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Abstract and motivations

The present thesis is the result of a three years research project conducted under

the supervision of my advisors prof. Susanna Terracini and prof. Gianmaria Verzini,

and in collaboration with my colleague Nicola Soave. The main focus of the thesis is

on qualitative properties of solutions to system of elliptic semilinear equations which

contain competition features. The manuscript is divided in two parts, corresponding

to the two main subjects of the thesis. In the first part we will deal with uniform esti-

mates in appropriate Hölder spaces for solutions to fractional elliptic system involving

strong competition. In the second and last part, for a system of elliptic equations

concerning the study of Bose-Einstein condensates, we shall prove existence of entire

solutions which exhibit an exponential growth at infinity. The main theme, common

to the two parts, is the use of monotonicity formulæ of Alt-Caffarelli-Friedman and

Almgren type in the study of solutions of elliptic systems. In the following, we briefly

comment on the two problems.

Uniform Hölder bounds for strongly competing systems

The first part of the thesis is concerned with the common regularity shared by the

solutions of fractional elliptic systems which involve a strong competition. The main

subject of investigation are systems of the kind(−∆)sui = fi(x, ui)− β
∑
j 6=i cij(ui, uj) in RN

ui ∈ Hs(RN ) i = 1, . . . , k
(P )β

where the term (−∆)s takes into account the underlying anomalous diffusion process,

fi is used to model internal reaction dynamics, while the last term stands for the

competition between the different densities (here and in the rest, we will always

assume β > 0). From a modeling point of view, the competition term is represented

by a function cij which in general satisfies the following assumptions: rcij(r, t) ≥ 0 for

any r, t ∈ R (positivity, implying no cooperation), cij(r, t) is monotone increasing in r

for t fixed, monotone increasing in t for t > 0 while monotone decreasing in t for t < 0

v



for r fixed (monotonicity), cij(r, t) = 0 if and only if rt = 0 (segregation condition).

Of the many possible choices of cij we shall consider two which are most important

in applied sciences, namely the variational (quadratic) competition cij(r, t) = aijrt
2,

and symmetric one cij(r, t) = aijrt (and its generalization cij(r, t) = aijr|r|p−1|t|p for

p > 0).

The interest here is in the study of the behaviour of the solutions to (P )β when

the parameter β, which empathizes the strength of the competition mechanism with

respect to the diffusion and internal reaction features, diverges. The description

of the limiting profiles is quite important from an applied point of view, since the

limiting systems associated to (P )β appear in many contest, such as pattern formation

and optimal partition problems. It should be mentioned that the limiting problem

is in general hard to study, due to the sharp transitions imposed by the diverging

competition term, thus an approach based on approximations, as proposed here, is

useful in this sense. But the importance of the description of the behavior of the

solutions as β → +∞ is crucial also by itself, since the limiting configuration can

be seen, from a modeling point of view, as an approximation of highly competing

systems. Moreover, this analysis helps to identify the correct conditions that the

solutions of the limiting system have to satisfy: we shall see in particular that, in a

great contrast with the standard diffusion case s = 1, the choice of the competition

term affects deeply the geometry and the regularity of the solutions.

Part I of this manuscript is devoted to the analysis of this problem. This part is

based on the papers [48, 49, 51].

Existence and qualitative properties of solutions to competing

elliptic systems

With respect to the fractional diffusion models introduced before, the standard diffu-

sion case has been already object of a deep analysis by the scientific community. In

particular, for the system−∆ui = fi(x, ui)− βui
∑
j 6=i aiju

p
j in Ω ⊂ RN

ui ∈ H1
0 (Ω) i = 1, . . . , k

it has been shown (both in the symmetric case p = 1 and the variational case p = 2)

that uniform (w.r.t. β) boundedness in L∞ of a family of solutions is sufficient to guar-

antee the optimal regularity of the limiting solutions as β → +∞. This and related

results have then been used in order to study existence and qualitative properties of

the solutions, as well as to describe precisely how the segregation phenomenon occurs.



In particular, it has been shown that, as β → ∞, appropriate scaled versions of

the segregating functions converge locally to entire solutions of

∆ui = ui
∑
j 6=i

aiju
p
j in RN

and thus a complete characterization of such solutions has become an important

subject. The case p = 1 was already studied in one of the pioneering papers on

this subject by Conti, Terracini and Verzini [22] (see Lemmas 4.2-4.3 [22] where the

authors show existence and uniqueness of entire solutions). In the case p = 2, only

recently Berestycki, Lin, Terracini, Wang, Wei, Zhao were able to show in [5, 6] the

following.

Theorem (Theorem 1.2 [5] and Theorem 1.3 [6]). Let Φ = <(zd) for some d ∈ N.

Then there exists at least a solution to∆u = uv2 in R2

∆v = u2v in R2
(S)2

such that u ≥ Φ+, v ≥ Φ−.

Motivated by this result, in Part II we show that the system (S)2 admits also

solutions which exhibit an exponential growth. This part is based on the paper [46].





Uniform Hölder bounds for

strongly competing systems
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Chapter 1

Introduction, main results and some open

questions

Regularity issues involving fractional laplacians are very challenging, because of the

genuinely non-local nature of such operators, and for this reason they have recently

become the object of an intensive research. Above all, the regularity theory of fully

nonlinear equations, such as free boundary problems, has found a new interesting field

in which the standard (local) analysis can not be applied in its usual form. Thanks

to the seminal paper [16], a bridge between standard and fractional elliptic operators

was built, creating a new and direct link which made it possible to expand the reach

of local analysis also to non-local problems. As a result, in a very short period, a lot

of effort by the scientific community culminated in a series of already sharp results

in this new field (see for instance [15, 4, 34, 14, 17, 13, 28] for some of the very first

results in this new field): it is our purpose to give a contribution in this sense in the

context of system of fractional elliptic equations.

Several physical phenomena can be described by a certain number of densities

(of mass, population, probability, ...) distributed in a domain and subject to laws

of diffusion, reaction, and competitive interaction. Whenever the competition is the

prevailing feature, the densities tend to segregate, hence determining a partition of

the domain. When anomalous diffusion is involved, one is lead to consider the class

of stationary systems of semilinear equations(−∆)sui = fi(x, ui)− β
∑
j 6=i cij(ui, uj)

ui ∈ Hs(RN ),

thus focusing on the singular limit problem obtained when the (positive) parameter

β, accounting for the competitive interactions, diverges to ∞. Among the others, the

cases fi(r) = gir(1 − r/Ki), cij(r, t) = aijrt (logistic internal dynamics with Lotka-

Volterra competition) and fi(r) = ωir
3 + λir, cij(r, t) = aijrt

2 (focusing-defocusing

3



Gross-Pitaevskii system with competitive interactions, see for instance [19, 18]) are

of the highest interest in the applications to population dynamics and theoretical

physics, respectively.

For the standard Laplace diffusion operator (namely s = 1), the analysis of the

qualitative properties of solutions to the corresponding systems has been undertaken,

starting from [19, 20, 21], in a series of recent papers [22, 54, 11, 12, 39], also in the

parabolic case [53, 24, 25, 26]. In the singular limit one finds a vector u = (u1, · · · , uk)

of limiting profiles with mutually disjoint supports: indeed, the segregated states ui

satisfy ui · uj ≡ 0, for i 6= j, and

−∆ui = fi(x, ui) whenever ui 6= 0 , i = 1, . . . , k.

Natural questions concern the functional classes of convergence (a priori bounds),

optimal regularity of the limiting profiles, equilibrium conditions at the interfaces, and

regularity of the nodal set. In [22] (for the Lotka-Volterra competition) and [39] (for

the variational Gross-Pitaevskii one) it is proved that L∞ boundedness implies C0,α

boundedness, uniformly as β → +∞, for every α ∈ (0, 1). Moreover, it is shown that

the limiting profiles are Lipschitz continuous. The proof relies upon elliptic estimates,

the blow-up technique, the monotonicity formulæ by Almgren [1] and Alt-Caffarelli-

Friedman [2], and it reveals a subtle interaction between diffusion and competition

aspects. This interaction mainly occurs at two levels: the validity and exactness of

the Alt-Caffarelli-Friedman monotonicity formula and, consequently, the validity of

Liouville type theorems for entire solutions to semilinear systems.

As a consequence of the quite precise description of the segregation phenomena in

the standard case s = 1, we extended the analysis to the case of fractional diffusion

s ∈ (0, 1).

Notation Since the notation used in this part is quite peculiar and contains some

different symbols from the standard one, we chose to collect it here. We will agree

that any X ∈ RN+1 can be written as X = (x, y), with x ∈ RN and y ∈ R, in such a

way that RN+1
+ := RN+1 ∩ {y > 0}. For any D ⊂ RN+1 we write

D+ := D ∩ {y > 0},

∂+D+ := ∂D ∩ {y > 0},

∂0D+ := D ∩ {y = 0}.

In most cases, we use this notation with D = Br(x0, 0) (the (N + 1)-dimensional ball

centered at a point of RN ). In such case, we denote

SN−1
r (x0, 0) := {(x, 0) : x ∈ RN , |x− x0| = r} = ∂B+

r \
(
∂+B+

r ∪ ∂0B+
r

)
.



Beyond the usual functional spaces, we will write

H1
loc

(
RN+1

+

)
:= {v : ∀D ⊂ RN+1 open and bounded, v|D+ ∈ H1(D+)}.

The parameter s will stand mostly to indicate the fractional power of the Laplace

operator in analysis, thus s ∈ (0, 1) will be implied when not explicitly remarked. Ac-

cordingly, we will let a := 1−2s ∈ (−1, 1). Well known properties of the Muckenhoupt

A2-weights (see for instance [41]) allow to introduce the weighted spaces

H1;a(Ω) :=

{
v :

∫
Ω

ya
(
|v|2 + |∇v|2

)
dxdy <∞

}
,

with its natural Hilbert structure, and

H1;a
loc

(
RN+1

+

)
:= {v : ∀D ⊂ RN+1 open and bounded, v|D+ ∈ H1;a(D+)}.

These functional spaces will be needed to deal with some degenerate elliptic equation

encountered in the following, mainly regarding the differential operator (on the (N +

1)-dimensional space)

Lav := −div (|y|a∇v) ,

whose (degenerate) co-normal derivative with respect to the set {y = 0} we shall

denote as

∂aνv := lim
y→0+

−ya∂yv.

1.1 The variational problem, case s = 1/2

The first kind of system we analyse is given by(−∆)1/2ui = fi,β(ui)− βui
∑
j 6=i u

2
j

ui ∈ H1/2(RN ).
(1.1.1)

This class of problems includes the already mentioned Gross-Pitaevskii systems with

focusing or defocusing nonlinearities(−∆ +m2
i )

1/2ui = ωiu
3
i + λi,βui − βui

∑
j 6=i aiju

2
j

ui ∈ H1/2(RN ),

with aij = aji > 0, which is the relativistic version of the Hartree-Fock approximation

theory for mixtures of Bose-Einstein condensates in different hyperfine states. Even

though we will perform the proof in the case mi = 0 (and aij = 1), the general case,

allowing positive masses mi > 0, follows with minor changes and it is actually a bit

simpler.



As it is well known (see e.g. [16]), the N -dimensional half laplacian can be inter-

preted as a Dirichlet-to-Neumann operator and solutions to problem (1.1.1) as traces

of harmonic functions on the (N + 1)-dimensional half space having the right-hand

side of (1.1.1) as normal derivative. For this reason, it is worth stating our main re-

sults for harmonic functions with nonlinear Neumann boundary conditions involving

strong competition terms.

Theorem 1.1.1 (Local uniform Hölder bounds). Let the functions fi,β be continuous

and uniformly bounded (w.r.t. β) on bounded sets, and let {vβ = (vi,β)1≤i≤k}β be a

family of H1(B+
1 ) solutions to the problems−∆vi = 0 in B+

1

∂νvi = fi,β(vi)− βvi
∑
j 6=i v

2
j on ∂0B+

1 .
(GP )β

Let us assume that

‖vβ‖L∞(B+
1 ) ≤M,

for a constant M independent of β. Then for every α ∈ (0, 1/2) there exists a constant

C = C(M,α), not depending on β, such that

‖vβ‖C0,α
(
B+

1/2

) ≤ C(M,α).

Furthermore, {vβ}β is relatively compact in H1(B+
1/2) ∩ C0,α

(
B+

1/2

)
for every α <

1/2.

As a byproduct, up to subsequences we have convergence of the above solutions

to a limiting profile, which components are segregated on the boundary ∂0B+. If

furthermore fi,β → fi, uniformly on compact sets, we can prove that this limiting

profile satisfies −∆vi = 0 in B+
1

vi∂νvi = fi(vi)vi on ∂0B+
1 .

One can see that, for solutions of this type of equation, the highest possible regularity

correspond to the Hölder exponent α = 1/2. As a matter of fact, we can prove that

the limiting profiles do enjoy such optimal regularity.

Theorem 1.1.2 (Optimal regularity of limiting profiles). Under the assumptions

above, assume moreover that the locally Lipschitz continuous functions fi satisfy

fi(s) = f ′i(0)s+O(|s|1+ε) as s→ 0, for some ε > 0. Then v ∈ C0,1/2
(
B+

1/2

)
.

Once local regularity is established, we can move from (GP )β and deal with global

problems, adding suitable boundary conditions. An example of results that we can

prove is the following.



Theorem 1.1.3 (Global uniform Hölder bounds). Let the functions fi,β be continuous

and uniformly bounded (w.r.t. β) on bounded sets, and let {uβ}β be a family of

H1/2(RN ) solutions to the problems(−∆)1/2ui = fi,β(ui)− βui
∑
j 6=i u

2
j on Ω

ui ≡ 0 on RN \ Ω,

where Ω is a bounded domain of RN , with sufficiently smooth boundary. Let us assume

that

‖uβ‖L∞(Ω) ≤M,

for a constant M independent of β. Then for every α ∈ (0, 1/2) there exists a constant

C = C(M,α), not depending on β, such that

‖uβ‖C0,α(RN ) ≤ C(M,α).

Analogous results hold, for instance, when the square root of the laplacian is

replaced with the spectral fractional laplacian with homogeneous Dirichlet boundary

conditions on bounded domains (see [8]). Moreover, note that L∞ bounds can be

derived from H1/2 ones, once suitable restrictions are imposed on the growth rate

(subcritical) of the nonlinearities and/or on the dimension N , by means of a Brezis-

Kato type argument.

In order to pursue the program just illustrated, compared with the case of the

standard laplacian, a number of new difficulties has to be overcome. For instance, the

polynomial decay of the fundamental solution of (−∆)1/2 + 1 already affects the rate

of segregation. Furthermore, since such segregation occurs only in the N -dimensional

space, it is natural to expect free boundaries of codimension 2. But, perhaps, the most

challenging issue lies in the lack of the validity of an exact Alt-Caffarelli-Friedman

monotonicity formula. This reflects, at the spectral level, the lack of convexity of the

eigenvalues with respect to domain variations, see Remark 2.1.4 below. To attack

these problems new tools are in order, involving different extremality conditions and

new monotonicity formulas (associated with trace spectral problems).

1.2 The variational problem, case s ∈ (0, 1)

Later, we generalize the theory developed in the case s = 1/2 to the system(−∆)sui = fi,β(ui)− βui
∑
j 6=i aiju

2
j

ui ∈ Hs(RN ),
(1.2.1)



where aij = aji > 0, β is positive and large, and the non-local operator

(−∆)su(x) = cN,s pv

∫
RN

u(x)− u(ξ)

|x− ξ|N+2s
dξ

denotes the s-power of the laplacian. Exploiting again the local realization of (−∆)s

as a Dirichlet-to-Neumann map (see [16] for the general case s ∈ (0, 1)) and letting

a := 1− 2s ∈ (−1, 1), we obtain, up to normalization constants, the problemLavi = 0 in B+
1

∂aνvi = fi,β(vi)− βvi
∑
j 6=i aijv

2
j on ∂0B+

1 ,
(GP )sβ

which is a localized version of (1.2.1), with ui(x) = vi(x, 0). The main result we prove

in this context is the following.

Theorem 1.2.1 (Local uniform Hölder bounds). Let the functions fi,β be continuous

and uniformly bounded (w.r.t. β) on bounded sets. There exists α = α(N, s) > 0 such

that, for every {vβ}β family of H1;a(B+
1 ) solutions to the problems (GP )sβ,

‖vβ‖L∞(B+
1 ) ≤M =⇒ ‖vβ‖C0,α

(
B+

1/2

) ≤ C,
where C = C(M,α). Furthermore, {vβ}β>0 is relatively compact in H1;a(B+

1/2) ∩

C0,α
(
B+

1/2

)
.

The above result allows to prove its natural global counterpart, either on the whole

of RN or on domains with suitable boundary conditions.

Theorem 1.2.2 (Global uniform Hölder bounds). Let fi,β and α be as in the previous

theorem, and let {uβ}β be a family of Hs(RN ) solutions to the problems(−∆)sui = fi,β(ui)− βui
∑
j 6=i aiju

2
j in Ω

ui ≡ 0 in RN \ Ω,

where Ω is a bounded domain of RN , with smooth boundary. Then

‖uβ‖L∞(Ω) ≤M =⇒ ‖uβ‖C0,α(RN ) ≤ C(M,α).

Of course, a natural question regards the optimal regularity of such problems,

that is the maximal value of α for the above results to hold. The exponent α is

subject to two main restrictions: as before, α is bounded above by the minimal rate

of growth for multi-phase segregation profiles; on the other hand, when s > 1/2, a

new upper threshold must be taken into account, which is related to the phenomenon

of self-segregation.



The first restriction is related to the validity of an exact Alt-Caffarelli-Friedmann

formula and to the classification of the possible growth of entire solutions to suitable

limiting systems. These are analogous restrictions to those found in the case s =

1/2, and indeed, using similar arguments to that case, it would seem reasonable

to conjecture that the optimal exponent is exactly s. Even though this is a correct

conjecture, at least in the case s ≤ 1/2, an interesting phenomenon takes place beyond

this threshold.

A second obstruction (to which we shall refer as self-segregation), however, is

imposed by the simple observation that the fundamental solution of the s-laplacian

Γ(X) =
CN,s
|X|N−2s

,

turns out to be bounded near 0 and H1;a(B), whenever s > 1/2, N = 1. This implies

that, when s > 1/2, N ≥ 2, the function

v(x, y) = (x2
1 + y2)(2s−1)/2

is positive and La-harmonic for y > 0, ∂aνv(x, 0) = 0 whenever v(x, 0) 6= 0, and its

trace on RN has disconnected positivity regions. Moreover, such self-segregated profile

(so called since the same density is on both sides of the free boundary) is globally

Hölder continuous, of exponent α = 2s− 1 which is arbitrarily small as s→ (1/2)+.

The phenomenon of self-segregation can be excluded in some situations, for instance

when s ≤ 1/2 (for capacitary reasons), or when suitable minimality conditions are

imposed (as in [14]). Nonetheless, in general it is hard to tackle: for the case s = 1

it was excluded only recently, in [26]. As a result, for the moment we can show that

the exponent α(N, s) satisfies

α(N, s)

= s for s ∈ (0, 1/2] (optimal)

≥ 2s− 1 for s ∈ (1/2, 1)

where in the last case, the optimality is still an open question.

1.3 The symmetric problem, case s ∈ (0, 1)

In the last chapter of this part, we will concentrate on the system

(−∆)sui = fi(x, ui)− βupi
∑
j 6=i

aiju
p
j , (1.3.1)

settled in Hs(RN ), N ≥ 1, or in a bounded domain with suitable boundary conditions.

As we already mentioned, after [19, 20, 21], the case s = 1 of standard diffusion has



been extensively studied in the last decade. In particular it is known that, both in

the case of Lotka-Volterra competition [22, 11] and in the variational one [12, 39],

each family of solutions which share a common uniform bounds in the L∞ norm is

precompact in the topology of H1∩C0,α for every α < 1; we highlight that this result

is quasi-optimal, in the sense that α = 1 is the maximal common regularity allowed

for this problem. Furthermore, the limiting profiles (as β → +∞) are solutions of the

segregated system

ui (−∆ui − fi(x, ui)) = 0, uiuj = 0 for j 6= i, (1.3.2)

they are Lipschitz continuous, and they obey to a weak reflection law which roughly

says that, on the free boundary separating two components, the corresponding gradi-

ents are equal in magnitude (up to suitable scaling factors depending on the matrix

(aij)) and opposite in direction [47]. Remarkably, such law is the same for both types

of competition [26]. For some related results, in the case of standard diffusion, we

also refer to [24, 40] and references therein.

Coming to the anomalous diffusion case s ∈ (0, 1), until now we have only con-

sidered the competition of Gross-Pitaevskii type. In such framework, we have seen

that L∞ uniform bounds imply uniform bounds in Hs∩C0,α (for a suitable extension

problem), for every α < αGP
opt(s). Here the optimal exponent

αGP
opt(s) = s,

at least when 0 < s ≤ 1/2; for 1/2 < s < 1 we could only show that αGP
opt(s) ≥ 2s− 1,

because of the lack of a clean-up lemma appropriate to exclude self-segregation. In

any case, this result agrees with the one holding for the standard Laplace operator,

since αGP
opt(1) = 1. Moreover the limiting profiles satisfy a natural extension to the

fractional setting of the system (1.3.2), that is

ui ((−∆)sui − fi(x, ui)) = 0, uiuj = 0 for j 6= i, (1.3.3)

and the validity of an Almgren monotonicity formula across the free boundary ensures

a reflection property, as in the case s = 1.

Under the perspective just described, we then address the study of system (1.3.1),

where a different type of competition takes place. We remark that such range of

parameters not only includes the Lotka-Volterra competition (that is, the case p = 1),

but it is of interest also in the complementary case p 6= 1. Indeed, in the case of k = 2

components, such competition appears in the modeling of diffusion flames [14], while

in the general case the change of variables Ui = upi turns system (1.3.1) into the

one for competing densities subject to fast fractional diffusion (when p > 1), or to

fractional diffusion in a porous medium (when p < 1) [27, 7].



As before, we state our results for a localized extension problem [16] related to

the nonlocal system (1.3.1), namely the problemLavi = 0 in B+
1

∂aνvi = fi,β(x, v1, . . . , vk)− βvpi
∑
j 6=i aijv

p
j on ∂0B+

1 .
(LV )β

Our first main results concern the full quasi-optimal theory in the case of two densities.

Theorem 1.3.1. Let p > 0, aij > 0 for any j 6= i, and the reaction terms fi,β be

continuous and map bounded sets into bounded sets, uniformly w.r.t. β > 0.

If k = 2 then, for every

α < αopt(s) = αLV
opt(s) := min(2s, 1)

and m̄ > 0, there exists a constant C = C(α, m̄) independent of β such that

‖vβ‖L∞(B+) ≤ m̄ =⇒ ‖vβ‖C0,α
(
B+

1/2

) ≤ C,
for every vβ = (v1,β , v2,β) nonnegative solution of problem (LV )β.

Furthermore, any sequence of uniformly bounded, nonnegative solutions {(v1,βn , v2,βn)}n,

with βn → ∞, converges (up to subsequences) in
(
H1;a ∩ C0,α

) (
B+

1/2

)
to a limiting

profile (v1, v2).

Theorem 1.3.2. Under the assumption of the previous theorem, let furthermore

fi,β → fi as β → ∞, uniformly on compact sets, with fi Lipschitz continuous. For

any limiting profile (v1, v2):

• v1(x, 0), v2(x, 0) are Lipschitz continuous (optimal regularity of the traces);

• v1(x, 0) · v2(x, 0) = 0 (boundary segregation condition);

• Lav1 = Lav2 = 0 for y > 0;

• ∂aν (a21v1 − a12v2) = a21f1 − a12f2 for y = 0.

Remark 1.3.3. In the previous results B+
1/2 can be replaced by any domain Ω∩{y >

0}, where Ω ⊂ B1.

Remark 1.3.4. Throughout this paper, we restrict our discussion to nonnegative

solutions only to avoid technicalities. Reasoning as in Chapter 2 and 3, also changing

sign solutions can be considered, once the competition is suitably extended to negative

densities.



Remark 1.3.5. The upper bound α = 2s for the regularity of the functions vi,β

can not be removed: indeed, from any solution of (LV )β we can construct another

solution having (k + 1) components, by defining vk+1,β(x, y) = y2s, fk+1,β ≡ −2s.

One may possibly expect to be able to remove such threshold by considering only the

regularity of the traces vi,β(x, 0), as suggested by Theorem 1.3.2.

On the other hand, the Lipschitz regularity is the natural one, at least for the

traces, since the last condition in Theorem 1.3.2 implies that vi(x, 0) are (proportional

to) the positive/negative parts of a regular function.

Next, we address the case of k ≥ 3 densities.

Theorem 1.3.6. Let k ≥ 3. Then there exists α∗ > 0 such that Theorem 1.3.1 holds

for any α < α∗, under the further assumption that

either p ≥ 1 or aij = 1 for every j 6= i.

Furthermore, if aij = 1,

α∗ = αopt(s) = min(2s, 1)

whenever s = 1/2 or s ∈ (0, 1/4).

Even though we can show quasi-optimality only in some cases, the above regularity

result is sufficient to conclude that, as β → ∞, solutions of (LV )β accumulate to

limiting profiles vi which properties, apart from optimal regularity, are analogous

to those described in Theorem 1.3.2 for the case k = 2 (see Section 4.4 for further

details). In particular, going back to the segregated traces ui(x) = vi(x, 0), we can

show that

ui

[
(−∆)s

(
ui −

∑
j 6=i

aij
aji

uj

)
−

(
fi −

∑
j 6=i

aij
aji

fj

)]
= 0, uiuj = 0 for j 6= i. (1.3.4)

Comparing with equation (1.3.3), we see that, if s < 1, the Gross-Pitaevskii compe-

tition and the Lotka-Volterra one exhibit deep differences not only from the point of

view of the optimal regularity exponent, but also from that of the differential equa-

tions satisfied by the segregated limiting profiles. This is in great contrast with the

case s = 1 where, as we already mentioned, the two competitions can not be distin-

guished from each other in the limit. Such feature is caused by the non local nature of

the diffusion operators: indeed equation (1.3.4) can not be directly reduced to (1.3.3),

since in the set {ui = 0} the corresponding fractional laplacian does not necessarily

vanish. Nonetheless, letting s → 1−, we recover the local nature of the equation: as

a consequence

ui(−∆)s

ui −∑
j 6=i

aij
aji

uj

→ ui(−∆ui),



so that equation (1.3.2) arises also in this case.

To conclude, we mention that the equations just discussed –or, better, the corre-

sponding ones for the extensions vi– can be used to obtain further regularity for the

limiting profiles, also in the case aij 6= 1. In particular, we have the following result.

Theorem 1.3.7. Let k ≥ 3, s = 1/2, p > 1. If furthermore fi(x, t1, . . . , tk) = 0 for

|(t1, . . . , tk)| small then every segregated limiting profile vi is C0,α, for every α < 1.

Remark 1.3.8. Collecting together the results of Theorems 1.3.6 and 1.3.7, we have

that for s = 1/2 the limiting profiles are C0,α, for every α < 1, when either aij = 1

or p > 1. Since for s = 1/2 we have that La = (−∆), one may then try to apply the

arguments contained in [11, Section 2] (see also [2, Section 5]). This should eventually

imply that the traces of the limiting profiles are indeed Lipschitz continuous.





Chapter 2

Variational competition: the case of the

half laplacian

Outline of the chapter

In this chapter we analyse regularity issue for a system of competition densities which

are subject to fractional diffusion of power s = 1/2 and interact through a variational

term. This particular choice of the diffusion exponent has important justification

both from the modeling point of view (it is indeed linked to relativistic versions of the

Schrödinger equation) and from analytical issues (the extension problem found in [16]

being just of harmonic type). We first introduce some generalisation of the already

recalled Alt-Caffarelli-Friedman and Almgren monotonicity formulæ in the context

of fractional diffusion, together with some implications. Via a blow up analysis, we

conclude uniform bounds in some Hölder norm for the components of the system: at

this stage the precise value of the exponent is unknown due to the unknown optimal

growth of the new monotonicity formulæ. Nevertheless, this first result is then used

in combination with a blow down analysis to obtain the sharp regularity exponent,

that is, it is shown that the components of the system admit C0,α uniform bounds

for every α < 1/2. The chapter is concluded by showing that the limiting profiles are

actually C0,1/2 regular.

2.1 Alt-Caffarelli-Friedman type monotonicity formulæ

We begin the investigation with a section devoted to the proof of some monotonicity

formulæ of Alt-Caffarelli-Friedman (ACF) type. For references to the case s = 1 we

recall [2, 9, 22, 39].
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2.1.1 Segregated ACF formula

As recalled in the Intoduction, the validity of ACF type formulæ depends on opti-

mal partition problems involving spectral properties of the domain. In the present

situation, the spectral problem we consider involves a pair of functions defined on

SN+ := ∂+B+. As a peculiar fact, here such functions have not disjoint support on

the whole SN+ , but only on its boundary SN−1. In this way we are lead to consider

the following optimal partition problem on SN−1.

Definition 2.1.1. For each open subset ω of SN−1 := ∂SN+ we define the first eigen-

value associated to ω as

λ1(ω) := inf

{∫
SN+
|∇Tu|2 dσ∫
SN+
u2 dσ

: u ∈ H1(SN+ ), u ≡ 0 on SN−1 \ ω

}
.

Here ∇Tu stands for the (tangential) gradient of u on SN+ .

Definition 2.1.2. On SN−1 we define the set of 2-partition P2 by

P2 :=
{

(ω1, ω2) : ωi ⊂ SN−1 open, ω1 ∩ ω2 = ∅
}

and the number, only depending on N ,

νACF : =
1

2
inf

(ω1,ω2)∈P2

2∑
i=1

√(N − 1

2

)2

+ λ1(ωi)−
N − 1

2


=

1

2
inf

(ω1,ω2)∈P2

2∑
i=1

γ(λ1(ωi)).

Remark 2.1.3. As it is well known, u achieves λ1(ω) if and only if it is one signed,

and its γ(λ1(ω))-homogeneous extension to RN+1
+ is harmonic.

Remark 2.1.4. By symmetrization arguments, one may try to restrict the study of

the above optimal partition problem to the case when both ωi are spherical caps. In

such a situation, writing Γ(ϑ) := γ(λ1(ωϑ)) for the spherical cap ωϑ with opening ϑ,

one is lead to minimize the quantity

ϕ(ϑ) :=
1

2
[Γ(ϑ) + Γ(π − ϑ)] , ϑ ∈ [0, π].

It is worthwhile noticing that the function ϕ is not convex, indeed one can prove that

ϕ(0) = ϕ
(π

2

)
= ϕ(π) =

1

2

(for details, see the proofs of Lemma 2.1.5 and Proposition 2.1.12 below). Thus, in

particular, it is not clear whether the minimum of ϕ may be strictly less that 1/2.

As already mentioned, this marks a notable difference with respect to the standard

diffusion case.



Lemma 2.1.5. For every dimension N , it holds 0 < νACF ≤ 1
2 .

Proof. The bound from above easily follows by comparing with the value correspond-

ing to the partition (SN−1, ∅): indeed, it holds λ1(SN−1) = 0, achieved by u(x, y) ≡ 1,

and λ1(∅) = 2N , achieved by u(x, y) = y. In order to prove the estimate from below,

let us first observe that, for each pair (ω1, ω2) ∈ P2, there exist two functions u1 and

u2 in H1(SN+ ) such that ui ≡ 0 on SN−1 \ ωi,

λ1(ωi) =

∫
SN+

|∇Tui|2 dσ and

∫
SN+

u2
i dσ = 1.

This claim is a consequence of the compactness both of the embedding H1(SN+ ) ↪→
L2(SN+ ) and of the trace operator from H1(SN+ ) to L2(SN−1) (recall that the constraint

is continuous with respect to the L2(SN−1) topology).

We proceed by contradiction, supposing that there exists a sequence of 2-partition

(ωn1 , ω
n
2 ) ∈ P2 such that

γ (λ1(ωn1 )) + γ (λ1(ωn2 ))→ 0.

Since the function γ is non negative and increasing, it must be that λ1(ωni ) → 0 for

i = 1, 2, that is, there exist two sequences of functions un1 and un2 in H1(SN+ ) such

that ui ≡ 0 on SN−1 \ ωi,∫
SN+

|∇Tui|2 dσ → 0 while

∫
SN+

u2
i dσ = 1.

Therefore, up to a subsequence, it holds

un1 , u
n
2 ⇀ |SN+ |1/2 in H1(SN+ ) and

∫
SN−1

un1u
n
2 dσ = 0

which are incompatible.

Under the previous notations, we can prove the following monotonicity formula.

Theorem 2.1.6. Let v1, v2 ∈ H1(B+
R(x0, 0)) be continuous functions such that

• v1v2|{y=0} = 0, vi(x0, 0) = 0;

• for every non negative φ ∈ C∞0 (BR(x0, 0)),∫
RN+1

+

(−∆vi)viφdxdy +

∫
RN

(∂νvi)viφ dx =

∫
RN+1

+

∇vi · ∇(viφ) dxdy ≤ 0.



Then the function

Φ(r) :=

2∏
i=1

1

r2νACF

∫
B+
r (x0,0)

|∇vi|2

|X − (x0, 0)|N−1
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Remark 2.1.7. Since∫
RN+1

+

∇vi · ∇(viφ) dxdy =

∫
RN+1

+

[
|∇vi|2φ+

1

2
∇(vi)

2 · ∇φ
]

dxdy, (2.1.1)

we have that if v1, v2 satisfy the assumptions of Theorem 2.1.6 then also |v1|, |v2| do.

By the above remark, we can assume without loss of generality that v1 and v2

are non negative. Since the theorem is trivial if either v1 ≡ 0 or v2 ≡ 0, we will

prove it when both v1 and v2 are non zero. Moreover, by translating and scaling, the

theorem can be proved under the assumption that x0 = 0 and R = 1. We will need

the following technical lemmas.

Definition 2.1.8. We define Γ1 ∈ C1(RN+1
+ ;R+) as

Γ1(X) :=

 1
|X|N−1 |X| ≥ 1

N+1
2 − N−1

2 |X|
2 |X| < 1.

We let also Γε(X) = Γ1(X/ε)ε1−N , so that Γε ↗ Γ = |X|1−N , a multiple of the

fundamental solution of the half-laplacian, as ε→ 0.

Remark 2.1.9. Let us observe that each Γε is radial and, in particular, ∂νΓε = 0 on

RN . Moreover, they are superharmonic on RN+1
+ .

Lemma 2.1.10. Let v1, v2 be as in Theorem 2.1.6. The function

r 7→
∫
B+
r

|∇vi|2

|X|N−1
dxdy (2.1.2)

is well defined and bounded in any compact subset of (0, 1).

Proof. We proceed as follows: let ε > 0, δ > 0 and let ηδ ∈ C∞0 (Br+δ) be a smooth,

radial cutoff function such that 0 ≤ ηδ ≤ 1 and ηδ = 1 on Br. Choosing φ = ηδΓε in

the second assumption of the theorem, and recalling equation (2.1.1), we obtain∫
RN+1

+

[
|∇vi|2Γε +

1

2
∇(vi)

2 · ∇Γε

]
ηδdxdy ≤ −

∫
RN+1

+

1

2
Γε∇(vi)

2 · ∇ηδdxdy

=

r+δ∫
r

−η′δ(ρ)

∫
∂+B+

ρ

Γεvi∇vi ·
X

|X|
dσ

 dρ.



Passing to the limit as δ → 0 we obtain, for almost every r ∈ (0, 1),

∫
B+
r

[
|∇vi|2Γε +

1

2
∇(vi)

2 · ∇Γε

]
dxdy ≤

∫
∂+B+

r

Γεvi∂νvidσ,

which, combined with the inequality −∆Γε ≥ 0 tested with v2
i /2 leads to

∫
B+
r

|∇vi|2Γε dxdy ≤
∫

∂+B+
r

(
Γεvi∂νvi −

v2
i

2
∂νΓε

)
dσ.

Letting ε→ 0+, by monotone convergence we infer

∫
B+
r

|∇vi|2

|X|N−1
dxdy ≤ 1

rN−1

∫
∂+B+

r

vi
∂vi
∂ν

dσ +
N − 1

2rN

∫
∂+B+

r

v2
i dσ (2.1.3)

and this, in turns, proves the lemma.

Lemma 2.1.11. Let v1, v2 be two non trivial functions satisfying the assumptions of

Theorem 2.1.6. It holds

2∑
i=1

∫
∂+B+

r

|∇vi|2
|X|N−1 dσ

∫
B+
r

|∇vi|2
|X|N−1 dxdy

≥ 4

r
νACF. (2.1.4)

Proof. First we use the estimate (2.1.3) to bound from below the left hand side of

(2.1.4):

∫
∂+B+

r

|∇vi|2
|X|N−1 dσ∫

B+
r

|∇vi|2
|X|N−1 dxdy

≥

∫
∂+B+

r

|∇vi|2 dσ∫
∂+B+

r

vi∂νvi dσ + (N − 1) r2
∫

∂+B+
r

v2
i dσ

=
1

r

∫
SN+

|∇v(r)
i |2 dσ

∫
SN+

v
(r)
i ∂νv

(r)
i dσ + N−1

2

∫
SN+

(v
(r)
i )2 dσ

,

where v
(r)
i : SN−1

+ → R is defined as v
(r)
i (ξ) = vi(rξ). We now estimate the right hand



side as follows: the numerator writes∫
SN+

|∇v(r)
i |

2 dσ =

∫
SN+

|∂νv(r)
i |

2 dσ +

∫
SN+

|∇T v(r)
i |

2 dσ

=

∫
SN+

|v(r)
i |

2 dσ



∫
SN+

|∂νv(r)
i |2 dσ

∫
SN+

|v(r)
i |2 dσ

︸ ︷︷ ︸
t2

+

∫
SN+

|∇T v(r)
i |2 dσ

∫
SN+

|v(r)
i |2 dσ

︸ ︷︷ ︸
R


.

where R stands for the Rayleigh quotient of v
(r)
i on SN+ . On the other hand, by the

Cauchy-Schwarz inequality, the denominator may be estimated from above by∫
SN+

v
(r)
i ∂νv

(r)
i dσ + r

N − 1

2

∫
SN+

|v(r)
i |

2 dσ

≤

∫
SN+

|v(r)
i |

2 dσ


1/2∫

SN+

∂νv
(r)
i dσ


1/2

+ r
N − 1

2

∫
SN+

|v(r)
i |

2 dσ

≤
∫
SN+

|v(r)
i |

2 dσ




∫
SN+

|∂νv(r)
i |2 dσ

∫
SN+

|v(r)
i |2 dσ


1/2

︸ ︷︷ ︸
t

+
N − 1

2


.

As a consequence ∫
∂+B+

r

|∇vi|2
|X|N−1 dσ∫

B+
r

|∇vi|2
|X|N−1 dxdy

≥ 1

r
min
t∈R+

R+ t2

t+ N−1
2

.

A simple computation shows that the minimum is achieved when

t = γ(R) =

√(
N − 1

2

)2

+R− N − 1

2
,

and it is equal to 2γ(R). Summing over i = 1, 2, we obtain

2∑
i=1

∫
∂+B+

r

|∇vi|2
|X|N−1 dσ

∫
B+
r

|∇vi|2
|X|N−1 dxdy

≥ 2

r
inf

(ω1,ω2)∈P2

2∑
i=1

γ (λ1(ωi)) =
4

r
νACF



where the inequality follows by substituting each R with their optimal value, that is,

the eigenvalue λ1(ωi).

Proof of Theorem 2.1.6. As already noticed, we may assume that x0 = 0 and R = 1

and that both v1 and v2 are non trivial and non negative. We start observing that

the function Φ(r) is positive and absolutely continuous for r ∈ (0, 1), since it is the

product of functions which are positive and absolutely continuous in (0, 1). Therefore,

the theorem follows once we prove that Φ′(r) ≥ 0 for almost every r ∈ (0, 1). A direct

computation of the logarithmic derivative of Φ shows that

Φ′(r)

Φ(r)
= −4νACF

r
+

2∑
i=1

∫
∂+B+

r

|∇vi|2/|X|N−1 dσ∫
B+
r

|∇vi|2/|X|N−1 dxdy
≥ 0

where the last inequality follows by Lemma 2.1.11.

As we mentioned, Theorem 2.1.6 will be crucial in proving interior regularity

estimates. We now provide a related result, suitable to treat regularity up to the

boundary. Differently from before, in this case we can show that the optimal exponent

in the corresponding monotonicity formula is exactly γ = 1/2.

Proposition 2.1.12. Let v ∈ H1(B+
R) be a continuous function such that

• v1(x, 0) = 0 for x1 ≤ 0;

• for every non negative φ ∈ C∞0 (BR),∫
RN+1

+

(−∆v)vφdxdy +

∫
RN

(∂νv)vφ dx =

∫
RN+1

+

∇v · ∇(vφ) dxdy ≤ 0.

Then the function

Φ(r) :=
1

r

∫
B+
r

|∇v|2

|X|N−1
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Proof. Let ω̄ := SN−1 ∩ {x1 > 0}, and let v denote the 1/2 homogeneous, harmonic

extension of v(x, 0) =
√
x+

1 to RN+1
+ , that is

v(x, y) =

√√
x2

1 + y2 + x1

2
.

Since v is positive for y > 0, Remark 2.1.3 implies that v|SN+ is an eigenfunction

associated to λ1(ω̄), providing

γ(λ1(ω̄)) =
1

2
.



But then, reasoning as in the proofs of Lemma 2.1.11 and Theorem 2.1.6, we readily

obtain that
Φ′(r)

Φ(r)
≥ 2

r

[
−1

2
+ γ(λ1(ω̄))

]
= 0.

2.1.2 Perturbed ACF formula

We now move from Theorem 2.1.6 and introduce a perturbed version of the mono-

tonicity formula, suitable for functions which coexist on the boundary, rather than

having disjoint support.

Theorem 2.1.13. Let νACF be as in Definition 2.1.2, and let v1, v2 ∈ H1
loc

(
RN+1

+

)
be continuous functions such that, for every non negative φ ∈ C∞0

(
RN+1

+

)
and j 6= i,

∫
RN+1

+

(−∆vi)viφ dxdy +

∫
RN

(∂νvi + viv
2
j )viφ dx

=

∫
RN+1

+

∇vi · ∇(viφ) dxdy +

∫
RN

v2
i v

2
jφ dx ≤ 0.

For any ν′ ∈ (0, νACF) there exists r̄ > 1 such that the function

Φ(r) :=

2∏
i=1

Φi(r)

is monotone non decreasing in r for r ∈ (r̄,∞), where

Φi(r) :=
1

r2ν′

∫
B+
r

|∇vi|2Γ1 dxdy +

∫
∂0B+

r

v2
i v

2
jΓ1 dx

 , for j 6= i.

Remark 2.1.14. We observe that, analogously to Remark 2.1.7, the main assumption

of Theorem 2.1.13 can be equivalently rewritten as∫
RN+1

+

[
|∇vi|2φ+

1

2
∇(vi)

2 · ∇φ
]

dxdy +

∫
RN

v2
i v

2
jφ dx ≤ 0,

for every compactly supported φ ≥ 0. In particular, if v1, v2 satisfy such assumption,

so |v1|, |v2| do. Moreover, reasoning as in Lemma 2.1.10, we obtain that, for every

φ ≥ 0 and almost every r,∫
B+
r

[
|∇vi|2φ+

1

2
∇(vi)

2 · ∇φ
]

dxdy +

∫
∂0B+

r

v2
i v

2
jφ dx ≤

∫
∂+B+

r

(∂νvi)viφ dσ, (2.1.5)



The proof of Theorem 2.1.13 follows the lines of the one of Theorem 2.1.6.

Lemma 2.1.15. Let v1, v2 be two non trivial functions satisfying the assumptions of

Theorem 2.1.13. Then, for any r > 1, it holds

2∑
i=1

∫
∂B+

r

|∇vi|2Γ1 dσ +

∫
rSN−1

v2
i v

2
jΓ1 dσ

∫
B+
r

|∇vi|2Γ1 dxdy +

∫
∂0B+

r

v2
i v

2
jΓ1 dx

≥ 2

r

2∑
i=1

γ (Λi(r)) , (2.1.6)

where

Λi(r) =

∫
SN+

|∇T v(r)
i |2 dσ + r

∫
SN−1

(v
(r)
i v

(r)
j )2 dσ

∫
SN+

|v(r)
i |2 dσ

(again, v
(r)
i : SN−1

+ → R is such that v
(r)
i (ξ) = vi(rξ)).

Proof. By choosing φ = Γ1 (Definition 2.1.8) in equation (2.1.5) we obtain, for a.e.

r > 0,

∫
B+
r

[
|∇vi|2Γ1 +

1

2
∇(vi)

2 · ∇Γ1

]
dxdy +

∫
∂0B+

r

v2
i v

2
jΓ1 dx ≤

∫
∂+B+

r

vi∂νviΓ1 dσ.

The superharmonicity of Γ1 yields then

∫
B+
r

|∇vi|2Γ1 dxdy +

∫
∂0B+

r

v2
i v

2
jΓ1 dx ≤

∫
∂+B+

r

(
vi∂νviΓ1 −

v2
i

2
∂νΓ1

)
dσ.

Recalling that r > 1 we can use the previous estimate to bound from below the left

hand side of equation (2.1.6), obtaining

∫
∂B+

r

|∇vi|2Γ1 dσ +

∫
rSN−1

viv
2
jΓ1 dσ

∫
B+
r

|∇vi|2Γ1 dxdy +

∫
∂0B+

r

viv
2
jΓ1 dx

≥ 1

r

∫
SN+

|∇v(r)
i |2 dσ + r

∫
SN−1

(v
(r)
i v

(r)
j )2 dσ

∫
SN+

v
(r)
i ∂νv

(r)
i dσ + N−1

2

∫
SN+

(v
(r)
i )2 dσ

.



We now estimate the right hand side as follows: the numerator writes∫
SN+

|∇v(r)
i |

2 dσ + r

∫
SN−1

(v
(r)
i v

(r)
j )2 dσ

=

∫
SN+

|∂νv(r)
i |

2 dσ +

∫
SN+

|∇T v(r)
i |

2 dσ + r

∫
SN−1

(v
(r)
i v

(r)
j )2 dσ

=

∫
SN+

|v(r)
i |

2 dσ



∫
SN+

|∂νv(r)
i |2 dσ

∫
SN+

|v(r)
i |2 dσ

︸ ︷︷ ︸
t2

+

∫
SN+

|∇T v(r)
i |2 dσ + r

∫
SN−1

(v
(r)
i v

(r)
j )2 dσ

∫
SN+

|v(r)
i |2 dσ

︸ ︷︷ ︸
R


.

We may bound the denominator as in Lemma (2.1.11). As a consequence∫
∂B+

r

|∇vi|2Γ1 dσ +

∫
rSN−1

v2
i v

2
jΓ1 dσ

∫
B+
r

|∇vi|2Γ1 dxdy +

∫
∂0B+

r

v2
i v

2
jΓ1 dx

≥ 1

r
min
t∈R+

R+ t2

t+ N−1
2

.

Minimizing with respect to t as in Lemma (2.1.11) and summing over i = 1, 2, we

obtain equation (2.1.6).

Proof of Theorem 2.1.13. Without loss of generality, we assume that both v1 and v2

are non trivial. As in Theorem 2.1.6, we will prove that the logarithmic derivative

of Φ is non negative for any ν′ ∈ (0, νACF) and r sufficiently large. Again, a direct

computation shows that

Φ′(r)

Φ(r)
= −4ν′

r
+

2∑
i=1

∫
∂B+

r

|∇vi|2Γ1 dσ +

∫
rSN−1

v2
i v

2
jΓ1 dσ

∫
B+
r

|∇vi|2Γ1 dxdy +

∫
∂0B+

r

v2
i v

2
jΓ1 dx

≥ 4

r

[
−ν′ + 1

2

2∑
i=1

γ
(

Λ(v
(r)
i )
)]

and thus it is sufficient to prove that there exists r̄ > 1 such that, for every r > r̄, the

last term is nonnegative. Of course if Λi(r) → +∞ for some i then there is nothing

to prove; thus we can suppose that each Λi(r) is bounded uniformly. To begin with,

we see that, for r large,

H(r) := ‖v(rn)
i ‖2L2(SN+ ) =

∫
SN+

(v
(r)
i )2dσ ≥ C > 0. (2.1.7)



Indeed, the choice of φ ≡ 1 in equation (2.1.5) yields

H ′(r) =

∫
SN+

r∂ν(v2
i )(rξ)dσ ≥ 0,

and, since the functions are non trivial, H cannot be identically 0.

Let us suppose by contradiction that there exists a sequence rn →∞ such that

1

2

2∑
i=1

γ (Λi(rn)) ≤ ν′ < νACF. (2.1.8)

We introduce the renormalized sequence

wi,n =
v

(rn)
i∫

SN+

(v
(rn)
i )2dσ

1/2
, so that ‖wi,n‖L2(SN+ ) = 1.

Recall that Λi(rn) is uniformly bounded, that is

K ≥ Λi(rn) =

∫
SN+

|∇Twi,n|2dσ +

∫
SN−1

rnw
2
i,nw

2
i,n‖v

(rn)
i ‖L2(SN+ )dσ

and, together with (2.1.7), this yields∫
SN+

|∇Twi,n|2 dσ ≤ K and

∫
SN−1

w2
i,nw

2
i,n dσ ≤ 1

rn
K ′. (2.1.9)

Hence there exist functions w̄i ∈ H1(SN+ ) such that, up to subsequences, wi,nk⇀w̄i,

weakly in H1(SN+ ), with ‖w̄i‖L2(SN+ ) = 1. Moreover, from the weak lower semi-

continuity of the norm,

lim inf
k→∞

Λi(rnk) ≥
∫
SN+

|∇T w̄i|2dσN ≥ λ1({w̄i|y=0 > 0}).

From (2.1.9) we have that w
(r)
i w

(r)
j → 0 a.e. on SN−1 and w̄iw̄j = 0 on SN−1. This

means that the limit configuration (w1, w2) induces a partition of SN+ , for which we

have

lim inf
k→∞

1

2

2∑
i=1

γ (Λi(rnk)) ≥ νACF

in contradiction with (2.1.8).



2.2 Almgren type monotonicity formulæ

In the following, we will be concerned with a number of entire profiles, that is k-

tuples of functions defined on the whole RN+1
+ , which will be obtained from solutions

to problem (GP )β , by suitable limiting procedures. This section is devoted to the

proof of some monotonicity formulæ of Almgren type, related to such profiles.

2.2.1 Almgren’s formula for segregation entire profiles

To start with, we consider k-tuples v having components with segregated traces on

RN . In such a situation, on one hand each component of v, when different from zero,

satisfies a limiting version of (GP )β , where the internal dynamics are trivialized; on

the other hand, the interaction between different components is now described by

the validity of some Pohozaev type identity. We recall that, in order to prove the

Almgren formula, it is sufficient to require the Pohozaev identity to hold only in

spherical domains. Nonetheless, we prefer to assume its validity in the broader class

of cylindrical domains, that is domains which are products of spherical and cubic

ones. This choice will be useful in classifying the possible limiting profiles, when we

will be involved in a procedure of dimensional reduction.

More precisely, let C+
r,l(x0, 0) ⊂ RN+1

+ be any set such that there exists h ∈ N,

h ≤ N , and a decomposition RN+1
+ = Rh+1

+ ⊕ RN−h such that, writing

RN+1
+ 3 X = (x′, x′′, y), with (x′, y) ∈ Rh+1

+ , x′′ ∈ RN−h,

it holds

C+
r,l(x0, 0) = B+

r (x′0, 0)×Ql(x′′0).

Here, B+
r ⊂ Rh+1

+ denotes an half ball of radius r, and Ql ⊂ RN−h a cube of edge

length equal to 2l.

Definition 2.2.1 (Segregation entire profiles). We denote with Gs the set of func-

tions v ∈ H1
loc

(
RN+1

+ ;Rk
)

, v = (v1, . . . , vk) continuous, which satisfy the following

assumptions:

1. vivj |y=0 = 0 for every j 6= i;

2. for every i, −∆vi = 0 in RN+1
+

vi∂νvi = 0 on RN × {0};
(2.2.1)



3. for any x0 ∈ RN and a.e. r > 0, l > 0,∫
C+
r,l

∑
i

2|∇(x′,y)vi|2 − (h+ 1)|∇vi|2 dxdy + r

∫
∂+B+

r ×Ql

∑
i

|∇vi|2 dσ+

= 2r

∫
∂+B+

r ×Ql

∑
i

|∂νvi|2 dσ − 2

∫
B+
r ×∂+Ql

∑
i

∂νvi∇(x′,y)vi · (x′ − x′0, y) dσ,

(2.2.2)

where ∇(x′,y) is the gradient with respect to the directions in Rh+1
+ .

Remark 2.2.2. Let v ∈ Gs. By choosing h = N in the above definition, we obtain

that the spherical Pohozaev identity holds, namely

(1−N)

∫
B+
r

∑
i

|∇vi|2 dxdy + r

∫
∂+B+

r

∑
i

|∇vi|2 dσ = 2r

∫
∂+B+

r

∑
i

|∂νvi|2 dσ (2.2.3)

for a.e. r > 0.

Let us define, for every x0 ∈ RN and r > 0,

E(x0, r) :=
1

rN−1

∫
B+
r (x0,0)

∑
i

|∇vi|2 dxdy

H(x0, r) :=
1

rN

∫
∂+B+

r (x0,0)

∑
i

v2
i dσ.

Let x0 be fixed. Since v ∈ H1
loc

(
RN+1

+ ,Rk
)

, both E and H are locally absolutely

continuous functions on (0,+∞), that is, both E′ and H ′ are L1
loc(0,∞) (here, ′ =

d/dr).

Theorem 2.2.3. Let v ∈ Gs, v 6≡ 0. For every x0 ∈ RN the function (Almgren

frequency function)

N(x0, r) :=
E(x0, r)

H(x0, r)

is well defined on (0,∞), absolutely continuous, non decreasing, and it satisfies the

identity
d

dr
logH(r) =

2N(r)

r
. (2.2.4)

Moreover, if N(r) ≡ γ on an open interval, then N ≡ γ for every r, and v is a

homogeneous function of degree γ.

Proof. Up to a translation, we may suppose that x0 = 0. Obviously H ≥ 0, and

H > 0 on a nonempty interval (r1, r2), otherwise v ≡ 0. As a consequence, either v



is a nontrivial constant, and the theorem easily follows; or, by harmonicity, v is not

constant in the whole B+
r2 , and also E > 0 for r < r2. Passing to the logarithmic

derivatives, the monotonicity of N will be a consequence of the claim

N ′(r)

N(r)
=
E′(r)

E(r)
− H ′(r)

H(r)
≥ 0 for r ∈ (r1, r2).

Deriving E and using the Pohozaev identity (2.2.3), we have that

E′(r) =
1−N
rN

∫
B+
r

∑
i

|∇vi|2 dxdy +
1

rN−1

∫
∂+B+

r

∑
i

|∇vi|2 dσ

=
2

rN−1

∫
∂+B

+
r

∑
i

|∂νvi|2 dσ,

while testing equation (2.2.1) with vi in B+
r and summing over i, we obtain

E(r) =
1

rN−1

∫
B+
r

∑
i

|∇vi|2 dxdy =
1

rN−1

∫
∂+B+

r

∑
i

vi∂νvi dσ.

As far as H is concerned, we find

H ′(r) =
2

rN

∫
∂+B+

r

∑
i

vi∂νvi dσ.

As a consequence, by the Cauchy-Schwarz inequality, we have

1

2

N ′(r)

N(r)
=

∫
∂+B+

r

∑
i

|∂νvi|2 dσ

∫
∂+B+

r

∑
i

vi∂νvi dσ

−

∫
∂+B+

r

∑
i

vi∂νvi dσ

∫
∂+B+

r

∑
i

v2
i dσ

≥ 0 for r ∈ (r1, r2). (2.2.5)

Moreover, on the same interval,

d

dr
logH(r) =

H ′(r)

H(r)
=

2E(r)

rH(r)
=

2N(r)

r
.

Let us show that we can choose r1 = 0, r2 = +∞. On one hand, the above equation

provides that, if logH(r̄) > −∞, then logH(r) > −∞ for every r > r̄, so that

r2 = +∞. On the other hand, let us assume by contradiction that

r1 := inf{r : H(r) > 0 on (r,+∞)} > 0.

By monotonicity, we have that N(r) < N(2r1) for every r1 < r ≤ 2r1. It follows that

d

dr
logH(r) ≤ 2N(2r1)

r
=⇒ H(2r1)

H(r)
≤
(

2r1

r

)2N(2r1)



and, since H is continuous, H(r1) > 0, a contradiction.

Now, let us assume N(r) ≡ γ on some interval I. Recalling equation (2.2.5), we

see that  ∫
∂+B+

r

∑
i

vi∂νvi dσ


2

=

∫
∂+B+

r

∑
i

v2
i dσ

∫
∂+B+

r

∑
i

|∂νvi|2 dσ,

which is true, by the Cauchy-Schwarz inequality, if and only if v and ∂νv are parallel,

that is

vi = λ(r)∂νvi =
λ(r)

r
X · ∇vi, for every r ∈ I.

Using the definition of N , we have γ = r/λ(r) for every r ∈ I, so that

γvi = X · ∇vi ∀i = 1, . . . , k.

But this is the Euler equation for homogeneous functions, and it implies that v is

homogeneous of degree γ. Since each vi is also harmonic in RN+1
+ , the homogeneity

extends to the whole of RN+1
+ , yielding N(r) ≡ γ for every r > 0.

In a standard way, from Theorem 2.2.3 we infer that the growth properties of the

elements of Gs are related with their Almgren quotient.

Lemma 2.2.4. Let v ∈ Gs, and let γ, r̄ and C denote positive constants.

1. If |v(X)| ≤ C|X − (x0, 0)|γ for every X 6∈ B+
r̄ (x0, 0), then N(x0, r) ≤ γ for

every r > 0.

2. If |v(X)| ≤ C|X − (x0, 0)|γ for every X ∈ B+
r̄ (x0, 0), then N(x0, r) ≥ γ for

every r > 0.

Proof. Let v ∈ Gs, and let us assume the growth condition for r ≥ r̄. We observe

that it implies, for r large, H(r) ≤ Cr2γ . Arguing by contradiction, let us suppose

that there exists R > r̄ such that N(x0, R) ≥ γ + ε. By monotonicity of N we have

d

dr
logH(r) ≥ 2

r
(γ + ε) ∀r ≥ R

and, integrating in (R, r), we find

Cr2(γ+ε) ≤ H(r) ≤ Cr2γ ,

a contradiction for r large enough. On the other hand, if the growth condition holds

for r < r̄, we can argue in an analogous way, assuming that

d

dr
logH(r) ≤ 2(γ − ε)

r

for r small enough and obtaining again a contradiction.



Corollary 2.2.5. If v ∈ Gs is globally Hölder continuous of exponent γ on RN+1
+ ,

then it is homogeneous of degree γ with respect to any of its (possible) zeroes, and

Z := {x ∈ RN : v(x, 0) = 0} is an affine subspace of RN .

Furthermore, if γ < 1, then

Z = ∅ ⇐⇒ v is a (nontrivial) constant.

Proof. On one hand, if (x0, 0) ∈ Z, Lemma 2.2.4 implies N(x0, r) = γ for every r,

and the first part easily follows. On the other hand, let Z = ∅. By continuity, up to

a relabeling, we have that v1(x, 0) = · · · = vk−1(x, 0) = 0 on RN , so that their odd

extension across {y = 0} are harmonic and globally Hölder continuous of exponent

γ < 1 on the whole of RN+1; but then the classical Liouville Theorem implies that

they are all trivial. Finally, by continuity, vk(x, 0) is always different from zero, so

that ∂νvk(x, 0) ≡ 0 on RN . As a consequence, Liouville Theorem applies also to the

even extension of vk across {y = 0}, concluding the proof.

Remark 2.2.6. We observe that v = (1, y, 0, . . . , 0) belongs to Gs and it is globally

Lipschitz continuous, but it is not homogeneous. This does not contradict the previous

Corollary 2.2.5, indeed its zero set is empty.

To conclude this section, we observe that the monotonicity of N(x, r) implies that

both for r small and for r large the corresponding limits are well defined.

Lemma 2.2.7. Let v ∈ Gs. Then

1. N(x, 0+) is a non negative upper semicontinuous function on RN ;

2. N(x,∞) is constant (possibly ∞).

Proof. The first assertion follows because N(x, 0+) is the infimum of continuous func-

tions. On the other hand, let

ν := lim
r→∞

N(0, r) > 0;

we prove the second assertion in the case ν < ∞, the other case following with

minor changes. Let us suppose by contradiction that there exists x0 ∈ RN such

that supr>0N(x0, r) = ν − 2ε for some ε > 0. Let moreover r0 > 0 be such that

N(0, r0) ≥ ν − ε. Reasoning as in the proof of Lemma 2.2.4 we see that, when R1,

R2 are sufficiently large, both H(x0, R1) ≤ CR2(ν−2ε)
1 and H(0, R2) ≥ CR2(ν−ε)

2 . By

definition ∫
B+
R1

(x0,0)\B+
r0

(x0,0)

∑
i

v2
i dxdy =

R1∫
r0

H(x0, s)s
Nds ≤ CRN+2(ν−2ε)

1



and ∫
B+
R2

(0,0)\B+
r0

(0,0)

∑
i

v2
i dxdy =

R2∫
r0

H(0, s)sNds ≥ CRN+2(ν−ε)
2 .

Now, if we let R1 = R2 + |x0|, we obtain

CR
N+2(ν−ε)
2 ≤

∫
B+
R2

(0,0)\B+
r0

(0,0)

∑
i

v2
i dxdy

≤
∫

B+
r0

(x0,0)

∑
i

v2
i dxdy −

∫
B+
r0

(0,0)

∑
i

v2
i dxdy +

∫
B+
R1

(x0,0)\B+
r0

(x0,0)

∑
i

v2
i dxdy

≤ C + C ′(R2 + |x0|)N+2(ν−2ε)

and we find a contradiction for R2 sufficiently large. Exchanging the role of 0 and x0

we can conclude.

2.2.2 Almgren’s formula for coexistence entire profiles

We now shift our attention to the case in which v is a k-tuple of functions which a

priori are not segregated, but satisfy a boundary equation on RN . In this setting, the

validity of the Pohozaev identities is a consequence of the boundary equation.

Definition 2.2.8 (Coexistence entire profiles). We denote with Gc the set of functions

v ∈ H1
loc

(
RN+1

+

)
which are solutions to

−∆vi = 0 in RN+1
+

∂νvi + vi
∑
j 6=i v

2
j = 0 on RN × {0},

(2.2.6)

for every i = 1, . . . , k.

Remark 2.2.9. Of course, if v ∈ H1
loc

(
RN+1

+

)
solves

−∆vi = 0 in RN+1
+

∂νvi + βvi
∑
j 6=i v

2
j = 0 on RN × {0},

for some β > 0, then a suitable multiple of v belongs to Gs.

Lemma 2.2.10. Let v ∈ Gc. For any x0 ∈ RN and r > 0, the following identity



holds

(1−N)

∫
B+
r

∑
i

|∇vi|2 dxdy + r

∫
∂+B+

r

∑
i

|∇vi|2 dσ −N
∫

∂0B+
r

∑
i,j<i

v2
i v

2
j dx

+ r

∫
SN−1
r

∑
i,j<i

v2
i v

2
j dσ = 2r

∫
∂+B+

r

∑
i

|∂νvi|2 dσ.

Proof. The proof follows by testing equation (2.2.6) with ∇vi ·X in B+
r and exploiting

some standard integral identities (see also Lemma 2.4.2 for a similar proof in a more

general case).

As before, we introduce the functions

E(x0, r) :=
1

rN−1

∫
B+
r (x0,0)

∑
i

|∇vi|2 dxdy +
1

rN−1

∫
∂0B+

r (x0,0)

∑
i,j<i

v2
i v

2
j dx

H(x0, r) :=
1

rN

∫
∂+B+

r (x0,0)

∑
i

v2
i dσ.

Theorem 2.2.11. Let v ∈ Gc. For every x0 ∈ RN the function

N(x0, r) :=
E(x0, r)

H(x0, r)

is non decreasing, absolutely continuous and strictly positive for r > 0. Moreover it

holds
d

dr
logH(r) ≥ 2N(r)

r
.

Proof. The proof runs exactly as the one of Theorem 2.2.3, by using Lemma 2.2.10

instead of equation (2.2.3).

As in the case of entire profiles of segregation, we can state some first consequence

of Theorem 2.2.11.

Lemma 2.2.12. Let v ∈ Gc, and let γ and C denote positive constants. If |v(X)| ≤
C(1 + |X|γ) for every X, then N(x,∞) is constant and less than γ.

Proof. The proof follows reasoning as in the ones of Lemmas 2.2.4 and 2.2.7.

2.3 Liouville type theorems

By combining the results obtained in Sections 2.1 and 2.2, we are in a position to prove

that nontrivial entire profiles, both of segregation and of coexistence, exhibit a mini-

mal rate of growth connected with the Alt-Caffarelli-Friedman exponent νACF. To be

precise, the result concerning coexistence entire profiles only relies on the arguments

developed in Section 2.1.



Proposition 2.3.1. Let v ∈ Gc and νACF be defined according to Definitions 2.2.8

and 2.1.2. If for some γ ∈ (0, νACF) there exists C such that

|v(X)| ≤ C (1 + |X|γ) ,

for every X, then k − 1 components of v annihilate and the last is constant.

Proof. We start by proving that only one component of v can be different from zero.

Let us suppose by contradiction that two components, say v1 and v2, are non trivial:

indeed, we observe that |v1|, |v2| fit in the setting of Theorem 2.1.13 (recall Remark

2.1.14). Let r be large accordingly, and let η be a non negative, smooth and radial

cut-off function supported in B+
2r with η = 1 in B+

r and |∇η| ≤ Cr−1, |∆η| ≤ Cr−2.

Moreover, let Γ1 be defined as in 2.1.8 (in particular, it is radial and superharmonic).

Testing the equation for vi with Γ1viη we obtain∫
B+

2r

|∇vi|2Γ1ηdxdy +

∫
∂0B+

2r

v2
i v

2
jΓ1ηdx ≤

∫
B+

2r\B
+
r

1

2
v2
i [Γ1∆η + 2∇η · ∇Γ1] dxdy,

where in the last step we used that η is constant in B+
r . Since Γ1(X) = |X|1−N

outside B1, and |vi(X)| ≤ Crγ outside a suitable Br̄, using the notations of Theorem

2.1.13 we infer

Φi(r) =
1

r2ν′

∫
B+
r

|∇vi|2Γ1 dxdy +

∫
∂0B+

r

v2
i v

2
jΓ1 dx

 ≤ 1

r2ν′
· Cr2γ ,

with C independent of r > r̄. Fixing γ < ν′ < νACF and possibly taking r̄ larger,

Theorem 2.1.13 states that

0 < Φ(r̄) ≤ Φ(r) =

2∏
i=1

Φi(r) ≤ Cr4(γ−ν′),

a contradiction for r large enough. Finally, if v1 is the unique non trivial component of

v, an even extension of v1 through RN is harmonic in RN+1 and bounded everywhere

by a function growing less than linearly, implying that v1 is constant.

Turning to segregation entire profiles, the results of Section 2.2 become crucial.

Proposition 2.3.2. Let v ∈ Gs and νACF be defined according to Definitions 2.2.1

and 2.1.2.

1. If for some γ ∈ (0, νACF) there exists C such that

|v(X)| ≤ C (1 + |X|γ) ,

for every X, then k − 1 components of v annihilate;



2. if furthermore v ∈ C0,γ
(
RN+1

+

)
then the only possibly nontrivial component is

constant.

Remark 2.3.3. We notice that the uniform Hölder continuity of exponent γ required

in 2. readily implies the growth condition in 1., which we may not require explicitly.

On the other hand, from the proof it will be clear that, once k − 1 components

annihilate, 2. follows by assuming uniform Hölder continuity of any exponent γ′ ∈
(0, 1), not necessarily related to νACF.

Proof of Proposition 2.3.2. To prove 1., we start as above by assuming by contradic-

tion that there exist two components, v1 and v2, which are non trivial. We deduce

that they must have a common zero on RN . As a consequence, we can reason as in

the proof of Proposition 2.3.1, using Theorem 2.1.6 (and Remark 2.1.7) instead of

Theorem 2.1.13, and obtain a contradiction. Turning to 2., let v denote the only non

trivial component. By Corollary 2.2.5, we have that the set

Z = {x ∈ RN : v(x, 0) = 0}

is an affine subspace of RN . Now, if Z = RN , then v satisfies−∆v = 0 in RN+1
+

v = 0 on RN ,

so that the odd extension of v through {y = 0} is harmonic in RN+1 and bounded

everywhere by a function growing less than linearly, implying that v is constant. On

the other hand, if dimZ ≤ N − 1, then−∆v = 0 in RN+1
+

∂νv = 0 on RN \ Z,

and the even reflection of v through {y = 0} is harmonic in RN+1 \ Z; since Z has

null capacity with respect to RN+1, we infer that v is actually harmonic in RN+1,

and the conclusion follows again since, by assumption, v is bounded everywhere by a

function growing less than linearly.

In the same spirit of the previous theorems, we provide now a result concerning

single functions, rather than k-tuples.

Proposition 2.3.4. Let v ∈ H1
loc

(
RN+1

+

)
be continuous and satisfy

−∆v = 0 in RN+1
+

v∂νv ≤ 0 on RN

v(x, 0) = 0 on {x1 ≤ 0},



and let us suppose that for some γ ∈ [0, 1/2), C > 0 it holds

|v(X)| ≤ C(1 + |X|γ)

for every X. Then v is constant.

Proof. It is trivial to check that v as above fulfills the assumptions of Proposition

2.1.12. Now, assuming that v is not constant, we can argue as in the proof of Propo-

sition 2.3.1 obtaining a contradiction.

To conclude the section, we provide other two theorems of Liouville type concern-

ing single functions. The first one relies on the construction of a supersolution of a

suitable problem, as done in the following lemma.

Lemma 2.3.5. Let M > 0 and δ > 0 be fixed and let h ∈ L∞(∂0B+
1 ) with ‖h‖L∞ ≤ δ.

Any v ∈ H1(B+
1 ) ∩ C

(
B+

1

)
non negative solution to−∆v ≤ 0, in B+

1

∂νv ≤ −Mv + h, on ∂0B+
1

verifies

sup
∂0B+

1/2

v ≤ 1 + δ

M
sup
∂+B+

1

v.

Proof. The proof follows from a simple comparison argument, once one notices that,

for any δ > 0, the function

wδ := δ
1

M
+

1

N

N∑
i=1

2

π

[
π

2
− arctan

(
xi + 1

y + 2
M

)
+
π

2
− arctan

(
1− xi
y + 2

M

)]
satisfies the following system

−∆wδ = 0 in B+
1

∂νwδ ≥ −Mwδ + δ on ∂0B+
1

wδ ≥ 1 on ∂+B+
1

wδ ≤ 1+δ
M in ∂0B+

1/2.

The claim can be proved by direct checking. For the reader’s convenience, we sketch

it in the case N = 1, δ = 0.

For notation convenience, let us denote wM by w. It is a straightforward computa-

tion to verify that w is positive and harmonic in R2
+. Using the elementary inequality

π
2 − arctan t ≥ 1

1+t for all t ≥ 0, we can estimate

w(x, 0) ≥ 2

π

[
1

1 + M
2 (x+ 1)

+
1

1 + M
2 (1− x)

]
.



On the other hand, using the inequality t
1+t2 ≤

2
1+t for t ≥ 0, we have

wy(x, 0) ≤ 2

π
M

[
1

1 + M
2 (x+ 1)

+
1

1 + M
2 (1− x)

]
.

Therefore, ∂νw(x, 0) = −wy(x, 0) ≥ −Mw(x, 0). For (x, y) ∈ B+
1 we have

arctan

(
x+ 1

y + 2
M

)
+ arctan

(
1− x
y + 2

M

)
≤ π

2
,

that is w(x, y) ≥ 1 in B+
1 . Finally, we observe that w(x, 0), as a function of x, is

strictly convex and even in (−1, 1). Consequently, if |x| ≤ 1
2 , using the elementary

inequality π
2 − arctan t ≤ 1

t for t ≥ 0, we obtain

w(x, 0) ≤ 1

M
.

Remark 2.3.6. One of the peculiar difficulties in dealing with fractional operators

with respect to the standard local case is due to the slow decay of supersolutions.

Indeed, in the pure laplacian case, it is well known that positive solutions of

−∆u ≤ −Mu in B ⊂ RN

exhibit an exponential decay, that is u|B1/2
≤ e−

1
2

√
M sup∂B u; see, for instance,

[22, 39]. In great contrast with this result, in the previous lemma we proved that non

negative solutions of

(−∆)1/2u ≤ −Mu in B ⊂ RN

exhibit only polynomial decay, that is u|B1/2
≤ 1

M supRN\B u. This estimate is sharp,

since 
−∆v = 0 in B+

v ≥ 0 in B+

∂νv = −Mv on ∂0B+

implies

inf
∂0B+

1/2

v ≥ 1

1 +M
inf
∂+B+

v.

This last fact follows by a comparison between v and the subsolution w = 1
1+M (1 +

My) inf∂+B+ v.

The previous estimate allows to prove the following.

Proposition 2.3.7. Let v satisfy−∆v = 0 in RN+1
+

∂νv = −λv on RN



for some λ ≥ 0 and let us suppose that for some γ ∈ [0, 1), C > 0 it holds

|v(X)| ≤ C(1 + |X|γ)

for every X. Then v is constant.

Proof. If λ = 0, using an even reflection through {y = 0}, we extend v to a harmonic

function in all RN+1, and we conclude as usual using the growth assumption. If λ > 0

let either z = v+ or z = v−. In both cases,−∆z ≤ 0, in RN+1
+

∂νz ≤ −Mz, on RN .

By translating and scaling, Lemma 2.3.5 implies that

z(x0, 0) ≤ sup
∂0Br/2(x0,0)

z ≤ 1

λr
sup

∂+Br(x0,0)

z ≤ C 1 + rγ

r
.

Letting r →∞ the proposition follows.

Finally, we have the following.

Proposition 2.3.8. Let v satisfy−∆v = 0 in RN+1
+

∂νv = λ on RN

for some λ ∈ R and let us suppose that for some γ ∈ [0, 1), C > 0 it holds

|v(X)| ≤ C(1 + |X|γ)

for every X. Then v is constant.

Proof. For h ∈ RN , let w(x, y) := v(x+ h, y)− v(x, y). Then w solves−∆w = 0 in RN+1
+

∂νw = 0 on RN

and, as usual, we can reflect and use the growth condition to infer that w has to be

constant, that is v(x+h, y) = ch+ v(x, y). Deriving the previous expression in xi, we

find that

v(x, y) =

k∑
i=1

ci(y)xi + c0(y).

Using again the growth condition, we see that ci ≡ 0 for i = 1, . . . , k, while c0 is

constant. We observe that, consequently, λ = 0.



2.4 Some approximation results

In the following, we want to apply the Liouville type theorems obtained in the previous

section to suitable limiting profiles, obtained from solutions to the problem−∆vi = 0 in B+

∂νvi = fi,β(vi)− βvi
∑
j 6=i v

2
j on ∂0B+,

(GP )β

through some blow up and blow down procedures. From this point of view we have

seen that, in the case of entire profiles of segregation, the key property is the validity

of some Pohozaev identities, which imply that the Almgren formula holds. In this

section we prove that such identities can be obtained by passing to the limit in the cor-

responding identities for (GP )β , under suitable assumptions about the convergence.

To be more precise, we will prove the following.

Proposition 2.4.1. Let vn ∈ H1
(
B+
rn

)
solve problem (GP )βn on B+

rn , n ∈ N, and

v ∈ H1
loc

(
RN+1

+

)
, be such that, as n→∞,

1. βn →∞;

2. rn →∞;

3. for every compact K ⊂ RN+1
+ , vn → v in H1(K) ∩ C(K);

4. the continuous functions fi,βn are such that, for every m̄ > 0,

|fi,βn(s)| ≤ Cn(m̄) for |s| < m̄,

where Cn(m̄)→ 0.

Then v ∈ Gs.

We start by stating the basic identities for problem (GP )β . We recall that SN−1
r

denotes the (N − 1)-dimensional boundary of ∂0B+
r in RN .

Lemma 2.4.2 (Pohozaev identity). Let v solve problem (GP )β on B+. For every

B+
r := B+

r (x0, 0) ⊂ B+ the following Pohozaev identity holds:

(1−N)

∫
B+
r

∑
i

|∇vi|2 dxdy + r

∫
∂+B+

r

∑
i

|∇vi|2 dσ+

+ 2N

∫
∂0B+

r

∑
i

Fi,β(vi) dx−Nβ
∫

∂0B+
r

∑
i,j<i

v2
i v

2
j dx− 2r

∫
SN−1
r

∑
i

Fi,β(vi) dσ+

+ rβ

∫
SN−1
r

∑
i,j<i

v2
i v

2
j dσ = 2r

∫
∂+B+

r

∑
i

|∂νvi|2 dσ.



Proof. Let the functions vi solve problem (GP )β . Up to translations, we assume that

x0 = 0. By multiplying the equation with X · ∇vi and integrating by parts over B+
r ,

we obtain∫
B+
r

∇vi · ∇(X · ∇vi) dxdy = r

∫
∂+B+

r

|∂νvi|2 dσ +

∫
∂0B+

r

(∂νvi)(x · ∇xvi) dx.

Using the identity

∇vi · ∇(X · ∇vi) = |∇vi|2 +X · ∇
(

1

2
|∇vi|2

)
and integrating again by parts, we can write the right hand side as∫

B+
r

∇vi · ∇(X · ∇vi) dxdy =
1−N

2

∫
B+
r

|∇vi|2 dxdy +
r

2

∫
∂+B+

r

|∇vi|2 dσ

and this yields

1−N
2

∫
B+
r

|∇vi|2 dxdy +
r

2

∫
∂+B+

r

|∇vi|2 dσ −
∫

∂0B+
r

fi,β(vi)(x · ∇xvi) dx+

+
β

2

∫
∂0B+

r

(x · ∇xv2
i )
∑
j 6=i

v2
j dx = r

∫
∂+B+

r

|∂νvi|2 dσ.

Summing the identities for i = 1, . . . , k we obtain

1−N
2

∫
B+
r

∑
i

|∇vi|2 dxdy +
r

2

∫
∂+B+

r

∑
i

|∇vi|2 dσ

−
∫

∂0B+
r

(x · ∇x)
∑
i

Fi,β(vi) dx+
β

2

∫
∂0B+

r

(x · ∇x)
∑
i,j<i

v2
i v

2
j dx = r

∫
∂+B+

r

∑
i

|∂νvi|2 dσ.

(2.4.1)

The terms on ∂0B+
r can be further simplified: by an application of the divergence

theorem on RN we have∫
∂0B+

r

(x · ∇x)
∑
i,j<i

v2
i v

2
j dx =

∫
∂0B+

r

div

(
x
∑
i,j<i

v2
i v

2
j

)
dx−

∫
∂0B+

r

divx
∑
i,j<i

v2
i v

2
j dx

= r

∫
SN−1
r

∑
i,j<i

v2
i v

2
j dσ −N

∫
∂0B+

r

∑
i,j<i

v2
i v

2
j dx

and∫
∂0B+

r

(x · ∇x)
∑
i

Fi,β(vi) dx =

∫
∂0B+

r

div

(
x
∑
i

Fi,β(vi)

)
dx−

∫
∂0B+

r

divx
∑
i

Fi,β(vi)dx

= r

∫
rSN−1

∑
i

Fi,β(vi) dσ −N
∫

∂0B+
r

∑
i

Fi,β(vi) dx;



the lemma follows by substituting into equation (2.4.1).

In a similar way, it is possible to prove the validity of the Pohozaev identities

in cylinders (we use the notations introduced in the discussion at the beginning of

Section 2.2.1).

Lemma 2.4.3 (Pohozaev identity in cylinders). Let v ∈ H1(B+) be a solution to

problem (GP )β. For every x ∈ ∂0B+ and r > 0, l > 0 such that C+
r,l ⊂ B+ the

following Pohozaev identity holds:∫
C+
r,l

(∑
i

2|∇(x′,y)vi|2 − (h+ 1)|∇vi|2
)

dxdy + r

∫
∂+B+

r ×Ql

∑
i

|∇vi|2 dσ+

+ 2h

∫
∂0C+

r,l

∑
i

Fi,β(vi) dx− hβ
∫

∂0C+
r,l

∑
i,j<i

v2
i v

2
j dx

− 2r

∫
Sh−1
r ×Ql

∑
i

Fi,β(vi) dσ + rβ

∫
Sh−1
r ×Ql

∑
i,j<i

v2
i v

2
j dσ

= 2r

∫
∂+B+

r ×Ql

∑
i

|∂νvi|2 dσ − 2

∫
B+
r ×∂+Ql

∑
i

∂νvi∇(x′,y)vi · (x′, y) dσ,

where ∇(x′,y) is the gradient with respect to the directions in Rh+1
+ .

Remark 2.4.4. Even though the mentioned Pohozaev identities are enough for our

purposes, we would like to point out that they are nothing but special cases of a more

general class of identities, namely the domain variation formulas, see for instance

[26]. They may be obtained by testing the equation of (GP )β by ∇v · Y in a smooth

domain ω ⊂ RN+1
+ , where Y ∈ C1(RN+1

+ ;RN+1
+ ) is a smooth vector field such that

Y |y=0 ∈ C1(RN ;RN ).

To proceed, we need the following standard result.

Lemma 2.4.5. Let f, λ ∈ L∞(∂0B+). If w ∈ H1(B+) is a solution to−∆w = 0 in B+

∂νw = f − λw on ∂0B+,

then |w| ∈ H1(B+) and for any φ ∈ H1(B+), φ|∂+B+ = 0, φ ≥ 0 it holds∫
B+

∇|w| · ∇φ dxdy −
∫

∂0B+

(|f | − λ|w|)φdx ≤ 0



Proof. Let gε(s) =
√
s2 + ε ∈ C∞(R) such that gε(s) → |s| and g′ε(s) → sgn(s). By

Stampacchia Lemma,

gε(w)→ |w| in H1(B+)

while, by Lebesgue theorem

g′ε(w)w → |w| in L2(∂0B+).

Thus, for any φ ∈ H1(B+), φ|∂+B+ = 0, φ ≥ 0, we have∫
B+

∇gε(w) · ∇φdxdy −
∫

∂0B+

g′ε(v)(f − λw)φdx

=

∫
B+

g′ε(w)∇w · ∇φ dxdy −
∫

∂0B+

g′ε(w)∂νvφdx

=

∫
B+

−div (g′ε(w)∇w)φ dxdy =

∫
B+

(
−g′′ε (w)|∇w|2 − g′ε(w)∆w

)
φ dxdy ≤ 0.

Passing to the limit for ε→ 0 we obtain the lemma.

Going back to the notations of Proposition 2.4.1, we have the following lemma.

Lemma 2.4.6. For every K compact subset of RN , it holds

lim
n→∞

βn

∫
K

v2
i,n

∑
j 6=i

v2
j,n dx = 0.

Moreover, for every x0 ∈ RN , and for almost every r > 0,

βn

∫
SN−1
r

v2
i,n

∑
j 6=i

v2
j,ndσ → 0.

Proof. Let η ∈ C∞0 (Br) be a positive smooth cutoff function with the property that

η ≡ 1 on K. Taking into account Lemma 2.4.5, we obtain that

0 ≤ βn
∫
K

|vi,n|
∑
j 6=i

v2
j,n dx ≤

∫
∂0B+

r

(|fi,n|η − |vi,n|∂νη) dx+

∫
B+
r

|vi,n|∆η dxdy ≤ C.

In particular, on one hand this implies that

βn

∫
K

|vi,n|
∑
j 6=i

v2
j,n dx ≤ C,

while on the other hand, by passing to the limit, we infer that {vi = 0} ∪ {vj = 0}
contains K, for every i 6= j. As a consequence, each term in the sum can be estimated



as follows

βn

∫
K

v2
i,nv

2
j,n dx ≤βn

∫
K∩{vi=0}

v2
i,nv

2
j,n dx+ βn

∫
K∩{vj=0}

v2
j,nv

2
i,n dx

≤‖vi,n‖L∞(K∩{vi=0})βn

∫
K∩{vi=0}

|vi,n|v2
j,n dx

+ ‖vj,n‖L∞(K∩{vj=0})βn

∫
K∩{vj=0}

|vj,n|v2
i,n dx→ 0,

and the first conclusion follows by summing over all j 6= i. As far as the second one is

concerned, it follows by applying Fubini’s Theorem to the previous conclusion when

K = ∂0B+
R .

Proof of Proposition 2.4.1. First we notice that, by Lemma 2.4.6, it holds vivj ≡ 0 for

every i 6= j. Moreover, since the uniform limit of harmonic functions is harmonic itself,

∆vi = 0 on RN+1
+ . In order to obtain (2.2.1), we observe that, for any η ∈ C∞0 (RN ),

we have ∫
RN

vi,n∂νvi,nφdx =

∫
RN

(
vi,nfi,βn(vi,n)− βnv2

i,n

∑
j 6=i

v2
j,n

)
φdx→ 0

by assumption 4. and Lemma 2.4.6. Finally, to prove that (2.2.2) holds, we are going

to show that, for every x0 ∈ RN and almost every r > 0, the Pohozaev identity of

Lemma 2.4.2 passes to the limit (the general case following by analogous arguments).

Let us recollect the terms of the identity as

(1−N)

∫
B+
r

∑
i

|∇vi,n|2 dxdy

︸ ︷︷ ︸
An

+ r

∫
∂+B+

r

∑
i

|∇vi,n|2 dσ

︸ ︷︷ ︸
B1
n

+

+2N

∫
∂0B+

r

∑
i

Fi,n(vi,n) dx− 2r

∫
SN−1
r

∑
i

Fi,n(vi,n) dσ

︸ ︷︷ ︸
In

+

−Nβn
∫

∂0B+
r

∑
i,j<i

v2
i,nv

2
i,n dx+ rβ

∫
SN−1
r

∑
i,j<i

v2
i,nv

2
j,n dσ

︸ ︷︷ ︸
Cn

= 2r

∫
∂+B+

r

∑
i

|∂νvi,n|2 dσ.

︸ ︷︷ ︸
B2
n

On one hand, by strong H1
loc convergence,

An → (1−N)

∫
B+
r

∑
i

|∇vi|2 dxdy.



Moreover, both In → 0 (by assumption 4.) and Cn → 0 for a.e. r (by Lemma 2.4.6).

We claim that

lim
n→∞

B1
n = r

∫
∂+B+

r

∑
i

|∇vi|2 dσ and lim
n→∞

B2
n = 2r

∫
∂+B+

r

∑
i

|∂νvi|2 dσ

in L1
loc[0,∞): in particular, this will imply convergence for a.e. r. Let us prove

the former limit, which implies also the latter. The strong convergence vn → v in

H1
loc

(
RN+1

+

)
implies that

R∫
0

∫
∂+B+

r

∑
i

|∇vi,n −∇vi|2 dσdr → 0,

so that
∫

∂+B+
r

|∇vi,n|2dσ →
∫

∂+B+
r

|∇vi,n|2dσ for a.e. r and there exists an integrable

function f ∈ L1(0, R) such that, up to a subsequence∫
∂+B+

r

|∂νvi,nk |2dσ ≤
∫

∂+B+
r

|∇vi,nk |2dσ ≤ f(r) a.e. r ∈ (0, R)

for every i = 1, . . . , k. We can then use the Dominated Convergence Theorem. Since

every subsequence of {vn}n∈N admits a convergent sub-subsequence, and the limit is

the same, we conclude the convergence for the entire approximating sequence.

2.5 Local C0,α uniform bounds, α small

In this section we begin our regularity analysis with a first partial result. We will

obtain a localized version of the uniform Hölder regularity for solutions to problem

(GP )β , when the Hölder exponent is sufficiently small. We recall that, here and in the

following, the functions fi,β are assumed to be continuous and uniformly bounded,

with respect to β, on bounded sets.

Remark 2.5.1. By standard regularity results (see for instance the book [50]), we

already know that for every r < 1, α ∈ (0, 1), m̄ > 0 and β̄ > 0, there exists a

constant C = C(r, α, m̄, β̄) such that

‖vβ‖C0,α
(
B+
r

) ≤ C,
for every vβ solution of problem (GP )β on B+

1 , satisfying

β ≤ β̄ and ‖vβ‖L∞(B+
1 ) ≤ m̄.



The main result of this section is the following.

Theorem 2.5.2. Let {vβ}β>0 be a family of solutions to problem (GP )β on B+
1 such

that

‖vβ‖L∞(B+
1 ) ≤ m̄,

with m̄ independent of β. Then for every α ∈ (0, νACF) there exists a constant

C = C(m̄, α), not depending on β, such that

‖vβ‖C0,α
(
B+

1/2

) ≤ C.
Furthermore, {vβ}β>0 is relatively compact in H1(B+

1/2)∩C0,α
(
B+

1/2

)
for every α <

νACF.

Remark 2.5.3. Even though we prove it in B+
1/2, Theorem 2.5.2 holds also when

replacing B+
1/2 with K ∩B+

1 , for every compact set K ⊂ B1.

For easier notation, we write B+ = B+
1 . Inspired by [39, 52], we proceed by

contradiction and develop a blow up analysis. First, let η denote a smooth function

such that 
η(X) = 1 0 ≤ |X| ≤ 1

2

0 < η(X) ≤ 1 1
2 ≤ |X| ≤ 1

η(X) = 0 |X| = 1

(2.5.1)

(in particular, η vanishes on ∂+B+ but is strictly positive ∂0B+). We will prove that

‖ηv‖C0,α(B+) ≤ C,

and the theorem will follow by the regularity of η.

Let us assume by contradiction the existence of sequences {βn}n∈N, {vn}n∈N,

solutions to (GP )βn , such that

Ln := max
i=1,...,k

max
X′ 6=X′′∈B+

|(ηvi,n)(X ′)− (ηvi,n)(X ′′)|
|X ′ −X ′′|α

→∞,

for some α ∈ (0, νACF), which from now on we will consider as fixed. By Remark

2.5.1 we readily infer that βn → ∞. Moreover, up to a relabelling, we may assume

that Ln is achieved by i = 1 and a sequence of points (X ′n, X
′′
n) ∈ B+×B+. We start

showing some first properties of such sequences.

Lemma 2.5.4. Let X ′n 6= X ′′n and rn := |X ′n −X ′′n | satisfy

Ln =
|(ηv1,n)(X ′n)− (ηvi,n)(X ′′n)|

rαn
.

Then, as n→∞,



1. rn → 0;

2.
dist(X ′n, ∂

+B+)

rn
→∞,

dist(X ′′n , ∂
+B+)

rn
→∞.

Proof. By the uniform control on ‖vn‖L∞ we have

Ln ≤
m̄

rαn
(η(X ′n) + η(X ′′n)) ,

which immediately implies rn → 0. Since η vanishes on ∂+B+, we have that, for

every X ∈ B+, it holds

η(X) ≤ `dist(X, ∂+B+),

where ` denotes the Lipschitz constant of η. As a consequence, the first inequality

becomes
dist(X ′n, ∂

+B+)

rn
+

dist(X ′′n , ∂
+B+)

rn
≥ Lnr

α−1
n

m̄`
→∞

(recall that α < 1), and the lemma follows by recalling that dist(X ′n, X
′′
n) = rn.

Our analysis is based on two different blow up sequences, one having uniformly

bounded Hölder quotient, the other satisfying a suitable problem. Let {Pn}n∈N ⊂ B+,

|Pn| < 1, be a sequence of points, to be chosen later. We write

τnB
+ :=

B+ − Pn
rn

,

remarking that τnB
+ is a hemisphere, not necessarily centered on the hyperplane

{y = 0}. We introduce the sequences

wi,n(X) := η(Pn)
vi,n(Pn + rnX)

Lnrαn
and w̄i,n(X) :=

(ηvi,n)(Pn + rnX)

Lnrαn
,

where X ∈ τnB
+. With this choice, on one hand it follows immediately that, for

every i

max
X′ 6=X′′∈τnB+

|w̄i,n(X ′)− w̄i,n(X ′′)|
|X ′ −X ′′|α

≤
∣∣∣∣w̄1,n

(
X ′n − Pn

rn

)
− w̄1,n

(
X ′′n − Pn

rn

)∣∣∣∣ = 1,

in such a way that the functions {w̄n}n∈N share an uniform bound on Hölder semi-

norm, and at least their first components are not constant. On the other hand, since

η(Pn) > 0, each wn solves−∆wi,n = 0 in τnB
+

∂νwi,n = fi,n(wi,n)−Mnwi,n
∑
j 6=i w

2
j,n on τn∂

0B+,
(2.5.2)

with fi,n(s) = η(Pn)r1−α
n L−1

n fi,βn(Lnr
α
ns/η(Pn)) and Mn = βnL

2
nr

2α+1
n /η(Pn)2.



Remark 2.5.5. The uniform bound of ‖vβ‖L∞ imply that

sup
τn∂0B+

|fi,n(wi,n)| = η(Pn)r1−α
n L−1

n sup
∂0B+

|fi,βn (vi,n) | ≤ C(m̄)r1−α
n L−1

n → 0

as n→∞.

A crucial property is that the two blow up sequences defined above have asymp-

totically equivalent behavior, as enlighten in the following lemma.

Lemma 2.5.6. Let K ⊂ RN+1 be compact. Then

1. max
X∈K∩τnB+

|wn(X)− w̄n(X)| → 0;

2. there exists C, only depending on K, such that |wn(X)−wn(0)| ≤ C, for every

x ∈ K.

Proof. Again, this is a consequence of the Lipschitz continuity of η and of the uniform

boundedness of {vβ}β . Indeed we have, for every i = 1, . . . , k,

|wi,n(X)− w̄i,n(X)| ≤ m̄r−αn L−1
n |η(Xn + rnX)− η(Xn)| ≤ `m̄r1−α

n L−1
n |X|

and the right hand side vanishes in n, implying the first part. Moreover, by definition,

wn(0) = w̄n(0), and |w̄n(X) − w̄n(0)| ≤ C|X|α for every X ∈ τnB+. But then we

can conclude noticing that

|wn(X)−wn(0)| ≤ |wn(X)− w̄n(X)|+ |w̄n(X)− w̄n(0)|

and applying the first part.

Lemma 2.5.7. Let, up to subsequences, Ω∞ := lim τnB
+ and let

Wn(X) := wn(X)−wn(0) and W̄n(X) := w̄n(X)− w̄n(0).

Then there exists a function W ∈ C0,α(Ω∞) which is harmonic and such that Wn →
W and W̄n →W uniformly in every compact set K ⊂ Ω∞. Moreover, if we choose

{Pn}n∈N such that |X ′n − Pn| < Crn for some constant C and for every n, then W

is non constant.

Proof. Let K ⊂ Ω∞ be any fixed compact set. Then, by definition, K is contained

in the half sphere τnB
+, for every n sufficiently large. By definition, {W̄n}n∈N

is a sequence of functions which share the same C0,α-seminorm and are uniformly

bounded in K, since W̄n(0) = 0. By the Ascoli-Arzelà theorem, there exists a

function W ∈ C(K) which, up to a subsequence, is the uniform limit of {W̄n}n∈N:

taking a countable compact exhaustion of Ω∞ we find that W̄n → W uniformly in



every compact set. By Lemma 2.5.6, we also find that Wn → W and, since the

uniform limit of harmonic function is harmonic, we conclude that W is harmonic.

Let X,Y ∈ Ω∞ be any pair of points. By definition, there exists n0 ∈ N such that

X,Y ∈ τnB+ for every n ≥ n0, and so

|W̄n(X)− W̄n(Y )| ≤
√
k|X − Y |α for every n ≥ n0.

Passing to the limit in n the previous expression, we obtain W ∈ C0,α(Ω∞). Let now

C > 0 be fixed, and let us choose {Pn}n∈N be such that |X ′n − Pn| < Crn. It follows

that, up to a subsequence,

X ′n − Pn
rn

→ X ′ and
X ′′n − Pn

rn
→ X ′′,

where X ′, X ′′ ∈ BC+1 ∩ Ω∞. Therefore, by equicontinuity and uniform convergence,∣∣∣∣W̄1,n

(
X ′n − Pn

rn

)
− W̄1,n

(
X ′′n − Pn

rn

)∣∣∣∣ = 1 =⇒ |W1(X ′)−W1(X ′′)| = 1

and the lemma follows.

In Lemma 2.5.4 we have shown that X ′n, X ′′n can not accumulate too fast towards

∂+B+. Now we can prove that they converge to ∂0B+.

Lemma 2.5.8. There exists C > 0 such that, for every n sufficiently large,

dist(X ′n, ∂
0B+) + dist(X ′′n , ∂

0B+)

rn
≤ C.

Proof. We argue by contradiction. Taking into account the second part of Lemma

2.5.4, this forces
dist(X ′n, ∂B

+) + dist(X ′′n , ∂B
+)

rn
→∞.

Choosing Pn = X ′n in the definition of wn, w̄n, we can apply Lemma 2.5.7. First of all,

we notice that τnB
+ → Ω∞ = RN+1. But then W as in the aforementioned lemma

is harmonic, globally Hölder continuous on RN+1 and non constant, in contradiction

with Liouville theorem.

We are in a position to choose Pn in the definition of wn, w̄n: from now one let

us define

Pn := (x′n, 0),

where as usual X ′n = (x′n, y
′
n). With this choice, it is immediate to see that τnB

+ →
Ω∞ = RN+1

+ , and that all the above results, and in particular Lemma 2.5.7, apply.

This last fact follows from Lemma 2.5.8, since

Crn ≥ dist(X ′n, ∂
0B+) = |X ′n − Pn|.



Our next aim is to prove that {wn}n∈N, {w̄n}n∈N are uniformly bounded. This will

be done by contradiction, in a series of lemmas.

Lemma 2.5.9. Under the previous blow up configuration, if w̄i,n(0) → ∞ for some

i, then

Mnw
2
i,n(0) = Mnw̄

2
i,n(0) ≤ C

for a constant C independent of n. In particular, Mn → 0.

Proof. Let r > 0 be fixed, and let B+
2r be the half ball of radius 2r: by Lemma

2.5.8, for n sufficiently large we have that B+
2r ⊂ τnB+. Since the sequence {w̄n}n∈N

is made of continuous functions which share the same C0,α-seminorm, we have that

infB+
2r
|w̄i,n| → ∞. Furthermore, by Lemma 2.5.6 infB+

2r
|wi,n| → ∞ as well.

Proceeding by contradiction, we assume that

In := inf
∂0B+

2r

Mnw
2
i,n →∞.

We first show that for j 6= i, both the sequence {wj,n}n∈N and {w̄j,n}n∈N are bounded

in B+
2r. We recall that |wj,n| is a subsolution of problem (2.5.2). More precisely, by

Lemma 2.4.5, we have that∫
B+

2r

∇|wj,n| · ∇ϕdxdy −
∫

∂0B+
2r

(
‖fj,n‖L∞(B2r) − In|wj,n|

)
ϕdx ≤ 0, (2.5.3)

for every ϕ ∈ H1
0 (B2r), ϕ ≥ 0. Letting η ∈ C∞0 (B2r), we can choose ϕ = η2|wj,n| in

the above equation, obtaining∫
B+

2r

(
|∇(η|wj,n|)|2 − |∇η|2|wj,n|2

)
dxdy + In

∫
∂0B+

2r

η2|wj,n|2 dx

≤ ‖fj,n‖L∞
∫

∂0B+
2r

η2|wj,n|dx.

As a consequence

In

∫
∂0B+

2r

η2|wj,n|2dx ≤
∫
B+

2r

|∇η|2|wj,n|2dxdy + ‖fj,n‖L∞
∫

∂0B+
2r

η2|wj,n|dx

≤ sup
B+

2r

|wj,n|2
∫
B+

2r

|∇η|2dxdy + ‖fj,n‖L∞
∫

∂0B+
2r

η2 1

2

(
1 + |wj,n|2

)
dx

≤ sup
B+

2r

|wj,n|2

∫
B+

2r

|∇η|2dxdy + C(r)‖fj,n‖L∞

+ C(r)‖fj,n‖L∞ , (2.5.4)



where, by Remark 2.5.5, C(r)‖fj,n‖L∞ → 0. On the other hand, using again the

uniform Hölder bounds of the sequence {w̄n}n∈N and the uniform control given by

Lemma 2.5.6, we infer

In

∫
∂0B+

2r

η2|wj,n|2dx ≥ In inf
∂0B+

2r

|wj,n|2
∫

∂0B+
2r

η2dx

≥ CIn

(
sup
B+

2r

|wj,n|2 − (2r)2α

) ∫
∂0B+

2r

η2dx.

(2.5.5)

Combining (2.5.4) with (2.5.5) we deduce the uniform boundedness of sup∂+B+
2r
|wj,n|

for j 6= i. Equation (2.5.3) fits into (the variational counterpart of) Lemma 2.3.5,

which implies

|wj,n| ≤
C

In
sup
∂+B+

2r

|wj,n| on ∂0B+
r (2.5.6)

for a constant C independent of n. From the uniform bound it follows that wj,n → 0

uniformly in ∂0B+
r for every r > 0, and the same is true for w̄j,n, j 6= i: in particular,

since |w̄1,n(τnX
′
n)− w̄1,n(τnX

′′
n)| = 1, we deduce that, necessarily, i = 1.

Now, w1,n satisfies∫
B+
r

∇w1,n · ∇ϕdxdy =

∫
∂0B+

r

(
f1,n −Mnw1,n

∑
j 6=1

w2
j,n

)
ϕdx

for every ϕ ∈ H1
0 (Br). From the previous estimates and the definition of In we find∣∣∣∣∣f1,n −Mnw1,n

∑
j 6=1

w2
j,n

∣∣∣∣∣ ≤ ‖f1,n‖L∞ +Mn(|w1,n|2 + 1)
∑
j 6=1

w2
j,n

≤ ‖f1,n‖L∞ + C
In +Mn(r2α + 1)

I2
n

→ 0

on ∂0B+
r , and this holds for every r. As a consequence, we can define {Wn}n∈N as in

Lemma 2.5.7, obtaining that W1,n converges to W1, which is a nonconstant, globally

Hölder continuous function on RN+1
+ , which satisfies−∆W1 = 0 in RN+1

+

∂νW1 = 0 on RN .

But then the even extension of W1 through {y = 0} contradicts the Liouville theorem.

Lemma 2.5.10. Under the previous blow up setting, if there exists i such that

w̄i,n(0)→∞, then

Mn|w̄i,n(0)|
∑
j 6=i

w̄2
j,n(0) ≤ C

for a constant C independent of n.



Proof. Let r > 1 be any fixed radius. Multiplying equation (2.5.2) by wi,n and

integrating on B+
r we obtain the identity∫

B+
r

|∇wi,n|2 dxdy +

∫
∂0B+

r

(
−fi,nwi,n +Mnw

2
i,n

∑
j 6=i

w2
j,n

)
dx =

∫
∂+B+

r

wi,n∂νwi,n dσ.

Defining

Ei(r) :=
1

rN−1

∫
B+
r

|∇wi,n|2 dxdy +

∫
∂0B+

r

(
−fi,nwi,n +Mnw

2
i,n

∑
j 6=i

w2
j,n

)
dx


and

Hi(r) :=
1

rN

∫
∂+B+

r

w2
i,ndσ,

a straightforward computation shows that Hi ∈ AC(r/2, r) and

H ′i(r) =
2

r
Ei(r).

In particular, integrating from r/2 to r, we obtain the following identity

Hi(r)−Hi

(r
2

)
=

r∫
r/2

2

s
Ei(s) ds. (2.5.7)

If r is suitably chosen, and n is large, after a scaling in the definition of Hi, we have

that the left hand side of (2.5.7) writes as

Hi(r)−Hi

(r
2

)
=

∫
∂+B+

[
w2
i,n(rx)− w2

i,n

(r
2
x
)]

dσ

=

∫
∂+B+

[
wi,n(rx)− wi,n

(r
2
x
)] [

wi,n(rx) + wi,n

(r
2
x
)]

dσ

≤ C(r)(|wi,n(0)|+ 1),

where we used the first part of Lemma 2.5.6 to estimate the difference in the integral

above, and the second part of the same lemma for the sum. In a similar way, we

obtain a lower bound of the right hand side of equation (2.5.7)

1

r

r∫
r/2

2

s
Ei(s)ds ≥ min

s∈[r/2,r]

1

s
Ei(s)

≥Mn min
s∈[r/2,r]

1

sN

∫
∂0B+

s

∑
j 6=i

w2
i,nw

2
j,n dx− max

s∈[r/2,r]

1

sN

∫
∂0B+

s

|fi,nwi,n|dx

≥MnC(r)

(∑
j 6=i

w2
i,n(0)w2

j,n(0)− 1

)
− C(r)‖fj,n‖L∞(|wi,n(0)|+ 1),



where C(r)‖fj,n‖L∞ → 0 as n→∞. Putting the two estimates together and recalling

that Mn is bounded, we find

Mn

∑
j 6=i

w2
i,n(0)w2

j,n(0) ≤ C(r)(|wi,n(0)|+ 1).

The conclusion follows dividing by |wi,n(0)|, using the uniform control of the sequence

{wi,n}n∈N and {w̄i,n}n∈N and the assumption that |w̄i,n(0)| → ∞.

Lemma 2.5.11. If {w̄n(0)}n∈N is unbounded, then also {w̄1,n(0)}n∈N is.

Proof. By Lemma 2.5.9, Mn → 0. Let i be such that {wi,n(0)}n∈N is bounded.

Reasoning as in the proof of Lemma 2.5.7, we have that both wi,n and w̄i,n converge

to some wi, uniformly on compact sets. Furthermore, wi is harmonic, globally Hölder

continuous, and non constant in the possible case i = 1. We claim that there exists a

constant λ ≥ 0 such that

∂νwi,n = fi,n −Mnwi,n
∑
j 6=i

w2
j,n → −λwi

uniformly on compact sets. This, combined with Proposition 2.3.7, proves the lemma.

To prove the claim:

• let j 6= i be an index such that w̄j,n(0) is unbounded: from Lemma 2.5.10 we

see that Mnw̄
2
j,n(0) is bounded. Moreover, by uniform Hölder bounds,

Mn

∣∣w̄2
j,n(x, 0)− w̄2

j,n(0, 0)
∣∣ ≤ Mnw̄

2
j,n(0, 0)︸ ︷︷ ︸

≤C (Lemma 2.5.9)

∣∣∣∣∣ w̄2
j,n(x, 0)

w̄2
j,n(0, 0)

− 1

∣∣∣∣∣→ 0,

since w̄j,n(x)/w̄j,n(0)→ 1 uniformly, implying Mnw̄
2
j,n(x, 0)→ λj ≥ 0;

• let now j 6= i be an index such that w̄j,n(0) is bounded. Then, again by uniform

convergence,

Mnw̄i,nw̄
2
j,n → 0

uniformly in every compact set.

It follows that

fi,n −Mnw̄i,n
∑
j 6=i

w̄2
j,n → −λwi

uniformly in every compact set, and the same limit holds for {wi,n}n∈N by uniform

convergence.

Lemma 2.5.12. The sequence {w̄n(0)}n∈N is bounded.



Proof. By contradiction, let {wn(0)}n∈N be unbounded. Then, by the above lemmas,

Mn → 0, {w1,n(0)}n∈N is unbounded, while Mnw
2
1,n(0) is bounded. This implies that

Mn|w1,n| → 0 uniformly on compact sets.

Now, if j 6= 1 is such that {wj,n(0)}n∈N is bounded, then Mnw1,nw
2
j,n → 0 uni-

formly in every compact set.

On the other hand, if j 6= 1 is such that {wj,n(0)}n∈N is unbounded, then Lemma

2.5.10 provides

C ≥Mn|w1,n(0)|
∫

∂0B+
r

w2
j,n dx = Mn|w1,n(0)|w2

j,n(0)

∫
∂0B+

r

w2
j,n

w2
j,n(0)

dx,

so that Mn|w1,n(0)|w2
j,n(0) is uniformly bounded. Of course, since if {wj,n(0)}n∈N is

unbounded then also {wj,n(x)}n∈N is, for any fixed x, the same argument shows that

Mn|w1,n(x)|w2
j,n(x) is bounded. Now,

Mn

∣∣|w1,n(x)|w2
j,n(x)− |w1,n(0)|w2

j,n(0)
∣∣

≤Mn|w1,n(x)|w2
j,n(x)

∣∣∣∣∣1− w2
j,n(0)

w2
j,n(x)

∣∣∣∣∣+Mn|w1,n(0)|w2
j,n(0)

∣∣∣∣w1,n(x)

w1,n(0)
− 1

∣∣∣∣→ 0.

This shows the existence of a constant λj ∈ R such that Mnw1,nw
2
j,n → λj uniformly

in every compact set.

Summing up, at least up to a subsequence,

f1,n −Mnw1,n

∑
h 6=1

w2
h,n → λ ∈ R,

uniformly on every compact subset of RN . Thus, as usual, W1,n = w1,n − w1,n(0)

converges to W1, a nonconstant, globally Hölder continuous solution to−∆W1 = 0 in RN+1
+

∂νW1 = λ on RN .

Appealing to Proposition 2.3.8, we obtain a contradiction.

The uniform bound on {w̄n(0)}n∈N allows to prove the following convergence

result.

Lemma 2.5.13. Under the previous blow up setting, there exists w ∈ (H1
loc∩C0,α)

(
RN+1

+

)
such that, up to a subsequence,

wn → w in (H1 ∩ C)(K)

for every compact K ⊂ RN+1
+ .



Proof. Reasoning as in the proof of Lemma 2.5.7 we can easily obtain that, up to

subsequences, both {w̄n}n∈N and {wn}n∈N converge uniformly on compact sets to

the same limit w ∈ C0,α
(
RN+1

+

)
, hence we are left to show the H1

loc convergence of

the latter sequence.

Let K be compact, r be such that K ⊂ B+
r , and let us consider η ∈ C∞0 (B+

r ) any

smooth cutoff function, such that 0 ≤ η ≤ 1 and η ≡ 1 on K. Testing the equation

for wi,n by wi,nη
2, we obtain

0 ≤
∫
K

|∇wi,n|2dxdy +Mn

∫
∂0K

w2
i,n

∑
j 6=i

w2
j,ndx

≤
∫
B+
r

|∇wi,n|2η2dxdy +Mn

∫
∂0B+

r

w2
i,n

∑
j 6=i

w2
j,nη

2dx

≤ 1

2

∫
B+
r

w2
i,n|∆η2|dxdy +

1

2

∫
∂0B+

r

(
w2
i,n|∂νη2|+ fi,nwi,nη

2
)

dx.

Since the right hand side is bounded uniformly in n (recall Lemmas 2.5.12 and 2.5.6),

we deduce that, up to subsequences, {wn}n∈N weakly converges in H1(K). Since this

holds for every K, we deduce that wn ⇀ w in H1
loc

(
RN+1

+

)
. To prove the strong

convergence, let us now test the equation by η2(wi,n − wi). We obtain∫
B+
r

∇wi,n · ∇
[
η2(wi,n − wi)

]
dxdy =

∫
∂0B+

r

η2(wi,n − wi)∂νwi,n dx. (2.5.8)

We can estimate the right hand side as∫
∂0B+

r

η2(wi,n − wi)∂νwi,n dx

≤ sup
x∈B+

r

|wi,n − wi|
∫

∂0B+
r

η2

[
Mn|wi,n|

∑
i,j<i

w2
j,n + |fi,n|

]
dx

≤ C(r) sup
x∈B+

r

|wi,n − wi|,

where the last step holds since the inequality for |wi,n| (Lemma 2.4.5) tested by η2

yields∫
∂0B+

r

η2Mn|wi,n|
∑
i,j<i

w2
j,n dx

≤
∫

∂0B+
r

(
|fi,n|η2 + |wi,n∂νη2|

)
dx+

∫
B+
r

|wi,n∆η2|dxdy ≤ C(r).



Resuming, equation (2.5.8) implies∫
B+
r

|∇(ηwi,n)|2 dxdy ≤
∫
B+
r

(
η2∇wi,n · ∇wi + 2ηwi∇wi,n · ∇η + |∇η|2w2

i

)
dxdy

+ C(r) sup
x∈B+

r

|wi,n − wi|.

Using both the weak H1 convergence and the uniform one, we have that

lim sup
n→∞

∫
B+
r

|∇(ηwi,n)|2 dxdy ≤
∫
B+
r

|∇(ηwi)|2 dxdy

and we conclude the strong convergence in H1(B+
r ) of {ηwn}n∈N to ηw, that is, since

η was arbitrary, the strong convergence of wn to w in H1
loc

(
RN+1

+

)
.

End of the proof of Theorem 2.5.2. Summing up, we have that wn → w in (H1 ∩
C)loc, and that the limiting blow up profile w is a nonconstant vector of harmonic,

globally Hölder continuous functions. To reach the final contradiction, we distinguish,

up to subsequences, between the following three cases.

Case 1: Mn → 0. In this case also the equation on the boundary passes to the

limit, and the nonconstant component w1 satisfies ∂νw1 ≡ 0 on RN , so that its even

extension through {y = 0} contradicts Liouville theorem.

Case 2: Mn → C > 0. Even in this case the equation on the boundary passes to

the limit, and w solves−∆wi = 0 x ∈ RN+1
+

∂νwi = −Cwi
∑
j 6=i w

2
j on RN × {0}

The contradiction is now reached using Proposition 3.2.9, since w ∈ Gc ∩ C0,α(RN+1
+ )

and α < νACF.

Case 3: Mn → ∞. By Proposition 2.4.1, we infer w ∈ Gs ∩ C0,α(RN+1
+ ) with

α < νACF, in contradiction with Proposition 2.3.2.

As of now, the contradictions we have obtained imply that {vβ}β>0 is uniformly

bounded in C0,α
(
B+

1/2

)
, for every α < νACF. But then the relative compactness

in C0,α
(
B+

1/2

)
follows by Ascoli-Arzelà Theorem, while the one in H1(B+

1/2) can be

shown by reasoning as in the proof of Lemma 2.5.13.

Remark 2.5.14. It is worthwhile noticing that, in proving Theorem 2.5.2, the only

part in which we used the assumption α < νACF is the concluding argument, while

in the rest of the proof it is sufficient to suppose α < 1.



As we mentioned, even though we are not able to show that νACF = 1/2, nonethe-

less we will prove that the uniform Hölder bound hold for any α < 1/2. In view of

the previous remark, this can be done by means of some sharper Liouville type re-

sults, which will be obtained in the next section. To conclude the present discussion,

we observe that a result analogous to Theorem 2.5.2 holds, when entire profiles of

segregation are considered, instead of solutions to (GP )β .

Proposition 2.5.15. Let {vn}n∈N be a subset of Gs ∩ C0,α
(
B+

1

)
, for some 0 < α ≤

νACF, such that

‖vn‖L∞(B+
1 ) ≤ m̄,

with m̄ independent of n. Then for every α′ ∈ (0, α) there exists a constant C =

C(m̄, α′), not depending on n, such that

‖vn‖C0,α′
(
B+

1/2

) ≤ C.
Furthermore, {vn}n∈N is relatively compact in H1(B+

1/2) ∩ C0,α′
(
B+

1/2

)
for every

α′ < α.

Proof. The proof follows the line of the one of Theorem 2.5.2, being in fact easier,

since we do not have to handle any competition term. We proceed by contradiction,

assuming that, up to subsequences,

Ln := max
i=1,...,k

sup
X′,X′′∈B+

|η(X ′)vi,n(X ′)− η(X ′′)vi,n(X ′′)|
|X ′ −X ′′|α′

→∞,

where again η is a smooth cutoff function of the ball B1/2 and α′ < α. If Ln is

achieved by (X ′n, X
′′
n), we introduce the sequences

wi,n(X) := η(Xn)
vi,n(Pn + rnX)

Lnrα
′

n

and w̄i,n(X) :=
(ηvi,n)(Pn + rnX)

Lnrα
′

n

,

for X ∈ τnB
+, where, as usual, on one hand w̄n has Hölder seminorm (and oscil-

lation) equal to 1, while on the other hand wn belongs to Gs. All the preliminary

properties of (X ′n, X
′′
n), up to Lemma 2.5.8, are still valid, since they depend only

on the harmonicity of {wn}n∈N. It follows that the choice Pn = (x′n, 0) for every

n ∈ N guarantees the convergence of the rescaled domains τnB
+ to RN+1

+ , while on

any compact set the sequences {wn}n∈N and {w̄n}n∈N shadow each other. Up to

relabelling and subsequences, we are left with two alternatives:

1. either for any compact set K ∈ RN we have w1,n(x, 0) 6= 0 for every n ≥ n0(K)

and x ∈ K;

2. or there exists a bounded sequence {xn}n∈N ⊂ RN such that wn(xn, 0) = 0 for

every n.



In the first case, if we define Wn = wn−wn(0) and W̄n = w̄n−w̄n(0), we obtain

that the sequence {W̄n}n∈N is uniformly bounded in C0,α′ , and hence {Wn}n∈N
converges uniformly on compact sets to a non constant, globally Hölder continuous

function W, with ∂νW1(x, 0) ≡ 0 and Wi(x, 0) ≡ 0 for i > 1, on RN . Extending

properly the vector W to the whole RN+1, we find a contradiction with the Liouville

theorem.

Coming to the second alternative, this time {wn}n∈N itself converges, uniformly

on compact sets, to a non constant, globally Hölder continuous function w. We

want to show that the convergence is also strong in H1
loc: this will imply that also

w ∈ Gs (recall also the end of the proof of Proposition 2.4.1), in contradiction with

Proposition 2.3.2. To prove the strong convergence let us consider, for any i, the even

extension of |wi,n| through {y = 0}, which we denote again with |wi,n|. We have that

there exists a non negative Radon measure µi,n such that

−∆|wi,n| = −µi,n in D′(τnB) :

indeed, on one hand, for X ∈ {wi,n 6= 0}, there exists a radius r > 0 such that the

even extension of wi,n through {y = 0} is harmonic in Br(X), providing

|wi,n|(X) ≤ 1

|Br|

∫
Br(X)

|wi,n|(Y )dY ;

on the other hand X ∈ {wi,n = 0} immediately implies the same inequality, and the

consequent subharmonicity of |wi,n|. At this point, we can reason as in [47], showing

that the L∞ uniform bounds on compact sets of |wi,n| implies that the measures

µi,n are bounded on compact sets [47, Lemma 3.7]; and that this, together with the

uniform convergence of {|wn|}n∈N, implies its strong H1
loc-convergence [47, Lemma

3.11].

As a consequence of the previous contradiction argument, we deduce both the

uniform bounds and the pre-compactness of {vn}n∈N in C0,α′(B1/2). Once we have

(the uniform L∞ bounds and) the uniform convergence of {vn}n∈N, the strong H1

pre-compactness can be obtained exactly as in the last part of the proof, replacing

|wi,n| with |vi,n|.

2.6 Liouville type theorems, reprise: the optimal growth

In Section 2.5 we proved that non existence results of Liouville type imply uniform

bounds in corresponding Hölder norms. This section is devoted to the study of the

optimal Liouville exponents, which will allow to enhance the regularity estimates.

Our aim is to prove the following result.



Theorem 2.6.1. Let ν ∈
(
0, 1

2

)
. If

1. either v ∈ Gs ∩ C0,ν
(
RN+1

+

)
,

2. or v ∈ Gc and |v(X)| ≤ C(1 + |X|ν) for every X,

then v is constant.

The rest of the section is devoted to the proof of the above theorem. As of now, we

already know by Propositions 2.3.1 and 3.2.10 that such theorem holds true whenever

ν is smaller than νACF. In order to refine such result, we will prove that it holds for

ν smaller than νLiou, according to the following definition.

Definition 2.6.2. For ν > 0 and for every dimension N , we define the class

H(ν,N) :=

v ∈ Gs :
v ∈ C0,α

loc

(
RN+1

+

)
, for some α > 0

v is non trivial and ν-homogeneous

 ,

and the critical value

νLiou(N) = inf{ν > 0 : H(ν,N) is non empty}

Remark 2.6.3. Since (y, 0, . . . , 0) ∈ H(1, N), for every N , we have that νLiou(N) ≤
1.

Remark 2.6.4. By Corollary 2.2.5 we have that, if v is non constant and satisfies

assumption (1) in Theorem 2.6.1 for some ν, then v ∈ H(ν,N).

To prove Theorem 2.6.1, we start by showing that, given any non constant v

satisfying assumption (2) in Theorem 2.6.1 for some ν, we can construct a function

v̄ ∈ H(ν′, N), for a suitable ν′ ≤ ν. This, together with the previous remark, will

imply the equivalence between Theorem 2.6.1 and the inequality

νLiou(N) ≥ 1

2
.

To construct such v̄, we will use the blow down method. For any (non trivial)

v ∈ Gc we denote with Nv(x0, r), Hv(x0, r) the related quantities involved in the

Almgren frequency formula, defined in Section 2.2. For any r > 0, let us define

vr(X) :=
1√

Hv(0, r)
v(rX).

Since H is a strictly positive increasing function in R+ (recall Theorem 2.2.11), vr is

well defined. We have the following.



Lemma 2.6.5 (Blow down method). Let v be a non constant function, satisfying

assumption (2) in Theorem 2.6.1 for some ν, and let

0 < ν′ = lim
r→∞

Nv(r) ≤ ν.

Then there exists v̄ ∈ H(ν′, N) such that, for a suitable sequence rn →∞,

vrn → v̄ in (H1 ∩ C)(K)

for every compact K ⊂ RN+1
+ .

Proof. First of all, by construction, we have that

‖vr‖L2(∂+B+) = 1 so that ‖vi,r‖L2(∂+B+) ≤ 1 for i = 1, . . . , k.

Each vr is solution to the system−∆vi,r = 0 in B+

∂νvi,r + rH(r)vi,r
∑
j 6=i v

2
j,r = 0 on ∂0B+,

where rH(r)→∞ monotonically as r →∞. Reasoning as in Lemma 2.4.5, we have

that the even reflection of |vi,r| through {y = 0} satisfies−∆|vi,r| ≤ 0 in B

‖vi,r‖L2(∂B) ≤
√

2.

By the Poisson representation formula, it follows that there exists a constant C, not

depending on r, such that

‖vr‖L∞(B+
3/4

) ≤ C

for every r. Thus we are in a position to apply Theorem 2.5.2 in order to see that

the family {vr}r>1 is relatively compact in (H1 ∩ C0,α)(B+
1/2), for all α < νACF.

Furthermore, Proposition 2.4.1 implies that any limiting point of the family is an

element of Gs on B+
1/2. In order to find a non trivial limiting point, we claim that

there exists a sequence of radii {rn}n∈N, rn → ∞, and a positive constant C such

that

H(rn) ≤ CH(rn/2) ∀rn > 0.

Indeed, we can argue by contradiction, assuming that there exists r0 > 0 such that

H(r) ≥ 32νH(r/2) ∀r ≥ r0.

Using the diadic sequence of radii {2jr0}j∈N we see that

32νjH(r0) ≤ H(2jr0) ≤ C(2j)2ν ,



by assumption. The above inequality provides a contradiction for j sufficiently large,

yielding the validity of the claim. If we denote with v̄ a limiting point of the sequence

{vrn}n∈N, it follows that

‖vrn‖L2(∂+B+
1/2

) =

√
H(rn/2)

H(rn)
≥
√

1

C
,

implying, in particular, that v̄ is a nontrivial element of Gs. Moreover, its Almgren

quotient Nv̄(0, r) is constant for all r ∈ (0, 1/2), indeed

Nv̄(0, r) = lim
rn→∞

Nvrn (0, r) = lim
rn→∞

Nv(0, rnr) = lim
r→∞

Nv(0, r) = ν′,

where the latter limit exists by the monotonicity of N (Theorem 2.2.11); moreover,

since v is not constant we have that ν′ > 0, while ν′ ≤ ν by Lemma 2.2.12. Since

N(0, r) is constant, we conclude by Theorem 2.2.3 that v̄ is homogeneous of degree

ν′, and then it can be extended on the whole RN+1
+ to a C0,α

loc function, for every

α < νACF.

By the previous lemma, if we show that νLiou(N) ≥ 1/2 then Theorem 2.6.1 will

follow. The next step in this direction consists in reducing such problem to the one

of estimating νLiou(1).

Lemma 2.6.6 (Dimensional descent). For any dimension N ≥ 2, it holds

νLiou(N) ≥ νLiou(N − 1).

Proof. For every ν > 0 such that there exists v ∈ H(ν,N), we will prove that

νLiou(N − 1) ≤ ν. Let ν, v as above. By homogeneity, we have that v(0, 0) = 0

and N(0, r) = ν for all r > 0. Since the function v is homogeneous, its boundary

nodal set

Z = {x ∈ RN : v(x, 0) = 0}

is a cone at (0, 0). We can easily rule out two degenerate situations:

1. Z = RN , in which case all the components of v have trivial trace on RN . As a

consequence, the odd extension of v through {y = 0} is a nontrivial vector of

harmonic functions on RN+1, forcing ν ≥ 1 ≥ νLiou(N − 1) by Remark 2.6.3;

2. Z = {(0, 0)}, in which case all the components of v but one have trivial trace,

and the last one has necessarily a vanishing normal derivative in {y = 0}.
As before, extending the former functions oddly and the latter evenly through

{y = 0}, we obtain again that ν ≥ 1 ≥ νLiou(N − 1).



We are left to analyze the third and most delicate case, namely the one in which the

boundary ∂Z is non trivial. Let x0 ∈ ∂Z \{(0, 0)}, and let us introduce the following

blow up family (here r → 0)

vr(X) =
1√

H(x0, r)
v ((x0, 0) + rX) .

We want to apply Proposition 2.5.15 to (a subsequence of) {vr}r: the only assumption

non trivial to check is the uniform L∞ bound. To prove it, we observe that the even

extension of |vi,r| through {y = 0} (denoted with the same writing) is subharmonic,

indeed the inequality

|vi,r|(X) ≤ 1

|Bρ|

∫
Bρ(X)

|vi,r|(Y )dY

holds true, if ρ is sufficiently small, both when vi,r(X) = 0 and when vi,r(X) 6= 0;

once we know that each |vi,r| is non negative and subharmonic, arguing as in the

first part of the proof of Lemma 2.6.5, one can show that wi,r is uniformly bounded

in L∞(B3/4). Applying Proposition 2.5.15 we obtain that, up to subsequences, vr

converges uniformly and strongly in H1 to v̄, an element Gs(N) on B+
1/2. Reasoning

as in the end of the proof of Lemma 2.6.5, we infer that v̄ is non trivial, locally C0,α,

and that

Nv̄(0, ρ) = lim
r→0

Nvr (0, ρ) = lim
r→

Nv(x0, rρ) = lim
r→0

Nv(x0, r) =: ν′,

where

α ≤ Nv(x0, 0
+) = ν′ ≤ Nv(x0,∞) = ν

by Lemmas 2.2.4, 2.2.7 and the monotonicity of N . In particular, v̄ is homogeneous

of degree ν′.

To conclude the proof, we will show that v̄ is constant along the direction parallel

to (x0, 0), and that its restriction on the orthogonal half plane belongs to Gs(N − 1).

Let (x, y) ∈ RN+1
+ and h ∈ R be fixed. By the homogeneity of v we have

∣∣vr(x+ h(x0 + rx), (1 + hr)y)− vr(x, y)
∣∣

=

∣∣v((1 + hr)(x0 + rx, ry))− v(x0 + rx, ry)
∣∣√

H(x0, r)

= |(1 + hr)ν − 1| |v(x0 + rx, ry)|√
H(x0, r)

= |(1 + hr)ν − 1| |vr(x, y)|.

As r → 0 (up to subsequences) we infer, by uniform convergence,

|v̄(x+ hx0, y)− v̄(x, y)| = 0, for every h ∈ R.



Let us denote by v̂ a section of v̄ with respect to the direction {h(x0, 0)}h∈R: we

claim that v̂ ∈ H(ν′, N − 1). It is a direct check to verify that v̂ is nontrivial, ν′-

homogeneous, and C0,α
loc . In order to show that v̂ ∈ Gs(N − 1), we observe that the

equations and the segregation conditions are trivially satisfied, therefore we only need

to prove the Pohozaev identities on cylindrical domains (recall the discussion before

Definition 2.2.1). To this aim, let C ′ denote one of such domains in RN+ , and C ′′ the

corresponding domain in RN+1
+ having C ′ as N -dimensional section, and the further

axis parallel to (x0, 0). But then the Pohozaev identity for v̂ on C ′ immediately

follows by the one for v̄ on C ′′, using Fubini theorem.

We are ready to obtain the proof of Theorem 2.6.1 as a byproduct of the following

classification result, which completely characterize the elements of H(ν, 1) and shows

that νLiou(1) = 1/2.

Proposition 2.6.7. Let ν > 0. The following holds.

1. H(ν, 1) = ∅ ⇐⇒ 2ν 6∈ N;

2. if ν ∈ N any element of H(ν, 1) consists in homogeneous polynomial, and only

one of its components may have non trivial trace on {y = 0};

3. if ν = k + 1/2, k ∈ N, any element of H(ν, 1) has exactly two non trivial

components, say v and w, and there exists c 6= 0 such that

v(ρ, θ) = c ρ
1
2 +k cos

(
1

2
+ k

)
θ, w(ρ, θ) = ±c ρ 1

2 +k sin

(
1

2
+ k

)
θ

(here (ρ, θ) denote polar coordinates in R2
+ around the homogeneity pole).

Proof. Let ν > 0 be such that H(ν, 1) is not empty, and v ∈ H(ν, 1). Since, by

assumption, v is homogeneous, the Almgren quotient N(0, r) is equal to ν for every

r > 0. Moreover, for topological reasons, no more than two components of v can

have non trivial trace on {y = 0}. We will classify v, and hence ν, according to the

number of such components.

As a first case, let us suppose that two components of v, say v and w, have non

trivial trivial trace, in such a way that they solve
−∆v = 0 in R2

+

v(x, 0) = 0 on x < 0

∂νv(x, 0) = 0 on x > 0,

and


−∆w = 0 in R2

+

w(x, 0) = 0 on x > 0

∂νw(x, 0) = 0 on x < 0.



By homogeneity, we can easily find v and w; indeed, for instance, v must be of the

form v(ρ, θ) = ρνg(θ) with ν and g solutions toν2g + g′′ = 0 in (0, π)

g(π) = 0, g′(0) = 0,

and an analogous argument holds for w. We conclude that

v(ρ, θ) = cρ
1
2 +k cos

(
1

2
+ k

)
θ, w(ρ, θ) = dρ

1
2 +k sin

(
1

2
+ k

)
θ,

with c, d 6= 0 and k ∈ N, forcing ν = k + 1/2. All the other components of v must

satisfy −∆vi = 0 in R2
+

vi = 0 on R× {0},

with homogeneity degree equal to k + 1/2, which is impossible unless they are null.

Let v̄ be the function

v̄(ρ, θ) = ρ
1
2 +k cos

(
1

2
+ k

)
θ,

in such a way that v(x, y) = cv̄(x, y), while w(x, y) = dv̄(−x, y). Since v must satisfy

the Pohozaev identities for the elements of Gs, we infer that∫
∂+B+

r (x0,0)

|∇v|2 + |∇w|2 dσ = 2

∫
∂+B+

r (x0,0)

|∂νv|2 + |∂νw|2 dσ,

for every x0 ∈ R and r > 0. Considering the choices x0 = 1 and x1 = −1, and using

the symmetries, one has

A+c
2 +A−d

2 = 2B+c
2 + 2B−d

2,

A−c
2 +A+d

2 = 2B−c
2 + 2B+d

2,

where

A± =

∫
∂+B+

r (±1,0)

|∇v̄|2 dσ, B± =

∫
∂+B+

r (±1,0)

|∂ν v̄|2 dσ.

Since A± − 2B± 6= 0, at least for some r, the above equalities force c4 − d4 = 0, that

is d = ±c. We want to show that this condition is also sufficient for (v, w, 0, . . . , 0)

to belong to H(ν, 1). To this aim, we only need to prove the actual validity of

the Pohozaev identity for any x0 and R. We begin by observing that v and w are

conjugated harmonic functions, thus in particular it holds

∇v · ∇w = 0 and |∇v| = |∇w| in R2
+.



Hence, for any unitary vector n ∈ R2 we have

|∇v|2 = |∇w|2 = |∇v · n|2 + |∇w · n|2 = |∂nv|2 + |∂nw|2,

and the Pohozaev identity follows by integrating over half circles, and choosing ν as

the outer normal. Resuming, the case in which v has two components with non trivial

trace on {y = 0} always fall into alternative (3) of the statement.

Secondly, let us assume that only one component, say v, has non trivial trace on

{y = 0}. Then {v(x, 0) > 0} is either a half line or the entire real line. The first case

never happens, since v would solve
−∆v = 0 in R2

+

v(x, 0) = 0 on x < 0

∂νv = 0 on x > 0.

Reasoning as before, we would obtain that v is of the form

v(ρ, θ) = cρ
1
2 +k cos

(
1

2
+ k

)
θ,

with c ∈ R and k ∈ N, while all the (odd extensions of the) other components should

be harmonic on R2 and homogeneous of degree k + 1/2, that is null; the Pohozaev

identity would force c = 0, and v would be trivial. In the second case, if v(x, 0) 6= 0

for every x 6= 0, then v is of the form

v(ρ, θ) = cρk cos(kθ)

with c ∈ R \ {0} and k ∈ N, while all the other components of v are of the form

vi(ρ, θ) = ciρ
k sin(kθ)

for some ci ∈ R. Then the case of one non trivial trace on {y = 0} always falls into

alternative (2) of the statement.

As the last case, let us suppose that vi(x, 0) ≡ 0 for every i. Then each of them is

a ν-homogeneous solution to−∆vi = 0 in R2
+

vi = 0 on R× {0}

that is, for some k ∈ N and ci ∈ R, ν = 1 + k and

vi(ρ, θ) = ciρ
1+k sin((1 + k)θ).

Also this case always falls into alternative (2) of the statement, and the proposition

follows.



2.7 C0,α uniform bounds, α < 1/2

This section is devoted to the proof of the uniform Hölder bounds, with every exponent

less that 1/2, for the problem with exterior boundary Dirichlet data. In this direction,

let us consider the problem
−∆vi = 0 in B+

∂νvi = fi,β(vi)− βvi
∑
j 6=i v

2
j on ∂0B+ ∩ Ω

vi = 0 on ∂0B+ \ Ω,

(PD)β

where Ω is a smooth bounded domain of RN and the functions fi,β are continuous

and uniformly bounded, with respect to β, on bounded sets.

Remark 2.7.1. For (PD)β it is known that, if Ω is of class C3, then any L∞ solution

is in fact C0,α for every α < 1/2, see [44]. Furthermore, a uniform bound holds when

β is bounded, similarly to Remark 2.5.1. Actually, the assumption on the smoothness

of Ω can be weakened, at least when considering global problems for u(·) = v(·, 0), as

done in the recent paper [43].

We prove the following.

Theorem 2.7.2. Let {vβ}β>0 be a family of solutions to problem (PD)β on B+
1 such

that

‖vβ‖L∞(B+
1 ) ≤ m̄,

with m̄ independent of β. Then for every α ∈ (0, 1/2) there exists a constant C =

C(m̄, α), not depending on β, such that

‖vβ‖C0,α
(
B+

1/2

) ≤ C.
Furthermore, {vβ}β>0 is relatively compact in H1(B+

1/2)∩C0,α
(
B+

1/2

)
for every α <

1/2.

Actually, two particular cases of the above theorem can be obtained in a rather

direct way.

Remark 2.7.3. If ∂0B+ ∩Ω = ∅ then Theorem 2.7.2 holds true. Indeed, the family

of functions obtained from {vβ}β>0 by odd reflection across {y = 0} consists in

harmonic, L∞ uniformly bounded functions on B1.

Remark 2.7.4 (Proof of Theorem 1.1.1). If ∂0B+ ⊂ Ω then Theorem 2.7.2 holds

true. This is indeed the content of Theorem 1.1.1, that is the one of Theorem 2.5.2



with νACF replaced by 1/2. In order to prove this result, one can reason as in the

proof of such theorem, by using Theorem 2.6.1 instead of Propositions 2.3.1 and 3.2.10

(also recall Remark 2.5.14).

Proof of Theorem 2.7.2. The outline of the proof follows the one of Theorem 2.5.2,

to which we refer the reader for further details. To start with, let η be a smooth

cutoff function as in equation (2.5.1), and let α ∈ (0, 1/2) be fixed. We assume by

contradiction that

Ln := max
i=1,...,k

max
X′ 6=X′′∈B+

|(ηvi,n)(X ′)− (ηvi,n)(X ′′)|
|X ′ −X ′′|α

=
|(ηv1,n)(X ′n)− (ηvi,n)(X ′′n)|

rαn
→∞,

where, as usual, vn solves (PD)βn , βn →∞, and rn := |X ′n−X ′′n | → 0. Furthermore,

reasoning as in Lemmas 2.5.4 and 2.5.8, one can prove that the sequences {X ′n}n∈N
and {X ′′n}n∈N accumulate near ∂0B+ and far away from ∂+B+, at least in the scale

of rn.

Under the previous notations, we define the blow up sequences

wi,n(X) := η(Pn)
vi,n(Pn + rnX)

Lnrαn
and w̄i,n(X) :=

(ηvi,n)(Pn + rnX)

Lnrαn
,

where

Pn := (x′n, 0) and X ∈ τnB+ :=
B+ − Pn

rn
.

Such sequences satisfy the following properties:

• {w̄n}n∈N have uniformly bounded Hölder quotient on τnB+, and oscw1,n = 1

for every n on a suitable compact set;

• each wn solves
−∆wi,n = 0 in τnB

+

∂νwi,n = fi,n(wi,n)−Mnwi,n
∑
j 6=i w

2
j,n on τn(∂0B+ ∩ Ω)

wi,n = 0 on τn(∂0B+ \ Ω),

where sup |fi,n(wi,n)| → 0 as n→∞;

• |wn − w̄n| → 0 uniformly, as n→∞, on every compact set.

By the regularity assumption on ∂Ω we infer that, up to translations, rotations and

subsequences, one of the following three cases must hold.

Case 1: τn(∂0B+ \ Ω) → RN . In particular, we have that wn(0) = w̄n(0) = 0

for n large. Reasoning as in Section 2.5 we obtain that both wn and w̄n converge,



uniformly on compact sets, to the same w which is harmonic and globally Hölder

continuous on RN+1
+ , vanishing on RN and nonconstant. But then the odd extension

of w across {y = 0} contradicts Liouville theorem.

Case 2: τn(∂0B+ ∩Ω)→ RN . In this case, for every compact set K ⊂ RN+1
+ , we

have that {wn|K}n∈N and {w̄n|K}n∈N, for n large, fit in the setting of Section 2.5.

Consequently we can argue exactly in the same way, recalling that the regularity for

every α < 1/2 is obtained by means of Theorem 2.6.1 (see also Remark 2.7.4).

Case 3: τn(∂0B+ ∩ Ω) → {x ∈ RN : x1 > 0}. As in the first case, we have that

wn(0) = w̄n(0) = 0 for n large, implying that w1,n → w1, uniformly on compact sets

of RN+1
+ , with w1 non constant, harmonic, and such that w1(x, 0) = 0 for x1 ≤ 0.

Finally, reasoning as in Lemma 2.5.13, we have that w1,n → w1 also strongly in H1
loc,

thus w1∂νw1 ≤ 0. We are in a position to apply Proposition 2.3.4 to w1 and reach a

contradiction.

Using the above result, we can prove the following global theorem.

Theorem 2.7.5. Let {vβ} ∈ H1
loc(RN × (0, 1)) solve

−∆vi,β = 0 in RN × (0, 1)

∂νvi,β = fi,β(vi,β)− βvi,β
∑
j 6=i v

2
j,β on Ω

vi,β = 0 on RN \ Ω.

If there exists a constant m̄ such that

‖vi,β‖L∞(RN×(0,1)) ≤ m̄

then for any α ∈ (0, 1/2)

‖vβ‖C0,α(RN×[0,1/3]) ≤ C(m̄, α).

Furthermore, {vβ}β>0 is relatively compact in (H1 ∩ C0,α)loc for every α < 1/2.

Proof. The proof easily follows by a covering argument. Indeed, we can cover RN ×
[0, 1/3] with a countable number of half-balls of radius 1/2, centered on RN , and

apply Theorem 2.7.2 to each of the corresponding half-ball of radius 1.

Proof of Theorem 1.1.3. This is actually a corollary of Theorem 2.7.5: indeed, if u ∈
(H1/2 ∩ L∞)(RN ), and v ∈ H1(RN+1

+ ) is its unique harmonic extension satisfying

(−∆)1/2u(·) = −∂yv(·, 0),

then v is uniformly bounded in L∞.



Remark 2.7.6. Analogous results can be proved, with minor changes, when the

fractional operator considered is the spectral square root of the laplacian, as studied

in [8]. Indeed, in such situation, the corresponding extension problem is given by
−∆vi,β = 0 in Ω× (0,∞)

∂νvi,β = fi,β(vi,β)− βvi,β
∑
j 6=i v

2
j,β on Ω× {0}

vi,β = 0 on ∂Ω× (0,∞),

and the starting regularity for β bounded is even finer. As a consequence, one can

consider the extension of v which is trivial outside Ω× (0,∞), and conclude by using

a modified version of Proposition 2.3.4, suitable for subharmonic functions.

2.8 C0,1/2 regularity of the limiting profiles

In this section we consider the regularity of the limiting profiles, that is, the accu-

mulation points of solutions to problem (GP )β as β → ∞. In Section 2.5 we proved

that, if {vβ}β>0 is a family of solutions to problem (GP )β , and ‖vβ‖L∞(B+) ≤ m̄

for a constant m̄ independent of β, then there exists a sequence vn := vβn such that

βn →∞ and

vn → v in (H1 ∩ C0,α)(K ∩B+),

for every compact set K ⊂ B and every α ∈ (0, 1/2). Now we turn to the proof of

Theorem 1.1.2, that is, we show that v ∈ C0,1/2
loc (B+ ∪ ∂0B+). Actually, we will prove

such theorem under a more general assumption: from now on we will assume that the

reaction terms in problem (GP )β satisfy

lim
n→∞

fi,n = fi uniformly in every compact set,

where (f1, . . . , fk) are locally Lipschitz, and such that, for some ε > 0,

2Fi(s)− sfi(s) ≥ −C|s|2+ε for s sufficiently small, (2.8.1)

for every i, where Fi(s) =
s∫
0

fi(t)dt (in particular, fi(0) = 0).

Remark 2.8.1. If fi ∈ C1,ε in a neighborhood of 0, and fi(0) = 0, then assumption

(2.8.1) holds true. Indeed this implies that 2Fi(s)− sfi(s) = O(s2+ε) as s→ 0.

We will obtain Theorem 1.1.2 as a byproduct of a stronger result, in the form of

the following proposition.

Proposition 2.8.2. Let v ∈ H1(B+) be such that



1. v ∈ (H1 ∩C0,α)(K ∩B+), for every compact set K ⊂ B and every α ∈ (0, 1/2);

2. vivj |∂0B+ = 0 for every j 6= i and−∆vi = 0 in B+

vi∂νvi = vifi(vi) on ∂0B+,

where fi is locally Lipschitz continuous and satisfies (2.8.1), for every i =

1, . . . , k;

3. for every x0 ∈ ∂0B+ and a.e. r > 0 such that B+
r (x0, 0) ⊂ B+, the following

Pohozaev identity holds

(1−N)

∫
B+
r

∑
i

|∇vi|2 dxdy + r

∫
∂+B+

r

∑
i

|∇vi|2 dσ+

+ 2N

∫
∂0B+

r

∑
i

Fi(vi) dx− 2r

∫
SN−1
r

∑
i

Fi(vi) dσ = 2r

∫
∂+B+

r

∑
i

|∂νvi|2 dσ.

Then v ∈ C0,1/2(K ∩B+), for every compact K ⊂ B.

As we mentioned, Theorem 1.1.2 will follow from the above proposition by virtue

of the following result.

Lemma 2.8.3. Let βn →∞ and vn solve problem (GP )βn , for every n, be such that

vn → v in (H1 ∩ C0,α)(K ∩B+),

for every compact set K ⊂ B and every α ∈ (0, 1/2). Moreover, let the correspond-

ing reaction terms fi,n converge, uniformly on compact sets, to the locally Lipschitz

functions fi satisfying (2.8.1). Then v fulfills the assumptions of the Proposition

2.8.2.

Proof. The proof follow the line of the one of Proposition 2.4.1, with minor changes.

In view of the previous lemma, with a slight abuse of terminology, we will denote

as limiting profiles also functions which simply satisfy the assumptions of Proposition

2.8.2. For the rest of this section we will denote with v a fixed limiting profile.

In the proof of Proposition 2.8.2 we shall use a further monotonicity formula of

Almgren type. For every x0 ∈ ∂0B+ and r > 0 such that B+
r (x0, 0) ⊂ B+, we



introduce the functions

E(x0, r) :=
1

rN−1

 ∫
B+
r (x0,0)

∑
i

|∇vi|2 dxdy −
∫

∂0B+
r (x0,0)

∑
i

fi(vi)vi dx


H(x0, r) :=

1

rN

∫
∂+B+

r (x0,0)

∑
i

v2
i dσ.

As usual, the function E(x0, r) admits an equivalent expression: indeed, multiplying

the equation in assumption (2) by vi, integrating over B+
r (x0, 0) and summing over

i = 1, . . . , k we obtain

E(x0, r) =
1

rN−1

∫
∂+B+

r (x0,0)

∑
i

vi∂νvidσ =
2

r
H ′(x0, r). (2.8.2)

The presence of internal reaction terms in the definition of the function E has to

be dealt with. To this end, the next two lemmas will provide a crucial estimate in

order to bound the Almgren quotient. Before we state them, let us recall the following

Poincaré inequality: for every p ∈ [2, p#], where p# = 2N/(N−1) denotes the critical

Sobolev exponent for trace embedding (or simply p ≥ 2 in dimension N = 1), there

exists a constant CP = CP (N, p) such that, for every w ∈ H1(B+
r ), 1

rN

∫
∂0B+

r

|w|p dx


2
p

≤ CP

 1

rN−1

∫
B+
r

|∇w|2 dxdy +
1

rN

∫
∂+B+

r

w2 dσ

 (2.8.3)

(such an inequality follows by the one on B+ by scaling arguments).

Lemma 2.8.4. For every p ∈ [2, p#] there exist constants C > 0, r̄ > 0 such that 1

rN

∫
∂0B+

r

∑
i

|vi|p dx


2
p

≤ C [E(r) +H(r)] for every r ∈ (0, r̄).

Proof. Since v ∈ L∞(B+), and each fi is locally Lipschitz continuous with fi(0) = 0,

we have∣∣∣∣∣∣∣
1

rN−1

∫
∂0B+

r

∑
i

fi(vi)vi dx

∣∣∣∣∣∣∣ ≤ C
1

rN−1

∫
∂0B+

r

∑
i

v2
i dx

≤ C ′r

 1

rN−1

∫
B+
r

∑
i

|∇vi|2 dxdy +
1

rN

∫
∂+B+

r

∑
i

v2
i dσ

 ,



where we used inequality (2.8.3) with p = 2. As a consequence,

E(r) +H(r) ≥ (1− Cr)

 1

rN−1

∫
B+
r

∑
i

|∇vi|2 dxdy +
1

rN

∫
∂+B+

r

∑
i

v2
i dσ

 , (2.8.4)

and the lemma follows by taking into account equation (2.8.3) and choosing r̄ suffi-

ciently small.

For the following lemma we introduce, for p ∈ (2, p#], the auxiliary function

ψ(x0, r) :=

 1

rN

∫
∂0B+

r (x0,0)

∑
i

|vi|p dx


1− 2

p

,

which is bounded for r small. We have the following.

Lemma 2.8.5. For every p ∈ (2, p#] there exist constants C > 0, r̄ > 0 such that

1

rN−1

∫
SN−1
r

∑
i

|vi|p dσ ≤ C [E(r) +H(r)] · d

dr
(rψ(r)) for every r ∈ (0, r̄).

Proof. A direct computation yields the identity

d

dr
ψ(r) =

(
1− 2

p

)
ψ−2/(p−2)

 1

rN

∫
∂0B+

r (x0,0)

∑
i

|vi|p dx


′

=

(
1− 2

p

)
ψ(r)

(
r−N

∫
∂0B+

r

∑
i |vi|p dx

)′
r−N

∫
∂0B+

r

∑
i |vi|p dx

.

As a consequence we infer

d

dr
(rψ(r)) = ψ(r)

r(1− 2

p

) ∫
SN−1
r

∑
i |vi|p dσ∫

∂0B+
r

∑
i |vi|p dσ

+

(
1−N

(
1− 2

p

)) .
Now, p ≤ p# implies N

(
1− 2

p

)
≤ 1, so that

d

dr
(rψ(r)) ≥ rψ(r)

(
1− 2

p

) ∫
SN−1
r

∑
i |vi|p dσ∫

∂0B+
r

∑
i |vi|p dσ

.

Recalling the definition of ψ and using Lemma 2.8.4, we finally obtain

(E(r) +H(r))
d

dr
(rψ(r)) ≥ C 1

rN−1

∫
SN−1
r

∑
i

|vi|p dσ,

where, since p > 2, C > 0.



As a matter of fact, we need to estimate the Almgren quotient only on the zero

set of v (which is well defined since v is continuous).

Definition 2.8.6. We define the boundary zero set of the limiting profile v as

Z = {x ∈ ∂0B+ : v(x, 0) = 0}.

Remark 2.8.7. A natural notion of free boundary, associated to a limiting profile v,

is the set in which the boundary condition of assumption (2) does not reduce to

∂νvi = fi(vi), vj ≡ 0 for some j 6= i,

that is, a posteriori, the support of the singular part of the measure ∂νv. It is then

clear that the free boundary is a subset of Z ⊂ RN .

We are now in a position to state the Almgren type result which we use in this

framework. As we mentioned, we prove it only at points of Z; furthermore, it concerns

boundedness of a (modified) Almgren quotient, rather than its monotonicity. More

precisely, let us consider the function

N(x0, r) :=
E(x0, r)

H(x0, r)
+ 1.

We have the following.

Lemma 2.8.8. There exist constants C > 0, r̄ > 0 such that, for every x0 ∈ Z,

r ∈ (0, r̄) and B+
r (x0, 0) ⊂ B+, we have:

1. H(r) > 0, N(r) > 0 on (0, r̄);

2. the function r 7→ eCr(1+ψ(r))N(x0, r) is monotone non decreasing;

3. N(x0, 0
+) ≥ 1 +

1

2
.

Proof. The proof is similar to the one of Theorem 2.2.3, but in this case the internal

reaction terms do not vanish. Let x0 ∈ Z and let r̄ be such that both Lemma 2.8.4

and Lemma 2.8.5 hold. First, we ensure that the Almgren quotient, where defined, is

non negative. Indeed, by Lemma 2.8.4,

E(r) +H(r) ≥ 0 =⇒ N(r) =
E

H
+ 1 ≥ 0,

whenever H(r) 6= 0. By continuity of H we can consider, as in the proof of Theorem

2.2.3, a neighborhood of r where H does not vanish. We compute the derivative of E



and we use the Pohozaev identity (assumption (3) of Proposition 2.8.2), to obtain

E′(r) =
1−N
rN

∫
B+
r

∑
i

|∇vi|2 dxdy −
∫

∂0B+
r

∑
i

vifi(vi) dx


+

1

rN−1

 ∫
∂+B+

r

∑
i

|∇vi|2 dxdy −
∫

SN−1
r

∑
i

vifi(vi) dx


=

2

rN−1

∫
∂+B+

r

∑
i

|∂νvi|2 dσ

︸ ︷︷ ︸
T

+
1

rN

∫
∂0B+

r

[
(N − 1)

∑
i

vifi(vi)− 2N
∑
i

Fi(vi)

]
dx

︸ ︷︷ ︸
I

+
1

rN−1

∫
SN−1
r

[
−
∑
i

vifi(vi) + 2
∑
i

Fi(vi)

]
dσ

︸ ︷︷ ︸
Q

.

Since v ∈ L∞, fi are locally Lipschitz and fi(0) = 0, there exists a positive constant

C, such that

|f(vi)vi| ≤ Cv2
i and |F (vi)| ≤ Cv2

i .

The direct application of Lemma 2.8.4 (with p = 2) provides

I ≥ −C(E +H).

On the other hand, by assumption (2.8.1) and Lemma 2.8.5 (it is sufficient to choose

p = min{2 + ε, p#}), we obtain

Q ≥ −C(E +H)(rψ)′.

The two estimates yield

E′ ≥ T − C [1 + (rψ)′] (E +H).

Therefore, differentiating the Almgren quotient and using the Cauchy-Schwarz in-

equality, we obtain

N ′

N
=
E′ +H ′

E +H
− H ′

H
≥ TH − EH ′

H(E +H)
− C [1 + (rψ)′] ≥ −C [1 + (rψ)′] ,

which implies that the function eCr(1+ψ(r))N(r) is non decreasing as far as H(r) 6= 0.

Equation (2.8.2) directly implies

d

dr
logH(r) =

H ′(r)

H(r)
=

2E(r)

rH(r)
=

2(N(r)− 1)

r
;



reasoning as in the proof of Theorem 2.2.3, we can use this formula, together with

the bound

N(r) ≤ eCr
∗(1+ψ(r∗))N(r∗) for every r ≤ r∗,

in order to obtain the strict positivity of H for r ∈ (0, r̄) (for a possibly smaller

r̄). Finally, reasoning as in the proof of Lemma 2.2.4, part (2), let us assume by

contradiction that, for some r∗ < r̄ and ε > 0, eCr
∗(1+ψ(r∗))N(r∗) ≤ 3

2 − ε. By the

above bound we obtain that

d

dr
logH(r) ≤ 2(eCr

∗(1+ψ(r∗))N(r∗)− 1)

r
≤ 1− 2ε

r

for every r ∈ (0, r∗). But this is in contradiction with the fact that v is in C0,α for

α = (1− ε)/2.

The proof Proposition 2.8.2 is based on a contradiction argument, involving Mor-

rey inequality. Indeed, let K ⊂ B be compact, and let us define, for every X ∈
K ∩ {y ≥ 0} and every r < dist(K, ∂B), the function

Φ(X, r) :=
1

rN

∫
Br(X)∩{y>0}

∑
i

|∇vi|2 dxdy.

It is well known that if Φ is bounded then v ∈ C0,1/2(K ∩B+).

As a consequence of Lemma 2.8.8, we can prove a first estimate on Φ.

Lemma 2.8.9. For every compact K ⊂ B there exists constants C > 0, r̄ > 0, such

that for every x0 ∈ Z ∩K and r ∈ (0, r̄), it holds

Φ(x0, r) ≤ C.

Proof. If r̄ is sufficiently small, from Lemma 2.8.8 we know that

3

2
e−Cr(1+ψ(r)) ≤ N(r) ≤ C

for every r ∈ (0, r̄). Since E +H = NH, equation (2.8.4) implies that

1

rN

∫
B+
r (x0,0)

∑
i

|∇vi|2 dxdy ≤ CH(r)

r
.

On the other hand, by the lower estimate on N ,

d

dr
log

H(r)

r
≥ 3

e−Cr(1+ψ(r)) − 1

r
≥ −3C(1 + ψ(r)) ≥ −C.

Integrating, we obtain
H(r)

r
≤ eCr̄H(r̄)

r̄
,

and the lemma follows.



The above result can be complemented by the following lemma.

Lemma 2.8.10. For every compact K ⊂ B there exist constants, C > 0, r̄ > 0, such

that for every x0 ∈ (K ∩ {y = 0}) \ Z and

0 < r < d := min{dist(x0,Z), r̄},

it holds

Φ(x0, d) ≥ CΦ(x0, r).

Proof. Since x0 6∈ Z and r ≤ dist(x0,Z), we can assume that vj ≡ 0 on ∂0B+
r (x0, 0)

for, say, j ≥ 2. As a consequence, the odd extension of vj across {y = 0} is harmonic

on Br(x0, 0), and the mean value property applied to the subharmonic function |∇vj |2

provides

1

rN

∫
B+
r (x0,0)

|∇vj |2 dxdy ≤ r

d

1

dN

∫
B+
d (x0,0)

|∇vj |2 dxdy, for every j ≥ 2. (2.8.5)

We now show that a similar estimate holds true also for v1. Indeed, let u := |∇v1|2;

by a straightforward computation, we have that−∆u ≤ 0 in B+
d

∂νu ≤ au in ∂0B+
d ,

where a := 2||f ′1(v1)||L∞(B+) is bounded by assumption. Now, by scaling, one can

show that if r̄ = r̄(a) is sufficiently small, then the equation−∆ϕ = 0 in B+
r̄

∂νϕ = aϕ on ∂0B+
r̄

admits a strictly positive (and smooth) solution. By the definition of d we deduce

that −div
(
ϕ2∇ u

ϕ

)
≤ 0 B+

d

ϕ2∂ν
u
ϕ ≤ 0 ∂0B+

d ,

so that the even extension of u is a solution to

−div

(
ϕ2∇u

ϕ

)
≤ 0 in Bd.

Integrating such equation on any ball Br, we obtain∫
∂Br

ϕ2∂ν
u

ϕ
dσ ≥ 0



If we introduce the function

H(r) =
1

rN

∫
∂Br

ϕudσ =

∫
∂B

ϕ2(rx)
u(rx)

ϕ(rx)
dσ,

a straightforward computation shows that

H ′(r) =
2

rN

∫
∂Br

uϕ
∂νϕ

ϕ
dσ +

1

rN

∫
∂Br

ϕ2∂ν
u

ϕ
dσ ≥ −2

∥∥∥∥∂νϕϕ
∥∥∥∥
L∞(B)

H(r) ≥ −CH(r),

that is, the function r 7→ eCrH(r) is monotone non decreasing in r. Hence, for

every 0 < r1 ≤ r2 ≤ d, we obtain that H(r1) ≤ CH(r2). Multiplying by rN1 r
N
2 and

integrating in (0, r)× (r, d), with r ≤ d, we obtain(
1− rN+1

dN+1

)
1

rN+1

∫
Br

ϕudxdy ≤ C

dN+1

∫
Bd\Br

ϕudxdy.

Adding Cd−N−1
∫
Br

ϕudxdy, we infer

1

rN+1

∫
Br

ϕudxdy ≤ C 1

dN+1

∫
Bd

ϕudxdy.

Recalling that ϕ is positive and bounded, and that u = |∇v1|2, we finally obtain that

1

rN

∫
B+
r (x0,0)

|∇v1|2 dxdy ≤ C r
d

1

dN

∫
B+
d (x0,0)

|∇v1|2 dxdy.

The lemma now follows by summing up with inequality (2.8.5), for j = 2, . . . , k, and

recalling that d/r ≥ 1.

End of the proof of Proposition 2.8.2. Let us assume by contradiction that there ex-

ists a sequence {(Xn, rn)}n∈N such that Xn = (xn, yn) ∈ K ∩ {y ≥ 0}, rn <

dist(K, ∂B), and

Φ(Xn, rn)→ +∞, as n→∞.

It is immediate to prove that rn → 0 and yn → 0: indeed, v is H1 and harmonic for

{y > 0}. In particular, the sequence {Xn}n∈N accumulates at ∂0K. First we observe

that, thanks to the subharmonicity of
∑
i |∇vi|2, if rn < yn then

Φ(Xn, yn) ≥ yn
rn

Φ(Xn, rn) ≥ Φ(Xn, rn);

as a consequence we can assume without loss of generality that rn ≥ yn. Analogously,

once rn ≥ yn, we have that

Φ((xn, 0), 2rn) ≥ 1

2N
Φ(Xn, rn),



and again, without loss of generality, we can assume that yn = 0 for every n, and

drop it from our notation.

Now, by the result of Lemma 2.8.10, the sequence (xn, rn) can be replaced by a

sequence of points in Z. Indeed, if dist(xn,Z) > r̄ for every n ∈ N, then

Φ(xn, rn) ≤ CΦ(xn, r̄)

and the right hand side is bounded since v ∈ H1(B+). Consequently, it must be

dist(xn,Z) ≤ r̄, and then

Φ(xn, rn) ≤ CΦ(xn,dist(xn,Z)).

Since the set Z is locally closed and dist(K, ∂+B) > 0, for n sufficiently large, to each

xn we can associate x′n ∈ Z such that dist(xn,Z) = |xn − x′n| ≤ 1
2dist(xn, ∂

+B) and

we can substitute the sequence (xn,dist(xn,Z)) with (x′n, 2dist(xn,Z)). We are in

position to apply Lemma 2.8.9 and find a contradiction to the unboundedness of the

Morrey quotient.



Chapter 3

Variational competition: the case of the s-

laplacian

Outline of the chapter

The second chapter is devoted to a partial extension of the results found in the

previous one for the case s = 1/2, to the general case s ∈ (0, 1). Though at a

first thought this generalization may seem direct and straightforward, new interesting

phenomena (mostly in the case s > 1/2) appear and have to be dealt with.

3.1 Monotonicity formulæ

This section is devoted to the introduction of some monotonicity formulæ, which

will provide suitable estimates in order to prove some Liouville type results. Our

first aim is to prove monotonicity formulæ of Alt-Caffarelli-Friedman type for the

one phase problem: these will imply non existence results for La-harmonic functions

under different assumptions on their growth at infinity and on the geometry of their

null set.

Secondly, we will concentrate on systems of degenerate elliptic equations, provid-

ing monotonicity formulæ of Alt-Caffarelli-Friedman type with two phases, and of

Almgren type.

3.1.1 One phase Alt-Caffarelli-Friedman formulæ

We first deal with single La-harmonic functions (on RN+1
+ ) which vanish on the whole

RN .

Proposition 3.1.1. Let v ∈ H1;a(B+
R) be a continuous function such that
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• v(x, 0) = 0 for x ∈ RN ;

• for every non negative φ ∈ C∞0 (BR),∫
RN+1

+

(Lav)vφ dxdy +

∫
RN

(∂aνv)vφdx =

∫
RN+1

+

ya∇v · ∇(vφ) dxdy ≤ 0.

Then the function

Φ(r) :=
1

r4s

∫
B+
r

ya
|∇v|2

|X|N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Remark 3.1.2. Since∫
RN+1

+

ya∇v · ∇(vφ) dxdy =

∫
RN+1

+

ya
[
|∇v|2φ+

1

2
∇v2 · ∇φ

]
dxdy, (3.1.1)

we have that if v satisfies the assumptions of Proposition 3.1.1 then also |v| does.

Definition 3.1.3. We define Γs1 ∈ C1(RN+1
+ ;R+) as

Γs1(X) :=

 1
|X|N−2s |X| ≥ 1

N+2(1−s)
2 − N−2s

2 |X|2 |X| < 1.

We let also Γsε(X) = Γ1
s(X/ε)ε2s−N , so that Γsε ↗ Γs = |X|2s−N , a multiple of the

fundamental solution of the s-laplacian, as ε→ 0.

Remark 3.1.4. We observe that each Γsε is radial and, in particular, ∂aνΓsε = 0 on

RN . Moreover, if N − 2s > 0, they are La-superharmonic on RN+1
+ . On the other

hand, in the case N < 2s, that is N = 1 and s > 1/2, the fundamental solution

is already H1;a
loc (R2

+), thus there is no need to regularize it. However, in this case

the monotonicity formulæ are hard to prove and they hold true under the additional

assumption that the functions involved are a priori known to be homogeneous: indeed,

it follows that the lowest possible degree of homogeneity γ for non trivial functions

that satisfy the assumptions of monotonicity formulæ is γ ≥ 2s− 1 (see the proof of

Proposition 3.1.7), and thus the estimates following from equation (3.1.3) ahead are

valid. This additional assumption is true in our setting, thanks to the validity of an

Almgren monotonicity formula (see Corollary 3.1.12). In addition to this possible way

out, we suggest a simpler strategy: given a configuration v1, · · · , vk ∈ H1;a
loc (RN+1

+ )

which falls into the assumptions of any of the monotonicity formulæ of this section,

we can construct a new configuration ṽ1, · · · , ṽk ∈ H1;a
loc (RN+2

+ ), by extension in a

constant way along the new direction. At this point, we can the apply to the new

configuration the monotonicity formulæ proved in the case N − 2s > 0.



The proof of Proposition 3.1.1 is based on the following calculation. Incidentally,

we observe that also the following monotonicity results rest on a similar argument.

Lemma 3.1.5. Let v be as in Proposition 3.1.1. The function

r 7→
∫
B+
r

ya
|∇v|2

|X|N−2s
dxdy

is well defined and bounded in any compact subset of (0, 1).

Proof. We proceed as follows: let ε > 0, δ > 0 and let ηδ ∈ C∞0 (Br+δ) be a smooth,

radial cutoff function such that 0 ≤ ηδ ≤ 1 and ηδ = 1 on Br. Choosing φ = ηδΓ
s
ε in

the second assumption of Proposition 3.1.1, and recalling equation (3.1.1), we obtain∫
RN+1

+

ya
[
|∇v|2Γsε +

1

2
∇v2 · ∇Γsε

]
ηδdxdy ≤ −

∫
RN+1

+

1

2
yaΓsε∇v2 · ∇ηδdxdy

=

r+δ∫
r

−η′δ(ρ)

∫
∂+B+

ρ

yaΓsεv∇v ·
X

|X|
dσ

dρ.

Passing to the limit as δ → 0 we obtain, for almost every r ∈ (0, 1),∫
B+
r

ya
[
|∇v|2Γsε +

1

2
∇(v)2 · ∇Γsε

]
dxdy ≤

∫
∂+B+

r

yaΓsεv∂νvdσ,

which, combined with the inequality LaΓsε ≥ 0 tested with v2/2 leads to∫
B+
r

ya|∇v|2Γsε dxdy ≤
∫

∂+B+
r

ya
(

Γsεv∂νv −
v2

2
∂νΓsε

)
dσ.

Letting ε→ 0+, by monotone convergence we infer∫
B+
r

ya
|∇v|2

|X|N−2s
dxdy ≤ 1

rN−2s

∫
∂+B+

r

yav
∂v

∂ν
dσ +

N − 2s

2rN+1−2s

∫
∂+B+

r

yav2 dσ (3.1.2)

and this, in turns, proves the lemma.

Proof of Proposition 3.1.1. By Remark 3.1.1 we can assume, without loss of general-

ity, that v is (non trivial and) non negative, and that R = 1. We start observing that

the function Φ(r) is positive and absolutely continuous for r ∈ (0, 1). Therefore, the

proposition follows once we prove that Φ′(r) ≥ 0 for almost every r ∈ (0, 1). A direct

computation of the logarithmic derivative of Φ shows that

Φ′(r)

Φ(r)
= −4s

r
+

∫
∂+B+

r

ya|∇v|2/|X|N−2s dσ∫
B+
r

ya|∇v|2/|X|N−2s dxdy
.



First we use the estimate (3.1.2) to bound from below the left hand side:∫
∂+B+

r

ya|∇v|2/|X|N−2s dσ∫
B+
r

ya|∇v|2/|X|N−2s dxdy
≥

∫
∂+B+

r

ya|∇v|2 dσ∫
∂+B+

r

vya∂νv dσ + (N − 2s) r2
∫

∂+B+
r

yav2 dσ

=
1

r

∫
SN+

ξaN+1|∇v(r)|2 dσ∫
SN+

v(r)ξaN+1∂νv
(r) dσ + N−2s

2

∫
SN+

ξaN+1(v(r))2 dσ
,

where v(r) : SN−1
+ → R is defined as v(r)(ξ) = v(rξ), so that y = rξN+1. We now

estimate the right hand side as follows: the numerator writes∫
SN+

ξaN+1|∇v(r)|2 dσ =

∫
SN+

ξaN+1|∂νv(r)|2 dσ +

∫
SN+

ξaN+1|∇T v(r)|2 dσ

=

∫
SN+

ξaN+1|v(r)|2 dσ


∫
SN+

ξaN+1|∂νv(r)|2 dσ∫
SN+

ξaN+1|v(r)|2 dσ

︸ ︷︷ ︸
t2

+

∫
SN+

ξaN+1|∇T v(r)|2 dσ∫
SN+

ξaN+1|v(r)|2 dσ

︸ ︷︷ ︸
R


.

where R stands for the Rayleigh quotient of v(r) on SN+ . On the other hand, by the

Cauchy-Schwarz inequality, the denominator may be estimated from above by∫
SN+

ξaN+1v
(r)∂νv

(r) dσ +
N − 2s

2

∫
SN+

ξaN+1|v(r)|2 dσ

≤

∫
SN+

ξaN+1|v(r)|2 dσ


1/2∫

SN+

ξaN+1(∂νv
(r))2 dσ


1/2

+
N − 2s

2

∫
SN+

ξaN+1|v(r)|2 dσ

≤
∫
SN+

ξaN+1|v(r)|2 dσ



∫
SN+

ξaN+1|∂νv(r)|2 dσ∫
SN+

ξaN+1|v(r)|2 dσ


1/2

︸ ︷︷ ︸
t

+
N − 2s

2

 .

As a consequence ∫
∂+B+

r

ya|∇v|2/|X|N−2s dσ∫
B+
r

ya|∇v|2/|X|N−2s dxdy
≥ 1

r
min
t∈R+

R+ t2

t+ N−2s
2

. (3.1.3)



A simple computation shows that the minimum is achieved when

t = γ(R) =

√(
N − 2s

2

)2

+R− N − 2s

2
,

and it is equal to 2γ(R). Recalling the definition of λs1(∅) (equation (3.1.4)) we obtain

Φ′(r)

Φ(r)
+

4s

r
≥ 2

r
γ(λs1(∅))

and the proposition follows observing that λs1(∅) is achieved by v(x, y) = y2s, in such

a way that

γ (λs1 (∅)) = 2s.

Now we turn to functions which vanish only on a half space.

Proposition 3.1.6. Let v ∈ H1;a(B+
R) be a continuous function such that

• v(x, 0) = 0 for x1 ≤ 0;

• for every non negative φ ∈ C∞0 (BR),∫
RN+1

+

(Lav)vφdxdy +

∫
RN

(∂aνv)vφdx =

∫
RN+1

+

ya∇v · ∇(vφ) dxdy ≤ 0.

Then the function

Φ(r) :=
1

r2s

∫
B+
r

ya
|∇v|2

|X|N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Proof. The proof follows the line of the one of Proposition 3.1.1, recalling that

v(x, y) =

(√
x2

1 + y2 + x1

2

)s

achieves γ(λs1(SN−1 ∩ {x1 > 0})) = s (see, for instance, [15, page 442]).

In the previous propositions, we considered functions vanishing on the whole RN ,

or on a half-space. Now, in great contrast with the case s ≤ 1/2, it is known that,

if s > 1/2, then also (N − 1)-dimensional subsets may have positive capacity. This

motivates the following formula, which is the analogous of the previous ones, for

functions which vanish on subspaces of RN of codimension 1.

Proposition 3.1.7. Let s > 1/2 and let v ∈ H1;a(B+
R) be a continuous function such

that



• v(x, 0) = 0 for x1 = 0;

• for every non negative φ ∈ C∞0 (BR),∫
RN+1

+

(Lav)vφdxdy +

∫
RN

(∂aνv)vφdx =

∫
RN+1

+

ya∇v · ∇(vφ) dxdy ≤ 0.

Then the function

Φ(r) :=
1

r4s−2

∫
B+
r

ya
|∇v|2

|X|N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Proof. Let ω̄ = SN−1 \ {x1 = 0}, and let us consider the function

v(x, y) = |(x1, 0, y)|2s−1,

that is the fundamental solution in dimension 1, extended in a constant way to the

other directions. Then v is (2s−1)-homogeneous, positive and La-harmonic for y > 0.

We deduce that its restriction to ∂+B+
1 = SN+ is an eigenfunction associated to λs1(ω̄),

so that

γ(λs1(ω̄)) = 2s− 1.

As a consequence, also in this case the proposition follows by reasoning as in the proof

of Proposition 3.1.1.

3.1.2 Two phases Alt-Caffarelli-Friedman monotonicity formulæ

Now we turn to the multi-component ACF formulæ. We start with some definitions

which extend to the case s ∈ (0, 1) those contained in Section 2.1. More precisely,

let SN+ := ∂+B+. For each open ω ⊂ SN−1 := ∂SN+ we define the first s-eigenvalue

associated to ω as

λs1(ω) := inf

{∫
SN+
ya|∇Tu|2 dσ∫
SN+
yau2 dσ

: u ∈ H1;a(SN+ ), u ≡ 0 on SN−1 \ ω

}
, (3.1.4)

where ∇Tu is the tangential gradient of u on SN+ . The minimal rate of growth for

multi-phase segregation profiles is given by the number

νACF : = inf

{
γ(λs1(ω1)) + γ(λs1(ω2))

2
: ω1 ∩ ω2 = ∅

}
, (3.1.5)

where, as usual,

γ(t) :=

√(
N − 2s

2

)2

+ t− N − 2s

2



is defined in such a way that u achieves λs1(ω) if and only if it is one signed, and its

γ(λs1(ω))-homogeneous extension to RN+1
+ is La-harmonic. As a peculiar difference

with respect to the case s = 1, we recall that the eigenfunctions achieving νACF have

not disjoint support on the whole SN+ , but only on its boundary SN−1. In particular,

the degenerate partition (∅,SN−1) is admissible, and one can show that it has the

same level than the equatorial cut one:

γ(λs1(∅)) + γ(λs1(SN−1))

2
=
γ(λs1(SN−1

+ )) + γ(λs1(SN−1
− ))

2
= s.

We start by proving that the constant νACF defined in equation (3.1.5) is not 0.

Lemma 3.1.8. For any N ≥ 2, 0 < νACF ≤ s.

Proof. The bound from above easily follows by comparing with the value correspond-

ing to the partition (SN−1, ∅): indeed, it holds λs1(SN−1) = 0, achieved by u(x, y) ≡ 1,

and λs1(∅) = 2sN , achieved by u(x, y) = y1−a. In order to prove the estimate from

below, one can argue by contradiction, as in the proof of Lemma 2.1.5, exploiting the

compactness both of the embedding H1;a(SN+ ) ↪→ L2;a(SN+ ) and of the trace operator

from H1;a(SN+ ) to L2(SN−1).

We will prove two multi-component formulæ, the first regarding entire profiles

which are segregated on RN , the second regarding profiles which coexist on RN .

Proposition 3.1.9. Let v1, v2 ∈ H1;a(B+
R(x0, 0)) be continuous functions such that

• v1v2|{y=0} = 0, vi(x0, 0) = 0;

• for every non negative φ ∈ C∞0 (BR(x0, 0)),∫
RN+1

+

(Lavi)viφ dxdy +

∫
RN

(∂aνvi)viφdx =

∫
RN+1

+

ya∇vi · ∇(viφ) dxdy ≤ 0.

Then the function

Φ(r) :=

2∏
i=1

1

r2νACF

∫
B+
r (x0,0)

ya
|∇vi|2

|X|N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Proof. Applying the same estimates developed for the proof of Proposition 3.1.1, it

is easy to see that the proposition is equivalent to (summing equation (3.1.3) for the



two functions)

Φ′(r) ≥ 0⇔
2∑
i=1

∫
∂+B+

r

ya |∇vi|
2

|X|N−1 dσ

∫
B+
r

ya |∇vi|
2

|X|N−1 dxdy

≥ 2

r
inf

(ω1,ω2)∈P2

2∑
i=1

γ (λs1(ωi)) =
4

r
νACF

In particular, the last inequality follows by the definition of νACF.

Proposition 3.1.10. Let v1, v2 ∈ H1;a
loc

(
RN+1

+

)
be continuous functions such that,

for every non negative φ ∈ C∞0
(
RN+1

+

)
and j 6= i,

∫
RN+1

+

(Lavi)viφdxdy +

∫
RN

(∂aνvi + aijviv
2
j )viφdx

=

∫
RN+1

+

ya∇vi · ∇(viφ) dxdy +

∫
RN

aijv
2
i v

2
jφ dx ≤ 0.

For any ν′ ∈ (0, νACF) there exists r̄ > 1 such that the function

Φ(r) :=

2∏
i=1

Φi(r)

is monotone non decreasing in r for r ∈ (r̄,∞), where

Φi(r) :=
1

r2ν′

∫
B+
r

ya|∇vi|2Γ1 dxdy +

∫
∂0B+

r

aijv
2
i v

2
jΓ1 dx

 , for j 6= i.

The proof of Proposition 3.1.10 is based on a contradiction argument, and follows

the lines of the one of Proposition 3.1.9. We do not report the details, referring

the reader to [39, Lemma 2.5] and Theorem 2.1.13, where similar computations were

developed for the case s = 1 and s = 1/2, respectively.

3.1.3 Almgren type monotonicity formula

To conclude this section on monotonicity formulæ, we focus our attention on an

Almgren quotient defined for a suitable class a functions: these will come into play

as limits of a blow up sequence. First, for any

v ∈ H1;a
loc

(
RN+1

+

)
:= {v : ∀D ⊂ RN+1 open and bounded, v|D+ ∈ H1;a(D+)},



v = (v1, . . . , vk) continuous, let use define

E(x0, r) :=
1

rN−2s

∫
B+
r (x0,0)

ya
∑
i

|∇vi|2 dxdy,

H(x0, r) :=
1

rN+1−2s

∫
∂+B+

r (x0,0)

ya
∑
i

v2
i dσ,

where x0 ∈ RN and r > 0. By assumption, both E and H are locally absolutely

continuous functions on (0,+∞), that is, both E′ and H ′ are L1
loc(0,∞) (here, ′ =

d/dr). Let us also consider the function (Almgren frequency function)

N(x0, r) :=
E(x0, r)

H(x0, r)
.

We have the following result, which proof we omit since it follows with minor changes

from the one of Theorem 2.2.3.

Proposition 3.1.11. Let v ∈ H1;a
loc

(
RN+1

+ ;Rk
)

, v = (v1, . . . , vk) continuous, and let

us assume that:

1. vivj |y=0 = 0 for every j 6= i;

2. for every i, Lavi = 0 in RN+1
+

vi∂
a
νvi = 0 on RN × {0};

3. for any x0 ∈ RN and a.e. r > 0, the following (Pohozaev type) identity holds

(2s−N)

∫
B+
r

ya
∑
i

|∇vi|2 dxdy+r

∫
∂+B+

r

ya
∑
i

|∇vi|2 dσ = 2r

∫
∂+B+

r

ya
∑
i

|∂νvi|2 dσ.

Then for every x0 ∈ RN the Almgren frequency function N(x0, r) is well defined on

(0,∞), absolutely continuous, non decreasing, and it satisfies the identity

d

dr
logH(r) =

2N(r)

r
.

Moreover, if N(r) ≡ γ on an open interval, then N ≡ γ for every r, and v is a

homogeneous function of degree γ.

Of the many consequences that the validity of an Almgren monotonicity formula

carries, at this stage we are mostly interested in the following, which states a rigidity

property implied by Hölder continuity.



Corollary 3.1.12. If v satisfies the assumptions of Proposition 3.1.11 and is globally

Hölder continuous of exponent γ on RN+1
+ , then it is homogeneous of degree γ with

respect to any of its (possible) zeroes, and thus

Z := {x ∈ RN : v(x, 0) = 0} is an affine subspace of RN .

Proof. The proof relies on the fact that the Almgren centered at any point of Z has

to be constant and equal to γ. Indeed letting x0 ∈ Z, we argue by contradiction and

suppose that N(x0, R) > γ for some R. By monotonicity of N we have

d

dr
logH(r) ≥ 2

r
N(x0, R) ∀r ≥ R

and, integrating in (R, r), we find

Cr2N(x0,R) ≤ H(r) ≤ Cr2γ ,

a contradiction for r large enough. The same reasoning provides a contradiction in

the case N(x0, R) < γ and r ≤ R.

3.2 Liouville type results

Relying on the previous monotonicity formulæ, in this section we will prove some

Liouville type theorems for solution to either equations or systems involving the op-

erator La. As a first result, we have the following.

Proposition 3.2.1. Let v ∈ H1;a
loc

(
RN+1

+

)
be continuous and satisfy

Lav = 0 in RN+1
+

v(x, 0) = 0 on RN ,

and let us suppose that for some γ ∈ [0, 2s), C > 0 it holds

|v(X)| ≤ C(1 + |X|γ)

for every X. Then v is identically zero.

Proof. We remark that v satisfies the assumptions of Proposition 3.1.1 for any R.

For r > 0 large enough, we choose η non negative, smooth and radial cut-off function

supported in B+
2r with η = 1 in B+

r such that∫
RN+1

+

ya|∇η| ≤ CrN+1−2s,

∫
RN+1

+

|Laη| ≤ CrN−2s



(for instance, we can take η as a smooth approximation of the function 1
r (2r − |X|)

in B2r \ Br). Moreover, let Γs1 be defined as in Definition 3.1.3 (in particular, it is

radial and superharmonic). Testing the equation for v with Γs1vη we obtain∫
B+

2r

ya|∇v|2Γs1ηdxdy ≤
∫

B+
2r\B

+
r

1

2
v2 [−LaηΓs1 + 2ya∇η · ∇Γs1] dxdy,

where we used that η is constant in B+
r . Since Γs1(X) = |X|2s−N outside B1, and

|v(X)| ≤ Crγ outside a suitable Br̄, using the notations of Proposition 3.1.1 we infer

Φ(r) =
1

r4s

∫
B+
r

ya|∇v|2Γs1 dxdy

 ≤ 1

r4s
· Cr2γ ,

with C independent of r > r̄. Due to the monotonicity of Φ, we then find

0 ≤ Φ(r̄) ≤ Cr2(γ−2s).

for every r > r̄ sufficiently large. This forces v to be constant.

The previous proposition allows to prove an analogous result of the classical Li-

ouville Theorem, which holds for La-harmonic functions.

Proposition 3.2.2. Let v be an entire La-harmonic function defined on RN+1. If

there exists γ < 1 such that

|v(X)| ≤ C (1 + |X|γ) ,

then v|y=0 is constant. Moreover, if γ < min(2s, 1), then v is constant.

Proof. It is well known (see [15]) that La-harmonic functions enjoy the mean value

property (C > 0)

v(x, 0) =
C

rN+a

∫
∂Br(x,0)

|y|av dσ

and, equivalently

v(x, 0) =
C

RN+1+a

∫
BR(x,0)

|y|av dσ.

It follows, by the growth condition, that

|v(x′, 0)− v(x′′, 0)| ≤ C

RN+1+a

∫
BR(x′,0)4BR(x′′,0)

ya|v(x, y)|dxdy

≤ C

RN+1+a

∫
BR(x′,0)4BR(x′′,0)

ya|X|γ dxdy ≤ CRγ−1

and the first conclusion follows since γ < 1. Let us now assume γ < min(2s, 1): since

v|y=0 is constant, we can assume v|y=0 ≡ 0 and apply Proposition 3.2.1.



We can obtain the analogous of the classical Liouville Theorem for s-harmonic

functions by applying the previous result to the even reflection through {y = 0} of

their La-harmonic extensions.

Corollary 3.2.3. Let v ∈ H1;a
loc

(
RN+1

+

)
be continuous and satisfyLav = 0 in RN+1

+

∂aνv(x, 0) = 0 on RN ,

and let us suppose that for some γ < min(2s, 1), C > 0 it holds

|v(X)| ≤ C(1 + |X|γ)

for every X. Then v is constant.

By the way, a stronger result in the direction of the above corollary is contained

in [15, Lemma 2.7].

In the same spirit of Proposition 3.2.1, we provide a result concerning La-harmonic

functions which vanish on a half space of RN .

Proposition 3.2.4. Let v ∈ H1;a
loc

(
RN+1

+

)
satisfy the assumptions of Proposition

3.1.6. Let us suppose that for some γ ∈ [0, s), C > 0 it holds

|v(X)| ≤ C(1 + |X|γ)

for every X. Then v is identically zero.

Proof. Again, v as above fulfills the assumptions of Proposition 3.1.6. Now, assuming

that v is not constant, we can argue as in the proof of Proposition 3.2.9 obtaining a

contradiction.

We proceed with a lemma regarding the decay of subsolutions to a linear equation

involving La.

Lemma 3.2.5. Let M > 0 and δ > 0 be fixed and let h ∈ L∞(∂0B+
1 ) with ‖h‖L∞ ≤ δ.

Any v ∈ H1;a(B+
1 ) non negative solution toLav ≤ 0 in B+

1

∂aνv ≤ −Mv + h on ∂0B+
1

verifies

sup
∂0B+

1/2

v ≤ 1 + δ

M
sup
∂+B+

1

v.



The proof of Lemma 3.2.5 follows by a comparison argument. In order to construct

an appropriate supersolution, we need a technical lemma. Let f ∈ AC(R) ∩ C∞(R)

be defined as

f(x) = C

∫ x

−∞

1

(1 + t2)1−a/2 dt,

where C is such that f(+∞) = 1.

Lemma 3.2.6. There exists c > 0 such that

(−∆)sf(x) ≥ −cf(x)

for any x < 0.

Proof. The function f under consideration is increasing, smooth and such that there

exist c, C > 0 with

lim
|t|→∞

f ′(t)|t|2−a = C > 0 and lim
|t|→∞

f ′′(t)|t|3−a = c.

The s-laplacian of the function f is well-defined. Thanks to the extension represen-

tation of the fractional laplacian, we can consider

v(x, y) =

∫
R
Pa(ξ, y)f(x− ξ)dξ =

∫
R
y1−a f(x− ξ)

(ξ2 + y2)1−a/2 dξ

= {t = ξ/y} =

∫
R

f(x− ty)

(1 + t2)1−a/2 dt

so that

∂aνv(x, 0) = lim
y→0+

−ya ∂
∂y

∫
f(x− ty)

(1 + t2)1−a/2 dt = lim
y→0+

∫
yat

f ′(x− ty)

(1 + t2)1−a/2 dt

= {r = yt} = lim
y→0+

∫
r

(y2 + r2)1−a/2 f
′(x− r)dr

= pv

∫
|r|a

r
f ′(x− r)dr = pv

∫
|x− r|a

x− r
f ′(r)dr.

Let us observe that, due to the decay properties of f ′ at infinity, the last principal

value acts only around the singularity x = r, that is

(−∆)sf(x) = lim
ε→0+

∫
R\(r−ε,r+ε)

|x− r|a

x− r
f ′(r)dr.

We aim at proving that there exists a positive c > 0 such that the estimate

(−∆)sf(x) ≥ −cf(x)

holds for every x ≤ 0. As a first step, we are going to estimate the asymptotic

behavior of the right hand side as x → −∞. To this end, letting K > 0 be a fixed

number, we write

(−∆)sf(x) = pv

∫ −K
−∞

|x− r|a

x− r
f ′(r)dr +

∫ ∞
−K

|x− r|a

x− r
f ′(r)dr (3.2.1)



(this decomposition is possible thanks to the prescribed decay of f ′). We estimate

the two contributions separately. First (a < 1)∫ ∞
−K

|x− r|a

x− r
f ′(r)dr ≥ −(−K − x)a−1

∫ ∞
−K

f ′(r)dr ≥ −C|x|a−1.

We further decompose the second integral in (3.2.1), to find

pv

∫ −K
−∞

|x− r|a

x− r
f ′(r)dr = {t = r/|x|} = −|x|a pv

∫ −K/|x|
−∞

|1 + t|a

1 + t
f ′(t|x|)dt

= −|x|a
[∫ −3/2

−∞
. . . dt+ pv

∫ −1/2

−3/2

. . . dt+

∫ −K/|x|
−1/2

. . . dt

]
In the first part we use the estimate

f ′(t|x|) ≥ c|t|a−2|x|a−2

in order to obtain

−|x|a
∫ −3/2

−∞

|1 + t|a

1 + t
f ′(t|x|)dt ≥ −c|x|2a−2

∫ −3/2

−∞

|1 + t|a

1 + t
|t|a−2dt ≥ −C|x|2a−2.

In the principal value we write

−|x|a pv

∫ −1/2

−3/2

|1 + t|a

1 + t
f ′(t|x|)dt = −|x|2a−2 pv

∫ −1/2

−3/2

|1 + t|a

1 + t
f ′(t|x|)|x|2−adt.

Since

f ′(t|x|)|x|2−a → C|t|a−2 in C1

(
−3

2
,−1

2

)
as |x| → ∞

and

pv

∫ −1/2

−3/2

|1 + t|a

1 + t
|t|a−2dt = {r = −1− t} = pv

∫ 1/2

−1/2

−|r|
a

r
(r + 1)a−2dr > 0,

we obtain the lower bound

−|x|a pv

∫ −1/2

−3/2

|1 + t|a

1 + t
f ′(t|x|)dt ≥ −C|x|2a−2.

To estimate the last integral we use

f ′(t|x|) ≤ C|t|a−2|x|a−2

to obtain

− |x|a
∫ −K/|x|
−1/2

|1 + t|a

1 + t
f ′(t|x|)dt ≥ −C|x|2a−2

∫ −K/|x|
−1/2

|1 + t|a

1 + t
|t|a−2dt

≥ −C|x|2a−2

(
1 +

1

|x|a−1

)
≥ −C|x|a−1.



As a consequence

(−∆)sf(x) ≥ −C
(
|x|a−1 + |x|2a−2

)
≥ −C|x|a−1.

On the other hand, by a direct estimate we have (x� 0)

f(x) ≤ C 1

|x|1−a

which immediately yields that for x� 0 there exists c > 0 such that

(−∆)sf(x) ≥ −cf(x).

Due to the positivity and regularity of f , this estimates extends to every x ≤ 0.

We can conclude with the proof of Lemma 3.2.5.

Proof of Lemma 3.2.5. Let us first consider, for M > 0, the scaling x 7→M1/2sx and

let us introduce the function fM (x) := f(M1/2sx). It follows that

(−∆)sfM (x) = M2s/2s [(−∆)sf ] (M1/2sx) ≥ −cMfM (x)

It is then clear that if we let

gM (x) := fM (t− 1) + fM (−t− 1)

then for any M > 0 it holds
(−∆)sgM (x) ≥ −cMgM (x) in (−1, 1)

gM (x) ≥ 1
2 in R \ (−1, 1)

gM (x) ≤ CM−1 in
(
− 1

2 ,
1
2

)
.

The proof follows by a comparison argument between v and the supersolution

wδ := δ
1

M
+

∫
R
Pa(ξ, y)gM (x− ξ)dξ.

The previous estimate allows to prove the following.

Proposition 3.2.7. Let v satisfyLav = 0 in RN+1
+

∂aνv = −λv on RN

for some λ > 0 and let us suppose that for some γ < min(1, 2s), C > 0 it holds

|v(X)| ≤ C(1 + |X|γ)

for every X. Then v is constant.



Proof. Let either z = v+ or z = v−. In both cases,Laz ≤ 0, in RN+1
+

∂aνz ≤ −λz, on RN .

By translating and scaling, Lemma 3.2.5 implies that

z(x0, 0) ≤ sup
∂0Br/2(x0,0)

z ≤ 1

λr2s
sup

∂+Br(x0,0)

z ≤ C 1 + rγ

r2s
.

Letting r →∞ the proposition follows.

Proposition 3.2.8. Let v satisfyLav = 0 in RN+1
+

∂aνv = λ on RN

for some λ ∈ R and let us suppose that for some γ < min(1, 2s), C > 0 it holds

|v(X)| ≤ C(1 + |X|γ)

for every X. Then v is constant.

Proof. For h ∈ RN , let w(x, y) := v(x+ h, y)− v(x, y). Then w solvesLaw = 0 in RN+1
+

∂aνw = 0 on RN

and, as usual, we can reflect and use the growth condition to infer that w has to be

constant, that is v(x+h, y) = ch+ v(x, y). Deriving the previous expression in xi, we

find that

v(x, y) =

k∑
i=1

ci(y)xi + c0(y).

Using again the growth condition, we see that ci ≡ 0 for i = 1, . . . , k, while c0 is

constant. We observe that, consequently, λ = 0.

Proposition 3.2.9. Let v ∈ H1;a
loc

(
RN+1

+

)
be continuous and satisfyLavi = 0 in RN+1

+

∂aνvi = −vi
∑
j 6=i aijv

2
j on RN ,

and let νACF be defined according to (3.1.5). If for some γ ∈ (0, νACF) there exists C

such that

|v(X)| ≤ C (1 + |X|γ) ,

for every X, then k − 1 components of v annihilate and the last is constant.



Proof. We only sketch the proof, referring to Proposition 2.3.1 for a detailed proof in

the case s = 1/2. To start with, we observe that any pair of components of v satisfy

the assumptions of Proposition 3.1.10; as a consequence, if v had two nontrivial

components, then one could argue as in the proof of Proposition 3.2.1 in order to

obtain a contradiction. Once we know that all but one component are trivial, we can

conclude by applying Corollary 3.2.3 to the last one.

Proposition 3.2.10. Let v satisfy the assumptions of Proposition 3.1.11 and γ ∈
(0, νACF).

1. If there exists C such that

|v(X)| ≤ C (1 + |X|γ) ,

for every X, then k − 1 components of v annihilate;

2. if furthermore v ∈ C0,γ
(
RN+1

+

)
and

γ <


νACF 0 < s ≤ 1

2

min(νACF, 2s− 1)
1

2
< s < 1,

then the only possibly nontrivial component is constant.

Proof. To prove 1., we can reason as in the proof of Proposition 3.2.9, using Propo-

sition 3.1.9 instead of Proposition 3.1.10. Turning to 2., let v denote the only non

trivial component. If v(x, 0) 6= 0 for every x, then we deduce that ∂aνv(x, 0) ≡ 0, and

we can conclude by using Corollary 3.2.3. On the other hand, let

Z = {x ∈ RN : v(x, 0) = 0} 6= ∅.

By Corollary 3.1.12, we have that v is γ-homogeneous about any point of Z, which

is then an affine subspace of RN , and that v solves
Lav = 0 in RN+1

+

v = 0 on Z

∂aνv = 0 on RN \ Z.

(3.2.2)

Now, if Z = RN , then Proposition 3.2.1 applies. On the other hand, if dimZ ≤ N−2s,

we obtain that Z has null La-capacity (this can be seen directly for the fractional

laplacian in RN , see for instance [37, Theorem 3.14]), and the conclusion follows by

Proposition 3.2.2. Finally, we are left to deal with the case

dimZ = N − 1 and
1

2
< s < 1.



In this situation, the previous capacitary reasoning fails, see Remark 3.2.11 below.

Nonetheless, assuming without loss of generality that Z = {x ∈ RN : x1 = 0}, we

have that v satisfies the assumptions of Proposition 3.1.7. As a consequence, one can

reason once again as in the proof of Proposition 3.2.1, obtaining a contradiction with

the fact that γ < 2s− 1.

Remark 3.2.11. As we already mentioned in the introduction, in great contrast with

the case s ≤ 1/2, if s > 1/2 the fundamental solution of the s-laplacian in R is bounded

in a neighborhood of x = 0. As a consequence, the function Γ(x, y) = |(x1, y)|2s−1

solves (3.2.2). This implies that, for s > 1/2, the sets of codimension 1 in RN have

positive s-capacity.

3.3 C0,α uniform bounds

In this section we turn to the proof of some regularity results, analogous to those of

Section 2.5. In the next session, this result will be used to obtain a sharper bound on

the optimal regularity exponent α(N, s): these same steps can be used then to obtain

the proof of Theorem 1.2.1. We recall that, here and in the following, the functions fi,β

appearing in problem (GP )sβ are assumed to be continuous and uniformly bounded,

with respect to β, on bounded sets. We start by recalling the regularity results which

hold for β bounded. For easier notation, we write B+ = B+
1 .

Lemma 3.3.1. There exists α∗ ∈ (0, 1) such that, for every α ∈ (0, α∗), m̄ > 0 and

β̄ > 0, there exists a constant C = C(α, m̄, β̄) such that

‖vβ‖C0,α
(
B+

1/2

) ≤ C,
for every vβ solution of problem (GP )β on B+, satisfying

β ≤ β̄ and ‖vβ‖L∞(B+) ≤ m̄.

Proof. The above regularity issue can be rephrased for a general h ∈ H1;a(B+) with
Lah = 0 in B+

h = f ∈ L∞ on ∂+B+

∂aνh = g ∈ L∞ on ∂0B+.

Denoting

f̃(x, y) := f(x, |y|) and g̃(x) =

g(x) x ∈ ∂0B+

0 x ∈ RN \ ∂0B+,



we can write h = h1 + h2, whereLah1 = 0 in RN+1
+

∂aνh1 = g̃ on RN
and

Lah2 = 0 in B

h2 = f̃ − h1 on ∂B.

But then the regularity of h1 (depending on ‖g̃‖L∞) follows by [45, Proposition 2.9]

[], while the one of h2 is proved in [30] (see also [15, Section 2]).

From now on, without loss of generality, we will fix α∗ > 0 in such a way that

Lemma 3.3.1 holds, and furthermore

α∗ ≤


νACF 0 < s ≤ 1

2

min(νACF, 2s− 1)
1

2
< s < 1.

We will obtain Theorem 1.2.1 for any fixed α ∈ (0, α∗). Following the outline of

Section 2.5, we proceed by contradiction and develop a blow up analysis. Let η

denote a smooth function such that
η(X) = 1 0 ≤ |X| ≤ 1

2

0 < η(X) ≤ 1 1
2 ≤ |X| ≤ 1

η(X) = 0 |X| = 1

(in particular, η vanishes on ∂+B+ but is strictly positive ∂0B+). We will show that

‖ηv‖C0,α(B+) ≤ C,

and the theorem will follow by the definition of η. Let us assume by contradiction

the existence of sequences {βn}n∈N, {vn}n∈N, solutions to (GP )sβn , such that

Ln := max
i=1,...,k

max
X′ 6=X′′∈B+

|(ηvi,n)(X ′)− (ηvi,n)(X ′′)|
|X ′ −X ′′|α

→∞.

By Lemma 3.3.1 (and the regularity of η) we infer that βn → ∞. Moreover, up to

a relabeling, we may assume that Ln is achieved by i = 1 and by two sequences of

points (X ′n, X
′′
n) ∈ B+×B+. The first properties of such sequences have already been

obtained in Section 2.5.

Lemma 3.3.2 (Lemma (2.5.4)). Let X ′n 6= X ′′n and rn := |X ′n −X ′′n | satisfy

Ln =
|(ηv1,n)(X ′n)− (ηv1,n)(X ′′n)|

rαn
.

Then, as n→∞,

1. rn → 0;



2.
dist(X ′n, ∂

+B+)

rn
→∞,

dist(X ′′n , ∂
+B+)

rn
→∞.

Our analysis is based on two different blow up sequences, one having uniformly

bounded Hölder quotient, the other satisfying a suitable problem. Let {X̂n}n∈N ⊂
B+, |X̂n| < 1, be a sequence of points, to be chosen later. We write

τnB
+ :=

B+ − X̂n

rn
,

remarking that τnB
+ is a hemisphere, not necessarily centered on the hyperplane

{y = 0}. We introduce the sequences

wi,n(X) := η(X̂n)
vi,n(X̂n + rnX)

Lnrαn
and w̄i,n(X) :=

(ηvi,n)(X̂n + rnX)

Lnrαn
,

where X ∈ τnB
+. With this choice, on one hand it follows immediately that, for

every i and X ′ 6= X ′′ ∈ τnB+,

|w̄i,n(X ′)− w̄i,n(X ′′)|
|X ′ −X ′′|α

≤

∣∣∣∣∣w̄1,n

(
X ′n − X̂n

rn

)
− w̄1,n

(
X ′′n − X̂n

rn

)∣∣∣∣∣ = 1,

in such a way that the functions {w̄n}n∈N share an uniform bound on Hölder semi-

norm, and at least their first components are not constant. On the other hand, since

η(X̂n) > 0, each wn solvesLτna wi,n = 0 in τnB
+

∂a,τnν wi,n = fi,n(wi,n)−Mnwi,n
∑
j 6=i aijw

2
j,n on τn∂

0B+,

where the new operators write (X̂n = (x̂n, ŷn))

Lτna = −div
((
ŷnr
−1
n + y

)a∇) , ∂a,τnν = lim
y→(−ŷnr−1

n )+
−
(
ŷnr
−1
n + y

)a
∂y,

and fi,n(t) = η(X̂n)r2s−α
n L−1

n fi,βn(Lnr
α
nt/η(X̂n)), Mn = βnL

2
nr

2α+2s
n /η(X̂n)2.

Remark 3.3.3. The uniform bound of ‖vβ‖L∞ imply that

sup
τn∂0B+

|fi,n(wi,n)| = η(X̂n)r2s−α
n L−1

n sup
∂0B+

|fi,βn (vi,n) | ≤ C(m̄)r2s−α
n L−1

n → 0

as n→∞.

A crucial property is that the two blow up sequences defined above have asymp-

totically equivalent behavior, as enlighten in the following lemma.

Lemma 3.3.4 (Lemma 2.5.6). Let K ⊂ RN+1 be compact. Then

1. max
X∈K∩τnB+

|wn(X)− w̄n(X)| → 0;



2. there exists C, only depending on K, such that |wn(X)−wn(0)| ≤ C, for every

x ∈ K.

Now we show that the sequences (X ′n, X
′′
n) accumulates towards {y = 0}.

Lemma 3.3.5. There exists C > 0 such that, for every n sufficiently large,

dist(X ′n, ∂
0B+) + dist(X ′′n , ∂

0B+)

rn
≤ C.

Proof. We argue by contradiction. Taking into account the second part of Lemma

3.3.2, this forces
dist(X ′n, ∂B

+) + dist(X ′′n , ∂B
+)

rn
→∞.

In the definition of wn, w̄n we choose X̂n = X ′n, so that τnB
+ → RN+1 and ŷ−1

n rn →
0. Let K be any fixed compact set. Then, by definition, K is contained in the half

sphere τnB
+, for every n sufficiently large. By defining Wn = wn − wn(0), W̄n =

w̄n−w̄n(0), we obtain that {W̄n}n∈N is a sequence of functions which share the same

C0,α-seminorm and are uniformly bounded in K, since W̄n(0) = 0. By the Ascoli-

Arzelà Theorem, there exists a function W ∈ C(K) which, up to a subsequence, is

the uniform limit of {W̄n}n∈N: taking a countable compact exhaustion of RN+1 we

find that W̄n → W uniformly in every compact set. Moreover, for any pair X, Y ,

we have that X,Y ∈ τnB+ for every n sufficiently large, and so

|W̄n(X)− W̄n(Y )| ≤
√
k|X − Y |α.

Passing to the limit in n the previous expression, we obtain W ∈ C0,α(RN+1). By

Lemma 3.3.4, we also find that Wn → W uniformly on compact sets. We want to

show that W is harmonic. To this purpose, let ϕ ∈ C∞0 (RN+1) be a smooth test

function, and let n̄ be sufficiently large so that suppϕ ⊂ τnB
+ for all n ≥ n̄. For a

fixed i ∈ {1, . . . , k}, we test the equation Lτna wi,n = 0 by ϕ to find∫
RN+1

−div
((

1 + yrnŷ
−1
n

)a∇ϕ)wi,n dxdy = 0.

Passing to the uniform limit and observing that (1 + yrnŷ
−1
n )a → 1 in C∞(suppϕ),

we obtain at once that W is indeed harmonic. We will obtain a contradiction with

the classical Liouville Theorem once we show that W is not constant. To this aim we

observe that (X ′n − X̂n)/rn = 0 and, up to a subsequence,

X ′′n − X̂n

rn
=

X ′′n −X ′n
|X ′′n −X ′n|

→ X ′′ ∈ ∂B1.

Therefore, by equicontinuity and uniform convergence,∣∣∣∣∣W̄1,n

(
X ′n − X̂n

rn

)
− W̄1,n

(
X ′′n − X̂n

rn

)∣∣∣∣∣ = 1 =⇒ |W1(0)−W1(X ′′)| = 1.



After the result above, we are in a position to choose X̂n in the definition of wn,

w̄n as

X̂n := (x′n, 0),

where as usual X ′n = (x′n, y
′
n). With this choice, it is immediate to see that

Lτna = La, ∂a,τnν = ∂aν , τnB
+ → Ω∞ = RN+1

+ .

Moreover, by Lemma 3.3.5, we have that X ′n, X
′′
n ∈ B+

C , for some C not depending

on n. This will imply that any possible blow up limit can not be constant. Now one

can reason as in Section 2.5 in order to prove that the blow up sequences converge.

In doing this, a first crucial step consists in proving that wn(0) is bounded: to this

aim, it is useful to notice that the decay rate for subsolutions which we obtained

in Lemma 3.2.5 does not depend on s and completely agrees with the one found in

Lemma 2.3.5. Consequently, the uniform bound on the Hölder seminorm allows to

prove the following result.

Lemma 3.3.6 (Lemma 2.5.13). Under the previous blow up setting, there exists

w ∈ (H1;a
loc ∩ C0,α)

(
RN+1

+

)
such that, up to a subsequence,

wn → w in (H1;a ∩ C)(K)

for every compact K ⊂ RN+1
+ .

End of the proof of Theorem 1.2.1. Up to now, we have that wn → w in (H1;a∩C)loc,

and that the limiting blow up profile w is a nonconstant vector of harmonic, globally

Hölder continuous functions. To reach the final contradiction, we distinguish, up to

subsequences, between the following three cases.

Case 1: Mn → 0. In this case also the equation on the boundary passes to the

limit, and the nonconstant component w1 satisfies ∂aνw1 ≡ 0 on RN , in contradiction

with Corollary 3.2.3.

Case 2: Mn → C > 0. Even in this case the equation on the boundary passes to

the limit, and w solvesLawi = 0 x ∈ RN+1
+

∂aνwi = −Cwi
∑
j 6=i aijw

2
j on RN × {0}

The contradiction is now reached using Proposition 3.2.9.

Case 3: Mn → ∞. In this case we can find a contradiction with Proposition

3.2.10. To this aim, one has to prove the validity of a Pohozaev-type identity for the

limits of the blow-up sequences. This can be done by taking into account Lemma

3.3.6 and reasoning as in Section 2.4.



As of now, the contradictions we have obtained imply that {vβ}β>0 is uniformly

bounded in C0,α
(
B+

1/2

)
, for every α < α∗. But then the relative compactness in

C0,α
(
B+

1/2

)
follows by Ascoli-Arzelà Theorem, while the one in H1;a(B+

1/2) can be

shown by reasoning as in the proof of Lemma 3.3.6.

Incidentally, we remark that similar arguments can be exploited in order to prove

the following compactness result, concerning segregated profiles (see Proposition 2.5.15).

This result, though technical at this stage, provides a compactness criterion for suit-

able blow down sequences, and may be useful in proving optimal regularity results,

along the scheme explained in the introduction.

Proposition 3.3.7. Let {vn}n∈N be a subset of C0,α
(
B+

1

)
, for some 0 < α ≤ α∗,

and satisfy the assumptions of Proposition 3.1.11. If

‖vn‖L∞(B+
1 ) ≤ m̄,

with m̄ independent of n, then for every α′ ∈ (0, α) there exists a constant C =

C(m̄, α′), not depending on n, such that

‖vn‖C0,α′
(
B+

1/2

) ≤ C.

Furthermore, {vn}n∈N is relatively compact in H1;a(B+
1/2) ∩ C0,α′

(
B+

1/2

)
for every

α′ < α.

To conclude, we mention that the above local result can be used, together with a

covering argument and Proposition 3.2.4, to prove Theorem 1.2.2.

Sketch of the proof of Theorem 1.2.2. Basically, one can argue as in the proof of The-

orem 2.7.5. There are, however, two different situations to be handled.

First, if one considers the problem (1) set on the whole RN (Theorem 1.2.2 in the

case Ω = RN ), then the global uniform bounds on uβ imply, by the representation

formula of Caffarelli and Silvestre [16], that also vβ enjoy the same uniform L∞

bounds. As a consequence, the local uniform bounds extend at once to the global

case by a simple covering argument.

In the case of Ω 6= RN , one has to deal also with the boundary of Ω. In this

situation, the regularity for uβ is ensured by [43], while the uniform Hölder bounds -

obtained again via the blow up analysis - follows with similar arguments and the use

of the appropriate Liouville type results (Proposition 3.2.4). Further details can be

found in Section 2.7.



3.4 Concluding remarks on the optimal regularity

As of now, we have shown preliminary compactness results in complete analogy to

the case s = 1/2 of the previous chapter. Arguing in the same way as done in Section

2.6, the value of optimal regularity exponent (up to self-segregation) is a consequence

of a classification result regarding one dimensional entire profiles.

Definition 3.4.1 (Definition 2.2.1 and 2.6.2). For each ν > 0, we define the class

Hs(ν) as the set of functions v ∈ H1;a
loc (R2

+) which enjoy the assumptions of Propo-

sition 3.1.11, such that v ∈ C0,α
loc

(
R2

+

)
, for some α > 0, v is non trivial and ν-

homogeneous.

Lemma 3.4.2. There exist three strictly increasing sequences of real numbers {ν0
n}n∈N,

{ν1
n}n∈N and {ν2

n}n∈N,

ν0
0 = 2s, ν1

0 =

1 if s ≤ 1/2,

2s− 1 if s > 1/2
, ν2

0 = s

such that

• if ν > 0 is not contained in any of the three sequences, then Hs(ν) = ∅;

• if ν = ν0
n, any element of Hs(ν) has trivial trace on {y = 0};

• if ν = ν1
n, any element of Hs(ν) has at most one element with non trivial;

• if ν = ν2
n, any element of Hs(ν) either has trivial trace or has exactly two

components with non trivial . In particular, for ν = s the two possibly non

trivial components are given by

v(ρ, θ) = cρs
(

cos
θ

2

)2(1−s)

, w(ρ, θ) = ±cρs
(

sin
θ

2

)2(1−s)

while in the general case for each n ∈ N there exists a function gn : [0, π] → R
such that gn has n distinct zeroes in (0, π) and

v(ρ, θ) = cρν
2
ngn(θ), w(ρ, θ) = ±cρν

2
ngn(π − θ).

Proof. We classify the homogeneity degrees for which the class Hs is not empty. By

the topology of the real line, it easily follows that, given an element v belonging to any

class Hs, no more than two of its component can have non trivial trace on {y = 0},
and thus no more than two components can be non trivial. We deal first with the case



of two non trivial components. In this setting, let us suppose that two components

of v, say v and w, have non trivial trace, in such a way that they solve
Lav = 0 in R2

+

v(x, 0) = 0 on x < 0

∂aνv(x, 0) = 0 on x > 0,

and


Law = 0 in R2

+

w(x, 0) = 0 on x > 0

∂aνw(x, 0) = 0 on x < 0.

Exploiting the homogeneity of the function v, we can try to classify the solutions v

and w; to this purpose, v may be written in the form v(ρ, θ) = ρνg(θ), with ν and g

solutions to ((sin θ)ag′)′ + ν(ν + a)(sin θ)ag = 0 in (0, π)

g(π) = 0, limθ→0+(sin θ)ag′(θ) = 0,

and similarly we can reason for w. We then recognize a Sturm-Liouville eigenvalue

problem for the eigenfunction v and eigenvalue λ = ν(ν + a). In a moment we will

show that all the eigenvalues of the problem are positive, but first we wish to observe

that, assuming the positivity of λ, the equation

ν(ν + a) = λ

defining the homogeneity of the corresponding solution, has a unique admissible so-

lution

ν =
−a+

√
a2 + 4λ

2
≥ 0

since the classes Hs are constituted by continuous functions. Thus, we have estab-

lished a one-to-one correspondence between eigenvalues λ and homogeneity degrees ν.

By the well established theory for the Sturm-Liouville eigenvalue problem, we know

the existence of a strictly increasing sequence {λn}∞n=0 of real eigenvalues, such that

each λn is associated to a (unique up to renormalization) eigenfunction vn, and the

same holds true for function w. Moreover, each eigenfunction has exactly n zeroes in

the set (0, π), so that, in order to compute the first eigenvalue λ0, it is sufficient to

find an eigenfunction which does not vanish in (0, π). In particular, by a direct check,

it follows that the first eigenvalue in the sequence is given by λ = s(s+ a) > 0 and it

correspond to the couple

v(ρ, θ) = cρs
(

cos
θ

2

)2(1−s)

= cv̄(x, y) w(ρ, θ) = dρs
(

sin
θ

2

)2(1−s)

= dv̄(−x, y)

while the other functions in the vector v are trivial (this follows again by the geometric

simplicity of the eigenvalues). We need to ensure that v satisfy the Pohozaev identity,

that is ∫
∂+B+

r (x0,0)

ya
(
|∇v|2 + |∇w|2

)
dσ = 2

∫
∂+B+

r (x0,0)

ya
(
|∂νv|2 + |∂νw|2

)
dσ,



for every x0 ∈ R and r > 0. First, considering the points x0 = 1 and x1 = −1, and

using the symmetries, we obtain

A+c
2 +A−d

2 = 2B+c
2 + 2B−d

2,

A−c
2 +A+d

2 = 2B−c
2 + 2B+d

2,

where

A± =

∫
∂+B+

r (±1,0)

ya|∇v̄|2 dσ, B± =

∫
∂+B+

r (±1,0)

ya|∂ν v̄|2 dσ.

Since, by direct computation, A±−2B± 6= 0, at least for some r, the above equalities

force c4 − d4 = 0, that is d = ±c.
Imposing the validity of the Pohozaev identity, it follows that d = ±c. In the

case of the following eigenvalues in the sequence, one can reasoning in the same way,

exploiting the uniqueness of the eigenfunctions and the one-to-one correspondence

between eigenvalue and homogeneity degrees, to conclude that the solutions are in

the form prescribed in the thesis.

We now turn to the case of only one component, say v, with non trivial trace. At

first, we need to deal with two different situation, corresponding to the case v 6= 0 on

a half line or v 6= 0 on the punctured real line. The first case actually never happens:

indeed, reasoning as before, we find that v should be of the form

v(ρ, θ) = cρν
2
ngn(θ)

for a constant c that should be chosen in order to verify the Pohozaev identity. But

again the other functions in the vector v are trivial, and this forces c = 0. In the

second case, we find that v has to solve
Lav = 0 in R2

+

v(0, 0) = 0

∂aνv(x, 0) = 0 on x 6= 0,

that is, passing again to polar coordinates, we may write v(ρ, θ) = ρνg(θ), with ν and

g solutions to ((sin θ)ag′)′ + ν(ν + a)(sin θ)ag = 0 in (0, π)

limθ→0+,θ→π−(sin θ)ag′(θ) = 0.

We can make use again of the theory of Strum-Liouville operators, but now we need

to distinguish between the case s ≤ 1/2 and s > 1/2. In the first case, the constant

solution g(θ) = c corresponds to

ν(ν + a) = 0 =⇒ ν = 0 or ν = −a = 2s− 1 < 0



and thus it is not admissible (recall that v(0, 0) = 0). As a consequence, we need

to find the second eigenvalue of the problem, which is obtained by considering the

function g(θ) = A cos θ, and a direct computation shows that

ν(ν + a) = 1 + a =⇒ ν = 1, v(x, y) = cx

is the only admissible solution. On the contrary, in the case s > 1/2, then the constant

solution g(θ) = c is admissible, and it correspond to

v(x, y) = c|(x, y)|2s−1

that is, the fundamental solution of the s-Laplace operator, already encountered in

the study of the phenomenon of self-segregation.

To analyze the case of trivial trace on {y = 0} we just observe that any element

of the vector v has to satisfy Lav = 0 in R2
+

v(x, 0) = 0 on R.

The conclusion follows that again passing to polar coordinates and observing that

v(x, y) = cy1−a is the solution with the least possible homogeneity degree.





Chapter 4

The Lotka-Volterra type competition

Outline of the chapter

In the last chapter of this part, we move our attention to system which contain

competition terms of Lotka-Volterra type, that is

(−∆)sui = fi,β(x, u1, . . . , uk)− βupi
∑
j 6=i

aiju
p
j ,

where i = 1, . . . , k, s ∈ (0, 1), p > 0, aij > 0 and β > 0. When k = 2 we develop

a quasi-optimal regularity theory in C0,α, uniformly w.r.t. β, for every α < αopt =

min(1, 2s); moreover we show that the traces of the limiting profiles as β → +∞ are

Lipschitz continuous and segregated. Such results are extended to the case of k ≥ 3

densities, with some restrictions on s, p and aij .

4.1 Preliminary results

We devote this section to some results concerning the operator La and solutions to

some associated differential problem. Most of such results already appeared, even if

in slightly different form, in the previous chapters and in the literature, but we chose

to restate them for the reader convenience. We refer to Chapter 2, 3 and to [15] for

further details.

Lemma 4.1.1 ([15, Lemma 2.7]). If v is a non constant, global solution of Lav = 0

in RN+1, with the property that

|v(X)| ≤ C (1 + |X|γ) ,

then γ ≥ min(2s, 1). If furthermore v(x,−y) = v(x, y) then γ ≥ 1 (and v is a

polynomial).
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Lemma 4.1.2 (Proposition 3.2.8). Let v satisfyLav = 0 in RN+1
+

∂aνv = λ on RN

for some λ ∈ R, and

|v(X)| ≤ C (1 + |X|γ) ,

for some 0 ≤ γ < min(2s, 1). Then v is constant.

The two last results we need are based on the following comparison principle.

Lemma 4.1.3 (Comparison principle). Let u, v ∈ H1;a(B+) satisfyLau ≤ 0 in B+
1

∂aνu ≤ −Mup + δ on ∂0B+
1 ,

Lav ≥ 0 in B+
1

∂aνv ≥ −Mvp + δ on ∂0B+
1 ,

respectively. Then u ≤ v on ∂+B+
1 implies u ≤ v on B+

1 .

Proof. Letting w = u− v, we obtain that w is a solution to
Law ≤ 0 in B+

1

∂aνw ≤ −M(up − vp) on ∂0B+
1

w ≤ 0 on ∂+B+
1 .

Testing the equation with w+ and recalling that p > 0 we find∫
B+

1

ya|∇w+|2dxdy ≤ −M
∫
∂0B+

up − vp

u− v
(w+)2dx ≤ 0.

Lemma 4.1.4. Let M > 0 be any large constant and δ > 0 be fixed and let h ∈
L∞(∂0B+

1 ) with ‖h‖L∞ ≤ δ. Any v ∈ H1;a(B+
1 ) non negative solution toLav ≤ 0 in B+

1

∂aνv ≤ −Mvp + h on ∂0B+
1

verifies

sup
∂0B+

1/2

v ≤ 1 + δ

M1/p
sup
∂+B+

1

v.

Sketch of proof. The proof is similar to the one of Lemma 3.2.5, the only difference

being in the choice of the supersolution. For a ∈ (−1, 1) and p > 0 fixed, let b =

1 + (1− a)/p > 1 and f ∈ AC(R) ∩ C∞(R) be defined as

f(x) = c

∫ x

−∞

1

(1 + t2)b/2
dt,



where c is chosen in such a way that f(+∞) = 1. Then, for some C > 0, the estimate

(−∆)sf(x) ≥ −Cf(x)p

holds for any x < 0. For M > 0, the function fM (x) := f(M1/(2s)x) satisfies

(−∆)sfM (x) = M2s/(2s) [(−∆)sf ] (M1/(2s)x) ≥ −CMfpM (x).

Therefore, if we let

gM (x) := fM (x− 1) + fM (−x− 1)

then

(fpM (x− 1) + fpM (−x− 1))
1/p ≤ cpgM ,

for some cp > 0. It follows that, for any M > 0, it holds
(−∆)sgM (x) ≥ −CMgpM (x) in (−1, 1)

gM (x) ≥ 1
2 in R \ (−1, 1)

gM (x) ≤ CM−1/p in
(
− 1

2 ,
1
2

)
.

The lemma follows by comparison between v and the supersolution (see [16])

wδ := δ
1

M1/p
+

∫
R
y1−a gM (x− ξ)

(ξ2 + y2)1−a/2 dξ.

Lemma 4.1.5. Let λ > 0 and v ∈ H1;a
loc (RN+1

+ ) be non negative and satisfyLav = 0 in RN+1
+

∂aνv ≤ −λvp on RN .

If the Hölder quotient of exponent γ of v is uniformly bounded, for some γ ∈ [0, 2s),

then v is constant.

Proof. When p ≤ 1 the lemma follows directly from Lemma 4.1.4 (see also Proposition

3.2.7): indeed, by translating and scaling,

v(x0, 0) ≤ sup
∂0Br/2(x0,0)

v ≤ 1

λ1/pr2s/p
sup

∂+Br(x0,0)

v ≤ C 1 + rγ

r2s/p
→ 0 as r →∞.

When p > 1, we start by showing that v has a bounded trace on RN . Let us assume,

on the contrary, that v(x, 0) is not uniformly bounded from above: by the uniform

control on the Hölder seminorm, there exists a sequence {xn} ⊂ RN such that

Mn := inf
∂0B+

1 (xn,0)
vp−1 → +∞.



But then, restricting on B+
1 (xn, 0), we have that v ≥ 0 satisfiesLav = 0 in B+

1 (xn, 0)

∂aνv ≤ −Mnv on ∂B+
1 (xn, 0)

and, thanks to Lemma 4.1.4 (with exponent 1 instead of p) and the Hölder continuity,

we obtain

inf
∂0B+

1 (xn,0)
v ≤ sup

∂0B+
1/2

(xn,0)

v ≤ 1

Mn
sup

∂+B+
1 (xn,0)

v ≤ 1

Mn

(
inf

∂0B+
1 (xn,0)

v + C

)
,

a contradiction. Let now {xn} ⊂ RN be a maximizing sequence of v(x, 0), that is

sup
x∈RN

v(x, 0) = lim
n→∞

v(xn, 0) <∞,

and let us also introduce the sequence of functions

vn(x, y) := v(x− xn, y).

The functions vn share the same uniform bound in C0,γ , so that we can pass to

the uniform limit and find a limiting function v̄ ∈ C0,γ(RN+1
+ ) which satisfies the

assumptions of the lemma, its trace on RN achieving the global maximum at (0, 0).

Let us denote with w the unique bounded La-harmonic extension of v̄(x, 0) (which is

defined since v̄(x, 0) is bounded). We see that the odd extension across {y = 0} of

the difference w − v̄ satisfies the assumptions of Lemma 4.1.1, yielding v̄ ≡ w. From

the equation we deduce that

∂aν v̄(0, 0) = −λv̄(0, 0)p = −λ sup
x∈RN

v(x, 0)p ≤ 0

and the Hopf Lemma implies v̄(0, 0) = 0, that is v ≡ 0.

4.2 The blow-up argument

As for the variational competition case of Chapter 2 and 3, the proof of the a priori

uniform C0,α-bounds of solutions to problem (LV )β is based on a blow-up argument.

To perform this technique, we will assume that the solutions are not a priori bounded

in a uniform way in some Hölder norms and then, through a series of lemmas, we

will show that this implies the existence of entire solutions to some limiting problem.

The scheme of the proof here presented may resemble the one contained for instance

in [22], which has also inspired the proofs in Chapter 2 and 3. However, in the

present situation, some of the steps, which were adopted in the aforementioned papers,



actually fail. This phenomenon is consequence of deep differences in the interaction

between competition and diffusion features of the models. Once the blow-up procedure

is completed, we will reach different contradictions in the next section, depending on

the particular choice of k, p and aij : for the moment, in what follows we will always

assume that p > 0, aij > 0 for any j 6= i, and that the reaction terms fi,β are

continuous and map bounded sets into bounded sets, uniformly w.r.t. β > 0 (notice

that these are the common assumptions for all the statements in the introduction).

Let {vβ}β = {(v1,β , . . . , vk,β)}β denote a family of positive solutions to problem

(LV )β , uniformly bounded in B+
1 . We begin the analysis by recalling the regularity

result which holds whenever β is finite. As always, for easier notation, we write

B+ = B+
1 .

Lemma 4.2.1 (Lemma 3.3.1). For every 0 < α < min(2s, 1), m̄ > 0 and β̄ > 0,

there exists a constant C = C(α, m̄, β̄) such that

‖vβ‖C0,α
(
B+

1/2

) ≤ C,
for every vβ solution of problem (LV )β on B+, satisfying

β ≤ β̄ and ‖vβ‖L∞(B+) ≤ m̄.

Let the cut-off function η be smooth, with

η(X) =

1 X ∈ B1/2

0 X ∈ RN+1 \B1

while η(X) ∈ (0, 1) elsewhere.

The rest of this section is devoted to the proof of the following proposition.

Proposition 4.2.2. If there exists 0 < α < min(2s, 1) such that

sup
β>0
|ηvβ |C0,α(B+) = +∞

then for a suitable choice of {rβ}β ⊂ R+ and {x′β}β ⊂ RN , the blow-up family

wi,β(X) := η(x′β , 0)
vi,β((x′β , 0) + rβX)

rαβ |ηvβ |C0,α(B+)

admits a convergent subsequence in the local uniform topology. Moreover the limit

w ∈ (H1;a
loc ∩ C0,α)

(
RN+1

+

)
enjoys the following properties:

1. each wi is a La-harmonic function of RN+1
+ ;

2. at least one component of w is non constant, and it attains its maximal Hölder

quotient of exponent α at a pair of points in the half-ball B+
1 ;



3. either there exists M > 0 such that

∂aνwi = −Mwpi
∑
j 6=i

aijw
p
j on RN

or wiwj |y=0 = 0 for every j 6= i and

∂aνwi ≤ 0, wi∂
a
ν

wi −∑
j 6=i

aij
aji

wj

 = 0 on RN .

The proof is divided in several steps. First, we choose any subsequence vn := vβn

such that

sup
n∈N
|ηvn|C0,α(B+) =: sup

n∈N
Ln = +∞,

where by Lemma 4.2.1 both βn →∞ and the Hölder quotients Ln are achieved, say

Ln := max
i=1,...,k

max
X′ 6=X′′∈B+

|(ηvi,n)(X ′)− (ηvi,n)(X ′′)|
|X ′ −X ′′|α

=
|(ηv1,n)(X ′n)− (ηv1,n)(X ′′n)|

rαn
,

where we have written rn := |X ′n − X ′′n |. Finally, we are in a position to define the

two blow-up sequences we will work with as

wi,n(X) := η(x′n, 0)
vi,n((x′n, 0) + rnX)

Lnrαn
and w̄i,n(X) :=

(ηvi,n)((x′n, 0) + rnX)

Lnrαn
,

both defined on the domain

τnB
+ :=

B+ − (x′n, 0)

rn
.

Accordingly, the corresponding reaction terms can be expressed as

fi,n(x, t1, . . . , tk) = r2s
n

η(x′n, 0)

Lnrαn
fi,βn

(
X ′n + rnx, t1

Lnr
α
n

η(x′n, 0)
, . . . , tk

Lnr
α
n

η(x′n, 0)

)
.

In Section 2.5 and 3.3 we have analyzed in detail the behavior of the two blow-up

sequences in the different case of variational competition. In the following lemma we

collect the initial remarks about such sequences, the proof of which is independent of

the type of competition. In particular, we have that the domains exhaust the whole

RN+1
+ , and that the two sequences {wn}n and {w̄n}n – of which the former satisfies

an equation and the latter has uniformly bounded Hölder quotient – are close on any

compact.

Lemma 4.2.3. As n→∞ the following assertions hold

1. rn → 0, ‖fi,n‖∞ → 0, τnB
+ → RN+1

+ and τn∂
0B+ → RN × {0};



2. the sequence {wn}n satisfiesLawi,n = 0 in τnB
+

∂aνwi,n = fi,n(x,w1,n, . . . , wk,n)−Mnw
p
i,n

∑
j 6=i aijw

p
j,n on τn∂

0B+,

(4.2.1)

where

Mn = βnr
2s
n

(
η(x′n, 0)

Lnrαn

)1−2p

;

3. the sequence {w̄n}n has uniformly bounded C0,α-seminorm, the oscillation of

the first component in B+
1 being always 1;

4. for any compact K ⊂ RN+1,

max
X∈K∩τnB+

|wn(X)− w̄n(X)| → 0

(and therefore also wn has uniformly bounded oscillation on K).

In the next series of lemmas we are going to show that both sequences converge

to the same blow-up limit. To this end, we have to exclude the case in which the

sequences are unbounded at the origin: indeed, the uniform boundedness of a sequence

at some point is enough, together with points (3) and (4) of the previous lemma, to

conclude the convergence (uniform on compact sets) of the two sequences.

Lemma 4.2.4. For any r > 0 there exists a constant C such that the estimate

Mn

∫
∂0B+

r

∑
j 6=i

aijw
p+1
i,n wpj,n dx ≤ C(r)(|wi,n(0)|+ 1)

holds uniformly in n.

Proof. Let us consider the quantities

E(r) :=
1

rN+a−1

∫
B+
r

ya|∇wi,n|2 +

∫
∂0B+

r

(
−fi,nwi,n +Mnw

p+1
i,n

∑
j 6=i

aijw
p
j,n

)
H(r) :=

1

rN+a

∫
∂+B+

r

yaw2
i,n,

where H ∈ AC(R, 2R), for any R > 0 fixed and n sufficiently large. If we test equation

(4.2.1) by wi,n itself in the ball B+
r , we obtain

H ′(r) =
2

rN+a

∫
∂+B+

r

yawi,n∂νwi,n =
2

r
E(r),



which can be integrated to infer

H(2R)−H(R) =

2R∫
R

2

r
E(r) dr.

On the one hand, the left hand side of of the previous identity can be estimated by

recalling that wi,n has uniformly bounded oscillation on any compact set (Lemma

4.2.3, (4)):

H(2R)−H(R) =

∫
∂+B+

ya
[
w2
i,n(2RX)− w2

i,n(RX)
]

dσ

=

∫
∂+B+

ya wi,n|2RXRX

[
wi,n|2RX0 + wi,n|RX0 + 2wi,n(0)

]
dσ

≤ C(R)(|wi,n(0)|+ 1).

On the other hand, we obtain a lower bound of the right hand side as

2r∫
r

2

s
E(s)ds ≥ min

s∈[r,2r]
E(s)

≥ 1

rN+a−1

 Mn

2N+a

∫
∂0B+

r

∑
j 6=i

aijw
p+1
i,n wpj,n dx−

∫
∂0B+

2r

|fi,n|wi,n dx


≥ C

Mn

∫
∂0B+

r

∑
j 6=i

aijw
p+1
i,n wpj,n dx− ‖fj,n‖L∞(|wi,n(0)|+ 1)

 .

Lemma 4.2.5. If w̄i,n(0)→∞ for some i, then there exists C such that

Mnw̄
p
i,n(0) ≤ C

for a constant C independent of n. In particular, Mn → 0.

Proof. Reasoning by contradiction we assume that Mnw̄
p
i,n(0) → ∞, at least for a

subsequence. For any r > 0 fixed, Lemma 4.2.3 forces

Ir,n := inf
∂0B+

r

Mnw
p
i,n →∞.

From Lemma 4.2.4, we directly obtain

Mn inf
∂0B+

r

wp+1
i,n

∫
∂0B+

r

∑
j 6=i

aijw
p
j,ndx ≤ C(r)(|wi,n(0)|+ 1) (4.2.2)

that is, since wi,n(0)/wi,n(x)→ 1 uniformly in compact sets,

Ir,n

∫
∂0B+

r

∑
j 6=i

aijw
p
j,ndx ≤ C.



Let j 6= i. Since Ir,n → ∞, we deduce that wj,n → 0 in Lp(∂0B+
r ), for every r.

Therefore Lemma 4.2.3 implies that both {w̄j,n}n and {wj,n}n converge, uniformly

on compact sets, to an La-harmonic function wj,∞ ∈ C0,α(Rn+1
+ ) such that

wj,∞(x, 0) = 0 on RN .

The Liouville result in Lemma 4.1.1 applies to the odd extension of wj,∞ across

{y = 0}, yielding

wj,∞ ≡ 0 for j 6= i.

In particular, by uniform convergence, the unitary Hölder quotient is not achieved by

any of the functions w̄j,n for j 6= i and n large enough: it follows that we must have

i = 1.

Now, let us recall that each wj,n with j 6= 1 satisfies the inequalityLawj,n = 0 in B+
2r

∂aνwj,n ≤ ‖fj,n‖L∞(B2r) − ajiI2r,nwpj,n in ∂0B+
2r

(4.2.3)

so that by Lemma 4.1.4 we have the estimate

sup
∂0B+

r

wpj,n ≤
C(r)

I2r,n
sup
∂+B+

2r

wpj,n.

On the other hand, the function w1,n satisfies a boundary condition that can be

estimated as

sup
∂0B+

r

|∂aνw1,n| ≤ ‖f1,n‖L∞(B2r) + Ir,n
∑
i 6=1

aij sup
∂0B+

r

wpj,n

≤ ‖f1,n‖L∞(B2r) + C(r)
Ir,n
I2r,n

∑
i6=1

sup
∂+B+

2r

wpj,n → 0,

where we used the fact that

inf
∂0B+

2r

w̄i,n ≤ inf
∂0B+

r

w̄i,n ≤ inf
∂0B+

2r

w̄i,n + Crα =⇒ lim
n→∞

Ir,n
I2r,n

= 1.

Let us now introduce the sequences

W1,n(x, y) := w1,n(x, y)− w1,n(0, 0), W̄1,n(x, y) := w̄1,n(x, y)− w̄1,n(0, 0).

As before, we can use Lemma 4.2.3 to prove that both sequences converge to the same

La-harmonic function, which is globally Hölder continuous, non constant, and which

has trivial conormal derivative on RN , in contradiction with Lemma 4.1.2.

Lemma 4.2.6. The sequence {w̄n(0)}n∈N is bounded.



Proof. By contradiction, let {w̄n(0)}n∈N be unbounded. Then, by the previous

lemma, Mn → 0. To start with, we claim that for every j there exists a constant

λj ≥ 0 such that, up to subsequences,

Mnw̄
p
j,n → λj locally uniformly.

Indeed, if w̄j,n(0) is bounded this follows by uniform Hölder bounds, with λj = 0; if

it is unbounded, from Lemma 4.2.5 we obtain that Mnw̄
p
j,n(0)→ λj , while

sup
∂0B+

r

|Mnw̄
p
j,n −Mnw̄

p
j,n(0)| = Mnw̄

p
j,n(0) sup

∂0B+
r

∣∣∣∣( w̄j,n
w̄j,n(0)

)p
− 1

∣∣∣∣→ 0.

Now, let i be such that wi,n(0) is bounded. As usual, we can use Lemma 4.2.3 to

show that wi,n → wi,∞ ∈ C0,α(RN+1
+ ) in the local uniform topology, where, using the

claim above, wi,∞ is a solution toLawi,∞ = 0 in RN+1
+

∂aνwi,∞ = −wpi,∞
∑
j aijλj on RN .

Lemma 4.1.5 then implies wi,∞ ≡ 0: in particular, we have that w̄1,n(0) is unbounded.

Let us then turn our attention to w1,n. Again, if j is such that w̄j,n(0) is bounded,

then by the previous discussion w̄j,n → 0 locally uniformly and

Mnw̄
p
1,n︸ ︷︷ ︸

≤C (Lemma 4.2.5)

w̄pj,n → 0.

Otherwise, if j is such that w̄j,n(0) is unbounded, then Lemma 4.2.4 provides

C ≥Mnw1,n(0)pwj,n(0)p
∫

∂0B+
r

∑
j 6=1

a1j

wp+1
1,n

w1,n(0)p(|w1,n(0)|+ 1)

wpj,n
wj,n(0)p

dx

so that Mnw1,n(0)pwj,n(0)p is uniformly bounded. Since if {wj,n(0)}n∈N is un-

bounded then also {wj,n(x)}n∈N is, for any fixed x, and the same argument shows

that Mnw1,n(x)pwj,n(x)p is bounded. Now,

Mn |w1,n(x)pwj,n(x)p − w1,n(0)pwj,n(0)p|

≤Mnw1,n(x)pwj,n(x)p
∣∣∣∣1− wj,n(0)p

wj,n(x)p

∣∣∣∣+Mnw1,n(0)pwj,n(0)p
∣∣∣∣w1,n(x)p

w1,n(0)p
− 1

∣∣∣∣→ 0.

This shows the existence of a constant λ such that, at least up to a subsequence,

f1,n −Mnw̄
p
1,n

∑
j 6=1

a1jw̄
p
j,n → λ



uniformly on every compact subset of RN , and the same holds true for the sequence

{w1,n}n∈N. Thus, as usual, W1,n = w1,n − w1,n(0) converges to W1 which is noncon-

stant, globally Hölder continuous of exponent α < min(1, 2s), and which solvesLaW1 = 0 in RN+1
+

∂aνW1 = λ on RN .

Invoking Lemma 4.1.2, we obtain a contradiction.

The boundedness of the sequences {w̄n(0)}n∈N implies, by Lemma 4.2.3, the con-

vergence of both {w̄n}n∈N and {wn}n∈N to the same blow-up limit. Reasoning as in

the proof of Lemma 2.5.13, one can show that the convergence is also strong in the

natural Sobolev space.

Lemma 4.2.7. There exists w ∈ (H1;a
loc ∩C0,α)

(
RN+1

+

)
such that, up to a subsequence,

wn → w in (H1;a ∩ C)(K)

for every compact K ⊂ RN+1
+ . Furthermore, each wi is La-harmonic, and w1 is non

constant.

Depending on the behavior of the sequence Mn, the limiting functions w satisfy

a different limiting problem: first, we can exclude the case Mn → 0.

Lemma 4.2.8. There exists C > 0 such that Mn ≥ C.

Proof. Let us assume that there exists a subsequenceMnk that converges to 0. Passing

to the limit in the sequence, we obtain as a limiting problemLawi = 0 in RN+1
+

∂aνwi = 0 on RN .

By Lemma 4.1.1 each wi is constant, and this is in contradiction with the fact that

w1 oscillates in the half-ball B+.

Lemma 4.2.9. If Mn →M > 0, then the blow-up profiles w solveLawi = 0 in RN+1
+

∂aνwi = −Mwpi
∑
j 6=i aijw

p
j on RN .

Proof. This is a direct consequence of Lemma 4.2.7.

To conclude the proof of Proposition 4.2.2 we are left to analyze the case Mn →∞.



Lemma 4.2.10. If Mn →∞, then the blow-up profiles w are such that wiwj |y=0 = 0,

for every j 6= i, and 
∂aνwi ≤ 0

∂aν

(
wi −

∑
j 6=i

aij
aji
wj

)
≥ 0

wi∂
a
ν

(
wi −

∑
j 6=i

aij
aji
wj

)
= 0,

(4.2.4)

where the inequalities are understood in the sense of RN -measures.

Proof. For any nonnegative ψ ∈ C∞0 (RN+1), we test equation (4.2.1) to find

0 ≤
∫

∂0Br

Mnw
p
i,n

∑
j 6=i

aijw
p
j,nψ ≤

∫
∂0Br

(fi,nψ − wi,n∂aνψ)−
∫
B+
r

wi,nLaψ.

Since the right hand side is bounded by local uniform convergence, we infer that

Mn

∫
K

wpi,nw
p
j,n dx ≤ C(K) ∀j 6= i, (4.2.5)

for any compact set K ⊂ RN . In particular it follows that, at the limit, wiwj |y=0 = 0

for every j 6= i. Furthermore, the first and the second inequalities in (4.2.4) follow

from equation (4.2.1) and from the fact that, for every n,

∂aν

(
wi,n −

∑
j 6=i

aij
aji

wj,n

)
= fi,n −

∑
j 6=i

aij
aji

fj,n +Mn

∑
j 6=i
h6=i,j

aij
aji

ajhw
p
j,nw

p
h,n

(we recall that the reaction terms fi,n → 0 uniformly in RN ). Finally, the identity in

(4.2.4) can be obtained by multiplying the previous equation by wi,n, once one can

estimate the terms Mnwi,nw
p
j,nw

p
h,n. To this aim, let ε > 0, and let us define the

(possibly empty) set

suppεi = {x ∈ RN : wi(x, 0) ≥ ε}.

We observe that for any K ⊂ RN compact set, the local uniform convergence of the

sequence {wn} implies wi,n(x, 0) ≥ ε
2 ∀x ∈ K ∩ suppεi

wi,n(x, 0) ≤ 2ε ∀x ∈ K \ suppεi ,

for any n large enough. As a consequence

Mn

∫
K

wi,nw
p
j,nw

p
h,ndx ≤Mn

∫
K\suppεi

wi,nw
p
j,nw

p
h,ndx+Mn

∫
K∩suppεi

wi,nw
p
j,nw

p
h,ndx

≤Mn2ε

∫
K\suppεi

wpj,nw
p
h,ndx+Mn

∫
K∩suppεi

wi,n22p (1 + ‖fj,n‖)p

Mnεp
(1 + ‖fh,n‖)p

Mnεp
dx

≤ C
(
ε+

1

Mn
ε−2p

)
,



where we used estimate (4.2.5) and Lemma 4.1.4 to bound the two terms. Choosing

n sufficiently large so that ε−2p ≤ εMn, we conclude by the arbitrariness of ε that

lim
n→∞

Mn

∫
K

wi,nw
p
j,nw

p
h,ndx = 0 for every i 6= j 6= h.

Corollary 4.2.11. Let aij = 1 for every i, j and w be a blow-up profile. For every

i 6= j the functions z = wi − wj are such thatLaz± ≤ 0 in RN+1
+

z±∂aνz
± ≤ 0 on RN .

Proof. A subtraction of the equation satisfied by wi,n and wj,n yields

(wi,n − wj,n)±∂aν (wi,n − wj,n) = (fi,n − fj,n)(wi,n − wj,n)±

−Mn (wi,n − wj,n)±(wpi,n − w
p
j,n)︸ ︷︷ ︸

≥0

∑
h6=i,j

wph,n.

4.3 Uniform Hölder bounds

We are ready to show the almost optimal uniform Hölder bounds, in the case of two

competing species. This will be a consequence of the following lemma.

Lemma 4.3.1. Under the assumption of Proposition 4.2.2, at least three components

of the blow-up profile w are non constant, and all the constant components are trivial.

Proof. We start by observing that each constant component has to be trivial: this is

a direct consequence of the segregation condition wiwj |y=0 = 0 in the case Mn →∞,

while, if Mn → M > 0, it is implied by the boundary condition and the fact that at

least w1 is non constant.

If w1 is the only non constant component, then we obtain a contradiction with

Lemma 4.1.2 since in both cases Mn → M (Lemma 4.2.9) and Mn → ∞ (Lemma

4.2.10), we have ∂aνw1 = 0.

Let us now assume that only w1 and, say, w2 are non constant. Invoking again

Lemma 4.2.9 and 4.2.10, we obtain in both cases thatLa (a21w1 − a12w2) = 0 in RN+1
+

∂aν (a21w1 − a12w2) = 0 on RN .

The application of Lemma 4.1.2 then implies

w1 = C +
a12

a21
w2,



where, up to a permutation between w1 and w2, we may assume that the constant C

is non negative. If Mn →∞, the segregation condition w1w2|y=0 = 0 yields(
C +

a12

a21
w2

)
w2|y=0 = 0 =⇒ C = w1 = w2 = 0,

a contradiction. In the remaining case, the function w2 solvesLaw2 = 0 in RN+1
+

∂aνw2 = −Mwp2

(
C + a12

a21
w2

)p
≤ −C ′w2p

2 on RN ,

in contradiction with Lemma 4.1.5.

Proof of Theorem 1.3.1. The lemma above, combined with Proposition 4.2.2, pro-

vides all the results in the theorem but the H1;a convergence; this last property follows

from the uniform Hölder bounds, reasoning as in the proof of Lemma 4.2.7.

Now we turn to the case of k ≥ 3 densities. We first prove uniform Hölder bounds

with small exponent, when the power p is greater or equal than 1. In order to quantify

such exponent, we need to introduce some notation. For any ω ⊂ SN+ := ∂+B+
1 we

consider the first eigenvalue of (the angular part of) La, defined as

λ1(ω) = inf


∫
SN+

|y|a|∇Tu|2 dσ : u ≡ 0 on SN+ \ ω,
∫
SN+

|y|au2 dσ = 1


(here∇T denotes the tangential part of the gradient), and the associated characteristic

function

γ(t) =

√(
N − 2s

2

)2

+ t− N − 2s

2
.

We are ready to state the following Liouville type result.

Proposition 4.3.2. Under the assumption

p ≥ 1,

let w denote a blow-up limit as in Proposition 4.2.2, and let

ν = ν(s,N) := inf

{
γ(λ1(ω1)) + γ(λ1(ω2))

2
: ωi ⊂ SN+ , ω1 ∩ ω2 ∩ {y = 0} = ∅

}
.

If

|w(X)| ≤ C(1 + |X|α), for some α < ν,

then k − 1 components of w are trivial.



Remark 4.3.3. As shown in Lemma 2.1.5, Lemma 3.1.8, ν(s,N) > 0 (and ν(s,N) ≤
s) for every 0 < s < 1, N ≥ 1.

Proof. The proof is a byproduct of arguments already exploited in the subsection 3.1.2

of the previous chapter. The first step consists in obtaining a monotonicity formula

of Alt-Caffarelli-Friedman type, with exponent between α and ν. In the case in which

w has segregated traces on {y = 0}, this is Proposition 3.1.9. When w satisfies a

differential system, this can be done as in Proposition 3.1.10, with minor changes:

namely, by replacing the term v2
i v

2
j with vp+1

i vpj (this can be done as far as p ≥ 1).

Once the validity of the monotonicity formula holds, one can deduce a related

minimal growth rate for w, which is consistent with the one in the assumption only

if all the components but one vanish.

The result above can be improved, also removing the restriction on p, in the case

of equal competition rates.

Proposition 4.3.4. Under the assumption

aij = 1 for every 1 ≤ i, j ≤ k,

let w denote a blow-up limit as in Proposition 4.2.2, and let

µ = µ(s,N) := inf

{
γ(λ1(ω1)) + γ(λ1(ω2))

2
: ωi ⊂ SN+ , ω1 ∩ ω2 = ∅

}
.

If

|w(X)| ≤ C(1 + |X|α), for some α < µ,

then k − 1 components of w are trivial.

Remark 4.3.5. It is immediate to check that µ(s,N) ≥ ν(s,N) for every s, N . In

particular, it is always positive. As a matter of fact, at the end of this section we will

show that 1/2 ≤ µ(s,N) ≤ 1 for every 0 < s < 1, N ≥ 1. Furthermore, it is proved

in [2, 9] that

µ

(
1

2
, N

)
= 1, for every N ≥ 1. (4.3.1)

Proof. We start showing that, for any choice i 6= j, if wi(·, 0) ≤ wj(·, 0) then wi ≡ 0.

Indeed, if w solves the differential system, then

∂aνwi ≤ −Mwpiw
p
j ≤ −Mw2p

i ,

and the claim follows by Lemma 4.1.5; in the case of segregated traces, then wi(·, 0) ≡
0 and one can conclude by applying Lemma 4.1.1 (to the odd extension of wi across

{y = 0}).



On the other hand, let us assume by contradiction that, for some i 6= j, the

functions z± := (wi −wj)± are both nontrivial. Then they satisfy the inequalities in

Corollary 4.2.11, and furthermore

|z±(X)| ≤ C(1 + |X|α),

where α < µ. Under these assumptions, we can obtain a contradiction by reasoning

as in the proof of Proposition 4.3.2. To this aim, the only missing ingredient is the

following monotonicity formula.

Lemma 4.3.6. Let z1, z2 ∈ H1;a(B+
R(x0, 0)) be continuous nonnegative functions

such that

• z1z2 = 0, zi(x0, 0) = 0;

• for every non negative φ ∈ C∞0 (BR(x0, 0)),∫
RN+1

+

(Lazi)ziφdxdy +

∫
RN

(∂aνzi)ziφ dx =

∫
RN+1

+

ya∇zi · ∇(ziφ) dxdy ≤ 0.

Then

Φ(r) :=

2∏
i=1

1

r2µ

∫
B+
r (x0,0)

ya|∇zi|2

|X − (x0, 0)|N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R), where µ is defined as in Proposition

4.3.4.

Proof. First of all we observe that, up to an even extension of the functions zi across

{y = 0}, the formula above is implied by the analogous one stated on the whole Br.

This latter formula, when s = 1/2, is nothing but the classical Alt-Caffarelli-Friedman

one [2]. On the other hand, when s 6= 1/2, its proof resemble the usual one, as done

for instance in [9] (see also Section 3.1 for further details).

To conclude the proof of Theorem 1.3.6, we provide the following rough elementary

estimate of µ(s,N) for s 6= 1/2.

Lemma 4.3.7. For every 0 < s < 1 and N ≥ 1 it holds

µ(s,N) ≥ 1

2
.

Proof. By trivial extension to higher dimensions of the eigenfunctions involved, it is

easy to prove that µ is decreasing with respect to N , thus we can assume N ≥ 2.



Let ω1, ω2 ⊂ SN+ , ω1 ∩ ω2 = ∅, and let φi ∈ H1;a(SN+ ) be the first eigenfunction

associated to λ1(ωi) enjoying the normalization∫
SN
|y|aφ2

idσ = 1 for i = 1, 2.

If R denotes the Rayleigh quotient associated to λ1, then we have that

λ2(SN+ ) := inf
V⊂H1;a(SN+ )

dimV≥2

max
V
R ≤ max

ϑ
R (φ1 cosϑ+ φ2 sinϑ) ≤ max(λ1(ω1), λ1(ω2)).

By monotonicity of γ we obtain that

µ(s,N) = inf
ω1∩ω2=∅

γ(λ1(ω1)) + γ(λ1(ω2))

2
≥ 1

2
γ(λ2(SN+ )).

To conclude the proof, we show that γ(λ2(SN+ )) = 1. Indeed, let ψ2 be a second

eigenfunction. Then its conormal derivative on ∂SN+ is identically zero, and it can be

extended in an even way across {y = 0} to an eigenfunction of SN . Moreover, by the

well known properties of γ, we have that the function

v(X) = |X|γ(λ2(SN+ ))ψ2

(
X

|X|

)
is La-harmonic up to 0 (this is true, actually, because we are assuming N ≥ 2), is

y-even, and has bounded growth. By Lemma 4.1.1 we deduce that, up to a rotation

in the x plane, v = x1, concluding the proof.

Proof of Theorem 1.3.6. The uniform Hölder bounds with exponent α∗ are obtained

by combining Lemma 4.3.1 with either Proposition 4.3.2 (with α∗ = min(2s, ν(s,N)))

or Proposition 4.3.4 (with α∗ = min(2s, µ(s,N))), respectively. In the second case,

the exact value of α∗ is provided by Remark 4.3.5 when s = 1/2, and by Lemma 4.3.7

when s < 1/4.

Remark 4.3.8. By comparison with the nodal partition of SN+ associated to the

homogeneous, La-harmonic function v(x, y) = x1, we infer that

µ(s,N) ≤ 1.

4.4 Further properties of the segregation profiles

In this last section we deal with the proof of Theorems 1.3.2 and 1.3.7. Together with

the previous assumptions, in what follows we further suppose that the reaction terms

fi,β → fi as β →∞, uniformly on compact sets, with fi Lipschitz continuous.



As a result of the previous sections, we have shown that L∞ uniform bounds on

a family of solutions to the problem (LV )β is enough to ensure equicontinuity of the

family independently from the competition parameter β. Reasoning as in the proof

of Lemmas 4.2.7 and 4.2.10 we deduce the following result.

Proposition 4.4.1. Any sequence {vβn}n∈N, βn →∞, of solutions to (LV )β which

is uniformly bounded in L∞(B+) admits a subsequence which converges to a limiting

profile v ∈ (H1;a ∩ C0,α)loc(B+), for some α > 0. Moreover

Lavi = 0 in B+,

∂aνvi ≤ fi(x, v1, . . . , vk)

∂aν

(
vi −

∑
j 6=i

aij
aji
vj

)
≥ fi −

∑
j 6=i

aij
aji
fj on ∂0B+,

vi ·
[
∂aν

(
vi −

∑
j 6=i

aij
aji
vj

)
− fi +

∑
j 6=i

aij
aji
fj

]
= 0

(4.4.1)

and vi(x, 0) · vj(x, 0) ≡ 0 for every j 6= i.

After Proposition 4.4.1, the optimal regularity for the case of two densities is

almost straightforward.

Proof of Theorem 1.3.2. For a limiting profile v = (v1, v2), let w = a21v1 − a12v2.

Then Proposition 4.4.1 implies that

v1(x, 0) =
1

a21
w+, v2(x, 0) =

1

a12
w−,

and Law = 0 in B+,

∂aνw = g(w) on ∂0B+,

where

g(x, t) := a21f1

(
x,

1

a21
t+,

1

a12
t−
)
− a12f2

(
x,

1

a21
t+,

1

a12
t−
)

is Lipschitz continuous. As a consequence, standard regularity (e.g. [45, Proposition

2.8], [29, Lemma 2.1]) applies, providing that w ∈ C1,α and thus u1, u2 are Lipschitz

continuous.

Remark 4.4.2. An important consequence of the argument above is that whenever

there are only two species that are segregated, under suitable growth conditions about

f1, f2 the corresponding free boundary

Γ := {x ∈ ∂0B : v1(x, 0) = v2(x, 0) = 0}

is a closed set of empty interior (in the N dimensional topology). Indeed w = a21v1−
a12v2 satisfies a semilinear equation for which unique continuation holds, see [31,

Theorems 1.4, 4.1].



We are left to deal with the case k ≥ 3 for the half-laplacian, i.e.

s =
1

2
.

In this case, by Theorem 1.3.6 we already know that, when aij = 1, the traces of the

limiting profiles enjoy almost Lipschitz continuity on K ∩ {y ≥ 0}, for every compact

K ⊂ B. We are going to show that the same holds also for general aij , when there are

no internal reaction terms in a neighborhood of the free boundary. More precisely,

we assume that the Lipschitz continuous functions fi are such that

fi(x, t1, . . . , tk) ≡ 0 whenever |(t1, . . . , tk)| < θ,

for some θ > 0 (such assumption can be weakened, but we prefer to avoid further

technicalities at this point). Finally, K ⊂ B will denote a fixed compact set.

Remark 4.4.3. As before, since the components of a limiting profile v are harmonic

on B+, we have that its regularity on K is directly connected to the regularity of the

same function in K ∩ {0 ≤ y < ε} for arbitrarily small ε > 0.

Definition 4.4.4. For any function v ∈ H1 ∩C(B+;Rk) which satisfies (4.4.1) (with

s = 1/2), we let v̂ := (v̂1, . . . , v̂k) where

v̂i(x, y) = vi(x, y)−
∑
j 6=i

aij
aji

vj(x, y).

To clarify the effect of the segregation condition, we introduce the definition of

multiplicity of boundary points.

Definition 4.4.5. We define the multiplicity of a point x ∈ ∂0B+ as

m(x) := ]
{
i : HN ({vi(x, 0) > 0} ∩ ∂0Br(x, 0)) > 0.∀r > 0

}
.

We start with a result about the regularity of low multiplicity points.

Lemma 4.4.6. If K ∩ {y = 0} ⊂ {x : m(x) ≤ 1} then v ∈ C1,1/2(K ∩ {y ≥ 0}).

Proof. According to Remark 4.4.3, we will show local regularity of the functions in

B+
r (x0, 0), where r is small and m(x0) ≤ 1. We have three possibilities.

Case 1: m(x0) = 0. in this case, v|∂0Br(x0,0) ≡ 0, and the result is standard.

Case 2: m(x0) = 1 and vi(x0, 0) > 0. By continuity of vi, we can assume that

vi|∂0Br(x0,0) > 0, while by the segregation condition vj |∂0Br(x0,0) ≡ 0 for every j 6= i.

Let v̂ be as in Definition 4.4.4. Since in this case v̂i = vi on ∂0Br(x0, 0), it follows

from (4.4.1) that −∆v̂i = 0 in B+
r (x0, 0)

∂ν v̂i = f(x, 0, . . . , v̂i, . . . , 0) in ∂0B+
r (x0, 0).



The regularity of v̂i (and thus of vi) follows by the well established regularity theory

of the semilinear Steklov problem.

Case 3: m(x0) = 1 and the non trivial function vi is such that vi(x0, 0) = 0. Also

in this case we can assume vj |∂0Br(x0,0) ≡ 0 for j 6= i and, as before, vi = v̂i ≥ 0 on

∂0Br(x0, 0). By continuity of vi, we can also assume that fi = 0 in ∂0Br(x0, 0). It

follows that 
−∆v̂i = 0 in Br(x0, 0)

∂ν v̂i = 0 in ∂0Br(x0, 0) ∩ {v̂i|y=0 > 0}

∂ν v̂i ≥ 0 in ∂0Br(x0, 0).

As a consequence, v̂i is a solution to the zero thin obstacle problem, for which C1,1/2

regularity (up to the obstacle) has been obtained in [3, Theorem 5].

Remark 4.4.7. The analogous of the previous lemma holds true also when s 6= 1/2,

in which case C1,s regularity can be shown, as a consequence of [15].

Now, for X ∈ B, we introduce the the Morrey quotient associated to v as

Φ(X, r) :=
1

rN+1−2ε

∫
Br(X)∩B+

k∑
i=1

|∇vi|2 dxdy.

It is well known that if Φ is uniformly bounded for any X ∈ K ∩ {y ≥ 0} and

r < dist(K, ∂+B+), then v is Hölder continuous of exponent 1 − ε in K ∩ {y ≥ 0}.
Thus the proof of Theorem 1.3.7 is based on the contradictory assumption that, for

some ε > 0, there is a sequence {(Xn, rn)}n such that Xn ∈ K, rn > 0 and

lim
n→∞

Φ(Xn, rn) =∞. (4.4.2)

To reach a contradiction we will use the following technical lemma.

Lemma 4.4.8 ([23, Lemma 8.2]). Let Ω ⊂ RN+1 and v ∈ H1(Ω) and let

Φ(X, r) :=
1

rN+1−2ε

∫
Br(X)∩Ω

|∇v|2dxdy.

If (Xn, rn) ⊂ Ω× R+ is a sequence such that Φ(Xn, rn)→∞, then rn → 0 and

1. there exists {r′n} ⊂ R+ such that φ(Xn, r
′
n)→∞ and∫

∂Br′n
(Xn)∩Ω

|∇v|2 ≤ N + 1− 2ε

r′n

∫
Br′n

(Xn)∩Ω

|∇v|2; (4.4.3)

2. if A ⊂ Ω and

dist(Xn, A) ≤ Crn

then there exists a sequence {(X ′n, r′n)} such that φ(X ′n, r
′
n) → ∞ and X ′n ∈ A

for every n.



Proof of Theorem 1.3.7. Using the second point of Lemma 4.4.8, together with Re-

mark 4.4.3, we can assume without loss of generality that the contradictory assump-

tion (4.4.2) holds for ∂0B+ 3 Xn =: (xn, 0), for every n. For lighter notation we

write Φ(xn, rn) instead of Φ((xn, 0), rn). Lemma 4.4.8 also implies that rn → 0, and

that we can assume estimate (4.4.3) to hold for any n, with Ω = {y > 0}. Further-

more, since v ∈ H1(B+), the function r 7→ Φ(xn, r) is continuous for r > 0 and it is

uniformly bounded for r faraway from 0: as a consequence we can assume that

Φ(xn, r) ≤ CΦ(xn, rn) ∀rn < r < dist(K, ∂+B+),

for some constat C. Finally, by Lemmas 4.4.6 and 4.4.8 we can assume m(xn) ≥ 2

for n large, and thus fi(·, vi) ≡ 0 on B+
rn((xn, 0)).

Let us introduce a sequence of scaled function vn defined as

vi,n(X) :=
1

Φ(Xn, rn)1/2r1−ε
n

vi((xn, 0) + rnX) for X ∈ B.

By assumptions, ‖∇vn‖L2(B+) = 1 for every n, and

1

rN+1−2ε

∫
B+
r

k∑
i=1

|∇vi,n|2 ≤ C ∀1 < r < r−1
n dist(K, ∂+B+). (4.4.4)

We divide the rest of the proof in a number of steps.

Step 1: also ‖vn‖L2(B+) is uniformly bounded. We argue by contradiction, assum-

ing that ‖vn‖L2(B+) →∞. Letting

un := ‖vn‖−1
L2(B+)vn

we have that ‖un‖L2(B+) = 1, while ‖∇un‖L2(B+) → 0: there exists d ∈ Rk such that

un → d in H1(B+).

Using the segregation condition vi,n · vj,n|y=0 = 0, which passes to the strong limit,

we infer that only one among the constant di may be non trivial, say d1 > 0. But

recalling that the even extension of v̂i,n across {y = 0} is superharmonic, we find

v̂1,n(0) = 0 =⇒
∫
B+

∑
j 6=1

aij
aji

vj,n ≥
∫
B+

v1,n

a contradiction, passing to the strong limit in H1(B+).

Step 2: the sequence vn admits a nontrivial weak limit v̄ ∈ H1
loc(RN+1

+ ). From

Step 1 and the uniform estimate (4.4.4) we infer the weak convergence; let us show

that v̄ is non trivial. To this end, we recall that−∆vi,n = 0 in B+

vi,n∂νvi,n ≤ 0 on ∂0B+.



Testing the equation against vi,n and summing over i, we have∫
B+

|∇vn|2 ≤
∫
∂+B+

k∑
i=1

vi,n∂νvi,n ≤
(∫

∂+B+

|vn|2 ·
∫
∂+B+

|∇vn|2
)1/2

.

Were v̄ trivial, the right hand side would go to zero thanks to the compact embedding

of the trace operator and the uniform estimate (4.4.3), which is scaling invariant. This

would imply strong convergence, in contradiction with the fact that the L2 norm of

∇vn is equal to 1.

Step 3: v̄(x, 0) ≡ 0 on RN . Let us consider the sequence v̂n (recall Definition

4.4.4). From (4.4.1) (in the case s = 1/2), we know that the pair (v̂+
i , v̂

−
i ) is made of

two continuous, subharmonic, nonnegative functions such that v̂+
i · v̂

−
i = 0 in RN+1.

As a result, they satisfy the assumption of the Alt-Caffarelli-Friedmann monotonicity

formula (Lemma 4.3.6 with a = 0 and µ = 1), from which we obtain

1

rN+1

∫
B+
r (xn,0)

|∇v̂+
i |

2dxdy · 1

rN+1

∫
B+
rn (xn,0)

|∇v̂−i |
2dxdy ≤

1

r2

∫
B+
r (xn,0)

|∇v̂+
i |2

|X − (xn, 0)|N−1
dxdy · 1

r2

∫
B+
r (xn,0)

|∇v̂−i |2

|X − (xn, 0)|N−1
dxdy ≤ C,

that is

1

rN+1−2ε

∫
B+
r (xn,0)

|∇v̂+
i |

2dxdy · 1

rN+1−2ε

∫
B+
r (xn,0)

|∇v̂−i |
2 ≤ Cr4ε.

Hence at most one of the two Morrey quotients can be unbounded. Moreover, by the

triangular inequality, the possibly unbounded one diverges at most at the same rate

of Φ(xn, rn). Scaling to (v̂+
i,n, v̂

−
i,n) we can distinguish among three different cases:

• both ‖∇v̂+
i,n‖L2(Br) and ‖∇v̂−i,n‖L2(Br) are infinitesimal. In this situation, we

have that there exists c ≥ 0 such that v̂i,n → c. Since by even extension−∆v̂i,n ≥ 0 in Br

v̂i,n(0, 0) = 0
=⇒

∫
Br

v̂i,n ≤ 0

we have that v̂i,n → c ≤ 0;

• there exists c > 0 such that ‖∇v̂+
i,n‖L2(Br) ≥ c > 0 while ‖∇v̂−i,n‖L2(Br) → 0.

Testing the equation −∆v̂+
i,n ≤ 0 in B+

r

v̂+
i,n∂ν v̂

+
i,n ≤ 0 on ∂0B+

r

with v̂+
i,n we obtain that in the limit v̂+

i,n ⇀ v̂i 6= 0, and thus v̂−i,n → 0 strongly in

H1(Br). Using again the superharmonicity of v̂i,n as before, we conclude that

v̂i,n → 0, in contradiction with v̂i 6= 0;



• there exists c > 0 such that ‖∇v̂−i,n‖L2(Br) ≥ c > 0 while ‖∇v̂+
i,n‖L2(Br) → 0.

Reasoning as in the previous case, we obtain that v̂+
i,n → 0 strongly in H1(Br),

thus v̂i,n ⇀ v̂i ≤ 0.

In any case, v̂+
i,n → 0 and v̂i,n ⇀ v̂i ≤ 0 in H1

loc(RN+1
+ ) for all i, implying in particular

that vi,n|y=0 → v̄i|y=0 = 0 in H
1/2
loc (RN ).

Conclusion. If we extend v̄ evenly across {y = 0}, we obtain a k-tuple of harmonic

functions defined on RN+1 for which Φ(0, r) ≤ C for all r ≥ 1. From the Morrey

inequality, we have that for any X ∈ RN+1, |X| ≥ 1,

|v̄(X)− v̄(0)| ≤ C|X|1−
N+1

2 ‖∇v̄‖L2(B2|X|).

As a result, we have

|v̄(X)− v̄(0)| ≤ C|X|1−ε

for every |X| ≥ 1, in contradiction with the fact that v is harmonic in RN+1 and non

trivial, thanks to the classical Liouville theorem.

Remark 4.4.9. More general nonlinearities should be addressable, using similar ar-

guments as before, once a generalization of the Caffarelli-Jerison-Kenig almost mono-

tonicity formula [10] to this setting were available.

Remark 4.4.10. The case s 6= 1/2 could follow as a generalization of the previous

proof, if not for the fact that, at the moment, no exact Alt-Caffarelli-Friedman mono-

tonicity formula is available, in this setting: one could only show, by Lemma 4.3.6

and 4.3.7, the C0,α continuity of the limiting profiles, for every α < 2s and α ≤ µ.
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Chapter 5

Entire solutions with exponential growth

for elliptic systems

5.1 Introduction and main results

The last part of the thesis is concerned with the construction of solution to the system

∆u = uv2 in RN

∆v = u2v in RN
(S)2

which have a super-polynomial growth, namely, they exhibit an exponential growth

along some direction. The equation under investigation arises in many contests in

applied mathematics involving, for instance, phase separations. In particular, there

is a link in the study of Bose-Einstein condensates. As it is well known, bosons

constitute a family of particles which do not obey the Pauli exclusion principle, so

that it is possible for many particles to occupy the same quantum state. From an

experimental point of view, it is possible to produce artificially bosons via ultra-

cooling a gas of atoms. The first empirical evidence of condensation was obtained in

1995. In these experiments, diluted atomic gases are initially trapped by magnetic

fields and cooled down at very low temperatures. Below a critical temperature Tc,

all the atoms of the gas collapse to the ground state and the whole gas evolves as a

single quantum particle with a macroscopic de Broglie wavelength Ψ, given thus by

Ψ(x1, . . . , xn) ∼
n∏
i=1

ψ(xi).

Under some approximation, in [36, 42] Gross and Pitaevskii proposed1 that the wave
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Figure 5.1: Distribution of the velocity during a condensation.

function ψ of a single particle satisfies the equation

i~∂tψ =

(
− ~2

2m
∆ + V (x)− ω|ψ|2

)
ψ.

When more species of particles are involved, the previous model has to be modified

in to the system of Schrödinger equations

i∂tψi =

−∆ + V (x)− ωi|ψi|2 +
∑
j 6=i

βij |ψj |2
ψi

where the parameters βij represent the interspecific scattering lengths. When looking

for standing wave solutions for the previous system, (that is, solution of the form

ψi(x, t) = e−iλitui(x)), one finds that they obey to the stationary system
−∆ui + (λi + V (x))ui = ωi|ui|2ui − ui

∑
j 6=i

βiju
2
j

ui ∈ H1
0 (Ω) for every i = 1, . . . , k.

As the interspecies scattering lengths βij = β → +∞ the densities tends to seg-

regate, giving birth to a pattern of disjoint condensates. A main issue here is to

characterize precisely how this segregation occurs.

More precisely, considering the case of two non negative components, as β → +∞,

there is convergence (up to a subsequence) to some limiting profile (uβ , vβ) which are

1see also [38] for a rigorous derivation of the Gross-Pitaevskii model



solutions to −∆u+ λ1u = ω1u
3 in Ωu,

−∆v + λ2v = ω2v
3 in Ωv,

where Ωu := {x ∈ Ω : u > 0} and Ωv := {x ∈ Ω : v > 0} are positivity domains

composed of finitely disjoint components with positive Lebesgue measure, and letting

w = u− v, it holds

−∆w + λ1w
+ − λ2w

− = ω1(w+)3 − ω2(w−)3.

To the end of studying the convergence of the solutions, one is lead to exploit a

blow up analysis. One considers the points

xβ ∈ Ω such that uβ(xβ) = vβ(xβ) =: mβ

and scales the equation accordingly around such points. At least in dimension N = 1,

in [5] it is shown that m4
ββ → C ∈ (0,∞) as β → ∞ which gives the correct scaling

rate of the equation. It follows that, letting

ûβ(x) :=
1

mβ
uβ(mβx+ xβ), v̂β(x) :=

1

mβ
vβ(mβx+ xβ)

there is accumulation of the sequence in C2
loc(R) to solutions of

u′′ = uv2, v′′ = u2v in R.

For higher dimensions, an equivalent statement is not available yet, but it is conjec-

tured by the authors of [5] that the same asymptotic for mβ should holds. Under

this assumption, it is possible to show that limits of the same scaling converge to a

solution of ∆u = uv2 in RN ,

∆v = u2v in RN .
(S)2

To understand the geometry of the solutions of the previous system will then clarify

about the behavior of the segregation. A first result on the solutions of (S)2 can be

found in [39] where the following Liouville-type theorem is stated.

Theorem (Proposition 2.6 [39]). Let (u, v) ∈ H1
loc(RN ) be entire solutions to (S)2

satisfying the growth condition

|u|(x) + |v|(x) ≤ C(1 + |x|α)

for some α ∈ (0, 1). Then either u ≡ 0 and v is constant or v ≡ 0 and u is constant.



Remark 5.1.1. Let us mention that Theorem 2.6.1 is the precise equivalent of the

previous one in the case s = 1/2. There, the critical growth rate seems to be α = 1/2,

even though at this stage no existence result has been shown in the limiting case. The

case s ∈ (0, 1) is not yet addressed, even if it seems reasonable to conjecture that the

critical growth condition should be given by the exponent s itself.

As the growth rate reaches the linear limit, that is α = 1, on the other hand it is

possible to show existence of solutions, as done in [5] and refined in [6] in the shape

of the following two theorems.

Theorem (Theorems 1.2-1.3 [5], Theorem 1.1 [6]). Let N = 1, and let (u, v) be a

non negative (and non trivial) solution of (S)2. Then there exists a point x0 ∈ R
such that u(x − x0) = v(x0 − x) while u(−∞) = u′(−∞) = 0, u(+∞) = +∞ and

u′(+∞) = C > 0. The couple (u, v) is unique up to translation, scaling and exchange

and moreover the solution is nondegenerate and stable2.

Theorem (Theorem 1.2 [6]). In R2 any stable solution (U, V ) which has at most

linear growth at infinity, is one-dimensional, that is, there exists a ∈ R2, |a| = 1 such

that

U(x, y) = u(a · (x, y)) V (x, y) = v(a · (x, y))

where (u, v) is a couple of one-dimensional solutions.

At this point, the research has divided into two main streams: a) finding more

general conditions which imply one-dimensionality of the solutions (conjectures of De

Giorgi and Gibbons type) and b) constructing solutions which are not one-dimensional

and do not exhibit linear growth at infinity. The main improvements in the first

direction can be briefly synthesised in following three results: a solution (u, v) is one-

dimensional if (u, v) grows at most linearly and the couple is a local minimizer to the

corresponding energy functional [52]; (u, v) grows at most as a polynomial and the

limit

lim
y→±∞

(u(x, y)− v(x, y)) = ±∞

holds uniformly in x ∈ RN−1 (see [33]); in the case N = 2 when (u, v) grows at most

as a polynomial and u is strictly monotone in one direction (see [32]).

The non-existence result for non constant solutions which grow less than linearly

and the one-dimensional theorems for solution having linear growth suggest a relation

2A solution (u, v) is called stable if the second differential of the energy is definite nonnegative,

that is ∫
RN
|∇φ|2 + |∇ψ|2 + v2φ2 + u2ψ2 + 4uvφψ ≥ 0 ∀φ, ψ ∈ C∞0 (RN ).



between solutions of the system (S)2 and harmonic functions. This point is made clear

in [6] where the following classification result is shown.

Theorem (Theorem 1.4 [6]). Let (u, v) solve (S)2 in RN , and let

N(r) =
E(r)

H(r)
:=

1

rN−2

∫
Br(0)

|∇u|2 + |∇v|2 + u2v2

1

rN−1

∫
∂Br(0)

u2 + v2
.

Then N is a monotone non decreasing function. If one assume that

lim
r→∞

N(r) < +∞,

it must be N(+∞) = d ∈ N. Moreover, letting

(uR(x), vR(x)) :=
1√
H(R)

(u(Rx), v(Rx))

then, as R → ∞, the family of scaled functions (uR, vR) converges uniformly on

compact sets of RN to a multiple of (Ψ+,Ψ−), where Ψ is a harmonic homogeneous

polynomial of degree d.

The quantization of the “growth rate” d and the convergence of the blow up profiles

strengthen the link between solution of (S)2 and harmonic function. The authors also

present a dual (in dimension N = 2) of the previous theorem

Theorem (Theorem 1.3 [6]). Let d ∈ N0 fixed. There exists a solution (u, v) of (S)2

which shadows Φ = <(zd), in particular u ≥ Φ+ and v ≥ Φ−; u is obtained from v by

a rotations and reflections (the symmetries of model function Φ). Moreover, one has

N(+∞) = d and (uR, vR)→ (Φ+,Φ−).

These results can be generalized also to systems of more than 2 components.

Motivated by the quoted achievements, we wonder if the system (S)2 has solutions

with growth higher than the one of any polynomial. We can give a positive answer

to this question proving the existence of solutions with exponential growth. In our

construction we adapt the same line of reasoning introduced in the proof of Theorem

1.3 of [6]. There, the authors proved the existence of solutions to (S)2 with the same

symmetry of the function <(zd) in any bounded ball BR(0) ⊂ R2, with boundary

conditions u = (<(zd))+, v = (<(zd))− on ∂BR(0). By means of suitable monotonic-

ity formulæ, they could pass to the limit for R → +∞ obtaining convergence (up to

a subsequence) for the previous family to a nontrivial entire solution. In this sense,

their solutions are modeled on the harmonic functions <(zd).



Here, having in mind the construction of solutions with exponential growth, and

recalling the relationship between entire solution of our system and harmonic func-

tions, we start by considering

Φ(x, y) := coshx sin y.

The first of our main results is the following.

Theorem 5.1.2. There exists an entire solution (u, v) ∈ (C∞(R2))2 to system (S)2

such that

1) u(x, y + 2π) = u(x, y) and v(x, y + 2π) = v(x, y),

2) u(−x, y) = u(x, y) and v(−x, y) = v(x, y),

3) the symmetries

v(x, y) = u(x, y − π) u(x, π − y) = v(x, π + y)

u
(
x,
π

2
+ y
)

= u
(
x,
π

2
− y
)

v

(
x,

3

2
π + y

)
= v

(
x,

3

2
π − y

)
hold,

4) u− v > 0 in {Φ > 0} and v − u > 0 in {Φ < 0},

5) u > Φ+ and v > Φ− in R2,

6) the function ( Almgren quotient)

r 7→

∫
(0,r)×(0,2π)

|∇u|2 + |∇v|2 + 2u2v2∫
{r}×[0,2π]

u2 + v2

is well-defined for every r > 0, is nondecreasing, and

lim
r→+∞

∫
(0,r)×(0,2π)

|∇u|2 + |∇v|2 + 2u2v2∫
{r}×[0,2π]

u2 + v2
= 1,

7) there exists the limit

lim
r→+∞

∫
{r}×[0,2π]

u2 + v2

e2r
=: α ∈ (0,+∞).

Remark 5.1.3. This solution is modeled on the harmonic function Φ, in the sense

that it inherits the symmetries of (Φ+,Φ−) and has the same rate of growth of Φ.



Remark 5.1.4. Point 7) of the Theorem gives a lower and a upper bound to the rate

of growth of the quadratic mean of (u, v) on {r} × [0, 2π] when r varies:(∫
{r}×[0,2π]

u2 + v2

) 1
2

= O(er) as r → +∞.

The domain of integration takes into account the periodicity of (u, v). The quadratic

mean of (u, v) on {r} × [0, 2π] has exponential growth, and the rate of growth is the

same of the function er, which in turns has the same rate of growth of Φ. Note that

the coefficient 1 in the exponent of er coincides with the limit as r → +∞ of the

Almgren quotient defined in point 6).

Remark 5.1.5. With a scaling argument, it is not difficult to prove the existence of

entire solutions with exponential growth of order λ for every λ > 0 (in the previous

sense). To see this, let

(uλ(x, y), vλ(x, y)) = (λu(λx, λy), λv(λx, λy) .

It is straightforward to check that (uλ, vλ) is still a solution to (S)2 in the plane, is
2π
λ -periodic in y and is such that

uλ(x, y) ≥ λ (cosh(λx) sin(λy))
+

and vλ(x, y) ≥ λ (cosh(λx) sin(λy))
−
.

Moreover,

lim
r→+∞

∫
(0,r)×(0, 2πλ ) |∇uλ|

2 + |∇vλ|2 + 2u2
λv

2
λ∫

{r}×[0, 2πλ ] u
2
λ + v2

λ

= λ, (5.1.1)

and

lim
r→+∞

∫
{r}×[0, 2πλ ] u

2
λ + v2

λ

e2λr
= λα.

One can consider the solution (uλ, vλ) as related to the harmonic function cosh(λx) sin(λy).

This reveals that there exists a correspondence

{(uλ, vλ) : λ > 0} ↔ {sin(λx) cosh(λy) : λ > 0}.

Due to the invariance under translations and rotations of problem (S)2, the family

{(uλ, vλ) : λ > 0} can equivalently be related with the families of harmonic functions

{cosh(λx) [C1 cos(λy) + C2 sin(λy)]} or {[C3 cos(λx) + C4 sin(λx)] cosh(λy) : λ > 0},
where C1, C2, C3, C4 ∈ R.

As observed in Remark 5.1.4, the limit of the Almgren quotient in (5.1.1) describes

the rate of the growth of the quadratic mean of (uλ, vλ) computed on an interval of

periodicity in the y variable. The previous computation reveals that for every λ > 0

we can construct a solution having rate of growth equal to λ. This marks a relevant



difference between entire solutions with polynomial growth and entire solutions with

exponential growth: while in the former case the admissible rates of growth are quan-

tized (Theorem 1.4 of [6]), in the latter one we can prescribe any positive real value

as rate of growth.

Remark 5.1.5 reveals that, starting from the solution found in Theorem 5.1.2, we

can build infinitely-many entire solutions with different exponential growth. How-

ever, noting that system (S)2 is invariant under rotations, translations and scalings,

intuitively speaking they are all the same solution. We wonder if there exists an en-

tire solution of (S)2 having exponential growth which cannot be obtained by the one

found in Theorem 5.1.2 through a rotation, a translation or a scaling; the answer is

affirmative. We denote

Γ(x, y) := ex sin y.

Theorem 5.1.6. There exists an entire solution (u, v) ∈ (C∞(R2))2 to system (S)2

which enjoys points 1), 3), 4) of Theorem 5.1.2; moreover

2) for every r ∈ R ∫
(−∞,r)×(0,2π)

|∇u|2 + |∇v|2 + u2v2 < +∞, (5.1.2)

5) u > Γ+ and v > Γ− in R2 u− v > Γ+ and v − u > Γ− in R2,

6) the function ( Almgren quotient)

r 7→

∫
(−∞,r)×(0,2π)

|∇u|2 + |∇v|2 + 2u2v2∫
{r}×(0,2π)

u2 + v2

is well-defined for every r > 0, is nondecreasing, and

lim
r→+∞

∫
(−∞,r)×(0,2π)

|∇u|2 + |∇v|2 + 2u2v2∫
{r}×(0,2π)

u2 + v2
= 1,

7) there exist the limits

lim
r→+∞

∫
{r}×[0,2π]

u2 + v2

e2r
=: β ∈ (0,+∞) and lim

r→−∞

∫
{r}×[0,2π]

u2 + v2 = 0.

Remark 5.1.7. This solution is modeled on the harmonic function Γ. As explained

in Remark 5.1.4, it is possible to obtain a family of entire solutions which is in corre-

spondence with a family of harmonic functions.

Remark 5.1.8. Note that the Almgren quotients that we defined in Theorem 5.1.2

and 5.1.6 are different. They are both different to the Almgren quotient which has

been defined in [6].



We can partially generalize our existence result to the case of systems with many

components. To be precise, given an integer k, we will construct a solution (u1, . . . , uk)

of ∆ui = ui
∑
j 6=i u

2
j in R2

ui > 0, i = 1, . . . , k
(S)k

having the same growth and the same symmetries of Γ. Here and in the following we

consider the indexes are meant modulus k.

Theorem 5.1.9. There exists an entire solution (u1, . . . , uk) ∈ (C∞(R2))k to system

(S)k such that, for every i = 1, . . . , k,

1) ui(x, y + kπ) = ui(x, y),

2) the symmetries

ui+1(x, y) = ui (x, y − π) u1

(
x,
π

2
+ y
)

= u1

(
x,
π

2
− y
)

hold,

3) for every r ∈ R ∫
(−∞,r)×(0,kπ)

k∑
i=1

|∇ui|2 +
∑

1≤i<j≤k

u2
iu

2
j < +∞;

4) the function ( Almgren quotient)

r 7→

∫
(−∞,r)×(0,kπ)

∑k
i=1 |∇ui|2 + 2

∑
1≤i<j≤k u

2
iu

2
j∫

{r}×[0,kπ]

∑k
i=1 u

2
i

is well-defined for every r > 0, is nondecreasing, and

lim
r→+∞

∫
(−∞,r)×(0,kπ)

∑k
i=1 |∇ui|2 + 2

∑
1≤i<j≤k u

2
iu

2
j∫

{r}×[0,kπ]

∑k
i=1 u

2
i

= 1.

5) there exist the limits

lim
r→+∞

∫
{r}×[0,kπ]

k∑
i=1

u2
i =: γ ∈ (0,+∞) and lim

r→−∞

∫
{r}×[0,kπ]

k∑
i=1

u2
i = 0.

Our last main result is the counterpart of Theorem 1.4 of [6], regarding the quanti-

zation of the growth rates, in our setting. This can be quite surprising because, as we

already observed, we cannot expect a quantization of the admissible rates of growth

dealing with solutions with exponential growth, see Remark 5.1.5. Nevertheless, if

we consider solutions which are periodic in one direction, prescribing a period such a

quantization can be recovered.



Theorem 5.1.10. Let (u, v) be a nontrivial solution of (S)2 in R2 which is 2π-periodic

in y, and such that one of the following situation occurs:

(i) there holds

lim
r→−∞

∫
{r}×[0,2π]

u2 + v2 = 0,

and

d := lim
r→+∞

∫
(−∞,r)×(0,2π)

|∇u|2 + |∇v|2 + u2v2∫
{r}×[0,2π]

u2 + v2
< +∞.

(ii) ∂xu = 0 = ∂xv on {a} × [0, 2π] for some a ∈ R, and

d := lim
r→+∞

∫
(a,r)×(0,2π)

|∇u|2 + |∇v|2 + u2v2∫
{r}×[0,2π]

u2 + v2
< +∞.

Then d is a positive integer,(∫
{r}×[0,2π]

u2 + v2

) 1
2

= O(edr) as r → +∞,

and the sequence

(uR(x, y), vR(x, y)) :=
1√∫

{r}×[0,2π]
u2 + v2

(u(x+R, y), v(x+R, y))

converges in C0
loc(R2) and in H1

loc(R2) to (Ψ+,Ψ−), where

Ψ(x, y) = edx (C1 cos(dy) + C2 sin(dy)) for some C1, C2 ∈ R.

In Section 5.2 we will prove some monotonicity formulæ which will come useful in

the rest of the chapter. We can deal with two types of solutions: solutions satisfying

a homogeneous Neumann condition defined in a cylinder C(a,b) with a > −∞, or

solutions defined in a semi-infinite cylinder of type C(−∞,b) and decaying at x→ −∞.

For the sake of completeness and having in mind to use some monotonicity formulæ

in the proof of Theorem 5.1.9, we will always consider the case of systems with k

components.

The proof of Theorem 5.1.2 will be the object of Section 5.3. It follows the same

sketch of the proof of Theorem 1.3 in [6]: we start by showing that for any R > 0

there exists a solution (uR, vR) to (S)2 in the cylinder CR, with Dirichlet boundary

condition

uR = Φ+ and vR = Φ− on {−R,R} × [0, 2π],

and exhibiting the same symmetries of (Φ+,Φ−). In order to obtain a solution defined

in the whole C∞, we wish to prove the C2
loc(C∞) convergence of the family {(uR, vR) :



R > 1}, as R → +∞. To show that this convergence occurs, we will exploit the

monotonicity formulæ proved in subsection 5.2.1. With respect to Theorem 1.3 of [6],

major difficulties arise in the precise characterization of the growth of (u, v), points

6) and 7) of Theorem 5.1.2.

In Section 5.4 we will prove Theorem 5.1.6. One could be tempted to try to adapt

the proof of Theorem 5.1.2 replacing Φ with Γ. Unfortunately, in such a situation

we could not exploit the results of subsection 5.2.1; this is related to the lack of

the even symmetry in the x variable of the function Γ (note that the function Φ

enjoys this symmetry). A possible way to overcome this problem is to work in semi-

infinite cylinders C(−∞,R) and use the monotonicity formulæ proved in subsection

5.2.2. But to work in an unbounded set introduces further complications: for instance,

the compactness of the Sobolev embedding and of some trace operators, a property

that we will use many times in section 5.3, does not hold in C(−∞,R). Although we

believe that this kind of obstacle can be overcome, we propose a different approach

for the construction of solutions modeled on Γ, which is based on the elementary limit

lim
R→+∞

ΦR(x, y) = Γ(x, y) ∀(x, y) ∈ R2,

where ΦR(x, y) = 2e−R cosh(x + R) sin y. We will prove the existence of a solution

(uR, vR) of (S)2 in C(−3R,R) with Dirichlet boundary condition

uR = Φ+
R and vR = Φ−R on {−3R,R} × [0, 2π],

and exhibiting the same symmetries of (Φ+
R,Φ

−
R). Then, using again the results of Sec-

tion 5.2, we will pass to the limit as R→ +∞ proving the compactness of {(uR, vR)}.
Section 5.5 is devoted to the study of systems with many components. As in

[6] the authors could prove in one shot an existence theorem for 2 or k components

(there are no substantial changes in the proofs), it is natural to wonder if here we can

simply adapt step by step the construction carried on in section 5.3 or 5.4, or not.

Unfortunately, the answer is negative: following the sketch of the proof of Theorem

5.1.2, we can adapt most the results of sections 5.3 and 5.4 with minor changes, but

in the counterpart of Proposition 5.3.1 we cannot prove the pointwise estimate given

by point 4). As a consequence, with respect to subsections 5.3.2 and 5.4.2 we cannot

show that the limit of the sequence (u1,R, . . . , uk,R) does not vanish. Note that, in

the case of two components, this nondegeneracy is ensured precisely by the above

pointwise estimate. As far as the case of k component in [6], we observe that they

obtained nondegeneracy through their Corollary 5.4, which is the counterpart of point

(i) of our Corollary 5.2.5. But, while there the estimate of the growth given by this

statement is optimal, in our situation it does not provide any information; this is

related to the different expression of the term of rest in the Almgren monotonicity



formula, Proposition 5.2.4. This is why we have to use a completely different argument

which is not based on the existence of solutions for the system of k components in

bounded cylinders (or in semi-infinite cylinders), but rests on Theorem 1.6 of [6].

Roughly speaking, we will obtain the existence of a solution of (S)k with exponential

growth as a limit of solutions of the same system having algebraic growth.

The proof of Theorem 5.1.10 will be the object of Section 5.6.

5.2 Almgren-type monotonicity formulæ

Let k ≥ 2 be a fixed integer. In this section we are going to prove some monotonicity

formulæ for solutions of ∆ui = ui
∑
j 6=i u

2
j in R2

ui > 0, i = 1, . . . , k
(S)k

considered as defined in a cylinder C(a,b) (this means that we assume from the begin-

ning that (u1, . . . , uk) is kπ-periodic in y).

In this section we will use many times the following general result:

Lemma 5.2.1. Let (u1, . . . , uk) be a solution of (S)k in C(a,b). Then the function

r 7→
∫

Σr

k∑
i=1

|∇ui|2 +
∑

1≤i<j≤k

u2
iu

2
j − 2

∫
Σr

k∑
i=1

(∂xui)
2

is constant in (a, b).

Proof. Let a < r1 < r2 < b. We test the equation (S)k with (∂xu1, . . . , ∂xuk) in

C(r1,r2): for every i it results

∫
C(r1,r2)

1

2
∂x
(
|∇ui|2

)
+

∑
j 6=i

u2
j

ui∂xui =

∫
Σr2

(∂xui)
2 −

∫
Σr1

(∂xui)
2.

Summing for i = 1, . . . , k we obtain

∫
C(r1,r2)

∂x

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

 = 2

∫
Σr2

∑
i

(∂xui)
2 − 2

∫
Σr1

∑
i

(∂xui)
2,

which gives the thesis.

5.2.1 Solutions with Neumann boundary conditions

In this subsection we are interested in solutions to (S)k defined in C(a,b) (thus kπ-

periodic in y), with a > −∞ and b ∈ (a,+∞], and satisfying a homogeneous Neumann



boundary condition on Σa, that is,

∂xui = 0 on Σa, for every i = 1, . . . , k. (5.2.1)

Firstly, we observed that under this assumption Lemma 5.2.1 implies

Lemma 5.2.2. Let (u1, . . . , uk) be a solution of (S)k in C(a,b), such that (5.2.1) holds

true. For every r ∈ (a, b) the following identity holds:∫
Σr

k∑
i=1

|∇ui|2 +
∑

1≤i<j≤k

u2
iu

2
j = 2

∫
Σr

k∑
i=1

(∂xui)
2 +

∫
Σa

k∑
i=1

(∂yui)
2 +

∑
1≤i<j≤k

u2
iu

2
j .

For a solution (u1, . . . , uk) of (S)k in C(a,b) satisfying (5.2.1), we define

Esym(r) :=

∫
C(a,r)

k∑
i=1

|∇ui|2 + 2
∑

1≤i<j≤k

u2
iu

2
j ,

Esym(r) :=

∫
C(a,r)

k∑
i=1

|∇ui|2 +
∑

1≤i<j≤k

u2
iu

2
j ,

H(r) :=

∫
Σr

k∑
i=1

u2
i

Remark 5.2.3. The index sym denotes the fact that, as we will see, the quantities

Esym and Esym are well suited to describe the growth of the solution (u1, . . . , uk) only

if (u1, . . . , uk) satisfies the (5.2.1), which can be considered as a symmetry condition.

Indeed, under (5.2.1) one can extend (u1, . . . , uk) on C(2a−b,b) by even symmetry in

the x variable.

By regularity, E, E and H are smooth. A direct computation shows that they are

nondecreasing functions: in particular

H ′(r) = 2

∫
Σr

∑
i

ui∂νui = 2E(r), (5.2.2)

where the last identity follows from the divergence theorem and the boundary condi-

tions of (u1, . . . , uk). Our next result consist in showing that also the ratio between

E (or E) and H is nondecreasing.

Proposition 5.2.4. Let (u1, . . . , uk) be a solution of (S)k in C(a,b) such that (5.2.1)

holds true. The Almgren quotient

Nsym(r) :=
Esym(r)

H(r)

is well defined and nondecreasing in (a, b). Moreover∫ r

a

∫
Σs

∑
i<j u

2
iu

2
j

H(s)
ds ≤ N(r).



Analogously, the function (which we will call Almgren quotient, too) Nsym(r) :=
Esym(r)

H(r)
is well defined and nondecreasing in (a, b), and

N′(r) ≥ 2N(r)

∫
C(a,r)

∑
i<j u

2
iu

2
j

H(r)
+ 2

(∫
C(a,r)

∑
i<j u

2
iu

2
j

H(r)

)2

.

In the rest of this subsection we will briefly write E, E , N and N instead of

Esym, Esym, Nsym and Nsym to ease the notation.

Proof. Since (u, v) ∈ H1
loc(C(a,b)) is nontrivial, E and H are positive in (a, b) and

bounded for r bounded. We compute, by means of Lemma 5.2.2

E′(r) =

∫
Σr

∑
i

|∇ui|2 + 2
∑
i<j

u2
iu

2
j

=

∫
Σr

2
∑
i

(∂xui)
2 +

∑
i<j

u2
iu

2
j +

∫
Σa

∑
i

(∂yui)
2 +

∑
i<j

u2
iu

2
j .

Note that ∂xui = ∂νui on Σr. Using the previous identity and the (5.2.2) we are in

position to compute the logarithmic derivative of N :

N ′(r)

N(r)
=
E′(r)

E(r)
− H ′(r)

H(r)

= 2

∫
Σr

∑
i(∂νui)

2∫
Σr

∑
i u∂νui

+
2
∫

Σa

∑
i(∂yui)

2 +
∑
i<j u

2
iu

2
j +

∫
Σr

∑
i<j u

2
iu

2
j

E(r)
− 2

∫
Σr

∑
i u∂νui∫

Σr

∑
i u

2
i

≥ 2

(∫
Σr

∑
i(∂νui)

2∫
Σr

∑
i u∂νui

−
∫

Σr

∑
i u∂νui∫

Σr

∑
i u

2
i

)
+

∫
Σr

∑
i<j u

2
iu

2
j

E(r)
≥
∫

Σr

∑
i<j u

2
iu

2
j

E(r)
≥ 0,

where we used the Cauchy-Schwarz and the Young inequalities. As a consequence, N

is nondecreasing in (a, b). Note also that

N ′(r) ≥
∫

Σr

∑
i<j u

2
iu

2
j

H(r)
⇒ N(r) ≥

∫ r

a

∫
Σs

∑
i<j u

2
iu

2
j

H(s)
ds

for every r > a. The same argument can be adapted with minor changes to prove the

monotonicity of N.

As a first consequence, we have the following

Corollary 5.2.5. Let (u1, . . . , uk) be a solution of (S)k in C(a,b) such that (5.2.1)

holds.

(i) If N(r) ≥ d for r ≥ s > a, then

H(r1)

e2dr1
≤ H(r2)

e2dr2
∀ s ≤ r1 < r2 < b,



ii) If N(r) ≤ d for r ≤ t < b, then

H(r1)

e2dr1
≥ H(r2)

e2dr2
∀ a < r1 < r2 ≤ t.

Proof. We prove only (ii). Recalling that H ′(r) = 2E(r) (see (5.2.2)), we have

d

dr
logH(r) = 2N(r) ≤ 2d ∀r ∈ (a, t].

By integrating, the thesis follows.

The next step is to prove a similar monotonicity property for the function E. Our

result rests on Theorem 5.6 of [6] (see also [5]), which we state here for the reader’s

convenience

Theorem 5.2.6. Let k be a fixed integer and let Λ > 1. Let

L(k,Λ) := min


∫ 2π

0

k∑
i=1

(f ′i)
2 + Λ

∑
1≤i<j≤k

f2
i f

2
j

∣∣∣∣∣ f1, . . . , fk ∈ H1([0, 2π]),
∫ 2π

0

∑k
i=1 f

2
i = 1

fi+1(t) = fi
(
t− 2π

k

)
, f1(π + t) = f1(π − t)

 ,

where the indexes are counted mod k. There exists C > 0 such that(
k

2

)2

− CΛ−1/4 ≤ L(k,Λ) ≤
(
k

2

)2

.

Remark 5.2.7. Having in mind to apply Theorem 5.2.6 on 2π-periodic functions,

note that the condition f1(π+ t) = f1(π− t) can be replaced by f1(t+ τ) = f1(τ − t)
for any τ ∈ [0, 2π).

For a fixed r0 ∈ (a, b), let us introduce

ϕ(r; r0) :=

∫ r

r0

ds

H(s)1/4
.

The function ϕ is positive and increasing in R+; thanks to point (i) of Corollary 5.2.5

and to the monotonicity of N , whenever (u, v) is nontrivial ϕ is bounded by a quantity

depending only H(r0) and N(r0). To be precise:

ϕ(r; r0) ≤ 2
e

1
2N(r0)r0

H(r0)
1
4N(r0)

[
e−

1
2N(r0)r0 − e− 1

2N(r0)r
]
. (5.2.3)

This, together with the monotonicity of ϕ(·; r0), implies that if b = +∞ then there

exists the limit

lim
r→+∞

ϕ(r; r0) < +∞. (5.2.4)



Lemma 5.2.8. Let (u1, . . . , uk) be a solution of (S)2 in C(a,b) such that (5.2.1) holds.

Let r0 ∈ (a, b), and assume that

ui+1(x, y) = ui(x, y − π) and u1 (x, τ + y) = u1 (x, τ − y) (5.2.5)

where τ ∈ [0, kπ). There exists C > 0 such that the function r 7→ E(r)

e2r
eCϕ(r;r0) is

nondecreasing in r for r > r0.

Proof. Recalling the (5.2.2), we compute the logarithmic derivative

d

dr
log

(
E(r)

e2r

)
= −2 +

∫
Σr

∑
i (∂νui)

2
+
∫

Σr
(∂yui)

2
+ 2

∑
i<j u

2
iu

2
j∫

Σr

∑
i ui∂νui

(5.2.6)

To apply Theorem 5.2.6, we observe that Σr = {r} × [0, kπ], so that∫
Σr

(∂yui)
2

+ 2
∑
i<j

u2
iu

2
j =

∫ kπ

0

(∂yui(r, y))
2

+ 2
∑
i<j

ui(r, y)2uj(r, y)2 dy

=
2

k

∫ 2π

0

(∂yũi(r, y))
2

+ 2

(
k

2

)2∑
i<j

ũi(r, y)2ũj(r, y)2 dy, (5.2.7)

where ũi(r, y) = ui
(
r, k2y

)
. By a scaling argument, thanks to assumption (5.2.5) (see

also Remark 5.2.7) we can say that for every Λ > 1
2 there holds∫ 2π

0

(∂yũi(r, y))
2

+

(
k

2

)2
2Λ∫ 2π

0

∑
i ũi(r, y)2 dy

∑
i<j

ũi(r, y)2ũj(r, y)2 dy

≥ L

(
k, 2Λ

(
k

2

)2
)∫ 2π

0

∑
i

ũi(r, y)2 dy =
2

k
L

(
k, 2Λ

(
k

2

)2
)∫

Σr

∑
i

u2
i

The choice

Λ =

∫ 2π

0

∑
i

ũi(r, y)2 dy =
2

k
H(r)

yields∫ 2π

0

(∂yũi(r, y))
2

+ 2

(
k

2

)2∑
i<j

ũi(r, y)2ũj(r, y)2 dy ≥ 2

k
L (k, kH(r))

∫
Σr

∑
i

u2
i ,

and coming back to (5.2.7) we obtain∫
Σr

(∂yui)
2

+ 2
∑
i<j

u2
iu

2
j ≥

(
2

k

)2

L (k, kH(r))

∫
Σr

∑
i

u2
i .

Plugging this estimate into the (5.2.6) we see that

d

dr
log

(
E(r)

e2r

)
≥ −2 +

∫
Σr

∑
i (∂νui)

2
+
(

2
k

)2 L (k, kH(r))
∫

Σr

∑
i u

2
i∫

Σr

∑
i ui∂νui

≥ −2 + 2
2

k

√
L (k, kH(r)) ≥ − C

H(r)1/4

where we used Theorem 5.2.6. An integration gives the thesis.



Lemma 5.2.9. Let (u1, . . . , uk) be a nontrivial solution of (S)k in C(a,+∞), and

assume that (5.2.1) and (5.2.5) hold. If d := limr→+∞N(r) < +∞, then d ≥ 1 and

lim
r→+∞

E(r)

e2r
> 0.

Proof. Let us fix r0 > a. Firstly, from the previous Lemma and the (5.2.4), we deduce

that there exists the limit

l := lim
r→+∞

E(r)

e2r
≥ 0.

Recalling that ϕ(r; r0) is bounded, it results

E(r)

e2r
≥ e−Cϕ(r;r0)E(r0)

e2r0
≥ C > 0 ∀r > r0,

so that the value l is strictly greater then 0. Now, assume by contradiction that

d = limr→+∞N(r) < 1. The monotonicity of N implies N(r) ≤ d for every r > 0.

Hence, from Corollary 5.2.5 we deduce

H(r)

e2dr
≤ H(r0)

e2dr0
∀r > r0 ⇒ lim sup

r→+∞

H(r)

e2dr
< +∞ ⇒ lim

r→+∞

H(r)

e2r
= 0,

which in turns gives

0 < l = lim
r→+∞

E(r)

e2r
= lim
r→+∞

N(r) lim
r→+∞

H(r)

e2r
= 0,

a contradiction.

5.2.2 Solutions with finite energy in unbounded cylinders

In what follows we consider a solution (u1, . . . , uk) of (S)k defined in an unbounded

cylinder C(−∞,b), with b ∈ R (the choice b = +∞ is admissible). In this setting we

assume that (u1, . . . , uk) has a sufficiently fast decay as x→ −∞, in the sense that

H(r) :=

∫
Σr

k∑
i=1

u2
i → 0 as r → −∞. (5.2.8)

First of all, we can show that under assumption (5.2.8) (u1, . . . , uk) has finite

energy in C(−∞,b).

Lemma 5.2.10. Let (u1, . . . , uk) be a solution of (S)k in C(−∞,b), such that (5.2.8)

holds. Then

Eunb(r) :=

∫
C(−∞,r)

k∑
i=1

|∇ui|2 +
∑

1≤i<j≤k

u2
iu

2
j < +∞ ∀r < b.

The index unb stands for the fact that the energy is evaluated in an unbounded

cylinder, and will be omitted in the rest of the subsection.



Proof. Firstly, being a solution in C(−∞,b), it results (u1, . . . , uk) ∈ H1
loc(C(−∞,b)).

Thus, under assumption (5.2.8), there exists C > 0 such that H(r) ≤ C for every

r < b.

Let r0 < b. Let us introduce, for r > 0, the functional

e(r) :=

∫
C(−r+r0,r0)

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j .

For the sake of simplicity, in the rest of the proof we assume r0 = 0 (thus b > 0). By

direct computation and an application of Lemma 5.2.1, we find

e′(r) =

∫
Σ−r

∑
i

|∇ui|2+
∑
i<j

u2
iu

2
j = 2

∫
Σ−r

(∂xui)
2+

∫
Σ0

∑
i

|∇ui|2+
∑
i<j

u2
iu

2
j−2

∫
Σ0

(∂xui)
2

that is ∫
Σ−r

(∂xui)
2 =

1

2
e′(r) + C0 (5.2.9)

On the other hand, testing the equation (S)k in C(−r,0) by (u1, . . . , uk) and summing

for i = 1, . . . , k, we find

e(r) ≤
∫
C(−r,0)

∑
i

|∇ui|2 + 2
∑
i<j

u2
iu

2
j =

∫
Σ0

∑
i

ui∂xui −
∫

Σ−r

∑
i

ui∂xui

≤
∫

Σ0

∑
i

ui∂xui +

(∫
Σ−r

∑
i

(∂xui)
2

) 1
2
(∫

Σ−r

∑
i

u2
i

) 1
2

Let us assume that by contradiction that e(r)→ +∞ as r → +∞. Taking the square

of the previous inequality, using the boundedness of H and the assumption (5.2.8),

we have  1
C2 (e(r) + C1)2 − 2C0 ≤ e′(r) for r > r̄

e(r̄) > 0,

for some C0, C1 > 0 and r̄ sufficiently large. Any solution to the previous differential

inequality blows up in finite time, in contradiction with the fact that (u1, . . . , uk) ∈
H1

loc(C(−∞,b)). As a consequence e is bounded and, by regularity,∫
C(−∞,r)

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j < +∞ ∀r < b.

Remark 5.2.11. As a byproduct of the previous Lemma, if (u1, . . . , uk) solves the

(S)k in C(−∞,b) and (5.2.8) holds, then

lim
r→−∞

E(r) = 0.



Having in mind to recover the monotonicity formulæ of the previous subsection in

the present situation, we cannot adapt the proof of Lemma 5.2.2, where assumption

(5.2.1) played an important role. However, we can obtain a similar result with a

different proof.

Lemma 5.2.12. Let (u1, . . . , uk) be a solution to (S)2 in C(−∞,b), such that (5.2.8)

holds. Then ∫
Σr

∑
i=k

|∇ui|2 +
∑

1≤i<j≤k

u2
iu

2
j = 2

∫
Σr

k∑
i=1

(∂xui)
2

for every r < b.

Proof. We use the method of the variations of the domains: for ψ ∈ C1
c (−∞, r), we

consider

ui,ε(r, y) = ui(r + εψ(r), y) i = 1, . . . , k.

It is possible to see (u1,ε, . . . , uk,ε) as a smooth variations of (u1, . . . , uk) with compact

support in C(−∞,r): indeed

ui(x+ εψ(x), y)− ui(x, y) = ε∂xu(ξx, y)ψ(x),

where ξx ∈ (x, x+ εψ(x)). To proceed, we explicitly remark that any solution to (S)k

is critical for the energy functional

J(v1, . . . , vk) :=

∫
C(−∞,b)

k∑
i=1

|∇vi|2 +
∑

1≤i<j≤j

v2
i v

2
j

with respect to variations with compact support in C∞c (C(−∞,b)). Note that J(u1, . . . , uk) =

E(b). As (u1, . . . , uk) is a smooth solution of (S)k with finite energy E(r), it follows

that

0 = lim
ε→0

∫
C(−∞,r)

∑
i |∇ui,ε|2 +

∑
i<j u

2
i,εu

2
j,ε − E(r)

ε

=

∫
C(−∞,r)

∂

∂ε

∑
i

|∇ui(x+ εψ(x), y)|2 +
∑
i<j

u2
i (x+ εψ(x), y)u2

j (x+ εψ(x), y)

∣∣∣∣∣∣
ε=0

dxdy

+ 2 lim
ε→0

∫
C(−∞,r)

ψ′(x)
∑
i

(∂xui)
2(x+ εψ(x)) dxdy

=

∫
C(−∞,x)

2
∑
i

(∂xui)
2 −

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

ψ′

(5.2.10)

for every ψ ∈ C1
c (−∞, x). Since E(r) < +∞, for every ε > 0 there exists a compact

Kε ⊂ C(−∞,r) such that∫
C(−∞,r)\Kε

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j < ε.



Let ψ ∈ C1(−∞, r) be such that ‖ψ‖C1(−∞,r) < +∞ and ψ = 0 in a neighborhood of

r. It is possible to write ψ = ψ1 +ψ2 where ψ1 ∈ C1
c (−∞, r) and suppψ2×(R/kπZ) ⊂

(C(−∞,r) \Kε). Therefore, from (5.2.10) it follows

∫
C(−∞,r)

2
∑
i

(∂xui)
2 −

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

ψ′

=

∫
C(−∞,r)\Kε

2
∑
i

(∂xui)
2 −

∑
i

|∇u|2 +
∑
i<j

u2
iu

2
j

ψ′2

≤ 3‖ψ‖C1(−∞,x)

∫
C(−∞,r)\Kε

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

 < Cε.

Since ε has been arbitrarily chosen, we obtain

∫
C(−∞,r)

2
∑
i

(∂xui)
2 −

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

ψ′ = 0 (5.2.11)

for every ψ ∈ C1(−∞, r) be such that ‖ψ‖C1(−∞,r) < +∞ and ψ = 0 in a neighborhood

of r.

Now, let ψ ∈ C1((−∞, r]) be such that ‖ψ‖C1((−∞,r]) < +∞. For a given ε > 0, we

introduce a cut-off function η ∈ C∞(R) such that

η(s) =

1 if s ≤ r − ε

0 if s ≥ r.

Since ηψ ∈ C1(−∞, r), ‖ηψ‖C1(−∞,r) < +∞ and ηψ = 0 in a neighborhood of r, from

(5.2.11) we deduce

∫
C(−∞,r)

2
∑
i

(∂xui)
2 −

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

 ηψ′

=

∫
C(−∞,r)

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j − 2

∑
i

(∂xui)
2

 η′ψ. (5.2.12)

Denoting by

γ =

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j − 2

∑
i

(∂xui)
2

ψ,



the right hand side is∫ kπ

0

(∫ r

r−ε
η′(x)γ(s, y) dx

)
dy = −

∫ kπ

0

γ(r − ε, y) dy

−
∫ kπ

0

(∫ r

r−ε
η(s)∂xγ(x, y) dx

)
dy

=

∫
Σr

2
∑
i

(∂xui)
2 −

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

ψ + o(1)

as ε→ 0, where the last identity follows from the regularity of (u1, . . . , uk) and from

the C1-boundedness of ψ and η. Passing to the limit as ε → 0 in the (5.2.12), we

deduce that for every ψ ∈ C1((−∞, r]) such that ‖ψ‖C1((−∞,r]) < +∞ it results

∫
C(−∞,r)

2
∑
i

(∂xui)
2 −

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

ψ′

=

∫
Σr

2
∑
i

(∂xui)
2 −

∑
i

|∇ui|2 +
∑
i<j

u2
iu

2
j

ψ.

Choosing ψ = 1 we obtain the thesis.

This result permits to prove an Almgren monotonicity formula for a solution

(u1, . . . , uk) of (S)k in C(−∞,b) such that (5.2.8) holds. For such a solution, let us set

Eunb(r) :=

∫
C(−∞,r)

k∑
i=1

|∇ui|2 + 2
∑

1≤i<j≤k

u2
iu

2
j ,

We will briefly write E in the rest of the subsection. Clearly, Lemma 5.2.10 and the

fact that E(r)→ 0 as r → −∞ (see Remark 5.2.11) implies that

E(r) < +∞ ∀r < b and lim
r→−∞

E(r) = 0. (5.2.13)

By regularity, E, E and H are smooth. A direct computation shows that E and E are

increasing in r. As far as H is concerned, with respect to the previous subsection we

cannot deduce the identity (5.2.2) by means of a simple integration by parts, since

we are working in an unbounded domain. However,

Lemma 5.2.13. Let (u1, . . . , uk) be a solution to (S)k in C(−∞,b), such that (5.2.8)

holds. Then

H ′(r) = 2

∫
Σr

k∑
i=1

ui∂νui = 2E(r)

for every r < b. In particular, H is nondecreasing.



Proof. For every s < r < b, the divergence theorem and the periodicity of (u1, . . . , uk)

imply that

E(r) = E(s) +

∫
C(s,r)

∑
i

|∇ui|2 + 2
∑
i<j

u2
iu

2
j

= E(s)−
∫

Σs

∑
i

ui∂xui +

∫
Σx

∑
i

ui∂νui.

(5.2.14)

We consider the second term on the right hand side. Let η ∈ C∞c (−1, 1) be a non

negative cut-off function, even with respect to r = 0, such that η(0) = 1 and η ≤ 1 in

(−1, 1). Let ηs(x) = η(x− s); testing the equation (S)k with uiηs in C(s−1,s), we find∫
C(s−1,s)

∇ui · ∇(uiηs) + u2
i

∑
i 6=j

u2
jηs =

∫
Σs

ui∂xui

Summing up for i = 1, . . . , k, we obtain∫
Σs

∑
i

ui∂xui =

∫
C(s−1,s)

∑
i

(
ui∂xuiη

′
s + |∇ui|2ηs

)
+ 2

∑
i<j

u2
iu

2
jηs

≤ C(η′)
∑
i

‖ui‖2H1(C(s−1,s))
+ E(s),

(5.2.15)

where the last estimate follows from the Hölder inequality. We claim that∑
i

‖ui‖H1(C(s−1,s)) → 0 as s→ −∞.

This is a consequence of the Poincaré inequality∫
C(s−1,s)

u2 ≤ C

(∫
Σs

u2 +

∫
C(s−1,s)

|∇u|2
)

∀u ∈ H1(C(s−1,s))

together with assumption (5.2.8) and the fact that E(s)→ 0 as s→ −∞ (see (5.2.13)).

Thus, from the (5.2.15) we deduce that

lim
s→−∞

∫
Σs

∑
i

ui∂xui = 0,

which in turns can be used in the (5.2.14) to obtain the thesis:

E(r) = lim
s→−∞

(
E(s)−

∫
Σs

∑
i

ui∂xui +

∫
Σx

∑
i

ui∂νui

)
=

∫
Σx

∑
i

ui∂νui.

In light of the previous results, the proof of the following statements are straight-

forward modification of the proofs of Proposition 5.2.4, Corollary 5.2.5 and Lemmas

5.2.8 and 5.2.9.



Proposition 5.2.14. Let (u1, . . . , uk) be a solution of (S)k in C(−∞,b) such that

(5.2.8) holds. TheAlmgren quotient

Nunb(r) :=
Eunb(r)

H(r)

is well defined in (−∞, b) and nondecreasing. Moreover,∫ r

−∞

∫
Σs

∑
i<j u

2
iu

2
j

H(s)
ds ≤ N(r).

Analogously, the function Nunb(r) :=
Eunb(r)
H(r)

is well defined in (−∞, b) and nonde-

creasing.

We will briefly write N and N instead of Nunb and Nunb in the rest of this

subsection.

Corollary 5.2.15. Let (u1, . . . , uk) be a solution of (S)k in C(−∞,b) such that (5.2.8)

holds.

(i) If N(r) ≥ d for r ≥ s, then

H(r1)

e2dr1
≤ H(r2)

e2dr2
∀ s ≤ r1 < r2 < b,

ii) If N(r) ≤ d for r ≤ t < b, then

H(r1)

e2dr1
≥ H(r2)

e2dr2
∀ r1 < r2 ≤ t.

For a fixed r0 < b, let us introduce

ϕ(r; r0) :=

∫ r

r0

ds

H(s)1/4
.

The function ϕ is positive and increasing in R+; thanks to point (i) of Corollary

5.2.15 and to the monotonicity of N , whenever (u, v) is nontrivial ϕ is bounded by a

quantity depending only H(r0) and N(r0):

ϕ(r; r0) ≤ 2
e

1
2N(r0)r0

H(r0)
1
4N(r0)

[
e−

1
2N(r0)r0 − e− 1

2N(r0)r
]
. (5.2.16)

This, together with the monotonicity of ϕ(·; r0), implies that if b = +∞ then there

exists the limit

lim
r→+∞

ϕ(r; r0) < +∞.



Lemma 5.2.16. Let (u1, . . . , uk) be a solution of (S)2 in C(−∞,b) such that (5.2.8)

hold. Let r0 ∈ (−∞, b), and assume that

ui+1(x, y) = ui(x, y − π) and u1 (x, τ + y) = u1 (x, τ − y) (5.2.17)

where τ ∈ [0, kπ). There exists C > 0 such that the function r 7→ E(r)

e2r
eCϕ(r;r0) is

nondecreasing in r for r > r0.

Lemma 5.2.17. Let (u1, . . . , uk) be a nontrivial solution of (S)k in C∞, and assume

that (5.2.8) and (5.2.17) hold. If d := limr→+∞N(r) < +∞, then d ≥ 1 and

lim
r→+∞

E(r)

e2r
> 0.

Remark 5.2.18. The achievements of this section hold true for solutions to−∆ui = −βui
∑
j 6=i u

2
j

ui > 0

with the energy density∑
i

|∇ui|2 + 2
∑
i<j

u2
iu

2
j replaced by F

∑
i

|∇ui|2 + 2β
∑
i<j

u2
iu

2
j .

5.2.3 Monotonicity formulæ for harmonic functions

Here we prove some monotonicity formulæ for harmonic functions of the plane which

are 2π periodic in one variable. In what follows, in the definition of C(a,b) and Σr we

mean k = 2. The following results will come useful in section 5.6.

Firstly, it is not difficult to obtain the counterpart of Lemma 5.2.1.

Lemma 5.2.19. Let Ψ be an entire harmonic function in C(a,b). Then

r 7→
∫

Σr

|∇Ψ|2 − 2Ψ2
x

is constant.

Proof. We proceed as in the proof of Lemma 5.2.1: for a < r1 < r2 < b, we test the

equation −∆Ψ = 0 with Ψx in C(r1,r2) and integrate by parts.

In what follows we consider a harmonic function Ψ defined in an unbounded

cylinder C(−∞,b), with b ∈ R or b = +∞. We assume that

H(r; Ψ) :=

∫
Σr

Ψ2 → 0 as r → −∞. (5.2.18)



Lemma 5.2.20. Let Ψ be a harmonic function in C(−∞,b) such that (5.2.18) holds

true. Then

(i) for every r ∈ R it results Eunb(r; Ψ) :=

∫
C(−∞,r)

|∇Ψ|2 < +∞

(ii) it results ∫
Σr

|∇Ψ|2 = 2

∫
Σr

(∂xΨ)2 (5.2.19)

Proof. In light of Lemma 5.2.19, it is not difficult to adapt the proof of Lemma 5.2.11

and obtain (i). As far as (ii), we can proceed as in the proof of Lemma 5.2.12.

Proposition 5.2.21. Let Ψ be a nontrivial harmonic function in C(−∞,b), such that

(5.2.18) holds true. The Almgren quotient

Nunb(r; Ψ) :=

∫
C(−∞,r)

|∇Ψ|2∫
Σr

Ψ2

is nondecreasing in r. If N(·; Ψ) is constant for r in some non empty open interval

(r1, r2), then N(r; Ψ) is constant for all r ∈ R and there exists a positive integer d ∈ N
such that N(r; Ψ) = d; furthermore,

Ψ(x, y) = [C1 cos(dy) + C2 sin(dy)] edx

for some C1, C2 ∈ R.

Proof. The Almgren quotient is well defined, thanks to Lemma 5.2.20. To prove

its monotonicity, we compute the logarithmic derivative by means of the Pohozaev

identity (5.2.19) and the fact that H ′(r; Ψ) = 2Eunb(r; Ψ) (this follows from (5.2.18)):

(Nunb)′(r; Ψ)

Nunb(r; Ψ)
=

∫
Σr
|∇Ψ|2∫

C(−∞,r)
|∇Ψ|2

− 2

∫
Σr

Ψ∂xΨ∫
Σr

Ψ2
= 2

∫
Σr
|∂xΨ|2∫

Σr
Ψ∂xΨ

− 2

∫
Σr

Ψ∂xΨ∫
Σr

Ψ2
≥ 0

where in the last step we used the Cauchy-Schwarz inequality.

Let us assume now that Nunb(r; Ψ) is constant for r ∈ (r1, r2). By the previous

computations it follows that necessarily∫
Σr

|∂xΨ|2
∫

Σr

Ψ2 =

(∫
Σr

Ψ∂xΨ

)2

for every r ∈ (r1, r2). Again from the Cauchy-Schwarz inequality, we evince that it

must be

∂xΨ = λΨ on Σr

for some constant λ ∈ R and for every r ∈ (r1, r2). Solving the differential equation,

we find that Ψ is of the form

Ψ(x, y) = ψ(y)eλx.



This, together with the equation ∆Ψ = 0, yields

ψ′′+λ2ψ = 0 ⇒ Ψ(x, y) = [C1 cos(λy) + C2 sin(λy)] eλx ∀(x, y) ∈ (r1, r2)×R,

and Ψ can be uniquely extended to R2 by the unique continuation principle for har-

monic functions. Since Ψ satisfies the condition (5.2.18) and is nontrivial, it follows

that λ > 0. The proof is complete, recalling the periodicity in y of the function Ψ

and computing its Almgren quotient.

5.3 Proof of Theorem 5.1.2

In this section we construct a solution to (S)2 modeled on the harmonic function

Φ(x, y) = coshx sin y.

5.3.1 Existence in bounded cylinders

For every R > 0 we construct a solution (uR, vR) to
−∆u = −uv2 in CR

−∆v = −u2v in CR

u, v > 0

(5.3.1a)

(equivalently, we can consider the problem in (−R,R)×(0, 2π) with periodic boundary

condition on the sides [−R,R]× {0, 2π}) with Dirichlet boundary condition

u = Φ+, v = Φ− on ΣR ∪ Σ−R, (5.3.1b)

and exhibiting the same symmetries of (Φ+,Φ−). To be precise:

Proposition 5.3.1. There exists a solution (uR, vR) to problem (5.3.1a) with the

prescribed boundary conditions (5.3.1b), such that

1) uR(−x, y) = uR(x, y) and vR(−x, y) = vR(x, y),

2) the symmetries

vR(x, y) = uR(x, y − π) uR(π − x, y) = vR(π + x, y)

uR

(
x,
π

2
+ y
)

= uR

(
x,
π

2
− y
)

vR

(
x,

3

2
π + y

)
= vR

(
x,

3

2
π − y

)
hold,

3) uR − vR > 0 in {Φ > 0} and vR − uR > 0 in {Φ < 0},



4) uR > Φ+ and vR > Φ−.

Remark 5.3.2. In light of the evenness of (uR, vR) in x, it results

∂xu = 0 = ∂xv on Σ0.

As a consequence, the monotonicity formulæ proved in subsection 5.2.1 hold true for

(uR, vR) in the semi-cylinder C(0,R).

In order to keep the notation as simple as possible, in what follows we will refer

to a solution of (5.3.1a)-(5.3.1b) as to a solution of (5.3.1).

Proof. Let

UR :=

(u, v) ∈ (H1(CR))2

∣∣∣∣∣∣∣∣∣∣
u = Φ+, v = Φ− on ΣR ∪ Σ−R, u ≥ 0,

u− v ≥ 0 in {Φ ≥ 0},
v(x, y) = u(x, y − π), u(−x, y) = u(x, y),

u(x, π − y) = v(x, π + y), u
(
x, π2 + y

)
= u

(
x, π2 − y

)

 .

Note that if (u, v) ∈ UR then v is nonnegative, even in x and symmetric in y with

respect to 3
2π; moreover, u − v ≤ 0 in {Φ < 0}. It is immediate to check that UR

is weakly closed with respect to the H1 topology. We seek solutions of (5.3.1) as

minimizers of the energy functional

J(u, v) :=

∫
CR

|∇u|2 + |∇v|2 + u2v2

in UR. The existence of at least one minimizer is given by the direct method of the

calculus of variations; for the coercivity of the functional J , we use the following

Poincaré inequality:∫
CR

u2 ≤ C

(∫
Σ−R

u2 +

∫
CR

|∇u|2
)

∀u ∈ H1(CR), (5.3.2)

where C depends only on R. To show that a minimizer satisfies equation (5.3.1), we

consider the parabolic problem
Ut −∆U = −UV 2 in (0,+∞)× CR

Vt −∆V = −U2V in (0,+∞)× CR

U = Φ+, V = Φ− on (0,+∞)× (ΣR ∪ Σ−R)

(5.3.3)

with initial condition in UR. There exists a unique local solution (U, V ); by parabolic

maximum principle if follows U, V ≥ 0; hence, the maximum principle gives

0 ≤ U ≤ sup
CR

Φ+ and 0 ≤ V ≤ sup
CR

Φ−.



This control reveals that (U, V ) can be uniquely extended in the whole (0,+∞). Since

d

dt
J(U(t, ·), V (t, ·)) = −2

∫
CR

(
U2
t + V 2

t

)
≤ 0, (5.3.4)

that is, the energy is a Lyapunov functional, from the parabolic theory it follows that

for every sequence ti → +∞ there exists a subsequence (tj) such that (U(tj ·), V (tj , ·))
converges to a solution (u, v) of (5.3.1). Therefore, in order to prove that (uR, vR)

solves (5.3.1), it is sufficient to show that there exists an initial condition in UR such

that the limiting profile (u, v) coincides with (uR, vR). We use the fact that

UR is positively invariant under the parabolic flow. (5.3.5)

To prove this claim, we firstly note that by the symmetry of initial and boundary

conditions and by the uniqueness of the solution to problem (5.3.3), we have

V (t, x, y) = U(t, x, y − π), U(t,−x, y) = U(t, x, y),

V (t, x, π + y) = U(t, x, π − y), U
(
t, x,

π

2
+ y
)

= U
(
t, x,

π

2
− y
)
.

(5.3.6)

This implies

U(t, x, π)− V (t, x, π) = 0 ∀(t, x) ∈ (0,+∞)× [−R,R].

Furthermore, using the (5.3.6) and the periodicity of (U, V )

U(t, x, 0)− V (t, x, 0) = U(t, x, 0)− V (t, x, 2π) = 0 ∀(t, x) ∈ (0,+∞)× [−R,R]

U(t, x, 2π)− V (t, x, 2π) = U(t, x, 2π)− V (t, x, 0) = 0 ∀(t, x) ∈ (0,+∞)× [−R,R].

This means that U − V = 0 on {Φ = 0}. Let us introduce DR := {Φ > 0} ∩ CR. For

each initial datum in UR, we have
(U − V )t −∆(U − V ) = UV (U − V ) in (0,+∞)×DR

U − V ≥ 0 on {0} ×DR

U − V ≥ 0 on [0,+∞)× ∂DR.

(5.3.7)

The parabolic maximum principle implies U−V ≥ 0 in (0,+∞)×DR. This completes

the proof of the claim.

Let us consider equation (5.3.3) with the initial conditions U(0, x, y) = uR(x, y),

V (0, x, y) = vR(x, y); let us denote (UR, V R) the corresponding solution. On one

side, by minimality,

J(uR, vR) ≤ J(UR(t, ·), V R(t, ·)) ∀t ∈ (0,+∞);



we point out that this comparison is possible because of (5.3.5). On the other side,

by the (5.3.4),

J(UR(t, ·), V R(t, ·)) ≤ J(uR, vR) ∀t ∈ (0,+∞).

We deduce that J(UR, V R) is constant, which in turns implies (we can use again the

(5.3.4)),

URt (t, x, y) = V Rt (t, x, y) ≡ 0 ⇒ UR(t, x, y) = uR(x, y), V R(t, x, y) = vR(x, y).

By the above argument, as (uR, vR) coincides with the asymptotic profile of a solution

of the parabolic problem (5.3.3), it solves (5.3.1). Points 1)-3) of the thesis are satisfied

due to the positive invariance of UR. The strong maximum principle yields uR > 0

and vR > 0. Moreover,−∆(uR − vR − Φ) = uRvR(uR − vR) ≥ 0 in DR

uR − vR − Φ = 0 on ∂DR

⇒ uR−vR−Φ ≥ 0 in DR,

so that by the strong maximum principle and the fact that uR, vR > 0 we deduce

uR > Φ+. Analogously, vR > Φ−.

Remark 5.3.3. The existence of a positive solution of (5.3.1) satisfying the con-

ditions 1)-2) of the Proposition can be proved by means of the celebrated Palais’

Principle of Symmetric Criticality. To do this, it is sufficient to minimize the func-

tional J in the weakly closed set(u, v) ∈ (H1(CR))2

∣∣∣∣∣∣∣∣
u = Φ+, v = Φ− on ΣR ∪ Σ−R,

v(x, y) = u(x, y − π), u(−x, y) = u(x, y),

u(x, π − y) = v(x, π + y), u
(
x, π2 + y

)
= u

(
x, π2 − y

)
 ,

and apply the maximum principle. We have chose a more complicated proof since we

will strongly use the pointwise estimates given by point 4).

5.3.2 Compactness of the family {(uR, vR)}

In this section we aim at proving that, up to a subsequence, the family {(uR, vR) : R >

1} obtained in Proposition 5.3.1 converges, as R → +∞, to a solution (u, v) of (S)2

defined in the whole C∞. Then, by looking at (u, v) as defined in R2 (this is possible

thanks to the periodicity), we obtain a solution of (S)2 satisfying the conditions 1)-5)

of Theorem 5.1.2. At a later stage, we will also obtain the estimates of points 6) and

7).



We denote ER, ER, HR, NR and NR the functions Esym, H, Esym, Nsym and Nsym

(which have been defined in subsection 5.2.1) when referred to (uR, vR). As observed

in Remark 5.3.2, for these quantities the results of subsection 5.2.1 apply.

We will obtain compactness of the sequence (uR, vR) using some uniform-in-R

control on NR and HR. We start with a uniform (in both r and R) upper bound for

the Almgren quotients NR(r).

Lemma 5.3.4. There holds NR(r) ≤ 2, for every R > 0 and r ∈ (0, R).

Proof. It is an easy consequence of the monotonicity of NR and of the minimality of

(uR, vR) for the functional J in UR: noting that J(uR, vR) = ER(R), we compute

NR(r) ≤ NR(R) ≤ 2ER(R)

HR(R)
≤ 2∫

ΣR
Φ2

∫
C(0,R)

|∇Φ|2 = 2 tanhR.

We used the fact that the restriction of (Φ+,Φ−) in CR is an element of UR for every

R, and the boundary condition of (uR, vR) on ΣR.

In the proof of the following Lemma we will exploit the compactness of the local

trace operator TΣ1
: u ∈ H1(C(0,1)) 7→ u|Σ1

∈ L2(Σ1), see Corollary ??.

Lemma 5.3.5. There exists C > 0 such that HR(1) ≤ C for every R > 1.

Proof. By contradiction, assume that HRn(1)→ +∞ for a sequence Rn → +∞. Let

us introduce the sequence of scaled functions

(ûn(x, y), v̂n(x, y)) :=
1√

HRn(1)
(uRn(x, y), vRn(x, y)) .

We wish to prove a convergence result for such a sequence, in order to obtain a

uniform lower bound for NRn(1). In a natural way, the scaling leads us to consider,

for r ∈ (0, 1), the quantities

Ên(r) :=

∫
C(0,r)

|∇ûn|2 + |∇v̂n|2 + 2HRn(1)û2
nv̂

2
n,

Ĥn(r) :=

∫
Σr

û2
n + v̂2

n, N̂n(r) :=
Ên(r)

Ĥn(r)
.

By construction, it holds Ĥn(1) = 1 and N̂n(r) = NRn(r) ≤ 2; therefore, thanks to

Lemma 5.3.4 ∫
C(0,1)

|∇ûn|2 + |∇v̂n|2 ≤ Ên(1) = N̂n(1)Ĥn(1) ≤ 2, (5.3.8)

which gives a uniform bound in the H1(C(0,1)) norm of the sequence (ûn, v̂n) (we can

use a Poincaré inequality of type (5.3.2)). Then, we can extract a subsequence which



converges weakly in H1(C(0,1)) to some limiting profile (û, v̂), which is nontrivial in

light of the compactness of the local trace operator TΣ1
and of the fact that Ĥn(1) = 1.

Since

V :=

{
(u, v) ∈

(
H1(C(0,1))

)2 ∣∣∣∣∣ u− v ≥ 0 in Φ ≥ 0, v(x, y) = u(x, y − π),

u(x, π − y) = v(x, π + y), u
(
x, π2 + y

)
= u

(
x, π2 − y

) } ,
is closed in the weak H1(C(0,1)) topology and (ûn|C(0,1)

, v̂n|C(0,1)
) ∈ V for every n, û

and v̂ are nonnegative functions with the same symmetries of (uR, vR); moreover we

can show that (û, v̂) satisfies the segregation condition ûv̂ = 0 a.e. in C(0,1). Indeed,

by the compactness of the Sobolev embedding H1(C(0,1)) ↪→ L4(C(0,1)) we deduce

that the interaction term

I(u, v) :=

∫
C(0,1)

u2v2

is continuous in the weak topology of (H1(C(0,1)))
2. From the estimate (5.3.8), we

infer

2HRn(1)I(ûn, v̂n) ≤ Ên(1) ≤ 2;

passing to the limit as n→ +∞, we conclude

I(û, v̂) = lim
n→∞

I(ûn, v̂n) = 0 ⇒ ûv̂ = 0 a.e. in C(0,1).

Moreover, from the compactness of the local trace operator TΣ1
, we also deduce∫

Σ1
û2 + v̂2 = 1. Let us consider the functional

J∞(u, v) :=

∫
C(0,1)

|∇u|2 + |∇v|2,

defined in the set

M :=

{
(u, v) ∈ (H1(C(0,1)))

2

∣∣∣∣∣
∫

Σ1
u2 + v2 = 1,

v(x, y) = u(x, y − π), uv = 0 a.e. in C1

}
.

Due to the compactness of the trace operator, one can check that M is closed in the

weak (H1(C(0,1)))
2 topology. It is clear that (û, v̂) ∈M. We claim that

inf
(u,v)∈M

J∞(u, v) =: m > 0.

Indeed, let us assume by contradiction that the infimum is 0: since the set M is

weakly closed and J∞ is weakly lower semi-continuous and coercive, there exists

(ū, v̄) such that J∞(ū, v̄) = 0. It follows that (ū, v̄) is a vector of constant functions;

the symmetry and the segregation condition imply that (ū, v̄) ≡ (0, 0), but this is in

contrast with the fact that (ū, v̄) ∈ M. Thus, the weak convergence of the sequence

(ûn, v̂n) entails

lim inf
n→∞

N̂n(1) ≥ lim inf
n→∞

∫
C(0,1)

|∇ûn|2 + |∇v̂n|2 ≥ m > 0,



so that whenever n is sufficiently large

NRn(1) = N̂n(1) ≥ 1

2
m. (5.3.9)

Thanks to Lemma 5.3.4 we know that 1
2m ≤ NRn(1) ≤ 2, and from the assumption

HRn(1)→ +∞ we deduce that (recall the (5.2.3))

ϕRn(r; 1) : =

∫ r

1

ds

HRn(s)1/4

≤ 2
e

1
2NRn (1)

HRn(1)
1
4NRn(1)

[
e−

1
2NRn (1) − e− 1

2NRn (1)r
]
→ 0

as n→∞, for every r > 1. In particular, there exists C > 0 such that

ϕRn(r; 1) ≤ C ∀1 ≤ r ≤ Rn, ∀n. (5.3.10)

This implies that the sequence (ERn(1))n is bounded. To see this, we firstly note

that (uRn , vRn) satisfies the symmetry condition (5.2.5) which is necessary to apply

Lemma 5.2.8; consequently, the variational characterization of (uRn , vRn) (see also

the proof of Lemma 5.3.4 and the (5.3.10)) implies that

ERn(1)

e2
≤ eCϕRn (Rn;1)ERn(Rn)

e2Rn
≤ 2C

ERn(Rn)

e2Rn

≤ C

∫
C(0,Rn)

|∇Φ|2

e2Rn
= C

sinhRn coshRn
e2Rn

≤ C,

where C does not depend on n. Since (ERn(1))n is bounded and (HRn(1))n tends to

infinity, we obtain

lim
n→∞

NRn(1) = lim
n→∞

ERn(1)

HRn(1)
= 0,

in contradiction with (5.3.9).

Proposition 5.3.6. There exists a subsequence of (uR, vR) which converges in C2
loc(C∞),

as R→ +∞, to a solution (u, v) of (S)2 in the whole C∞. This solution satisfies point

2)-5) of Theorem 5.1.2, and its Almgren quotient N is such that

N(r) ≤ 2 ∀r > 0 and lim
r→+∞

N(r) ≥ 1.

Proof. As HR(1) is bounded in R and NR(1) ≤ 2, also ER(1) is bounded in R. By

means of a Poincaré inequality of type (5.3.2), this induces a uniform-in-R bound

for the H1(C(0,1)) norm of (uR, vR), which in turns, by the compactness of the trace

operator, gives a uniform-in-R bound for the L2(∂C(0,1)) norm. Due to the subhar-

monicity of (uR, vR), the L2(∂C(0,1)) bound provides a uniform-in-R bound for the

L∞ norm of (uR, vR) in every compact subset of C(0,1); the regularity theory for el-

liptic equations (see [35]) ensures that, up to a subsequence, (uR, vR) converges in



C2
loc(C(0,1)), as R → +∞, to a solution (u1, v1) of (S)2 in C(0,1). As each (uR, vR) is

even in x, this solution can be extended by even symmetry in x to C1, and here sat-

isfies the conditions 1)-4) of Proposition 5.3.1 (hence both u1 and v1 are nontrivial).

The previous argument can be iterated: indeed, by Corollary 5.2.5 and Lemma 5.3.4,

we deduce

HR(r) ≤ HR(1)

e4
e4r ≤ Ce4r ∀r > 1;

that is, a uniform-in-R bound for HR(1) induces a uniform-in-R bound for HR(r)

for every r > 1. As a consequence we obtain, for every r > 1, a solution (ur, vr)

to equation (S)2 in Cr. A diagonal selection gives the existence of a solution (u, v)

to (S)2 in the whole C∞. This solution inherits by (ur, vr) the conditions 1)-4) of

Proposition 5.3.1, and thanks to the C2
loc(C∞) convergence and Lemma 5.3.4 there

holds

N(r) =

∫
C(0,r)

|∇u|2 + |∇v|2 + 2u2v2∫
Σr
u2 + v2

≤ 2 ∀r > 0.

From Lemma 5.2.9, which we can apply in light of the symmetries of (u, v), we

conclude

lim
r→+∞

N(r) ≥ 1.

The following Lemma completes the proof of point 6) of Theorem 5.1.2. After

that, by means of the pointwise estimates u > Φ+ and v > Φ− and Corollary 5.2.5,

it is straightforward to obtain also point 7).

Lemma 5.3.7. There holds d := lim
r→∞

N(r) = 1.

Proof. In light of the fact that d ≥ 1, it is sufficient to show that d ≤ 1. Let (uRn , vRn)

be the convergent subsequence found in Proposition 5.3.6, which we will simply denote

{(un, vn)}. For r > 0 we let

fn(r) :=

∫
C(0,r)

u2
nv

2
n

HRn(r)
, gn(r) :=

∫
Σr
u2
nv

2
n

HRn(r)
.

With f and g we identify the same quantities computed for the limiting profile (u, v).

Observe that fn, gn, f and g are continuous and nonnegative. By definition,

fn(r) ≤ 1

2
NRn(r) ≤ 1 ∀r > 0, (5.3.11)

where we used Lemma 5.3.4. The uniform convergence of (un, vn) implies that fn → f

and gn → g uniformly on compact intervals, while by Theorem 5.2.4 we have∫ r

0

gn(s) ds ≤ NRn(r) and

∫ r

0

g(s) ds ≤ N(r),



so that in particular gn ∈ L1(0, R) and g ∈ L1(R+). By means of the monotonicity

formula for the Almgren quotient N, Proposition 5.2.4, it is possible to refine the

computation in Lemma 5.3.4:

NRn(r) = NRn(r) + fn(r) ≤ NRn(Rn) + fn(r) ≤ 1 + fn(r).

In light of the strong H1
loc(C∞) convergence of (un, vn) to (u, v), we deduce

N(r) ≤ 1 + lim
n→+∞

fn(r) = 1 + f(r).

We have to show that f(r) → 0 as r → +∞. To prove this, we begin by computing

the logarithmic derivative of fn:

f ′n(r)

fn(r)
=

∫
Σr
u2
nv

2
n∫

C(0,r)
u2
nv

2
n

− 2
ERn(r)

HRn(r)
=
gn(r)

fn(r)
− 2NRn(r),

where we used the fact that H ′Rn(r) = 2ERn(r), see equation (5.2.2). Exploiting the

strong H1 convergence of the sequence {(un, vn)} and the fact that limr→+∞N(r) ≥
1, we deduce that there exist r0, δ > 0 such that NRn(r0) > δ for every n sufficiently

large. Consequently, fn satisfies the inequality

f ′n(r) + 2δfn(r) ≤ gn(r) for r ∈ (r0, Rn).

Multiplying for e2δr and integrating in (r1, r2) for r0 < r1 < r2 < Rn, we obtain

fn(r2) ≤ e2δ(r1−r2)fn(r1) +

∫ r2

r1

gn(s)e2δ(s−r2) ds ≤ e2δ(r1−r2) +

∫ r2

r1

gn(s) ds,

where we used the estimate (5.3.11). This implies

f(r2) ≤ e2δ(r1−r2) +

∫ r2

r1

g(s) ds for r0 < r1 < r2.

Since g ∈ L1(R+) and f ≥ 0, choosing r1 = 1
2r2 we find

lim sup
r→+∞

f(r) = 0 = lim
r→+∞

f(r).

5.4 Proof of Theorem 5.1.6

In this section we construct a solution to (S)2 modeled on the harmonic function

Γ(x, y) = ex sin y. Our construction is based on the trivial observation that

ΦR(x, y) := 2 cosh(x+R)e−R sin y → Γ(x, y) as R→ +∞.



5.4.1 Existence in bounded cylinders

As a first step, using the same line of reasoning developed in Proposition 5.3.1, it is

possible to show the existence of solution to the system
−∆u = −uv2 in C(−3R,R)

−∆v = −u2v in C(−3R,R)

u, v > 0

(5.4.1a)

(equivalently, we can consider the problem in the rectangle (−3R,R) × (0, 2π) with

periodic boundary condition on the sides [−3R,R]× {0, 2π}) and such that

uR = Φ+
R, vR = Φ−R on ΣR ∪ Σ−3R. (5.4.1b)

More precisely:

Proposition 5.4.1. There exists a solution (uR, vR) to problem (5.4.1a) with the

prescribed boundary conditions (5.4.1b), such that

1) uR(−R− x, y) = uR(−R+ x, y) and vR(−R− x, y) = vR(−R+ x, y),

2) the symmetries

vR(x, y) = uR(x, y − π) uR(x, π − y) = vR(x, π + y)

uR

(
x,
π

2
+ y
)

= uR

(
x,
π

2
− y
)

vR

(
x,

3

2
π + y

)
= vR

(
x,

3

2
π − y

)
hold,

3) uR − vR > 0 in {ΦR > 0} and vR − uR > 0 in {ΦR < 0},

4) uR > (ΦR)+ and vR > (ΦR)−.

Sketch of proof. One can recast the proof of Proposition 5.3.1 in this setting.

Remark 5.4.2. In light of point 1) of the Proposition, it results

∂xuR = 0 = ∂xvR on Σ−R.

Therefore, the monotonicity formulæ proved in subsection 5.2.1 hold true for (uR, vR)

in the semi-cylinder CR.



5.4.2 Compactness of the family {(uR, vR)}

As in the previous section, we denote as ER, ER, NR and NR the functions Esym, Esym, Nsym

and Nsym defined in subsection 5.2.1 when referred to (uR, vR). We follow here the

same line of reasoning adopted in subsection 5.3.2. Firstly, it is not difficult to modify

the proof of Lemmas 5.3.4 and 5.3.5 obtaining the following estimates:

Lemma 5.4.3. There holds NR(r) ≤ 2, for every R > 0 and r ∈ (−R,R).

Lemma 5.4.4. There exists C > 0 such that HR(1) ≤ C for every R > 1.

We are in position to show that the family {(uR, vR)} is compact, in the following

sense.

Proposition 5.4.5. There exists a subsequence of {(uR, vR)} which converges in

C2
loc(C∞), as R → +∞, to a solution (u, v) of (S)2 in the whole C∞. This solution

has the properties 2)-4) of Proposition 5.4.1.

Proof. As HR(1) is bounded in R and NR(1) ≤ 2, also ER(1) is bounded in R, and a

fortiori ∫
C1

|∇uR|2 + |∇vR|2 ≤ C ∀R > 1.

This estimate, the boundedness of HR(1) and a Poincarè inequality of type (5.3.2)

imply that {(uR, vR)} is bounded in H1(C1). Consequently, it is possible to argue

as in the proof of Proposition 5.3.6 and obtain the existence of a subsequence of

{(uR, vR)} which converges in C2
loc(C1) to a solution (u1, v1) of (S)2 in C1, which

inherits by {(uR, vR)} the properties 2)-4) of Proposition 5.4.1. In light of Corollary

5.2.5 and Lemma 5.4.3, this procedure can be iterated: indeed

HR(r) ≤ HR(1)

e4
e4r ≤ Ce4r ∀r > 1,

so that applying the previous argument we obtain a subsequence of {(uR, vR)} which

converges in C2
loc(Cr) to a solution (ur, vr) of (S)2 in Cr, and inherits by {(uR, vR)}

the properties 2)-4) of Proposition 5.4.1. A diagonal selection gives the existence of a

solution (u, v) of (S)2 in the whole C∞, and this solution enjoys the properties 2)-4)

of Proposition 5.4.1.

Remark 5.4.6. The monotonicity formulæ proved in subsection 5.2.1 do not apply on

(u, v), because passing to the limit we lose the Neumann condition ∂xuR = 0 = ∂xvR

on Σ−R.

In the next Lemma, we show that (u, v) is a solution with finite energy, so that

the achievements proved in subsection 5.2.2 applies.



Lemma 5.4.7. Let (u, v) be the solution found in Proposition 5.4.5. It results

Eunb(r) :=

∫
C(−∞,r)

|∇u|2 + |∇v|2 + u2v2 < +∞ ∀r ∈ R (5.4.2)

and

lim
r→−∞

H(r) = lim
r→−∞

∫
Σr

u2 + v2 = 0.

Recall that Eunb has been defined in subsection 5.2.2.

Proof. Let {(uRn , vRn)} be the converging subsequence found in Proposition 5.4.5,

which we will simply denote {(un, vn)}. Since {(un, vn)} converges to (u, v) in C2
loc(C∞),

it follows that

lim
n→∞

(
|∇un|2 + |∇vn|2 + u2

nv
2
n

)
χC(−Rn,r)

=
(
|∇u|2 + |∇v|2 + u2v2

)
χC(−∞,r) a.e. in C(−∞,r),

for every r > 1. Therefore, applying Corollary 5.2.5 on (un, vn), Lemma 5.4.4 and

the Fatou lemma, we deduce

Eunb(r) ≤ lim inf
n→∞

∫
C(−∞,r)

(
|∇un|2 + |∇vn|2 + u2

nv
2
n

)
χC(−Rn,r)

≤ lim inf
n→∞

ERn(r)

= lim inf
n→∞

NRn(r)HRn(r) ≤ lim inf
n→∞

2
HRn(1)

e4
e4r ≤ Ce4r,

which proves the (5.4.2). To complete the proof, we firstly note that necessarily

Eunb(r)→ 0 as r → −∞, and hence the same holds for Eunb (which has been defined

in subsection 5.2.2). Assume by contradiction that for a sequence rn → −∞ it results

H(rn) ≥ C > 0. We define

(ûn(x, y), v̂n(x, y)) :=
1√
H(rn)

(u(x+ rn, y), v(x+ rn, y)) .

A direct computation shows that∫
C(−∞,0)

|∇ûn|2+|∇v̂n|2 ≤
∫
C(−∞,0)

|∇ûn|2+|∇v̂n|2+2H(rn)û2
nv̂

2
n =

1

H(rn)
Eunb(rn)→ 0

as n → ∞. Consequently, (ûn, v̂n) tend to be a pair of constant functions of type

(û, v̂) with û = v̂ (this follows from the symmetries of (u, v)). As

C

∫
C(−∞,0)

û2
nv̂

2
n ≤ H(rn)

∫
C(−∞,0)

û2
nv̂

2
n → 0,

necessarily (ûn, v̂n) → (0, 0) almost everywhere in C(−∞,0). This is in contradiction

with the fact that
∫

Σ0
û2
n + v̂2

n = H(rn) ≥ C.

So far we proved that the solution (u, v), found in Proposition 5.4.5, enjoys prop-

erties 1)-5) of Theorem 5.1.6, and is such that H(r) → 0 as r → −∞. The previous



Lemma enables us to apply the achievements of subsection 5.2.2 for Eunb, H,Nunb

and Nunb (which we consider referred to the solution (u, v) found in Proposition

5.4.5), and permits to complete the description of the growth of (u, v), points 6)-7)

of Theorem 5.1.6.

Lemma 5.4.8. Let (u, v) be the solution found in Proposition 5.4.5. It results

lim
r→+∞

Nunb(r) = 1.

Proof. Let {(uRn , vRn)}be the converging subsequence found in Proposition 5.4.5, ,

which we will simply denote {(un, vn)}. Firstly, arguing as in the proof of the previous

Lemma, we note that by the C2
loc(C∞) convergence of (un, vn) to (u, v) it follows that

Nunb(r) ≤ lim inf
n→∞

NRn(r) ≤ 2 ∀r ∈ R,

thanks to the Fatou lemma. This, together with the symmetries of (u, v), permits to

use Lemma 5.2.17, which gives limr→+∞Nunb(r) ≥ 1. To complete the proof, it is

sufficient to show that limr→+∞Nunb(r) ≤ 1. For any r > 0, let

fn(r) :=

∫
Cr
u2
nv

2
n

HRn(r)
, gn(r) :=

∫
Σr∪Σ−r

u2
nv

2
n

HRn(r)
,

and let f and g the same quantities referred to the solution (u, v). Observe that

fn, gn, f and g are continuous and nonnegative. The uniform convergence of (un, vn)

to (u, v) implies that fn → f and gn → g, as n→∞, uniformly on compact intervals.

By definition,

fn(r) ≤ 1

2
NRn(r) ≤ 1 ∀r > 0. (5.4.3)

whenever Rn ≥ r. We claim that g ∈ L1(R+). Indeed, by the monotonicity of H and

Proposition 5.2.14, it follows that∫ r

0

g(s) ds =

∫ r

0

∫
Σs
u2v2

H(s)
ds+

∫ 0

−r

∫
Σs
u2v2

H(−s)
ds ≤

∫ r

−r

∫
Σs
u2v2

H(s)
ds ≤

∫ r

−∞

∫
Σs
u2v2

H(s)
ds ≤ Nunb(r),

for every r > 0. Let r > 0; it is possible to refine the computation on Lemma 5.3.4

to obtain

NRn(r) ≤ 1 + fn(r) +

∫
C(−Rn,−r)

u2
nv

2
n

HRn(r)
≤ 1 + fn(r) +

ERn(−r)
HRn(r)

Therefore, using again the Fatou lemma we deduce

Nunb(r) ≤ lim inf
n→∞

NRn(r) ≤ 1 + f(r) + lim inf
n→∞

ERn(−r)
HRn(r)

,

and to complete the proof we will show that

lim
r→+∞

(
f(r) + lim inf

n→∞

ERn(−r)
HRn(r)

)
= 0. (5.4.4)



Firstly, we note that

lim inf
n→∞

ERn(−r)
HRn(r)

= lim inf
n→∞

NRn(−r)HRn(−r)
HRn(r)

≤ 2 lim inf
n→∞

HRn(−r)
HRn(r)

.

From the C2
loc(C∞) convergence of (un, vn) to (u, v) it follows

2 lim inf
n→∞

HRn(−r)
HRn(r)

= 2
H(−r)
H(r)

→ 0 as r → +∞

where we used Lemma 5.4.7 and the fact that H(r) > H(0) > 0 for every r > 0.

For the (5.4.4) it remains to prove that f(r)→ 0 as r → +∞. Having observed that

limr→+∞N(r) ≥ 1 and that g ∈ L1(R+), it is not difficult to adapt the conclusion of

the proof of Lemma 5.3.7.

5.5 Systems with many components

In this section we are going to prove the existence of entire solutions with exponential

growth for the k component system (S)k. Our construction is based on the elementary

limit

lim
d→+∞

=
[(

1 +
z

d

)d]
= ex sin y,

which shows that the harmonic function ex sin y can be obtained as limit of homoge-

neous harmonic polynomial. We wish to prove that the same idea applies to solutions

of the system (S)k: there exists an entire solution to (S)k having exponential growth

which can be obtained as limit of entire solutions having algebraic growth.

5.5.1 Preliminary results

We recall some results contained in [6]. For d ∈ N
2 , let Gd be the rotation of angle π

d

in counterclockwise sense.

Theorem 5.5.1 (Theorem 1.6 of [6]). Let k ≥ 2 be a positive integer, let d ∈ N
2 be

such that

2d = hk for some h ∈ N.

There exists a solution (ud1, . . . , u
d
k) to the system (S)k which enjoys the following

symmetries

udi (x, y) = udi (G
k
d(x, y))

udi (x, y) = udi+1(Gd(x, y))

udk+1−i(x, y) = udi (x,−y)

(5.5.1)



where we recall that indexes are meant mod k. Moreover

lim
r→+∞

1

r1+2d

∫
∂Br

k∑
i=1

(
udi
)2

= b ∈ (0,+∞),

and

lim
r→+∞

r
∫
Br

∑k
i=1 |∇udi |2 +

∑
1≤i<j≤k

(
udi u

d
j

)2∫
∂Br

∑k
i=1

(
udi
)2 = d, (5.5.2)

where Br denotes the ball of center 0 and radius r.

The solution (ud1, . . . , u
d
k) is modeled on the harmonic function =(zd), as specified

by the symmetries (5.5.1). In the quoted statement, the authors modeled their con-

struction on the functions <(zd): it is straightforward to obtain an analogous result

replacing the real part with the imaginary one.

Remark 5.5.2. We point out that the symmetries (5.5.1) implies that ud1 is sym-

metric with respect to the reflection with the axis y = tan
(
π
2d

)
x.

For a solution (u1, . . . , uk) of system (S)k in R2, we introduce the functionals

Ealg(r; Λ) :=

∫
Br

k∑
i=1

|∇ui|2 + Λ
∑

1≤i<j≤k

(uiuj)
2

Halg(r) :=
1

r

∫
∂Br

k∑
i=1

(ui)
2

(5.5.3)

The index alg denotes the fact that these quantities are well suited to describe the

growth of (u1, . . . , uk) under the assumption that (u1, . . . , uk) has algebraic growth.

In particular, as proved in Lemma 2.1 of [32] and Corollary A.8 of [33] for the case

k = 2, the Almgren quotient

Nalg(r; 1) :=
Ealg(r; 1)

Halg(r)

is bounded in r ∈ R+ if and only if (u1, . . . , uk) has algebraic growth.

It is not difficult to adapt the proof of Proposition 5.2 in [6] to obtain the following

general result (in the sense that it holds true for an arbitrary solution of (S)k in RN ,

for any dimension N ≥ 2).

Proposition 5.5.3 (see Proposition 5.2 of [6]). Let N ≥ 2,

Λ ∈


[
1, N

N−2

]
if N > 2

[1,+∞) if N = 2,



2π/3

π/3

2π/9 π/6

Figure 5.2: In the figure we represent some of the solutions obtained in Theorem

5.5.1. Here the number of components is set as k = 3: each component is drawn with

a different color. On the other hand the periodicity (that is, how many times the

patch of 3-components is replicated in the circle) is given by h = 1 (up left), h = 2

(up right), h = 3 (down left) and h = 4 (down right), respectively. As a consequence,

the growth rate d varies as d = 3
2 , 3,

9
2 , 6, following the same order.



and let (u1, . . . , uk) be a solution of (S)k in RN ; the Almgren quotient

Nalg(r; Λ) :=
Ealg(r; Λ)

Halg(r)
=

r

∫
Br

k∑
i=1

|∇ui|2 + Λ
∑

1≤i<j≤k

(uiuj)
2

∫
∂Br

k∑
i=1

(ui)
2

is well defined in (0,+∞) and nondecreasing in r.

Proof. We observe that

d

dr
Ealg(r; Λ) =

d

dr

 1

rN−2

∫
Br

∑
i

|∇ui|2 +
∑
i<j

(uiuj)
2

+
d

dr

Λ− 1

rN−2

∫
Br

∑
i<j

(uiuj)
2


=

2

rN−2

∫
∂Br

∑
i

(∂νui)
2 +

2

rN−1

∫
Br

∑
i<j

(uiuj)
2

+
(2−N)(Λ− 1)

rN−1

∫
Br

∑
i<j

u2
iu

2
j +

Λ− 1

rN−2

∫
∂Br

∑
i<j

u2
iu

2
j ,

(5.5.4)

where we used equation (5.3) in [6]. Proceeding as in the proof of Proposition 5.2 in

[6], one gets

d

dr
Nalg(r; Λ) ≥ (2 + (Λ− 1)(2−N))

∫
Br

∑
i<j u

2
iu

2
j

rN−1Halg(r)
+

(Λ− 1)
∫
∂Br

∑
i<j u

2
iu

2
j

rN−2Halg(r)
,

which is ≥ 0 by our assumption on Λ.

Remark 5.5.4. In [6] the authors consider the case Λ = 1.

We work in the plane R2, so that it is possible to choose Λ = 2 in Proposition

5.5.3. We denote Ed(·; Λ) and Hd the quantities defined in (5.5.3) when referred to the

functions (ud1, . . . , u
d
k) defined in Theorem 5.5.1; also, we denote Nd(·; Λ) :=

Ed(·; Λ)

Hd
.

In case Λ = 2, we will simply write Ed and Nd to ease the notation.

Lemma 5.5.5. Let (ud1, . . . , u
d
k) be defined in Theorem 5.5.1. There holds limr→+∞Nd(r) =

d.

Proof. It is an easy consequence of the (5.5.2) and of Corollary 5.8 in [6], where it is

proved that for the solution (ud1, . . . , u
d
k) there holds

lim
r→+∞

Ed(r; 2)

r2d
= lim
r→+∞

Ed(r; 1)

r2d
.

Therefore,

lim
r→+∞

Nd(r) = lim
r→+∞

Ed(r; 2)

Hd(r)
= lim
r→+∞

Ed(r; 2)

r2d
· lim
r→+∞

r2d

Hd(r)

= lim
r→+∞

Ed(r; 1)

r2d
· lim
r→+∞

r2d

Hd(r)
= lim
r→+∞

Nd(r; 1) = d.



As a consequence, the following doubling property holds true:

Proposition 5.5.6 (See Proposition 5.3 of [6]). For any 0 < r1 < r2 it holds

Hd(r2)

r2d
2

≤ Hd(r1)

r2d
1

.

Proof. A direct computation shows that

d

dr
log

Hd(r)

r2d
=

2Nd(r)

r
− 2d

r
≤ 0;

an integration gives the thesis.

Let us consider the scaling

(ud1,R, . . . , u
d
k,R) :=

(
2d

kHd(R)

) 1
2 (
ud1(Rx,Ry), . . . , udk(Rx,Ry)

)
, (5.5.5)

where R will be determined later as a function of d. We see that
−∆udi,R = −βdR udi,R

∑
j 6=i

(
udj,R

)2
in R2

∫
∂B1

k∑
i=1

(
udi,R

)2
=

2d

k

(5.5.6)

where βdR := k
2dHd(R)R2.

Remark 5.5.7. As a function of R, βdR is continuous and such that βdR → 0 if R→ 0

and βdR →∞ if R→∞.

Accordingly with our scaling, we introduce the new Almgren quotient

Nd,R(r) :=
Ed,R(r)

HR(r)
=

r

∫
Br

k∑
i=1

|∇udi,R|2 + 2βdR
∑

1≤i<j≤k

(
udi,R u

d
j,R

)2
∫
∂Br

k∑
i=1

(
udi,R

)2 .

We point out that Nd,R(r) = Nd(Rr), so that from Lemma 5.5.5 and the monotonicity

of Nd we deduce

Nd,R(r) ≤ d ∀r,R > 0, (5.5.7)

for every d. By the symmetries, the solution (ud1,R, . . . , u
d
k,R) is kπ

d -periodic with

respect to the angular component, thus it is convenient to restrict our attention to

the cones

Sdr :=

{
(ρ, θ) : ρ ∈ (0, r), θ ∈

(
0,
kπ

d

)}
and Sd :=

{
(ρ, θ); ρ > 0, θ ∈

(
0,
kπ

d

)}
.



The boundary ∂Sdr can be decomposed as ∂Sdr = ∂pS
d
r ∪ ∂rSdr , where

∂pS
d
r := (0, r)×

{
0,
kπ

d

}
and ∂rS

d
r := {r} ×

(
0,
kπ

d

)
.

Taking into account the periodicity of (ud1,R, . . . , u
d
k,R), we note that (ud1,R, . . . , u

d
k,R)

has periodic boundary conditions on ∂pS
d
r ; furthermore

Ed,R(r) =
2d

k

∫
Sdr

∑
i

|∇udi,R|2 + 2βdR
∑
i<j

(
udi,R u

d
j,R

)2
Hd,R(r) =

2d

kr

∫
∂rSdr

∑
i

(
udi,R

)2

Nd,R(r) =

r

∫
Sdr

∑
i

|∇udi,R|2 + 2βdR
∑
i<j

(
udi,R u

d
j,R

)2
∫
∂Sdr

∑
i

(
udi,R

)2 .

(5.5.8)

5.5.2 A blow-up in a neighborhood of (1, 0)

In order to pursue our strategy, we consider the further scaling

(ûd1,R(x, y), . . . , ûdk,R(x, y)) =

√
βdR

d

(
ud1,R

(
1 +

x

d
,
y

d

)
, . . . , udk,R

(
1 +

x

d
,
y

d

))
.

(5.5.9)

Accordingly, we will consider the scaled domains Ŝdr = d
(
Sdr − (1, 0)

)
and Ŝd =

d
(
Sd − (1, 0)

)
and the respective boundaries. Having in mind to let d → ∞, we

observe that this scaling is a blow-up centered in the point (1, 0). It is easy to verify

that (ûd1,R, . . . , û
d
k,R) solves (see (5.5.6))

−∆ûdi,R = −ûdi,R
∑
j 6=i

(
ûdj,R

)2
in Ŝd

∫
∂rŜd1

k∑
i=1

(
ûdi,R

)2
=
βdR
d
,

(5.5.10)

with suitable periodic conditions on ∂Ŝd. A direct computation shows that from

(5.5.8) it follows

Nd,R(r) = d

r

∫
Ŝdr

∑
i

|∇ûdi,R|2 + 2
∑
i<j

(
ûdi,Rû

d
j,R

)2
∫
∂rŜdr

∑
i

(
ûdi,R

)2 ,

where in the new coordinates

r =

√(
1 +

x

d

)2

+
(y
d

)2

. (5.5.11)



We are then led to define a new Almgren quotient for the scaled functions (ûd1,R, . . . , û
d
k,R):

Êd,R(r) :=

∫
Ŝdr

k∑
i=1

|∇ûdi,R|2 + 2
∑

1≤i<j≤k

(
ûdi,Rû

d
j,R

)2
Ĥd,R(r) :=

1

r

∫
∂rŜdr

k∑
i=1

(
ûdi,R

)2
N̂d,R(r) :=

Êd,R(r)

Ĥd,R(r)
=

1

d
Nd,R(r).

From the equation (5.5.7), we deduce

N̂d,R(r) ≤ 1 ∀r,R > 0, ∀d ∈ N
2
. (5.5.12)

In order to understand the behavior of (ûd1,R, . . . , û
d
k,R) when d → ∞, we fix

R = R(d) to get a non-degeneracy condition.

Lemma 5.5.8. For every d ∈ N
2 there exists Rd > 0 such that

Ĥd,Rd(1) =

∫
∂rŜd1

∑
i

(
ûdi,Rd

)2
= 1.

Proof. By (5.5.10) we know that Ĥd(1) =
βdR
d , so that we have to find Rd such that

βdR = d. As observed in Remark 5.5.7, this choice is possible.

We denote (ûd1, . . . , û
d
k) := (ûd1,Rd , . . . , û

d
k,Rd

), Ĥd := Ĥd,Rd , Êd := Êd,Rd , N̂d :=

N̂d,Rd and βd := βdRd . We aim at proving that, up to a subsequence, the family{
(ûd1, . . . , û

d
k) : d ∈ N

2

}
converges, as d → +∞, to a solution of (S)k. To this aim,

major difficulties arise from the fact that Ŝdr and Ŝd depend on d; in the next Lemma

we show that this problem can be overcome thanks to a convergence property of these

domains.

Lemma 5.5.9. For any r > 1, the sets Ŝdr converge to R × (0, kπ) as k → +∞, in

the sense that

R× (0, kπ) = int

⋂
n∈ N

2

⋃
d>n

Ŝdr

 ,

where for A ⊂ R2 we mean that int (A) denotes the inner part A. Analogously,

R× (0, kπ) = int

⋂
n∈ N

2

⋃
d>n

Ŝd

 and (−∞, 0)× (0, kπ) = int

⋂
n∈ N

2

⋃
d>n

Ŝd1

 ,

and for every x̄ ∈ R

(−∞, x̄)× (0, kπ) = int

⋂
n∈ N

2

⋃
d>n

Ŝd1+ x̄
d

 .

Proof. We prove only the first claim. Let r > 1.



Step 1) R× (0, kπ) ⊂
⋂
n∈ N

2

⋃
d>n

Ŝdr .

Let (x, y) ∈ R× (0, kπ). We show that for every d ∈ N
2 sufficiently large (x, y) ∈ Ŝdr ,

that is,
(
1 + x

d ,
y
d

)
∈ Sdr , which means√(

1 +
x

d

)2

+
(y
d

)2

< r and arctan

(
y

x+ d

)
∈
(

0,
kπ

d

)
.

For the first condition it is possible to choose d sufficiently large, as r > 1. To prove

the second condition, we start by considering d > −x, so that arctan
(

y
x+d

)
> 0.

Now, provided d is sufficiently large

arctan

(
y

x+ d

)
<
kπ

d
⇔ y < (x+ d) tan

(
kπ

d

)
.

Since y < kπ, there exists ε > 0 such that y ≤ k(1 − ε)π. Let d̄ be sufficiently large

so that

x+ d >
(

1− ε

2

)
d and

d

kπ
tan

(
kπ

d

)
> 1− ε

2

for every d > d̄. Then

(x+ d) tan

(
kπ

d

)
>
(

1− ε

2

)2

kπ > (1− ε)kπ ≥ y

whenever d > d̄.

Step 2)
⋂
n∈ N

2

⋃
d>n

Ŝdr ⊂ R× [0, kπ].

We show that (R× [0, kπ])
c ⊂

(⋂
n∈ N

2

⋃
d>n Ŝ

d
r

)c
. If (x, y) 6∈ R× [0, kπ], then y > kπ

or y < 0. We consider only the case y > kπ; in such a situation

y > kπ = lim
d→∞

(x+ d) tan

(
kπ

d

)
,

so that (x, y) 6∈ Ŝdr for every d sufficiently large.

Remark 5.5.10. As a consequence of the previous result, we see that

∂rŜ
d
1 → {0} × [0, kπ] and ∂rŜ

d
1+ x̄

d
→ {x̄} × [0, kπ]

for every x̄ ∈ R.

Remark 5.5.11. Recall the expression of r in the new variable, given by (5.5.11).

For every r > 0 and d ∈ N
2 there exists ξ(r, d) such that

r = 1 +
ξ(r, d)

d
⇔ ξ(r, d) = d(r − 1).



Figure 5.3: Visualization of the construction in Lemma 5.5.9. In red the limiting set

R× (0, kπ). In blue some of the scaled domains Ŝdr , for r > 1.

Note that for every (x, y) ∈ ∂rŜ
d
r it results x < ξ(r, d). On the contrary, fixing

(x, y) ∈ ∂rŜdr there exists ζ(d, x, y) such that

r =

√(
1 +

x

d

)2

+
(y
d

)2

= 1 +
x

d
+ ζ(d, x, y).

In particular, if y = 0 we have ζ(d, x, 0) = 0, while if y > 0, ζ(d, x, y) ∼ d−2.

We are ready to prove the convergence of {(ûd1, . . . , ûdk)} as d→∞.

Lemma 5.5.12. Up to a subsequence, {(ûd1, . . . , ûdk)} converges in C2
loc (C∞), as d→

∞, to a nontrivial solution (û1, . . . , ûk) of (S)k. This solution, which is kπ-periodic

in y, enjoys the symmetries

ûi+1(x, y) = ûi (x, y − π) and û1

(
x, y +

π

2

)
= û1

(
x, y − π

2

)
Proof. From Proposition 5.5.6 and Lemma 5.5.8, we deduce that for any r ≥ 1 and d

the inequality
Ĥd(r)

r2d
=
kβdHd(r)

2d2r2d
≤ kβd

2d2
Hd(1) = Ĥd(1) = 1

holds. For every x > 0, let r = 1 + x
d ; for every d sufficiently large, we have

Ĥd

(
1 +

x

d

)
≤
(

1 +
x

d

)2d

≤ 2e2x (5.5.13)

Recalling the (5.5.12) (which we apply for R = Rd), we deduce

Êd

(
1 +

x

d

)
= N̂d

(
1 +

x

d

)
Ĥd

(
1 +

x

d

)
≤ 2e2x (5.5.14)

for every d sufficiently large. Recall that (ûd1, . . . , û
d
k) can be extended by angular

periodicity in the whole plane R2. Let us introduce

T dr :=
{

(ρ, θ) : ρ < r, θ ∈
(
−π
d
, (k + 1)

π

d

)}
⊃ Sdr ,



and let T̂ dr := d
(
T dr − (1, 0)

)
⊃ Ŝdr . Suitably modifying the argument in Lemma 5.5.9,

it is not difficult to see that

int

⋂
n∈ N

2

⋃
d>n

T̂ d1+ x̄
d

 = (−∞, x̄)× (−π, (k + 1)π)

for every x̄ ∈ R. Hence, let B an open ball contained in R × (−π, (k + 1)π), and let

xB := sup{x : (x, y) ∈ B}, so that B ⊂ (−∞, xB + 1) × (−π, (k + 1)π). Using the

same argument in the proof of Lemma 5.5.9, it is possible to show that

B ⊂ T̂ d
1+

xB+1

d

,

for every d sufficiently large, and by the (5.5.14) and the periodicity of (û1, . . . , ûk)

we deduce ∫
B

∑
i

|∇ûdi |2 ≤ 3Êd

(
1 +

xB + 1

d

)
≤ 6e2(xB+1)

whenever d is sufficiently large. This, together with (5.5.13), implies that {(ûd1, . . . , ûdk)}
is uniformly bounded in H1(B), for every B ⊂ R× (−π, (k + 1)π). By the bounded-

ness of the trace operator, this bound provides a uniform-in-d bound on the L2(∂K)

norm for every compact K ⊂⊂ R × (−π, (k + 1)π), which in turns, due to the sub-

harmonicity of udi , gives a uniform-in-d bound on the L∞(K) norm of {(ûd1, . . . , ûdk)},
for every compact set K ⊂⊂ R × (−π, (k + 1)π). The standard regularity theory

for elliptic equations guarantees that when d → ∞ then {(ûd1, . . . , ûdk)} converges in

C2
loc(R × (−π, (k + 1)π)), up to a subsequence, to a function (û1, . . . , ûk) which is a

solution to (S)k. By the convergence and by the normalization required in Lemma

5.5.8, we deduce that (recall also the convergence of the boundaries ∂Ŝd1 , Remark

5.5.10) ∫ kπ

0

∑
i

ûi(0, y)2 dy = 1;

in particular, (û1, . . . , ûk) is nontrivial. The kπ-periodicity in y follows directly form

the convergence of the domains, Lemma 5.5.9. By the pointwise convergence of

(ûd1, . . . , û
d
k) to (û1, . . . , ûk) and by the symmetries of each function (ûd1, . . . , û

d
k) (see

equation (5.5.1) and Remark 5.5.2) we deduce also that

ûi+1(x, y) = ûi (x, y − π) and û1

(
x, y +

π

2

)
= û1

(
x, y − π

2

)
.

5.5.3 Characterization of the growth of (û1, . . . , ûk)

So far we proved the existence of a solution (û1, . . . , ûk) of (S)k which enjoys the

properties 1) and 2) of Theorem 5.1.9. In this subsection, we are going to complete



the proof of the quoted statement, showing that (û1, . . . , ûk) enjoys also the properties

3)-5). We denote as Ê , Ê, Ĥ and N̂ the quantities Eunb, Eunb, H and Nunb introduced

in subsection 5.2.2 when referred to the function (û1, . . . , ûk). Firstly, we show that

(û1, . . . , ûk) has finite energy, point 3) of Theorem 5.1.9, and that Ĥ(x) → −∞ as

x→ −∞.

Lemma 5.5.13. For every x ∈ R there holds Ê(x) < +∞. In particular

Ê(x) ≤ lim inf
d→∞

Êd
(

1 +
x

d

)
and Ê(x) ≤ lim inf

d→∞
Êd

(
1 +

x

d

)
.

Furthermore, lim
x→−∞

Ĥ(x) = 0.

Proof. By the C2
loc(R2) convergence of (ûd1, . . . , û

d
k) to (û1, . . . , ûk) and by the conver-

gence properties of the domains Ŝd1+ x
d
, Lemma 5.5.9, we deduce

lim
d→∞

∑
i

|∇ûdi |2 +
∑
i<j

(
ûdi û

d
j

)2χŜd
1+ x

d

=

∑
i

|∇ûi|2 +
∑
i<j

(ûiûj)
2

χC(−∞,x)
a. e. in C∞,

for every x ∈ R. As a consequence, we can apply the Fatou lemma obtaining

Ê(x) ≤ lim inf
d→∞

Êd
(

1 +
x

d

)
≤ 2e2x,

where the uniform boundedness of Êd
(
1 + x

d

)
comes from (5.5.14). To prove that

Ĥ(x)→ 0 as x→ −∞, we can proceed with the same argument developed in Lemma

5.4.7.

In light of the previous Lemma, the monotonicity formulæ proved in subsection

5.2.2 applies for Ê , Ê, Ĥ and N̂ .

Lemma 5.5.14. There holds

lim
x→+∞

N̂(x) = 1.

Proof. By Proposition 5.2.14, we know that N̂ is nondecreasing in x, and thanks

to the symmetries of (û1, . . . , ûk), see Lemma 5.5.12, Lemma 5.2.17 implies that

limx→+∞ N̂(x) ≥ 1. It remains to show that this limit is smaller then 1. This follows

from the estimates of Lemma 5.5.13 and from the strong convergence of (ûd1, . . . , û
d
k)→

(û1, . . . , ûk), which implies that Ĥd

(
1 + x

d

)
→ Ĥ(x) as d → ∞: therefore, for every

x ∈ R

N̂(x) =
Ê(x)

Ĥ(x)
≤ lim infd→∞ Êd(x)

limd→∞ Ĥd(x)
= lim inf

d→∞
N̂d(x) ≤ 1,

where we used the (5.5.12).



In light of this achievement, we can apply Corollary 5.2.15 to complete the proof

of point 5) of Theorem 5.1.9. The fact that γ > 0 follows by Lemmas 5.5.14 and

5.2.17:

lim
r→+∞

Ĥ(r)

e2r
= lim
r→+∞

Ê(r)

e2r
· lim
r→+∞

1

N̂(r)
> 0.

Remark 5.5.15. With a similar construction, it is possible to obtain the existence

of solutions to (S)k in R2 modeled on coshx sin y. To do this, we can first con-

struct solutions of (S)k having algebraic growth defined outside the ball of radius 1,

with homogeneous Neumann boundary conditions on ∂B1. This can be done suitably

modifying the proof of Theorem 1.6 in [6]. Then, performing a new blow-up in a neigh-

borhood of (1, 0), we can obtain a solution of (S)k defined in R2
+, with homogeneous

Neumann condition on {x = 0}; this solution can be extended by even-symmetry in

x in the whole R2.

5.6 Asymptotics of solutions which are periodic in one vari-

able

In this section we prove Theorem 5.1.10.

Proof of Theorem 5.1.10. Let us start with case (i). Since the solution (u, v) is non-

trivial N(0) > 0: in particular, from point (i) of Corollary 5.2.15 it follows that

H(r)→ +∞ as r → +∞. Let us consider the shifted functions

(uR(x, y), vR(x, y)) :=
1√
H(R)

(u(x+R, y), v(x+R, y))

which solve the system 
−∆uR = −H(R)uRv

2
R in C∞

−∆vR = −H(R)u2
RvR in C∞∫

Σ0

u2
R + v2

R = 1

and share the same periodicity of (u, v). We introduce

ER(r) :=

∫
C(−∞,r)

|∇uR|2 + |∇R|2 + 2H(R)u2
Rv

2
R,

HR(r) :=

∫
Σr

u2
R + v2

R and NR(r) :=
ER(r)

HR(r)
.

It is easy to see that

ER(r) =
1

H(R)
Eunb(r +R)

HR(r) =
1

H(R)
H(r +R)

⇒ NR(r) = Nunb(r +R)



for any r (recall that Eunb and Nunb have been defined in subsection 5.2.2). We point

out that, by definition and the monotonicity of Nunb, Proposition 5.2.14, NR1
(r) ≤

NR2(r) for every R1 < R2. Furthermore, NR(r) ≤ d = limr→∞N(r) for every r,R

and NR(r) → d as R → ∞ for every r ∈ R. Therefore, NR tends to the constant

function d in L1
loc(R).

Thanks to the normalization condition HR(0) = 1 and the uniform bound NR(r) ≤
d, applying Corollary 5.2.15 (see also Remark 5.2.18) we deduce that HR(r) is uni-

formly bounded in R for every r > 0. Consequently, also ER(r) is uniformly bounded

in R for every r > 0. By means of a Poincaré inequality of type (5.3.2), we deduce

that the sequence (uR, vR) is uniformly bounded in H1
loc(C∞) and, by standard elliptic

estimates, in L∞loc(C∞). From Theorem 2.6 of [52] (it is a local version of Theorem 1.1

of [39]), we evince that the sequence (uR, vR) is uniformly bounded also in C0,α
loc (C∞)

for any α ∈ (0, 1). Consequently, up to a subsequence, (uR, vR) converges in C0
loc(C∞)

and in H1
loc(C∞) to a pair (Ψ+,Ψ−), where Ψ is a nontrivial harmonic function (this

is a combination of the main results in [39] and [24]). By the convergence, Ψ has to

be 2π-periodic in y.

Firstly, we prove that H(r; Ψ) → 0 ar r → −∞, so that the results of subsection

5.2.3 hold true for Ψ. As already observed, NR(r) ≥ NR̄(r) for every r ∈ R, for every

R > R̄. By the expression of the logarithmic derivative of HR, see Corollary 5.2.15

(see also Remark 5.2.18) we have

d

dr
logHR(r) = 2NR(r) ≥ 2NR̄(r) =

d

dr
logHR̄(r) ∀r.

As a consequence, taking into account that HR(0) = 1 for every R, for every r < 0 it

results
HR(0)

HR(r)
≥ HR̄(0)

HR̄(r)
⇔ HR̄(r) ≥ HR(r) ∀R > R̄.

Passing to the limit as R→ +∞, by the C0
loc(R2) convergence of (uR, vR) to (Ψ+,Ψ−)

it follows that HR̄(r) ≥ H(r; Ψ), which gives H(r; Ψ)→ 0 as r → −∞ in light of our

assumption on (u, v).

Using again the expression of the logarithmic derivative of HR and H(·; Ψ), we

deduce

log
HR(r2)

HR(r1)
= 2

∫ r2

r1

NR(s) ds and log
H(r2; Ψ)

H(r1; Ψ)
= 2

∫ r2

r1

N(s; Ψ) ds,

where r1 < r2. The left hand side of the first identity converges to the left hand side

of the second identity; recalling that NR → d in L1
loc(R), we deduce∫ r2

r1

N(s; Ψ) ds = lim
R→+∞

∫ r2

r1

NR(s) ds = d(r2−r1) ⇒ 1

r2 − r1

∫ r2

r1

N(s; Ψ) ds = d.



for every r1 < r2. It is well known that, being N(·; Ψ) ∈ L1
loc(R), the limit as

r2 → r1 of the left hand side converges to N(r1; Ψ) for almost every r1 ∈ R. Hence,

N(r; Ψ) = d for every r ∈ R. We are then in position to apply Proposition 5.2.21:

lim
R→+∞

N(R) = lim
R→+∞

NR(0) = N(0; Ψ) = d ∈ N \ {0},

and Ψ(x, y) = [C1 cos(dy) + C2 sin(dy)] edx for some constant C1, C2 ∈ R.

As far as case (ii) is concerned, for the sake of simplicity we assume a = 0. One can

repeat the proof with minor changes replacing Eunb and Nunb with Esym and Nsym

(which have been defined in subsection 5.2.1). The unique nontrivial step consists in

proving that in this setting H(r; Ψ) → 0 as r → −∞. To this aim, we note that, as

before,

HR(r) ≤ HR̄(r) ∀R > R̄,

for every r > −R̄. In particular, if r ∈ (1− R̄, 0), by Proposition 5.2.4 and Corollary

5.2.5 we deduce

HR(r) ≤ HR̄(r) =
H(r + R̄)

H(R̄)
≤ e2N(1)(r+R̄)

e2N(1)R̄
= e2N(1)r ∀R > R̄.

Passing to the limit as R→ +∞, by C0
loc(R2) convergence we obtain

H(r; Ψ) ≤ e2N(1)r ∀r ∈ (−∞, 0),

which yields H(r; Ψ)→ 0 as r → −∞.
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