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Abstract 

his thesis deals with monitoring of pipelines through acoustic measurements. 
Acoustic monitoring is a technique that exploits the fact that any disturbance 
occurring in the pipe infrastructure or in the conveyed fluid produces or 

influences acoustic transients which propagate as waves within the fluid at distances 
of many kilometers, carrying information on the originating event and on the 
propagation channel. 
I first analyze the theory of elastic wave propagation in pipelines and present a 
suitable matrix method to compute propagation parameters in fluid-filled pipelines 
possibly buried or submerged, taking into account several propagation effects among 
which fluid thermo-viscosity, pipe elasticity, external load and radiation. 
The propagation parameters can be found at any frequency and for any axisymmetric 
propagation mode. 
The theoretical study was functional to the design and development of a registered 
technology (e-vpms®) for pipeline monitoring which I contributed to. 
This system in fact employs a discrete network of vibro-acoustic monitoring stations 
mounted along gas or liquid pipelines which measure synchronized physical signals. 
Thanks to measurements performed on a buried in-service oil pipeline, I have 
experimentally validated the propagation method presented in the whole range of 
frequency of interest. 
Propagation parameters of acoustic waves were also measured in many in-service gas 
pipelines and found in agreement with theory. 
An important application of the monitoring system is the leak detection system that 
was tuned and validated on an in–service oil pipeline. 
In gas pipelines instead I describe some methods of pig (pipeline inspection gauge) 
tracking and a successful application of acoustic reflectometry on a pipeline to find 
and characterize anomalous pipe sections. 
Moreover I propose, through real examples, further advanced processing to measured 
and stored data such as the long term monitoring which allows to identify the 
standard operational conditions in a pipeline and therefore detect possible anomalous 
situations. 
A last type of application concerns the use of theoretical models of wave propagation 
and of fluid properties to interpret the measurements and obtain further information 
on the conveyed fluid and the flow regime. 
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Sommario 

uesta tesi riguarda il monitoraggio di linee di trasporto per mezzo di misure 
acustiche. Il monitoraggio acustico è una tecnica che sfrutta il fatto che 
qualsiasi disturbo che si verifica nell’infrastruttura di trasporto o nel fluido 

trasportato produce o influenza transienti acustici che si propagano come onde nel 
fluido a distanze anche di molti chilometri, traportando informazioni sull’evento 
originario e sul canale di propagazione. 
Inizialmente analizzo la teoria della propagazione di onde elastiche e presento un 
metodo matriciale apposito, per calcolare i parametri di propagazione in condotte 
contenenti fluidi eventualmente sommerse o interrate, prendendo in considerazione 
diversi effetti di propagazione tra i quali termo-viscosità dei fluidi, elasticità del tubo, 
carico e radiazione esterni. 
E’ possibile poi ottenere i parametri di propagazione a qualsiasi frequenza e per 
qualsiasi modo di propagazione assi-simmetrico. 
Lo studio teorico è stato propedeutico alla progettazione e sviluppo di una tecnologia 
registrata (e-vpms®) per il monitoraggio di linee di trasporto a cui ho contribuito. 
Questo sistema infatti impiega una rete discreta di stazioni di monitoraggio montate 
su linee per gas o liquidi che misurano segnali fisici sincronizzati. 
Grazie alle misure eseguite su una linea ad olio interrata e in funzione, ho validato 
sperimentalmente il metodo di propagazione presentato nell’intero intervallo di 
frequenze di interesse.  
I parametri di propagazione delle onde acustiche sono stati misurati anche su diverse 
linee a gas in servizio e risultati in accordo con la teoria. 
Un’importante applicazione del sistema di monitoraggio è il sistema di rilevazione di 
fuoriuscite che è stato messo a punto e validato su una linea ad olio in funzione. 
Per linee a gas invece descrivo alcuni metodi di tracciamento di PIG (sonde di 
ispezione per linee di trasporto) e un’applicazione di successo di riflettometria 
acustica su una condotta per trovare e caratterizzare sezioni di tubo anomale. 
Propongo inoltre, attraverso esempi concreti, ulteriori elaborazioni avanzate di dati 
misurati e immagazzinati come il monitoraggio a lungo termine che permette di 
identificare le condizioni operative standard di una condotta e dunque rilevare 
eventuali situazioni anomale. 
Un ultimo tipo di applicazione prevede l’uso di modelli teorici di propagazione delle 
onde e delle proprietà dei fluidi per interpretare le misure e ottenere ulteriori 
informazioni sul fluido trasportato e il regime di flusso. 
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Framework and rationale 

Nowadays pipelines are a widespread, efficient and cheap mean of transportation for 
many fluids, in particular hydrocarbons. 
Possible failures or damages to such structures might cause serious economic, 
environmental and health consequences, that’s why it’s of paramount importance to 
monitor the working condition of pipelines. 
In particular as regards to oil and gas pipelines, in many country the law compels 
fairly to install systems that detect leaks of a certain amount within a certain delay.   
Since conduits are often buried or laid on the sea-bottom it’s difficult to perform 
direct monitoring and there arose the need to think out techniques of indirect 
monitoring, often called non-invasive or non-destructive. Among these I can cite 
mass balance, Computational Pipeline Monitoring (CPM), even satellite surveillance. 
The technique dealt with in this thesis is acoustic monitoring which exploits the fact 
that many events to be monitored in the pipeline produce or influence acoustic 
transients and these propagate as waves within the transported fluid at distances of 
many kilometers, carrying information on the originating event and on the 
propagation channel. 
During my PhD I contributed to the development of a vibro-acoustic monitoring 
system (e-vpms® registered technology) which employs sensors to measure acoustic 
and other signals to monitor pipelines. 
The design and development of this technology have required the study of the theory 
of wave propagation in pipelines. 
In the case of gas-filled pipelines, the pipe can usually be considered a rigid medium 
and the simple wide-tube approximation which describes the fluid-borne wave 
propagation (Blackstock [1]) is sufficient for most practical application, as claimed 
by Stecki & Davis [2]; in the case of liquids, the compressibility of the fluid is 
comparable to the compressibility of the pipe material and therefore the properties of 
the shell are important and possibly even the properties of the external medium.  
To this end, an interesting model is proposed by Pinnington and Briscoe [3] and 
extended by Muggleton [4], which accounts for pipe elasticity, and surrounding solid 
medium effects, but neglects fluid viscosity. In particular these authors show the 
large contribution to wave attenuation due to the outward radiation of both pressure 
and shear waves. The advantage of these models is their analytic form but their 
validity falls in proximity of the ring frequency. 
In fact, in order to obtain solutions for all frequencies and all propagation modes, a 
more complex matrix method is needed, which was well described in Gazis [5]. 
More recently the matrix method was employed among others by Rama Rao and 
Vandiver [6] for propagation in boreholes, Sinha et al. [7] and Plona at al. [8] for 
fluid loaded pipes filled with inviscid fluid. 
This approach has been generalized to any sequence of cylindrical elastic layers as 
the Global Matrix Method (Lowe [9]) and implemented in the Disperse software by 
Imperial College (Pavlakovic [10]); fluid layers are then treated as equivalent elastic 
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solid layers introducing the fluid viscosity by means of a fictitious shear wave 
(Aristegui et al. [11], Long et al. [12], Vogt at al. [13], Ma et al. [14]). 
Elvira-Segura [15] also used a matrix method to couple an internal viscous fluid with 
an external solid layer surrounded by vacuum, this model was recently used and 
extended to viscous shells by Baik [16]. 
In Chapter 3 of this thesis, the formulation of Sinha et al. [7], which in turn borrows 
the formulation of Gazis [5], is used to model 3 cylindrical layers, where the core 
medium, is implemented as a solid but turned into thermo-viscous fluid by proper re-
definition of Lamé parameters similarly to the Disperse software and Baik [16]. 
The method described, in general, allows to consider a waveguide made of 3 co-axial 
cylindrical layers each of which can be either solid or fluid. In case of solid it has an 
elastic behavior, described by elastic parameters such as Lamé’s, which could be 
even complex, like in [16]. In case of fluid medium, both thermal and viscous effects 
are considered, and for each of them, both the following types: bulk and boundary 
layer. 
The switching from solid to fluid is easily performed by replacing Lamé parameters 
with proper functions of fluid’s viscous and thermal parameters. 
In this way a unique model can be used for both gas- and liquid-filled pipelines, 
which can support technologies such as e-vpms®, for monitoring of pipelines in 
different ways like for example real-time remote detection of third-party interference 
or long-term monitoring of transportation efficiency or detection of malfunctioning, 
failures and anomalies along pipeline.   
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Part I: Theory of acoustic propagation in pipelines 
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Introduction 

I analyze here the theory of acoustic wave propagation as far as it is useful to 
describe propagation of waves that can be exploited for pipeline monitoring, 
considering both liquid and gas as filling fluids. 
In the first chapter I qualitatively describe the wave propagation in pipes with 
particular care to the different phenomena of absorption and dispersion, 
mathematically modeled as propagation parameters, that take place in different 
scenarios of pipelines. 
In Chapter 2  I report a selection of propagation models according to the phenomena 
they take into account, most of the models were selected for their relative simplicity, 
being analytic or semi-analytic. For each model the computation method is 
presented. 
Then I choose a common scenario of particular interest to hydrocarbon 
transportation, that is a buried oil-filled pipeline, in order to compute and compare 
the results of the models presented. 
The comparison shows that none of the methods presented can accurately compute 
the propagation parameters in the whole range of frequency of practical interest, at 
least from unit Hz up to hundred Hz, but a more general matrix method is needed. 
This general matrix method is called AXSYM-3L and is described in Chapter 3, it 
simulates a waveguide of 3 cylindrical layers where each layer can be set to solid or 
fluid; fluids are thermo-viscous. 
In Chapter 4 I show some of the results of the model, limited to fluid-filled pipes, 
buried or submerged and to the fundamental fluid-borne propagation mode. 
In particular I perform some tests to verify the effect of the surrounding media, and 
others to verify the effect of the thermal boundary layer. 
Results of AXSYM-3L are shown in the scenario of Chapter 2 together with the 
other models, and AXSYM-3L looks suited to provide accurate results in a wider 
frequency range than other models. 
Finally AXSYM-3L as a matrix method is used to compute and display also the 
profiles of field variables and these will be shown in physical units for the usual 
scenario at the typical frequency of 50 Hz. 
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1. Acoustic propagation in pipelines 

Acoustic wave propagation in fluid filled pipes can be conveniently described by the 
dispersion curve, i.e. the dependence of the wave phase velocity on frequency and by 
the attenuation curve, i.e. the decay of the signal amplitude with propagation 
distance.  
Dispersion and attenuation are complicated phenomena associated with 

1. Fluid bulk viscosity and thermal conduction. 
2. Fluid viscous and thermal interaction with the pipe wall. 
3. Fluid relaxation. 
4. Pipe visco-elasticity. 
5. Pipe external load and radiation. 

I give here a brief description and explanation of each of these effects. 
 

1.1. Fluid bulk viscosity and thermal conduction 
Bulk viscosity and bulk thermal conduction affect the propagation of any wave 
travelling in a fluid, both in guided propagation (e.g. within a pipe) and in free 
propagation. 
The viscosity of the fluid resists to motion because of friction among fluid particles: 
this causes attenuation, because mechanical energy is converted to heat, and also 
velocity dispersion. 
On the other side, during wave propagation, the particles of the medium are 
continuously compressed and expanded. Compressed particles get warmer than the 
expanded ones, and this temperature gradient gives rise to a heat flux from the hotter 
regions to the colder ones (Figure 1.1). The energy associated to the thermal flux is 
subtracted from the propagating wave energy, determining attenuation. 
 
 

 
Figure 1.1. Compression and rarefaction due to a travelling wave  
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1.2. Fluid viscous and thermal interaction with the pipe wall 
The pipe wall affects pressure wave propagation mainly in two ways: it causes 
additional shear stresses, and it exchanges heat with the fluid. 
As regards to the first effect, the fluid particles adjacent to the pipe wall must be at 
rest (no-slip condition), whereas those near the pipe axis can move freely (Figure 
1.2). A complex velocity profile establishes along the section: axial viscous shear 
stresses act on the fluid, determining absorption and dispersion. 
Regarding the thermal effect, the pipe behaves as an infinite heat source at constant 
temperature. The motion close to the wall is isothermal, whereas the motion near the 
pipe axis is not isothermal. This produces again a complex temperature profile along 
the pipe section, a heat flux between particles, and therefore absorption and 
dispersion of the wave. 
 

 
Figure 1.2. Velocity profile along inner radius 

 

1.3. Fluid relaxation 
Relaxation occurs in a chemically reactive fluid made up of more than one substance, 
or in a fluid made up of molecules whose internal energy is associated to different 
modes of molecules motion (translational, rotational and vibrational). When the 
equilibrium is modified by the passage of the wave, the different modes require 
different time periods to reset to the equilibrium values. 
This circumstance produces wave attenuation. 
 

1.4. Pipe visco-elasticity 
If the pipe is not perfectly rigid, it tends to follow the disturbance propagating in the 
fluid by expanding and compressing. For a perfectly elastic pipe (including any 
external medium), no energy dissipation takes place, that is no wave absorption, but 
the wave velocity is reduced and dispersed. 
On the other side, if the pipe is viscous, also absorption occurs, due to dissipation of 
energy during pipe deformation. 
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1.5. Pipe external load and radiation 
If the pipe is surrounded by a medium different from vacuum, the properties of this 
medium can affect the wave traveling in the fluid (Figure 1.3). 
First, in the same way as the pipe elasticity can reduce the wave-speed, the external 
medium contributes by changing the elasticity of the whole “waveguide system”. 
Second, the contact between the pipe and the external medium, which is assumed of 
infinite extent, allows the leakage of energy outwards, producing wave attenuation. 
 

 
Figure 1.3. Pipe external load and radiation. 

 

1.6. Discussion 
For points 1 and 2, thermal and viscous effects are of the same order of magnitude 
only for gases, whereas in liquids thermal effects are negligible. 
The bulk viscosity and bulk thermal effects are important only at ultrasonic 
frequencies or for very wide tubes, otherwise they are small compared to those due to 
the interaction with the pipe walls. 
Relaxation can be important, for instance, in air and in sea water, but it is practically 
absent in fresh water. In air, the effect on absorption can be higher than the bulk 
thermo-viscous effects, but of the same order of magnitude, so that also relaxation is 
usually neglected in fluid-filled pipelines. 
The pipe can be considered perfectly rigid when its Young modulus is much greater 
than the fluid bulk modulus, and/or when the pipe thickness is far greater than the 
radius: this is usually valid for gases, not for liquids. 

ρ   cp   cs 
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The pipe viscous effect can be neglected for elastic materials, typically metals, while 
it is not negligible for other materials such as plastics, which are strongly 
viscoelastic. 
Finally, the effect of the external medium is important only if it has a density 
comparable with the pipe’s density, and the pipe itself is not perfectly rigid. 
Therefore it becomes negligible when the external medium is gas, but it has to be 
considered for liquid filled elastic pipe surrounded by liquids or solids. 
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2. Literature review 

Here I report the description of a selection of propagation models in fluid filled 
cylindrical pipelines. This review is not intended as an exhaustive state of the art, 
instead a set of representative models was chosen according to their scope and 
propagation effects accounted for with the purpose of analyzing separately the 
phenomena described in the previous section. The models will be presented 
approximately in increasing order of complexity and accuracy and their results will 
be shown and compared in a common scenario. 

2.1. Literature models description 

2.1.1. Model 1: water hammer 
Reference: Liu [17] (pages 66-67) 
Framework 
This model considers the celerity (speed) of water-hammer pressure waves in 
pipelines, from a hydraulic point of view. The water hammer generated by a sudden 
valve closure produces a high pressure variation and a significant expansion of the 
pipe wall, resulting in a reduction of wavespeed. 
Assumptions 

• (Implicitly) Axisymmetric wave motion. 
• Low frequency, no dispersion nor attenuation is considered. 
• Inviscid fluid. 

 
Computation procedure 
The pressure wave speed c  in the internal fluid is provided as a function of the free 
medium wavespeed fff Bc ρ/=  and the physical and geometric parameters of the 
fluid and the pipe. 

ε

ρ

)/2)(/(1

/

hbEB

B
c

f

ff

+
=

 
(2.1)

 
fB : fluid bulk modulus 

fρ : fluid density 
E : pipe Young modulus 
b : internal pipe radius 
h : pipe thickness 
 
ε  is a dimensionless factor equal to 1.0 when the pipe wall is thin (i.e., when 
2b/h>25) while for thick-walled pipes (2b/h<25), the factor ε  differs for different 
conditions, as follows: 
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Case 1. Pipeline anchored upstream 
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Case 2. Pipeline anchored against longitudinal movement 

( ) 







−

+
++=

2
1

2
21

2ννε
hb

b
b
h

 
(2.3)

 
 
Case 3. Pipeline with expansion joints throughout its length 
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hb
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2
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(2.4)

 
 
where ν  is the Poisson ratio of the pipe shell. 
Notice that c  is always less than fc , so the elasticity of the pipe walls has the effect 
of reducing the wave speed. 

 

2.1.2. Model 2: wide tube approximation 
Reference: Blackstock [1] (pages 322-325) reporting results originally due to 
Kirchhoff. 
Framework 
The model considers propagation of pressure waves in viscous fluids within rigid 
pipes. The model is applicable when the pipe rigidity is much higher than the fluid 
rigidity, like gases in metallic pipes. 
Assumptions 

• Axisymmetric wave motion. 
• Rigid pipe (also elastic with suited addition). 
• Small amplitude pressure waves. 
• Absorption is related only to interaction with the wall pipe, and it takes place 

in a narrow (with respect to the pipe radius) boundary layer. This condition is 
expressed as a double inequality for frequency, i.e. the model is valid for a 
limited frequency range (see [1] and [18]) 

Computation procedure 
The absorption coefficient α  and the phase velocity phc  are provided as functions 
of the angular frequency ω, the pipe radius b, and the fluid physical properties 
(density fρ , speed of sound fc , dynamic viscosity η , specific heats ratio γ and 
Prandtl number Pr ). 
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The absorption coefficient is proportional to the square root of frequency and to the 
inverse of the radius. 
The phase velocity increases from 0 (at frequency 0) up to the free medium velocity 
(for infinite frequency). 
The case of elastic pipe can be approximately considered by correcting, in both 
previous formulas, the free fluid velocity fc , with the water hammer formula (2.1) 
(this is claimed by Stecki & Davis [2]). 
 

2.1.3. Model 3: viscous incompressible fluid in elastic pipe 
Reference: Morgan & Kiely [19]. 
Framework 
The model focuses on propagation of pressure waves through liquid-filled flexible 
tubes. The fluid is considered viscous but incompressible, phase velocity and 
damping factor are functions of the viscosity of the liquid and of the internal 
damping in the tube wall. 
Assumptions 

• Thin walls. 
• Small amplitude pressure waves. 
• Pressure wavelength far greater than pipe radius. 
• Speed of pressure wave in the fluid far less than compressional speed in pipe 

shell. 
• Axisymmetric wave motion. 
• Incompressible viscous fluid. 

 
Computation procedure 
The authors provide two different approximate solutions depending on the value of 

the parameter 
η
ωρ fb  

where 
fρ : fluid density 

η : fluid dynamic viscosity 
b: pipe radius 
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Case 1. Small viscosity: 1>>
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Case 2. Large viscosity: 1<<
η
ωρ fb  
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ν : Poisson ratio. 
h: pipe thickness 
E′ and ν ′ appear in case of pipe viscosity, that is when the elastic constants *E and 

*ν are complex because the stresses depend also on the strain rates. The following 
relations hold: 
 

νωνν

ω
′−=

′−=

j
EjEE

*

*

 (2.9) 

 
This model of pipe viscosity (Kelvin-Voigt) is actually not used for metals, therefore 
no values of E′  or ν ′  are available for steel. 
Please note that, by neglecting the pipe internal damping (or at low frequency), in 
both cases, the absorption coefficient has the same dependence on frequency as 
Model 2 (Blackstock [1]), while, for increasing ω , α  gets a quadratic dependence 
on frequency. 
Moreover, in the small viscosity solution, the phase velocity, not affected by internal 
damping, has a similar dependence on frequency as Model 2. 
 

2.1.4. Model 4: inviscid fluid in elastic pipe surrounded by vacuum 
Reference: Pinnington & Briscoe [3] 
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Framework 
The model considers the wave motion in a fluid-filled pipe in order to compare the 
analytical solution with measurements recorded on the pipe shell and in the fluid. 
Attenuation and dispersion curves are provided for the two axisymmetric wave 
modes associated with the longitudinal shell motion and the internal pressure wave. 
Here only the latter is reported. 
Assumptions 

• Frequency far less than ring frequency  
• Inviscid fluid 
• Thin wall shell, pipe thickness far less than pipe radius 
• Fluid wavespeed far less than shell compressional wavespeed 
• Axisymmetric wave motion 
• Pipe in vacuum 

Computation procedure 
The propagation characteristic is defined through the wavenumber αω ick ph −= /1  
as a function of the free medium wavenumber ff ck /ω= . 
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pρ : pipe density. 

Since the wavenumber is real, no attenuation is accounted for, whereas the phase 
velocity coincides with Model 1, for low frequency (exactly at 0=ω ), then it slowly 
decreases. 
 

2.1.5. Model 5: inviscid fluid in elastic, buried pipe 
Reference: Muggleton et al. [4]. 
Framework 
Authors consider the wave motion in a fluid-filled pipe, surrounded by an infinite 
elastic medium which can support both longitudinal and shear waves. The 
attenuation and dispersion curves are derived for two wave types (n=1,2), which 
correspond to a fluid dominated wave, and an axial shell wave. Here only the former 
is reported. 
Assumptions 

• Frequency far less than ring frequency  
• Inviscid fluid 
• Thin wall shell, pipe thickness far less than pipe radius 
• Fluid wavespeed far less than shell compressional wavespeed 
• Axisymmetric wave motion 
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Computation procedure 
The propagation characteristic is defined through the wavenumber αω jck ph −= /1  
as a function of the free medium wavenumber ff ck /ω= . 
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With respect to the previous model 4, two additional phenomena are accounted for: 
the effect of the surrounding medium, and the internal pipe absorption. They appear 
in the wavenumber equation as three new terms 
χ : the loss factor 

radM : radiation mass 

radR : radiation resistance 
with 
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pnz  and snz  are the impedances of the longitudinal and shear waves in the external 

medium, for the two modes n=1,2. Here I deal just with n=1 (fluid-borne wave). 
Impedances are functions of the surrounding medium density mρ , and seismic wave 
velocities pc  and sc (respectively P- and S-waves) 
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)2(

0H  is the zero order Hankel function of the second kind (for outgoing waves). The 

prime sign denotes differentiation with respect to the argument. r
nspk ),( are the radial 

components of the longitudinal and shear wavenumbers in the external medium, 
defined as 
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where ),( spk  are the longitudinal and shear wavenumbers in the external medium 
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Since the impedances in the external medium depend on 1k , which is the unknown 
solution, it must be found iteratively. 
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2.1.6. Model 6: viscous compressible fluid in elastic pipe 
Reference: Elvira-Segura [15]. 
Framework 
The method computes the velocity and the attenuation of an acoustic wave 
propagating inside a cylindrical elastic tube filled with a viscous liquid by means of a 
matrix technique. This allows to find exact solutions for any frequency and 
propagation mode, through a root-finding technique. 
Assumptions 

• Viscous fluid 
• Elastic pipe 
• Pipe in vacuum 
• Axisymmetric wave motion 

Computation procedure 
This model does not provide an analytic solution. It is a Matrix Method (MM) that 
has to be solved numerically. 
The solutions for the complex wavenumber or complex frequency can be found by 
setting the determinant of the solution matrix to zero. 
As a first step, the wave equations for the solid and the fluid are studied separately 
and the solutions for displacements as function of unknown coefficients are found. 
The solution matrix is built by imposing 3 boundary conditions to both pipe 
interfaces, resulting in a 6-by-6 matrix. For details see Reference. 
The solution for the 1st fluid-borne mode can be found using the Wide-tube 
approximation as first guess and then searching in its neighborhoods. 
 

2.2. Literature models example results 

2.2.1. Scenario 
I consider an oil filled steel pipeline, buried in an elastic medium. Model parameters 
are reported in Table 2.1. 
 

Physical and geometrical parameters 
Symbol Value Unit Description 
Pipe geometry 

b
 

0.2 m Pipe internal radius 
h

 
0.0111 m Pipe thickness 

Internal fluid - Oil 
fρ
 

900 kg/m3 Oil density 
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fc
 

1400 m/s Speed of sound in free medium 
fB
 

1.8x109 Pa Bulk modulus (function of fρ  and fc ) 

η
 

1x10-2 Pas Dynamic viscosity 
γ  1 - Specific heats ratio 
Pr  Not used - Prandtl number 
Shell material – Steel 

pρ
 

7800 kg/m3 Density 
E

 
2x1011 Pa Young modulus 

χ
 

0 - Loss factor 
E′  0 Pa Viscous term. See Eq. (2.9)

 ν  0.3 - Poisson ratio 
Surrounding medium 

mρ  2000 kg/m3 Density 
pc  1500 m/s P-wave speed 

sc  900 m/s S-wave speed 

Table 2.1. Example scenario parameters 
 

2.2.2. Model 1: water hammer 

This model predicts a reduction of speed from 1400 to about 1220 m/s. 

2.2.3. Model 2: elastic wide tube 
Kirchhoff’s wide-tube approximation is modified to account for pipe elasticity, by 
correcting the free medium wave velocity with Model 1, Eq. (2.1). The resulting 
model will be referred to as “Elastic wide-tube”. Figure 2.1 shows phase velocity and 
attenuation computed with Model 2. 
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Figure 2.1. Phase velocity and attenuation computed with Model 2 
 

2.2.4. Model 3: viscous incompressible fluid in elastic pipe 
I use the solution for “Small viscosity”, as it appears to be satisfied in the whole 
frequency range. Figure 2.2 shows phase velocity and attenuation computed with 
Model 3. 

 

Figure 2.2. Phase velocity and attenuation computed with Model 3 
 

2.2.5. Model 4: inviscid fluid in elastic pipe surrounded by vacuum 
Figure 2.3 shows phase velocity and attenuation computed with Model 4. 
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Figure 2.3. Phase velocity and attenuation computed with Model 4 

 

2.2.6. Model 5: inviscid fluid in elastic, buried pipe 
Figure 2.4 shows phase velocity and attenuation computed with Model 5. 

 

Figure 2.4. Phase velocity and attenuation computed with Model 5 
 

2.2.7. Model 6: viscous compressible fluid in elastic pipe 
Figure 2.5 shows phase velocity and attenuation computed with Model 6. 
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Figure 2.5. Phase velocity and attenuation computed with Model 6 
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2.2.8. Model comparison 

 

Figure 2.6. Phase velocity and attenuation computed with all models. 
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Figure 2.7: Phase velocity (top) and attenuation (bottom) computed with all models, 
zoom at low frequencies. 

 

2.3. Discussion 
Figure 2.6 and Figure 2.7 show different attenuation and dispersion curves for the 
same scenario. This can be explained by the different assumptions in the various 
models, summarized in Table 2.2. Model 1 doesn’t appear in the table because of its 
simplicity, but plays a role in Model 2. 
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 Fluid 
compressibility 

Fluid 
viscosity 

Pipe 
elasticity 

Surrounding 
medium 

Model 2 yes yes yes no 
Model 3 no yes yes no 
Model 4 yes no yes no 
Model 5 yes no yes yes 
Model 6 yes yes yes no 

Table 2.2. Physical propagation phenomena considered by the models 
 
Model 5 [4] is the only that takes into account the effect of the surrounding medium, 
which causes the attenuation to increase at high frequency. 
Except for this phenomenon, the most general model is nr. 6 (Elvira-Segura [15]). 
Model 2 is similar to the latter, at least at low frequency, provided to replace the 
value of the free wave-speed with the velocity computed with water hammer model, 
Eq. (2.1), in both formulas for phase-velocity and attenuation. 
At higher frequency the decreasing trend of the wave speed, due to the pipe 
elasticity, is the same in Model 6 and Model 4: the small scale difference should be 
due to the fact that Model 4 uses the water hammer approximation for null 
frequency, whereas model 6 should be more accurate. 
Finally, since Model 3 considers the fluid to be incompressible, it clearly 
overestimates the velocity (which in fact falls outside the plot). This is reflected also 
in a lower attenuation, even if its trend resembles those of the other models at low 
frequency. 
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3. AXSYM-3L model description 

None of the models described in the previous section takes into account 
simultaneously all the propagation phenomena that are really relevant in fluid-filled 
pipelines. 
Another model would be “Disperse” by Imperial College, available as a commercial 
software, which includes all the phenomena listed in Chapter 1 except for the thermal 
effects which are important mainly in gas-filled pipelines. The method of Disperse is 
much more general than the models presented so far and therefore it is also more 
complicated. 
Hence I have built a new model, simpler than Disperse though it can simulate also 
thermal effects, which for convenience is here called AXSYM-3L. 
The new model is a matrix method as well and starts from the formulation (and the 
notation) of Sinha at al. [7], in particular it considers 3 cylindrical layers, the most 
external extends infinitely in the radial direction (Figure 3.1), and restricts to 
axisymmetric waves. These are the two reasons for the given name. 
 

 
Figure 3.1. Cross-section of the waveguide constituted by 3 layers: Internal, Shell 
and External. 
 
Unlike [7], all 3 layers are mathematically treated as (visco)-elastic solids and the 
solution is obtained, any solid layer can then be turned into a thermo-viscous fluid by 
redefining properly the Lamé parameters. 
In the context of pipelines, the internal layer is typically a fluid, gas or liquid, the 
shell is always solid and the external layer might be solid, soil for instance, or fluid, 
water, air or even mud. 
This model, as a matrix method, allows to compute the axisymmetric propagation 
modes of any order at any frequency, even if in this thesis only the fundamental 
fluid-borne mode is analyzed. 
The main assumptions are: 

• Longitudinally infinite and homogeneous waveguide 
• Homogeneous isotropic media 
• No constraints outside the pipe, except for the presence of an external 

medium. 
• Axisymmetric propagation. 
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The following sections contain the complete derivation of the general model. As a 
first step, the mechanical wave equations are studied, and the solutions for 
displacements are found as a function of unknown coefficients. The solution matrix 
is built up by imposing four boundary conditions to both pipe interfaces, resulting in 
an 8-by-8 matrix. The solutions for the complex wavenumber can then be found by 
setting the determinant of the solution matrix to zero. This solution, which provides 
the propagation parameters, must be reached with numerical methods. 
 

3.1. Wave equations 
The wave equations in elastic materials can be drawn by solving a differential system 
where the following equations appear [7]: 
 

• Equations of motion, Newton’s second law. 
• Constitutive equations (linking stress and strain). 
• Strain-displacement relations. 

 

 
Figure 3.2. Cylindrical coordinates. 

 
The equations of motion in cylindrical coordinates (Figure 3.2), are given by: 
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 (3.1) 

 
where rrτ , zzτ , θθτ , θτ r , θτ z , rzτ are the stress components, ru , θu  and zu  are the 
displacement components and ρ  is the mass density. 
For a homogeneous, elastic and isotropic medium the constitutive equations are 
given by: 
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(3.2) 

 
where rrε , zzε , θθε , θε r , θε z , rzε  are the strain components, λ  and µ  are the 
Lamé constants. 
The strain-displacement relations in cylindrical coordinates are given by: 
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The substitution of Eqs. (3.3) and (3.2) into Eqs. (3.1) gives the equations of motion 
with displacements as dependent variables. 
If I consider the axisymmetric case only, the equations of motion are: 
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3.2. Wave equations solution 
The displacement components for axisymmetric waves in the shell layer S are 
derived by solving Eq. (3.4) [7]:  
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where pc  and sc  are the compressional and shear velocities in the pipe shell, ω  is 
the angular frequency, ξ  is the mode wavenumber, ii BA ,  are unknown coefficients, 

( )xJn  and ( )xYn  are the Bessel functions of the first and second kind, respectively, of 
order n. 
The displacement components in the internal layer I are derived from the same 
equations, but discarding those solutions that give an infinite value for 0=r  (Bessel 
functions of second kind). I can write: 
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Similar reasoning holds for the external layer E, except that, since the layer is infinite 
radially, Bessel functions of second kind are not discarded but merged with Bessel 
function of first kind by means of Hankel functions 



 

27 
 

( ) ( ){ } ( )

( ) ( ){ } ( )





−=

+−=
+

+

ztj
EEE

E
z

ztj
EEE

E
r

eDrHDrHju
eDrHjDrHu

ξω

ξω

ββαξ

βξαα

2
)2(

01
)2(

0

2
)2(

11
)2(

1  (3.8) 

 
where ii DC , are other unknown coefficients, )2(

nH  are the Hankel functions of the 
second kind and of order n. 
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Caution must be taken to the selection of the correct root for Eα  and Eβ . 
In fact the sign of these wavenumbers determines whether the wave mode radiates (is 
leaky) to the external medium or not; Muggleton et al. [4] among other authors 
(Junger, [20], Rama Rao & Vandiver [6], Long et al. [12]) claim that the guided 
wave may or may not radiate into the external medium depending on its wavespeed 
relative to the wavespeed in the surrounding medium. 
The choice of the proper root will be treated in Section 3.6. 
 

3.3. Boundary conditions 
In order to find the solution of the propagation problem (displacements and stresses) 
in the waveguide constituted by the shell S, the internal core I and the external layer 
E, I need to find the constants of the motion present in Eqs. (3.5), (3.7) and (3.8) for 
S, I and E, respectively. The constants are obtained by imposing the boundary 
conditions to the pipe structure, whose section is depicted in Figure 3.1. 
The boundary conditions are the same for both internal and external shell interfaces, 
but clearly apply to different media and positions: 
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The previous equations describe the continuity of the radial stress rrτ , of the shear 
stress rzτ , and of the radial and tangential displacements, ru  and zu , at the interfaces 
of radial coordinate equal to b and a.  
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Boundary condition 1 
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The radial stress rrτ , is given by: 
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The derivatives  and , are obtained by Eqs. (3.5) (3.7) and (3.8), 

respectively: 
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Substituting the Eqs. (3.12)-(3.15) into the Eq. (3.11), for the shell and the internal 
medium, and imposing the Eq. (3.10.1) at the internal interface ( br = ), I obtain the 
following expression: 
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Similarly, substituting the Eqs. (3.12), (3.13), (3.16), (3.17) into the Eq. (3.11), for 
the pipe shell and for the external layer, and imposing the Eq. (3.10.1) at the external 
interface ( ar = ), I obtain the following expression: 
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Boundary condition 2 
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The shear stress , is given by: 
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The derivatives  and , for the shell, are obtained from Eq. (3.5): 
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The derivatives  and  for internal and external layers are obtained from Eqs. 

(3.7) and (3.8) 
 

( ) ( ){ } ( )ztj
IIII

I
z eCrJCrJj

r
u ξωββαξα +′−′=
∂
∂

20
2

10  (3.23) 

( ) ( ){ } ( )ztj
IIII

I
r eCrJCrJj

z
u ξωβξαξα +−−=
∂
∂

21
2

11  (3.24) 

 

( ) ( ){ } ( )ztj
EEEE

E
z eDrHDrHj
r

u ξωββαξα +′−′=
∂
∂

20
2

10  (3.25) 

( ) ( ){ } ( )ztj
EEEE

E
r eDrJDrJj
z

u ξωβξαξα +−−=
∂
∂

21
2

11  (3.26) 

 
Substituting the Eqs. (3.21)-(3.24) (3.26) into the Eq.(3.20) and imposing the Eq. 
(3.10.2) at the internal interface I obtain the following expression: 
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Substituting the Eqs. (3.21),(3.22), (3.25), (3.26) into the Eq.(3.20) and imposing the 
Eq. (3.10.2) at the external interface: 
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By substituting the radial displacements at the internal interface, for the shell and the 
internal core, given by the Eqs. (3.5) and (3.7), in the Eq. (3.10.3), I derive: 
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The same for the external interface: 
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Boundary condition 4 
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By substituting the tangential displacements at the internal interface, for the shell and 
for the internal core, given by Eqs. (3.5) and (3.7), in Eq. (3.10.4), I derive: 
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The same for the external interface: 
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3.4. Boundary equations system 
In the previous section I have derived four equations for each of the two interfaces, 
obtaining 8 equations in 8 unknowns A1, A2, B1, B2, C1, C2, D1, D2.. 
In order to calculate such coefficients, I have to solve a system of eight linear 
homogeneous algebraic equations, which can be written in matrix form 
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This system yields nontrivial solutions when the determinant of L vanishes. 
The elements of the matrix L are found by comparing the equations of this system 
with the boundary conditions: 
Row 1 with Eq. (3.18) 
Row 2 with Eq. (3.27) 
Row 3 with Eq. (3.29) 
Row 4 with Eq. (3.31) 
Row 5 with Eq. (3.19) 
Row 6 with Eq. (3.28) 
Row 7 with Eq. (3.30) 
Row 8 with Eq. (3.32) 
 

3.5. Solution matrix elements 
I report here the 64 elements of matrix L 
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( )bJjL βξ 133 =  (3.52) 

( )bYjL βξ= 134  (3.53) 

( )bJL II αα 135 =  (3.54) 

( )bJjL Iβξ 136 −=  (3.55) 

037 =L  (3.56) 

038 =L  (3.57) 

 
)(041 bJjL αξ=  (3.58) 

)(042 bYjL αξ=  (3.59) 

)(043 bJL ββ−=  (3.60) 

)(044 bYL ββ−=  (3.61) 

( )bJjL Iαξ 045 −=  (3.62) 
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)(046 bJL Iββ=  (3.63) 

047 =L  (3.64) 

048 =L  (3.65) 

 

( )[ ] ( ) ( )aJ
a

aJL αµααµαξαλ 10
222

51
22 +++−=  (3.66) 

( )[ ] ( ) ( )aY
a

aYL αµααµαξαλ 10
222

52
22 +++−=  (3.67) 

( ) ( )







−= aJ

a
aJjL β

β
βµξβ 1053

12  (3.68) 

( ) ( )







−= aY

a
aYjL β

β
βµξβ 1054

12  (3.69) 

055 =L  (3.70) 

056 =L  (3.71) 

( )[ ] ( ) ( )aH
a

aHL E
EE

EEEE α
αµ

ααµξαλ 10
222

57
22 −++=  (3.72) 

( ) ( )







−−= aH

a
aHjL E

E
EEE β

β
βξβµ )2(

1
)2(

058
12  (3.73) 

 
( )aJjL αµξα 161 2−=  (3.74) 

( )aYjL αµξα 162 2−=  (3.75) 

( ) ( )aJL βξβµ 1
22

63 −=  (3.76) 

( ) ( )aYL βξβµ 1
22

64 −=  (3.77) 

065 =L  (3.78) 

066 =L  (3.79) 

( )aHjL EEE αξαµ )2(
167 2=  (3.80) 

( ) ( )aHL EEE βξβµ )2(
1

22
68 −−=  (3.81) 

 
( )aJL αα 171 −=  (3.82) 
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( )aYL αα 172 −=  (3.83) 

( )aJjL βξ 173 =  (3.84) 

( )aYjL βξ 174 =  (3.85) 

075 =L  (3.86) 

076 =L  (3.87) 

( )aHL EE αα )2(
177 =  (3.88) 

( )aHjL Eβξ )2(
178 −=  (3.89) 

 
)(081 aJjL αξ=  (3.90) 

)(082 aYjL αξ=  (3.91) 

)(083 aJL ββ−=  (3.92) 

)(084 aYL ββ−=  (3.93) 

085 =L  (3.94) 

086 =L  (3.95) 

( )aHjL Eαξ )2(
087 −=  (3.96) 

( )aHL EE ββ )2(
088 =  (3.97) 

 

3.6. Choice of wavenumbers 
The radial wavenumbers to be input in the solution matrix elements ( Iα , Iβ , α , β , 

Eα , Eβ ) must be computed through a square root operation and this open the 
possibility to the choice between 2 roots which differ from their sign. For all internal 
layers both roots give the same results whereas for the external layer it is important 
to choose the correct root. This section discusses and proves these aspects. 
 
Internal layers 
The sign of wavenumbers in internal layers, core and shells, is not important. The 
proof is here given for elastic media, the fluid case is equivalent (see Section 3.10). 
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The general expressions for displacements in the shell layers, of which the core case 
is a special case when 022 == BA , as function of either possible root for both (P-
wave and S-wave) wavenumbers ( βα , ), are 
 

( ) ( ) ( )[ ] ( ) ( )[ ]{ } ( )

( ) ( ) ( )[ ] ( ) ( )[ ]{ } ( )ztj
z

ztj
r

eBrYBrJArYArJju
eBrYBrJjArYArJu

ξω

ξω

βββααξβα

ββξαααβα
+

+

+−+=

+++−=

20102010

21112111

,

,
 (3.98) 

 
Let’s consider the following relations between Bessel functions that hold for any 

Cz∈ , obtainable from Abramowitz and Stegun [21], Eq. 9.1.35 and 9.1.36). 
 

( ) ( )zJzJ 00 =−  
( ) ( )zJzJ 11 −=−  
( ) ( )zYzY 00 =−  
( ) ( )zYzY 11 −=−  

(3.99) 

 
Displacements can be therefore expressed as function of the other roots (of opposite 
sign) of both wavenumbers: 
 

( ) ( ) ( )[ ] ( ) ( )[ ]{ } ( )

( ) ( ) ( )[ ] ( ) ( )[ ]{ } ( )ztj
z
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eBrYBrJArYArJju
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20102010

21112111
~~,

~~,
 (3.100) 

 
with 11

~ BB −= , 22
~ BB −= . 

Therefore the sign of α is completely compensated, which means that coefficients 
1A , 2A  remain the same for both signs of α and the sign change of β  causes a sign 

change of coefficients 1B , 2B , which anyway are unknowns.  
In conclusion whatever sign for radial wavenumbers (α  and β ) is chosen when 
dealing with internal layers, the solution doesn’t change. 
This is not true for the external layer. 
 
External layers 
In the external layer the solution completely changes according to the sign of radial 
wavenumber chosen. Again the proof is given for elastic media. 
The general expressions for displacements in the external layer, as function of either 
possible root for both (P-wave and S-wave) wavenumbers, are 
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 (3.101) 
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Let’s consider the following relations between Hankel functions that hold for any 
Cz∈ , obtainable from Abramowitz and Stegun [21], Eq. 9.1.39: 

 
( ) ( )zHzH )1(

0
)2(

0 −=−  
( ) ( )zHzH )1(

1
)2(

1 =−  
(3.102) 

 
Again displacements can be expressed as function of the other roots (of opposite 
sign) of both wavenumbers 
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 (3.103) 

 
Therefore in addition to the change of sign of 1D , the important result is that, by 
changing the sign of the wavenumbers, the Hankel functions of 2nd kind turned into 
Hankel functions of 1st kind (when the same arguments is kept). 
Therefore the solution will surely be different according to the choice of the 
wavenumber sign. 
Now let’s try to answer the question on which is the correct sign to be used, 
references are Muggleton [4], Pavlakovic [10] and Lowe [9]. 
The Hankel functions of the 2nd kind were originally chosen because, with tje ω  time-
dependence, they represent outgoing waves, but this is true only if the real part of the 
argument is positive, otherwise they are ingoing waves as Hankel functions of 1st 
kind as shown in previous equations. 
Therefore it would seem that one has to choose always the root with positive real 
part; instead there are cases when one has to choose the other root so that the wave is 
actually coming in. 
To understand this, as explained by Muggleton [4], let’s think in terms of real 
wavenumbers, possibly with negligible attenuation: the wave radiates only if the 
wavenumber in the surrounding medium, say k  is greater than the axial wavenumber 
ξ  (Figure 3.3), therefore in case the medium wavespeed is lower than the phase 
velocity considered. In this case I choose the radial wavenumber, say α , with 
positive real part, which means outgoing wave. 
 

 
Figure 3.3. Vector composition of wavenumber. 

α

ξ

k
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If the wavenumber in the surrounding medium is lower than the axial wavenumber, 
the wave cannot radiate, therefore it will die exponentially in the radial direction. 
Analytically this corresponds to choose the root with negative imaginary part. 
These concepts are well formalized in Pavlakovic [10] and are here adapted to the 
different time convention: 
Let’s consider a radial wavenumber in the external layer and let it be called α , even 
if it can represent any kind of partial wave (P- or S-wave), let bulkc  be the considered 
partial wave velocity  
 

2
2

ξωα −







±=

bulkc
 (3.104) 

 
The sign of the radial wavenumber α is chosen according to this condition 
 

If [ ] ⇒>

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
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
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


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

 2
2

ReRe ξω

bulkc
 [ ] 0Re >α  

If [ ] ⇒<















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

 2
2

ReRe ξω

bulkc
 [ ] 0Im <α  

 

3.7. Conditioning of solution matrix 
Before dealing with the root-finding  procedure there are some numerical problems 
to be solved.  
In fact, the solution matrix, as it is written above, is ill-conditioned since some 
elements are much larger than others and this causes the numerical computation of 
the determinant to be inaccurate or even impossible. 
This occurs mainly for two reasons: 

- the presence of the Lamé parameters (very large numerical value) only in 
some rows of the matrix; 

- the presence of Bessel and Hankel functions which diverge if their argument 
has large imaginary part. 

 
The first problem is solved by dividing by µ  the matrix rows containing the Lamé 
parameters (rows 1, 2, 5 and 6). 
A similar approach is used to prevent Bessel and Hankel functions to diverge. This 
usually happens to Bessel and Hankel whose argument contains a wavenumber with 
high imaginary part. Such Bessel/Hankel functions can appear in columns 5, 6, 7 and 
8 of the solution matrix (in case the core and/or the external layer are fluid). 
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Therefore, each of these columns has been divided by the corresponding Bessel or 
Hankel function: 

- Column 5 is divided by ( )bJ Iα0  

- Column 6 is divided by ( )bJ Iβ0  

- Column 7 is divided by ( )aH Eα)2(
0  

- Column 8 is divided by ( )aH Eβ
)2(

0  

 
There is also an overflow problem with very large imaginary arguments of the 
aforementioned Bessel/Hankel functions. With the above divisions, I obtain only 
ratios of 1st order to 0th order functions, which can be substituted with their 
asymptotical expression for very large arguments 
 

))(Im(
)(
)(lim

0

1

)Im(
zsignj

zJ
zJ

z
⋅=

∞→
 

j
zH
zH

z
=

∞→ )(
)(lim

0

1

)Im(
 

(3.105) 

 
These approximations in the algorithm are performed when 
 

700)Im( >z    bbz II βα ,=  
690)Im(15)Im( >∨−< zz  aaz EE βα ,=  

 
The solution is now well conditioned and the determinant can be efficiently 
computed. 
If unknown coefficients (A1, A2, B1, B2,…) are to be computed, the operations applied 
to the solution matrix coefficients must be taken into account to retrieve the correct 
values. 
An important additional (or alternative) algorithmic device to improve the stability of 
the solution is to use the modified Bessel functions instead of the unmodified when 
the wavenumbers take specified values, this substitution implies other changes and is 
well explained by Pavlakovic [10]. 
 

3.8. Root-finding algorithm 
The propagation parameters are obtained by finding the roots of the determinant of 
the matrix L. 
Unfortunately the resulting equation cannot be solved analytically, therefore there’s 
need for some numerical inversion procedure which is explained below. 
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Out of the many kinds of inversion algorithms, the choice so far has fallen on the 
exhaustive one: the determinant is computed for a given range of wavenumbers 
surrounding a first guess, and the solution is taken to be the first yielding a relative 
minimum. The functional to be minimized is the absolute value of the determinant of 
the solution matrix. The following list reports the inversion strategy: 

- Choose a frequency for which the wavenumber is approximately known 
(elastic wide-tube model) and use it as first guess. 

- Find the closest relative minimum of the functional and obtain the 
corresponding wavenumber solution. 

- Use the solution as first guess for the next frequency. 
A gradient method however is expected to be far more efficient and therefore is 
suggested in case of implementation. 

 

3.9. Computation of field variable profiles 
Once the root of the determinant of solution matrix are found, one can compute the 
values of unknowns 21212121 ,,,,,,, DDCCBBAA  and therefore also the profiles of 
field variables: stresses and displacements. 
In principles the unknowns are simply equal to the null space of matrix L, but 
because of the scaling applied to the solution matrix (section 3.7), they must be 
properly (un)scaled. 
The scaling applied to matrix rows doesn’t matter at all because it equally acts on all 
coefficients, therefore it corresponds to the amplitude of the wave perturbation, 
whereas the scale factors applied to the matrix columns are important to retrieve the 
profiles because they are coefficients applied to the single unknown that must be a 
posteriori compensated. This is the case of columns 5, 6, 7, 8. 
Therefore the null space of matrix L  gives 
 

[ ] )(~~~~
21212121 LnullDDCCBBAA =  (3.106) 

 
where the tilde-signed variables are linked to the original unknowns through the 
same coefficients applied to the corresponding columns 
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Therefore the displacements as function of radial coordinate in the internal layer are 
computed in this way 
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 (3.108) 

 
Those in the external layer are obtained with obvious substitutions. 
Stresses instead, according to equations (3.11) and (3.20) need also the values of 

r
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∂
∂  and 

r
u I
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∂ , which are computed in this way 
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and similarly 
r

u E
r

∂
∂  and 

r
u E

z

∂
∂ . 

As said before, there could be an overflow problem for large imaginary part of 
Bessel/Hankel arguments. 
Therefore there’s need for an approximation for the ratios of Bessel and Hankel 
functions whose arguments have large imaginary part. The ratio is between functions 
whose argument is not equal, so the approximation must be found as function of the 
ratio between arguments, that are therefore written in this way: 
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1   for +ℜ∈∞→ kz ,)Im(  

 
In order to accomplish this, let’s take the asymptotic expansions for large arguments 
in Abramowitz and Stegun [21] (p. 364, 9.2.1), in particular the expansions of the 
Hankel functions: 
 

( ) ( )4/2/)1( )/(2 πνπ
ν π −−∞→ → zjz ezzH  ( ) ππ 2arg <<− z  

( ) ( )4/2/)2( )/(2 πνπ
ν π −−−∞→ → zjz ezzH  ( ) ππ <<− zarg2  

(3.110) 

 
where function arg takes the phase of the complex number.  
Keeping in mind that ( ) ( ) +ℜ∈∀= kkzz argarg , I can easily compute 

http://www.math.sfu.ca/~cbm/aands/page_364.htm
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(3.111) 

 
To obtain the ratio of Bessel functions I exploit the fact that the Bessel function is the 
average of the two Hankel functions 
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Then I distinguish two cases according to the sign of imaginary part and drop the 
complex exponential that tends to 0 
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And finally get the ratios left: 
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3.10. Adaptation to fluids 
So far the formulation of the propagation model was referred to elastic solids, whose 
elastic parameters had to be specified: the first and second Lamé parameters. 
This section explains and justifies how to turn any of the solid layers into a fluid 
where no shear waves exist but other phenomena are considered, viscosity and 
thermal conduction, including phenomena due to boundary layers. 
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The modification is accomplished solely in a replacement of Lamé parameters with a 
proper function of fluid parameters. 
In a constructive procedure, first viscous only fluids are treated, then extension to 
thermo-viscous is accomplished. 
 
Viscous fluid 
The substitution to perform in order to consider viscous effects only, is reported by 
Baik et al. [16], who cites Nagy & Nayfeh [22]: 
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Plus sign must be taken in case of tje ω  time convention, present choice, minus sign 
in case of tje ω−  time convention. 
It is worth here to see some consequences of these substitutions: 
The square of the P-wave velocity pc  
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has a real part which accounts for the pressure wave velocity and an imaginary part 
which accounts for bulk viscous friction. 
The square of the S-wave velocity sc  
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is imaginary meaning that no shear wave exists anymore, but shear friction does. 
The square of the radial wavenumbers 2α  and 2β  
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are the same as in Elvira-Segura [15]. 
The normal rrτ  and tangential rzτ  stresses in case of fluids 
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are the stresses of a Newtonian fluid (Newton stress tensor) in cylindrical coordinates 
in case of axisymmetry. 
 
Thermo-viscous fluids 
The addition of thermal effects is again reported by Baik et al. [16] citing Kinsler et 
al. [23] (pag. 210-218) as a modification of the P-wavenumber 
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But this modification concerns the bulk thermal effects, as one can verify by 
comparing it with the expression for the wavenumber k , computed for bulk thermo-
viscous effects, given by Blackstock [1] (pages 305 ff.), and reported here with the 
present notation. 
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In pipes such bulk effects at low frequency are negligible compared to the boundary 
effects, therefore like for viscous effects, boundary thermal phenomena must be 
inserted in the (pseudo) shear wave velocity sc .  
The expression is here derived following the reasoning of Blackstock [1] (pages 519-
525): 
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The velocity profile in the viscous boundary layer depends on a “transversal wave” 

whose wavenumber is 
η
ωρ

η
ωρ

22
jks += , which explains the presence of the “shear 

wave” whose square velocity is 
ρ
ωηjcs =

2 . 

Therefore the shear wave accounts for the viscous boundary layer effect. 
Then Blackstock gives the dispersion equation accounting for the viscous boundary 
layer which contains the parameter kinematic viscosity ρη / , and states that in order 
to include the thermal boundary layer effect, it suffices to replace ρη /  with 








 −
+

Pr
11/ γρη  in the dispersion equation (page 525), like it is reported also by 

Kinsler et al. [23] (pages 230-234); 
Therefore one can deduce that, to include the thermal boundary layer effect, in the 
matrix method it suffices to apply the same replacement in the definition of 2

sc : 
2

2

Pr
11 






 −
+=
γ

ρ
ωηjcs  (3.124) 

 
Such expression is clearly linked to the expression for attenuation according to the 
wide-tube approximation, Eq. (2.5), and therefore in this way the model adds the 
effect of thermal boundary layer analogously to the effect of the viscous boundary 
layer, in agreement with the wide-tube hypothesis. 
Since µρλ 22 −= pc , the substitutions for switching to a thermo-viscous fluid are 
finally 
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which are the substitutions implemented in the algorithm in case of fluid. 
Density is here considered constant, an hypothesis certainly acceptable in case of 
liquids, whereas in case of gases it corresponds to the acoustic approximation, that is 
small variations of density (and pressure) compared to the equilibrium values. 
These substitutions perhaps represent the most original (to the author’s knowledge) 
contribution of the AXSYM-3L model which completes Baik’s work [16]. 
In fact the boundary thermal effect in pipes is usually much more relevant than the 
bulk thermal effect at least at low frequency and the former is included in the model 
only through equation (3.125b). 
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In conclusion the AXSYM-3L model provides an automatic algorithm to compute 
propagation parameters curves (as well as field variables profiles) for three-layers 
cylindrical media, each layer can be either solid or liquid and in the latter case both 
boundary viscous and boundary thermal effects are included. 
The major novelty of the AXSYM-3L model compared to the much more general 
Disperse, lies in the inclusion of boundary thermal effects. 
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4. AXSYM-3L model results 

Previous chapter describes the algorithm AXSYM-3L for the computation of the 
propagation parameters of acoustic waves in cylindrical structures in all its aspects 
and makes possible to implement it, this chapter is meant to show and analyze some 
of the results about fluid-filled pipelines. I restrict to the fundamental fluid-borne 
propagation mode, which travels the most in pipelines. 
In the first section some features of AXSYM-3L are tested by comparing its results 
with other literature models. 
The following two sections are devoted to show the propagation parameters 
computed by the algorithm in an oil-filled pipe surrounded by different media, solid, 
liquid or gas. 
The subsequent section compares the AXSYM-3L model with literature models 
described in Chapter 2 for the scenario of a buried oil-filled pipe. 
The last section shows the profiles of the field variables, displacements and stresses 
for this same scenario at a typical frequency of 50 Hz. 
 

4.1. Test of AXSYM-3L model 
This section presents 4 tests of the AXSYM-3L algorithm for computing attenuation 
and dispersion curves of the first fluid-borne mode, each test concerns different 
scenarios and propagation phenomena. 
The first two are meant to verify the effect of the external medium and therefore take 
as reference published results computed by the Disperse software (Long et al. [12]) 
at frequencies of the order of kHz. 
The third has the aim to verify the addition of the boundary thermal effects in the 
propagation model (Section 3.10, Eq. (3.125)) and therefore takes as reference the 
wide-tube analytic approximation and is performed at low frequency. 
The last test takes the results for attenuation of a thermo-viscous fluid-filled pipe 
published by Baik et al. [16] and compares them with those obtained by AXSYM-3L 
model. 

4.1.1. Water-Steel-Water 
This test intends to verify AXSYM-3L model as regards the external loading effect 
for a liquid-filled elastic pipe immersed in water on the dispersion curve of the first 
fluid-borne propagation mode. 
Long et al. [12] (figure 6 in their paper) show dispersion curves computed with 
Disperse algorithm for some axisymmetric modes in a water-filled 10 in cast-iron 
pipe (16 mm wall thickness) immersed in water. The first fluid-borne mode is there 
labeled α1. 
Figure 4.1 reports that figure with superimposed in red the results of AXISYM-3L 
for the same scenario and so-labeled mode α1, the fitting obtained between the 
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dispersion curves is very good with a minimum phase velocity at about 5 kHz 
whereas the attenuation is null because here Long et al. [12] neglects water viscosity 
and no external radiation takes place. 
 

 
Figure 4.1. Dispersion curves taken from Long et al. [12], with superimposed 

dispersion curve computed by AXISYM-3L for a water-filled pipe immersed in water. 
 

4.1.2. Water-Steel-Soil 
This test intends to verify AXSYM-3L model as regards the effect of the soil that 
surrounds a fluid-filled elastic pipe on the first fluid-borne propagation mode. 
Long et al. [12] (figure 15 of their paper) show attenuation and dispersion curves 
computed with Disperse algorithm for the first fluid-borne mode α1 in a similar 
scenario as previous test, a water-filled 10 in cast-iron pipe (16 mm wall thickness), 
except that the pipe is buried in soil with variable P-wave velocity pc  (labeled Lc  in 
the source notation), S-wave velocity is kept constant at 80 m/s. 
Figure 4.2 reports that figure with superimposed as colored curves the results of 
AXISYM-3L for 4 extreme values of P-wave velocity pL cc =:  written in the legend. 
Again the results are the same and show two families of curves separated by the fact 
that Lc  is greater or less than the non-dispersive in-pipe velocity (labeled NDLNV ) 
which is just the velocity expressed in Model 1, Eq. (2.1). 
 

 

 

AXSYM-3L
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Figure 4.2. Dispersion and attenuation curves taken from Long et al. [12], with 

superimposed (colored) curves computed by AXISYM-3L for a buried water-filled 
pipe. 

 

4.1.3. Air-Steel 
This test is meant to prove the ability of the algorithm to compute propagation 
parameters of the fundamental fluid-borne mode in a gas-filled elastic pipe. 
In this case, unlike liquids, the pipe is infinitely rigid to the gas, and the values of the 
pipe’s physical properties are irrelevant like even the properties of any external 
medium. 
On the contrary, the thermal effects are here important, in particular the boundary 
layer thermal, in addition to the usual viscous effects, and these can be accurately 
taken into account only by adding thermal terms in the shear wave velocity, Eq. 
(3.124)  which leads to equation (3.125). 
Therefore the results of AXISYM-3L are compared with those of Baik et al. [16] 
who, when dealing with thermo-viscous fluid mercury, include thermal terms in P-
wave velocity (Eq. 13) but don’t report that they modify S-wave velocity, which was 
actually not so important in their scenario, as next section shows. 
It is important instead in this scenario (Table 4.1) at low frequency, where the  
simple analytic wide-tube approximation, Model 2 (Section 2.1.2) can offer an 
accurate term of comparison (even without elastic pipe correction). 
I consider standard condition air in 40 cm diameter, 11 mm thick steel pipe, all 
parameters of the waveguide are precisely listed in Table 4.1. 

 

 

 

 
cL=700 m/s

cL=1000 m/s

cL=1500 m/s

cL=2000 m/s
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Physical and geometrical parameters 
Symbol Value Unit Description 
Pipe geometry 
b

 
0.2 m Pipe internal radius 

h
 

0.0111 m Pipe thickness 
Internal fluid - Air 

fρ
 

1.23 kg/m3 Density 
fc
 

340 m/s Speed of sound in free medium 
η

 
1.8x10-5 Pas Dynamic viscosity 

γ  1.4 - Specific heats ratio 
Pr  0.71 - Prandtl number 
Shell material – Steel 

pρ
 

7800 kg/m3 density 
E

 
2x1011 Pa Young modulus 

ν  0.3 - Poisson ratio 

Table 4.1. Parameters for test scenario. 
 

 
Figure 4.3. Dispersion and attenuation curves in a gas-filled pipe. 

 
Figure 4.3 displays the propagation parameters as function of frequency computed 
with the three models, AXISYM-3L model closely follows the analytic Wide-tube 
curve whereas Baik’s model does not because it doesn’t take into account the thermal 
boundary layer but only the bulk thermal effect. 
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4.1.4. Mercury-steel 
The previous test has displayed a relevant difference between AXISYM-3L model 
and that of Baik et al. [16] in the considered scenario and the former model resulted 
more accurate. 
This test has the objective to assess the difference of results between the two models 
in the scenario described by [16] themselves which deals with another thermo-
viscous fluid, mercury, enclosed in a 6.41 cm inner radius steel shell surrounded by 
vacuum (in this last feature the model is similar to Model 6, Elvira-Segura’s [15]). 
In figure 12 of [16], authors show dispersion and attenuation curves for that 
waveguide as function of a dimensionless frequency bk1  in a quite high frequency 
range (for instance 21 =bk  corresponds to about 7.2 kHz). The fundamental fluid-
borne mode is here labeled ET0. 
Figure 4.4 reports those figures with superimposed as red curve the results by 
AXISYM-3L up to a frequency of 20 kHz, the difference between the results of the 
two models cannot be detected in that scale, but even by looking closer to the curves, 
there is only a slight negligible difference in the attenuation. 
 

 
 

 

AXSYM-3L
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Figure 4.4. Dispersion and attenuation curves in a mercury-filled pipe taken from 

Baik et al. [16] with superimposed in red some results from AXISYM-3L. 
 
At such high frequency in fact the bulk (viscous and thermal) effects are much larger 
than the boundary effects, while they are not in test 4.1.3, and this explain why Baik 
et al. [16] didn’t need to include boundary thermal effects; at low frequency instead, 
the inclusion is needed. 
 

4.2. Sensitivity to surrounding medium parameters 
AXISYM-3L model is now analyzed in order to assess how propagation parameters 
(wavenumber) change as function of media parameters.  
For gas pipelines, due to the high difference between the acoustic impedance of the 
gas and of the pipe shell, even at high pressure, the rigid tube assumption remains 
valid (Model 2 in section 2.1.2), and the influence of the external medium is 
negligible. 
This is not true for oil pipelines: I show here the sensitivity of the propagation curves 
versus the external solid parameters, namely density and P-wave velocity. The shear 
wave velocity sc  is kept dependent on P-wave velocity sc  and computed as 

3/ps cc = . 

 

 

AXSYM-3L
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Figure 4.5 shows the propagation parameters for variations of the surrounding 
medium density (other parameters fixed to the values in Table 2.1): along such 
variation, the phase velocity ranges from the value it would have without load (like 
in Elvira-Segura model which corresponds to null external density) to the free space 
velocity (like in rigid pipe approximation, high external density) whereas the 
increase in density reduces the attenuation at lower frequency (as tending to rigid 
pipe) but enhances it at higher frequency. 
 

 
Figure 4.5. Phase velocity and attenuation for different values of surrounding 
medium density. External medium parameters are set as follows: cp=1500 m/s, 

cs=900 m/s. 
 
Figure 4.6 shows the propagation parameters for variations of the surrounding 
medium P-wave velocity (other parameters fixed to the values in Table 2.1). An 
increase of the surrounding medium velocity corresponds to an increase of the 
system rigidity; conclusions, as regards dispersion, are similar to those aforesaid in 
case of density variations. Attenuation due to the external medium (radiation) takes 
place only if the medium wavespeed (either shear or compressional) is lower than the 
guided wave velocity. In figure, no radiation takes place for cp=3000 m/s, only shear 
wave radiation for cp=1500 m/s (and cs=870 m/s), both shear and compressional 
wave radiation for cp=700 m/s (and cs=400 m/s). 
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Figure 4.6. Phase velocity and attenuation for different values of surrounding 

medium P-wave velocity. External medium parameters are set as follows: ρ=2000 
kg/m3, 3/ps cc = . 

 

4.3. Propagation parameters in buried/submerged oil pipelines 
It is interesting also to analyze the propagation parameters for an oil pipeline buried 
or submerged: the difference is in the external medium. I consider again the oil 
pipeline with geometrical and filling-fluid parameters in Table 2.1, surrounded by 
three different media: air, water and dry loose sand (media properties in Table 4.2). 
Two acoustic and one elastic external media. 
Attenuation factor and phase velocity are shown in Figure 4.7. 
 

Surrounding medium: dry loose sand 
Symbol Value Unit Description 

mρ  
2000 kg/m3 Density 

pc  
340 m/s P-wave speed 

sc  
200 m/s S-wave speed 

Surrounding medium: air 
Symbol Value Unit Description 

mρ  
1 kg/m3 Density 

pc  
340 m/s P-wave speed 

η  1.8x10-5 Pa*s Dynamic viscosity 
Surrounding medium: water 
Symbol Value Unit Description 

mρ  
1000 kg/m3 Density 
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pc  
1500 m/s P-wave speed 

η  1x10-3 Pa*s Dynamic viscosity 

Table 4.2. Elastic parameters of 3 different surrounding media. 

 
Figure 4.7. Phase velocity and attenuation for different surrounding media. 

 
Sand provokes a much higher attenuation, in fact it enables radiation both of shear 
and pressure waves, whereas no radiation takes place in acoustic media. In case of air 
because its density is negligible to the pipe’s, in case of water because its P-wave 
velocity is higher than the mode’s velocity and no shear waves exist. 
The phase velocity is instead quite similar in the three cases. 

4.4. Comparison with literature models 
In this section the results of AXISYM-3L model are compared with those of the 
models selected from literature and described in Chapter 2 for the scenario defined in 
Table 2.1, shortly buried oil pipe. 
The following plots show the propagation curves computed with the AXISYM-3L  
model together with those of the other models up to 200 Hz, please notice that the 
vertical axis of the attenuation plot is set to logarithmic scale to cope with the large 
interval spanned by the attenuation coefficient. 
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Figure 4.8. Phase velocity and attenuation computed with selected models. 

 
The attenuation curve of the new model AXSYM-3L fits the curve of Elvira-Segura 
[15] (elastic wide-tube) up to about 20 Hz; for higher frequencies it begins to 
increase severely tending to approach the Muggleton [4] model. 
The phase velocity looks quite higher than all the other models: this is due to the 
high P velocity of the medium surrounding the pipe, i.e. the stiffness of the solid 
external load makes the waveguide more rigid, increasing the wave speed.  
As regards to the dispersion curve shape, at low frequency it is similar to Elvira-
Segura and elastic wide-tube, whereas at higher frequencies the decrease resembles 
that of Muggleton [4]. 
Therefore the AXSYM-3L model is able to fit the attenuation curve of the elastic 
wide tube model at low frequency, the curve of Muggleton [4] at high frequency and 
to link these two curves with a transition curve not available otherwise. 
 

4.5. Profiles of field variables 
Finding a root for the determinant of the solution matrix at a given frequency implies 
finding also the values of the unknowns ( 21212121 ,,,,,,, DDCCBBAA ) that determine 
the dependence of the displacements (and stresses) on the radial coordinate as 
described in Section 3.9.   
The next figures therefore will show as an example the profiles of 4 field variables 
for a buried oil-filled pipe at the frequency of 50 Hz. 
In the axisymmetric case, a proper set of field variables is radial ru  and axial zu
displacements, normal rrτ  and shear rzτ  stresses, all these are expressed in physical 
units by setting the normal stress in oil (acoustic pressure) to a value of 1 bar, each 
graph shows the magnitude and the phase of the complex variables.  
All parameters are still set to the values in Table 2.1. 
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Figure 4.9 shows the displacements up to a distance from the axis of 2 m, the main 
displacement is in oil in the axial direction, whereas the radial displacement has its 
maximum in the pipe and progressively decreases both in oil and in soil. 
Actually the radial displacement doesn’t tend to 0 but has a minimum at large 
distance and then increases again (this is not shown in the plot), which is the reason 
for attenuation due to radiation outward. 

 
Figure 4.9. Radial and axial displacements in a buried oil-filled pipe at 50 Hz. 
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Figure 4.10. Radial and axial displacements in a buried oil-filled pipe at 50 Hz.. 
Zoom around pipe. 
 
Figure 4.10 is a zoom around pipe, here particularly interesting is the boundary layer 
in the fluid where the axial displacement ranges from 0 to the plateau value, and the 
radial displacement has its maximum actually just in the boundary layer. The 
boundary layer is responsible for the viscous (also thermal in gas) attenuation at low 
frequency. 
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Figure 4.11. Normal and shear stresses in a buried oil-filled pipe at 50 Hz. 

 
Figure 4.11 shows the stresses up to 2 m far from the pipe axis, the main stress is the 
pressure in oil whereas the shear stress is maximum in the pipe shell. 
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Figure 4.12. Normal and shear stresses in a buried oil-filled pipe at 50 Hz.. Zoom 

around pipe 
 
The zoom of Figure 4.12 shows just linear links from values in oil to those in soil, 
the wrapping in the phase of the shear stress looks strange but the magnitude is close 
to zero in that interval.  
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Conclusion 

The literature review on models of wave propagation in pipelines pointed out the 
need of a complete matrix method to take accurately into account all phenomena of 
propagation relevant in practical situations of pipeline monitoring. 
A complete matrix method, called AXSYM-3L, was entirely derived from the basic 
equations considering 3 cylindrical (visco-) elastic media, the external of infinite 
radial extent; the wave equations in each medium were found as function of a proper 
set of unknowns. The continuity boundary conditions were applied to displacements 
and stresses at the two interfaces, resulting in a linear system of 8 equations in 8 
unknowns. 
The solution for the propagation parameters is found by setting the determinant of 
solution matrix to zero, which requires a numerical method in order to be computed. 
A posteriori, any of the solid layer can be turned into a thermo-viscous fluid by a 
proper redefinition of Lamé parameters. 
The method is thus presented in such a detail that it can be reproduced and methods 
are suggested to overcome possible numerical problems. 
In consideration of the model scope, only axisymmetric propagation modes are 
considered. 
The novelty compared to the commercial software Disperse lies in the fact that it can 
model thermal effects, both bulk and boundary layer, which is important normally in 
gas-filled pipes. 
AXSYM-3L was successfully tested for fluid-filled pipes limitedly to the 
fundamental fluid-borne mode. 
As regards the surrounding medium effect, results of Disperse software at high sonic 
frequency available in literature were taken as reference and verification included 
both the load effect on dispersion in case of external liquid and the radiation effect on 
attenuation in case of external solid. 
In another test I have taken as reference the wide-tube approximation at low 
frequency in order to test the boundary layer thermal effect, in addition to the 
viscous. 
The AXSYM-3L was compared to the other simpler models described and proved to 
be able to take into account all the phenomena it was design to. 
Finally profiles of field variables in physical units, namely displacements and 
stresses, computed by AXSYM-3L were shown for the fundamental fluid-borne 
mode at 50 Hz. Profiles show in particular 2 reasons for attenuation: the boundary 
layer in the fluid close to the pipe and the movement of the external medium which 
doesn’t die out with radial coordinate. 
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Part II: Experimental validation and technological 
impact 
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Introduction 

In part I of the thesis I discussed the theory of acoustic wave propagation in pipelines 
in a way that it was functional to the development of a research project called 
Dionisio, which I contributed to. 
The aim of the project, promoted and supported by eni, the Italian oil company, was 
the design of a registered vibro-acoustic system for remote real-time monitoring of 
pipelines (e-vpms®). The system relies on a discrete network of pressure and 
vibration sensors installed on the pipeline, at relative distances of tens of kilometers 
(Figure 1). The acoustic and elastic waves produced for example by third party 
interference and by flow variations (leaks, spills, valve regulations, pig operations, 
etc.), propagate along the pipeline, and they are recorded at the monitoring stations.  
The propagation parameters thus have a significant effect on measurements and here 
lies the importance of wave propagation theory. 
Sensors and GPS signals are acquired in each local unit and local units are connected 
to a control unit that executes the multichannel processing, enabling the detection, 
localization and classification of the triggering event, but also to gain useful 
information on the pipeline system through advanced processing. 
The e-vpms® system has been installed on both oil and gas transportation lines 
during several field campaigns. 
 

 
Figure 1. e-vpms® vibroacoustic monitoring system. 

 
In the following chapters I will show some interesting experimental results obtained 
on different oil and gas pipelines: 

• Gran San Bernardo, oil pipeline. Chivasso-Aosta (Italy) stretch; 
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• TRANSMED natural gas pipelines. Cap-Bon (Tunisia) - Mazara del Vallo 
(Italy); 

• Passo Spluga air filled decommissioned pipeline. Stretch between Milano and 
Lecco (North Italy); 

• Centro Studi Materiali (CSM) natural gas test pipeline. Full scale lab in 
Sardinia; 

• Messina Channel offshore natural gas pipelines. 
 

The field test campaigns have permitted to: 
• derive and validate mathematical models of sound propagation within pipes; 
• tune and realize a detection system for leaks and TPI (third party 

interference);  
• track PIGs (pipeline inspection gauges) both in low pressure and high 

pressure scenarios; 
• characterize the pipeline as equivalent acoustic transmission channel; 
• apply long term monitoring of pipe for analysis of the transport efficiency, 

detection of anomalies such as deformations/obstructions and identification 
of fluid properties. 

 
Throughout the development of Dionisio research project, I have been co-author of 
confidential documents delivered to eni, which contain much information on the field 
campaigns, device installation, measurements, data processing and interpretation. 
These documents are listed in the Bibliography and are consultable upon agreement 
by eni. 
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5. Gran San Bernardo pipeline 

This chapter deals with some experimental campaigns and consequent results 
performed on the Gran San Bernardo oil pipeline, Chivasso-Aosta stretch. Here a 
leak detection system was tuned, developed, deployed and validated through 
campaigns of controlled spills. 
Measurements have been collected since 2010 which allow long term advanced data 
analysis, such as monitoring of pipeline operational conditions or pumps efficiency. 
Thanks to measurements performed for a long time at two monitoring stations on this 
pipeline, the acoustic wave attenuation was reliably measured in a buried pipeline in 
service condition, showing the importance of the surrounding medium effect and 
thus validating AXSYM-3L model described in chapter 3. 
Some of these results were published in [24], [25], [26] and [27]. 

5.1. Pipeline and monitoring system description 
A vibro-acoustic monitoring system has been installed on the oil transportation 
pipeline in service in the North of Italy, managed by eni r&m, connecting Chivasso 
to Pollein (Aosta), about 100 km long (Figure 5.1). Pipe diameter is 16”, oil pressure 
varies between 70 bars at the pumping station (Chivasso) down to 4 bars at the 
receiving terminal (Pollein). Flow rate is about 400 m3/h. Two vibro-acoustic 
monitoring stations are located at the pipe ends (Chivasso and Pollein), and two 
along the pipeline (VM28 and VM35), at an intermediate distance of about 30 km. 
During some of the field campaigns 3 further temporary monitoring stations were 
installed on V19, V20 and V21. Recorded signals are vibrations of the pipe shell 
measured by accelerometers, and pressure within the fluid measured by two different 
hydrophone to obtain both the low-frequency signal (the background fluid pressure) 
and the higher frequency signal, namely acoustic pressure produced by travelling 
waves. Figure 5.2 shows the hydrophones mounted and the prototypal monitoring 
system at Chivasso station. Table 5.1 describes all valve stations along the 
considered pipeline stretch providing additional geometrical and flow parameters. 
Reference [26] was published in 2010 after that the prototypal version of this system 
was installed and the first field test campaign was performed in a controlled scenario 
by producing artificially TPI and leaks. 
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Figure 5.1. Satellite map showing oil pipeline route (red line) and measurement 

stations (yellow dots) on the Chivasso-Pollein (Aosta) pipeline stretch. Three 
temporary measurements stations are in green. 
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Figure 5.2. Pressure sensors (left) and prototypal monitoring system (right) 
 

Valve Place Latitude Longitude Height Length Partial len DN DN int Thick Vol Partial vol
VM m m m inch mm mm m3 m3
213 Chivasso N 45 11.507' E 7 55.218' 181 0.00 0.00 16" 384.20 11.10 0.00 0.00
19 Castelrosso N 45 11.865' E 7 54.996' 187 1102.55 1102.55 16" 384.20 11.10 127.82 127.82
20 Torassi N 45 12.169' E 7 54.888' 191 1664.49 561.94 16" 384.20 11.10 192.97 65.15
21 Betlemme N 45 12.972 E 7 54.786' 193 3165.48 1500.99 16" 384.20 11.10 366.98 174.01
22 Betlemme N 45 13.456 E 7 54.730' 202 4137.01 971.53 16" 384.20 11.10 479.61 112.63

23R Boschetto 5714.71 1577.70 16" 384.20 11.10 662.52 182.91
24R Vallo 9157.26 3442.55 16" 384.20 11.10 1061.63 399.10
25 Arè N 45 16.908' E 7 53.181' 253 11007.04 1849.78 16" 384.20 11.10 1276.07 214.45
26 Rodallo N 45 17.254' E 7 52.974' 257 11699.62 692.58 16" 384.20 11.10 1356.37 80.29

27R Barone 15208.32 3508.70 16" 384.20 11.10 1763.14 406.77
28 Chiusella N 45 24.983' E 7 50.757' 238 27378.68 12170.36 16" 384.20 11.10 3174.08 1410.94

29R Fiorano 33085.99 5707.31 16" 384.20 11.10 3835.75 661.66
30R Lessolo 36918.32 3832.33 16" 384.20 11.10 4280.04 444.29
31 Tavagnasco N 45 32.303' E 7 49.910' 260 42330.42 5412.10 16" 384.20 11.10 4907.48 627.44
32 Tavagnasco N 45 32.493' E 7 49.983' 277 42719.71 389.29 16" 384.20 11.10 4952.61 45.13
33 Quincinetto N 45 34.477' E 7 48.454 289 47582.47 4862.76 16" 384.20 11.10 5516.36 563.75
34 Quincinetto N 45 34.697' E 7 48.157' 290 48181.04 598.57 16" 384.20 11.10 5585.75 69.39
35 Arnad N 45 38.326' E 7 43.008' 357 59307.04 11126.00 16" 384.20 11.10 6875.62 1289.87
36 Arnad N 45 38.528' E 7 42.989' 362 59755.17 448.13 16" 384.20 11.10 6927.57 51.95
37 Arnad N 45 38.876' E 7 42.438' 372 60740.27 985.10 16" 384.20 11.10 7041.78 114.21
38 Verres N 45 40.536' E 7 40.561' 379 65341.02 4600.75 16" 384.20 11.10 7575.16 533.38
39 Issogne N 45 40.673' E 7 40.414' 348 65727.53 386.51 16" 384.20 11.10 7619.96 44.81

Connection Champdepraz 67943.96 2216.43 16" 384.20 11.10 7876.92 256.96
40 St. Vincent N 45 44.396' E 7 39.361' 580 73821.87 5877.91 16" 384.20 11.10 8558.36 681.44
41 St. Vincent N 45 44.470' E 7 38.827' 471 74694.74 872.87 16" 384.20 11.10 8659.56 101.19
42 Fenis N 45 44.351' E 7 28.705' 500 89580.17 14885.43 16" 384.20 11.10 10385.26 1725.71
43 Nus N 45 44.298' E 7 28.153' 520 90388.28 808.11 16" 384.20 11.10 10478.95 93.69

43bis Nus 91242.62 854.34 16" 384.20 11.10 10578.00 99.05
44 St. Marcel 92061.67 819.05 16" 384.20 11.10 10672.95 94.95
45 St. Marcel 92452.66 390.99 16" 384.20 11.10 10718.28 45.33
301 Pollein N 45 43.948' E 7 21.074' 558 100485.57 8032.91 16" 384.20 11.10 11649.55 931.28

 
Table 5.1. Stations along Chivasso-Aosta oil pipeline. 

 

5.2. Leak detection system 
After campaigns of tests and tuning, we have deployed a leak detection system on the 
Chivasso-Pollein stretch of the oil pipeline which relies on measurements performed 
on 4 stations: Chivasso, V28, V35 and Pollein. 
The detection and localization is run on the control unit computer for each 
intermediate pipe stretch, by processing the pressure signals collected at both 
adjacent stations. Since interruption of flow produces interruption of the pipeline 
acoustic channel (because of closure of non-return valves) and pressure decrease, 
background pressure signal can be used to switch on/off the detection procedure.  
The acoustic response of every pipe stretch is computed and updated with a time 
interval of some minutes, exploiting the pump noise produced at pumping stations as 
travelling signal. 
Signals measured at both ends of a stretch are filtered and back-propagated using the 
time varying acoustic response, and then they are correlated in short time windows 
(few seconds) at discrete positions (every 20-100 m) along the pipeline stretch: the 
result is an image-like representation of correlation values versus distance (pipeline 
coordinate) and time axis. Anomalies appear as high amplitude events (outliers with 
respect to average values): the alarm threshold has to be tuned during a calibration 
stage, and it can be adaptively updated during standard pipeline operation. 
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The following sections describe the leak detection and localization procedure which 
was tuned, tested, implemented and validated on the Chivasso-Pollein oil pipeline. 

5.2.1. Estimation of acoustic response 
The response of the acoustic channel can be experimentally measured using the 
pressure transients produced at the pumping terminals as source signal. Referring to 
Figure 5.3, let s0(t) be the source signal, xB(t) and xC(t) the pressure signals recorded 
at station B and C, hBC(t) the (possibly time varying) acoustic response for sound 
propagation from B to C. The leak detection system computes all the responses 
between pair of stations using adaptive filter theory, in particular with a Widrow-
Hoff algorithm. 

 
Figure 5.3. Scheme for estimation of response of the acoustic channel . Recording 

stations in A, B, C, D, pump noise s0(t). 
Considering the sampled version of the signals, the Widrow Hoff algorithm for a N-
th order filter can be summarized as [28] 

T
BBBB Nnxnxnxn )]1(),....,1(),([)( +−−=x  

)()(ˆ)()( nnnxne B
T
BCC xh−=  

)()()(ˆ)1(ˆ nnenn BBCBC xhh γ+=+  

for n=1,2,3,…,N and with γ= step size, initialization ]0,...0,0,0[)0(ˆ =BCh  
 
Given the stationarity of the flow process, the filter becomes stable after some tens of 
seconds, and it is updated with a time interval of some minutes. 
The filter obtained in this way represents an experimental sample of the propagation 
function from B to C and therefore the experimental propagation parameters (at least 
at low frequency) can be extracted and compared with the propagation models of 
Part I. 

5.2.2. Leak detection algorithm 
The complete leak detection algorithm can be divided in two steps: 
 
Step 1: Noise reduction (Figure 5.4) 
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− Estimate of acoustic channel response: compute transfer functions between 
couples of stations (using pump/valve noise) 

− From segment T1-A: compute right-going noise generated at T1 
− From segment T2-B: compute left-going noise generated at T2 
− Remove noise from A and B after propagation with previously computed 

transfer functions 
 

 
Figure 5.4. Reduction of pump noise from monitoring stations A and B.   

 
Step 2: leak detection (Figure 5.5) 

− Back propagate signal A to signal B and vice-versa and cross-correlate 
pressure signals 

− Detect peaks on cross-correlation matrix. 

 

Figure 5.5. Detection of leaks occurred between stations A and B 
 
I have contributed to establish and implement these leak detection procedures which 
have been tuned in order to detect fast spills/leaks with hole >0.2”. 
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In 2012 a validation test has been performed by generating a total of 86 spills in 
different conditions: 

− spilling diameter from 0.06 to 0.49 inches; 
− spill locations at VM22, VM31 and VM33; 
− fast & slow spill opening/closing. 

 
The expected behavior of the e-vpms® has been successfully confirmed. 
The calibrated system shows excellent performances in terms of false alarms 
(reduced to 0% in the monitored period at the expense of possible missing detection 
for spills minor of 0.2” diameters). 
The e-vpms® installation with leak detection system on GSB oil pipeline has been 
kept fully operational. No alarms of real leaks have been issued so far. 

5.3. Advanced processing 
Beyond the leak detection system, e-vpms® technology allows also to store a large 
amount of data which, properly processed, can provide additional important 
information on the pipeline and the carried fluids such as flow efficiency, pipe 
integrity, fluid physical properties, malfunctioning of mechanical devices. The 
availability of data measured for a long time in fact, allows to learn the usual, 
standard operational conditions and easily identify different measurements that result 
from anomalous situations. 
This section shows examples of such advanced processing:  

1) Long-term measurements of acoustic wave attenuation up to 200 Hz and 
comparison with theoretical models. 

2) Long-term monitoring of sound speed and comparison with theoretical 
models. 

3) Long-term monitoring of attenuation/sound-speed relation and comparison 
with theoretical models 

4) Pump noise listening and failure detection. 
5) Long-term monitoring of anomalous reflectors. 

 

5.3.1. Acoustic wave attenuation 
The curve of the acoustic wave attenuation in the oil pipeline is here computed up to 
a frequency of 200 Hz and compared with theoretical models of Part I of this thesis.  
The attenuation is computed by measuring the same travelling pressure signal at two 
monitoring stations, the travelling signal considered is the noise of the pumps which 
is produced at Chivasso pumping station and travels towards Pollein (Aosta): such 
noise indeed appears to correlate very well between all couples of stations from 
Chivasso to VM28, meaning that all hydrophones record the same signal that is 
travelling in the pipe. 
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In order to estimate the attenuation curve up to high frequency I consider a couple of 
stations at short distance which is Chivasso-VM21 (distance 3165 m). As an example 
let’s consider ten minutes of signal, starting at December 14th 2010, 15:10 (GMT 
time): Figure 5.6 shows the signals (only 10 seconds for clarity) recorded by 
hydrophones at the two stations and the power spectral density (PSD) computed on 
10 minutes, Figure 5.7 displays the cross-correlation between the signals. 
Figure 5.6 shows how PSD of V21 signal lays down to the sensor sensitivity limit 
little above 200 Hz, which gives the frequency limit of validity of the attenuation 
curve. 
 

 
Figure 5.6. Acoustic pressure at Chivasso and VM21. Time signal (top), power 

spectral density (bottom). 
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Figure 5.7. Propagation from Chivasso to VM21. Cross-correlation of pressure 

signals. 
 
The high value of the cross-correlation peak clearly shows that the 2 receivers are 
measuring mostly the same signal travelling along the pipeline. From the delay of the 
cross-correlation peak, a rough estimate of the average wave-speed is possible, 
yielding 1238 m/s for the Chivasso-VM21 propagation. 
The difference between the power spectral densities (in dB) divided by the distance 
(in km) gives a measure of the attenuation (in dB/km). 

 
For a more reliable dataset of experimental data, the procedure just described was 
applied to periods of some minutes in different days over more than two years. The 
periods chosen were dependent on the availability of data and the working condition 
of the line. The curves are displayed in Figure 5.8 and the dates of measurements are 
written in legend, from December 2010 to January 2013. 
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Figure 5.8. Experimental wave attenuation 

 
 
Given the similarity of the curves, the measurements are quite repeatable, which 
implies that they are also reliable and can be used to validate the wave propagation 
models; the oscillations in the curves (in particular at about 80 Hz in the blue curve) 
are likely related to resonance effects in the measuring points. 
 
In order to compute the attenuation curves with some propagation models, it would 
be useful to know the correct physical parameters of the pumped oil and the elastic 
parameters of the soil surrounding the pipe. 
In practice the oil changes its composition and the variable pressure would add 
uncertainties as well, moreover the soil is likely to change its properties all along 3 
km too, so that a data driven approach is here preferred to get the values of models 
parameters. The values in Table 2.1 are still a good first guess. 
Such inversion procedure is performed on the new model AXSYM-3L which is 
expected to be the most comprehensive among the presented models in chapters 2 
and 3. 
In fact I have found a set of parameter values, Table 5.2, not so different from those 
of Table 2.1, for which a good fitting, at least up to 140 Hz, is displayed (Figure 5.9). 
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Physical and geometrical parameters 
Symbol Value Unit Description 
Pipe geometry 
b

 
0.2 m Pipe internal radius 

h
 

0.0111 m Pipe thickness 
Internal fluid – Oil 

fρ
 

850 kg/m3 Density 
fc
 

1350 m/s Speed of sound in free medium 
fB
 

1.8x109 Pa Bulk modulus (function of fρ  and fc ) 

η
 

1.2x10-2 Pas Dynamic viscosity 
γ  1 - Specific heats ratio 
Pr  Not used - Prandtl number 
Shell material – Steel 

pρ
 

7800 kg/m3 Density 
E

 
2x1011 Pa Young modulus 

χ
 

0 - Loss factor 
ν  0.3 - Poisson ratio 
Surrounding medium – soil 

mρ  1400 kg/m3 Density 
pc  1200 m/s P-wave speed 

sc  850 m/s S-wave speed 

Table 5.2. Geometrical and media parameters 
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Figure 5.9. Attenuation curves measured and computed by models 

 
As expected the AXSYM-3L model fits best the experimental attenuation curve, it 
just diverges gradually from it starting at 120 Hz; this might be due to inaccurate 
measurements because of low energy at such high frequency, where in fact the PSD 
of VM21 receiver approaches the plateau. 
 
Analogous measurements of phase velocity can be done, but the values of phase 
velocity are very sensitive to the fluid speed of sound and therefore to the type of oil 
carried during measurements which often varies during pipeline exercise, like one 
can see in the next section. 
Therefore it would be impossible to validate the propagation model as regards the 
phase velocity without knowing the particular sound speed of the conveyed crude oil. 
For completeness however the corresponding dispersion curves are shown in Figure 
5.10, except for Model 3 (Morgan) whose curve would lay far outside the figure. 
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Figure 5.10. Dispersion curves computed by models 

 

5.3.2. Speed of sound of conveyed oils 
Similarly to the previous section, here I compute the speed of sound along the 
pipeline from the measurements of acoustic pressure signals travelling along the line. 
This time, three couples of subsequent stations are considered at once: 

• Stretch 1: Chivasso-V28  
• Stretch 2: V28-V35 
• Stretch 3: V35-Pollein 

 
Figure 5.11 reminds their position on the line 
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Figure 5.11. Monitoring stations along Chivasso-Aosta pipeline. 

 
The data here considered span a six month interval of year 2011, during which the 
pipeline has transported oils whose properties are within the ranges reported in Table 
5.3. 

 
Symbol Min value Max value Unit Property 

fρ  750 850 kg/m3 Density 
η  2 20 cP Dynamic viscosity 

Table 5.3. Oil properties in GSB pipeline. 

 
I obtain the travel-times of pressure waves along each pipeline stretch by searching 
the maximum of the cross-correlation between pressure signals recorded at the 
delimiting stations.  
These travel-times are computed every minute. Given the fixed length of the pipe 
stretches, I then obtain the sound velocity within the oil: Figure 5.12  is the result, 
gaps in the curves correspond to absence of flow (pipeline at rest).  
Sound velocity differences between the stretches are consistent with the different 
background pressures. Sound velocity variation along time is an indicator of 
changing fluid (oil).  
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From these time series I create a two-dimensional speed/pressure histogram with 
pressure bins of 125 mbar and velocity bins of 1.5 m/s. The histogram displays, over 
the whole investigated interval, the number of operational minutes falling within 
each bin. Figure 5.12 (right) displays such histogram for stretch 1. 
It is interesting to notice a clusterization of the measured values mainly in three 
operational status (A, B and C), that I relate to the three different oil types. 
Table 5.4 collects the average numerical values of the sound speed associated to the 
3 oils in each of the 3 stretches, characterized by a typical background pressure. 
 

 
Figure 5.12. Sound speed (top left) and pressure (bottom left) within the oil in the 

different pipe sections. Pressure/speed histogram in the first stretch (right) 
 

Pipeline 
stretch 

Stretch 
length 
[km] 

Avg. 
pressure 

[bar] 

OIL A 
sound speed 

[m/s] 

OIL B 
sound speed 

[m/s] 

OIL C 
sound speed 

[m/s] 
Stretch 1 27.3 63 1256 1223 1193 
Stretch 2 32 46 1245 1213 1181 
Stretch 3 41 17 1236 1203 1174 

Table 5.4. Measured sound speed and background pressure. 
 
With the aim of comparing the measured sound-speed with the theoretical one, I 
obtain the oil free medium sound speed fc  from the experimental in-pipe velocity c  
by inverting the equation (2.1), which is here simplified (with unitary correction 
factor ε ): 

Eh
bB

c
c f

21+
=  (5.1) 

where 

Stretch 1 
Stretch 2 
Stretch 3 
 

Stretch 1 
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b: pipe internal radius; 
B: oil bulk modulus; 
E: pipe Young modulus; 
h: pipe thickness. 

Then, I compute the theoretical sound-speed fc  with the Batzle and Wang model 
[29] for dead oil at 15°C, 

 
PT1)API(0.360.0115P4.64T3.7API)(77.115450c 0.50.5 ⋅⋅−⋅⋅+⋅+⋅−+⋅= −

f  (5.2) 

where 
API: oil grade; 
P: pressure [MPa]; 
T: temperature [°C]; 

fc  is expressed in m/s. 

The oil grade is a function of density, I have chosen one value of density for each of 
the 3 oils: 750, 800, 850 kg/m3. The resulting curves are displayed in Figure 5.13 
together with the experimental results: the agreement is very good. 

 
Figure 5.13. Pressure - sound speed relation. Experimental data (dots) and Batzle 

and Wang (B-W) model [29]. 
 
This shows how the measured speed of sound can be related to oil physical 
properties such as their density and therefore allow to discern the type of oil 
conveyed. 
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5.3.3. Attenuation - Sound speed diagram 
Here I show an advanced processing that allows to clearly distinguish between two 
pipeline conditions: before and after operations of maintenance. 
The sound speed and the attenuation at low frequency are together measured in order 
to obtain long-term statistics and compare them with theoretical reference values.  
At low frequency (<15 Hz) the attenuation coefficient α can be approximately 
computed with the simple wide-tube approximation, even neglecting thermal terms, 
as a function of signal angular frequency ω , oil viscosity η , pipe radius b  and 
sound speed c : 

22
1

cb ρ
ωηα =  (5.3) 

 
The important unknown parameter in this formula is the viscosity. There are several 
literature models that relate the viscosity μ with the oil temperature T and API 
density. I use here three of them: 
• Model 1 (Labedi [30], original coefficients): 

TaAPIaa lnlnln 321 ++=η  (5.4) 
• Model 2 (Glaso [31], original coefficients): 

)ln(lnln)ln(lnlnln 4321 APITaAPIaTaa ++++=η  (5.5) 
• Model 3 (Beggs and Robinson [32], Canadian oils coefficients): 

( )( ) TaAPIaa ln1lnln 321 ++=+η  (5.6) 
 
The constants ai are given in the cited references.  
To compute the free-medium sound-speed I use again Eq. (5.2) (Batzle and Wang 
[29]) and turn it into in-pipe sound-speed with Eq. (5.1). 
In this way I can compute “theoretical” attenuation and sound-speed for the three 
models in Eqs.(5.4)-(5.6) with the parameters in Table 5.5. 

 

Parameter Value Unit
 

Property
 

ρ  750-850 kg/m3 Density 
T  15 °C Temperature 
ω  2π(2-15) rad/s Ang. Frequency 
b  20.32 cm Internal radius 
h  1.11 cm Pipe thickness 
E  2x1011 Pa Pipe elastic modulus 
B  2

fcρ  Pa Fluid bulk modulus 

Table 5.5. Model parameters for theoretical attenuation/sound-speed relation. 
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I have then measured the actual attenuation and sound-speed along stretch 1 of the 
pipeline, by comparing the pressure signals at the delimiting stations. 
Figure 5.14 compares the attenuation/sound-speed relation according to the 
theoretical models with the experimental data measured in 2011, the blue cloud in 
fact represents a two dimensional histogram (darker blue means higher occurrence) 
that synthetizes a numerous statistic of values measured in several months in year 
2011. Attenuation measured at different frequencies has been normalized by the 
square root of frequency so that a unique statistic collects all frequencies together. 
Three sub-clouds (A, B and C) are pointed in the figure and can be associated to the 
same three oils mentioned in the previous section. 
There is a general agreement between the shape of the curves, but experimental 
attenuation is higher than the predicted one for equal sound-speed. In Fig. 5.15 the 
same theoretical models are displayed together with an analogous statistic of 
experimental data measured in several months in 2012, after pipeline maintenance. In 
this case the measured attenuation fits the theoretical attenuation much better. 
A possible explanation is that before maintenance, deposits in the line increase the 
wave attenuation partly because they reduce the pipe section and partly because they 
act as sound absorbers. 
The important evidence is that after deposits removal the attenuation shifts close to 
the theoretical attenuation-soundspeed curve which can therefore be used as 
reference.  
Again this demonstrates that vibro-acoustic data can be exploited for fluid 
characterization and monitoring of transportation efficiency. 
 

 
Figure 5.14. Attenuation-sound speed diagram. Theoretical models and experimental 

data (blue “areas”), measured in 2011. 
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Figure 5.15. Attenuation-sound speed diagram. Theoretical models and experimental 

data (blue “areas”), measured in 2012. 
 

5.3.4. Pump monitoring 
Pump equipment generates vibro-acoustic signals, that can be heard in air but also 
within the pumped fluid. Here I compare pressure signals before and after a pump 
replacement at Chivasso station, due to a failure occurred on May 11th, 2012. 
Figure 5.16 shows the pressure signals at the three monitoring stations closer to the 
pumping terminal (Chivasso, V21, V28), from 0 a.m. to 6 a.m. on May 11th, before 
the pump replacement: the signals show several periodic negative peaks coming from 
Chivasso station. 

 
Figure 5.16. Pressure signal before pump replacement (May 11th, 2012). 
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Figure 5.17 shows the pressure variations at the same stations, from 0 a.m. to 6 a.m. 
on May 12th, after the pump replacement: the periodic peaks are not present any 
more. 

 
Figure 5.17. Pressure signal after pump replacement (May 12th, 2012). 

 
It could be useful to process these time series in order to ease a system of automatic 
detection of the anomaly, for example to get the pressure values distribution (number 
of values falling in each pressure interval) or to compute the spectrogram of the 
pressure time series.  
Figure 5.18 shows the pressure distribution of the signals before (blue) and after 
(red) the pump replacement, the negative tails of the distributions are noticeably 
reduced after pump replacement. 

 

 
Figure 5.18. Pressure values distribution before and after pump replacement. 

00:00 01:00 02:00 03:00 04:00 05:00 06:00

-10

0

10

Chivasso

kP
a

00:00 01:00 02:00 03:00 04:00 05:00 06:00
-10

0

10
V21

kP
a

00:00 01:00 02:00 03:00 04:00 05:00 06:00
-5

0

5
V28

kP
a

-20 -15 -10 -5 0 5 10 15 20
10

-5

10
0

Chivasso

 

 

-20 -15 -10 -5 0 5 10 15 20
10

-5

10
0

V21

 

 

-20 -15 -10 -5 0 5 10 15 20
10

-5

10
0

V28

 

 

 

 

 

 

11-May-2012
12-May-2012

11-May-2012
12-May-2012

11-May-2012
12-May-2012

Acoustic pressure [kPa] 

 



 

84 
 

Figure 5.19 shows the spectrograms of Chivasso pressure signal before (top) and 
after (bottom) pump replacement: it is clearly apparent the different operational 
regime of the pump from the presence or absence of red stripes covering a wide 
frequency range. 
 

 

 
Figure 5.19. Frequency content of Chivasso pressure signal before (up) and after 

(bottom) pump replacement. 
 
I can therefore conclude that e-vpms® data can help pump/valve equipment 
monitoring,  in fact long term data analysis and training procedures can be used to 
define a set of normal operation parameters (e.g. maximum amplitude of acoustic 
pressure, signal statistical moments, typical peak frequencies), in order to detect 
pump equipment anomalies. 
 

5.3.5. Detection of reflectors 
The noise produced at the pumping stations travels along the pipeline and it is 
possibly reflected by discontinuities in the transmission waveguide. Discontinuities 
can be related to pipe deformations, internal occlusions, partial valve opening, etc. 
By measuring the pressure signal it is possible to detect and locate such reflectors: in 
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case they are permanent, their presence should be detected every time the pipeline is 
working and pump noise propagates along it.  
Auto-correlations of pressure signal measured at the terminal stations are a suitable 
method to detect reflectors, since they look for delayed copies of the noise that 
departs from the station. I test this idea on the pressure data collected at the two 
pumping stations of Chivasso-Pollein oil pipeline. 

Chivasso side 

Figure 5.20 to Figure 5.24 show auto-correlations of pressure signals at Chivasso 
station for some time windows in December 2010, March 2011 and December 2011. 
Signals are band-pass filtered [1 10] Hz, and correlations are computed every hour 
on half an hour long signals. 
Correlation is normalized to 1 and colors span the range 0-0.1. 
Figures show that, except for some intervals when pumps are not working and/or 
valves are closed, there is a permanent echo at about 5.5 seconds. The small variation 
of this value is related to the variation of speed of sound in the transported oil. 
Using the measured speed of sound (continuous output of standard vpms® operation), 
I obtain that two-way travelled distance of the echo is 6.8 km, corresponding to a 
reflector 3.4 km far from Chivasso station. 
 

 
Figure 5.20. Autocorrelation of pressure signal at Chivasso station in December 

2010. 
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Figure 5.21. Autocorrelation of pressure signal at Chivasso station in March 2011. 

 
Figure 5.22. Autocorrelation of pressure signal at Chivasso station in March 2011.  

 
Figure 5.23. Autocorrelation of pressure signal at Chivasso station in March 2011. 
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Figure 5.24. Autocorrelation of pressure at Chivasso station in December 2011. 

 
Auto-correlation detects the distance of the reflector from Chivasso station, but it 
doesn’t tell if it lies downstream (towards Pollein) or upstream (towards Ferrera, the 
preceding pumping station). In order to remove this ambiguity, I exploit the event 
when a fluid change is occurring within the pipe: a different oil is departing from 
Ferrera, and it is replacing the previous one at the flow velocity (around 1 m/s). 
Sound speed in the two oils is slightly different, and the autocorrelation image will 
show a variation in the position of the “echo”. There can be these two cases: 

• the reflector is located upstream if the time position of the echo changes 
before new oil reaches Chivasso station; 

• the reflector is located downstream if the time position of the echo changes 
starting from when the new oil has reached Chivasso; 

 
Figure 5.25 compares the autocorrelation of pressure variations at Chivasso (left), 
zoomed on the echo at around 5.5 s, with the travel-time between Chivasso and V28 
(right). Autocorrelation is computed with higher resolution with respect to Figures 
5.20-5.24, on 20 min time windows overlapped by 10 min, and signal is band pass 
filtered at [1 Hz – 40 Hz]. 
Chivasso-V28 travel-time shows that the front of the new faster oil passes through 
Chivasso on 12 March at about 4 a.m., which is the same time when the echo travel 
time starts decreasing. This means that the reflector is downstream to Chivasso. 
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Figure 5.25. Autocorrelation of pressure signal at Chivasso station, focus on travel 

time shift (left). Travel time from Chivasso to V28 stations in same time interval 
(right). 

 
This position is compatible with the Milano-Torino highway which is just 
downstream to V21 station. Figure 5.26 shows a scheme of the pipeline and Figure 
5.27 is a map displaying the position of the highway. 
 

 
Figure 5.26. Pipeline scheme showing the position of the reflector, likely the 

highway. 
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Figure 5.27. Map showing the position of the intersection between pipeline and 

Milano-Torino highway. 
 

Pollein side 

Auto-correlations are performed also for the Pollein station in the same time 
windows as Chivasso station. 
In this case there is a reflection delayed by about 27 seconds, corresponding to a 
reflector 16 km far from Pollein station. 
 

 
Figure 5.28. Autocorrelation of pressure signal at Pollein station in December 2010. 

time [s]

Pollein => Pollein

 

 

0 5 10 15 20 25 30 35 40 45 50

14-Dec-2010 18:00

15-Dec-2010 00:00

15-Dec-2010 06:00

15-Dec-2010 12:00

 Highway 

 

 
2
4

0

0.05



 

90 
 

 
Figure 5.29. Autocorrelation of pressure signal at Pollein station in March 2011. 

 
Figure 5.30. Autocorrelation of pressure signal at Pollein station in March 2011. 

 
Figure 5.31. Autocorrelation of pressure signal at Pollein station in March 2011. 
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Figure 5.32. Autocorrelation of pressure signal at Pollein station in December 2011. 
 
Figure 5.32 shows that a new echo appears in December 2011 at 41 seconds 
corresponding to a reflector 25 km far from Pollein. 
In Figure 5.33 the Pollein autocorrelation during one shift of echo travel time is 
compared to the travel time shift from Pollein to V35 stations (computed by cross-
correlation). Pollein-V35 travel-time shows that the front of the new faster oil passes 
through Pollein on 3rd March at about 12 a.m., which is the same time at which the 
echo travel time starts decreasing. This means that the reflector is downstream to 
Pollein. 

 

 
Figure 5.33. Autocorrelation of pressure signal at Pollein station, focus on travel 

time shift (left). Travel time from Pollein to V35 stations in same time interval 
(right). 
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the upstream side the reflector would be in the vicinity of valve VM41, which is 
more likely.  
A further evidence of the fact that there is a reflector at 16 km from Pollein 
(identified as Etroubles pumping station) can be obtained from the raw signal 
measured at Pollein and superimposing a delayed and attenuated copy of itself. 
Figure 5.34 shows the acoustic pressure (blue line) at Pollein station in 2 time 
windows during December 15th, when strong pump noise is recorded, together with 
the same signal delayed of 27 s and multiplied by a factor equal to -1/10 (red line). 
Signals are band-pass filtered [.1 1] Hz. The red line is meant to simulate the 
reflection 16 km away, and in fact it fits quite well some of the events in the blue 
line.  
 

 

 
Figure 5.34. Pollein pressure signal(blue line) superposed to a scaled and delayed 

copy of itself (red line).  
 

Discussion 

The pump noise from Chivasso station is reflected by a discontinuity located where 
the pipe passes below the Milano-Torino highway, just downstream from V21 
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vehicles) pipe deformation. Measurements at Pollein station detect an echo of its 
noise that come from Etroubles station. 
Echo analysis (through autocorrelation of pump noise) can be run continuously in 
order to detect in real time important pipe anomalies, partial valve openings or 
localized occlusions. 

 

5.4. Summary  
On Gran San Bernardo oil pipeline e-vpms® technology supports a leak detection 
system which was installed and validated. 
Moreover the available data measured and stored make possible (long term) 
advanced processing whose main results are: 

• The acoustic attenuation curve measured up to 200 Hz fits with AXSYM-3L 
Model showing its strong dependence on the external medium properties. 

• The long-term measured sound speed can be related to the type of oil 
transported, and to its API grade through literature models. 

• The event of pump failure is easily detectable from measurement of acoustic 
pressure. 

• The autocorrelation of pressure signals measured at pumping stations can 
help to spot even weak reflectors. 
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6. TMPC-TRANSMED pipeline 

This chapter deals with the experimental campaign on TMPC-TRANSMED offshore 
natural gas pipeline, linking Cap Bon (Tunisia) and Mazara del Vallo (Sicily), the 
installation of the monitoring system and some interesting data processing. 
The 1st section describes the installation of the monitoring system, the second shows 
some methods to monitor the movement of different pigs and the 3rd assesses the 
efficiency of the acoustic channel constituted by the whole pipeline during standard 
gas transportation. 
Some of these results were published in [24], [33] and [34]. 
 

6.1. Pipeline and monitoring system description 
TRANSMED lines L1S and L2S convey Algerian natural gas from the pumping 
station in Cap Bon (Tunisia) to the receiving station in Mazara del Vallo (Italy). 
Table 6.1 reports the parameters of the pipeline. 
 

Line parameter TRANSMED (20” lines) 
External diameter 20” – 508 mm 

Length 155 km 

Maximum depth 610 m 

Conveyed fluid Natural Gas 

Gas composition Methane (88.8 mol %) 
Ethane (6.5 mol %) 

Working pressure  90/110 bar – 150/180 bar 

Gas direction Cap Bon → Mazara del Vallo 

Gas Temperature 56 → 10 °C 

Table 6.1. TMPC pipeline: parameters of lines L1S and  L2S. 
 
Dionisio research project started just with the installation of a prototypal vibro-
acoustic monitoring system on two lines (L1S and L2S) of the TMPC-TRANSMED 
pipeline, at Mazara del Vallo terminal. During the data acquisition period an offshore 
stretch of line L2S has been replaced (at 34 km from the coast), and pig operations 
have been carried out on both lines, in different operational conditions. 
Moreover, after pipe maintenance, vibro-acoustic stations collected data in a three 
days period at both ends of pipe L1S (Cap-Bon and Mazara del Vallo). 
 
Two phases of installation took place: 
Phase 1: Installation at Mazara del Vallo, Lines L1S and L2S. 
Phase 2: Installation at Cap Bon and at Mazara del Vallo, line L1S. 
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Figure 6.1 to Figure 6.5 show the installation details and the satellite maps of the 
pipeline and of the terminal stations. 

 

Figure 6.1. TMPC TRANSMED pipelines 

 

Figure 6.2. Phase 1: scheme of monitoring system 
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Figure 6.3. Phase 2: scheme of monitoring system 
 

 

Figure 6.4. Satellite view: TMPC TRANSMED station of Mazara del Vallo (Italy) 
and sensor location. 
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Figure 6.5. Satellite view: TMPC TRANSMED station of Cap Bon (Tunisia) and 
sensor location. 

6.2. Monitoring of pigging operations 

6.2.1. Low pressure pigging 
Different pigs have been sent on both lines L1S and L2S. I analyze here the vibro-
acoustic signal produced by a pig sent on 25th August 2009 from Cap Bon, and 
arrived at Mazara del Vallo on 26th August 2009, 17.20 GMT (Figure 6.6). 
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Figure 6.6. Line L2S, Mazara del Vallo, pig arrival on 26th August 2009. 
 

The pipeline was filled with air at around 8 bar. Differential pressure at pig ends was 
around 2 bar. Figure 6.7 shows the pressure signal measured at Mazara terminal in a 
3 hours period including the pig arrival: amplitude peaks (>1000 Pa) correspond to 
pig movement, detectable some hours before the arrival. Pig movement results 
discontinuous, with stop intervals of some minutes and sudden motion of tens of 
seconds. 
 

 
Figure 6.7. Line L2S, Mazara del Vallo. 5 Hz low pass pressure signal on 26th 

August 2009. GMT time. Vertical axis in Volts (10 kPa/Volt). 
 

Figure 6.8 presents on the right the spectrogram of the shown pressure signal, the 
fundamental (lower) frequency (f1) emphasized in the spectrogram together with the 
subsequent harmonics can be linked to the pig distance from pipe end. On the left of 
the figure there is the interpretation of the pig-induced stationary waves, whose 
frequency is an odd multiple of a quarter wavelength. 
In fact the noise produced by the pig, when it moves, is continuously reflected by the 
pipe end and by the pig, so that stationary waves arise, the (fundamental) frequency 
of a stationary wave depends only on the speed of sound and the stretch length. 
Hence the distance of the pig from the pipe end can be easily computed from the 
frequency of the noise measured. 
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Figure 6.8. Line L2S, Mazara del Vallo. Pressure signal spectrogram on August 26 

2009. GMT time. Explanation of pig-induced stationary waves. Time to distance 
conversion with an estimated sound velocity of 340 m/s. 

 

6.2.2. High pressure pigging 
During the vibro-acoustic monitoring period, other pig operations were performed in 
conditions of standard natural gas transportation. The pig travels at an almost 
constant velocity, and it produces pressure transients (sounds) when it crosses the 
pipe internal welds. 
Figure 6.10 shows a five days log of the acoustic pressure (absolute values): the 
effect of two pigging operations is clearly visible (red boxes), on October 5th 2009 
(smart pig, here called PIG1, Figure 6.9) and October 8th 2009 (magnetic pig, here 
called PIG2). The pipeline was in standard operation, at around 90-100 bar. The 
sound produced by the travelling pig increases almost exponentially as it approaches 
the receiving station, in agreement with the theory of sound propagation in 
cylindrical tubes: I have validated this behaviour with mathematical models in the 
following section. 
 

 
Figure 6.9. Inspection pig (www.RosenInspection.net). 

 
 

http://www.roseninspection.net/
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Figure 6.10. Acoustic pressure maxima on line L2S. Vertical axis in Volts 

(10kPa/Volt) 
 

It is interesting to note an anomaly in the exponential increase, for PIG1 (Figure 
6.11, top, red circle). In order to listen the anomalous signal, I have applied an 
upward shift of the signal bandwidth (originally below 100 Hz) to audible 
frequencies (around 1000 Hz) obtaining an audio rendering (for signal in red box in 
Figure 6.11, bottom) that reveals a probable damaging event, as one can hear noise of 
metallic objects scratching the inner pipe wall. Pig distance was around 8 km from 
the arrival monitoring station.  
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Figure 6.11. 5 Hz low pass pressure signal (absolute value on top, raw signal on 
bottom). Red circle indicates PIG1 damage. Vertical axis in Volts (10kPa/Volt). 

 
Figure 6.12 in fact shows pictures of the extraction of PIG2, carrying fragments of 
the previously damaged PIG1. 
 

 

 
Figure 6.12: PIG2 arrival, carrying fragments of previous damaged PIG1. 
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Figure 6.13 is the pressure signal when PIG2 is approaching Mazara del Vallo 
terminal station. In the zoomed windows it is possible to distinguish the wavelets 
generated by the pig while crossing the welds, about 12 m apart one from the other. I 
can count 12-14 events per minute, corresponding to a pig velocity of 9-10 km/h. 
The velocity is very stable, at least since these events become visible, some hours 
before the pig arrival.  
 

 
Figure 6.13. Pressure signal during PIG2 operation. Windows with increasing zoom 

factor. Vertical axis in Volts (10kPa/Volt). 
 

In order to quantify the maximum detection distance, I performed a Short Time 
Average to Long Time Average processing (STA-LTA): Figure 6.14 is the result: 
every peak corresponds to the pig moving across a weld. By using a simple threshold 
criterion, I label the reliability of the events with a color scheme: green indicates 
correct detection, yellow is uncertain, red is missed. Figure 6.14 indicates that the pig 
becomes “visible” at more than 30 km from the arrival. 
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Figure 6.14. PIG2 detection, with STA-LTA processing on pressure signal 

(horizontal axis 200s). 

 
Figure 6.15 shows the spectrogram of the pressure signal for PIG2 at around 5 km 
from the arrival station. Emissions at the welds have a bandwidth up to 500 Hz. 
Horizontal lines indicate resonance in pipe junctions (acoustical) and/or in the 
acquisition system (electrical). 
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Figure 6.15. PIG2 pressure spectrogram. Pig distance around 5 km. 
 

 
Figure 6.16. PIG2 pressure signal (top), acceleration on the pipe shell (center), 

velocity on the pipe shell (bottom). Pig distance around 5 km. Horizontal axis 200s. 
Vertical axis in Volts. 

 
Figure 6.16 compares the signal recorded with different sensors (pressure in the fluid 
and vibrations of the pipe shell), for the pig at 5 km. Welds emissions are visible in 
all the sensors, but maximum detection distance is reduced to about 10 km for the 
pipe vibration monitoring (compared to 30 km for pressure). 
 

6.3. Experimental computation of propagation parameters 
By comparing the sound of the pig at different distances (Figure 6.17), one can also 
compute the acoustic wave propagation parameters within the gas in the pipeline, and 
compare them with the wide-tube mathematical formulation (Model 2, Eq. (2.5)) 
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Figure 6.17: PIG2 signal at different distances (left) and power spectral density 

(right). 
 
Figure 6.18 compares the theoretical (wide-tube approximation, Section 2.1.2) and 
the experimental attenuation factor. The analytical curve has been computed with the 
properties of the TransMed gas mixture (Table 6.1) at 100 bar. The fitting of the 
trend is good: discrepancies can be related to the noise generated by the gas flow, 
amplitude variations for the emissions at the welds (although the experimental result 
is averaged over 10 wavelets), acoustic or electric resonances. 
 

 
Figure 6.18. Experimental and theoretical attenuation coefficient 
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6.4. Acoustic channel analysis 
After pigging operations, during standard gas transportation, I computed the 
correlation between the acoustic pressure signals recorded at two terminals of line 
L1S. A good correlation of the two signals would mean that acoustic waves can 
travel efficiently from one end to the other and therefore source signals produced 
within the line that are detected at one end, should be detected also at the other end. 
This occurrence allows localization. 
The following assumptions apply: 

• Both line terminals (Mazara and Cap Bon) produce pressure transients that 
travels towards the opposite end 

• Line L1S constitutes an acoustic transmission channel between the terminal 
stations 
 

In order to increase the signal/noise ratio which is rather low, I consider acoustic 
pressure maxima of the very low frequency component (lower attenuation). 
Figure 6.19 is the block diagram of the cross-correlation processing. Spike-noise is 
mainly associated to manual hits on the hydrophone during the assembly of the 
system and is thus removed. 
 

 
Figure 6.19. Block diagram of cross-correlation processing. 

 
The result is shown in Figure 6.20. Time to distance conversion is obtained 
considering the gas flowing direction: flow velocity sums up to sound velocity for 
the downstream propagation, and it is subtracted from sound velocity for the 
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upstream propagation. According to personal communication from TMPC 
technicians, flow velocity is set to 10 m/s. Correlation peaks are visible at both pipe 
terminals even if they are not much stronger than background noise. 

 
Figure 6.20. Cross-correlation of pressure signals measured at line terminals. 

 

6.5. Summary 
Main results from the TMPC-TRANSMED field campaign are the following: 

− when the pig movement is discontinuous, sensors measure the noise of its 
sudden movement and the distance can be estimated from the resonant 
frequency; 

− when the pig movement is continuous, sensors measure the noise produced 
when it passes through welds and its velocity can be estimated; 

− pig movement and position can be detected from acoustic pressure 
measurements, up to tens of km; 

− acoustic wave propagation within the gas can be approximated by Model 2 
(Eq. (2.5), rigid wide-tube approximation); 

− The total acoustic channel of the line (155 km) is weak but still works at low 
frequency (<5 Hz) 
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7. Passo Spluga pipeline 

This chapter deals with the experimental campaign on Passo Spluga pipeline, in the 
stretch from Milano to Lecco (Italy), and some interesting results of the processing 
of measured data. 
I participated to various field campaigns on this line, during which we installed a 
network of vibro-acoustic recording stations and produced controlled scenarios of 
leaks, impacts and third party interference. 
The first section explains the installation of the monitoring system along the pipeline,  
the second deals with experimental measurements of propagation parameters and the 
last shows an application of reflectometry for detection of pipe anomalies.  
Some of these results were published in [27] and [34]. 
 

7.1. Pipeline and monitoring system description 
Passo Spluga pipeline is a 24” oil pipeline, at the time of field campaigns it is 
decommissioned and filled with air al low pressure (4-5 bar).  
Table 7.1 shows the location of the main valves along the line stretch considered. 
 

Valve Location km Type Latitudine Longitude 
V16 Cassina De Pecchi 71700 cameretta 45°31'06"N 9°22'13"E 
V17 Bussero 73127 cameretta 45°31'46"N 9°21'60"E 

VR17/a Bussero 74001 pozzetto 45°32'13"N 9°21'53"E 
VR17/b Caponago 78914 pozzetto 45°34'17"N 9°23'08"E 

VM18 - V19 Vimercate 82015 fabbricato 45°35'53"N 9°23'49"E 
V20 Vimercate 82666 cameretta 45°36'10"N 9°24'03"E 

VR20/a Verderio Inferiore 88923 pozzetto 45°39'32"N 9°25'26"E 
V21 Paderno 91435 cameretta 45°40'35"N 9°25'50"E 

VM22-VM22a (V22) Brivio 100605 fabbricato 45°44'37"N 9°25'57"E 
V23 Capiate 104270 cameretta 45°46'26"N 9°25'31"E 

VM25 - V26 Garlate 109496 fabbricato 45°48'48"N 9°23'41"E 
VM27 Lecco Belledo 112575 fabbricato 45°50'22"N 9°24'17"E 

Table 7.1. Main valves along the Passo Spluga pipeline, different colors distinguish  
stretches A and B. 

 
For the campaigns two stretches of the pipeline were selected, both were stoppered at 
both ends and thus acoustically separated. 

• Stretch A, total length 3080 m, submerged in the Garlate lake, from Garlate 
to Lecco-Belledo (Figure 7.1). 

• Stretch B, total length 32580m, buried, from Cassina de’ Pecchi to Capiate 
(Figure 7.2). 
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In stretch A, monitoring stations have been installed at the two extremes, that is at 
V26 and VM27; in stretch B, which is much longer, stations were installed at V17 – 
V19 – V20 – VM22a. 

 

Figure 7.1. Satellite map of stretch A (Garlate), and summary of tests and 
installation. 
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Figure 7.2. Satellite map of stretch B, and summary of installation. 
 

7.2. Experimental computation of propagation parameters 
I here derive an experimental measure of the propagation parameters by comparing 
successive echoes of a pressure signal “bouncing” within the pipeline. 
This happens for example during a spill test executed at V20: the source wavelet is 
sent in both directions and these two traveling waves are repeatedly reflected at the 
pipe ends until energy dies out. All this process determines the acoustic signal 
measured at V19 (Figure 7.3). 
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Figure 7.3. Example of data analysis. Spilling in V20, recording in V19: acoustic 
pressure within the fluid and acceleration on the pipe shell. 

 
By comparing the amplitude of subsequent wavelets I compute the attenuation. 
Figure 7.4 and Figure 7.5 show the experimental and the analytical attenuation factor 
(in dB/km) for both the pipelines stretches A and B, the filling air is pressurized at 
the absolute pressures reported in the caption: the matching is very good. 
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Figure 7.4. Attenuation of pressure waves in stretch A. Absolute pressure 5.2 bar. 

 
Figure 7.5. Attenuation of pressure waves in stretch B. Absolute pressure 3.8 bar. 
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Experimental lines are reliable up to 10 Hz (for the shortest propagation), as higher 
frequencies are continuously attenuated. Sound velocity, computed by picking the 
cross-correlation maximum between the pressure signals at two stations, is about 343 
m/s, almost constant with frequency, consistent with air temperature of about 20 °C. 

 

7.3. Acoustic reflectometry 
I analyze here the pressure transients produced by a quick opening of a valve, in 
station V22. The pipeline is stoppered at V16 and V23. Pressure measurements are 
available at stations V19, V20, V22 (Figure 7.6). 
Figure 7.7 shows the pressure signals at the three stations all together: the source 
wavelet is the first visible at about 5 s (red line), followed by the reflected echo by 
pipe occlusion at station V23, at around 25 s. The direct wavelet and its multiples are 
visible also in the other stations (blue and green lines). 
 

 
Figure 7.6. Satellite map of the pipeline route. 
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Figure 7.7. Pressure transients at V19, V20, V22, stations during an air spill test at 

V22. 
 
I use then an acoustic simulator to compute the synthetic response of the pipe stretch, 
imposing a total reflection at both ends. The simulator is based on the Transmittivity 
Method, described in Appendix A, which derives from the Reflectivity Method 
(Müller [35]) and it takes into account the propagation phenomena occurring in 
pipes, such as attenuation and dispersion, and reflections/transmissions due to  
variations of internal cross-section. Attenuation and dispersion are functions of the 
filling fluid thermodynamic properties according to wide-tube approximation (Model 
2, Section 2.1.2). 
The best fit of data (Figure 7.8) is achieved with sound speed equal to 344.3 m/s, 
corresponding to air at 21 °C, and distance of the pipe end equal to 32510 m from 
V16, which therefore do not coincide with V23. Personal communication has 
confirmed that pipe occlusion is before station V23. 
Figure 7.8 shows also some minor reflections (red arrows), that are not explained by 
the constant section-area pipeline.  
They must be related to internal cross-section variations and/or pipe junctions. I have 
then run an acoustic reflectometry iterative inversion, looking for an equivalent 
mono-dimensional pipe model: such model takes as main parameter the section-area 
along the pipeline or, analogously, the equivalent radius Req. For such a pipe the 
nominal Req is set to 30.5 cm (12”).  
The inverted model has the same total length and propagation velocity as the 
previous model (32510 m, 344.3 m/s, respectively), but it includes three main cross-
section anomalies (say P1, P2 and P3) whose geometry and distance are displayed in 
Table 7.2. 
The position of P1 anomaly coincides with station V19, where a by-pass pipe and a 
dead-end pipe branch are present (see aerial picture in Figure 7.6): in fact the 
inversion suggests a pipe section-area increase. P2 anomaly is positioned at a pipe 
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sectioning, where probably a buckle has been produced. P3 anomaly is located in a 
buried portion of the pipeline, very close to the final occlusion. Also here I suppose a 
buckle. 
Figure 7.9 shows zooms of measured and computed signals at V22: most of minor 
echoes are correctly simulated (from 40 to 160 s), as well as their multiples, 
produced at pipe ends (from 220 to 360 s). 

 
Anomalies Req [cm] Distance [m] 

P1 34.5 10315 
P2 27.9 19815 
P3 29.25 31305 

Table 7.2. Minor anomalies in equivalent pipe model. 
 

 
Figure 7.8. Measured and computed pressure signals at V20 (top) and at V22 

(bottom) 
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. 

 
Figure 7.9. Measured and computed pressure signals at V22 station. Zoom on echoes 

from P1, P2, P3 (top). Zoom on multiples of P1, P2, P3 (bottom). 
 

7.4. Summary 
Passo Spluga pipeline is decommissioned and filled with air at few bars. Pressure 
noise within the pipeline is very low (around 1 Pa), while in operational pumping 
conditions it can reach several kPa and background pressure tens or hundreds of bars.  
The experimental propagation parameters were obtained and compared with theory, 
wide-tube analytic formula (Model 2 in Section 2.1.2) and the fitting was good. 
Moreover an advanced procedure such as reflectometry was applied to the 
measurements which allows to localize and characterize some anomalous sections in 
the pipeline. 
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8. CSM pipeline 

In this Section I analyze experimental measurements collected at Centro Sviluppo 
Materiali (CSM), a 500 m test pipe in Sardinia with the aim of estimating the 
propagation parameters of acoustic waves in high pressure gas-filled pipes. 
Part of this material was published in [25] and [34]. 
 

8.1. Pipeline and monitoring system description 
CSM is a full-scale test site endowed with a 535 m long steel pipeline (48” diameter) 
which simulates a portion of a natural gas pipeline, in order to study the mechanical 
properties of shell materials in extreme conditions (Demofonti et al. [36]). During 
one of these tests it was possible to install on the pipe a set of vibro-acoustic 
monitoring stations and to produce controlled pressure waves. In particular, besides 
other sensors, three hydrophones were placed at the two ends and approximately in 
the middle of the pipeline (Figure 8.1). The pipe was filled with Libyan-Algerian 
natural gas with increasing pressure up to 120 bar, and pressure transients were 
provided by gas spills and hammer strikes on the pipe. 
 

 
Figure 8.1. CSM full-scale test pipeline map. 

 
Station ID Pipe coordinate [m] 
Upstream pipe end 0 
Station 1 1 
Station 2 237 
Station 3 534 
Downstream pipe end 535 

Table 8.1. Position of monitoring stations on CSM test pipe. 
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8.2. Experimental computation of propagation parameters 
The speed of sound in the gas was estimated from the pressure signal measured by 
the hydrophones during the transients generated by spills. Spills were executed at 
different gas pressure conditions, so that a trend can be identified in the wave speed-
pressure experimental function. 
The wave speed estimate is performed in the frequency domain by considering a 
single receiver and looking for the resonance frequencies fr. In fact, for a pipe closed 
at both ends of length L, internal diameter d, filled with a fluid with propagation 
velocity c, resonance occurs at frequencies 
 

( )dL
ncfr 8.02 +

=  

 
where n is a positive integer.  
Therefore I can compute the sound-speed with this formula if I get the resonant 
frequency since the other variables are known. 
As an example Figure 8.2 shows the acoustic pressure signals measured at two 
stations in a 8 minutes interval during spill test nr. 6, the pulse generated keeps on 
bouncing at the pipe ends for several minutes before dying out.  
 

 
Figure 8.2 Acoustic pressure signal measured in the test pipe during spill. 

 
The power of this long signal must be spread over the spectrum and the resonant 
frequencies must stand out. 
In fact Figure 8.3 shows the spectrum of the raw pressure signal and arrows point to 
the lower 5 harmonics, from the first harmonic I compute the sound-speed. 
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Figure 8.3. PSD of pressure signal during spill test nr. 6. Lower 5 harmonics. 
 
The procedure is applied to 6 spill tests executed at increasing gas pressure, the 
fundamental resonant frequency is found and the sound-speed accordingly computed. 
Table 8.2 summarizes the results. 
 

Spill test Resonant 
frequency [Hz] 

Wave speed 
[m/s] 

Gas pressure [bar] 

1 0.365 391 32 
2 0.360 386 66 
3 0.364 390 89 
4 0.373 400 111 
5 0.375 402 117 
6 0.376 403 120 

Table 8.2. Experimental speed of sound at CSM 
 
It is interesting to note that the speed-pressure function is not monotonic, but it has a 
minimum at about 60 bar and this behavior should be confirmed by theoretical 
models of fluid properties. 
I indeed compute the sound-speed of natural gas by means of a commercial software, 
Flowsolv™, which adopts report nr. 10 by AGA [37]. 
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The natural gas composition reported in Table 8.3 is the result of a laboratory 
analysis of the actual gas filling CSM test pipe and I set it as input in the software. 
 

 
Table 8.3 CSM Natural gas composition 

 

 
Figure 8.4. Experimental and theoretical (AGA10) speed of sound in natural gas. 

 
The sound-speed computed in these way fits quite well the experimental data and 
presents the same minimum at about 60 bar (Figure 8.4). 

Component Vol (%) 
N2 2.2 
C4 88.7 

CO2 1.24 
C2 6.2 
C3 1.3 
i-C4 0.13 
n-C4 0.19 
i-C5 0.038 
n-C5 0.033 
n-C6 0.008 
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9. Messina Channel pipelines 

This chapter deals with the installation of the monitoring system on the offshore 
natural gas transportation pipelines crossing the Messina channel and the results of 
data processing. Details are in a eni confidential report (nr. 8 in Bibliography) , here I 
present results partly published in [34]. 
The objectives of the test campaign, still in progress, are the following: 

• measure and analyze the environmental noise in service conditions; 
• acquire vibro-acoustic data during controlled spill/leak test; 
• design and test data processing routines for remote pig tracking; 
• verify pipeline characterization with an equivalent acoustic transmission 

channel. 

9.1. Pipeline and monitoring system description 
e-vpms stations have been installed on two offshore natural gas transportation 
pipelines crossing the Messina channel (Italy) and managed by SNAM RETE GAS. 
Both lines start at Messina station, line 1 (15.9 km) reaches Favazzina, line 4 (31.3 
km) reaches Palmi. 
 

 
Figure 9.1: offshore natural gas transportation Line 1 and Line 4. 

 

9.2. Data analysis 
Pressure noise is continuously generated by pumps, flow regulation equipment, local 
turbulence (“environmental” noise). In standard operation, absolute pressure is 
around 60-70 bar at the pumping station (Messina) and 50-60 bar at the receiving 
stations (Favazzina and Palmi). Low pass (0.5-10Hz) acoustic pressure noise is 
around 800-1800 Pa (8-18 mbar). Pressure noise has a comparable amplitude on all 
stations meaning that local turbulence and flow regulations are the main sources of 
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environmental noise. This noise is also comparable to measurements collected on the 
TRANSMED pipeline. 
To assess the acoustic channel,  I compute the cross-correlation between the acoustic 
pressure signals recorded at the two terminals of each line and do it repeatedly over 
about 1 day-long interval. The cross-correlation averaged over the same day is also 
given. 
The pressure signals were previously low-pass filtered at 2 Hz. 
Figure 9.2 is the result for line 1 (Messina - Favazzina): there is a correlation peak at 
around -40s, well standing out in the averaged cross-correlation (top) consistent with 
sound propagation from Messina to Favazzina at 386 m/s. 
Figure 9.3 is the result for line 4 (Messina - Palmi): here a correlation peak is hardly 
detectable; in the probable case of propagation from Messina to Palmi at 386 m/s, the 
peak should lay at about -80 s. In the averaged cross-correlation a weak peak may be 
recognized at that time value but is really comparable with background noise.  
 

 

Figure 9.2. Normalized cross-correlation between pressure signals at Messina and 
Favazzina, from 12:00 Feb 5th 2013 (bottom). Average cross-correlation (top). 
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Figure 9.3. Normalized cross-correlation between pressure signals at Messina and 

Palmi, from 12:00 Feb 5th 2013 (bottom). Average cross-correlation (top) 
.  
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Conclusion 

During my PhD activity I contributed to the design of a registered vibroacoustic 
technology for remote real-time monitoring of pipelines (e-vpms®) promoted and 
supported by eni. 
The system makes use of a network of discrete measurements along pipeline by 
means of sensors, such as hydrophones and accelerometers.  
A considerable part of my contribution was the theoretical analysis of wave 
propagation in pipelines described in Part I and the processing of experimental data 
collected during several field campaigns: from one side the e-vpms® technology, in 
order to be designed and implemented, needed to rely on models of wave 
propagation in pipelines; from the other side such models could be tuned and 
validated thanks to the measurements made available by the monitoring system and 
proved to be valid even in operational conditions. 
Furthermore theoretical links between propagation parameters and physical 
properties of the waveguide (mainly the conveyed fluid, but sometimes also the pipe 
and surrounding medium) help to interpret measurements and therefore to tune 
advanced processing for pipeline monitoring. 
The monitoring system was installed and tested on different oil and gas pipelines. 
On Gran San Bernardo oil pipeline the monitoring system evolved in an automatic 
leak detection system which was tuned and validated in-field by means of ad hoc 
tests. 
A similar detection system was then installed also on Gaeta-Pomezia pipeline where 
it begins to benefit for the reason it was designed and produced, which is discovering  
actual oil theft. 
An important goal reached is the validation of the AXSYM-3L model (Chapters 3 
and 4) as regards the attenuation of acoustic waves in fluid-filled buried pipelines 
(even in service condition) at high frequency, where the effect of the surrounding 
medium elastic properties are important. 
The e-vpms® system has been installed also on gas transportation pipelines both at 
rest and in service condition, with the following main results: 

• In many gas pipelines the propagation parameters of sound were measured 
and found in agreement with the wide-tube approximation (Model 2 in 
Chapter 2). 

• Travelling pigs generate vibro-acoustic transients when they begin to move 
and while they cross the pipeline internal welds. During travel, the pressure 
signal measured at one pipe end, can be effectively processed in order to 
track the position of the pig and its velocity from a distance of several tens of 
km. 

• In an air-filled pipeline at rest, the wavelets produced by leaks were measured 
after travelling hundreds of km and I described a procedure to detect pipe 
anomalies that reflect those wavelets. 
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Furthermore, both in oil and gas filled pipes, as a side product of e-vpms® 
monitoring system, the available data measured and stored make possible advanced 
processing (even long-term) for pipeline monitoring such as identification of the 
standard pipeline operational conditions and detection of anomalous situations. 
Finally the parameters of sound propagation and of fluid flow can be checked versus 
theoretically computable values, in order to derive additional information on fluid 
thermodynamic properties and/or pipeline infrastructure operational status. 
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Appendix A: Transmittivity Method 

Here I describe the Transmittivity Method which is a way to compute the pressure 
wave-field in a one-dimensional waveguide, for instance a pipeline, triggered by a 
source excitation and shaped by its scattering on any number of interfaces constituted 
by cross-section variations. 
The method can be used as the forward function in an inversion procedure to detect 
and localize possible anomalies in pipeline like it is performed in Section 7.3. 
The following description is a synthesis of the treatment by Del Giudice [18], which 
is in turn the application to one-dimensional pipe stretches of the method described 
by Di Nicola-Sacchi [38]. Better known references are Kennett [39] and Müller [35]. 
The Transmittivity Method requires that the waveguide is modeled as a sequence of 
n+1 stretches and n interfaces, the notation is displayed in Figure A.1. 
Every stretch i is endowed with a length iX  and a cross-section radius ib . If the 
section is not circular, ib  is the radius of the circle that has the same area as the 
stretch cross-section, named ‘equivalent radius’.  
 

 
Figure A.1. Scheme of the one-dimensional waveguide used by the Transmittivity 

Method, the sun represents the source, triangles represent receivers. 
 
The section where the source lies must be modeled as a fictitious additional interface 
called s. 
The waveguide stretch containing the section where the solution wave-field is 
required is called r (after receiver) and the exact position is defined by the distance L 
from the left interface of stretch r. 
Each interface can be associated with reflection R and transmission T coefficients for 
waves traveling in the two directions, u (after up) is used as superscript for waves 
travelling to the left, d (after down) for waves travelling to the right. 
Therefore reflection and transmission coefficients associated to interface i can be 
expressed as function of the cross-section areas S  of the two adjacent stretches. 
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Then iQ  is the factor that describes the propagation in stretch i, the direction doesn’t 
matter, and can be defined through one of the propagation models of Chapters 2-3. 
Now I introduce the reflectivity and transmittivity  functions, d

iR , d
iT , u

iR , u
iT

which are someway similar to the corresponding coefficients but are ratios between 
signals instead of ratios between amplitudes and therefore they must contain all the 
(possibly infinite) sequence of reverberations that take place at the other side of the 
interface with respect to the incident wave considered. 
This implies that these functions depend each on the subsequent except for those 
referred to extreme interfaces: 
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The other functions d

iR , d
iT  for i=n to s+1 are iteratively computed with the 

following formulas starting from i=n. 
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Similarly u

iR  and u
iT  for i=1 to s-1 are iteratively computed with the following 

formulas starting from i=1. 
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Now let’s consider the source and let’s define the source signals sent to the right and 
to the left respectively dS  and uS . 
The aim is to compute the total signal sP  resulting from the propagation over the two 
packs of interfaces which would be measured at the source position s: this is the sum 
of the signal traveling to the left u

sP  and the signal traveling to the right d
sP 1+  (the 

notation for signals P  is explained in Figure A.2). 
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Figure A.2 Notation for signals P  that depart from or impinge to an interface. 

 
These addends are computed from the reflectivity functions referred to the two 
closest interfaces s-1 and s+1, besides the propagators referred to stretches s and 
s+1. 
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Next, in order to have the signal measured in any position along the line, one needs 
to calculate the signals that depart from each interface in the two directions u

iP  and 
d

iP . 
Let’s start from the signals just computed, u

sP  and d
sP 1+ , and iteratively compute the 

signal at the close interface, through reflectivity and transmittivity functions. 
For the interfaces on the left of the source: 
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from i=s to 2. 
And for the interfaces on the right: 
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from i=s+1 to n. 
Finally the signal A  measured in any stretch r at any distance from left interface L is 
again the sum of a right-propagating signal dA  and a left-propagating one uA . 

  

dd
iPd

iP

u
iPuu

iP

 



 

129 
 

 
ud AAA +=  

 
Addends are computed from the signals departing from the two interfaces that limit 
stretch r, and by applying the proper propagators as function of L. 
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