
data that may reflect changes in the environment’s behavior. In the case of
detection of any violations, adaptation plans are generated and applied. In

100

i
i

“thesis” — 2014/1/30 — 16:53 — page 101 — #114 i
i

i
i

i
i

7.5. The Proposed Approach

Figure 7.1: The Proposed Framework

the following, we discuss each phase in turn and describe the relevant ac-
tivities.

7.5.1 Design Time

The framework starts at design time when the architecture of the DSPL is
designed through a feedback loop. The key point of design is to introduce
variation points through which adaptations can be performed. The archi-
tectural design is then verified against expected NFRs by using paramet-
ric model checking. As we will see below, the different configurations—
resulting from different instantiations of variants—are model checked in
the different environment conditions for which they are conceived. The
goal is to show whether or not the different configurations can satisfy NFRs.
The designer can check the analysis results and may modify the architec-
ture accordingly. In the sequel, we briefly discuss the techniques used in

101

i
i

“thesis” — 2014/1/30 — 16:53 — page 102 — #115 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

design-time activities.

Modeling

The main issue of modeling a DSPL is to specify variation points and vari-
ants. The system is designed as usual but the adaptive parts are specified
as features, for which there exist alternative choices. The abstract feature
model of the running example is shown in Figure 7.2. Every feature is a
functionality that may be achieved using different variants. Variants can be
implemented as a part of the system or may be hired as external services in
environment.

In our framework, the behaviors of a system are specified by using
Sequence Diagrams (SDs). Furthermore, new stereotypes (<<variation
point>> and <<variable>>) are added to represent varying behaviors.
The former (see Figure 7.3(a)) describes the choice between variants in the
system’s architecture (internal variability). The variation points are repre-
sented by fragments combined through the alternative (labelled alt and else)
and stereotyped as <<variation point>>. External services whose selec-
tion may be performed at run time to achieve dynamic binding are modeled
as an invocation from a component, stereotyped as <<variable>>. Figure
7.3 shows the two kinds of varying behaviors and Figure 7.4 illustrates the
SD for the running example. This represents an external variability. Con-
cerning external services, every variation point is modeled as an invocation
of a service from an abstract component, which is discovered in environ-
ment at run time. Social Network and Place Booker are two examples of
external services, while Location is an internal variation point in the run-
ning example, referring to GPS and GSM as variants.

Similarly to the previous chapter, SDs can be annotated with quality
data by following the UML MARTE profile. In particular, each message
is annotated with two tags: prob and energy. The former represents the
probability that a message is successfully transmitted; the latter expresses
the amount of energy consumed to transmit a message.

Model-to-Model Transformation and Parametric Verification

Our goal is to ensure that NFRs are satisfied by the system while it is
executed. One possibility would be to use traditional model checking to
achieve this goal. In this case, at design time we would model check all
configurations in the different environment conditions in which they are
supposed to work. Whenever at run time the current configuration is exe-
cuted, its model would also be analyzed by the model checker in the current

102

i
i

“thesis” — 2014/1/30 — 16:53 — page 103 — #116 i
i

i
i

i
i

7.5. The Proposed Approach

GPS GSM SMS WIFI ? ?

Happy Hour
Organizer

Place
Booker

Mobile
 CommunicationLocator Social Network

?

Alternative Mandatory External Service

Figure 7.2: The feature model for the running example

(a) Variation Point (b) Variable

Figure 7.3: Varying behaviors

environment conditions. A failure of the model checker to satisfy the re-
quirements would then drive the selection of an alternative configuration.
This approach, unfortunately, is unlikely to work in practice, especially
because of the time required by the analysis step, which may lead to un-
acceptably late reactions. This is where parametric model checking comes
into play. To make run-time verification feasible, we apply a parametric
verification approach instead of the classical one. In this case, parametric
verification is performed at design time and a formula is generated, which
is later evaluated quite efficiently at run time when updated real data are
available.

Our approach is intuitively shown in Figure 7.5. For the sake of simplic-
ity of presentation, we assume here that variants themselves do not contain
any variation point. Note that handling nested variation points requires
a simple hierarchical process, and does not impose extra effort. As illus-

103

i
i

“thesis” — 2014/1/30 — 16:53 — page 104 — #117 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

Figure 7.4: The annotated SD for the running example

104

i
i

“thesis” — 2014/1/30 — 16:53 — page 105 — #118 i
i

i
i

i
i

7.5. The Proposed Approach

trated, a DSPL model—an annotated SD—is divided into a core part and its
variants. Through such process, variation points are transformed into mes-
sages annotated with variables. If a variation point represents an internal
variability, it is transformed into a self-message annotated with two vari-
ables P# and E# standing for prob and energy respectively, meaning that
their values depend on the alternative that is chosen in the configuration.
The values for these variables may be computed by model checking each
alternative, treated as an independent behavior. Each alternative thus goes
through a similar verification process, since in general (but not in the sim-
plified case assumed in Figure 7.5) it can contain further variation points
and variants.

Figure 7.6 shows the parametric SD generated for the running example.
As shown, GetLocation is an example of the self-message replaced for the
variation point Location. In the case of external variation points (external
services), their quality annotations are represented as variables P# and
E#. For instance, this applies to the place booking service of our running
example. Variables are also used to label transitions that correspond to
environment phenomena that may change at run time. For example, in
some other interactive applications we may lack information about user
preferences, such as the probability that one of two alternative options may
be chosen by users and may affect the way requirements may be satisfied.
To model this situation, it is possible to introduce an alternative in the SD
and labeling each option with a (variable) probability 1. In conclusion, this
design-time step leads to the derivation of a parametric SD, where variables
instead of constant values are used as annotation tags.

To evaluate NFRs, parametric SDs are transformed into parametric Markov
models, similarly to what explained. The transformations from SDs into
Markov models are performed by following the approach described in the
previous chapter. Regarding Markov models, parametric DTMCs are used
to verify reliability properties, while parametric DTMCs with Rewards are
used to verify cost properties (typically, energy, CPU, or network usage).
NFRs are expressed as formulae written in formal languages PCTL or as
Cost/Reward properties. Figure 7.7(a) represents the parametric DTMC
corresponding to the SD in Figure 7.6, which can be used to reason about
reliability concerns. Examples of non-functional properties we would like
to state are expressed as below. Note that state 13 of the parametric DTMC
(Figure 7.7(a)) is the state that corresponds to the condition PlaceBooked
mentioned in the properties.

1There must be an additional constraint that their sum equals 1

105

i
i

“thesis” — 2014/1/30 — 16:53 — page 106 — #119 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

SPL
Specification

Core
Architecture

Variant N

Variant 2

Variant 1

...

Core
Formula

Formula
N

Formula 2

Formula 1

...

Verification
Result

Development Time Runtime

MM1

MM2

MM
N

Core
MM

value 1

value 2

value N

Monitoring/Forecasting

Evaluation

Figure 7.5: Parametric Verification of SPLs - MM stands for Markov Model

P => 0.95[F (State = PlaceBooked)] (7.1)

R =< 1000[F (State = PlaceBooked)] (7.2)

The first property states that the probability of reaching a state in which
the meeting place is successfully booked shall be greater or equal to 0.95.
Note that this is the final state of the whole scenario, so the property ex-
presses a constraint on the probability of having whole scenario success-
fully completed. Similarly, the second property states that the whole energy
consumption shall be less or equal to 1000.

To evaluate requirements satisfaction, the parametric Markov models
and the property formulae are fed into a parametric model checker. The re-
sulting formulae of the verification for the reliability and energy properties
of the running example are presented below. These formulae are used for
two purposes. First they are used for design time verification of different
configurations. In this case, we have to make assumptions about quality
data for the parameters. The values we select represent the environment
conditions we predict as possible, and for which we want to prove that an
appropriate configuration exists that can satisfy the NFRs. In case no con-
figuration is able to satisfy the NFRs, the designer should change the DSPL
architecture. Furthermore, these formulae are used for run-time analysis
and planning to perform continuous verification and self-adaptation.

reliability =
P62 ∗ P1 ∗ LP ∗ P7− P62 ∗ P1 ∗ P7

PL ∗ P3 ∗ P22 ∗ P5 ∗ P42 − 1
(7.3)

106

i
i

“thesis” — 2014/1/30 — 16:53 — page 107 — #120 i
i

i
i

i
i

7.5. The Proposed Approach

Figure 7.6: The proposed framework at run time

energy = 2∗E6∗PL−2∗E6+1∗E1∗PL−E1−PL∗E3−2∗PL∗E2−PL∗E5−2∗PL∗E4+PL∗E7−E7
PL−1

As mentioned, each variant is also transformed into parametric Markov
models. Figure 7.7(b) shows the parametric DTMC corresponding to the
selection of the GPS locator. For each variant, reachability properties are
in turn evaluates on the respective Markov models. Note that in fact every
variant has a behavior that starts from a starting state and ends in one or
more final states. The properties are shown in the formulae below.

P =?[F (State = End)] (7.4)

R =?[F (State = End)] (7.5)

The verification of Markov models against every property also results
in a formula. After providing quality data for the parameters, the formula
is evaluated by substituting real numbers. The real number is the quality
(reliability or energy) that a variant can provide. To evaluate the quality of

107

i
i

“thesis” — 2014/1/30 — 16:53 — page 108 — #121 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

1

2

3

4

5 6

7

8

9

10 11

12

13

P1

PL

P2

P3

P2

P4

P4

P5

1-PL

P6

P7

P6PL
1-P
L

0 0

1-P
1

1-P2

1-P3

1-P2

1-P
4

1-P
5

1-P6

1-P4

1-P
7

1-P
6

(a) Parametric DTMC for the core behavior of the running ex-
ample - state ’0’ is drawn two times to make the figure readable.

1

2

3

0.9999

Pgps

0.0001

04

0.00010.9999

1-Pgps

(b) Parametric DTMC for
the alternative behavior of
using GPS

Figure 7.7: Parametric DTMCs

the whole scenario, the quality of variants are fed into the parameters of the
main formula.

7.5.2 Run time

When the framework moves to run time, its activities are inspired by MAPE-
K cycle shown in Figure 7.8, popularized by the autonomic computing re-
search community (see [50]). The quality data collected through monitor-
ing must be transformed into values that can be used to feed the formula.
This transformation in general depends on the abstraction that model pa-
rameters realize on the physical data measurable in the environment. As a
typical example, physical data may represent the detected failures of exter-
nal service invocations, whereas model parameters may represent service
reliability expressed as a failure probability. In general, the transformation
process from environmental data collected by monitors to model parame-
ters can be quite complex and may require approaches based on machine
learning. An example is presented in [28].

Hereafter we assume that suitable transformations from monitored data
to model parameters exist in the run-time environment. Updated parameters
are used to evaluate the parametric formulae in order to analyze the current
satisfaction and also to foresee future NFR violations.

108

i
i

“thesis” — 2014/1/30 — 16:53 — page 109 — #122 i
i

i
i

i
i

7.5. The Proposed Approach

Figure 7.8: The proposed framework at run time.

As for the knowledge base, parametric formulae and NFR properties are
kept at run time for analysis and planning purposes. In case the analysis
detects or predicts any violations, planning techniques are used to generate
adaptation plans by which the system can optimize its behaviors. For this
purpose, we employ evolutionary algorithms and in particular Hill Climb-
ing (HC), which is able to find a solution that represents a good trade-off
between precision of the results and timeliness of the provided response.
As a result, adaptation plans are generated and applied as a new configu-
ration from the DSPL. An architectural adaptation can therefore be simply
seen as set of variant substitutions for given variation points. However, the
main issue of planning is to find a configuration of variants that optimizes
the satisfaction of possibly conflicting properties. In general, there might
be various NFR properties (e.g. performance and energy consumption) that
may have competing nature in the way they can be taken care of in an im-
plementation. For example, regarding a variation point X , there may be
different variants providing the same functionalities but different quality
properties. Variant A may provide a high response time with a low energy
consumption, variant B may provide a low response time and a high en-
ergy consumption, and finally variant C may provide an average quality
for both cases. Due to the existence of different variation points, finding a
configuration that optimally satisfies most of the NFRs can be challenging.

If the verification of the current DSPL configuration fails at run time
after updated quality parameters are fed into the verification formulae, a
reconfiguration plan is activated to perform a chain of adaptations. In terms
of DSPL, an adaptation is a substitution of a variant with another one that
would help the system to better achieve its requirements. However, explor-
ing all possible combinations of variants needs exponential time, and is in-
herently an NP-Complete search problem. It is true that by using parametric

109

i
i

“thesis” — 2014/1/30 — 16:53 — page 110 — #123 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

model checking and avoiding the whole run-time model checking process,
the required time is reduced, but in case of a large number of variation
points and variants, evaluating all combinations can be impossible at run
time within the time limits within which a reaction to NFR violations must
be enacted. Therefore, we apply an evolutionary approach, like HC, which
takes into account the constraint on the available reconfiguration time and
finds a sub-optimal configuration. The algorithm is able to provide a more
accurate solution (i.e., one that is closer to the optimum) if more time is
allocated to the search. The HC algorithm, in general, searches to find a
sub-optimal solution considering a budgeted time. The search continues
until a solution is reached, which represents a good candidate to be chosen
for adaptation, given the limited time available to perform the search.

HC is an optimization method that iteratively searches for better solu-
tions. It starts with a random solution, then tries to improve it by iteratively
changing a single element of the solution. If the change leads to a better
solution, the change is applied. The process is continued until new improve-
ments cannot be found. HC does not guarantee that the resulting solution is
the best possible solution. However, it can find a better solution than other
algorithms when the available search time is limited. The remainder of this
section provides an intuitive, high-level description of how we apply HC to
generate a new configuration of a DSPL.

Let us consider P = {p1, p2, ..., pN} be the satisfaction degree of the set
of NFR properties that a DSPL is supposed to satisfy. The elements of the
set represents the degree that a given configuration satisfies the properties.
For each property, a weight number is introduced that expresses the impor-
tance of the property. The weights are expressed as a set of real numbers
W = {w1, w2, ..., wN}. Therefore, the total utility of a selected configura-
tion can be specified as:

UC = w1 ∗ p1 + w2 ∗ p2 + ...+ wN ∗ pN (7.6)

Regarding our running example, there are two properties (p1, p2) corre-
sponding to reliability and energy consumption, respectively. We consider
(w1 = 2, w2 = 1) as the weights for those properties, which means that the
importance of reliability is “twice” the importance of energy consumption.
Note that the energy consumption property is normalized by dividing the
currently measured value by the maximum energy consumption expressed
in the requirement.

Algorithm 1 shows the pseudocode for the HC approach. The algorithm
starts with the current configuration of DSPL. It iteratively searches for
any other configuration that can better satisfy the properties. To do that,

110

i
i

“thesis” — 2014/1/30 — 16:53 — page 111 — #124 i
i

i
i

i
i

7.5. The Proposed Approach

Table 7.2: Reliability and energy parameters of the running example.

Reliability P1 P2 P3 P4 P5 P6 P7
- 0.9 0.998 0.995 0.95 0.998 0.995 0.998

Energy E1 E2 E3 E4 E5 E6 E7
- 50 60 70 40 50 40 30

the algorithm randomly chooses a variation point and replaces one of its
variants. Then, the total utility of the new configuration is calculated. If
it is greater than the utility of the current configuration, it is selected as a
candidate configuration. The algorithm continues to randomly search for
other candidates that are better than the new selected configuration. This
procedure is carried out until the limited time is finished. In the end, the
difference between the initial configuration and the selected configuration
is calculated in terms of variant substitutions.

Algorithm 1 Hill Climbing Algorithm

1: HillClimbing (V arationPoint[] V P, V ariant[] V R,Configuration cf)
2: {
3: var tempCf = cf ;
4: while(timeLimit < 0)
5: {
6: vnt = ChooseV ariant(V P, V R);
7: newCf = Combine(tempCf, vnt);
8: if(Utility(newCf) > Utility(tempCf))
9: tempCf = newCf ;

10: }
11: return Diff(tempCf, cf);
12: }

Let us consider as an example how the proposed approach works for our
running example. Of course, the example does not show the real value of
HC, which would become evident only in the case of a very high number of
alternatives to evaluate. Assume that (see Figure 7.9) the currently running
configuration for the HHO application uses GPS and SMS as the internal
variants. Also assume that the user moves around and changes her physical
context. It may then happen that the quality parameters change and the
NFR properties (1) and (2) are not satisfied any more. The updated quality
parameters are shown in Table 7.2.

A violation is discovered by evaluating the parametric formulae (3) and
(4) for both reliability and energy consumption considering the updated

111

i
i

“thesis” — 2014/1/30 — 16:53 — page 112 — #125 i
i

i
i

i
i

Chapter 7. Achieving Non-Functional Requirements at Run time

GPS SMS

Happy Hour
Organizer

Locator Mobile
 Communication

Facebook BookMilano

Social Network Place
Booker

Figure 7.9: The violated configuration using GPS and SMS.

Table 7.3: New reliability and energy data for the quality parameters.

Reliability P1 P2 P3 P4 P5 P6 P7
- 0.995 0.998 0.995 0.999 0.998 0.995 0.998

Energy E1 E2 E3 E4 E5 E6 E7
- 55 60 70 45 50 40 30

parameter values. In fact, the evaluation results in 0.73 for the reliability
property (1), which is much less than 0.95 as the expected minimum. To
deal with such violation, the HC algorithm is applied and a configuration
using GSM and WiFi is selected as the new configuration (Figure 7.10). As
the result, the application shall apply two adaptations: substituting GSM
for GPS, and WiFi for SMS. Using this configuration, the reliability and
energy consumption properties are evaluated to 0.95 and 836, which satisfy
both NFR properties. The updated parameters of the new configuration are
shown in Table 7.3.

The application keeps monitoring and updating the quality parameters,

GSM WiFi

Happy Hour
Organizer

Locator Mobile
 Communication

Facebook BookMilano

Social Network Place
Booker

Figure 7.10: The new configuration after applying the adaptations.

112

i
i

“thesis” — 2014/1/30 — 16:53 — page 113 — #126 i
i

i
i

i
i

7.6. Conclusion

and feeds them into the parametric formulae in order to discover future vi-
olations. For the sake of simplicity, we did not discuss the QoS changes of
external services in this example. In the example, Facebook and BookMi-
lano are used as the external services. Similarly to internal variabilities, it
can be the case that their QoS changes which may lead to property viola-
tions and further adaptation planning.

7.6 Conclusion

DSPLs can be viewed as a clear approach to capture and specify variabil-
ity and further more adaptations. Our approach can be extended for other
specification languages and requirements. It is built on top of existing tech-
niques and tools, and can be completed beside a model-driven development
to more automatize both design-development and run-time adaptation.

113

i
i

“thesis” — 2014/1/30 — 16:53 — page 114 — #127 i
i

i
i

i
i

i
i

“thesis” — 2014/1/30 — 16:53 — page 115 — #128 i
i

i
i

i
i

Part IV

Conclusion

115

i
i

“thesis” — 2014/1/30 — 16:53 — page 116 — #129 i
i

i
i

i
i

i
i

“thesis” — 2014/1/30 — 16:53 — page 117 — #130 i
i

i
i

i
i

CHAPTER8
Conclusion and Future Work

"There is a theory which states that if ever anyone discovers exactly what
the Universe is for and why it is here, it will instantly disappear and be re-
placed by something even more bizarre and inexplicable. There is another
theory which states that this has already happened." Douglas Adams

In this chapter, we conclude our journey through verification techniques
for Variability-Intensive Systems (VISs). We recall the research questions
introduced in Chapter 1, and describe how they are addressed through this
thesis. Then we discuss the current limitations and future perspectives.

8.1 Reviewing Research Questions

Let us review the research questions, and discuss them one by one.

RQ.1. Given an incomplete system specification, how to check whether
or not the system behavior satisfies the expected requirements?

An innovative technique – Incomplete Model Checking (IMC) – to deal

117

i
i

“thesis” — 2014/1/30 — 16:53 — page 118 — #131 i
i

i
i

i
i

Chapter 8. Conclusion and Future Work

with kind specifications is presented in Chapter 4. It is later extended by an
incremental methodology - AGAVE - to verify requirements as the system
is evolved and gradually developed 5. By the time, this approach is inves-
tigated for state-based behavior specifications against CTL-like properties,
so we leave studying other temporal logic languages as the future work.

RQ.1.1. How to formally specify an incomplete system behavior?

The notion of incompleteness in this thesis is essentially focused on un-
specified parts of a system behavioral specification. These parts are encap-
sulated and viewed as a functionality, which may be only a single action or
a complicated sequence of actions. In Chapters 4 and 5, two state-based for-
malisms LTS and Statecharts are enriched with Transparent states, which
represent unknown behaviors. In the former case, ILTS provides a compo-
sitional formalism in which transparent states are subject to be refined into
further transition systems. Similarly Statecharts can evolve through trans-
parent states, each of which is refined into another Statechart.

RQ.1.2. What language can fully specify the set of constraints that lead
to the satisfaction of a temporal property?

Next-Free Path-CTL is the language we introduce to express constraints
generated by a model checker checking CTL-like properties of an ILTS.
The language adds a fresh temporal operator to specify global properties
over finite paths. This question is important to answer for any other tempo-
ral logic language. For example, if we take LTL as the property specifica-
tion language, then the language to specify constraints shall be studied.

RQ.1.3. How can we generate constraints over unspecified elements of
an incomplete specification to guarantee that the original property holds?

Chapter 4 presents the algorithm able to check ILTS against Next-Free
CTL properties. Given a global property, constraints are computed to guar-
antee the property satisfaction. The algorithm is an extension of the stan-
dard CTL model checking [4], such that it is able to handle transparent
states.

RQ.1.4. As the system specification evolves, how can we re-use the re-
sults of previous verifications to calculate the new results?

IMC is used as the core technique for incremental refinement and verifi-

118

i
i

“thesis” — 2014/1/30 — 16:53 — page 119 — #132 i
i

i
i

i
i

8.1. Reviewing Research Questions

cation of Statecharts in Chapter 5. We show that the constraints generated
for transparent states are checked later when the missing parts of specifi-
cation is provided. It means that the whole verification is not performed
whenever a piece of information is added. Instead, the constraints of the
recently refined transparent state are checked. This approach allows us to
avoid re-doing the verification for the parts processed earlier. Consequently,
the satisfaction of the constraints will imply the satisfaction of the global
property.

RQ.2. How to specify and model-check stochastic behaviors of SPLs
against non-functional requirements?

In the third part of the thesis, we focused on Non-Functional Require-
ments (NFRs) and studied the techniques to capture stochastic behaviors of
many products driven from an SPL, and their verifications against NFRs.
Due to the variety of NFRs, we address the techniques only for two of them
(namely reliability and energy consumption), which are of significance in
practice.

RQ.2.1. What are the suitable (high-level and low-level) formalisms to
capture the stochastic behaviors of SPLs?

We studied this problem in both high-level and low-level modeling lan-
guages. There exists a variety of approaches to introduce variability into
high-level behavioral models, particularly UML diagrams [12, 38, 80, 85,
93]. In Chapter 6, we presented Stochastic Variable Sequence Diagrams
(SVSDs) coupled with Feature Diagrams to capture both variability and
stochastic information of an SPL. Obviously, different diagrams can be ex-
tended in this manner to offer both variability and stochasticity as native
elements.

As for the low-level formalism, Featured DTMCs (FDTMCs) are pro-
posed in which the notion of feature are added to DTMCs to differentiate
the behaviors of different products. We show how to map SVSDs onto
FDTMCs in order to further analysis.

RQ.2.2. How to efficiently verify non-functional requirements of an
SPL?

Three different approaches (namely enumerative, parametric, and ap-
proximative) are proposed to verify an SPL – in terms of FDTMCs–, and to
check all its products against reliability and energy consumption properties.

119

i
i

“thesis” — 2014/1/30 — 16:53 — page 120 — #133 i
i

i
i

i
i

Chapter 8. Conclusion and Future Work

8.2 Limitations and Future Work

Similarly to every scientific work, the approaches described through this
thesis may suffer from a number of threats and weaknesses. We discuss
some of them in this section, and define the future work as well.

Regarding incomplete model checking, the approach is still in the pre-
liminary stages, though it has been applied to a number of case studies and
enjoys a tool support. A computational complexity analysis of the approach
should be performed to complement the empirical evaluation. We consider
IMC and AGAVE as young research fruits that can contribute to the lit-
erature of software engineering and formal verification. There are many
directions to extend this work. At the moment, we are working to optimize
the implementation and to explore a new symbolic approach. Regarding
the formalisms, the future work is to support the full CTL by adding Next
operator. Further steps are applying the approach to other case studies in
different areas and extending the framework to support other temporal log-
ics such as LTL. We are also working on relaxing the current restrictions
of AGAVE such as side-effect free elaboration. Beside that we investigate
how to mitigate the state-explosion risk of concurrent Statecharts.

Regarding stochastic SPL analysis, there are threats that challenge our
model-based approach. First, high-level behavioral models are rarely avail-
able for SPLs. Due to this lack, we did not succeed to apply and evaluate
our approaches w.r.t. industrial cases. Providing accurate stochastic infor-
mation (e.g. failure probability of a server) for SPL behaviors at design
time is another challenge, that constraints the applicability. However, we
hope to take further steps by releasing an open source tool. In this regard,
we aim at developing stochastic modeling languages for SPLs, as well as
extending the approach to other non-functional properties, in particular to
performance.

Dealing with open and closed variability together in a single specifi-
cation could be another direction for future research. In this case, an SPL
would contain both unknown components as well as variation points and al-
ternatives. This could be specially interesting for adaptive systems in which
both variabilities are subject to exist. Model checking such specification
would result in more complicated constraints for unknown components of
each valid configuration. Obviously handling such computation would be
quite expensive for large-scale models.

Despite of our attempt to develop new verification techniques to address
variability for different kinds of specifications, there exist many gaps that
require further research. Most advanced model checkers do not support in-

120

i
i

“thesis” — 2014/1/30 — 16:53 — page 121 — #134 i
i

i
i

i
i

8.2. Limitations and Future Work

cremental evolution, so the whole verification is re-performed if there are
tiny changes in system specification. This is an obstacle to integrate model
checking with daily development environments, due to the fact that speci-
fication is mostly developed through the interaction with programmers and
users and many versions are created, verified and debugged until obtain-
ing a desired specification. Bringing incrementally and reusability to other
verification techniques such as testing and static analysis of program code
would be definitely of industrial interest.

Considering industrial applicability, the main threat is the lack of soft-
ware models. Although there have been an extensive academic work on
model-driven development, the realization of these techniques still seems a
dream for software developers. While concrete programs and codebase are
the main documentation of current software, extracting analyzable models
and reasoning about them is a big challenge. Further research is required to
bridge the gap between formal method experts and industrial programmers.
The fact that formal verification requires highly skilled programmers is a
reality that limits its practical usages.

121

i
i

“thesis” — 2014/1/30 — 16:53 — page 122 — #135 i
i

i
i

i
i

i
i

“thesis” — 2014/1/30 — 16:53 — page 123 — #136 i
i

i
i

i
i

Bibliography

[1] Rasmus Adler, Ina Schaefer, Tobias Schuele, and Eric Vecchié. From model-based design to
formal verification of adaptive embedded systems. ICFEM’07, pages 76–95, Berlin, Heidel-
berg, 2007. Springer-Verlag.

[2] Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst., 23(3):273–303, May 2001.

[3] Sven Apel and Christian Kästner. An overview of feature-oriented software development.
Journal of Object Technology, 8(5):49–84, July 2009. (column).

[4] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

[5] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software model checking
with slam. Commun. ACM, 54(7):68–76, July 2011.

[6] Joerg Bartholdt, Marcel Medak, and Roy Oberhauser. Integrating quality modeling with feature
modeling in software product lines. In ICSEA, pages 365–370, 2009.

[7] Nelly Bencomo, Peter Sawyer, Gordon S. Blair, and Paul Grace. Dynamically adaptive systems
are product lines too: Using model-driven techniques to capture dynamic variability of adaptive
systems. In Workshop on Dynamic Software Product Lines, pages 23–32, 2008.

[8] Domenico Bianculli, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Interface decompo-
sition for service compositions. In ICSE’11, pages 501–510, 2011.

[9] Friedemann Bitsch. Safety patterns - the key to formal specification of safety requirements. In
Proceedings of the 20th International Conference on Computer Safety, Reliability and Security,
SAFECOMP ’01, pages 176–189, London, UK, UK, 2001. Springer-Verlag.

[10] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293–318, September 1992.

[11] Radu Calinescu and Marta Kwiatkowska. Using quantitative analysis to implement autonomic
it systems. In Proceedings of the 31st International Conference on Software Engineering,
pages 100–110, 2009.

[12] Maria Victoria Cengarle, Peter Graubmann, and Stefan Wagner. Semantics of uml 2.0 inter-
actions with variabilities. Electronic Notes in Theoretical Computer Science, 160:141–155,
2006.

123

i
i

“thesis” — 2014/1/30 — 16:53 — page 124 — #137 i
i

i
i

i
i

Bibliography

[13] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Designing and prototyping dy-
namic software product lines: techniques and guidelines. In Proceedings of the 14th interna-
tional conference on Software product lines: going beyond, SPLC’10, pages 331–345, Berlin,
Heidelberg, 2010. Springer-Verlag.

[14] Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley R. Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure. Com-
puter, pages 276–277, 2004.

[15] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella.
Version 2: An OpenSource Tool for Symbolic Model Checking. In Proc. International Confer-
ence on Computer-Aided Verification (CAV 2002), volume 2404 of LNCS, Copenhagen, Den-
mark, July 2002. Springer.

[16] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263,
April 1986.

[17] E.M. Clarke and W. Heinle. Modular translation of statecharts to smv. In Technical Report
CMU-CS-00-XXX Carnegie Mellon University School of Computer Science, 2000.

[18] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves Schobbens.
Model checking software product lines with snip. International Journal on Software Tools for
Technology Transfer, 14(5):589–612, 2012.

[19] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Symbolic model
checking of software product lines. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 321–330, New York, NY, USA, 2011. ACM.

[20] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-François
Raskin. Model checking lots of systems: efficient verification of temporal properties in soft-
ware product lines. In Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ICSE ’10, pages 335–344, New York, NY, USA, 2010. ACM.

[21] Paul Clements and Linda Northrop. Software product lines: practices and patterns. Addison-
Wesley, 2001.

[22] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning assump-
tions for compositional verification. In Proceedings of the 9th international conference on
Tools and algorithms for the construction and analysis of systems, TACAS’03, pages 331–
346, 2003.

[23] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. Beyond boolean
product-line model checking: Dealing with feature attributes and multi-features. In Proceed-
ings of the 2013 International Conference on Software Engineering, pages 472–481, 2013.

[24] Wei Dong, Ji Wang, Xuan Qi, and Zhi-Chang Qi. Model checking uml statecharts. In
APSEC’01, pages 363 – 370, 2001.

[25] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifi-
cations for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering, ICSE ’99, pages 411–420, 1999.

[26] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. Fusion: a framework for engineering
self-tuning self-adaptive software systems. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering, FSE ’10, pages 7–16, 2010.

[27] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming: Introduction.
Commun. ACM, 44(10):29–32, October 2001.

124

i
i

“thesis” — 2014/1/30 — 16:53 — page 125 — #138 i
i

i
i

i
i

Bibliography

[28] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. Model evolution
by run-time parameter adaptation. In Proceedings of the 31st International Conference on Soft-
ware Engineering, ICSE ’09, pages 111–121, Washington, DC, USA, 2009. IEEE Computer
Society.

[29] Leire Etxeberria and Goiuria Sagardui. Evaluation of quality attribute variability in software
product families. In ECBS, pages 255–264, 2008.

[30] Leire Etxeberria and Goiuria Sagardui. Quality assessment in software product lines. In High
Confidence Software Reuse in Large Systems, volume 5030, pages 178–181. 2008.

[31] M. Famelis, R. Salay, and M. Chechik. Partial models: Towards modeling and reasoning with
uncertainty. In ICSE’12, pages 573 –583, 2012.

[32] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time efficient probabilistic
model checking. In ICSE, pages 341–350, 2011.

[33] Dario Fischbein and Sebastian Uchitel. On correct and complete strong merging of partial
behaviour models. In FSE’16, pages 297–307, 2008.

[34] Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Barringer. Assumption generation
for software component verification. In Proceedings of the 17th IEEE international conference
on Automated software engineering, ASE ’02, 2002.

[35] S. Gnesi, D. Latella, and M. Massink. Model checking uml statechart diagrams using jack.
In 4th IEEE International Symposium on High-Assurance Systems Engineering, pages 46 –55,
1999.

[36] Steffen Göbel, Christoph Pohl, Simone Röttger, and Steffen Zschaler. The comquad compo-
nent model: enabling dynamic selection of implementations by weaving non-functional as-
pects. AOSD ’04, pages 74–82, 2004.

[37] N. Gold, A. Mohan, C. Knight, and M. Munro. Understanding service-oriented software.
Software, IEEE, 21(2):71 – 77, march-april 2004.

[38] Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley, 2004.

[39] Lars Grunske. Specification patterns for probabilistic quality properties. In Proceedings of the
30th international conference on Software engineering, ICSE ’08, pages 31–40, New York,
NY, USA, 2008. ACM.

[40] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. Param: A model
checker for parametric markov models. In CAV, pages 660–664, 2010.

[41] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic software prod-
uct lines. Computer, 41:93–95, 2008.

[42] Svein Hallsteinsen, Erlend Stav, Arnor Solberg, and Jacqueline Floch. Using product line
techniques to build adaptive systems. In SPLC, pages 141–150, 2006.

[43] David Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231 – 274, 1987.

[44] David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM Trans. Softw.
Eng. Methodol., 5(4):293–333, 1996.

[45] George T. Heineman and William T. Councill. Component-based software engineering:
putting the pieces together. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[46] Thomas Henzinger, Shaz Qadeer, and Sriram Rajamani. You assume, we guarantee: Method-
ology and case studies. In CAV, volume 1427, pages 440–451, 1998.

125

i
i

“thesis” — 2014/1/30 — 16:53 — page 126 — #139 i
i

i
i

i
i

Bibliography

[47] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we guarantee:
Methodology and case studies. In CAV, pages 440–451, 1998.

[48] Anne Immonen and Eila Niemel. Survey of reliability and availability prediction methods from
the viewpoint of software architecture. Software and Systems Modeling, 7:49–65, 2008.

[49] S. Jarzabek, B. Yang, and S. Yoeun. Addressing quality attributes in domain analysis for
product lines. Software, IEE Proceedings -, 153(2):61 – 73, 2006.

[50] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. In Computer,
volume 36, pages 41–50, 2003.

[51] Dongsun Kim and Sooyong Park. Reinforcement learning-based dynamic adaptation planning
method for architecture-based self-managed software. International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, 0:76–85, 2009.

[52] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic model checking
for performance and reliability analysis. ACM Performance Evaluation Review, 36(4):40–45,
2009.

[53] BeatrizPérez Lamancha, Macario Polo, and Mario Piattini. Systematic review on software
product line testing. In Software and Data Technologies, volume 170 of Communications in
Computer and Information Science, pages 58–71. Springer Berlin Heidelberg, 2013.

[54] Diego Latella, Istvan Majzik, and Mieke Massink. Towards a formal operational semantics of
uml statechart diagrams. In FMOODS, 1999.

[55] Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model checking of domain artifacts in
product line engineering. In ASE, pages 269–280, 2009.

[56] Jaejoon Lee and Kyo C. Kang. A feature-oriented approach to developing dynamically recon-
figurable products in product line engineering. International Software Product Line Confer-
ence, 0:131–140, 2006.

[57] Lorea Belategi Leire Etxeberria, Goiuria Sagardui. Quality aware software product line engi-
neering. In Journal of the Brazilian Computer Society, volume 14, pages 57 – 69, 2008.

[58] Rogerio Lemos and et al. Software engineering for self-adaptive systems: A second research
roadmap. In Rogerio Lemos, Holger Giese, Hausi. Muller, and Mary Shaw, editors, Software
Engineering for Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer Science,
pages 1–32. 2013.

[59] R. Lincke, T. Gutzmann, and W. Loewe. Software quality prediction models compared. In
10th International Conference on Quality Software (QSIC), pages 82 –91, 2010.

[60] Sten A. Lundesgaard, Arnor Solberg, Jon Oldevik, Robert France, JanOyvind Aagedal, and
Frank Eliassen. Construction and execution of adaptable applications using an aspect-oriented
and model driven approach. In Proceedings of the 7th IFIP WG 6.1 international conference
on Distributed applications and interoperable systems, DAIS’07, pages 76–89, 2007.

[61] Florence Maraninchi. Operational and compositional semantics of synchronous automaton
compositions. In CONCUR, pages 550–564. Springer-Verlag, 1992.

[62] MARTE. http://www.omgmarte.org/.

[63] Thomas Maßen and Horst Lichter. Requiline: A requirements engineering tool for soft-
ware product lines. In Software Product-Family Engineering, volume 3014, pages 168–180.
Springer Berlin Heidelberg, 2004.

[64] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. Composing
adaptive software. Computer, 37:56–64, July 2004.

[65] Bertrand Meyer. Applying "design by contract". Computer, 25(10):40–51, October 1992.

126

i
i

“thesis” — 2014/1/30 — 16:53 — page 127 — #140 i
i

i
i

i
i

Bibliography

[66] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg. Mod-
els@ runtime to support dynamic adaptation. Computer, 42:44–51, October 2009.

[67] Eila Niemel and Anne Immonen. Capturing quality requirements of product family architec-
ture. Information and Software Technology, 49:1107 – 1120, 2007.

[68] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici,
D.S. Rosenblum, and A.L. Wolf. An architecture-based approach to self-adaptive software.
Intelligent Systems and their Applications, IEEE, 14(3):54–62, 1999.

[69] Carlos Parra, Xavier Blanc, Anthony Cleve, and Laurence Duchien. Unifying design and run-
time software adaptation using aspect models. Sci. Comput. Program., 76:1247–1260, 2011.

[70] Corina S. Pasareanu, Matthew B. Dwyer, and Michael Huth. Assume-guarantee model check-
ing of software: A comparative case study. In Proceedings of the 5th and 6th International
SPIN Workshops on Theoretical and Practical Aspects of SPIN Model Checking, pages 168–
183, 1999.

[71] Mauro Pezzè and Michal Young. Software testing and analysis - process, principles and tech-
niques. Wiley, 2007.

[72] Klaus Pohl, Gnter Bckle, and Frank J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, Heidelberg, Germany, 2005.

[73] C.M. Prashanth and K. Chandrashekhar Shet. Efficient algorithms for verification of uml stat-
echart models. Journal of Software, 4(3), 2009.

[74] Genaina Rodrigues, David Rosenblum, and Sebastian Uchitel. Using scenarios to predict the
reliability of concurrent component-based software systems. In Fundamental Approaches to
Software Engineering, pages 111–126, 2005.

[75] Rick Salay, Marsha Chechik, and Jennifer Horkoff. Managing requirements uncertainty with
partial models. In 20th IEEE International Requirements Engineering Conference (RE), pages
1 –10, sept. 2012.

[76] Rick Salay, Michalis Famelis, and Marsha Chechik. Language independent refinement using
partial modeling. In FASE, pages 224–239, 2012.

[77] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[78] P. Sampath, S. Arora, and S. Ramesh. Evolving specifications formally. In RE’12, pages 5–14,
2012.

[79] Ina Schaefer and Arnd Poetzsch-Heffter. Model-based verification of adaptive embedded sys-
tems under environment constraints. SIGBED, 6(3):9:1–9:4, 2009.

[80] P. Shaker, J.M. Atlee, and Shige Wang. A feature-oriented requirements modelling language.
In RE’12, pages 151–160, 2012.

[81] N. Siegmund, M. Rosenmuller, C. Kastner, P.G. Giarrusso, S. Apel, and S.S. Kolesnikov. Scal-
able prediction of non-functional properties in software product lines. In 15th International
Software Product Line Conference (SPLC), pages 160 –169, 2011.

[82] N. Siegmund, M. Rosenmuller, M. Kuhlemann, C. Kastner, and G. Saake. Measuring non-
functional properties in software product line for product derivation. In 15th Asia-Pacific Soft-
ware Engineering Conference, APSEC ’08, pages 187 –194, 2008.

[83] J. Sincero, W. Schroder-Preikschat, and O. Spinczyk. Towards tool support for the configura-
tion of non-functional properties in spls. In 42nd Hawaii International Conference on System
Sciences, HICSS ’09, pages 1–7, 2009.

127

i
i

“thesis” — 2014/1/30 — 16:53 — page 128 — #141 i
i

i
i

i
i

Bibliography

[84] J. Sincero, W. Schroder-Preikschat, and O. Spinczyk. Approaching non-functional properties
of software product lines: Learning from products. In 17th Asia Pacific Software Engineering
Conference (APSEC), pages 147 –155, 2010.

[85] Rasha Tawhid and Dorina C. Petriu. Integrating performance analysis in the model driven
development of software product lines. In MoDELS, pages 490–504, 2008.

[86] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Architecture: Founda-
tions, Theory and Practice. Addison-Wesley, 2009.

[87] Pablo Trinidad, Antonio Ruiz Cortes, Joaquin Pena, and David Benavides. Mapping feature
models onto component models to build dynamic software product lines. In Workshop on
Dynamic Software Product Lines, pages 51–56, 2007.

[88] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of partial behavior models from properties
and scenarios. TSE, 35(3):384 –406, 2009.

[89] Sebastian Uchitel and Marsha Chechik. Merging partial behavioural models. In FSE’12, pages
43–52, 2004.

[90] E.S.K. Yu. Towards modelling and reasoning support for early-phase requirements engineer-
ing. In Requirements Engineering, 1997., Proceedings of the Third IEEE International Sym-
posium on, pages 226–235, 1997.

[91] Hongyu Zhang, Stan Jarzabek, and Bo Yang. Quality prediction and assessment for product
lines. CAiSE’03, pages 681–695, 2003.

[92] Qianchuan Zhao and Bruce H. Krogh. Formal verification of statecharts using finite-state
model checkers. IEEE Transactions on Control Systems Technology, 14(5):943–950, 2006.

[93] Tewfik Ziadi, Loc Hlout, and Jean-Marc Jezequel. Towards a uml profile for software product
lines. In Software Product-Family Engineering, pages 129–139. Springer LNCS, 2003.

128

	I Foundation
	Introduction
	Problem Formulation
	Contributions
	Thesis Organization

	Variability-Intensive Systems
	Incomplete Specifications
	Adaptive Systems
	Software Product Lines

	Formal Verification
	Formal Specification
	Transition Systems
	Probabilistic Models

	Formal Languages for Requirements Specification
	Computational Tree Logic
	Probabilistic Computational Tree Logic
	Reward Temporal Logic

	Model Checking Techniques
	CTL Model Checking
	PCTL Model Checking

	II Modeling and Verification of Open Variability
	Verification of Incomplete Specifications
	Introduction
	Incomplete Model Checking (IMC)
	Incompletely Labeled Transition System
	Next-Free CTL and Path-CTL
	Next-Free CTL model checking of ILTS
	Sketching the correctness of Next-Free CTL model checking
	Path-CTL model checking

	Experimental Results
	Tool Support and Applicability
	Scalability

	Verification of open adaptive systems at run time
	Related Work
	Conclusion

	AGAVE: A Methodology for Incremental Verification
	Overview
	Statecharts
	Verification
	Statecharts-to-ILTS Transformation
	ILTS/Path-CTL Verification

	Railway Crossing System
	Experimental Evaluation
	Related work
	Conclusion

	III Stochastic Modeling and Verification of Closed Variability
	Modeling and Verification of Stochastic Software Product Lines
	Motivating Running Example
	Stochastic Variable Sequence Diagrams
	Featured Discrete-Time Markov Chains (FDTMCs)
	Model to Model Transformation
	FDTMC Model Checking
	Enumerative Verification
	Parametric Verification
	Approximative Verification

	Experiments
	Related Work
	Quality Analysis of SPLs
	UML for SPLs
	Model Checking of SPLs

	Conclusion

	Achieving Non-Functional Requirements at Run time
	Introduction
	Running Example
	Self-Adaptive Systems for NFRs Satisfaction
	Dynamic Software Product Lines
	The Proposed Approach
	Design Time
	Run time

	Conclusion

	IV Conclusion
	Conclusion and Future Work
	Reviewing Research Questions
	Limitations and Future Work

	Bibliography

