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Abstract

In this thesis we analyze the statistical properties of aasp-adaptive designs, de-
scribed in terms of two colors urn models, in a clinical taahtext. We introduce an
urn procedure, the Modified Randomly Reinforced Urn (MRRE}idn, whose urn
proportion asymptotically targets prespecified values.pVdwe asymptotic results for
the process of colors generated by the urn and for the prod¢étsscompositions. An
application of the proposed urn model is presented in amasibn problem context.
Statistical performances of inferential procedures basetifferent statistics are inves-
tigated. We adopt the MRRU model to improve the performarfcas both ethical and
statistical point of views, of different tests for comparithe mean effect of two treat-
ments. We apply the MRRU design for implementing the randbocation procedure
in a real case study. Finally, we extend the MRRU model toinldaesponse adap-
tive urn design that targets an asymptotic allocation ddfem function of unknown
parameters modeling the responses distribution.






Introduction

This thesis is focused on mathematical and statisticalcasé urn models used as
randomized devices in the field of design of experiments. driiqular, we consider
the context of clinical trials, where the experimentatiomolves human subjects. In
this framework, a central role is played by the randomizgttbat is now an essential
feature of the scientific method. These procedures randassign the subjects that se-
guentially enter the trial to the treatments under studg Génefit of randomization has
been deeply studied in many areas of research, especid idlinical trial context.
The strategy adopted to randomly allocate units to treatsrggnerates different types
of experimental designs. In this thesis, we focus on respadsptive procedures, in
which the allocations depend also on the responses giveretsubjects previously as-
signed. This feature enables to create designs that chaagedbability of assignment
of the subjects according to the treatments performandas.factor is very important,
especially in clinical experimentation, where the ethaspect is significant more than
in other scientific fields. For this reason, the theory ofichhtrials has been always
characterized by a trade-off between the individual etbicthe subjects involved in
the experiment and the collective ethics of the entire comtyuThe first aims at max-
imizing the individual probability to receive the best tmeant, while the second aims
at maximizing the power of the procedure that determinebdése treatment.

A large class of response-adaptive randomized designsedban urn models, since
they represent classical tools to guarantee a randomizeckedéJrn procedures can be
characterized by different strategies of reinforcementiarhis thesis we consider urn
models with random non-negative reinforcements concgromly the extracted color.
These designs have been called Play the Winner or RandonmiyoReed Urn (RRU)
designs, and they are randomized devices able to asyngitpatiocate subjects to the
optimal treatment. These procedures had a good successtlsair asymptotic behav-
ior maximizes the individual ethics. Nevertheless, thessghs are unsatisfactory for
the collective ethics, since their statistical properpessent some problems. At first,
because there are many results for designs whose asymggtotiation isp € (0, 1),
that cannot be applied to RRU models since their asympttticaion isp € {0,1}.
Moreover, these models generate groups with very diffesantple sizes. Then, the
inferential procedures based on these designs are ushaltgaterized by a very low



power in comparing treatments effects. For these reasamtiame modified the rein-
forcement scheme of the urn to construct a design that asyicgity targets an allo-
cation proportiorp € (0,1). The term target indicates the limit of the urn proportion
process. We will denote this urn model as the Modified RangildRdinforced Urn
(MRRU) design.

In Chaptef R, we introduce the MRRU model and we prove stramy@rgence of the
urn proportion to the target allocatigne (0, 1). Further first-order asymptotic prop-
erties of the urn model have been investigated. The studiyeofsymptotic behavior
has been particulary challenging since the modified urnge®cloes not present the
sub/supermartingality properties presented by the RRU.

In Chaptei B we adopt the MRRU model to improve the statistiegformance of dif-
ferent tests for comparing the mean effect of two treatmenes show that a response
adaptive design as the MRRU for implementing the randontation procedure en-
ables to get good properties from both ethical and stagigbicints of view. In particu-
lar, we achieve both the goals of increasing the power ofdasieaind of assigning fewer
subjects to the inferior treatment. Simulation studiestendtatistical performances of
this procedure have been conducted. We applied the proee@scribed in Chaptet 3
to a real case study and the results of the analysis have bperted.

In Chaptel# we investigate the second-order asymptotjugpties of the MRRU model.
In particular, we compute the rate of convergence of the vocgss and we study its
asymptotic probability distribution. Then, we comparedifetically and empirically
the inferential performances of the MRRU model with the opewided by the RRU
model, whose asymptotic allocationgdse {0, 1}.

In Chaptef b we construct a randomly reinforced urn mode ebtarget an asymptotic
allocationp € (0, 1), that is a function of unknown parameters modeling the nesg®
distribution. First-order asymptotic results under difet conditions have been inves-
tigated. In particular, we prove the couple convergenaadat sure and in probability)
of the urn proportion to the desired allocation functionted inknown parameters.

Data analysis and simulations have been carried out usitatRt&al software [48].
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CHAPTER 1

Response adaptive designs in clinical trial

The principal topic of this thesis is the study of statidtipeoperties of a response-
adaptive design, based on an urn model, applied to clinicdét The general frame-
work consists of the wide area of experimental designs wdlichat collecting accurate
information, in order to make decisions about real probleespecially in a clinical
context. The pursuit of the scientific information can bdirea with very different
methodologies, and this choice strongly influences botlptiese of analysis and the
interpretation of the results. We consider experimentalgies based on the random-
ization of units to receive one of the study treatments. Tdie of randomization is
currently an essential feature of the scientific method. &tays, most of the areas
involving empirical research are adopting randomizatemihiques. The properties of
randomization have been deeply studied in the last few @escdd particular, most of
the theoretical research on randomization models has bm®tucted in the medical
context, with a special interest in the application to datitrials. A clinical trial can be
generally defined as an experimental design whose main gjtabietermine the posi-
tive or negative effects of a new medical treatment or pracedWe focus on the very
large class of experimental designs based on the sequentrahce of subjects in the
study. In other words, statistical units will be sequelhtieandomized to one of two or
more treatments under study. The clinical trials we are gtanconsider are basically
based on the comparison of two or more treatments, where ebthem can be taken
as controls. Among the different types of clinical trials deal with designs based on
urn models having their natural position in therapeutigalg, in which a new therapy
or pharmaceutical drug is compared to a conventional onesd kinds of experiments
are usually denoted phase lll clinical trials, since thayespond to the third phase of a
long process that always occurs when a new therapy has térbduced in the market.
Naturally, the new therapy can be a drug or a new proceduresis Randomization
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Chapter 1. Response adaptive designs in clinical trial

is strongly adopted in phase Ill clinical trials, where pats are randomly assigned to
study treatments or control.

Why is randomization so important for clinical trials? Teere different answers to
this question, but the main reason probably is that randatioiz improves compara-
bility among the study groups. In observational studies grsuit of comparability is
realized by adjusting for known covariates, without anyrgagee of control for other
convariates. Besides, this lack of assurance is not everdalsymptotically. How-
ever, randomized procedures increase the probability mipewability with respect to
unknown covariates that may influence the responses. Bdbmaization has another
good property for which is widely used in many areas of expental design. In fact,
randomized designs usually generate a suitable probaimbtel for a complete phase
of inferential analysis. The probability structure praaadby the adoption of random-
ized procedure allows the experimenter to consider therebdeesults with respect to
all possible results, and their relative occurrence proityab

There is an important point to be made concerning clinigalgtin medicine with re-
spect to experimental designs adopted in other discipli§gge they involves human
beings, in many situations the experimenter can face congthecal issues which do
not exists in other scientific fields. We have to keep in mingl tih understand some of
the reasons that led us to construct the urn model presantieid ithesis. Another issue
related to the ethical theme is the fact that randomizats@s yrobability as a method
to allocate patients to treatments. As mentioned in [40th&amedical sphere there
are some opinions that randomness and probability showiel ha role in medicine,
because only a physician has the right to decide which teattishould be given to
a patient. However, all the benefits provided by randonorain clinical trials are
now widely known . Naturally, an experiment involving humagings cannot be stud-
ied without taking into account the ethical aspects. Randednprocedures in clinical
trials always deal with the delicate balance between iddiai ethics and collective
ethics [47]. Individual ethics represents what is the bestife individual patient in the
trial. Collective ethics is related to the public healthgtas through scientific experi-
mentation. We will see how the models here considered trptionize the experiment
agreement to both individual and collective ethics.

Finally, all clinical trials should be double-masked whenepossible, meaning that
neither the patient nor the experimenter should be awaigedféatment randomly as-
signed to the patient. A procedure that is not double-maskedintroduce a bias in
the result, called selection bias. To avoid this probleiinth& models we are going to
see do not introduce any quantity related to the personhhfeer experience of the
experimenter.

1.1 General adaptive models

Consider a clinical trial where subjects enter sequegtialthe experiment. Let us de-
note withn the total number of patients that will be involved in theltr@any of thesen
patients will sequentially and randomly receive one of treatments, that we will call
R andW. We define a randomization procedure as a vegtos (Xy,..., X,,) where
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1.1. General adaptive models

X; € {0,1},4 = 1,...,n. Naturally, X; = 1 means that patientreceives treatment
R, while X; = 0 means patient receives treatmend’. By changing the probability
distribution of the vectorX, we generate different randomized procedures. Theoreti-
cal studies on clinical trials have been often conductechtracterize the asymptotic
behavior of the randomization sequence, as the sample:simgeases. In particular,
most of them focus on the asymptotic properties of the afioogroportions, defined
asNg(n)/n=>"", X;/nandNy (n)/n =" ,(1—X;)/n, respectively. Obviously,
Ng(n) + Nw(n) = n.

Many designs model the law of the randomized vecfodepending on responses ob-
served from the patients, so we need to define quantitiesrtbdel the responses. Let
M = (My,...,M,)andN = (Ny, ..., N,,) be vectors of response variables, whéfg
and V; represent the response that would be observed if patrectived treatmen®
andWW, respectively. Notice that because of the randomizatmme#&ch patient, only
one element, eithel/; or IV;, can be observed. In general, the probability lawd/6f
and N; can be chosen conditionally ok, and some covariateés. However, in this
thesis we will assume that the the vectdéfsand N are composed by independent and
identically distributed random variables.

Let 7, = o(Xy,..., Xy, My, ..., M,,, Ny, ..., N,,, Y1, ..., Y,,) be the sigma-algebra gen-
erated by the firsk treatment allocations, responses and covariates. A razdton
procedure is defined by

where 7, is a random variablé,,-measurable. We can defiiig, as the conditional
probability of assigning treatmerit to the patient: + 1, conditional on the previous
n allocations, responses and covariates, and the curraahpatcovariate vector. We
can describe up to five different types of randomization edoces. We have

e complete randomization
E[Xn+1|fn] = E[XnJrl]

The simplest form of randomization procedure is completeloanization, where pa-
tients are assigned following a coin-tossing rule. ThealdasX,, ..., X,, are indepen-
dent and identically distributed Bernoulli random varegivith probability of assign-
ment to treatmenk given byZ;, = E[X;] = P(X; =1) =1/2,i=1,...,n. Complete
randomization presents some advantages. The first is thpatednts are fully random-
ized. Moreover, since each subject has the same probataillhg assigned correctly
or incorrectly, the danger of selection bias is completelgroome. Nevertheless, this
procedure is rarely used in practice because it presentghgonobability of treatment
imbalances in small samples.

e restricted randomization
E[X,1|Fn] = E[ X1 Xy, 0 X

Restricted randomization procedures are characterizéuebyependence among, . ;
and the variables(y, ..., X,,. However, the assignments are independent of responses
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Chapter 1. Response adaptive designs in clinical trial

and covariates. These models are employed when we wantde floe allocation of
patients to each treatment group to achieve a specific &lbocproportion, regardless
of the treatment performances. This is usually accompiisghyechanging the proba-
bility of assignment to a treatment according to how manyep#t have already been
allocated to that treatment. The goal often is to have equabwers of patients assigned
to each treatment group, balancing the treatment assigsmen
The simplest type of restricted randomization is calledrémelom allocation rule. The
main idea is to impose some restrictions on the allocati@bgilities, in order to
avoid the possible imbalance presented by the complet@naizdtion. Consider the
situation where the investigator knows the exact numbeubfegtsn involved in the
trial. Then, forn even, the probability that patients assigned to treatmentis given
by

n—(G—1)

Another method to allocate exactly 2 patients to each treatment is to use the complete
randomization until one treatment has been assigned/2opatients. Then, all the
further patients will receive the opposite treatment. [18][Blackwell and Hodges
called this model the truncated binomial design. For thisigie the probability to
allocate the patientto treatment? is given by

Zi1 = E[X;|Fia] =

1=1,...,n (1.2)

1/2 if max{Ng(i —1i), Nw(i — 1)} <n/2,
1 if Nw(i—1)=n/2.

Positive aspects of the random allocation rule and trudchirgomial design are that
each patient, at the beginning of the experiment, has the pamivability to be assigned
to both treatmentsH(X;] = 1/2 Vi = 1, ..., n) and that both groups will be completely
balanced/2 subjects to both treatments). Nevertheless, on@epatients have been
assigned to one treatment, all further treatment allonatéwe deterministic. Hence, the
final assignments are deterministic and predictable, dedtsen bias can easily occur.
Besides, we cannot avoid the possibility of a severe imlzaglamthe middle of the trial.
This is particularly negative in the situation of time-hregenous covariates related to
the responses, because with these designs there is no geapéavoiding imbalances
between treatment groups with respect those covariates. tyfje of bias was intro-
duced by Efron in[20], and he denoted it as accidental bibss i§sue can be overcome
by the adoption of the permuted block designs, that ensuamtathroughout the ex-
periment, by introducing some restrictions during the seuwf the trial. Generally,
it is implemented withM blocks, each one containing = n/M patients. To en-
sure balance a random allocation rule is typically used sigaspatients within each
block. Although permutation blocks achieve balanced alion, when blocks contain
few subjects selection bias can result. All these designsire a precise value of the
sample sizex to be computed. This feature can be a relevant issue in peadince
typically the experimenter does not knawexactly. The following procedures we are
going to see overcome this problem, since they considerllibea#ions as elements of
a sequence instead of a vector.



1.1. General adaptive models

Another very famous restricted randomization procedutka<=fron’s biased coin de-
sign (seel[20]), that is able to balance treatment allonatimy changing the proba-
bility of a coin-tossing. LetD; be an increasing function a¥z (i) with D, = 0 if
Ng(i) = i/2, so thatD, can represent the imbalance between treatmerasdil” af-
ter the firsti assignments. Then, for any constartt (0.5, 1], the allocation procedure
is given by
]_/2 |f Di—l — O,
Zig = p if D;_1 < 0, (14)

The biased of the coin can be chosen arbitrarily before beginning the trial, babis-
stant, regardless of the degree of imbalaieg.

In [53], Wei proposed a modified version of the Efron’s biaseith design, such that the
degree of imbalance influences the allocation probabilitys technique is an adaptive
biased coin design which can be describe in terms of urn matiel colors of the balls

in the urn represent the treatments to be assigned.R,gtV,,) be the urn composition
aftern draws, that indicates the number or red and white balls iutherespectively.
Initially, the urn containgy balls of each type. The allocation procedure can be briefly
explained as follows: a ball is drawn and replaced, its coluied, the correspondent
treatment is assigned, amdballs of the other color is added in the urn. So doing, the
urn composition is skewed to increase the probability ofgessent to the treatment
that has been selected least often thus far. Then, the plibp&i assign patient to
treatmentR is the proportion of red balls in the urn at time- 1, given by

p { 1/2 if i=1, (L5)
i—1 — a+BNw (i—1) ¢ - .

Wei’s urn design and Efron’s biased coin design can be censitias special cases of a
more general class of designs, called generalized biasediesigns, characterized by

Zi =E[Xi|Fia] = 6(i - 1) (1.6)

where the functio (i) = ¢(Ng(i), Nw(i)) can be chosen to describe a wide class of
models.

In practice, the random allocation rule and truncated biabdesign are usually per-
formed within blocks of subject so that balance can be fotbeoughout the course
of the clinical trial. This minimizes the risk of accidentahs. Alternatively, Efron’s
biased coin design and Wei's urn design adaptively baldme¢réatment assignments,
without forcing perfect balance. In all cases, experimshtauld be conducted double-
masked in order to minimize the risk of selection bias.

e response-adaptive randomization
E[Xn+1|fn] — E[Xn+1|X17 ceey Xn; M17 ceey Mn7 N17 ceey Nn]
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Chapter 1. Response adaptive designs in clinical trial

The response adaptive randomization are procedures ttidzad by the dependence
between the randomized sequetdce ..., X,, and the responses collected from the pa-
tients. More precisely, the assignment of patieistbased on a probability model that
takes into account the past allocatioXis ..., X;_; and the responses observed from the
subjects already allocated, ..., M; ; and Ny, ..., N;_;. Response-adaptive designs
are usually attractive because they aim to achieve two samebus goals, concerning
both statistical and ethical points of view: (a) maximizipgwer in determining the
superior treatment, and (b) increasing the allocation @kun the superior treatment.
In this thesis we focus on response-adaptive designs tbatgarate data on previous
treatment assignments and responses to decide the treatineation only for the next
subject. These procedures are easy to implement but theoeaissurance that they are
globally optimal. In general, response-adaptive procesiunay be constructed with a
stopping rule that ends the trial when some optimal criterhas been achieved. In
this situations, typical in the context of sequential asalythe sample size is random.
However, we restrict our attention on response-adaptiwgigdse with a sample size
fixed in advance, like more and more often occurs in modemicei trials.

It is possible to distinguish two main classes of responsgtae randomization pro-
cedure: the doubly-adaptive biased coin design and the adels. The former will be
briefly described in the next section. The latter will be themtopic of the thesis.

e covariate-adaptive randomization

E[ X1 Fn] = E[X0i1| X, oo X, Y1, 0, Y]

e covariate-adjusted response-adaptive (CARA) randoinizat

E[XnJrl‘.Fn] — E[Xn+1|X17 ey Xn7 M17 ceey Mn7 Nl; ceey Nn; Yl; ceey Yn]

Finally, we have covariate-adaptive randomization andadate-adjusted response-
adaptive (CARA) randomization that are two classes of desiged when the goal is
to guarantee balance between treatment groups with respsmine known covariates.
In these designs, treatment allocatiofis ..., X,, depend on those covariates observed
by the patients. We are not going to discuss these desighsithesis.

1.2 General doubly-adaptive biased coin design

Designs presented in this section are based on a paranesgpiairse model and a target
allocation depending on the unknown parameters, that isesg@lly substituted with
updated estimates of those parameters. The class of dadbjytive biased coin de-
sign was introduced in [21] and [22], and extends the bagior&f biased coin design
by using an allocation probability that depends on the degfembalance. However,
unlike Wei’s urn model, the doubly-adaptive biased coingless based on a paramet-
ric model that includes the response variables. Let thegitity distributions of the
responses\(y, ..., M,, and Vy, ..., N,, depend on some parameter vedioe ©. Let
p(0) € (0,1) be a target allocation, that is the desired proportion ofexib to be
assigned to treatmeift. Let g be a function fron 0, 1] to [0, 1] such that the follow-
ing four regularity conditions hold: (iy is jointly continuous; (ii)g(r,r) = r; (iii)
g(p,r) is strictly decreasing ip and strictly increasing im on (0, 1)?; and (iv) g has
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1.2. General doubly-adaptive biased coin design

bounded derivatives in both arguments. Afterssignments, the functionrepresents
the closeness d¥z(7)/: to the current estimate @f¢) in some sense. The randomized
procedure is the following: the subject 1 is assigned to treatmeitwith probability

given by
z-0 (M1@)) @

]

where@i is some estimator a¢fwith observations collected from the fitgsfubjects. Un-
der conditions (i)-(iv) asymptotic properties of the desaye investigated. Although
of considerable theoretical interest, the design studig@1] and [22] based on con-
ditions on the functiory rather restrictive. In fact, not even the examples provided
those papers satisfy these conditions.

In [44] Melfi, Page and Geraldes proposed an adaptive rarmbahdesign that can be
included in the class of models describedlin| [21] &nd [22},ibis much simpler to
implement, since the allocation probability is based omlyan estimate of the target
allocation from the data already gathered

A~

Z; = p(0;) (1.8)

When#; represents the MLE estimator 6f this model is also called sequential max-
imum likelihood procedure. This particular choice fpdoes not satisfy conditions

(1)-(iv), but good asymptotic properties have been hidtiiégl and the performance of
the design is similar to designs proposed.in [22].

In [34] Hu and Zhang proposed the following functigiior v > 0:

B y(y/x)"
9y = T T A= (A=A =)
g(0,y) =1,
g(xz,0) =0.

This function does not satisfy the regularity conditior) @ [21], but it satisfies alter-
native conditions that are widely satisfied. [In|[34] Hu anc@f (2004) proved strong
consistency, a law of the iterated IAogarithm and asymptuairenality for the new de-
sign. Notice that, whery = 0 and@, is the maximum likelihood estimator &f the
procedure reduces {6, = p(él-), the design studied in [44].

In [31] Hu, Zhang and He proposed a new and simple family goase-adaptive ran-
domization procedures, called Efficient Randomized-Adaddesign (ERADE). Un-
der some mild conditions, this model is able to asymptdiicattain the Cramer-Rao
lower bound for the allocation proportion of subjects tolbweatment. The allocation
probability function of the proposed procedure is disaumbius

ap(B) it NG /i > p(@),
Z; = { p(0) i NG)i=p(0) (1.9)
L—a(l—p@,)) if NG)/i<p@).

wherea € [0, 1) is a constant that indicates the degree of randomization.



Chapter 1. Response adaptive designs in clinical trial

In the next section, we will present randomized proceduessiibed in terms of urn
models. In general, urn models aim at achieving differerglgavith respect to the
designs presented in this section. In particular, they ateisually designed to target
some specific allocation based on unknown parameters.

1.3 Urn models for response-adaptive designs

In this section we explore a large class of response-adagivdomization procedures
based on urn models. Urn models have been investigated doigetime in probability
theory, since they generate many interesting stochasiimepses. In randomized urn
models, balls are replaced according to some probabilglyidutions. The first class
of urn models we are going to describe is the generalizedlF@a’s urn, that basi-
cally consists in a generalization of Wei's urn design. 8itiee randomization is here
response-adaptive, balls are added to the urn dependimgntyobn the treatment as-
signed, but also on the patient’s responses. In a geneneirark, the randomization
of patienti is accomplished as follows: a ball is drawn from the urn ampdaeed, its
color noted &; = 1 or X; = 0), and the corresponding treatmént assignedi = R

or k = W). After treatmentt has been assigned, a response is obseved( ;)
and a random number of balls are added to the urn. We will @enith Dy, ;. or Dy,
the number of red balls and white balls respectively, retdrn the urn, fokk = R, .
Dr . and Dy, are measurable functions on the sample space of the responke
response-adaptive randomization procedure is then giyen b

R;
Zi=—1
R, + W,

where R; andW; represent the number of red and white balls, respectivehtained
in the urn after the first assignments. Notice that the probability to allocate thd ne
subject to treatmenk is the current proportion of red balls in the urn. Note that if
Drr = Dww = 0andDy r = Drw = [ We return to the Wei’s urn design. Sig-
nificant theoretical results on the generalized Friedmamismodel have been realized
in [5] concerning an urn model with balls df > 2 colors. Let us calD = [D;]
the random matrix representing the number of balls of typeded to the urn when a
ball color & has been sampled. Most of their results based on a matrixededis the
expectation oH = E[D], called generating matrix. Under some regularity condgjo
such asD;;, > 0 andE[Dj; log(D,)] < oo foranyj, k = 1,...., K, in [5] were proved
many important asymptotic properties of the generalizegidinan’s urn; they showed
that first-order asymptotic properties of the urn dependhereigen-structure df. In
particular, they prove that both the urn proportion and ttegprtion of sampled color
converge almost surely to the eigenvector associated tm#xémum eigenvalue off .

In [52] and [9] it was used a slightly more general setupjicgiihe model the extended
Polya urn. They assume some regularity conditiorHoto obtain some second order
asymptotic properties on the proportion of sampled colehsasH. Among the as-
sumptions, we have th&t has simple eigenvalues and all the rowsd-bsum to the
same positive constant. They also explore the situatiommiiom generating matrix
H, = E[D;|F;_1] converging to a fixed matrii.

Roughly speaking, all the theory on Friedman’s urn modelsaised on the assump-
tion of irreducible mean replacement matkk Under this condition the maximum
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1.3. Urn models for response-adaptive designs

eigenvalue is unique and the limiting urn proportion wilhstst in the correspondent
strictly positive eigenvector. The rate of convergence #uadlimiting distribution of
the proportion of sampled colors from the urn usually depmmthe size of the second
greatest eigenvalue with respect to the maximum eigenvalue

There is another class of urn models that has always playedtant role for clinical
trials. In [37] Ivanova and Flournoy refer to this class as ternary urn, since the
models admitted only three possible actions:

e a ball is added to the urn
e no ball is neither added nor removed from the urn
e a ball is removed from the urn

Nowadays many of these models have been extended and a randamer of balls can

be added and removed from the urn. However, the main feafufeese designs has
remained invariant: the diagonal generating matrix, irg; @ange of the urn compo-
sition must involve only the balls of the sampled color.

The first design we see is the birth and death urn model. Cen&idreatments and an
urn containing balls of< colors. A ball is drawn and replaced and the correspondent
treatment is assigned to the patient. Responses are assorbedinary. When the
response is a success a ball is added to the urn, while wheluig faccurs a ball is
removed from the urn. Then, there is a positive probabitibt some color disappears
because all balls of that color have been removed. To av@cetent, we start with an
urn which contains also another type of balls, called imatign balls, as in the [36].
When an immigration ball is sampled, one ball of each typedided to the urn, no
patient is treated, and the next ball is drawn. The birth agattdurn has a complicated
limiting theory that changes according to the magnitudeheftiighest probability of
successy) among all the treatments under study.plf> 0.5 and the maximum is
unique, then the proportion of sampled balls of the corredpat color converge in
probability to one; otherwise, j# < 0.5, the proportion of sampled balls of any color
converge in probability to specific values determined bystinecess probabilities of all
K treatments.

The drop-the-loser DL was proposed in|[38] for two treatrseamtd binary responses.
The urn initially contains balls of typ& andW and immigration balls, since also in
this model balls can be removed from the urn. In particufdhe response is a failure
a ball is removed. Otherwise, the urn composition does nahgd. When an immi-
gration ball is drawn a ball of each type is added to the urrwdfdenote agr and
qw the probability of failure to treatmemn® and 1V respectively,[[38] shows that the
proportion of balls of type? sampled from the uriVz(n)/n converge in probability to
aw/(qr + qw)- Besides, it provides a central limit theorem with the lotvesiance in
the class of response-adaptive randomized procedureitayg, /(qr + qw ).

In [33] the Ivanova’s DL rule was generalized (GDL), and salasymptotic results
are derived, for which Ivanova’s results are a special cisparticular, they extended
the DL procedure td< > 2 treatments. Moreover, the number of balls added to the urn

9



Chapter 1. Response adaptive designs in clinical trial

because of an immigration ball is drawn, becomes a functidheosuccess probabili-
ties. This allows the GDL rule to target any desired allamatheoretically.

In [16] a general class of immigrated urn (IMU) models wasgmsed that incorporates
the immigration mechanism into the generalized Friedmansframework. In that
paper, theoretical asymptotic properties of the IMU modetsinvestigated. 1 [16]
it was shown that the IMU models have smaller variabilitiesallocations than the
classical urn models, yielding more powerful statisticdérences. Since the class of
IMU models include many popular classical urn models, thi#égra unify view of
almost all urn processes framework. However, the IMU des@mnot include models
whose generating matrif is such thaH1 > 1, wherel = (1, ..., 1), andfy > 1 such
thatH1 = 1. In these models, the total number of balls in the urn grddiratreases
to infinity and the mean of the total number of balls replacethe urn at each step
changes according to the color of the sample ball. For exantpis is the case of
generalized Polya urn model with different reinforcememiams. These designs will
be investigated in the next section.

1.4 The Randomly Reinforced Urn Design

This section focuses on a class of response-adaptive desligscribed in terms of two-
color generalized Polya urn model, denote as Randomly Beied Urn (RRU) design.
In all these models, the urn is reinforced every time it isgl@ehwith a random number
of balls that are of the same color of the ball that was ex@dcthen, the generating
matrix H is not irreducible, since it is diagonal, and there are no ignation balls.
RRU designs have been usually adopted to compare compegatgients in a clinical
trial framework, with a special attention on the ethicallganinimizing the allocation
of units to the inferior treatment. Naturally, the attengto achieve this aim without
losing too much in terms of statistical performance for thferiential analysis devoted
to determine the superior treatment.

RRU models were introduced by [17] for binary responsesliegho the dose-finding
problems in[[18, 19]. Then, they have been extended to the chsontinuous re-
sponses by [12,45]. Let us describe the model of a general RRign. Visualize an
urn containing balls of two colors (red,white). Red balls associated with treatment
R, while white balls with treatment/. The urn is sequentially sampled and patients
are allocated to treatments according to the colors of thgpksd balls. Each time, the
extracted ball is reintroduced in the urn together with alcan number of balls of the
same color. Let us callr and iy the probability distributions of the random rein-
forcements of red and white balls, respectively, ang my, the corresponding means.
The supports ofiz anduy, are usually assumed to be bounded and non negative. The
sequenceX = (X, )nen (X, € {0,1},n = 1,2,..) represents the colors sampled from
the urn and the sequenée= (Z,,),en (Z, € (0,1),n = 0,1,2,..) the proportion of
red balls in the urn.

Theoretical properties of the RRU model have been widelgistlin literature. When
mr = my, the majority of the results have been found[ih[]1=3, 41]. His tase,
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1.4. The Randomly Reinforced Urn Design

the asymptotic distribution of the limiting urn proportias unknown, except in few
particular cases. Consider the case in whigh = puyw = p. In this situation it
was proved that the sequengeconverges almost surely to a random variable with
no atoms, i.e.P(lim, Z,, = z) = 0 for anyz € [0,1]. Wheny is a point mass at a
nonnegative real numbet, the RRU degenerates to Polya’s urn and the limiting dis-
tribution is aBeta(ry/m,wy/m). This is also the case for binary responses when
balls are added to the urn after a success is obtained[(9eeH&] the general RRU
with ur = uw = pu, [3] characterizes the liming distribution gfas the unique contin-
uous solution, satisfying some boundary conditions, ofexie functional equation in
which the unknowns are distribution functions on [0, 1].

Whenmpr = my, it may happen thatz # uy because of moments of higher or-
der. This is of particular interest because it corresponds situation in which the
two treatments are considered equivalent in mean. Howevf24] it was proved that
P(lim, Z, = 1) = P(lim, Z, = 0) = 0, so that asymptotically the urn does not extin-
guish any color when treatments are equivalent in mean.

When reinforcement means are differentf # my), in [45] it is shown that the
urn asymptotically is composed almost completely by bdilghe color associated to
the superior treatment. Formally, they proved that the sege of the urn proportion
of red ballsZ converges almost surely to one, whern;, > my, or to zero, when
mgr < my. AS a consequence, the allocation proportidg(n)/n converges to the
same limit, since in an urn model the probability to assigrulajext to a particular
treatment is represented by the urn proportion of the cpomging color. Then, an in-
teresting property concerning RRU models is that the pritibato allocate units to the
best treatment converges to one as the sample size incréadeas a very attractive fea-
ture from an ethical point of view. However, because of tisigaptotic behavior, RRU
models are not in the large class of designs targeting aicgrtaportionp € (0, 1),
that usually is fixed ad hoc or computed by satisfying somagtcriteria. Hence, all
the asymptotic desirable properties concerning theseeduoes presented in literature
(for instance in[[11,43,44]), are not straightforwardlififled by the RRU designs. For
instance, theoretical properties of adaptive estimatbteeounknown means must be
derived in a different way for a RRU model.

When reinforcement means are the samg, (= myy), asymptotic behavior of these
estimators has been studied in many works (see for instdd¢eapd the bibliography
therein) for adaptive designs with target allocatjore (0,1) and in [2/24] for RRU
designs.

When reinforcement means are differemty  my), the behavior of statistics based
on adaptive estimators of unknown parameters has beernigates! for instance in [32,
133/51] for adaptive designs with target allocatjpa (0, 1). In a RRU model, asymp-
totic properties of the adaptive estimators of responsenmaee strictly related to the
asymptotic behavior of the urn proportigh Important results on second-order asymp-
totic properties of the urn proportidty,, ).y for a RRU model were developed [n[24],
in the case of reinforcements with different means[_In [R4jds proved that the rate of
convergence of the proce&g,, ),y to its limit [ (either 1 or 0) is equal td/n" (with
vy=1-— % < 1). Moreover, the quantity” (! — Z,,) converges almost surely
to a positive random variable, whose behavior has beenestuili [35]42].

There is another problem with the RRU design, that is esfigcgdevant in the inferen-
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tial phase of the trial. In fact, for large samples, a RRU giegienerates two treatment
groups with very different sample sizes, because one is tawgar than the other one.
Hence, inferential procedures based on this design ardlyisharacterized by a very

low power.

In the following chapter, we opportunely change the urn sehef the RRU design,
in order to construct a new urn model that asymptoticallygtan allocation proportion
p € (0,1), still minimizing the number of subjects allocated to th&efior treatment.
We study the dynamic of the urn process and we prove firstrasigmptotic prop-
erties of the urn proportiod,, and the allocation proportioWg(n)/n. The study of
the theoretical properties of these processes has beecupast challenging since the
modified urn process does not present the sub/supermadityng@perties presented
by the RRU.

In Chaptei B we take advantage of the asymptotic propertid®amew urn process to

improve the performance of different tests for comparirgyrtiean effect of two treat-

ments. In particular, we achieve both the goals of increpsie power of the test and
of assigning fewer subjects to the inferior treatment.

In Chaptef## we compute the rate of convergence of the urrepsognd we define its
limiting distribution. A comparison study among the infietial performances of tests
constructed with different urn designs is conducted.

Finally, in Chaptefb we propose a randomly reinforced usiglewhose urn propor-

tion asymptotically targets a valgec (0, 1), which is defined as a function of unknown
parameters modeling the responses distributions.

12



CHAPTER 2

The Modified Randomly Reinforced Urn Design

For the reasons described in the last section, we decidedddyrhe RRU model and
construct a new design that is able to target an asymptdtcagionp € (0,1). In
so doing, we increase the power of an inferential procedpipéied to the trial and we
are allowed to apply the theoretical results adopted in gualframework € (0, 1).
However, we must not forget the initial goal of minimizingegthumber of subjects as-
signed to the inferior treatment. Thus, the target allocatnust be different depending
on which treatment is the best one. Simply, the dichotomyragithe possible limits
0— 1 turns to the dichotomy among two values n, where0 < § <n < 1. This result
is obtained by changing opportunely the Randomly Reinfibtden scheme. The urn
process derived in this way is not a sub/supermartingalenang, so the asymptotic
results for the MRRU must be proved by adopting differenhtegues than the ones
used in [45]. The parametérwill represent the desired limit foNz(n)/n whenV

is the superior treatment(zr < my ), while  will be the desired limit forNz(n)/n
when R is the superior treatmentir > my ). All these results proved in this chapter
have been gathered in [4,27].

2.1 The model

Let us consider the response probability lawsand.y-. In general, we can define an
opportune utility function: to turn the responses into values which can be interpretable
as urn reinforcements. For ease of notation, in this thesisvil use the identity as
utility function, i.e. we will interpret the response dibtitions to treatmenk and W
equal to the reinforcement distributions of red and whitésbeespectively. The model
requires the assumption that the reinforcement probglbets ;. and iy, have sup-
port contained ifa, b], where0 < a < b < +oc0. In general, the utility functiom can
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Chapter 2. The Modified Randomly Reinforced Urn Design

be selected in order to make the reinforcements distribstfalfill that assumption.
Moreover, we will consider the superior treatment as the associated to the color
with higher reinforcement mean. Then, if the lower are tlspomses the better is the
treatment, it is necessary to use a decreasing utility fonct

Now, let us describe the urn model. Visualize an urn ingiabntainingr, balls of
color R andwy balls of colorlV. Set

Ro = 1o, Wo =wo, Do = Ro+ Wy, Zo = &-
Dy
The drawing process from this urn is modeled by a sequéligg, of independent
uniform random variables of0, 1). At timen = 1, a ball is sampled from the urn;
its color isX; = 1;y,<z,, @ random variable with Bernoullig) distribution. Let)/;
andN; be two independent random variables with distribujigrand.y,, respectively;
assume thak';, M, andN; are independent. Next, if the sampled balkise. X; = 1,
it is returned in the urn together with/; balls of the same color i, < 7, where
n € (0,1) is a suitable parameter, otherwise the urn composition doeshange; if
the sampled ball i) i.e. X; = 0, itis returned in the urn together witk; balls of the
same color ifZ, > §, where§ < n € (0,1) is a suitable parameter, otherwise the urn
composition does not change. So we can update the urn camopasithe following
way
Ry = Ry + XqiM1yz,<p,
Wi =Wo+ (1 = X1)Niliz,>4,
Ry

Di=R +W,. 7 =—.
1 1+ Wi, 44 D,

(2.1)

Now iterate this sampling scheme forever. Thus, at time 1, given the sigma-field
Fn generated byXy, ..., X,,, My, ..., M, and Ny, ..., N, let X, ., = 1q,,,<z,) be a
Bernoulli(Z,) random variable. Then, assume tidt,, and N, ., are two indepen-
dent random variables with distribution; and .y, respectively. Set

Rn+1 = Rn + Xn+1Mn+11{Zn<77}7
WnJrl - Wn + (1 — Xn+1>Nn+11{Zn>5}7

Dn+1 = Rn+1 + Wn—l—lu (22)
RnJrl
L1 = .
! Dn+1

We thus generate an infinite sequence- (X,,,n = 1,2, ..) of Bernoulli random vari-
ables, with.X,, representing the color of the ball sampled from the urn a¢ timand a
procesS Z, D) = ((Z,, Dy,),n = 0,1,2...) with values in(0, 1) x (0,00), whereD,,
represents the total number of balls in the urn before itispded for the(n + 1)-th
time, andZ, is the proportion of balls of coloR; we call X the process of colors gen-
erated by the urn whileZ, D) is the process of its compositions. Let us observe that
the proces$Z, D) is a Markov sequence with respect to the filtratibn
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2.2. Asymptotic results

2.2 Asymptotic results

In this section we provide some theoretical results thak bél used to prove Theo-
rem[Z.3.1, which is the main convergence theorem concethig/RRU design. It
states that the urn proportion converges almost surely whemneinforcement means
are different. In particular, the limit is whenmpg > my,, ord whenmpg < my,. As
mentioned at the beginning of this chapter, since the urnge®of a MRRU model is
not a sub/supermartingale, the proof of Theofem 2.3.1 dan%traightforwardly de-
rived from the convergence theorem of a RRU design. In thefpwe adopt different
technigues and we use same auxiliar results, most of thegma#inered in this section.
Nevertheless, some of these results are presented in a raoeead framework. All
these results have been gathered in [4].

We focus on studying the convergence of a generic adapteddeduprocess$”,, ),..
Without loss of generality, we will tak&,, € [0, 1], Vn. We will consider the crossing
in both directions of a strifp, u|, where0 < d < v < 1. More precisely, let_; = —1
and define for every € Z, two stopping times

inf{n >t,_1: 2, <d} if{n>t;_1:2,<d}#0;
T =
’ +00 otherwise

. (2.3)
. {inf{n>7'j:Zn>u} if {n>r:2,>u}#0;

+00 otherwise

The random intervalr;_,, 7;] is called thej-th excursionand we denote it by

p sup{j: 7; < oo} if 75 < +o00;
Vigul = .

ld,] 0 otherwise
le., V[d . counts the total number of times that the proc&ssosses the strifpl, u] in
both directions, i.e., making both an upcrossing and a dovasmg.

Theorem 2.2.1. (Z,), converges a.s. if and only if, for afy< d < u < 1,

ZP Tjp1 = 00|Tj; < 00) = 00,
with the convention thaP(7;; = oo|7; < 00) = 1if P(1; = 00) = 1.
Proof. We first note that
(Z4)n converges a.8 =2 PV = 00) = 0
V0<d<u<1

0= hm PV Vi = 1)
llm P ol < oo})

n—oo

as a consequence of the countability®in [0, 1]. Now,

P({7; < 00,j =0,...,n}) = P(m < o0) [] P(r; < olrj1 < o)

j=1
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Chapter 2. The Modified Randomly Reinforced Urn Design

and it is well known that, ifp;),; C (0, 1] then
nlggoﬂlpj =0 &= Zl(l —pj) = .
Jj= Jj=

The fact that somép,,),, might be zero is controlled by the assumption that= 0 =
Pm = 0,Vm > n. O

Now, we will present an interesting property holding for angel class of urn pro-
cesses. Lef2, F, (F,)., P) be afiltered space. Let the vectat,,, W,,), be a(F,,).—
adapted process, where the sequenégs,, and(WW,,),, are nonnegative and increas-
ing(ile,0 < Ry < R <...R, < ...and0 < Wy, < W <...W, <..)and
Ry + Wy > 0. The vector(R,, W,,) represents the urn composition at time We
denote these processesBagh Urn Processes (BURLet D, = R, + W,,, forn € N.
The following result connects the number of balls in the urththe number crossing
of the strip (d,u)

Lemma 2.2.2 (Reinforcements during excursiongor any BUPY; € N
D, > (M) D, >.> (M)ja
7= \d(1 —u) == \d(1 - w) v
Proof. For every; € N, we have that
o Rojyy 2 Ry == Zyy Dy 2 24, Dy
o W, >W, = (1-Z,)Dy, > (1 - Z,,)D,,
SinceZ,, < dandZ;, > u for everyj € N, we find
e dD,,., >uD,,
e (1-u)Dy; >(1—d)D,,

From this we have immediately the following result
_ _ j
D, > u(l — d) D. . >..> ull —d) D.
77 \d(1 = u) T \d(1 =) ’

Given a sequence of stopping times ), it is always possible to define the counting
process

O

PR DY ERCEN I R
S | if 70 > n.

Now, consider a BURR,, W, ), and a sequence of stopping tinie,),, such that

(R,, W,, C,), is a time-homogeneous Markov process. In this case, we ayltisat

the BUP is associated to the sequefigg,,. Moreover, for anyi > 1 the conditional

distribution of7;;; given{r; < oo} depends only o,,, W,, andi, i.e. there exists a
function f such that

P (ml < ool{n < oo} ﬂ]—"n) = [ (Ry,, Ws,i) a.s. (2.4)
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Finally, note that, given a BUPR,,, IV,,),,, it is always possible to define two adapted
processe$D,, := R, + W,,,n € N} and{Z, := R,,/D,,,n € N}.

Proposition 2.2.3. Given a Markov BUP, the proces%,,),, converges a.s. if, for any
0 < d < u < 1, there exists a function : [0,00) x [0,00) — [0,1], (R, Wy,), IS
associated to the sequenge),, defined in(2.3), and

flxy,-) < g2, y) whenever: +y >z’ + ¢/,

glcr,c0) =a <1 for somecy, ¢y > 0
wheref is given in(2.4).

Proof. On {7 = oo}, we get] , = 0.
On{m < oo}, fix an integerj such that

. C1+ Co
> 1og uii—
J = Ogdﬁffg < DTO )

So doing, by Lemm@a2.2.2 we have that

u(l —d)\’
D, > (ﬁ) D >ci+co

Now, using this relation and definition gfwe obtain

P(Tj+1:OO|Tj <OO) >1 — P(Tj+1 <OO‘7'J' <OO)

21 - sup f(x7y72)
TH+y=>c1+ca
Z 1 - 9(01702)
>1 —a >0
Then, by Theorem 2.2.1 we get the thesis. O

Let us consider the Randomly Reinforced Urn design destiib8ectiod 4. Because
of its strong connection with the MRRU model, the knowled§&BU properties has
been essential to study the asymptotic behavior of the MRB&igd. In particular,

some results on the Doob decomposition of the RRU processtiesan applied to prove
Theoreni 2.3]1. Consider the urn proportion progesg,, and its Doob decomposition

Zn=2o+ M, + A,

where(M,,),, is a martingale andA4,,),, is a predictable process, both nullrat= 0.
Some results on these processes are shown for equal reimfent means.

Lemma 2.2.4. Assumeny = my = m. If Dy > 2b, then
E(sup | A,]) < 7

b
<
<Dy
The first result is provided by [2]. Using Lemma2]2.4, we detfollowing result

E((M)s — (M),|Fn) for anyn > 0.
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Lemma2.2.5. Assumeny = my = m. |If Dy > 2b, then

b4 2
_ > < (242
P(sup|Z, 2 2 ) < - <h2 + h)

for everyh > 0.

Proof. First note that, since\/,,),, is a martingale null at = 0, we have, by Lemnla2.2.4
(choosingn = 0 in the second inequality) that

b
1 2 = < —
nll_r)rolo E(M?) nll_r)rolo E((M),) < Dy
and hence, by Doob’s?—inequality,
E(M?) 4b

P M,| > h/2}) < li <

foranyh > 0. We easily get
P(sup |Z,, — Zo| > h) < P({sup [M,| > h/2} U {sup |An| > h/2})

< P({sup|Ma] > 1/2}) + P({sup| Au| > h/2})
b /4 2
=D (ﬁ + E)
[l

2.3 Asymptotic target allocation of a Modified Randomly Reinfor ced Urn

Here, we present the main convergence theorem concerneny/BRRU design de-
scribed in Section 2}1. We have

Theorem 2.3.1. Consider the MRRU design and assumg # my,. Then, the se-
quence of urn proportion of red balls = (Z,,,n = 1,2,...) converges almost surely
and

Zn 2} nl{mR>mW} +61{mR<mw} (25)

Proof. In the proof we frequently use a comparison argument betweemodel and
the RRU model described in Sectibnll.4. Consider an urn gongpat the starting
timer, red balls andv, white balls. Let us consider the casg; < myy; the opposite
case fnyp > my) is completely analogous. With this assumption[in [45]@sxshown
that the urn proceds7,,),.en 0f @ RRU design is a super-martingale converging to zero.
After introducing the parametebdsandn, the urn proportion is not a super-martingale
anymore. Nevertheless, we will prove that the urn pro¢€ss,-n of a MRRU design
still converges almost surely, but this time the limit is abjo §.

The thesis is get once we prove the following

(@ P (liminf, ,, Z,<¢d) = 1
(b) P(liminf, ,nZ,>0) =1
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(© P(3lim, 2, =1

Part (a):
First of all, we will prove that

liminf Z,, <4, a.s
n—oo
By contradiction, assume there exists 6 ande > 0 such thatP(liminf Z,, > 1) >

e > 0. Then, there exists. such thatP(Z,, > &2, Vn > n.) = ¢/2 > 0. Nevertheless,
on the set{Z,, > #,Vn > n.} the urn proces¥,, evolves as the urn proportion of
a RRU with reinforcement meansr < my that tends td) a.s. (seel[45]). Then,
P(Z, > 42 ev) = 0 and this leads to a contradiction with(lim inf Z,, > 1) > € > 0.
By using this comparison argument with the RRU design, ibssible to show that the

processZ,, crosses infinite times.

Part (b):
Now, we will prove that
liminf Z,, > §,a.s

n—oo

By contradiction, assume there exists § ande > 0 such thatP(liminf Z,, <) >

e > 0. Then, with probabilitye the processZ,, must cross the strip%,é) infinite
times. Then, by Lemnfa2.2.2, the sequefibg),, tends to infinity. As a consequence,
after a sufficiently large number of timeg,, > b% and therefore, it > n is any
successive downcross &f

Zy> Tt ODn 140
Dy_1+0b D, +b 2

since each reinforced is bounded@ndﬁi: = Zk_1 > 9. Then,P(Z, < %, ev) =

0 and this leads to a contradiction witt(lim inf Z,, <) > ¢ > 0.

Part (c):

Putting together parts (a) and (b), we have shownlihainf, Z,, = ¢ almost surely.
Therefore, if the process,),, converges almost surely, then its limit has to be equal
tod.

Letv, d andu (§ < v < d < u) be three arbitrary values and let); and(¢;); be two
sequences of stopping times as definedn (2.3), in ordergly &vopositio 2.2]3.

Let us fix an integei € N satisfying

_ max{1 — d;~}
logwa- b
' Ogdéiff%( Doy(d—7) )

so that, by LemmBaZ.2.2, we have that

max{1 — d;v}
d—~ '

D. >0

(3

To ease of notation, denote b%,),.cn the renewed process dm; < oo}: (R, Wn) =
(Rn-l—na Wn—i—n)a D, =R, + W, = D’ri—i—n’ Ly = Rn/Dn = Z’ri—f—na Up = U’ri—l—n-
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Chapter 2. The Modified Randomly Reinforced Urn Design

The Markov property of the original urn ensures that{en< oo}, the process-,).,
started afresh a new urn with initial compositid®,, , 1,) and dynamic as i (2.1) and
(Z32). Note thatZ,. € (v,d). We denote by,(-) = P(-|r; < oc), and therefore, if

inf{n:2n>u} if{n:2n>u}7§®;
+00 otherwise

then we have
P(Ti+1 < OO|TZ' < OO) < Pl(tz < OO) = Pl(t < OO) (26)

Define the sequencés’, 7*),, of stopping times which indicate tr(é?n)n-crosses of
the interval(o, v): lettf = 0 and define for every > 1 two stopping times

. {inf{n >t Z, <6} if{n> oy Z, < 8} # 0;

T. =
! +00 otherwise
R _ N (2.7)
o inf{n > 77 : 7, >~} if{n>71:2,>~v}#0;
7 4o otherwise
Notice that,
<7
p— 9 R
S e mrws <t wsh
(R+W) > .
d—r
and hence, since the reinforcements are boundéxl\g have
Z\t;fl <7, R
~ b(l —d = Zp<d (2.8)
[ i) f
J d — v

For any; > 0, we can define a procesg,{)neN to set a new urn, coupled wi(lj?n)neN,
with the following features:

~  ~ u+d
R =Wy ———
0 52 —u—d

erjﬁl = 1[072g;]([7t;+n+1)7

M., = ]\Z;+n+1 + (mw — mg)
NZH = ]/\?t;+n+1

éiz—l—l = éix + )?£+1M£+17
/W-/Tz-f—l = /-W-/T.Z +(1- )’z,gH)NiH’




2.3. Asymptotic target allocation of a Modified Randomly Rei nforced Urn

Then,(Zj)jeN Is a sequence of urn processes, all starting \é?@h: %l and having
nonnegative reinforcements with the same megy. Let us notice that at time, we
have defined only the processgssuch that’ < n.

We will prove by induction that, for any € N,
Zi > Z]*-+n> Wi < /Wt;wrm R > ﬁt;—f—n (2.9)

foranyn < 77, —t:. In other words, we will show that each procégg)ne,\. is always
above the original proceiﬁt;+n)neN, as long as remains abové (i.e. before the
time 7). In fact, by construction we have that

>d>Zps, W] =We

which immediately impliesk) > ﬁt;. Assume[(2.9) by induction hypothesis. Since,
for anyn < 77, — t;, we have that\} , = 1, > Loz ) = Xejns by
construction, we get

n n?

VVt;—i—n—i—l - Wt;-ﬁ-n = (1 - Xt;-l-n-l-l)Nt;-i-n-i-l > (1 - X’}]L+1)NTJL+1 = WTJLJrl - W,

n

~ ~ o — Y =i
Rt;—f—n—l—l - Rt;—i—n - Xt;—l—n—l—lMt;-i-n-‘rl < Xn+1M +1 — Rn+1 - R

that means

—

Zpir > 2ttt Wi < Wi int1, Ry > Ry (2.10)

n n

foranyn < 77, —¢;. Note that, for any > 0, the proces@g);f;{ti iS an urn process

reinforced with distributions with same means and initiamposition(fét;, We:). Let

us definel; as the stopping time fc(rZL)n to exit from (d, u) beforer;,, — ¢}, i.e.
inf{n < T — b ng <dor Zﬂ > u}
T; = if {n <77 —t5: 25 <dorZi >u} # 0
+ 00 otherwise

{En > u} C { sup Z7_,. > u}
j't*<n J

RIS

Then, since

we have stated that

Pt < 00) < H(G{ijo}) < iR(ijo). (2.11)

J=0

Now, let us consider a single term of the series. Then, assecuence of Lemnila2.2.5,
if we seth = “>¢, we get

= = b r4 2
Fi(T; < 00) < P(sup|Zs4n — Zi5| 2 h) < Dr <ﬁ - E>'

21



Chapter 2. The Modified Randomly Reinforced Urn Design

Moreover, by using Lemnfa2.2.2, we obtain

b r4 2 b (6(1—7\ 4 2
D) < L S T
Dy (m+7) < Dy <7(1 - 5)) (m+7)
Thus define the functiog : [0, c0) x [0,00) — [0, 1] in the following way

9(.y) = xiy(% - %) (11—_5(/57) ’

o (e (=) o (=57) ) = v

andg is monotone inc + y. We can apply Propositidn 2.2.3 to get the thesis, since, by
(5.10) and[(Z.111), we obtain

and note that

P(1i41 < 00| < 00) < P, (T; < o0)

5 e DX ()
bﬂ. <% +7) (11_—5;57) = 4(R,,W,,).

M

<
Il
o

IN

S
S
[\

S

0

Remark 2.3.2. Notice that in the proof it was never necessary to specifytype of
distribution generating the reinforcements. Indeed, wendb need all information
about the probability laws, but we deal only with the meantho§e distributions. In
particular, in the proof we only needed to know which of the t&inforcements has the
greatest mean. For this reason, all the results still holave change the reinforcement
probability laws, maintaining fixed the sign of the diffezerof the means.

Remark 2.3.3. Consider a Pdélya urn containing initially, red balls andw, white
balls. LetX = (X,).cn be a generalized urn process of the sampled balls And
the corresponding urn function, i.e. the functipnthat maps the interval (0,1) to itself
and such that the law of X is defined by assuming #ais a Bernoull{ f(z,)), where
2o = —2— and forn > 1, the conditional distribution ofX,,,; given X3, .., X,, is a

ro+wo

Bernoulli( f(Z,,)), where

_To + Z?:l X;

Zn
TQ"‘UJQ‘}‘H

If f(x) =« for everyz € [0, 1], we obtain the Pdlya sequence. Now, consider the urn
model described in the introduction, in the particular cas&vhich reinforcements are
independent Bernoulli variables, with parametersfor the red balls andry, for the
white balls. In this situation, this model is equivalent tgeneralized Pdlya urn in
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2.4. Asymptotic properties of stochastic sequences genera ted by the adaptive design

which the urn functiorf can be defined like follows:

1 if z <0,

rrrli, .
[ twsn) = 733@&?51)#”/ if 0<xz<mn,

0 if z>n.

n l‘ﬂ'Rl{xQ?} + (1 — :E)Trwl{m>5} -

Looking at the expression above, we can reach to the samergamce result proved
in this chapter, by applying the Theorem 4.1.[0f/[30]. Thewvavgence theorem proved
in this chapter is more general, because it holds also whigriarcements do not follow
Bernoulli distributions.

2.4 Asymptotic properties of stochastic sequences generated b y the
adaptive design

In this section we study some interesting properties of timepuocess. We consider
the MRRU design and assume; # my,. The first result concerns the proportion of
colors sampled from the urn. Here we prove that it convergelsd same limit of the
urn proportionz,,.

Proposition 2.4.1. The sequenc@Vg(n)/n,n = 1,2, ...) of the proportion of red balls
sampled from the urn converges almost surely and

Ngr(n) as,
% — 7,]]-{TnR>mW}—|_(\)‘:I-{mR<mW} (212)

Proof. Let my > my. The proof in the caseir < myy is analogous. Let us denote

¢, = 2= for anyn > 1, with & = 0. Then,(&,).en is @ sequence of random
variables adapted with respect to the filtrat{of, ), such that

>l iR = Y B[22
i=1 i=1

]

ZE[QZ Fia) = iij e }f] S DEIRRS

Applying Lemma 7 of[[2] we have that’ ¢, < oo almost surely.

Now, we have that
1 1., as
o 2_1 Zia—X; = " ‘E_l & — 0,

by using Kronecker’s lemma, and so

T X o Zi v Zin—Xi as
n— Zz:l =n— szl 1 + szl 1 =0
n n n

where the first term goes to zero thanks to the Toeplitz LensinagZ,, converge to)
almost surely. O

The following proposition shows the rate of divergence @f thtal number of balls in
the urn.
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Chapter 2. The Modified Randomly Reinforced Urn Design

Proposition 2.4.2. The sequenc@),,/n,n = 0, 1,2, ...) converges almost surely to the
mean of the inferior treatment

Dy as,
7 — mW1{m3>mW}+mR]—{mR<mw} (213)

Proof. Letmyr > my . The proof in the caserzp < myy, is analogous. Notice that
S L =X [Wo+370,(1—X)N;

n Z:’Lzl 1-— XZ
Z:‘Lﬂ(l — X;)Ni - Z?:l 1 =X _
mw =
n n
n
n 1— Xz Nz — a.s
S (1= XN = ) .
n

where the almost sure convergence to zero of the last terrbecproved with the same
arguments used to prove Proposition 2.4.1. This resultieaphat

WO + anl(l - Xz)Nz a.s.
= 2.14
Z?:l 1= X; o ( )

since from Proposition 2.4.1 we have tl%;# %% 1 —n. Then, we have that
W _ Wot 3 (0=-X)N;: 3 (01— Xi) as

no Yo (1—X5) n = mw - (1=,

SinceZ, “3 n, we get

R’I’L [[n Z’]’L a.s. 77
_ = — — 1 — - —_— = . .
o nl1-2 pw (1 =) 1—1 my - 1
Globally we obtain
D, R, N as.
— = — 4+ —= = mw -+ mw - (1=n) = mw.
n n n

0

Remark 2.4.3. Notice thatin a RRU model the sequetigg/n converges almost surely
to the mean of the superior treatment. In fact, in a RRU maodeénmpz > my,, we
have that

D, . R, . Ro+>00, XiM,

lim — = lim — = lim =
n—oo N n—oo M, n—00 Zi—l X;

on a set of probability one. The res#.18)is proved following the same arguments

of 2.14)

Here, we show that the proportion of times the urn proporfigns under/above its
limit converges almost surely to a quantity that dependy onl the reinforcement
meansnz andmyy .
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2.4. Asymptotic properties of stochastic sequences genera ted by the adaptive design

Proposition 2.4.4. If mr > my, then

n mpg

D i Liz,<ny LN mw (2.16)

If mr < my, then
Z?:l 1{Zi>6} LN mgr

n mw
To prove Proposition 2.4.4 we need the following lemma

Lemma 2.4.5. If mp > my, then

. Xz liz a.s
ZZ:ln +14{Z;<n} RN n. (217)
D ict Liz,<n}

If mpr < My, then
Y Xl s
Zz:ln +1 {Z1>6} _) 5
Zi:l Lz:>6y

Proof. Letmyr > my . The proof in the caseiz < myy is analogous. Notice that
Z?:l 1{Zi—1<77} Z?:l Xil{Zi—1<77} B

n Z?:l 1{Zi71<77}
Z?:l Xil{Zi—1<Ti} . 772?:1 ]'{Zi—1<77} _
n n

Z?:l [Xil{zi—1<n} - 771{Zi—1<77} ] _
n

D (Xiliz y<ny = Zializ, <] N
n

Z?:l[zi—ll{zi—1<n} - 771{Zi—1<77}] tg 0
n

where the almost surely convergence to zero of the last team$e proved with the
same arguments used to prove Proposifion P.4.1. Moreoigerasult implies[(2.117)

due to the fact thau‘v‘?:llnM cannot be asymptotically closed to zero. This fact can
be proved by contradiction: suppose that

"oy,
P (hm nf 2zt Lz :0) > 0. (2.18)
n—oo n

But we have that
Z?Zl 1{Zi<77} Z

lim inf
n—o00 n
lim inf LRO‘i_Z?:l Xi+1Mi+11{Zi<77} ) 22;1 Xi+11{Zi<77} ) 22;1 1{Zi<77}
n—oo B Z?:l Xi+11{Z¢<77} Z?:l 1{Zi<77} n B
1 R,
lim inf —— = mwh > 0
n—oo g N Br

on a set of probability one. This contradicts the assum&aiB).
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Chapter 2. The Modified Randomly Reinforced Urn Design

Remark 2.4.6. By following the same arguments used to prove Propoditiédzand
Lemmd 2.4J5, whemp > myy it can be proved also that
Ro + Zgzl XitaiMit1liz,<p LN
Zi:1 Xiv1lyz,<py

Proof of the Proposition 2.4.4.et mr > my . The proof in the casenr < myy is
analogous. Let us observe that on a set of probability one

(2.19)

R,/n
0= lim n—2, = lim n———2— =
i lzieny (2.20)

n - 7

where the last equality is based on the result of Lefnmal2Fally, we note that the
equality [2.20) holds if and only if

> i1 Lzicny as mw
= =3
n mpr

2.5 An estimation method based on urn model

In this section, we present a simulation study that takesamtdge of the convergence
theorem proved in Sectign 2.2. We provide a method to estimratinknown parameter
by only using the result of convergence of the urn processsiim Theoreni 2.3]1. Let

us consider a treatmeilt’, whose mean effect on subjects is unknown. Let us model
the patients’ response to the treatmBnwith a random variable with distributiomy, .

The goal of the study is to estimate its mean efiegt = [ zpw (dz). Consider an-
other treatment, denoted &5 and suppose that its random effect on patients follows
a known distribution.; let us assume that its meam; depends on the given dose,
that can be suitable modified by the experimenter. We considesponse adaptive
design based on the urn model introduced in Se¢tioh 2.1, myitand iy modeling

the patients responses to treatménand IV, respectively. The inference ony, is
performed by monitoring along time, the urn composition

In this simulation study we considéf urns with the same initial compositiony( w).

Red balls are associated with treatméhtwhile white balls with treatmenit’. We

denote withZ7 = (ZJ),cn the process of the urn proportion in thi# urn, for;j €

{1,2,.., K}. The reinforced scheme applied to each urn is the one deskchibSec-
tion[2Z. Hence, for each urn Theorém 213.1 holds, and #jer"> N psmyt +

51{mR<mW}-

Whenmpr = my,, we do not have the explicit form of the limit distribution tbfe urn
proportionZ,,. Nevertheless, we know that it converges to a random vaiabhwhose
distribution has no atoms and with supp8gt= [4, n].
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2.5. An estimation method based on urn model

At the beginning of the experiment, we choose an initial dimsethe treatmentr.
Let us callmp; the patients responses’ mean corresponding to that dosen, Tiie
reinforcements of red and white balls follow distributiomgh meansmz; andmy,
respectively. We sta&” mutually independents urn processes simultaneously. &t ea
step, we draw a ball form each urn and we update the compositieach urn indepen-
dently, following the model described in Section]2.1. Afiaraws and reinforcements,
we haveK urn proportionsZ?, j € {1,2,.., K}, that can be used to compute the em-
pirical cumulative distribution functiorﬁl for the random variable/,,. Thanks to the
Theoreni 2311, for every € [0, 1], F,(z) must converge to

(@) = Lazygy i mw <mpy,

F(g(ZL‘) = 1{125} if mw > Mpgj.

If my = mpg,, we can compute oﬁlin@e(x), the asymptotic cumulative distribution
of Z.. This calculation requires the simulation &f urn processes with draws for
each one; the number of urdg and the number of draws can be arbitrarily large.
So we have

1

M
F\e(x) i Z Lizi <o} for large m and M.
i=1

At each step, once each urn has been reinforced, we use tiseMi@én distancely,)
to compute the distances between the empirical cumulatstelition functionﬁn
and the three asymptotic possible distributidns F. and F5. When one of these
three distances is small enough, we have a good estimatetabdtion of the limit
proportionZ,,, and so we can stateify is less than, equal to, or greater thag ;.
Let us define the following quantity

f = nmin {dw(Zn, 517) 5 dW(Zna Ze) ) dW<Zn7 65>} =

min {/01 |Fo(z) — F()|de | /01 Py (x) — F(a)|da . /01 Fy(z) — Fg(a:)\dx}

When¢ is less than a suitable small parameteifixed in advance, the drawing pro-
cess ends and different scenarios are possibl€. < dy(Z,,, Z.) we conclude that
mgr1 = my. Otherwise, if¢ = dw(Z,,0s) we conclude thatny, is greater than
mp,. Hence, we change the given dose for the treatnfemd increase the mean
effect at a new suitable valuer, > mg;. If & = dw(Z,,9,) we conclude that
my IS less thannp 1, so the dose is changed in order to decrease the mean effect
mpr2 < mpg;1. IN any case, we can suppose the difference between the tansne
decreased g2 — mw| < |mgr1 —mw/|). At this point, we start over witlik urn pro-
cesses, with the same initial compositiog, (vo). Although the reinforcement scheme
applied is the same as before, the probability law of thefoetements of red balls is
not, because the mean is changed.

The whole study goes on until both the conditigns dy (7, Z.) and¢ < « are satis-
fied. Calli, the number of times the random responses’ mean to treatihbas been
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Chapter 2. The Modified Randomly Reinforced Urn Design

changed. Themy, is an estimate of the unknown mean,. We made some simu-
lation studies and we report here some graphics that idtesthis estimation procedure.

The simulation study was carried out wifki = 40 urns. Parameters were fixed at
0 = 0.3,7 =0.7anda = 0.05. Responses to treatment are assumed to be normal
random variables with meany;, and standard deviatian= 1. Responses to treatment
R are assumed to be normal random variables with meanand standard deviation
o = 1. As explained before, the mean is changed every jngless tham. The
parameterny, was sampled by a uniforrfl0, 50). At the beginning, the responses’
mean to treatmenk was set equal to 30:(z; = 30). After changingny four times
(i = 5), the conditiong = d(Z,, Z.) and{ < « have been satisfied; this allows us
to conclude thatny, = mp; (see Figure 1-4). The cumulative distributifp was
computed withd/ = 200 urns andm = 10° draws for each one. This procedure
provided an estimate ofyy = mpgs; = 18.125. In fact, the result of the started random
extraction formy, was equal td8.195.

]
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Figure 2.1: Graphic shows the different values assumedrby during the experiment: g1, mrg,2, Mmr,3,
mg.4, mr,5) = (30,20, 15, 17.5, 18.125). Five changes were necessameith a satisfactory estimate of
the meanny . x axis represents the number of timas was changed, while y axis indicates the responses’
means to treatments. The red line represents the unknown mga= 18.195. The width of vertical intervals
indicates the standard deviation of reinforcement disttibn (o = 1).

In this chapter we have constructed a randomly reinforcaddesign with asymptotic
allocation proportiorp € (0,1). In order to assign a small proportion of subjects
to the inferior treatment, the model presents two possiblaes for the limit of the
allocation proportion:d andn, with 0 < § < n < 1. In Theoren{2.3]1 we proved
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Figure 2.2: Wasserstein distances (area of yellow zone) dar(Z,,,d5) (left panel), dw (Z,, Z.) (central
panel) anddw (Z,, d,) (right panel) in the case ofnr,1 = 30 and mw = 18.195 (first iteration). Since
dw (Zn,dn) < « the limit of the process seems tode= 0.7.
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Figure 2.3: Wasserstein distances (area of yellow zone) dar(Z,,d;5) (left panel), dw (Z,, Z.) (central
panel) anddw (Zx, 6,) (right panel) in the case ofnr,3s = 15 and mw = 18.195 (third iteration). Since
dw (Zn,ds) < « the limit of the process seems todbe- 0.3.

that the a.s. limit of the urn processas= 71, >my) + 1png<my}- Then, this
model achieves the ethical goal of assigning an arbitranhall proportion of subject
to the inferior treatment. Moreover, since the limiting jpoetion is within (0, 1), all
the results for designs with asymptotic allocatiere (0,1) can be applied and the
inferential performances are improved.
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Figure 2.4: Wasserstein distances (area of yellow zone)fen Z.,, d5) (left panel),dw (Z,., Z.) (central panel)
and dw (Zn, 6,) (right panel) in the case ofnrs = 18.125 and my = 18.195 (fifth iteration). Since
dw (Zn, Z.) < « the limit of the process seems to g, a random variable with no atoms.
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CHAPTER 3

An urn procedure to construct efficient test for
response-adaptive designs

In this chapter we conduct an analysis on the statisticdbpaance of different tests
for comparing the mean effect of two treatments ( [28, 29])eB a test,, we deter-
mine which sample size and allocation proportion guaratotegest/ to be better than
To, In terms of (a) higher power and (b) fewer subjects assigadlde inferior treat-
ment. The adoption of a response adaptive design to impletmemandom allocation
procedure is necessary to ensure that both (a) and (b) aséeght In particular, we
propose to use the Modified Randomly Reinforced Urn desigRRM) described in
Chaptef2 and we show how to perform the model parameterstisei€or the purpose
of this chapter. The opportunity of relaxing some assummgtis examined. Results
of simulation studies on the test performance are reponiddaaeal case study is ana-
lyzed.

3.1 The proportion - sample size space

This section focuses on the statistical properties of tassital hypothesis test aiming
at comparing the means of two Gaussian populations. Evée iitathematical frame-
work is very general and the results shown in this sectiod falmany designs used in
different areas, this chapter is set in the context of dcdihidals. The goal of the study

is the comparison among the response means to two competaigents, the patients
are sequentially assigned to. The allocation rule apphbethé¢ sequence of patients
depends on the specific experimental design adopted ini#theltet us fixp, € (0, 1).
Consider any procedure able to allocate a proportion oéptsp, to treatment?, 1—p,

to treatmentV. Letn, € N be the total number of subjects involved in the experiment.
In what follows,n, r andn, i indicate the number of subjects assigned to treatrftent
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andW, respectivelyfo r + now = no). Moreover, we denote

o My, M, .., M, .. the responses to treatmeRf modeled as i.i.d. random vari-

no,R"

ables with distribution:z and expected value

e N1, N, .., N, ... the responses to treatmémt , modeled as i.i.d. random vari-

no,w *

ables with distribution:y and expected value

We assume the distributions to be Gaussianyizge= N (mpg, 0%) anduy = N (mw, o),
with known variances. Consider the classical hypothesis te

Hy: mp—my =0 vs Hi: mg—my #0. (3.1)

In this context the critical region and the power curve of tiest are well known. Let
us first fix

e « : the significance level of the test;
e A\, : the smallest difference among the means detected withgugler;
e (3, : the minimum power for a difference among the means Af;;

Then, once fixed the proportign, it is univocally determined the value of the sample
sizeny which allows the test to satisfy the proprieties requiredinyse parameters.
Moreover, we have the following expression for criticalicegof level«

e

o o o2 o2
Ry = ‘MnOR_Nn0W|> £+ W, (3.2)
' ’ No,r  Now

whereM,, , = > M;/nor @and N, ,, = >27°1" N;/ngw andzs is the quantile

no,R

of order1 — «/2 of a standard normal distribution. Furthermore, the powethe
test [4.2R), is a function of the real differende= mpzr — my (see Figuré_3]1 in the
case of equal variances), i.e.

A A
+P | Z>za —
ok | % : ok | T
no,R no,w no,R no,w

ﬂ(A):P Z<—Z%—

Let us call7, the test defined i (4.22), with, as sample size ang, as proportion
of patients allocated to the treatméit To construct a test with equal parameters (
Ao, Bo) and better statistical performance, the proportion oigassent or the sample
size has to be conveniently modified. The t&stcould be represented in the space
((0,1) x N), that we callproportion - sample sizepace, by the coupley, n,). Any
other test7 can be represented by a poipt ) in the same space. The goal of this
section is to point out regions of this space characterigdddis performing better than
To. A testT will be considered strictly better théh if it satisfies both the following
conditions

(&) T has a power function uniformly higher than the power funcod 7;;

(b) 7 assigns to the worst treatment fewer patients than
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Figure 3.1: The picture represents the power functign R — [0, 1] of the test defined i@.22) in the case of
a = 0.05andBy = 0.9.

Let us call 57, and 57, the power functions of the test®® and 7 respectively. To
achieve condition (a) we impose the following constraint

O oX ot o
Br(A) > 6.(A) VAER & — + < + (3.3)
T(&) 2 5 (4) np  n(l—p) = nepy  no(l—po)
Now, if we denote a3,,: the Neyman allocation proportiogﬂ—faN, we can rewrite
inequality [3.B) in a more suitable form

(] 2 1 - Fo 2 0, 2 1 - VMo 2
Y% pt + ( P pt) S P pt + ( P pt) (34)
np n(l—p) nopo  no(1 — po)

Inequality [3.4) divides thproportion - sample sizgpace in two regions. The boundary
is computed by imposing the equality n_(8.4) and exprestiegsample size as a
function of the proportion.

2 2 2 o\ —1
popt (1 - popt) ) ( popt (1 - popt) )
n = + + 3.5

o(p) < P IL—p nopo  no(1 — po) (3:5)

We refer to function[(315) ass, since it was computed by imposing the condition re-
lated with the power of the tegt. This relationship betweep andn is visualized

in Figure[3.2 by a red line. Each point over this curve is a festith a power uni-
formly higher tharf/y. Points under the red line represent tests with a power imijo
lower than7,. Notice that the functioms : (0,1) — (0, c0) expressed il (3l5) grows
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boundlessly for proportions close to zero and to one andotsagyminimum is reached
in p = poe. This is reasonable as,, is the allocation proportion which requires the
minimum number of patients to get any fixed value of power.idBEs the farther is pro-
portion p from p,,, the greater is the number of subjects necessary to get diagrp
More specifically, the minimum lies on a very interestingwajrwhich is univocally
identified by the parameters of the classical test. Denatitiy g,,;,, : (0,1) — (0, c0)
the function associated with that curve, we are able to eggten an analytic form
2 2\ —1
Ginz) = 70 (””— " M) Ve e (0,1) (3.6)
po 1—po

The curve is represented in Figlirel3.2 by a red dotted line.fihctionsnz andg,,ix,
cross in two points, in general different, that we dentend(@. The point)/ is the
minimum of the functiom and it corresponds to the Neyman allocation proportion

M = <popt — (@ o L po) _po”t)Q)_ ) (3.7)

Po I —po

The point@ is the maximum of the functiog,,;,, and it corresponds to the tegi:

Q) = (po,no). The pointsM and( coincide only wherp, = p,,. In this case, the
curvesng andg,,;, are tangents i/ = (). Moreover, there are other relevant points
highlighted by the functior,,;,. In fact, the curve starts Xy, = (0,n(1 — po))
and ends inX = (1, ngpo). The ordinates of point&y,, and Xy, tell us how many
patients have been allocated by the fBsto the treatmentl’ and R, respectively.

To satisfy (b) we have to distinguish two different casegqeteling on which is the
superior treatment

e if mrp > my = the superior treatment i8 and the condition to be imposed is
n(l—p) <mo(l—po) & p>1—">(L—po); (3.8)

e if mrp < my = the superior treatment i$" and the condition to be imposed is
np <nopy & p< %po- (3.9)

Both these constraints are depicted in blue ingfeportion - sample sizplane. Below
each of these lines, the first or the second condition is eérifiln conclusion, we
divided theproportion - sample sizepace in three regions:

e RegionA :

A= {(x,y)e(O,l)x(O,oo) : ng(x)<y<%no}

tests7 € A have a power uniformly higher and allocate to treatmgrniess

patients thary.
e RegionB :
1 —
B = {(x,y)e(O,l)x(O,oo) : y>max{%; 1_];?}%0}

tests7 € B have a power uniformly higher and allocate to both treatsierdre
patients thary.

34



3.1. The proportion - sample size space

e RegionC':

C = {(:E,y) € (0,1) x (0,00) : ng(zr) <y< 11__];?710}

tests7 € C have a power uniformly higher and allocate to treatmiéniess

patients thary,.

o
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Figure 3.2: The picture represents the regiods B and C, on the proportion - sample size plane. The red line
represents the functions in B8); it separates the tesf” with power87(A) > B7,(A), from the test with
power B (A) < B7,(A). Blue lines separates tests according on the number of ptati@located to the
treatmentsk and W, with respect towo, g andno,w . The dotted red line represents the functign., in G.8).

Hence, atesT with better performance thaf is a point(p, n) in the regionA if mpr <
mw, or in the regionC' if mr > my,. Unfortunately, the experimenter cannot know
which is the superior treatment before conducting the.trk&r this reason, it could
be useful to adopt a response adaptive design to consteitesh since this method
is able to target different allocation proportions accogdio the responses collected
during the trial.

Let us introduce a vectdqrX, Xs, ..., X,,) € {0;1}" composed by the allocations to
the treatments according to the adaptive design,Xg~= 1 if the subject; receives
treatmentR or X; = 0 if the subject: receives treatmerit’. Then, we define the
quantitiesNg(n) = > | X; andNy(n) = > (1 — X;), that represent the number
of patients allocated to treatmemtsand 1V, respectively. Notice that the sample sizes
Ng(n) and Ny (n) are random variables. Let us also define the adaptive estimat
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Chapter 3. An urn procedure to construct efficient test for re sponse-adaptive designs

based on the observed responses until timiee.
=7 > i XiM ~ > i (1= Xi)N;
M(n)==">——— and N(n) === )

(n) N () (n) Nov ()

Then, the tesT is defined by the following critical region

(3.10)

2

Ridaptive:{ |H(n)—ﬁ(n)|>\/ Th_ 4 W, } (3.11)

NR(H) Nw(n) 2

whose properties depend on the type of adaptive design feesamplied in the trial.
The authors propose to adopt thedified Randomly Reinforced Udesign (MRRU)
described in[4]. The authors propose to adoptNtualified Randomly Reinforced Urn
design (MRRU) described [ 2.

3.2 The parameter selection to construct the test T

Consider the situation presented in Secfion 3.1. Inititilly problem is faced with a
classical no-adaptive test. Let us denote this te§fasssume a sample sizehigher
than the one of the tesg (i.e.,n = ¢ - ny with ¢ > 1). For anyn > n,, we can
individuate the following intervals

o [ ={x€(0,1): (x,n) € A}

o [P ={2r€(0,1):(x,n) € B}

o [¢={x€(0,1):(x,n) €C}
Notice that

o UIFUIY C(0,1)

o IANIB=0,1BNI¢ =0, NIC =0,
The aim is to point out an adaptive téstrepresented in thproportion - sample size
space by a pointin regiod whenR is the inferior treatment, or in thE’ when1V the
inferior one. This goal is achieved when
Nuld ¢ 1Cif [} wpp(da) > [} o (de),

n

Na) ¢ A jf ffqu(dx) < ffx,uw(dx).
Inspired by Proposition2:4.1, we skt 7' andy € IC, so thatlimy,_,., 228 ¢ 14

if mp < my andlimy.o Y2 € 1€ if mp > myy. This choice implies that the test
T is in the right region, where both condition (a) and (b) atesfied. In Figuré 313 we

show how the urn process, converges towards the right region.

The speed of convergence of the urn model is a key point fostieeess of this pro-
cedure. In general, the asymptotic behavior of the urn E®(C£, ).y depends on the
reinforcement distributionsuz, #y) and on the parameters, (). Once the assump-
tions on the reinforcement probability laws are made andtatstical parameters are
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150
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Figure 3.3: The pictures represents the regiods B and C, for a particular choice ofx, 8o, Ao andpo. For
each fixed sample size the parameters of the urn modgly € (0, 1) are chosen such thd®,n) € A and
(n,n) € C. On the left: simulations witinr < mw . On the right: simulations withng > mw . In both
pictures, the black lines represent 10 replications of theprocess(Z, ).

fixed, the regions!, B, C' can be determined and the rate of convergence depends only
on the unknown means.z andmyy; in particular, the speed of convergence is an in-
creasing function of the mean distange; — /|- Moreover, since the value of the
sample sizex has been computed as a decreasing functiayptthe closeness of the
urn proportionz, to its limit (n or §) aftern draws, depends mainly on the size of the
normalized dlstancéM If this ratio is large it means that the treatments’ perfor-
mance are very dn‘ferent with respect to the minimum reledistance|Ay|. In this
case, the quantltgn— will be quickly closed to the limit of the urn process and se th
procedure will actually design a tegtwhich lies in the right region. At the contrary,

if '”R;ifw‘ is small, it means that the difference between the treasrastomes less
relevant. The urn proportiof?,, ),y Will be a process which slowly converges to its
limit. Therefore, in this situation, the assumption tﬁ’%ﬁﬂ is a good approximation of
its limit is less reasonable and so the tgswill be easily found outside the right region.
Naturally, it is useless to choose an excessively littleigalf A, just to increase the
ratio 4%l in fact, this change would heavy increase the samplersjzia order to
fulfill the level and power constraint 6f;. As a consequence, the power evaluated at
the real difference of the meapg$A) would be so high that there would be no need to
maximize it.

There are other factors which influence the speed of conmeeyef the process,, ) .en,
like the values of the parameteyandJ. In fact, it is known that the closer to a border
point of the interval(0, 1) the limit is, the slower the process converges. This fact is
relevant when we propose to improve the approximatioﬁ’—’éﬂ with its limit (6 or

n) by increasing the sample sizgi.e. usingn = ¢ - ng (with ¢ >> ¢) instead ofn.
Naturally, since we are using more subjects here, it will lneatikely that the urn pro-
portion Z; will be closer to the limit) (or §), which was previously fixed in the interval
I (or I€). The problem is that the pointg, 1) and(n, ) could be not in the regions
A andC anymore. In fact, when we use the sample sizestead ofn, we should
locate the parametersands in the intervals/Z' and ¢ instead off 4 andI¢’; so doing,
we can be sure that the poini& n) and (n, n ) are in the right regions. Moreover, as
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the sample size grows the intervalg? and/¢ become smaller and move towards the
border points 0 and 1. This slows down the convergence of theeps(Z,,),cn and
makes negligible the initial gain obtained by increasirgggsample size.

Remark 3.2.1. The main inferential problem here is a two-sided hypotht=ss for
comparing the mean effect of two treatmefis](3.1). It's wéotnotice that nothing
changes if we consider an one-sided test, where the altembypothesis states that
one treatment is better than the other one, for instalige mr < my andH; : mp >
my . In this case the goal (b) reduces to assign more patientetdrhenti’, so we
can fix the parametef arbitrarily in the interval (0,7). In Figure[3.4 we show the
partition of the plane proportion - sample size and the cha€the parameters and

n with an one-sided test.
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Figure 3.4: The picture shows the case of an one-sided test. The regiansl C are defined for a fixed level
and a test], characterized bypo, no). Once fixed a new sample size> no, the parameters of the urn model
d,n € (0,1) are chosen such thdb,n) € B and(n,n) € C

3.3 Different response distributions

In this section we relax some assumptions on reinforcemistrilmlitions. First, we
consider the situation with Gaussian laws but unknown waga, then, we discuss the
case of non-Gaussian response distributions (exponamigeBernoulli).

In Sectiori: 3.1l we made the assumption that the variances oé#ponses’ distributions
0% andcf, are known. This hypothesis is very strong and in many casesalistic,
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3.3. Different response distributions

since the variability of a new phenomenon is typically unknand the variance usu-
ally has to be estimated through the same observations asedlize the test. Then, a
good design should incorporate the possibility of estintatiariances, updating them
at each step of the procedure and maintaining the good girepebtained with known
variances.

First, fixd = n = po. Then, we denote a$;(n) andS%, (n) the adaptive estimators for
the responses’ variances, expressed as follows

s0n) = 2t WO MO0 g g () = T LN V)

(3.12)
So we can replace the true varianeésando?, with their estimators’? (i) and.S3,(i);
then, in the critical regiori (3.11) the quantile of the teltnt substitutes the quantile of
the Gaussian distribution. Moreover, the functios(-) introduced in[(35) has to be
redefined as follows

¢ . ~ . ~ . ~ . -1
n (p Z) — <p3pt(7’) + (1 _popt(l))2> <p3pt(7’) + (1 _popt(z))2>
A P 1—p 0o no(1l —po)
wherep,,(i) = ﬁ(ﬁwm This procedure has to be done at every stepn, after

that a new response is collected and one of the two estimatebecupdated. Notice
that the functiomg(+; 7) is random and changes for any n, because now it depends
on the observations. As a consequence, also the intdialg’, 7€ will be random too
and we have to recompute them for ang n. This leads to two sequences);, (1;);
instead of two parametedsr, since we need to maintain the property that the parame-
ters of the urn model are chosen in the corresponding intedac 7' andn; € IF.

In [44] it has been proved that when the sequen€gén) and Ny, (n) are divergent,
adaptive estimators lik&%(n) and S3,(n) are strongly consistent. This result implies
theng(t; i) —; ng(t) almost surely for any € (0, 1). This fact ensures that it's always
possible to create two convergent sequeriégs — 4, (;); — n such thav € 1 and
nel’.

When we relax the normality assumption on the reinforcemdrgtribution it is dif-
ficult to write the power function of the test in an analytiarfo It is not always
possible to solve the conditiofi-(A) > 57,(A) and then to compute the function
ng. Anyway, this task can be realized in simulation and so we shibw that the
proportion - sample sizplane can be partitioned again in the regiohs B — C also
with non-Gaussian reinforcements. In particular, we famu$wo situations: exponen-
tial and Bernoulli responses.

Exponential responses
Let us make the following assumptions on patients’ response

o My, M,,.., M, .. the responses to treatmeRf modeled as i.i.d. random vari-

no,R*"

ables with distributionur = £(Ag)

e N1, N>, ..,N,, ... the responses to treatmémt, modeled as i.i.d. random vari-

no,w *

ables with distributionuy, = £(A\w)
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Our aim is to perform the following hypothesis test
Ho : )\R = )\W VS H1 : )\R 7é )\W (313)

We will keep the notation of Sectidn 3.1. We use the likelithoatio test to compute
the critical region. The likelihood function of the wholensple is

no,R no,w
LAg, \w, data) = NpPRAT™Y exp <—>\R S OMi—dw ) NZ)
=1 =1

= ( /\1;{0/\{1/[;170 exp (_/\RMHO,RPO - /\Wﬁno,w(l - po)) )n

whereM,, . = > M;/no g and N, , = > Ni/now. Then, the likelihood

no,R

ratio test gives us the following critical region

SUD ) p=Aw €(0,00) L(Ar, Aw, data) _
SuPO\RJ\W)6(0,00)2 L(/\R; )\W, data) @

= 7P0 “71—po
_ M”O,R_. N”O,W < {l/c_
MnoyR *Po + Nno,w ' (]- - pO)
wherec,, € (0, 1) can be determined setting the significance level of thigatitegion
to a.
Bernoulli responses
Let us make the following assumptions on patients’ response

o M, M,,.., M, .:the sequence of the responses to treatmiemodeled as i.i.d.

no,R*

random variables with distributiong = B(pr)

e N1, Ns, .., N,, ... the sequence of the responses to treatrfiéntnodeled as i.i.d.

no,w *

random variables with distributiomy, = B(pw )
Let us consider now the following hypothesis test
Hy: pr=pw  vs  Hi:pr#pw. (3.14)
The likelihood function for two samples of Bernoulli varlab is
L(pr, pw,data) =

(pgnoﬁpo(l - pR)(lfﬁno’R)povavno’W(1_p0)(1 - pw)(lﬁno’w)(lp()))

Then, the likelihood ratio test gives us the following @t region

SUPpr=pw €(0,1) L(pr, pw, data) ) B
SUP (p g pw)€(0,1)2 L(pr, pw, data) @

P (1-P)-P g
— — — — — — Vcq
M%?}gﬂpo(l _ MHO,R)(I_MHO’R)IQONZ?&}W“ po)(l _ Nno,w)(l_Nno’W)(l_pO)

where

S M YN,

n

? = MHO,RPO + Nnmw(l - pO)
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3.4. Simulation Studies

Also in this case:, € (0,1) can be determined setting the significance level of this
critical region toa.

The power function@(po,no)) in both cased(3.13) and (3]14) can be computed through
simulations and so we can empirically compute function-) in this way: for any

p€(0,1)
nﬁ(p) = min{ n Z 1: B(p,n) Z 6(190,710) }

Now that we have defined the functiop(-), we can partition theroportion - sample size
plane, introduce the interval§ and-' and after that fix the parameteyands within
them. When the urn model is used to allocate the patientsasignl becomes adaptive
and the critical region should be written in a different foneplacingh/.,, ,,, N, ,,, and

p with M (n), N(n) andp(n). As we can see from Figures 8.5 dnd 3.6, the structure of
the regions is the same of those computed in the Gaussiamnsspase.
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sample size
100

50
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proportion

Figure 3.5: This is an example with exponential distributed responses-£ 2 and A\yy = 1). The parameters
are: « = 0.05,1 — 8o = 0.2, Ao = A = 1/2. The tesf/, uses an allocation proportiop, = 1/2 and needs
a sample size afo = 67. The red line represents the functiep () computed by simulation.

3.4 Simulation Studies

We realized some simulation studies aiming at illustrathigtheory presented in this
chapter. In this section, we are going to show some of thaselations; in particular,
we want to highlight the good properties provided by the Usencadaptive design in
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Figure 3.6: This is an example with Bernoulli distributed responses € 0.2 andpw = 0.5). The parameters
are: a = 0.05,1 — 8o = 0.2, Ag = A = 0.3. The test/y uses an allocation proportiop, = 1/2 and needs a
sample size afiy = 76. The red line represents the functien (-) computed by simulation.

the framework of Section 3.1.

Let us consider the two-sided hypothesis tesil (3.1), forpamng the mean effect of
two treatmentsk and . We simulated the responses to treatmdntand 1V from
two sequences of i.i.d. random variables, with probablatys ;.r and iy, Gaussian
with meansny andmy, and variances? ando?,, respectively. In all the simulations,
my = 10 andmg ranges fronb to 15; we analyze separately the situation of equal
variances(c} = 1.5% 03, = 1.5%) and different variance&% = 1,03, = 4). We
set the significance level = 0.05 and the minimum powegf, = 0.9 for a difference
of Ag = 1. We assume to have a balanced non adaptive degign 0.5. Then, we
compute the right value for the sample sizgto fulfill the conditions of significance
level and power set in advance, whichrig = 96 when the variances are equal and
no = 106 when the variances are different.

At this point, we apply the procedure described in Sediidht8.get a new adaptive
test7 performing better thaff;. The sample size ¢f has been increased of a 25%
(n = 1.25 - ng), obtainingn = 120 in the case of equal variances amd= 132 with
different variances. In both cases, we can design the regipnB and C' and the
corresponding intervalg!, 72 andI¢; we sets in the center of 2 andy in the center
of I, In particular, we have

o 0% =15% 0% =152 = [1=(0.127,0.402), IS = (0.598,0.632).
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eok=10%=4 = [4=(0.279,0.403), IC = (0.597,0.721)

In all simulations, the urn has been initialized with a tatalmber of ballsd, =
(mg + my)/2; the initial urn proportiorz, has been set at the center of the interval
(6,m). Then, for each value ofip € {5,7,9,9.5,10.5,11, 13, 15}, we have run 000

urn processe&Zy, ), stopped at time, following the algorithm described in Section.1.
The results are reported in Tablel3.1 (equal varianced) 2h(iBferent variances).

mr A | #{Br > B} | #{Nr(n) <no,r} #{Nw(n) <now}
5 -5 0.954 (0.766) 0.011

7 -3 0.967 (0.573) 0.057

9 -1 0.970 (0.320) 0.178

95 -05 0.973 (0.301) 0.201

105 0.5 0.969 0.210 (0.283)

11 1 0.976 0.182 (0.319)

13 3 0.961 0.083 (0.486)

15 5 0.962 0.040 (0.608)

Table 3.1: The table represents the proportion of simulation r@hperforms better feature thafy,. The parenthe-
sis indicate the column of the inferior treatment. For evelnpice ofm z, 1000 simulations have been realized.
Here, the case of equal variances has been reporgd= o3 = 1.5%.

The proportion of simulation runs the tésthas a power higher thag, is very high. In
other words, it means that most of the simulations yieldsllacation proportion after
n step such thatNgz(n)/n,n) € {AJBJC}. Moreover, this result has been found
for any values ofA\, that is remarkable since the means are unknown before toéng
test. The second goal of this design was minimizing the nurobsubjects assigned to
the inferior treatment. In Table 3.1 we report the proportdruns7 allocates to each
treatment less subjects thd@n To better understand this aspect of the performance of
the MRRU model, we report in Figute 3.7 the flanked boxplotthefnumber of sub-
jects allocated to the inferior treatment in the 1000 regians of the urn design. The
red line indicate the number of subject allocated to theriofdreatment by7,. Then,
the goal is to maximize the number of cases below the red lime numbers within
parenthesis in Table_3.1 represent the proportion of siaumauns that are below the
red line in Figuré_3J7.

Notice from Figurd_3]7 that, the greater is the mean distaA¢te= |mg — myy |, the
smaller is the number of subjects allocated to the infereatment.

In the case of different variances (Tablel3.2), in most ofrthns 7 has a power greater
than7,. Nevertheless, it seems that the larger is the value gfthe less is the pro-
portion of times the power of is greater thary,. The reason of this fact is due to
the asymmetry of variances: with these valuesfands3, the length of the interval
I¢ is very small. Then, when the urn procés ), overcomes) can occur more often
thatZ,, goes out from the intervdl®, and so does the allocation proportidi(n) /n.
When this happens, we have thafz(n)/n,n) ¢ {A|JBJC} and so the power of
T will be smaller than the power of,.
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Figure 3.7: The picture shows, for angx € {—5, -3, —1,-0.5,0.5,1, 3,5}, the flanked boxplots of the number
of subjects allocated to the inferior treatmentBy In order to compute the boxpots, 1000 replications of the ur
process(Z ), have been used. The red line represent the number of sulligcatad to the inferior treatment
by 7o, that in both cases isopo = no(1 — po) = 48. Here, the case of equal variances has been reported:
0% =o% = 1.5%.

In Table[3.2 we also report the proportion of simulation riinallocates to each treat-
ment fewer subjects thah. Figure[3.8 shows the boxplots of the number of subjects
allocated to the inferior treatment with the 1000 replioas of the urn process.

It is easy to note from Figuie 3.8 that, even when the varimace different, the greater
the mean distance\| = |mpg — my|, the smaller the number of subjects allocated to
the inferior treatment. In this case, the design perfornitebe/hen the worst treatment

is W. As explained before, this occurs because with these valueg ando?, the
interval I¢ is very short.

3.5 Real Case Study

In this section we show a real case study, where the apicati the methodology
presented in this chapter would have improved the perfocmaha classical test, from
both the statistical and ethical point of view. We considatadconcerning treatment
times of patients affected by ST- Elevation Myocardial. Tin&n rescue procedure for
these patients is the Primary Angioplasty. It is well knowattto improve the out-
come of patients and reduce the in-hospital mortality tme tbetween the arrival at ER
(called Door) and the time of intervention (called Baloon)snbe reduced as much as
possible. So the Door to Baloon time (DB) is our treatmerg&ponse. We have two
different treatments: the patients managed by the 118-{aAiéaumber for emergency
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mr A | #{Br > B} | #{Nr() <nor}  #{Nw(n) <now}
5 -5 1.000 (0.895) 0.003

7 -3 0.98 (0.636) 0.042

9 -1 0.928 (0.364) 0.131

95 -05 0.930 (0.345) 0.136

105 0.5 0.887 0.222 (0.232)

1 1 0.876 0.205 (0.265)

13 3 0.847 0.092 (0.361)

15 5 0.799 0.064 (0.447)

Table 3.2: The table represents the proportion of times the newTeptesented a different feature with respect
to the classical tesf,: having higher power of assigning fewer patients to one ef o treatment. The
parenthesis indicate the column of the worst treatment. éx@ry choice ofnr, 1000 simulations have been
realized. Here, the case of different variances has beesidered:ocr = 1 andow = 2.

in Italy) and the self presented ones. We design our expetitoallocate the majority
of patients to treatment performing better, and simultasbocollect evidence in com-
paring the time distributions of DB times.

We have at our disposal the values of the Door-to-Baloon (i) in minutes of 1179
patients. Among them, 657 subjects have been managed byvhil8,the others 522
subjects reached the hospital by themselves. We denoténtheecof calling 118 as
treatment’” and the choice of going to the hospital by themselves asties#tR. In
this case, since the lower are the responses (DB time) ther liethe treatment, a de-
creasing utility function is necessary. Moreover, the uodel presented in Section 2.1
requires the reinforcements distributions to be positiieen, we choose the monotonic
utility function u(x) = 6 — log(x) to transform responses (DB time) into reinforcement
values, in order to satisfy those assumptions. To easeioot&tom now on we refer
to the responses transformed by the utility function as éispanses collected directly
from the patients. In this situation, the means and varigrmoenputed using all the
data at our disposal are taken as the true means and varizrtbespopulationg? and
W: mp = 1.503, my = 1.996, or = 0.518, oy = 0.760. Notice that, since the true
difference of the mean& = mpr — my = —0.493 is negative}V is the best treatment.
We want to conduct a non-adaptive test and a response aelapivthat aim at deter-
mining the best treatment, in order to compare their peréorce.

Initially, we imagine to conduct a non-adaptive tdgtto compare the mean effects
of treatmentsk and IW. We fix a significance leveh = 0.01, a minimum power
Gy = 0.95 for a standard difference of the meafAs = 0.5. Then, we assume re-
sponses to treatments and IV are i.i.d random variables with distributions; and
pw, respectively. Moreover, we assume the laws are Gausgiar: N (mg, 0%) and
ww = N (mw,o?,) (verified by empirical tools). The allocation proportionsist to
po = 0.468, the empirical one. With these parameters we can conduci-aited t-test
that requires a total of, = 119 subjects,ngpy = 56 allocated to treatmenk and
no(l — py) = 63 allocated to treatmerit’. To computen, we have assumed known
variances. The power of this test computed in corresporedenthe true difference of
the means igi;, (A) = 0.945.
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Figure 3.8: The picture shows, for anp € {-5,—3,—1,-0.5,0.5,1,3,5}, the boxplots of the number of
subjects allocated to the inferior treatment Py In order to compute the boxplots, 1000 replications of tire u
process(Z; ), have been used. The red line represent the number of sulliecated to the inferior treatment
by 7o, that in both cases isopo = no(1 — po) = 53. Here, the case of different variances has been reported:
0% =1andod = 4.

Now, consider the urn model presented in Sedfioh 2.1 to naoctshe adaptive test.
T involves more subject in the experiment tHan in particularn = 1.25 - ng = 148.
Nevertheless, since in practice variances are unknawandn should be computed
from the estimates of the variances. As a consequence, tlentanber of subjects
needed fof7 is random, because it depends on the variance estimatiothisoeason,
we may have replications with different sample size

We realize 500 replications of the urn procedure. Since tta dt our disposal are
much more than the amount of data we need for each trial, bywteting the re-
sponses we can take at random different data with a differeler in each replication.
In Figure[3.9, we represent 10 simulations of the urn propogprocessZ,,),.

As we can see from Figufe 3.9, the urn process seems to taggehrd, where param-
etero is set. This is becausk is the worst treatment in this case. T&shas higher
power and assigns to treatmdntess patients tha,. This is our goal, since we know
that R is the worst treatmenti{z < myy).

For each one of the 500 replications we compute analyticakypower at the true
difference of the meanA. In general, the power will be different for any simulation
because different is the number of subjects assigned todhtntents §z and Nyy).
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Figure 3.9: Black lines represent 10 replications of the urn proportmmcess Z,,),,. Each replication
uses responses taken at random from the data at our disp@bal.proportion - sample size space
has been partitioned assuming the variances known.

In Figure[3.10 we show a boxplot with the 500 values of the paeenputed using the
urn model, to be compared with the power obtained With Moreover, we show for
each simulation the number of subjects assigned to treatRetio be compared with
the number of subjects assignedidy 7.

From Figurd_3.10, we notice that the urn design describecati@[2.1 allows us to
construct a tesf with higher power thary,. This occurs for more than 99% of the
replications, and the mean of the power computed overaluhgis

LS B(A) = 0975 > 0.945 = Br(A).
1

Even if 7 needs a sample sizelarger tharf/y, the number of subjects allocated to the

inferior treatmentR is less for7 for the 52.6% of the runs. Besides, the mean of the
number of units assigned to treatméhin all the runs is almost the same of the number
computed with7,

1
—— > Npi = 56.43 ~ 56 = ng - po.
1

In this chapter we have conducted an analysis on the stafigtioperties of tests that
aim at comparing the means of the responses to two treatn&atsing from any non-

47



Chapter 3. An urn procedure to construct efficient test for re sponse-adaptive designs
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Figure 3.10: On the left: boxplot representing 500 values of power evaldiat the true difference
of the mean®\ = —0.493 using7: S7(A). The red line represents the power obtained wiigh
B, (A) = 0.945. On the right: boxplot representing 500 values of the nundfesubjects assigned
to treatmentR by 7. Ng. The red line represents the number of subjects assigneeatrtent? by
To: no - po = 56.

adaptive tes?,, we pointed out the features of an adaptive tEgperforming better
than7,. Since the framework here is represented by clinical rtals goal is achieved
whenT has (a) higher power and (b) assigns to the inferior treatiees subjects than
To. We investigated this task by individuating in theportion - sample sizepace the
subregions associated to tegtperforming better thaff;.

The test7 can be implemented by adopting a response adaptive desigmprajose
an urn procedure (MRRU) that is able to target a fixed allocagiroportion in (0,1).
Thanks to this property, the urn model can individuate te&ftan different regions de-
pending on which is the inferior treatment, and both gogigl§acan be accomplished.
We showed that the assumption of normal responses and knamanges can be re-
laxed and the procedure to partition ghreportion - sample sizgpace and to detect the
test7 still holds. We reported simulations and a case study thytlight the goodness
of the procedure.
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CHAPTER 4

Rate of convergence of urn process to asymptotic
proportion

In this chapter we focus on the asymptotic behavior of theprotess(Z,,),cn in
the MRRU model ([[2I7]). In Theorem 4.2.2 we prove that the w@fteonvergence
of the processZ,,).cn to its limit is 1/n. This asymptotic result has been achieved
after defining a particular Markov process denot&d),cn, based on the quantities
that rule the urn process. The study of stochastic propedidhe procesy;, (see
Section[4.11) has been crucial for proving Theofem #.2.2. edeer, Theorerh 4.2.2
shows that the sequengén — Z,,) converges in distribution to a real random variable,
whose probability law is related to the unique invariantrabsition = of the process
(Tn)nEN-

Section4.B is dedicated to the inferential aspects commgithe MRRU design. We
deal with a classical hypothesis test comparing the nulbkiygsis that reinforcement
means are equab{z = my ) and the one-side alternative hypothesis;(> my ). We
consider different statistical tests, based either on tadapstimators of the unknown
means or on the urn proportion. We compare statistical ptiegeof tests based on
RRU design and tests based on the MRRU design.

In Sectior 4.4 we illustrate some simulations studies orptiobability distributionr
and on the statistical properties of the tests describeeai@{4.3.

To prove the results shown in this chapter, we need a furtb&rmption on the rein-
forcement distributions

Assumption 4.0.1. At least one of these two conditions is satisfied:

(a) there exists a closed intervaly, by C [a, b] such thatV = € [ao, by], the measure
1w 1S absolutely continuous with respect the Lebesgue measdréhe derivative
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

is strictly positive, i.e3 ”Wd—(d"”) > 0

xT

(b) there exists a closed intervaly, by] C [a, b] such thatV = € [ao, bo], the measure
1ir IS absolutely continuous with respect the Lebesgue measaréhe derivative
is strictly positive, i.e3 “£42 >

Without loss of generality, Condition (a) will be consideteue through all this chapter.
In this chapter, we aim at studying the asymptotic behavidhe quantityn - (n —

Z,). To do this, let us introduce a new real stochastic pro€Esk,cn, whose features
depend on the random variables ruling the urn process:

{ Ty = nWo — (1=n)R 4.1)
Tn+1 - Tn + 77<1 - XnJrl) Nn+1 - (1 - n)XnJrl Mn+1 1{Zn<17}
Vn € N. Let us note that
n(n — Z,)D, nW, — (1 —n)R, T,
n-(n—2,) = ( 5 JDn _ (,; ) = 5 (4.2)

whereT,, = nW,, — (1 — n) R, satisfies the iterative equationsn (4.1).

The process$Z,, T, )nen IS @an homogeneous Markov sequence. Then, there exists the
transition probability kernek for the procesq’, such that for anyz,,t,) € (0,n] x

[0,00) U (n,1) x (—o0,0) and for anyA C R

P(Tos € Al (Z0To) = (20.t0) ) = /AKZO(tO,dt)

The analytic form of the transition probability kernel igtfollowing

to— 1t
KZo(t07 dt) =20 ,LLR (d (10_ 77)) 1{zo<n A t<t0} + 20 61‘,0 (t) 1{zo>77}

t—t
+ (1 = 20) pw (d< p 0)) Listoy

If the probability measuregr and .y are absolutely continuous with respect to the
Lebesgue measure, we can write as well

(0 (1)) = (1)
o (1(52)) = o ()

wherefg(-) and fy/(-) are the Radon Nikodym derivatives of the measurgand iy,
with respect to the Lebesge measure.

(4.3)

4.1 An Harris Chain to study the rate of convergence of urn model

Since the marginal proce$s needs to be coupled with the processo have a Markov
bivariate processI(,, 2, ), the application of many results on Markov processes in the
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4.1. An Harris Chain to study the rate of convergence of urn mo del

case of continuous state space it's not straightforwarénTtve define a new auxiliary
processl,, strictly related tdrl;,, in this way:

To = nWy — (1—77)R0 (4.4)
Tor =Ty + (1 = Xpp1) Npr — (L= 1) Xos1 Mg Lz oo

Vn € N, Where(f(n)neN are i.i.d. Bernoulli random variables of parameteinde-

pendent of the sequencel/,,),cn and (N, ),en. It's easy to see thadk, is a Markov

process. In fact, the transition kerri€), of 7,, is independent of the quantity

to — 1
Kn(to,dt) =17 UR <d (10_ 77)) Lito>0 nt<tey + M Ot (1) Litg<oy

+ (1= n) pw (d (t —77750)) Litst0)

Here, we show that the Markov procéEsis an aperiodic recurrent Harris chain. This
result will be used in Sectidn 4.2 to investigate the asymiptehavior of the process
T,,, and then obtaining the rate of convergence of the urn psdcgs

At first, we need a lemma on the dynamic of the prodess

(4.5)

Lemma4.1.1. For anyt, € R, there exist$ > ¢, such that

Vi>1T, Ve>0, P<U{Tke[t,t+e]}|fozto> >0 (4.6

k=1

Proof. Let us takea;,b; € R* such thatuy < a; < b; < by. At first, notice that if
t e (to +ain,to + blT}), then

P(Tle(t,t+dt)\fozto> = (1—7) pw (d(t_nto)) >0

since% € (a,b1).
For the same reason, for ahye N, we have that if € (¢, + kan, ty + kbn), then

P(Tke(t,t+dt)|T0:to> > (1—n)* (d(t;ﬂto))k >0

Let us introduce the sequence of sets ), such that

(t0+(k—1)b177,t0+ka177) if k< by

bi—ai’
A, =
0 otherwise.

for kK > 1. Then, for anyn € N, we have that if
t € (to,to+ nbin)/ U Ag,
k=1
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then
t e U(to+ka1n,to+kbm),
k=1

and

o - . t—to\\™
Pl U{Thett+d)} [ Ty=to | > (L—n)™ pw (d o > 0,

0
k=1

where we choose

t— 1ty
= 1
"o [ bin } "
Therefore, a sufficient condition fd? (Uz‘;l {Tk € [t,t+ e]} |T0 = to) >0is

(2]

t € (tg,00)/ U (to+ (k—1)bin, to+ kayn ),

b1 —ay
k=1

so the thesis holds for arly > ¢, + [bfal] amn. O

Now, we can use LemniaZ.1.1 to show that (7),),cy is a Harris Chain.

Proposition 4.1.2. The Markov proces$ = (Tn)neN on the state spacR is a Harris
Chain.

Proof. Let us start reminding that the Markov procé§son the state spac® is a
Harris chainif there existA, B C R, a constant > 0 and a probability measuyewith
p(B) = 1, such that

(@ If 74 :=inf{n >0 : T, € A}, thenP(r* < oo | Ty = t;) > 0 for anyt, € R.
(b) If to € AandC C B, thenkK,(ty,C) > ep(C).

Let us prove the condition (a). Let = [0, (b; — a1)n].

e First caset, € [0, (by — a1)n)
The condition (a) is trivial, sinc@(r4, = 0 | Ty = t, € A) = 1.

e Second case) > (b, — a1)n

We fixt > to+ [ by } an and we define € N, I C R as follows

bi—a1

=

I = [a(l=n)zy, 7(1—n)zo+ (by —a)n],

n =

|
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4.1. An Harris Chain to study the rate of convergence of urn mo del

wherezx, € [a, b] is chosen such that, for every> 0, g ([zo, 2o + €]) > 0.
Fixing ¢ € I, we have from the previous lemma that for evéry 0

p(@ {Tke[f,ﬂg]} |T0:t0> )

sincet > n(1 — n)xzy > t. Then, let fix¢ small enough, such that- ¢ € I. Let

ﬁ:zinf{nZl : P(O{Tke[f,f+§]}|f0:t0>(bl—a1)n) >O}

k=1
We can write
P(t4 <oo|Ty=ty) > P(Thn € (0,(by —a)n) | To=1ty) >
P(Tn € (0,(br —a)n) | Tr € [l 8+ () - P(Tr € [Li+ (][ To=to)

We have already proved that the second term of this prodwstticsly positive, so we
focus on the first term. Let us call

bin == arg min P( Ty € (0, (by —ar)n) | Tz = t)
tefti+]

we have
P(Trin € (0,(by —ai)n) | T € .1+ C)) > P(Thyn € (0, (b1 — a)n) | Tr = toin )

H K, ( tin — (5 = D)1 =120, [tmin — 5(1 — 0)20; tmin — s(1 — n)zg + dt] )

(7 pr(dze) )" > 0
because,,;, — n(1 —n)zy € (0, (by — a1)n).

e Third caset;, < 0

We fixt > max{ to + [ by ] ayn; 0 } and then we follow the same strategy used

b1—ay

in the second casey(> (b; — a1)n).

Let us prove the condition (b) Let
B = [(by —a1+ag)n, bpn] CR

and the probability measure

1
) = /dt
p( ) (bo — b1 +a; — ao)T} C

for any set”' C B. For everyt, € A,

o (5 2 g, [ D).

to,t)EAXB

K, (to, C) > /

c
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Hw (df)} dt

[ [

C :L‘G(ao,bo)
Now if we define

) dx
e=(bp— by +ar —ap)n(l —n) Er(nlr}))[uwd(x )}
x ao,b0
we obtain
1
K, (ty,C) > € - /dt:e- C
77(0 ) (bo_bl—l_al_ao)n o p( )

0

Now we dedicate on proving the recurrence of the proééss
In what follows, for any interval c R, we will refer to (7/); as the sequence of
stopping times

=0
TZ-I::mf{n>Ti£1 : Tnel}, i>1
For ease of notation, we will denoté as/.

Proposition 4.1.3. The Harris chainl” = (7}, ),y On the state spacR is recurrent .

Proof. Let us remind thaf, is recurrent ifP(t4 < oo | Ty € A) = 1, for any initial
probability distribution\,, wherer# := inf{n >1 : fn € A}. In particular, we are
able to prove a stronger property, thatii¢r* < oo | Ty = to) = 1 for anyt, € R,
which implies the condition we need.

Let

e ] be the closed interval defined as
I = [_<1 - 77)57 0]7
e c be the constant defined as

c::minP(TA<oo|T0:t)
tel

¢ is strictly positive because, the procéssis an Harris chain and sB(r4 <
oo\T0:t0)>OVt0€R,

e 7 be the integer defined as

no - c
n:i= 1 >1: minP T.e€ A | Ty, = > —
n mf{n_ min <U{k€ H Ty x>_2}

k=1
Now, we focus on proving that the stopping tin{es); are almost surely finite:
P(TI:OO‘TOZto)IO (47)
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(a) First caset € (0,00)

Looking at the transition kernels(4.3) aind{4.5) of the psseq;, and7,, respectively,
we note that for any, € (0,00), P(Ty < Ty | Ty =Ty = to) = 1. This implies that

P(Ty > 0| Ty=ty) < P(Ty >0]|Ty=tg) (4.8)
Then, we have that
P<TI:OO|T0:tQ> :P<T(_OO’O):OO|T0:t0> =
P<ﬂ{fn>o}|fozto> §P<ﬂ{Tn>O}|T0:tO> ~0
n=1 n=1

where the passage from to 7, is due to the relatio (4.8) and the latest probability is
equal to zero becaude(7,, < 0 i.o. | Ty = ty) = P(Z, > n i.0.| Ty = ty) = 1 for
anyt, € R.

(b) Second casd; € (—0, 0]
Looking at the transition kernels (4.3) and (4.5) we haveéfiaanyt, € (—oc, 0],
P(Ty <0|Ty=ty) < P(Ty <0]|Ty=tg) (4.9)
and following the same arguments of the case (a) this leads to
P (T<Ov°°> — 0| Ty = to) — 0 (4.10)
Hence, we have
P(TI:oo|T0:t0> =

P (TI = o0 | {71%) < o0} ﬂ{Tg = to}) —
P(Aenieon <oi-u) <

n=1

o0

P n {T, ¢ I} [ {70 < o0} ﬂ{fo =to} | <

n:T(OaOO)+1

sup P(ﬂ{fngé]ﬂfo:x) —

2€(0,00) ne1
sup P(TI:oo|T0:x> =0
2€(0,00)

since from the case (a) we have thias > 0, P(7! = oo | Ty = t,) = 0. Therefore,
we conclude thaP (N2, 7/ < oo | Ty = ty) = 1, which meangr;); is sequence of
stopping times almost surely finite.
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

Then, let us define the sequence of stopping times

’7'0:0
Ti::inf{n>7'z~_1+ﬁ : Tnel}, 1>1

SincelJ,~, 7. € U,—, 7, the stopping time$r,,n = 0,1,2,..) are almost surely

n=1 "n?
finite.
Therefore, for any, € R we have that

P(TAZOO|TO:tO> - P(ﬁ{TngéAHTo:to)

P(ﬂ h {Tn¢A}|T0:to>

i=0n=7;+1
oo i1 ~ i—-1 TN R
[IP{ N ATgari) () AT ¢4}
i=1 n=7;+1 j=0n=r;+1
o [ iR ~ i—1 Tj+n .
mhr(Udeninnden
i=1 | n=7;+1 j=0n=r7;+1
o [ it i—1 Ti+h
1T 1-/13( U {TneA}|Tn:x>P T, =dx| () () {T. ¢ A}
i=1 I n=7;+1 j=0n=T;+1

i—1 T;+n

1—/IP<O{TTL6A}\T0:3;>P T,=dx| () () {Tn ¢ A}

j=0n=r7;+1

—

-
I
N

1_?61?P<L_J1{THEA}|T0:3:)

_1_5}
L 2

—

-
I
N

8

1

2

and so the thesis is proved. O

Finally, we show the aperiodicity of the procégs

Proposition 4.1.4. The recurrent Harris Chairf” = (Tn)neN on the state spacR is
aperiodic.

Proof. The recurrent Harris chaif, is aperiodic if there exists, € N such that

P(T, € A|T, € A) > 0, for any integen > n, and for any distribution law, onT,.
Let define the stopping timg!™ as follows

7 = inf {n > 7000 . T e A} (4.11)
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4.2. Rate of convergence

This stopping time is almost surely finite. In fact, sinéer(=> < oo|T = o) = 1
for anyt, € R, we have that

P <7’A7 < o0 | T, € A) = P (TA7 < 00 | {T(_OO’O) < oo} ﬂ{Tg e A}) -

ne=r(—00.0)

min P( {TneA}|T0:x> = min P<TA<OO|T0:x> =1
n=0

2€(—00,0) 2€(—00,0)
Hence, there exists, € N such thatP(r4~ = n, | T, € A) > 0. We notice also that
P(T}O cA|T, eA) > P({Tno e A" =no} | Ty eA) _

P(Tno c Al {r" :no}ﬂ{TO € A}) : P(TN =no | Tp € A) —

P(TTA_ eA\TOeA> . P(TA’ :nO\ToeA> - P(TA* :nO\ToeA> > 0
Then, for everyh > ng, we have

P(TneA|ToeA) > P(TA‘ :n\ToeA> > n"*"O.P(TA‘ :nO\T0€A> >0

and so the thesis is proved. O

4.2 Rate of convergence

In the previous section, we have proved that under Assumigiia.]1, the Markov pro-
cessT,, is an aperiodic recurrent Harris chain. So, we can stateoilening

Proposition 4.2.1. Let us callr the stationary distribution of the recurrent aperiodic
Harris ChainT = (7,,).en- Then, for every, € R, we have that

lim sup | P(T, € C|Ty=ty) — n(C)| = 0 (4.12)

n—oo CEB(R)

Proof. The Markov process, is a recurrent aperiodic Harris Chain. This resultimplies
that there exists a unique invariant distribution prokigbit and [4.12) holds for an
such that

Pt <oo|Ty=ty) = 1 (4.13)

wherer4 is defined as follows

" inf{nZO:TneA} if{nZO:TneA}%@;
T pr—
00 otherwise

The thesis is proved sinde (4113) holds for ang R. O
Now, we can state the main result
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

Theorem 4.2.2. For any initial compositior{ry, wy) € (0, 00) x (0, 00), we have that

n-(n—2,) 2 v (4.14)
mw

wherey is a real random variable with probability distribution.

Proof. Using equation[{4]2), Proposition 2.4.2 and Slutsky’s taeowe have that it's

sufficient to prove thaf, K 1, where) is a real random variable with probability
distribution.

Our aim is to prove that, for anyy € (—(1 — n)dy, ndy) (physical bound because
20 € (O, 1) andto = do('l] — Zo)),

lim sup |P(T,€C|Ty=ty) — w(C)|=0. (4.15)
n0 CeB(R)

To do that, we will prove the following

lim sup | P(T, € C| Ty = to) — /Kn(t, CVP(T, = dt | Ty =ty) | = 0 (4.16)
R

n—oo CEB(R)

since we can show thdi(4]16) impli€s(4.15). The proof issomosed by two parts,
(a) and (b). Part (a) is dedicated to prove that (4.16) insilel’), while in Part (b) we
prove [4.16).

Part (a):
Let us denote witlp,, the probability law ofT;,, conditionally to{7, = t,}. Then, the
goal of Theorem 4.212, that is shown [n (4.15), can be resritts follows

sup | [ (pn(dz) —w(dx))| —, O.
CeBR) JC

Now, let us denote witti{ the operator defined as follows
H(t,ds) = 145(t) — K, (t,ds)

Then, expression (4.116) can be rewritten as follows

sup |//th5pndt|—> 0.
CeB(R)

Roughly speaking, this means that the sequence of megsuieprogressively closer
to the kernel of the operatdd. Formally, we can say there exists a sequence of mea-
sures(d,,),, such that

® SUDCcpr ‘fc pu(dz) — 0,(dz))| —, 0,
o [, H(t ds)0,(dt) =0.

Notice that, since is the unique probability distribution such theiC') = [, K, (t, C')m(dt)
for any C' € B(R). Hencer is the only measure such thfit H(t,ds)r (dt) 0

58



4.2. Rate of convergence

(m € Ker(H)) and [, 7(ds) = 1. As a consequence, singgp,(ds) = 1Vn, 0, =«
vn.
Then, we have shown that (4116) implies (4.15).

Part (b):
To prove [4.16), we are going to define some quantities.
For anyt, and for anyC' € B(R), let us define

Fulto,C) = [ (t.C)P(T, = delTy = 1) (4.17)

where - -
fut,C) == P(T,41 € C|T,, =t) — P(T,+1 € C|T,, =1t). (4.18)

With these two quantities, we can write
P(Ty € OTh = 1) = /Rpm+1 € C|T, = )P(T, = dt|Ty = t,)
= /RP(TnH e C|T,, = t)P(T,, = dt|Ty = t,)
+ /an(t, C)P(T,, = dt|Ty = to)
_ / K, (t, C)P(T, = dt|Ty = o)
+ Ff(to, C)
Now, if we define

I/n(to, C) = P(Tn+1 € C|T0 - to) - (Tn € C|T0 = to) (419)

we can use this and the previous decompositioR(@f, ., € C|T, = t,), to obtain

sup | P(T,, € C[Ty = to) — / K, (t,C)P(T, = dt|Ty = t,) |
CeB(R) R

< sup |F,(to, C)| + |[vn(to, C)|
CEeB(R)

S Fn(tO) + Vn(tO)-

The thesis is get since in Lemra 4]12.3 and 4.2.4 we show thraanfy admissible,,
supc Fy, (to, C') andsupcvy,(to, C') tend to zero as goes to infinity. O

The first lemma deals with the quantitiés (¢, C') and f,,(¢, C) defined in the proof
of Theoren[4.Z]2. The goal is to showpc|F, (ty, C)| < F,(ty), whereF, () is a
sequence independent©fand that tends to zero for any fixegd

defined in{4.17) Then, there exists a

Lemma 4.2.3. Consider the sequendg,(t,, C)
| < F,.(ty) for anyn, and F,,(ty) —, 0 for

sequence,(ty) such thatsupc|F,(to, C)
any fixedt.
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

Proof. At first, let us consider the term, (¢, C') defined in[(4.1B). We have that

fulto, )| =| P(Tny1 € O|T, =ty) — P(Tny1 € C|T, = to) |

|/ (/ K. (to, dt)P(Z, = d2|T, = to) — (to,dt)>|

< K.(to, dt) — K, (to, dt))P(Zn — d=|T, — to) ) |
L (o ()
)

t—t
+ 5t0(t ]-{t0<0} — ,LLW (d( 77 O)) 1{t>t0}) P(Zn = dZ|Tn = to)) |

< (/ |z —n| P(Z, = dz|T, —to)) X 2 /Kl/Q to, dt)
0

<2 x E[[Z,—nl|T,=1]

that is independent of the sét
Now, let us consider the ter,(ty, C'). Let us take a sequencg,),, t; € (0, 00)Vi,
such that,, — oo andt, /n — 0. Then, we have that

Falto,C)| =) / fult.C)P(T, = di|Ty = ty) |

< 2/E[|Zn —n||T,, = t|P(T,, = dt|Ty = to)
R

2/ E[|Z, — n||T, = (|P(T, = di|Ty = to)
{Tn>tn}

+2/ E[|Z, — n||T,, = t]P(T,, = dt|Ty = to)
{Tn<tn}

< 2P(T) > ta|Ty = to) + 2E[|Z, — || = t,]
= 2P(T, > t,|To = to) + 2E[|Zn — 0l|Du(n) — Zo) = t,)]

The second term tends to zero becallsgn converge almost surely and it to a
constant.

Letus focus on the first term. To deal with that, notice thait> ¢,,, then\,_, {7 >
0}. Let us introduce the stopping time

00 otherwise

{inf{n21\2n>n} it # 0
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4.2. Rate of convergence

representing the first timg&,, > n (i.e. 7,, < 0). Then, we have

n—{[tn /b n
P(T,>t|Ty=1t) <P| [J {{Tj<o} N {ﬂ>0}} | Ty = to

=0 i=j+1
n—[tn/b] n
< Y Pl{Ty<0} {Tz‘>0}|T0=to>
=0 i=j+1
n—[tn/b] n
< Y P ﬂ{ﬂ>0}\T0:toﬂ{1}<0}>
=0 i=j+1
n—[tn/b] n
= > P ﬂ{Zz’<77}|T0=toﬂ{Zj>"7}>
§=0 i=j+1
n—[tn/b]
< Y P(r>n—j|(Z,Do)=(n,do))
=0
= Z P(1>i[(Z, Do) = (n.do) ) —n O
i=[tn/b]

since[r|Z, = 2] < oo for anyz, € (0,1) (see Lemm&4.2.5).
Therefore, we have that

|/an(t, CYP(T,, = dt|Ty = to)| = |Fu(to, C)| < F,(ty) — 0

since the limit is independent df. 0J

The second lemma deals with the quantityt,, C') defined in the proof of Theo-
rem[4.2.2. The goal is to showipc|v,(to, C)| < v,(to), wherev, (o) is a sequence
independent of” and that tends to zero for any fixeg

Lemma 4.2.4. Consider the sequencg (¢, C') defined in(4.19) Then, there exists a
sequence, (ty) such thatsupc|v, (to, C)| < v, (to) for anyn, andw,(ty) —,, 0 for any
fixedt.

Proof. Let us fixe > 0. We show that there exist§ = N(e, ty) € N (V independent
of C') such that

|P(Tn+1 € C‘TO = to) — (Tn S C‘TO = to)‘ <€
foranyn > N.
Let us fixe; = €3 = €3 = ¢4 = €/4.

Let us denotd := [—b(1 — ), 0].
Let us take an intege¥s, such that

sup sup | P(Thy1 € C|Ty=ty) — P(T, € C|Ty =ty) | < &
toel CeB(R)
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

for anyk > N,. The existence oWV, is guaranteed by (4.12).
Then, let us take an integéf; > N, such that

oo

sup ZP(T>N1—N2+j\TO:tO) < €
toel =
7j=1

wherer was the first timeZ,, > n (T,, < 0). The existence oiV; is guaranteed once
we note thatP (7 > k|Ty = to) < P(7 > k|(Zo, Do) = (n,dy)) for anyt, € I, and

ZP(T > j|(Zo, Do) = (n,do)) = E[7 [(Zo, Do) = (1, do)] < o0

j=1
from Lemmd4.2b5.

Let us define for any. > N; a stopping time,, € N, such that

Tn — i
00 otherwise

Notice that, for any,,

P(Tn = OO|T0 = to) =P <nh2{T] ¢ ]}|T0 = to)

ip ({U 1 c f}} N N (@ nm= to>

J=n—N1

It is easy to show that the first term tends to zero, siRCE, € I.i.0.) = 1. Then, we
can fix N3 € N such that, for any, > N3, itis less therzs.
Now, take the second term, we have

_p (nUI{Tj ey () (T ¢ DTy = to)

i=j+1

< nZIP <{Tj €I} nﬂ2{ﬂ ¢ 1T = to)

j=1 i=j+1
n—Np n—Nz
<> P( () AT ¢ DTy = to} ({T) € I})
Jj=1 1=j+1
n—Np
< sup Z P(T>N1—N2+j|T0:t0) < €9
toel ~
7=1

Then, we can say that, for amy> max{N; N3}



4.2. Rate of convergence

Now, putting together all the results we obtain
[va(to, C)] < sup | P(Thy1 € ClTo =ty) — P(T,, € ClTy = ty) |
CEB(R)

Ny

< sup Z ’ P(T,11 € Clry=n— kﬂTO =to)
CeB(R) /2N,

_P(Tn€O|Tn:n—k}ﬂT0:t0)’ X P(Tn:n—k|fozt0)
—|—P<Tn = OO‘TO :to)

Notice that, sinc&,, — n a.s., the transition kernels of the procesiEede become
closer as: increases, i.eK, (o, C) — K, (ty, C) a.s. This means that, for any fixed
k € N and for anyt
lim sup | P(Tpur € C|T, =ty) — P(Th € C|Ty=1to) | = 0
n—00 CEB(R)
For this reason and because of the closeness of the inferval-b(1 — n), 0], we can
fix an integerN, € N such that
sup sup | P(Tx € C|T,, =t) — P(T), € C|Ty =1) | < €4/2
tel CeB(R)
for anyk < N; and for anyn > Nj.
Then, for anyn > max{Ny; N3; N4}, we have that
vn(to, O)] < sup | P(Thi1 € C|Ty = tg) — P(T,, € C|Ty = to) |
CeB(R)
N1 ~ ~
< sup sup P(T,41 € ClT,—x =1)
tel CeBR) /—n,

— P(T, € C|T)_p = 1) ’ x P(1,=n—k|Ty =t

N1
-+ 264 X P(Tn:n—k’|T0:t0)

k=N
+ P(Tn = OO‘TO = to)
N1
< sup sup P(Ti1 € C|Ty =t)

tel CEBR) —n,
= P(Ti € CITy =1) | % Plra=n— KTy = to)
+e€ + €3 + €

N1
< Z e1 X P(t,=n—k|Ty =ty) + €4 + €3 + €
k=N
<€+ 6+ €3+ 6 =€
For the arbitrary ot, we have that
lim sup | P(Tn+1 S C|T0 = tO) - P<Tn € C‘TO = to) | =0

n—00 CEB(R)
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

for anyt,. O

Here, we present a lemma that provides a result, concerhefirst time the urn pro-
cess goes abovg that is used in Lemnfa4.2.4. Let us denote withis stopping time,

i.e.
inf{n>1|2,>n} if #0;
7' pry
00 otherwise

then we state the following
Lemma4.2.5. Foranyz, € (0,1) andd, € (0, o), we have that

E[ 7| (Zo, Do) = (20,do) ] < o0

Proof. At first, notice that, for any) < = < n <y < 1 anddy > 0, E[7|(Zy, Dy) =
(y,do)] < E[T|(Zo, Do) = (z,do)]. Then, conside® < z, < n andd, > 0, we have
that

E[7|(Zo, Do) = (20,do)] = Y _ P(r > n|(Zo, Do) = (20, do))

n=1

= ZP (sup Z; < n|(Zy, Do) = (zo,do))
n=1 jsn
< 0

This is a well known result from the branching process thédéy). O

4.3 Testing hypothesis

In this section we focus on the inferential aspects conogrtiie MRRU design. Let us
introduce the classical hypothesis test aiming at comgdha means of two distribu-

tions:uR7 Hw
Hy: mgp—my =0 wvs Hy: mp—my > 0. (4.20)

We approach to the statistical probleim (4.20) considerirg & no-adaptive design,

and then the MRRU model. Léi\/,),cny and (N, ),en be i.i.d. sequences of random
variables with distribution:z and uy, respectively. For a fixed design with sample
sizesny andnyy, the usual test statistics is

M,,—N

G = ”R ;W (4.21)
nn T nw

whereM,,, and N, are the sample means asfl ands%, are consistent estimators
of the variances. When the no-adaptive design allows betkdimple sizesy andnyy,
goes to infinity, by the central limit theorem we have thatemthe null hypothesis,
(o converges in distribution to a standard normal variableenTHixing a significance
levela € (0,1), we define

Ra = {0 > za} (4.22)
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4.3. Testing hypothesis

as the critical region asymptotically of lewe] with z, as then-percentage point of the
standard Gaussian distribution. Now, let us assume thatatlkeeof divergence of the
sample sizes is such th&t”R— — n, for somen € (0, 1). Then, the power of the test
defined in[[4.2R) can be apprOX|mated for largeandnyy,, as

Pl z4+ iz mw |, (4.23)
ok + fﬁv
n -n

whereZ is a Gaussian standard random variable.

Now, let us consider an adaptive design described in ternm ofia model. Let us de-
note Ny (n) andNy, (n) as the sample sizes after the firstdraws,M (n) andN (n) the
corresponding sample means afidn) ands?, (n) the adaptive consistent estimators.
Plugging in [4.2]1) the corresponding adaptive quantitiesobtain the statistics

M(n) — N(n
o) = —) = V) (4.22)
SR(”) Sw(n)
Ng(n) Nw (n)

From [44] and Slutsky’s Theorem, it can be deduced from thaduaptive case that for
the MRRU model, ifmr = my, the statisticg,(n) converges to a standard normal
variable. Hence, the critical region (4122) still definegst asymptotically of level.
Moreover, calling the limit of the urn proportior¥,, under the alternative hypothesis,
the power of the test defined in(4122) can be approximatedafgen, as [4.28).

Remark 4.3.1. The behavior of the statisticg defined in(4.24)in the case of RRU
model was studied i [24]. In that paper, the asymptotic rality of (y(n) under the
null hypothesis was proved; th§fh.22)defines a test of asymptotic levehlso in the
RRU case. However, under the alternative hypothésis) converges to a mixture
of Gaussian distributions, where the mixing variabfeis a strictly positive random
variable such that

Nw (n) 6.8 4’02

an/mR
Therefore, it follows that in the RRU case the power of thiedefined in(4.22)can be
approximated, for larger, as

(4.25)

P(Z+n$'—LWR<pw > za), (4.26)
ow

whereZ is a Gaussian standard random variable independent.of
Remark 4.3.2. Let us rewrite the power of the test defined4i®2)as follows

— Mmw 1
(Z+\/_ P > za) (4.27)

where we have defined a new quantity

_(or) 1 1
=Gy ) T Mem T N

n n
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

Let us notice thaty,, represents the part ifd.27)that depends on the particular adap-
tive design is applied in the trial. When the RRU design islugiee relation(@.23)
allows us to approximate the quantiy as

mw

OR 2 1 n_mR
- +
(o) ==

n ™R

that diverges as goes to infinity. In the same way, when the MRRU design iseghpli
we can approximate,, as

2
( OR ) 1 i 1
ow) n+o(l) 1-—n+o(1)
that converges to a constant. Therefore, when both MRRU &udldesigns are applied

with the same sample size andn is large enough, the power of the td8i22)using
MRRU design is greater then the one obtained using RRU design

A different test statistics based on the urn proportion oRURnodel has been inves-
tigated in [25]. Let us denote a&"" the a-percentage point of the distribution of the
limiting proportion Z, under the null hypothesis in a RRU model. Then, the critical
region

{Z, > "V} (4.28)
defines a test asymptotically of level As explained in[[25], the power of this test can
be approximated, for large, as

P ( P < (1= O E ) (4.29)

mw

wherey? is the random quantity defined in (4125).
Now, we consider the statisti¢s, as the urn proportion of a MRRU model, with pa-

rameters) andn. Let us denote ad®™m thea-percentage point of the distribution of the
limiting proportionZ,, when the mean responses are equal. Then, the critical region

{Z, > oM} (4.30)

defines a test asymptotically of level Under the alternative hypothesis, the asymptotic
behavior of the proportiod,, is shown in Theorefn 4.2.2. The power of the g5} >

cff’")} can be approximated, for large as
P(¢ < (n— My myn ) (4.31)

where is the random quantity defined in Theorem4.2.2.

4.4  Simulation study

This section is dedicated to presenting the simulationistudim at exploring the
asymptotic behavior of the urn proportidf),. In this section, all the urns are simu-
lated with the following choice of parameterd:= 0.2 andn = 0.8. Further studies
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4.4. Simulation study

based on changing the valuessadr n can be of great interest, but this is not the main
purpose of the paper.

Initially, we focus on supporting the convergence resutivalin Theoreni 4.2]12. The
reinforcement distributiongr and .,y are chosen to be Gaussian, with means set to
mpg = 10 andmy, = 5 respectively. The variances are assumed to be equal andifixed
0% = o3, = 1. Theorenii4.Z]2 shows that, when; > my,, the quantitya(n— Z,,)my,
converges in distribution to a random variabiewhose probability law is. Through
some simulations, we compute the empirical distribution(@f— Z,,)my for n = 102
andn = 10*. The corresponding histograms are presented in Figure 4.1.

In propositior  4.2.]1 it was proved that the probability measr is the unique invari-
ant distribution of the proces¥,,).cn. This meansr is the unique solution of the
functional equation

/RKn(x, dy)m(dz) = 7(dy) (4.32)

wherek, is the transition kernel of the process defined in[4.5). Taking the discrete
version of [4.3R) we compute the density of the measyrehich is superimposed on
both the histograms in Figute 4.1. The quite perfect agre¢imetween the empirical
distribution ofn(n — Z,)my and the discrete estimation afgave to the authors the
impetus to prove the convergence result described in Thedr2.2.

0.20
|
0.20
|

0.10
|
0.10
|

0.05
|
0.05
|

Lol

0.00
L

0.00
L

Figure4.1: Histograms ofi) obtained simulating the empirical distribution ofn — Z,,)my for large
n, with superimposed the densityiobbtained by numerically solving the discrete versiorfaB2)
Left panel:n = 102. Right paneln = 10*.

The simulation study also encouraged the authors to prowe darther theoretical
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

results. The first one we present is related to an easy expnefes a quantile of the
probability law of the limiting variable). In general, the asymptotic distribution of
the quantityn(n — Z,,) depends on the valugand on the reinforcements distributions
pr and . Nevertheless, the following proposition state that O vgagls the -
percentage point of the distributianregardless or the types of distributions involved.

Proposition 4.4.1.
mw

P>0) = F (4.33)

Proof. SinceP(Z, < n) = P(T,, > 0) we know thatP(Z, < n) is a convergent
sequence. In particular

lim P(Z,<n) = Py >0) = 7(]0,00))

n—oo

Therefore, by using the dominated convergence theoremTdkelitz Lemma and
Propositiori 2.4J4, we obtain

" P(Z
P >0) = lim P(Z,<n) = lim i P(Zi<m) _
n—r00 n—r00 n
" E[lyg,
lim Zzzl [{Zz<77}] — E| 1im

Yia Yz | _ g [mw] _ mw

mg mg

0

Another interesting result, that came out from the simatatnalysis, concerns the
correspondence between the asymptotic distributiafi,odnd a linear transformation
of the reinforcement laws. This property is explained inftiilowing proposition

Proposition 4.4.2. Let Z,, and Z be the urn proportions of two MRRU models with
reinforcements distribution§ug, uw) and (iig, i) respectively. Assume that there
existsc > 0 such that, for any;, b € R witha < b

{ Bl @0) = e o) .30
pw((a,b)) = pw((ca,cd))
ie. M, 2 ¢c.M,andN, 2 ¢- N, foranyn € N.
Then, for anyu, b € R with a < b, we have
7((a,0)) = 7((c-a,c-b)) (4.35)

i.e.zzgcw/u

Proof. Let us call the initial compositions of the two urn procesassr,, w,) and
(7o, wo). The proof will be based on the particular choige= ¢ - 7o andwy = ¢ - wy.
However, since from Proposition 4.2.1 the invariant disttion is independent of the
initial composition, the generality of the result still ksl
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4.4. Simulation study

For anyn > 1, by conditioning to the everft(Z,,, Z,,) = (c - T, Z,)}, we have that

A~ A~ ~ ~ ~ —

Tot1 T, + 77(1 —Xn+1)Nn+1 - (1 —U)Xn+11{fn>0}Mn+1 =
c-T, + n(1 _)?nJrl)NnJrl - (1 _n))?n+11{Tn>0}Mn+1 2

c- T, + (1 =Xp)e-Nopt — (1 =) X limsore- Mpyr = c-Thp
(4.36)

I

. R,
Zn_’_1 — —+1 —
Rn+1 + Wn+1

R + Xn+1Mn+1

~ — ~ ~

Ry + Wy + X1 My :r (1/—\Xn+1)Nn+1 (4.37)
c- Ry + X1 My

¢ Ry+c Wyt Xos1Mysr + (1= X)) Not

D Ry + Xpp10- My _ g
Ry + Wy + Xpp10- Myyy + (1 — Xpi1)e - Nooy e

For ease of notation, let us denotg, ~,) and Az 7 ) as the bivariate laws of the

couple of random variabl€y’,, Z,,) and(fn, ZJ respectively. Then, let us notice that

the equivalence of the initial compositions of the two pgses~7,, andZ,, implies that

the event{(TO, ZO) (c¢- Ty, Zoy)} has probability one. Hence, for any> 1, we have

I

IS}

4 (T Zn) /]R"—lx(o,l)n—l /\(f”jn)\(fnfljnfl) ’ /\(fnflﬁnfl)l(fnﬂfn&) o )\(’fh?l)l(’foﬁo) -
= / AT Zo)(Tn1,Zn-1) * McTno1,Zn-1)|(Tn2,Zn_2) " * * NcT1,21)|(cTo, Z0) =
Rn—1x(0,1)
= NcTn,Zn))

The thesis is proved since the equivalehge“gn) = N1y, 2, iImplies thatr = 7. [

Assumption[(4.34) implies also thair = ¢ - mr andmy = c - my. Then, from
TheoreniZ.2]2 we deduce the equivalence between the asyeriates of Z, and Z,,.
Proposition$ 4.4]11 an@_4.4.2 suggest that urn processkshatsame reinforcement
means ratio present also similar asymptotic behavior. liereason, we prefer to use
the ratio"* as parameter measuring the means’ distance, instead obtiz mean
dlfferencemR — My .

Here we present some simulations concerning the hypotteetigZ.20). In particular,
we focus on comparing the power of the tests defined in{4.28Y4.30). The empir-
ical power is computed using = 10* subjects, in correspondence of different values
of the ratio 2. The empirical power functions are reported in Fidure 4.8.sAown

in Flguremjz the MRRU design constructs a test more powtrén the one based on
the RRU design with the sample size, for any choice of thassement means. Al-
though this property makes the MRRU design very attracthe RRU model takes the
advantage that, with the same sample size, it allocateslggsct to the inferior treat-
ment. Hence, what is really interesting is studing the pdwections of the test$ (4.28)
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Chapter 4. Rate of convergence of urn process to asymptotic p roportion

1.0

Power
0.6

0.4

0.2

0.0

mR/mW

Figure4.2: The empirical power functions of te@.28) (line with crosses) and of te@.30) (line with
triangles) computed using = 10* subjects.

and [4.3D), in correspondence of a different valuesvgf, i.e. the number of sub-
jects assigned to the inferior treatment. We compute tharerajppower functions for
Ny = 20,50, 100, 500 and we report the graphics in Figlrel4.3.

From the analysis of the power functions in Figuréd 4.3, déffe considerations can be
done depending on the size of the raﬁ‘@ For high values of”— the power of the
tests [(4.2B) and (4.80) are very similar, When the ré%ﬁ—) is small the power of the
test based on MRRU design seems to be considerable greatanyfvalue ofVy, .

This chapter has been focused on the rate of convergence pfabes$7,, ),y in the
MRRU model. In Theoremn 4.2.2 we proved that the rate of cayemee of the process
(Zn)nen 1s 1/n. We recall that in[[24] it was proved that the rate of conveggeof
the RRU proces$Z, ), is equal tol /n?, with v = 1 — ’;—Vg < 1 (casemp > my)

and the quantity.”(1 — Z,,) converges almost surely to a positive random variable. In
Theoreni4.2]2 we shows that the sequenge- 7,,) (casempr > myy) also converges

in distribution to a real random variable, whose probaplatv is related to the unique
invariant distributionr of the proces$T,, ),y defined in[(4.4).
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Power
Power

Power
Power

mR/mwW mR/mW

Figure 4.3: The empirical power functions of te€E28) (line with crosses) and of te@.30) (line with
triangles) computed using = 10* subjects. Top left panelNy, = 20. Top right panel: Ny, = 50.
Bottom left panel Ny, = 100. Bottom right panel:Ny, = 500.
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CHAPTER 5

Randomly reinforced urn design with random
time-dependent parameters

In this chapter, we modify the urn design described in Chddt® construct a ran-
domization procedure in the framework of parametric maded® far, we used to
fix in advance two allocation proportiordsn € (0, 1), and then we adopted the urn
model to target eithed or n, depending on the greatest reinforcement mean:=
01 {mpemut T M me>my 3- Evenif the MRRU design has been constructed to improve
the statistical performance of the RRU design, the ethical tp allocate to the inferior
treatment less patients remained the main goal of the dekigre, we change the urn
model in order to achieve other goals more related to thesstatl performance of the
design, without forget about the ethical context. In paitic, we want to construct a
model that is able to target an asymptotic allocation propop € (0, 1), defined as
a generic function of some unknown parameters modelingdinéarcements distribu-
tions. This is in the spirit of classical response adaptaegps, for instancé [49]. This
new model has been realized by making the paramétarsd, depend on adaptive
estimators of those parameters.

5.1 The model

Let us consider two probability distributions; and .y, with support contained in
[a,b], where0) < a < b < 4+o0. We will interpretuz and uy as the laws of the
responses to treatmefitand W, respectively. Then, let us consider a situation with
1k andpuy, depend onl unknown real parameters. We will cdlle © (with © c R9)

the vector of these unknown parameters. Then, let us defmedwtinuous functions
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

fs:©—=(0,1)andf, : © — (0, 1) such that

0" < f5(0) < f(8) < (5.1)

for anyf € ©, and for some constani$ andn* such that) < 6* < n* < 1.
Let us denote a8, € © an estimator ob after thatn responses are collected. To ease
of notation, in what follows we will calb = f5(¢) andn = f,(8), 6, = fs5(¢,,) and

N = fn@n). For thosek > 0 such that the estimat@yg is not defined, we seY, and
n, equal to two arbitrary values such thiak 6, < n, < 1. Then, the sequencés, ),
and(n,),, are well defined for any > 0.

The allocation of the subjects to the treatments is realiheolgh the adoption of a
response adaptive design described in term of urn modelstfeture of the design is
similar to the MRRU design presented in Chapler 2. Visuaizeirn initially contain-
ing r balls of colorR andw, balls of coloriV. Set
Ry
Rozro, WOZU}O, D0:R0+W0, ZOI HO

The drawing process from this urn is modeled by a sequébige, of independent
uniform random variables o0, 1). At timen = 1, a ball is sampled from the urn;
its color is X = 1y, <z,, @a random variable with Bernoulliy,) distribution. Let)M;
andN; be two independent random variables with distribujigrand.y, , respectively;
assume thak';, M, andN; are independent. Next, if the sampled balkise. X; = 1,
it is returned in the urn together with/; balls of the same color i¥, < 7y, where
n € (0,1) is a suitable parameter, otherwise the urn composition doeshange; if
the sampled ball i8/ i.e. X; = 0, itis returned in the urn together witk; balls of the
same color ifZ, > 0y, wherej < n € (0,1) is a suitable parameter, otherwise the urn
composition does not change. So we can update the urn caimoepasithe following
way

Ry = Ry + X0 Mi1(z,<p0ys

Wi =Wy + (1 = X1)Ni1yz560)

Dy = Ry + Wy, Z1:%.
Now iterate this sampling scheme forever. Thus, at time 1, given the sigma-field
F, generated byX, ..., X,,, My,..., M, and Ny, ..., N, let X, ., = 1y, <z, be a
Bernoulli(Z,) random variable. Then, assume tidt,, and N, ., are two indepen-
dent random variables with distributi@n; and .y, respectively. Set

(5.2)

Rn+1 =R, + Xn+1Mn+11{Zn<nn}7
WnJrl - Wn + (1 — Xn+1)Nn+11{Zn>6n}7

Dyt = Rug1 + Wi, (5.3)
Rn+1
i1 = .
- Dn+1

Now, let us show an asymptotic result concerning the segquehthe total number of
balls in the urn D,,),,. This result will be used to derive the asymptotic behavidghe
urn proportion process.
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5.1. The model

Proposition 5.1.1. Let us consider the urn process described in Se€tidn 5.1n,The
(a) the sequenceD,,),, diverge to infinity almost surely

(b) there exists a constant independent ofi such that

(D%)Q] < C (5.4)

Proof. To prove (a), notice that for any € N

D, = Do + Z [MiXil{Zi71<m71} + Ni(l _Xi)l{Z¢71>5¢71}}
=1

> Do + a- Z [Xil{Zi71<77¢71} + (1 - Xi)l{Z¢71>5i71} ]

i=1

Let us define

D, )
* = . . 1 —n* .
P Dot b min{J*; n*} (5.5)

and note thaP(Z,, € (p*,1 — p*)) = 1. This is due to the following relation

P(inf{5n} > 5*) = P(sup{'nn} < 77*) = L
neN neN

that is implied by Assumption 5.1. and so, as a consequenassoimption[(5]1), we
have thatP(Z, € (p*,1 —p*)) = 1. Then, notice that

Xil{Zi—1<m‘—1} + (1_Xi)1{Z7:_1>6i_1} ~ Be(pi)

with p; > p* > 0 for any: > 1. Now, let us defin@” = (Y;); as a sequence of i.i.d.
Bernoulli random variable with parametgy. Then, we conclude that

P (Jim D, OO)—P<,}L%2E OO) L

Now, let us consider the thesis (b). Using the same argunusets to prove (a), we

have that
el Y
a? DQ + Wn

(i) | < | (mrims)

wherelV,, is a Binomial random variable with parameterandp*. So now we have to

prove that
n 2
(525) ] .

We want to use Theorem 2.1 6f [23], with = 1, p =2, Z;,, = Y; + Dy/n for i < n.
All the assumptions of the theorem are satisfied in our case.

E

limsup E
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

In fact, at first we havéZ, 2] < oo becausé(D, + Y1) %] < Dy? < oc.

Secondly, note tha¥, ,, are identically distributed for all < n, sinceY; are i.i.d.
Bernoulli of parametep*.

Finally, Z, converges in distribution, sincg, = W,,/n + Dy “% p* + D,.

Then, we can apply the theorem, obtaining t[ﬁﬁ is uniformly integrable. As a
consequence,

limsup E

n 2 . >—2
(m) ] = hmsgp E[Z,?] < o

0

Notice that Proposition 5.1.1 is based on Assumiioh 5.1 jtwoes not require any
assumption on the distribution of the sequefgg,, and(d,,).,.

5.2 AImost sure Convergence of the urn process

In this section we get the almost sure convergence of thenapoptionZ, concerning
the urn model described in Sectionl5.1. In particular, indreen[5.2.11 we show that
if the sequences$n,),, and (4,,),, converge almost surely to some constapind J,
respectively, then the urn process,),, converges almost surely to one of those con-
stants, depending on the order between the reinforcemegmsneNotice that, in our
context,n andd are not generic constants, but they play a specific role irattagtive
design. In facty andoé indicate the functiong, (-) and f;(-) evaluated in the unknown
parameters modeling the reinforcement distributions. edwer, £, (¢) and f5(0) rep-
resent the desired allocations if the superior treatmeRtas W, respectively. Then,
Theoreni 5.2]1 states that the probability of assignmettao$tibjects to the treatments,
that is modeled by the urn proportidf),, converges almost surely to the desired allo-
cation whether the superior treatmenfi®or V.

TheorenT5.2]1 is based on the assumption (5.6), concerheglmost sure conver-
gence of the adaptive sequencﬁg@n) and j};@n) to the targetf,(¢) and f5(¢). This
condition can be satisfied using various estimatorg ahd with different choices of
the functionsf, (-) and f;(-).

To see that, notice that the assumptionl(5.1) implies that

P ( inf {0,} > 5*) =P <sup{77n} < 77*) = L
neN neN
Then, takingy* as defined in[(5]5), we have thBt 7, € (p*,1 — p*)) = 1.
As a consequence, both the sequenég&:) and Ny, (n) diverges as goes to infinity.
In particular, we can show that

N N
p" < liminfM < limsupM < 1—p" as.
non no N
N, N
p* < liminf w(n) < limsup w(n) < 1-p" as.
noon n n
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5.2. Almost sure Convergence of the urn process

Then, if@n is the maximum likelihood estimator éf and the functiong,, (-) and f;(-)
are continuous, we have that % 1 andé, % § and so the condition (3.6) is verified.

Theorem 5.2.1. Assume

M X n If mg > my,
(5.6)
571 (B). o if mpr < my.

Then
Zn ‘1;9)- nl{mR>mW} + 51{mR<mw} (57)

a.s

Proof. Let us assume thaty < my andd, — §. The proof of the opposite case
is completely analogous. Let Assumptidn (5.1) holds. Thiee,goal is to prove that
Zn 456,

The thesis is get by proving the following

(@ P (liminf, ,Z,>¢d) =1

(b) P(liminf, ., Z, <0) =1

(© P(3lim, 2, =1

In this proof we will use the following notation: for anye (0, 1), we define the times

sup{ k>0 : 6 <p} F{k>0:0.<p}#0;
T, =
0 otherwise

fsup{k=0 0 >p} i {k>0: 6 >pt#;
* o otherwise

representing the last time the procésg),, is below or above, respectively.

Part (a):
Let us assume there exists< ¢ such that

n—oo

P(hm inf 7, < 5’) > >0
Then,3n. € N such that
P(TM >n€> < £ (5.8)

Notice that the existence af is guaranteed by assumptidn (5.6), since it implies that
P(7y.5 < 00) = 1. Then, we obtain

e < P(lim inf Z, <¢')
n—oo

_p ({nmniggo Zo < 8} (Virwgs > ne}) Ty ({limnigcfx) Zy < 8} Virws < ng})
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

Let us callP, and P, the two terms of this sum.
At first, consider the tern®; and by using[(5J8) we get that

€
Pl §P<Tu>ne> < s
2

- 2
Then, consider the term,. Let us decomposeg, in two terms
P, = P({lim inf Z, <&} [rowe <n}()3{Z >w}forinfinite indicesn
2 — oo n % > Tlbe n 2

) o
+ P <{limni££o Z, < &'} ﬂ{r% <n}() {{Zn > T+} for finite indices n})

Let us callD; and D, the events within the two probabilities in the above expogss
Consider the second terf(D,). On the sef {Z,, > 212} for finite indicesn } > D,

the process’, is asymptotically less thaﬁ;—‘s. Moreover, on the seltrs s < n.} D
2

Dy we haved,, > % foranyn > n.. Then,1;, <5, .} 230 and asymptotically no
white balls are replaced in the urn. As a consequence, thegsyic behavior of the
process Z,), is the same of a RRU model withz > my = 0, that converges to
one as proved ir_[45]. This is incompatible with the §éin inf,, ., Z, < '} D Ds.
HenceP(D,) = 0.

Consider now the first tern#?(D;). Since from Proposition 5.1.1 we have that the
sequencéD,, ), diverges almost surely, then on the set

{{z, > %} for infinite indicesn } > D; there are infinite indices such that

!
Zk>5_;6

o+¢’
Dy > b5_5/ .

For these indices we have thatP(Z,,.; < §’') = 0. Moreover, on the seftry s <

n.} O D; we have that, > % for anyn > n.. Then, whenZ, < % we have
that1l;z, -5, .3 = 0 and no white balls are added in the urn. Théxz, < ') =0
for anyn > n.. This is incompatible with the sétim inf,, ., Z, < ¢’} D D;. Hence
Putting all together we have

€ S P1+P2 S 6/2+P(D1)+P(D2) = 6/2

that is contradiction.
Then, we can conclude that the evéliin inf,, ., Z,, > §} occurs with probability one.

Part (b).
Let us assume there exists> § such that
P(lim inf 7, > 5’) > ¢ > 0.

n—o0

Then,3n. € N such that

P(t@ > n) < (5.9)

[NNNe
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5.2. Almost sure Convergence of the urn process

Notice that the existence af is guaranteed by assumptidn (5.6), since it implies that
P(ts.s < oo) = 1. Then, we obtain
2

e < P(lim inf Z, >¢')

n—oo

— P ({nmniggo Zo> 0} (Vitss > ng}) Ty ({nmniggo Zo> O Wtuss < ng})
= P(D3) + P(Dy)

Let us callD, and D, the events within the two probabilities in the above expoess
At first, consider the tern®(D3) and by using[{5]9) we get that

P(Dy) < P(tu >n6> < %

Then, consider the ter®(D,). On the sefliminf, .., Z, > ¢'} D Dy, the process
Z, is asymptotically above thar. Moreover, on the séftts.s < n.} D D4, we have
2

O < % foranyn > n.. Then,1yz <5, .} %3 1 and so the asymptotic behavior of the
procesy Z,),, is the same of a RRU model withy < my,, that converges to zero as
proved in [45]. This is incompatible with the sgim inf,, .., Z, > ¢’} D D,. Hence
P(D4) =0.

Summarizing, we have that

e < P(D3)+ P(Dy) < €/2

Then, we can conclude that the evéhiin inf,, ., Z,, > 0} occurs with probability one.

Part (c).

Putting together parts (a) and (b), we have shown th@itm inf, ... Z, = J§) = 1.
Therefore, if the process,),, converges almost surely, then its limit has to be equal
toJ.

Letd’, v, dandu (6 < ¢’ < v < d < u) be four arbitrary points.

Let (7;); and(¢;); be two sequences of stopping times as definedin (2.3), irr tode
apply Propositiof 2.213.

Notice that ifinf,, P(7, < co) > 0, thenZ,, does not converge almost surely. We will
show that, assuminigf,, P(7,, < oo) > 0, we meet a contradiction by proving thgt
converges almost surely.

Now, let us denote withy: the last time the process is abovey, i.e.

, sup{n >1:6, >0} if{n>1:6,>0}#0;
" otherwise

Then, fixe € (0, 5) and taken. € N such that
P(ty >n.) < e-inf P(7, < c0).

Let us fix an integef > n. satisfying

, max{l — d; v}
>l u(1l— b
CT NS Do)
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

so thatr; > n. a.s. and, by Lemnia2.2.2, we have that

D, > pmax{l =ik o
d—r~

To ease of notation, denote @)neN the renewed process gm; < oo} (R., W ) =
(Royins Wrsn)s Do = Ry + Wy = Dr i1y Zo = Ry/Dy = Zriin, Uy = Uy, 1. Note
thatZ,, € (v,d).

We denote byP;(-) = P(+|m; < o), and therefore, if

+00 otherwise

t_{inf{n:2n>u} if {n:2,>u}+#0:

then we have

P(141 < oo|; < o00) < Pi(t; < o0) = Pyt < 00) (5.10)

Define the sequencés;, 77),, of stopping times which indicate tl*(é?n)n-crosses of
the interval(¢’, v): lettj = 0 and define for every > 1 two stopping times

inf{n >t ,:Z, <&} if{n>ti,:2, <5} £
+00 otherwise

. _ . (5.11)
o inf{n >7: 7, >~} if{n>71:2,>~}#0;
S e otherwise
Notice that,
R <~
<7 R
g T Few st eEh
(R+W) > .
d—r
and hence, since the reinforcements are boundédg have
Z\t;—l S e N
~ b(1 — ==  Zp <d (5.12)
b, =d t
J d — y

Forany;j > 0, we can define a proceé&? ),.cy to set a new urn, coupled WItl, ) nen,
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5.2. Almost sure Convergence of the urn process

with the following features:

~i = u+td

S 2 —u—d

quz+1 = 1[0723;}(Ut§+n+1)7

My = My nir + (mw — mpg)
NT]H—l = Nt;+n+1

R£+1 = Rgz + Xi+1M£+1,

W]+1 =W, + (1 - quz+1)Nr]z+1>
Dy =R+ Wi,

Ry

nJ
DnJrl

7i o _
Zn+1 -

Then,(Zj)jeN Is a sequence of urn processes, all starting \é?ﬁh: %l and having
nonnegative reinforcements w~ith the same megp. Let us notice that at time, we
have defined only the processéssuch that? < n.

We will prove by induction that, for any € N,
Zi > Z]*.+n, V[N/TJL < Wt;wrm R > Et;—f—n (5.13)
foranyn < T — andn > tg.

In other words, we will show that, after the timg, each proces@g)neN is always
above the original proces{gt;m)ne.\h as long asZ remains abové’ (i.e. before the

time rj). The conditionn > t5 ensures that, as long &sremains abové’, both the
processes’ andZ are above the process. By construction we have that

>d>Zpx, W] =We

which immediately implies?), > }A%t]*_. Assume[(5.13) by induction hypothesis. Since,
foranyn < 77, — t}, we have thatX;,, = 1,3, > 1[072&;“1] = Xiz4nt1 by
construction, we get

~ ~ o — Y =i
Rt;—f—n—l—l - Rt;—i—n - Xt;—l—n—l—lMt;-i-n-‘rl < Xn+1M +1 — Rn+1 - R

n n?

VVt;—i—n—i—l - Wt;-ﬁ-n = (1 - Xt;-l-n-l-l)Nt;-i-n-i-l > (1 - X’}]L+1)NTJL+1 = WTJLJrl - W.

n

that means
Zl > Zt;+n+1, Wy, < Wt;+n+1> R, > Rt]*-+n+1

foranyn < T — andn > tg.
Note that, for any; > 0, the process@g);ﬂjol_tj is an urn process reinforced with
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

distributions with same means and initial composit@cﬁg;, Wt;). Let us definel; as

the stopping time fof Z,,),, to exit from (d, ) beforer;,, —t7,i.e.

j)
inf{n <7/, —t;: Zl <dorZl > u}
T; = if {n <7l —t:Z) <dorZi >u} # 0
+ o0 otherwise
Then, Whenevearj > ts, we have that
{2n > u} C sup Zngt’f > U, .
jiti<n J
So, we can obtain
P(1i41 < ool <o0) < Pt <o0) = Pi(t < 00)

- B <{t < oo} (ts < n6}> + P <{t < oo} (it > n€}>
Pi ({G {TJ < OO}} ﬂ{tg/ S ’fbe}) + Pz (t(;/ > ne)

< iﬂ({Tj < oo} ity gng}) + e

IN

Now, let us consider a single term of the series. Then, assecuence of Lemnia2.2.5,
if we seth = “>¢ we get

P <{T] < oo} ﬂ{t5/ < n€}> < P ({sup |Z;+n — Z;
b 14 2
< S
= D (7+3%)
b o(6(1—")\ /4 2
< (X v)) (_2 N _)
Dt6 7(1 - 5) h h
Thus define the functiog : [0, c0) x [0, 00) — [0, 1] in the following way
b

(i%—g) 71_5 + €
r+y\h2 h)\1-=§/y ’
and note that

g(g/hQ(ll—_f?jv) ’4b/h(11—_5(/57)) - %H <!

andg is monotone inc 4+ y. Then, we can apply Propositibn 2.2.3 to get the thedis.

Remark 5.2.2. Notice that in the proof of Theorem 5.2.1 we have never usedsh
sumption(®. ). Then, provided that conditiofs.8) holds, the assumptiof.]) is not
necessary to get the almost sure convergence of the urnggQcg),,.

> h} ({ts < ne})

g(w,y) =
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5.3. The Convergence in Probability of the urn process

5.3 The Convergence in Probability of the urn process

Sometimes the almost sure convergence of the adaptivemgfg@n) and f(;@n) to

the targetf(;@ and f(;@ required in the assumptiop_(5.6) can be hard to prove or not
even true. In these situations, we may want to have lessatastrconditions on the se-

quencefn@n) andf(;@n), like assuming that the convergence holds only in prokgbili
Under these conditions, in this section we show the converen probability of the
urn proportionZ, concerning the urn model described in Section 5.1. In @4, in
Theoreni5.3]3 we show that if the sequen@gs,, and(4,,),, converge in probability
to some constantgandd, respectively, then the urn procéess, ),, converges in proba-

bility to one of those constants, depending on the order éetvweinforcement means.

To prove Theorerh 5.3.3 we need some auxiliar results gatherevo lemmas. The
first one explicit a well-known consequence of the supantarior limit of any process

Lemmab5.3.1. Let(Y,,), be areal-value process. Then, for ahg R

P ( {v.>13 ) {limsqun < z}) — 0 (5.14)

n—oo

Proof. If P(limsup, Y, <) = 0, thenlemm@a5.3]1 is trivially true. Otherwise, we get
the thesis once we show that

P(Yn>l| limsqun<l) — 0.
n— oo

Let us introduce the random time representing the last time the procégss above

[, 1.e.

sup{ k>0 |Ye>1} if{k>0|Ye>1}#0;
T:
—1 otherwise

From the definition of superior limit, we have that the evént= oo} implies that
{limsup,, .. Y, > [}. As a consequence, we have that

P(T<OO| limsqun<l) = 1. (5.15)

n—oo

Then, using[(5.15) we get the thesis

P(Yn>l| limsqun<l) = P(T>n| limsqun<l) — 0.

n—oo n—00

0

Here, we present another lemma that will be used in the prodheoren5.3.3, con-
cerning the conditional expectation of the increments efitin process.

Lemma 5.3.2. Let us consider the urn process described in Sedfioh 5.1.n,Tihe
following relation holds

[ +1 | ] D, + Mn+11{Zn<77n} D, + Nn+11{Zn>6n}

\F.| (5.16)
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

Proof. The proof of Lemm&5.3]2 has been computed following a simaitgument
applied in the proof of Theorem 2 of [45]. The notation usef@hj is the same adopted
in this paper. The presence of the indicator functibps -5, and1z, .., is the real
difference from the proofin [45]. Nevertheless, since thgyF,,-measurable, the same
structure of the proof can be proposed here.

Because of the relation

Ry + M1z 0. R,
HAemi) (1 Xp)
D, + Mn+11{Zn<77n} D, + Nn+11{Zn>6n}

and sinceX,, ,; is conditionally toF,, independent of\/,,,; andN,,, 1, we can get that

R, +M,4,1 R,
BlZul 7] = |2, e S
n 1+ Mpt1 {Zn<nn} n 1 n+11{Zn>6n}

D, + Mn+11{Zn<nn} D, + Nn+11{Zn>(5n}

Analogously, we have that

Zn+1 =X

+(1—-2,) |}"n]

W, + Nn+11{Z >0n} R, ) :|
El-Z,1|F.) = |(1—- 2, — Ful -
[ +1| ] |:( ) (Dn + Nn+11{Zn>5n} Dn + Mn+11{Zn<nn} |
Therefore,
E[ZTL+1 - Zn|fn] = E[(l - Zn)ZnJrl - Zn(l - Zn+1)|fn]
— 71— Z,)E { il <) w
D, + Mn+11{Zn<nn} D, + Nn+11{Zn>5n}
_Wn + Nn+11{Zn>5n} . Rn |f :|
D, + Nn+11{Zn>6n} D, + Mn+11{Zn<T]n} "
M1 Nyl
_2.0- 27 { lziany +114z,>0.) |-Fn:|
D, + Mn+11{Zn<nn} D, + Nn—l—l]-{Zn > 571}

0

Theoreni5.313 is based on the assumpfion {5.17), concetimngpnvergence in prob-
ability of the adaptive sequenc¢,$@n) andf(;@n) to the targetf, (¢) and f5(@). This
condition can be satisfied using various estimatorg8 ahd with different choices of
the functionsf, (-) and f;(-).

As explained for the assumption (b.6) in Sedfioh5.2, undesuinptio 5J1 both the
sequenced’r(n) and Ny, (n) diverges as goes to infinity.

Then, if@n is any consistent estimator 6f and the functiong, (-) and f5(-) are con-
tinuous, we have that, = n andé,, = ¢§ and so conditior(5.17) is verified.

Theorem 5.3.3. Assume
nn&n if mgr > my,
(5.17)
6n B0 if mp < my.

Then
Zn ﬁ) 77]-{mR>mW} + 61{mR<mW} (518)
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5.3. The Convergence in Probability of the urn process

Proof. Let us assume thatr < my andd, = §. Then, the goal to prove is that

Z, 5 6. The proof of the caserz > myy is analogous. To prov&, = §, we first
show thate > 0, P(Z, — § > ¢) — 0. Then, by using the same argument, we can
easily show thatye > 0, P(Z,, — § < —e) — 0 and so we get the thesis.

Let us fix an arbitrary smal > 0 and defind = § 4+ ¢. Our goal is to prove that

lim P(Z,>1) = 0.

n—oo

To do that, we fix another constaite (9, ) and we define the following events

Agyp = {lim sup Z,, > [}

n—ro0
e o
Appy = {lim nlilgo Zn <0}

We use these events to decompose the probability of the aoegs”,, to exceed. So
doing, we obtain

P(Z,>1) P({Z,>1} N Agp N Ainy)

<
+ P({Z,>1} n AS)

sup

+ P({Z,>1} n Agf)

Let us denote withP, ,,, P, Ps, the three probabilities in the previous expression.
Then, we get the thesis once we show tRaft, P, ,, and P ,, tend to zero as goes to
infinity.

At first, let us consider the terth, ,,. By using lemma5.3]1, we immediately get that

Py, = P({Z,>1} n AS,) = P({Z,>1} n {limsup Z, <1}) —, 0.

sup
n—00

Then, let us consider the terf ,,:

Py, = P({Z,>1} n Af,) < P(AS,,) = P(lim inf Z, > ')

n—0o0

In order to prove thaP(liminf, .., Z, > ¢§) = 0, we are going to show that if we
assumeP(lim inf,, ., Z, > 0’) > € > 0, then we meet to a contradiction.

At first, let us introduce the random time representing the last time the processis
belowd’, i.e.

sup{ k>0 Zy <&} if{k>0|2Z,<d}+#0;
7':
0 otherwise

Then, let us define two quantitiég andk,, defined as follows
. . . /
ko = 1nf{k€N|P(T<k|h£ri>1£on>5) >1/2} (5.19)
ki == inf{keN|Vi>k P(6;<d)>1—¢/4} (5.20)
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

Notice that bothk, andk; are not random times. Moreovéy, is finite becausé’ (7 <
ool liminf, . Z, > §') = 1; the proof is an analogous o¢f (5]15) for the inferior limit.
Furthermorek; is finite since from the assumptidn (5117) we have gt < ¢') — 1.
The role ofk, andk; will be clear more ahead in the proof. Then, let us éa}l the
maximum between these two timés; = max{ko; k1} and fix an arbitraryyy > k.
Now, let us define the stopping tinig,, which indicates the first time aftex, that the
urn proportionz,, is belowd’

no

mf{k>ng| Zp<d} if{k>ngl|Z. <0} #0;
I S otherwise

Finally, for anyn > ny, we can write

min{t,,,n}

1 <ElZuwinftngmy = Zne) = E| Y (Zi—Zina)

i=ng+1

=K Z (Z; — Z¢_1)1{i§tn0} ]

L i=no+1

—E Z E[Zi—Zi_l/E—l]l{iStno}]

L i=no+1

Here, we apply lemmab.3.2 to get the relation

Mil{Zi71<m'71} o Nil{Zz‘71>5¢71}
i1+ Milyz,  <piyy Dioi+ Niliz, 561y

E[Z; — Zi-1|Fi-1]) = E [D |-F:i—1:|

So doing, we obtain

- n Mi]-{Z-_1<T]'_1} N’il{Z'_1>6-_1} :|

=E Zia(1—=2;1)E Gt _ i-1>0i Fioq| Lgi<,
L iZHZOJrl 1( 1) _Difl + Mi]-{Zi—1<T]i—1} Difl + N’il{Zi—1>6i—l} ‘ ' {itno}
- n i MZ Nil{Z-_1>6-_1}

<E Zi, 1— ZZ', E _ i i - 1 .

- ‘ ZJrl ! Y Diy + M; D;_1 + N; [ Fit| Listng)
L 2=nN0 L

[ a b NZ]— i—1>0i—1
<E Z Zia(1=Z;i1)E Dy - D{-Zzl —i>—619 }|-7:il} 1{iStn0} ]
L i=no+1 - "

Let us note a simple thing: for any< ¢, the urn proportior?; is aboves’ and then
{Z; > 6;} D {6; < d¢'}. For this reason, we write

ron MZ NZ]_ <o
<e| & za0-ze [t - 2eesin i |

L i=no+1

- E Z Zifl(l - Zifl)E

L i=no+1

Mib + Dy (M — Nilgs y<oy) | Fic1| 1<
D; 1(D;—1+ ) B
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SinceE[M;|F;_1] = E[M;] = mr and E[N;|F;_1] = E[N;] = my for anyi € N, we
have that

ZZ 1(1 Zz 1)
B Z szl(Dz 1+ b) R {i<tng}
L i=no+1
Zia(1—Z;4)
i Zﬂ D; (D1 +b) Dica(mp —mwlis, i<5y) * Liistng)
L t=ngo
By using
mr —mwly, <oy = (mr—mw)lp, <oy + mrl >y

we decompose the second term, obtaining

n

Zi—l(]- - Zi—l)
=E| Y R
Di (D +b) R Hist)

L i=no+1

n

Zl'_l(l — Zi—l)
+E Z Dz 1+b : (mR_mW)]-{(Si_1<6/} . 1{i§tn0}

L i=no+1

n

Zi1(1 = Zi1)
i .ZJrl Di 1 +b s mels ey 0 sty
L =10

Let us denote witt4, ,,, A, ,,, Az, the three quantities in the previous expression.

Let us consider!, ,,. From Proposition 5.111 we get the boundedness of the sequen
E[(n/D,)?], obtaining

n—1 n—1
mRb 1 mRb 1 1
o< "SR 5] < P e {2 ]} Ew <@

i=ng i=ng

where(; is a positive constant.
Now, let us consider the quantitis, ,,. Let us recall the quantity* € (0, 1) introduced
in (&3), such thaP(Z, € (p*,1 — p*)) = 1. Then, we can write that

= Zi(1—Z;_
A2,n - (mR - mW) Z E [ b( L+ b 1) ' 1{5i—1<5’} ' 1{i§tn0}}
i=no+1 =

n

< (mp —mw) -p"(1=p")- Y E{D 1

Db 15, <oy - 1{z’§tn0}]
i=ng+1

n—1
* * 1
< (mr—mw)-p (1—p)~ZE[D+b - Lisi<ory 1{%00}]

i=ng

where the last passage is due{tq, = oo} C {i < t,,} for anyi > ny. Moreover,
since both the reinforcement distribution have a suppantained infa, b|, we have
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thatD,, < Dy 4+ n - ba.s.; then,

n—1
* * 1
< (mp—mw)-p(1=p)- Y Dot (i - 10 E[1<oy - Ltng=oo} ]
i=ng

n—1

< (mpg =) - p(1=p7) Dy + n0+1b ZZP<{5i<5/}ﬂ{tn°:OO})

o

Moreover, from definition[(5.19) an@ (5.120) and for any n,, we get that

P({tnozoo}ﬂ{@-d'}) -

Plt, =) + P(6 < &) = P {tn, =00} ({8 <8} ) >

P(ty, =o0) + P(6; <d) — 1 >

P<tn0:oo| limiann>5’> -P(limiann>5’> L PG <) — 1 =

n—oo n—oo

P<T<n0| limiann>(5') 'P<limiann>(5'> + P;<d) —1 >

n—oo n—oo

1/2-e + 1—¢/4 — 1 = ¢/4

Then, we compute that

1
% € 1
A = (mg = maw) - p(1=p7) - D0+(n0+1 b 4 Z?
. . kv € ~—1
< (mg—mw) -p"(1—p°)- Dot (b + 1006 1 Z;
n—1
1
:_02‘ -
i
i=ng

where(s is a positive constant.
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5.3. The Convergence in Probability of the urn process

Now, let us consider the quantitys ,,.

Zi (1 —Z;_
Az =mg Z E{ 1(. ) i<y - Lictny)

i=ng+1 DZ 1+b
Z(1-2)
<mR ZE|: DZ—}—b 1{5<5/}
1=ng
n—1
1 1
< — E /
ey lDﬁb ““”}
i=ng
n—1
1 Lis <o
< mn Z-ZE{ {656}}

i=ng

= Cs(ng) - Z %

whereCs(ny) is a positive sequence, with, > k,,;. By using the Cauchy-Schwartz
L6y /3
E P(6,>6) -

inequality we write
071
1 2
0
D,/n (Dn/n) ] -

where the converge to zero is becatise’s ¢ from assumption((5.17) ariﬂ[(Din)Q] is
uniformly bounded from Propositidn 5.1.1. Then, the segeér(n) tends to zero as
n goes to infinity.

Finally, putting all together and choosing ap large enough such that;(n,) < Cs,
we obtain

1 < A+ Ao+ Az, < C1L A+ (C(ng) CQZ — —00

i=ng

Therefore, since we have met a contradictierl (< —oo), we conclude thafs,, =
P(liminf,, ., Z, > §) = 0.

At this point, it just remains to prove that the first te#n,, tends to zero as goes to
infinity. To do that, we fix an arbitrary smadl> 0, and we will prove that asymptoti-
cally P, ,, < e.

First, we introduce two constantsu € (0,1) such thatt’ < d < u < [. We are
interested in the crossing in both directions of a sttip.). In particular, lett_; = —1
and define for every € Z, two stopping times

7 =inf{n > t;_;: Z, <d}
tj = mf{n > Tjl Ly > U}
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

Notice that, on the set,,, N A,y = {limsup,, Z, > {} N {liminf, Z,, < '}, both
the sequenceg,,),, and(r,), diverge as: goes to infinity. As a consequence, there is
no need to define the timesand¢; when the sets are empty.

Let us consider any integgs € N. A specific value forj, will be conveniently chosen
more ahead.

Then, for anyn > j,, we have

Pia =P ({Z0> 1 (\{tio > n} () Awp () Ain )
+ P ({Z0> 1 (O {tin <0} () Asp () Ainy )

Because of
P(tjo <OO‘Asup ﬂ Amf) =1

the first term of the sum tends to zeroragoes to infinity for anyj, € N. Then, we
will consider only the second term.
At first, let us introduce a new object: for any fixed= N we can define an urn process

(Z*),, coupled with the original process,),. The notation of this new urn model is
the same of the original procesﬂ and W’“ are the number of red and white balls,
respectlverZ,’j is the urn proportion andeﬁ the total number of balls in the urﬂf,jj
and)?k are the random variables modeling the sampling processﬁ?j.@ U(0,1)and
XE=1gem 4~ B(ZE); M* and N* are the possible reinforcements of red and

white balls, respectively. The proces$€$ and(Z,),, are coupled in the sense that,
foranyn > 1,U* = Un+k, MF = M, ., andN* Nn+k almost surely. Moreover, the

initial composition is(R%, Wé‘?) = (Ry, Wy). The urn scheme of the new urn process
is, foranyn > 1,

éi Rk -1 + XanJrku

WE=wk, +1- Xﬁ)Nan{an_de'}’
DF = RF + W,

zr

Notice that here the indicator function represents a candan the proces§),,),,, and
not a condition on the urn proportidff as it was for the original procesé Moreover,
the sequenc§),, ),, depends on variables governing the original 4r(not 2):

571 — f(g( X1M1 + (1 - Xl)Nl g eee XnMn + (1 — Xn)Nn )

We have introduced the new urn mo@j because we have the following relation
N{z>0}) {Z’; > Zn+k}
1=k

holding for allk < n.
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5.3. The Convergence in Probability of the urn process

Then, we have that
P({Zn>l} Mt <0} () A Amf) <
PO (i, =1 MV <} (1<) () )

J=Jjo
n

S° P ({7, > 0 (<0} () Auw () Aus )

J=Jjo

where we remind that for any process’ ), it holds thatD = Dy, .

Now consider a single term of the sum, fixing an integet {jo,...,n}. Naturally

t; > j and, because on the sgt < n}, we also have that < n. Moreover, notice
that the increments of the urn proporti(fhbecomes smaller as the total number of
balls in the urnD increases. Then, the more balls are contained in the urrotiger

it takes for the urn proportio[ita‘ to goes fromu to [. Roughly speaking, whepis
large, many balls are in the urn, and then the e\{éit;tj > [}, with n closed tot;,
has probability null to occur. Let us now formalize this idé&t us denote withyf ()

the minimum number of increments that are necessafstto go fromZ,’ to/, i.e.

1) = min{k20|P<Zij>l>>0}

After some simple calculus, we can compyitg) as a function of the minimum value
admissible ofD{/

fG) = max{ [minéDtle:? — 1] ;0}

because)j = D;,. Since from Lemma 2.1 of [4] we know that

Dy, > (Z(%—d;) Dy, > .. > (W)jpm, a.s. (5.21)

(1—-u —u)

we can expresg(;) as follows

L u(l—d)\’ Dy 1—u '
f(j)_max{[(du—u)) b 1—5_1]70}'
Then, ifn — j < f(j)

P ({2, > 1 (VL <0} () A () Aing ) = 0,

so, from now on, supposgesuch that. — j > f(j). Notice that, for any fixedg > jo,
this condition is asymptotically satisfied.
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Chapter 5. Randomly reinforced urn design with random time- dependent parameters

Then, we have

P ({270, > 1 (Mt <) () Ao () Auy )
_ ip({Z@i > () A [V Aing |15 =) Pt = 1)
< sup P({’valﬂ > l}ﬂAsupﬂAmf | t; :i)

j<i<n
= sup P({Zi_i>l} Asy Amf|t':i>
j<i<n—f(j) ﬂ ' ﬂ !
We remind that the last expression is well defined since weamsidering an integer
j such that, — f(j) > j.
Now, notice that each process can be seen as a Generalized Polya Urn, with the

expected value of reinforcement of white balls greater tharexpected value of rein-
forcement of white balls. Then we can use a result friom [[7 sidgjgesting that

P(Z, > 1) < Cy exp(—C2%9)

where Z is the urn proportion of a Generalized Polya Urn afidand C, are two
positive constants depending on the expectation of thlimbmposition. Using this
result in our context, we have

sup P {Zﬁ_z > H ) Asy App | t; =1
J<i<n—f(j) ( ﬂ pﬂ ’ )
< sup Ci(i, ) - exp (—Cali, j) - 2050 )
j<i<n—f(j)
whereC (i, j) and Cs(i, ) igdicate thatC; and (', depend on the expectation of the

initial conditions of the urnz{ with ¢; = 4, that is the urn compositiof;, ;) with
St a.s. 1 =t a.s. 1

t; = i. Since we know thafy = 2z, “*5"; wandD/ = D, “*5" ; oo, thenCi (i, ;)

andCy(i, j) are converging sequenceasicreases. As a consequence, we can say that

there existg; € N and two positive constanty andC, such that”; (i, j) < C; and

Cy(i, j) > Cy foranyi, j > ji.

Hence, we can write

sup Cl(l,j) - exp ( _Cz(i,j) 5 210g(n7i) )
J<i<n—f(j)

< sup Ci-exp ( —Cy - Qlos(n—) )
J<i<n—f(j)

<C; - exp ( —C,y - 2Ws(f0)) )

Notice that since (j) grows exponentially, there existgasuch thatf(j) > j for any
j > 72. Then, by choosing, > j,, we have

C; - exp ( —Cy - 210g(f(j)) ) < (- exp ( —Cs - 2log(j) )

foranyj > jo.
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5.3. The Convergence in Probability of the urn process

Now, coming back to the series. Putting all together, we logt t

§ (12020 (10200 1w (1 )

J=Jjo

<Y Crexp (—Co 259 ) 154y

J=Jjo

< ch - exp ( —Cy - 2080) )

J=Jjo

for anyj, > max{j; j2}. Notice that in the previous expression we have a convergent
series. Then, by choosing large enough, we can force this series to be smaller than
any arbitrarye > 0. This means that we have proved that the tétm tends to zero as

n goes to infinity, and then also that

lim P(Z,>d+¢ =0, Ve>0
n— o0

The proof of
lim P(Z,<d—¢) =0, Ve>0

n—oo
is completely analogous.
This conclude the proof that, 2 6. O

In this chapter we have presented a randomly reinforced waehable to target an
asymptotic allocation that is a function of unknown parasretnodeling the response
distributionsp = f(#). This allows the experimenter to choose functions that meso
sense increase the statistical performances of the dégigminimizing a loss func-
tion, maximizing the power, ecc.. (collective ethics). Mover, the design aims also
at reducing the proportion of subjects assigned to the imféreatment (individual
ethics). This trade-off is faced in the design through tlesence of two possible target
allocation functionsfs(-) andf, (-). In particular,f;(-) represents the desired allocation
if the superior treatment 8/, while f, () represents the desired allocation if the supe-
rior treatment isRk.

First-order asymptotic results have been obtained andrepamted. In particular, we
are able to show, under very mild conditions, the convergeriche urn proportion to
the target allocation, function of the unknown paramet&rss convergence can be al-
most sure or in probability according to the choice of thenestors and the allocation
functions.
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CHAPTER 6

Conclusions and ongoing work

This thesis analyzes statistical properties of urn modmidie experimental design
in a clinical trail context. In the designs we have consideubjects are sequen-
tially assigned to two treatments under study (sagnd 1) according to a response-
adaptive randomized procedure, in which the probabilitgssignment depends on the
responses to the treatments observed in the previoustasdid patients. We deal with
urn models since they are classical procedures to randdhezallocations and to de-
scribe the dependence among the probability of assignni¢iné mext subject and the
responses previously collected. We focus on urn schemestleach step reinforce
the urn with a random quantity of balls of the color corregpemt to the assigned treat-
ment; these models are usually denoted as Randomly Resafd/on (RRU) models.
These procedures asymptotically allocate subjects tordanment superior in mean
with a probability that converges to 1. They present goodtatiproperties but poor
statistical performance for inferential purposes.

For this reason, in Chapter 2 we propose a new modified rarydainiforced urn de-
sign (MRRU) whose allocation proportion converge to a fixed (0, 1). As a conse-
guence, the performances of inferential procedures adaptbe experiment have been
improved. Moreover, the MRRU achieves a goal that typicatiges in the clinical trial
framework, as it allocates small proportions of subjecth&inferior treatment. This
has been obtained by setting two paramefensdn, with0 < § < n < 1, that represent
the possible values for the limiting allocation proportidime target allocation is differ-
ent depending on which treatment is the superior in mearadn in Theorerh 2,311 we
proved that the almost sure limit of the urn process 48 1, ,5my} + 0 Limg<my }-
The parameter§ andn are fixed in advance by the experimenter, but the asymptotic
allocationp is unknown since the response means to the treatmegpntndmy, are un-
known. Further asymptotic properties of quantities reldtethe urn model are proved
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and reported in Chaptgl 2

In Chaptef B we conduct a statistical study on the propettiasfollow from the use
of the MRRU model to implement a test that aims at comparirgntiean effects of
the two treatments. We show that a test based on a responsgvadiesign as the
MRRU model presents different desirable properties. Ity thés procedure enables us
to increase the power of the test and at the same time to aesigm subjects to the
inferior treatment than a classical non-adaptive test. arradysis of a real case study
and simulation studies highlight these results.

In Chaptef.4 we compute the rate of convergence and the digndtistribution of the
urn process with different reinforcement means. We distus@asymptotic results in
an inferential setting for test procedures using statidieessed on both the adaptive es-
timators and the urn composition. A comparison with therefi@al properties of the
RRU design whose asymptotic allocatiopis {0, 1} has been realized. As we expect,
using statistics based on the adaptive estimators, a tp&nmented with the MRRU
design has a power higher than a test implemented with the dRRign.

In Chaptefb we extend the MRRU model presented in ChipteoBt&on an urn design
in a sequential estimation framework. In particular, wepmse a randomly reinforced
urn model whose asymptotic allocation is a function of unkngarameters of the re-
sponses probability laws. As a consequence, the choicatfithction can be made in
order to maximize any statistical goal, and the urn procediable to asymptotically
target the allocation proportion that achieves that goak model is characterized by
two functions representing the desired allocation propostin the cases that the supe-
rior treatment in mean is eithét or W. The current value of the targets are computed
using consistent estimators. This feature allows the éxy@grter to achieve the ethical
goal of reducing the proportion of subjects assigned torifexior treatment.

The second-order asymptotic results concerning the urigniegscribed in Chaptér 5
are the main object of the work in progress naturally in aanty with this thesis. A
central limit theorem on the allocation proportion will é&ha a deeper study of the
inferential aspects and a comparison of this model with rofaametric response-
adaptive designs in a sequential estimating framework.elhgr, a study about oper-
ational characteristics of the MRRU model, as the analyisa&oidental and selection
bias, can be an interesting development to investigatertiygepties of this urn design.
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