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Abstract

In this thesis we analyze the statistical properties of response-adaptive designs, de-
scribed in terms of two colors urn models, in a clinical trialcontext. We introduce an
urn procedure, the Modified Randomly Reinforced Urn (MRRU) design, whose urn
proportion asymptotically targets prespecified values. Weprove asymptotic results for
the process of colors generated by the urn and for the processof its compositions. An
application of the proposed urn model is presented in an estimation problem context.
Statistical performances of inferential procedures basedon different statistics are inves-
tigated. We adopt the MRRU model to improve the performances, from both ethical and
statistical point of views, of different tests for comparing the mean effect of two treat-
ments. We apply the MRRU design for implementing the random allocation procedure
in a real case study. Finally, we extend the MRRU model to obtain a response adap-
tive urn design that targets an asymptotic allocation defined as function of unknown
parameters modeling the responses distribution.
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Introduction

This thesis is focused on mathematical and statistical aspects of urn models used as
randomized devices in the field of design of experiments. In particular, we consider
the context of clinical trials, where the experimentation involves human subjects. In
this framework, a central role is played by the randomization, that is now an essential
feature of the scientific method. These procedures randomlyassign the subjects that se-
quentially enter the trial to the treatments under study. The benefit of randomization has
been deeply studied in many areas of research, especially inthe clinical trial context.
The strategy adopted to randomly allocate units to treatments generates different types
of experimental designs. In this thesis, we focus on response-adaptive procedures, in
which the allocations depend also on the responses given by the subjects previously as-
signed. This feature enables to create designs that change the probability of assignment
of the subjects according to the treatments performances. This factor is very important,
especially in clinical experimentation, where the ethicalaspect is significant more than
in other scientific fields. For this reason, the theory of clinical trials has been always
characterized by a trade-off between the individual ethicsof the subjects involved in
the experiment and the collective ethics of the entire community. The first aims at max-
imizing the individual probability to receive the best treatment, while the second aims
at maximizing the power of the procedure that determines thebest treatment.
A large class of response-adaptive randomized designs is based on urn models, since
they represent classical tools to guarantee a randomized device. Urn procedures can be
characterized by different strategies of reinforcement and in this thesis we consider urn
models with random non-negative reinforcements concerning only the extracted color.
These designs have been called Play the Winner or Randomly Reinforced Urn (RRU)
designs, and they are randomized devices able to asymptotically allocate subjects to the
optimal treatment. These procedures had a good success, since their asymptotic behav-
ior maximizes the individual ethics. Nevertheless, these designs are unsatisfactory for
the collective ethics, since their statistical propertiespresent some problems. At first,
because there are many results for designs whose asymptoticallocation isρ ∈ (0, 1),
that cannot be applied to RRU models since their asymptotic allocation isρ ∈ {0, 1}.
Moreover, these models generate groups with very differentsample sizes. Then, the
inferential procedures based on these designs are usually characterized by a very low
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power in comparing treatments effects. For these reasons, we have modified the rein-
forcement scheme of the urn to construct a design that asymptotically targets an allo-
cation proportionρ ∈ (0, 1). The term target indicates the limit of the urn proportion
process. We will denote this urn model as the Modified Randomly Reinforced Urn
(MRRU) design.

In Chapter 2, we introduce the MRRU model and we prove strong convergence of the
urn proportion to the target allocationρ ∈ (0, 1). Further first-order asymptotic prop-
erties of the urn model have been investigated. The study of the asymptotic behavior
has been particulary challenging since the modified urn process does not present the
sub/supermartingality properties presented by the RRU.

In Chapter 3 we adopt the MRRU model to improve the statistical performance of dif-
ferent tests for comparing the mean effect of two treatments. We show that a response
adaptive design as the MRRU for implementing the random allocation procedure en-
ables to get good properties from both ethical and statistical points of view. In particu-
lar, we achieve both the goals of increasing the power of the test and of assigning fewer
subjects to the inferior treatment. Simulation studies on the statistical performances of
this procedure have been conducted. We applied the procedure described in Chapter 3
to a real case study and the results of the analysis have been reported.

In Chapter 4 we investigate the second-order asymptotic properties of the MRRU model.
In particular, we compute the rate of convergence of the urn process and we study its
asymptotic probability distribution. Then, we compare theoretically and empirically
the inferential performances of the MRRU model with the onesprovided by the RRU
model, whose asymptotic allocation isρ ∈ {0, 1}.

In Chapter 5 we construct a randomly reinforced urn model able to target an asymptotic
allocationρ ∈ (0, 1), that is a function of unknown parameters modeling the responses
distribution. First-order asymptotic results under different conditions have been inves-
tigated. In particular, we prove the couple convergence (almost sure and in probability)
of the urn proportion to the desired allocation function of the unknown parameters.

Data analysis and simulations have been carried out using R statistical software [48].
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CHAPTER1

Response adaptive designs in clinical trial

The principal topic of this thesis is the study of statistical properties of a response-
adaptive design, based on an urn model, applied to clinical trials. The general frame-
work consists of the wide area of experimental designs whichaim at collecting accurate
information, in order to make decisions about real problems, especially in a clinical
context. The pursuit of the scientific information can be realized with very different
methodologies, and this choice strongly influences both thephase of analysis and the
interpretation of the results. We consider experimental designs based on the random-
ization of units to receive one of the study treatments. The role of randomization is
currently an essential feature of the scientific method. Nowadays, most of the areas
involving empirical research are adopting randomization techniques. The properties of
randomization have been deeply studied in the last few decades. In particular, most of
the theoretical research on randomization models has been conducted in the medical
context, with a special interest in the application to clinical trials. A clinical trial can be
generally defined as an experimental design whose main goal is to determine the posi-
tive or negative effects of a new medical treatment or procedure. We focus on the very
large class of experimental designs based on the sequentialentrance of subjects in the
study. In other words, statistical units will be sequentially randomized to one of two or
more treatments under study. The clinical trials we are going to consider are basically
based on the comparison of two or more treatments, where someof them can be taken
as controls. Among the different types of clinical trials, we deal with designs based on
urn models having their natural position in therapeutical trials, in which a new therapy
or pharmaceutical drug is compared to a conventional one. These kinds of experiments
are usually denoted phase III clinical trials, since they correspond to the third phase of a
long process that always occurs when a new therapy has to be introduced in the market.
Naturally, the new therapy can be a drug or a new procedure as well. Randomization
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Chapter 1. Response adaptive designs in clinical trial

is strongly adopted in phase III clinical trials, where patients are randomly assigned to
study treatments or control.
Why is randomization so important for clinical trials? There are different answers to
this question, but the main reason probably is that randomization improves compara-
bility among the study groups. In observational studies, the pursuit of comparability is
realized by adjusting for known covariates, without any guarantee of control for other
convariates. Besides, this lack of assurance is not even solved asymptotically. How-
ever, randomized procedures increase the probability of comparability with respect to
unknown covariates that may influence the responses. But randomization has another
good property for which is widely used in many areas of experimental design. In fact,
randomized designs usually generate a suitable probability model for a complete phase
of inferential analysis. The probability structure provided by the adoption of random-
ized procedure allows the experimenter to consider the observed results with respect to
all possible results, and their relative occurrence probability.

There is an important point to be made concerning clinical trials in medicine with re-
spect to experimental designs adopted in other disciplines. Since they involves human
beings, in many situations the experimenter can face complex ethical issues which do
not exists in other scientific fields. We have to keep in mind this to understand some of
the reasons that led us to construct the urn model presented in this thesis. Another issue
related to the ethical theme is the fact that randomization uses probability as a method
to allocate patients to treatments. As mentioned in [40], inthe medical sphere there
are some opinions that randomness and probability should have no role in medicine,
because only a physician has the right to decide which treatment should be given to
a patient. However, all the benefits provided by randomization in clinical trials are
now widely known . Naturally, an experiment involving humanbeings cannot be stud-
ied without taking into account the ethical aspects. Randomized procedures in clinical
trials always deal with the delicate balance between individual ethics and collective
ethics [47]. Individual ethics represents what is the best for the individual patient in the
trial. Collective ethics is related to the public healthy status through scientific experi-
mentation. We will see how the models here considered try to optimize the experiment
agreement to both individual and collective ethics.

Finally, all clinical trials should be double-masked wherever possible, meaning that
neither the patient nor the experimenter should be aware of the treatment randomly as-
signed to the patient. A procedure that is not double-maskedcan introduce a bias in
the result, called selection bias. To avoid this problem, all the models we are going to
see do not introduce any quantity related to the personal feeling or experience of the
experimenter.

1.1 General adaptive models

Consider a clinical trial where subjects enter sequentially in the experiment. Let us de-
note withn the total number of patients that will be involved in the trial. Any of thesen
patients will sequentially and randomly receive one of two treatments, that we will call
R andW . We define a randomization procedure as a vectorX = (X1, ..., Xn) where

2



1.1. General adaptive models

Xi ∈ {0, 1}, i = 1, ..., n. Naturally,Xi = 1 means that patienti receives treatment
R, whileXi = 0 means patienti receives treatmentW . By changing the probability
distribution of the vectorX, we generate different randomized procedures. Theoreti-
cal studies on clinical trials have been often conducted to characterize the asymptotic
behavior of the randomization sequence, as the sample sizen increases. In particular,
most of them focus on the asymptotic properties of the allocation proportions, defined
asNR(n)/n =

∑n
i=1Xi/n andNW (n)/n =

∑n
i=1(1−Xi)/n, respectively. Obviously,

NR(n) +NW (n) = n.

Many designs model the law of the randomized vectorX depending on responses ob-
served from the patients, so we need to define quantities thatmodel the responses. Let
M = (M1, ...,Mn) andN = (N1, ..., Nn) be vectors of response variables, whereMi

andNi represent the response that would be observed if patienti received treatmentR
andW , respectively. Notice that because of the randomization, for each patienti, only
one element, eitherMi orNi, can be observed. In general, the probability laws ofMi

andNi can be chosen conditionally onXi and some covariatesYi. However, in this
thesis we will assume that the the vectorsM andN are composed by independent and
identically distributed random variables.

Let Fn = σ(X1, ..., Xn,M1, ...,Mn, N1, ..., Nn, Y1, ..., Yn) be the sigma-algebra gen-
erated by the firstn treatment allocations, responses and covariates. A randomization
procedure is defined by

Zn = E[Xn+1|Fn] (1.1)

whereZn is a random variableFn-measurable. We can defineZn as the conditional
probability of assigning treatmentR to the patientn + 1, conditional on the previous
n allocations, responses and covariates, and the current patient’s covariate vector. We
can describe up to five different types of randomization procedures. We have

• complete randomization

E[Xn+1|Fn] = E[Xn+1]

The simplest form of randomization procedure is complete randomization, where pa-
tients are assigned following a coin-tossing rule. The variablesX1, ..., Xn are indepen-
dent and identically distributed Bernoulli random variables with probability of assign-
ment to treatmentR given byZi = E[Xi] = P (Xi = 1) = 1/2, i = 1, ..., n. Complete
randomization presents some advantages. The first is that all patients are fully random-
ized. Moreover, since each subject has the same probabilityto be assigned correctly
or incorrectly, the danger of selection bias is completely overcome. Nevertheless, this
procedure is rarely used in practice because it presents a high probability of treatment
imbalances in small samples.

• restricted randomization

E[Xn+1|Fn] = E[Xn+1|X1, ..., Xn]

Restricted randomization procedures are characterized bythe dependence amongXn+1

and the variablesX1, ..., Xn. However, the assignments are independent of responses
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Chapter 1. Response adaptive designs in clinical trial

and covariates. These models are employed when we want to force the allocation of
patients to each treatment group to achieve a specific allocation proportion, regardless
of the treatment performances. This is usually accomplished by changing the proba-
bility of assignment to a treatment according to how many patients have already been
allocated to that treatment. The goal often is to have equal numbers of patients assigned
to each treatment group, balancing the treatment assignments.
The simplest type of restricted randomization is called therandom allocation rule. The
main idea is to impose some restrictions on the allocation probabilities, in order to
avoid the possible imbalance presented by the complete randomization. Consider the
situation where the investigator knows the exact number of subjectsn involved in the
trial. Then, forn even, the probability that patienti is assigned to treatmentR is given
by

Zi−1 = E[Xi|Fi−1] =
n/2−NR(i− 1)

n− (i− 1)
, i = 1, ..., n (1.2)

Another method to allocate exactlyn/2 patients to each treatment is to use the complete
randomization until one treatment has been assigned ton/2 patients. Then, all the
further patients will receive the opposite treatment. In [13] Blackwell and Hodges
called this model the truncated binomial design. For this design, the probability to
allocate the patienti to treatmentR is given by

Zi−1 =





1/2 if max{NR(i− i), NW (i− 1)} < n/2,

0 if NR(i− 1) = n/2,

1 if NW (i− 1) = n/2.

(1.3)

Positive aspects of the random allocation rule and truncated binomial design are that
each patient, at the beginning of the experiment, has the same probability to be assigned
to both treatments (E[Xi] = 1/2 ∀i = 1, ..., n) and that both groups will be completely
balanced (n/2 subjects to both treatments). Nevertheless, oncen/2 patients have been
assigned to one treatment, all further treatment allocations are deterministic. Hence, the
final assignments are deterministic and predictable, and selection bias can easily occur.
Besides, we cannot avoid the possibility of a severe imbalance in the middle of the trial.
This is particularly negative in the situation of time-heterogenous covariates related to
the responses, because with these designs there is no guarantee of avoiding imbalances
between treatment groups with respect those covariates. This type of bias was intro-
duced by Efron in [20], and he denoted it as accidental bias. This issue can be overcome
by the adoption of the permuted block designs, that ensure balance throughout the ex-
periment, by introducing some restrictions during the course of the trial. Generally,
it is implemented withM blocks, each one containingm = n/M patients. To en-
sure balance a random allocation rule is typically used to assign patients within each
block. Although permutation blocks achieve balanced allocation, when blocks contain
few subjects selection bias can result. All these designs require a precise value of the
sample sizen to be computed. This feature can be a relevant issue in practise, since
typically the experimenter does not known exactly. The following procedures we are
going to see overcome this problem, since they consider the allocations as elements of
a sequence instead of a vector.
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1.1. General adaptive models

Another very famous restricted randomization procedure isthe Efron’s biased coin de-
sign (see [20]), that is able to balance treatment allocations by changing the proba-
bility of a coin-tossing. LetDi be an increasing function ofNR(i) with Di = 0 if
NR(i) = i/2, so thatDi can represent the imbalance between treatmentsR andW af-
ter the firsti assignments. Then, for any constantp ∈ (0.5, 1], the allocation procedure
is given by

Zi−1 =





1/2 if Di−1 = 0,

p if Di−1 < 0,

1− p if Di−1 > 0.

(1.4)

The biased of the coinp can be chosen arbitrarily before beginning the trial, but iscon-
stant, regardless of the degree of imbalance|Di|.

In [53], Wei proposed a modified version of the Efron’s biasedcoin design, such that the
degree of imbalance influences the allocation probability.This technique is an adaptive
biased coin design which can be describe in terms of urn model. The colors of the balls
in the urn represent the treatments to be assigned. Let(Rn,Wn) be the urn composition
aftern draws, that indicates the number or red and white balls in theurn, respectively.
Initially, the urn containsα balls of each type. The allocation procedure can be briefly
explained as follows: a ball is drawn and replaced, its colornoted, the correspondent
treatment is assigned, andβ balls of the other color is added in the urn. So doing, the
urn composition is skewed to increase the probability of assignment to the treatment
that has been selected least often thus far. Then, the probability to assign patienti to
treatmentR is the proportion of red balls in the urn at timei− 1, given by

Zi−1 =

{
1/2 if i = 1,
α+βNW (i−1)
2α+β(i−1)

if i ≥ 2.
(1.5)

Wei’s urn design and Efron’s biased coin design can be considered as special cases of a
more general class of designs, called generalized biased coin designs, characterized by

Zi = E[Xi|Fi−1] = φ(i− 1) (1.6)

where the functionφ(i) = φ(NR(i), NW (i)) can be chosen to describe a wide class of
models.

In practice, the random allocation rule and truncated binomial design are usually per-
formed within blocks of subject so that balance can be forcedthroughout the course
of the clinical trial. This minimizes the risk of accidentalbias. Alternatively, Efron’s
biased coin design and Wei’s urn design adaptively balance the treatment assignments,
without forcing perfect balance. In all cases, experimentsshould be conducted double-
masked in order to minimize the risk of selection bias.

• response-adaptive randomization

E[Xn+1|Fn] = E[Xn+1|X1, ..., Xn,M1, ...,Mn, N1, ..., Nn]
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Chapter 1. Response adaptive designs in clinical trial

The response adaptive randomization are procedures characterized by the dependence
between the randomized sequenceX1, ..., Xn and the responses collected from the pa-
tients. More precisely, the assignment of patienti is based on a probability model that
takes into account the past allocationsX1, ..., Xi−1 and the responses observed from the
subjects already allocatedM1, ...,Mi−1 andN1, ..., Ni−1. Response-adaptive designs
are usually attractive because they aim to achieve two simultaneous goals, concerning
both statistical and ethical points of view: (a) maximizingpower in determining the
superior treatment, and (b) increasing the allocation of units to the superior treatment.
In this thesis we focus on response-adaptive designs that incorporate data on previous
treatment assignments and responses to decide the treatment allocation only for the next
subject. These procedures are easy to implement but there isno assurance that they are
globally optimal. In general, response-adaptive procedures may be constructed with a
stopping rule that ends the trial when some optimal criterium has been achieved. In
this situations, typical in the context of sequential analysis, the sample size is random.
However, we restrict our attention on response-adaptive designs with a sample size
fixed in advance, like more and more often occurs in modern clinical trials.
It is possible to distinguish two main classes of response adaptive randomization pro-
cedure: the doubly-adaptive biased coin design and the urn models. The former will be
briefly described in the next section. The latter will be the main topic of the thesis.

• covariate-adaptive randomization

E[Xn+1|Fn] = E[Xn+1|X1, ..., Xn, Y1, ..., Yn]

• covariate-adjusted response-adaptive (CARA) randomization

E[Xn+1|Fn] = E[Xn+1|X1, ..., Xn,M1, ...,Mn, N1, ..., Nn, Y1, ..., Yn]

Finally, we have covariate-adaptive randomization and covariate-adjusted response-
adaptive (CARA) randomization that are two classes of designs used when the goal is
to guarantee balance between treatment groups with respectto some known covariates.
In these designs, treatment allocationsX1, ..., Xn depend on those covariates observed
by the patients. We are not going to discuss these designs in this thesis.

1.2 General doubly-adaptive biased coin design

Designs presented in this section are based on a parametric response model and a target
allocation depending on the unknown parameters, that is sequentially substituted with
updated estimates of those parameters. The class of doubly-adaptive biased coin de-
sign was introduced in [21] and [22], and extends the basic Efron’s biased coin design
by using an allocation probability that depends on the degree of imbalance. However,
unlike Wei’s urn model, the doubly-adaptive biased coin design is based on a paramet-
ric model that includes the response variables. Let the probability distributions of the
responsesM1, ...,Mn andN1, ..., Nn depend on some parameter vectorθ ∈ Θ. Let
ρ(θ) ∈ (0, 1) be a target allocation, that is the desired proportion of subjects to be
assigned to treatmentR. Let g be a function from[0, 1]2 to [0, 1] such that the follow-
ing four regularity conditions hold: (i)g is jointly continuous; (ii)g(r, r) = r; (iii)
g(p, r) is strictly decreasing inp and strictly increasing inr on (0, 1)2; and (iv)g has
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1.2. General doubly-adaptive biased coin design

bounded derivatives in both arguments. Afteri assignments, the functiong represents
the closeness ofNR(i)/i to the current estimate ofρ(θ) in some sense. The randomized
procedure is the following: the subjecti+1 is assigned to treatmentR with probability
given by

Zi = g

(
NR(i)

i
, ρ(θ̂i)

)
(1.7)

wherêθi is some estimator ofθ with observations collected from the firsti subjects. Un-
der conditions (i)-(iv) asymptotic properties of the design are investigated. Although
of considerable theoretical interest, the design studied in [21] and [22] based on con-
ditions on the functiong rather restrictive. In fact, not even the examples providedin
those papers satisfy these conditions.
In [44] Melfi, Page and Geraldes proposed an adaptive randomized design that can be
included in the class of models described in [21] and [22], but it is much simpler to
implement, since the allocation probability is based only on an estimate of the target
allocation from the data already gathered

Zi = ρ(θ̂i) (1.8)

When θ̂i represents the MLE estimator ofθ, this model is also called sequential max-
imum likelihood procedure. This particular choice forg does not satisfy conditions
(i)-(iv), but good asymptotic properties have been highlighted and the performance of
the design is similar to designs proposed in [22].
In [34] Hu and Zhang proposed the following functiong for γ ≥ 0:

g(x, y) =
y(y/x)γ

y(y/x)γ + (1− y)((1− y)/(1− x))γ
,

g(0, y) = 1,

g(x, 0) = 0.

This function does not satisfy the regularity condition (iv) of [21], but it satisfies alter-
native conditions that are widely satisfied. In [34] Hu and Zhang (2004) proved strong
consistency, a law of the iterated logarithm and asymptoticnormality for the new de-
sign. Notice that, whenγ = 0 and θ̂i is the maximum likelihood estimator ofθ, the
procedure reduces toZi = ρ(θ̂i), the design studied in [44].
In [31] Hu, Zhang and He proposed a new and simple family of response-adaptive ran-
domization procedures, called Efficient Randomized-Adaptive Design (ERADE). Un-
der some mild conditions, this model is able to asymptotically attain the Cramer-Rao
lower bound for the allocation proportion of subjects to both treatment. The allocation
probability function of the proposed procedure is discontinuous

Zi =





αρ(θ̂i) if N(i)/i > ρ(θ̂i),

ρ(θ̂i) if N(i)/i = ρ(θ̂i),

1− α(1− ρ(θ̂i)) if N(i)/i < ρ(θ̂i).

(1.9)

whereα ∈ [0, 1) is a constant that indicates the degree of randomization.
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Chapter 1. Response adaptive designs in clinical trial

In the next section, we will present randomized procedures described in terms of urn
models. In general, urn models aim at achieving different goals with respect to the
designs presented in this section. In particular, they are not usually designed to target
some specific allocation based on unknown parameters.

1.3 Urn models for response-adaptive designs

In this section we explore a large class of response-adaptive randomization procedures
based on urn models. Urn models have been investigated for a long time in probability
theory, since they generate many interesting stochastic processes. In randomized urn
models, balls are replaced according to some probability distributions. The first class
of urn models we are going to describe is the generalized Friedman’s urn, that basi-
cally consists in a generalization of Wei’s urn design. Since the randomization is here
response-adaptive, balls are added to the urn depending notonly on the treatment as-
signed, but also on the patient’s responses. In a generic framework, the randomization
of patienti is accomplished as follows: a ball is drawn from the urn and replaced, its
color noted (Xi = 1 orXi = 0), and the corresponding treatmentk is assigned (k = R
or k = W ). After treatmentk has been assigned, a response is observed (Mi or Ni)
and a random number of balls are added to the urn. We will denote withDR,k orDW,k

the number of red balls and white balls respectively, returned in the urn, fork = R,W .
DR,k andDW,k are measurable functions on the sample space of the responses. The
response-adaptive randomization procedure is then given by

Zi =
Ri

Ri +Wi

whereRi andWi represent the number of red and white balls, respectively, contained
in the urn after the firsti assignments. Notice that the probability to allocate the next
subject to treatmentR is the current proportion of red balls in the urn. Note that if
DR,R = DW,W = 0 andDW,R = DR,W = β we return to the Wei’s urn design. Sig-
nificant theoretical results on the generalized Friedman’surn model have been realized
in [5] concerning an urn model with balls ofK > 2 colors. Let us callD = [Djk]
the random matrix representing the number of balls of typej added to the urn when a
ball colork has been sampled. Most of their results based on a matrix defined as the
expectation ofH = E[D], called generating matrix. Under some regularity conditions,
such asDjk > 0 andE[Djk log(Djk)] <∞ for anyj, k = 1, ...., K, in [5] were proved
many important asymptotic properties of the generalized Friedman’s urn; they showed
that first-order asymptotic properties of the urn depend on the eigen-structure ofH. In
particular, they prove that both the urn proportion and the proportion of sampled color
converge almost surely to the eigenvector associated to themaximum eigenvalue ofH.
In [52] and [9] it was used a slightly more general setup, calling the model the extended
Polya urn. They assume some regularity condition onH to obtain some second order
asymptotic properties on the proportion of sampled color such asH. Among the as-
sumptions, we have thatH has simple eigenvalues and all the rows ofH sum to the
same positive constant. They also explore the situation of random generating matrix
Hi = E[Di|Fi−1] converging to a fixed matrixH.
Roughly speaking, all the theory on Friedman’s urn models isbased on the assump-
tion of irreducible mean replacement matrixH. Under this condition the maximum
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1.3. Urn models for response-adaptive designs

eigenvalue is unique and the limiting urn proportion will consist in the correspondent
strictly positive eigenvector. The rate of convergence andthe limiting distribution of
the proportion of sampled colors from the urn usually dependon the size of the second
greatest eigenvalue with respect to the maximum eigenvalue.

There is another class of urn models that has always played animportant role for clinical
trials. In [37] Ivanova and Flournoy refer to this class as the ternary urn, since the
models admitted only three possible actions:

• a ball is added to the urn

• no ball is neither added nor removed from the urn

• a ball is removed from the urn

Nowadays many of these models have been extended and a randomnumber of balls can
be added and removed from the urn. However, the main feature of these designs has
remained invariant: the diagonal generating matrix, i.e. any change of the urn compo-
sition must involve only the balls of the sampled color.

The first design we see is the birth and death urn model. ConsiderK treatments and an
urn containing balls ofK colors. A ball is drawn and replaced and the correspondent
treatment is assigned to the patient. Responses are assumedto be binary. When the
response is a success a ball is added to the urn, while when a failure occurs a ball is
removed from the urn. Then, there is a positive probability that some color disappears
because all balls of that color have been removed. To avoid this event, we start with an
urn which contains also another type of balls, called immigration balls, as in the [36].
When an immigration ball is sampled, one ball of each type is added to the urn, no
patient is treated, and the next ball is drawn. The birth and death urn has a complicated
limiting theory that changes according to the magnitude of the highest probability of
success (p) among all the treatments under study. Ifp > 0.5 and the maximum is
unique, then the proportion of sampled balls of the correspondent color converge in
probability to one; otherwise, ifp < 0.5, the proportion of sampled balls of any color
converge in probability to specific values determined by thesuccess probabilities of all
K treatments.

The drop-the-loser DL was proposed in [38] for two treatments and binary responses.
The urn initially contains balls of typeR andW and immigration balls, since also in
this model balls can be removed from the urn. In particular, if the response is a failure
a ball is removed. Otherwise, the urn composition does not change. When an immi-
gration ball is drawn a ball of each type is added to the urn. Ifwe denote asqR and
qW the probability of failure to treatmentR andW respectively, [38] shows that the
proportion of balls of typeR sampled from the urnNR(n)/n converge in probability to
qW/(qR + qW ). Besides, it provides a central limit theorem with the lowest variance in
the class of response-adaptive randomized procedures targetingqW/(qR + qW ).
In [33] the Ivanova’s DL rule was generalized (GDL), and several asymptotic results
are derived, for which Ivanova’s results are a special case.In particular, they extended
the DL procedure toK > 2 treatments. Moreover, the number of balls added to the urn

9
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because of an immigration ball is drawn, becomes a function of the success probabili-
ties. This allows the GDL rule to target any desired allocation theoretically.

In [16] a general class of immigrated urn (IMU) models was proposed that incorporates
the immigration mechanism into the generalized Friedman’surn framework. In that
paper, theoretical asymptotic properties of the IMU modelsare investigated. In [16]
it was shown that the IMU models have smaller variabilities in allocations than the
classical urn models, yielding more powerful statistical inferences. Since the class of
IMU models include many popular classical urn models, they offer a unify view of
almost all urn processes framework. However, the IMU designs do not include models
whose generating matrixH is such thatH1 > 1, where1 = (1, ..., 1)′, and∄γ > 1 such
thatH1 = γ1. In these models, the total number of balls in the urn gradually increases
to infinity and the mean of the total number of balls replaced to the urn at each step
changes according to the color of the sample ball. For example, this is the case of
generalized Polya urn model with different reinforcement means. These designs will
be investigated in the next section.

1.4 The Randomly Reinforced Urn Design

This section focuses on a class of response-adaptive designs, described in terms of two-
color generalized Polya urn model, denote as Randomly Reinforced Urn (RRU) design.
In all these models, the urn is reinforced every time it is sampled with a random number
of balls that are of the same color of the ball that was extracted. Then, the generating
matrix H is not irreducible, since it is diagonal, and there are no immigration balls.
RRU designs have been usually adopted to compare competing treatments in a clinical
trial framework, with a special attention on the ethical goal of minimizing the allocation
of units to the inferior treatment. Naturally, the attempt is to achieve this aim without
losing too much in terms of statistical performance for the inferential analysis devoted
to determine the superior treatment.

RRU models were introduced by [17] for binary responses, applied to the dose-finding
problems in [18, 19]. Then, they have been extended to the case of continuous re-
sponses by [12, 45]. Let us describe the model of a general RRUdesign. Visualize an
urn containing balls of two colors (red,white). Red balls are associated with treatment
R, while white balls with treatmentW . The urn is sequentially sampled and patients
are allocated to treatments according to the colors of the sampled balls. Each time, the
extracted ball is reintroduced in the urn together with a random number of balls of the
same color. Let us callµR andµW the probability distributions of the random rein-
forcements of red and white balls, respectively, andmR,mW the corresponding means.
The supports ofµR andµW are usually assumed to be bounded and non negative. The
sequenceX = (Xn)n∈N (Xn ∈ {0, 1}, n = 1, 2, ..) represents the colors sampled from
the urn and the sequenceZ = (Zn)n∈N (Zn ∈ (0, 1), n = 0, 1, 2, ..) the proportion of
red balls in the urn.

Theoretical properties of the RRU model have been widely studied in literature. When
mR = mW , the majority of the results have been found in [1–3, 41]. In this case,
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the asymptotic distribution of the limiting urn proportionis unknown, except in few
particular cases. Consider the case in whichµR = µW = µ. In this situation it
was proved that the sequenceZ converges almost surely to a random variable with
no atoms, i.e.P (limn Zn = x) = 0 for anyx ∈ [0, 1]. Whenµ is a point mass at a
nonnegative real numberm, the RRU degenerates to Polya’s urn and the limiting dis-
tribution is aBeta(r0/m,w0/m). This is also the case for binary responses whenm
balls are added to the urn after a success is obtained (see [2]). For the general RRU
with µR = µW = µ, [3] characterizes the liming distribution ofZ as the unique contin-
uous solution, satisfying some boundary conditions, of a specific functional equation in
which the unknowns are distribution functions on [0, 1].
WhenmR = mW , it may happen thatµR 6= µW because of moments of higher or-
der. This is of particular interest because it corresponds to a situation in which the
two treatments are considered equivalent in mean. However,in [24] it was proved that
P (limn Zn = 1) = P (limn Zn = 0) = 0, so that asymptotically the urn does not extin-
guish any color when treatments are equivalent in mean.
When reinforcement means are different (mR 6= mW ), in [45] it is shown that the
urn asymptotically is composed almost completely by balls of the color associated to
the superior treatment. Formally, they proved that the sequence of the urn proportion
of red ballsZ converges almost surely to one, whenmR > mW , or to zero, when
mR < mW . As a consequence, the allocation proportionNR(n)/n converges to the
same limit, since in an urn model the probability to assign a subject to a particular
treatment is represented by the urn proportion of the corresponding color. Then, an in-
teresting property concerning RRU models is that the probability to allocate units to the
best treatment converges to one as the sample size increases, that is a very attractive fea-
ture from an ethical point of view. However, because of this asymptotic behavior, RRU
models are not in the large class of designs targeting a certain proportionρ ∈ (0, 1),
that usually is fixed ad hoc or computed by satisfying some optimal criteria. Hence, all
the asymptotic desirable properties concerning these procedures presented in literature
(for instance in [11,43,44]), are not straightforwardly fulfilled by the RRU designs. For
instance, theoretical properties of adaptive estimators of the unknown means must be
derived in a different way for a RRU model.
When reinforcement means are the same (mR = mW ), asymptotic behavior of these
estimators has been studied in many works (see for instance [44] and the bibliography
therein) for adaptive designs with target allocationρ ∈ (0, 1) and in [2, 24] for RRU
designs.
When reinforcement means are different (mR 6= mW ), the behavior of statistics based
on adaptive estimators of unknown parameters has been investigated for instance in [32,
33, 51] for adaptive designs with target allocationρ ∈ (0, 1). In a RRU model, asymp-
totic properties of the adaptive estimators of response means are strictly related to the
asymptotic behavior of the urn proportionZ. Important results on second-order asymp-
totic properties of the urn proportion(Zn)n∈N for a RRU model were developed in [24],
in the case of reinforcements with different means. In [24] it was proved that the rate of
convergence of the process(Zn)n∈N to its limit l (either 1 or 0) is equal to1/nγ (with
γ = 1− min{mW ;mR}

max{mW ;mR}
< 1). Moreover, the quantitynγ(l−Zn) converges almost surely

to a positive random variable, whose behavior has been studied in [35,42].
There is another problem with the RRU design, that is especially relevant in the inferen-
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tial phase of the trial. In fact, for large samples, a RRU design generates two treatment
groups with very different sample sizes, because one is muchlarger than the other one.
Hence, inferential procedures based on this design are usually characterized by a very
low power.

In the following chapter, we opportunely change the urn scheme of the RRU design,
in order to construct a new urn model that asymptotically target an allocation proportion
ρ ∈ (0, 1), still minimizing the number of subjects allocated to the inferior treatment.
We study the dynamic of the urn process and we prove first-order asymptotic prop-
erties of the urn proportionZn and the allocation proportionNR(n)/n. The study of
the theoretical properties of these processes has been particulary challenging since the
modified urn process does not present the sub/supermartingality properties presented
by the RRU.
In Chapter 3 we take advantage of the asymptotic properties of the new urn process to
improve the performance of different tests for comparing the mean effect of two treat-
ments. In particular, we achieve both the goals of increasing the power of the test and
of assigning fewer subjects to the inferior treatment.
In Chapter 4 we compute the rate of convergence of the urn process and we define its
limiting distribution. A comparison study among the inferential performances of tests
constructed with different urn designs is conducted.
Finally, in Chapter 5 we propose a randomly reinforced urn design whose urn propor-
tion asymptotically targets a valueρ ∈ (0, 1), which is defined as a function of unknown
parameters modeling the responses distributions.
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CHAPTER2

The Modified Randomly Reinforced Urn Design

For the reasons described in the last section, we decided to modify the RRU model and
construct a new design that is able to target an asymptotic allocationρ ∈ (0, 1). In
so doing, we increase the power of an inferential procedure applied to the trial and we
are allowed to apply the theoretical results adopted in the usual frameworkρ ∈ (0, 1).
However, we must not forget the initial goal of minimizing the number of subjects as-
signed to the inferior treatment. Thus, the target allocation must be different depending
on which treatment is the best one. Simply, the dichotomy among the possible limits
0−1 turns to the dichotomy among two valuesδ−η, where0 < δ ≤ η < 1. This result
is obtained by changing opportunely the Randomly Reinforced Urn scheme. The urn
process derived in this way is not a sub/supermartingale anymore, so the asymptotic
results for the MRRU must be proved by adopting different techniques than the ones
used in [45]. The parameterδ will represent the desired limit forNR(n)/n whenW
is the superior treatment (mR < mW ), while η will be the desired limit forNR(n)/n
whenR is the superior treatment (mR > mW ). All these results proved in this chapter
have been gathered in [4,27].

2.1 The model

Let us consider the response probability lawsµR andµW . In general, we can define an
opportune utility functionu to turn the responses into values which can be interpretable
as urn reinforcements. For ease of notation, in this thesis we will use the identity as
utility function, i.e. we will interpret the response distributions to treatmentR andW
equal to the reinforcement distributions of red and white balls, respectively. The model
requires the assumption that the reinforcement probability lawsµR andµW have sup-
port contained in[a, b], where0 < a ≤ b < +∞. In general, the utility functionu can
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Chapter 2. The Modified Randomly Reinforced Urn Design

be selected in order to make the reinforcements distributions fulfill that assumption.
Moreover, we will consider the superior treatment as the oneassociated to the color
with higher reinforcement mean. Then, if the lower are the responses the better is the
treatment, it is necessary to use a decreasing utility function.

Now, let us describe the urn model. Visualize an urn initially containingr0 balls of
colorR andw0 balls of colorW . Set

R0 = r0, W0 = w0, D0 = R0 +W0, Z0 =
R0

D0

.

The drawing process from this urn is modeled by a sequence(Un)n∈N of independent
uniform random variables on(0, 1). At time n = 1, a ball is sampled from the urn;
its color isX1 = 1{U1<Z0}, a random variable with Bernoulli(Z0) distribution. LetM1

andN1 be two independent random variables with distributionµR andµW , respectively;
assume thatX1,M1 andN1 are independent. Next, if the sampled ball isR i.e.X1 = 1,
it is returned in the urn together withM1 balls of the same color ifZ0 < η, where
η ∈ (0, 1) is a suitable parameter, otherwise the urn composition doesnot change; if
the sampled ball isW i.e.X1 = 0, it is returned in the urn together withN1 balls of the
same color ifZ0 > δ, whereδ ≤ η ∈ (0, 1) is a suitable parameter, otherwise the urn
composition does not change. So we can update the urn composition in the following
way

R1 = R0 +X1M11{Z0<η},

W1 =W0 + (1−X1)N11{Z0>δ},

D1 = R1 +W1, Z1 =
R1

D1

.

(2.1)

Now iterate this sampling scheme forever. Thus, at timen + 1, given the sigma-field
Fn generated byX1, ..., Xn,M1, ...,Mn andN1, ..., Nn, let Xn+1 = 1{Un+1<Zn} be a
Bernoulli(Zn) random variable. Then, assume thatMn+1 andNn+1 are two indepen-
dent random variables with distributionµR andµW , respectively. Set

Rn+1 = Rn +Xn+1Mn+11{Zn<η},

Wn+1 = Wn + (1−Xn+1)Nn+11{Zn>δ},

Dn+1 = Rn+1 +Wn+1,

Zn+1 =
Rn+1

Dn+1
.

(2.2)

We thus generate an infinite sequenceX = (Xn, n = 1, 2, ..) of Bernoulli random vari-
ables, withXn representing the color of the ball sampled from the urn at timen, and a
process(Z,D) = ((Zn, Dn), n = 0, 1, 2...) with values in(0, 1) × (0,∞), whereDn

represents the total number of balls in the urn before it is sampled for the(n + 1)-th
time, andZn is the proportion of balls of colorR; we callX the process of colors gen-
erated by the urn while(Z,D) is the process of its compositions. Let us observe that
the process(Z,D) is a Markov sequence with respect to the filtrationFn.
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2.2. Asymptotic results

2.2 Asymptotic results

In this section we provide some theoretical results that will be used to prove Theo-
rem 2.3.1, which is the main convergence theorem concerningthe MRRU design. It
states that the urn proportion converges almost surely whenthe reinforcement means
are different. In particular, the limit isη whenmR > mW , or δ whenmR < mW . As
mentioned at the beginning of this chapter, since the urn process of a MRRU model is
not a sub/supermartingale, the proof of Theorem 2.3.1 can’tbe straightforwardly de-
rived from the convergence theorem of a RRU design. In the proof we adopt different
techniques and we use same auxiliar results, most of them aregathered in this section.
Nevertheless, some of these results are presented in a more general framework. All
these results have been gathered in [4].

We focus on studying the convergence of a generic adapted bounded process(Zn)n.
Without loss of generality, we will takeZn ∈ [0, 1], ∀n. We will consider the crossing
in both directions of a strip[d, u], where0 < d < u < 1. More precisely, lett−1 = −1
and define for everyj ∈ Z+ two stopping times

τj =

{
inf{n > tj−1 : Zn < d} if {n > tj−1 : Zn < d} 6= ∅;
+∞ otherwise.

tj =

{
inf{n > τj : Zn > u} if {n > τj : Zn > u} 6= ∅;
+∞ otherwise.

(2.3)

The random interval(τj−1, τj ] is called thej-th excursion, and we denote it by

νZ[d,u] =

{
sup{j : τj <∞} if τ0 < +∞;

0 otherwise,

i.e.,νZ[d,u] counts the total number of times that the processZ crosses the strip[d, u] in
both directions, i.e., making both an upcrossing and a downcrossing.

Theorem 2.2.1. (Zn)n converges a.s. if and only if, for any0 < d < u < 1,
∑

P (τj+1 = ∞|τj <∞) = ∞,

with the convention thatP (τj+1 = ∞|τj <∞) = 1 if P (τj = ∞) = 1.

Proof. We first note that

(Zn)n converges a.s.
∀0<d<u<1⇐⇒ P (νZ[d,u] = ∞) = 0

∀0<d<u<1⇐⇒ 0 = lim
n→∞

P (νZ[u,d] ≥ n)

= lim
n→∞

P (∩n
j=0{τj <∞})

as a consequence of the countability ofQ in [0, 1]. Now,

P ({τj <∞, j = 0, . . . , n}) = P (τ0 <∞)
n∏

j=1

P (τj <∞|τj−1 <∞)
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and it is well known that, if(pj)j ⊆ (0, 1] then

lim
n→∞

n∏

j=1

pj = 0 ⇐⇒
∞∑

j=1

(1− pj) = ∞.

The fact that some(pn)n might be zero is controlled by the assumption thatpn = 0 ⇒
pm = 0, ∀m > n.

Now, we will present an interesting property holding for a general class of urn pro-
cesses. Let(Ω,F , (Fn)n, P ) be a filtered space. Let the vector(Rn,Wn)n be a(Fn)n–
adapted process, where the sequences(Rn)n and(Wn)n are nonnegative and increas-
ing (i.e., 0 ≤ R0 ≤ R1 ≤ . . . Rn ≤ . . . and0 ≤ W0 ≤ W1 ≤ . . .Wn ≤ . . .) and
R0 + W0 > 0. The vector(Rn,Wn) represents the urn composition at timen. We
denote these processes asBirth Urn Processes (BUP). LetDn = Rn +Wn, for n ∈ N.
The following result connects the number of balls in the urn with the number crossing
of the strip (d,u)

Lemma 2.2.2 (Reinforcements during excursions). For any BUP,∀j ∈ N

Dτj ≥
(
u(1− d)

d(1− u)

)
Dτj−1

≥ ... ≥
(
u(1− d)

d(1− u)

)j

Dτ0

Proof. For everyj ∈ N0 we have that

• Rτj+1
≥ Rtj =⇒ Zτj+1

Dτj+1
≥ ZtjDtj

• Wtj ≥Wτj =⇒ (1− Ztj )Dtj ≥ (1− Zτj )Dτj

SinceZτj < d andZtj > u for everyj ∈ N, we find

• dDτj+1
≥ uDtj

• (1− u)Dtj ≥ (1− d)Dτj

From this we have immediately the following result

Dτj ≥
(
u(1− d)

d(1− u)

)
Dτj−1

≥ ... ≥
(
u(1− d)

d(1− u)

)j

Dτ0

Given a sequence of stopping times(τn)n, it is always possible to define the counting
process

Cn :=

{∑∞
j=1 1{τj≤n} if τ0 ≤ n;

−1 if τ0 > n.

Now, consider a BUP(Rn,Wn)n and a sequence of stopping time(τn)n such that
(Rn,Wn, Cn)n is a time-homogeneous Markov process. In this case, we will say that
the BUP is associated to the sequence(τn)n. Moreover, for anyi ≥ 1 the conditional
distribution ofτi+1 given{τi < ∞} depends only onRτi , Wτi andi, i.e. there exists a
functionf such that

P
(
τi+1 <∞|{τi <∞}

⋂
Fτi

)
= f (Rτi ,Wτi, i) a.s. (2.4)
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Finally, note that, given a BUP(Rn,Wn)n, it is always possible to define two adapted
processes{Dn := Rn +Wn, n ∈ N} and{Zn := Rn/Dn, n ∈ N}.

Proposition 2.2.3. Given a Markov BUP, the process(Zn)n converges a.s. if, for any
0 < d < u < 1, there exists a functiong : [0,∞) × [0,∞) → [0, 1], (Rn,Wn)n is
associated to the sequence(τn)n defined in(2.3), and

f(x, y, ·) ≤ g(x′, y′) wheneverx+ y ≥ x′ + y′,

g(c1, c2) = a < 1 for somec1, c2 > 0

wheref is given in(2.4).

Proof. On{τ0 = ∞}, we getνZ[u,d] = 0.
On{τ0 <∞}, fix an integerj such that

j ≥ log u(1−d)
d(1−u)

(
c1 + c2
Dτ0

)

So doing, by Lemma 2.2.2 we have that

Dτj ≥
(
u(1− d)

d(1− u)

)j

Dτ0 ≥ c1 + c2

Now, using this relation and definition ofg we obtain

P (τj+1 = ∞|τj <∞) ≥ 1 − P (τj+1 <∞|τj <∞)

≥ 1 − sup
x+y≥c1+c2

f (x, y, i)

≥ 1 − g(c1, c2)

≥ 1 − a > 0

Then, by Theorem 2.2.1 we get the thesis.

Let us consider the Randomly Reinforced Urn design described in Section 1.4. Because
of its strong connection with the MRRU model, the knowledge of RRU properties has
been essential to study the asymptotic behavior of the MRRU design. In particular,
some results on the Doob decomposition of the RRU process have been applied to prove
Theorem 2.3.1. Consider the urn proportion process(Zn)n and its Doob decomposition

Zn = Z0 +Mn + An

where(Mn)n is a martingale and(An)n is a predictable process, both null atn = 0.
Some results on these processes are shown for equal reinforcement means.

Lemma 2.2.4. AssumemR = mW = m. If D0 ≥ 2b, then

E(sup
n

|An|) ≤
b

D0
;

E(〈M〉∞ − 〈M〉n|Fn) ≤
b

D0
, for anyn ≥ 0.

The first result is provided by [2]. Using Lemma 2.2.4, we get the following result
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Lemma 2.2.5. AssumemR = mW = m. If D0 ≥ 2b, then

P (sup
n

|Zn − Z0| ≥ h) ≤ b

D0

( 4

h2
+

2

h

)

for everyh > 0.

Proof. First note that, since(Mn)n is a martingale null atn = 0, we have, by Lemma 2.2.4
(choosingn = 0 in the second inequality) that

lim
n→∞

E(M2
n) = lim

n→∞
E(〈M〉n) ≤

b

D0

,

and hence, by Doob’sL2–inequality,

P ({sup
n

|Mn| ≥ h/2}) ≤ lim
n→∞

E(M2
n)

(h/2)2
≤ 4b

h2D0

for anyh > 0. We easily get

P (sup
n

|Zn − Z0| ≥ h) ≤ P ({sup
n

|Mn| ≥ h/2} ∪ {sup
n

|An| ≥ h/2})

≤ P ({sup
n

|Mn| ≥ h/2}) + P ({sup
n

|An| ≥ h/2})

≤ b

D0

( 4

h2
+

2

h

)

2.3 Asymptotic target allocation of a Modified Randomly Reinfor ced Urn

Here, we present the main convergence theorem concerning the MRRU design de-
scribed in Section 2.1. We have

Theorem 2.3.1. Consider the MRRU design and assumemR 6= mW . Then, the se-
quence of urn proportion of red ballsZ = (Zn, n = 1, 2, ...) converges almost surely
and

Zn
a.s.−→ η1{mR>mW } + δ1{mR<mW } (2.5)

Proof. In the proof we frequently use a comparison argument betweenour model and
the RRU model described in Section 1.4. Consider an urn containing at the starting
time r0 red balls andw0 white balls. Let us consider the casemR < mW ; the opposite
case (mR > mW ) is completely analogous. With this assumption, in [45] it was shown
that the urn process(Zn)n∈N of a RRU design is a super-martingale converging to zero.
After introducing the parametersδ andη, the urn proportion is not a super-martingale
anymore. Nevertheless, we will prove that the urn process(Zn)n∈N of a MRRU design
still converges almost surely, but this time the limit is equal to δ.
The thesis is get once we prove the following

(a) P ( lim infn→∞ Zn ≤ δ ) = 1

(b) P ( lim infn→∞ Zn ≥ δ ) = 1
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(c) P ( ∃ limn→∞Zn) = 1

Part (a):
First of all, we will prove that

lim inf
n→∞

Zn ≤ δ, a.s

By contradiction, assume there existsl > δ andǫ > 0 such thatP (lim inf Zn ≥ l) ≥
ǫ > 0. Then, there existsnǫ such thatP (Zn >

l+δ
2
, ∀n ≥ nǫ) = ǫ/2 > 0. Nevertheless,

on the set{Zn >
l+δ
2
, ∀n ≥ nǫ} the urn processZn evolves as the urn proportion of

a RRU with reinforcement meansmR < mW that tends to0 a.s. (see [45]). Then,
P (Zn >

l+δ
2
, ev.) = 0 and this leads to a contradiction withP (lim inf Zn ≥ l) ≥ ǫ > 0.

By using this comparison argument with the RRU design, it is possible to show that the
processZn crossesδ infinite times.

Part (b):
Now, we will prove that

lim inf
n→∞

Zn ≥ δ, a.s

By contradiction, assume there existsl < δ andǫ > 0 such thatP (lim inf Zn ≤ l) ≥
ǫ > 0. Then, with probabilityǫ the processZn must cross the strip( l+δ

2
, δ) infinite

times. Then, by Lemma 2.2.2, the sequence(Dn)n tends to infinity. As a consequence,
after a sufficiently large number of times,Dn > b l+δ

δ−l
and therefore, ifk > n is any

successive downcross ofδ,

Zk ≥
Rk−1

Dk−1 + b
≥ δDn

Dn + b
>
l + δ

2

since each reinforced is bounded byb andRk−1

Dk−1
= Zk−1 > δ. Then,P (Zn <

l+δ
2
, ev.) =

0 and this leads to a contradiction withP (lim inf Zn ≤ l) ≥ ǫ > 0.

Part (c):
Putting together parts (a) and (b), we have shown thatlim infn Zn = δ almost surely.
Therefore, if the process(Zn)n converges almost surely, then its limit has to be equal
to δ.
Let γ, d andu (δ < γ < d < u) be three arbitrary values and let(τi)i and(ti)i be two
sequences of stopping times as defined in (2.3), in order to apply Proposition 2.2.3.
Let us fix an integeri ∈ N satisfying

i > log u(1−d)
d(1−u)

(
b
max{1− d; γ}
Dτ0(d− γ)

)

so that, by Lemma 2.2.2, we have that

Dτi > b
max{1− d; γ}

d− γ
.

To ease of notation, denote by(̂·n)n∈N the renewed process on{τi <∞}: (R̂n, Ŵn) =

(Rτi+n,Wτi+n), D̂n = R̂n + Ŵn = Dτi+n, Ẑn = R̂n/D̂n = Zτi+n, Ûn = Uτi+n.
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The Markov property of the original urn ensures that, on{τi < ∞}, the process(̂·n)n
started afresh a new urn with initial composition(Rτi ,Wτi) and dynamic as in (2.1) and
(2.2). Note thatZτi ∈ (γ, d). We denote byPi(·) = P (·|τi <∞), and therefore, if

t =

{
inf{n : Ẑn > u} if {n : Ẑn > u} 6= ∅;
+∞ otherwise,

then we have

P (τi+1 <∞|τi <∞) ≤ Pi(ti <∞) = Pi(t <∞) (2.6)

Define the sequences(t∗n, τ
∗
n)n of stopping times which indicate the(Ẑn)n-crosses of

the interval(δ, γ): let t∗0 = 0 and define for everyj ≥ 1 two stopping times

τ ∗j =

{
inf{n > t∗j−1 : Ẑn ≤ δ} if {n > t∗j−1 : Ẑn ≤ δ} 6= ∅;
+∞ otherwise.

t∗j =

{
inf{n > τ ∗j : Ẑn > γ} if {n > τ ∗j : Ẑn > γ} 6= ∅;
+∞ otherwise.

(2.7)

Notice that,
R

R +W
≤ γ,

(R +W ) >
b(1− d)

d− γ

=⇒ R + x

R +W + x
< d, ∀x ≤ b,

and hence, since the reinforcements are bounded byb, we have

Ẑt∗j−1 ≤ γ,

D̂t∗j−1 >
b(1 − d)

d− γ

=⇒ Ẑt∗j
< d (2.8)

For anyj ≥ 0, we can define a process(Z̃j
n)n∈N to set a new urn, coupled with(Ẑn)n∈N,

with the following features:

W̃ j
0 = Ŵt∗j

R̃j
0 = W̃t∗j

u+ d

2− u− d

X̃j
n+1 = 1[0,Z̃j

n]
(Ût∗j+n+1),

M̃ j
n+1 = M̂t∗j+n+1 + (mW −mR)

Ñ j
n+1 = N̂t∗j+n+1

R̃j
n+1 = R̃j

n + X̃j
n+1M̃

j
n+1,

W̃ j
n+1 = W̃ j

n + (1− X̃j
n+1)Ñ

j
n+1,

D̃j
n+1 = R̃j

n+1 + W̃ j
n+1,

Z̃j
n+1 =

R̃j
n+1

D̃j
n+1

.
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Then,(Z̃j)j∈N is a sequence of urn processes, all starting withZ̃j
0 = u+d

2
and having

nonnegative reinforcements with the same meanmW . Let us notice that at timen, we
have defined only the processesZ̃j such thatt∗j < n.

We will prove by induction that, for anyj ∈ N,

Z̃j
n > Ẑt∗j+n, W̃ j

n ≤ Ŵt∗j+n, R̃j
n > R̂t∗j+n (2.9)

for anyn ≤ τ ∗j+1−t∗j . In other words, we will show that each process(Z̃j
n)n∈N is always

above the original process(Ẑt∗j+n)n∈N, as long aŝZ remains aboveδ (i.e. before the
timeτ ∗j ). In fact, by construction we have that

Z̃j
0 =

d+ u

2
> d > Ẑt∗j

, W̃ j
0 = Ŵt∗j

which immediately implies̃Rj
0 > R̂t∗j

. Assume (2.9) by induction hypothesis. Since,

for any n ≤ τ ∗j+1 − t∗j , we have thatX̃j
n+1 = 1[0,Z̃j

n]
≥ 1[0,Ẑt∗

j
+n]

= X̂t∗j+n+1 by

construction, we get

R̂t∗j+n+1 − R̂t∗j+n = X̂t∗j+n+1M̂t∗j+n+1 ≤ X̃j
n+1M̃

j
n+1 = R̃j

n+1 − R̃j
n,

Ŵt∗j+n+1 − Ŵt∗j+n = (1− X̂t∗j+n+1)N̂t∗j+n+1 ≥ (1− X̃j
n+1)Ñ

j
n+1 = W̃ j

n+1 − W̃ j
n.

that means

Z̃j
n+1 > Ẑt∗j+n+1, W̃ j

n+1 ≤ Ŵt∗j+n+1, R̃j
n+1 > R̂t∗j+n+1 (2.10)

for anyn ≤ τ ∗j+1−t∗j . Note that, for anyj ≥ 0, the process(Z̃j
n)

τ∗j+1−t∗j
n=0 is an urn process

reinforced with distributions with same means and initial composition(R̃t∗j
, W̃t∗j

). Let

us defineTj as the stopping time for(Z̃n)n to exit from(d, u) beforeτ ∗j+1 − t∗j , i.e.:

Tj =





inf{n ≤ τ ∗j+1 − t∗j : Z̃
j
n ≤ d or Z̃j

n ≥ u}
if {n ≤ τ ∗j+1 − t∗j : Z̃

j
n ≤ d or Z̃j

n ≥ u} 6= ∅;
+∞ otherwise.

Then, since
{
Ẑn > u

}
⊂
{

sup
j:t∗j≤n

Z̃j
n−t∗j

> u

}
.

we have stated that

Pi(t <∞) ≤ Pi

(
∞⋃

j=0

{Tj <∞}
)

≤
∞∑

j=0

Pi (Tj <∞) . (2.11)

Now, let us consider a single term of the series. Then, as a consequence of Lemma 2.2.5,
if we seth = u−d

2
, we get

Pi(Tj <∞) ≤ P (sup
n

|Z̃t∗j+n − Z̃t∗j
| ≥ h) ≤ b

Dt∗j

( 4

h2
+

2

h

)
.
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Moreover, by using Lemma 2.2.2, we obtain

b

Dt∗j

( 4

h2
+

2

h

)
≤ b

D̂t∗0

(
δ(1− γ)

γ(1− δ)

)j ( 4

h2
+

2

h

)

Thus define the functiong : [0,∞)× [0,∞) → [0, 1] in the following way

g(x, y) :=
b

x+ y

( 4

h2
+

2

h

)( 1− δ

1− δ/γ

)
,

and note that

g

(
8b/h2

(
1− δ

1− δ/γ

)
, 4b/h

(
1− δ

1− δ/γ

))
= 1/2

andg is monotone inx+ y. We can apply Proposition 2.2.3 to get the thesis, since, by
(5.10) and (2.11), we obtain

P (τi+1 <∞|τi <∞) ≤
∞∑

j=0

Pi (Tj <∞)

≤ b

D̂t∗0

( 4

h2
+

2

h

) ∞∑

j=0

(
δ(1− γ)

γ(1− δ)

)j

=
b

Dτi

( 4

h2
+

2

h

)( 1− δ

1− δ/γ

)
= g(Rτi,Wτi).

Remark 2.3.2. Notice that in the proof it was never necessary to specify thetype of
distribution generating the reinforcements. Indeed, we donot need all information
about the probability laws, but we deal only with the means ofthose distributions. In
particular, in the proof we only needed to know which of the two reinforcements has the
greatest mean. For this reason, all the results still hold ifwe change the reinforcement
probability laws, maintaining fixed the sign of the difference of the means.

Remark 2.3.3. Consider a Pólya urn containing initiallyr0 red balls andw0 white
balls. LetX = (Xn)n∈N be a generalized urn process of the sampled balls andf
the corresponding urn function, i.e. the functionf that maps the interval (0,1) to itself
and such that the law of X is defined by assuming thatX1 is a Bernoulli(f(z0)), where
z0 = r0

r0+w0
and forn ≥ 1, the conditional distribution ofXn+1 givenX1, .., Xn is a

Bernoulli(f(Zn)), where

Zn =
r0 +

∑n
i=1Xi

r0 + w0 + n

If f(x) = x for everyx ∈ [0, 1], we obtain the Pólya sequence. Now, consider the urn
model described in the introduction, in the particular casein which reinforcements are
independent Bernoulli variables, with parametersπR for the red balls andπW for the
white balls. In this situation, this model is equivalent to ageneralized Pólya urn in
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2.4. Asymptotic properties of stochastic sequences genera ted by the adaptive design

which the urn functionf can be defined like follows:

f(x) =
xπR1{x<η}

xπR1{x<η} + (1− x)πW1{x>δ}

=





1 if x < δ,
xπR

xπR+(1−x)πW
if δ < x < η,

0 if x > η.

Looking at the expression above, we can reach to the same convergence result proved
in this chapter, by applying the Theorem 4.1. of [30]. The convergence theorem proved
in this chapter is more general, because it holds also when reinforcements do not follow
Bernoulli distributions.

2.4 Asymptotic properties of stochastic sequences generated b y the
adaptive design

In this section we study some interesting properties of the urn process. We consider
the MRRU design and assumemR 6= mW . The first result concerns the proportion of
colors sampled from the urn. Here we prove that it converges to the same limit of the
urn proportionZn.

Proposition 2.4.1. The sequence(NR(n)/n, n = 1, 2, ...) of the proportion of red balls
sampled from the urn converges almost surely and

NR(n)

n
a.s.−→ η1{mR>mW } + δ1{mR<mW } (2.12)

Proof. LetmR > mW . The proof in the casemR < mW is analogous. Let us denote
ξn = Zn−1−Xn

n
for anyn ≥ 1, with ξ0 = 0. Then,(ξn)n∈N is a sequence of random

variables adapted with respect to the filtration(Fn)n∈N such that

∞∑

i=1

E [ξi |Fi−1] =
∞∑

i=1

E

[
Zi−1 −Xi

i

∣∣∣Fi−1

]
= 0

∞∑

i=1

E
[
ξ2i

∣∣∣Fi−1

]
=

∞∑

i=1

E

[(
Zi−1 −Xi

i

)2 ∣∣∣Fi−1

]
≤

∞∑

i=1

1

i2
< ∞

Applying Lemma 7 of [2] we have that
∑
ξn <∞ almost surely.

Now, we have that
1

n

n∑

i=1

Zi−1 −Xi =
1

n

n∑

i=1

iξi
a.s→ 0,

by using Kronecker’s lemma, and so

η −
∑n

i=1Xi

n
= η −

∑n
i=1 Zi−1

n
+

∑n
i=1 Zi−1 −Xi

n

a.s.→ 0

where the first term goes to zero thanks to the Toeplitz Lemma,sinceZn converge toη
almost surely.

The following proposition shows the rate of divergence of the total number of balls in
the urn.
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Chapter 2. The Modified Randomly Reinforced Urn Design

Proposition 2.4.2. The sequence(Dn/n, n = 0, 1, 2, ...) converges almost surely to the
mean of the inferior treatment

Dn

n

a.s.−→ mW1{mR>mW } +mR1{mR<mW } (2.13)

Proof. LetmR > mW . The proof in the casemR < mW is analogous. Notice that
∑n

i=1 1−Xi

n

[
W0 +

∑n
i=1(1−Xi)Ni∑n

i=1 1−Xi

−mW

]
=

∑n
i=1(1−Xi)Ni

n
− mW

∑n
i=1 1−Xi

n
=

∑n
i=1 [ (1−Xi)Ni − mW (1−Xi) ]

n
=

∑n
i=1(1−Xi)(Ni −mW )

n

a.s.→ 0

where the almost sure convergence to zero of the last term canbe proved with the same
arguments used to prove Proposition 2.4.1. This result implies that

W0 +
∑n

i=1(1−Xi)Ni∑n
i=1 1−Xi

a.s.→ mW (2.14)

since from Proposition 2.4.1 we have that
∑n

i=1(1−Xi)

n

a.s.→ 1− η. Then, we have that

Wn

n
=

W0 +
∑n

i=1(1−Xi)Ni∑n
i=1(1−Xi)

·
∑n

i=1(1−Xi)

n
a.s.→ mW · (1− η).

SinceZn
a.s.→ η, we get

Rn

n
=

Wn

n

Zn

1− Zn

a.s.→ µW (1− η) · η

1− η
= mW · η.

Globally we obtain

Dn

n
=

Rn

n
+

Wn

n
a.s.→ mW · η + mW · (1− η) = mW .

Remark 2.4.3. Notice that in a RRU model the sequenceDn/n converges almost surely
to the mean of the superior treatment. In fact, in a RRU model,whenmR > mW , we
have that

lim
n→∞

Dn

n
= lim

n→∞

Rn

n
= lim

n→∞

R0 +
∑n

i=1XiMi∑n
i=1Xi

= mR (2.15)

on a set of probability one. The result(2.15) is proved following the same arguments
of (2.14)

Here, we show that the proportion of times the urn proportionZn is under/above its
limit converges almost surely to a quantity that depends only on the reinforcement
meansmR andmW .
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Proposition 2.4.4. If mR > mW , then
∑n

i=1 1{Zi<η}

n

a.s.−→ mW

mR

. (2.16)

If mR < mW , then ∑n
i=1 1{Zi>δ}

n
a.s.−→ mR

mW
.

To prove Proposition 2.4.4 we need the following lemma

Lemma 2.4.5. If mR > mW , then
∑n

i=1Xi+11{Zi<η}∑n
i=1 1{Zi<η}

a.s.−→ η. (2.17)

If mR < mW , then ∑n
i=1Xi+11{Zi>δ}∑n

i=1 1{Zi>δ}

a.s.−→ δ.

Proof. LetmR > mW . The proof in the casemR < mW is analogous. Notice that
∑n

i=1 1{Zi−1<η}

n

[ ∑n
i=1Xi1{Zi−1<η}∑n
i=1 1{Zi−1<η}

− η

]
=

∑n
i=1Xi1{Zi−1<η}

n
− η

∑n
i=1 1{Zi−1<η}

n
=

∑n
i=1

[
Xi1{Zi−1<η} − η1{Zi−1<η}

]

n
=

∑n
i=1[Xi1{Zi−1<η} − Zi−11{Zi−1<η}]

n
+

∑n
i=1[Zi−11{Zi−1<η} − η1{Zi−1<η}]

n
a.s.→ 0

where the almost surely convergence to zero of the last termscan be proved with the
same arguments used to prove Proposition 2.4.1. Moreover this result implies (2.17)

due to the fact that
∑n

i=1 1{Zi<η}

n
cannot be asymptotically closed to zero. This fact can

be proved by contradiction: suppose that

P

(
lim inf

n→∞

∑n
i=1 1{Zi<η}

n
= 0

)
> 0. (2.18)

But we have that

lim inf
n→∞

∑n
i=1 1{Zi<η}

n
≥

lim inf
n→∞

1

βR

R0 +
∑n

i=1Xi+1Mi+11{Zi<η}∑n
i=1Xi+11{Zi<η}

·
∑n

i=1Xi+11{Zi<η}∑n
i=1 1{Zi<η}

·
∑n

i=1 1{Zi<η}

n
≥

lim inf
n→∞

1

βR

Rn

n
=

mW η

βR
> 0

on a set of probability one. This contradicts the assumption(2.18).
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Remark 2.4.6. By following the same arguments used to prove Proposition 2.4.1 and
Lemma 2.4.5, whenmR > mW it can be proved also that

R0 +
∑n

i=1Xi+1Mi+11{Zi<η}∑n
i=1Xi+11{Zi<η}

a.s.−→ η (2.19)

Proof of the Proposition 2.4.4.Let mR > mW . The proof in the casemR < mW is
analogous. Let us observe that on a set of probability one

0 = lim
n→∞

η − Zn = lim
n→∞

η − Rn/n

Rn/n +Wn/n
=

η − mR · η · limn→∞

∑n
i=1 1{Zi<η}

n

mR · η · limn→∞

∑n
i=1 1{Zi<η}

n
+mW · (1− η)

(2.20)

where the last equality is based on the result of Lemma 2.4.5.Finally, we note that the
equality (2.20) holds if and only if

∑n
i=1 1{Zi<η}

n

a.s.→ mW

mR

2.5 An estimation method based on urn model

In this section, we present a simulation study that takes advantage of the convergence
theorem proved in Section 2.2. We provide a method to estimate an unknown parameter
by only using the result of convergence of the urn process shown in Theorem 2.3.1. Let
us consider a treatmentW , whose mean effect on subjects is unknown. Let us model
the patients’ response to the treatmentW with a random variable with distributionµW .
The goal of the study is to estimate its mean effectmW =

∫
xµW (dx). Consider an-

other treatment, denoted asR, and suppose that its random effect on patients follows
a known distributionµR; let us assume that its meanmR depends on the given dose,
that can be suitable modified by the experimenter. We consider a response adaptive
design based on the urn model introduced in Section 2.1, withµR andµW modeling
the patients responses to treatmentR andW , respectively. The inference onmW is
performed by monitoring along time, the urn compositionZn.

In this simulation study we considerK urns with the same initial composition (r0, w0).
Red balls are associated with treatmentR, while white balls with treatmentW . We
denote withZj = (Zj

n)n∈N the process of the urn proportion in thejth urn, for j ∈
{1, 2, .., K}. The reinforced scheme applied to each urn is the one described in Sec-
tion 2.1. Hence, for each urn Theorem 2.3.1 holds, and thenZj

n
a.s.−→ η1{mR>mW } +

δ1{mR<mW }.
WhenmR = mW , we do not have the explicit form of the limit distribution ofthe urn
proportionZn. Nevertheless, we know that it converges to a random variableZe, whose
distribution has no atoms and with supportSe = [δ, η].
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2.5. An estimation method based on urn model

At the beginning of the experiment, we choose an initial dosefor the treatmentR.
Let us callmR,1 the patients responses’ mean corresponding to that dose. Then, the
reinforcements of red and white balls follow distributionswith means,mR,1 andmW

respectively. We startK mutually independents urn processes simultaneously. At each
step, we draw a ball form each urn and we update the composition of each urn indepen-
dently, following the model described in Section 2.1. Aftern draws and reinforcements,
we haveK urn proportionsZj

n, j ∈ {1, 2, .., K}, that can be used to compute the em-
pirical cumulative distribution function̂Fn for the random variableZn. Thanks to the
Theorem 2.3.1, for everyx ∈ [0, 1], F̂n(x) must converge to





Fη(x) = 1{x≥η} if mW < mR,1,

Fδ(x) = 1{x≥δ} if mW > mR,1.

If mW = mR,1, we can compute offlinêFe(x), the asymptotic cumulative distribution
of Ze. This calculation requires the simulation ofM urn processes withm draws for
each one; the number of urnsM and the number of drawsm can be arbitrarily large.
So we have

F̂e(x) ≃ 1

M

M∑

i=1

1{Zi
m<x}, for large m and M.

At each step, once each urn has been reinforced, we use the Wasserstein distance(dW )

to compute the distances between the empirical cumulative distribution functionF̂n

and the three asymptotic possible distributionsFη, F̂e andFδ. When one of these
three distances is small enough, we have a good estimate of distribution of the limit
proportionZn, and so we can state ifmW is less than, equal to, or greater thanmR,1.
Let us define the following quantity

ξ := min {dW (Zn, δη) , dW (Zn, Ze) , dW (Zn, δδ)} =

min

{∫ 1

0

|Fn(x)− Fη(x)|dx ,
∫ 1

0

|Fn(x)− F̂e(x)|dx ,
∫ 1

0

|Fn(x)− Fδ(x)|dx
}

Whenξ is less than a suitable small parameterα, fixed in advance, the drawing pro-
cess ends and different scenarios are possible. Ifξ = dW (Zn, Ze) we conclude that
mR,1 = mW . Otherwise, ifξ = dW (Zn, δδ) we conclude thatmW is greater than
mR,1. Hence, we change the given dose for the treatmentR to increase the mean
effect at a new suitable valuemR,2 > mR,1. If ξ = dW (Zn, δη) we conclude that
mW is less thanmR,1, so the dose is changed in order to decrease the mean effect
mR,2 < mR,1. In any case, we can suppose the difference between the two means is
decreased (|mR,2 −mW | < |mR,1 −mW |). At this point, we start over withK urn pro-
cesses, with the same initial composition (r0, w0). Although the reinforcement scheme
applied is the same as before, the probability law of the reinforcements of red balls is
not, because the mean is changed.

The whole study goes on until both the conditionsξ = dW (Zn, Ze) andξ < α are satis-
fied. Calli0 the number of times the random responses’ mean to treatmentR has been
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Chapter 2. The Modified Randomly Reinforced Urn Design

changed. Then,mR,i0 is an estimate of the unknown meanmW . We made some simu-
lation studies and we report here some graphics that illustrate this estimation procedure.

The simulation study was carried out withK = 40 urns. Parameters were fixed at
δ = 0.3, η = 0.7 andα = 0.05. Responses to treatmentW are assumed to be normal
random variables with meanmW and standard deviationσ = 1. Responses to treatment
R are assumed to be normal random variables with meanmR,i and standard deviation
σ = 1. As explained before, the mean is changed every timeξ is less thanα. The
parametermW was sampled by a uniform(10, 50). At the beginning, the responses’
mean to treatmentR was set equal to 30 (mR,1 = 30). After changingmR four times
(i0 = 5), the conditionsξ = d(Zn, Ze) andξ < α have been satisfied; this allows us
to conclude thatmW = mR,5 (see Figure 1-4). The cumulative distribution̂Fe was
computed withM = 200 urns andm = 103 draws for each one. This procedure
provided an estimate ofmW = mR,5 = 18.125. In fact, the result of the started random
extraction formW was equal to18.195.

Figure 2.1: Graphic shows the different values assumed bymR during the experiment: (mR,1, mR,2, mR,3,
mR,4, mR,5) = (30 , 20 , 15 , 17.5 , 18.125). Five changes were necessary toreach a satisfactory estimate of
the meanmW . x axis represents the number of timesmR was changed, while y axis indicates the responses’
means to treatments. The red line represents the unknown mean mW = 18.195. The width of vertical intervals
indicates the standard deviation of reinforcement distribution (σ = 1).

In this chapter we have constructed a randomly reinforced urn design with asymptotic
allocation proportionρ ∈ (0, 1). In order to assign a small proportion of subjects
to the inferior treatment, the model presents two possible values for the limit of the
allocation proportion:δ andη, with 0 < δ ≤ η < 1. In Theorem 2.3.1 we proved
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2.5. An estimation method based on urn model

Figure 2.2: Wasserstein distances (area of yellow zone) fordW (Zn, δδ) (left panel), dW (Zn, Ze) (central
panel) anddW (Zn, δη) (right panel) in the case ofmR,1 = 30 and mW = 18.195 (first iteration). Since
dW (Zn, δη) < α the limit of the process seems to beη = 0.7.

Figure 2.3: Wasserstein distances (area of yellow zone) fordW (Zn, δδ) (left panel), dW (Zn, Ze) (central
panel) anddW (Zn, δη) (right panel) in the case ofmR,3 = 15 andmW = 18.195 (third iteration). Since
dW (Zn, δδ) < α the limit of the process seems to beδ = 0.3.

that the a.s. limit of the urn process isρ = η1{mR>mW } + δ1{mR<mW }. Then, this
model achieves the ethical goal of assigning an arbitrarilysmall proportion of subject
to the inferior treatment. Moreover, since the limiting proportion is within(0, 1), all
the results for designs with asymptotic allocationρ ∈ (0, 1) can be applied and the
inferential performances are improved.
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Chapter 2. The Modified Randomly Reinforced Urn Design

Figure 2.4: Wasserstein distances (area of yellow zone) fordW (Zn, δδ) (left panel),dW (Zn, Ze) (central panel)
and dW (Zn, δη) (right panel) in the case ofmR,5 = 18.125 and mW = 18.195 (fifth iteration). Since
dW (Zn, Ze) < α the limit of the process seems to beZe, a random variable with no atoms.
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CHAPTER3

An urn procedure to construct efficient test for
response-adaptive designs

In this chapter we conduct an analysis on the statistical performance of different tests
for comparing the mean effect of two treatments ( [28, 29]). Given a testT0, we deter-
mine which sample size and allocation proportion guaranteeto a testT to be better than
T0, in terms of (a) higher power and (b) fewer subjects assignedto the inferior treat-
ment. The adoption of a response adaptive design to implement the random allocation
procedure is necessary to ensure that both (a) and (b) are satisfied. In particular, we
propose to use the Modified Randomly Reinforced Urn design (MRRU) described in
Chapter 2 and we show how to perform the model parameters selection for the purpose
of this chapter. The opportunity of relaxing some assumptions is examined. Results
of simulation studies on the test performance are reported and a real case study is ana-
lyzed.

3.1 The proportion - sample size space

This section focuses on the statistical properties of the classical hypothesis test aiming
at comparing the means of two Gaussian populations. Even if the mathematical frame-
work is very general and the results shown in this section hold for many designs used in
different areas, this chapter is set in the context of clinical trials. The goal of the study
is the comparison among the response means to two competing treatments, the patients
are sequentially assigned to. The allocation rule applied to the sequence of patients
depends on the specific experimental design adopted in the trial. Let us fixp0 ∈ (0, 1).
Consider any procedure able to allocate a proportion of patientsp0 to treatmentR, 1−p0
to treatmentW . Letn0 ∈ N be the total number of subjects involved in the experiment.
In what follows,n0,R andn0,W indicate the number of subjects assigned to treatmentR
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andW , respectively (n0,R + n0,W = n0). Moreover, we denote

• M1,M2, ..,Mn0,R
: the responses to treatmentR, modeled as i.i.d. random vari-

ables with distributionµR and expected valuemR

• N1, N2, .., Nn0,W
: the responses to treatmentW , modeled as i.i.d. random vari-

ables with distributionµW and expected valuemW

We assume the distributions to be Gaussian, i.e.µR = N (mR, σ
2
R) andµW = N (mW , σ

2
W ),

with known variances. Consider the classical hypothesis test

H0 : mR −mW = 0 vs H1 : mR −mW 6= 0. (3.1)

In this context the critical region and the power curve of thetest are well known. Let
us first fix

• α : the significance level of the test;

• ∆0 : the smallest difference among the means detected with highpower;

• β0 : the minimum power for a difference among the means of±∆0;

Then, once fixed the proportionp0, it is univocally determined the value of the sample
sizen0 which allows the test to satisfy the proprieties required bythose parameters.
Moreover, we have the following expression for critical region of levelα

Rα =

{
|Mn0,R

−Nn0,W
| >

√
σ2
R

n0,R
+

σ2
W

n0,W
zα

2

}
(3.2)

whereMn0,R
=
∑n0,R

i=1 Mi/n0,R andNn0,W
=
∑n0,W

i=1 Ni/n0,W andzα
2

is the quantile
of order1 − α/2 of a standard normal distribution. Furthermore, the power of the
test (4.22), is a function of the real difference∆ = mR − mW (see Figure 3.1 in the
case of equal variances), i.e.

β(∆) = P


Z < −zα

2
− ∆√

σ2
R

n0,R
+

σ2
W

n0,W


+ P


Z > zα

2
− ∆√

σ2
R

n0,R
+

σ2
W

n0,W




Let us callT0 the test defined in (4.22), withn0 as sample size andp0 as proportion
of patients allocated to the treatmentR. To construct a test with equal parameters (α,
∆0, β0) and better statistical performance, the proportion of assignment or the sample
size has to be conveniently modified. The testT0 could be represented in the space
((0, 1) × N), that we callproportion - sample sizespace, by the couple(p0, n0). Any
other testT can be represented by a point(ρ, n) in the same space. The goal of this
section is to point out regions of this space characterized by tests performing better than
T0. A testT will be considered strictly better thanT0 if it satisfies both the following
conditions

(a) T has a power function uniformly higher than the power function of T0;

(b) T assigns to the worst treatment fewer patients thanT0.
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Figure 3.1: The picture represents the power functionβ : R → [0, 1] of the test defined in(4.22), in the case of
α = 0.05 andβ0 = 0.9.

Let us callβT0 andβT , the power functions of the testsT0 andT respectively. To
achieve condition (a) we impose the following constraint

βT (∆) ≥ βT0(∆) ∀∆ ∈ R ⇔ σ2
M

nρ
+

σ2
N

n(1− ρ)
≤ σ2

M

n0p0
+

σ2
N

n0(1− p0)
(3.3)

Now, if we denote aspopt the Neyman allocation proportion σM

σM+σN
, we can rewrite

inequality (3.3) in a more suitable form

popt
2

nρ
+

(1− popt)
2

n(1− ρ)
≤ popt

2

n0p0
+

(1− popt)
2

n0(1− p0)
(3.4)

Inequality (3.4) divides theproportion - sample sizespace in two regions. The boundary
is computed by imposing the equality in (3.4) and expressingthe sample sizen as a
function of the proportionρ.

nβ(ρ) =

(
p2opt
ρ

+
(1− popt)

2

1− ρ

)(
p2opt
n0p0

+
(1− popt)

2

n0(1− p0)

)−1

(3.5)

We refer to function (3.5) asnβ, since it was computed by imposing the condition re-
lated with the power of the testβ. This relationship betweenρ andn is visualized
in Figure 3.2 by a red line. Each point over this curve is a testT with a power uni-
formly higher thanT0. Points under the red line represent tests with a power uniformly
lower thanT0. Notice that the functionnβ : (0, 1) → (0,∞) expressed in (3.5) grows
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boundlessly for proportions close to zero and to one and its global minimum is reached
in ρ = popt. This is reasonable aspopt is the allocation proportion which requires the
minimum number of patients to get any fixed value of power. Besides, the farther is pro-
portionρ from popt, the greater is the number of subjects necessary to get that power.
More specifically, the minimum lies on a very interesting curve, which is univocally
identified by the parameters of the classical test. Denotingwith gmin : (0, 1) → (0,∞)
the function associated with that curve, we are able to express it in an analytic form

gmin(x) = n0

(
x2

p0
+

(1− x)2

1− p0

)−1

∀x ∈ (0, 1) (3.6)

The curve is represented in Figure 3.2 by a red dotted line. The functionsnβ andgmin

cross in two points, in general different, that we denoteM andQ. The pointM is the
minimum of the functionnβ and it corresponds to the Neyman allocation proportion

M =

(
popt , n0

(
p2opt
p0

+
(1− popt)

2

1− p0

)−1
)

(3.7)

The pointQ is the maximum of the functiongmin and it corresponds to the testT0:
Q = (p0, n0). The pointsM andQ coincide only whenp0 = popt. In this case, the
curvesnβ andgmin are tangents inM ≡ Q. Moreover, there are other relevant points
highlighted by the functiongmin. In fact, the curve starts inXW,0 = (0, n0(1 − p0))
and ends inXR,0 = (1, n0p0). The ordinates of pointsXW,0 andXR,0 tell us how many
patients have been allocated by the testT0 to the treatmentW andR, respectively.
To satisfy (b) we have to distinguish two different cases, depending on which is the
superior treatment

• if mR > mW ⇒ the superior treatment isR and the condition to be imposed is

n(1 − ρ) < n0(1− p0) ⇔ ρ > 1− n0

n
(1− p0); (3.8)

• if mR < mW ⇒ the superior treatment isW and the condition to be imposed is

nρ < n0p0 ⇔ ρ <
n0

n
p0. (3.9)

Both these constraints are depicted in blue in theproportion - sample sizeplane. Below
each of these lines, the first or the second condition is verified. In conclusion, we
divided theproportion - sample sizespace in three regions:

• RegionA :

A =
{
(x, y) ∈ (0, 1)× (0,∞) : nβ(x) < y <

p0
x
n0

}

testsT ∈ A have a power uniformly higher and allocate to treatmentR less
patients thanT0.

• RegionB :

B =

{
(x, y) ∈ (0, 1)× (0,∞) : y > max

{
p0
x
;
1− p0
1− x

}
· n0

}

testsT ∈ B have a power uniformly higher and allocate to both treatments more
patients thanT0.
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3.1. The proportion - sample size space

• RegionC :

C =

{
(x, y) ∈ (0, 1)× (0,∞) : nβ(x) < y <

1− p0
1− x

n0

}

testsT ∈ C have a power uniformly higher and allocate to treatmentW less
patients thanT0.
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Figure 3.2: The picture represents the regionsA, B andC, on the proportion - sample size plane. The red line
represents the functionnβ in (3.5); it separates the testT with powerβT (∆) > βT0

(∆), from the test with
powerβT (∆) < βT0

(∆). Blue lines separates tests according on the number of patients allocated to the
treatmentsR andW , with respect ton0,R andn0,W . The dotted red line represents the functiongmin in (3.6).

Hence, a testT with better performance thanT0 is a point(ρ, n) in the regionA if mR <
mW , or in the regionC if mR > mW . Unfortunately, the experimenter cannot know
which is the superior treatment before conducting the trial. For this reason, it could
be useful to adopt a response adaptive design to construct the test, since this method
is able to target different allocation proportions according to the responses collected
during the trial.
Let us introduce a vector(X1, X2, ..., Xn) ∈ {0; 1}n composed by the allocations to
the treatments according to the adaptive design, i.e.Xi = 1 if the subjecti receives
treatmentR or Xi = 0 if the subjecti receives treatmentW . Then, we define the
quantitiesNR(n) =

∑n
i=1Xi andNW (n) =

∑n
i=1(1 −Xi), that represent the number

of patients allocated to treatmentsR andW , respectively. Notice that the sample sizes
NR(n) andNW (n) are random variables. Let us also define the adaptive estimators
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based on the observed responses until timen, i.e.

M(n) =

∑n
i=1XiMi

NR(n)
and N(n) =

∑n
i=1(1−Xi)Ni

NW (n)
. (3.10)

Then, the testT is defined by the following critical region

Radaptive
α =

{
|M(n)−N(n)| >

√
σ2
R

NR(n)
+

σ2
W

NW (n)
zα

2

}
(3.11)

whose properties depend on the type of adaptive design has been applied in the trial.
The authors propose to adopt theModified Randomly Reinforced Urndesign (MRRU)
described in [4]. The authors propose to adopt theModified Randomly Reinforced Urn
design (MRRU) described in 2.

3.2 The parameter selection to construct the test T

Consider the situation presented in Section 3.1. Initiallythe problem is faced with a
classical no-adaptive test. Let us denote this test asT0. Assume a sample sizen higher
than the one of the testT0 (i.e., n = c · n0 with c > 1). For anyn ≥ n0, we can
individuate the following intervals

• IAn = {x ∈ (0, 1) : (x, n) ∈ A}
• IBn = {x ∈ (0, 1) : (x, n) ∈ B}
• ICn = {x ∈ (0, 1) : (x, n) ∈ C}

Notice that

• IAn
⋃
IBn
⋃
ICn ⊂ (0, 1)

• IAn
⋂
IBn = ∅, IBn

⋂
ICn = ∅, IAn

⋂
ICn = ∅,

The aim is to point out an adaptive testT represented in theproportion - sample size
space by a point in regionA whenR is the inferior treatment, or in theICn whenW the
inferior one. This goal is achieved when





NR(n)
n

∈ ICn if
∫ b

a
xµR(dx) >

∫ b

a
xµW (dx),

NR(n)
n

∈ IAn if
∫ b

a
xµR(dx) <

∫ b

a
xµW (dx).

.

Inspired by Proposition 2.4.1, we setδ ∈ IAn andη ∈ ICn , so thatlimk→∞
NR(k)

k
∈ IAn

if mR < mW andlimk→∞
NR(k)

k
∈ ICn if mR > mW . This choice implies that the test

T is in the right region, where both condition (a) and (b) are satisfied. In Figure 3.3 we
show how the urn processZn converges towards the right region.

The speed of convergence of the urn model is a key point for thesuccess of this pro-
cedure. In general, the asymptotic behavior of the urn process(Zn)n∈N depends on the
reinforcement distributions (µR, µW ) and on the parameters (δ, η). Once the assump-
tions on the reinforcement probability laws are made and thestatistical parameters are
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Figure 3.3: The pictures represents the regionsA, B andC, for a particular choice ofα, β0, ∆0 and p0. For
each fixed sample sizen, the parameters of the urn modelδ, η ∈ (0, 1) are chosen such that(δ, n) ∈ A and
(η, n) ∈ C. On the left: simulations withmR < mW . On the right: simulations withmR > mW . In both
pictures, the black lines represent 10 replications of the urn process(Zk)k.

fixed, the regionsA,B,C can be determined and the rate of convergence depends only
on the unknown meansmR andmW ; in particular, the speed of convergence is an in-
creasing function of the mean distance|µR − µW |. Moreover, since the value of the
sample sizen has been computed as a decreasing function of∆0, the closeness of the
urn proportionZn to its limit (η or δ) aftern draws, depends mainly on the size of the
normalized distance|µR−µW |

∆0
. If this ratio is large it means that the treatments’ perfor-

mance are very different with respect to the minimum relevant distance|∆0|. In this
case, the quantityNR(n)

n
will be quickly closed to the limit of the urn process and so the

procedure will actually design a testT which lies in the right region. At the contrary,
if |µR−µW |

∆0
is small, it means that the difference between the treatments becomes less

relevant. The urn proportion(Zn)n∈N will be a process which slowly converges to its
limit. Therefore, in this situation, the assumption thatNR(n)

n
is a good approximation of

its limit is less reasonable and so the testT will be easily found outside the right region.
Naturally, it is useless to choose an excessively little value of∆0 just to increase the
ratio |µR−µW |

∆0
; in fact, this change would heavy increase the sample sizen0, in order to

fulfill the level and power constraint ofT0. As a consequence, the power evaluated at
the real difference of the meansβ(∆) would be so high that there would be no need to
maximize it.

There are other factors which influence the speed of convergence of the process(Zn)n∈N,
like the values of the parametersη andδ. In fact, it is known that the closer to a border
point of the interval(0, 1) the limit is, the slower the process converges. This fact is
relevant when we propose to improve the approximation ofNR(n)

n
with its limit (δ or

η) by increasing the sample sizen, i.e. usingñ = c̃ · n0 (with c̃ >> c) instead ofn.
Naturally, since we are using more subjects here, it will be more likely that the urn pro-
portionZñ will be closer to the limitη (or δ), which was previously fixed in the interval
IAn (or ICn ). The problem is that the points(δ, ñ) and(η, ñ) could be not in the regions
A andC anymore. In fact, when we use the sample sizeñ instead ofn, we should
locate the parametersη andδ in the intervalsIAñ andICñ instead ofIAn andICn ; so doing,
we can be sure that the points(δ, ñ) and(η, ñ) are in the right regions. Moreover, as
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the sample sizen grows the intervalsIAn andICn become smaller and move towards the
border points 0 and 1. This slows down the convergence of the process(Zn)n∈N and
makes negligible the initial gain obtained by increasing the sample size.

Remark 3.2.1. The main inferential problem here is a two-sided hypothesistest for
comparing the mean effect of two treatments (3.1). It’s worth to notice that nothing
changes if we consider an one-sided test, where the alternative hypothesis states that
one treatment is better than the other one, for instanceH0 : mR ≤ mW andH1 : mR >
mW . In this case the goal (b) reduces to assign more patients to treatmentW , so we
can fix the parameterδ arbitrarily in the interval (0, η). In Figure 3.4 we show the
partition of the plane proportion - sample size and the choice of the parametersδ and
η with an one-sided test.
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Figure 3.4: The picture shows the case of an one-sided test. The regionsB andC are defined for a fixed levelα
and a testT0 characterized by(p0, n0). Once fixed a new sample sizen > n0, the parameters of the urn model
δ, η ∈ (0, 1) are chosen such that(δ, n) ∈ B and(η, n) ∈ C

3.3 Different response distributions

In this section we relax some assumptions on reinforcement distributions. First, we
consider the situation with Gaussian laws but unknown variances, then, we discuss the
case of non-Gaussian response distributions (exponentialand Bernoulli).

In Section 3.1 we made the assumption that the variances of the responses’ distributions
σ2
R andσ2

W are known. This hypothesis is very strong and in many cases unrealistic,
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3.3. Different response distributions

since the variability of a new phenomenon is typically unknown and the variance usu-
ally has to be estimated through the same observations used to realize the test. Then, a
good design should incorporate the possibility of estimating variances, updating them
at each step of the procedure and maintaining the good properties obtained with known
variances.
First, fix δ = η = p0. Then, we denote asS2

R(n) andS2
W (n) the adaptive estimators for

the responses’ variances, expressed as follows

S2
R(n) =

∑n
i=1Xi(Mi −M(n))2

NR(n)− 1
, and S2

W (n) =

∑n
i=1(1−Xi)(Ni −N(n))2

NW (n)− 1
.

(3.12)
So we can replace the true variancesσ2

R andσ2
W with their estimatorsS2

R(i) andS2
W (i);

then, in the critical region (3.11) the quantile of the t-student substitutes the quantile of
the Gaussian distribution. Moreover, the functionnβ(·) introduced in (3.5) has to be
redefined as follows

nβ(ρ; i) :=

(
p̂2opt(i)

ρ
+

(1− p̂opt(i))
2

1− ρ

)(
p̂2opt(i)

n0p0
+

(1− p̂opt(i))
2

n0(1− p0)

)−1

wherep̂opt(i) =
SR(i)

SR(i)+SW (i)
. This procedure has to be done at every stepi ≤ n, after

that a new response is collected and one of the two estimates can be updated. Notice
that the functionnβ(·; i) is random and changes for anyi ≤ n, because now it depends
on the observations. As a consequence, also the intervalsIAi , IBi , ICi will be random too
and we have to recompute them for anyi ≤ n. This leads to two sequences(δi)i, (ηi)i
instead of two parametersδ, η, since we need to maintain the property that the parame-
ters of the urn model are chosen in the corresponding intervals: δi ∈ IAi andηi ∈ ICi .
In [44] it has been proved that when the sequencesNR(n) andNW (n) are divergent,
adaptive estimators likeS2

R(n) andS2
W (n) are strongly consistent. This result implies

thenβ(t; i) →i nβ(t) almost surely for anyt ∈ (0, 1). This fact ensures that it’s always
possible to create two convergent sequences(δi)i → δ, (ηi)i → η such thatδ ∈ IA and
η ∈ IC .

When we relax the normality assumption on the reinforcements distribution it is dif-
ficult to write the power function of the test in an analytic form. It is not always
possible to solve the conditionβT (∆) ≥ βT0(∆) and then to compute the function
nβ . Anyway, this task can be realized in simulation and so we will show that the
proportion - sample sizeplane can be partitioned again in the regionsA− B − C also
with non-Gaussian reinforcements. In particular, we focuson two situations: exponen-
tial and Bernoulli responses.

Exponential responses:
Let us make the following assumptions on patients’ responses

• M1,M2, ..,Mn0,R
: the responses to treatmentR, modeled as i.i.d. random vari-

ables with distributionµR = E(λR)
• N1, N2, .., Nn0,W

: the responses to treatmentW , modeled as i.i.d. random vari-
ables with distributionµW = E(λW )

39



Chapter 3. An urn procedure to construct efficient test for re sponse-adaptive designs

Our aim is to perform the following hypothesis test

H0 : λR = λW vs H1 : λR 6= λW . (3.13)

We will keep the notation of Section 3.1. We use the likelihood ratio test to compute
the critical region. The likelihood function of the whole sample is

L(λR, λW , data) = λ
n0,R

R λ
n0,W

W exp

(
−λR

n0,R∑

i=1

Mi − λW

n0,W∑

i=1

Ni

)

=
(
λp0R λ

1−p0
W exp

(
−λRMn0,R

p0 − λWNn0,W
(1− p0)

) )n

whereMn0,R
=
∑n0,R

i=1 Mi/n0,R andNn0,W
=
∑n0,W

i=1 Ni/n0,W . Then, the likelihood
ratio test gives us the following critical region
{

supλR=λW∈(0,∞) L(λR, λW , data)

sup(λR,λW )∈(0,∞)2 L(λR, λW , data)
< cα

}
=

{
M

p0
n0,R

· N1−p0
n0,W

Mn0,R
· p0 +Nn0,W

· (1− p0)
< n

√
cα

}

wherecα ∈ (0, 1) can be determined setting the significance level of this critical region
to α.

Bernoulli responses:
Let us make the following assumptions on patients’ responses

• M1,M2, ..,Mn0,R
: the sequence of the responses to treatmentR, modeled as i.i.d.

random variables with distributionµR = B(pR)
• N1, N2, .., Nn0,W

: the sequence of the responses to treatmentW , modeled as i.i.d.
random variables with distributionµW = B(pW )

Let us consider now the following hypothesis test

H0 : pR = pW vs H1 : pR 6= pW . (3.14)

The likelihood function for two samples of Bernoulli variables is

L(pR, pW , data) =(
p
Mn0,R

p0

R (1− pR)
(1−Mn0,R

)p0p
Nn0,W

(1−p0)

W (1− pW )(1−Nn0,W
)(1−p0)

)n

Then, the likelihood ratio test gives us the following critical region
{

suppR=pW∈(0,1) L(pR, pW , data)

sup(pR,pW )∈(0,1)2 L(pR, pW , data)
< cα

}
=





P
P
(1− P )1−P

M
Mn0,R

p0
n0,R

(1−Mn0,R
)(1−Mn0,R

)p0N
Nn0,W

(1−p0)

n0,W
(1−Nn0,W

)(1−Nn0,W
)(1−p0)

< n
√
cα





where

P =

∑n0,R

i=1 Mi +
∑n0,W

i=1 Ni

n
=Mn0,R

p0 +Nn0,W
(1− p0).
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Also in this casecα ∈ (0, 1) can be determined setting the significance level of this
critical region toα.

The power function (̂β(p0,n0)) in both cases (3.13) and (3.14) can be computed through
simulations and so we can empirically compute functionnβ(·) in this way: for any
ρ ∈ (0, 1)

nβ(ρ) := min
{
n ≥ 1 : β̂(ρ,n) ≥ β̂(p0,n0)

}

Now that we have defined the functionnβ(·), we can partition theproportion - sample size
plane, introduce the intervalsICn andIAn and after that fix the parametersη andδ within
them. When the urn model is used to allocate the patients the design becomes adaptive
and the critical region should be written in a different form, replacingMn0,R

,Nn0,W
and

ρ with M(n),N(n) andρ(n). As we can see from Figures 3.5 and 3.6, the structure of
the regions is the same of those computed in the Gaussian response case.
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Figure 3.5: This is an example with exponential distributed responses (λR = 2 andλW = 1). The parameters
are: α = 0.05, 1− β0 = 0.2, ∆0 = ∆ = 1/2. The testT0 uses an allocation proportionp0 = 1/2 and needs
a sample size ofn0 = 67. The red line represents the functionnβ(·) computed by simulation.

3.4 Simulation Studies

We realized some simulation studies aiming at illustratingthe theory presented in this
chapter. In this section, we are going to show some of those simulations; in particular,
we want to highlight the good properties provided by the use of an adaptive design in
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Figure 3.6: This is an example with Bernoulli distributed responses (pR = 0.2 andpW = 0.5). The parameters
are: α = 0.05, 1− β0 = 0.2, ∆0 = ∆ = 0.3. The testT0 uses an allocation proportionp0 = 1/2 and needs a
sample size ofn0 = 76. The red line represents the functionnβ(·) computed by simulation.

the framework of Section 3.1.

Let us consider the two-sided hypothesis test (3.1), for comparing the mean effect of
two treatmentsR andW . We simulated the responses to treatmentsR andW from
two sequences of i.i.d. random variables, with probabilitylawsµR andµW Gaussian
with meansmR andmW and variancesσ2

R andσ2
W , respectively. In all the simulations,

mW = 10 andmR ranges from5 to 15; we analyze separately the situation of equal
variances(σ2

R = 1.52, σ2
W = 1.52) and different variances(σ2

R = 1, σ2
W = 4). We

set the significance levelα = 0.05 and the minimum powerβ0 = 0.9 for a difference
of ∆0 = 1. We assume to have a balanced non adaptive designp0 = 0.5. Then, we
compute the right value for the sample sizen0 to fulfill the conditions of significance
level and power set in advance, which isn0 = 96 when the variances are equal and
n0 = 106 when the variances are different.

At this point, we apply the procedure described in Section 3.1 to get a new adaptive
testT performing better thanT0. The sample size ofT has been increased of a 25%
(n = 1.25 · n0), obtainingn = 120 in the case of equal variances andn = 132 with
different variances. In both cases, we can design the regions A, B andC and the
corresponding intervalsIAn , IBn andICn ; we setδ in the center ofIAn andη in the center
of IAn . In particular, we have

• σ2
R = 1.52, σ2

W = 1.52 ⇒ IAn = (0.127, 0.402), ICn = (0.598, 0.632).
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• σ2
R = 1, σ2

W = 4 ⇒ IAn = (0.279, 0.403), ICn = (0.597, 0.721)

In all simulations, the urn has been initialized with a totalnumber of ballsd0 =
(mR + mW )/2; the initial urn proportionz0 has been set at the center of the interval
(δ, η). Then, for each value ofmR ∈ {5, 7, 9, 9.5, 10.5, 11, 13, 15}, we have run1000
urn processes(Zk)k stopped at timen, following the algorithm described in Section 2.1.
The results are reported in Table 3.1 (equal variances) and 3.2 (different variances).

mR ∆ #{βT ≥ βT0
} #{NR(n) < n0,R} #{NW (n) < n0,W }

5 -5 0.954 (0.766) 0.011
7 -3 0.967 (0.573) 0.057
9 -1 0.970 (0.320) 0.178

9.5 -0.5 0.973 (0.301) 0.201

10.5 0.5 0.969 0.210 (0.283)
11 1 0.976 0.182 (0.319)
13 3 0.961 0.083 (0.486)
15 5 0.962 0.040 (0.608)

Table 3.1: The table represents the proportion of simulation runsT performs better feature thanT0. The parenthe-
sis indicate the column of the inferior treatment. For everychoice ofmR, 1000 simulations have been realized.
Here, the case of equal variances has been reported:σ2

R = σ2
W = 1.52.

The proportion of simulation runs the testT has a power higher thanT0 is very high. In
other words, it means that most of the simulations yields an allocation proportion after
n step such that(NR(n)/n, n) ∈ {A⋃B

⋃
C}. Moreover, this result has been found

for any values of∆, that is remarkable since the means are unknown before doingthe
test. The second goal of this design was minimizing the number of subjects assigned to
the inferior treatment. In Table 3.1 we report the proportion of runsT allocates to each
treatment less subjects thanT0. To better understand this aspect of the performance of
the MRRU model, we report in Figure 3.7 the flanked boxplots ofthe number of sub-
jects allocated to the inferior treatment in the 1000 replications of the urn design. The
red line indicate the number of subject allocated to the inferior treatment byT0. Then,
the goal is to maximize the number of cases below the red line.The numbers within
parenthesis in Table 3.1 represent the proportion of simulation runs that are below the
red line in Figure 3.7.
Notice from Figure 3.7 that, the greater is the mean distance|∆| = |mR − mW |, the
smaller is the number of subjects allocated to the inferior treatment.

In the case of different variances (Table 3.2), in most of therunsT has a power greater
thanT0. Nevertheless, it seems that the larger is the value ofmR the less is the pro-
portion of times the power ofT is greater thanT0. The reason of this fact is due to
the asymmetry of variances: with these values ofσ2

R andσ2
W the length of the interval

ICn is very small. Then, when the urn process(Zk)k overcomesη can occur more often
thatZn goes out from the intervalICn , and so does the allocation proportionNR(n)/n.
When this happens, we have that(NR(n)/n, n) /∈ {A⋃B

⋃
C} and so the power of

T will be smaller than the power ofT0.
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Figure 3.7: The picture shows, for any∆ ∈ {−5,−3,−1,−0.5, 0.5, 1, 3, 5}, the flanked boxplots of the number
of subjects allocated to the inferior treatment byT . In order to compute the boxpots, 1000 replications of the urn
process(Zk)k have been used. The red line represent the number of subject allocated to the inferior treatment
by T0, that in both cases isn0p0 = n0(1 − p0) = 48. Here, the case of equal variances has been reported:
σ2
R = σ2

W = 1.52.

In Table 3.2 we also report the proportion of simulation runsT allocates to each treat-
ment fewer subjects thanT0. Figure 3.8 shows the boxplots of the number of subjects
allocated to the inferior treatment with the 1000 replications of the urn process.
It is easy to note from Figure 3.8 that, even when the variances are different, the greater
the mean distance|∆| = |mR −mW |, the smaller the number of subjects allocated to
the inferior treatment. In this case, the design performs better when the worst treatment
is W . As explained before, this occurs because with these valuesof σ2

R andσ2
W the

intervalICn is very short.

3.5 Real Case Study

In this section we show a real case study, where the application of the methodology
presented in this chapter would have improved the performance of a classical test, from
both the statistical and ethical point of view. We consider data concerning treatment
times of patients affected by ST- Elevation Myocardial. Themain rescue procedure for
these patients is the Primary Angioplasty. It is well known that to improve the out-
come of patients and reduce the in-hospital mortality the time between the arrival at ER
(called Door) and the time of intervention (called Baloon) must be reduced as much as
possible. So the Door to Baloon time (DB) is our treatment’s response. We have two
different treatments: the patients managed by the 118 (free-tall number for emergency
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mR ∆ #{βT ≥ βT0
} #{NR(n) < n0,R} #{NW (n) < n0,W }

5 -5 1.000 (0.895) 0.003
7 -3 0.98 (0.636) 0.042
9 -1 0.928 (0.364) 0.131

9.5 -0.5 0.930 (0.345) 0.136

10.5 0.5 0.887 0.222 (0.232)
11 1 0.876 0.205 (0.265)
13 3 0.847 0.092 (0.361)
15 5 0.799 0.064 (0.447)

Table 3.2: The table represents the proportion of times the new testT presented a different feature with respect
to the classical testT0: having higher power of assigning fewer patients to one of the two treatment. The
parenthesis indicate the column of the worst treatment. Forevery choice ofmR, 1000 simulations have been
realized. Here, the case of different variances has been considered:σR = 1 andσW = 2.

in Italy) and the self presented ones. We design our experiment to allocate the majority
of patients to treatment performing better, and simultaneously collect evidence in com-
paring the time distributions of DB times.

We have at our disposal the values of the Door-to-Baloon time(DB) in minutes of 1179
patients. Among them, 657 subjects have been managed by 118,while the others 522
subjects reached the hospital by themselves. We denote the choice of calling 118 as
treatmentW and the choice of going to the hospital by themselves as treatmentR. In
this case, since the lower are the responses (DB time) the better is the treatment, a de-
creasing utility function is necessary. Moreover, the urn model presented in Section 2.1
requires the reinforcements distributions to be positive.Then, we choose the monotonic
utility functionu(x) = 6− log(x) to transform responses (DB time) into reinforcement
values, in order to satisfy those assumptions. To ease notation, from now on we refer
to the responses transformed by the utility function as the responses collected directly
from the patients. In this situation, the means and variances computed using all the
data at our disposal are taken as the true means and variancesof the populationsR and
W : mR = 1.503, mW = 1.996, σR = 0.518, σW = 0.760. Notice that, since the true
difference of the means∆ = mR−mW = −0.493 is negative,W is the best treatment.
We want to conduct a non-adaptive test and a response adaptive one that aim at deter-
mining the best treatment, in order to compare their performance.

Initially, we imagine to conduct a non-adaptive testT0 to compare the mean effects
of treatmentsR andW . We fix a significance levelα = 0.01, a minimum power
β0 = 0.95 for a standard difference of the means∆0 = 0.5. Then, we assume re-
sponses to treatmentsR andW are i.i.d random variables with distributionsµR and
µW , respectively. Moreover, we assume the laws are Gaussian:µR = N (mR, σ

2
R) and

µW = N (mW , σ
2
W ) (verified by empirical tools). The allocation proportion isset to

p0 = 0.468, the empirical one. With these parameters we can conduct a two-sided t-test
that requires a total ofn0 = 119 subjects,n0p0 = 56 allocated to treatmentR and
n0(1 − p0) = 63 allocated to treatmentW . To computen0 we have assumed known
variances. The power of this test computed in correspondence to the true difference of
the means isβT0(∆) = 0.945.
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Figure 3.8: The picture shows, for any∆ ∈ {−5,−3,−1,−0.5, 0.5, 1, 3, 5}, the boxplots of the number of
subjects allocated to the inferior treatment byT . In order to compute the boxplots, 1000 replications of the urn
process(Zk)k have been used. The red line represent the number of subject allocated to the inferior treatment
byT0, that in both cases isn0p0 = n0(1 − p0) = 53. Here, the case of different variances has been reported:
σ2
R = 1 andσ2

W = 4.

Now, consider the urn model presented in Section 2.1 to construct the adaptive testT .
T involves more subject in the experiment thanT0, in particularn = 1.25 · n0 = 148.
Nevertheless, since in practice variances are unknown,n0 andn should be computed
from the estimates of the variances. As a consequence, the total number of subjects
needed forT is random, because it depends on the variance estimation. For this reason,
we may have replications with different sample sizen.
We realize 500 replications of the urn procedure. Since the data at our disposal are
much more than the amount of data we need for each trial, by permutating the re-
sponses we can take at random different data with a differentorder in each replication.
In Figure 3.9, we represent 10 simulations of the urn proportion process(Zn)n.

As we can see from Figure 3.9, the urn process seems to target regionA, where param-
eterδ is set. This is becauseR is the worst treatment in this case. TestT has higher
power and assigns to treatmentR less patients thanT0. This is our goal, since we know
thatR is the worst treatment (mR < mW ).
For each one of the 500 replications we compute analyticallythe power at the true
difference of the means∆. In general, the power will be different for any simulation
because different is the number of subjects assigned to the treatments (NR andNW ).
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Figure 3.9: Black lines represent 10 replications of the urn proportionprocess(Zn)n. Each replication
uses responses taken at random from the data at our disposal.The proportion - sample size space
has been partitioned assuming the variances known.

In Figure 3.10 we show a boxplot with the 500 values of the power computed using the
urn model, to be compared with the power obtained withT0. Moreover, we show for
each simulation the number of subjects assigned to treatment R, to be compared with
the number of subjects assigned toR by T0.

From Figure 3.10, we notice that the urn design described in Section 2.1 allows us to
construct a testT with higher power thanT0. This occurs for more than 99% of the
replications, and the mean of the power computed overall theruns is

1

500

500∑

i=1

βT i(∆) = 0.975 > 0.945 = βT0(∆).

Even ifT needs a sample sizen larger thanT0, the number of subjects allocated to the
inferior treatmentR is less forT for the 52.6% of the runs. Besides, the mean of the
number of units assigned to treatmentR in all the runs is almost the same of the number
computed withT0

1

500

500∑

i=1

NRi = 56.43 ≃ 56 = n0 · p0.

In this chapter we have conducted an analysis on the statistical properties of tests that
aim at comparing the means of the responses to two treatments. Starting from any non-
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Figure 3.10: On the left: boxplot representing 500 values of power evaluated at the true difference
of the means∆ = −0.493 usingT : βT (∆). The red line represents the power obtained withT0:
βT0

(∆) = 0.945. On the right: boxplot representing 500 values of the numberof subjects assigned
to treatmentR byT : NR. The red line represents the number of subjects assigned to treatmentR by
T0: n0 · p0 = 56.

adaptive testT0, we pointed out the features of an adaptive testT performing better
thanT0. Since the framework here is represented by clinical trials, this goal is achieved
whenT has (a) higher power and (b) assigns to the inferior treatment less subjects than
T0. We investigated this task by individuating in theproportion - sample sizespace the
subregions associated to testsT performing better thanT0.
The testT can be implemented by adopting a response adaptive design. We propose
an urn procedure (MRRU) that is able to target a fixed allocation proportion in (0,1).
Thanks to this property, the urn model can individuate the testT in different regions de-
pending on which is the inferior treatment, and both goals (a)-(b) can be accomplished.
We showed that the assumption of normal responses and known variances can be re-
laxed and the procedure to partition theproportion - sample sizespace and to detect the
testT still holds. We reported simulations and a case study that highlight the goodness
of the procedure.
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CHAPTER4

Rate of convergence of urn process to asymptotic
proportion

In this chapter we focus on the asymptotic behavior of the urnprocess(Zn)n∈N in
the MRRU model ( [27]). In Theorem 4.2.2 we prove that the rateof convergence
of the process(Zn)n∈N to its limit is 1/n. This asymptotic result has been achieved
after defining a particular Markov process denoted(T̃n)n∈N, based on the quantities
that rule the urn process. The study of stochastic properties of the process̃Tn (see
Section 4.1) has been crucial for proving Theorem 4.2.2. Moreover, Theorem 4.2.2
shows that the sequencen(η − Zn) converges in distribution to a real random variable,
whose probability law is related to the unique invariant distribution π of the process
(T̃n)n∈N.
Section 4.3 is dedicated to the inferential aspects concerning the MRRU design. We
deal with a classical hypothesis test comparing the null hypothesis that reinforcement
means are equal (mR = mW ) and the one-side alternative hypothesis (mR > mW ). We
consider different statistical tests, based either on adaptive estimators of the unknown
means or on the urn proportion. We compare statistical properties of tests based on
RRU design and tests based on the MRRU design.
In Section 4.4 we illustrate some simulations studies on theprobability distributionπ
and on the statistical properties of the tests described in Section 4.3.

To prove the results shown in this chapter, we need a further assumption on the rein-
forcement distributions

Assumption 4.0.1. At least one of these two conditions is satisfied:

(a) there exists a closed interval[a0, b0] ⊂ [a, b] such that,∀ x ∈ [a0, b0], the measure
µW is absolutely continuous with respect the Lebesgue measureand the derivative
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is strictly positive, i.e.∃ µW (dx)
dx

> 0

(b) there exists a closed interval[a0, b0] ⊂ [a, b] such that,∀ x ∈ [a0, b0], the measure
µR is absolutely continuous with respect the Lebesgue measureand the derivative
is strictly positive, i.e.∃ µR(dx)

dx
> 0

Without loss of generality, Condition (a) will be considered true through all this chapter.

In this chapter, we aim at studying the asymptotic behavior of the quantityn · (η −
Zn). To do this, let us introduce a new real stochastic process(Tn)n∈N, whose features
depend on the random variables ruling the urn process:
{

T0 = ηW0 − (1− η)R0

Tn+1 = Tn + η(1−Xn+1) Nn+1 − (1− η)Xn+1 Mn+1 1{Zn<η}

(4.1)

∀n ∈ N. Let us note that

n · (η − Zn) =
n(η − Zn)Dn

Dn
=

ηWn − (1− η)Rn

Dn

n

=
Tn
Dn

n

(4.2)

whereTn = ηWn − (1− η)Rn satisfies the iterative equations in (4.1).
The process(Zn, Tn)n∈N is an homogeneous Markov sequence. Then, there exists the
transition probability kernelK for the processTn such that for any(z0, t0) ∈ (0, η]×
[0,∞) ∪ (η, 1)× (−∞, 0) and for anyA ⊂ R

P ( Tn+1 ∈ A | (Zn, Tn) = (z0, t0) ) =

∫

A

Kz0(t0, dt)

The analytic form of the transition probability kernel is the following

Kz0(t0, dt) = z0 µR

(
d

(
t0 − t

1− η

))
1{z0<η ∧ t<t0} + z0 δt0(t) 1{z0>η}

+ (1− z0) µW

(
d

(
t− t0
η

))
1{t>t0}

(4.3)

If the probability measuresµR andµW are absolutely continuous with respect to the
Lebesgue measure, we can write as well

• µR

(
d
(

t0−t
1−η

))
= fR

(
t0−t
1−η

)
1

1−η
dt

• µW

(
d
(

t−t0
η

))
= fW

(
t−t0
η

)
1
η
dt

wherefR(·) andfW (·) are the Radon Nikodym derivatives of the measuresµR andµW

with respect to the Lebesge measure.

4.1 An Harris Chain to study the rate of convergence of urn model

Since the marginal processTn needs to be coupled with the processZn to have a Markov
bivariate process (Tn, Zn), the application of many results on Markov processes in the
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case of continuous state space it’s not straightforward. Then, we define a new auxiliary
processT̃n strictly related toTn, in this way:
{

T̃0 = ηW0 − (1− η)R0

T̃n+1 = T̃n + η(1− X̃n+1) Nn+1 − (1− η)X̃n+1 Mn+1 1{T̃n>0}

(4.4)

∀n ∈ N, where(X̃n)n∈N are i.i.d. Bernoulli random variables of parameterη inde-
pendent of the sequences(Mn)n∈N and(Nn)n∈N. It’s easy to see that̃Tn is a Markov
process. In fact, the transition kernelKη of T̃n is independent of the quantityz0

Kη(t0, dt) = η µR

(
d

(
t0 − t

1− η

))
1{t0>0 ∧ t<t0} + η δt0(t) 1{t0<0}

+ (1− η) µW

(
d

(
t− t0
η

))
1{t>t0}

(4.5)

Here, we show that the Markov processT̃n is an aperiodic recurrent Harris chain. This
result will be used in Section 4.2 to investigate the asymptotic behavior of the process
Tn, and then obtaining the rate of convergence of the urn processZn.
At first, we need a lemma on the dynamic of the processT̃n

Lemma 4.1.1. For anyt0 ∈ R, there exists̄t > t0 such that

∀ t > t̄, ∀ ǫ > 0, P

(
∞⋃

k=1

{
T̃k ∈ [t, t+ ǫ]

}
| T̃0 = t0

)
> 0 (4.6)

Proof. Let us takea1, b1 ∈ R+ such thata0 < a1 < b1 < b0. At first, notice that if
t ∈ (t0 + a1η, t0 + b1η), then

P
(
T̃1 ∈ (t, t + dt) | T̃0 = t0

)
= (1− η) µW

(
d

(
t− t0
η

))
> 0

sincet−t0
η

∈ (a1, b1).
For the same reason, for anyk ∈ N, we have that ift ∈ (t0 + kaη, t0 + kbη), then

P
(
T̃k ∈ (t, t + dt) | T̃0 = t0

)
≥ (1− η)k µW

(
d

(
t− t0
kη

))k

> 0

Let us introduce the sequence of sets(Ak)k such that

Ak =





( t0 + (k − 1)b1η , t0 + ka1η ) if k < b1
b1−a1

,

∅ otherwise.

for k ≥ 1. Then, for anyn ∈ N, we have that if

t ∈ ( t0 , t0 + nb1η ) /
n⋃

k=1

Ak,
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then

t ∈
n⋃

k=1

( t0 + ka1η , t0 + kb1η ),

and

P

(
n⋃

k=1

{T̃k ∈ (t, t + dt)} | T̃0 = t0

)
≥ (1− η)n0 µW

(
d

(
t− t0
n0η

))n0

> 0,

where we choose

n0 =

[
t− t0
b1η

]
+ 1

Therefore, a sufficient condition forP
(⋃∞

k=1

{
T̃k ∈ [t, t+ ǫ]

}
|T̃0 = t0

)
> 0 is

t ∈ (t0,∞) /

[
b1

b1−a1
]⋃

k=1

( t0 + (k − 1)b1η , t0 + ka1η ),

so the thesis holds for anȳt ≥ t0 +
[

b
b−a1

]
a1η.

Now, we can use Lemma 4.1.1 to show thatT̃ = (T̃n)n∈N is a Harris Chain.

Proposition 4.1.2. The Markov process̃T = (T̃n)n∈N on the state spaceR is a Harris
Chain.

Proof. Let us start reminding that the Markov processT̃n on the state spaceR is a
Harris chainif there existA,B ⊂ R, a constantǫ > 0 and a probability measureρ with
ρ(B) = 1, such that

(a) If τA := inf{n ≥ 0 : T̃n ∈ A}, thenP (τA <∞ | T̃0 = t0) > 0 for anyt0 ∈ R.

(b) If t0 ∈ A andC ⊂ B, thenKη(t0, C) ≥ ǫρ(C).

Let us prove the condition (a). LetA = [0, (b1 − a1)η].

• First case:t0 ∈ [0, (b1 − a1)η]

The condition (a) is trivial, sinceP (τA = 0 | T̃0 = t0 ∈ A) = 1.

• Second case:t0 > (b1 − a1)η

We fix t̄ ≥ t0 +
[

b1
b1−a1

]
aη and we definēn ∈ N, I ⊂ R as follows

n̄ =

[
t̄

(1− η)x0

]
+ 1,

I = [ n̄(1− η)x0 , n̄(1− η)x0 + (b1 − a1)η ] ,
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wherex0 ∈ [a, b] is chosen such that, for everyǫ > 0, µR([x0, x0 + ǫ]) > 0.
Fixing t̃ ∈ I, we have from the previous lemma that for everyζ > 0

P

(
∞⋃

k=1

{
T̃k ∈ [t̃, t̃+ ζ ]

}
| T̃0 = t0

)
> 0,

sincet̃ ≥ n̄(1− η)x0 ≥ t̄. Then, let fixζ small enough, such thatt̃+ ζ ∈ I. Let

ñ := inf

{
n ≥ 1 : P

(
n⋃

k=1

{
T̃k ∈ [t̃, t̃+ ζ ]

}
| T̃0 = t0 > (b1 − a1)η

)
> 0

}

We can write

P ( τA <∞ | T̃0 = t0 ) ≥ P ( T̃ñ+n̄ ∈ (0, (b1 − a1)η) | T̃0 = t0 ) ≥
P ( T̃ñ+n̄ ∈ (0, (b1 − a1)η) | T̃ñ ∈ [t̃, t̃+ ζ ] ) · P ( T̃ñ ∈ [t̃, t̃+ ζ ] | T̃0 = t0 )

We have already proved that the second term of this product isstrictly positive, so we
focus on the first term. Let us call

t̃min := arg min
t∈[t̃,t̃+ζ]

P ( T̃ñ+n̄ ∈ (0, (b1 − a1)η) | T̃ñ = t )

we have

P ( T̃ñ+n̄ ∈ (0, (b1 − a1)η) | T̃ñ ∈ [t̃, t̃+ ζ ] ) ≥ P ( T̃ñ+n̄ ∈ (0, (b1 − a1)η) | T̃ñ = t̃min ) ≥
n̄∏

s=1

Kη

(
t̃min − (s− 1)(1− η)x0 , [t̃min − s(1− η)x0; t̃min − s(1− η)x0 + dt]

)
=

( η · µR(dx0) )
n̄ > 0

becausẽtmin − n̄(1− η)x0 ∈ (0, (b1 − a1)η).

• Third case:t0 < 0

We fix t̄ ≥ max
{
t0 +

[
b1

b1−a1

]
a1η ; 0

}
and then we follow the same strategy used

in the second case (t0 > (b1 − a1)η).

Let us prove the condition (b) Let

B = [ (b1 − a1 + a0)η , b0η ] ⊂ R

and the probability measure

ρ(C) =
1

(b0 − b1 + a1 − a0)η

∫

C

dt

for any setC ⊂ B. For everyt0 ∈ A,

Kη(t0, C) ≥
∫

C

(1−η) µW

(
d

(
t− t0
η

))
≥ (1−η)

∫

C

min
(t0,t)∈A×B



µW

(
d
(

t−t0
η

))

dt


 dt
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

= (1− η)

∫

C

min
x∈(a0,b0)

[
µW (dx)

dx

]
dt

Now if we define

ǫ = (b0 − b1 + a1 − a0)η(1− η) min
x∈(a0,b0)

[
µW (dx)

dx

]

we obtain

Kη(t0, C) ≥ ǫ · 1

(b0 − b1 + a1 − a0)η

∫

C

dt = ǫ · ρ(C)

Now we dedicate on proving the recurrence of the processT̃n.
In what follows, for any intervalI ⊂ R, we will refer to (τ Ii )i as the sequence of
stopping times {

τ I0 = 0

τ Ii := inf
{
n > τ Ii−1 : T̃n ∈ I

}
, i ≥ 1

For ease of notation, we will denoteτ I asτ I1 .

Proposition 4.1.3. The Harris chainT̃ = (T̃n)n∈N on the state spaceR is recurrent .

Proof. Let us remind that̃Tn is recurrent ifP (τA < ∞ | T̃0 ∈ A) = 1, for any initial
probability distributioñλ0, whereτA := inf{n ≥ 1 : T̃n ∈ A}. In particular, we are
able to prove a stronger property, that isP (τA < ∞ | T̃0 = t0) = 1 for any t0 ∈ R,
which implies the condition we need.

Let

• I be the closed interval defined as

I := [−(1− η)b, 0],

• c be the constant defined as

c := min
t∈I

P
(
τA <∞ | T̃0 = t

)

c is strictly positive because, the processT̃n is an Harris chain and soP (τA <
∞ | T̃0 = t0) > 0 ∀t0 ∈ R,

• ñ be the integer defined as

ñ := inf

{
n ≥ 1 : min

x∈I
P

(
ñ⋃

k=1

{T̃k ∈ A} | T̃0 = x

)
≥ c

2

}

Now, we focus on proving that the stopping times(τ Ii )i are almost surely finite:

P
(
τ I = ∞ | T̃0 = t0

)
= 0 (4.7)
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4.1. An Harris Chain to study the rate of convergence of urn mo del

(a) First case:t0 ∈ (0,∞)

Looking at the transition kernels (4.3) and (4.5) of the processesTn andT̃n respectively,
we note that for anyt0 ∈ (0,∞), P (T̃1 ≤ T1 | T̃0 = T0 = t0) = 1. This implies that

P (T̃1 > 0 | T̃0 = t0) ≤ P (T1 > 0 | T0 = t0) (4.8)

Then, we have that

P
(
τ I = ∞ | T̃0 = t0

)
= P

(
τ (−∞,0) = ∞ | T̃0 = t0

)
=

P

(
∞⋂

n=1

{
T̃n > 0

}
| T̃0 = t0

)
≤ P

(
∞⋂

n=1

{Tn > 0} | T0 = t0

)
= 0

where the passage from̃Tn to Tn is due to the relation (4.8) and the latest probability is
equal to zero becauseP (Tn < 0 i.o. | T0 = t0) = P (Zn > η i.o. | T0 = t0) = 1 for
anyt0 ∈ R.

(b) Second case:t0 ∈ (−∞, 0]

Looking at the transition kernels (4.3) and (4.5) we have that for anyt0 ∈ (−∞, 0],

P (T̃1 < 0 | T̃0 = t0) ≤ P (T1 < 0 | T0 = t0) (4.9)

and following the same arguments of the case (a) this leads to

P
(
τ (0,∞) = ∞ | T̃0 = t0

)
= 0 (4.10)

Hence, we have

P
(
τ I = ∞ | T̃0 = t0

)
=

P
(
τ I = ∞ | {τ (0,∞) <∞}

⋂
{T̃0 = t0}

)
=

P

(
∞⋂

n=1

{T̃n /∈ I} | {τ (0,∞) <∞}
⋂

{T̃0 = t0}
)

≤

P




∞⋂

n=τ (0,∞)+1

{T̃n /∈ I} | {τ (0,∞) <∞}
⋂

{T̃0 = t0}


 ≤

sup
x∈(0,∞)

P

(
∞⋂

n=1

{T̃n /∈ I} | T̃0 = x

)
=

sup
x∈(0,∞)

P
(
τ I = ∞ | T̃0 = x

)
= 0

since from the case (a) we have that∀t0 > 0, P (τ I = ∞ | T̃0 = t0) = 0. Therefore,
we conclude thatP (

⋂∞
i=1 τ

I
i < ∞ | T̃0 = t0) = 1, which means(τ Ii )i is sequence of

stopping times almost surely finite.
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

Then, let us define the sequence of stopping times

{
τ0 = 0

τi := inf
{
n > τi−1 + ñ : T̃n ∈ I

}
, i ≥ 1

Since
⋃∞

n=1 τn ⊂ ⋃∞
n=1 τ

I
n , the stopping times(τn, n = 0, 1, 2, ..) are almost surely

finite.
Therefore, for anyt0 ∈ R we have that

P
(
τA = ∞ | T̃0 = t0

)
= P

(
∞⋂

n=1

{Tn /∈ A} | T̃0 = t0

)
≤

P

(
∞⋂

i=0

τi+ñ⋂

n=τi+1

{T̃n /∈ A} | T̃0 = t0

)
=

∞∏

i=1

P




τi+ñ⋂

n=τi+1

{T̃n /∈ A} |
i−1⋂

j=0

τj+ñ⋂

n=τj+1

{T̃n /∈ A}


 =

∞∏

i=1


1− P




τi+ñ⋃

n=τi+1

{T̃n ∈ A} |
i−1⋂

j=0

τj+ñ⋂

n=τj+1

{T̃n /∈ A}




 =

∞∏

i=1


1−

∫

I

P

(
τi+ñ⋃

n=τi+1

{T̃n ∈ A} | T̃τi = x

)
P


T̃τi = dx |

i−1⋂

j=0

τj+ñ⋂

n=τj+1

{T̃n /∈ A}




 =

∞∏

i=1


1−

∫

I

P

(
ñ⋃

n=1

{T̃n ∈ A} | T̃0 = x

)
P


T̃τi = dx |

i−1⋂

j=0

τj+ñ⋂

n=τj+1

{T̃n /∈ A}




 ≤

∞∏

i=1

[
1−min

x∈I
P

(
n̄⋃

n=1

{T̃n ∈ A} | T̃0 = x

)]
≤

∞∏

i=1

[
1− c

2

]
= 0

and so the thesis is proved.

Finally, we show the aperiodicity of the processT̃n

Proposition 4.1.4. The recurrent Harris ChaiñT = (T̃n)n∈N on the state spaceR is
aperiodic.

Proof. The recurrent Harris chaiñTn is aperiodic if there existsn0 ∈ N such that
P (T̃n ∈ A | T̃0 ∈ A) > 0, for any integern ≥ n0 and for any distribution law̃λ0 on T̃0.
Let define the stopping timeτA

−

1 as follows

τA
−

:= inf
{
n > τ (−∞,0) : T̃n ∈ A

}
(4.11)
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4.2. Rate of convergence

This stopping time is almost surely finite. In fact, sinceP (τ (−∞,0) < ∞|T̃0 = t0) = 1
for anyt0 ∈ R, we have that

P
(
τA

−

<∞ | T̃0 ∈ A
)

= P
(
τA

−

<∞ | {τ (−∞,0) <∞}
⋂

{T̃0 ∈ A}
)

=

P

(
∞⋃

n=τ (−∞,0)

{T̃n ∈ A} | {τ (−∞,0) <∞}
⋂

{T̃0 ∈ A}
)

≥

min
x∈(−∞,0)

P

(
∞⋃

n=0

{T̃n ∈ A} | T̃0 = x

)
= min

x∈(−∞,0)
P
(
τA <∞ | T̃0 = x

)
= 1

Hence, there existsn0 ∈ N such thatP (τA
−
= n0 | T̃0 ∈ A) > 0. We notice also that

P
(
T̃n0 ∈ A | T̃0 ∈ A

)
≥ P

(
{T̃n0 ∈ A}

⋂
{τA−

= n0} | T̃0 ∈ A
)

=

P
(
T̃n0 ∈ A | {τA−

= n0}
⋂

{T̃0 ∈ A}
)

· P
(
τA

−

= n0 | T̃0 ∈ A
)

=

P
(
T̃τA− ∈ A | T̃0 ∈ A

)
· P

(
τA

−

= n0 | T̃0 ∈ A
)

= P
(
τA

−

= n0 | T̃0 ∈ A
)
> 0

Then, for everyn ≥ n0, we have

P
(
T̃n ∈ A | T̃0 ∈ A

)
≥ P

(
τA

−

= n | T̃0 ∈ A
)

≥ ηn−n0 ·P
(
τA

−

= n0 | T̃0 ∈ A
)
> 0

and so the thesis is proved.

4.2 Rate of convergence

In the previous section, we have proved that under Assumption 4.0.1, the Markov pro-
cessT̃n is an aperiodic recurrent Harris chain. So, we can state the following

Proposition 4.2.1. Let us callπ the stationary distribution of the recurrent aperiodic
Harris ChainT̃ = (T̃n)n∈N. Then, for everyt0 ∈ R, we have that

lim
n→∞

sup
C∈B(R)

| P (T̃n ∈ C | T̃0 = t0) − π(C) | = 0 (4.12)

Proof. The Markov process̃Tn is a recurrent aperiodic Harris Chain. This result implies
that there exists a unique invariant distribution probability π and (4.12) holds for anyt0
such that

P ( τA <∞ | T̃0 = t0 ) = 1 (4.13)

whereτA is defined as follows

τA =

{
inf{n ≥ 0 : T̃n ∈ A} if {n ≥ 0 : T̃n ∈ A} 6= ∅;
∞ otherwise.

The thesis is proved since (4.13) holds for anyt0 ∈ R.

Now, we can state the main result
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

Theorem 4.2.2. For any initial composition(r0, w0) ∈ (0,∞)× (0,∞), we have that

n · (η − Zn)
D−→ ψ

mW
(4.14)

whereψ is a real random variable with probability distributionπ.

Proof. Using equation (4.2), Proposition 2.4.2 and Slutsky’s theorem we have that it’s

sufficient to prove thatTn
D→ ψ, whereψ is a real random variable with probability

distributionπ.

Our aim is to prove that, for anyt0 ∈ (−(1 − η)d0, ηd0) (physical bound because
z0 ∈ (0, 1) andt0 = d0(η − z0)),

lim
n→∞

sup
C∈B(R)

| P (Tn ∈ C | T0 = t0) − π(C) | = 0. (4.15)

To do that, we will prove the following

lim
n→∞

sup
C∈B(R)

| P (Tn ∈ C | T0 = t0) −
∫

R

Kη(t, C)P (Tn = dt | T0 = t0) | = 0 (4.16)

since we can show that (4.16) implies (4.15). The proof is so composed by two parts,
(a) and (b). Part (a) is dedicated to prove that (4.16) implies (4.15), while in Part (b) we
prove (4.16).

Part (a):
Let us denote withpn the probability law ofTn, conditionally to{T0 = t0}. Then, the
goal of Theorem 4.2.2, that is shown in (4.15), can be rewritten as follows

sup
C∈B(R)

|
∫

C

(pn(dx)− π(dx))| →n 0.

Now, let us denote withH the operator defined as follows

H(t, ds) := 1ds(t)−Kη(t, ds)

Then, expression (4.16) can be rewritten as follows

sup
C∈B(R)

|
∫

C

∫

R

H(t, ds)pn(dt)| →n 0.

Roughly speaking, this means that the sequence of measurespn is progressively closer
to the kernel of the operatorH. Formally, we can say there exists a sequence of mea-
sures(θn)n such that

• supC∈B(R) |
∫
C
(pn(dx)− θn(dx))| →n 0,

•
∫
R
H(t, ds)θn(dt) = 0.

Notice that, sinceπ is the unique probability distribution such thatπ(C) =
∫
R
Kη(t, C)π(dt)

for any C ∈ B(R). Henceπ is the only measure such that
∫
R
H(t, ds)π(dt) = 0
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4.2. Rate of convergence

(π ∈ Ker(H)) and
∫
R
π(ds) = 1. As a consequence, since

∫
R
pn(ds) = 1 ∀n, θn ≡ π

∀n.
Then, we have shown that (4.16) implies (4.15).

Part (b):
To prove (4.16), we are going to define some quantities.
For anyt0 and for anyC ∈ B(R), let us define

Fn(t0, C) :=

∫

R

fn(t, C)P (Tn = dt|T0 = t0) (4.17)

where
fn(t, C) := P (Tn+1 ∈ C|Tn = t)− P (T̃n+1 ∈ C|T̃n = t). (4.18)

With these two quantities, we can write

P (Tn+1 ∈ C|T0 = t0) =

∫

R

P (Tn+1 ∈ C|Tn = t)P (Tn = dt|T0 = t0)

=

∫

R

P (T̃n+1 ∈ C|T̃n = t)P (Tn = dt|T0 = t0)

+

∫

R

fn(t, C)P (Tn = dt|T0 = t0)

=

∫

R

Kη(t, C)P (Tn = dt|T0 = t0)

+ Fn(t0, C)

Now, if we define

νn(t0, C) := P (Tn+1 ∈ C|T0 = t0)− (Tn ∈ C|T0 = t0). (4.19)

we can use this and the previous decomposition ofP (Tn+1 ∈ C|T0 = t0), to obtain

sup
C∈B(R)

| P (Tn ∈ C|T0 = t0)−
∫

R

Kη(t, C)P (Tn = dt|T0 = t0) |

≤ sup
C∈B(R)

|Fn(t0, C)|+ |νn(t0, C)|

≤ Fn(t0) + νn(t0).

The thesis is get since in Lemma 4.2.3 and 4.2.4 we show that, for any admissiblet0,
supCFn(t0, C) andsupCνn(t0, C) tend to zero asn goes to infinity.

The first lemma deals with the quantitiesFn(t0, C) andfn(t, C) defined in the proof
of Theorem 4.2.2. The goal is to showsupC |Fn(t0, C)| ≤ Fn(t0), whereFn(t0) is a
sequence independent ofC and that tends to zero for any fixedt0.

Lemma 4.2.3. Consider the sequenceFn(t0, C) defined in(4.17). Then, there exists a
sequenceFn(t0) such thatsupC |Fn(t0, C)| ≤ Fn(t0) for anyn, andFn(t0) →n 0 for
any fixedt0.
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

Proof. At first, let us consider the termfn(t0, C) defined in (4.18). We have that

|fn(t0, C)| = | P (Tn+1 ∈ C|Tn = t0) − P (T̃n+1 ∈ C|T̃n = t0) |

= |
∫

C

( ∫ 1

0

Kz(t0, dt)P (Zn = dz|Tn = t0) − Kη(t0, dt)

)
|

= |
∫

C

( ∫ 1

0

(Kz(t0, dt)−Kη(t0, dt))P (Zn = dz|Tn = t0)

)
|

= |
∫

C

( ∫ 1

0

(z − η) ×
(
µR

(
d

(
t0 − t

1− η

))
1{t0>0 ∧ t<t0}

+ δt0(t) 1{t0<0} − µW

(
d

(
t− t0
η

))
1{t>t0}

)
P (Zn = dz|Tn = t0)

)
|

≤
( ∫ 1

0

|z − η| P (Zn = dz|Tn = t0)

)
× 2 ·

∫

C

K1/2(t0, dt)

≤ 2 × E [ |Zn − η| | Tn = t0 ]

that is independent of the setC.
Now, let us consider the termFn(t0, C). Let us take a sequence(tn)n, ti ∈ (0,∞)∀i,
such thattn → ∞ andtn/n→ 0. Then, we have that

|Fn(t0, C)| = |
∫

R

fn(t, C)P (Tn = dt|T0 = t0) |

≤ 2

∫

R

E[|Zn − η||Tn = t]P (Tn = dt|T0 = t0)

= 2

∫

{Tn>tn}

E[|Zn − η||Tn = t]P (Tn = dt|T0 = t0)

+ 2

∫

{Tn≤tn}

E[|Zn − η||Tn = t]P (Tn = dt|T0 = t0)

≤ 2P (Tn > tn|T0 = t0) + 2E[|Zn − η||Tn = tn]

= 2P (Tn > tn|T0 = t0) + 2E[|Zn − η||Dn(η − Zn) = tn]

The second term tends to zero becauseDn/n converge almost surely and inL1 to a
constant.
Let us focus on the first term. To deal with that, notice that ifTn > tn, then

⋂n
i=n−[tn/b]

{Ti >
0}. Let us introduce the stopping time

τ =

{
inf{ n ≥ 1 | Zn > η } if 6= ∅;
∞ otherwise.
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representing the first timeZn > η (i.e. Tn < 0). Then, we have

P (Tn > tn|T0 = t0) ≤ P




n−[tn/b]⋃

j=0

{
{Tj < 0}

n⋂

i=j+1

{Ti > 0}
}

| T0 = t0




≤
n−[tn/b]∑

j=0

P

(
{Tj < 0}

n⋂

i=j+1

{Ti > 0} | T0 = t0

)

≤
n−[tn/b]∑

j=0

P

(
n⋂

i=j+1

{Ti > 0} | T0 = t0
⋂

{Tj < 0}
)

=

n−[tn/b]∑

j=0

P

(
n⋂

i=j+1

{Zi < η} | T0 = t0
⋂

{Zj > η}
)

≤
n−[tn/b]∑

j=0

P ( τ > n− j | (Z0, D0) = (η, d0) )

=

n∑

i=[tn/b]

P ( τ > i | (Z0, D0) = (η, d0) ) →n 0

sinceE[τ |Z0 = z0] <∞ for anyz0 ∈ (0, 1) (see Lemma 4.2.5).
Therefore, we have that

|
∫

R

fn(t, C)P (Tn = dt|T0 = t0)| = |Fn(t0, C)| ≤ Fn(t0) → 0

since the limit is independent ofC.

The second lemma deals with the quantityνn(t0, C) defined in the proof of Theo-
rem 4.2.2. The goal is to showsupC |νn(t0, C)| ≤ νn(t0), whereνn(t0) is a sequence
independent ofC and that tends to zero for any fixedt0.

Lemma 4.2.4. Consider the sequenceνn(t0, C) defined in(4.19). Then, there exists a
sequenceνn(t0) such thatsupC |νn(t0, C)| ≤ νn(t0) for anyn, andνn(t0) →n 0 for any
fixedt0.

Proof. Let us fixǫ > 0. We show that there existsN = N(ǫ, t0) ∈ N (N independent
of C) such that

|P (Tn+1 ∈ C|T0 = t0)− (Tn ∈ C|T0 = t0)| < ǫ

for anyn ≥ N .

Let us fixǫ1 = ǫ2 = ǫ3 = ǫ4 = ǫ/4.
Let us denoteI := [−b(1 − η), 0].
Let us take an integerN2, such that

sup
t0∈I

sup
C∈B(R)

| P (T̃k+1 ∈ C|T̃0 = t0) − P (T̃k ∈ C|T̃0 = t0) | < ǫ1
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

for anyk ≥ N2. The existence ofN2 is guaranteed by (4.12).
Then, let us take an integerN1 ≥ N2, such that

sup
t0∈I

∞∑

j=1

P ( τ > N1 −N2 + j | T0 = t0 ) < ǫ2

whereτ was the first timeZn > η (Tn < 0). The existence ofN1 is guaranteed once
we note thatP (τ > k|T0 = t0) ≤ P (τ > k|(Z0, D0) = (η, d0)) for anyt0 ∈ I, and

∞∑

j=1

P (τ > j|(Z0, D0) = (η, d0)) = E[ τ |(Z0, D0) = (η, d0)] < ∞

from Lemma 4.2.5.

Let us define for anyn ≥ N1 a stopping timeτn ∈ N, such that

τn =

{
inf{ n−N1 ≤ k ≤ n−N2 | Tk ∈ I } if 6= ∅;
∞ otherwise.

Notice that, for anyt0,

P (τn = ∞|T0 = t0) = P

(
n−N2⋂

j=1

{Tj /∈ I}|T0 = t0

)

+ P

({
n−N1−1⋃

j=1

{Tj ∈ I}
}⋂ n−N2⋂

j=n−N1

{Tj /∈ I}|T0 = t0

)

It is easy to show that the first term tends to zero, sinceP (Tn ∈ I, i.o.) = 1. Then, we
can fixN3 ∈ N such that, for anyn ≥ N3, it is less thenǫ3.
Now, take the second term, we have

= P

(
n−N1⋃

j=1

{Tj ∈ I}
n−N2⋂

i=j+1

{Ti /∈ I}|T0 = t0

)

≤
n−N1∑

j=1

P

(
{Tj ∈ I}

n−N2⋂

i=j+1

{Ti /∈ I}|T0 = t0

)

≤
n−N1∑

j=1

P

(
n−N2⋂

i=j+1

{Ti /∈ I}|{T0 = t0}
⋂

{Tj ∈ I}
)

≤ sup
t0∈I

n−N1∑

j=1

P (τ > N1 −N2 + j|T0 = t0) < ǫ2

Then, we can say that, for anyn ≥ max{N1;N3}

P (τn = ∞|T̃0 = t0) < ǫ3 + ǫ2
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4.2. Rate of convergence

Now, putting together all the results we obtain

|νn(t0, C)| ≤ sup
C∈B(R)

| P (Tn+1 ∈ C|T0 = t0) − P (Tn ∈ C|T0 = t0) |

≤ sup
C∈B(R)

N1∑

k=N2

∣∣∣ P (Tn+1 ∈ C|τn = n− k
⋂

T0 = t0)

− P (Tn ∈ C|τn = n− k
⋂

T0 = t0)
∣∣∣ × P (τn = n− k|T̃0 = t0)

+ P (τn = ∞|T̃0 = t0)

Notice that, sinceZn → η a.s., the transition kernels of the processesT andT̃ become
closer asn increases, i.e.KZn(t0, C) → Kη(t0, C) a.s. This means that, for any fixed
k ∈ N and for anyt0

lim
n→∞

sup
C∈B(R)

| P (Tn+k ∈ C|Tn = t0) − P (T̃k ∈ C|T̃0 = t0) | = 0

For this reason and because of the closeness of the intervalI = [−b(1 − η), 0], we can
fix an integerN4 ∈ N such that

sup
t∈I

sup
C∈B(R)

| P (Tn+k ∈ C|Tn = t) − P (T̃k ∈ C|T̃0 = t) | < ǫ4/2

for anyk ≤ N1 and for anyn ≥ N4.
Then, for anyn ≥ max{N1;N3;N4}, we have that

|νn(t0, C)| ≤ sup
C∈B(R)

| P (Tn+1 ∈ C|T0 = t0) − P (Tn ∈ C|T0 = t0) |

≤ sup
t∈I

sup
C∈B(R)

N1∑

k=N2

∣∣∣ P (T̃n+1 ∈ C|T̃n−k = t)

− P (T̃n ∈ C|T̃n−k = t)
∣∣∣ × P (τn = n− k|T̃0 = t0)

+

N1∑

k=N2

ǫ4 × P (τn = n− k|T0 = t0)

+ P (τn = ∞|T̃0 = t0)

≤ sup
t∈I

sup
C∈B(R)

N1∑

k=N2

∣∣∣ P (T̃k+1 ∈ C|T̃0 = t)

− P (T̃k ∈ C|T̃0 = t)
∣∣∣ × P (τn = n− k|T0 = t0)

+ ǫ4 + ǫ3 + ǫ2

≤
N1∑

k=N2

ǫ1 × P (τn = n− k|T̃0 = t0) + ǫ4 + ǫ3 + ǫ2

≤ ǫ1 + ǫ4 + ǫ3 + ǫ2 = ǫ

For the arbitrary ofǫ, we have that

lim
n→∞

sup
C∈B(R)

| P (Tn+1 ∈ C|T0 = t0) − P (Tn ∈ C|T0 = t0) | = 0
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

for anyt0.

Here, we present a lemma that provides a result, concerning the first time the urn pro-
cess goes aboveη, that is used in Lemma 4.2.4. Let us denote withτ this stopping time,
i.e.

τ =

{
inf{ n ≥ 1 | Zn > η } if 6= ∅;
∞ otherwise.

then we state the following

Lemma 4.2.5. For anyz0 ∈ (0, 1) andd0 ∈ (0,∞), we have that

E[ τ | (Z0, D0) = (z0, d0) ] < ∞

Proof. At first, notice that, for any0 < x < η < y < 1 andd0 > 0, E[τ |(Z0, D0) =
(y, d0)] ≤ E[τ |(Z0, D0) = (x, d0)]. Then, consider0 < z0 < η andd0 > 0, we have
that

E[τ |(Z0, D0) = (z0, d0)] =

∞∑

n=1

P (τ > n|(Z0, D0) = (z0, d0))

=

∞∑

n=1

P

(
sup
j≤n

Zj < η|(Z0, D0) = (z0, d0)

)

<∞

This is a well known result from the branching process theory( [6]).

4.3 Testing hypothesis

In this section we focus on the inferential aspects concerning the MRRU design. Let us
introduce the classical hypothesis test aiming at comparing the means of two distribu-
tionsµR, µW

H0 : mR −mW = 0 vs H1 : mR −mW > 0. (4.20)

We approach to the statistical problem (4.20) considering first a no-adaptive design,
and then the MRRU model. Let(Mn)n∈N and(Nn)n∈N be i.i.d. sequences of random
variables with distributionµR andµW , respectively. For a fixed design with sample
sizesnR andnW , the usual test statistics is

ζ0 =
MnR

−NnW√
s2R
nR

+
s2W
nW

(4.21)

whereMnR
andNnW

are the sample means ands2R ands2W are consistent estimators
of the variances. When the no-adaptive design allows both the sample sizesnR andnW

goes to infinity, by the central limit theorem we have that, under the null hypothesis,
ζ0 converges in distribution to a standard normal variable. Then, fixing a significance
levelα ∈ (0, 1), we define

Rα = {ζ0 > zα} (4.22)
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4.3. Testing hypothesis

as the critical region asymptotically of levelα, with zα as theα-percentage point of the
standard Gaussian distribution. Now, let us assume that therate of divergence of the
sample sizes is such thatnR

nR+nW
→ η, for someη ∈ (0, 1). Then, the power of the test

defined in (4.22) can be approximated, for largenR andnW , as

P


 Z +

√
n
mR −mW√

σ2
R

η
+

σ2
W

1−η

> zα


 , (4.23)

whereZ is a Gaussian standard random variable.

Now, let us consider an adaptive design described in term of an urn model. Let us de-
noteNR(n) andNW (n) as the sample sizes after the firstsn draws,M(n) andN(n) the
corresponding sample means ands2R(n) ands2W (n) the adaptive consistent estimators.
Plugging in (4.21) the corresponding adaptive quantities,we obtain the statistics

ζ0(n) =
M(n)−N(n)√

s2R(n)

NR(n)
+

s2W (n)

NW (n)

(4.24)

From [44] and Slutsky’s Theorem, it can be deduced from the no-adaptive case that for
the MRRU model, ifmR = mW , the statisticsζ0(n) converges to a standard normal
variable. Hence, the critical region (4.22) still defines a test asymptotically of levelα.
Moreover, callingη the limit of the urn proportionZn under the alternative hypothesis,
the power of the test defined in (4.22) can be approximated, for largen, as (4.23).

Remark 4.3.1. The behavior of the statisticsζ0 defined in(4.24) in the case of RRU
model was studied in [24]. In that paper, the asymptotic normality of ζ0(n) under the
null hypothesis was proved; then(4.22)defines a test of asymptotic levelα also in the
RRU case. However, under the alternative hypothesisζ0(n) converges to a mixture
of Gaussian distributions, where the mixing variableϕ2 is a strictly positive random
variable such that

NW (n)

nmW /mR

a.s.→ ϕ2 (4.25)

Therefore, it follows that in the RRU case the power of the test defined in(4.22)can be
approximated, for largen, as

P

(
Z + n

mW
2mRϕ

mR −mW

σW
> zα

)
, (4.26)

whereZ is a Gaussian standard random variable independent ofϕ.

Remark 4.3.2. Let us rewrite the power of the test defined in(4.22)as follows

P

(
Z +

√
n
mR −mW

σW

1√
γn

> zα

)
(4.27)

where we have defined a new quantity

γn :=

(
σR
σW

)2
1

1− NW (n)
n

+
1

NW (n)
n

.
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

Let us notice that,γn represents the part in(4.27)that depends on the particular adap-
tive design is applied in the trial. When the RRU design is used, the relation(4.25)
allows us to approximate the quantityγn as

(
σR
σW

)2
1

1− ϕ2+o(1)

n
1−

mW
mR

+
n
1−

mW
mR

ϕ2 + o(1)

that diverges asn goes to infinity. In the same way, when the MRRU design is applied,
we can approximateγn as

(
σR
σW

)2
1

η + o(1)
+

1

1− η + o(1)

that converges to a constant. Therefore, when both MRRU and RRU designs are applied
with the same sample sizen, andn is large enough, the power of the test(4.22)using
MRRU design is greater then the one obtained using RRU design.

A different test statistics based on the urn proportion of a RRU model has been inves-
tigated in [25]. Let us denote asc(0,1)α theα-percentage point of the distribution of the
limiting proportionZ∞ under the null hypothesis in a RRU model. Then, the critical
region

{Zn > c(0,1)α } (4.28)

defines a test asymptotically of levelα. As explained in [25], the power of this test can
be approximated, for largen, as

P

(
ϕ2 < (1− c(0,1)α )

mR

mW
n
1−

mW
mR

)
(4.29)

whereϕ2 is the random quantity defined in (4.25).
Now, we consider the statisticsZn as the urn proportion of a MRRU model, with pa-
rametersδ andη. Let us denote asc(δ,η)α theα-percentage point of the distribution of the
limiting proportionZ∞ when the mean responses are equal. Then, the critical region

{Zn > c(δ,η)α } (4.30)

defines a test asymptotically of levelα. Under the alternative hypothesis, the asymptotic
behavior of the proportionZn is shown in Theorem 4.2.2. The power of the test{Zn >

c
(δ,η)
α } can be approximated, for largen, as

P
(
ψ < (η − c(δ,η)α )mWn

)
(4.31)

whereψ is the random quantity defined in Theorem 4.2.2.

4.4 Simulation study

This section is dedicated to presenting the simulation studies aim at exploring the
asymptotic behavior of the urn proportionZn. In this section, all the urns are simu-
lated with the following choice of parameters:δ = 0.2 andη = 0.8. Further studies
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4.4. Simulation study

based on changing the values ofδ or η can be of great interest, but this is not the main
purpose of the paper.

Initially, we focus on supporting the convergence result shown in Theorem 4.2.2. The
reinforcement distributionsµR andµW are chosen to be Gaussian, with means set to
mR = 10 andmW = 5 respectively. The variances are assumed to be equal and fixedat
σ2
R = σ2

W = 1. Theorem 4.2.2 shows that, whenmR > mW , the quantityn(η−Zn)mW

converges in distribution to a random variableψ, whose probability law isπ. Through
some simulations, we compute the empirical distribution ofn(η−Zn)mW for n = 102

andn = 104. The corresponding histograms are presented in Figure 4.1.

In proposition 4.2.1 it was proved that the probability measureπ is the unique invari-
ant distribution of the process(T̃n)n∈N. This meansπ is the unique solution of the
functional equation ∫

R

Kη(x, dy)π(dx) = π(dy) (4.32)

whereKη is the transition kernel of the processT̃n defined in (4.5). Taking the discrete
version of (4.32) we compute the density of the measureπ, which is superimposed on
both the histograms in Figure 4.1. The quite perfect agreement between the empirical
distribution ofn(η − Zn)mW and the discrete estimation ofπ gave to the authors the
impetus to prove the convergence result described in Theorem 4.2.2.
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Figure 4.1: Histograms ofψ obtained simulating the empirical distribution ofn(η − Zn)mW for large
n, with superimposed the density ofψ obtained by numerically solving the discrete version of(4.32).
Left panel:n = 102. Right panel:n = 104.

The simulation study also encouraged the authors to prove some further theoretical
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

results. The first one we present is related to an easy expression for a quantile of the
probability law of the limiting variableψ. In general, the asymptotic distribution of
the quantityn(η − Zn) depends on the valueη and on the reinforcements distributions
µR andµW . Nevertheless, the following proposition state that 0 is always themW

mR
-

percentage point of the distributionπ, regardlessη or the types of distributions involved.

Proposition 4.4.1.

P (ψ > 0) =
mW

mR

(4.33)

Proof. SinceP (Zn < η) = P (Tn > 0) we know thatP (Zn < η) is a convergent
sequence. In particular

lim
n→∞

P (Zn < η) = P (ψ > 0) = π([0,∞))

Therefore, by using the dominated convergence theorem, theToeplitz Lemma and
Proposition 2.4.4, we obtain

P (ψ > 0) = lim
n→∞

P (Zn < η) = lim
n→∞

∑n
i=1 P (Zi < η)

n
=

lim
n→∞

∑n
i=1 E[1{Zi<η}]

n
= E

[
lim
n→∞

∑n
i=1 1{Zi<η}

n

]
= E

[
mW

mR

]
=

mW

mR

Another interesting result, that came out from the simulation analysis, concerns the
correspondence between the asymptotic distribution ofZn and a linear transformation
of the reinforcement laws. This property is explained in thefollowing proposition

Proposition 4.4.2. Let Zn and Ẑn be the urn proportions of two MRRU models with
reinforcements distributions(µR, µW ) and (µ̂R, µ̂W ) respectively. Assume that there
existsc > 0 such that, for anya, b ∈ R with a < b

{
µ̂R( (a, b) ) = µR( (ca, cb) )

µ̂W ( (a, b) ) = µW ( (ca, cb) )
(4.34)

i.e. M̂n
D
= c ·Mn andN̂n

D
= c ·Nn for anyn ∈ N.

Then, for anya, b ∈ R with a < b, we have

π̂( (a, b) ) = π( (c · a, c · b) ) (4.35)

i.e. ψ̂
D
= c · ψ.

Proof. Let us call the initial compositions of the two urn processesas (r0, w0) and
(r̂0, ŵ0). The proof will be based on the particular choicer̂0 = c · r0 andŵ0 = c · w0.
However, since from Proposition 4.2.1 the invariant distributionπ is independent of the
initial composition, the generality of the result still holds.
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4.4. Simulation study

For anyn ≥ 1, by conditioning to the event{(T̂n, Ẑn) = (c · Tn, Zn)}, we have that

T̂n+1 = T̂n + η(1− X̂n+1)N̂n+1 − (1− η)X̂n+11{T̂n>0}M̂n+1 =

= c · Tn + η(1− X̂n+1)N̂n+1 − (1− η)X̂n+11{Tn>0}M̂n+1
D
=

D
= c · Tn + η(1−Xn)c ·Nn+1 − (1− η)Xn+11{Tn>0}c ·Mn+1 = c · Tn+1

(4.36)

Ẑn+1 =
R̂n+1

R̂n+1 + Ŵn+1

=

=
R̂n + X̂n+1M̂n+1

R̂n + Ŵn + X̂n+1M̂n+1 + (1− X̂n+1)N̂n+1

=

=
c · Rn + X̂n+1M̂n+1

c ·Rn + c ·Wn + X̂n+1M̂n+1 + (1− X̂n+1)N̂n+1

D
=

D
=

Rn +Xn+1c ·Mn+1

Rn +Wn +Xn+1c ·Mn+1 + (1−Xn+1)c ·Nn+1
= Zn+1

(4.37)

For ease of notation, let us denoteλ(Tn,Zn) andλ(T̂n,Ẑn)
as the bivariate laws of the

couple of random variables(Tn, Zn) and(T̂n, Ẑn) respectively. Then, let us notice that
the equivalence of the initial compositions of the two processesZn andẐn implies that
the event{(T̂0, Ẑ0) = (c · T0, Z0)} has probability one. Hence, for anyn ≥ 1, we have

λ(T̂n,Ẑn)
=

∫

Rn−1×(0,1)n−1

λ(T̂n,Ẑn)|(T̂n−1,Ẑn−1)
· λ(T̂n−1,Ẑn−1)|(T̂n−2,Ẑn−2)

· · · λ(T̂1,Ẑ1)|(T̂0,Ẑ0)
=

=

∫

Rn−1×(0,1)n−1

λ(cTn,Zn)|(cTn−1,Zn−1) · λ(cTn−1,Zn−1)|(cTn−2,Zn−2) · · · λ(cT1,Z1)|(cT0,Z0) =

= λ(cTn,Zn))

The thesis is proved since the equivalenceλ(T̂n,Ẑn)
= λ(c·Tn,Zn) implies that̂π = π.

Assumption (4.34) implies also that̂mR = c · mR andm̂W = c · mW . Then, from
Theorem 4.2.2 we deduce the equivalence between the asymptotic laws ofZn andẐn.
Propositions 4.4.1 and 4.4.2 suggest that urn processes with the same reinforcement
means ratio present also similar asymptotic behavior. For this reason, we prefer to use
the ratio mR

mW
as parameter measuring the means’ distance, instead of the usual mean

differencemR −mW .

Here we present some simulations concerning the hypothesistest (4.20). In particular,
we focus on comparing the power of the tests defined in (4.28) and (4.30). The empir-
ical power is computed usingn = 104 subjects, in correspondence of different values
of the ratio mR

mW
. The empirical power functions are reported in Figure 4.2. As shown

in Figure 4.2, the MRRU design constructs a test more powerful then the one based on
the RRU design with the sample size, for any choice of the reinforcement means. Al-
though this property makes the MRRU design very attractive,the RRU model takes the
advantage that, with the same sample size, it allocates lesssubject to the inferior treat-
ment. Hence, what is really interesting is studing the powerfunctions of the tests (4.28)
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Figure 4.2: The empirical power functions of test(4.28)(line with crosses) and of test(4.30)(line with
triangles) computed usingn = 104 subjects.

and (4.30), in correspondence of a different values ofNW , i.e. the number of sub-
jects assigned to the inferior treatment. We compute the empirical power functions for
NW = 20, 50, 100, 500 and we report the graphics in Figure 4.3.

From the analysis of the power functions in Figure 4.3, different considerations can be
done depending on the size of the ratiomR

mW
. For high values ofmR

mW
the power of the

tests (4.28) and (4.30) are very similar. When the ratiomR

mW
is small the power of the

test based on MRRU design seems to be considerable greater, for any value ofNW .

This chapter has been focused on the rate of convergence of the process(Zn)n∈N in the
MRRU model. In Theorem 4.2.2 we proved that the rate of convergence of the process
(Zn)n∈N is 1/n. We recall that in [24] it was proved that the rate of convergence of
the RRU process(Zn)n∈N is equal to1/nγ, with γ = 1 − mW

mR
< 1 (casemR > mW )

and the quantitynγ(1 − Zn) converges almost surely to a positive random variable. In
Theorem 4.2.2 we shows that the sequencen(η−Zn) (casemR > mW ) also converges
in distribution to a real random variable, whose probability law is related to the unique
invariant distributionπ of the process(T̃n)n∈N defined in (4.4).
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Figure 4.3: The empirical power functions of test(4.28)(line with crosses) and of test(4.30)(line with
triangles) computed usingn = 104 subjects. Top left panel:NW = 20. Top right panel:NW = 50.
Bottom left panel:NW = 100. Bottom right panel:NW = 500.
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CHAPTER5

Randomly reinforced urn design with random
time-dependent parameters

In this chapter, we modify the urn design described in Chapter 2 to construct a ran-
domization procedure in the framework of parametric models. So far, we used to
fix in advance two allocation proportionsδ, η ∈ (0, 1), and then we adopted the urn
model to target eitherδ or η, depending on the greatest reinforcement mean:ρ =
δ1{mR<mW }+ η1{mR>mW }. Even if the MRRU design has been constructed to improve
the statistical performance of the RRU design, the ethical goal to allocate to the inferior
treatment less patients remained the main goal of the design. Here, we change the urn
model in order to achieve other goals more related to the statistical performance of the
design, without forget about the ethical context. In particular, we want to construct a
model that is able to target an asymptotic allocation proportion ρ ∈ (0, 1), defined as
a generic function of some unknown parameters modeling the reinforcements distribu-
tions. This is in the spirit of classical response adaptive papers, for instance [49]. This
new model has been realized by making the parametersδ andη depend on adaptive
estimators of those parameters.

5.1 The model

Let us consider two probability distributionsµR andµW with support contained in
[a, b], where0 < a ≤ b < +∞. We will interpretµR andµW as the laws of the
responses to treatmentR andW , respectively. Then, let us consider a situation with
µR andµW depend ond unknown real parameters. We will callθ ∈ Θ (with Θ ⊂ Rd)
the vector of these unknown parameters. Then, let us define two continuous functions
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

fδ : Θ → (0, 1) andfη : Θ → (0, 1) such that

δ∗ ≤ fδ(θ) ≤ fη(θ) ≤ η∗ (5.1)

for anyθ ∈ Θ, and for some constantsδ∗ andη∗ such that0 < δ∗ < η∗ < 1.
Let us denote aŝθn ∈ Θ an estimator ofθ after thatn responses are collected. To ease
of notation, in what follows we will callδ = fδ(θ) andη = fη(θ), δn = fδ(θ̂n) and
ηn = fη(θ̂n). For thosek ≥ 0 such that the estimator̂θk is not defined, we setδk and
ηk equal to two arbitrary values such that0 < δk < ηk < 1. Then, the sequences(δn)n
and(ηn)n are well defined for anyn ≥ 0.

The allocation of the subjects to the treatments is realizedthrough the adoption of a
response adaptive design described in term of urn model. Thestructure of the design is
similar to the MRRU design presented in Chapter 2. Visualizean urn initially contain-
ing r0 balls of colorR andw0 balls of colorW . Set

R0 = r0, W0 = w0, D0 = R0 +W0, Z0 =
R0

D0

.

The drawing process from this urn is modeled by a sequence(Un)n of independent
uniform random variables on(0, 1). At time n = 1, a ball is sampled from the urn;
its color isX1 = 1{U1<Z0}, a random variable with Bernoulli(Z0) distribution. LetM1

andN1 be two independent random variables with distributionµR andµW , respectively;
assume thatX1,M1 andN1 are independent. Next, if the sampled ball isR i.e.X1 = 1,
it is returned in the urn together withM1 balls of the same color ifZ0 < η0, where
η ∈ (0, 1) is a suitable parameter, otherwise the urn composition doesnot change; if
the sampled ball isW i.e.X1 = 0, it is returned in the urn together withN1 balls of the
same color ifZ0 > δ0, whereδ < η ∈ (0, 1) is a suitable parameter, otherwise the urn
composition does not change. So we can update the urn composition in the following
way

R1 = R0 +X1M11{Z0<η0},

W1 =W0 + (1−X1)N11{Z0>δ0},

D1 = R1 +W1, Z1 =
R1

D1
.

(5.2)

Now iterate this sampling scheme forever. Thus, at timen + 1, given the sigma-field
Fn generated byX1, ..., Xn,M1, ...,Mn andN1, ..., Nn, let Xn+1 = 1{Un+1<Zn} be a
Bernoulli(Zn) random variable. Then, assume thatMn+1 andNn+1 are two indepen-
dent random variables with distributionµR andµW , respectively. Set

Rn+1 = Rn +Xn+1Mn+11{Zn<ηn},

Wn+1 = Wn + (1−Xn+1)Nn+11{Zn>δn},

Dn+1 = Rn+1 +Wn+1,

Zn+1 =
Rn+1

Dn+1
.

(5.3)

Now, let us show an asymptotic result concerning the sequence of the total number of
balls in the urn(Dn)n. This result will be used to derive the asymptotic behavior of the
urn proportion process.
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5.1. The model

Proposition 5.1.1. Let us consider the urn process described in Section 5.1. Then,

(a) the sequence(Dn)n diverge to infinity almost surely

(b) there exists a constantC independent ofn such that

E

[(
n

Dn

)2
]

≤ C (5.4)

Proof. To prove (a), notice that for anyn ∈ N

Dn = D0 +

n∑

i=1

[
MiXi1{Zi−1<ηi−1} + Ni(1−Xi)1{Zi−1>δi−1}

]

≥ D0 + a ·
n∑

i=1

[
Xi1{Zi−1<ηi−1} + (1−Xi)1{Zi−1>δi−1}

]

Let us define

p∗ :=
D0

D0 + b
·min{δ∗; 1− η∗} (5.5)

and note thatP (Zn ∈ (p∗, 1− p∗)) = 1. This is due to the following relation

P

(
inf
n∈N

{δn} ≥ δ∗
)

= P

(
sup
n∈N

{ηn} ≤ η∗
)

= 1.

that is implied by Assumption 5.1. and so, as a consequence ofassumption (5.1), we
have thatP (Zn ∈ (p∗, 1− p∗)) = 1. Then, notice that

Xi1{Zi−1<ηi−1} + (1−Xi)1{Zi−1>δi−1} ∼ Be(pi)

with pi ≥ p∗ > 0 for any i ≥ 1. Now, let us defineY = (Yi)i as a sequence of i.i.d.
Bernoulli random variable with parameterp0. Then, we conclude that

P
(
lim
n→∞

Dn = ∞
)

≥ P

(
lim
n→∞

n∑

i=1

Yi = ∞
)

= 1.

Now, let us consider the thesis (b). Using the same argumentsused to prove (a), we
have that

E

[(
1

Dn/n

)2
]

≤ 1

a2
E

[(
n

D0 +
∑n

i=1 Yi

)2
]

=
1

a2
E

[(
n

D0 +Wn

)2
]

whereWn is a Binomial random variable with parametersn andp∗. So now we have to
prove that

lim sup
n

E

[(
n

D0 +Wn

)2
]
< ∞

We want to use Theorem 2.1 of [23], withn0 = 1, p = 2, Zi,n = Yi +D0/n for i ≤ n.
All the assumptions of the theorem are satisfied in our case.
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In fact, at first we have[Z̄−2
n0

] <∞ because[(D0 + Y1)
−2] ≤ D−2

0 <∞.
Secondly, note thatZi,n are identically distributed for alli ≤ n, sinceYi are i.i.d.
Bernoulli of parameterp∗.
Finally, Z̄n converges in distribution, sincēZn = Wn/n+D0

a.s.→ p∗ +D0.
Then, we can apply the theorem, obtaining that[Z

−2

n ] is uniformly integrable. As a
consequence,

lim sup
n

E

[(
n

D0 +Wn

)2
]

= lim sup
n

E
[
Z̄−2

n

]
< ∞

Notice that Proposition 5.1.1 is based on Assumption 5.1, but it does not require any
assumption on the distribution of the sequence(ηn)n and(δn)n.

5.2 Almost sure Convergence of the urn process

In this section we get the almost sure convergence of the urn proportionZ, concerning
the urn model described in Section 5.1. In particular, in Theorem 5.2.1 we show that
if the sequences(ηn)n and (δn)n converge almost surely to some constantsη and δ,
respectively, then the urn process(Zn)n converges almost surely to one of those con-
stants, depending on the order between the reinforcement means. Notice that, in our
context,η andδ are not generic constants, but they play a specific role in theadaptive
design. In fact,η andδ indicate the functionsfη(·) andfδ(·) evaluated in the unknown
parameters modeling the reinforcement distributions. Moreover,fη(θ) andfδ(θ) rep-
resent the desired allocations if the superior treatment isR or W , respectively. Then,
Theorem 5.2.1 states that the probability of assignment of the subjects to the treatments,
that is modeled by the urn proportionZn, converges almost surely to the desired allo-
cation whether the superior treatment isR orW .

Theorem 5.2.1 is based on the assumption (5.6), concerning the almost sure conver-
gence of the adaptive sequencesfη(θ̂n) andfδ(θ̂n) to the targetfη(θ) andfδ(θ). This
condition can be satisfied using various estimators ofθ and with different choices of
the functionsfη(·) andfδ(·).
To see that, notice that the assumption (5.1) implies that

P

(
inf
n∈N

{δn} ≥ δ∗
)

= P

(
sup
n∈N

{ηn} ≤ η∗
)

= 1.

Then, takingp∗ as defined in (5.5), we have thatP (Zn ∈ (p∗, 1− p∗)) = 1.
As a consequence, both the sequencesNR(n) andNW (n) diverges asn goes to infinity.
In particular, we can show that

p∗ ≤ lim inf
n

NR(n)

n
≤ lim sup

n

NR(n)

n
≤ 1− p∗ a.s.

p∗ ≤ lim inf
n

NW (n)

n
≤ lim sup

n

NW (n)

n
≤ 1− p∗ a.s.
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5.2. Almost sure Convergence of the urn process

Then, if θ̂n is the maximum likelihood estimator ofθ, and the functionsfη(·) andfδ(·)
are continuous, we have thatηn

a.s.→ η andδn
a.s.→ δ and so the condition (5.6) is verified.

Theorem 5.2.1. Assume




ηn
a.s.→ η if mR > mW ,

δn
a.s.→ δ if mR < mW .

(5.6)

Then
Zn

a.s.→ η1{mR>mW } + δ1{mR<mW } (5.7)

Proof. Let us assume thatmR < mW andδn
a.s.→ δ. The proof of the opposite case

is completely analogous. Let Assumption (5.1) holds. Then,the goal is to prove that
Zn

a.s.→ δ.
The thesis is get by proving the following

(a) P ( lim infn→∞ Zn ≥ δ ) = 1

(b) P ( lim infn→∞ Zn ≤ δ ) = 1

(c) P ( ∃ limn→∞Zn) = 1

In this proof we will use the following notation: for anyρ ∈ (0, 1), we define the times

τρ =

{
sup { k ≥ 0 : δk ≤ ρ } if { k ≥ 0 : δk ≤ ρ } 6= ∅;
0 otherwise.

tρ =

{
sup { k ≥ 0 : δk > ρ } if { k ≥ 0 : δk > ρ } 6= ∅;
0 otherwise.

representing the last time the process(δn)n is below or aboveρ, respectively.

Part (a):
Let us assume there existsδ′ < δ such that

P
(
lim inf

n→∞
Zn < δ′

)
≥ ǫ > 0.

Then,∃nǫ ∈ N such that

P
(
τ δ′+δ

2
> nǫ

)
≤ ǫ

2
(5.8)

Notice that the existence ofnǫ is guaranteed by assumption (5.6), since it implies that
P (τ δ′+δ

2
<∞) = 1. Then, we obtain

ǫ ≤ P (lim inf
n→∞

Zn < δ′)

= P
(
{lim inf

n→∞
Zn < δ′}

⋂
{τ δ′+δ

2
> nǫ}

)
+ P

(
{lim inf

n→∞
Zn < δ′}

⋂
{τ δ′+δ

2
≤ nǫ}

)
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Let us callP1 andP2 the two terms of this sum.
At first, consider the termP1 and by using (5.8) we get that

P1 ≤ P
(
τ δ′+δ

2
> nǫ

)
≤ ǫ

2

Then, consider the termP2. Let us decomposeP2 in two terms

P2 = P

(
{lim inf

n→∞
Zn < δ′}

⋂
{τ δ′+δ

2
≤ nǫ}

⋂{
{Zn >

δ′ + δ

2
} for infinite indicesn

})

+ P

(
{lim inf

n→∞
Zn < δ′}

⋂
{τ δ′+δ

2
≤ nǫ}

⋂{
{Zn >

δ′ + δ

2
} for finite indices n

})

Let us callD1 andD2 the events within the two probabilities in the above expression.
Consider the second termP (D2). On the set

{
{Zn >

δ′+δ
2

} for finite indicesn
}
⊃ D2

the processZn is asymptotically less thanδ
′+δ
2

. Moreover, on the set{τ δ′+δ
2

≤ nǫ} ⊃
D2 we haveδn ≥ δ′+δ

2
for anyn ≥ nǫ. Then,1{Zn>δn−1}

a.s.→ 0 and asymptotically no
white balls are replaced in the urn. As a consequence, the asymptotic behavior of the
process(Zn)n is the same of a RRU model withmR > mW = 0, that converges to
one as proved in [45]. This is incompatible with the set{lim infn→∞ Zn < δ′} ⊃ D2.
HenceP (D2) = 0.
Consider now the first termP (D1). Since from Proposition 5.1.1 we have that the
sequence(Dn)n diverges almost surely, then on the set{
{Zn >

δ′+δ
2

} for infinite indicesn
}
⊃ D1 there are infinite indicesk such that





Zk >
δ′+δ
2

Dk > b δ+δ′

δ−δ′
.

.

For these indicesk we have thatP (Zk+1 ≤ δ′) = 0. Moreover, on the set{τ δ′+δ
2

≤
nǫ} ⊃ D1 we have thatδn ≥ δ′+δ

2
for anyn ≥ nǫ. Then, whenZn <

δ′+δ
2

we have
that1{Zn>δn−1} = 0 and no white balls are added in the urn. Then,P (Zn ≤ δ′) = 0
for anyn ≥ nǫ. This is incompatible with the set{lim infn→∞ Zn < δ′} ⊃ D1. Hence
P (D1) = 0.
Putting all together we have

ǫ ≤ P1 + P2 ≤ ǫ/2 + P (D1) + P (D2) = ǫ/2

that is contradiction.
Then, we can conclude that the event{lim infn→∞ Zn ≥ δ} occurs with probability one.

Part (b):
Let us assume there existsδ′ > δ such that

P
(
lim inf

n→∞
Zn > δ′

)
≥ ǫ > 0.

Then,∃nǫ ∈ N such that
P
(
t δ′+δ

2
> nǫ

)
≤ ǫ

2
(5.9)
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5.2. Almost sure Convergence of the urn process

Notice that the existence ofnǫ is guaranteed by assumption (5.6), since it implies that
P (t δ′+δ

2
<∞) = 1. Then, we obtain

ǫ ≤ P (lim inf
n→∞

Zn > δ′)

= P
(
{lim inf

n→∞
Zn > δ′}

⋂
{t δ′+δ

2
> nǫ}

)
+ P

(
{lim inf

n→∞
Zn > δ′}

⋂
{t δ′+δ

2
≤ nǫ}

)

= P (D3) + P (D4)

Let us callD1 andD2 the events within the two probabilities in the above expression.
At first, consider the termP (D3) and by using (5.9) we get that

P (D3) ≤ P
(
t δ′+δ

2
> nǫ

)
≤ ǫ

2

Then, consider the termP (D4). On the set{lim infn→∞ Zn ≥ δ′} ⊃ D4, the process
Zn is asymptotically above thanδ′. Moreover, on the set{t δ′+δ

2
≤ nǫ} ⊃ D4, we have

δn ≤ δ′+δ
2

for anyn ≥ nǫ. Then,1{Zn>δn−1}
a.s.→ 1 and so the asymptotic behavior of the

process(Zn)n is the same of a RRU model withmR < mW , that converges to zero as
proved in [45]. This is incompatible with the set{lim infn→∞ Zn > δ′} ⊃ D4. Hence
P (D4) = 0.
Summarizing, we have that

ǫ ≤ P (D3) + P (D4) ≤ ǫ/2

Then, we can conclude that the event{lim infn→∞ Zn ≥ δ} occurs with probability one.

Part (c):
Putting together parts (a) and (b), we have shown thatP (lim infn→∞Zn = δ) = 1.
Therefore, if the process(Zn)n converges almost surely, then its limit has to be equal
to δ.
Let δ′, γ, d andu (δ < δ′ < γ < d < u) be four arbitrary points.
Let (τi)i and(ti)i be two sequences of stopping times as defined in (2.3), in order to
apply Proposition 2.2.3.
Notice that ifinfn P (τn < ∞) > 0, thenZn does not converge almost surely. We will
show that, assuminginfn P (τn <∞) > 0, we meet a contradiction by proving thatZn

converges almost surely.
Now, let us denote withtδ′ the last time the processδn is aboveδ′, i.e.

tδ′ =

{
sup{n ≥ 1 : δn ≥ δ′} if {n ≥ 1 : δn ≥ δ′} 6= ∅;
0 otherwise.

Then, fixǫ ∈ (0, 1
2
) and takenǫ ∈ N such that

P (tδ′ > nǫ) ≤ ǫ · inf
n
P (τn <∞).

Let us fix an integeri ≥ nǫ satisfying

i > log u(1−d)
d(1−u)

b
max{1− d; γ}
Dτ0(d− γ)

,
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

so thatτi ≥ nǫ a.s. and, by Lemma 2.2.2, we have that

Dτi > b
max{1− d; γ}

d− γ
a.s.

To ease of notation, denote by(̂·n)n∈N the renewed process on{τi < ∞}: (R̂n, Ŵn) =

(Rτi+n,Wτi+n), D̂n = R̂n + Ŵn = Dτi+n, Ẑn = R̂n/D̂n = Zτi+n, Ûn = Uτi+n. Note
thatZτi ∈ (γ, d).
We denote byPi(·) = P (·|τi <∞), and therefore, if

t =

{
inf{n : Ẑn > u} if {n : Ẑn > u} 6= ∅;
+∞ otherwise

then we have

P (τi+1 <∞|τi <∞) ≤ Pi(ti <∞) = Pi(t <∞) (5.10)

Define the sequences(t∗n, τ
∗
n)n of stopping times which indicate the(Ẑn)n-crosses of

the interval(δ′, γ): let t∗0 = 0 and define for everyj ≥ 1 two stopping times

τ ∗j =

{
inf{n > t∗j−1 : Ẑn ≤ δ′} if {n > t∗j−1 : Ẑn ≤ δ′} 6= ∅;
+∞ otherwise.

t∗j =

{
inf{n > τ ∗j : Ẑn > γ} if {n > τ ∗j : Ẑn > γ} 6= ∅;
+∞ otherwise.

(5.11)

Notice that,

R

R +W
≤ γ,

(R +W ) >
b(1− d)

d− γ

=⇒ R + x

R +W + x
< d, ∀x ≤ b,

and hence, since the reinforcements are bounded byb, we have

Ẑt∗j−1 ≤ γ,

D̂t∗j−1 >
b(1 − d)

d− γ

=⇒ Ẑt∗j
< d (5.12)

For anyj ≥ 0, we can define a process(Z̃j
n)n∈N to set a new urn, coupled with(Ẑn)n∈N,
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5.2. Almost sure Convergence of the urn process

with the following features:

W̃ j
0 = Ŵt∗j

R̃j
0 = W̃t∗j

u+ d

2− u− d

X̃j
n+1 = 1[0,Z̃j

n]
(Ût∗j+n+1),

M̃ j
n+1 = M̂t∗j+n+1 + (mW −mR)

Ñ j
n+1 = N̂t∗j+n+1

R̃j
n+1 = R̃j

n + X̃j
n+1M̃

j
n+1,

W̃ j
n+1 = W̃ j

n + (1− X̃j
n+1)Ñ

j
n+1,

D̃j
n+1 = R̃j

n+1 + W̃ j
n+1,

Z̃j
n+1 =

R̃j
n+1

D̃j
n+1

.

Then,(Z̃j)j∈N is a sequence of urn processes, all starting withZ̃j
0 = u+d

2
and having

nonnegative reinforcements with the same meanmW . Let us notice that at timen, we
have defined only the processesZ̃j such thatt∗j < n.

We will prove by induction that, for anyj ∈ N,

Z̃j
n > Ẑt∗j+n, W̃ j

n ≤ Ŵt∗j+n, R̃j
n > R̂t∗j+n (5.13)

for anyn ≤ τ ∗j+1 − t∗j andn > tδ′ .

In other words, we will show that, after the timetδ′ , each process(Z̃j
n)n∈N is always

above the original process(Ẑt∗j+n)n∈N, as long aŝZ remains aboveδ′ (i.e. before the

time τ ∗j ). The conditionn > tδ′ ensures that, as long aŝZ remains aboveδ′, both the

processes̃Zj andẐ are above the processδn. By construction we have that

Z̃j
0 =

d+ u

2
> d > Ẑt∗j

, W̃ j
0 = Ŵt∗j

which immediately implies̃Rj
0 > R̂t∗j

. Assume (5.13) by induction hypothesis. Since,

for any n ≤ τ ∗j+1 − t∗j , we have thatX̃j
n+1 = 1[0,Z̃j

n]
≥ 1[0,Ẑt∗

j
+n]

= X̂t∗j+n+1 by

construction, we get

R̂t∗j+n+1 − R̂t∗j+n = X̂t∗j+n+1M̂t∗j+n+1 ≤ X̃j
n+1M̃

j
n+1 = R̃j

n+1 − R̃j
n,

Ŵt∗j+n+1 − Ŵt∗j+n = (1− X̂t∗j+n+1)N̂t∗j+n+1 ≥ (1− X̃j
n+1)Ñ

j
n+1 = W̃ j

n+1 − W̃ j
n.

that means

Z̃j
n+1 > Ẑt∗j+n+1, W̃ j

n+1 ≤ Ŵt∗j+n+1, R̃j
n+1 > R̂t∗j+n+1

for anyn ≤ τ ∗j+1 − t∗j andn > tδ′ .

Note that, for anyj ≥ 0, the process(Z̃j
n)

τ∗j+1−t∗j
n=0 is an urn process reinforced with
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

distributions with same means and initial composition(R̃t∗j
, W̃t∗j

). Let us defineTj as

the stopping time for(Z̃n)n to exit from(d, u) beforeτ ∗j+1 − t∗j , i.e.:

Tj =





inf{n ≤ τ ∗j+1 − t∗j : Z̃
j
n ≤ d or Z̃j

n ≥ u}
if {n ≤ τ ∗j+1 − t∗j : Z̃

j
n ≤ d or Z̃j

n ≥ u} 6= ∅;
+∞ otherwise,

Then, whenevert∗j ≥ tδ′ , we have that

{
Ẑn > u

}
⊂
{

sup
j:t∗j≤n

Z̃j
n−t∗j

> u

}
.

So, we can obtain

P (τi+1 <∞|τi <∞) ≤ Pi(ti <∞) = Pi(t <∞)

= Pi

(
{t <∞}

⋂
{tδ′ ≤ nǫ}

)
+ Pi

(
{t <∞}

⋂
{tδ′ > nǫ}

)

≤ Pi

({
∞⋃

j=0

{Tj <∞}
}⋂

{tδ′ ≤ nǫ}
)

+ Pi (tδ′ > nǫ)

≤
∞∑

j=0

Pi

(
{Tj <∞}

⋂
{tδ′ ≤ nǫ}

)
+ ǫ

Now, let us consider a single term of the series. Then, as a consequence of Lemma 2.2.5,
if we seth = u−d

2
we get

Pi

(
{Tj <∞}

⋂
{tδ′ ≤ nǫ}

)
≤ P

({
sup
n

|Z̃t∗j+n − Z̃t∗j
| ≥ h

}⋂
{tδ′ ≤ nǫ}

)

≤ b

Dt∗j

( 4

h2
+

2

h

)

≤ b

D̂t∗0

(
δ(1− γ)

γ(1− δ)

)j ( 4

h2
+

2

h

)

Thus define the functiong : [0,∞)× [0,∞) → [0, 1] in the following way

g(x, y) :=
b

x+ y

( 4

h2
+

2

h

)( 1− δ

1− δ/γ

)
+ ǫ,

and note that

g

(
8/h2

(
1− δ

1− δ/γ

)
, 4b/h

(
1− δ

1− δ/γ

))
=

1

2
+ ǫ < 1

andg is monotone inx+ y. Then, we can apply Proposition 2.2.3 to get the thesis.

Remark 5.2.2. Notice that in the proof of Theorem 5.2.1 we have never used the as-
sumption(5.1). Then, provided that condition(5.6) holds, the assumption(5.1) is not
necessary to get the almost sure convergence of the urn process(Zn)n.
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5.3. The Convergence in Probability of the urn process

5.3 The Convergence in Probability of the urn process

Sometimes the almost sure convergence of the adaptive sequencesfη(θ̂n) andfδ(θ̂n) to
the targetfδ(θ̂) andfδ(θ̂) required in the assumption (5.6) can be hard to prove or not
even true. In these situations, we may want to have less restrictive conditions on the se-
quencefη(θ̂n) andfδ(θ̂n), like assuming that the convergence holds only in probability.
Under these conditions, in this section we show the convergence in probability of the
urn proportionZ, concerning the urn model described in Section 5.1. In particular, in
Theorem 5.3.3 we show that if the sequences(ηn)n and(δn)n converge in probability
to some constantsη andδ, respectively, then the urn process(Zn)n converges in proba-
bility to one of those constants, depending on the order between reinforcement means.

To prove Theorem 5.3.3 we need some auxiliar results gathered in two lemmas. The
first one explicit a well-known consequence of the superior/inferior limit of any process

Lemma 5.3.1. Let (Yn)n be a real-value process. Then, for anyl ∈ R

P

(
{Yn > l}

⋂ {
lim sup
n→∞

Yn < l

} )
→ 0 (5.14)

Proof. If P (lim supn Yn < l) = 0, then lemma 5.3.1 is trivially true. Otherwise, we get
the thesis once we show that

P

(
Yn > l | lim sup

n→∞
Yn < l

)
→ 0.

Let us introduce the random timeτ , representing the last time the processYn is above
l, i.e.

τ =

{
sup{ k ≥ 0 | Yk > l } if { k ≥ 0 | Yk > l } 6= ∅;
−1 otherwise.

From the definition of superior limit, we have that the event{τ = ∞} implies that
{lim supn→∞ Yn ≥ l}. As a consequence, we have that

P

(
τ <∞ | lim sup

n→∞
Yn < l

)
= 1. (5.15)

Then, using (5.15) we get the thesis

P

(
Yn > l | lim sup

n→∞
Yn < l

)
= P

(
τ > n | lim sup

n→∞
Yn < l

)
→ 0.

Here, we present another lemma that will be used in the proof of Theorem 5.3.3, con-
cerning the conditional expectation of the increments of the urn process.

Lemma 5.3.2. Let us consider the urn process described in Section 5.1. Then, the
following relation holds

E[Zn+1 − Zn|Fn] = E

[
Mn+11{Zn<ηn}

Dn +Mn+11{Zn<ηn}
− Nn+11{Zn>δn}

Dn +Nn+11{Zn>δn}
|Fn

]
(5.16)
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Proof. The proof of Lemma 5.3.2 has been computed following a similar argument
applied in the proof of Theorem 2 of [45]. The notation used in[45] is the same adopted
in this paper. The presence of the indicator functions1{Zn>δn} and1{Zn<ηn} is the real
difference from the proof in [45]. Nevertheless, since theyareFn-measurable, the same
structure of the proof can be proposed here.
Because of the relation

Zn+1 = Xn+1

Rn +Mn+11{Zn<ηn}

Dn +Mn+11{Zn<ηn}

+ (1−Xn+1)
Rn

Dn +Nn+11{Zn>δn}

and sinceXn+1 is conditionally toFn independent ofMn+1 andNn+1, we can get that

E[Zn+1|Fn] = E

[
Zn

Rn +Mn+11{Zn<ηn}

Dn +Mn+11{Zn<ηn}

+ (1− Zn)
Rn

Dn +Nn+11{Zn>δn}

|Fn

]

= E

[
Zn

(
Rn +Mn+11{Zn<ηn}

Dn +Mn+11{Zn<ηn}

+
Wn

Dn +Nn+11{Zn>δn}

)
|Fn

]

Analogously, we have that

E[1−Zn+1|Fn] =

[
(1− Zn)

(
Wn +Nn+11{Zn>δn}

Dn +Nn+11{Zn>δn}

+
Rn

Dn +Mn+11{Zn<ηn}

)
|Fn

]
.

Therefore,

E[Zn+1 − Zn|Fn] = E[(1− Zn)Zn+1 − Zn(1− Zn+1)|Fn]

= Zn(1− Zn)E

[
Rn +Mn+11{Zn<ηn}

Dn +Mn+11{Zn<ηn}

+
Wn

Dn +Nn+11{Zn>δn}

−Wn +Nn+11{Zn>δn}

Dn +Nn+11{Zn>δn}
− Rn

Dn +Mn+11{Zn<ηn}
|Fn

]

= Zn(1− Zn)

[
Mn+11{Zn<ηn}

Dn +Mn+11{Zn<ηn}
− Nn+11{Zn>δn}

Dn +Nn+11{Zn > δn}
|Fn

]

Theorem 5.3.3 is based on the assumption (5.17), concerningthe convergence in prob-
ability of the adaptive sequencesfη(θ̂n) andfδ(θ̂n) to the targetfη(θ) andfδ(θ). This
condition can be satisfied using various estimators ofθ and with different choices of
the functionsfη(·) andfδ(·).
As explained for the assumption (5.6) in Section5.2, under Assumption 5.1 both the
sequencesNR(n) andNW (n) diverges asn goes to infinity.
Then, if θ̂n is any consistent estimator ofθ, and the functionsfη(·) andfδ(·) are con-
tinuous, we have thatηn

p→ η andδn
p→ δ and so condition (5.17) is verified.

Theorem 5.3.3. Assume 



ηn
p→ η if mR > mW ,

δn
p→ δ if mR < mW .

(5.17)

Then
Zn

p→ η1{mR>mW } + δ1{mR<mW } (5.18)
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Proof. Let us assume thatmR < mW andδn
p→ δ. Then, the goal to prove is that

Zn
p→ δ. The proof of the casemR > mW is analogous. To proveZn

p→ δ, we first
show that,∀ǫ > 0, P (Zn − δ > ǫ) → 0. Then, by using the same argument, we can
easily show that,∀ǫ > 0, P (Zn − δ < −ǫ) → 0 and so we get the thesis.

Let us fix an arbitrary smallǫ > 0 and definel = δ + ǫ. Our goal is to prove that

lim
n→∞

P (Zn > l) = 0.

To do that, we fix another constantδ′ ∈ (δ, l) and we define the following events

Asup = {lim sup
n→∞

Zn ≥ l}

Ainf = {lim inf
n→∞

Zn ≤ δ′}

We use these events to decompose the probability of the urn processZn to exceedl. So
doing, we obtain

P (Zn > l) ≤ P ( {Zn > l} ∩ Asup ∩ Ainf )

+ P ( {Zn > l} ∩ AC
sup)

+ P ( {Zn > l} ∩ AC
inf )

Let us denote withP1,n, P2,n, P3,n the three probabilities in the previous expression.
Then, we get the thesis once we show thatP1,n, P2,n andP3,n tend to zero asn goes to
infinity.

At first, let us consider the termP2,n. By using lemma 5.3.1, we immediately get that

P2,n = P ( {Zn > l} ∩ AC
sup) = P ( {Zn > l} ∩ {lim sup

n→∞
Zn < l} ) →n 0.

Then, let us consider the termP3,n:

P3,n = P ( {Zn > l} ∩ AC
inf) ≤ P (AC

inf) = P (lim inf
n→∞

Zn > δ′)

In order to prove thatP (lim infn→∞ Zn > δ′) = 0, we are going to show that if we
assumeP (lim infn→∞ Zn > δ′) ≥ ǫ > 0, then we meet to a contradiction.
At first, let us introduce the random timeτ , representing the last time the processZn is
belowδ′, i.e.

τ =

{
sup{ k ≥ 0 | Zk < δ′ } if { k ≥ 0 | Zk < δ′ } 6= ∅;
0 otherwise.

Then, let us define two quantitiesk0 andk1, defined as follows

k0 := inf
{
k ∈ N | P

(
τ < k | lim inf

n→∞
Zn > δ′

)
> 1/2

}
(5.19)

k1 := inf { k ∈ N | ∀ i ≥ k, P (δi < δ′) > 1− ǫ/4 } (5.20)
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Notice that bothk0 andk1 are not random times. Moreover,k0 is finite becauseP (τ <
∞| lim infn→∞Zn > δ′) = 1; the proof is an analogous of (5.15) for the inferior limit.
Furthermore,k1 is finite since from the assumption (5.17) we have thatP (δi < δ′) → 1.
The role ofk0 andk1 will be clear more ahead in the proof. Then, let us callkM the
maximum between these two times:kM = max{k0; k1} and fix an arbitraryn0 ≥ kM .
Now, let us define the stopping timetn0 , which indicates the first time aftern0 that the
urn proportionZn is belowδ′

tn0 =

{
inf{ k ≥ n0 | Zk < δ′ } if { k ≥ n0 | Zk < δ′ } 6= ∅;
−∞ otherwise.

Finally, for anyn ≥ n0 we can write

−1 ≤ E[Zmin{tn0 ,n}
− Zn0] = E




min{tn0 ,n}∑

i=n0+1

(Zi − Zi−1)




= E

[
n∑

i=n0+1

(Zi − Zi−1)1{i≤tn0}

]

= E

[
n∑

i=n0+1

E[Zi − Zi−1/Fi−1]1{i≤tn0}

]

Here, we apply lemma 5.3.2 to get the relation

E[Zi − Zi−1|Fi−1] = E

[
Mi1{Zi−1<ηi−1}

Di−1 +Mi1{Zi−1<ηi−1}
− Ni1{Zi−1>δi−1}

Di−1 +Ni1{Zi−1>δi−1}
|Fi−1

]

So doing, we obtain

= E

[
n∑

i=n0+1

Zi−1(1− Zi−1)E

[
Mi1{Zi−1<ηi−1}

Di−1 +Mi1{Zi−1<ηi−1}

− Ni1{Zi−1>δi−1}

Di−1 +Ni1{Zi−1>δi−1}

|Fi−1

]
1{i≤tn0}

]

≤ E

[
n∑

i=n0+1

Zi−1(1− Zi−1)E

[
Mi

Di−1 +Mi
− Ni1{Zi−1>δi−1}

Di−1 +Ni
|Fi−1

]
1{i≤tn0}

]

≤ E

[
n∑

i=n0+1

Zi−1(1− Zi−1)E

[
b

Di−1
− Ni1{Zi−1>δi−1}

Di−1 + b
|Fi−1

]
1{i≤tn0}

]

Let us note a simple thing: for anyi ≤ tn0 the urn proportionZi is aboveδ′ and then
{Zi > δi} ⊃ {δi < δ′}. For this reason, we write

≤ E

[
n∑

i=n0+1

Zi−1(1− Zi−1)E

[
Mi

Di−1
− Ni1{δi−1<δ′}

Di−1 + b
|Fi−1

]
1{i≤tn0}

]

= E

[
n∑

i=n0+1

Zi−1(1− Zi−1)E

[
Mib+Di−1(Mi −Ni1{δi−1<δ′})

Di−1(Di−1 + b)
|Fi−1

]
1{i≤tn0}

]
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SinceE[Mi|Fi−1] = E[Mi] = mR andE[Ni|Fi−1] = E[Ni] = mW for anyi ∈ N, we
have that

≤ E

[
n∑

i=n0+1

Zi−1(1− Zi−1)

Di−1(Di−1 + b)
· mRb · 1{i≤tn0}

]

+ E

[
n∑

i=n0+1

Zi−1(1− Zi−1)

Di−1(Di−1 + b)
· Di−1(mR −mW1{δi−1<δ′}) · 1{i≤tn0}

]

By using

mR −mW1{δi−1<δ′} = (mR −mW )1{δi−1<δ′} + mR1{δi−1>δ′}

we decompose the second term, obtaining

= E

[
n∑

i=n0+1

Zi−1(1− Zi−1)

Di−1(Di−1 + b)
· mRb · 1{i≤tn0}

]

+ E

[
n∑

i=n0+1

Zi−1(1− Zi−1)

Di−1 + b
· (mR −mW )1{δi−1<δ′} · 1{i≤tn0}

]

+ E

[
n∑

i=n0+1

Zi−1(1− Zi−1)

Di−1 + b
· mR1{δi−1>δ′} · 1{i≤tn0}

]

Let us denote withA1,n, A2,n,A3,n the three quantities in the previous expression.
Let us considerA1,n. From Proposition 5.1.1 we get the boundedness of the sequence
E[(n/Dn)

2], obtaining

A1,n ≤ mRb

4

n−1∑

i=n0

E

[
1

D2
i

]
≤ mRb

4
max
i≤n−1

{
E

[
1

(Di/i)2

]}
·

n−1∑

i=n0

1

i2
≤ C1

whereC1 is a positive constant.
Now, let us consider the quantityA2,n. Let us recall the quantityp∗ ∈ (0, 1) introduced
in (5.5), such thatP (Zn ∈ (p∗, 1− p∗)) = 1. Then, we can write that

A2,n = (mR −mW )

n∑

i=n0+1

E

[
Zi−1(1− Zi−1)

Di−1 + b
· 1{δi−1<δ′} · 1{i≤tn0}

]

≤ (mR −mW ) · p∗(1− p∗) ·
n∑

i=n0+1

E

[
1

Di−1 + b
· 1{δi−1<δ′} · 1{i≤tn0}

]

≤ (mR −mW ) · p∗(1− p∗) ·
n−1∑

i=n0

E

[
1

Di + b
· 1{δi<δ′} · 1{tn0=∞}

]

where the last passage is due to{tn0 = ∞} ⊂ {i ≤ tn0} for any i ≥ n0. Moreover,
since both the reinforcement distribution have a support contained in[a, b], we have
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thatDn ≤ D0 + n · b a.s.; then,

≤ (mR −mW ) · p∗(1− p∗) ·
n−1∑

i=n0

1

D0 + (i+ 1)b
E
[
1{δi<δ′} · 1{tn0=∞}

]

≤ (mR −mW ) · p∗(1− p∗) · n0

D0 + (n0 + 1)b
·
n−1∑

i=n0

1

i
P
(
{δi < δ′}

⋂
{tn0 = ∞}

)

Moreover, from definition (5.19) and (5.20) and for anyi ≥ n0, we get that

P
(
{tn0 = ∞}

⋂
{δi < δ′}

)
=

P (tn0 = ∞) + P (δi < δ′) − P
(
{tn0 = ∞}

⋂
{δi < δ′}

)
≥

P (tn0 = ∞) + P (δi < δ′) − 1 ≥
P
(
tn0 = ∞ | lim inf

n→∞
Zn > δ′

)
· P
(
lim inf
n→∞

Zn > δ′
)

+ P (δi < δ′) − 1 =

P
(
τ < n0 | lim inf

n→∞
Zn > δ′

)
· P
(
lim inf
n→∞

Zn > δ′
)

+ P (δi < δ′) − 1 ≥
1/2 · ǫ + 1− ǫ/4 − 1 = ǫ/4

Then, we compute that

A2,n ≤ (mR −mW ) · p∗(1− p∗) · n0

D0 + (n0 + 1)b
· ǫ
4
·
n−1∑

i=n0

1

i

≤ (mR −mW ) · p∗(1− p∗) · kM
D0 + (kM + 1)b

· ǫ
4
·
n−1∑

i=n0

1

i

= − C2 ·
n−1∑

i=n0

1

i

whereC2 is a positive constant.
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Now, let us consider the quantityA3,n.

A3,n =mR

n∑

i=n0+1

E

[
Zi−1(1− Zi−1)

Di−1 + b
· 1{δi−1<δ′} · 1{i≤tn0}

]

≤ mR

n−1∑

i=n0

E

[
Zi(1− Zi)

Di + b
· 1{δi<δ′}

]

≤ mR · 1
4
·
n−1∑

i=n0

E

[
1

Di + b
· 1{δi<δ′}

]

≤ mR · 1
4
·
n−1∑

i=n0

E

[
1{δi<δ′}

Di

]

≤ mR · 1
4
·max
i≥n0

{
E

[
1{δi>δ′}

Di/i

]} n−1∑

i=n0

1

i

= C3(n0) ·
n−1∑

i=n0

1

i

whereC3(n0) is a positive sequence, withn0 ≥ kM . By using the Cauchy-Schwartz
inequality we write

E

[
1{δn>δ′}

Dn/n

]
≤ P ( δn > δ′ )

1
2 · E

[ (
1

Dn/n

)2
] 1

2

→ 0

where the converge to zero is becauseδn
p→ δ from assumption (5.17) andE[( n

Dn
)2] is

uniformly bounded from Proposition 5.1.1. Then, the sequenceC3(n) tends to zero as
n goes to infinity.
Finally, putting all together and choosing ann0 large enough such thatC3(n0) < C2,
we obtain

−1 ≤ A1,n + A2,n + A3,n ≤ C1 + (C3(n0)− C2)

n−1∑

i=n0

1

i
→ −∞

Therefore, since we have met a contradiction (−1 ≤ −∞), we conclude thatP3,n =
P (lim infn→∞Zn > δ′) = 0.

At this point, it just remains to prove that the first termP1,n tends to zero asn goes to
infinity. To do that, we fix an arbitrary smallǫ > 0, and we will prove that asymptoti-
cally P1,n < ǫ.

First, we introduce two constantsd, u ∈ (0, 1) such thatδ′ < d < u < l. We are
interested in the crossing in both directions of a strip(d, u). In particular, lett−1 = −1
and define for everyj ∈ Z+ two stopping times

τj = inf{n > tj−1 : Zn < d}
tj = inf{n > τj : Zn > u}
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Notice that, on the setAsup ∩ Ainf = {lim supn Zn ≥ l} ∩ {lim infn Zn ≤ δ′}, both
the sequences(tn)n and(τn)n diverge asn goes to infinity. As a consequence, there is
no need to define the timesτj andtj when the sets are empty.
Let us consider any integerj0 ∈ N. A specific value forj0 will be conveniently chosen
more ahead.
Then, for anyn ≥ j0, we have

P1,n = P
(
{Zn > l}

⋂
{tj0 > n}

⋂
Asup

⋂
Ainf

)

+ P
(
{Zn > l}

⋂
{tj0 ≤ n}

⋂
Asup

⋂
Ainf

)

Because of
P
(
tj0 <∞ | Asup

⋂
Ainf

)
= 1

the first term of the sum tends to zero asn goes to infinity for anyj0 ∈ N. Then, we
will consider only the second term.
At first, let us introduce a new object: for any fixedk ∈ N we can define an urn process
(Z̃k

n)n coupled with the original process(Zn)n. The notation of this new urn model is
the same of the original process:̃Rk

n andW̃ k
n are the number of red and white balls,

respectively;Z̃k
n is the urn proportion and̃Dk

n the total number of balls in the urn;̃Uk
n

andX̃k
n are the random variables modeling the sampling process, i.e. Ũk

n ∼ U(0, 1) and
X̃k

n = 1{Ũk
n<Z̃k

n−1}
∼ B(Z̃k

n−1); M̃
k
n andÑk

n are the possible reinforcements of red and

white balls, respectively. The processes(Z̃k
n)n and(Zn)n are coupled in the sense that,

for anyn ≥ 1, Uk
n = Ũn+k,Mk

n = M̃n+k andNk
n = Ñn+k almost surely. Moreover, the

initial composition is(R̃k
0 , W̃

k
0 ) = (Rk,Wk). The urn scheme of the new urn process

is, for anyn ≥ 1,

R̃k
n = R̃k

n−1 + X̃k
nMn+k,

W̃ k
n = W̃ k

n−1 + (1− X̃k
n)Nn+k1{δn−1+k<δ′},

D̃k
n = R̃k

n + W̃ k
n ,

Z̃k
n =

R̃k
n

D̃k
n

.

Notice that here the indicator function represents a condition on the process(δn)n, and
not a condition on the urn proportioñZk

n as it was for the original processZ. Moreover,
the sequence(δn)n depends on variables governing the original urnZ (not Z̃):

δn = fδ( X1M1 + (1−X1)N1 , ... , XnMn + (1−Xn)Nn )

We have introduced the new urn modelZ̃k
n because we have the following relation

n⋂

i=k

{ Zi > δ′ } ⊂
{
Z̃k

n ≥ Zn+k

}

holding for allk ≤ n.
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Then, we have that

P
(
{Zn > l}

⋂
{tj0 ≤ n}

⋂
Asup

⋂
Ainf

)
≤

P

(
n⋃

j=j0

{
{Z̃tj

n−tj > l}
⋂

{tj ≤ n}
}⋂

{tj0 ≤ n}
⋂

Asup

⋂
Ainf

)
≤

n∑

j=j0

P
(
{Z̃tj

n−tj > l}
⋂

{tj ≤ n}
⋂

Asup

⋂
Ainf

)

where we remind that for any process(Z̃
tj
k )k it holds thatD̃tj

0 = Dtj .
Now consider a single term of the sum, fixing an integerj ∈ {j0, ..., n}. Naturally
tj ≥ j and, because on the set{tj ≤ n}, we also have thattj ≤ n. Moreover, notice
that the increments of the urn proportioñZ becomes smaller as the total number of
balls in the urnD̃ increases. Then, the more balls are contained in the urn, thelonger
it takes for the urn proportioñZtj to goes fromu to l. Roughly speaking, whenj is
large, many balls are in the urn, and then the event{Z̃tj

n−tj > l}, with n closed totj ,
has probability null to occur. Let us now formalize this idea. Let us denote withf(j)
the minimum number of increments that are necessary toZ̃tj to go fromZ̃tj

tj to l, i.e.

f(j) := min{ k ≥ 0 | P
(
Z̃

tj
k > l

)
> 0 }

After some simple calculus, we can computef(j) as a function of the minimum value
admissible ofD̃tj

0

f(j) ≥ max

{ [
min(Dtj )

b

1− u

1− l
− 1

]
; 0

}

becausẽDtj
0 = Dtj . Since from Lemma 2.1 of [4] we know that

Dtj ≥
(
u(1− d)

d(1− u)

)
Dtj−1

≥ ... ≥
(
u(1− d)

d(1− u)

)j

Dt0 , a.s. (5.21)

we can expressf(j) as follows

f(j) = max

{ [ (
u(1− d)

d(1− u)

)j
Dt0

b

1− u

1− l
− 1

]
; 0

}
.

Then, ifn− j < f(j)

P
(
{Z̃tj

n−tj > l}
⋂

{tj ≤ n}
⋂

Asup

⋂
Ainf

)
= 0,

so, from now on, supposej such thatn − j ≥ f(j). Notice that, for any fixedj ≥ j0,
this condition is asymptotically satisfied.

91



Chapter 5. Randomly reinforced urn design with random time- dependent parameters

Then, we have

P
(
{Z̃tj

n−tj > l}
⋂

{tj ≤ n}
⋂

Asup

⋂
Ainf

)

=

n∑

i=j

P
(
{Z̃ i

n−i > l}
⋂

Asup

⋂
Ainf | tj = i

)
P (tj = i)

≤ sup
j≤i≤n

P
(
{Z̃ i

n−i > l}
⋂

Asup

⋂
Ainf | tj = i

)

= sup
j≤i≤n−f(j)

P
(
{Z̃ i

n−i > l}
⋂

Asup

⋂
Ainf | tj = i

)

We remind that the last expression is well defined since we areconsidering an integer
j such thatn− f(j) ≥ j.
Now, notice that each process̃Z can be seen as a Generalized Polya Urn, with the
expected value of reinforcement of white balls greater thanthe expected value of rein-
forcement of white balls. Then we can use a result from [7,14]suggesting that

P (Z̃n ≥ l) ≤ C1 exp(−C22
log(n))

where Z̃ is the urn proportion of a Generalized Polya Urn andC1 andC2 are two
positive constants depending on the expectation of the initial composition. Using this
result in our context, we have

sup
j≤i≤n−f(j)

P
(
{Z̃ i

n−i > l}
⋂

Asup

⋂
Ainf | tj = i

)

≤ sup
j≤i≤n−f(j)

C1(i, j) · exp
(
−C2(i, j) · 2log(n−i)

)

whereC1(i, j) andC2(i, j) indicate thatC1 andC2 depend on the expectation of the
initial conditions of the urñZ i

0 with tj = i, that is the urn composition(Ri,Wi) with

tj = i. Since we know that̃Ztj
0 = Ztj

a.s./L1

→ j u andD̃tj
0 = Dtj

a.s./L1

→ j ∞, thenC1(i, j)
andC2(i, j) are converging sequence asj increases. As a consequence, we can say that
there existsj1 ∈ N and two positive constantsC1 andC2 such thatC1(i, j) ≤ C1 and
C2(i, j) ≥ C2 for anyi, j ≥ j1.

Hence, we can write

sup
j≤i≤n−f(j)

C1(i, j) · exp
(
−C2(i, j) · 2log(n−i)

)

≤ sup
j≤i≤n−f(j)

C1 · exp
(
−C2 · 2log(n−i)

)

≤ C1 · exp
(
−C2 · 2log(f(j))

)

Notice that sincef(j) grows exponentially, there exists aj2 such thatf(j) ≥ j for any
j ≥ j2. Then, by choosingj0 > j2, we have

C1 · exp
(
−C2 · 2log(f(j))

)
≤ C1 · exp

(
−C2 · 2log(j)

)

for anyj ≥ j0.
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5.3. The Convergence in Probability of the urn process

Now, coming back to the series. Putting all together, we get that

n∑

j=j0

P
(
{Z̃tj

n−tj > l}
⋂

{tj ≤ n}
⋂

Asup

⋂
Ainf

)

≤
n∑

j=j0

C1 · exp
(
−C2 · 2log(j)

)
1{j+f(j)≤n}

≤
n∑

j=j0

C1 · exp
(
−C2 · 2log(j)

)

for anyj0 > max{j1; j2}. Notice that in the previous expression we have a convergent
series. Then, by choosingj0 large enough, we can force this series to be smaller than
any arbitraryǫ > 0. This means that we have proved that the termP1,n tends to zero as
n goes to infinity, and then also that

lim
n→∞

P (Zn > δ + ǫ) = 0, ∀ǫ > 0

The proof of
lim
n→∞

P (Zn < δ − ǫ) = 0, ∀ǫ > 0

is completely analogous.
This conclude the proof thatZn

p→ δ.

In this chapter we have presented a randomly reinforced urn model able to target an
asymptotic allocation that is a function of unknown parameters modeling the response
distributionsρ = f(θ). This allows the experimenter to choose functions that in some
sense increase the statistical performances of the design,like minimizing a loss func-
tion, maximizing the power, ecc.. (collective ethics). Moreover, the design aims also
at reducing the proportion of subjects assigned to the inferior treatment (individual
ethics). This trade-off is faced in the design through the presence of two possible target
allocation functionsfδ(·) andfη(·). In particular,fδ(·) represents the desired allocation
if the superior treatment isW , while fη(·) represents the desired allocation if the supe-
rior treatment isR.
First-order asymptotic results have been obtained and herereported. In particular, we
are able to show, under very mild conditions, the convergence of the urn proportion to
the target allocation, function of the unknown parameters.This convergence can be al-
most sure or in probability according to the choice of the estimators and the allocation
functions.
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CHAPTER6

Conclusions and ongoing work

This thesis analyzes statistical properties of urn models for the experimental design
in a clinical trail context. In the designs we have considered, subjects are sequen-
tially assigned to two treatments under study (sayR andW ) according to a response-
adaptive randomized procedure, in which the probability ofassignment depends on the
responses to the treatments observed in the previously allocated patients. We deal with
urn models since they are classical procedures to randomizethe allocations and to de-
scribe the dependence among the probability of assignment of the next subject and the
responses previously collected. We focus on urn schemes that at each step reinforce
the urn with a random quantity of balls of the color correspondent to the assigned treat-
ment; these models are usually denoted as Randomly Reinforced Urn (RRU) models.
These procedures asymptotically allocate subjects to the treatment superior in mean
with a probability that converges to 1. They present good ethical properties but poor
statistical performance for inferential purposes.
For this reason, in Chapter 2 we propose a new modified randomly reinforced urn de-
sign (MRRU) whose allocation proportion converge to a fixedρ ∈ (0, 1). As a conse-
quence, the performances of inferential procedures adopted in the experiment have been
improved. Moreover, the MRRU achieves a goal that typicallyarises in the clinical trial
framework, as it allocates small proportions of subjects tothe inferior treatment. This
has been obtained by setting two parametersδ andη, with 0 < δ ≤ η < 1, that represent
the possible values for the limiting allocation proportion. The target allocation is differ-
ent depending on which treatment is the superior in mean. In fact, in Theorem 2.3.1 we
proved that the almost sure limit of the urn process isρ = η1{mR>mW } + δ1{mR<mW }.
The parametersδ andη are fixed in advance by the experimenter, but the asymptotic
allocationρ is unknown since the response means to the treatmentsmR andmW are un-
known. Further asymptotic properties of quantities related to the urn model are proved
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Chapter 6. Conclusions and ongoing work

and reported in Chapter 2
In Chapter 3 we conduct a statistical study on the propertiesthat follow from the use
of the MRRU model to implement a test that aims at comparing the mean effects of
the two treatments. We show that a test based on a response adaptive design as the
MRRU model presents different desirable properties. In fact, this procedure enables us
to increase the power of the test and at the same time to assignfewer subjects to the
inferior treatment than a classical non-adaptive test. Theanalysis of a real case study
and simulation studies highlight these results.
In Chapter 4 we compute the rate of convergence and the limiting distribution of the
urn process with different reinforcement means. We discussthe asymptotic results in
an inferential setting for test procedures using statistics based on both the adaptive es-
timators and the urn composition. A comparison with the inferential properties of the
RRU design whose asymptotic allocation isρ ∈ {0, 1} has been realized. As we expect,
using statistics based on the adaptive estimators, a test implemented with the MRRU
design has a power higher than a test implemented with the RRUdesign.
In Chapter 5 we extend the MRRU model presented in Chapter 2 toobtain an urn design
in a sequential estimation framework. In particular, we propose a randomly reinforced
urn model whose asymptotic allocation is a function of unknown parameters of the re-
sponses probability laws. As a consequence, the choice of that function can be made in
order to maximize any statistical goal, and the urn procedure is able to asymptotically
target the allocation proportion that achieves that goal. The model is characterized by
two functions representing the desired allocation proportions in the cases that the supe-
rior treatment in mean is eitherR orW . The current value of the targets are computed
using consistent estimators. This feature allows the experimenter to achieve the ethical
goal of reducing the proportion of subjects assigned to the inferior treatment.
The second-order asymptotic results concerning the urn design described in Chapter 5
are the main object of the work in progress naturally in continuity with this thesis. A
central limit theorem on the allocation proportion will enable a deeper study of the
inferential aspects and a comparison of this model with other parametric response-
adaptive designs in a sequential estimating framework. Moreover, a study about oper-
ational characteristics of the MRRU model, as the analysis of accidental and selection
bias, can be an interesting development to investigate the properties of this urn design.
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