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A B S T R A C T

Computer architecture crossed a critical juncture at the beginning of the last
decade. Single-thread performance stopped scaling due to technology lim-
itations and complexity constraints. Therefore, chip manufacturers started
relying on multi-threading and multicore processors to scale-up performance
efficiently while keeping other figures of merit like energy and power con-
sumption under control. In fact, whenever parallel software is available, a
multicore processor harnessing Thread-Level Parallelism (TLP) can outper-
form a massive superscalar processor exploiting Instruction-Level Parallelism
(ILP) within the same power budget. As a consequence, on-chip parallel archi-
tectures, which once were rare, are now commodity across all domains, from
embedded and mobile computing systems to large-scale installations. Nev-
ertheless, achieving efficient performance accounting for energy and power
consumption progressively became increasingly complex requiring significant
innovation across the hardware/software execution stack, even for commodity
solutions.

At a high level, two challenges arise that hinder multicore processors efficiency.
First, it must be possible to effectively partition hardware resources among co-
runner applications within multi-program workloads and avoid the negative
effects of sharing when hardware resource cannot be partitioned. Hardware
resource partitioning is necessary because most multi-threaded applications do
not fully exploit the parallelism available in commodity multicore processors
due to the major difficulties of fine-grain parallelism. Among the hardware
resources worth partitioning, there are: compute bandwidth and cores, and
possibly others depending on the workload. Ideally, the system software layer
of the hardware/software execution stack should act on hardware resource
partitioning to attain fair application performance and provide Quality of Ser-
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vice (QoS) guarantees while respecting system constraints. Second, the system
software layer should operate in a transparent fashion without burdening
application programmers with all the complexities of the hardware/software
execution stack.

The focus of this dissertation is twofold. First, support efficient hardware re-
source partitioning for commodity multicore processors through a system soft-
ware layer, which operate transparently for applications. To this end, I present
solutions to attain fair application performance and provide QoS guarantees
for co-runner applications within a multi-program workload accounting for
application-specific performance measurements and performance goals. Sec-
ond, support efficient Dynamic Thermal Management (DTM) for commodity
multicore processors through a low-level system software layer. For this pur-
pose, I present a solution to constrain temperature when a multi-program work-
load of single-threaded applications runs on a Chip-Multiprocessor (CMP).
The resulting artifact is a set of changes, runtimes, and libraries for the GNU’s
not Unix (GNU)/Linux operating system.

On the performance side, I present the Heart Rate Monitor (HRM), Metronome,
and Metronome++. First, HRM is a split-design subsystem consisting of an
extension of the Linux kernel and a user-space library to attach applications
to the subsystem. HRM addresses the impedance-mismatch problem by pro-
viding application-specific performance measurements that are meaningful
to both programmers and users and, at the same time, useful to the system
software layer of the hardware/software execution stack. libhrm provides pro-
grammers a simple Application Programming Interface (API) to instrument
applications so as to define performance measurements and allow users to
specify performance goals. HRM and libhrm make the operations of the sys-
tem software layer I developed transparent to application programmers, which
just exploit their knowledge of the application domain to define meaningful
performance measurements. Second, Metronome is a kernel-space runtime
introducing the notion of performance-aware fair scheduling by extending one
of the scheduling classes of the Linux kernel. Metronome exploits HRM and
the performance measurements it provides to drive application performance
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towards performance goals for co-runner applications within a multi-program
workload. Metronome achieves its goal by implementing simple compute
bandwidth partitioning mechanism and policy. Third, Metronome++ is a leap
ahead with respect to Metronome; it adopts a split-design across the kernel-
and user-space. A user-space runtime drives the kernel-space extension of
the scheduling infrastructure of the Linux kernel to provide QoS guarantees
for co-runner applications within a multi-program workload by harnessing
application characteristics like speedup and execution phases. Metronome++
achieves its goal by implementing compute core partitioning mechanism and
policy. This dissertation additionally presents a set of minor achievements
harnessing different decision-making techniques other than the heuristics
Metronome and Metronome++ make use of.

On the temperature side, I present ThermOS, an extension of the Linux kernel
providing DTM through formal feedback control and idle cycle injection.
ThermOS addresses a shortcoming of commodity CMPs, which do not allow
different cores to run at different clock frequencies when they operate in the
same state. ThermOS avoids the negative effects depending on the lack of
fine-grain control over hardware facilities like Dynamic Voltage and Frequency
Scaling (DVFS) and improves upon state of the art.

On the performance/temperature side, I present preliminary results regarding
joint adaptive performance and thermal management combining some of the
aforementioned approaches.
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S O M M A R I O

L’architettura dei calcolatori ha attraversato un momento critico all’inizio dello
scorso decennio. Le prestazioni dei processori dotati di un singolo core e
capaci di eseguire un singolo thread1 hanno smesso di aumentare in seguito a
limitazioni tecnologiche e problemi di complessità. Di conseguenza, i produt-
tori di processori hanno iniziato ad appoggiarsi all’esecuzione contemporanea
di più thread tramite processori dotati di più di un core e capaci di eseguire
più di un thread contemporaneamente;2 questo ha permesso di aumentare le
prestazioni di processori mantenendo livello di efficienza accettabili in termini
di consumo energetico e dissipazione di potenza. In fatti, quando del codice
parallelo è disponibile, un processore multicore che sfrutta il parallelismo
a livello di thread può raggiungere prestazioni svariati ordini di grandezza
più elevate rispetto ad un processore singlecore superscalare che sfrutta il
parallelismo a livello di istruzione, questo raggiungendo lo stesso livello di
dissipazione di potenza. In conseguenza, i processori multicore, che fino a
poco tempo prima erano una rarità, si sono diffusi fino a diventare l’unica
soluzione disponibile per tutti i calcolatori, dai dispositivi dedicati come gli
smartphone e i tablet fino alle grandi installazioni. Nonostante l’introduzione
dei processori multicore, raggiungere livelli di prestazioni ed efficienza elevati
è diventato sempre più complesso; questo ha spinto i ricercatori ad introdurre
continue novità a tutti i livelli dell’infrastruttura hardware/software.

I problemi che affliggono i processori multicore e che impediscono di rag-
giungere livelli di prestazioni ed efficienza elevati sono principalmente due.
Primo, i processori multicore dovrebbero permettere di suddividere le loro

1 Nel prosieguo di questo sommario ci riferiremo ai processori dotati di un singolo core e capaci di
eseguire un single thread come processori singlecore.

2 Nel prosieguo di questo sommario ci riferiremo ai processori dotati di più di un core e capaci di
eseguire più di un thread contemporaneamente come processori multicore.
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risorse tra le applicazioni che girano contemporaneamente evitando gli effetti
negativi dovuti alla condivisione quando queste risorse non sono partiziona-
bili. Il partizionamento delle risorse si è reso necessario con l’aumentare del
numero di core perché la maggior parte del codice parallelo non è in grado
di utilizzare al meglio i processori multicore odierni a causa delle difficoltà
causate dal parallelismo a grana fine. Le risorse che sono più importanti da
partizionare sono: il tempo di CPU e i core, e possibilmente altre come la cache,
la banda verso la memoria, ecc., dipendentemente dall’insieme di applicazioni
che sono in esecuzione. Idealmente, il software di sistema dell’infrastruttura
hardware/software dovrebbe prendersi in carico del partizionamento delle
risorse mantenendo un equità tra le applicazioni in esecuzione rispettando i
livelli di qualità del servizio richiesto e i vincoli di sistema come il consumo
energetico o la dissipazione di potenza. Il secondo problema che affligge i
processori multicore e che impedisce di raggiungere livelli di prestazioni ed
efficienza elevati riguarda il metodo con cui il software di sistema opera. Il
software di sistema dovrebbe essere completamente trasparente senza tediare i
programmatori di applicazioni esponendogli le complessità dell’infrastruttura
hardware/software, tra le quali spicca il partizionamento delle risorse.

Gli obiettivi di questa tesi sono principalmente due. Primo, supportare il
partizionamento efficiente delle risorse dei processori multicore attraverso
un’estensione del software di sistema, che dovrà operare in modo trasparente.
A questo scopo, presento svariate soluzioni per ottenere equità tra le applica-
zioni in esecuzione e raggiungere i requisiti di qualità del servizio quando più
applicazioni sono contemporaneamente in esecuzione sullo stesso processore
multicore. In aggiunta, l’estensione del software di sistema proposta in que-
sta tesi supporta in modo efficiente il controllo di temperature dinamico. A
questo proposito, presento una soluzione per mantenere la temperatura sotto
controllo quando più applicazioni che sono in grado di sfruttare un singolo
core vengono eseguite contemporaneamente su un processore multicore. Le
estensioni del software di sistema proposte in questa tesi sono una serie di
modifiche al kernel del sistema operativo GNU/Linux, una un insieme di
librerie e di runtime.
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Per quanto riguarda le prestazioni, il primo contributo di questa tesi è l’Heart
Rate Monitor (HRM) che sta alla base degli altri contributi: Metronome e
Metronome++. HRM è un’infrastruttura di monitoraggio delle prestazioni
implementata in parte all’interno del kernel Linux ed in parte attraverso una
libreria user-space che permette alle applicazioni di comunicare con il nuovo
sottosistema che è stato introdotto all’interno del kernel. Tale libreria, che ho
chiamato libhrm mette a disposizione dei programmatori di applicazioni una
semplice interfaccia per instrumentare le applicazioni in modo tale che queste
segnalino al sottosistema all’interno del kernel Linux quando hanno raggiunto
un punto di esecuzione “importante”. La frequenza con cui questi segnali
vengono inviati permette di calcolare una misura delle prestazioni dell’appli-
cazione che può essere poi utilizzata dagli utenti per definire degli obiettivi
a livello di prestazioni, una sorta di qualità del servizio. Fatta eccezione per
l’instrumentazione, che richiede l’intervento da parte dei programmatori per
fare in modo che l’unità di misura delle prestazioni sia di interesse e sia
comprensibile per l’utente, tutte le operazioni eseguite da HRM e libhrm sono
del tutto trasparenti alle applicazioni. Metronome, il secondo contributo lato
prestazioni di questa tesi, è un’estensione del Completely Fair Scheduler (CFS)
dell’infrastruttura di scheduling del kernel Linux. Metronome introduce la no-
zione di “performance-aware fair scheduling”; il concetto di equità (temporale)
alla base della classe di scheduling del kernel Linux, CFS, viene modificato per
tenere in considerazione le prestazione e gli obiettivi prestazioni, che vengono
misurate e fornite da HRM. Metronome raggiunge il suo obiettivo tramite
un’euristica che guida il partizionamento del tempo di CPU tra le applicazioni
che sono in esecuzione contemporaneamente. Il terzo contributo in ambito
prestazioni di questa tesi è Metronome++. Metronome++ è un’evoluzione di
Metronome che adotta un’architettura distribuita tra user- e kernel-space come
quella di HRM. Il runtime user-space guida l’estensione dell’infrastruttura di
scheduling del kernel Linux che è ovviamente implementata in kernel-space
per fornire garanzie sul raggiungimento di predeterminati livelli della qualità
del servizio per applicazioni che vengono eseguite contemporaneamente sullo
stesso processore multicore. Metronome++ raggiunge il suo obiettivo attra-
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verso un’euristica basata su un modello di speedup delle applicazioni e che
sfrutta anche le fasi che le applicazioni attraversano durante la loro esecuzione.
L’euristica pilota l’estensione dell’infrastruttura di scheduling del kernel Linux
per assegnare più o meno core alle applicazioni. Questa tesi presenta anche
una serie di piccole estensioni a HRM e Metronome++ che ne modificano le
architetture e i metodi di decisione.

Lato temperatura, il contributo di questa tesi è ThermOS, un’altra estensione
del kernel Linux che fornisce capacità per controllare la temperatura di ese-
cuzione dei singoli core di un processore multicore quando questi eseguono
diverse applicazioni contemporaneamente. ThermOS cerca di far fronte ad
alcune lacune dei processori multicore che non permettono di utilizzare in
modo sufficientemente fine i sistemi di controllo della dissipazione di potenza
come il cambiamento di voltaggio e frequenza dei core. ThermOS adotta una
tecnica software: l’iniezione di cicli di idle che viene pilotata dal un controllore
proporzionale-integrale. Evitando gli effetti negativi del controllo per proces-
sore che derivano dall’utilizzo del controllo di voltaggio e frequenza dei core,
ThermOS migliora rapporto tra prestazioni e temperatura in alcune situazioni
rispetto allo stato dell’arte.

Questa tesi presenta infine dei risultati preliminari sull’unione dei sistemi di
controllo delle prestazioni e temperatura.

La restante parte di questo documento è organizzato come segue. Il capito-
lo 1 riporta alcune considerazioni di carattere generale sui recenti sviluppi
delle architetture dei calcolatori e sui problemi che ne derivano. Il capitolo
effettua anche una disamina dell’Autonomic Computing, il filone di ricerca
che meglio si sposa con le idee alla base di questa tesi. Lo stesso capitolo
termina elencando i contributi di questa tesi e come questi sono stati esposti
alla comunità di ricerca in termini di pubblicazioni. Il capitolo 2 spiega le
scelte che hanno portato alla progettazione e implementazione di HRM. Il
capitolo riporta anche una serie di consigli su come utilizzare il sistema di
monitoraggio delle prestazione (i.e., guida all’instrumentazione) e i risultati
sperimentali che sono stati ottenuti. Questa parte della tesi si chiude con una
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disamina dei lavori che più sono vicini ad HRM e con un breve sunto del
capitolo. Utilizzando la medesima struttura del capitolo precedente, il capitolo
3 descrive Metronome e Metronome++, i risultati sperimentali che sono stati
raccolti e i lavori che più sono correlati. Il capitolo 4 spiega la progettazione
e implementazione di ThermOS, riporta i risultati sperimentali ottenuto con
l’artefatto e un confronto diretto con lo stato dell’arte. Lo stesso capitolo chiude
con una disamina dei lavori legati a ThermOS e con un breve sunto. Il capitolo
5 propone una prima congiunzione di due sistemi di controllo all’interno del
sistema operativo FreeBSD: un sistema di controllo delle prestazioni simile a
Metronome e un sistema di controllo della temperatura semplificato simile a
ThermOS. L’unione dei due sistemi di controllo si realizza tramite un euristica
che viene valutata al termine del capitolo. In fine, il capitolo 6 riporta alcune
considerazioni sul lavoro di tesi nel suo insieme e una serie di possibili svilup-
pi futuri, alcuni dei quali presentano già dei risultati sperimentali preliminari.
L’appendice A riporta uno dei contributi più recenti di questo lavoro di tesi:
una versione di Metronome++ che fa uso delle teoria del controllo e di un
sistema di gestione delle risorse che agisce interamente in user-space.
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1
I N T R O D U C T I O N

The work we will describe in this dissertation best-fits the grand picture pro-
posed by the autonomic computing movement, which is a fairly recent research
area within the computer science community. Even though this dissertation
finds itself at home within the autonomic computing movement, each of the
chapters makes contributions we believe are valuable to different research
areas within the computer science community: from computer architectures to
operating systems.

We start with a broad overview of some of the hot topics in computer science
that affect the design and implementations of modern computing systems
listing the challenges researcher have to counter, with particular focus on those
addressed in this dissertation. Since this dissertation leverages the “autonomic
computing approach”, we continue with brief introduction on this research
line, which may not be common knowledge among the readers. Finally, we
describe the contributions of this dissertation listing the published material
that supports them.

1.1 general overview

The evolution of our society towards the information society, the need to
spread information across the Internet, to elaborate and access an ever increas-
ing amount of information through Big Data analysis and visualization led
electronic engineering and computer science to design and develop a wide
variety of computing systems and change the paradigm developers were ac-
customed to. Therefore, computing systems, which range from smart phones
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to tablets and the large-scale installations of Google and other key players,
gained a pervasive presence in all the aspects of our lives. This trend, together
with the ever-growing demands for performance and efficiency determined,
in the last decade, a turning point for the computer architecture community.

The traditional structure with a singlecore processor in charge of performing
all the computations got beyond its limits as a consequence of the failure of
Dennards’ scaling law [1]. In order abide to Joy’s law: the peak computer
speed doubles each year [2], chip manufacturers leveraged the still standing
Moore’s law [3] and multicore processors became the prominent solution in the
whole range of computing systems, from smart phone to servers. The advent
of multicore processors caused a huge paradigm shift for both systems’ and
applications’ developers and introducing a completely new class of problems.

The amount of Instruction-Level Parallelism (ILP) superscalar processors
could extract from the stream of instructions after years of evolution (e.g.,
deeper pipelines to increase the clock frequency, multiple issues per clock
cycle, speculative and out-of-order execution to leverage the branches’ history
and the absence of true dependences) stopped scaling at historical rate with
showing no sign of growth among successive families of processors (e.g.,
Intel Haswell features negligible improvements from this standpoint with
respect to Intel Ivy Bridge). Systems’ and applications’ developers are forced
to leverage coarse-grain parallelism by means of Thread-Level Parallelism
(TLP) as it happens for software meant to run on a single machines or Process-
Level Parallelism (PLP) as it happens for software meant to exploit small-
to large-scale installations. However, the complexity of exploiting multicore
and manycore processors (the latter being yet another emerging paradigm)
at both the system- and application-level [4] gave birth to phenomenon such
as multi-program workloads [5] and, at its extreme, servers consolidation
through Virtual Machines (VMs) on top of physical machines.

The epicenter of the computation is rapidly shifting from the peripherals, the
terminals we use to access the Internet, which are most of the time energy
constrained (e.g., smart phones, tablets, laptops, etc.), to centralized small- and



1.2 challenges and optimization problems 5

large-scale installations. In addition to this trend, small to medium businesses
saw concrete opportunities in sharing physical machines due to the increasing
costs of running even small-scale installations giving birth to the clouds. Multi-
program workloads and servers consolidation through VMs are the norm in
these environments since they favor energy efficiency [6] by using less physical
machines, a net advantage since physical machines are not (perfectly) energy
proportional [7] yet.

As a result, in the near future we are going to deal with computing systems
whose complexity may approach the limits of a few administrators because
of the demands of multiple tenants (e.g., achieve Service-Level Objectives
(SLOs), etc.) and the physical constraints of the installations (e.g., optimize
performance under a power cap, etc.).

1.2 challenges and optimization problems

At a high level, two challenges arise that hinder multicore processors usability
given their architecture and the non-functional requirements (e.g., performance
of applications, temperature of processors, etc.) of modern computing systems.

The first challenge pertains the automatic partitioning of hardware resources
among co-runner applications within multi-program workloads according to
user-specified SLOs and accounting for possible computing system require-
ments. However, there exists hardware resources for which partitioning cannot
be implemented efficiently (e.g., caches, memory bandwidth, etc.); in such a
situation, automatically discarding the negative effects of sharing of hardware
resources among co-runner applications within multi-program workloads
becomes extremely important.

System software already supports partitioning for specific hardware resources.
For example, hypervisors and operating systems provide facilities (e.g., nice,
quotas, etc.) to partition both compute bandwidth and cores among VMs
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and processes. Unfortunately, none of these facilities supports automatic
partitioning of hardware resource accounting for user-specified SLOs.

The first problem we address in this dissertation is to automatize the par-
titioning of compute bandwidth and cores trying to achieve user-specified
SLOs, by discarding the negative effects of sharing some of the hardware
resources [8–10]. The second optimization problem we address assumes parti-
tioning is in place and a fine-grained allocation is needed to respect system
requirements (i.e., temperature of processors) [11]. In addition, this dissertation
touches the more complex optimization problem of providing users with SLOs
guarantees for a subset of applications within a multi-program workload,
while accounting for the temperature of processors [12, 9].

This dissertation tackles a second challenge, which is about the transparency
of operations. We believe the automatic partitioning of hardware resources
following user-specified SLOs and computing system requirements should
be as transparent as possible to applications developers. This way, automatic
partitioning of hardware improves multicore processors usability, while trans-
parency ease their adoption.

1.3 autonomic computing overview

A promising approach to address the problems exposed in the previous section
is to move (or at least reduce) the burden of managing computing systems
from administrators to computing systems themselves. This paradigm shift
may happen if computing systems become able to self-manage their resources
by autonomously making low-level decisions (e.g., move a task from one
Central Processing Unit (CPU) core to another one, change the clock frequency
of a CPU, etc.) according to high-level objectives and constraints stated by
users and administrators.

Such approach was proposed back in the 2000s by Paul Horn, from Interna-
tional Business Machines (IBM), under the name of autonomic computing. He
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published a manifesto outlining the predominant characteristics of autonomic
computing systems, where the term “autonomic” was chosen referring to the
autonomic nervous system in biological life, which is in charge of controlling
the unconscious actions in a living body [13]. For instance, the autonomic
nervous system monitors and controls the heart rate, the temperature, and a
number of other vital parameters of a human body to ensure a steady state:
the “homeostasis”. At the end of the last decade we assisted to a review
of the autonomic computing idea, which was expressed in more pragmatic
terms keeping what is good of the initial grand vision: the autonomous opera-
tions, the ability to reach a steady state, the use of high-level objectives and
constraints [14], leaving behind the concept of applying only learning and
evolutionary techniques to address the aforementioned problems.

The work we will describe later in this dissertation follows the most recent
and pragmatic route of autonomic computing, even though we explored the
application of machine learning in some side projects, which however is not
the reported in the remainder of this document.

1.3.1 Self-* Properties

Computing systems embracing the autonomic computing paradigm should
present a subset of what the autonomic computing community believes
are common properties. The set of properties is the first step to reach self-
adaptation [15] (i.e., being able to autonomously adapt operations in face of
changing conditions). We usually refer to these properties as self-* proper-
ties [13]; Salehie and Tahvildari [15] propose a taxonomy of these property,
which we report in Figure 1. Even though the taxonomy was first devised for
self-adaptive software, we believe it is compelling for all kinds of autonomic
computing systems.

The figure lays down the self-* properties in a pyramid, showing a hierarchical
organization divided into three levels:
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CHAPTER 1. INTRODUCTION 3

focus on our daily tasks, without having to care about all these low-level though fundamental

functions. This is how autonomic computing systems are intended to behave: they must be

able to internally manage their resources, exposing a simple high-level interface for the users

to express the goals they want the system to pursue.

1.2.1 Self-* Properties

For a system to behave according to the autonomic paradigm, it needs to present some prop-

erties, which basically involve some sort of knowledge of its internal status and of its working

environment. These properties are needed for enabling the system to be self-adaptive [62] (i.e.

able to adjust itself to changes happening during operation), which is the base for presenting

an autonomic behavior, and are referred to as ‘self-* properties’. Some of these self-* proper-

ties are already mentioned in the IBM manifesto [40] and are further formalized by Kephart

and Chess [47]; a more complete hierarchical taxonomy is provided by Salehie and Tahvildari

[62], who identifies three levels of self-* properties under the domain of self-adaptive software.

The hierarchical view proposed by Salehie and Tahvildari is valid beyond the boundaries of

self-adaptive software and can be applied to generic autonomic systems; this taxonomy [62]

is proposed represented in Figure 1.1. The Figure lays down the different self-* properties in

Figure 1.1: Self-* properties taxonomy as proposed by Salehie and Tahvildari [62]

a pyramid, showing a hierarchical organization divided into three levels:

• A “general level ” of self-* properties includes self-adaptiveness and self-organization,

where the former property refers to the system as a whole entity able to modify its

Figure 1.: Self-* properties taxonomy as proposed by Salehie and Tahvildari [15] (the
figure is courtesy of Mazeiar Salehie and Ladan Tahvildari).

1. the primitive level defines the basic properties needed in order to support
autonomous operations:

• self-awareness, which means the computing system possesses knowl-
edge of its internal state and behavior;

• context-awareness, which refers to the knowledge of the environ-
mental conditions in which the computing system operates;

2. the major level includes the properties initially identified within the
autonomic computing manifesto:

• self-configuration, the ability of the computing system to autonomously
configure and reconfigure itself according to high-level policies;

• self-optimization, the capability of the computing system to adjust
the internal operations is carried on to yield the expected perfor-
mance;1

1 In this case, performance is meant in a broader sense; the ability of performing as expected by
matching objectives and respecting constraints.
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• self-healing, the capacity of detecting, diagnosing, and repairing
faults without affecting the internal operations (if feasible);

• self-protection, the potential of the computing system to defend
against threats acting so as to mitigate or even avoid them;

these properties leverage both self- and context-awareness to understand
the scenario the computing system finds itself in;

3. the general level including self-adaptiveness and self-organization where
the first property refers to the computing system as a whole entity able
to modify its behavior according to its internal state and environmental
conditions while the second property emphasizes the computing system
being formed by (semi-)independent subsystems able to orchestrate their
work to achieve a given goal. Both self-adaptiveness and self-organization
leverage the properties within the major level.

The proposed taxonomy comprises the largest possible set of self-* proper-
ties. Clearly, autonomic computing systems are not required to expose all of
them when a subset may suffice to achieve their objectives and respect their
constraints.

As an example, in this dissertation we will show two solutions to achieve adap-
tive performance management and one solution to achieve adaptive thermal
management (see Chapter 3 and Chapter 4, respectively) with different ap-
proaches to awareness. Metronome and ThermOS support just self-awareness
since the decision making processes are driven by local information only while
Metronome++ also exploits context-awareness, since Metronome++ makes use
of a richer set of data.

1.3.2 Autonomic Control Loop

In order to build computing systems that expose the aforementioned self-*
properties we should adopt an alternative paradigm for their design and
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CHAPTER 1. INTRODUCTION 5

is characterized by a recurrent sequence of actions which consist in gathering information

about itself and its surroundings (gaining self- and context-knowledge), evaluating the new

information and acting in order to react to any relevant change. This operational scheme

constitutes a control loop typical of autonomic systems. In literature, there exist various

definitions of this control loop (at least three, which are shown here), each of which highlights

some peculiarities of how the loop works. A first version of the autonomic control scheme is

named Self-adaptation control loop [62] and it is represented in Figure 1.2. This representation

















Figure 1.2: Self-adaptation control loop

emphasizes the separation between the detection and decision phases. The detection process

is in charge of analyzing the data coming from the sensors and to detect when something

should be changed in order to restore the system from an unwanted state into its desired

working conditions. The decision process is in charge of determining what should be changed,

i.e., picking the right action to be performed. A second version of the autonomic control loop

is called Monitoring, Planning, Analyzing, Executing thanks to shared Knowledge (MAPE-

K) [41, 47] and it is represented in Figure 1.3. When an autonomic element is described by

means of the MAPE-K representation, the component which implements the control loop is

Figure 2.: Autonomic control loop (the figure is courtesy of Davide B. Bartolini).

implementation. This paradigm differs from the classic open loop solution and
is characterized by a recurrent sequence of actions that consists in gathering
information about the internal state and the environmental conditions (i.e.,
achieving self- and context-awareness), detecting possible issues with respect to
the objectives and constraints, eventually deciding a set of corrective actions to
perform (e.g., exploiting self-optimization, etc.), and then applying them. This
paradigm is a classic close loop approach and a computing system designed
and implemented around this solution is said to harness an autonomic control
loop, thus becoming an autonomic computing system. Figure 2 graphically
represents the autonomic control loop. This representation emphasizes the
separation between the detection and decision phases. The detection process
is in charge of analyzing the data coming from the sensors and to detect when
something should be changed in order to restore the system from an unwanted
state into its desired working conditions. The decision process is in charge
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Figure 1.3: MAPE-K control loop

referred to as the autonomic manager, which interacts with the managed element by gathering

data through sensors and acting through actuators (or effectors) [41]. This control scheme

emphasizes the fact that a shared knowledge about the system and its environment must be

detained in order to successfully execute the autonomic control scheme. A third version of the

autonomic control loop is named Observe Decide Act (ODA) loop [66] and it is represented in

Figure 1.4. This representation is more general with respect to the MAPE-K and Self-adaptive

schemes and, being more generic, it summarizes the essence of the autonomic control loop.

The steps of the ODA loop are observation of the internal and environmental status, decision

of what action (or whether no action at all) is to be taken, based on the observations and

action, i.e., perturbation of the internal or external status in order to modify it towards a

better condition for the system. More in details, the stages of the ODA loop are characterized

as follows:

• The observation phase is generally accomplished by using monitors (for instance, ther-

mometers, throughput meters, latency measures, event counters . . . ) to gather informa-

tion about the environment and the internals of the system.

Figure 3.: Monitor-Analyze-Plan-Execute with Knowledge (MAPE-K) autonomic control
loop (the figure is courtesy of Davide B. Bartolini).

of determining what should be changed (i.e., picking the right action to be
performed).

A second version of the autonomic control loop is the MAPE-K [16] and
is graphically represented in Figure 3. This representation emphasizes the
shared knowledge each phase of the autonomic control loop contributes to
build. Moreover it chooses the verb “to plan” instead of “to decide”, which
poses more attention on the fact that decisions may affect the behavior of the
computing system on the long run.

A third version of the autonomic control loop, which is also the one we favor
within this dissertation, is called ODA [8] and it is graphically represented in
Figure 4. In more details, the phases of ODA are concerned with the following
operations:
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Figure 1.4: Observe Decide Act control loop

• The decision phase takes into account the data gathered through the observation and

an additional input representing the decision policy(ies) implemented in the system,

which can be based on different techniques including control theoretic controllers, neural

networks, machine learning agents, . . .

• The action phase is performed through actuators, which are devices (virtual or physical)

which allow the system to alter its internal status or the operating environment.

The ODA loop is the minimal representation for the class of control loops (including the

MAPE-K and Self-adaptive schemes) that can be used to equip a system with self-adaptive

properties; thus, in this document, this loop will be kept as the reference for how autonomic

systems are controlled. In an autonomic system, the ODA control loop may appear at different

levels, where each component of the system (e.g., hardware modules in a computing system)

is thusly controlled at a lower level and there is a higher-level controller (e.g., a software

coordinator) which orchestrates the modules towards the specified goals.

1.2.3 Computing Systems Structure

Most of the modern computing systems can be modeled according to a common general struc-

ture consisting of three layers: Hardware Components, operating system and Applications; this

structure is represented in Figure 1.5. This representation is very general and different com-

puting systems present variations of this structure where the thickness of each layer depends

on the characteristics the system is designed for. For instance, an embedded device targeted for

Figure 4.: Observe-Decide-Act (ODA) autonomic control loop (the figure is courtesy of
Davide B. Bartolini).

• observation, collect information regarding both the internal state of
the computing system and the environmental conditions it must face by
means of monitoring infrastructures (e.g., throughput or latency monitors,
thermometers, etc.);

• decision, carry on the decision making process accounting for the data
gathered through the observation phases, possibly considering the past
iterations of the autonomic control loop, and come up with a set of
actions to drive the current performance (in the broader sense of the
term) towards the objectives while respecting constraints. The decision
making process is usually carried on by adaptation policies or simply
policies, which expect high-level objectives and constraints;

• action, perform the set/sequence of actions devised by adaptation poli-
cies through actuators, which are either physical or virtual devices that
affect the internal operations of the computing system.
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1.4 contributions

This section lists the contributions (in terms of the optimization problem
they solve) spread throughout this dissertation pinpointing to the relevant
publications.

• Filippo Sironi, Davide B. Bartolini, Simone Campanoni, Fabio Cancare,
Henry Hoffmann, Donatella Sciuto, and Marco D. Santambrogio. Met-
ronome: Operating System Level Performance Management via Self-
Adaptive Computing. In Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, pages 856–865, New York, NY, USA, 2012. ACM.
10.1145/2228360.2228514.

The aforementioned paper is the first contribution of this dissertation
and presents the design and implementation of early versions of Heart
Rate Monitor (HRM) and Metronome. HRM is a performance moni-
toring infrastructure implementing the observation phase of ODA; its
predominant characteristics are the: ease of use, generality, availability,
meaningfulness, accuracy, and performance (i.e., high scalability and low
overhead). HRM provides high-level performance metrics and allows
stating SLOs thanks to instrumentation. Metronome is an adaptation
policy, more precisely a resource allocation policy plus a resource alloca-
tion mechanism, to distribute the CPU bandwidth among multi-thread
applications within multi-program workloads. Metronome makes use
of a heuristic decision making process and extends the default time-
sharing scheduling class of the Linux kernel to drive applications to-
wards user-stated SLOs. Metronome alongside with HRM solve the first
optimization problem listed in Section 1.2: achieving user-specified SLOs
for co-running applications.

• Davide B. Bartolini, Riccardo Cattaneo, Gianluca C. Durelli, Martina
Maggio, Marco D. Santambrogio, and Filippo Sironi.2 The Autonomic
Operating System Research Project: Achievements and Future Directions.

2 Authors appear in alphabetical order.
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In Proceedings of the 50th Annual Design Automation Conference, DAC ’13,
pages 77:1–77:10, New York, NY, USA, 2013. ACM.
10.1145/2463209.2488828.

The paper reported above gives an high-level view of the Autonomic
Operating System (AcOS) research project from which this dissertation
rose; in fact, every one of the “full system” presented in this dissertation
is a flavor of AcOS. In this paper, we present a novel contribution:
Metronome++. Metronome++ is a sort of step forward with respect to
Metronome; it is an adaptation policy featuring a model-based resource
allocation policy and a resource allocation mechanism to move tasks
among the Linux kernel runqueues. Metronome++ allows driving multi-
thread applications within multi-program workloads towards user-stated
SLO and it does so by exploiting applications characteristics like their
speedup and the execution phases they traverse. Metronome++ alongside
with HRM tackle again the first optimization problem listed in Section 1.2:
achieving user-specified SLOs for co-running applications.

• Filippo Sironi, Martina Maggio, Riccardo Cattaneo, Giovanni Francesco
Del Nero, Donatella Sciuto, and Marco Domenico Santambrogio. Ther-
mOS: System Support for Dynamic Thermal Management of Chip Multi-
processors. In Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques, PACT ’13, pages 41–50, Piscat-
away, NJ, USA, 2013. IEEE Press.
10.1109/PACT.2013.6618802.

The paper cited above describes the design and implementation of Ther-
mOS. ThermOS couples a software solution to tackle the Dynamic Ther-
mal Management (DTM) problem that is capable to overcome the limita-
tions of Dynamic Voltage and Frequency Scaling (DVFS). In fact, DVFS
in commodity multicore processors or Chip-Multiprocessor (CMP) has
chip-wide side effects and may penalize the execution of applications
from multiple tenants. Conversely, idle cycle injection acts on a per-CPU
core basis and avoids this issue. Experimental results are encouraging
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since ThermOS achieves better performance than Dimetrodon [17] with
the same temperature reduction and a superior trade-off than DVFS
for small (i.e., less than 30% temperature reductions. ThermOS tackles
the second optimization problem listed in Section 1.2: respecting com-
puting system constraints expressed in terms of maximum operating
temperature.

• Davide B. Bartolini, Filippo Sironi, Martina Maggio, Riccardo Cattaneo,
Donatella Sciuto, and Marco D. Santambrogio. A Framework for Thermal
and Performance Management. In Proceedings of the Workshop on Managing
Systems Automatically and Dynamically, MAD ’12, Berkeley, CA, USA, 2012.
USENIX Association.

The aforementioned paper describes an early design and implementa-
tion of ThermOS within the FreeBSD kernel instead of the Linux kernel
coupled with a performance management solution similar to Metronome.
The resulting system, which is called Dynamic Performance and Thermal
Management (DPTM), has a better behavior than Dimetrodon and is capa-
ble of achieving user-stated SLOs while respecting administrator-stated
temperature caps. This is the first work coupling adaptive performance
and thermal management. DPTM tackles the combination of the first
and second optimization problems listed in Section 1.2: achieving user-
specified SLO for a subset of the co-running applications—as it happens
for latency sensitive and batch workloads in Google datacenters [5]—
and respecting computing system constraints expressed in terms of
maximum operating temperature.

Apart from the main contributions of this dissertation, which are thoroughly
described later in this document, there exist a number of small contributions
and publications that are either incremental improvements or side projects
originated from this dissertation.

• Filippo Sironi, Donatella Sciuto, and Marco D. Santambrogio. A Performance-
Aware Quality of Service-Driven Scheduler for Multicore Processors.
SIGBED Rev., 2014.
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This paper describes a complete user-space solution providing the func-
tionality of HRM and Metronome++. We replicate the design of HRM
within a user-space library without loosing in performance (sacrificing
just availability since performance measurements and SLOs are not avail-
able in kernel-space). In addition, we exploit sound control theory to
build the resource allocation policy in place of our model-based heuristic
resource allocation policy. The implementation also leverages some of
the functionality of the Linux kernel like Control Groups (cgroups) to
aid both the performance monitoring infrastructure and the resource
allocation mechanism, which exploits the cpuset subsystem of cgroups.

• Jacopo Panerati, Filippo Sironi, Matteo Carminati, Martina Maggio, Gio-
vanni Beltrame, Piotr J. Gmytrasiewicz, Donatella Sciuto, and Marco D.
Santambrogio. On Self-adaptive Resource Allocation through Reinforce-
ment Learning. In Proceedings of the NASA/ESA Conference on Adaptive
Hardware and Systems, AHS ’13, pages 23–30, Piscataway, NJ, USA, 2013.
IEEE Press. 10.1109/AHS.2013.6604222.

• Jacopo Panerati, Martina Maggio, Matteo Carminati, Filippo Sironi,
Marco Triverio, and Marco D. Santambrogio. ACM Trans. Reconfigurable
Technol. Syst., 2014.

These papers explore the possibility of using reinforcement learning
to learn resource allocation policies exploiting different actuators; in
this work we employed both CPU core allocation and DVFS. HRM is
the performance monitoring infrastructure of choice and, much like it
happens with Metronome++, its consumer user-space capabilities aid the
implementation of the “final system” which we call Adaptation Manager
(AdaM). AdaM proved effective in learning adaptation policies for a
considerable set of multi-thread applications.

We are already exploring a set of possible future work originating from this
dissertation in the context of cloud computing. We report two of them whose
abstracts were accepted for publication after a peer-review process.
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• Davide B. Bartolini, Filippo Sironi, Martina Maggio, Gianluca C. Durelli,
Donatella Sciuto, and Marco D. Santambrogio. Towards a Performance-
as-a-Service Cloud. In Proceedings of the 4th Symposium on Cloud Comput-
ing, SoCC ’13, New York, NY, USA, 2013. ACM. 10.1145/2523616.2525933

This abstract describes the evolution of both Metronome and Metro-
nome++ applied to the resource allocation problem in highly dynamic
cloud computing infrastructure moving towards a Performance-as-a-
Service (PaaS) cloud computing infrastructure. We believe this could
be a compelling solution for both Infrastructure-as-a-Service (IaaS) and
Platform-as-a-Service (PaaS) solutions where user-stated SLOs are of
great importance to both the users and the providers.

• Alberto Scolari, Filippo Sironi, Davide B. Bartolini, Donatella Sciuto, and
Marco D. Santambrogio. Coloring the Cloud for Predictable Performance.
In Proceedings of the 4th Symposium on Cloud Computing, SoCC ’13, New
York, NY, USA, 2013. ACM. 10.1145/2523616.2525955

This abstract describes the design and implementation of Rainbow, a
physical page allocator supporting page coloring [18] meant to be im-
plemented inside hypervisors like the Kernel Virtual Machine (KVM) or
Xen [19]. This is meant to be our first contribution towards the partition-
ing of the cache hierarchy in commodity CMPs and the first experimen-
tal results we collected with an early implementation within KVM are
promising.

1.5 organization

The remainder of this dissertation is organized as follows. Chapter 2 intro-
duces the problem of performance monitoring and describes the design and
implementation of HRM alongside with an extensive experimental evaluation
and a set of related work. Chapter 3 describes two of the contributions of
this dissertation: Metronome and Metronome++. The chapter reports insights
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about the design and implementation of both coupled with extensive experi-
mental results and an analysis of the relevant related work. Chapter 4 describes
our finding in the context of DTM. It describes the design and implementation
of ThermOS; the experimental results and a comparison wit the state of the
art alongside with an analysis of the existing literature. Chapter 5 describes
the design and implementation of DPTM, a framework that reunites adaptive
performance and thermal management (with simplified implementations of
Metronome and ThermOS within the FreeBSD operating system) with a heuris-
tic approach. Finally, Chapter 6 concludes this dissertation with final remark
and a brief discussion of possible future works. Appendix A described the
design and implementation of a user-space implementation of Metronome++
exploiting control theory.



2
P E R F O R M A N C E M O N I T O R I N G

In the last decade computer architecture crossed a critical junction and so did
the whole computing industry shifting from single to multicore processors.
The introduction of Chip-Multiprocessors (CMPs) requires better support
from system software: hypervisors, operating systems, and runtimes. System
software must be able to manage emerging computer architectures achieving
the same predictable performance single-thread applications used to have on
singlecore processors. In addition, the growing importance of non-functional
requirements (e.g., performance, energy consumption, etc.) imposes system
software to support the specification of Service-Level Objectives (SLOs) and
the resource allocation mechanisms to meet them. Finding the proper resource
allocations to yield the specified SLOs for multi-program workloads can be
cumbersome; because of this, automatic resource allocation policies should
close the loop by driving the available mechanisms. System software, operating
systems in this specific case, are the perfect test bed for experimenting with
various resource allocation policies and mechanisms as they find themselves
in a favorable position in the hardware/software execution stack.

In this chapter we present the Heart Rate Monitor (HRM): a performance
monitoring infrastructure for performance-aware computing to support the
specification of high-level SLOs and the acquisition of performance measure-
ments thanks to application instrumentation. HRM provides the functionality
required to carry on the observation phase of the Observe-Decide-Act (ODA)
autonomic control loop.

19
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2.1 introduction

The turn of computer architectures from the well understood, single processing
element structure to multiple (possibly heterogeneous) processing elements is
pervasive. This change has been dictated by physical (i.e., inability to increase
the clock frequency without incurring unmanageable power consumption)
and architectural (i.e., diminishing performance returns from efforts in further
optimizing the performance of single processing elements) constraints [20].
To survive its commitment to exponential performance improvements [2], the
computer industry changed its strategy, leading to the multicore processors
era.

In the singlecore processors era, faster processors provided software perfor-
mance improvements and applications experienced the so-called “free lunch”,
with free-of-charge speedups just by switching to the next-generation pro-
cessor. The new parallel course in computer architectures, despite being due
to computer architectural causes, carries the side effect of ending the “free
lunch”, posing a considerable burden of improving performance on both
systems’ and applications’ developers. The demands for efficient and reli-
able parallel software sums up to the already considerable bulk of expertise
software developers need to successfully cope with requirements for com-
puting performance, functionality, reliability, and constraints satisfaction due
to today’s Information Technology (IT). Moreover, computational resources
must be carefully managed to avoid hitting power and thermal limits, while
respecting SLOs. This situation leads to an increased need of pushing as much
of the computing system management as possible into computing systems
themselves, making autonomic computing a possible breakthrough for IT
success [13].

Respecting SLOs employing the least amount of resources is one of the objec-
tive of autonomic computing [13]. Autonomic computing systems are required
to monitor their internal state and the environmental conditions, detect signif-
icant changes, decide a chain of actions, and actuate them [15]. The activity
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of gathering runtime information (referred to as either observation or moni-
tor phase) is crucial, and the availability of accurate and appropriate status
information can determine the efficacy of the computing system.

This chapter propose HRM, a performance monitoring infrastructure for
power-aware computing to allow applications specifying SLOs and the operat-
ing system acquiring performance measurements. HRM is implemented inside
the Linux kernel (even though an implementation for the FreeBSD kernel does
exist [12]) and allows the kernel itself to access performance measurements, a
net improvement compared to previous work [21].

The remainder of this chapter is organized as follows. Section 2.2 discusses
related work and compare the main contribution of this chapter (i.e., HRM)
with the state of the art in performance monitoring infrastructures. Section 2.3
describes the design and implementation of HRM while Section 2.4 reports its
extensive evaluation. Finally, Section 2.5 concludes the chapter.

2.2 related work and state of the art

Traditionally, fine-grain performance measurements were collected through
Performance Monitoring Units (PMUs) [22], which are sets of hardware reg-
isters in charge of counting hardware events like the number of unhalted
cycles and the number of retired instructions. Different frameworks have been
proposed to ease the use of PMUs. The Performance Application Programming
Interface (PAPI) [23, 24] aims at creating a consistent interface towards PMUs
of different Central Processing Units (CPUs). This Application Programming
Interface (API) provides a unified interface, but it cannot deal completely
with the heterogeneity of PMUs of different CPUs. A different approach is
taken by Sprunt [25], who proposes the Brink and Abyss tools, which provide
a high-level interface to the Intel Pentium 4 Processors PMU on GNU’s not
Unix (GNU)/Linux operating system. These tools rely on eXtensible Markup
Language (XML) descriptions of the PMU capabilities, the desired configura-
tion, and the applications to be monitored. However, both brink and abyss are
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tailored towards the Intel Pentium 4 Processors, which is quite heterogeneous
family on its own, and further extensions are needed to support more CPUs.
These APIs and tools allow to synthesize metrics based on the hardware events
like the Instructions Per Cycle (IPC).

An alternative to PMUs, which proved themselves more profitable offline than
online, is the use of software performance monitoring infrastructures. A no-
table example is the Performance and Environment Monitoring (PEM) [26] de-
vised for supporting Continuous Program Optimization (CPO) an autonomic
computing system, initially in the context of the K42 operating system [27].
PEM provides a repository of XML-specified events—at either computer ar-
chitecture, operating system, or application level—and a set of tools to build
“sensors” stubs from the XML specifications leveraging an instrumentation API.
PEM has the merit of potentially support multiple programming language
with ease thanks to the XML specifications. However, the high generality
of PEM becomes a major drawback because of the burden it poses on sys-
tems’ and applications’ developers, who are in charge of providing both XML
specifications and implement the “sensors” stubs.

The researchers behind the Tessellation operating system [28] acknowledged
the need for a performance monitoring infrastructure supporting applications’
developers and users understandable performance metric [29, 30]. A research
project going into this direction is Application Heartbeats [21], which define
the concepts for a performance monitoring infrastructure satisfying both
applications’ developers and users.

2.2.1 Discussion

When we first design and implemented HRM we asked ourselves whether
existing performance monitoring infrastructures like the Application Heart-
beats [21] reference implementation provided all the functionality we needed
and, eventually, what they were missing. After a thorough analysis of the
related work, we came up with the following set of requirements:
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Table 1.: Comparison of performance monitoring alternatives

PMUs Applications Heartbeats (ref.) HRM

ease of use X X X
generality X X

availability X X
meaningfulness X X

accuracy X X
performance X

• ease of use, the first and possibly most important characteristic of the
performance monitoring infrastructure was to be easily usable by both
systems’ and applications’ developers;

• generality, the performance monitoring infrastructure should be portable
among different CPUs’ families with little to no effort;

• availability, the performance monitoring infrastructure should provide
its SLOs and performance measurements to the widest variety of actors
within a computing system;

• meaningfulness, the performance metric must also be meaningful for
applications’ developers and especially for users, which may want to
state a SLO;

• accuracy, the performance metric employed by the performance monitor-
ing infrastructure must be representative since later on they are going to
play an important role in resource allocation;

• performance, the performance monitoring infrastructure must scale
properly on multicore processors when given more cores and should
limit the overhead on applications.

Among the state of the art solution we analyzed traditional solutions such as
the use of PMUs available in CPUs and the Application Heartbeats reference
implementation.
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Table 1 compares the aforementioned state of the art solutions with HRM.
From both a systems’ and an applications’ developer standpoint PMUs and
Application Heartbeats are equivalently accessible since it is possible to design a
simple API that hides most of the idiosyncrasies of the underlying implementa-
tion. Though possible, designing a simple API for PMUs [23, 24, 31, 32] may be
harder. However, the use of PMUs may be especially beneficial for applications’
developers that can even avoid instrumenting their applications, thus provid-
ing the possibility to use a passive performance monitoring infrastructure
instead of an active one such as Application Heartbeats.

Unfortunately, PMUs lack generality since they may require a lot of effort
from the performance monitoring infrastructure provider to support many
different CPUs [23, 24, 31]. Generality is most likely the best characteristic of
Application Heartbeats, whose interface can be easily implemented by leveraging
the Portable Operating System Interface for Unix (POSIX) API and nothing
more as in the reference implementation [21].

PMUs provide high availability since the performance measurements they
compute are accessible both in kernel- and user-space following almost the
same procedure. Application Heartbeats could provide the same level of avail-
ability but, unfortunately, its reference implementation does not since it is
limited to the user-space [21].

All of the performance metric collected through PMUs lack meaningfulness
for both applications’ developers and especially for users. We cannot require
users to state SLOs in terms of IPC or last-level cache misses per thousand
instructions (MPKI). Conversely, Application Heartbeats proposed a work-related
performance metric that is simpler to under for both applications’ developers,
who are well-aware of their domain, and users, who can simply tell how many
requests/s their web server should be able to serve.

Similar considerations hold for accuracy; past research showed that IPC is
not a trustworthy performance metric for multi-thread applications [33] while
work-related performance metrics are.
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When it comes to performance both PMUs and the Application Heartbeats
reference implementation fall short [8]. The former can incur overhead of up to
20% while the latter forces serialization and executes a system call on the most
used API call: heartbeats(), which may change applications’ characteristics
(i.e., scalability) [4, 34] or compromise the state of functional units inside CPUs’
cores [35, 36].

To avoid the limitations of both PMUs and the Application Heartbeats reference
implementation we designed and implemented HRM, which we will discuss
later in this section.

2.3 design and implementation

HRM borrows concepts defined by Applications Heartbeats to guarantee ease of
use, generality, meaningfulness, and accuracy. However, HRM heavily changes
the design and implementation of the performance monitoring infrastruc-
ture to improve the availability thanks to a kernel/user-space partitioned
implementation and solve the performance issues by means of a multicore
processors-awareness.

Let us start this section with few definitions to better understand the key
insights behind the design and implementation of HRM.

2.3.1 Definitions

application An application is any program in execution; it can be a single
process, a set of processes, or a set of threads belonging to either the same
process or not. Since applications are the entities of interests for a performance
monitoring infrastructure, the performance monitoring infrastructure provider
must take care of supporting any kind of application, independently of its
structure. Because of this reason we define the concept of group.



26 performance monitoring

group A group is an ensemble of tasks that share the performance moni-
toring, where task is either a process or a thread following the Linux kernel
nomenclature [37]. The concept of group is intended to allow the performance
monitoring of applications that exploit parallelism in various ways; HRM
improves upon the Application Heartbeats reference implementation since it
supports applications harnessing process-level parallelism instead of applica-
tions exploiting just thread-level parallelism. This theoretically allows HRM
to support performance monitoring for all of the configuration of the Apache
HyperText Transfer Protocol (HTTP) Server [38].

Example of groups can be: an instance of the Apache HTTP Server handling
http://www.foo.com, another instance handling https://www.foo.com, and
another one handling http://www.bar.com. This allows to get statistics such
as the number of requests/s served by the three instance of the Apache HTTP
Server and in particular two different performance measurements for the
HTTP and HyperText Transfer Protocol over Secure Socket (HTTPS) web site
of the first domain, which may help providing different level of Quality of
Service (QoS).

Following the concepts behind Application Heartbeats, we ask applications’
developers themselves, which are well-aware of their domain, to signal the
points of interest in their software through instrumentation. Application Heart-
beats consider the “address space” the entity of interest for the performance
monitoring while we introduced the concept of group of tasks, which is the
entity of interest for the instrumentation. Since HRM require instrumentation,
we strive to make this operation as simple as possible so as to retain the ease of
use of Application Heartbeats. The most important part of the instrumentation
consists in the addition of the call that emits heartbeats.

heartbeat A heartbeat is a signal sent from a group (i.e., either one of the
tasks belonging to the group) to the performance monitoring infrastructure
and means the group reached a points of interest.
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The concept of heartbeat is extensively used in the literature to signal avail-
ability [39]. For example, each node within a high availability cluster may
emit heartbeats with a constant pace to tell the master node that everything
is proceedings; whenever the master node does not see heartbeats coming
from a node it can perform corrective actions like restarting the computations
that node was responsible for on other nodes as it happens in the MapReduce
framework [40].

Within Application Heartbeats and HRM a heartbeat means one of the tasks
within a group reached a point of interest in the execution that means the appli-
cation is proceeding. For example, let us consider the x264 video encoder [41],
which implements the H.264/Moving Picture Experts Group (MPEG) 4 Part 10

or Advanced Video Coding (AVC) standard, included in the PARSEC 2.1 bench-
mark suite [42]. The parallel algorithm of x264 harnesses a virtual pipeline
with one stage per frame. x264 processes in parallel a number of pipeline
stages equal to the number of encoder threads realizing a sliding window
moving from the beginning to the end of the pipeline. Once the execution of a
stage finishes the encoder thread handling the stage issues a heartbeat, which
in the context of x264 signifies the completion of a frame.

The concept of heartbeat suits well the throughput-oriented applications where
the concept of unit of work is well-defined. Usually, the section of code that
takes care of a unit of work in on the critical path of an application and thus is
relevant from a performance monitoring standpoint.

hotspot A hotspot is a performance-critical section of code that gets
executed by one or more tasks (i.e., in serial or in parallel).

HRM requires that a group of tasks take care of executing a single hotspot.
We understand this may be a limitation for those applications with multiple
hotspots and with task pools in which tasks may execute any of the hotspots;
because of this reason, we allow each task to connect to multiple group at the
same time and specify on which hotspot it is active. This functionality was
exploited in the context of a master thesis derived from this work [43].
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for (int i = 0; i < n; ++i) {
// encode the i-th frame
...
heartbeat();

}

(a) Video encoder hotspot.

while ((fd = accept(lfd, ...) != -1) {
if (fork() == 0) {

// handle the fd connection
...
heartbeat();
exit(...);

}
}

(b) Web server hotspot.

Figure 5.: Example hotspots.

Figures 5a and 5b show two sample sections of code representing hotspots in
a single-thread video encoder and a multi-process web server, respectively.

Because of the throughout-oriented nature of the proposed performance moni-
toring infrastructure, each call to heartbeat() is placed on one of the critical
paths of the code and thus must be lightweight to avoid the aforementioned
issues. Because of this reason, HRM is designed and implemented to favor
this call rather than any other call of its interface; each call to heartbeat is
reduced to an increment of a per-task counter. The aggregation of per-task
counters divided by the time elapsed from the first heartbeat emission gives
the heart rate.

heart rate The heart rate of a group is the number of heartbeats issues
per time unit by the tasks belonging to the group; we measure the heart rate
in heartbeats/s.

Both the performance measurements and the SLO specified by the user make
use of the aforementioned performance metric, which is a general throughput
metric. Let us recall the x264 video encoder example; since there is a 1:1
mapping between a frame and a heartbeat, the heartbeat/s performance metric
become a frames/s performance metric, which is much more understandable
for both applications’ developers and users than any other machine-specific
performance metric.
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The generality of the proposed performance metric does not hurt its usability;
in fact, most commercial workloads such as the SPECjbb [44], SPECweb [45],
and TPC [46] benchmarks reports their performance in terms of a specific
throughput metric that can be easily mapped to the proposed general through-
put metric. Some of the scientific and emerging applications belonging to
common benchmark suites like the SPEC CPU [47], SPEC OMP [48], Splash-
2 [49], and PARSEC [50, 42] may be more difficult to instrument. However,
previous work [21, 8, 9] show this is a possible step to accomplish.

2.3.2 Development

The performance monitoring infrastructure discussed in this section fulfills
and leverages the aforementioned requirements and definitions, respectively.
It allows to monitor the heart rate of groups of tasks, where each group usu-
ally (but not necessarily) represents an application. Because of this reason,
we called the performance monitoring infrastructure the Heart Rate Monitor
(HRM). HRM is an active performance monitoring infrastructure1 featuring
a producer/consumer model [26]. HRM achieves ease of use by inheriting
a subset of Application Heartbeats API. Generality comes from avoiding any
machine-specific or operating system-specific functionality; this allows to im-
plement the producer/consumer design and the API by leveraging the POSIX
API and nothing more. Once again, the producer/consumer design helps
getting high availability; the HRM implementation we proposed [8] places
most the consumer logic within the Linux kernel,2 thus allowing both the
kernel- and user-space to access all the performance measurements collected
by the performance monitoring infrastructure. Meaningfulness is a gift com-
ing from the use of work-related performance metrics, which are of use for
both applications’ developers that have the knowledge to correctly instrument

1 Active means the performance monitoring infrastructure requires either manual, semi-automatic,
or automatic instrumentation of applications.

2 The very same implementation of HRM that we use on top of the GNU/Linux operating system
was successfully ported within the FreeBSD kernel to be used on top of the FreeBSD operating
system with minimal effort [12, 9].
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Figure 6.: Black box view of HRM. Instrumented applications represented by groups of
tasks issue heartbeats that are collected by the performance monitoring infrastructure,
which aggregates them in the form of heart rates. Consumers read the heart rates and
user-stated SLOs through the performance monitoring infrastructure.

their software and users that can easily state SLO. The use of work-related
performance metrics also grants accuracy for multi-thread applications [33].
Performance comes by moving most of the logic from the applications (i.e.,
producer side) to the performance monitoring infrastructure (i.e., consumer);
this is in net contrast with the Application Heartbeats reference implementation.
Figure 6 display a rough structure of the ecosystem around HRM.

user-space We implemented the producer/consumer model at the very
base of the design of HRM by splitting it across the user- and kernel-space
boundary. The user-space side of HRM is implemented by means of a shared
object (i.e., a library, libhrm) that must be linked against applications (i.e., pro-
ducers) and to monitors (i.e., consumers) whenever they are implemented in
user-space [51, 10]. Table 2 reports a slightly stripped version of the API. A call
to monitor_attach() allows the current (user-space) task to attach to a group,
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Table 2.: HRM API (stripped)

call description

monitor_attach() attach the current task to a group
monitor_detach() detach the current task from a group

monitor_set_objective() set the SLO
monitor_get_objective() get the SLO

monitor_get_performance() get the performance measurement

heartbeat() signal execution progress

which in the latest version of HRM is identified by a unique string; the task
can either be attached as a producer or as a consumer. This function involves
many user- to kernel-space boundary crosses to setup data structures, mem-
ory mappings, and aggregation timers. Once the virtual memory is shared
between the kernel- and user-space a task attached as a producer (i.e., one that
is trusted by the user) can set the SLO making it available to both kernel- and
user-space monitors by means of a call to monitor_set_objective(). Systems’
and applications’ developers can come to an agreement on how to state SLOs
(e.g., minimum throughput [8], minimum/maximum throughout [12, 9, 51, 10],
minimum/maximum throughout over a sizeable moving average, etc.) since
HRM treats everything as opaque data. A call to monitor_get_objective() re-
trieves the stated SLO in both kernel- and user-space. HRM provides both long-
and variable-term performance measurements. The long-term performance
measurement aggregates the heartbeats issued across the whole execution
of an application. Conversely, variable-term performance measurements ag-
gregate the heartbeats issues across a sizeable time window so as to catch
even short-term (e.g., few milliseconds) trends. Tasks attached to groups as
producers are those in charge to issue calls to heartbeat(); this call issues a
heartbeat and signal that the task reached a point of interest in the execution.
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Figure 7.: Buddy-like data structure backing the kernel-space implementation of HRM.
Each group (i.e., buddy) contains a set of producer tasks and a set of consumer tasks.

kernel-space The kernel-space side of HRM is implemented as an exten-
sion of the Linux kernel, tough a similar implementation is available for the
FreeBSD kernel, and can be considered the core of the performance monitor-
ing infrastructure. Later on in this chapter we will showcase a complete (i.e.,
producer/consumer) user-space implementation of HRM; this implementa-
tion trades availability for generality like the Application Heartbeats reference
implementation.

The basic data structure behind proposed implementation of HRM is a buddy-
like data structure [52]; each buddy represents a group of tasks. Under the
hood, the buddy-like data structure is a linked list of linked lists as shown
in Figure 7; in this case, group 42 contains 4 producer tasks of a parallel
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application, group 43 contains a single producer task, while group 44 contains
4 producer tasks and a single consumer task. The absence of consumers may
indicate that the kernel is monitoring the application or that the application
apply self-monitoring and self-adaptation [53]. The whole data structure is
protected by a global spinlock to guarantee consistency when modifying
the buddy-like data structure (i.e., group addition and deletion). Common
operations involving a single group does not need to acquire the global
spinlock; instead, they need to acquire the read/write spinlock (rwlock) of
the sub linked list of interest (i.e., either producers or consumers). The rwlock
helps scalability since the number of read and write operations is unbalanced
in favor to the former; thus, concurrent read can proceed in parallel while write
serialize the execution. Each group features a set of memory pages to store
the per-task counters, the history of the aggregations of per-task counters to
compute variable-term performance measurements, and the SLO specification.
The number of per-task counters and the depth of the history, which constrains
the computable variable-term performance measurements, are compile-time
parameters. These memory pages are shared across the kernel- and user-space
boundary and possibly across many address spaces when an application
employs Process-Level Parallelism (PLP).

As reported previously in this section, libhrm provides both producers and
user-space consumers with the ability of attaching and detaching (among the
others) from groups of tasks. The access from user- to kernel-space leverages
the process information pseudo file system (procfs).3 write(2) operations on
/proc/$PID/task/$TID/hrm_[producer|consumer]_group attaches (detaches)
the task identified by $TID from a certain group while mmap(2)/munmap(2)

operations on /proc/$PID/task/$TID/hrm_[producer|consumer]_counters,
/proc/$PID/task/$TID/hrm_[producer|consumer]_history, and /proc/$PID

/task/$TID/hrm_[producer|consumer]_objective share (unshare) memory
pages across the user- and kernel-space boundary.

The kernel-space side of HRM also export some of the API calls available inside
the user-space side: libhrm. These calls are necessary to support the implemen-

3 The extension of the FreeBSD kernel makes use of virtual devices to achieve the same functionality.
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Table 3.: HRM API availability

call producer consumer kernel user

monitor_attach() X X X
monitor_detach() X X X

monitor_set_objective() X X
monitor_get_objective() X X X X

monitor_get_performance() X X X X

heartbeat() X X

tation of kernel-space consumers, one of the distinctive characteristics of HRM
with respect to the Application Heartbeats reference implementation. Table 3

sums up which API calls are or are not accessible to producers/consumers
and the kernel- and user-space.

2.3.3 Cache Craftiness for Performance

An objective for a performance monitoring infrastructure is to affect as little as
possible the performance of the applications it is monitoring. The Application
Heartbeats reference implementation is not capable of doing so as a consequence
of serialization it performs for issuing heartbeats and compute the performance
measurements and the system call it requires to keep track of the elapsed time.

The design of HRM allows the performance monitoring infrastructure to keep
its overhead as low as possible, thus achieving one of its main objectives. The
implementation of HRM employs per-task counters to issue heartbeats, thus
avoiding serialization on the critical paths of applications; in addition, each
per-task counter is aligned to the cache line size so as to evade problems due
to false sharing. Later in this section we will show how much false sharing
could impact on the raw performance HRM to demonstrate how helpful are
this kind of cache craftiness with multicore processors.
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Table 4.: HRM per-task counters memory page organization

offset content description

0x000 miscellaneous fields for housekeeping
(e.g., $TID, use & active flags, etc.)

0x010 uint64_t counter heartbeats counter
0x018 padding for cache line alignment

0x040 miscellaneous fields
0x050 uint64_t counter heartbeats counter
0x058 padding

...
...

...

0xFC0 miscellaneous fields
0xFD0 uint64_t counter heartbeats counter
0xFD8 padding

Table 4 reports per-task counters memory page organization. The table uses
the x86-64 architecture as an example since the size of the memory page is
4kB4. and the size of each cache line (separated by horizontal lines in the
table) is 64B.

2.3.4 Computation of the Performance Measurements

The access to both history of the aggregations of the per-task counters and
to the SLO are certainly much rarer than those performed to the per-task
counters (i.e., at the hundreds of milliseconds granularity). Because of this,
there is no need for extra care and cache craftiness when laying out the data
structure inside the memory page.

4 We did not explore the use of huge memory pages of either 2MB or 1GB since we never
exceeded 6-thread per application in our experiments. In addition, the shift from standard to huge
memory pages would be required only in presence of increased Translation Lookaside Buffer
(TLB) pressure.
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Each group is provided with a high-resolution timer that is in charge of
performing the aggregation (i.e., sum) of the per-task counters at a constant
pace while holding the proper rwlock. When it finishes the aggregation process,
the high resolution timer stores the result within a circular buffer maintained
inside the history memory page.

The use of a high resolution timer instead of a system call as it is in the
Application Heartbeats reference implementation improves performance since it
avoids plenty of the user- to kernel-space traps.

Consumer tasks get performance measurements both in kernel- and user-space
by issuing a call to hrm_get_performance(int depth). Whenever the depth
parameter is 0, the API call returns the long-term performance measurement
whose value is computed according to Equation (1). If the depth parameter
holds a value greater than 1 and less than the maximum depth previously
mentioned, the API call returns a variable-term performance measurement
over the last depth aggregations of the per-task counters. Equation (2) reports
the mathematical formulation of the measurement.

r(k) =

∑
i countersi(k)

k
(1)

r(k) =

∑
i countersi(k) − countersi(k− d)

k− d
(2)

Within both the equations, r is the performance measurement, counteri repre-
sent the per-task counter of the i-th task, k is the sampling interval, and d is
the value stored inside the depth parameter.

With the implementation proposed HRM offloads the computation of perfor-
mance measurements to consumer tasks while the same job is accomplished by
the application itself with the Application Heartbeats reference implementation.
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2.4 evaluation

This section evaluates HRM and, in particular, it is focused on answering the
following questions:

1. is HRM a high performance solution with respect the state of the art, the
Application Heartbeats reference implementation?

2. is HRM easy to use for instrumenting emerging real-world applica-
tions employing various parallel model (e.g., fork & join, worker pools,
pipeline, spawn & kill, etc.)?

3. is HRM a low overhead on emerging real-world applications?

2.4.1 Evaluation Platforms and Configurations

We evaluated HRM on three different evaluation platforms. The first is a
workstation with an Intel Core i7-870 Processor and 4GB of DDR3-1066. The
processor features 4 cores operating at 2.97GHz and sharing 8MB of Last-
Level Cache (LLC). We disabled the Enhanced Intel SpeedStep Technology
and the Intel Turbo Boost Technology to prevent the processor entering P-
states with clock frequency lower or higher than the nominal when a subset
of the cores is executing. We disabled the Intel Hyper-Threading Technology
(HTT) to simplify our analysis. This evaluation platform is representative of a
commodity CMP.

The second evaluation platform is a workstation with an Intel Pentium D
Processor 820 and 2GB of DDR2-800. The processor features 2 cores operating
at 2.80GHz, each one with 1MB of LLC. We believe this evaluation platform
is representative of a commodity multi-socket system since the 2 cores live on
separate dies communicating through the system bus even through they are
on the same socket.



38 performance monitoring

The third is a Dell T3500 workstation with an Intel Xeon W3670 Processor and
12GB of DDR3-1066. The processor features 6 cores operating at 3.20GHz and
sharing 12MB of LLC. We disabled the Enhanced Intel SpeedStep Technology
and the Intel Turbo Boost Technology to prevent the processor entering P-
states with clock frequency lower or higher than the nominal when a subset
of the cores is executing. We disabled the Intel Hyper-Threading Technology
(HTT) to simplify our analysis. This evaluation platform is representative of a
commodity CMP.

We configured Debian 6.0 to boot with the Linux kernel 2.6.35 enhanced with
HRM. HRM was configured to support at most 64 tasks per group (i.e., one
memory page) and a depth of the variable-term performance measurement of
up to 1024. High resolution timers were scheduled to aggregate the per-task
counters every 100ms.

We answered the questions reported above through a hand-crafted microbench-
mark and the PARSEC 2.1 benchmark suite [50, 42]. The microbenchmark is
useful to collect raw performance numbers for both HRM and the Application
Heartbeats reference implementation while the complete benchmark suite pro-
vides a set of emerging real-world applications with different parallel models
to asses the ease of use of HRM and its low overhead.

2.4.2 High Performance

We evaluated the raw performance of the two performance monitoring infras-
tructure (i.e., HRM and the Application Heartbeats reference implementation
through microbenchmarking. The microbenchmark allows specifying the level
of parallelism (i.e., the number of tasks to fork) and the number of heartbeats
to issue. The hotspot of the microbenchmark is a tight loop issuing heartbeats
as simple as the one shown in Figure 8 where ntasks is the number of tasks
forked by the microbenchmark and nheartbeats is the number of heartbeats
each task must issue. Because of this setting, the performance measurement
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nheartbeats = 1000000 / ntasks;
for (int i = 0; i < nheartbeats; ++i)

heartbeat();

Figure 8.: Tight loop issuing heartbeats within the microbenchmark.

Application Heartbeats Heart Rate Monitor

th
ro

ug
hp

ut
 [h

ea
rt

be
at

s/
s]

106

107

108

109

speedup

1x

10x

100x

# threads
1 2 3 4

# threads
1 2 3 4

Figure 9.: Throughput (higher is better) and speedup (higher is better) of the
microbenchmark—1 to 4 threads—with both the Application Heartbeats reference imple-
mentation and HRM. The speedup baseline is the microbenchmark—1 thread—result
with the Application Heartbeats reference implementation. The plot reports arithmetic
averages over a thousand executions with the 95% confidence interval less than 1% of
the measurement.

(i.e., the heart rate) of this microbenchmark quantifies the overhead; the higher
the performance measurement, the lower the overhead.

Figure 9 shows the throughput and the speedup of the microbenchmark with
both the Application Heartbeats reference implementation and HRM executing
on the first evaluation platform.

HRM is at least an order of magnitude faster than the Application Heartbeats
reference implementation and we did not observe any difference in terms
of raw performance between forking threads (results shown in the plot) or
processes. The speedup shown on the right side of the figure clearly shows that
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Figure 10.: Speedup (higher is better) of the microbenchmark—1 to 4 threads and 1 to
2 threads—with HRM without and with cache craftiness. The speedup baseline is the
microbenchmark—1 thread—result with the corresponding configuration. The ideal
speedup is the number of threads (i.e., cores). The plot reports arithmetic averages
over a thousand executions with the 95% confidence interval less than 1% of the
measurement.

the raw performance with the Application Heartbeats reference implementation
decreases while the number of tasks increases, which is counterintuitive
but common for certain applications executing on multicore processors [4].
Conversely, the raw performance with HRM increases with the number of
tasks, which is the behavior most people would expect from an application.

Figure 10 shows in greater details the scalability of HRM without and with
cache craftiness executing on both evaluation platforms.

HRM without cache craftiness (see yellow bars) displays a better behavior than
the Application Heartbeats reference implementation, which was not scalable
at all. However, this version of HRM is still far from the ideal scalability (see
green bars) on the first evaluation platform, which makes use of the shared
LLC to exchange cache lines among cores, and does not even scale on the
second evaluation platform, which employs the system bus to exchange cache
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lines among cores. Conversely, HRM with cache craftiness approaches the
ideal scalability on both the evaluation platforms (see blue bars), thus showing
the relevance of a multicore processors-aware design and implementation.

2.4.3 Ease of Use

We analyze the instrumentation of 11 out of 13 multi-thread applications from
the PARSEC 2.1 benchmark suite [50, 42] employing diverse parallel models,
which allows to show the ease of use of libhrm.

We focus on the following applications: blackscholes, bodytrack, canneal, dedup,
facesim, ferret, fluidanimate, raytrace, streamcluster, swaptions, and x264. These 11

multi-thread applications can be grouped in four categories according to their
parallel model:

• category 1—blackscholes, canneal, fluidanimate, streamcluster, and swaptions
use “fork & join” of workers;

• category 2—bodytrack, facesim, and raytrace leverage pools of workers
running different jobs in parallel;

• category 3—dedup and ferret use a pipeline with a pool of workers per
stage;

• category 4—x264 employs “spawn & kill” of workers to realize a virtual
pipeline.

For each category, we give additional details regarding the structure and
instrumentation of one application.

Applications in category 1 are straightforward to instrument, as they use a
simple parallel model. The sequence diagram in Figure 11 shows the structure
and instrumentation of these applications. The main thread of the applications
is responsible for forking (i.e., pthread_create(3)) the worker threads and
joining them (i.e., pthread_join(3)) when they exit (i.e., pthread_exit(3)).
The first worker thread attaches to (and implicitly creates) the group, and it
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Figure 11.: Structure of the applications in category 1.
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sets the SLO; the other worker threads attach to the group and, just like the
first worker thread, start their computation. Figure 12 visualizes the typical
structure of computation of a worker thread, which runs in a loop terminating
a unit of work, issuing a heartbeats. When the application is terminating,
before re-joining, the worker threads detach from the group.

Applications in category 2 use a pool of worker threads running parallel kernels;
therefore, none of the threads completes a unit of work alone. Figure 13

represents the common structure of these applications. The main thread,
which acts as a dispatcher, is the first to attach to the group. Due to the
structure of these applications, which is represented in Figure 14, the main
thread issues heartbeats. However, we still attach all the worker threads to the
group to make resource allocation policies and mechanisms aware that they
are relevant for the execution.

Applications of category 3 employ many pools of worker threads organized in
a pipeline. In these applications, the main thread is responsible for forking the
pools of worker threads and waiting for them to join upon application comple-
tion. All the forked threads attach to the group (the first thread automatically
creates the group and sets the SLO); Figure 15 shows the general structure
of these applications. The worker threads contained in the n-th pool (i.e., the
last stage of the pipeline) are the ones committing each unit of work and are
responsible for issuing heartbeats, as Figure 16 illustrates.

The last category (i.e., category 4) contains only one application, namely x264.
x264 creates a virtual pipeline based on a “spawn & kill” parallel model, which
makes the instrumentation straightforward. Figure 17 illustrates the structure
of the instrumentation of x264. The main thread is responsible for creating
and attaching to the group. Figure 18 focuses on the computation phase: the
main thread spawns many different worker threads that re-join when their
computation ends. The main thread maintains the notion of advancement
(i.e., encoding of frames in x264); thus, it is responsible for issuing heartbeats.
Just as for applications in category 2, we still attach all the worker threads to
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Figure 14.: Computation of the applications in category 2.
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Figure 16.: Computation of the applications in category 3.
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Table 5.: Comparison between vanilla and instrumented applications from the PARSEC
2.1 benchmark suite

category application vanilla instrumented overheadavg. [ms] std. [ms] avg. [ms] std. [ms]

1

blackscholes 68731.67 1998.33 68902.53 221.21 0.25 %
canneal 96405.94 1846.36 96913.76 488.74 0.53 %

fluidanimate 95785.44 627.38 96077.83 103.19 0.31 %
streamcluster 147536.15 2393.04 147460.57 333.19 -0.05 %

swaptions 75308.29 308.39 75508.16 249.35 0.27 %

2

bodytrack 52849.39 412.03 53732.33 878.61 1.67 %
facesim 145175.15 2256.19 145408.80 787.26 0.16 %

raytrace 124036.75 901.47 124441.34 750.43 0.33 %

3
dedup 33509.96 955.21 34448.43 1187.31 2.80 %
ferret 113626.21 527.36 114106.41 218.52 0.42 %

4 x264 32657.13 252.06 32713.23 255.53 0.17 %

the group to inform resource allocation policies and mechanisms about their
relevance.

2.4.4 Low Overhead

We evaluate the overhead of HRM on all the multi-thread applications we
instrumented from the PARSEC 2.1 benchmark suite [50, 42].

Table 5 reports average execution times and their standard deviations over 100

consecutive execution of unmodified (i.e., vanilla) and instrumented applica-
tions with the native inputs. The table also reports the overall runtime impact
(i.e., overhead). Experimental results where collected on the third evaluation
platform.

The highest runtime impact we measured is 2.80% for dedup; with the ex-
ception of x264, higher runtime impacts (e.g., bodytrack and dedup) coincide
with short execution times and we argue this is due to “non-amortized” costs
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of creating the group and attaching worker threads, which are the most ex-
pensive operations with HRM. According to experimental results we can
state that HRM is efficient and imposes negligible runtime impact; in fact,
in some of the applications (e.g., streamcluster) the runtime impact becomes
“negative”—though remaining within the confidence of the measurement.

2.5 summary

The design and implementation of HRM addresses all the requirements we
pointed our in Section 2.2. The evaluation reported in Section 2.4 demon-
strates our claims regarding the performance monitoring infrastructure: high
performance, ease of use, and low overhead.

Despite being born as a performance monitoring infrastructure, HRM is a
general-purpose solution to acquire throughput measurement and we believe
it is suitable in a wide variety of contexts. For instance, HRM was used to
measure contention over spinlocks by instrumenting a synchronization library
to issue a heartbeat each time a task (i.e., producer) spins over an already
acquired spinlock. Each task planning on acquiring and releasing the spinlock
can attach a the spinlock group. In this scenario, the higher the heart rate, the
higher the contention, and the objective of a resource allocation policy could
be minimizing the heart rate by driving a resource allocation mechanism to
move tasks contending the same spinlocks on the same socket to leverage
share LLC cache line exchanges [43].

This chapter presented various contributions from published work [8, 12, 9]
and touched contributions from unpublished work [43].





3
A D A P T I V E P E R F O R M A N C E M A N A G E M E N T

In the last decade computer architecture crossed a critical junction and so did
the whole computing industry shifting from single to multicore processors.
The introduction of Chip-Multiprocessors (CMPs) requires better support
from system software: hypervisors, operating systems, and runtimes. System
software must be able to manage emerging computer architectures achieving
the same predictable performance single-thread applications used to have on
singlecore processors. In addition, the growing importance of non-functional
requirements (e.g., performance, energy consumption, etc.) imposes system
software to support the specification of Service-Level Objectives (SLOs) and
the resource allocation mechanisms to meet them. Finding the proper resource
allocations to yield the specified SLOs for multi-program workloads can be
cumbersome; because of this, automatic resource allocation policies should
close the loop by driving the available mechanisms. System software, operating
systems in this specific case, are the perfect test bed for experimenting with
various resource allocation policies and mechanisms as they find themselves
in a favorable position in the hardware/software execution stack.

In this chapter we present various solutions to manage performance following
the design paradigm dictated by the autonomic control loop: Observe-Decide-
Act (ODA). First, we present Metronome: a Central Processing Unit (CPU)
bandwidth allocation policy and mechanism implemented inside the Com-
pletely Fair Scheduler (CFS) (i.e., the general scheduling class of the Linux
kernel hierarchical scheduler). Second, we present Metronome++: a CPU core
allocation policy and mechanism implemented implemented on top of Linux
kernel.

51
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3.1 introduction

The failure [54] of Dennard’s scaling law [1] led chip manufacturers to slowly
abandon the superscalar microarchitectures that characterized singlecore pro-
cessors till the beginning of the last decade. Even though the Moore’s law [3]
is still supporting the exponential increase of transistors’ count, the growth of
clock frequency lost its pace just like the decrease of the supply voltage did
recently. This brought to the lack of success of highly superscalar microarchi-
tectures like the Intel NetBurst powering the Intel Pentium 4 Processors. As a
consequence, single-thread performance is not growing at historical rate any-
more and we are even assisting to the diffusion of simpler microarchitectures
supporting in-order execution instead of out-of-order execution like with the
Intel Atom Processors or the International Business Machines (IBM) POWER7

Processors.

Multicore processors gradually replaced singlecore processors and the industry
is already shifting towards manycore processors. Multicore and manycore
processors are an ensemble of cores, possibly characterized by a simpler
microarchitecture, living on a single piece of silicon; because of this, they
are also known as CMPs. The existence of a number of active applications
in computing systems and the development of multi-thread flavors of these
applications—possibly massively parallel—benefit from the growing cores’
count broadening the spectrum of interesting execution scenarios. The focus
of research moved from executing a single-thread application on a singlecore
processor to:

1. execute a multi-thread application on a multicore processor;

2. execute multiple single-thread applications on a multicore processor;

3. execute multiple multi-thread applications on a multicore processor;

in every research community, from computer architecture to compilers and
systems (i.e., operating systems, distributed systems, etc.). Whenever we found
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ourselves analyzing the second and third execution scenarios we talk about
multi-program workloads execution.

To allow the reader to better understand the relevance of this execution
scenarios, we should notice that the advent of cloud computing encourages
the both the second and third one. Cloud computing folks have a specific
term other than multi-program workloads execution that is: consolidation.
Consolidation means concurrently executing multiple applications wrapped
inside Virtual Machines (VMs) or other kinds of resource containers [55] on
the same physical machines, thus possibly sharing resources such as CMPs.

From a computer architect standpoint, the paradigm shift from single-thread
execution exploiting Instruction-Level Parallelism (ILP) to multi-thread and
multi-program execution exploiting Thread-Level Parallelism (TLP) meant
higher efficiency and utilization: a win-to-win game. From a developer per-
spective, a lot of complexity rose, which now burdens both systems’ and
applications’ developers. Where once applications had no operating points,
they can now execute with 1 to n threads whose placement on a CMP and
especially across CMPs can greatly affect their efficiency [56]. In addition,
singlecore processors allowed changing their operating points, for example
through duty cycle modulation or Dynamic Voltage and Frequency Scaling
(DVFS), affecting the execution of a single application. With CMPs, cores living
on the same piece of silicon may or may not share operating points [57, 11]
and different applications may require different configuration [58, 6] to at-
tain, for example, the highest overall performance/W, making these kind of
optimization cumbersome.

Traditionally, system software (i.e., hypervisors, operating systems, and run-
times) is in charge of providing a Hardware Abstraction Layer (HAL) over
the bare-metal. We believe system software must retain its privileged role,
thus systems’ developers should bear most of the burden they share with
applications’ developers since they have the complete picture of the hard-
ware/software execution stack. System software must be able to deliver the
same predictable performance single-thread applications used to experience
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on singlecore processors and, at the same time, must take into account the
emerging non-functional requirements such as performance, energy and power
consumption, temperature, reliability, availability, etc. In the remainder of this
chapter we will go through different subsystems we design and implemented
to extend commodity operating systems, the system software of choice, so
as to improve the support for multi-program workloads execution on CMPs
under SLOs.

This chapter reports the following contributions:

• we describe Metronome, a CPU bandwidth allocation policy and mecha-
nism implemented inside CFS to time-share CMPs’ resources among the
applications of a multi-program workload accounting for their SLOs;

• we describe Metronome++, a CPU core allocation policy and mechanism
implemented on top of the Linux kernel to space-share CMPs’ resources
among the applications of a multi-program workload accounting for
their SLOs and characteristics (i.e., scalability);

Both Metronome and Metronome++ coupled with Heart Rate Monitor (HRM)
are two alternative adaptive performance management solutions and two
flavors of the Autonomic Operating System (AcOS) [9], the macro project this
dissertation fits into.

The remainder of this chapter is organized as follows. Section 3.2 and Sec-
tion 3.4 describe the design and implementation of Metronome and Metro-
nome++, respectively. Section 3.3 and Section 3.5 do the same for their evalu-
ations. Section 3.6 discusses a set of common related work while Section 3.7
summarizes the chapter.
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3.2 design and implementation of metronome

In the context of system software (i.e., hypervisors, operating systems, and
runtimes) the task scheduler has always been the component in charge of
determining the allotment of CPU bandwidth to the runnable tasks.

The choice of the policy or policies ruling the scheduling infrastructure can
highly impact the behavior of the computing system, thus different policies
applies in different scenarios. A possible classification follows:

• batch scenarios are characterized by a huge amount of jobs to be com-
pleted sequentially, without user impatiently waiting for interacting with
a specific task. This scenarios are typical of some servers, datacenters, or
supercomputers;

• interactive scenarios are characterized by one or more users who want
to interact with some task. This scenarios are typical of desktops and
mobiles.

• real-time scenarios in which computing systems run time-constrained
tasks. We go one level down in the classification by identifying:

– hard real-time scenarios where deadlines are strict and can never
be missed by any of the runnable task; these scenarios are the norm
in avionics and similar environments;

– soft real-time scenarios where runnable tasks are allowed to miss a
few deadlines even though they tend to guarantee a certain Quality
of Service (QoS), expresses as the maximum percentage of deadlines
a runnable task is allow to miss. A notable example of a soft real-
time task is video decoding, which should keep up with a certain
rate to guarantee a flawless video playing experience.

We usually refer to those scheduling infrastructures that do not provide any
kind of real-time guarantee as best effort solutions.
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Usually, each of the scenarios reported above has its own policy. Diverse
policies usually share some common objectives and then specialize to reach
some specific objectives that depends on the scenario they address. The set of
objectives that are common among the different policies is:

• fairness, which means that tasks with the same priority should receive
the same amount of CPU bandwidth;

• balance, which denotes the ability of spreading jobs equally among the
available CPU cores.

The set of objectives that are specific to the different scenarios are:

• for batch scenarios:

– turnaround time minimization, by making the execution time of
each job as short as possible, thus maximizing the overall through-
put;

– CPU use maximization, which means keeping the CPU as busy as
possible.

• for interactive scenarios:

– response time minimization, by reducing the perceived latency;

– proportionality, by giving all users the expected share of CPU
bandwidth for their tasks;

• for real-time scenarios:

– missed deadline minimization, by respecting QoS within soft real-
time scenarios and by reducing the number to 0 within hard real-
time scenarios;

– predictability, being able to deterministically say in advance whether
a deadline can be enforced or not, thus achieving the same execution
from time to time.
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The above classification [59] is very neat in assigning specific objective to
each scenario. However, we believe some computing systems present slightly
blurred scenarios where mixes of the aforementioned objectives are much ap-
preciated. In fact, the trade-off among the specific objectives can usually be stat-
ically tuned in commodity operating systems. For example, the Linux kernel
comes with a hierarchical scheduling infrastructure where scheduling classes
can be plugged-in and out at compile time to adhere to the real-world sce-
nario [37]. The default configuration features a simple scheduling class whose
aim is to maximize the overall throughput1 and a fairly advanced scheduling
class whose main objectives are response time and fairness.2 A scheduling class
implementing the Earliest Deadline First (EDF) scheduling policy to handle
both hard and soft real-time tasks is also available: SCHED_DEADLINE [60]. The
Linux kernel allows changing the amount of CPU bandwidth each scheduling
class receives in order to better handle the trade-off according to the real-world
scenario. Alternative solutions employ two-level scheduling infrastructure to
achieve similar goals [27, 29, 30, 28].

Because of its high impact on the behavior of computing systems, the schedul-
ing infrastructure represents a suitable component in which adaptive ca-
pabilities, and hence adaptive performance management, can be embedded.
Metronome (formerly known as Performance-Aware Fair Scheduler (PAFS) [8])
couples a resource allocation policy and a mechanism that extend the general-
purpose scheduling class within the hierarchical scheduling infrastructure of
recent Linux kernels: the Completely Fair Scheduler (CFS). The idea behind
Metronome is to re-define the concept of fairness to support applications (i.e.,
groups of tasks, see Chapter 2) which are bound to user-stated SLOs. This
change to the CFS scheduling class as the side effect of introducing what we be-
lieve is a desirable property for every scheduling infrastructure: predictability,
which unfortunately is common only in real-time scheduling infrastructures.

1 This class handles both First In First Out (FIFO) and Round-Robin (RR) tasks; the former run to
completion as soon as they get the CPU while the latter can be preempted by other user-space
tasks.

2 This scheduling class handles most of the runnable tasks in the computing system and is called
the Completely Fair Scheduler (CFS).
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3.2.1 Definitions

The current scheduling infrastructure supporting a hierarchy of scheduling
classes that powers the Linux kernel was introduced by Ingo Molnár back
in 2007 with the release of version 2.6.23.3 The design of CFS, which is the
general-purpose scheduling class within the Linux kernel was influenced by
the Rotating Staircase Deadline (RSDL) scheduling infrastructure, which was a
proposal of Con Kolivas that never made into the mainline of the Linux kernel.
The main idea behind these scheduling policies is achieving fairness without
the need to characterize whether a task is behaving either as a batch one or as
an interactive one. The classic concepts of epoch and timeslice were discarded
in favor of a simpler but more effective one: the virtual runtime.

virtual runtime The virtual runtime (i.e., vruntime) of a task is the
actual actual runtime (the amount of time spent running) of the task normal-
ized (i.e., weighted) by the task priority and the number of runnable tasks
considering their priority. It is measured in nanoseconds.

The vruntime of the running tasks gets updated either at each scheduler tick,
whose frequency is a compile time configuration, or when a task yields the
CPU core as a consequence of re-schedule request. The nice(1) value of the
running task is taken into account during the vruntime update operation and
it is used to weigh the update value: tasks with a higher priority (i.e., lower
nice value) will get a smaller than actual update value while the opposite
will happen for tasks with a lower priority. Within CFS tasks are organized in
per-CPU core runqueues; each runqueue is implemented through a red-black

3 The previous scheduling infrastructure made use of a more classic multi-queue data structure and
a set of heuristics to determine if a task was either behaving as a batch one or as an interactive
one. This set of heuristics was the weak spot of the O(1) scheduling infrastructure.
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Figure 19.: Exemplified system architecture of Metronome. Each application (i.e., en-
semble of tasks) attaches to HRM; the resource allocation policy decides whether the
“priority” of the application is enough, eventually instructing the resource allocation
mechanism to give the application more or less CPU bandwidth.

tree that define a time line of tasks. The ordering key of the time line is the
value k reported in Equation (3).

k = vruntimei − mvruntime (3)

∀j | j ∈ Q(i) vruntimej > mvruntime (4)

Where i and j are the i-th and j-th tasks in the time line, respectively, and Q(i)

is the set of tasks living in the same runqueue as the i-th task. At this point,
the scheduling policy becomes dead simple: run the tasks with the lower value
of k that is the left-most in the time line.4

3.2.2 Development

As mentioned earlier in this section, Metronome couples a resource allocation
policy and a mechanisms that, together with HRM (see Chapter 2), realize an
adaptive performance management extension of a scheduling class of the Linux
kernel scheduling infrastructure (see Figure 19). Metronome assigns the CPU

4 We thanks Jones [61] for the material he posted on the design and implementation of CFS, which
was very useful to understand the behavior of the scheduling class.
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bandwidth to both instrumented applications (i.e., applications instrumented
with libhrm) and legacy applications boosting the possibility of the former
to meet their SLOs while keeping the classic definition of fairness for the
latter. At a first glance Metronome could resemble soft real-time scheduling
infrastructure; however, we classify Metronome as a best effort solution since
it cannot give guarantee on the achievement of SLOs. Hence, Metronome
explores the possibility of binding a best effort solution with the ability of
driving performance measurements collected through HRM towards SLOs.

The main idea underlying Metronome is to alter the definition of fairness
enforce by CFS for those applications instrumented with libhrm that provides
SLOs; Metronome does so by changing the vruntime update operation. Within
CFS the vruntime update operation is carried on according to Equation (5).

vruntimei(t) = vruntimei(t− 1) +∆i(t) ∀i, t ∆i(t) > 0 (5)

Where i is the i-th task, vruntimei(t) is the vruntime of the task after the
update operation while vruntimei(t− 1) is the vruntime of the before the
update operation, and ∆i(t) is the update value, which must be greater than
0 to avoid starvation. Within Metronome the vruntime update operation is
carried on in the same way; however, we substitute ∆i(t) with a new update
value: Πi(t). Obviously, the relationship between Πi(t) and ∆i(t) is as follows:

• if Πi(t) < ∆i(t), the i-th task will be advantaged since its vruntime will
grow at a slower with Metronome than in would with CFS; thus, it will
receive a larger share of the CPU bandwidth;

• if Πi(t) > ∆i(t), the i-th task will be penalized since its vruntime will
grow at a faster with Metronome than it would with CFS; thus, it will
receive a smaller share of the CPU bandwidth;

• if Πt(t) = ∆i(t), which is unlikely, Metronome and CFS behave in the
exact same way.

The resource allocation policy is a heuristic in which Πi(t) is a function of: the
update value ∆i(t), the performance measurement and the SLO of the of the



3.3 evaluation of metronome 61

group (see Section 2.3.1) the i-th task belongs to. Within Metronome the SLO is
a two-level solution with a minimum and a maximum value. Πi(t) is computed
according to the piecewise-defined function reported in Equation (6).

Πi(t) =


p1 ·

rg(i)(t)

rg(i)
·∆i(t) rg(i)(t) < rmg(i)

∆i(t) rmg(i) 6 rg(i)(t) 6 rMg(i)

p2 ·
rg(i)(t)

rg(i)
·∆i(t) rg(i)(t) > rMg(i)

(6)

Where p1 and p2 are parameters to modulate the strength of the corrective
action, g(i) is the group at which the i-th task belongs to, rg(i)(t) is the per-
formance measurement, rmg(i) and rMg(i) are the minimum and maximum
values as they are defined in the SLO of the group, and rg(i) is the average
between the two (we expect the interval not to be wide to avoid excessive
oscillations within the SLO).5

3.3 evaluation of metronome

This section evaluate the autonomic control loop consisting of HRM, which
carries on the observe phase, and Metronome that takes care of performing
decisions and putting them in practice through actions. We are particularly
interested in answering the following questions:

1. can the autonomic control loop established by HRM and Metronome
constrain the performance measurements of instrumented applications
so as to drive them towards their SLOs?

2. how good is the heuristic inside Metronome?

5 Since Metronome is implemented in kernel-space we are discouraged from using the floating
point unit to perform our computations; thus, we perform all the multiplication before doing any
division.
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3.3.1 Evaluation Platforms and Configurations

We evaluated Metronome on a workstation with an Intel Core i7-870 Processor
and 4GB of DDR3-1066. The processor features 4 cores operating at 2.97GHz
and sharing 8MB of Last-Level Cache (LLC). We disabled the Enhanced Intel
SpeedStep Technology and the Intel Turbo Boost Technology to prevent the
processor entering P-states with clock frequency lower or higher than the
nominal when a subset of the cores is executing. We disabled the Intel Hyper-
Threading Technology (HTT) to simplify our analysis.

We configured Debian 6.0 to boot with the Linux kernel 2.6.35 enhanced with
HRM. HRM was configured to support at most 64 tasks per group (i.e., one
memory page) and a depth of the variable-term performance measurement of
up to 1024. High resolution timers were scheduled to aggregate the per-task
counters every 100ms.

We assessed the behavior of the autonomic control loop made up of HRM
and Metronome through a subset of the PARSEC 2.1 benchmark suite [50, 42],
which provides a set of representative real-world applications with their native
inputs. We ran multi-program workloads with multi-thread applications so as
to saturate the evaluation platform and create contention, which is the scenario
Metronome tries to address.

3.3.2 Meeting SLO within Multi-Program Workloads

We constructed 3 workloads of 2 applications from a set of 5 instrumented
applications; Table 6 reports the details.6

We ran each multi-program workload with CFS and the combination of HRM
and Metronome 100 times to achieve statistical relevance. We used the per-
formance measurements collected when running with CFS to set achievable

6 ferret runs with 16 threads of execution since it employs a pipeline with 4 stages and a pool of 4

threads per stage.
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Table 6.: Details of the multi-program workloads consisting of multi-thread applications
taken from the PARSEC 2.1 benchmark suite. The multi-thread applications execute
with the options -i native -n 4

workload application threads

A blackscholes 4

swaptions 4

B facesim 4

ferret 16

C facesim 4

fluidanimate 4

SLOs with HRM when running with Metronome. Table 7 reports arithmetic
averages (i.e., avg) and standard deviations (i.e., std) over the repetition divided
by workload, application, and scheduling solution. As expected, the overall
execution time of the multi-program workloads are almost identical when
executing with CFS or Metronome. In fact, the total number of instructions
to execute does not change and the evaluation platform is always saturated,
even when one of the two multi-thread applications within the multi-program
workloads end the execution before the other since Metronome cannot act in
absence of contention. We reported a slightly higher standard deviation for
Metronome; we believe this is due to the heuristic it employs.

Figures 20 and 21 shows 6 out of the 600 executions of the multi-program
workloads A, B, and C with CFS (see Figures 20a to 20c) and with HRM &
Metronome (see Figures 21a to 21c). The green areas represent the SLOs, which
obviously CFS cannot meet since it partitions fairly the CPU bandwidth across
the multi-thread applications of the multi-program workloads. On the other
hand, HRM & Metronome drive the multi-thread applications towards their
SLOs. Figure 21b clearly shows the work-conserving nature of Metronome,
which assigns the whole CPU bandwidth whenever there is no contention it,
something that happens as soon as ferret ends its execution (before facesim).
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(c) Multi-program workload B

Figure 20.: Sample executions of multi-program workloads A, B, and C with CFS.
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(c) Multi-program workload C

Figure 21.: Sample executions of multi-program workloads A, B, and C with HRM &
Metronome.
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Table 7.: Averages and standard deviations over the execution times of multi-thread ap-
plications within multi-program workloads. Each multi-program workload is executed
100 times with either CFS or HRM & Metronome

workload application CFS HRM & Metronome

avg [s] std [s] avg [s] std [s]

A blackscholes 76.718 0.406 109.020 0.577

swaptions 108.504 0.284 93.796 0.428

B facesim 239.982 0.561 241.311 0.696

ferret 159.776 0.426 132.043 0.567

C facesim 227.968 0.588 228.240 0.742

fluidanimate 184.936 0.560 212.991 0.562

We demonstrated the ability of the autonomic control loop established by
HRM and Metronome to drive multi-thread applications towards their SLOs.
We show how good is the heuristic inside Metronome by computing the mean
absolute error through Equation (7).

ε =

∑n
o |r− r|

n
(7)

Where o is the o-th observation of the performance measurement r, which is
the throughput of the multi-thread application and n is the number of obser-
vations. r represents the SLO of the multi-thread application. The computation
of ε accounts for all the observations collected while there is contention for the
CPU bandwidth (i.e., the two multi-thread applications were still executing
concurrently). ε goes from 0.06% for swaptions, which is an extremely regular
applications that does not suffer when sharing resources (e.g., the shared
LLC) [62], to 14.15% for blackscholes that takes a lot of time to converge to the
SLO. However, most of of the multi-thread applications present values of ε
below 2%.
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3.4 design and development of metronome++

Section 3.2 focused on the problem of assigning CPU bandwidth using a
fair method that considers the performance measurements collected through
HRM and the user-stated SLOs. The problem of distributing CPU bandwidth
among multiple applications was born back in the days with multi-tasking
operating systems and it is still an interesting problem because of the trade-off
among the different policies we mentioned earlier. However, with the rise of
multiprocessor systems, multicore processor systems, and, as a consequence,
of parallel and embarrassingly parallel applications, another objective other
than fairly distribute CPU bandwidth grew up in importance: balance the
assignment of tasks to CPU cores.

Metronome (formerly known as Performance-Aware Processor Allocator
((PA)2) [63]) couples a resource allocation policy and a mechanism to build a
sort of second-level scheduling solution on top of the scheduling infrastructure
of the Linux kernel. The idea behind Metronome++ resemble that behind Met-
ronome, re-define the concept of balance to support applications (i.e., groups
of tasks, see Chapter 2) that are bound to user-stated SLOs. The additional
level of scheduling adjusts the concept of balance and introduces the desirable
property of predictability.

3.4.1 Modeling the Behavior of Parallel Applications

With Metronome we explored a simple yet effective solution employing a
heuristic to affect CPU bandwidth distribution across multi-thread applications
within multi-program workloads. Metronome++ follows a different route and
tries to exploit applications characteristics to assign CPU cores to multi-thread
applications running either solo or within multi-program workloads.

Metronome++ exploits a second-order polynomial to estimate the relationship
between the performance measurements collected through HRM and the
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resource allocations. The use of a second-order polynomial is justified by
the behavior of the speedup curve of parallel applications, which usually
grows less than linearly when the number of allocated CPU cores grows
linearly [58, 9].

One way of modeling a computing system consists of determining a function
f through an accurate mathematical analysis of the operations carried out
by the system. Unfortunately, analytical methods frequently fail due to the
complexity of modern systems. A more practical way of modeling a computing
system makes use of an estimate of the computing system behavior obtained
through statistical analysis. The model consists of a function f with a finite
number of parameters and independent variables. Apart from choosing the
function f, its parameters need to be identified; this operation can be realized
through algorithms such as least squares or its variants.

Equation (8) reports the second order polynomial Metronome++ exploits.

sg(k) = p1 · cg(k)2 + p2 · cg(k) + p3 s.t. p1 < 0 (8)

Where c(k) is the number of allocated CPU cores to the g-th group between the
sampling intervals k and k− 1, sg(k) is the reference performance measure-
ment for the g-th group normalized to the reference performance measurement
with a singlecore (i.e., the speedup), and p1, p2, p3 are unknown best-fit pa-
rameters which are to be estimated. Figure 22 explains why we must use the
speedup instead of the raw performance measurements to estimate the best-fit
parameters of the second order polynomial. In fact, the speedup remains al-
most stable across the execution phases of parallel applications, like it happens
for the x264 video encoder from the PARSEC 2.1 benchmark suite [50, 42],
while the raw performance measurements vary.

Within Metronome the reference performance measurement accounted for
the whole execution of applications. Conversely, Metronome++ requires the
reference performance measurement to account for a time window so as
to better shape the relationship between performance measurements and
resource allocation. When applications start, Metronome++ enters an initial



3.4 design and development of metronome++ 69

normalized performance
performance

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

0

1

2

3

4

5

6
perform

ance

0

10

20

30

40

50

60

cores
1 2 3 4 5 6

(a) Applications characteristics for x264 phase 1.
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(b) Applications characteristics for x264 phase 2.
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(c) Applications characteristics for x264 phase 3.

Figure 22.: Comparison between normalize performance (i.e., speedup) and perfor-
mance across the execution phases of x264.
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exploration phase in which applications are assigned with a progressively
increasing number CPU cores so as to better understand their speedup curves.
The observations collected during the exploration phase constitute the first
set of tuples to apply the least squares algorithm and estimate the best-fit
parameters, which will change across the whole execution whenever the
number of applications grows or shrinks.

3.4.2 Modeling the Changes between Phases

Applications can show widely different behavior over their execution, and
these behaviors can be seen from the smallest (i.e., over few thousands of in-
structions) to the largest (i.e., over the whole execution of the application) scale.
Recurring program behaviors are commonly known as execution phases [64].
On one hand, execution phases may be due to an alternation of a CPU- and
memory-intensive streams of instructions. On the other hand, they may be
due to the varying complexity of the program input.

As an example, consider once again the x264 video encoder. It operates on
macro-blocks of pixels which have the fixed size of 16 × 16 pixels. Various
techniques are used to detect and eliminate data redundancy, of which the most
important is motion compensation, employed to exploit temporal redundancy
between successive frames. This is usually the most expensive operation to
be executed for encoding a frame, with a very high impact on both the final
compression ratio and the time spent encoding each frame (i.e., high variance
among different frames). The compressed output frames can be encoded in
one of three possible ways [42]:

• i-frame, which includes the entire image and does not depend on other
frames;

• p-frame, which includes only the changed parts of an image from the
previous i or p-frame;
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• b-frame, which is constructed using data from the previous and next i or
p-frames.

The amount of time needed to encode each frame depends on its type and
frame types alternate within a video. Alternation happens depending on the
program input (i.e., the video for x264) and causes x264 to yield radically
different performance measurements with different program inputs. Because
of this reason we identified the need to model the changes between execution
phases to identify the workload complexity and consistently yield the user-
stated SLOs.

Within Metronome++ we employ an Exponential Moving Average (EWA)
adaptive filter. We initially evaluated both a Moving Average (MA) and an
EWA to construct the adaptive filter. The former tends to behave poorly
with rapidly varying execution phases, unless the number of samples used
is small (e.g., 2 or 3). However, employing a small number of samples may
make the adaptive filter more subject to noise. The EWA behaves better with
rapidly varying workloads even with a larger number of samples, which
helps cancel occasional noise. Within Metronome++ we compute a workload
predictor by applying the EWA adaptive filter to the speedup over the reference
performance measurement (i.e., the same value employed to estimate the best-
fit parameters, see Section 3.4.1 divided by the number of allocated CPU cores
as reported in Equation (9).

p =
∑
k

wk
sg(k)

cg(k)
(9)

∑
k

wk =

n∑
i=1

a−i = 1 (10)

Where p is the workload predictor, wk are the weights of the EWA adaptive
filter whose summation converges to 1,7 a is parameter whose value depends
on the depth of the EWA adaptive filter, sg(k) is the speedup over the reference

7 Let us consider an EWA adaptive filter over the last 4 sampling intervals, which means k goes
from 3 to 0, then w3 = a−1, w2 = a−2, w1 = a−3, and w0 = a−4.
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performance measurement for the g-th group, and cg(k) is the number of
allocated CPU cores for the g-th group between the k and (k− 1)-th sampling
intervals.

Figure 23 shows the behavior of the workload predictor for x264 running
with different numbers of threads, from 2 to 6. The curves are consistent
across the different scenarios, thus making the proposed workload predictor a
suitable candidate to analyze the transition among execution phases and aid
the resource allocation policy.

3.4.3 Details

The design of Metronome++ requires using floating point instruction to per-
form the estimation of the best-fit parameters of the second order polynomial
and the computation of the workload predictor. Due to this reason, we imple-
ment Metronome++ by means of a split solution with a user-space daemon
per group, which exploits the user-space consumer functionality of HRM and
libhrm, that carries on the operation requiring floating point instructions and a
kernel-space daemon per group that is a kernel task whose job is moving tasks
among the runqueues of the scheduling infrastructure of the Linux kernel
following the decision of the user-space daemon. The user- and kernel-space
daemons communicates over memory pages shared across the boundary be-
tween kernel- and user-space (i.e., the same way producers and consumers do
with HRM).

The kernel-space daemons performs fractional mappings of tasks to CPU cores
by assigning the higher number of CPU cores for a portion of the sampling
interval and the lower number of CPU cores for the remaining. For example,
if the sampling interval is 1 s and the outcome of the user-space daemon is 2.4
CPU cores, the kernel-space daemon allocates 3 of them for 0.4 s and 2 of them
for 0.6 s. In addition, the kernel-space daemons strive to minimize the number
of moves of tasks among runqueues to favor locality, even though with CMPs
this is less of an advantage than with multi-socket solutions.
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(b) x264, 3 threads.
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(c) x264, 4 threads.
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(d) x264, 5 threads.
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(e) x264, 6 threads.

Figure 23.: Behavior of the workload predictor for x264 running with different numbers
of threads, from 2 to 6. Values are consistent across the different scenarios making the
workload predictor a suitable choice to analyze the transition among execution phases.
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Figure 24.: Exemplified system architecture of Metronome++. Each application (i.e.,
ensemble of tasks) attaches to HRM; the resource allocation policy decides whether the
number of CPU cores is enough through the application model and workload predictor,
eventually instructing the resource allocation mechanism to give the application more
or less CPU cores.

Figure 24 depicts the overall system architecture of Metronome++, identifying
which components reside in kernel-space (inside the dashed line) and user-
space (outside the dashed line).

3.5 evaluation of metronome++

This section evaluate the autonomic control loop consisting of HRM, which
carries on the observe phase, and Metronome++ that takes care of perform-
ing decisions through the user-space daemons and putting them in practice
through the kernel-space daemons. We are particularly interested in answering
the following questions:

1. what is the sensitivity of Metronome++ with respect to the sampling
interval, the number of samples employed to fit the second order poly-
nomial and to the number of samples used to compute the workload
predictor?
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2. can the autonomic control loop established by HRM and Metronome++
constrain the performance measurements of instrumented applications
so as to drive them towards their SLOs?

3. can this goal be attained for both single- and multi-program workloads?

3.5.1 Evaluation Platforms and Configurations

We evaluated Metronome++ on a Dell Precision T3500 workstation with an
Intel Xeon W3530 Processor and 12GB of DDR3-1066. The processor features
4 cores operating at 2.80GHz and sharing 8MB of LLC. We disabled the
Enhanced Intel SpeedStep Technology and the Intel Turbo Boost Technology to
prevent the processor entering P-states with clock frequency lower or higher
than the nominal when a subset of the cores is executing. We disabled the
Intel Hyper-Threading Technology (HTT) to simplify our analysis.

We configured Debian 7.0 to boot with the Linux kernel 3.3 enhanced with
HRM and the kernel-space partition of Metronome. HRM was configured to
support at most 64 tasks per group (i.e., one memory page) and a depth of the
variable-term performance measurement of up to 1024. High resolution timers
were scheduled to aggregate the per-task counters every 100ms.

We assessed the behavior of the autonomic control loop made up of HRM and
Metronome++ through a subset of the PARSEC 2.1 benchmark suite [50, 42],
which provides a set of representative real-world applications with their native
inputs. We ran both single- and multi-program workloads with multi-thread
applications so as to saturate the evaluation platform.

3.5.2 Sensitivity Analysis

The aim of this section is studying the sensitivity of Metronome++ to the values
of its parameters. The sampling interval is likely the most import parameter.
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We performed experiments with a sampling interval of 200, 500, and 1000ms.
Smaller sampling interval may result in faster responses to the reference
performance measurement variance but higher sensitivity to occasional noise.
Conversely, longer sampling interval may result in slower to no response
to the reference performance measurement variance but lower sensitivity to
occasional noise. The number of samples to fit the second order polynomial
shaping the relationship between the reference performance measurement and
the number of allocated CPU cores and the number of samples to compute
the workload predictor are the other knobs that may change the behavior of
Metronome. We experimented with 4, 8, 16, and 32 samples for the former
and 2, 3, 4, 5, 6, 7, and 8 samples for the latter. Figures 25a and 25b show the
Integral Squared Error (ISE) on the long-term performance metric and on the
variable-term performance metric for x264, respectively. We decided to employ
x264 for this experiment since it is the more challenging application within the
PARSEC 2.1 benchmark suite considering our goal of achieving a user-stated
SLO, which in this case was within 5% of 10 frames/s. The error bars represent
the standard deviations over 100 executions with the same configuration. As
expected, the experimental results show that a short sampling interval (i.e.,
200ms) is the best choice to fit the variable-term (say short-term) performance
metric but, at the same time, a poor choice to fit the long-term performance
metric. The exact opposite happens for a long sampling interval (i.e., 1000ms).
Chosen the 500ms sampling interval, the experimental results also show that
Metronome++ is not very sensitive to the number of samples employed to fit
the second order polynomial and to compute the workload predictor. Overall,
a configuration with a sampling interval of 500ms, 16 samples to fit the second
order polynomial, and 5 samples to compute the workload predictor seems a
reasonable choice.8

8 <500,16,5> is the configuration we used to carry one the remaining of the evaluation.
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Figure 25.: Sensitivity of Metronome++ to its parameters. The x within the x-label is
the number of samples to compute the workload predictor while value after “/” is the
number of samples to fit the second order polynomial.
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Figure 26.: blackscholes, 4 threads, SLO 8500000 options/s.

3.5.3 Meeting SLO within Single-Program Workloads

In this section, we show the dynamic of the performance measurement when
applications execute on top of Metronome++. We show how different static
resource allocations do not yield the user-state SLO while Metronome++ is
capable of meeting them thanks to its modeling solutions. Figure 26 shows
the behavior of Metronome++ executing blackscholes. blackscholes is a very regu-
lar application whose management is hardly a challenge for Metronome++;
however, both the static resource allocations (i.e., 1 and 2 CPU cores) can-
not possibly satisfy the user-stated SLO. Figures 27 and 28 depicts the same
behavior for both canneal and swaptions.

Figure 29 shows the dynamic of the performance measurement when dealing
with x264. As already mentioned, x264 is a complex application to manage,
mainly because of its heavy dependence on the program input. This is likely
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Figure 27.: canneal, 4 threads, SLO 800000 swaps/s.

the perfect application to evaluate Metronome. The resource allocation policy
and mechanism are continuously forced to alter the number of CPU cores
granted to x264 in order to satisfy the user-stated SLO (blue squares).
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Figure 28.: swaptions, 4 threads, SLO 45000 Monte Carlo (MC) simulations/s.
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Figure 29.: x264, 4 threads, SLO 10 frames/s.
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Table 8.: Details of the multi-program workloads consisting of multi-thread applications
taken from the PARSEC 2.1 benchmark suite. The multi-thread applications execute
with the options -i native -n 4

workload application threads

A blackscholes 4

canneal 4

B swaptions 4

swaptions 4

C x264 4

x264 4

3.5.4 Meeting SLO within Multi-Program Workloads

We constructed 3 workloads of 2 applications from a set of 4 instrumented
applications; Table 8 reports the details. Figures 30 to 32 illustrate the behavior
of Metronome++, which is consist over multiple executions, with the multi-
program workloads when it is possible to meet the non-trivial9 user-stated
SLOs. In these figures, the y-axis report the online performance measurements
normalized to the performance requirements (i.e., the SLOs).

The behavior of Metronome++ remains very consistent between executing a
single-program workload (see Figure 26) and a multi-program workload (see
Figure 30): the dynamic of the performance measurement of blackscholes is
very similar with the same SLO.

Figure 32 displays the behavior of Metronome++ with the most complex
multi-program workload (C) consisting of two instances of x264. Resource
allocation in this scenario is particularly difficult since both the instances of
x264 require the whole CMP during the execution. Reaching perfect isolation
and predictability in this scenario is not possible when acting only on CPU core

9 We say that user-stated SLOs are non-trivial when there are no static resource allocation (i.e.,
< 1,1 >, < 1,2 >, < 1,3 >, < 2,1 >, < 2,2 >, and < 3,1 >) such that the multi-thread
applications within the multi-program workloads can meet their SLOs.
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Figure 30.: Multi-program workload A. blackscholes, 4 threads, SLO 8500000 options/s.
canneal, 4 threads, SLO 950000 swaps/s.

allocation due to the need to leverage the underlying time-sharing scheduling
infrastructure. However, Metronome++ is capable of satisfying both the SLOs
even if the variable-term performance measurements are visibly noisier than
in the single-program workload (see Figure 29).
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Figure 31.: Multi-program workload B. swaptions, 4 threads, SLO 65000 MC simulation-
s/s. swaptions, 4 threads, SLO 35000 MC simulations/s.
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Figure 32.: Multi-program workload C. x264, 4 threads, SLO 9 frames/s. x264, 4 threads,
SLO 7 frames/s.
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3.6 related work

In the latest years, there has been extensive research on strategies to maximize
performance or performance under a power budget within multi-program
workloads of multi-thread applications running on top of CMPs.

Many approaches focused on the partitioning of the cache hierarchy [65–69].
Others addressed the problem at the very end of the memory hierarchy alter-
ing the behavior of memory controllers [70–72]. Other focused on the problem
of assigning tasks to CPU cores [73, 58, 6] or change the CPU bandwidth allo-
cation [74]. Researchers also tackled the problem of maximizing performance
possibly under a power cap with more comprehensive frameworks capable
of managing more than one resource at the same time [75, 76]. Unfortunately,
none of these solutions is focused on achieving user-stated SLOs.

Similarly to the work of Fedorova et al. [74], Metronome assigns CPU band-
width to applications within multi-program workloads. However, Metronome
focuses on achieving user-stated SLOs instead of maximizing performance,
a scenario we believe we will be much more compelling in the future were
resources will be abundant. Both the works (i.e., Metronome and the related
work) employ a heuristic resource allocation policy.

Metronome++ is closely related to the works proposed by Corbalán et al.
[73], Sasaki et al. [58]; these two related work are quite similar since the both
exploit the Amdahl’s law to model the scalability characteristics of parallel
applications and redistribute the CPU cores accordingly. The work by Sasaki
et al. [58] also accounts for the different execution phases applications may
go through and changes the allocations accordingly. Metronome++ makes
use of a second order polynomial to model the scalability characteristics of
parallel applications and decides how to distribute CPU cores accordingly.
However, it does so with the objective of achieving user-stated SLOs; objectives
expressed through high-level performance metrics that are meaningful to both
applications’ developers and users. Conversely, SBMP [58] exploits Instructions
Per Cycle (IPC), which is hardly meaningful and may even be the wrong choice
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for parallel applications [33]. In addition, Metronome++ supports execution
phases through a workload predictor that proved effective in understanding
the dynamic behavior of applications both when executing solo and within
multi-program workloads. Each of these works employ a model-based resource
allocation policy.

There exists also more comprehensive frameworks in terms of the resources
they manage or the SLO they can achieve. METE [77] is one of those; it
exploits sound control theory to drive the partitioning of CPU cores, the cache
hierarchy, and the Dynamic Random-Access Memory (DRAM) bandwidth.
METE accepts user-stated SLOs expressed through low-level performance
metrics (i.e., IPC) and it is unclear how the “filter” they propose can map
those metrics to high-level ones since the latter may not be representative
of the former [33]. In addition, the authors simulated the behavior of METE
since the cache hierarchy and the DRAM bandwidth cannot be partitioned in
commodity CMPs.

SEEC [78, 53, 79] is the second closely related comprehensive solution, which
also supports an experimental processor. SEEC exploits sound control the-
ory and machine learning to drive both CPU core allocation, DVFS, and
application-level adaptation. Neither Metronome nor Metronome++ cannot
directly compare to SEEC since the latter accepts user-stated SLOs bounding
both a high-level performance metric [21] and power consumption. How-
ever, both Metronome and Metronome++ are competitive with the CPU core
allocation policy proposed with SEEC.

Orthogonal approaches [80, 81] dynamically adjust the number of threads
within parallel applications to optimize the overall efficiency of computing
systems.
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3.7 summary

Metronome and Metronome++ proved effective in managing CPU bandwidth
and cores, respectively, when closing the autonomic control loop with HRM.
Both the solutions proved effective when dealing with the execution of multi-
program workloads consisting of multi-thread applications. In addition, Metro-
nome++ can handle single-program workloads so as to minimize the amount
of resource allocated, thus opening to adaptive power management solutions.
Both the heuristic resource allocation policy within Metronome and the model-
based resource allocation policy within Metronome++ yields high accuracy
(see the mean absolute errors for the former and the ISE for the latter).

This chapter presented various contributions from published work [8, 9].

As future work we intend to integrate the adaptive performance management
solutions presented so far with the Dynamic Thermal Management (DTM)
solutions we will present later in this dissertation (see Chapter 4) that we
already discussed in our publications [12, 9, 11].



4
A D A P T I V E T H E R M A L M A N A G E M E N T

Constraining power and temperature has become a dominant aspect of the
design of both processors and computing systems. The supply voltage decrease
has lost its pace even though the feature size is shrinking constantly. This
phenomenon, which is the result of Dennard’s scaling law failure, coupled with
the increasing number of transistors per unit of area, which is due to Moore’s
law, translates into a growing power density. Power density is one of the
root of high temperature, which impairs performance, energy consumption,
and reliability. System researchers started investigating Dynamic Thermal
Management (DTM) techniques to address the trade-off between performance
and temperature. Hardware DTM can effectively constraint the temperature
of processors, eventually shutting them, thus guaranteeing safety. At the
same time, hardware solutions can negatively affect established Service-Level
Agreements (SLAs) and Service-Level Objectives (SLOs). On the other hand,
software solutions rely on hardware for safety, but does not indiscriminately
trade-off performance for temperature. We propose ThermOS, an extension for
commodity operating systems that harnesses formal feedback control and idle
cycle injection to decrease thermal emergencies while showing better efficiency
than commodity and cutting edge techniques.

4.1 introduction

The shift from singlecore superscalar processors to multicore processors was a
tentative response to address the inability of respecting Joy’s law: the peak com-
puter speed doubles each year [2]. If parallel software is available, a multicore

87
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processor made up of an ensemble of smaller cores [82], which harness thread-
level parallelism, can outperform a massive singlecore superscalar processor
exploiting instruction-level parallelism within the same power budget.

In the last decade we assisted to the proliferation of multicore processors
such as Chip-Multiprocessors (CMPs) and Multiprocessor System-on-Chips
(MPSoCs) characterized by a constantly increasing number of transistors made
possible by the ever-decreasing feature size [3]. However, recent lithographic
technologies do not abide Dennard’s scaling law [1] causing power density of
a multicore processors to approach that of a nuclear reactor. Power density
increases as the scaling of clock frequency and number of transistors outpaces
the downscaling of supply voltage. The consequent rise of temperature due
to the inability of packages to dissipate heat heavily influences the design of
both processors and computing systems.

Maintaining temperature under control is crucial for performance, energy con-
sumption, and reliability of integrated circuits: a higher temperature increases
leakage current and leads to a sharp increase of energy consumption [83]
and to drastic decreases of both throughput [84] and Mean Time To Failure
(MTTF) [85]. Researchers from the computer architecture, compiler, and op-
erating system communities put efforts in addressing this issue. Our work
pursues the same objective.

We propose ThermOS (Thermal Operating System) [11], an extension for
commodity operating systems, which provides DTM through formal feed-
back control and idle cycle injection [17] for multi-programmed workloads.
ThermOS specifically targets commodity CMPs, which cannot benefit from
the latest architectural and micro-architectural advancements. However, we
believe that ThermOS could benefit even further from both the architectural
and micro-architectural evolution.

This chapter makes the following contributions:
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• Propose and validate a linear discrete-time thermal model that describes
the temperature behavior around the threshold when employing idle
cycle injection for DTM;

• Derive a proportional-integral controller to drive idle cycle injection,
demonstrate its asymptotic stability and robustness;

• Evaluate ThermOS on a commodity CMP with representative bench-
marks showing its capabilities of managing multi-programmed work-
loads and addressing the trade-off between temperature and perfor-
mance.

The remainder of this chapter is organized as follows. Section 4.2 makes a
first high-level comparison between Dynamic Voltage and Frequency Scaling
(DVFS) and ThermOS. Section 4.3 describes the linear discrete-time thermal
model that enables ThermOS while Section 4.4 reports implementation de-
tails regarding each ThermOS component. Section 4.5 provides evidence that
ThermOS achieves its goals. Section 4.6 surveys, at the best of our knowledge,
related work and highlights benefits and drawbacks of ThermOS with respect
to the state of art. Finally, Section 4.7 concludes this chapter.

4.2 dynamic thermal management : the bad and the good

Typical scheduling algorithms implement the race to idle approach: applica-
tions run as fast as possible to allow processors entering low power states
as soon as possible. This behavior leverages the capability of decreasing en-
ergy consumption when employing low power states and delivers the best
performance. Race to idle favors energy efficiency [86] and is beneficial for
desktops, laptops, and mobiles, where interactive, low-utilization applications
are common.

Conversely, race to idle leads to high temperature in servers and large-scale
computing systems where non-interactive high-utilization applications prevail,
incurring in additional costs to power Computer Room Air Conditioning
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(CRAC) and Heat, Ventilation, and Air Conditioning (HVAC). CRAC and
HVAC are in place to avoid exceeding the temperature threshold1 and limit
the number of DTM events that degrade vital measures such as throughput,
latency, and missed deadlines.

4.2.1 Dynamic Voltage and Frequency Scaling

Researchers from the computer architecture community demonstrated the
energy efficiency of per-core P-states [87] through DVFS in CMPs [88]. Each
core within a CMP heats up differently depending on the manufacturing
variability of the silicon, the floorplan, the application it is running, etc. [83]
making the adoption of per-core P-states desirable to address temperature
issues. However, providing such a fine-grained control in CMPs with more
than few cores is uncommon [57] and most of the manufacturers ditch fine-
grained control in favor of coarse-grained control.2

This scenario is especially harmful for multi-tenant environments. Each user is
assigned a certain amount of resources and expects predictable performance.
The occurrence of DTM events (e.g., the activation of DVFS as a consequence
of the overheating of a single core running a particularly Central Processing
Unit (CPU)-intensive application) affects the whole CMP and impairs the
performance of all the applications within a multi-programmed workload,
regardless of the owner.

Figure 33 depicts this setting. We run swaptions, a CPU-intensive application
from the PARSEC 2.1 benchmark suite [50, 42], and apachebench, an Input/Out-
put (I/O)-intensive application, on two different cores. When running at the
highest clock frequency, the core executing swaptions overheats (see the dashed
red line in Figure 33), breaking the temperature threshold, while the core
executing apachebench does not (see the dashed green line in Figure 33). When

1 The temperature threshold can be either a manufacturer-defined safety limit or an administrator-
defined cap to lower the total cost of ownership.

2 Commodity CMPs support per-core P-states; unfortunately, this setting becomes effective only
when cores operate in different C-states.
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Figure 33.: Executions of a multi-programmed workload on a commodity CMP. DVFS
decreases temperature with a chip-wide impact on performance.

the same multi-programmed workload executes on a CMP using chip-wide
DVFS for DTM, each core is subject to the same supply voltage and clock
frequency setting. The core executing swaptions does not overheat when DVFS
is in place since it decreases the supply voltage and the clock frequency (see
the point at 200 s in the execution in Figure 33); this directly translates into
a run time increase (see red line and ∆1 in Figure 33). Unfortunately, the
same happens—on a smaller scale due to the I/O-intensive nature of the
application—to apachebench, which does not cause overheating at the highest
clock frequency (see the light green line). Hence, apachebench is unnecessarily
slowed down (see green line and ∆2 in Figure 33).

4.2.2 Idle Cycle Injection

The system-wide performance degradation of chip-wide DVFS is its main
drawback. ThermOS addresses this issue by harnessing formal feedback con-
trol and idle cycle injection [17]. Let us reconsider the previous multi-tenant
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Figure 34.: Executions of a multi-programmed workload on a commodity CMP. Ther-
mOS decreases temperature with a core-wide impact on performance.

scenario. ThermOS selectively throttles the execution of those applications
whose cores are overheating without affecting the remaining cores and thus
avoiding system-wide performance degradation. Figure 34 depicts this setting.
ThermOS prevents the core running swaptions from overheating by increasing
its run time (see red line and ∆1 in Figure 34). At the same time, it does not
impact the execution of apachebench (see green lines in Figure 34).

Almost all processors today support a handful of C-states—five on Intel “Ivy
Bridge”—and this trend is spreading as processors dynamic power and ther-
mal management gain momentum [89]. For example, our evaluation platform
features an Intel Xeon Processor W3530 supporting the C0, C1/C1E, C3, and
C6 states at the individual thread, core, and package level. A convenient in-
terface accessible through the MWAIT instruction allows the operating system
requesting low power states [90]. ThermOS exploits this interface to selectively
throttle applications, thus decreasing temperature.

Flexibility makes idle cycle injection very interesting. For example, Google is
already exploiting idle cycle injection through kidled [91] in some of its data



4.3 thermal model 93

centers while Intel recently merged PowerClamp [92]—a thermal driver that
harnesses idle cycle injection—with the Linux kernel 3.9 (released April 29,
2013). Other approaches, like Dimetrodon [17], rely on idle cycle injection to
provide preventive thermal management via probabilistic injection of idle time.
We thoroughly compares Dimetrodon with ThermOS in Section 4.5.

4.3 thermal model

Electronic systems such as integrated circuits abide by a number of physical
laws, some of which regulate the way temperature behaves, that can be ex-
pressed as mathematical relationships. These mathematical relationships are
commonly referred to as first-principle models.

DTM can benefit from the adoption of first-principle models for accurate ther-
mal modeling and many proposals can be found in the computer architecture
literature. Brooks and Martonosi [93] model the temperature behavior through
power consumption in the Wattch power analysis framework. Unfortunately,
chip-wide power consumption is a poor proxy for temperature [83].

Skadron et al. [83] model the temperature behavior through a compact ther-
mal model in the HotSpot thermal analysis framework. This solution is fairly
accurate and explains the complete temperature behavior. The main disadvan-
tage of the compact thermal model is the need for a considerable amount of
micro-architectural details such as the floorplan of the functional units. This
information may be available for obsolete designs but can only be guessed for
current ones.

Zhou et al. [94] harnesses the compact thermal model to deploy a thermal-
aware scheduler, which requires the complete temperature behavior since
its objective is minimizing the temperature without hurting performance.
However, the compact thermal model is simplified to make its adoption viable
outside of a simulation environment and inside the Linux kernel.
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Commodity designs cannot benefit from the latest advancements in micro-
architectural DTM [95]. They rely on conservative techniques like DVFS to
guarantee safety. Given safety for granted, portable software DTM techniques
like idle cycle injection become attractive to address the trade-off between
temperature and performance, as shown in Section 4.2.

4.3.1 Thermal Model for Dynamic Thermal Management

Deriving a thermal model that is meaningful for the whole range of commod-
ity designs and DTM techniques is impractical. Because of this reason, we start
simple with a linear discrete-time first-order model, which already proved a
valuable approximation in many situations such as modelling the through-
put [10] of applications belonging to the PARSEC benchmark suite [50, 42],
the CPU utilization of the Apache HyperText Transfer Protocol (HTTP) Server
and the IBM Lotus Domino Server [96].

We employ the linear discrete-time thermal model (simply thermal model from
now on) described in Equation (11). T(k) and T(k+ 1) are the temperatures
at the k-th and (k+ 1)-th sample instants, respectively; I(k) is the idle time
between the k-th and (k+ 1)-th sample instants; while a and b are parameters
defining the temperature behavior.

T(k+ 1) = a · T(k) + b · I(k) (11)

According to the thermal model, we can approximate the future temperature
by accounting for its current value and the idle time between the current and
future time instants.

Figure 35 shows a thermal simulation leveraging the compact thermal model
proposed by Skadron et al. [83]. We simulate a worst-case application capable
of pushing temperature of an “abstract” single-core processor up to 80 ◦C
given an idle temperature of 30 ◦C (see the red line labeled “w/o ICI” in
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Figure 35.: Thermal simulation leveraging the compact thermal model giving visual
evidence on the applicability of the linear discrete-time thermal model.

Figure 35). One should note that the temperature behavior has been artificially
accelerated to show temperature oscillations.

The thermal simulation comprises idle cycle injection for DTM to alternate
high with low power consumption phases. The control period for idle cycle
injection is set to 10ms (see the ticks on the blue dashed line in Figure 35) while
the idle time can reach at most 80% of this value (i.e., 8ms). The temperature
threshold is set to 70 ◦C while the trigger threshold is set to 1 ◦C less. On the
first thermal emergency at 80ms, ThermOS injects ≈ 30% of idle time and,
from that point on, it injects ≈ 20% of idle time per control period to keep
temperature around the threshold (see the green line in Figure 35).

The simulation gives visual evidence that the temperature behavior around
the threshold when employing idle cycle injection for DTM is quasi-linear
both when idle cycle injection does and does not inject idle time and provides
a first hint on the applicability of our thermal modeling approach.



96 adaptive thermal management

4.3.2 Thermal Model Training

The estimation of parameters can be performed either online or offline and
combinations of the two may apply. Online estimation is beneficial for time-
variant workloads alternating CPU with memory and I/O-intensive phases
and for workloads with CPU-intensive phases in which the Instructions Per
Cycle (IPC) rate has a high variance, since it allows a thermal model to
better track the temperature behavior. However, online estimation introduces
overhead at run time since usually the better the estimation algorithm the
higher its execution time. Offline estimation is suited for steady time-invariant
workloads characterized by a single phase that is either CPU-, memory-, or
I/O-intensive. Since the estimation of parameters occurs offline, the run time
overhead is completely absent. Offline estimation requires an accurate training
phase to guarantee that a thermal model fits the temperature behavior.

We decided to use offline estimation for the following three reasons:

1. we focus on multi-programmed CPU-intensive workloads that have a
high probability of increasing temperature;

2. we use a reasonably high control frequency in the realm of operating
systems and hence we must keep the temporal overhead under control;

3. we execute in kernel-mode and hence we are discouraged from using
floating point computation; this makes almost prohibitive the implemen-
tation of most estimation algorithms at run time.

4.3.3 Estimation and Empirical Validation

We setup a modified version of ThermOS on our evaluation platform; this
version of ThermOS randomly selects a value for the idle time in the interval
[0%, 80%]. We run a worst-case workload consisting of four instances of
cpuburn [97] to make the linear discrete-time thermal model conservative with
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respect to real-world workloads. We collected about 1.5 millions of triples—
equivalent to ≈ 1h of execution—consisting of the current temperature value,
the previous temperature value, and the idle time value to catch most of the
temperature behavior.

We used the least squares algorithm to estimate the parameters and fit the
linear discrete-time thermal model reported in Equation (11). The least squares
algorithm “solves” the linear system y = X ·w, where y is the column vector
made up of n values of the current temperature, X is the matrix of n tuples
consisting of the previous temperature value and the idle time value, and w is
the column vector containing the m parameters (i.e., a and b).

We partitioned the collection of triples in two: a training set of 70% of the
triples and a validation set of 30% of the triples. We run the algorithm on
the training set and verified the result against the validation set. The trained
linear discrete-time thermal model yields a correct prediction for over 95%
of the triples of the validation set. Although we expect lower accuracy with
real-world workloads due to the conservative nature of our thermal modeling
approach, it is still accurate enough. We iterated the estimation many times
with different training and validation sets to gain information about the
robustness of parameters estimation. We eventually selected the best couple of
parameters for our evaluation platform where a and b are 1.0244 and −0.0484,
respectively.

While the simulation of ThermOS shows that the linear discrete-time thermal
model is meaningful, the empirical validation gives mathematical evidence
and strengthen to our thermal modeling approach.

4.3.4 Statistical Validation

We further evaluated the quality of the estimated parameters values through
the computation of their statistical significance. Since we used the least squares
algorithm, it was possible to estimate the variance of the parameters by means
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of the statistic reported in Equation (12). wi is the i-th parameter; X is the
matrix of coefficient of the linear system “solved” by the least squares algo-
rithm; S is the sum of squared residuals computed according to Equation (13);
n and m are the number of triples used by the least squares algorithm and the
number of parameters of the linear discrete-time thermal model, respectively.

Var(wi) = σ
2([XT ·X]−1)ii ≈

S

n−m
· ([XT ·X]−1)ii (12)

S =

n∑
i=1

(yi −Xi ·w)2 (13)

The estimated variances of the a and b parameters values across different
training/validation partitions are 6.7851 · 10−8 and 1.4059 · 10−7, respectively.
They suggest our thermal modeling approach is robust.

4.4 thermal manager

We structured ThermOS following a feedback design and implemented it
inside the Linux kernel. The first step consists in observing temperature values.
The second step takes decisions regarding the needed idle time. Finally, the
third step incorporates the idle time into applications execution.

4.4.1 Temperature Measurement

Formal feedback control requires contextual information; more specifically,
DTM leverages temperature “measurements”. One can either rely on analytic
thermal models or employ thermal sensors to provide such “measurements”.

ThermOS provides DTM through a software solution that mitigates the draw-
backs of hardware DTM. However, software DTM cannot provide strong
guarantees of limiting temperature; thankfully, ThermOS can still rely on
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hardware DTM to face thermal emergencies. Because of this reason, the low
resolution of temperature measurements obtained through on-chip Digital
Thermal Sensorss (DTSs) available on commodity CMPs are sufficient. For
example, our evaluation platform features an Intel Xeon Processor W3530

supporting per-core DTSs with a resolution of 1 ◦C.

We implemented the observation phase through high-priority kernel-mode
threads. Each high-priority kernel-mode thread always executes on the same
core and periodically probes machine-specific registers to retrieve the temper-
ature measurement of the core it is running on.

4.4.2 Idle Time Determination

Formal feedback control is successful in managing systems explained through
mathematical models. The physical laws ruling thermal phenomena provide
a strong mathematical model enabling the use of formal feedback control
for DTM, thus avoiding the difficulties associated with specially-designed
controllers.

Formal feedback control provides many advantages thanks to its formalism. It
is possible to design controllers with predictable behavior in terms of response
time and to achieve desirable stability and robustness guarantees.

Control theory helps synthesizing controllers that achieve the desired out-
put by exploiting the availability of mathematical models of the controlled
processes. In particular, industry strongly relies on formal feedback control
and harnesses well-known solutions that proved beneficial even when dealing
with approximate mathematical models: P, PI, and PID (proportional-integral-
derivative) controllers.
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Figure 36.: Feedback design of ThermOS.

Formal Feedback Controller

Figure 36 shows a feedback design, where the sensor S measures the output T
of the process or plant P; the controller C computes the error e subtracting the
output T from the desired output T̄ and then constraints process the input I
through the actuator A. Following this paradigm, we realize per-core formal
feedback controllers.

Let Temerg be the temperature threshold such that exceeding such value causes
a thermal emergency. We must start DTM before reaching Temerg, so we
set a temperature trigger threshold T̄ < Temerg. We periodically sample the
temperature measurement Ti(k) of core i following the methodology reported
in Section 4.4.1. We compute the error ei(k) = T̄ − Ti(k). If the error ei(k) is
negative the i-th core is overheating. Otherwise, if the error ei(k) is positive,
the i-th core is working properly.

We devised a PI controller that responds to errors by means of two terms: (1) a
proportional term and (2) an integral term. The proportional term changes its
effect according to the current value of the error and in a way that decreases
the future values of the error. The integral term changes its effect incrementally
accounting for the past values of the error. We neglected the derivative term;
while this results into a little loss of control, at the same time it leads to notably
less noise.

The synthesis of the PI controller depends on whether the mathematical
model of the process is continuous-time or discrete-time. Since we periodically
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obtain per-core temperature measurements with a specified sample period,
the mathematical model reported in Equation (11) is discrete-time. Thus, we
perform the derivation in the Z-transform domain.

Equation (14) represents the PI controller for core i, where Ii(k) is the idle time
required to constrain temperature, expressed as a percentage of the control
period.

Ii(k) = Ii(k− 1) +
1− p

b
· ei(k) − a ·

1− p

b
· ei(k− 1) (14)

Controller Synthesis and Stability Proof

We devised a PI controller for the linear discrete-time thermal model reported
in Equation (11) with the goal of keeping temperature T(k) as close as possible
to the trigger threshold T̄ .

We determined the transfer function P(z) applying the Z-transform to the
linear discrete-time thermal model reported in Equation (11). Equation (15)
shows the result, where T(z) and I(z) are the Z-transforms of temperature and
idle time, respectively.

z ·T(z) = a ·T(z) + b · I(z)

P(z) =
T(z)

I(z)
=

b

z− a
(15)

We synthesized the PI controller by constraining the transfer function of the
feedback as explained by Levine [98]. Equation (16) holds the result; G(z)
and C(z) are the transfer functions of the feedback and of the PI controller,
respectively.

G(z) =
C(z) ·P(z)

1+ C(z) ·P(z)
=
1− p

z− p
(16)
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We employed a first order transfer function with a pole in p, a configurable
parameter whose value changes the responsiveness of the PI controller. If p is
chosen in the interval (−1, 1) the feedback is asymptotically stable. Moreover,
if p is chosen in the interval (0, 1) the feedback guarantees the absence of
oscillations. Given asymptotic stability and the absence of oscillations for
granted, large values of p in the interval (0, 1) translate into a slower but
smoother response, while small values of p translate into a faster but rougher
response. ThermOS provides a compile time setting to change the value of
p in the interval (0, 1), therefore we conclude the feedback is asymptotically
stable.

Starting from Equation (16), we determined the transfer function C(z) of the
controller; Equation (17) holds the result.

C(z) =
(1− p) · (z− a)

b · (z− 1)
(17)

We imposed C(z) = I(z)/E(z); this leads to the transfer function reported in
Equation (18).

I(z)

E(z)
=

(1− p) · (z− a)

b · (z− 1)

z · I(z) − I(z) = z ·
1− p

b
·E(z) − a ·

1− p

b
·E(z) (18)

The Z-antitransform and a time shift applied to Equation (18) yield Equa-
tion (19), the generic form of Equation (14).

I(k) = I(k− 1) +
1− p

b
· e(k) − a ·

1− p

b
· e(k− 1) (19)
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Controller Robustness Analysis

In general, a controller depends on the process it is responsible for. In our
case, the PI controller depends on the linear discrete-time thermal model
depicted in Equation (11), whose parameters were estimated and validated in
Section 4.3.2.

The statistical significance of the a and b parameters values makes us confident.
However, ThermOS must deal with many events that can suspend idle cycle
injection; this negatively impacts the effectiveness of idle cycle injection, which
is represented by the b parameter. For this reason, we ask ourselves: what if
our thermal modeling approach is not faithful and, in particular, what if the
b parameter of the linear discrete-time thermal model is poorly estimated?
In other terms, what if the weight of I(k) is not b but b+ δ? We answer this
question by means of a robustness analysis.

We assume the real process is described by the transfer function P(z) reported
in Equation (20).

P(z) =
b+ δ

z− a
(20)

We substitute Equation (20) in Equation (16). The pole of the transfer function
of the feedback changes from z = p to Equation (21).

z =
p · (b+ δ) − δ

b
(21)

If the pole lays in the interval (−1, 1) the feedback remains asymptotically
stable and loses at most the guarantee on the absence of oscillations. We solve
the system of inequalities that leads to Equation (22).

δ >
b · (1+ p)

1− p
∧ δ < −b (22)
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In practice, δ can vary in the interval (−0.0899, 0.0484) when the b and p

parameters values are −0.0484 and 0.3, respectively. The interval is large when
compared to the estimated value of the b parameter. Hence, we declare that
ThermOS is robust with respect to estimation errors on the effectiveness of
idle cycle injection.

4.4.3 Idle Cycles Injection

The scheduling infrastructure of the Linux kernel enables different algorithms
to schedule different types of threads (i.e., either a process or a thread). This ma-
terializes in different scheduling classes with different priorities. The schedul-
ing skeleton iterates over scheduling classes from the highest to the lowest
priority to pick the next runnable thread.

The scheduling infrastructure of the Linux kernel provides five scheduling
classes: (1) SCHED_FIFO, (2) SCHED_RR, (3) SCHED_OTHER, (4) SCHED_BATCH, and
(5) SCHED_IDLE. The first two scheduling classes provide “real-time” policies
while the remaining provide “normal” policies.

We implemented idle cycle injection for user-mode threads scheduled through
normal policies, which are under the control of the Completely Fair Sched-
uler (CFS). This is consistent with previous implementations of idle cycle
injection [17]. The rationale behind this choice is avoiding the preemption of
real-time threads, which are rarely present in most GNU/Linux systems, and
kernel-mode threads, which usually run with low IPC, causing low power
consumption and temperature.

When the scheduling skeleton calls CFS, ThermOS enters the actuation phase
and may or may not perform idle cycle injection depending on the outcome
of the decision phase. We implemented idle cycle injection within the Linux
kernel exploiting the availability of an idle thread for each core. CFS eventually
picks the idle thread instead of the next runnable thread and runs it for as
long as the thermal controller (i.e., the PI controller) dictates.
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Changing the Idle Task

The Linux kernel executes the idle thread whenever there are no runnable
threads; the idle thread yields as soon as a thread becomes runnable. ThermOS
also executes the idle thread whenever the thermal controller demands the
injection of idle time.

Without loss of generality, we analyze the behavior of the Linux kernel when
executing on top of Intel x86 and x86-64 processors. The Linux kernel runs
the idle thread in kernel-mode to allow the execution of protected instructions.
The idle thread issues the MONITOR instruction to arm the address monitoring
hardware with the address of the flags variable stored in its task_struct. It
then issues the MWAIT instruction to request the processor entering the C1E
state.

The Linux kernel eventually writes the flags variable of the idle thread to
demand a reschedule. The address monitoring hardware catches the write
operation forcing the processor to exit the C1E state and enter the C0 state.
Finally, the MWAIT instruction returns and the idle thread yields.

We modified the idle thread to issue the MONITOR instruction to arm the address
monitoring hardware with different variables depending on the outcome of
the thermal controller. Whenever the thermal controller demands the injection
of idle time, the idle thread selects the thermal_flags variable, which is once
again stored in its task_struct. Otherwise, the idle thread selects the flags

variable and its behavior is unmodified. The idle thread then issues the MWAIT

instruction to request the processor entering the C1E state.

The Linux kernel eventually writes either the thermal_flags or the flags

variable of the idle thread to indicate the idle time is exhausted or a runnable
thread is available possibly triggering a C-state transition. In addition, the
Linux kernel writes the thermal_flags instead of the flags variable of the
idle thread whenever the idle thread is running for cooling purpose and either
a real-time or a kernel-mode thread became runnable. This grants ThermOS
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with the capability of suspending idle cycle injection to face the execution of
real-time or kernel-mode threads.

Exploiting the Dynamic Tick

The Linux kernel uses a periodic timer firing at a configurable frequency—
100, 250, 333, 1000Hz—for “house-keeping” operations. This timer is usually
referred to as scheduler tick.

The scheduler tick forces the processor to exit low power states and hence
increases the energy consumption even when the Linux kernel is executing
the idle thread. Since energy consumption is a fundamental issue, the Linux
kernel 2.6.21 introduced the dynamic scheduler tick. The scheduler tick is tem-
porarily disabled to “idle” instead of “idle with ticks”. The scheduler tick fires
periodically whenever the Linux kernel executes runnable threads while it
fires on-demand whenever the Linux kernel executes the idle thread.

When the Linux kernel sets the scheduler tick to fire on-demand it takes the
difference between the current time and the next time a software interrupt
request must execute. We modified this behavior by choosing the minimum
between the next time a scheduled interrupt request (e.g., sleep(2)) must
execute and the idle time.

Scheduling the Idle Task and Alternatives

In the remainder of this section we analyze alternative approaches to schedul-
ing the idle thread as a means for idle cycle injection and we highlight the
choices that led to our design.

Scheduling the idle thread as a means for idle cycle injection may be sub-
optimal from a performance standpoint: it requires trapping from user to
kernel-mode and context switching the current thread with the idle thread. A
first alternative approach targets the context switching issue. One could avoid
the cost of context switching from the current thread to the idle thread by
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“replicating” the functionality of the idle thread and the cpuidle infrastructure:
issue the MONITOR and MWAIT protected instructions that allow the processor to
arm the address monitoring hardware and transition from the C0 to the C1E
state. This approach violates the basics of software engineering by replicating
a well-structured functionality.

A second alternative approach targets both the trapping and the context
switching issues. One could avoid the cost of trapping from user to kernel-
mode and hence the cost of context switching from the current thread to the
idle thread by issuing “low-power” instructions in user-mode. The adoption
of a just-in-time (JIT) compiler allows changing the code of an application at
run time; it is theoretically possible harnessing this feature to “inject” a series
of NOP instructions to cool down the processor. Unfortunately, the effectiveness
of this approach is limited by design by the use of the NOP instruction, which
does not allow the processor to transition from the C0 to the C1E state. We
are aware of state-of-the-art compiler-directed techniques to decrease the peak
temperature of a processor to improve long-term reliability [99]; however,
these techniques target the mitigation of long-term effects like the negative
bias temperature instability and the aging.

We quantified the overhead of trapping and context-switching: it is limited
between 3 and 30µs where the worst case accounts for thread migration.
We concluded that the overhead is acceptable and does not compromise the
efficiency of ThermOS.

4.5 evaluation

This section evaluates ThermOS and, in particular, it is focused on answering
the following questions:

1. can ThermOS constrain temperature and affect applications within a
multi-programmed workload depending on cores thermal profiles?
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2. how efficient is ThermOS in tackling the trade-off between performance
and temperature when compared to Dimetrodon and DVFS?

4.5.1 Evaluation Platform and Configuration

We evaluated ThermOS on a Dell Precision T3500 workstation with an Intel
Xeon Processor W3530 and 12GB of main memory in 3 memory modules. The
processor features 4 cores operating at 2.80GHz and sharing 8MB of Last-Level
Cache (LLC). Each memory module runs at 1066MHz. The Enhanced Intel
SpeedStep Technology allows the processor to work in ten different P-states
from 1.60 to 2.80GHz. We disabled the Intel Turbo Boost Technology to prevent
the processor entering P-states with clock frequency higher than the nominal
when a subset of the cores is executing. The Intel Turbo Boost Technology
would bias the analysis in favor of ThermOS that creates unbalanced execution
times since it exploits the different thermal profiles. We disabled the Intel
Hyper-Threading Technology (HTT) to simplify our implementation. When
HTT is enabled, each physical core is in fact a couple of virtual cores requiring
idle cycle injection co-scheduling to enter the C1E state [90].

We configured Debian 7.0 to run the Linux kernel 3.4 enhanced with ThermOS
and FreeBSD 7.2 enhanced with Dimetrodon [17]. We configured ThermOS with
a temperature sampling period of 10ms and a control period of 10ms. The
thermal controller was setup to limit the idle time to 80% of the control period
and the temperature trigger threshold is 3 ◦C lower than the temperature
threshold. The a, b, and p parameters values are 1.0244, −0.0484, and 0.3,
respectively. Section 4.3.2 supports the choice of these values.

We assessed the behavior of ThermOS through the PARSEC 2.1 benchmark
suite [50, 42], which provides a set of representative workloads. We ran multi-
programmed workloads of single-threaded applications pinned to cores. Sec-
tion 4.5.4 comments on ThermOS’s behavior with multi-threaded applications.
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Figure 37.: Executions of a multi-programmed workload on a commodity CMP. Any
form of DTM is disabled, hence temperature rises without constraints.

4.5.2 Addressing Multi-Programmed Workloads

We first show how ThermOS is capable of constraining temperature and
affecting applications within a multi-programmed workload depending on
cores thermal profiles.

We thoroughly explain the behavior of ThermOS when running a homoge-
neous multi-programmed workload consisting of four instances of swaptions,
each one running with a single thread of execution on its own core since we
believe it helps making our point. However, similar considerations hold for
the various multi-programmed workloads we employ in the remainder of this
chapter.

The multi-programmed workload leads to a steady temperature of about
80 ◦C with an idle temperature of 30 ◦C. Figure 37 shows the last minute of
execution without any form of DTM and highlights different thermal profiles
for the four cores; core 1 operates at a higher temperature than the other cores
and overcomes 80 ◦C while core 3 operates at a lower temperature. Figure 38
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Figure 38.: Executions of a multi-programmed workload on a commodity CMP. Ther-
mOS is enabled, hence temperature rises but remains constrained below the threshold.

displays the last minute of execution with ThermOS configured to constraint
temperature below 70 ◦C. ThermOS enforces the threshold. Table 9 breaks
down the execution time of the multi-programmed workload per core per C-
state when executing on ThermOS. Each instance of swaptions always requires
the execution of the same amount of instructions to run to completion and
in fact they complete at the same time when any form of DTM is disabled
(see Figure 37). All cores spend approximately the same percentage of the
execution time in C0 since it is the only C-state in which cores actually execute
instructions of the instances of swaptions.

When executing on ThermOS, the real execution time of an instance of swap-
tions accounts for the time spent in C0 and C1E since ThermOS exploits only
the latter to lower temperature instead of using C3 and C6 that introduce
higher latency to enter and exit the C-state (i.e., 20 and 200µs, respectively,
instead of 3µs) and penalties (e.g., private caches and register file flushes).
Cores spend different percentages of the execution time in C1E and C3 since
ThermOS injects idle time depending on cores thermal profiles and hence the
instances of swaptions complete at different instants. For example, core 1 oper-
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Table 9.: Break down of the execution time of a multi-programmed workload per core
per C-state with ThermOS

Core C0 C1E C3 C6

0 91% 7% 2% 0%
1 91% 9% 0% 0%
2 91% 6% 3% 0%
3 91% 5% 4% 0%

ates at a higher temperature than the other cores and the instance of swaptions
it runs is the last to complete. Thus, core 1 spends the highest percentage of
the execution time in C1E when compared to the other cores and none in
C3. Conversely, core 3 operates at a lower temperature and the instance of
swaptions it runs is the first to complete. Thus, core 3 spends the lowest and the
highest percentages of the execution time in C1E and C3, respectively, when
compared to the other cores.

Figure 38 displays the behavior of ThermOS when executing a CPU-intensive
workload. However, ThermOS is independent from the kind of workload.
Figure 34 highlights the same capabilities even when ThermOS executes a
workload consisting of a CPU and an I/O-intensive applications.

4.5.3 Addressing the Performance/Temperature Trade-Off

We also show how ThermOS is efficient in tackling the trade-off between
performance and temperature.

We configured ThermOS to achieve temperature decreases of: 10, 20, 25, 30,
and 35% with respect to the idle temperature. We configured Dimetrodon
varying the idle time between 10 and 100ms and the idle probability between
0 and 40% for a total of 150 configurations. We statically set the following P-
states: 2.79, 2.66, 2.53, 2.39, 2.26, and 2.13GHz through DVFS. Each P-state is
used for the whole execution of a multi-programmed workload.
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Figure 39.: Efficiency in tackling the trade-off between performance and temperature
for ThermOS, Dimetrodon, and DVFS.

We ran various multi-programmed workloads consisting of four applications
among: blackscholes, bodytrack, canneal, dedup, ferret, fluidanimate, raytrace, stream-
cluster, swaptions, and x264 and balanced their run times by re-execution.

Figure 39 displays the efficiency curves of ThermOS, Dimetrodon, and DVFS.
Performance (i.e., the ratio between the execution time without and with the
intervention of DTM techniques) decreases linearly from 100% to 75% when
setting the P-states through DVFS; however, temperature decreases are less
predictable.

Dimetrodon employs a probabilistic, feedforward controller to drive idle cycle
injection; the probabilistic nature of the controller and the absence of feedback
make the behavior mostly unpredictable. Figure 39 highlights the Pareto-
optimal executions of Dimetrodon, which are slightly worse than those of
ThermOS; however, the interpolation of all the executions is worse than that
of DVFS. Conversely to Dimetrodon, ThermOS employs a formal feedback
controller backed by a robust thermal model to drive idle cycle injection.
The conjunction of these elements make the behavior of ThermOS highly
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predictable. Figure 38 displays a performance decrease of ≈ 8% with respect
to Figure 37; this is expected considering Figure 39 and a temperature decrease
of ≈ 20%.

When cores operate at decreased clock frequency the relative latency of the
memory hierarchy tends to decrease alongside with the bandwidth [100].
While the latter effect is negative and compromises the performance of mem-
ory-intensive applications, the former is positive for CPU-intensive applica-
tions since it lessens the effects of memory stalls. We believe P-states close to
the highest do not allow DVFS to balance the number of instructions issued,
which is known to have a higher correlation with temperature than the number
of instructions retired [101], with an adequate decrease of power consumption.

It is well accepted that the dynamic power consumption of an integrated circuit
made up of an ensemble of transistors scales as reported in Equation (23);
where a is some proportionality constant, C is the capacitance of a single
transistor, Vdd is the supply voltage, f is the clock frequency, and nt is the
number of transistors that switches concurrently on average.

Pd ∝ a ·C ·V2
dd · f ·nt (23)

Until the beginning of 2000s, the supply voltage Vdd has decreased constantly
with the ever-decreasing feature size; however, the shift from the micrometer
to the nanometer realm prevents this from happening with the same pace as
before. The supply voltage Vdd is bound to be twice as much as the threshold
voltage Vth, which is not scaling down [102]. DVFS is doomed to progressively
lose its effectiveness since the clock frequency f will be the only difference
among the available P-states and its weight is not comparable to that of the
squared supply voltage V2

dd. ThermOS already achieves better efficiency than
DVFS when tackling the trade-off between performance and temperature for
decrease of the latter up to 35% and this margin is likely to increase in the
foreseeable future. In fact, future efficiency curves for DVFS will most likely
fall in the area below the current one (see Figure 39).
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Figure 40.: Execution of a multi-threaded application on a commodity CMP. ThermOS
constraints temperature below the threshold but introduces artificial critical paths
making performance unpredictable.

4.5.4 Limitations

In this work we focus on the trade-off between performance and temperature
for multi-programmed workloads consisting of single-threaded applications.
Let us consider a different setting in which a CMP runs a multi-threaded
application. As already pointed out, cores on a CMP heat up following different
thermal profiles, thus requiring a more or a less aggressive idle cycle injection.
Whenever this happens, one or more threads may be slowed down more
than the others, thus putting in place an artificial critical path impairing
synchronization and stretching the run time unpredictably. Figure 40 displays
this issue by means of two consecutive runs of freqmine executing with four
threads. In this “unsupported” setting, ThermOS achieves a temperature
decrease of ≈ 11% at the cost of a performance decrease of ≈ 15%.

Being aware of this issue we plan on improving ThermOS so as to cope with
synchronizations. A first naïve approach for finely-synchronized (e.g., barrier-
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based) multi-threaded applications requires idle cycle injection to work with
the same timing and intensity among the cores running an application, doing
so by choosing the idle time required by the core with the worst thermal profile.
This is clearly sub-optimal from a performance standpoint. A more elaborated
solution requires an augmented thermal model accounting for thermal in-
teractions among cores since synchronizing idle cycle injection will greatly
enhance its efficiency [101, 92]. An approach for coarsely-synchronized (e.g.,
lock-based) multi-threaded applications exploits previous work on scheduling
for symmetric multi-processors and avoids throttling a thread inside a critical
section.

4.6 related work

Researchers proposed a variety of techniques to deal with temperature is-
sues. We classify these techniques in three categories: architectural, micro-
architectural, and software.

4.6.1 Architectural Approaches

Clock and power gating limit the distribution of the clock signal and the
supply voltage, respectively. They decreases the dynamic and static power
consumption, respectively, since the former prevents transistors from switching
while the latter cut them off from the supply voltage. C-states exploit clock
and power gating to decrease energy consumption.

Near/sub-threshold voltage (NTV/STV) designs [103] dramatically increase
energy efficiency at the cost of severe drops of clock frequencies and single-
threaded performance. With the shift from single to multicore processors we
assisted to the proliferation of multi-threaded applications. The adoption of
NTV/STV designs moves the limits even further requiring embarrassingly
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multi-threaded applications, which are far from common. Hence, researchers
disagree about the applicability and success of NTV/STV designs [102].

A recent architectural approach employs c-cores [104] to decrease energy con-
sumption and power density by means of pre-synthesized application-specific
co-processors. c-cores are promising but require a substantial paradigm shift at
the computer architecture level since the most likely implementation require
the adoption of reconfigurable fabrics.

4.6.2 Micro-Architectural Approaches

Micro-architectural approaches like instruction window sizing, issue width
sizing, and instruction fetch toggling aim at limiting energy consumption by
decreasing the number of instructions issued per clock cycle. Performance
penalties due to the adoption of micro-architectural approaches can be amor-
tized by orthogonal techniques like activity migration [105], which however
requires additional transistors.

Brooks and Martonosi [93] propose a set of heuristics to drive instruction
fetch toggling. Skadron et al. [95] show the applicability of the compact
thermal model and formal feedback control to drive instruction fetch toggling
achieving predictable behavior and the desirable properties control theory can
guarantee. Jayaseelan and Mitra [106] harnesses instruction window and issue
width sizing alongside with instruction fetch toggling and a neural network
predictor to implement DTM.

Collectively, micro-architectural approaches can guarantee safety; however,
being implemented at the lowest level of the hardware/software execution
stack, they lack visibility and may impair the performance of critical pieces
of software such as real-time and kernel-mode tasks, and interrupt request
routines. In addition, most of these approaches are not available in commodity
designs that need alternative software approaches.
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4.6.3 Software Approaches

Common software approaches regard thermal-aware scheduling and DTM.
Thermal-aware scheduling for large-scale computing systems involves migrat-
ing tasks from hot to cold islands [107], while thermal-aware scheduling for
servers is concerned with tasks placing [101] and ordering [94].

Powell et al. [101] propose Heat-and-Run, a technique to perform assignment
and migration of tasks to balance temperature across a CMP. Heat-and-Run is
a thermal-aware scheduler that exploits Simultaneous Multi-Threading (SMT)
to co-schedule “complementary” tasks (e.g., one ALU-intensive and one FPU-
intensive) on the same core and the availability of many cores to alternate
heating and cooling phases.

Zhou et al. [94] propose ThreshHot and observes that tasks ordering actually
matters. ThreshHot is a thermal-aware scheduler that orders tasks from “hot”
(mostly CPU-intensive) to “cold” (mostly I/O-intensive) and schedules them
from the hottest to the coldest. This schedule is guaranteed to minimize
temperature at the end of an epoch. The goal of thermal-aware scheduler is
minimizing temperature without degrading vital measures such as throughput
and latency.

DTM, and hence ThermOS, is orthogonal to thermal-aware scheduling since
the former tackles those settings in which the latter cannot prevent temperature
from exceeding the threshold. Kumar et al. [108] propose HybDTM, which still
exploits the “hot” and “cold” tasks classification but without following a “hot-
to-cold” schedule. Whenever temperature exceeds the threshold, HybDTM
throttles “hot” tasks first by lowering their priority, thus allowing “cold” tasks
to use more processor time. HybDTM is meant for single-core processors and
many of its considerations do not apply in the CMP realm.

kidled [91] is Google’s idle cycle injection implementation. It allows administra-
tors to set a core-wide idle time over a time period. If the end of an interval
draws near and the core has not been naturally idle for the requisite time,
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kidled injects idle time. PowerClamp [92] is Intel’s idle cycle injection imple-
mentation. Bailis et al. [17] propose Dimetrodon, a framework implemented
inside the FreeBSD kernel that relies on probabilistic feedforward control
and idle cycle injection as a means for decreasing temperature. Conversely to
ThermOS, kidled, PowerClamp, and Dimetrodon are eager when injecting idle
time. In addition, ThermOS leverages a thermal model and formal feedback
control to drive idle cycle injection.

4.7 summary and future work

ThermOS proved effective in managing temperature during the execution of
multi-programmed workloads and achieved better efficiency than both com-
modity and cutting edge DTM techniques. The evaluation shows that ThermOS
can selectively affect applications within batch-style, multi-programmed work-
loads running on a commodity CMP. ThermOS also displays higher flexibility
and better efficiency than DVFS for temperature reduction of up to 30%.
Moreover, the use of formal feedback control provides ThermOS with better
predictability than Dimetrodon.

As future work we intend to both address the limitations highlighted in this
paper (e.g., exploit technologies like SMT and Hyper-Threading Technology
(HTT), execute multi-threaded applications, etc.) and integrate DTM with
performance management [8, 12, 9] to guarantee service-level objectives.



5
A D A P T I V E P E R F O R M A N C E A N D T H E R M A L
M A N A G E M E N T

In modern computing facilities, higher and higher operating temperatures
are due to the employment of power-hungry devices, hence the need for cost-
effective heat dissipation solutions to guarantee proper operating temperatures.
Within this context, Dynamic Thermal Management (DTM) can be highly
beneficial in proactively control heat dissipation, avoiding overheating. The
large-scale adoption of DTM may eventually allow the use of more cost-
effective heat dissipation system, with great power consumption advantages
for large datacenters.

Preventive thermal management is a technique to achieve long-term thermal
control via performance degradation. However, this may result in impaired
Service-Level Objective (SLO) and Service-Level Agreement (SLA) breaking.
We address this problem by proposing a self-adaptive framework combining
performance and thermal management targeting Chip-Multiprocessor (CMP).
The proposed methodology harnesses control-theoretical controllers for driv-
ing idle cycle injection and threads priority adjustment, in order to provide
control over the processor temperature, while taking applications’ Quality of
Service (QoS) (in terms of performance) into account. We implemented our
framework in the FreeBSD operating system and evaluated it on real hardware,
also comparing it with a previous framework for preventive DTM.

119
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5.1 introduction

Recently, Very-Large-Scale Integration (VLSI) design—in particular for multi-
core processors—has been heavily influenced by the approach of the power
wall. The shift from single to multi-core processors was a tentative response to
power constraints, passing from one very complex processor to a set of simpler
on-chip cores. However, even multi-core processors are hitting new barriers,
originating the phenomenon of dark silicon [54]. Packing more and more
transistors on a single die of the same size, with energy efficiency not scaling
any more, results in an ever increasing power density, which requires more
efficient cooling systems to keep proper operational thermal conditions. Main-
taining processors cool is crucial for reliability and efficiency: higher average
operating temperatures lead to a drastic reduction of the Mean Time To Failure
(MTTF) [85] and highly increased leakage power [83]. Moreover, processors
are acknowledged to be one of the most power-hungry and heat-producing
components in a computing system and, for plenty of server workloads, power
consumption is reported to increase almost linearly with processor utiliza-
tion [109]. These considerations are of utter importance for data centers; up
to 80 % of the Total Cost of Ownership (TCO)—including both building and
maintenance costs—is due to the cooling infrastructure and the overall power
consumption [110].

Recently, processor-level DTM techniques received quite a lot of attention
and the trend is to move from runtime guards for emergency situations to
always-on proactive control systems. Preventive DTM is a technique leveraging
modern processors’ features such as idling power states (C-states) in order
to actively degrade performance for achieving thermal control [17]; however,
doing so may cause problems when SLAs exist on the provided SLO.

We tackle this problem with a Dynamic Performance and Thermal Manage-
ment (DPTM) framework based on self-adaptive computing [15], realizing
preventive DTM while accounting for desired applications performance in
terms of SLO specified by user-signed SLAs. The DPTM framework is an
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extension of a commodity operating system and it is able to inject idle cycles
for cooling down cores and to vary threads’ priority for affecting applications’
performance. The main contributions of this work are:

• harnessing idle cycle injection to drive the processor temperature towards
a desired set point;

• accounting for desired SLO and controlling threads’ priorities for re-
specting SLAs on performance;

• coupling the thermal and the performance-aware mechanisms for both
preventive DTM and SLAs enforcement.

We implemented DPTM extending FreeBSD 7.2 and the evaluation leverages
applications from the PARSEC 2.1 benchmark suite [42].

5.2 related work

DTM has been an active research topic in the recent years; some relevant works
found in literature are surveyed in this section.

Rohou and Smith [111] presented an evaluation of the idle cycle injection.
Since then, many researchers have exploited their early findings. Kumar
and Thiele [112] proposed a DTM technique for real-time systems with the
objective of minimizing the system peak temperature while meeting deadlines.
The authors implemented a scheduler based on leaky-bucket shapers able to
dynamically inject idle cycles and delay execution without violating deadlines.
Experimental results show that the peak temperatures observed are 8.8K
lower with respect to those observed using a standard real-time scheduler.
This technique is simple, effective, and able to manage any task arrival pattern;
however, it is tailored to processors lacking Dynamic Voltage and Frequency
Scaling (DVFS).

Gupta and Mahapatra [113] developed a DTM technique for real-time systems
able to reduce violations of temperature constraints through DVFS and still
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meeting task deadlines. They implemented an on-line technique relying on a
feedback controller that sets voltage and frequency so as to reduce thermal
dissipation and meet deadlines. This can be done considering as input an
upper-bound system temperature, the past system temperatures, and the jobs
slacks. Simulation results show that constraint violations are reduced by 18.9 %
on average.

Recently, Bailis et al. [17] proposed Dimetrodon, a framework for desktop and
server systems realizing preventive DTM through idle cycle injection [111].
They argue that DVFS is an invasive technique and should be used only
when relevant temperature variations are needed. Idle-cycle injection, instead,
guarantees fine-grained control over the thermal dissipation of each running
thread. Dimetrodon was implemented within the FreeBSD 7.2 kernel and
evaluated on Central Processing Unit (CPU)-intensive workloads. The gathered
data demonstrate that Dimetrodon obtains a better temperature-performance
trade-off with respect to DVFS for temperature reductions of up to 30 % of the
idle temperature. A drawback of Dimetrodon lies in the logic employed to inject
idle cycles, which are inserted randomly without considering possible SLAs
on the delivered SLO. Moreover, the system does not allow to define a set
point for the processor temperature, but just the idle cycle injection probability.

The DPTM framework we propose builds upon the methodology harnessed by
Dimetrodon and addresses its drawbacks, allowing to specify a temperature set
point and coupling thermal-awareness with performance-awareness in order
to avoid breaking SLAs.

5.3 methodology

Typical scheduling infrastructures in commodity operating systems adhere to
the race-to-idle approach: applications are run to completion in order to idle
the system as soon as possible, thus increasing the throughput of applications.
This approach is generally energy-efficient overall [86], but it leads to higher
peak power draw and thus to higher maximum chip temperatures. To contrast
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Figure 41.: Peak CMP temperature with a race-to-idle scheduler (4.4BSD) and the
DPTM framework when executing the same CPU-bound workload. The temperature
set point is 60 ◦C and the average peak CMP temperature with DPTM is 57.2 ◦C.

this—sometimes undesirable—property, whenever applications can afford a
decrease in their throughput the scheduling infrastructure may exploit policies
to reduce the peak power, thus reducing the maximum processor temperature
and consequently requiring less power to operate the cooling infrastructure,
the costs of which greatly impacts the management expenses, especially in the
context of datacenters and server farms [114, 110]. Our proposed approach
exploits this idea and Figure 41 shows an example execution highlighting the
difference between a common race-to-idle approach and that proposed in this
paper. Temperature reduction can be achieved by injecting idle cycles during
the execution of a workload, letting the processor briefly go to a low power
state, thus reducing the instantaneous absorbed power and, subsequently,
the chip temperature. Randomly injecting idle cycles (as done in state-of-
the-art approaches [17]), however, cannot be affordable when SLOs exist
on the performance of some applications. Our methodology applies to this
scenario, where CPU-bound applications are assigned high-level SLO goals
in terms of desired throughput, similarly to what was proposed in different
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contexts [8]. Exploiting this knowledge, we can choose the victim tasks of the
idle cycle injection process among applications not bound to an SLA, while not
penalizing those with specified performance goals. Moreover, our framework
also drives the scheduling priorities of SLO-bound applications in order to
achieve finer performance control.

5.3.1 Control-Theoretical Models

To achieve control over peak and average processor temperature and CPU-
bound applications performance, we extend the scheduling infrastructure of a
commodity operating system with a thermal-aware and a performance-aware
policy. The former monitors the current processor temperature and drives
idle cycle injection to trigger the low-power mode in the cores, reducing the
instantaneous absorbed power and, subsequently, the processor temperature.
The latter observes user-defined throughput goals (i.e., SLAs on the SLO of
specific applications) and the current throughput, driving the scheduling
priority of the threads of SLO-bound applications in order to increase or
decrease the processor time they are ensured, thus affecting their performance.

When designing the models, we considered a trade-off between accuracy and
complexity. Systems usually show non-linear behavior, but accounting for non-
linearity in the model often reduces the provable properties and can impair
the possibility of building a controller. We approximate non-linearity with
linear models by devising a strategy to estimate parameters and to reduce the
imprecision due to non-linearity.

Bailis et al. [17] already discussed the basics of idle cycle injection. Conversely
to that work, which is based on a thermal-unaware probabilistic policy, we
adopt a control-theoretical policy with a feedback loop, able to automatically
drive the average processor temperature towards a specified set point, with the
aim of cutting down the thermal peak typical of a race-to-idle approach. Let
Ti(k) be the temperature of the i-th core measured at time k; the goal of the
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controller is to stabilize Ti(k) close to the set point T̃ . We assume the model
shown in Equation (24) represents the processor’s thermal characteristics.

Ti(k+ 1) = Ti(k) + µi × idlei(k) (24)

The value idlei(k) ∈ [0%, 100%] represents the fraction of idle time injected in
the i-th core during the time interval between the k-th and k+ 1-th sampling
instants, while µi is an unknown parameter. The control-theoretical system,
designed as an adaptive deadbeat controller [96], computes idlei(k) per core
at each sampling instant. A deadbeat controller is synthesized so as the closed-
loop transfer function equals a pure delay, i.e., after one control step the set
point T̃ should be transferred to the output temperature. It is possible to
analytically demonstrate that, if µi is known, the set point will be attained [96]
and the temperature will be kept at the reference level. Intuitively, idle cycles
will be injected when the temperature gets too high, while no action will be
taken while temperature remains lower than the set point. Since µi cannot
be given a priori, we estimate it based on the last temperature measurements
through an Exponential Moving Average (EWA) adaptive filter.

The performance-aware policy features another control-theoretical mechanism
devoted to driving threads priorities; the policy requires user-defined goals to
define SLAs and instrumented applications to provide throughput measures,
similarly to what we proposed with Metronome [8]. SLO-bound applications
are assigned a throughput goal stated as an interval [rmin, rmax], where rmin

is intended as the minimum performance satisfying the SLA and rmax is
a level over which no significant SLO improvements are achieved. Legacy
(i.e., non instrumented) applications are assumed not to be bound to any
SLA. Let ri(k) be the throughput of the i-th application at time k; the goal of
the controller is to keep the performance of each instrumented application
close to its set point r̃ = rmin+rmax

2 . We assume the performance model in
Equation (25).

ri(k+ 1) = ri(k) + ηi,j ×∆priorityi,j(k) (25)
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The value ∆priorityi,j(k) ∈ [−50, 50] represents the priority of the j-th thread
of the i-th application, while ηi,j is an unknown parameter. At each sampling
instant, the control-theoretical system computes ∆priorityi,j(k) per thread
per application. Also in this case, the closed-loop system is designed to be a
pure delay. As for the thermal-aware policy, if ηi is known then the set point
signal will be attained. The ∆priority will be decreased whenever performance
is getting higher than needed, while higher priority will be given when
the desired SLO is not being met. Also in this case, the parameter ηi,j is
periodically estimated with an EWA adaptive filter.

5.3.2 Performance-Temperature Trade Off

Within the DPTM framework, a synergy is created between the thermal and
performance-aware policies by means of a heuristic, which couples them for
stronger performance control and finer thermal control. Since the performance-
aware policy is in place to avoid breaking SLAs, this policy has precedence
over the thermal-aware one. When an application bound to an SLA is running
below its rmin, the performance-aware policy marks the application’s threads
to prevent idle. Conversely, when a controlled application is over performing
(i.e., its throughput is above rmax), its threads are marked to force idle. The
thermal-aware policy uses these two flags to never charge idle time to threads
of applications not respecting their SLA, while charging idle time—if needed—
to threads of applications running faster than needed. In practice, performance
is traded for temperature reduction only if no SLAs get broken.

5.4 implementation

We implemented the proposed DPTM framework as an extension of FreeBSD 7.2,
modifying the 4.4BSD scheduler.1 The thermal-aware policy consists of a set

1 FreeBSD 7.2 supports two different schedulers: 4.4BSD and ULE. We chose 4.4BSD as a base for
fair comparison with Dimetrodon [17].
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of high-priority kernel threads measuring the temperature of cores and a high-
priority kernel thread implementing the control-theoretical system described
in Section 5.3.1, Equation (24). Temperature measurements are gathered by
reading the appropriate Model-Specific Register (MSR) for each core, with
an accuracy of 1◦C. Temperature constraints are defined through the sysctl

utility. Similarly, the performance-aware policy is made up of a set of timers
computing the throughput of applications and a high-priority kernel thread
implementing the control-theoretical system described in Section 5.3.1, Equa-
tion (25). The infrastructure for throughput measurements is a complete port
of the Heart Rate Monitor (HRM), proposed by Sironi et al. [8], to the FreeBSD
7.2 kernel.

The 4.4BSD scheduler is based on a multilevel feedback queues infrastructure:
all runnable threads are assigned a priority determining the run queue they
are placed on and threads are migrated according to their changing priority.
In selecting the new thread to run, the scheduling infrastructure scans the run
queues from the highest to the lowest priority and it chooses the first thread
found on the first non-empty run queue. Multiple threads on the same run
queue are managed in a round robin fashion and are assigned a fixed timeslice
of 100ms [115]. In extending the 4.4BSD scheduling infrastructure, we were
careful to preserve its desirable properties, like non-starvation and priority
decay.

The performance-aware policy is an extension of the scheduling infrastructure
acting in a decoupled fashion. The priority of threads is adjusted using an
additive term (∆priorityi,j) for each thread j of an SLO-bound application
i. This operation induces the migration of the threads from a run queue to
another, according to goals and performance. The 4.4BSD scheduler subdivides
threads in five scheduling classes according to their assigned priority. The
performance-aware policy works on threads in the time-sharing user class (i.e.,
regular applications’ threads) and further checks are applied in order to avoid
the additive term to modify the scheduling class of a thread (e.g., to the real-
time user or to idle classes). The policy also sets an additional per-thread flag,
allowing to realize the synergy with the thermal-aware policy; each thread j
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of a performance-controlled application i is marked with either force idle or
prevent idle as explained in Section 5.3.2.

The thermal-aware policy acts in coordination with the 4.4BSD scheduler:
when the scheduler chooses the next thread to run, the control-theoretical
system decides whether to actually execute it or to schedule the idle thread
instead. The preemption of system critical threads (i.e., bottom-half kernel
threads, such as interrupt handlers, or top-half kernel threads) and of threads
marked with prevent idle is automatically impeded, while the idle thread is
always set to be executed if the next chosen thread by the 4.4BSD algorithm is
marked with force idle.

5.5 evaluation

This section evaluates DPTM and, in particular, it is focused on answering
the following question: can DPTM adapt CPU bandwidth allocation and, at
the same time, perform idle cycle injection to allow an application within a
multi-program workload to achieve its SLO, while constraining the operating
temperature of the multicore processor?

We evaluated DPTM on a workstation with an Intel Core i7-870 Processor
and 4GB of main memory 2 memory modules. The processor features 4 cores
operating at 2.97GHz and sharing 8MB of Last-Level Cache (LLC). Each of the
memory module runs at 1066MHz. We disabled the Enhanced Intel SpeedStep
Technology and the Intel Turbo Boost Technology to prevent the processor
entering P-states with clock frequency lower or higher than the nominal when
a subset of the cores is executing. We disabled the Intel Hyper-Threading
Technology (HTT) to simplify our implementation and analysis.

We configured FreeBSD 7.2 to boot with the kernel enhanced with all of
our changes (i.e., the performance monitoring infrastructure, the priority
management scheme, and the idle cycle injection mechanism). The high-
priority kernel threads for measuring the operating temperature of each core
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and implementing the idle cycle injection controller were set to run every
100ms, which is the timeslice length of the 4.4BSD scheduler.

We assessed the behavior of DPTM through a multi-program workload com-
bining 4 instances of swaptions, one of the benchmarks of the PARSEC 2.1
benchmark suite [50, 42].

When a single instance of swaptions runs freely on our evaluation platform, it
peaks at 90000 Monte Carlo simulations/s. Conversely, when the 4 instances
of the same application runs at the same time, they get a fair-share of the
CPU bandwidth and achieves a throughput slightly higher than 20000 Monte
Carlo simulations/s. The multi-program workload pushes the operating tem-
perature of the CMP up to 80 ◦C. Our experiment consists in setting a per-
formance requirements (i.e., throughput) for an instance of swaptions and an
operating temperature constraint. These values are above 40000 Monte Carlo
simulations/s and below 60 ◦C, respectively.

Figure 42 shows both the throughput achieved by the SLO-bound instance
of swaptions and the trace of the peak temperature across the CMP. This
experiment provides evidence of the full capabilities of DPTM that, beyond
applying preventive DTM to cap the peaks of the operating temperature, is also
able to let SLO-bound applications to meet their performance requirements.

5.6 discussion and future work

The experimental evaluation of the DPTM framework, which we presented in
this chapter describing its base methodology and its current implementation on
FreeBSD 7.2, shows its efficacy in realizing preventive DTM while accounting
for SLO-bound applications.

What is presented in this paper is a preliminary incarnation of the DPTM
framework, aimed at demonstrating the soundness of the methodology; some
simplifications were made in order to produce a proof-of-concept, opening
ways for future works further improving the framework. For instance, the
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Figure 42.: Results with 4, 4-threaded instances of swaptions. One of the instances is
SLO-bound and the operating temperature is constrained. Performance measurements
are normalized to the SLO (i.e., the performance requirement).

thermal-aware policy is currently based on per-core controllers considering
only the measured core temperature for driving idle cycle injection; while this
approach works in practice, it ignores thermal coupling among cores, which
can be relevant on commodity CMP) and could be considered in future works.
Another improvement could be refining the idle cycle injection mechanism to
equally charge idle cycles to all the threads of a parallel application, avoiding
artificial critical paths slowing down only one thread in case of synchronization
points.

On the performance-aware policy side, an improvement would be also con-
sidering performance requirements in terms of latency or response time,
which could allow characterizing applications such as web servers, making
the DPTM framework more widely applicable. Moreover, the assumed per-
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formance model is not the most accurate possible and, despite working quite
well in practice, the system could benefit from a more accurate modeling.

A topic non directly covered in this paper is the situation where SLOs cannot
be met with available system resources. For instance, the experiment presented
in Section 5.5 could be repeated by setting SLOs on all the four applications
with performance requirements too high to be attained at the same time on the
reference workstation. According to the current implementation of the DPTM
framework, in this situation the thermal-aware policy would be disabled (i.e.,
all the threads would be marked with prevent idle) and the available resources
would be fairly distributed by the performance-aware policy to the SLO-bound
applications weighted with respect to their goal. Hence, no application would
respect its SLO, but the performance of each would be proportional to the
respective requirements. This way, the system realizes sort of different QoS
levels in case the system resources are not enough to fully respect the SLOs.
Improvements in this scenario could come from refinements to the heuristic
coupling the thermal and the performance-aware policies for more flexibility,
allowing configuring different degrees of priority between the two.





6
C O N C L U D I N G R E M A R K S

Back in 2010 we started the Autonomic Operating System (AcOS) research
project to answer the question: can we enhance a commodity operating
system (e.g., the GNU’s not Unix (GNU)/Linux operating system or the
FreeBSD operating system) with an autonomic layer so as to achieve user-
stated Service-Level Objective (SLO) expressed through high-level metrics and
enforce administrator-stated constraints?

With the autonomic control loops (i.e., designs implementing the Observe-
Decide-Act (ODA) autonomic control loop) we proposed and validated in this
dissertation, we contributed an affirmative answer. Metronome and Metro-
nome++ demonstrated the ability to respect user-stated SLOs on performance
measurements by means of Central Processing Unit (CPU) bandwidth and
CPU core allocation, while ThermOS is capable of enforcing a system-level
temperature constraints while still accounting for performance. Dynamic Per-
formance and Thermal Management (DPTM) demonstrated that adaptive
performance and thermal management is possible and functional even though
we acknowledge that our design and implementation within the FreeBSD
operating system is still preliminary. However, several open problems require
further research before we can definitively answer this question.

An interesting direction is evaluating SLOs defined on different performance
metrics (e.g., latency, etc.). Resource allocation policies to automatically attain
such requirements with the current state of on-chip shared resources [5] may
need alternative resource allocation mechanisms [116].

Possibly, different SLO definitions may require the management of a wider
set of resources (e.g., cache and memory hierarchy, file system buffer cache,
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Input/Output (I/O) bandwidth, etc.). One of the challenges towards this
direction is enabling mechanisms to effectively manage such resources at
runtime. If coordinate management of multiple resources was demonstrated
in a simulation environment [77], actual hardware and software mechanisms
are needed to experiment with similar adaptation policies on commodity
computing systems such as those provided by research operating systems [27,
117, 28].

Having an increasing pool of resources to manage and an increasing number
of autonomic control loops leads to a third compelling challenge: properly
orchestrating a large number of possibly conflicting adaptation policies. With
DPTM [12], we propose an initial heuristic approach to define the interaction
of two conflicting resource allocation policies aimed at achieving performance
SLOs and enforcing a temperature constraint. A solution of this kind, however,
does not scale well with an increasing number of autonomic control loops: we
need to research a more systematic methodology [78].

We are confident that most of the solutions (e.g., ThermOS) presented in this
dissertation can scale on future Chip-Multiprocessor (CMP) with a higher
number of CPU cores. However, an open question remains: how well the pro-
posed solutions will scale at the datacenter level. Continue on this research line
is of paramount important given the diffusion of warehouse-scale computing
systems.

6.1 future work

Further development of some of the work presented in this dissertation is
already on its way. First, we are moving from the operating system- to the
hypervisor-level to address the adaptive performance management problem
within cloud computing, which is possibly the more compelling research
area for our contributions [118]. Second, we are dealing with additional re-
sources such as the amount of shared Last-Level Cache (LLC) each Virtual
Machine (VM) requires to achieve a user-stated SLO [116]. Third, we are mov-
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ing towards distributed applications so as to take into account the possibly
complex interactions among multiple VM executing on different physical
machines [119, 120].





A
C P U C O R E A L L O C AT I O N : A U S E R - S PA C E A P P R O A C H

In the latest decade, the information technology industry shifted from single
to multicore processors. Multicore processors require better support from
operating systems and runtimes to allow applications to achieve predictable
performance and guarantee Quality of Service (QoS). Finding a proper sched-
ule to yield the specified performance for single and multi-thread applications
can be cumbersome; dealing with multi-program workloads may be even
worse.

We present a performance-aware QoS-driven scheduler for multicore proces-
sors, which exploits the availability of runtime application-specific perfor-
mance measurements to determine a suitable allotment of cores for multi-
programmed workloads so as to achieve the desired level of QoS. The pro-
posed scheduler is meant to be implemented in user-space and harnesses
an auto-regressive moving average performance model to put in a relation-
ship performance measurements and resource allocation and is capable of
embodying applications’ characteristics such as execution phases.

a.1 introduction

Multicore processors are ubiquitous in desktops, servers, and embedded
devices. Computer architects designed multicore processors to overcome the
limitations of superscalar processors (e.g., poor performance per Watt ratios)
whose performance stopped growing at historical rate.

This paradigm shift considerably increased the burden on systems’ and appli-
cations’ programmers. Nowadays, commodity operating systems schedulers
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fail in taking full advantage of multicore processors when scheduling multi-
program workloads of multi-thread applications [58]. They are oblivious of
applications’ characteristics (e.g., execution phases) and the resulting resource
allocation may lead to unpredictable performance [121]. Judicious manage-
ment of on-chip shared resources is critical to deliver predictable performance
and (if possible) guarantee QoS.

Characterizing applications by means of their instructions’ throughput [122],
miss rate curves [123], speedup, efficiency (i.e., speedup over resource allo-
cation) [56], etc. to overcome the inefficiencies of commodity schedulers is a
widely accepted practice [73, 58]. Characterization can be performance either
offline, online, or by means of a mix of both. Profiling applications offline
using reference (i.e., training) inputs may not uncover execution phases that
depends on the input itself. Moreover, anticipating a significant set of en-
vironmental conditions (i.e., number of different multi-program workloads)
is nearly prohibitive and, if possible, is likely to be time-consuming. As an
alternative, it is possible collecting information at runtime to infer applications’
characteristics and harnessing feedback-based mechanisms.

We understand and appreciate the value of offline analysis that can uncover
fine-grained information; however, we advocate online characterization is key
to guarantee QoS. Moreover, we cannot expect applications’ programmers or
even users to employ machine-specific performance measurements like Instruc-
tions Per Cycle (IPC) or Last-Level Cache (LLC) miss rate. Instead, we claim
application-specific performance measurements (e.g., frames/s for a video
encoder or decoder) can be as effective as low-level once when harnessing
feedback-based mechanisms. In addition, they are meaningful for applica-
tions’ programmers and users since they address the impedance-mismatch
problem [28] by turning the resource allocation problem into a goal definition
problem, which is later bound to resource allocation.

To this end, this chapter presents a performance-aware QoS-driven scheduler
for multicore processors running multi-program workloads and makes the
following contributions:
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• Introducing a simple yet effective user-mode performance monitoring
infrastructure to instrument applications so as to make application-
specific performance measurements system-wide accessible and allow
users specifying QoS requirements;

• Exploiting a first order discrete-time Auto-Regressive Moving Average
(ARMA) performance model to establish the relationship between re-
source allocation and performance measurements;

• Harnessing online estimation to discover the performance model’s pa-
rameters through a recursive least square (RLS) filter, thus uncovering
applications’ characteristics such as coarse-grain execution phases [64];

• Implementing a performance manager leveraging a proportional-integral
(PI) controller feeding resource demands to a fair resource allocator,
which exploits well-established resource allocation mechanisms.

In the rest of this chapter: Appendix A.2 illustrates the design principles and
gives development insights. Appendix A.3 presents an experimental campaign
showing the validity of the proposed approach. Appendix A.4 goes through
the related works and, finally, Appendix A.5 concludes the chapter.

a.2 design and development

The scheduler proposed in this chapter leverages a classic feedback-based
structure consisting of three distinct phases respectively devoted to:

1. Monitor applications to gather performance measurements;

2. Evaluate the scheduler’s policy devising a thread to core mapping so as
to guarantee (if possible) QoS;

3. Apply the mapping migrating threads as needed.

These three phases construct a closed loop as depicted in Figure 43.
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Figure 43.: System architecture diagram. Each application is coupled with an instance
of the performance monitor and one of the performance model and manger. A single
resource allocator normalizes applications’ resource demands.

a.2.1 Performance Monitoring

The Heart Rate Monitor (HRM) [8] is an open source monitoring infrastruc-
ture that compute application-specific performance measurements on which
users can specify QoS requirements through applications’ instrumentation.
Adaptation policies, which can be implemented in kernel [8, 9] and user-
space [51], can exploit the availability of performance measurements and QoS
requirements to affect applications’ execution. HRM is tightly integrated with
the Linux kernel since its primary goal was to export application-specific
performance measurements to the kernel-space.

This chapter proposes a more general approach leveraging a user-space sched-
uler that can run on top of most Portable Operating System Interface for Unix
(POSIX)-compliant operating systems (e.g., GNU’s not Unix (GNU)/Linux,
FreeBSD, . . . ) with minimal changes. Due to this reason, we developed a
portable user-space performance monitoring infrastructure: libthroughput with
performance comparable to that of HRM. libthroughput delivers competitive
performance with respect to HRM and provides similar functionality: first,
performance measurements for both single and multi-threaded applications
and multi-programmed applications, second, QoS requirements specification.
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libthroughput collects application-specific performance measurements repre-
senting applications’ throughput. As an example, consider the x264 video
encoder, which implements the H.264/Moving Picture Experts Group (MPEG)-
4 Part 10 or Advanced Video Coding (AVC) standard, included in the PARSEC
2.1 benchmark suite [42]. The parallel algorithm of x264 harnesses a virtual
pipeline with one stage per frame. x264 processes in parallel a number of
pipeline stages equal to the number of encoder threads realizing a sliding
window moving from the beginning to the end of the pipeline. Once the exe-
cution of a stage finishes the encoder thread handling the stage issues a signal,
which in the context of x264 signifies the completion of a frame. Users can
specify QoS requirements through a meaningful performance measurement
like frames/s.

a.2.2 Performance Modeling and Management

The proposed user-space scheduler leverages a first order discrete-time ARMA
performance model that established the relationship between the resource alloca-
tion and performance measurements. Equation (26) reports the mathematical
formulation where r(k) and r(k+ 1) are the performance measurements at
the k-th and (k+ 1)-th control steps, respectively. c(k) is the subset of cores
allocated to the application. a and b are the performance model’s parameters
whose values depend on the application, the workload, and the system.

r(k+ 1) = a · r(k) + b · c(k) (26)

The proposed user-space scheduler employs a Recursive Least Squares (RLS)
filter, which is a common choices among least squares and Kalman filters [77],
to perform online estimation of the performance model’s parameters. Online
estimation allows the user-space scheduler to capture applications’ character-
istics such as execution phases, which changes the relationship between the
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resource allocation and performance measurements. Appendix A.3.1 reports a
thorough validation of the performance model.

Starting from the performance model reported in Equation (26) we devised
a performance manager leveraging a PI controller that responds to errors (i.e.,
difference between the QoS requirements and performance measurements) by
means of two terms: a proportional and an integral term. The proportional
term changes its effect according to the current value of the error and in a
way that reduces the future values of the error. The integral term changes its
effect incrementally accounting for the past values of the error. The choice
of neglecting the derivative term, thus the use of a proportional-integral-
derivative (PID) controller, translates into a little loss of control but, at the
same time, leads to notable less noise.

Equation (27) reports the mathematical formulation of the PI controller for
application i.

ci(k) = ci(k− 1) +
1− p

b
· ei(k) − a ·

1− p

b
· ei(k− 1) (27)

ci(k) and ci(k− 1) are the subset of cores required by the application between
the k-th and the (k+ 1)-th control steps to respect the QoS requirement and
the subset of cores allocated to the application between the (k− 1)-th and the
k-th control steps, respectively. ei(k) and ei(k− 1) are the errors at the k-th
and (k− 1)-th control steps, respectively; the errors are computed as r̄i − ri(k)
and r̄i − ri(k− 1), where r̄i is the QoS requirement.

We synthesized the PI controller by applying classical control theory techniques
as explained by Hellerstein et al. [96] and constrained the transfer function to
have a single pole in p. The controller’s parameter p affects the responsiveness;
if the value is chosen in the interval (−1, 1) the system is guaranteed to be
stable as long as the performance model holds.1 Furthermore, if the value is
chosen in the interval (0, 1) the system is guaranteed to avoid oscillations. In

1 The use of adaptive control through the RLS filter enforces the performance model.
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general, large values in the interval (0, 1) translate into a slower but smoother
response, while small values translate into a faster but rougher response.

a.2.3 Resource Allocation

Each performance manager i computes the subset of cores the application i
requires to satisfy the QoS requirement. These computations are carried on
independently, thus resulting in either a demand that can or cannot be satisfied
by the number of cores available in the system.

Whenever the demand can be satisfied the user-space scheduler can exploit an
energy-aware policy shutting down unused cores through clock and power
gating.

On the other hand, if the demand cannot be satisfied, the resource allocator can
harness many different policies. We propose re-distributing cores according
to performance managers’ demands following a performance-aware fair policy
similar to one we proposed with Metronome [8]. Equation (28) reports the
mathematical formulation of the re-distributing filter where c̄ is number
of cores available in the system and c̃i(k) is the proportional demand for
application i at the k-th control step.

c̃i(k) = ci(k) ·
c̄∑

j cj(k)
(28)

The resource allocator is also in charge of rounding the floating-point number of
cores as needed and inform performance managers to avoid compromising the
auto-tuning process. Moreover, the resource allocator ensures that applications
receive at least one core at every control step maintaining the highly desirable
non-starvation property of most commodity schedulers.

Alternative policies can employ weights to provide additional knobs and
different service levels for different users.
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a.2.4 Prototype for GNU/Linux

The overall design of the user-space scheduler is general enough to be imple-
mented on top of most POSIX-compliant operating systems. Given our design,
we developed a prototype on top of the GNU/Linux operating system and its
commodity scheduler.

Both performance monitoring and resource allocation heavily relies on the
infrastructure provided by GNU/Linux. libthroughput exploits cgroups [55] to
inform the resource allocator about which threads belong to which application
by creating a new cgroup for each application. The resource allocator maps
threads belonging to an application to a subsets of cores by harnessing the
cpuset subsystem of cgroups.

a.3 evaluation

We run all the experiments to evaluate the effectiveness of the performance-
aware QoS-driven scheduler on a Dell Precision T3500 server with an Intel
Xeon Processor W3670 and 12GB of main memory in 3 memory modules.
The processor features 6 cores clocked at 3.20GHz and sharing 12MB of LLC.
Each memory module features chips clocked at 1066MHz. We disabled the
Enhanced Intel SpeedStep Technology, the Intel Turbo Boost Technology, and
the Intel Hyper-Threading Technology (HTT) to simplify our analysis. The
operating system is Debian GNU/Linux 7.0 x86-64 with the Linux kernel 3.2.

a.3.1 Performance Model Validation

We evaluate the effectiveness of the performance model against a subset of
the applications from the PARSEC 2.1 benchmark suite [50, 42] instrumented
with libthroughput. We run each application 100 times randomly varying the
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Table 10.: Performance model assessment through the average and the standard devia-
tion of the coefficient of determination and the mean absolute percentage error over six
static resource allocations

application R2 [0, 1] MAPE [%]

avg. std dev. avg. std dev.

blackscholes 0.97 0.01 0.63 0.04

bodytrack 0.86 0.02 1.10 0.05

canneal 0.96 0.01 0.95 0.04

dedup 0.73 0.02 3.38 0.17

facesim 0.89 0.02 1.03 0.04

ferret 0.92 0.02 0.83 0.03

swaptions 0.98 0.01 0.51 0.02

x264 0.72 0.03 5.48 0.26

subset of cores allocated and collecting performance measurements through
libthroughput. We applied the least squares algorithm to regress the perfor-
mance model’s parameters.

We then run each application fixing the subset of cores allocated (from 1 to 6)
and computed the coefficient of determination R2 and the Mean Absolute Per-
centage Error (MAPE) as suggested by Sharifi et al. [77] using the application-
specific performance measurements provided by libthroughput instead of the
IPC.

Table 10 reports the average and the standard deviation of R2 and MAPE
for the applications we analyzed. The averages of the first metric, R2, is
close to 1, which means the performance model is quite accurate; the small
standard deviations say the averages holds for most of the applications apart
from dedup and x264. These two applications go through different execution
phases, thus benefiting from the online estimation of the performance model’s
parameters that is not employed for performance model assessment. The
averages and standard deviations of the second metric, MAPE, leads to similar
considerations with the addition of quantitative information on the percentage
error.
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The rest of this section focuses on the experiments with two instances of x264.
Among the subset of the PARSEC 2.1 benchmark suite we employed, x264 is
the most challenging application and provides the opportunity to evaluate
complex scenarios, especially when two instances run at the same time.2

a.3.2 Static Resource Allocation: Comparison

We compare the proposed user-space scheduler with two standard (static)
resource allocation mechanisms provided by the cgroups subsystem of the
Linux kernel: cpuset and bandwidth. cpuset allows a group of threads to
use a subset of the available cores. The cpuset subsystem is an example of
spatial scheduling solution while the bandwidth is a more classical time-share
scheduling approach. The bandwidth subsystem enforces the reservation of a
certain quota of the multicore processor computational power over a period of
time for a cgroup.

Figures 44a and 44b show the behavior (see the blue lines in the figures) of the
first and second instances of x264, respectively, with the best static resource
allocation to respect the QoS requirements of 8 and 12 frames/s or fps through
the cpuset subsystem (see the green dash-dot lines in the figures). The first
instance is assigned 2 cores (i.e., 0 and 1) while the second instance gets 3 cores
(i.e., 2-4). With these static resource allocations both the applications satisfy the
QoS requirements at the end of the execution; however, during the execution
the performance measurements vary a lot between 6 and 13 fps for the first
instance and between 10 and 18 fps for the second instance. This is due to the
different execution phases, which for x264 are input-dependent, the application
goes through. Ideally, one would want to keep the performance measurements
as close as possible to the QoS requirements during the whole execution to
avoid wasting resources. The take out of this experiment is that: there exists no
static resource allocation that can be achieved through the cpuset subsystem

2 We show only the experimental results obtained with x264 for space constraints. Moreover, we
limited our study to workloads made up of two applications since our evaluation platform cannot
afford running more applications with reasonable performance.
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(a) Performance profile of the first instance running with 2 cores.
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(b) Performance profile of the second instance running with 3 cores.

Figure 44.: Performance profiles of the two instances of x264 running simultaneously
with static resource allocations obtained through the cpuset subsystem.
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such that both the instances of x264 respect the QoS requirements during the
whole execution.

Figures 45a and 45b display the experimental results obtained by replicating
the previous experiments exploiting the bandwidth subsystem. With the
bandwidth subsystem, applications make use of all the cores available, which
are six on our evaluation platform. The first instance of x264 is assigned 33% of
the bandwidth of the multicore processors, which is approximately equal to the
2 cores assigned in the previous experiment. The second instance gets 47% of
the bandwidth of the multicore processors, which is, once again, approximately
equal to the 3 cores assigned in the previous experiment. Even though the
bandwidth subsystem is much finer-grained than the cpuset subsystem, the
take out of this experiment is the same of the first. It is worth noting that
coupling the cpuset and bandwidth subsystems to perform static resource
allocation yields equally unsatisfactory experimental results.

a.3.3 Dynamic Resource Allocation

We evaluate the proposed performance-aware QoS-driven scheduler for multi-
core processors in the same scenario of the static resource allocation, with the
same multi-program workload and the same QoS requirements. Performance
managers run every 50ms and update the performance model at the same fre-
quency by retrieving performance measurements through libthroughput, which
is capable of computing fresh information every 10ms. Performance managers
demand new resource allocations and coordinate through the resource allocator
every 500ms. Each of these periods is configurable and different configuration
benefit different applications depending on the execution phases they may go
through.

Figures 46a and 46b show the experimental results obtained by running the
two instances of x264 with QoS requirements of 8 and 12 fps, respectively. Both
the performance profiles track the QoS requirements after an initial settling
phase in which the performance model’s parameters converge to their “real”
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(a) Performance profile of the first instance running with 33% of the bandwidth.

test #2, 47% bandwidth
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(b) Performance profile of the second instance running with 47% of the bandwidth.

Figure 45.: Performance profiles of the two instances of x264 running simultaneously
with static resource allocations obtained through the bandwidth subsystem.
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(a) Performance profile of the first instance meeting the 8 fps requirement.
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(b) Performance profile of the second instance meeting the 12 fps requirement.

Figure 46.: Performance profiles of the two instances of x264 running simultaneously
with the proposed user-space scheduler.
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values. Figures 47a and 47b display the subset of the available cores assigned
to the first and to the second instance of x264, respectively. The resource
allocations follow the performance profile of the application, decreasing the
number of cores when the performance measurements naturally rise because
of the lower complexity of the video and increasing the number of cores
when the performance measurements fall due to the higher complexity of the
video. Moreover, it is important to notice how the sum of the number of cores
assigned to the first and second instances of x264 never exceeds number of
available cores thanks to the re-distributing filter inside the resource allocator.

a.3.4 Discussion

The choice of exploiting the cpuset subsystem instead of the bandwidth sub-
system is actually sub-optimal for the proposed approach for two reasons: first,
the cpuset subsystem is coarser-grained than the bandwidth subsystem and,
second, the cpuset subsystem requires, like the bandwidth subsystem, running
each multi-thread application with a number of threads which is at least as
high as the number of available cores. The first drawback is easy to understand
since the cpuset subsystem allows partitioning the bandwidth of the hexa-core
processors by multiple of ≈ 16%. This issue is simply addressed by increasing
the decision/actuation frequency of the performance managers and resource allo-
cator. The cpuset subsystem enables resource allocation on space axis; variable
dynamic resource allocation either requires multi-thread applications to vary
the number of threads accordingly or to run with a number of threads that
allows exploiting the full parallelism of the multicore processor. Conversely,
the bandwidth subsystem always requires multi-thread applications to run
with an adequate number of threads since resource allocation is performed on
the time axis. With the cpuset subsystem multi-thread applications may end
in unbalanced configurations where some cores must handle more threads
than others possibly introducing artificial critical paths due to synchronization
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Figure 47.: Core allocations for the two instances of x264 running simultaneously with
the proposed user-space scheduler.
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issues. This is an issue we observe with the proposed approach and it may
require the adoption of advance load balancing scheme such as Juggle [124].

a.4 related work

Recently there has been extensive research on solutions to maximize perfor-
mance and/or respect QoS requirements.

Researchers focused on cache partitioning approaches [66, 68], memory band-
width partitioning solutions [125], cores partitioning algorithms [73, 58], and
both time and space-sharing approaches [8, 9]. Moreover, these works exploited
different decision-making techniques spanning from heuristics [73, 8, 58, 9] to
machine learning [75, 51], control theory [77], a mix of them [78].

The proposed approach borrows the design of HRM from Metronome [8]
to leverage application-specific performance measurements and explores the
use of a PI controller instead of the speedup-based approach from Metro-
nome++ [9]. Like METE [77], our user-space scheduler employs an ARMA
performance model coupled with a PI controller to implement the performance
manager. METE handles multiple resources (i.e., cores, cache ways, and mem-
ory bandwidth) while the proposed approach partitions a single resource (i.e.,
cores); our limitation is due to the fact that we implemented the proposed
approach on real hardware, while METE cannot be implemented since cache
ways and memory bandwidth partitioning is not supported by any commodity
multicore processor.

Orthogonal approaches [81] dynamically adjust the number of threads within
multi-threaded applications to optimize the overall efficiency of the system or
proactively addresses the load balancing issue [124]. Coupling the proposed
approach with these approaches may solve the second issue discussed in
Appendix A.3.4. The availability of Scheduler Activations [126] can improve
the efficiency of the proposed approach avoiding costly kernel-space thread
migrations in favor of user-space thread migrations.
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The proposed approach might recall a real-time scheduling infrastructure.
However, we believe the two scheduling solutions are different in some of the
key aspects. Let us focus on priority-based real-time scheduling infrastructures
that are the one resembling more the proposed scheduling approach. The
Earliest Deadline First (EDF) is a priority-based scheduling algorithm; with
EDF an application i specifies a relative deadlineDi and a worst-case execution
time Ci. Applications programmers may need to overestimate Ci to account of
workload variations among the deadlines. The overestimation may in turn lead
to a waste of resources (e.g., the scheduling infrastructure implements a hard
admission control policy and no application can exploit unused resources).
The proposed approach borrows ideas from adaptive systems and accounts
for application-specific performance measurements and QoS requirements to
gracefully adapt resource allocation shifting from resource-centric solutions
like real-time scheduling infrastructures to a goal-oriented one.

a.5 conclusions

We presented a performance-aware QoS-driven scheduler for multicore proces-
sors and multi-program workloads that sits on top of well-established resource
allocation mechanisms, namely the cgroups subsystem of the Linux kernel. The
proposed approach harnesses application-specific performance measurements
and QoS requirements provided through libthroughput, the user-space dual
of HRM to address the impedance-mismatch problem and turn the resource
allocation problem into a goal-definition problem. In addition, the proposed
approach leverages a discrete-time ARMA performance model and a RLS filter
to dynamically establish the relationship between the resource allocation and
the performance measurements. A set of PI controllers determine suitable al-
lotments of cores so as applications can respect (if possible) QoS requirements.
Experimental results on a commodity multicore processor with emerging real-
world applications highlight the effectiveness of the proposed approach that
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allows applications respecting QoS requirements even in presence of execution
phases.
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