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Abstract

In this thesis we will focus on the modeling of fluid flows and mass transport in differ-
ent kinds of heterogeneous media, where there exists thin structures embedded in the
considered domain.
In particular, we will investigate multidomain problems with homogeneous and hetero-
geneous dimensionality. On one hand we will study a problem characterized by two
regions of the same dimensionality separated by an interface. On the other hand, we
will focus on a problem where a one dimensional structure is completely embedded
into a three dimensional one. In both situations, the different parts of the system fea-
ture different physical properties, therefore the solutions of problems obtained through
mathematical modeling, involve discontinuities, singularities or high gradients.
The first problem has many geophysical applications, such as groundwater flows or
two-phase flows. The second one describes the exchange of fluid and mass between
microvessels and interstitial tissue.
The aim of this work is to study and develop numerical methods characterized by the
use of computational meshes that do not fit the geometry of the embedded structures.
In particular, in the first part of the work, we analyze the eXtended finite element
method (XFEM) to solve elliptic and saddle point contrast problems. Then, in the
second part, we study tissue perfusion and biochemical transport in vascularized tumor
tissue. The latter problem is addressed using a new approach, called the Embedded
Multiscale method.
Both numerical methods allow to discretize the external domain independently of the
internal structure.
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Introduction

Mathematical models and numerical methods have emerged as fundamental tools in the
investigation of life sciences. In the real world many problems, that we want to describe
through mathematical models, are characterized by field quantities that change rapidly
over length scales that are small with respect to the observed domain. These kind of
problems arise from different fields, such as geosciences, nanotechnologies, bioengi-
neering and systems biology.
For example, in plate tectonics and basin evolution, mantles, plates and sedimentary
layers can be modeled as heterogeneous viscous fluids, featuring non standard frictional
interactions at their interfaces. Again, many geophysical applications, such as ground-
water flows or two-phase flows for oil migration, are characterized by the presence of
strong heterogeneities of the model parameters and the permeability of the considered
medium (the ground, or, at a larger scale, a geological basin) may easily span several
orders of magnitude.
In many bioengineering studies, in order to handle the heterogeneous coupling between
blood flow and plasma filtration, we need to develop numerical models capable to deal
with extremely variable parameters, such as the blood viscosity and Darcy’s permeabil-
ity of the arterial walls and the external tissue.
The heterogeneities that characterize these systems are described also by the geome-
try of the systems themselves. Indeed the different layers of a basin are separated by
fractures or interfaces and, in a similar way, the vessels walls separate the blood system
from the external tissue.
Therefore, in order to predict in a proper way the model results, it is needed to well
describe both the physical and the geometrical properties of the system.
At the same time, the geometrical description could be too difficult, so it is very impor-
tant to find a correct trade off between the accurate description of the included structures
and the reduction of the geometrical complexity of the system. On one hand it is fun-
damental to use real geometries for the computational modeling, since they allow for
an accurate description of the non-smooth behavior of the system. In this direction, for
example, the enormous development of clinical imaging such as magnetic resonance or
computed tomography opens a new way toward a detailed patient-specific description
of the actual geometry. On the other hand it could be computational too expensive to
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describe in details the embedded structures because at the level of the numerical solver,
we may have to use refined meshes or graded meshes.
For all these reasons, it is fundamental to study and develop reduced numerical models
able to simplify the geometrical complexity without loss of information.

In this thesis we will focus on the mathematical and numerical modeling of partial
differential equations with unfitted interfaces.
On one hand we will study multidomain problems with homogeneous dimensionality,
i.e. problems characterized by two means of the same dimension separated with one
another through an interface.
On the other hand, we will focus on multidomain problems with heterogeneous dimen-
sionality, that is the case where a one dimensional structure is completely embedded
into a three dimensional structure.
In both situations, the different parts of the system feature different physical properties
and, depending on the problem, the solution involves discontinuities, singularities or
high gradients.
As anticipated, the common strategy to solve both kinds of problems plans to develop
numerical models characterized by the use of computational meshes that do not fit the
geometry of the embedded structures. The discretization of the external domain and the
discretization of the internal structure are therefore completely independent.

The thesis is divided in two parts, each of which is focused on the study of a differ-
ent model problem.

The first part of this thesis is focused on multidomain problems with homogeneous
dimensionality. We study contrast problems, which is the case where different means
of the same dimensions are separated by an interface.
To solve these kind of problems we apply the eXtended Finite Element Method, (XFEM),
that is based on the local enrichment of the approximation space of the classical FEM,
such that the non-smooth solution properties are accounted for correctly, independently
of the mesh.

In the first chapter of the thesis we start with the approximation of diffusion-reaction
equations, where two different domains are separated by a planar interface, [118].
In order to improve the unsatisfactory behavior of Lagrangian elements for this kind
of contrast problem, we enrich the approximation space, involving all the elements
cutted by the interface and we combine this enrichment with a Nitsche’s technique to
enforce the interface matching conditions. Firstly, we analyze the H1-stability of the
finite element space with respect to the position of the interface. This analysis, applied
to the conditioning of the discrete system of equations, shows that the scheme may be
ill posed for some configurations of the interface. Secondly, we propose a stabiliza-
tion strategy, based on a scaling technique, which restores the standard properties of
a Lagrangian finite element space and results to be very easily implemented. We also
address the behavior of the scheme with respect to large contrast problems ending up
with a choice of Nitsche’s penalty terms such that the extended finite element scheme
with penalty is robust for the worst case among small sub-elements and large contrast
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problems.

In the second chapter we will address a two-phase Stokes problem, namely the cou-
pling of two fluids with different kinematic viscosities, where the domain is crossed by
an interface corresponding to the surface separating the two fluids, [26].
We observe that the interface conditions allow the pressure and the velocity gradients
to be discontinuous across the interface. XFEM is applied to accommodate the weak
discontinuity of the velocity field across the interface and the jump in pressure. Nu-
merical evidences show that the discrete pressure approximation may be unstable in
the neighborhood of the interface, even though the spatial approximation is based on
inf-sup stable finite elements. Clearly, XFEM enrichment locally violates the satisfac-
tion of the stability condition for mixed problems. For this reason, resorting to some
pressure stabilization technique in the region of elements cut by the unfitted interface is
recommended. In particular we consider the application of stabilized equal order pres-
sure / velocity XFEM discretizations and we analyze their approximation properties.
On one side, this strategy increases the flexibility on the choice of velocity and pressure
approximation spaces. On the other side, some pressure stabilization operators, such as
local pressure projection methods or the Brezzi-Pitkaranta scheme, seem to be effec-
tive to cure the additional source of instability arising from the XFEM approximation.
These operators could be applied locally, namely only in proximity of the interface. We
perform some numerical results and we conclude the chapter discussing some bench-
mark cases, in order to thoroughly compare the performance of different variants of the
method.

The second part of the thesis is focused on multidomain problems with hetero-
geneous dimensionality. We develop a multiscale method to study blood flow and
transport phenomena in living tissues, applying a special coupling between a micro-
circulation network surrounded by a permeable medium.
We use the Immersed Boundary (IB) method developed in [32] to couple the one-
dimensional with the three-dimensional flow through the network and the interstitial
volume, respectively. The main idea consists in replacing the immersed three dimen-
sional network with an equivalent concentrated source term. In this way we facilitate
the analysis of complex capillary bed configurations and we end up with an hetero-
geneous system characterized by one dimensional channels embedded into a porous
medium. The main methodological and theoretical aspects of the method have already
been addressed in the works by Carlo D’Angelo [32–34].
The resulting numerical method is characterized by the fact that the partitions into ele-
ments of the one dimensional network and the three dimensional tissue are completely
independent.

The aim of the third chapter is to develop a computational model able to capture the
interplay between microcirculation and interstitial flow, [28].
Such phenomena are at the basis of the exchange of nutrients, wastes and pharmaco-
logical agents between the cardiovascular system and the organs. We develop a model
applicable at the microscopic scale, where the capillaries and the interstitial volume can
be described as independent structures capable to propagate flow. After discussing the
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details for the implementation of a computational solver, we apply it to compare flow
within healthy and tumor tissue samples.

The objective of the fourth chapter is to derive a new pharmacokinetic model to
study the delivery of drugs to tumors, in particular we want to perform a comparative
computational study testing vascular targeting of tumors using drug delivery from bolus
and nanoparticle injection, [27].
Starting from the fundamental laws of filtration and transport in biological tissues, we
develop a mathematical model able to capture the interplay between blood perfusion,
fluid exchange with the interstitial volume, mass transport in the capillary bed, through
the capillary walls and into the surrounding tissue. These phenomena are accounted at
the microscale level, where the capillary bed and the interstitial volume are viewed as
two separate regions. The capillary bed is described as a network of vessels carrying
blood flow.
We apply the model to study drug delivery to tumors. Owing to its general foundations,
the model can be adapted to describe and compare various treatment options. In par-
ticular, we consider drug delivery from bolus injection and from nanoparticles, which
are in turn injected into the blood stream. The computational approach is prone to per-
form a systematic quantification of the treatment performance, enabling the analysis of
interstitial drug concentration levels, drug metabolization rates, cell surviving fractions
and the corresponding timecourses. This study shows that for the treatment based on
bolus injection, the drug dose is not optimally delivered to the tumor interstitial vol-
ume. Using nanoparticles as intermediate drug carriers overrides the shortcomings of
the previous delivery approach.
The present work shows that the proposed theoretical and computational framework
represents a promising tool to compare the efficacy of different treatments of cancer
based on chemotherapy. Being directly derived from the fundamental laws of flow and
transport, the model may be also adapted to study different types of cancer, provided
that suitable metrics are available to quantify the transport properties of a specific tu-
mor mass. The generality of the theoretical framework also enables the extension to
different delivery platforms, such as liposomes.
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CHAPTER1
Multiscale models for fluid flow in porous media

In the real world we find a huge number of examples in which fields quantities change
rapidly over length scales that are small with respect to the observed domain. The
solutions of these phenomena, obtained through mathematical modeling, involve dis-
continuities, singularities or high gradients.
The first objective of this work is modeling fluid flows and mass transport in hetero-
geneous media or fractured domain, where there exists thin planar fractures or vessels
embedded in the considered domain. When the dimensional gap between the three di-
mensional domain space and the manifold representing the fracture or the vessels is
high, for instance when the fractures are thin tubes, the solution may be strongly singu-
lar on the fracture.
Reduced models of this kind have an high interest due to their potential applications in
different fields, and have been studied in some works, see for example [75] and refer-
ences therein.
Typically we consider an heterogenous N-dimensional domain, made of regions featur-
ing different characteristic, such as, for example, permeabilities. These heterogeneities
should be clearly distinct, since two or more separated regions of the domain are char-
acterized by different properties. Otherwise smaller inclusions have the dimension of
pores and they are dispersed in the domain, forming the so called porous medium. In
the first case, the regions are separate by inclusions, fractures or simple interfaces. In
the second case the porous medium is even crossed by fractures or vessels, forming a
very complex structure.
In our work we will investigate both possibilities, studying two different kinds of prob-
lems: on one hand we investigate the situation in which two different media, in partic-
ular two fluids, are separate by a thin interface. On the other hand we study the case
of a porous domain, representing a portion of tissue, spanned by a complex network
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Chapter 1. Multiscale models for fluid flow in porous media

of vessels. In both these two cases we want to apply suitable reduced models, in order
to simplify the numerical solution. Indeed the numerical approximation might require
excessive mesh refining and increasing computational costs, if it wants to take into ac-
count for the presence of fractures and vessels as N-dimensional regions. To apply
reduced models, the transverse dimension of interfaces or vessels should be negligible
when compared to the dimension of the considered domain. In particular, we imple-
ment reduced model in which fractures are represented as N-1 manifolds and vessel are
represented as N-2 manifolds in a N=3-dimensional region, as depicted in figure 1.1.

Figure 1.1: On the top: reference geometries for the problem considered. On the right, a 2D fracture in
a 2D domain. On the left, a 3D vessel in a 3D domain. On the bottom: reduced models, both fracture
and vessel are in this case represented as 1D manifold.

We will make a clear distinction between these two kind of problems. Indeed, in
the first case we are actually considering the fracture as a simple interface of dimen-
sion N − 1, which separates two different media of dimension N . The presence of
the interface allows for special coupling conditions between the different parts of the
domain. These conditions are required to close the problem. This model problem has
applications in many fields, like for example geophysics or hydrogeology but we will
apply it to describe two-phase flows, through Stokes equations.
The second problem describes tissue perfusion and transport of nutrients from capillary
vessels to cells. We address the coupling of a Darcy model for fluid flow in a porous
domain, with a Navier-Stokes model of fluid flow within the vessels embedded in the
domain. In this case the coupling is between the embedded N − 2 dimension structure
and the external N dimension domain.
The solutions of these reduced problems are characterized by discontinuities and singu-
larities. In particular the interface problem is handled with a weak discontinuity, while
the solution of the Darcy equations in the porous domain is singular on the vessels net-
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1.1. Multidomain problems with homogeneous dimensionality

work.

Beyond the first objective of this work, the second big aim is to find a strategy to
approximate the solution of these problems on a computational mesh that does not fit
the geometry of the 2D-1D manifolds, as reported in Figure 1.2. This means that we
want to study and develop numerical methods able to solve both the problems in such
a way that the discretization of the external domain and the discretization of interfaces
and vessels are completely independent.

Figure 1.2: On the top: reduced model geometries. On the bottom: computational meshes do not fit the
geometry of the manifolds.

1.1 Multidomain problems with homogeneous dimensionality

We consider a model problem characterized by two or more means separated with one
another through interfaces. This is the case of several situations, such as multiphase
and free surface flows, possibly extended to multi-physics environments, by including
heat or mass transport problems and reaction phenomena. For this reason, it is prone
to embrace a wide spectrum of complex physical problems and related models. In this
context, challenging applications emerge from geosciences. In plate tectonics and basin
evolution, mantles, plates and sedimentary layers can be modeled as heterogeneous
viscous fluids, featuring non standard fractional interactions at their interfaces. As an
example, the evolution of sedimentary basins can be modeled as a stratified creeping
flow. Obviously the more interesting situation is solving time dependent or non-linear
problems where the interface moves with time or during iteration.
To introduce the reduced model problem we start from a simple case, that is the sta-
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Chapter 1. Multiscale models for fluid flow in porous media

tionary heat conduction problem with contrast between coefficients across a smooth
internal interface.
In the sequel we consider a bounded convex polygonal domain Ω ∪ Rd with d = 1, 2
space dimensions, we define its boundary ∂Ω and we denote with Γ an internal inter-
face of dimension d − 1, separating Ω into two subregions Ω1 and Ω2, as reported in
figure 1.1 for the particular case of d = 2. Let n be a fixed unit normal vector on Γ. For
the sake of simplicity, we assume that Γ is either a piecewise linear curve for d = 2 or a
connected collection of planar surfaces for d = 3. On each subregion Ωi with i = 1, 2,
we denote by εi the diffusion coefficients, with the assumptions that there exists ε > 0
such that εi ≥ ε. We aim to approximate the solution ui of the following problem:

−∇ · (εi∇ui) = fi in Ωi

ui = 0 on ∂Ω ∩ ∂Ωi

u1 = u2 on Γ

ε1∂nu1 = ε2∂nu2 on Γ

(1.1)

where ∂nu denotes ∇u · n. The first coupling condition ensures the continuity of the
solution through the interface Γ, i.e. u1 = u2. The second one ensures the continuity
of the flux, but since ε1 6= ε2, the solution features a jump in its gradient. This type of
singularity is usually called a weak discontinuity.
Starting from this model problem, we are particularly interested in studying coupled
heterogeneous problems with large contrast between coefficients. In particular we fo-
cus on symmetric elliptic equations with large contrast between diffusion coefficients.
Then, we analyze the approximation of saddle point problem, in particular we address a
two-phase Stokes problem, namely the coupling of two fluids with different kinematic
viscosities. In both cases, we will combine the Nitsche’s method for weakly enforcing
interface conditions, originally proposed in [87], with piecewise linear finite elements,
which are locally enriched to capture a weak discontinuity of the solution. The first
part of the thesis is clearly more focused on the numerical analysis of such methods,
as we aim to develop suitable finite element schemes that are robust with respect to the
heterogeneity of the coefficients.
We will explain the variational scheme with more details in chapter 2, while in the next
section of this chapter we will present the local enrichment of the basis function.

1.2 Multidomain problems with heterogeneous dimensionality

We fix a domain Ω composed two parts, Ωv and Ωt, the capillary bed and the tissue
interstitium respectively, both of them having dimension d = 3. Assuming that the
capillaries can be described as cylindrical vessels, we denote with Γ the outer surface
of Ωv, with R its radius and with Λ the centerline of the capillary network. Figure 1.3
shows a description of the geometrical model. We considerR constant and any physical
quantity of interest, such as the blood pressure p and the blood velocity u, is a function
of space x ∈ Ω and time t. These quantities obey different balance laws, depending
on the portion of the domain of interest and, in general, they are not continuous at the
interface between subdomains. We consider the tissue interstitium Ωt as an isotropic
porous medium, such as the Darcy’s law applies, while we start assuming a Newtonian

8



1.2. Multidomain problems with heterogeneous dimensionality

Figure 1.3: On the left: description of the interstitial tissue with embedded capillary network. On the
right: reduction from three-dimensional to one-dimensional description of capillary vessels.

model for the blood flow in the capillaries. As a consequence of all these modelling
assumptions, the fluid problem in the entire domain Ω reads as follows:

∇ · ut = 0 in Ωt

ut = −k
µ
∇pt in Ωt

ρ
∂uv
∂t

+ ρ(uv · ∇)uv = −∇pv + µ∆uv in Ωv

∇ · uv = 0 in Ωv

(1.2)

where µ and k denote the dynamic blood viscosity and the constant tissue permeability,
respectively, and ρ is the blood density. At the interface Γ = ∂Ωv ∩ ∂Ωt we impose
continuity of the flow:

uv · n = ut · n = Lp(pv − pt) ut · τ = 0, on Γ (1.3)

where n is the outward unit vector normal to the capillary surface. The fluid flux across
the capillary wall is obtained in this simple example on the basis of the Starling law and
Lp represents the hydraulic conductivity of the vessel wall.

Starting from this model problem we will apply a reduced method, which allows
us to describe the 3D embedded network as a 1D manifold, as depicted in figure 1.3.
This method, called Immersed Boundary method, makes use of average operations to
transfer the coupling informations from the vessels interface Γ to the 1D manifold Λ.
The resulting 3D model is characterized by a solution that features a strong singularity
where the tissue is crossed by the 1D manifold.

1.2.1 The Immersed Boundary method

The immersed boundary method was originally developed by Charles S. Peskin [90]
with the aim of improve the computer simulation of fluid-structure interaction, espe-
cially to study biological fluid dynamics with a particular attention for flow patterns
around heart valves. Afterwards the idea has been modified and improved by Wing
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Chapter 1. Multiscale models for fluid flow in porous media

Kam Liu et al., [77, 78, 115], where, starting from the immersed boundary method,
they propose different variations of it, such as the immersed finite element method or
the extended immersed boundary method (EIBM) [114]. Also these alternative meth-
ods are proposed for the solution of complex fluid and deformable structure interaction
problems. For example, in the immersed finite element the Dirac function is replaced
by the reproducing kernel particle method (RKPM) delta function, which ensure the
continuity between the fluid and solid sub-domains.
The idea of coupling two different structures with a Dirac delta function was then taken
by Carlo D’Angelo et al., [32–34]. In particular they use the original idea of Peskin to
study a different kind of problems, i.e. no more fluid-structure interaction problems, but
elliptic problems in fractured domains, where the coupling terms are seen as Dirac mea-
sures concentrated on the fractures. In particular in these works they consider the cou-
pling between two diffusion-reaction problems, one taking place in a three-dimensional
domain and the other in a one-dimensional subdomain. This coupled problem wants
to represent the simplest model of fluid flow in a three-dimensional porous medium
featuring fractures that can be described by one-dimensional manifolds. The mass con-
servation that should be guaranteed at the interface between the porous medium and
the one dimensional manifold has to be taken into account by means of a measure term
in the 3D equation. In particular, the 3D solution is singular on the one dimensional
network, [34].
We will apply this model to reduce the system of equations (1.2), describing the mul-
tiscale analysis of blood flow through tissues. We detail the procedure to couple the
blood flow and the tissue perfusion through the Dirac delta source term in Chapter 4.
In the following we report the resulting coupled problem for microcirculation and in-
terstitial flow which consists to find the pressure fields pt, pv and the velocity fields ut,
uv such that 

−∇ ·
(
k

µ
∇pt

)
− |γ(s)|f(pt/v)δΛ = 0, in Ω

ut = −k
µ
∇pt in Ω

−πR
4

8µ

∂2pv
∂s2

+ |γ(s)|f(pt/v) = 0, s ∈ Λ

uv = −R
2

8µ

∂pv
∂s
λ s ∈ Λ

(1.4)

where the term |γ(s)|f(pt/v) is taking into account for the flux released by the actual
interface Γ and we denote with λ an arbitrary orientation that defines the increasing
direction of the arc length along the network Λ.
The full Navier-Stokes equations is replaced by a one-dimensional model for blood
flow and transport in the capillary system. We observe that the source term in the tissue
equation is actually a Dirac measure. Therefore the solution pt is characterized by a
strong singularity on the vessels network.
We will apply the immersed boundary method both to study tissue perfusion and mass
delivery in vascularized tumor tissue. The second part of the thesis is therefore more
focused on the application of such method on new and challenging biomedical prob-

10



1.3. Numerical approximation of interface problems on unfitted meshes

lems.

1.3 Numerical approximation of interface problems on unfitted meshes

The problems that we have previously introduced handle with non-smooth solutions,
characterized by discontinuities and singularities. For the numerical approximation of
these kind of solutions there exist two different approaches, [57]:

• the first strategy involves meshes that conform the discontinuities and are refined
near singularities and high gradients. In particular, if we want to study the evolu-
tion of such phenomena, we need to reconstruct and refine the mesh at each time
step.

• the second choice is to find a strategy able to model the non-smooth solutions
independently of the domain mesh.

In this work we study and analyze two numerical methods that belong to the second
category.
We apply the eXtended Finite Element Method (XFEM) to solve the interface prob-
lem.
Regarding the vessels transport problem, we construct two independent meshes to de-
scribe separately the tissue domain and the 1D vessels network. Then we need to con-
struct suitable interpolation operators in order to compute the averaged quantities that
appear in the reduced model (1.4). We detail now these two numerical methods.

1.3.1 The eXtended Finite Element method

The extended finite element method (XFEM), also known as generalized finite element
method (GFEM) or partition of unity method (PUM) is a numerical technique that gen-
eralizes the classical finite element method (FEM) approach by extending the solution
space. The extended finite element method was developed to overcome difficulties in
solving problems with localized features. The work of Belytschko et al. [49] is one of
the pioneering work towards the local enrichment of the approximation field. One of
the initial applications was the modeling of fractures in a material [11, 39, 83]. In this
original implementation, discontinuous basis functions are added to standard polyno-
mial basis functions for nodes that belonged to elements that are intersected by a crack
to provide a basis that can include crack opening displacements. A key advantage of
XFEM is that in such problems the finite element mesh does not need to be updated
to track the crack path. Subsequent research has illustrated the more general use of
the method for problems involving singularities, material interfaces and other problems
where a localized feature can be described by an appropriate set of basis functions. The
incorporation of any function, typically non-polynomials, is realized through the notion
of partition of unity. Thanks to this property, it is then possible to incorporate any kind
of function to locally approximate the field. These functions may include any analytical
solution of the problem or any a priori knowledge of the solution from the experimental
test results.
The enriched basis is formed by the combination of the nodal shape functions asso-
ciated with the mesh and the product with discontinuous functions. This construction
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allows modeling of geometries that are independent of the mesh. Additionally the en-
richment is added only locally, i.e. where the domain is required to be enriched. The
resulting algebraic system of equations consists of two types of unknowns, classical
degrees of freedom and enriched degrees of freedom. It was shown that for some prob-
lems, such an embedding of the problem’s feature into the approximation space can sig-
nificantly improve convergence rates and accuracy. Moreover, treating problems with
discontinuities with eXtended Finite Element Methods suppresses the need to mesh and
re-mesh the discontinuity surfaces, thus alleviating the computational costs. All of the
above features provide the method with distinct advantages over standard finite element
for modeling arbitrary discontinuities or singularities.

XFEM approximation spaces

The enrichment of the finite element method is obtained by using the partition of unity
method (PUM), [4, 82]. The idea of PUM is to construct an approximation space for
a specific family of partial differential equations by combining the functions arising
from a partition of unity of the domain with local approximation spaces that are able
to capture the nature of the problem at hand. In the XFEM the partition of unity is
obtained from a finite element space relative to an admissible partition of the domain, a
mesh. The local approximation space coincides with special functions that resemble the
singularities of the solution at particular locations, such as crack tips in solid mechanics.
To build up the partition of unity, we consider here piecewise affine Lagrangian finite
elements defined on the family of meshes Th, characterized by the parameter h. We
denote with V h the finite element space. One of the characteristic features of XFEM is
to use local enrichment functions. Then, given I the set of indexes numbering the mesh
nodes with the corresponding (piecewise affine Lagrangian) basis functions Ni(x), we
denote by I∗ ⊂ I the subset of enriched nodes. Then, following [56], we adopt the
corrected XFEM approximation space, whose functions uh(x) ∈ V h can be represented
as

uh(x) =
∑
i∈I

Ni(x)ui +
∑
i∈I∗

N∗i (x)R(x)[ψ(x)− ψ(xi)]u
∗
i (1.5)

The coefficients ui belong to the standard finite element part and u∗i are additional
nodal unknowns. The function ψ(x) is called an enrichment function and it is this
function that incorporates the special knowledge about a solution (e.g. jumps, kinks,
singularities, etc.) into the approximation space. R(x) is a ramp function that is nec-
essary to localize the enrichment function. Then, all nodes of the domain where this
localized enrichment function in non-zero are enriched.
In the following we will refer to some works by P. Hansbo and A. Hansbo to properly
choose the enrichment function ψ(x), [63, 64]. We will detail the construction of these
functions in chapter 2.

1.3.2 The Immersed Boundary method.

The application of the immersed boundary method allows for a special coupling be-
tween the immersed capillary network and the external tissue. The big advantage of
such a method is the geometrical complexity reduction. From now on we do no more
need to solve the full 3D geometry of the embedded structure. Moreover, at the discrete
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level, another advantage of this problem formulation is that the partition of the domains
Ω and Λ into elements are completely independent.
We define a mesh for the tissue domain, constructing an admissible family of partitions
of Ω into tetrahedrons. We also assume that Ω has a simple shape, such that it can
be exactly represented by a collection of elements. For the discretization of the cap-
illary bed, each branch of the whole network Λ is partitioned into a sufficiently large
number of linear segments E, whose collection represents a finite element mesh on a
one-dimensional manifold. On both mesh, we will define a suitable Lagrangian finite
element basis and the two sets of bases are completely independent, since the 3D and
1D meshes do not conform. In particular, let us denote with {ψit}, i = 1, . . . , Nh

t the
Lagrangian piecewise linear finite element basis on the tissue mesh. To solve the vari-
ational form of the system of equations (1.4), we need to compute the average of ψjt ,
i.e ψ

j

t , on the circle of radius R and we have to project both the values of ψjt and ψ
j

t

on the 1D discrete space. In particular, on one hand we will construct a discrete op-
erator able to interpolate the tissue piecewise linear finite elements on the linear finite
element space defined on the capillary mesh. On the other hand we will interpolate
the tissue degrees of freedom on some additional degrees of freedom, defined on the
discretization of the vessels perimeter. This perimeter is a circle of radius R defined
on the orthogonal plane to Λ at each point of the 1D mesh. The additional degrees of
freedom are required to interpolate the value of the tissue concentration profile on the
actual interface. Once interpolating, these values are used to compute the mean value
of ψit in correspondence of every point of the 1D mesh.
The construction of these two operators is the core part of the numerical method which
refers to the immersed boundary method, since they allow to solve the reduced problem
using two completely independent meshes. We will detail better the definition and the
implementation of such discrete operators in Chapter 4
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Part I

Multidomain problems with
homogeneous dimensionality
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CHAPTER2
An unfitted interface penalty method for the

approximation of contrast problems

2.1 Introduction

In this first part of the thesis we will analyze multidomain problems with homogeneous
dimensions. The main application we have in mind is the numerical approximation of
contrast problem, that are characterized by non smooth solutions.
Finite element method is one of the most common numerical tool for finding the ap-
proximate solutions of partial differential equations. It has been applied successfully in
many areas of engineering sciences to study, model and predict the behavior of mate-
rials and structures. The FEM makes use of polynomials as approximation functions,
hence they often require smooth solutions in order to obtain optimal accuracy. How-
ever, if the solution contains a non smooth behavior, like high gradients, singularities
or strong discontinuities, then the FEM methodology becomes computationally expen-
sive and the optimal convergence is not guaranteed. Also, we often rely with structures
that present internal interfaces separating different means. The parametric description
of the interface boundary with the subsequent mesh generation, represents a further
difficulties for the application of finite element methods, since the interface does not
necessarily conform with the mesh, and the finite element method may be defined on
sub-elements. This additional difficulty may be taken into account by constructing a
mesh that doesn’t conform with the interface and by enriching the approximation space
with additional basis functions that lay on a portion of the mesh elements. Such tech-
nique is called the extended finite element method (XFEM) and it has been successfully
applied to different applications such as crack propagation problems [39], free interface
problems in fluid dynamics [61, 94] and modeling fractures in porous media [36]. For
the approximation by XFEM of second order problems with interface conditions we
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mention for instance [30, 38, 58, 66, 84]. It has been observed in [17, 19, 20, 94] that
the stability and the condition number of the finite element scheme depend on how the
interface cuts the computational mesh.

In this chapter, we focus on the development of an extended finite element method
for interface problems governed by symmetric elliptic equations with large contrast
between diffusion coefficients. The approximation of elliptic interface problems with
XFEM has been already investigated in recent works. The discretization scheme that
we consider is closely inspired by [63, 64], where an extended finite element method
has been combined with a Nitsche’s technique to enforce the matching conditions be-
tween elliptic problems. Such method turns out to be stable and convergent, but the
resulting discrete problem may be ill conditioned in presence of small sub-elements.
To cure this drawback, the application of interior penalty stabilization techniques has
been successfully considered in a sequel of papers [17, 19, 20]. The idea of such stabi-
lization methods is to introduce in the discrete formulation an artificial diffusion term to
ensure the positivity of the discrete bilinear form for any configuration of the boundary
or interface.

A second relevant question involves the behavior of the scheme addressed in [63]
when we have to approximate large contrast problems. Also in this case the problem
results to be ill conditioned.

With the present work, already published in [118], we aim to improve the under-
standing of the aforementioned drawbacks of XFEM combined with Nitsche’s treat-
ment of interface conditions for large contrast problems and to develop a finite element
scheme that is robust with respect to the configuration of sub-elements as well as the
heterogeneity of the diffusion coefficients. We first extend to the case of H1 norm
the stability analysis of linear XFEM already performed in [94] in the L2 norm. In
other words, we analyze the condition number of XFEM mass and stiffness matrices in
presence of small sub-elements and we conclude that their optimal condition number,
see [108] for a discussion of this indicator, is uniformly independent of how the inter-
face cuts the mesh. This means that the simple application of a diagonal preconditioner
allows us to stabilize the scheme with respect to small sub-elements. This analysis of
the XFEM space is closed by the proof of discrete inequalities that will be useful to
address the stability and conditioning of the scheme proposed in [63].

The previous robustness result is partially spoiled by the application of Nitsche’s
method for the implementation of interface conditions, because for such technique both
large contrast of diffusion coefficients and small sub-elements negatively affect the
condition number of the discrete problem. For the former issue, Nitsche’s method
becomes stable if the penalty term is tuned as illustrated in [21], while stability in case
of the latter issue is ensured when the penalty is selected as in [63]. Unfortunately,
these criteria can be contradictory. However, owing to the present analysis, we finally
show that it is possible to blend the two different criteria to select Nitsche’s penalty
terms in order to make sure that the considered XFEM scheme is robust for the worse
case among small sub-elements and large contrast problems.

In conclusion, we show that it is possible to develop a robust discretization scheme
based on extended finite elements for the approximation of large contrast interface
problems on meshes that do not fit the interface. The robustness is gained thanks to
a suitable choice of the parameters that define the penalty technique combined with the
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application of a diagonal preconditioner to the solution of the discrete system of equa-
tions. A remarkable advantage of this stabilization strategy consist in the simplicity of
implementation. Some concluding numerical experiments confirm the efficiency of the
scheme for the approximation of large contrast problems independently of the location
of the interface.

2.2 Problem set up

In the sequel we consider a bounded convex polygonal domain Ω∪Rd with d = 1, 2, 3
space dimensions, we define its boundary ∂Ω and we denote with Γ an internal interface
separating Ω into two subregions Ω1 and Ω2. Let n be a fixed unit normal vector on Γ.
For the sake of simplicity, we assume that Γ is either a piecewise linear curve for d = 2
or a connected collection of planar surfaces for d = 3. A more precise characterization
of the interface will be presented later on.

On each subregion Ωi with i = 1, 2, we denote by εi and µi the diffusion and reaction
coefficients respectively, with the assumptions that µi ≥ 0 and there exists ε > 0 such
that εi ≥ ε. We aim to approximate the solution ui of the following problem:

−∇ · (εi∇ui) + µiui = fi in Ωi

ui = 0 on ∂Ω ∩ ∂Ωi

u1 = u2 on Γ

ε1∂nu1 = ε2∂nu2 on Γ

(2.1)

where ∂nu denotes ∇u · n. In what follows, we denote by Hs(∪Ωi) with s ≥ 1 the
broken Sobolev space of functions that belong to Hs in each subregion Ωi with i =
1, 2. Let (·, ·)0,Ω be the L2(Ω) inner product, for any v, w ∈ H1(∪Ωi). We write
(∇v,∇w)0,∪Ωi :=

∑
i=1,2(∇vi,∇wi)0,Ωi and we also apply a similar notation for the

corresponding induced norm, i.e. ‖∇v‖2
0,∪Ωi

:=
∑

i=1,2 ‖∇vi‖2
0,Ωi

. We write x . y if
there exists a generic constant c such that x ≤ cy. Furthermore, if there exist such c, c
that cy ≤ x ≤ cy we write x ' y. Constants c, c are assumed to be independent of the
configuration of Γ and εi, µi, h, unless differently specified.

Let Th be a family of shape regular and quasi uniform triangulations of Ω. On
domains with simple shape, it may be a family of uniform triangulations. Let K be
a generic element of Th and let hK be its diameter (the radius of the smallest ball
containing this set). Since we deal with regular meshes, we will also refer to h :=
max
K∈Th

hK . The collection of elements that are intersected by Γ is denoted with

Gh := {K ∈ Th : K ∩ Γ 6= ∅}
and let ΓK := K ∩ Γ the hyperplane cutting the element K.

We start defining the standard linear Lagrangian elements on Th,

V Ω
h := {v ∈ C0(Ω) : v|K ∈ P1(K) ∀K ∈ Th},

and we rely with the following assumption:

Assumption 2.2.1. Poincaré inequality is applicable to V Ω
h . If Ω\Gh is a non connected

set, then Poincaré inequality must hold on each disconnected part.
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Let I(V Ω
h ) be the set of indexes numbering the nodes associated with V Ω

h and let
V(V Ω

h ) := {xk}k∈I(V Ω
h ) be the corresponding set of points on Ω, with which we asso-

ciate the basis functions φk such that V Ω
h = span{φk}k∈I(V Ω

h ). Let πΩ
h : C0(Ω) → V Ω

h

be the Lagrangian interpolant on V Ω
h .

The position of the interface Γ can be described in multiple ways. For instance, Γ
can be defined as a parametrized curve or surface. Alternatively, it can be implicitly
represented by means of the level set of a distance function. The second strategy seems
to be very natural and attractive in the context of finite elements and it motivates the
first of the forthcoming assumptions.

Assumption 2.2.2. The interface Γ is such that:

i) There exists a discrete implicit surface (or hypersurface when d = 3) ϕh ∈ V Ω
h

that defines Γ as its zero level set.

ii) Let Pk be the patch corresponding to a generic vertex xk ∈ V(V Ω
h ), i.e. Pk =

supp(φk). We assume that

Pk ∩
(
Ω \ Gh

)
6= ∅, ∀ xk ∈ V(V Ω

h )

Let us denote by Γh the trace mesh corresponding to Γ, i.e. Γh := ∪K∈GhΓK , and
for any integrable function v we define,∫

Γh

v :=
∑

ΓK∈Γh

∫
ΓK
v

Proceeding similarly, we denote by Fh the collection of edges or faces, F , on the ex-
ternal boundary ∂Ω and we denote by hF their diameter. The boundary mesh Fh can
be further split into its parts Fh,i relative to each subregion Ωi.

2.3 An extended finite element space

We begin the development of the approximation method from the definition and the
analysis of a suitable finite element space, that should be capable to approximate the
discontinuity of the derivative of the field u on a computational mesh that does not
capture the interface Γ. To this purpose, we enrich the space V Ω

h with additional basis
functions. For simplicity of notation we will omit the subscript h and write v instead of
vh. We start by defining the following restriction operator :

Ri : L2(Ω)→ L2(Ω), Riv :=

{
v|Ωi in Ωi

0 in Ω \ Ωi

As already proposed in [63, 94] for H1-nonconforming approximations of the solution
at the interface, the enriched finite element space V h is defined as follows:

V h := R1V
Ω
h ⊕R2V

Ω
h

as also reported in figure 2.1
To proceed, we consider the alternative representation of V h proposed in [94], which

exploits a hierarchical representation in terms of a standard Lagrangian finite element
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2.3. An extended finite element space

Figure 2.1: Starting from the left: standard finite element space V Ω
h , R1V

Ω
h and R2V

Ω
h .

space, enriched with additional basis functions over cut elements. This new setting
will allow us to put into evidence how the enrichment functions affect the standard
properties of the finite element space.

We define collections of nodes neighboring the interface and we use them to con-
struct enrichment spaces,

IΓ
i (V Ω

h ) := {k ∈ I(V Ω
h ) : xk ∈ Ωj, supp(φk) ∩ Gh 6= ∅}, ∀i, j = 1, 2, j 6= i

V Γ
h,i := span{Riφk : k ∈ IΓ

i (V Ω
h )}

Owing to Theorem 2 in [94], the following direct decomposition holds:

V h = V Ω
h ⊕ V Γ

h,1 ⊕ V Γ
h,2

i.e. any function v ∈ V h can be uniquely decomposed as v = vΩ + vΓ
1 + vΓ

2 with
vΩ ∈ V Ω

h , vΓ
i ∈ V Γ

h,i, as depicted in figure 2.2.

Figure 2.2: Starting from the left: standard finite element space V Ω
h , V Γ

h,1 and V Γ
h,2.

To characterize function vΓ
i , we set up suitable extensions of each subregion Ωi, i.e.

Ω+
i := ∪K∈Th{K ∩Ωi 6= ∅} and we denote by T +

h,i the corresponding triangulation. We
denote by V +

h,i the Lagrangian finite element space relative to T +
h,i and we observe that

for any v ∈ V h there exists a unique discrete function v+
i ∈ V +

h,i such that Riv = v+
i |Ωi .

As a result of that, we introduce the extension operator:

Ei : RiV
h → V +

h,i, EiRiv := v+
i

By means of this definition, it is possible to provide an explicit characterization of
functions vΓ

i in the decomposition v = vΩ + vΓ
1 + vΓ

2 . More precisely we have:

vΩ = πΩ
h v (2.2)

vΓ
i =

∑
k∈IΓ

i

βikφk|Ωi , where
∑
k∈IΓ

i

βikφk|Ω+
i

= EiRiv − πΩ
h v|Ω+

i
(2.3)

We notice that the spaces V Γ
h,1 and V Γ

h,2 are L2-orthogonal on Ω, because their basis
functions share disjoint supports, as we can observe from figure 2.2.
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Before to start with the analysis, we first introduce some indicators that quantify
how the interface cuts the computational mesh. For any K ∈ Gh we set:

νKi :=
|K ∩ Ωi|
|K| , λKi := hK

|ΓKh |
|K ∩ Ωi|

,

where νK1 + νK2 = 1 for any K ∈ Gh. It can be seen that for any shape regular mesh Th,
there exists a positive and bounded constant S such that

0 < νKi λ
K
i ≤ S, ∀K ∈ Gh (2.4)

Furthermore, let xk ∈ IΓ
i be any vertex associated with the enrichment spaces V Γ

h,i, let
φk be the corresponding basis function and Pk be its patch. The indicators that affect
the conditioning of a finite element method with respect to small sub-elements can be
defined as

νi := min
k∈IΓ

i

|Pk ∩ Ωi|
|Pk|

, νi := max
k∈IΓ

i

|Pk ∩ Ωi|
|Pk|

ν := min
i

min
k∈IΓ

i

|Pk ∩ Ωi|
|Pk|

As shown in [94] Lemma 2, under Assumption 2.2.2 there exist a constant 0 < c0
cs <

1, uniformly independent of ν and h, such that the following strengthened Cauchy-
Schwarz inequality holds true for any vΩ ∈ V Ω

h , v
Γ ∈ V Γ

h,1 ⊕ V Γ
h,2,

(vΩ, vΓ)0,Ω ≤ c0
cs‖vΩ‖0,Ω‖vΓ‖0,Ω (2.5)

Exploiting the decomposition v = vΩ + vΓ
1 + vΓ

2 together with Pythagoras Theorem,
straightforward computations show that

(1− c0
cs)(‖vΩ‖2

0,Ω + ‖vΓ
1 ‖2

0,Ω + ‖vΓ
2 ‖2

0,Ω)

≤ ‖v‖2
0,Ω ≤ 2(‖vΩ‖2

0,Ω + ‖vΓ
1 ‖2

0,Ω + ‖vΓ
2 ‖2

0,Ω) (2.6)

For the case of linear finite elements, the previous results can be extended to the
gradient of discrete functions.

Lemma 2.3.1. Under Assumptions 2.2.1 and 2.2.2, there exists a constant 0 < c1
cs(h) <

1 uniformly independent of ν but possibly dependent on h, such that for any vΩ ∈
V Ω
h , v

Γ ∈ V Γ
h,1 ⊕ V Γ

h,2 it holds

(∇vΩ,∇vΓ)0,∪Ωi ≤ c1
cs(h)‖∇vΩ‖0,∪Ωi‖∇vΓ‖0,∪Ωi . (2.7)

Proof. Owing to Cauchy-Schwarz inequality we get

(∇vΩ,∇vΓ)0,∪Ωi =
∑
i

(∇vΩ,∇vΓ
i )0,Ωi∩Gh ≤

∑
i

‖∇vΩ‖0,Ωi∩Gh ‖∇vΓ
i ‖0,Ωi∩Gh

≤
√∑

i

‖∇vΩ‖2
0,Ωi∩Gh

√∑
i

‖∇vΓ
i ‖2

0,Ωi∩Gh ≤ ‖∇v
Ω‖0,Gh ‖∇vΓ‖0,∪Ωi
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Then, exploiting assumption 2.2.1 and 2.2.2 (ii) we prove that there exist elements
K ∈ Ω \Gh where∇vΩ 6= 0. This is equivalent to assert that there exists c(h) such that

0 < c(h) := inf
vΩ∈V Ω

h , ‖∇vΩ‖0,Gh 6=0

‖∇vΩ‖0,Ω\Gh
‖∇vΩ‖0,Gh

(2.8)

Such definition shows that c(h) depends on Gh solely, but not on the configuration of
the interface within this crust of elements; thus, it is uniformly lower bounded with
respect to ν. Then, it holds

c(h)‖∇vΩ‖0,Gh ≤ ‖∇vΩ‖0,Ω\Gh , ‖∇vΩ‖0,Gh ≤
√

1

1 + c2(h)
‖∇vΩ‖0,Ω ∀vΩ ∈ V Ω

h

and the desired result is verified with c1
cs(h) =

√
1

1+c2(h)
< 1.

To conclude, we provide a lower bound for c(h) which suggests that c(h) scales
as h

1
2 . To this aim, we notice that the restriction of vΩ to Gh is identified by degrees

of freedom laying on ∂Gh solely, denoted by v∂Gh . Then, by merging the following
inequalities,

‖vΩ‖2
0,Gh ≤ chd‖v∂Gh‖2 on Gh, chd−1‖v∂Gh‖2 ≤ ‖vΩ‖2

0,∂Gh on ∂Gh
there exists c, independent of h, such that

‖vΩ‖2
0,Gh ≤ c2h‖vΩ‖2

0,∂Gh

which combined with the inverse inequality gives,

‖∇vΩ‖2
0,Gh ≤ c2

Ih
−2‖vΩ‖2

0,Gh ≤ c2c2
Ih
−1‖vΩ‖2

0,∂Gh .

We now look at ∂Gh as a subset of the boundary of Ω \Gh and we assume that Poincaré
inequality holds for the restriction of V Ω

h to Ω \ Gh. As a result of that, combining
Poincaré and trace inequalities, we obtain

‖vΩ‖2
0,∂Gh ≤ ‖v

Ω‖2
0,∂(Ω\Gh) ≤ c2

T‖vΩ‖2
1,Ω\Gh ≤ c2

T (1 + c2
P )‖∇vΩ‖2

0,Ω\Gh .

In conclusion, we get

‖∇vΩ‖0,Gh ≤ c cIcT

√
1 + c2

Ph
− 1

2‖∇vΩ‖0,Ω\Gh

that is

inf
vΩ∈V Ω

h , ‖∇vΩ‖0,Gh 6=0

‖∇vΩ‖0,Ω\Gh
‖∇vΩ‖0,Gh

≥ h
1
2

(
c cIcT

√
1 + c2

P

)−1

.

As already observed for (2.5), inequality (2.7) directly implies that

(1− c1
cs(h))(‖∇vΩ‖2

0,Ω + ‖∇vΓ
1 ‖2

0,Ω + ‖∇vΓ
2 ‖2

0,Ω)

≤ ‖∇v‖2
0,Ω ≤ 2(‖∇vΩ‖2

0,Ω + ‖∇vΓ
1 ‖2

0,Ω + ‖∇vΓ
2 ‖2

0,Ω) (2.9)

where (1− c1
cs(h)) is asymptotically equivalent to h.
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2.3.1 Stability of the finite element space in the H1 norm

The aim of this section is to extend the stability analysis of V Γ
h,i in L2 norm, previously

developed in [94], to the case ofH1 norm. For the sake of completeness, first we briefly
remind the L2 stability analysis and second we extend it to the gradients of functions.
The presented results are valid in d = 1, 2, 3 space dimensions. We remind that all the
results addressed here are only valid for linear finite element functions.

Our primary objective is to analyze the stability of V Γ
h,i with respect to the position

of the interface Γ. The stability of a standard finite element space in the L2 norm is
ensured by the following estimate, where c, c denote generic positive constants and vΩ

k

are the nodal values of vΩ ∈ V Ω
h ,

c

n∑
k=1

(vΩ
k )2‖φk‖2

0,Ω ≤ ‖vΩ‖2
0,Ω ≤ c

n∑
k=1

(vΩ
k )2‖φk‖2

0,Ω ∀vΩ ∈ V Ω
h (2.10)

As shown in [94], Lemma 3, this result can be extended to the enriched finite element
space. Indeed, for any vΓ

i ∈ V Γ
h,i there exist positive constants cΩ

0 , c
Ω
0 , independent of

how the interface Γ cuts the mesh Th, such that

cΩ
0

∑
k∈IΓ

i

(
βik

)2

‖Riφk‖2
0,Ω ≤ ‖vΓ

i ‖2
0,Ω ≤ cΩ

0

∑
k∈IΓ

i

(
βik

)2

‖Riφk‖2
0,Ω (2.11)

The extension of this analysis to the H1 norm requires to prove the following result,
which relies on the fact that gradients of the local basis functions on V Γ

h,i are linearly
independent. We notice that this latter property would not hold true in the space V Ω

h .

Lemma 2.3.2. For any vΓ
i ∈ V Γ

h,i there exist positive constants cΩ
1 , c

Ω
1 , independent of

how the interface Γ cuts the mesh Th, such that

cΩ
1

∑
k∈IΓ

i

(
βik

)2

‖Ri∇φk‖2
0,Ω ≤ ‖∇vΓ

i ‖2
0,Ω ≤ cΩ

1

∑
k∈IΓ

i

(
βik

)2

‖Ri∇φk‖2
0,Ω (2.12)

Proof. Let K ∈ Gh be a generic interface element with Ki = K ∩Ωi and let IΓ
i (K) :=

{k ∈ I(V Ω
h ) : xk ∈ Ωj, supp(φk) ∩ (Gh ∩K) 6= ∅} be the degrees of freedom of the

enriched space on this element. For simplicity, we restrict our analysis to the element
level, since for any vΓ

i ∈ V Γ
h,i we have

‖∇vΓ
i ‖2

0,Ω =
∑
K∈Gh

∥∥∥ ∑
k∈IΓ

i (K)

βikRi∇φk
∥∥∥2

0,K
=
∑
K∈Gh

∥∥∥ ∑
k∈IΓ

i (K)

βik∇φk
∥∥∥2

0,Ki

Owing to the fact that∇φk are constant functions, there exists a real matrix Aloc,i, with
[Aloc,i]rs := (∇φr,∇φs)0,K for any r, s ∈ IΓ

i (K), independent of how the interface ΓKh
cuts the element K, such that

‖
∑

k∈IΓ
i (K)

βik∇φk‖2
0,Ki

=
|Ki|
|K| β

′
iAloc,iβi
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We observe that Aloc,i is symmetric and positive definite, since functions ∇φk with
k ∈ IΓ

i (K) are linearly independent. We also define Dloc,i = diag(Aloc,i) such that,∑
k∈IΓ

i (K)

(
βik

)2

‖∇φk‖2
0,Ki

=
|Ki|
|K| β

′
iDloc,iβi

Clearly, the eigenproblem Aloc,iβi = λDloc,iβi admits a spectrum of positive eigenval-
ues λ(K) ∈ [λmin(K), λmax(K)], where λmin(K), λmax(K) only depend on the shape
of the element K, but not on the interface ΓKh . Then, the following local estimate holds
true,

λmin(K)
∑

k∈IΓ
i (K)

(
βik

)2

‖∇φk‖2
Ki
≤ ‖∇vΓ

i ‖2
Ki
≤ λmax(K)

∑
k∈IΓ

i (K)

(
βik

)2

‖∇φk‖2
Ki

Finally, summing up over all elements K ∈ Gh, we obtain (2.11) with constants cΩ
1 :=

min
K∈Gh

λmin(K) and cΩ
1 := max

K∈Gh
λmax(K).

We will extensively apply the following inequalities relating the L2 norms of finite
element functions with the corresponding euclidean norms of degrees of freedom. Let
v denote the vector of degrees of freedom that identify a generic function v ∈ V h and
let vΓ

i and vΩ be the vectors relative to vΓ
i ∈ V Γ

h,i and vΩ ∈ V Ω
h , respectively. It is well

known that for any vΩ ∈ V Ω
h there exist positive constants cΩ, cΩ such that,

cΩhd‖vΩ‖2 ≤ ‖vΩ‖2
0,Ω ≤ cΩhd‖vΩ‖2 (2.13)

where ‖v‖ denotes the Euclidean norm. Owing to (2.3), for any v ∈ V h the upper
bound of (2.13) can be also extended to the local finite element spaces V +

h,i as follows,
‖EiRiv‖2

0,Ω . hd
(
‖vΩ‖2 + ‖vΓ

i ‖2
)
. For the enriched finite element spaces, the corre-

sponding results are affected by the position of the interface Γ.

Lemma 2.3.3. For any vΓ
i ∈ V Γ

h,i there exist positive constants cΓ
0 , c

Γ
0 , independent of

ν, h, such that

cΓ
0h

dν
2/d+1
i ‖vΓ

i ‖2 ≤ ‖vΓ
i ‖2

0,Ω ≤ cΓ
0h

dν
2/d+1
i ‖vΓ

i ‖2 (2.14)

Furthermore, there exists vΓ
i ∈ V Γ

h,i such that

‖vΓ
i ‖2

0,Ω ≤ cΓ
0h

dν
2/d+1
i ‖vΓ

i ‖2 (2.15)

Proof. Owing to the the lower bound of (2.11), we observe that(
min
k∈IΓ

i

‖Riφk‖2
0,Ω

)
‖vΓ

i ‖2 . ‖vΓ
i ‖2

0,Ω

We aim to estimate the smallest ‖Riφk‖2
0,Ωi

by splitting the integrals over the sub-
elements that belong to the patch of Riφk and then applying a suitable quadrature for-
mula. We notice that the measure of the support where the integrals are evaluated is
proportional to hdνi while the pointwise evaluations of the function to be integrated can
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be at most equivalent to (ν
1/d
i )2. The upper bound is obtained replacing the smallest

‖Riφk‖2
0,Ωi

with the largest. Then, we conclude that

min
k∈IΓ

i

‖Riφk‖2
0,Ωi
' hdν

2/d+1
i , max

k∈IΓ
i

‖Riφk‖2
0,Ωi
' hdν

2/d+1
i

which proves (2.14). By the same argument (2.15) holds true if we select vΓ
i := Riφk

corresponding to min
k∈IΓ

i

‖Riφk‖2
0,Ω.

Exploiting lemma 2.3.2 we also show that a similar result holds in the space ∇V Γ
h,i,

with a different scaling with respect to ν.

Lemma 2.3.4. For any vΓ
i ∈ V Γ

h,i there exist positive constants cΓ
1 , c

Γ
1 , independent of

ν, h such that
cΓ

1h
d−2νi‖vΓ

i ‖2 ≤ ‖∇vΓ
i ‖2

0,Ω ≤ cΓ
1h

d−2νi‖vΓ
i ‖2 (2.16)

Furthermore, there exists vΓ
i ∈ V Γ

h,i, the same function of lemma 2.3.3, such that

‖∇vΓ‖2
0,Ω ≤ cΓ

1h
d−2νi‖vΓ‖2 (2.17)

Proof. The proof follows from the same reasoning of lemma 2.3.3 combined with
(2.12). However, we notice that ‖Ri∇φk‖2

0,Ki
' hd−2νKi , because Ri∇φk are con-

stant functions proportional to h−1.

Let us denote by Nh the dimension of V h and let M ∈ RNh×Nh and L ∈ RNh×Nh be
the standard mass and stiffness matrices in the finite element space V h, precisely

v′Mw = (v, w)0,Ω, v′Lw = (∇v,∇w)0,∪Ωi , ∀v, w ∈ V h

which feature the following block decomposition

M =

 MΩ MΩΓ
1 MΩΓ

2

(MΩΓ
1 )′ MΓ

1 0

(MΩΓ
2 )′ 0 MΓ

2

 L =

 LΩ LΩΓ
1 LΩΓ

2

(LΩΓ
1 )′ LΓ

1 0

(LΩΓ
2 )′ 0 LΓ

2


where, reminding the decomposition v = vΩ + vΓ

1 + vΓ
2 , for any vΩ, wΩ ∈ V Ω

h and
wΓ
j ∈ V Γ

h,j, j = 1, 2, we have,

(vΩ)′MΩwΩ := (vΩ, wΩ)0,Ω, (vΩ)′LΩwΩ := (∇vΩ,∇wΩ)0,∪Ωi

(vΓ
i )′MΓ

i w
Γ
i := (vΓ

i , w
Γ
i )0,Ω, (vΓ

i )′LΓ
i w

Γ
i := (∇vΓ

i ,∇wΓ
i )0,∪Ωi

(vΩ)′MΩΓ
j wΓ

j := (vΩ, wΓ
j )0,Ω, (vΩ)′LΩΓ

j wΓ
j := (∇vΩ,∇wΓ

j )0,∪Ωi

We remark that inequalities (2.6), (2.9) are fundamental to show that

v′Mv ' (vΩ)′MΩvΩ + (vΓ
1 )′MΓ

1 v
Γ
1 + (vΓ

2 )′MΓ
2 v

Γ
2 (2.18)

v′Lv ' (vΩ)′LΩvΩ + (vΓ
1 )′LΓ

1v
Γ
1 + (vΓ

2 )′LΓ
2v

Γ
2 (2.19)

with lower bound constant ccs(h) = (1− ccs(h)), being ccs(h) := max(c0
cs, c

1
cs(h)), and

upper bound constant c = 2 that are uniformly independent of ν. However, according to
lemma 2.3.1, the lower bound is asymptotically proportional to h, namely ccs(h) := ch.

Given a real square matrix B, we denote by diag(B) the square matrix correspond-
ing to its diagonal. The following result is a simple reinterpretation at the algebraic
level of inequality (2.11) and (2.12).
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Corollary 1. There exist positive constants cM
Γ
, cM

Γ
, uniformly independent of ν and

h, such that

cM
Γ

(vΓ
i )′diag(MΓ

i )vΓ
i ≤ (vΓ

i )′MΓ
i v

Γ
i ≤ cM

Γ

(vΓ
i )′diag(MΓ

i )vΓ
i , ∀vΓ

i ∈ V Γ
h,i (2.20)

There exist positive constants cL
Γ
, cL

Γ
, uniformly independent of ν but possibly de-

pendent on h, such that

cL
Γ

(vΓ
i )′diag(LΓ

i )vΓ
i ≤ (vΓ)′LΓ

i v
Γ
i ≤ cL

Γ

(vΓ
i )′diag(LΓ

i )vΓ
i , ∀vΓ

i ∈ V Γ
h,i (2.21)

Looking at the optimal condition number, i.e. given A ∈ RN×N

Kopt(A) := min
D∈RN×N

K2(DAD)

Corollary 1 implies that Kopt(M + L) does not depend on ν.

2.3.2 Discrete inequalities

We conclude the analysis of V Γ
h,i with a discussion on how the fundamental discrete

inequalities must be modified in this space.
Let us start with the inverse inequality, which in V Ω

h reads as

h‖∇vΩ‖0,Ω . ‖vΩ‖0,Ω

for any vΩ ∈ V Ω
h . It is easy to verify that such property can be straightforwardly

extended to V +
h,i as follows,

h2‖∇v‖2
0,∪Ωi

. ‖v‖2
0,∪Ω+

i
:=
∑
i=1,2

‖EiRiv‖2
0,Ω+

i
, ∀v ∈ V h (2.22)

However, a qualitative analysis in the one-dimensional case is sufficient to show that
such inequality does not hold uniformly with respect to ν when restricted to each sub-
region Ωi, because the space RiV

Ω
h contains an element of size hνi.

Lemma 2.3.5. For any vΓ
i ∈ V Γ

h,i the following inequality holds true

h2ν
2/d
i

νi
νi
‖∇vΓ

i ‖2
0,Ωi

. ‖vΓ
i ‖2

0,Ωi
(2.23)

Proof. Owing to the upper bound of (2.16) we have,

sup
vΓ
i ∈V Γ

h,i

‖∇vΓ
i ‖2

0,Ωi

‖vΓ
i ‖2

≤ chd−2νi

which is equivalent to

inf
vΓ
i ∈V Γ

h,i

‖vΓ
i ‖2

‖∇vΓ
i ‖2

0,Ωi

≥ (chd−2νi)
−1

Combining the previous inequality with the lower bound of (2.14) we obtain,

inf
vΓ
i ∈V Γ

h,i

‖vΓ
i ‖2

0,Ωi

‖∇vΓ
i ‖2

0,Ωi

≥ (chd−2νi)
−1chdν

2/d+1
i ≥ ch2ν

2/d
i

νi
νi

that is the desired result.
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Proceeding similarly, we notice that the discrete inequality

hK‖vΩ‖2
0,∂K . ‖vΩ‖2

0,K , ∀vΩ ∈ V Ω
h (2.24)

will be affected by the position of the interface when applied to the enriched spaces.

Lemma 2.3.6. For any vΓ
i ∈ V Γ

h,i and Ki = |K ∩ Ωi| with K ∈ Gh the following
inequality holds true

hK(νKi )1/d‖vΓ
i ‖2

0,ΓKh
. ‖vΓ

i ‖2
0,Ki

, ∀vΓ
i ∈ V Γ

h,i (2.25)

Proof. Owing to (2.11) we have,

‖vΓ
i ‖2

0,ΓKh
≤ cΩ

0

∑
k∈IΓ

i

(
βik

)2

‖Riφk‖2
0,ΓKh

with ‖Riφk‖2
0,ΓKh
' hd−1(νKi )1/d+1. Then, we obtain

‖vΓ
i ‖2

0,ΓKh
≤ cΩ

0

∑
k∈IΓ

i

(
βik

)2

hd−1(νKi )1/d+1

which, owing to (2.14), can be combined with∑
k∈IΓ

i

(
βik

)2

hd(νKi )2/d+1 ≤ ‖vΓ
i ‖2

0,Ki

to obtain the desired result.

We finally address the Poincaré-Friedrichs inequality, providing control on the L2-
norm by means of a modified H1-seminorm, i.e.

‖vΩ‖2
0,Ω ≤ cPF‖∇vΩ‖2

0,Ω +
∑
i=1,2

∫
Fh,i

(hF )−1(vΩ)2, ∀vΩ ∈ V Ω
h

Concerning the enriched finite element space, we observe that the discrete functions
vΓ
i ∈ V Γ

h,i vanish by construction on a collection of the inner boundaries of elements
in T +

h,i that are intersected by Γ. Let us denote by Σi := ∂(Gh ∩ Ωi) \ ∂Ωi such line
or surface and by H1

Σi
(Ωi) the subspace of H1(Ωi) of functions whose traces vanish

on Σi. Since V Γ
h,i ⊂ H1

Σi
(Ωi), the previous Poincaré-Friedrichs inequality reduces the

usual Poincaré inequality,

‖vΓ
i ‖2

0,Ωi
≤ cPi ‖∇vΓ

i ‖2
0,Ωi

which holds true with a constant cPi that is uniformly bounded with respect to ν and h,
because cP depends on the number of space dimensions, d, the diameter of the domain,
but not on its aspect ratio.
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2.4 The unfitted interface penalty method

Following [63], we aim to apply Nitsche’s method to enforce the coupling conditions
between the finite element approximations of ui on RiV

Ω
h .

First, we denote by v−, v+ the two limit values of any sufficiently regular function
on the two sides of the interface Γ, where the notation ± refers to the orientation of n,
and we define

[[v]] := v− − v+, {v}w := w−v− + w+v+, {v}w := w+v− + w−v+

Then, we introduce the following bilinear forms and functionals,

ai(u, v) :=

∫
Ωi

(
εi∇ui · ∇vi + µiuivi

)
bh,i(u, v) :=

∫
Fh,i

(
γεih

−1
F uivi − εi∂nuivi − εi∂nviui

)
ch(u, v) :=

∫
Γh

(
γ{ε}w(hK)−1[[u]][[v]]− {ε∂nu}w[[v]]− {ε∂nv}w[[u]]

)
ah(u, v) :=

∑
i=1,2

(
ai(u, v) + bh,i(u, v)

)
+ ch(u, v)

F (v) :=

∫
Ω

fv

where γ > 0 is a stabilization parameter that will be suitably selected later on. Our
discrete problem reads as follows:

find uh ∈ V h such that ah(uh, vh) = F (vh), ∀vh ∈ V h (2.26)

We notice that (2.26) is strongly consistent with the weak solution of (2.1), as ensured
by lemma 1 in [63], which straightforwardly applies to the present case. The natural
norms to perform the stability and error analysis of the scheme are:

‖v‖2
± 1

2
,Fh,i

:=

∫
Fh,i

(hF )∓1v2

‖v‖2
± 1

2
,Γh

:=

∫
Γh

(hK)∓1v2

|||v|||21,Ωi := ai(v, v) + ‖ε
1
2
i v‖2

+ 1
2
,Fh,i

|||v|||21,h,∪Ωi
:=
∑
i=1,2

|||v|||21,Ωi + ‖{ε}
1
2
w[[v]]‖2

+ 1
2
,Γh

We remind that the coupling term ch(u, v) admits an alternative skew symmetric for-
mulation,

ĉh(u, v) :=

∫
Γh

(
γ{ε}w(hK)−1[[u]][[v]]− {ε∂nu}w[[v]] + {ε∂nv}w[[u]]

)
Although we will not analyze in detail this option, we observe that the main conclusions
on the robustness of the scheme (2.26) will equivalently hold in this latter case.
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Finally, we observe that for the numerical scheme (2.26) we have exploited a weak
enforcement of Dirichlet boundary conditions. As a result of that, assumption 2.2.1 is
not valid because Poincaré inequality is not applicable to this case. However, by means
of Poincaré-Friedrichs generalization, lemma 2.3.1 can be extended to norm |||v|||21,Ωi
without the need of assumption 2.2.1. More precisely, there exists a constant c∗cs(h)
uniformly independent of ν but asymptotically proportional to h, such that for any
v ∈ V h it holds,

c∗cs(h)(|||vΩ|||21,Ωi + |||vΓ
i |||2i,Ωi) . |||v|||21,Ωi . (|||vΩ|||21,Ωi + |||vΓ

i |||2i,Ωi) (2.27)

2.4.1 Stability and conditioning of the finite element scheme

We start from the following result, which extends lemma 4 in [63]. Let wi be the
averaging weights defining {·}w, {·}w that appear in ch(·, ·).

Lemma 2.4.1. There exists positive constants cνw, c
ε
w > 1 such that

‖ε
1
2
i w

1
2
i ∂nRiv‖2

− 1
2
,Γh

. cνw‖ε
1
2
i ∇Riv‖2

0,Ωi
,∀v ∈ V h (2.28)

‖{ε}
1
2
wv

Γ
i ‖2

+ 1
2
,Γh

. cνwc
ε
wh
−2‖ε

1
2
i v

Γ
i ‖2

0,Ωi
, ∀vΓ

i ∈ V Γ
h,i (2.29)

where

cνw := max
i=1,2

max
K∈Gh

(νKi )−1wi

cεw := max
i,j=1,2, j 6=i

max
K∈Gh

(
1 +

(εjwj)|K
(εiwi)|K

)
Proof. For the first inequality we notice that

wihK

∫
ΓKh

εi∂nRiv
2 ≤ wihK

|ΓKh |
|K ∩ Ωi|

‖ε
1
2
i ∇Riv‖2

0,Ki

= λKi ν
K
i (νKi )−1wi‖ε

1
2
i ∇Riv‖2

0,Ki
≤ S(νKi )−1wi‖ε

1
2
i ∇Riv‖2

0,Ki

where S is the constant of (2.4).

For the second property we apply (2.25) to show that for i, j = 1, 2 with j 6= i it
holds ∫

ΓKh

(hK)−1{ε}w(vΓ
i )2 . h−2

K wi(ν
K
i )−1/d

(
1 +

(εjwj)|K
(εiwi)|K

)
‖ε

1
2
i v

Γ
i ‖2

0,Ki

Observing that (νKi )−1/d ≤ (νKi )−1, the result is proved by summing over the elements
K ∈ Ωh.

Lemma 2.4.1, together with the choice wi = νKi for any K ∈ Ωh, guarantees that
the stability of the scheme does not depend on how the interface cuts the mesh. How-
ever, this choice is not optimal for the robustness of the scheme with respect to the
heterogeneity of the diffusion coefficients. Indeed, it is shown in [21, 41] that it is
possible to suitably select the weights to make sure that cεw is independent of εi/εj for
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i, j = 1, 2, j 6= i, but this requirement may be in conflict with the previous one. A few
alternatives to treat this intrinsic drawback of (2.26) will be discussed in section 2.4.2.

Reminding that there exists ε > 0 such that εi ≥ ε for i = 1, 2 and µi ≥ 0 being
εi, µi the diffusion and reaction coefficients respectively, we set

µ := min
i=1,2

µi, µ := max
i=1,2

µi

ε := min
i=1,2

εi, ε := max
i=1,2

εi

α := ε α := max[µ, ε]

Then, the fundamental properties that characterize the robustness of the scheme are
summarized in the following result.

Theorem 2.4.2. Let ah(·, ·) be the symmetric bilinear form of (2.26), where the averag-
ing weights are selected as wi = νKi . Let v ∈ RNh be the vector of degrees of freedom
associated with a generic vh ∈ V h and let ‖v‖ be its Euclidean norm. Let Ah be the
finite element matrix corresponding to the bilinear form ah(·, ·) and the discrete space
V h. The following properties hold true with generic positive constants c and c:

i) Provided that γ > cνw, for any v ∈ V h

c|||v|||21,h,∪Ωi
≤ ah(v, v) ≤ ccνw|||v|||21,h,∪Ωi

ii) There exist positive constants κ, κ with

κ := α c∗cs(h)hd min
[
cPF cΩ,min

i=1,2
νi
(
(µ/ε)cΓ

0ν
2/d
i + cΓ

1h
−2
)]

κ := c αhd−2 max
[
cΩ,max

i=1,2
νi
(
(h2 + cνwc

ε
w)cΓ

0ν
2/d
i + cΓ

1

)]
such that

κ‖v‖2 ≤ |||v|||21,h,∪Ωi
≤ κ‖v‖2, ∀v ∈ V h

iii) There exist functions v, v ∈ V h and positive constants σ, σ with

σ := c αhd−2 min
i=1,2

νi
(
(h2 + cνwc

ε
w)cΓ

0ν
2/d
i + cΓ

1

)
σ := c α c∗cs(h)cPF cΩhd−2

such that
|||v|||21,h,∪Ωi

≤ σ‖v‖2, σ‖v‖2 ≤ |||v|||21,h,∪Ωi

iv) The spectral condition number of Ah satisfies the following bounds

σ

σ
≤ K2(Ah) ≤ cνw

κ

κ

i.e K2(Ah) ' ν−1 in the asymptotic limit ν → 0.
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Proof. Part (i): to prove the coercivity of the bilinear form we start from the consistency
and symmetry terms. We observe that for any ai, b ∈ R, 0 < δ < 1 and positive weights
0 ≤ wi ≤ 1 this inequality holds,

2
(∑
i=1,2

wiεiai

)
b ≤

∑
i=1,2

(
δwiεia

2
i + δ−1wiεib

2
)
≤ δ

∑
i=1,2

εia
2
i + δ−1{ε}wb2

which combined with lemma (2.28) gives,

2

∫
Γh

{ε∂nv}w[[v]] ≤ δcνw
∑
i

‖ε
1
2
i ∇Riv‖2

0,Ωi
+ δ−1‖{ε}

1
2
w[[v]]‖2

+ 1
2
,Γh
, ∀v ∈ V h

Proceeding as in the standard Nitsche’s method for the boundary conditions, we
conclude that, provided that γ > cνw, it holds ah(v, v) & |||v|||21,h,∪Ωi

for any v ∈
V h. The proof of the upper bound follows from the application of Cauchy-Schwarz
inequalities to derive upper bounds of each term of ah(·, ·). In particular, for any u, v ∈
V h the following inequality∫

Γh

{ε∂nu}w[[v]] ≤
∑
i=1,2

‖(εiwi)
1
2∂nu‖− 1

2
,Γh
‖{ε}

1
2
w[[v]]‖+ 1

2
,Γh

≤ cνw
∑
i=1,2

‖ε
1
2
i ∇ui‖0,Ωi‖{ε}

1
2
w[[v]]‖+ 1

2
,Γh

motivates the presence of cνw in the continuity constant of the bilinear form.
Part (ii): for the lower bound we have,

|||v|||21,h,∪Ωi
≥
∑
i=1,2

|||v|||21,Ωi ≥ c∗cs(h)
∑
i=1,2

(
|||vΩ|||21,Ωi + |||vΓ

i |||21,Ωi
)

≥ α c∗cs(h)
[
cPF‖vΩ‖2

0,Ω +
∑
i=1,2

(
(µ/ε)‖vΓ

i ‖2
0,Ωi

+ ‖∇vΓ
i ‖2

0,Ωi

)]
≥ α c∗cs(h)hd

[
cPF cΩ‖vΩ‖2 +

∑
i=1,2

(
(µ/ε)cΓ

0ν
2/d+1
i + cΓ

1h
−2νi

)
‖vΓ

i ‖2
]

≥ α c∗cs(h)hd min
[
cPF cΩ,min

i=1,2

(
(µ/ε)cΓ

0ν
2/d+1
i + cΓ

1h
−2νi

)]
‖v‖2

Exploiting (2.29), for the upper bound we obtain,

|||v|||21,h,∪Ωi
.
∑
i=1,2

(
|||v|||21,Ωi + cνwc

ε
wh
−2‖ε

1
2
i v

Γ
i ‖2

0,Ωi

)
.
∑
i=1,2

(
|||vΩ|||21,Ωi + |||vΓ

i |||21,Ωi + cνwc
ε
wh
−2‖ε

1
2
i v

Γ
i ‖2

0,Ωi

)
. α

[
h−2‖vΩ‖2

0,Ω +
∑
i=1,2

(
(1 + cνwc

ε
wh
−2)‖vΓ

i ‖2
0,Ωi

+ ‖∇vΓ
i ‖2

0,Ωi

)]
. αhd−2

[
cΩ‖vΩ‖2 +

∑
i=1,2

(
(h2 + cνwc

ε
w)cΓ

0ν
2/d+1
i + cΓ

1νi
)
‖vΓ

i ‖2
]

. αhd−2 max
[
cΩ,max

i=1,2

(
(h2 + cνwc

ε
w)cΓ

0ν
2/d+1
i + cΓ

1νi
)]
‖v‖2
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Part (iii): to show that |||v|||21,h,∪Ωi
≤ σ‖v‖2 we select v = vΓ

i , as in lemma 2.3.3
with i = arg min νi and proceeding exactly as for the upper bound of part (ii) with
vΩ = 0, we obtain

|||v|||21,h,∪Ωi
. αhd−2 min

i=1,2

(
(h2 + cνwc

ε
w)cΓ

0ν
2/d+1
i + cΓ

1νi
)
‖v‖2

We notice that the previous bound is not optimal in the parameter h and for Lagrangian
finite elements it would be possible to refine it until hd. However, this seems to be
hardly feasible for V Γ

h,i, because such space does not enjoy an approximation property.
For the lower bound, we select v := vΩ, i.e. vΓ

1 = vΓ
2 = 0. In this case, we rely

on the standard finite element framework. More precisely, by choosing vΩ as a global
shape function, see for instance [43] Theorem 9.14, there exists a constant c such that
‖∇vΩ‖2

0,Ω ≥ ch−2‖vΩ‖2
0,Ω. Proceeding as for the lower bound of part (ii) we obtain,

|||v|||21,h,∪Ωi
≥ cα c∗cs(h)cPF cΩhd−2‖v‖2

Part (iv): reminding that ah(v, v) = v′Ahv for any v ∈ V h, when Ah is symmetric
the result is a straightforward application of (i), (ii) and (iii) combined with

λmin = min
v 6=0

v′Ahv

‖v‖2
, λmax = max

v 6=0

v′Ahv

‖v‖2

As a result of that, we immediately obtain,

κ . λmin . σ, σ . λmax . cνwκ

We finally notice that in the asymptotic limit ν → 0 we have κ, σ ' ν while σ, κ are
independent of ν. This allows us to conclude that K2(Ah) ' ν−1. We remind that cνw
is independent of ν under the condition wi = νKi .

To analyze how the solution of (2.26) converges to the one of (2.1) we refer to [63],
where an equivalent scheme is addressed. The only significant modification that should
be introduced in the present setting to perform the convergence analysis, consists in the
definition of the interface Γ. Indeed, Γ must be a smooth curve or surface, in order to
ensure that the solution of (2.1) is regular enough to prove the approximation properties
of V h. To comply with this requirement, we have to address a smooth level set function
ϕ that defines the continuous interface as its zero level set. According to assumption
2.2.2, the discrete interface Γh will be provided by ϕh, a finite element approximation
of ϕ in V Ω

h .

2.4.2 Stabilization of the scheme

Theorem 2.4.2 shows that problem (2.26) is ill posed when the discrete interface Γ
cuts the computational mesh in such way that very small sub-elements are generated,
i.e. ν → 0. As illustrated in section 2.3.1, this is not a major limitation, because the
singularity of the matrix in the limit case can be cured by means of a diagonal scaling
technique. The application of this preconditioning strategy to the specific case of (2.26)
is addressed below.
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We start from the following estimate,∑
i=1,2

|||v|||21,Ωi . |||v|||21,h,∪Ωi

.
∑
i=1,2

|||v|||21,Ωi + {ε}wh−2
∑
i=1,2

‖vΓ
i ‖2

0,Ωi

.
∑
i=1,2

|||v|||21,Ωi + cνwc
ε
wh
−2‖ε 1

2v‖2
0,Ω

. (1 + cνwc
ε
wh
−2)

∑
i=1,2

|||v|||21,Ωi , ∀v ∈ V h (2.30)

which shows the equivalence between |||·|||21,h,∪Ωi
and

∑
i=1,2|||·|||21,Ωi for any discrete

functions, uniformly with respect to α, α and ν. Then we study the generalized mass
matrix,

v′(Mµ + Lh,ε)v =
∑
i

|||v|||21,Ωi

where Mµ and Lh,ε are the scaled mass and stiffness matrices with respect to the reac-
tion and diffusion coefficients, i.e.

v′Mµw :=
∑
i=1,2

(µ
1
2
i vi, µ

1
2
i wi)0,Ωi

v′Lh,εw :=
∑
i=1,2

[
(ε

1
2
i ∇vi, ε

1
2
i ∇wi)0,Ωi +

∫
Fh,i

εih
−1
F viwi

]
which can be represented as follows,

Mµ =

M
Ω
µ (µ1, µ2) µ1M

ΩΓ
1 µ2M

ΩΓ
2

(µ1M
ΩΓ
1 )′ µ1M

Γ
1 0

(µ2M
ΩΓ
2 )′ 0 µ2M

Γ
2

 Lh,ε =

L
Ω
h,ε(ε1, ε2) ε1L

ΩΓ
1 ε2L

ΩΓ
2

(ε1L
ΩΓ
1 )′ ε1L

Γ
1 0

(ε2L
ΩΓ
2 )′ 0 ε2L

Γ
2


As already mentioned, the primary objective is to cure the instability arising when

very small sub-elements are generated. A secondary and more challenging objective, is
to simultaneously reduce the stiffness of the system in the case of large contrast prob-
lems. A first difficulty arises from inequality (2.23), which shows that any diagonal or
block diagonal preconditioner based on mass matrix would never be sufficient to elim-
inate the ill conditioning arising from small sub-elements. A second difficulty emerges
from the discussion of lemma 2.4.1, which highlights that the scheme (2.26) with av-
eraging weights wi = νKi may be affected by instabilities in the case of large contrast
problems. As a result of these observations, we propose the following preconditioner

P :=

M
Ω
µ 0 0

0 µ1diag(MΓ
1 ) 0

0 0 µ2diag(MΓ
2 )

+

L
Ω
h,ε 0 0

0 ε1diag(LΓ
1 ) 0

0 0 ε2diag(LΓ
2 )


that will be further combined with a particular choice of the weights wi. The perfor-
mance of P applied to matrix Ah is summarized in the following result.
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Theorem 2.4.3. There exist two positive constants cP , cP ' cνw
(
1 + cνwc

ε
wh
−2
)

inde-
pendent of ν, α, α, but possibly dependent on h, such that

cPv′Pv ≤ v′Ahv ≤ cPv′Pv. (2.31)

Proof. Let Th be the generalized mass matrix corresponding to norm |||·|||1,h,∪Ωi . The-
orem 2.4.2 (i) ensures that

v′Thv . v′Ahv . cνwv
′Thv

Reminding that v′(Mµ + Lh,ε)v =
∑

i|||v|||21,Ωi , inequality (2.30) is equivalent to,

v′(Mµ + Lh,ε)v . v′Ahv . cνw
(
1 + cνwc

ε
wh
−2
)
v′(Mµ + Lh,ε)v

Then, the result follows from the combination of (2.27) with (2.20), (2.21).

The aim of Theorem 2.4.3 is to emphasize how the enrichment of the finite element
space affects the conditioning of problem (2.26). Since the blocks referring to the stan-
dard finite element space, namely MΩ

µ , L
Ω
h,ε, are not diagonalized, this result does not

provide any significant information about how to cure the stiffness arising from hetero-
geneity of diffusion coefficients. It is well known that for large contrast among ε1 and
ε2, the continuous problem (2.1) can be ill posed too. A suitable approximation method
may help to reduce this intrinsic difficulty of the problem. Preliminary considerations
addressed in [22] suggest that the weak enforcement of interface conditions by means
of Nitsche’s method, together with the averaging weights proposed in [21, 41], could
be particularly effective to this purpose.

On the basis of (2.31) and in particular the fact that the constant cP of the upper
bound is proportional to (cνw)2cεw, we propose a strategy to select the averaging weights
of the scheme (2.26) that aims to maximize the efficiency of the preconditioner P as
well as the robustness of the method with respect to the location of the interface and
the heterogeneity of diffusion coefficients.

We first notice that the definition of the weights is taken at the element level, for
any element K ∈ Gh, and that the two weights wi are uniquely identified by a single
parameter w such that w1 = w while w2 = 1 − w. The element-based counterpart of
constant cP is

cPw|K := cνw|K
(
1 + cνw|Kcεw|Kh−2

)
cνw|K := max

i

(
wi|K(νKi )−1

)
cεw|K := max

i

(
1 +

(εjwj)|K
(εiwi)|K

)
where we have highlighted the dependence on w.

We consider a simple approach to make sure that cPw|K does not depend on the
worse case among small sub-elements and highly heterogeneous coefficients across
the interface. Let wνi |K = νKi be the optimal weights to ensure robustness for small
sub-elements, and let wεi |K = εj/(εi + εj) the weights that ensure robustness in case of
large contrast problems according to [21]. Indeed, it is easy to verify that cνwν |K = 1
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and cεwε|K = 2. Then, two function evaluations followed by an if statement on each
element K ∈ Gh allow to find the weights such that,

w∗|K = arg min
∗=ν,ε

cPw∗ |K

Since the choice of the weights influence the constant cνw, owing to theorem 2.4.2 the
penalty parameter γ should be tuned accordingly.

We will verify the efficiency of the latter strategy by means of numerical experi-
ments. A few computations show that this choice of the weights is also optimal in the
sense that it coincides with the solution of the following minimization problem,

wopt|K = arg min
w∈[0,1]

cPw|K

The main advantage of the proposed technique for a robust approximation of prob-
lem (2.1) in the framework of XFEM consists in the simplicity of implementation,
since it is applied at the algebraic level, without modifications to the structure of (2.26).
However, for discrete problems featuring both small cut elements and large contrast of
diffusion coefficients the present scheme should be further improved.

An heuristic approach consists in the application of the modified XFEM space pro-
posed in [94]. The idea is to slightly modify the configuration of the interface to avoid
the usage of enrichment functions of very small support. The optimal approximation
properties of the enriched finite element space can be maintained, provided that the
threshold below which the small cut elements are discarded is sufficiently small with
respect to the mesh characteristic size. By this way, the quantity ν−1 becomes uniformly
upper bounded with respect to the configuration of the interface and consequently the
averaging weights in (2.26) can be exploited to cure the instability arising from the
large contrast of coefficients.

A more sound approach is based on the application of a stabilization operator to
problem (2.26). In [20] Burman and Hansbo propose the following stabilized formula-
tion of problem (2.26),

ah(uh, vh) + gh(uh, vh) = Fh(vh), ∀vh ∈ Vh (2.32)

where gh(·, ·) is the so called ghost penalty stabilization term for piecewise affine ap-
proximations. Let Eh be the set of element edges in the boundary zone, more precisely,

Eh := {F = K ∩K ′, where either K ∈ Gh or K ′ ∈ Gh}
Then, the stabilization operator is given by a penalty on the jumps of the gradients over
the set of element edges in the boundary zone,

gh(uh, vh) :=
∑
F∈Eh

γghF ([[∇uh · nF ]], [[∇vh · nF ]])0,F

where nF is the reference unit normal vector relative to each edge. The enhanced
stability obtained by adding gh(·, ·), is reflected in the coercivity estimate

‖vh‖2
1,h,Ω . ah(vh, vh) + gh(vh, vh), ∀vh ∈ Vh

which holds true uniformly with respect to ν for any possible choice of the averag-
ing weights of (2.26). Again, the stabilized unfitted interface method can be comple-
mented by the most suitable averaging weights for the approximation of large contrast
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problems. In our view, the main drawback of this approach consists in the difficulty
to build up the finite element matrix corresponding to gh(·, ·), especially in the three-
dimensional case. Furthermore, a thorough investigation of how this artificial diffusion
term affects the approximation of the solution and of its gradients in the neighborhood
of the interface is still missing.

2.5 Numerical results

The numerical scheme (2.26) has been implemented in one and two space dimen-
sions. In particular, for the one dimensional case, we perform numerical simulations
using Matlabr, while for the two dimensional problem we implement a code using
FreeFem++, [67].
For the definition of the degrees of freedom and the construction of matrix Ah, we have
exploited the decomposition V h = V Ω

h ⊕ V Γ
h,1 ⊕ V Γ

h,2.
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Figure 2.3: The dependence of λmin(Ah) from ν1 ∈ (0, 1) is depicted on the top for different values of
the characteristic mesh size h. We observe that ν1 + ν2 = 1 and thus ν = min[ν1, (1− ν1)]. On the
bottom, we compare how ν1 influences the spectral condition number of Ah and P−

1
2AhP

− 1
2 , for

h = 0.05. A zoom in correspondence of ν1 = 1 is reported on the right for each plot.

The one-dimensional case allows for a simple control of the position of the interface,
which is a single point on the interval (0, 1) where problem (2.1) is defined. In partic-
ular, on a uniform finite element partition of size h, Γ splits one of the sub-intervals in
two parts of length hν1 and hν2 with ν1 + ν2 = 1 and ν = mini νi. For the sake of
simplicity, we have considered a purely diffusive problem, i.e. µi = 0, with uniform
coefficients εi = 1.
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With the one dimensional model, we have first analyzed how the spectrum of Ah de-
pends on ν. The results, reported in figure 2.3, closely follow the estimates of theorem
2.4.2. We notice that the minimum eigenvalue of Ah follows the same trend of constant
κ, which is proportional to

min
[
cPF cΩ,min

i=1,2
νi
(
(µ/ε)cΓ

0ν
2/d
i + cΓ

1h
−2
)]

In agreement to theorem 2.4.3, we observe that the diagonal scaling is effective to
reduce the high condition numbers that appear when the interface Γ approaches one of
the vertexes of the finite element partition, i.e. ν → 0.

A second test is aimed to verify the efficiency of the averaging weights wopt to
guarantee the robustness of the scheme. We observe that constant cP is an upper bound
for the spectrum of the following generalized eigen-problem, Ahv = λPv. We have
shown that for a generic choice of w, constant cP could be extremely large in the case
of large contrast problems or small sub-elements. Then, we consider a moderately large
contrast problem with ε1 = 1 and ε2 = 0.1 and we analyze the behavior of the largest
eigenvalue λmax with respect to ν ∈ (0, 1). In particular, the comparison of the three
cases wε, wν and wopt reported in figure 2.4 shows that the weights wopt are optimal
and they ensure that scheme (2.26) is fully robust.

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

 

 

ω(ν)

ω(ε)

ω(∗)

Figure 2.4: The dependence of λmax on ν1 for three choices of the weights, wε, wν and wopt = w∗

To further illustrate the analysis that has been performed, we consider a second test
case in two space dimensions. It consist on the approximation of problem (2.1) on the
unit square (0, 1) × (0, 1) with a planar interface Γ defined by x = 0.51, y ∈ (0, 1),
which does not fit the computational mesh consisting on a structured triangulation based
on a uniform partition of the interval (0, 1) in 16 nodes, see figure 2.5.

For this test case, we qualitatively analyze the approximation of a problem with
homogeneous coefficients, i.e. εi = 1, µi = 0, and a contrast problem with ε1 =
1, ε2 = 0.1, µi = 0. On one hand, see figure 2.6 (left), the former test confirms that
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Figure 2.5: The computational mesh Th and the interface Γ for the two dimensional numerical experi-
ments.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 

 −0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 2.6: Numerical solution of problem (2.1) approximated by (2.26) on the finite element mesh
illustrated in figure 2.5. On the left we report the solution with εi = 1, µi = 0, while on the right we
show the case ε1 = 1, ε2 = 0.1, µi = 0.

the behavior of the unfitted penalty method is satisfactory also in the case of a regular
solution with continuous normal derivatives across the interface. On the other hand, the
latter test shows that the enrichment of the finite element space allows to capture the
discontinuity in the fluxes along an interface that does not coincide with a mesh line, as
illustrated in figure 2.6 (right).
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CHAPTER3
A stabilized unfitted interface penalty method for

the approximation of saddle point problems

3.1 Introduction

We continue the investigation of multidomain problems with homogeneous dimensions,
where the model problem is characterized by high contrast coefficients.
As we have already discuss in the previous chapter, the extended finite element methods
represent a vivid subject of research in the field of computational mechanics [57, 94],
with the aim of enabling the accurate approximation of problems whose solutions
involve jumps, kinks, singularities and other locally non-smooth features within ele-
ments. This is achieved by enriching the polynomial approximation space of the clas-
sical finite element method with non-smooth functions that resemble the true solution
near interfaces.

In this chapter we aim to investigate the application of XFEMs, in particular of
the method proposed in [63], to the approximation of saddle point problems. This
method combines weak enforcement of interface conditions using Nitsche’s method
with XFEM approximation spaces, as we have already done in Chapter 2. From now
on, we will refer to this family of methods as the Nitsche-XFEM schemes, as proposed
in [60]. In particular, we apply the eXtended finite element method method to address a
two-phase Stokes problem, namely the coupling of two fluids with different kinematic
viscosities. Recently, XFEM has been applied to flow problems with moving interfaces,
such as the numerical simulation of flows involving immiscible fluids, see for example
[60] for a broad introduction or [99] for more specific applications. In this context,
different types of enrichment strategies for the finite element approximation spaces
have been proposed.

The method originally proposed in [63] for the approximation of the Laplace equa-
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tion with contrast coefficients, that we have already discussed in the previous chapter,
is particularly effective, owing to the good approximation properties and the simplicity
of implementation. Indeed, it has been successfully extended to the approximation of
saddle point problems in [3, 10, 18, 65]. The main drawback of the method consists in
the lack of robustness when the interface cuts the mesh in a way that very small sub-
elements are created, as we have already discussed in the previous chapter. We indeed
observe that the interface conditions allow the pressure and the velocity gradients to
be discontinuous across the interface. The XFEM is applied to accommodate both the
weak discontinuity of the velocity field and the pressure jump across the interface on
computational meshes that do not fit the interface itself. Numerical evidence shows that
the discrete pressure approximation may be unstable in the neighborhood of the inter-
face, even though the spatial approximation is based on inf-sup stable finite elements.
As it will be confirmed by the numerical experiments reported in this chapter, for sad-
dle point problems, additional instabilities arise because the enrichment of the Lagrange
multiplier space (the pressure) affects the satisfaction of the inf-sup condition [14]. For
this reason, resorting to pressure stabilization techniques in the region of elements cut
by the unfitted interface is mandatory.

There are two possible solutions of this issue. On one hand, the enrichment method
could be modified. This strategy has been investigated in a series of works [3,23,107]. It
seems to be a promising method. However, a complete stability analysis of the proposed
approximation spaces is not available yet. On the other hand, the stabilization methods
developed to cure the instabilities with respect to small cut-elements may also help to
stabilize the pressure. This is the approach successfully adopted in [10, 65].

Choosing a different strategy, we consider the application of stabilized equal order
pressure / velocity XFEM discretizations and we analyze their approximation proper-
ties. On one side, this strategy increases the flexibility on the choice of velocity and
pressure approximation spaces. On the other side, symmetric pressure stabilization
operators, such as local pressure projection methods or the Brezzi-Pitkaranta scheme,
seem to be effective to cure the additional source of instability arising from the XFEM
approximation. We will show that these operators can be applied either locally, namely
only in proximity of the interface, or globally, that is on the whole domain when com-
bined with equal order approximations.

In the first part of this chapter we analyze the stability of the scheme, then we fo-
cus on the approximation properties and on the conditioning number of the scheme.
We conclude the chapter with some numerical results and we discuss some bench-
mark cases, in order to thoroughly compare the performance of different variants of the
method.

3.2 Problem set up

We consider again a domain Ω ⊂ R2 crossed by an interface, that corresponds to a
surface separating two fluids. We call Γ the interface that divides Ω into two open sets,
Ω1 and Ω2. We solve:
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−∇ · (µi∇u) +∇p = f in Ωi,

∇ · u = 0 in Ωi,

u = 0 on ∂Ω,

JuK = 0 on Γ,

Jpn− µ∇u · nK = 0 on Γ.

(3.1)

The parameter µi plays the role of fluid viscosity and is constant in each subdomain
Ωi. Here, since µ1 6= µ2, the continuity of stresses across Γ induces a kink on the
velocity field and a strong discontinuity on pressure (also called jump discontinuity).
This is a consequence of the interface conditions (3.1)d,e where [[v]] = v|Ω1 − v|Ω2

denotes the jump across Γ. Accordingly, n is the unit normal vector on Γ pointing from
Ω1 to Ω2. The equilibrium condition between the normal component of the stresses
may be generalized to include surface tension as follows:

Jpn− µ∇u · nK = τκn on Γ

where κ is the curvature of Γ and τ is the surface tension coefficient [60]. This more
general condition can be naturally embedded in the numerical method that we will de-
velop, giving rise to an additional right hand side proportional to τκn. Surface tension
introduces a jump discontinuity across the interface in the pressure field, which can
be accurately captured by the scheme. As a consequence, most of the results that we
will present remain valid when surface tension is accounted for. Only the error analy-
sis (Theorem 3.4.7) should be carefully reviewed, because the additional forcing term
corresponding to surface tension features a poor regularity, which in turn affects the
maximal regularity that can be assumed by the exact solution of the problem [95].

As we have already discussed, an approach based on finite elements where the com-
putational mesh does not fit to the interface is not suitable for these kind of problems,
because it does not satisfy optimal approximation properties. To preserve accuracy, the
strong or weak discontinuities in the solution must coincide with mesh edges. However,
for many time-dependent problems such as two-phase flows or fluid-structure interac-
tion, non-matching grid formulations become an interesting option because they avoid
re-meshing [99, 116, 117].

Mixed finite elements are a typical choice of approximation spaces for the discrete
formulation of a saddle point problem without interface. It would be natural to expect
that the same finite element spaces would be adequate also to solve the Nitsche-XFEM
formulation interface problem. The numerical experiment shown in Figure 3.1 reveals
that XFEM spaces do not inherit the inf-sup stability of the underlying FEM approxi-
mation. More precisely, Figure 3.1 suggests that pressure oscillations, resembling the
checkerboard instability, appear in the neighborhood of the interface, even if the ini-
tial approximation space is inf-sup stable. In this case, the Nitsche-XFEM formulation
is applied to solve problem (3.1) on a quasi uniform mesh cut by a circular interface
separating two regions characterized by heterogeneous viscosities.

Following the approach already adopted in [10, 65], we investigate how to avoid
these oscillations by the choice of suitable enriched finite element spaces and stabiliza-
tion terms. Actually, instead of stabilization techniques based on the interior penalty
technique, we study the behavior of the well known Brezzi-Pitkaranta stabilization
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Figure 3.1: For the test case #3 reported in Section 3.5, we show the typical checkerboard pattern of
instabilities for the pressure in the cut region (b), while velocity approximation is not affected by
instabilities, as confirmed by the visualization of the velocity field magnitude (a). In picture (c),
a zoom on the pressure instabilities and in picture (d) the mesh that has been used for testing the
conditioning of the problem, which results are also reported in Section 3.5

technique [15] applied to this new context. Finally, we address the properties of the
algebraic system of equations arising from the proposed discretization method. In par-
ticular, we study the spectrum of the Schur complement matrix, showing that the sta-
bilization method is essential to ensure that the conditioning of the system does not
depend on the diameter of cut-elements. This result has an important consequence: it
confirms that the classical solution methods for algebraic saddle point problems, such
as the Uzawa method, can be successfully combined with this approximation scheme.

3.3 Finite element formulation

We solve (3.1) on a conforming triangulation Th of Ω, which is independent of the
location of the interface Γ. However, we need to make some assumptions concerning
the intersection between Γ and the mesh. Let us recall some definition, in particular let
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3.3. Finite element formulation

Gh = {K ∈ Th such that K∩Γ 6= ∅} be the subset of cut elements and in the following,
we call this subset cut region. Moreover, let us define the triangulated extended and
restricted sub-domains, Ω+

i , Ω−i , respectively, with Ω−i ⊂ Ω+
i as follows

Ω+
i = {x ∈ K, ∀K such that K ∩ Ωi 6= ∅}, Ω−i = {x ∈ K, ∀K such that K ⊂ Ωi}.

We observe that Ω−i ⊂ Ω+
i and

Ω = Ω−1
⋃

Ω−2
⋃
Gh, Ω+

i = Ω−i
⋃
Gh.

Starting from some assumptions made in the previous chapter, we highlight that:

Assumption 3.3.1. For any element K in the cut region and i = 1, 2 there exists a
patch formed by the union of the element K with some of the elements of Ω−i sharing
with it an edge (see figure 3.2a). This collection of elements is called a macro-element
of K and it is denoted with MK,i. Furthermore, we assume that the restriction of each
macro-element to Ω−i is not empty, namely M−

K,i := MK,i ∩ Ω−i 6= ∅. Finally, we
observe that M−

K,i contains at least an element of Th, such that the ratio |MK,i|/|M−
K,i|

is always upper bounded, where the symbol | · | represents the measure of a subset in
R2.

Assumption 3.3.2. Γ intersects each element boundary ∂K exactly twice, and each
(open) edge at most once.

Assumption 3.3.3. The interface is defined by the zero isoline of a level set function;
the level set function is then approximated by linear interpolation on the computational
mesh. The interface is thus represented by a chain of straight segments. We assume that
the straight line segment ΓKh connecting the points of intersection between Γ and ∂K
is a good approximation of ΓK = Γ∩K in a sense that is detailed in [63], Assumption
3. This construction can be generalized to three space dimensions.

The first assumption is satisfied if the mesh is uniform, at least in the region neigh-
boring the interface Γ. The last two hypotheses imply that the discrete approximation
of the interface subdivides elements into simple shapes (a triangle and a quadrilateral
or a couple of triangles).

We can now define the extended cut region Sh as the union of Gh and all the elements
K ∈ Th sharing an edge with at least a cut element (see figure 3.2b). This is equivalent
to define Sh as the set of all the elements contained in at least one macro-element for
all K ∈ Gh:

Sh :=
⋃
K∈Gh

⋃
i=1,2

MK,i

The proposed XFEM method doubles the degrees of freedom in the elements that
are crossed by the discontinuity interface, as shown in figure 3.4. This is achieved by a
suitable definition of the approximation spaces. Let T +

h,i be conforming triangulations
of Ω+

i such that the union of T +
h,1 and T +

h,2 gives Th and for every triangleK ∈ T +
h,1∩T +

h,2

we have K ∩ Γ 6= ∅. Moreover, we define T −h,i = T +
h,i \ Gh. Let us define the following

couple of inf-sup stable spaces on Ω,

V (Ω) := [{φh ∈ C0(Ω), such that φh|K ∈ P1,∀K ∈ Th} ∩H1
0 (Ω)⊕B]2,

Q(Ω) := {φh ∈ C0(Ω), such that φh|K ∈ P1,∀K ∈ Th}
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Ω1+

Ω2+

Γ

K

Ω1+

Γ

Figure 3.2: (a) Filled with the diagonal line pattern, a macro-element for an element K ∈ Gh (in light
blue). This macro-pattern is composed by K and its adjacent elements that shares an edge with it.
(b) Definition of Ω+

i , in light blue the set Gh and filled with the diagonal line pattern the extended
cut region Sh. As we can see, the extended region contains all the elements near to the cut region,
meaning that they share an edge with at least one cut element.

Figure 3.3: Second (a) and third (b) assumption about the intersection between Γ and Th are not satis-
fied.

Figure 3.4: Linear basis function in an element crossed by Γ. The local basis functions φ on a cut
element K must be discontinuous across Γ:

φ = φ1 in K1 = K ∩ Ω1, φ2 in K2 = K ∩ Ω2.

Since φ1 and φ2 must be independent, we need to double the degrees of freedom on K so that φ1 can
be represented in K1 by its nodal values and the same holds for φ2.

where B = {b such that b|K ∈ P3 ∩H1
0 (K),∀K ∈ Th}.
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3.3. Finite element formulation

In alternative, we may use the plain P1 − P1 elements,

V (Ω) := [{φh ∈ C0(Ω), such that φh|K ∈ P1,∀K ∈ Th}]2,
Q(Ω) := {φh ∈ C0(Ω), such that φh|K ∈ P1,∀K ∈ Th}

that will be combined with a stabilization term defined below. We now introduce the
couple of inf-sup stable spaces on the restricted sub-domains Ω−i ,

V −h,i := {φh ∈ V (Ω−i ), such that φh = 0 on Γ},
Q−h,i := Q(Ω−i )

Let IΓ = {1, ..., n} be the set of all vertexes in the cut region Gh and let

Wh = {φh ∈ C0(Ω), such that φh|K ∈ P1,∀K ∈ Th} ∩H1
0 (Ω)

be a standard linear finite element space on the triangulation Th of the domain Ω and
let {φjh} be the Lagrangian basis of Wh. We can now define a couple of finite element
spaces on the cut region:

V cut
h := [span{φjh ∈ Wh}j∈IΓ ]2, Qcut

h := span{φjh ∈ Wh}j∈IΓ .
The definition of the finite element spaces for the approximation of our problem fol-
lows:

Vh,i := V −h,i ⊕ V cut
h , Qh,i := Q−h,i ⊕Qcut

h .

The enrichment of the cut region is obtained by overlapping the spaces Vh,i and Qh,i in
Gh which entails that the degrees of freedom of the elements K ∈ Gh are doubled. We
seek (uh,i, ph,i) ∈ Vh,i ×Qh,i, i = 1, 2 such that uh = (uh,1,uh,2) and ph = (ph,1, ph,2)
satisfy:

Bh[(uh, ph), (vh, qh)] + sh(ph, qh) = (f ,vh)Ω , ∀(vh, qh) ∈ Vh ×Qh (3.2)

where Vh = Vh,1 × Vh,2, Qh = Qh,1 ×Qh,2 and

Bh[(uh, ph), (vh, qh)] := ah(uh,vh) + bh(ph,vh)− bh(qh,uh)

ah(uh,vh) :=
∑
i=1,2

∫
Ωi

µi∇uh,i · ∇vh,idx−
∫

Γ

{µ∇uh · n} [[vh]]ds

−
∫

Γ

{µ∇vh · n} [[uh]]ds+
∑
K∈Gh

∫
ΓK

γuh
−1
K µmax[[uh]][[vh]]ds

bh(ph,vh) :=−
∑
i=1,2

∫
Ωi

ph,i∇ · vh,idx+

∫
Γ

{ph} [[vh · n]]ds

where hK is the diameter of the generic element K. We fix µmax = max
Ω

µ and we have

defined the average operator as {v}Γ = ω1v|Ω1 + ω2v|Ω2 . For each element K ∈ Gh,
it must hold ω1 + ω2 = 1. For this scheme it is important that the weights depend of
the measure of cut elements, for example ωi = |K ∩ Ωi|/|K|. In particular, we use the
following definition proposed in [1]:

ωi :=
|K ∩ Ωi|/µi

|K ∩ Ω1|/µ1 + |K ∩ Ω2|/µ2

. (3.3)
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We remark that in the homogeneous case we have µ1 = µ2, so that the last two defini-
tions coincide.
The term sh(ph, qh) is the stabilization operator defined on the cut region. We are inter-
ested in analyzing the properties of the Brezzi-Pitkaranta stabilization technique [15]
applied to this new context. For this reason, we consider the following operator acting
on the pressure approximation near the interface:

sh(ph, qh) :=
∑
i=1,2

∑
K∈Sh

γsµ
−1
i h2

K

∫
K

∇ph,i · ∇qh,idx, (3.4)

where Sh is the extended cut region previously defined. We remark that the integral in
(3.4) is on the entire cut element K. This is crucial to prevent a bad conditioning of the
algebraic problem.
As we have already pointed out, our choice of spaces V −h,i and Q−h,i is inf-sup stable on
the restricted sub-domains. In the case of equal-order stabilized velocity/pressure for-
mulation we add to the discrete problem formulation the additional stabilization term
ch(ph, qh). Although ch(ph, qh) can be chosen among the family of symmetric stabi-
lization operators, observing the definition of sh(ph, qh), the most natural choice is the
Brezzi-Pitkaranta stabilization:

ch(ph, qh) :=
∑
i=1,2

ch,i(ph, qh), where ch,i(ph, qh) :=
∑
K∈T −h,i

γsµ
−1
i h2

K

∫
K

∇ph,i·∇qh,idx.

In this case, we aim to find uh = (uh,1,uh,2) ∈ Vh and ph = (ph,1, ph,2) ∈ Qh such that

Bh[(uh, ph), (vh, qh)]+ch(ph, qh)+sh(ph, qh) = (f ,vh)Ω, ∀(vh, qh) ∈ Vh×Qh. (3.5)

In the forthcoming sections, we will analyze the two proposed variants of the Nitsche-
XFEM scheme.
A final remark concerns mass conservation. It is well known that stabilization tech-
niques of Brezzi-Pitkaranta type introduce a consistency error in the mass conservation
equation which is, in the classical setting, of order h2. We wish to point out that in our
proposed technique for P1

b − P1 elements, the stabilization term is activated only in the
subset Sh of elements adjacent to the interface Γ. Since the number of elements in Sh
scales like h−1 (and not h−2 as the total number of mesh elements), the error in mass
conservation introduced by our proposed method is of order h3. Thus, in our opinion,
it is acceptable in practice.

3.4 Analysis of the scheme

First of all, let us define the following norms on the trace of a function on Γ:

‖v‖2
1/2,h,Γ :=

∑
K∈Gh

h−1
K ‖v‖2

0,ΓK
, ‖v‖2

−1/2,h,Γ :=
∑
K∈Gh

hK‖v‖2
0,ΓK
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Then, we introduce the following broken Sobolev spaces: Hk
b = {v : v|Ωi ∈ Hk(Ωi), i =

1, 2} with the corresponding norms

‖v‖2
k,Ω :=

∑
i=1,2

‖v‖2
k,Ωi

, ‖v‖2
k,Ω,µ :=

∑
i=1,2

‖µ1/2
i v‖k,Ωi , ‖q‖2

k,Ω±,µ :=
∑
i=1,2

‖µ−1/2
i q‖k,Ω±i ,

|||v|||2 := ‖v‖2
1,Ω,µ + ‖µ1/2

max[[v]]‖2
1/2,h,Γ + ‖µ−1/2

max {µ∇nv}‖2
−1/2,h,Γ,

‖(v, q)‖Ω+
2 := |||v|||2 + ‖q‖2

0,Ω+,µ + ‖µ−1/2
max {q}‖2

−1/2,h,Γ.

Let us define bh,i(ph, qh) as the restrictions of bh(ph, qh) on the domains Ωi,

bh,i(ph, qh) := −
∫

Ωi

ph,i∇ · vh,idx,

and let us introduce the discrete trace inequality

hk‖v‖2
0,ΓK
≤ C‖v‖2

0,K , (3.6)

that will be necessary for the theoretical analysis, as in [65], and proved thanks to [13]
and [63]. Thanks to this inequality, taking qh ∈ Qh, we have,

‖µ−1/2
max {q}‖2

−1/2,h,Γ ≤ ‖
{
µ−1/2qh

}
‖2
−1/2,h,Γ =

∑
K∈Gh

hK‖
{
µ−1/2qh

}
‖2

0,ΓK

≤
∑
K∈Gh

hK(‖µ−1/2
1 k1qh,1‖2

0,ΓK
+ ‖µ−1/2

2 k2qh,2‖2
0,ΓK

)

≤ C
∑
i=1,2

∑
K∈Gh

‖µ−1/2
i kiqh,i‖2

0,K

≤ C
∑
i=1,2

∑
K∈Gh

‖µ−1/2
i qh,i‖2

0,K

≤ C
∑
i=1,2

∑
K∈T +

h,i

‖µ−1/2
i qh,i‖2

0,K = C‖qh‖2
0,Ω+,µ.

In particular, the following equivalence of discrete norms holds true,

|||v|||2 + ‖qh‖2
0,Ω+,µ ≤ ‖(v, qh)‖Ω+

2 ≤ |||v|||2 + (1 + C)‖qh‖2
0,Ω+,µ. (3.7)

3.4.1 Stability analysis

The first part of our theoretical analysis focuses on the stability of the scheme.

Theorem 3.4.1. We assume that our finite element scheme is inf-sup stable away from
the cut region, i.e. there exist constants Cp1 and Cp2, independent of the mesh size, such
that ∀ph,i ∈ Qh,i there exists vph,i ∈ Vh,i : vph,i|Gh = 0, such that

‖vph,i‖1,Ω−i ,µ
≤ Cp1‖ph,i‖0,Ω−i ,µ

, (3.8)

Cp2‖ph,i‖0,Ω−i ,µ
≤ bh,i(ph,i,vph,i) + ch,i(ph,i, ph,i). (3.9)
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These are sufficient conditions for the stability of the approximation on the subregion
Ω−i , see [42]. Under this assumption, there exists a positive constant Cs, independent
of the mesh characteristic size such that, for any (uh, ph) ∈ Vh ×Qh it holds:

Cs‖(uh, ph)‖Ω+ ≤ sup
(vh,qh)∈Vh×Qh

Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh)

‖(vh, qh)‖Ω+

.

(3.10)

We remark that (3.8) implies

‖vph,i‖1,Ω−i ,µ
≤ Cp1‖ph,i‖0,Ω+

i ,µ
.

To prove (3.10), we start showing some properties of the bilinear forms ah(uh,vh),
bh(vh, ph), ch(ph, qh) and sh(ph, qh).

Lemma 3.4.2. The bilinear discrete form ah(uh,vh) is continuous on Vh and coercive,
provided γu is chosen sufficiently large. That is, there exist two constants Cm and Ca,
independent of the mesh size such that

ah(uh,vh) ≤ Cm|||uh||| |||vh|||, ∀vh ∈ Vh, (3.11)

ah(vh,vh) ≥ Ca|||vh|||2, ∀vh ∈ Vh. (3.12)

Let vh ∈ Vh, ph ∈ Qh and qh ∈ Qh. There exist three constants Cb, Cs1 and Cs2,
independent of the mesh size, such that

bh(vh, ph) ≤ Cb|||vh|||(‖ph‖0,Ω+,µ + ‖µ−1/2
max {ph}‖2

−1/2,h,Γ) (3.13)

ch(ph, qh) ≤ Cs1‖ph‖0,Ω+,µ‖qh‖0,Ω+,µ, (3.14)

sh(ph, qh) ≤ Cs2‖ph‖0,Ω+,µ‖qh‖0,Ω+,µ. (3.15)

Furthermore, owing to (3.11) and (3.13), the bilinear discrete formBh[(uh, ph), (vh, qh)]
is continuous on Vh ×Qh,

Bh[(uh, ph), (vh, qh)] ≤ CB‖(uh, ph)‖Ω+‖(vh, qh)‖Ω+ . (3.16)

Proof. To prove (3.12), we first prove the following generalized inverse estimate,

‖{µ∇nvh}‖2
−1/2,h,Γ ≤ CIµmax‖vh‖2

1,Ω,µ (3.17)

where∇nvh = (∇vh)n. where∇nvh = (∇vh)n. This estimate holds true when linear
finite elements and the weights ωi defined in (3.3) are used. In this particular case the
constant CI is such that CI ≤ 2. For the proof of (3.17) we observe that, since vh is
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linear in Gh, for every K ∈ Gh we have,

‖{µ∇nvh}‖2
−1/2,h,ΓK

= hK |ΓK | (k1µ1∇nvh,1 + k2µ2∇nvh,2)2

≤ hK
∑
i=1,2

|ΓK |
|K ∩ Ωi|

k2
i µ

2
i ‖∇vh,i‖2

0,K∩Ωi

= hK
∑
i=1,2

|ΓK |
|K ∩ Ωi|

|K ∩ Ωi|2/µ2
i( ∑

j=1,2

|K ∩ Ωj|/µj
)2
µ2
i ‖∇vh,i‖2

0,K∩Ωi

= hK |ΓK |
1( ∑

j=1,2

|K ∩ Ωj|/µj
)2

∑
i=1,2

|K ∩ Ωi|
µi

‖µ1/2
i ∇vh,i‖2

0,K∩Ωi

≤ hK |ΓK |
1

|K ∩ Ω1|/µ1 + |K ∩ Ω2|/µ2

∑
i=1,2

‖∇vh,i‖2
0,K∩Ωi,µ

≤ hK |ΓK |
|K| µmax‖∇vh‖2

0,K,µ

= CI,Kµmax‖∇vh‖2
0,K,µ.

We point out that, under the assumption of shape-regular mesh, the constant CI,K is
bounded independently of the mesh size and the location of the interface Γ. Indeed it
is simple to prove that CI,K ≤ 2. Summing over all the elements K ∈ Gh and setting
CI = max

K
CI,K we have

‖{µ∇nvh}‖2
−1/2,h,Γ ≤

∑
K∈Gh

CI,Kµmax‖∇vh‖2
0,K,µ

≤ CIµmax
∑
K∈Th

‖∇vh‖2
0,K,µ

= CIµmax‖∇vh‖2
0,Ω,µ.

We are now ready to prove coercivity.

ah(vh,vh) =
∑
i=1,2

∫
Ω

µi(∇vh,i)2dx− 2

∫
Γ

[[vh]] {µ∇nvh} ds+

∫
Γ

γuµmaxh
−1
K ([[vh]])

2ds

≥ ‖vh‖2
1,Ω,µ + γu‖µ1/2

max[[vh]]‖2
1/2,h,Γ − 2‖µ1/2

max[[vh]]‖1/2,h,Γ‖µ−1/2
max {µ∇nvh}‖−1/2,h,Γ

≥ ‖vh‖2
1,Ω,µ + (γu − ε) ‖µ1/2

max[[vh]]‖2
1/2,h,Γ −

1

ε
‖µ−1/2

max {µ∇nvh}‖2
−1/2,h,Γ.

Then, it follows from (3.17) that

ah(vh,vh) ≥
1

2
‖vh‖2

1,Ω,µ +

(
1

2
− 2CI

ε

)
‖vh‖2

1,Ω,µ

+
1

ε
‖µ−1/2

max {µ∇nvh}‖2
−1/2,h,Γ + (γu − ε) ‖µ1/2

max[[vh]]‖2
1/2,h,Γ.

Taking ε = 4CI and choosing γu > 4CI the coercivity of ah(uh,vh) follows, since

ah(vh,vh) ≥ min{1

2
, Cγu ,

1

4CI
}(‖vh‖2

1,Ω,µ + ‖µ1/2
max[[vh]]‖2

1/2,h,Γ + ‖µ−1/2
max {µ∇nvh}‖2

−1/2,h,Γ)
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where Cγu = (γu − 4CI). This completes the proof. Continuity of the discrete
form ah(uh,vh) follows directly from its definition, while to prove the continuity of
bh(ph,vh) we proceed as follows,

bh(ph,vh) = −
∑
i=1,2

∫
Ωi

ph,i∇ · vh,idx+

∫
Γ

{ph} [[vh · n]]ds

≤ ‖ph‖0,Ω+,µ‖vh‖1,Ω,µ + ‖µ−1/2
max {ph}‖−1/2,h,Γ‖µ1/2

max[[vh · n]]‖1/2,h,Γ

≤ Cb|||vh|||(‖ph‖0,Ω+,µ + ‖µ−1/2
max {ph}‖−1/2,h,Γ).

Continuity of the stabilization operator ch(ph, qh) is proved as follows,

ch(ph, qh) =
∑
i=1,2

∑
K∈T −h,i

γsµ
−1
i h2

K

∫
K

∇ph,i · ∇qh,idx

≤
∑
i=1,2

∑
K∈T −h,i

γsh
2
Kh
−2
K ‖µ

−1/2
i ph‖0,K‖µ

−1/2
i qh‖0,K

≤ Cs1‖ph‖0,Ω+,µ‖qh‖0,Ω+,µ.

Here the first inequality follows from the inverse inequality. The continuity of sh(ph, qh)
is actually obtained in the same way. Summing estimates (3.11) and (3.13) and using
the definition of the norm ‖(·, ·)‖Ω+ yield the result (3.16).

To prove the inf-sup condition, we first consider a stability estimate for a projection
operator.

Lemma 3.4.3. The L2 projection operator on a macro-element MK,i, namely Πh :
H1(MK,i) 7→ P1(MK,i), satisfies the following property:

‖ph,i‖2
0,Ω+

i ,µ
≤ C

(
‖ph,i‖2

0,Ω−i ,µ
+ γh,i(ph,i, ph,i)

)
, (3.18)

where

γh,i(ph,i, qh,i) :=
∑
K∈Gh

∫
MK,i

γsµ
−1
i (1−Πh)ph,i(1−Πh)qh,i, γh(ph, qh) :=

∑
i=1,2

γh,i(ph,i, qh,i)

and C is a constant dependent on the total number of elements that can form a macro-
element MK,i with a generic element K ∈ Gh.

Proof. Since Πhph,i is a linear function on a macro-element, it holds that:

‖Πhph,i‖2
0,MK,i

.
|MK,i|
|M−

K,i|
‖Πhph,i‖2

0,M−K,i
,

where, as we have introduced in the previous chapter, the notation x . y represents the
existence of a generic constant c such that x ≤ cy. We represent ph,i|MK,i

as the sum of
the linear part and a residual: ph,i|MK,i

= Πhph,i + rh,i. It follows that

‖ph,i‖2
0,MK,i

= ‖Πhph,i + rh,i‖2
0,MK,i

= ‖Πhph,i‖2
0,MK,i

+ ‖rh,i‖2
0,MK,i

.
|MK,i|
|M−

K,i|
‖Πhph,i‖2

0,M−K,i
+ ‖rh,i‖2

0,MK,i
.
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Owing to assumption 3.3.1, the ratio between the measure of the entire macro-element
and its restriction is upper bounded. We now consider the second member of the last
inequality, where we identify β = |MK,i|/|M−

K,i| in order to simplify the notation:

β‖Πhph,i‖2
0,M−K,i

+ ‖rh,i‖2
0,MK,i

= β‖Πhph,i‖2
0,M−K,i

− β‖rh,i‖2
0,MK,i

+ (1 + β)‖rh,i‖2
0,M−K,i

≤ β

∫
M−K,i

(Πhph,i − rh,i)(Πhph,i + rh,i) + (1 + β)‖rh,i‖2
0,MK,i

≤ βε

2
‖Πhph,i − rh,i‖2

0,MK,i
+
β

2ε
‖ph,i‖2

0,M−K,i
+ (1 + β)‖rh,i‖2

0,MK,i

≤ βε

2
‖Πhph,i‖2

0,MK,i
+
βε

2
‖rh,i‖2

0,MK,i
+
β

2ε
‖ph,i‖2

0,M−K,i

+ (1 + β)‖rh,i‖2
0,MK,i

.

Since

‖ph,i‖2
0,MK,i

= (1− βε

2
)‖ph,i‖2

0,MK,i
+
βε

2
‖Πhph,i‖2

0,MK,i
+
βε

2
‖rh,i‖2

0,MK,i
,

we obtain

(1− βε

2
)‖ph,i‖2

0,MK,i
+
βε

2
‖Πhph,i‖2

0,MK,i
+
βε

2
‖rh,i‖2

0,MK,i

.
βε

2
‖Πhph,i‖2

0,MK,i
+
βε

2
‖rh,i‖2

0,MK,i
+
β

2ε
‖ph,i‖2

0,M−K,i
+ (1 + β)‖rh,i‖2

0,MK,i
,

from which it follows that

‖ph,i‖2
0,MK,i

.
2β

2ε(2− βε)‖ph,i‖
2
0,M−K,i

+
2(1 + β)

2− βε ‖rh,i‖
2
0,MK,i

. (3.19)

Choosing a suitable ε, for instance ε = β−1 we have

‖ph,i‖2
0,MK,i

. ‖ph,i‖2
0,M−K,i

+ ‖rh,i‖2
0,MK,i

,

and, because of the equivalence of the discrete norms,

‖µ−1/2ph,i‖2
0,MK,i

. ‖µ−/2ph,i‖2
0,M−K,i

+ ‖µ−1/2rh,i‖2
0,MK,i

.

To conclude, we sum over all elements of Ω+
i and rescale all norms using µ−1/2

i , to
obtain

‖ph,i‖2
0,Ω+

i ,µ
= ‖ph,i‖2

0,Ω−i ,µ
+
∑
K∈Gh

‖µ−1/2
i ph,i‖2

0,K

≤ ‖ph,i‖2
0,Ω−i ,µ

+
∑
K∈Gh

‖µ−1/2
i ph,i‖2

0,MK,i

. ‖ph,i‖2
0,Ω−i ,µ

+
∑
K∈Gh

(
‖µ−1/2

i ph,i‖2
0,M−K,i

+ ‖µ−1/2
i rh,i‖2

0,MK,i

)
. C(Th)

(
‖ph,i‖2

0,Ω−i ,µ
+ γh,i(ph,i, ph,i)

)
.

We remark that, since we are summing on the macro-elements of all K ∈ Gh, some
elements will be counted more than once. The mesh-dependent constant C(Th) that
appear in the proof takes into account this fact.

53



Chapter 3. A stabilized unfitted interface penalty method for the approximation of
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This result gives origin to several families of stabilization methods. Notably the
ghost penalty methods as well as the Brezzi-Pitkaranta stabilization can be seen as
schemes to control the local operator.

Lemma 3.4.4. The stabilization term

sh(ph, qh) =
∑
i=1,2

∑
K∈Sh

γsµ
−1
i h2

K

∫
K

∇ph,i · ∇qh,idx

dominates on the local projection stabilization, that is

γh(qh, qh) . sh(qh, qh). (3.20)

Proof. We use the following result [17, 42]:

‖qh,i − Πhqh,i‖0,MK,i
≤ Ch‖∇qh,i‖L2(MK,i)

, ∀qh,i ∈ Qh,i,

where the constant C is independent of the mesh size. We can now write,

γh(qh, qh) =
∑
i=1,2

∑
K∈Gh

γsµ
−1
i ‖(1− Πh)qh,i‖2

0,MK,i

≤
∑
i=1,2

∑
K∈Gh

Cγsµ
−1
i h2

K‖∇qh,i‖2
0,MK,i

≤ C(Th)
∑
i=1,2

∑
K∈Sh

γsµ
−1
i h2

K‖∇qh,i‖2
0,K

. sh(qh, qh).

where C(Th) depends on the number of elements that form each macro-element.

The following property is a consequence of lemmas 3.4.3 and 3.4.4:

‖ph,i‖2
0,Ω+

i ,µ
. ‖ph,i‖2

0,Ω−i ,µ
+ sh(ph,i, ph,i). (3.21)

It shows that in the Nitsche-XFEM method, the discrete pressure can be controlled
provided that an inf-sup stable velocity/pressure approximation is combined with the
Brezzi-Pitkaranta operator restricted to the neighborhood of the cut region. Using stan-
dard arguments, see [10], we now prove that the scheme is stable in the sense specified
in Theorem 3.4.1.

Proof. For the proof of theorem 3.4.1], as first step we prove the inf-sup stability on the
domain Ω, given the local stability estimates (on the restricted sub-domains):

b(ph,vph) + ch(ph, ph) + sh(ph, ph) & Cp2‖ph‖2
0,Ω+,µ. (3.22)

We take a vph = (vph,1 ,vph,2) satisfying the assumptions of the theorem and, reminding
that vph,i are null on the cut region since their support is limited to the restricted sub-
domain Ω−i , we can write:

b(ph,vph) = −
∑
i=1,2

∫
Ωi

ph,i∇ · vph,idx+

∫
Γ

{ph} [[vph · n]]ds =
∑
i=1,2

bh,i(ph,i,vph,i)∑
i=1,2

(
bh,i(ph,i,vph,i) + ch,i(ph,i, qh,i)

)
= bh(ph,vph) + ch(ph, ph) &

∑
i=1,2

Cp2‖ph,i‖0,Ω−i ,µ
.
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Using inequality (3.21), we are now able to prove the global inf-sup stability (3.22):

bh(ph,vph) + ch(ph, ph) + sh(ph, ph) ≥
∑
i=1,2

Cp2‖ph,i‖0,Ω−i ,µ
+ sh(ph, ph)

& Cp2‖ph‖2
0,Ω+,µ.

We are now ready to complete the proof. Using the test functions vh = uh + ηvph and
qh = ph, we obtain that

‖(vh, qh)‖Ω+ = ‖(uh + ηvph , ph)‖Ω+ ≤ ‖(uh, ph)‖Ω+ + ‖(ηvph , 0)‖Ω+

= ‖(uh, ph)‖Ω+ + |||ηvph||| = ‖(uh, ph)‖Ω+ + ‖ηvph‖1,Ω,µ

and using (3.8) we get,

‖ηvph‖2
1,Ω,µ = η2‖vph‖2

1,Ω,µ ≤ η2
∑
i=1,2

C2
p1‖ph,i‖2

0,Ω−i ,µ

≤ η2
∑
i=1,2

C2
p1‖ph,i‖2

0,Ω+
i ,µ
≤ η2C2

p1‖(uh, ph)‖Ω+
2

which allows us to write,

‖(vh, qh)‖Ω+ ≤ ‖(uh, ph)‖Ω++ηCp1‖(uh, ph)‖Ω+ = (1+ηCp1)‖(uh, ph)‖Ω+ . ‖(uh, ph)‖Ω+ .

Now we develop the term Bh[(uh, ph), (vh, qh)] as

Bh[(uh, ph), (vh, qh)] = ah(uh,uh + ηvph) + bh(ph,uh + ηvph)− bh(ph,uh)
= ah(uh,uh) + ah(uh, ηvph) + bh(ph, ηvph). (3.23)

As for the term ah(uh, ηvph), we get

ah(uh, ηvph) =
∑
i=1,2

∫
Ωi

µi∇uh,iη∇vph,idx−
∫

Γ

{µη∇nvph} [[uh]]ds

≤ ‖uh‖1,Ω,µ‖ηvph‖1,Ω,µ + ‖µ−1/2
max {µη∇nvph}‖−1/2,h,Γ‖µ1/2

max[[uh]]‖1/2,h,Γ

≤ ε

2
‖uh‖2

1,Ω,µ +
1

2ε
‖ηvph‖2

1,Ω,µ +
1

2ε
‖µ−1/2

max {µη∇nvph}‖2
−1/2,h,Γ +

ε

2
‖µ1/2

max[[uh]]‖2
1/2,h,Γ

Exploiting the trace inequality (3.17), we get:

ah(uh, ηvph) ≤ ε

2
|||uh|||2 +

1

2ε
‖ηvph‖2

1,Ω,µ +
CI
2ε
‖ηvph‖2

1,Ω,µ

≤ ε

2
|||uh|||2 +

(1 + CI)C
2
p1η

2

2ε
‖ph‖2

0,Ω+,µ. (3.24)

Using (3.12), (3.22), (3.24) and (3.7) we obtain

Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh)

≥ Ca|||uh|||2 −
ε

2
|||uh|||2 −

(1 + CI)C
2
p1η

2

2ε
‖ph‖2

0,Ω+,µ + Cp2‖ph‖2
0,Ω+,µ

≥ (Ca −
ε

2
)|||uh|||2 + (Cp2 −

(1 + CI)C
2
p1η

2

2ε
)‖ph‖2

0,Ω+,µ ≥ Cs‖(uh, ph)‖Ω+
2,
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and dividing by ‖(vh, qh)‖Ω+ we have:

Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh)

‖(vh, qh)‖Ω+

≥ Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh)

‖(uh, ph)‖Ω+

≥ Cs‖(uh, ph)‖Ω+ .

The thesis (3.10) of the theorem holds by choosing ε and η such that

ε < 2Ca and η <

√
2Cp2ε

(1 + CI)C2
p1

.

3.4.2 Error analysis

We start from the consistency of the scheme which will be useful for the derivation of
the error estimate. For its derivation we follow [63] and [10].

Lemma 3.4.5. Let (uh, ph) be the solution of the finite element formulation (3.2) and
(u, p) ∈ [H2(Ω1 ∪ Ω2)]2 × H1(Ω1 ∪ Ω2) be the weak solution of (3.1). Then the finite
element formulation (3.2) fulfills the following consistency relation,

Bh[(u−uh, p− ph), (vh, qh)] = ch(ph, qh) + sh(ph, qh), ∀(vh, qh) ∈ Vh×Qh. (3.25)

Proof. The property follows by observing that the exact solution (u, p) satisfies

Bh[(u, p), (vh, qh)] = (f ,vh)Ω, ∀(vh, qh) ∈ Vh ×Qh, (3.26)

and then subtracting (3.2) to (3.26).

We now analyze the approximation properties of the proposed finite element space,
using the interpolation operator defined in [65]. As shown in [65], it enjoys the follow-
ing approximation and stability properties:

Lemma 3.4.6. The interpolation operator defined as in [65], namely R∗h : Hs(Ω) →
Vh,0, with s = 2 for the velocities and s = 1 for the pressure, is such that

‖(v −R∗hv, p−R∗hp)‖2
Ω+ ≤ h2

(
Cu‖µ1/2

maxv‖2
2,Ω + Cp‖p‖2

1,Ω+,µ

)
(approximation),

(3.27)
‖R∗hw‖r,Ω ≤ C‖w‖s,Ω, 0 ≤ r ≤ min(1, s), ∀w ∈ Hs(Ω) (stability).

(3.28)

Starting from these results, we prove the following theorem.

Theorem 3.4.7. The following error estimate holds true

‖(u− uh, p− ph)‖Ω+ ≤ Ch
(
‖µ1/2

maxu‖2,Ω + ‖p‖1,Ω+,µ

)
. (3.29)
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Proof. . We have

‖(u− uh, p− ph)‖Ω+ ≤ ‖(u−R∗hu, p−R∗hp)‖Ω+ + ‖(R∗hu− uh, R
∗
hp− ph)‖Ω+ .

The first term can be estimated directly using the interpolation error estimate (3.27)
directly,

‖(u−R∗hu, p−R∗hp)‖Ω+ ≤ Ch
(
‖µ1/2

maxu‖2,Ω + ‖p‖1,Ω+,µ

)
.

To estimate the second term we use the inf-sup condition (3.10), to get

‖(R∗hu− uh, R
∗
hp− ph)‖Ω+ ≤ sup

vh,qh 6=0
C−1
s (Bh[(R∗hu− uh, R

∗
hp− ph), (vh, qh)]

+ ch(R
∗
hp− ph, qh) + sh(R

∗
hp− ph, qh))/‖(vh, qh)‖Ω+ .

Adding and subtracting the exact solutions u and p to Bh and using the consistency
relation for the finite element formulation (3.25), we get

‖(R∗hu− uh, R
∗
hp− ph)‖Ω+ ≤ sup

vh,qh 6=0
C−1
s (Bh[(u−R∗hu, p−R∗hp), (vh, qh)]

+ ch(R
∗
hp, qh) + sh(R

∗
hp, qh))/‖(vh, qh)‖Ω+ .

Since the stabilization terms are symmetric we can use the Cauchy-Schwarz inequality
followed by the continuity property (3.14) to get

ch(R
∗
hp, qh) ≤ ch(R

∗
hp,R

∗
hp)

1/2ch(qh, qh)
1/2 ≤ ch(R

∗
hp,R

∗
hp)

1/2‖(vh, qh)‖.
sh(R

∗
hp, qh) ≤ sh(R

∗
hp,R

∗
hp)

1/2sh(qh, qh)
1/2 ≤ sh(R

∗
hp,R

∗
hp)

1/2‖(vh, qh)‖.
Finally, by using the continuity of Bh[(·, ·), (·, ·)], (3.16), it follows that

‖(R∗hu− uh, R
∗
hp− ph)‖Ω+ ≤ C (‖(u−R∗hu, p−R∗hp)‖Ω+

+ch(R
∗
hp,R

∗
hp)

1/2 + sh(R
∗
hp,R

∗
hp)

1/2
)
.

The first term is estimated using the interpolation error estimate (3.27), then we use
the definition of the stabilization terms and the stability properties of the interpolation
operator (3.28) to obtain

ch(R
∗
hp,R

∗
hp) ≤ Ch2

2∑
i=1

‖pi‖2
1,Ω+

i ,µ
, sh(R

∗
hp,R

∗
hp) ≤ Ch2

2∑
i=1

‖pi‖2
1,Ω+

i ,µ
.

The thesis follows by combining the previous estimates.

3.4.3 Conditioning of the Schur complement matrix

We are now interested in analyzing the conditioning of the system and in particular
we focus on the Schur complement matrix. The forthcoming results will enable us to
solve the discrete problem using the classical methods for saddle point problems like
the Uzawa method [59]. Problem (3.2) can be written in algebraic form as[

A BT

−B S

] [
u

p

]
=

[
fu

fp

]
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where blocks are related to the bilinear forms as follows,

ah(uh,vh) = (vh, Auh), bh(uh, qh) = (qh, Buh),

and for the stabilization terms we have S = S1 + S2 where,

ch(ph, qh) = (qh, S1ph), sh(ph, qh) = (qh, S2ph).

The Schur complement C is defined as:

C = BA−1BT + S

From (3.2), we define the following bilinear form:

Lh [(uh, ph), (vh, qh)] = ah(uh,vh) + bh(vh, ph)− bh(uh, qh) + ch(ph, qh) + sh(ph, qh)
(3.30)

We state the following assumptions:

Assumption 3.4.8. There exist positive numbers Ca, Cb, Cs1, Cs2, CB, γ, γ̄, indepen-
dent of uh,vh, ph, qh such that

Ca|||vh|||2 ≤ ah(vh,vh), (3.31)
Cb(1 + C)‖ph‖0,Ω+,µ|||vh||| ≥ bh(vh, ph), (3.32)

Cs1‖ph‖0,Ω+,µ‖qh‖0,Ω+,µ ≥ ch(ph, qh), (3.33)

Cs2‖ph‖0,Ω+,µ‖qh‖0,Ω+,µ ≥ sh(ph, qh), (3.34)

CB‖(uh, ph)‖Ω+‖(vh, qh)‖Ω+ ≥ Bh[(uh, ph), (vh, qh)], (3.35)

γ‖(uh, ph)‖Ω+ ≤ sup
vh,qh 6=0

Lh [(uh, ph), (vh, qh)]

‖(vh, qh)‖Ω+

, (3.36)

γ̄‖(uh, ph)‖Ω+ ≥ sup
vh,qh 6=0

Lh [(uh, ph), (vh, qh)]

‖(vh, qh)‖Ω+

, (3.37)

Analogously, there exist γ̄′ ≤ γ̄ such that

γ̄′‖(uh, ph)‖Ω+ ≥ sup
vh,qh 6=0

bh(uh, qh)− ch(ph, qh)− sh(ph, qh)
‖q‖0,Ω+,µ

. (3.38)

We remark that the existence of γ̄′ follows from (3.37) with γ̄′ = γ̄. However,
we can consider the case in which a better estimate of γ̄′ may be available. Inequalities
(3.31), (3.32), (3.33), (3.34) and (3.35) correspond to results of Lemma 3.4.2 and (3.36)
is the thesis of theorem 3.4.1. All these inequalities have been previously proved. In
particular, the discrete norm equivalence (3.7) has been used in (3.13) to write (3.32).
Inequality (3.37) follows from the assumptions (3.33), (3.34) and (3.35).

Theorem 3.4.9. Under the assumption 3.4.8, the eigenvalues of C are localized as
follows:

λn(C) ∈

z ∈ C : γ ≤ |z| ≤ γ̄′

√
1 +

(
Cb(1 + C)

Ca

)2

 . (3.39)
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Proof. To prove (3.39), we follow the general framework proposed in [35]. For each
ph ∈ Qh, let ũh ∈ Vh be defined by

ah(ũh,vh) + bh(vh, ph) = 0 ∀vh ∈ V, that is, ũh = −A−1BTph. (3.40)

Taking uh = ũh in (3.30), makes Lh [(uh, ph), (vh, qh)] = ch(ph, qh) + sh(ph, qh) −
bh(uh, qh) = (qh, Cph) independent of vh. Hence, using (3.36) and (3.38),

γ‖(ũh, ph)‖Ω+ ≤ sup
vh,qh 6=0

(qh, Cph)
‖(vh, qh)‖Ω+

≤ sup
qh 6=0

(qh, Cph)
‖qh‖0,Ω+,µ

≤ γ̄′‖(ũh, ph)‖Ω+ . (3.41)

From (3.40), (3.31) and (3.32) we have,

Ca|||ũh|||2 ≤ ah(ũh, ũh) = −bh(ũh, ph) ≤ Cb(1 + C)‖ph‖0,Ω+,µ|||ũh|||,

so that |||ũh||| ≤
Cb
Ca
‖ph‖Ω+ , yielding the following estimate,

‖ph‖0,Ω+,µ ≤ ‖(ũh, ph)‖Ω+ ≤
√

1 +

(
Cb(1 + C)

Ca

)2

‖ph‖0,Ω+,µ,

and equation (3.41) becomes

γ‖ph‖0,Ω+,µ ≤ sup
qh 6=0

(qh, Cph)
‖qh‖0,Ω+,µ

≤ γ̄′

√
1 +

(
Cb(1 + C)

Ca

)2

‖ph‖0,Ω+,µ.

3.5 Numerical results

We analyse the order of convergence of two variants of the proposed method compared
with two reference methods and we investigate how Brezzi-Pitkaranta stabilization im-
proves the conditioning of the algebraic problem.

3.5.1 Comparison of different methods

The previous analysis is valid for those choices of finite element spaces and stabiliza-
tion terms for which the inf-sup condition is guaranteed on the restricted sub-domains.
The stabilization on the extended cut region makes the inf-sup condition to be globally
satisfied. We analyze the numerical performances of the following combination:

• P1
bubble − P1 elements with Brezzi-Pitkaranta stabilization on the cut region. We

notice that, since the inf-sup condition is satisfied because of the bubble stabiliza-
tion, we do not need the additional term ch(ph, qh).

• P1−P1 with Brezzi-Pitkaranta stabilization on all the domain, i.e. both ch(ph, qh)
and sh(ph, qh) are active.

These two choices will be compared with two reference methods. The first one employs
P1
bubble − P1 elements without any additional stabilization in the extended cut region

(sh(ph, qh) = 0). This is the method where we observe instabilities in the pressure
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approximation, as we have shown in figure 3.1. The second one has been proposed
by Burman-Becker-Hansbo [10] and it consists in choosing P1 − P0 elements with a
stabilization based on the jump of the pressure along the edges of the mesh, so we
define:

ch(ph, qh) + s(ph, qh) :=
∑
F∈F1

∫
F

γp
µ1

hF Jph,1KJqh,1Kds+
∑
F∈F2

∫
F

γp
µ2

hF Jph,2KJqh,2Kds,

(3.42)
where Fi denotes the set of interior faces of T +

h,i.
From the standpoint of accuracy, the considered methods are substantially equiva-

lent. Indeed, they all satisfy the following theoretical estimate [42, 91]:

‖u− uh‖1,Ω,µ + ‖p− ph‖0,Ω+,µ ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω) (3.43)

In what follows we will show that the performance of all methods is in agreement with
the theory, but appreciable differences may appear in the magnitude of the error.

A strong point in favor of the Brezzi-Pitkaranta stabilization is that it is easy to
implement, i.e. it needs a minimum effort to introduce the stabilization term in a pre-
existing finite element code and, moreover, it can be easily used in a parallel context.
In contrast, the assembling of a stabilization term that needs integration on the edges
of the elements, such as the Burman-Becker and Hansbo stabilization, usually requires
to access information about the adjacent elements to each edge, which increases the
communication between processors.

3.5.2 Test cases and results

The numerical tests have been implemented in the C++ finite element library LifeV
(www.lifev.org), developed by the collaboration between four institutions: École
Polytechnique Fédérale de Lausanne (CMCS), Politecnico di Milano (MOX), INRIA
(REO, ESTIME) and Emory University.

We solve the saddle point problems in the domain Ω = [0, 1]2 crossed by the inter-
face Γ = {x, y|(x − xc)

2 + (y − yc)
2 = a2}. We set a = 0.25 and xc = yc = 0.5.

Let us define Ω1 = {x, y|(x − xc)2 + (y − yc)2 < a2} the internal part of the domain
with respect to the orientation of the normal of Γ, and Ω2 is the external part. We set
γs = 1 and the penalty parameters γp = γu = 10. The determination of these param-
eters is fairly heuristic. This is one of the major drawbacks of using penalty methods
for pressure stabilization and to enforce interface conditions. The selected values have
been tuned on the simple test case 1 described below, aiming to obtain a stable numeri-
cal solution that is not prerturbed by the consistency error due to pressure stabilization.
These values have been then kept constant for all the other numerical experiments. The
fact that they fit to all test cases suggest that they fall in the range where stability and
accuracy criteria are simultaneously satisfied.
We consider three different test cases. In the first two tests there is no variation in the
parameters of the problem between the two sides of the interface. The surface Γ is then
an artificial interface, however the additional XFEM degrees of freedom and the weak
imposition of the conditions across the surface can produce extra numerical errors in
the region near the interface. We discuss in details the convergence analysis for the
error on the velocity and pressure solution.
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Test 1: Poiseuille’s flow We start from the Poiseuille’s flow in the domain Ω crossed by
Γ, for the verification of the numerical solver. We remind that in a Poiseuille’s flow,
the velocity profile is parabolic for the horizontal component and null for the vertical
one. The gradient of the pressure is linear. As we can see in figure 3.5, the numerical
results are coherent with the theoretical estimates (3.43). The error constant of the
stabilized P1 − P0 scheme is slightly larger than in the other cases. This behavior can
be explained observing that this method is the only one based on piecewise constant
pressure elements, to approximate a linear pressure field.
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Figure 3.5: Convergence analysis for test 1

Test 2: An artificial interface in an incompressible medium We analyse the case of an ar-
tificial interface in an incompressible fluid with constant material properties over the
entire domain as proposed in [10] and [65]. For problem (3.1), the following continu-
ous analytical solution is available:

u(x, y) =
[
20xy3; 5x4 − 5y4

]
, p(x, y) = 60x2y − 20y3 − 5,

and is obtained by setting the right hand side f = 0. We observe that the velocity
approximation error is very similar for the four considered methods. For the approxi-
mation of the pressure, methods based on the Brezzi-Pitkaranta stabilization on the cut
region perform slightly better that the others.

Test 3: An elastic interface problem After these preliminary tests, we analyze a problem
with heterogeneous coefficients [10]. This is an incompressible linear elastic problem
that can be reinterpreted as a Stokes flow with suitable forcing terms. Let Ω be the unit
square [0, 1]2 and Ω1 be the circle of radius a = 0.25 centered in b = xc = yc = 0.5,
as defined above. We set E1 = E2 = 1, ν2 = 0.25 and ν1 = 0.49. Coefficients µi
are defined as follows: µi = Ei/(2(1 + νi)). Using polar coordinates, where r =√

(x− xc)2 + (y − yc)2, b = 0.5, the analytical solution for velocity and pressure are
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Figure 3.6: Convergence analysis for test 2

given by the following expressions, for ν1 6= 0.5:

ur(r, θ) =

{
c1r in Ω1

(r − b2

r
)c2 + b2

r
in Ω2

uθ(r, θ) = 0

p(r, θ) =

{
−2c1λ1 in Ω1

−2c2λ in Ω2

c1 =

(
1− b2

a2

)
c2 +

b2

a2

c2 =
(λ1 + µ1 + µ2)b2

(λ2 + µ2)a2 + (λ1 + µ1)(b2 − a2) + µ2b2
.

which exactly satisfy the interface conditions of (3.1). The solution of this test case, cal-
culated using P1bubble−P1 elements, is shown in Figure 3.1. The momentum and mass
conservation equation of (3.1) will be equivalently satisfied, provided that the follow-
ing right hand sides, f and g, are chosen for the momentum and continuity equations,
respectively.

f = 0 g = −pi
λi

in Ωi

We notice that the variation on the Poisson coefficient produces a kink in the radial
velocity profile and a strong discontinuity in the pressure solution. Strictly speaking,
p can be interpreted as the pressure only in the incompressible case (Stokes problem),
but we shall omit this distinction. Similarly to the previous results, performances of
the methods are quite similar concerning the velocity approximation. When the pres-
sure field is discontinuous, Figure 3.7 shows that resorting to a stabilization method
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on the cut region is recommended. However, the best performances are obtained when
pressure stabilization is adopted on the entire domain, combined with either P1−P0 or
P1 − P1 elements.

Finally, we were interested in studying the behavior of the scheme for two different
choices of the weights ωi. These results are obtained using the weights defined in (3.3).
In Figure 3.8, we perform the same test using the weights defined in [63], which do
not account for the heterogeneity of viscosity. Comparing the results reported in Figure
3.7 and 3.8, we do not observe a significant difference in the numerical solution. We
remark that the computational cost of these weights is very similar and we conclude
that both choices are suitable to solve a problem with a mild heterogeneity between
coefficients.
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Figure 3.7: Convergence analysis for test 3, using the averaging weights defined in (3.3).
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Figure 3.8: Convergence analysis for test 3, using the averaging weights defined in [63].
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Figure 3.9: L2-norm error for the jump of velocity across the interface.

We finally observe that for the analysis of the numerical experiments we have used
the standardH1 and L2 norms for velocity and pressure respectively, while the theoreti-
cal error estimate of the scheme we have analyzed is provided for ‖(u−uh, p−ph)‖Ω+ .
We claim that the norms considered for the numerical tests are the dominating terms
of this more general error indicator. This is confirmed by Figure 3.9, where we show
‖[[uh]]‖1/2,h,Γ. This term is a part of ‖(u − uh, p − ph)‖Ω+ and it scales as h3/2, in
agreement with the expected theoretical estimate. We notice that its magnitude is sig-
nificantly smaller than the one of the velocity H1 norm.

3.5.3 Problem conditioning

As we already pointed out, the Nitsche-XFEM method allows for using meshes in-
dependent of the position of Γ, but instabilities in the cut region depend on how the
interface crosses the elements. For this reason, we study the conditioning of the pres-
sure Schur complement matrix C for the third test case previously presented and we
use the P1 − P1 elements with Brezzi-Pitkaranta stabilization. By increasing the ra-
dius of the circular interface Γ, see Figure 3.1, we modify the intersections between the
mesh and the interface. According to the theory, we expect the method proposed is not
influenced by the geometry of the problem .

In Table 3.1, we collect the obtained results. First of all, we observe that the con-
ditioning of matrix C is almost constant when using P1 − P1 elements with Brezzi-
Pitkaranta stabilization on the whole domain, as expected from (3.39). The condition
number is independent of how the interface cuts the mesh.

In addition, we calculate the minimum eigenvalue of the Schur complement matrix,
preconditioned with the pressure mass matrix. When the pressure stabilization on the
cut region is active, we useM+

p defined as,

[
M+

p

]
mn

=
2∑
i=1

∫
Ω+
i

qmh q
n
hdx, qmh , q

n
h ∈ Qh,
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where we remark that the integrals of basis functions having support in a K ∈ Gh are
computed on the entire element K. For the non stabilized case, the usual definition is
applied,

[Mp]mn =
2∑
i=1

∫
Ωi

qmh q
n
hdx, qmh , q

n
h ∈ Qh.

The quantities min{λi((M+
p )−1C)} and min{λi(M−1

p C)} inform us about the inf-sup
stability of the scheme, because they are directly proportional to the inf-sup constant
[42]. The analysis is reported in Table 3.1. The fact that the minimum eigenvalue
of min{λi(M−1

p C)} is nor positive, neither bounded from below when the size of cut
elements decreases, confirms the lack of stability of the approximation method without
pressure stabilization. Conversely, the Brezzi-Pitkaranta stabilization, applied on the
cut region or on the whole domain, restores the desired positivity and boundedness
property, almost uniformly with respect to the cut-element size.

r min{ |K∩Ω1|
|K∩Ω2|} κ(M−1

p C) κ((M+
p )−1C) κ((M+

p )−1C)
P1
bubble − P1 P1 − P1 + BP stab. P1

bubble − P1 + BP stab.

0.250 0.31038 8.15 · 102 1.35 · 103 559.83
0.270 0.02990 8.27 · 103 1.36 · 103 654.35
0.280 3.35 · 10−4 2.61 · 107 1.37 · 103 2.66 · 103

0.281 1.34 · 10−5 2.18 · 108 1.37 · 103 9.14 · 103

Table 3.1: Conditioning of the preconditioned Schur complement C for small perturbations of the radius
r of Ω1.

r min{ |K∩Ω1|
|K∩Ω2|} min{λi(M−1

p C)} min{λi((M+
p )−1C)} min{λi((M+

p )−1C)}
P1
bubble − P1 P1 − P1 + BP stab. P1

bubble − P1 + BP stab.

0.250 0.31038 −1.6434 0.486 0.2318
0.270 0.02990 −2.6736 0.4945 0.2316
0.280 3.35 · 10−4 −4.3228 0.4939 0.1359
0.281 1.34 · 10−5 −22.1581 0.4936 0.1235

Table 3.2: Minumun eigenvalue of the preconditioned Schur complement C for small perturbations of
the radius of Ω1.

3.6 Conclusions

The work developed in this chapter arises from the observation that the approxima-
tion of saddle point problems with extended finite elements poses some stability issues.
In particular, for the Stokes problem the approximation of the pressure may be lo-
cally unstable. Standard mixed finite element spaces combined with simple enrichment
strategies lead to a satisfactory approximation method, provided that pressure stabiliza-
tion is introduced into the scheme. The general framework of symmetric stabilization
techniques is suitable to cure this kind of issues. In particular, we have shown that the
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Brezzi-Pitkaranta stabilization scheme is effective also in this new approximation con-
text. The algebraic properties of the scheme are also analyzed, enabling the application
of standard solvers, such as the Uzawa method.
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Part II

Multidomain problems with
heterogeneous dimensionality
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CHAPTER4
Tissue perfusion in vascularized tissue

4.1 Introduction

In the following two chapters we will analyze multidomain problems with heteroge-
nous dimension. In particular, we are interested in studing problems where a complex
3D structure is embedded into another 3D domain. In this chapter we start with the
analysis of tissue perfusion in vascularized tissue.
Small vessels, such as arterioles and capillaries, are the main actors of the microcir-
culation mechanisms and they are involved in transfer processes between blood and
tissue. Blood circulation is responsible for a quite large number of exchange processes
with the external tissue, such as oxygen transport, carbon dioxide removal and thermal
regulation, and all these functions strongly affected the body vital processes. The sim-
ulation of these biological transfer mechanism is a challenging field of investigation,
since mathematical modeling could provide new insights to medicine and biomedical
engineer. There exist many applications in which is important to understand the con-
nection between vessels and tissue, for example pharmacokinetics treatments or design
of particular biomedical devices.

The big aim of this chapter is to study tissue perfusion in vascularized tumor tis-
sues. Blood vessels in tumors are substantially leakier than in healthy tissue and they
are tortuous, causing spatial and temporal heterogeneity in tumor blood flow. Further,
the pressure generated by proliferating cells reduces tumor blood and lymphatic flow.
These vascular abnormalities lead to an impaired blood supply and abnormal tumor
microenvironment characterized by hypoxia and elevated interstitial fluid pressure that
reduces the distribution of macromolecules through advection. Drug treatments have
been developed specifically to target the abnormal vasculature in tumors; however, their
impact is hard to predict as the relationship between network structure and the func-
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tional parameters that determine mass transport is subtle [29].
Even if many recent works are focused on the investigation of these transport processes
at the level of quite large vessels, such as arteries or arterioles, [69], [70], in this thesis
we will just focus on the level of capillaries, as it has been already done in some works
by Dr. T. Secomb, [50, 51, 102, 103]. These vessels have particular characteristics that
allow us to make some assumptions in order to implement model reduction, as we will
see in the next section.
We start now introducing the model for the perfusion problem.

4.2 Model set up

We define a mathematical model for fluid transport in a permeable biological tissue per-
fused by a capillary network. We consider a domain Ω that is composed by two parts,
Ωv and Ωt, the capillary bed and the tumor interstitium, respectively. Assuming that the
capillaries can be described as cylindrical vessels, we denote with Γ the outer surface
of Ωv, with R its radius and with Λ the centerline of the capillary network. Figure 4.1
(panels (a, b)) shows a description of the geometrical model. The radius of the vessels
could be in general a function of the arc length along Λ.
At this stage, any physical quantity of interest, such as the blood pressure p and the
blood velocity u, is a function of space (being x ∈ Ω the spatial coordinates) and time
t. These quantities obey different balance laws, depending on the portion of the domain
of interest and, in general, they are not continuous at the interface between subdomains.
We first address the fluid transport in each portion of Ω, then we discuss the proper in-
terface conditions in order to close the resulting coupled differential problem.
We consider the tumor interstitium Ωt as an isotropic porous medium, such as the
Darcy’s law applies, while we start assuming a Newtonian model for the blood flow in
the capillaries. The rheology of blood is analyzed in detail in [97], where it is pointed
out that non-Newtonian models may be more appropriate to describe blood behavior in
particular conditions. Microcirculation is an extreme case where the size of vessels is
the smallest and the effect of blood pulsation is almost negligible. We will discuss in the
next sections how the blood flow model could be adapted to these special conditions.

An essential effect for the applications we have in mind, i.e. tissue perfusion in
tumor tissue, is the lymphatic drainage. The lymphatic vessels consist of one way en-
dothelium conduits from the peripheral tissues to the blood circulation. Excess of fluid
extravasated from the blood circulation is drained by lymphatic vessels and returned
to the blood stream: a functional lymphatic network rapidly removes fluid and this
results in lower interstitial fluid pressure and biochemical concentration levels. The
lymphatic vessels are important in modeling tumor microenvironment since they trans-
port tumor cells. It has been estimated that 80% of metastasis of solid cancers, such as
breast cancer and melanoma, disseminate through the lymphatic system, while 20% of
metastases may occur through the blood vasculature or by direct seeding, [7]. For this
reason, interstitial flow and lymphatic drainage should be considered together. Unlike
the capillary network, we do not have a geometrical description of the lymphatic ves-
sels, so we cannot directly define the geometrical interaction between the lymphatics
and the tissue. Following the work by Soltani and Chen, [106], we decide to model
the lymphatic drainage as a sink term in the equation for the interstitial flow. More
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precisely, we assume that the volumetric flow rate due to lymphatic vessels, ΦLF , is
proportional to the pressure difference between the interstitium and the lymphatics,
namely ΦLF (pt) = LLFp

S
V

(pt − pL), where LLFp is the hydraulic conductivity of the
lymphatic wall, S/V is the surface area of lymphatic vessels per unit volume of tissue
and pL is the hydrostatic pressure within the lymphatic channels.

As a consequence of all the modelling assumptions described above, the fluid prob-
lem in the entire domain Ω reads as follows:

∇ · ut + LLFp
S
V

(pt − pL) = 0 in Ωt

ut = −k
µ
∇pt in Ωt

ρ
∂uv
∂t

+ ρ(uv · ∇)uv = −∇pv + µ∆uv in Ωv

∇ · uv = 0 in Ωv

(4.1)

where µ and k denote the dynamic blood viscosity and the constant tumor perme-
ability, respectively, and ρ is the blood density. At the interface Γ = ∂Ωv ∩ ∂Ωt we
impose continuity of the flow:

uv · n = ut · n = Lp((pv − pt)−
∑
k

σk(πv,k − πt,k)) ut · τ = 0, on Γ (4.2)

where n is the outward unit vector normal to the capillary surface. The fluid flux across
the capillary wall can be obtained on the basis of linear non-equilibrium thermody-
namic arguments, originally developed by Kedem and Katchalsky. In particular Lp is
the hydraulic conductivity of the vessel wall, πv − πt is the difference in oncotic pres-
sure where π = RgTc is the oncotic pressure given by a concentration c of a given
solvent, Rg is the universal gas constant and T is the absolute temperature. Because of
osmosis, the pressure drop across the capillary wall is affected by the difference in the
concentration of chemicals, namely cv − ct, where cv and ct denote the concentration
in the capillaries and in the interstitium, respectively. The osmotic pressure is modu-
lated by the reflection coefficient σ that quantifies the departure of a semi-permeable
membrane from the ideal permeability (where any molecule is able to travel across the
membrane without resistance). The index k spans over all solutes that are dissolved
in blood. However, not all of them will affect the oncotic pressure. Only the large
molecules, such as proteins, can induce a significant oncotic pressure gradient. Indeed,
the oncotic pressure gradient is mainly due to the significant presence of albumin in
blood [31, 55, 89], whose concentration can be reasonably considered to be constant.
For this reason, we assume that solutes such as oxygen or low concentrated drugs can
not significantly affect the oncotic pressure gradient. Then, for our model, the capillary
leakage only depends on the hydrostatic pressure according to the following expression,

Jv(pt, pv) := Lp((pv − pt)− σpRgT (cv,p − ct,p)) (4.3)

where, in agreement with the definition of π, cv,p and ct,p denote the constant protein
concentration in the capillaries and the interstitial tissue respectively.

Finally, to be uniquely solvable, problem (4.1) must be complemented by boundary
conditions on ∂Ωt and ∂Ωv. The prescription of these conditions significantly depends
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Ωv

Ωt

R

Λ

Λh

f(pt/v)=2πRLP(pv-pt)-

pout

pin

Figure 4.1: Panel (a): the reduction from three-dimensional to one-dimensional description of capillary
vessels. The vessels network is available thanks to the courtesy of Dr. T. Secomb, [101]. Panel (b):
a descrip tion of the interstitial tissue with embedded capillary network (single vessel of radius R).
Panel (c): discretization with the finite element method. Panel (d): a sketch of the fluid exchange
between the capillary bed and the tissue interstitium. We highlight the inflow and outflow sections of
the network.

on the particular features of the problem at hand, as well as on the available data. For
this reason, we postpone any further consideration on boundary conditions to Section
4.5, where we will discuss the numerical simulations and the related results.

4.3 Coupling microcirculation with interstitial flow

The previous fully three-dimensional model is able to capture the phenomena we are
interested in. However, two relevant simplifications may be applied without significant
loss of accuracy. At the modelling level, a quasi-static flow model can be replaced
to the Navier-Stokes equations in deformable domains. More importantly, we aim to
override the technical difficulties that arise in the numerical approximation of the cou-
pling between a complex network with the surrounding volume. To this purpose, as we
have already seen in the first chapter, 1, we adopt the multiscale approach developed
in [32–34], which is inspired to the immersed boundary method.

4.3.1 An immersed boundary method to model networks

As we have already seen in the first chapter, the immersed boundary (IB) method has
been developed to study fluid-structure interaction by Charles S. Peskin [90]. The orig-
inal idea of representing immersed structures with Dirac delta functions was then taken
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by Carlo D’Angelo to study elliptic problems in fractured domains, [32–34].
The concept of the immersed boundary method applied to this case can be outlined as
follows. To avoid resolving the complex three-dimensional (3D) geometry of the cap-
illary network, we exploit the IB method combined with the assumption of large aspect
ratio between vessel radius and capillary axial length. This approach is represented in
Figure 4.1, panels (a, b). More precisely, we apply a suitable rescaling of the equations
and let the capillary radius go to zero (R → 0). By this way, we replace the immersed
interface and the related interface conditions with an equivalent mass source.

We denote with f the flux released by the surface Γ, which is a flux per unit area.
The definition of f comes from the interface conditions (4.3), that we have prescribed
above. At the interface between the capillary network and the tissue we require the flux
continuity, i.e.

ut(t,x) · n = f(pt/v(t,x)) on Γ,

where ut(t,x) with x ∈ Γ is the volume averaged interstitial filtration velocity in the
tissue and f(pt/v(t,x)) is a point-wise constitutive law for the capillary leakage in
terms of the fluid pressure, denoted here with the shorthand symbol pt/v(t,x). The
immersed boundary method is able to represent the action of f on Γ as an equivalent
source term, F , that is actually distributed on the entire domain Ω. More precisely,
F = F (pt/v(t,x)) is a measure defined by∫

Ω

F (pt/v(t,x))v =

∫
Γ

f(pt/v(t,x))v ∀v ∈ C∞(Ω), (4.4)

where v plays the role of a test function in the variational formulation that will be de-
fined with more details later on. Hence, we use the notationF (pt/v(t,x)) = f(pt/v(t,x))δΓ,
meaning that F is the Dirac measure concentrated on Γ, having density f .

Proceeding along the lines of [32], when R → 0 we aim to replace the mass flux
per unit area by an equivalent mass flux per unit length, distributed on the centerline
Λ of the capillary network. To start with, we recall the assumption that the vessels
can be represented as cylinders originated by a given mean line Λ. Let γ(s) be the
intersection of Γ with a plane orthogonal to Λ, located at s and let (s, θ) be the local
axial and angular coordinates on the cylindrical surface generated by Λ with radius R.
We apply the mean value theorem to represent the action of F on v in (4.4) by means of
an integral with respect to the arc length on Λ. More precisely, there exists θ̃ ∈ [0, 2π]
such that ∫

Ω

F (pt/v)v =

∫
Λ

∫
γ(s)

f(pt/v(t, s, θ))v(s, θ)Rdθds

=

∫
Λ

|γ(s)|f(pt/v(t, s, θ̃))v(s, θ̃)ds, ∀v ∈ C∞(Ω) . (4.5)

Then, we exploit the fact that capillaries are narrow with respect to the characteristic
dimension of the surrounding volume. Namely, we assume that R � |Ωt|1/d where
d = 2, 3 is the number of space dimensions of the model. Provided that f is a linear
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function or operator, we conclude that

lim
R→0

v(s, θ̃)|γ(s) = v(s)|Λ, ∀v ∈ C∞(Ω),

lim
R→0

f(pt/v(t, s, θ̃)|γ(s) = f(pt/v(t, s)),

pt/v(t, s) :=
1

|γ(s)|

∫
γ(s)

pt/v(t, s, θ)Rdθ. (4.6)

We observe that, while v(s, θ) is a smooth function that can be evaluated on Λ, the
solution of the problem may not be regular enough to define the point-wise value of
pt/v|Λ. For this reason, the average operator on γ(s) is still applied to pt/v, even in the
limit case when R → 0. In conclusion, substituting the previous formula to equation
(4.5) we recover ∫

Ω

F (pt/v)v =

∫
Λ

|γ(s)|f(pt/v(t, s))v(s)ds. (4.7)

4.3.2 Models for microvascular flow

The IB method described above is naturally combined with a one-dimensional (1D)
model for blood flow and transport in the cardiovascular system. The derivation of
such model from the full Navier-Stokes equations is a vivid field of research. We refer
the interested reader to [53, 88] for an introduction and for instance to [24, 52, 96] for
more advanced studies. For microcirculation, however, the derivation of a reduced flow
model is significantly simpler than in the general case. To develop the model we rely on
the following assumptions: (i) the displacement of the capillary walls can be neglected,
because the pressure pulsation at the level of capillaries is small; (ii) the convective
effects can be neglected, because the flow in each capillary is slow; (iii) the flow almost
instantaneously adapts to the changes in pressure at the network boundaries, because
the resistance of the network is large with respect to its inductance. This means that
the quasi-static approximation is acceptable. As a result of that, the blood flow along
each branch of the capillary network can be described by means of Poiseuille’s law for
laminar stationary flow of incompressible viscous fluid through a cylindrical tube with
radius R.

Let us decompose the network Λ into individual branches Λi, i = 1, . . . , N . We de-
note with λi an arbitrary orientation of each branch that defines the increasing direction
of the arc length si. Let λ, s be the same quantities referring to the entire network Λ.
According to Poiseuille’s flow, conservation of mass and momentum become,

uv,i = −R
2

8µ

∂pv,i
∂si

λi, −πR2∂uv,i
∂si

= gi, (4.8)

πR4

8µ

∂2pv,i
∂s2

i

= gi,

where gi is a generic source term. The governing flow equation on Λ is obtained by
summing (4.8) over the index i. In conclusion, we now represent the blood flow in
the capillary bed on its centerline Λ. The coupled problem for microcirculation and
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Figure 4.2: Visualization of a realistic vascular network that is used in the simulations, courtesy of Dr.
T. Secomb, available online at [101]. The transition from a three-dimensional to a one-dimensional
description of the vessels is depicted below. We represent the branches decomposition of the network
and the branches orientation.

interstitial flow consists to find the pressure fields pt, pv and the velocity fields ut, uv
such that 

−∇ ·
(
k

µ
∇pt

)
+ LLFp

S
V

(pt − pL)− f(pt/v)δΛ = 0 in Ω

ut = −k
µ
∇pt in Ω

−πR
4

8µ

∂2pv
∂s2

+ f(pt/v) = 0 s ∈ Λ

uv = −R
2

8µ

∂pv
∂s
λ s ∈ Λ

(4.9)

where the term f(pt/v) accounts for the blood flow leakage from vessels to tissue and
it has to be understood as the Dirac measure concentrated on Λ and having line density
f . A schematic visualization of this flow is reported in Figure 4.1, panel (d), where
black arrows depict the fluid exchange between the capillaries and the interstitial tissue.
The expression of f(pt/v) is provided by the Kedem-Katchalsky equation (4.2). Since
in this chapter we focus on flow, we decide to drop the effects of the concentration
gradients across the capillary walls. In this case, the constitutive law for the leakage of
the capillary walls reduces to the Starling’s law of filtration,

f(pt/v) = 2πRLp(pv − pt) with pt(s) =
1

2πR

∫ 2π

0

pt(s, θ)Rdθ. (4.10)

We notice that f is not a simple function, but rather an integral operator, as it includes
the computation of the mean value of the interstitial pressure pt. Since the capillary bed
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is now approximated with its centerline, the average pv(s) coincides with the pointwise
value pv(s). We will discuss later on how to approximate pt(t, s) by means of quadra-
ture rule. We finally observe that in problem (4.9) the distinction between the subregion
Ωt and the entire domain Ω is no longer meaningful, because Λ has null measure in Rd.
For notational convenience, in what follows we will then identify Ωt with Ω and Ωv

with Λ.

4.3.3 Dimensional analysis

Writing the equations in dimensionless form is essential to put into evidence the most
significant mechanisms governing the flow through healthy and tumor tissue. We first
identify the characteristic dimensions of our problem. We choose length, velocity and
pressure as primary variables for the analysis. The characteristic length, d, is the av-
erage spacing between capillary vessels, the characteristic velocity, U , is the average
velocity in the capillary bed and the characteristic pressure, P , is the average pressure
in the interstitial space. Estimates of these values are reported in [7] for healthy tissue.
The dimensionless form of (4.9) is then,

−κt∆pt +QLF (pt − pL) = Q(pv − pt)δΛ in Ω

ut = −κt∇pt in Ω

−κv
∂2pv
∂s2

+Q(pv − pt) = 0 s ∈ Λ

uv = − κv

πR′2
∂pv
∂s
λ s ∈ Λ

(4.11)

In the Poiseuille’s equation we use the non dimensional radius R′ = R/d. The dimen-
sionless groups affecting our equations are the following,

κt =
k

µ

P

Ud
, QLF = LLFp

S
V

Pd

U
, Q = 2πR′Lp

P

U
, κv =

πR′4

8µ

Pd

U
, (4.12)

which represent the hydraulic conductivity of the tissue, the non dimensional lymphatic
drainage, the hydraulic conductivity of the capillary walls and the hydraulic conductiv-
ity of the capillary bed, respectively. We refer to section 4.5 for an estimate of these
dimensionless groups magnitude and the related discussion.

4.4 Numerical approximation

For complex geometrical configurations explicit solutions of problem (4.11) are not
available. Numerical simulations are the only way of applying the model to real cases.
Besides applications, the study of numerical approximation methods for problem (4.11)
requires first to address existence, uniqueness and regularity of the exact solutions and
then to analyse the accuracy of the proposed scheme. These topics, already addressed
for a similar problem setting in [33, 34], are particularly relevant in this case because
they inform us about the ability of the scheme to approximate the quantities of interest
for applications.
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4.4. Numerical approximation

The solution of problem (4.11) does not satisfy standard regularity estimates, be-
cause the forcing term of equation (4.11)(a) is a Dirac measure. To characterize the
regularity of the trial and test spaces we do not resort to weighted Sobolev spaces, as
proposed in [33]. Indeed, that approach to analyze and discretize the problem naturally
ends up with error estimates requiring finite element approximation on graded meshes,
a necessary condition to capture the solution gradients in the neighborhood of the sin-
gularity. In this section we investigate the validity of weaker error estimates, which
provide control on the approximation error under less restrictive requirements on the
scheme. This objective is achieved by following [73], where the error analysis is based
on the fact that pt does not belong to H1 but pt ∈ W 1,p

0 , p ∈ [1, 3− d/2) holds instead.
Then, we consider the solution pt of (4.9) as an element of W 1,p

0 , p ∈ [1, 3 − d/2) and
we define our test space W 1,q

0 as:

W 1,q
0 = {v ∈ W 1,q : v = 0 on ∂Ω}, 1

p
+

1

q
= 1

The discretization of problem (4.11) is achieved by means of the finite element
method that arises from the variational formulation of the problem combined with a
partition of the domain into small elements, as shown in Figure 4.1, panel (c). We mul-
tiply the first equation by a test function qt ∈ W 1,q

0 and integrate over Ω. The Laplace
operator is treated using integration by parts combined, for the sake of simplicity, with
homogeneous Neumann conditions on ∂Ω, while we use (4.7) to write(

(pv − pt)δΛ, q
h
t

)
Ω

=
(
pv − pt, qht

)
Λ
.

We proceed similarly for the governing equation on the capillary bed. We denote with
m−i ,m

+
i the extrema of Λi oriented along the arc length and with λ±i (mi) the reference

outgoing unit vectors of Λi at those points. We choose test functions for the pressure
field on the capillary bed qv ∈ Vv,0, where Vv,0 is the subspace of H1(Λ) of functions
which vanish on the boundaries of Λ. After integration by parts on each branch Λi

separately, we obtain the following equation, for any i = 1, . . . , N

κv
(
∂spv, ∂sqv

)
Λi

+ κv∂spvqv|m−i − κv∂spvqv|m+
i

+Q
(
pv − pt, qv

)
Λi

=
(
pv,0, qv

)
Λi
,

where pv,0 denotes the lifting of nonhomogeneous Dirichlet boundary data for the cap-
illary network. Let i ∈ J be the indices that identify the branches with the common
node mj . The flow balance at mj implies that∑

i=J

−κv∂spv,i|mj qv,i|mjλi · λ±i (mj) = 0.

Reminding that the test functions for the pressure field on the capillary bed are continu-
ous on the entire network, namely qv ∈ C0(Λ) because Vv,0 ⊂ C0(Λ) on 1D manifolds,
summing up the previous equations with respect to the number of branches, we obtain

κv
(
∂spv, ∂sqv

)
Λ

+Q
(
pv − pt, qv

)
Λ

=
(
pv,0, qv

)
Λ
, ∀qv ∈ Vv,0.

Then the weak formulation of (4.11) requires to find pt ∈ Vt := W 1,p
0 and pv ∈ Vv,0

such that,{
at(pt, qt) + bΛ(pt, qt) = Ft(qt) + bΛ(pv, qt), ∀qt ∈ W 1,q

0 ,

av(pv, qv) + bΛ(pv, qv) = Fv(qv) + bΛ(pt, qv), ∀qv ∈ Vv,0,
(4.13)
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with the following bilinear forms and right hand sides,

at(pt, qt) := κt
(
∇pt,∇qt

)
Ω

+QLF
(
pt, qt

)
Ω
,

av(pv, qv) := κv
(
∂spv, ∂sqv

)
Λ
,

bΛ(pv, qv) := Q
(
pv, qv

)
Λ
,

Ft(qt) := QLF
(
pL, qt

)
Ω
,

Fv(qv) :=
(
pv,0, qv

)
Λ
.

At the discrete level, one of the advantages of our problem formulation is that the
partition of the domains Ω and Λ into elements are completely independent. We denote
with T ht an admissible family of partitions of Ω into tetrahedrons K ∈ T ht , where the
apex h denotes the mesh characteristic size. We also assume that Ω has a simple shape,
such that it can be exactly represented by a collection of elements. Let V h

t := {v ∈
C0(Ω) : v|K ∈ P1(K), ∀K ∈ T ht } be the space of piecewise linear continuous finite
elements on T ht . Since natural boundary conditions will be applied on ∂Ω, we do not
enforce any constraint on the degrees of freedom of V h

t located at the boundary, but the
definition of at(·, ·) may be subject to some modifications.

For the discretization of the capillary bed, each branch Λi is partitioned into a
sufficiently large number of linear segments E, whose collection is Λh

i , which rep-
resents a finite element mesh on a one-dimensional manifold. Then, we will solve
our equations on Λh := ∪Ni=1Λh

i that is a discrete model of the true capillary bed. Let
V h
v,i := {v ∈ C0(Λi) : v|E ∈ P1(E), ∀E ∈ Λh

i } be the piecewise linear and continuous
finite element space on Λi. The numerical approximation of the equation posed on the
capillary bed is then achieved using the space V h

v :=
(
∪Ni=1 V

h
v,i

)
∩C0(Λ). We observe

that the continuity of the discrete pressure at the junctions of the network is enforced
by construction, by means of the approximation space. More precisely, we will use
V h
v,0, that is the restriction of V h

v to functions that vanish on the boundary of Λ, to en-
force essential boundary conditions on the pressure, at the inflow and outflow sections
of the capillary bed. The mesh characteristic size is denoted with a single parameter h,
because we will proportionally refine both finite element spaces V h

t , V
h
v . The discrete

problem arising from (4.11) requires to find pht ∈ V h
t and phv ∈ V h

v,0 such that{
at(p

h
t , q

h
t ) + bΛh(pht , q

h
t ) = Ft(q

h
t ) + bΛh(phv , q

h
t ), ∀qht ∈ V h

t ,

av(p
h
v , q

h
v ) + bΛh(phv , q

h
v ) = Fv(q

h
v ) + bΛh(pht , q

h
v ), ∀qhv ∈ V h

v,0,
(4.14)

where the bilinear forms at(·, ·), av(·, ·), bΛ(·, ·) are the same as before, with the only
difference that bΛh(·, ·) is now defined over the discrete representation of the network
Λh.

The solution of the problem (4.13) is characterized by a low regularity, in other
words, Vt /∈ H1(Ω). For this reason, studying the convergence properties of (4.13)
to (4.14) is a challenging task. A novel approach for the a priori error analysis of an
elliptic problem with a Dirac measure source term has recently been developed in [73],
where the authors derive a quasi-optimal a priori estimate for first order finite elements
approximation and optimal error bounds for higher order approximations, on a family
of quasi-uniform meshes in a L2-seminorm. Graded meshes are no longer needed to
achieve optimality in this new theoretical context. We remark the fact that, in their
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Figure 4.3: A basis function of the finite element space for the interstitium, ψit, is depicted on the left.
This is a classical piecewise linear and continuous hat function. On the right, we show the basis
functions ψiv used for the approximation on the capillary network. Note that, by construction, those
functions are continuous at the junctions of network branches.

work, the authors analyze a two-dimensional (2D) elliptic problem with Dirac source
terms, while our model turns out to be a 3D-1D coupled system of elliptic equations.
For this reason we are interested to investigate whether the convergence properties
proved in [73] are valid in a more general case, where the Dirac measure term is in
turn coupled to the solution in the surrounding volume through a partial differential
equation. For the sake of clarity, we report below the main convergence results of [73],
adapted to our particular case.

Let pt ∈ W 1,p
0 the weak solution of (4.13) and let pht ∈ V h

t be the finite element
approximation given by (4.14). Then, the following upper bound for the L2-error holds:

‖pt − pht ‖L2(Ω\Ωv) . h2| log h|. (4.15)

The numerical experiments performed to investigate whether the same a priori esti-
mates are still valid for coupled problems such as (4.9) is reported in Section 4.4.3.

4.4.1 Algebraic formulation

We aim to study the matrix form of the variational problem (4.14). Let us denote with
{ψit}, i = 1, . . . , Nh

t the piecewise linear and continuous Lagrangian finite element
basis for V h

t and with {ψiv}, i = 1, . . . , Nh
v the one for V h

v . These two sets of bases are
completely independent, since the 3D and 1D meshes do not conform. A sketch of the
approximation functions used on the interstitium and on the capillary bed is provided
in Figure 4.3. Let Ut = {U1

t , . . . U
Nh
t

t } and Uv = {U1
v , . . . U

Nh
v

v } be the degrees of
freedom corresponding to {ψit} and {ψiv}, respectively. Equations (4.14) are equivalent
to,

Nh
t∑

j=1

U j
t [κt(∇ψjt ,∇ψit)Ω +QLF (ψjt , ψ

i
t)Ω +Q(ψ

j

t , ψ
i
t)Λh ]

= QLF (pL, ψ
i
t)Ω +

Nh
v∑

j=1

U j
v (ψjv, ψ

i
t)Λh i = 1, . . . Nh

t
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Nh
v∑

j=1

U j
v [κv(∂sψ

j
v, ∂sψ

i
v)Λh +Q(ψjv, ψ

i
v)Λh ]

= (Uv,0, ψ
i
v)Λh +

Nh
t∑

j=1

U j
t (ψ

j

t , ψ
i
v)Λh i = 1, . . . Nh

v

where ψ
j

t is the average of ψjt , according to (4.6). The above equations form the fol-
lowing linear system,[

Att +Mtt +Btt Btv

Bvt Avv +Bvv

] [
Ut

Uv

]
=

[
Ft

Fv

]
⇔ AU = F (4.16)

where the components of the right hand side vectors are respectively

F i
t = QLF (pL, ψ

i
t)Ω, and F i

v = (Uv,0, ψ
i
v)Λh .

Since the two meshes are completely independent, matrices Btt, Btv, Bvt and Bvv

are built using interpolation and average operators. In particular, we define a discrete
operator able to extract the mean value of ψit and another one able to interpolate between
V h
t and V h

v . For every node sk ∈ Λh we define T hγ (sk) as the discretization of the
perimeter of the vessel γ(sk). For simplicity, we assume that γ(sk) is a circle of radius
R defined on the orthogonal plane to Λh at point sk. This set of points is used to
interpolate the basis functions ψit. Let us introduce a local discrete interpolation matrix
Πγ(sk) which returns the values of each test function ψit on the set of points belonging
to T hγ (sk). Then, we consider the average operator πvt : V h

t → V h
v such that qt = πvtqt.

The matrix that corresponds to this operator belongs to RNh
v×Nh

t and it is constructed
such that each row is defined as,

Πvt|k = wT (sk)Πγ(sk) k = 1, . . . Nh
v

where w are the weights of the quadrature formula used to approximate qt =
1

2πR

∫ 2π

0

qt(s)Rdθ

on the nodes belonging to T hγ (sk). The discrete interpolation operator πvt : V h
t → V h

v

returns the value of each basis function belonging to V h
t in correspondence of nodes of

V h
v . In algebraic form it corresponds to an interpolation matrix Πvt ∈ RNh

v×Nh
t . Using

these tools we obtain,

Btt =VT
t ΠT

vtMvvΠvtUt,

Btv =VT
t ΠT

vtMvvVv,

Bvt =VT
vMvvΠvtUt,

Bvv =MvvUv,

where Mvv is the mass matrix on V h
v , [Mvv]i,j = (ψjv, ψ

i
v)Λh .

For the assembly of (4.16) we use a code developed in GetFem++, a general pur-
pose C++ finite element library [93]. To solve system (4.16) we apply the GMRES
method with incomplete-LU preconditioning. We perform an analysis of the computa-
tional cost of the different parts of the algorithm when the characteristic size of both the
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3D and the 1D computational meshes is proportionally decreased, obtaining the data
reported in Figure 4.4. It shows that, when the size h becomes small, the major compu-
tational time is taken from the construction of the interpolation matrices Πvt and Πvt.
This is a very interesting observation, because it reveals that computational issues may
arise when dealing with the interaction of two geometrical structures, such as the mesh
for the network and the bulk volume. Although this is not a severe limitation in our
case, because we use moderately small domains and meshes, it may become a prob-
lem of paramount importance for larger computations. To override these drawbacks,
the development of the finite element solver should be complemented by expertise in
the field of computational geometry, in particular for the application of efficient search
algorithms and data structures to build the interpolation matrices defined above.

Figure 4.4: Computational time for matrix assembly (white) compared with the one required to solve
the algebraic system (black). The bars quantify the logarithm of the CPU time (log10) measured in
seconds. The results refer to the geometrical model rat98 to be introduced in the next section.

4.4.2 Preliminary validation

Let us consider Darcy’s equation for the interstitium in a slightly simpler setting than
problem (4.1), where in particular the lymphatic term is neglected. An alternative way
to set up and solve the problem has been been studied in [29,103,109], starting from the
Green’s representation of the Laplace equation. In this case it is possible to define the
pressure solution by means of boundary potentials, using the representation formula:

G(x− y) =
1

4π

1

|x− y|

pt = p0 −
∫

Γ

G(x− y)n · ∇ptdσ +

∫
Γ

(pt − p0)n · ∇G(x− y)dσ (4.17)

where G(x − y) is the fundamental solution of the Laplace equation, p0 is a far-field
interstitial pressure, in particular pt → p0 as |x| → ∞, and Γ is the external capillary
surface. The two boundary integrals are called single and double layer potential, re-
spectively. Substituting the boundary condition on the flux (4.2) into the single layer
potential and manipulating the double layer potential, we obtain an integro-differential
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representation formula for the exact solution,

d2pv
ds2

=
8µLp
πR4

∫
γ(s)

(pv − pt)dσ,

1

2
(pt(x)− p0) =

µ

κ

∫
Γ

Lp(pv − pt)G(x− y)dσ

+

∫
Γ

(pt − p0)n · ∇G(x− y)dσ.

(4.18)

The solution of this model in a simple configuration featuring the flow along a single
linear capillary with prescribed boundary conditions is studied in [29]. Our goal is
to compare that solution, reported in [29], with the one obtained with our numerical
method using the same geometry and parameters of [29]. Prescribed boundary condi-
tions are a pressure drop along the capillary and an imposed pressure value on the outer
tissue domain, that is, pv(s = in) = 1, pv(s = out) = 0.5 and pt = p0 = 0 on ∂Ω.
We solve problem (4.11) neglecting the lymphatic term and we represent the capillary
pressure as a function of the arclength s, for different values of the vascular conductiv-

ity L̂p, where L̂p =
µLp
L

and L is the domain dimension. The results, shown in Figure
4.5, are in excellent agreement with what is reported in Fig.7 of [29]. This allows us
to conclude that our numerical solver is correct and it represents a valid alternative to
other solution strategies.

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

 

 

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

 

 

L̂p = 10−4

L̂p = 2 × 10−6

L̂p = 10−6

L̂p = 5 × 10−7

L̂p = 10−7

L̂p = 10−8

Figure 4.5: Top left: geometry representing an isolated capillary immersed in a tumor tissue. Bottom
left: computational mesh used to define the reference solution pht used to compute the numerical
error. Right: capillary pressure as a function of arclenght for vascular conductivities L̂p = 10−4

(black line), 2× 10−6, 10−6, 5× 10−7, 10−7 and 10−8 (black dotted line).

4.4.3 Error analysis

We use the same model problem introduced in section 4.4.2, also to perform the nu-
merical error analysis. In particular we want to test if the convergence error estimate,
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proposed in [73], is again valid in the more general case of 3D-1D coupled problems,
where the 1D problem acts as a concentrated source embedded in the surrounding vol-
ume.
Since we do not know an analytic expression for the exact solution pt of the consid-
ered problem, (4.9), in order to evaluate the norm of the error (4.15), we construct
a reference solution on a very fine mesh, reported in Figure 4.5. We fix in this case
h = 1/40. From now on, we will approximate the exact solution pt with the numerical
solution pht obtained on this fine mesh. Then we compute the numerical solution pht on
coarser meshes, fixing h = 1/20, h = 1/10 and h = 1/5 respectively. We compute
the L2-seminorm of the error, ‖pt − pht ‖L2(Ω\Ωv), fixing Ωv as the cylinder of radius R
surrounding the vessel. For the sake of completeness we also assess the error using the
H1-seminorm. The numerical results are reported in Figure 4.6.
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Figure 4.6: L2 and H1 seminorm error decay.

The numerical tests confirm that error bound (4.15) is still valid for (4.13). Further-
more, the following behavior of the H1-seminorm error is observed:

‖pt − pht ‖H1(Ω\Ωv) . h| log h|. (4.19)

Although still preliminary, these findings are encouraging at multiple levels. From
the standpoint of applications, they confirm that graded meshes are not required to ac-
curately approximate the pressure field in the volume outside Ωv, where it has a precise
physical meaning according to problem (4.1). A standard finite element formulation,
as in (4.14), combined with suitably refined quasi-uniform partition, T ht , will capture
the main features of the pressure field, as prescribed by (4.15). As a result, the 3D to
1D model reduction technique discussed here turns out to be a very effective approach,
which brings significant simplifications to handle the complex network of capillaries at
the computational level, without severely compromising the accuracy of the discretiza-
tion method.
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From the theoretical standpoint, we believe that these results shed light on possible
directions to extend the analysis of [73]. The results of [73] apply to elliptic problems
with a Dirac measure as forcing term and the numerical evidence in support of the
analysis is limited to the case of point sources distributed in a bi-dimensional domain.
Here we are studing a more challenging problem, in which a 1D manifold is embedded
into a 3D domain. Furthermore, we have to solve a coupled problem, namely a problem
in which the solutions on the 3D domain and 1D manifold depend on each other. Also,
an H1 error estimate seems to be satisfied by the same theoretical framework. Ongoing
work is therefore oriented to extend the analysis of [73] to a problem setting equivalent
to (4.13).

4.5 Application to microcirculation and interstitial flow

Fluid and mass transport within a tumor are governed by a subtle interplay of sinks
and sources, such as the leakage of the capillary bed, the lymphatic drainage and the
exchange of fluid with the exterior volume. The aim of this section is to apply the
computational model (4.11) to investigate how these effects influence significant and
measurable quantities characterizing the flow into a vascularized tumor mass.

4.5.1 Available data

We aim to analyse fluid transport through tumor tissue in-vivo. For the reconstruction
of the geometrical model of the capillary bed, we use the available data for a R3230AC
mammary carcinoma in rat dorsal skin flap preparation, available in [101]. We con-
sider two datasets, obtained with two independent experiments. The first one, labelled
as rat93 shows the microvascular structure over a region with overall dimensions
250 × 370 × 200µm. We refer the interested reader to [102] for more details about
this experiment. The average radius of the capillary vessels is assumed to be constant
and set to R = 7.64µm. The characteristic length of the problem is chosen as the av-
erage spacing between the capillaries, d = 50µm, according to what reported in [76].
The second case consists of the vascular network on a wider sample of dimensions
550× 520× 230µm and it is labelled as rat98. The characteristic size D of the con-
sidered tissue samples is thus in the range of 500µm. The details of the preparation are
reported in [103], while the geometries are represented in figure 4.7.

Figure 4.7: From left to right, rat93 geometry, its random perturbation and rat98 geometry.

According to [7] and [71], a vascularized healthy tissue is characterized by an aver-
age interstitial pressure P = 1mmHg and by a characteristic flow speed in the capillary
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bed of U = 100µm/s. In the healthy case, the parameters that characterize the transport
properties of the tissue are the hydraulic conductivity of the interstitium, k = 10−18 m2,
the hydraulic conductivity of the capillary walls, Lp = 10−12 m2s/kg and the plasma
viscosity µ = 4 × 10−3 kg/(ms). The magnitude of the lymphatic drainage, modeled
as a distributed sink term, is estimated in [7] to be LLFp

S
V

= 0.5 (mmHg h)−1.
Given these data, we quantify the magnitude of the dimensionless groups reported

in (4.12). We obtain the following values,

κt = 2×10−5, QLF = 5.2088×10−5, Q = 9.6007×10−7, κv = 2.6759. (4.20)

Since κv, the dimensionless conductivity of the capillary bed, is significantly larger
than the other quantities, we infer that, as expected, the transport in the coupled cap-
illary/interstitial medium is dominated by the flow in the vascular network. More in-
terestingly, we observe that the other dimensionless numbers lay in a similar range,
namely 10−6 . Q, κt, Q

LF . 10−5. This suggests that the interstitial flow, the leak-
age of the capillary bed and the lymphatic drainage have comparable effects on the
interstitial flow and pressure. The significance of model (4.11) is the ability to capture
the interplay between these phenomena. The aim of the forthcoming sections is in-
deed to use the model to analyze these effects in different conditions, representing for
instance healthy and tumor tissue.

4.5.2 Influence of the boundary conditions

The samples rat93 and rat98 represent microscopic regions separated from the sur-
rounding tumor mass by artificial planar sections. An appropriate modelling of bound-
ary conditions is required.

For the capillary flow, we aim to enforce a suitable pressure gradient along the net-
work. Observing that the inflow and outflow sections of the network lay on the lateral
side of the tissue slab, see Figure 4.1 (d), we enforce a given pressure pin on two ad-
jacent faces and a pressure pout on the opposite ones. By this way, the pressure drop
pin − pout is enforced at the tips of the network. To estimate the magnitude of the
pressure drop, we use Poiseuille’s law to fit a given value of the average blood velocity
through healthy microvascular network, namely ūv = 0.2 mm/s. More precisely, using
equation (4.9)d, we obtain

pin − pout
|Λ| = −8µ

R2
ūv,

which provides a pressure drop equal to pin − pout = 0.4056 mmHg for rat93 and
pin − pout = 1.2522 mmHg for rat98.

For the interstitial flow, we aim to model the in-vivo configuration, where the avail-
able tumor sample is embedded into a similar environment. To represent this case, we
believe that the most flexible option is to use Robin-type boundary conditions for the
interstitial pressure,

− κt∇pt · n = β(pt − p0). (4.21)

In equation (4.21), p0 represents the far field pressure value, while β can be interpreted
as an effective conductivity accounting for layers of tissue surrounding the considered
sample. Assuming that the interstitial pressure decays from pt to p0 over a distance
comparable to the sample characteristic size, D, dimensional analysis shows that a
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rough estimate of the conductivity is β = κt/D. The specific aim of this section is to
test the sensitivity of the model to variations of the parameter β over a few orders of
magnitude around the reference value κt/D, which is equivalent to 10−6 in dimension-
less form.

The results of the simulations obtained using the values β = {0, 10−2, 1, 102} ×
(κt/D) and the rat98 geometry are reported in Figure 4.8. The analysis of the inter-
stitial pressure field pt shows that the results obtained using β = 0, that is homogeneous
Neumann boundary conditions, or β = 10−2κt/D are almost equivalent (not shown).
As confirmed by the top panel of Figure 4.8, more significant differences are observed
when β is further increased. In those cases, the boundary of the domain clearly feels
the influence of the reference pressure p0, which is weakly enforced in proximity of
the boundary. Anyway, this analysis leads us to conclude that, in the case of healthy
tissue, boundary conditions mildly affect the interstitial pressure distribution. We claim
that the sensitivity with respect to boundary conditions is mitigated by the presence of
the uniformly distributed lymphatic drainage effect, which removes the fluid in excess
released by the leaky capillary network. To confirm this hypothesis, the same set of
numerical experiments has been performed for a modified model where the lymphatic
drainage has been switched off. This is, in fact, the assumption that is usually adopted
to model tumors. The results are reported on the bottom panel of Figure 4.8. A remark-
able difference is observed with respect to the previous case. Now, the physiological
capillary leakage can only be balanced by the flow exchanged through the external
boundary. As a consequence of that, the interstitial pressure field is completely satu-
rated when homogeneous Neumann conditions are enforced on the boundary, see Fig-
ure 4.8 (bottom-left). For this reason, it is essential to correctly capture the fluid flow
through the artificial boundaries of the domain. According to the results reported here
and in the forthcoming section, we believe that the range β ∈ (1, 102)× (κt/D) is the
most adequate for this purpose.

4.5.3 Comparison of flow in healthy and tumor tissue models

The natural application of the model is a comparison of flow in the healthy and patho-
logical conditions. To pursue this aim, we compare the following cases:

A, healthy tissue. With respect to our model, this case is defined by:

- a normal capillary network configuration. To match this condition, we use
the network rat93 available from [101], which shows a smooth and regular
ramification of capillaries.

- a normal capillary phenotype, represented by the physiological value of the
capillary conductivity Lp = 10−12 m2s/kg.

- a normal lymphatic drainage function. This effect is accounted by the term
LLFp

S
V

= 0.5 (mmHg h)−1.

B, tumor tissue. With respect to our model, this case is defined by:

- a tortuous capillary network configuration that is obtained in our case by
means of a random perturbation of the points between the segments of the
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Figure 4.8: Results of tissue and vessels fluid pressures, pt and pv , computed fixing β = 0 (top-left) and
β = 102κt/D (top-right). The other transport parameters are set to represent healthy tissue. On the
bottom panel we perform the same comparison when the lymphatic drainage has been switched off.

rat93 geometry, shown in Figure 4.7 (central geometry). To obtain a signif-
icant difference, the amplitude of the perturbations is adjusted such that the
total length of the network almost doubles with respect to the healthy case.

- an increased leakage due to the tumor capillary phenotype. This effect is
obtained by increasing the capillary conductivity up to Lp = 10−10 m2s/kg.

- absence of lymphatic drainage function, namely LLFp
S
V

= 0 (mmHg h)−1.

In addition to these cases, we consider some intermediate configurations that will
help us to highlight the competing effects of enhanced permeability and lymphatic
drainage. The first one, labelled as case C below, represents the properties of the tumor
treated with a vascular re-normalization therapy:

C, tumor after vascular re-normalization therapy. The main characteristic of the model
are reported from [72]:

- for the re-normalized capillary bed geometry we use the rat93 data.
- a tumor capillary phenotype is assumed to be normal after the therapy.
- absence of lymphatic drainage function.

Keeping in mind that it does not correspond to an observed physiological state, it will be
interesting to compare Case C with the dual one, which arises from the tumor model,
where only the lymphatic drainage is restored to the healthy state. Furthermore, to
achieve a more direct comparison with case C, we use the smooth vascular geometry in
this case too. More precisely, the configuration, labelled as D, is defined as follows:
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D, tumor with active lymphatic drainage. This idealized case is obtained by:

- the same capillary network used for the healthy case.
- a tumor capillary phenotype and corresponding wall conductivity.
- presence of healthy lymphatic drainage function.

An extensive comparison of the flow indicators for the test cases A, B, C and D,
is reported in Table 4.1 below. The numerical experiments are also repeated for dif-
ferent types of boundary conditions on the artificial sections ∂Ω, namely, we vary the
parameter β as β ∈ {0, 1, 102}κt/D.

Analysis of blood flow in the capillary bed.

Blood flow in the capillary bed is basically represented by the average value of the
velocity in the network, that is directly computed from the pressure field in the network
as follows,

uv =
1

|Λ|

∫
Λ

uv · λds = − 1

|Λ|

∫
Λ

R2

8µ

∂pv
∂s
λ · λds .

With respect to this quantity, from Table 4.1 we observe that cases A, C and D, which
are characterized by the same network geometry, are almost equivalent for all numeri-
cal experiments, while the same quantity for case B is basically halved. These results
provide a strong evidence that blood filtration in the capillary network is inversely pro-
portional to the total length of the network, as shown by the expression above, while it
is almost insensitive to all the other variables of the problem. This conclusion is con-
firmed by the analysis of the dimensionless groups characterizing the problem, namely
(4.20). Since κv � κt, Q,Q

LF , the flow problem in the capillary bed is decoupled
from the one in the interstitial tissue. In other words, the feedback of the interstitial
fluid pressure on the capillary network is almost negligible. Because of leakage, the
network substantially acts as a source term on the tissue.

Looking at the spatial variation of the blood velocity on Λ, we observe that it is
almost constant over the network, as a consequence of the fact that the pressure pv
is linearly decreasing from pin to pout. This behavior is due to the fact that equation
(4.9)c is linear and the leakage effect is small. Although this model is very popular
for microcirculation, see for instance [6, 29, 33, 100, 105, 109], it is affected by some
limitations. Using a linear model implies that the capillary flow is not sensitive to the
tortuosity of the network, which could be quantified in our case by the magnitude of
the angles between the individual branches. Another limitation is that the presence of
red blood cells is only indirectly accounted for, by suitably tuning the viscosity of the
fluid. Although the full three-dimensional resolution of the fluid particle interaction,
addressed for instance in [45, 79, 80], would be too demanding for our purposes, other
reduced microcirculation models, such as [44, 74], should be in future compared to the
present approach.

Quantitative indicators of interstitial flow.

Interstitial flow directly affects how efficiently nutrients, drugs and wastes are trans-
ported to and from cells among the interstitial tissue. To analyze these effects we in-
troduce two quantitative indicators: the net fluid flux from the capillary network to the
interstitial volume and the equivalent conductivity of the tissue construct.
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The local fluid exchange rate is defined as f(pt/v) in equation (4.10). In Table 4.1
we report its mean value over the network,

f(pt/v) =
2πRLp
|Λ|

∫
Λ

(pv − pt)ds .

This expression shows that f is affected by the hydraulic conductivity of the capillary
walls, Lp, as well as by the interstitial fluid pressure pt and because of the negative sign
these quantities have a competitive role in determining the flux.

The other indicator is the norm of the diagonal hydraulic tensor K, defined accord-
ing to Darcy’s law for an isotropic porous construct,

u = −Kδp (4.22)

where u and δp are mean quantities computed over the entire tissue construct,

u =
1

|Ω|

∫
Ω

u dΩ, δp =
1

|Ω|

∫
Ω

δp dΩ

where δp is defined as the difference from the local pressure and the basal pressure,
namely δp(t,x) = p(t,x) − p0. The hydraulic conductivity tensor represents the ease
with which a fluid can move through the medium and, according to equations (4.22),
it is determined by the pressure drop in the construct, which in turn is affected by the
conductivity of the capillaries as well as by the lymphatic drainage into the tissue. Since
we are actually dealing with two different subregions, namely Ωv and Ωt, to compute
proper values of u and δp we use the following definitions:

uv =
1

|Λ|

∫
Λ

uvds, ut =
1

|Ωt|

∫
Ωt

utdσ,

δpv =
1

|Λ|

∫
Λ

δpvds, δpt =
1

|Ωt|

∫
Ωt

δptdσ,

u =
uvπR

2|Λ|+ ut|Ωt|
πR2|Λ|+ |Ωt|

, δp =
δpvπR

2|Λ|+ δpt|Ωt|
πR2|Λ|+ |Ωt|

.

Furthermore, observing that the sample rat93 features an almost planar network in x
and y directions, the final form of equation (4.22) results in:[

ux

uy

]
= −

[
Kxx 0

0 Kyy

][
δpx

δpy

]
.

Given Kxx and Kyy from the equations above, we compute a representative value of
the tensor K using the Frobenius norm:

‖K‖F =
√
tr(KKT ).

The computed values for ‖K‖F are reported in Table 4.1. High values of ‖K‖F indi-
cate that the construct could be well perfused, conversely low values of ‖K‖F mean
that the construct is impervious. The net fluid flux f and the hydraulic conductivity
indicator ‖K‖F are affected by both the capillary leakage and the interstitial fluid pres-
sure. Understanding which of these two factors dominates in different conditions will
be the objective of the forthcoming section.
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Analysis of capillary leakage and interstitial pressure. The effect of enhanced permeability and
retention.

We discuss the results of the simulations case by case, for the test cases A, B, C and D
defined before.

Case A Table 4.1 and Figure 4.9 show that f is rather insensitive to the outer boundary
conditions on the interstitial volume for the healthy tissue model. This is due to the
lymphatic drainage effect, which removes the excess of fluid in the interstitial volume
no matter of how much fluid is exchanged across the artificial sections ∂Ω. In other
words, the retention effect is absent for the healthy tissue. This allows the capillary
leakage to reach its physiological range. The presence of lymphatic drainage causes
the pressure field in the tissue to be very low, since the interstitial pressure nearly ap-
proaches the minimum value in all the domain, as shown in Figure 4.10 (top-left). The
value of the ‖K‖F indicator is higher than all other cases for the entire range of β and
it slightly increases with β, due to the fact that the artificial boundaries become more
permeable to flow.

Case B The situation is radically different for the tumor case, because the interstitial
fluid pressure is highly sensitive to the conditions that regulate the fluid exchange with
the external volume. We analyze the variation of f by progressively increasing the val-
ues of β. The first dataset of Table 4.1 corresponds to homogeneous Neumann boundary
conditions for the external boundary ∂Ω. In absence of lymphatic drainage and fluid
exchange with the exterior, the interstitial fluid pressure becomes completely saturated.
More precisely, we observe that the average interstitial fluid pressure on Ω, denoted as
pt, reaches the average capillary pressure over the network, which is not reported but
could easily be quantified as (pin+pout)/2 ' 0.2 mmHg, since we know that pv linearly
varies over Λ. As a result of that, the pressure gradient pv − pt is significantly lower
than the physiological value and the corresponding net flux practically vanishes, namely
f = 1.0004×10−25 cm3/s. At the same time, the local fluid exchange is not completely
negligible, owing to the variations of the pressure in the capillary bed. In the worst case
β = 0, the maximal flow rate is indeed equal to maxΛ f(pt/v) = 8.7531× 10−14 cm3/s.

In conclusion, the fluid retention effect combined with the increased conductivity
of the tumor capillary phenotype leads to interstitial fluid pressure saturation and sig-
nificant reduction of the interstitial flow. As confirmed by Table 4.1 and Figure 4.9,
the situation progressively improves when β increases, because the exchange of fluid
with the exterior region decreases pt and restores more natural values of the capillary
transmural pressure gradient pv−pt. As a consequence of that, the transmural capillary
flux increases with β and attains values larger than in Case A. This suggests that the
augmented capillary hydraulic conductivity becomes the dominant factor for extravasa-
tion. Regarding the value of ‖K‖F , we observe that it is lower than all the other cases,
confirming that the overall interstitial flow is less than in the case of healthy tissue.

Case C The interstitial fluid pressure is again highly sensitive to the boundary condition
that regulates the fluid exchange with the external volume, since the lymphatic system
is absent. When β = 0 the value of f is similar to the value reached in Case B, f =
4.3887 × 10−26 and the mean interstitial fluid pressure becomes completely saturated
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reaching the mean value pt = 0.222084. On the contrary, the behavior becomes more
similar to Case A when the value of β increases, namely β ∈ {1, 102}κt/D, because
the boundary conditions contrast the absence of the lymphatic drainage.
Figure 4.9 (top) shows that the fluid flux f reaches values similar to Case A, because the
conductivity of the capillary walls is equal to the one of healthy tissue. The two cases
are comparable also with respect to the value of ‖K‖F , although the healthy tissue
model is slightly more permeable. Figure 4.9 (bottom) shows that ‖K‖F increases
together with the exchange of fluid with the exterior region, namely the parameter β,
because it induces a low pressure field within the tissue, as we observe in Figure 4.10
(bottom-left).

Case D This last case is characterized by all the factors that increase the leakage from
capillaries to tissue. Indeed we are considering the presence of the lymphatic network
and we choose the high value of the vessels conductivity, equal to the tumor case. On
one hand, thanks to the first effect, the interstitial fluid pressure is insensitive to the
boundary conditions on the interstitial volume and there is no retention effect, as it
happens for Case A. On the other hand, the high value of the hydraulic conductivity
leads to a considerable interstitial fluid flux for each values of β. The inspection of
the interstitial pressure field, shown in Figure 4.10 (bottom-right), suggests that high
conductivity and lymphatics drainage play against each other, causing a significant
transversal pressure gradient in the neighbourhood of the capillary bed. As a result
of that, the equivalent conductivity indicator ‖K‖F is rather small if compared to the
previous cases, see in particular Figure 4.9 (bottom).

In conclusion, these results highlight the importance of avoiding fluid retention in
order to facilitate interstitial flow. In absence of lymphatic drainage, an appropriate
fluid exchange from the tumor mass to the exterior could increase the ability of releas-
ing therapeutic agents from the capillary network. In conditions where the drainage is
limited, but not completely absent, the vascular renormalization therapy [72] has the
potential to restore the physiological flow conditions.

Figure 4.9: Total fluid flux f (left) and hydraulic conductivity indicator ‖K‖F (right) for the different
cases A, B, C and D (left to right on each group of bars).
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Neumann boundary conditions β = 0

case A case B case C case D

pt [mmHg] 0.000933564 0.215985 0.222084 0.0343636

uv [mm/s] 0.19999 0.090445 0.19999 0.19999

f [cm3/s] 1.7992×10−12 1.0004 ×10−25 4.3887×10−26 6.6227×10−11

‖ Keq ‖F [m3/(s Kg)] 1.5718×10−10 1.0524×10−12 1.9409×10−11 4.1082×10−12

Robin boundary conditions β = κt/D

case A case B case C case D

pt [mmHg] 0.000923907 0.189832 0.036731 0.0340585

uv [mm/s] 0.19999 0.090445 0.19999 0.19999

f [cm3/s] 1.7993 ×10−12 7.8066 ×10−12 1.4868 ×10−12 6.6364 ×10−11

‖ Keq ‖F [m3/(s Kg)] 1.6264 ×10−10 1.1715×10−12 1.9238×10−11 4.2386×10−12

Robin boundary conditions β = 102κt/D

case A case B case C case D

pt [mmHg] 0.000723531 0.0709247 0.00260011 0.0274557

uv [mm/s] 0.19999 0.090445 0.19999 0.19999

f [cm3/s] 1.8017×10−12 6.0667×10−11 1.7693×10−12 7.0980×10−11

‖ Keq ‖F [m3/(s Kg)] 5.7370 ×10−10 9.2741×10−12 3.0191×10−10 1.5504×10−11

Table 4.1: Characteristic indicators of capillary and interstitial flow for different test cases and bound-
ary conditions.
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Figure 4.10: Results of tissue and vessels fluid pressures, pt and pv , computed fixing β = κt/D. Cases
A, B, C and D are listed from top-left to bottom-right. We represent a slice of the 3D tissue domain Ω
in z = 100 µm.

4.6 Conclusions

In this chapter we have developed a computational model able to capture the flow
through a heterogeneous system characterized by a network of leaky channels embed-
ded into a porous medium. A model reduction technique, inspired to the immersed
boundary method, allows us to achieve simulations of non trivial network geometries
with a moderate computational cost. The application of the model to the flow through
vascularized solid tumors has been extensively discussed. The efficiency of the method
is tested by using the realistic vascular geometries reported in [102, 103]. This fea-
ture suggests that the model may be successfully coupled with a dynamic model for
angiogenesis, such as the one recently appeared in [113].

The extension of this first part will be developed in the next chapter, where flow
models will be combined with mass transport, in order to analyze the distribution of
nutrients or therapeutic agents such as drugs or pharmacologically active nanoparti-
cles. The application of this modelling framework to the transport of small molecules,
such as oxygen, has already been addressed in [102]. The treatment of vascular dis-
eases using locally delivered nanoparticles is on the edge of biomedical research [46].
Theoretical models describing these phenomena into small arteries are currently being
developed from both computational and analytical standpoints, see for example [70]
and [112], respectively.
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CHAPTER5
A computational model of drug delivery through

microcirculation to compare different tumor
treatment options

5.1 Introduction

We complete the study developed in the previous chapter, analyzing mass transport in
vascularized tumor tissues. Also in this case we deal with multidomain problems with
heterogenous dimension. Mass transport plays a fundamental role in the development
of cancer [46]. At different phases of cancer disease, such as the propagation of growth
signals, the invasion of other tissue and the activation angiogenesis, tumors use mass
transport phenomena to interact with the surrounding environment [62]. Mass transport
is also at the basis of cancer pharmacological treatment. Targeting vascularized tumors
using the vascular network is a natural therapeutic option. Nevertheless, the success of
anticancer therapies in treating cancer cells is limited by their inability to reach their
target in vivo in adequate quantities [68]. An agent that is delivered intravenously
reaches cancer cells via distribution through the vasculature, transport across the wall
of the vessels and transport through the tissue interstitium. Each of these steps can be
seen as a barrier to delivery. In addition, delivered molecules may bind to constituents
of the extracellular matrix and be metabolised by cells.

The characteristic traits of cancer can be seen as the emergent effects of a cascade
of phenomena that propagate from the molecular scale, through the cell and the tissue
microenvironment, up to the systemic level. Transport phenomena at the level of the
capillary network (the microenvironment or microscale) play a key role in this sequence
of effects. In particular, the capillary phenotype of a tumor is an important factor for
the drug delivery process [25]. As we have already seen, blood vessels in tumors are
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leakier and more tortuous than the normal vasculature and the pressure generated by
the proliferating cells reduces tumor blood and lymphatic flow. These abnormalities
lead to an impaired blood supply and abnormal tumor microenvironment characterized
by hypoxia and elevated interstitial fluid pressure. These effects reduce the ability to
deliver drugs.

The objective of the work developed in this chapter is to perform a comparative
study of different modalities to deliver drug into a vascularized tumor mass. This is
achieved by developing a new pharmacokinetic model able to capture the absorption
of a drug through the vascular network as well as its distribution and metabolization
in the tumor. Following the seminal sequence of works by Baxter and Jain [6–9], we
believe that the interplay between blood perfusion, fluid exchange with the interstitial
volume, mass transport in the capillary bed, through the capillary walls and into the
surrounding tissue, are important effects to understand the delivery process at the mi-
croscale. Temporal and spatial dependence will be fully accounted in our governing
equations, in contrast to the approach based on compartment models. Since we con-
sider these phenomena at the level of capillaries, it is possible to derive the governing
equations from a mechanistic standpoint based on the fundamental laws of flow and
mass transport. The model is also prone to be adapted to different delivery methods,
because it descends form a general theoretical framework. Besides studying the case
of bolus injection, which consists in delivering a solution containing the active drug
into the systemic circulation, we will apply the model to analyze the delivery of drug
from nanoparticles, which are in turn injected into the blood stream and interact with
the capillary walls.

To reduce the geometrical complexity of the model, we exploit the immersed fi-
nite element method [78, 115]. The capillary bed is modelled as a network of one-
dimensional channels. Due to the natural leakage of capillaries, it acts as a concen-
trated source of flow immersed into the interstitial volume. This modelling approach
significantly reduces the issues related to the simulation of the flow in the microves-
sels. The main methodological and theoretical aspects of the method have already been
addressed in the previous chapter 4. In particular, the model ends up to be a system
of partial differential equations, which are hard to solve with analytical tools. For this
reason, the model is complemented with the numerical solver developed in the previous
chapter, based on the finite element method.

The comparison results suggest that using nanoparticles as intermediate vectors for
chemotherapy improves the treatment. For the same amount of injected dosage, drug
charged nanoparticles provide higher concentration levels in the interstitial tissue of the
tumor and more persistent delivery over time with respect to bolus injection. Owing
to the computational approach, these conclusions are based on the analysis of specific
performance indicators, such as the interstitial drug concentration levels, the drug me-
tabolization rates, the cell surviving fractions and the corresponding timecourses.

5.2 Model set up

We start the derivation of the model by presenting the governing equations for micro-
circulation, tissue perfusion and mass transport. In a second phase, we will adapt these
general equations to the specific cases. The first case is the study of the coupled trans-
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port of oxygen and tirapazamine, a drug specifically designed to target hypoxic cells.
In the second one we apply the theory to analyze the delivery of drugs consequent to
the injection of nanoparticles into the tumor region.

5.2.1 A general framework

We aim to model fluid and mass transport in a permeable biological tissue perfused by a
capillary network. We start recalling the principal components of the model, introduced
in section 4.2. We consider a domain Ω that is composed by two parts, Ωv and Ωt, the
capillary bed and the tumor interstitium, respectively. To account for the microvascular
network, we model the capillaries as cylindrical vessels. We denote with Γ the outer
surface of Ωv, with R its radius and with Λ the centerline of the capillary network. A
characteristic feature of the computational model is that the capillaries are actually rep-
resented as one-dimensional channels. As shown in [12,50,51,103] this approximation
significantly simplifies the problem at the computational level. This is done by taking
the limit R → 0 and shrinking the capillary bed to its centerline Λ. We denote with
s the arc length coordinate along this line. A sketch of the domains before and after
adopting the one-dimensional representation of the capillary network is visualized in
Figure 4.2. After this step, we observe that the distinction between the subregion Ωt

and the entire domain Ω is no longer meaningful, because Λ has null measure in Rd.
For notational convenience, in what follows we will then identify Ωt with Ω and Ωv

with Λ.
The physical quantities of interest are the flow pressure p, the velocity u and the

concentration of transported solutes c. They are all defined as fields depending on time
t and space, being x ∈ Ω the spatial coordinates. Furthermore, we will denote with
the subscript v their restriction to the capillary bed (vessels), and with t the restriction
to the interstitial tissue. The derivation of our model stems from fundamental balance
laws regulating the flow in the capillary bed, the extravasation of plasma and solutes
and their transport in the interstitial tissue.

Flow equations

The flow model consists in two parts, the microcirculation and the flow in the intersti-
tial volume, which interact through suitable interface conditions. We refer the reader to
the previous section 4.3.2, where the model has been derived.
We remind that one of the functions of the capillary network is to transport and dis-
tribute fluid and chemicals to the interstitial volume. This is achieved by means of
the leakage of the capillary walls. We model this effect using the Kedem-Katchalsky
equation, that is

Jv := Lp((pv − pt)−
∑
k

σk(πv,k − πt,k))

The meanings of all the different parameters are reported in section 4.3.2. We highlight
that although the index k spans over all solutes that are dissolved in blood, not all of
them significantly affect the oncotic pressure. Only the large molecules, such as pro-
teins, can induce a significant oncotic pressure gradient. Indeed, the oncotic pressure
gradient is mainly due to the significant presence of albumin in blood [31,55,89], whose
concentration can be reasonably considered to be constant. According to data provided
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there, the oncotic pressure gradient due primarily to albumin in arterioles and capillar-
ies is about 25 mmHg, which is comparable to the hydrostatic pressure in the vessel. In
contrast, we assume that solutes such as oxygen or low concentrated drugs can not sig-
nificantly contribute. This assumption will be further discussed in what follows, on the
basis of the physical parameters characterizing the transport of the considered solutes.
As a result, for our purposes, the capillary leakage only depends on the hydrostatic
pressure according to the following expression,

Jb(pt, pv) := Lp((pv − pt)− σ(πv − πt)) = Lp((pv − pt)− σpRgT (cv,p − ct,p))
where, in agreement with the definition of π, cv,p and ct,p denote the constant pro-
tein concentration in the capillaries and the interstitial tissue respectively. As a con-
sequence, the flow equations will not depend on the mass transport model that will be
developed in the next section. In contrast to what we have done in the previous chapter,
we do not drop the effects of the proteins concentration gradient across the capillary
walls. We are no more focused only on the flow equations, but also on the mass trans-
port, therefore we want to investigate what is the effect of the oncotic pressure term on
the system.

As a consequence of all the modelling assumptions and the application of the im-
mersed boundary method, the coupled problem for microcirculation and perfusion con-
sists to find the pressure fields pt, pv and the velocity fields ut, uv such that

−∇ ·
(
k

µ
∇pt

)
+ LLFp

S
V

(pt − pL)− fb(pt, pv)δΛ = 0 in Ω

ut = −k
µ
∇pt in Ω

−πR
4

8µ

∂2pv
∂s2

+ fb(pt, pv) = 0 s ∈ Λ

uv = −R
2

8µ

∂pv
∂s
λ s ∈ Λ

(5.1)

fb(pt, pv) := 2πRLp((pv − pt)− σ(πv − πt))
where the term fb(pt, pv)δΛ accounts for the blood flow leakage from vessels to tissue
and it has to be understood as the Dirac measure concentrated on Λ, denoted with δΛ,
and having line density fb. Since the capillary bed is represented by a one-dimensional
network embedded into the interstitial volume, the equations would result to be ill posed
if the coupling between the two subregions was considered pointwise [33, 34]. For this
reason, the function fb(pt, pv) is such that the capillary bed is affected by the average
of quantities in the interstitial tissue, calculated on a cylindrical surface that represents
the actual size of capillaries. The average value of pressure, velocity or concentration
fields over the real surface of the capillary bed is denoted by

g(s) :=
1

2πR

∫ 2π

0

g(s, θ)Rdθ.

Mass transport

To model drug transport in the interstitial tissue we assume that molecules are advected
by the fluid and diffuse in all Ω. In addition chemical species may be metabolised by the
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cells in the interstitial tissue. The distribution of solutes in the interstitial tissue is also
affected by the lymphatic drainage, which is described as a distributed sink proportional
to LLFp

S
V

(pt − pL)ct, similarly to the flow model.
Mass transport in the capillary bed is modelled by means of advection-diffusion

equations. More precisely, the one dimensional model for mass transport in the cap-
illaries network is derived, as in [32], starting from the actual 3D advection-diffusion
problem. The coupled problem, accounting for transport of chemicals from the mi-
crovasculature to the interstitium, consists to find the concentrations cv and ct respec-
tively, such that

∂cv
∂t

+
∂

∂s
(|uv|cv −Dv

∂

∂s
cv) = − 1

πR2
fc(pt, pv, ct, cv) in Λ

∂ct
∂t

+∇ · (ctut −Dt∇ct) +mct + LLFp
S
V

(pt − pL)ct = fc(pt, pv, ct, cv)δΛ in Ω

where Dv and Dt are the molecular diffusivities, in the capillaries and the interstitium,
respectively, assumed to be constant in each region. The rate of metabolization in
the interstitium is denoted by m. This parameter may be in turn a function of the
concentrations, as it will be pointed out later on. The function fc(pt, pv, ct, cv) accounts
for the mass transfer from the capillary bed to the interstitial tissue and it is proportional
to the mass flux per unit length of the capillary vessels. Since the concentration in the
vascular network, cv, is defined as mass per unit volume, fc(pt, pv, ct, cv) is scaled by
the vessel cross section πR2 when it is evaluated on Λ. We describe the capillary walls
as semipermeable membranes allowing not only for the leakage of fluid, but also for the
selective filtration of molecules. Again, the Kedem-Katchalsky equations represent a
good model for these phenomena. According to these equations, the flux of chemicals
per unit surface across the capillary walls is:

Jc(pt, pv, ct, cv) := (1− σ)Jb(pt, pv)ct/v + P (cv − ct) on Γ,

where P is the permeability of the vessel wall with respect to solutes and σ is the
osmotic reflection coefficient. It quantifies the departure of the membrane behavior
from the case of ideal permeability. The symbol ct/v denotes the average concentration
within the capillary walls. It is defined as a suitable combination of the concentrations
on the two sides of the walls [89]. In particular, we set ct/v := wct + (1− w)cv where
0 < w < 1 is a weight that depends on the Péclét number of the solute transport
through the wall. Then, under the assumption that capillaries can be modeled as cylin-
drical channels, the magnitude of the mass flux exchanged per unit length between the
network of capillaries and the interstitial volume at each point of the capillary vessels
is the following,

fc(pt, pv, ct, cv) = 2πR
[
(1− σ)Jb(pt, pv)ct/v + P (cv − ct)

]
.

Boundary and initial conditions

The fluid dynamics and mass transport equations are not complete yet. Before being
solved, they must be complemented with boundary conditions on the artificial sections
that separate the domains Ω and Λ from the surrounding tissue. As before, we model a
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sample of tissue that is able to exchange fluid and mass with the exterior. As a result,
for the prescription of boundary conditions we have to define what are the inflow and
outflow boundaries. In addition, for the governing equations that depend on time, we
need to prescribe the initial conditions of the system. Only the drug transport equations
depend on time. The initial drug concentrations will be set to the basal values, equal to
zero.

For the capillary network, we denote by ∂Λin and ∂Λout the inflow and outflow
sections of ∂Λ respectively (as shown in Figure 4.2 using different colors and arrows).
We regulate the flow by enforcing the values of the blood pressure at the extrema of the
capillaries. As a result, we prescribe the following conditions:

pv = p0 + ∆p on ∂Λin and pv = p0 on ∂Λout,

where the total pressure drop ∆p is computed to ensure that the average blood velocity
in the network fits with the measured values in healthy human microvasculature, as we
have done in section 4.5.2. We proceed similarly for the mass transport equations, to
model the administration of the drug through the vascular system. Given the maximal
drug concentration injected in the blood stream, cv,max, we then enforce

cv = cv,max on ∂Λin and ∂scv = 0 on ∂Λout.

On the outflow boundary of the network we constrain the derivatives of the drug con-
centration, rather than the value itself. As a consequence, the concentration value is
determined by the model, on the basis of the convection and reaction mechanisms.

The interstitial tissue, Ω, is assumed to be an isotropic material. To comply with
this property, we enforce on all the artificial interfaces of the tissue, ∂Ω, boundary
conditions that mimic the resistance of the surrounding material. For the fluid dynamics
equations, these conditions are discussed in detail in section 4.5.2 and read as follows:

−κt∇pt · n = βb(pt − p0)

where n is the outer unit normal vector of the interstitial boundary, p0 is the basal
(atmospheric) pressure and βb is a parameter inversely proportional to the resistance
of the surrounding tissue. More precisely, βb → 0 corresponds to the case of infinite
resistance. In this case the fluid flow can not cross the boundaries of Ω. The sensitivity
of the solution with respect to βb and suitable expressions to calculate it on the basis of
the other model parameters are provided in section 4.5.2. We proceed analogously for
the transport of solutes by setting,

−Dt∇ct · n = βcct

where βc quantifies the conductivity of the outer tissue with respect to solute transport.
Here, we have implicitly assumed that the basal solute concentration is equal to zero.
The values of βb, βc used in the simulations are reported in Tables 5.1, 5.2, respectively.

5.2.2 Coupled system of O2 and tirapazamine

Hypoxia targeted drugs, such as tirapazamine (TPZ), are designed to be metabolised
more quickly by hypoxic cells. The distribution of such drugs in the interstitial tissue
then depends on the local availability of oxygen. To model these effects, we adapt the
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single-specie mass transport model developed above to the case of multiple solutes. As
a result, this approach ends up with a system of reaction diffusion equations.

We study the distribution of the oxygen partial pressure, denoted by cox. Since
oxygen is persistently supplied by the capillary bed, we rely in this case on the steady
problem formulation. Oxygen distributes into the interstitial volume thanks to diffusion
and transport. The rate of oxygen absorption depends in turn on the oxygen partial
pressure profile itself. This dependence is represented by a Michaelis-Menten formula,

mox(coxt ) =
mox

0

coxt + cox0

wheremox
0 represents the maximal oxygen demand, i.e. the rate of oxygen consumption

when oxygen is not limited, and cox0 is the oxygen concentration at which the reaction
rate is half of mox

0 .
Let us now denote by ctpz the concentration of TPZ. This is a relatively small

molecule that obeys to the governing equations of mass transport described above. Fol-
lowing [68] the consumption rate of TPZ depends on the oxygen concentration through
the following expression

mtpz(coxt ) = mtpz
0

ctpz0

ctpz0 + coxt
,

where mtpz
0 is the metabolization rate when TPZ metabolism is not limited by the oxy-

gen concentration, and ctpz0 is the oxygen concentration at which the consumption rate
for TPZ is halved compared to that under anoxia.

The general mass transport model (??), adapted to the previous assumptions, ends
up with the following equations,

∂coxt
∂t

+∇ · (coxt ut −Dox
t ∇coxt ) +mox(coxt )coxt + LLFp

S
V

(pt − pL)coxt

= f oxs (pt, pv, c
ox
t , c

ox
v )δΛ in Ω

∂ctpzt
∂t

+∇ · (ctpzt ut −Dtpz
t ∇ctpzt ) +mtpz(coxt )ctpzt + LLFp

S
V

(pt − pL)ctpzt

= f tpzs (pt, pv, c
tpz
t , ctpzv )δΛ in Ω

∂coxv
∂t

+
∂

∂s
(uvc

ox
v −Dox

v

∂

∂s
coxv ) = − 1

πR2
f oxs (pt, pv, c

ox
t , c

ox
v ) on Λ

∂ctpzv
∂t

+
∂

∂s
(uvc

tpz
v −Dtpz

v

∂

∂s
ctpzv ) = − 1

πR2
f tpzs (pt, pv, c

tpz
t , ctpzv ) in Λ

(5.2)

f ∗c (pt, pv, c
∗
t , c
∗
v) = 2πR

[
(1− σ∗)Lp

(
(pv − pt)− σ(π∗v − π∗t )

)
ct/v + P ∗(c∗v − c∗t )

]
where ∗ = ox, tpz.
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Parameters of the model and dimensional analysis

We apply the coupled oxygen-TPZ model, namely equation (5.2) to calculate the time
and space dependent concentration profiles of TPZ in the interstitial volume, after a
bolus injection of TPZ equal to Ctpz

max for a duration of Tmax = 20 minutes. More pre-
cisely, we enforce the boundary condition ctpzv = Ctpz

max on ∂Λin for t ∈ (0, Tmax). The
numerical simulation is however extended for a longer time interval. The parameters
needed to feed the fluid dynamics and the mass transport equations are taken from dif-
ferent sources. For the fluid equations we refer to section 4.5.1 and references therein.
For the transport of oxygen and TPZ we use the dataset provided in [68]. The parame-
ters that will be used in the numerical simulations (and the corresponding sources) are
reported in Table 5.1.

Before proceeding, we aim to use the available data to verify the assumption that the
contribution of oxygen and TPZ to the oncotic pressure is negligible. This hypothesis
has already been widely investigated for oxygen, [85,89], and it results to be accurately
satisfied, because oxygen is a very small molecule. For TPZ the question remains
open. An upper bound for the oncotic pressure generated by TPZ dissolved in blood
is πTPZmax = σTPZRgTC

TPZ
max . The main issue is the quantification of the reflection

coefficient σTPZ . Using the pore theory, this parameter can be estimated as

σTPZ =
(

1−
(

1− rTPZ

rpores

)2)2

and rTPZ =
kBT

6πµDTPZ

where rTPZ is an estimate of the TPZ molecular radius and rpores quantifies the av-
erage dimension of the endothelial fenestrations in the capillary walls. For the latter,
following [89] and references therein, we take rpores = 5 × 10−9 m. For the former,
we use the Stokes-Einstein equation (reported above, where kBT is the Boltzmann
thermal energy and µ is the viscosity of blood plasma) to approximate the TPZ radius
using the molecule diffusivities, provided in Table 5.1. This results in the following
upper bound for the TPZ radius rTPZ < 3 × 10−10 m. When we compare this esti-
mate with the Bohr radius (the most probable distance between the proton and electron
in a hydrogen atom), it turns out that one TPZ molecule should span approximately
over 5 radii, which seems to be appropriate for the molecule, whose chemical for-
mula is C7H6N4O2. Using the available estimate for rTPZ we obtain σTPZ < 0.013,
which completely justifies our assumption. Indeed, the corresponding oncotic pressure
is πTPZmax = σTPZRgTC

TPZ
max < 0.08 mmHg. This value is almost negligible with re-

spect to the oncotic pressure gradient induced by the blood proteins that amounts to 25
mmHg.

Given the set of parameters, our first step towards the application of the models is to
perform a dimensional analysis of the corresponding equations. The results will inform
us on the relative magnitude of the concurrent phenomena that affect mass transport,
such as molecular diffusion, convection and ligand-receptor interactions. We choose
length, velocity and concentration as primary variables for the analysis. We use the
characteristic dimensions introduced int the previous chapter, section 4.5.1. The char-
acteristic length, d = 50µm, is the average spacing between capillary vessels, the
characteristic velocity, U = 100µm/s, is the average velocity in the capillary bed and
δP = 1 mmHg is the characteristic hydrostatic pressure drop along the extrema of the
capillary network that will be considered in the simulations. The characteristic concen-
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parameter units value source
p0 + ∆p mmHg 35 [55]

∆p mmHg 1.25 [28]
σπv mmHg 28 [55]
σπt mmHg 0.1 [55]
Lp m2s/kg 10−10 [72]

LLFp
S
V mmHg−1 hours−1 0.5 [7]

βb – 10−6 [28]
R µm 7.64 [101]

Table 5.1: Physical parameters characterizing the perfusion problem.

parameter units oxygen TPZ
Dt cm2/s 1.35 ×10−5 [68] 1.87 ×10−6 [68]
Dv cm2/s 5 ×10−3 −− 6.9259 ×10−4 −−
P cm/s 3.5 ×10−3 [103] 5 ×10−3 −−
mtpz

0 1/s 0.0317 [68]
mox

0 mmHg/s 8.0645 [68]
Ctpzmax g/m3 48 [68]
Coxmax mmHg 100 [102]
βc – 10−3 [28] 10−3 [28]

Table 5.2: Physical parameters for oxygen and TPZ delivery, transport and metabolization.

tration, Cmax (Table 5.1), is defined as the maximal admissible value at the systemic
level for each considered chemical specie. The dimensionless form of the mass trans-
port problem is then,

∂c∗t
∂t

+∇ · (c∗tut − A∗t∇c∗t ) +Da∗t (c
ox
t )c∗t +QPL(pt − pL)c∗t

= f ∗c (pt, pv, c
∗
t , c
∗
v)δΛ in Ω

∂c∗v
∂t

+
∂

∂s
(|uv|c∗v − A∗v

∂

∂s
c∗v) = − d2

πR2
f ∗c (pt, pv, c

∗
t , c
∗
v) in Λ

f ∗c (pt, pv, c
∗
t , c
∗
v) = 2π(R/d)

[
(1− σ∗)Q

(
(pv − pt)− σ(πv − πt)

)
c∗t/v + Υ∗(c∗v − c∗t )

]
where all the symbols now refer to dimensionless quantities and the superscript ∗ stands
for either oxygen (ox) or tirapazamine (tpz). For convenience, we do not distinguish
the notation from the dimensional setting. The dimensionless groups that characterize
the flow are

ut =
|ut|
U
, uv =

|uv|
U

, Q =
LpδP

U
, QPL = LLFp

S
V

δPd

U
.

We refer to the previous chapter, section 4.5.1, for a detailed discussion of their inter-
play. Here, we are particularly interested in the analysis of mass transport, which is
described by the following quantities:

A∗v =
D∗v
dU

, A∗t =
D∗t
dU

, Da∗t = m∗
d

U
, Υ∗ =

P ∗

U
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The groupsA∗t , A
∗
v are the inverse of the Péclét numbers in the interstitium and the blood

stream, respectively. They quantify the ratio of diffusion and transport phenomena.
The Damkohler number, Da∗t , represents the magnitude of metabolism with respect to
diffusion. Finally, Υ∗ characterizes the magnitude of leakage from the capillary bed.
Using the parameters reported in Table 5.2, the magnitude of the dimensionless groups
for oxygen and TPZ, respectively, is

Aoxv = 100, Aoxt = 0.27, Daoxt = 4.0323, Υox = 0.35

Atpzv = 13.85, Atpzt = 0.0374, Datpzt = 0.0159, Υtpz = 0.5

where to quantify the reaction coefficients Daoxt and Datpzt , we take maximal oxygen
concentration, i.e. Cox = 100 mmHg.

We observe that Aoxv > Atpzv > 1 > Aoxt > Atpzt . Since the molecular diffusivity of
oxygen and TPZ in the interstitial tissue is rather low, the dynamics of these molecules
in the interstitium is moderately transport dominated. We notice, however, that this
conclusion is based on the mean blood velocity in the capillaries, U , used to quantify
transport. It could thus lead to a slight overestimation of the transport phenomena in
the tissue.

Concerning the Damkohler numbers, we notice that Daoxt > Aoxt , which means that
the distribution of oxygen in the tissue is reaction dominated, while for TPZ these two
mechanisms are almost in equilibrium, i.e. Datpzt ' Atpzt .

5.2.3 Transport of nanoparticles and drug delivery

We will apply now the developed theory to analyze the transport of nanoparticles into
the tumor region. Nanoparticles are used as vectors for the delivery of drugs to the
tissue. The advantage of this technology with respect to systemic delivery is that
chemoterapic agents are released selectively to the tumor mass. The side effects of
these drugs on patients are thus reduced. We aim at modeling the transport of nanopar-
ticles in the capillary network and the consequent delivery of a drug, which in our case
is again TPZ, to enable comparisons with the bolus injection delivery method. The
model arises from the general equations of blood flow and mass transport, with some
modifications. In particular, it has to be adapted to account for three different stages of
the delivery process: (i) the transport of nanoparticles in the capillary network; (ii) the
adhesion of the particles to the capillary wall; (iii) the delivery of the encapsulated drug
in the surrounding tissue.

Steps (i) & (ii): nanoparticle transport and adhesion. The model accounting for nanoparticle
transport in the blood stream and their adhesion to the wall results in the following
equations:

∂cv
∂t

+
∂

∂s
(|uv|cv −Dv

∂cv
∂s

) +
2πR

πR2
Πcv = 0 in Λ× (0, T )

where cv(x, t) is the nanoparticle concentration inside the vessels and it is measured
as number of particles per unit volume []/m3]. The adhesion of particles to the wall,
that was not accounted in the general model, is described as a sink term distributed
along the length of the capillary network, namely Πcv on Λ. The new term Πcv is a
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flux of particles sequestrated to the flow per unit surface of capillary wall. Since we
consider a one-dimensional model along the capillary axis, we use the corresponding
flux per unit length 2πRΠcv. The sink term, per unit volume, equivalent to this flux is
then obtained by scaling the flux per unit length with the vessel cross section, that is
πR2. The vascular deposition parameter, Π, is estimated using a ligand-receptor model
for the interaction of particles with the endothelial layer, which is based on previous
works [37, 69, 70]. We report here the main components of the model. The vascular
deposition parameter is defined as

Π(s) = Pa|S(s)|dp
2

where Pa is the probability of particle adhesion, S(s) is the the wall shear rate and
dp is the diameter of the considered nanoparticle. Given the plasma viscosity µ, the
wall shear stress at the axial coordinate s along the capillary network is µS(s). As
a result, we compute the wall shear rate using the Poiseuille’s flow equation. To this
aim, we remind that the network Λ has been decomposed into individual branches Λi,
i = 1, . . . , N . Then, the shear rate assumes a constant value on each branch given by

|Si| =
R

2µ

|∆ipv|
Li

where |∆ipv| is the absolute value of the pressure drop along each branch of the network
and Li is the branch length. The probability of adhesion, Pa, is in turn defined as a
function of particle size, shape and surface properties,

Pa(s) = mlK
0
aα2πr

2
0exp

(
− βµ|S(s)|

α2

)
.

In the above expression ml is the surface density of the ligand molecules that deco-
rate the nanoparticle surface and K0

a is the affinity constant of the interaction between
ligands and receptors. The parameter α2, defined as

α2 = mr

[
1−

(
1− ∆

dp/2

)2]
is a function of the density of receptors on the endothelial surface, mr, and of the
separation distance between the particle and the substrate at the equilibrium, ∆. The

parameter r0 represents the radius of the adhesion point and β =
λ6F

kBT
is a constant,

where F is the coefficient of hydrodynamic drug force on the spherical particle and
kBT is the Boltzmann thermal energy.

The model must be complemented by suitable initial and boundary conditions. At
the inlet ∂Λin we prescribe a Dirichlet boundary condition c0

v, which represents the
amount of injected particles. At the outflow ∂Λout we specify a homogeneous Neumann
boundary condition. We assume that the blood stream does not contain any particle at
the initial time.

Once the problem for particle transport and adhesion is solved, we compute the
density of nanoparticles adhering per unit surface to the wall as

Ψ(s, t) :=

∫ t

0

Π(s)cv(s, τ)dτ.
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Step (iii): drug release from nanoparticles. We assume that the particles decorating the
arterial wall are loaded with drug and they are able to release it to the surrounding
tissue. The model directly descends from the general formulation of mass transport
in the interstitial tissue. However, the Kedem-Katchalsky equations do not seem to be
the most appropriate model to calculate the drug release rate from the surface of the
capillary walls. This is motivated by the following observations. On one hand, due
to the complex interaction of the nanoparticles with the endothelial layer, involving
phenomena such as intracellular trafficking and particle extravasation [46–48,104], we
assume that the endothelium is no longer a significant barrier to deliver nanoparticle-
carried drugs to the interstitial volume. On the other hand, the drug delivery rate mostly
depends on the release profile of a single particle. The drug release rate per unit surface
will be then determined by combining the flux delivered by a single particle with the
density of particles per unit surface.

Determining the release profile of a single (spherical) loaded particle is a well stud-
ied problem in pharmacology [81]. Here, following [5, 81, 86] we define it using a
power law model,

q(t)

q∞
=

tb

tb +m
, q∞ = c∗npVnp, then q(t) =

tb

tb +m
c∗npVnp,

where q(t) is the amount of drug released and q∞ is the total drug load of a nanoparticle,
given by the total drug concentration inside the nanoparticle, c∗np (where ∗ denotes
an unspecified drug loaded on the particles), multiplied by the nanoparticle volume
Vnp. The parameter m is expressed in dimensions of time to the power of b. The
two parameters m and b reflect the structural and geometric properties of the delivery
system. The drug release rate from a single nanoparticle is therefore obtained as

Jnp(t) =
dq(t)

dt
=

mbtb−1

(tb +m)2
c∗npVnp,

and the total drug release rate per unit surface is computed as,

J(s, t) = Jnp(t)Ψ(s, t).

To conclude, we apply the immersed boundary method to describe the capillary
bed as a source term concentrated on the centerline Λ. More precisely, the action
of drug loaded nanoparticles on the interstitial tissue is described by the source term
2πRJ(s, t), assuming that the capillaries are cylindrical channels of radius R. To
compare the nanoparticle delivery approach with the bolus delivery strategy previously
considered, we load the particles with TPZ. The drug concentration into the tissue is
modeled by the following equations:

∂ctpzt
∂t

+∇ · (ctpzt ut −Dtpz
t ∇ctpzt ) +mtpz(coxt , c

tpz
t )

+LLFp
S
V

(pt − pL)ctpzt = 2πRJ(s, t)δΛ in Ω× (0, T ]

Dtpz
t ∇ctpzt · n = βc(c

tpz
t − ctpz0 ) on ∂Ω× (0, T ]

(5.3)
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parameter units value
β N−1 2.39 ×1011

µ Ns/m2 0.001
dp m 2 ×10−6

α2 ]/m2 3.4 ×109

mlK
0
ar

2
0 m2 1.2585 ×10−9

b – 0.8
m hoursb 1

Cnpmax ]/m3 1.4354×1012

Dv cm2/s 6.98×10−9

Table 5.3: Physical parameters used to model nanoparticle injection and adhesion [69].

Parameters of the model

The nanoparticle transport and adhesion model requires to characterize several param-
eters, for which we refer to [37, 69, 70]. For the sake of clarity, in Table 5.3 we report
the values summarized in [69] Table 1.

It is possible to calibrate the power law model in order to describe different scenar-
ios, for example a fast release mechanism or a slow release rate. We fix the parameters
of the model, m and b, such that 90% of the total drug is released within one day. The
corresponding parameter values are reported in Table 5.3.

Another important quantity is the concentration of nanoparticles injected at the in-
flow of capillary network. Since we are interested in comparing the amount of TPZ
delivered from bolus and nanoparticle injection, we aim at determining the concen-
tration of injected nanoparticles that match the TPZ bolus concentration, previously
defined as Ctpz

max. Similarly, the concentration of injected nanoparticles will be denoted
by Cnp

max and its value is determined according to the following balance equation,

Cnp
maxc

tpz
np Vnp = Ctpz

max.

To determine the value of Cnp
max we need an estimate of the amount of drug cast in each

particle, namely ctpznp . To determine this value we rely on two assumptions: (i) the drug
mass fraction in each particle, denoted as f tpz, is equal to the unity; (ii) the density of
the particles is comparable to the density of water, ρw. As a result, we conclude that

ctpznp = ρwf
tpz.

and we compute the value of Cnp
max that is reported in Table 5.3.

5.2.4 Numerical approximation

For complex geometrical configurations explicit solutions of problems (5.1), (5.2) and
(5.3) are not available. We have already seen in the previous chapter that numerical
simulations are the only way of applying the model to real cases. Besides applications,
the study of numerical approximation methods for such problems requires first to ad-
dress existence, uniqueness and regularity of the exact solutions and then to analyze
the accuracy of the proposed scheme. The solution of these problems do not satisfy
standard regularity estimates, because all the forcing terms are Dirac measures. Also
in this case, to characterize the regularity of the trial and test spaces we do not resort to
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weighted Sobolev spaces, as proposed in [33]. Indeed, we have discussed in sections
4.4 and 4.4.3 that we do not need graded meshes to capture the solution gradients in
the neighborhood of the singularity. Therefore we will choose trial and test functions
belonging to spaces defined in [73].
The discretization of the flow problem (5.1) is described in section 4.4 and is achieved
by means of the finite element method that arises from the variational formulation of
the problem combined with a partition of the domain into small elements. We follow
the same method also to discretize problems (5.2) and (5.3).
Starting from the problems of oxygen and TPZ mass transport, we multiply each tissue
equations in (5.2) by a test function qt ∈ W 1,q

0 , that is the natural trial space for the
problem in the interstitium, as we have already shown in section 4.4. We integrate over
Ω and the transport operator is treated using integration by parts combined, for the sake
of simplicity, with homogeneous Neumann conditions on ∂Ω. Regarding the interface
flux term we write(

f ∗c (pt, pv, c
∗
t , c
∗
v)δΛ, qt

)
Ω

=
(
f ∗c (pt, pv, c

∗
t , c
∗
v), qt

)
Λ
.

We proceed similarly for the governing equation on the capillary bed and, following
what already explained in section 4.4, we integrate by parts on each branch Λi sepa-
rately and we impose mass conservation at each index that identifies a branch of the
network. We highlight that the test functions for the pressure field on the capillary bed
are continuous on the entire network, namely qv ∈ C0(Λ) since we choose Vv,0 as the
subspace of H1(Λ) of functions which vanish on the boundaries of Λ and therefore
Vv,0 ⊂ C0(Λ) on 1D manifolds. This allows us to obtain

(∂c∗v
∂t
, qv
)

Λ
+
(
|uv|c∗v−D∗v

∂

∂s
c∗v,

∂

∂s
qv
)

Λ
=
(
− 1

πR2
f ∗c (pt, pv, c

∗
t , c
∗
v), qv

)
Λ
, ∀qv ∈ Vv,0.

Then the weak formulation of (5.2) requires to find c∗t ∈ W 1,p
0 and c∗v ∈ Vv,0 such that,

(∂c∗t
∂t
, qt
)

Ω
+ at(c

∗
t , qt) + btΛ(c∗t , qt) = btΛ(c∗v, qt), ∀qt ∈ W 1,q

0 ,

(∂c∗v
∂t
, qv
)

Λ
+ av(c

∗
v, qv) + bvΛ(c∗v, qv) = bvΛ(c∗t , qv), ∀qv ∈ Vv,0,

(5.4)

with the following bilinear forms,

at(c
∗
t , qt) :=

(
c∗tut −D∗t∇c∗t ,∇qt

)
Ω

+
(
m∗(coxt )c∗t , qt

)
Ω

+ LLFp
S
V

(
(pt − pL)c∗t , qt

)
Ω
,

av(c
∗
v, qv) :=

(
|uv|c∗v −D∗v

∂

∂s
c∗v,

∂

∂s
qv
)

Λ
,

btΛ(c∗v, qv) :=
(
2πR

[
(1− σ∗)Lp

(
(pv − pt)− σ(πv − πt)

)
(1− w)c∗v + P ∗c∗v

]
, qv
)

Λ
,

btΛ(c∗t , qt) :=
(
2πR

[
(1− σ∗)Lp

(
(pv − pt)− σ(πv − πt)

)
wc∗t − P ∗c∗t

]
, qt
)

Λ
,

bvΛ(c∗v, qv) :=
(
2/R

[
(1− σ∗)Lp

(
(pv − pt)− σ(πv − πt)

)
(1− w)c∗v + P ∗c∗v

]
, qv
)

Λ
,

bvΛ(c∗t , qt) :=
(
2/R

[
(1− σ∗)Lp

(
(pv − pt)− σ(πv − πt)

)
wc∗t − P ∗c∗t

]
, qt
)

Λ
.
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We proceed in a similar way also for equations (5.3), obtaining the following variational
form, where we have to find ctpzt ∈ W 1,p

0 and cv ∈ Vv,0 such that
(∂ctpzt
∂t

, qt
)

Ω
+ atpzt (ctpzt , qt) = F (t), ∀qt ∈ W 1,q

0 ,

(∂cv
∂t
, qv
)

Λ
+ atpzv (cv, qv) = 0, ∀qv ∈ Vv,0,

(5.5)

and the bilinear forms are,

atpzt (ctpzt , qt) :=
(
ctpzt ut −Dt∇ctpzt ,∇qt

)
Ω

+
(
mtpz(coxt )ctpzt , qt

)
Ω

+
(
LLFp

S
V

(pt − pL)ctpzt , qt
)

Ω
,

atpzv (cv, qv) :=
(
|uv|cv −Dv

∂cv
∂s

,
∂

∂s
qv
)

Λ
+
(2πR

πR2
Πcv, qv

)
Λ

F (t) :=
(
2πRJ(t), qt

)
Λ

For the numerical approximation of the variational problems (5.4) and (5.5), we
consider a standard backward Euler time advancing scheme together with piecewise
linear finite element space discretization.
For the space approximation we have to introduce an admissible family of partitions of
Ω into tetrahedrons K ∈ T ht , where the apex h denotes the mesh characteristic size.
We recall that, at the discrete level, one of the advantages of our problem formulation
is that the partition of the domains Ω and Λ into elements are completely independent.
The computational meshes used to solve the transport problems are reported in Figure
5.1.

Figure 5.1: On the left: meshes used to solve problems (5.7), (5.8) and (5.9). The partition of the
domains Ω and Λ into elements are completely independent. In particular the partition of Ω is
composed by 32624 elements, while the partition of Λ is composed by 8400 nodes, 80 nodes for each
branch. On the right: computational time for solving the algebraic systems of the flow equations,
the oxygen transport problem and the TPZ mass transport problem for the two different modalities of
transport. We represent one single time step for the solution of the TPZ transport problem. The bars
quantify the CPU time measured in seconds.

Following section 4.4, let V h
t := {v ∈ C0(Ω) : v|K ∈ P1(K), ∀K ∈ T ht } be the

space of piecewise linear continuous finite elements on T ht . Again, for the discretization
of the capillary bed, each branch Λi is partitioned into a sufficiently large number of
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linear segments E, whose collection is Λh
i , which represents a finite element mesh on

a one-dimensional manifold. Then, we will solve our equations on Λh := ∪Ni=1Λh
i

that is a discrete model of the true capillary bed. Let V h
v,i := {v ∈ C0(Λi) : v|E ∈

P1(E), ∀E ∈ Λh
i } be the piecewise linear and continuous finite element space on

Λi. The numerical approximation of the equation posed on the capillary bed is then
achieved using the space V h

v :=
(
∪Ni=1 V

h
v,i

)
∩ C0(Λ). The discrete problems arising

from (5.4) and (5.5) requires to find c∗ht ∈ V h
t , c∗hv ∈ V h

v,0, ctpz,ht ∈ V h
t and chv ∈ V h

v,0

such that
(∂c∗ht
∂t

, qht
)

Ω
+ at(c

∗h
t , q

h
t ) + btΛh(c∗ht , q

h
t ) = btΛh(c∗hv , q

h
t ), ∀qht ∈ V h

t ,

(∂c∗hv
∂t

, qhv
)

Λ
+ av(c

∗h
v , q

h
v ) + bvΛh(c∗hv , q

h
v ) = bvΛh(c∗ht , q

h
v ), ∀qhv ∈ V h

v,0,

(5.6)


(∂ctpz,ht

∂t
, qht
)

Ω
+ atpzt (ctpz,ht , qht ) = F (t), ∀qht ∈ V h

t ,

(∂chv
∂t

, qhv
)

Λ
+ atpzv (chv , q

h
v ) = 0, ∀qhv ∈ V h

v,0,

(5.7)

where the bilinear forms at(·, ·), av(·, ·), bΛh(·, ·), atpzt (·, ·), atpzv (·, ·) are the same as
before, with the only difference that bΛh(·, ·) is now defined over the discrete repre-
sentation of the network Λh. The interpolation and average operators, that are need to
evaluate the bilinear form bΛh(·, ·), are described in section 4.4.
The space discretization must be complemented with the time advancing scheme. Let
t > 0 be the time step, tn = nt the n-th time step, and c∗h,nt ∈ V h

t , c∗h,nv ∈ V h
v,0, the

numerical approximations of c∗ht (tn) and c∗hv (tn). The time advancing scheme for the
problem (5.6) reads as follows: given c∗h,nt ∈ V h

t and c∗h,nv ∈ V h
v,0 find c∗h,n+1

t ∈ V h

and c∗h,n+1
v ∈ V h

v,0, such that

( 1

∆t
c∗h,n+1
t , qht

)
Ω

+ at(c
∗h,n+1
t , qht ) + btΛh(c∗h,n+1

t , qht ) =( 1

∆t
c∗h,nt , qht

)
Ω

+ btΛh(c∗h,n+1
v , qht ), ∀qht ∈ V h,( 1

∆t
c∗h,n+1
v , qhv

)
Λ

+ av(c
∗h,n+1
v , qhv ) + bvΛh(c∗h,n+1

v , qhv ) =( 1

∆t
c∗h,nv , qhv

)
Λ

+ bvΛh(c∗h,n+1
t , qhv ), ∀qhv ∈ V h

v,0,

(5.8)
We apply the same time advance scheme also to equations (5.7).
Finally, we observe that the oxygen concentration transport equations, (5.2), involve a
non linear term, represented by the Michelis-Menten reaction formula. To solve this
non linearity, we apply an iterative scheme strategy, where the oxygen concentration
that appears in the reaction coefficient, is evalutated at the previous iterative step. To
describe properly this iterative scheme we simplify the notation and from now on we
drop the time index n+ 1. The index will be explicitly indicated only when referring to
a time step different from tn+1. For the same reason, we drop the index h everywhere.
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The iterative strategy results to be the following: for all n = 1, . . . , N given an initial
guess cox,0t , cox,0v and a given tolerance ε, for k = 1, 2, . . . find a sequence cox,kt , cox,kv

such that,

( 1

∆t
cox,kt , qt

)
Ω

+
(
cox,kt ut −Dox

t ∇cox,kt ,∇qt
)

Ω
+
(
mox(cox,k−1

t )cox,kt , qt
)

Ω
+

LLFp
S
V

(
(pt − pL)cox,kt , qt

)
Ω

=
( 1

∆t
cox,k,nt , qt

)
Ω
− btΛh(cox,kt , qt) + btΛh(cox,kv , qt), ∀qt ∈ V h,( 1

∆t
cox,kv , qv

)
Λ

+ av(c
ox,k
v , qv) + bvΛh(cox,kv , qv) =

( 1

∆t
cox,kv,n , qv

)
Λ

+ bvΛh(cox,kt , qv), ∀qv ∈ V h
v,0,

(5.9)
until the following stopping criterion is satisfied:

‖cox,kt − cox,k−1
t ‖0

‖cox,kt ‖0

+
‖cox,kv − cox,k−1

v ‖0

‖cox,kv ‖0

< ε. (5.10)

where ‖ · ‖0 is the Euclidean norm of the vector of nodal values.
Regarding the coupling between the oxygen and the TPZ concentration, we actually
solve the steady counterpart of (5.8) for the oxygen transport, because oxygen is per-
sistently supplied by the capillary bed. Therefore, once computed the oxygen concen-
tration profile, we use it to determine once for all the reaction term that appears in the
TPZ transport equation. This choice seems to be reasonable also because there isn’t
any feedback of the TPZ concentration on the oxygen consumption.

For the numerical solution of problems (5.9), (5.8) and (5.7) we use GetFem++,
a general purpose C++ finite element library [93]. The discretization of flow prob-
lem (5.1), already described in Chapter 4, is solved applying the GMRES method with
incomplete-LU preconditioning. The tolerance for the stopping criterion for the it-
erative method to solve the oxygen transport equations (5.9) is fixed to ε = 10−8.
We reach the convergence in 61 iterations. At each iteration, we apply the GMRES
method to solve the corresponding linear systems. Regarding the TPZ transport, the
monolithic algebraic system constructed from (5.8) is again solved using the GMRES
method with incomplete-LU preconditioning. Conversely, the two equations compos-
ing system (5.7) are actually decoupled, therefore they are addressed in sequence: we
solve the vessel equation (5.7)b first, in order to compute the flux J(t), which is the
forcing term of the tissue equation (5.7)a. Since these equations are independent, their
numerical solution turns out to be faster than the one of system (5.8), as we observe
from the results reported in Figure 5.1 and in Table 5.4.

Referring to the dimensional analysis performed in Section 5.2.2, we notice that
the Damkohler number for the oxygen transport equation is bigger than the molecu-
lar diffusivity in the tissue, namely Daoxt > Aoxt , which means that the distribution of
oxygen in the tissue is reaction dominated, while for TPZ these two mechanisms are
almost in equilibrium, i.e. Datpzt ' Atpzt . We also observe that the magnitude of leak-
age, Υ∗, is always bigger than that of diffusivity in the interstitium, A∗t . To cope with
the reaction dominated nature of these mass transport equations, we adopt the mass
lumping stabilization techniques addressed in [92] for the reaction terms correspond-
ing to the coefficients Daoxt and Υ∗. Although the dimensional analysis addressed in
Section 5.2.2 suggests that the mass transport problems in the interstitial tissue may be
moderately transport dominated, numerical experiments confirm that resorting to stabi-
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Bolus injection Nanoparticle release
problems initialization 301.7 301.59

assembling fluid system 1.02 1.04
solving fluid system 5.62 5.39

assembling O2 system 1.32 1.35
solving O2 system 61.36 60.86

assembling drug system 1.37 1.48
solving drug system (one single step) 1.2 0.21

solving drug system (T=20 min) 3374.04 1231.24

Table 5.4: Computational time for solving different parts of problems (5.7), (5.8) and (5.9). Computa-
tional time is measured in seconds.

lization methods for the convective terms is not required for the applications that will
be addressed.

5.3 Results and discussion

The delivery of anticancer agents mediated through nanoparticle injection in the blood
stream and subsequent adhesion to the vascular walls may feature significant advan-
tages with respect to the traditional drug bolus delivery. We are interested to compare
these two delivery modalities for TPZ.

5.3.1 Indicators of drug delivery performance

The natural output of the mass transport models described before are concentration
profiles in the vessels, cv(t, s), and in the tissue, ct(t, x). From the clinical standpoint,
these may not be the most significant indicators of the treatment performance. For this
reason, we also study the amount of TPZ metabolised by cells up to a given reference
time. We denote this quantity as M tpz(t, x). In addition, for more quantitative com-
parisons, we look at the total amount of TPZ metabolised in the considered portion of
tissue, that is M

tpz
(t). On the basis of equations (5.2), these indicators are defined as

M tpz(t,x) =

∫ t

0

mtpz
(
coxt (τ,x), ctpzt (τ,x)

)
dτ, M

tpz
(t) =

∫
Ω

M tpz(t,x)dx.

Following [68], the amount of drug metabolised in the tissue can be related to the cell
survival. In particular, the cell surviving fraction (SF ) represents the complement of
the fraction of cells treated (killed) by TPZ with respect to the number of control cells
(the total number of cells in the tissue, before treatment started). Several models are
available to quantify the surviving fraction [68]. In particular, we use

SF (t,x) = exp
(
− αM tpz(t,x)

)
, SF (t) = exp

(
− αM tpz

(t)
)

where α is a phenomenological coefficient. For the following calculations we assume
α = 2.52× 10−4 µM−1 (0.0014 g/m3) as in [68].

5.3.2 Oxygen transport and TPZ delivery from bolus injection

We discuss the simulations of TPZ delivery obtained with model (5.2). In Figure 5.2
we compare the oxygen and the TPZ concentrations 20 minutes after that the delivery

112



5.3. Results and discussion

of TPZ into the systemic circulation has started. As expected, the TPZ concentration is
significantly influenced by the distribution of oxygen concentration. From the inspec-
tion of the concentration maps, also the pattern of the microvascular network plays a
role. Although this is a coupled system, the following dominant interactions seem to
emerge from the analysis of the results.

Oxygen concentration patterns substantially depend on the density of capillaries per
unit volume. Regions of the sample tissue not well perfused by the capillary network
show low oxygen concentrations, justifying the risk of hypoxic conditions for an ir-
regular configuration of the microvessels. This conclusion is also supported by the di-
mensional analysis of the governing equations. Since oxygen transport in the interstitial
volume is reaction dominated, regions free of oxygen sources will easily experience low
oxygen supply. The visualization of oxygen concentration maps of Figure 5.2 can be
directly compared with the results of [103], see in particular Figure 3A, obtained using
an equivalent model for oxygen transport. As a preliminary and qualitative validation
of our results, we observe that the contour plots of the calculated oxygen concentration
look remarkably similar in the two cases. As expected, the TPZ concentration is signif-
icantly influenced by the distribution of oxygen concentration. The distribution of TPZ
in the considered tissue sample seems to be more uniform than in the case of oxygen.
Again, dimensional analysis supports this conclusion, because it shows that diffusion
and reaction equivalently contribute to TPZ transport.

In spite of the difference between the governing mechanisms at the basis of oxygen
and TPZ transport, the simulated concentration maps of these species share common
traits. This may be explained by two concurrent factors. On one hand, both solutes are
affected by the distribution of capillaries. On the other hand, the metabolization of TPZ
increases in hypoxic regions. This effect sustains TPZ concentration gradients similar
to the ones of oxygen, by turning off TPZ absorption where oxygen concentration is
elevated, and promoting TPZ metabolization where oxygen is low. Finally, the inspec-
tion of metabolized TPZ, namely M tpz(t, x), shows that the objective of reaching the
hypoxic regions with a chemotherapy agent is substantially achieved. More precisely,
oxygen andM tpz(t, x) maps show a complementary pattern. It means that most of TPZ
is metabolized in hypoxic regions.

Before proceeding, we study the sensitivity of these results with respect to the
boundary conditions applied on the artificial sections separating the interstitial vol-
ume from the exterior. Indeed, in the previous chapter 4, we have highlighted the
importance of the boundary conditions to determine the interstitial pressure. Figure 5.2
(bottom row) shows the results when homogeneous Neumann conditions (no flux) are
prescribed for the concentrations on the boundary of Ω. This is equivalent to setting
βc = 0 in the general boundary conditions used above, namely −Dt∇ct · n = βcct
(where the value of βc is provided in Table 5.2). A slight increase in the TPZ concen-
tration field is observed, in agreement with the fact that the outgoing diffusive flux is
set to zero with the choice βc = 0. For a more quantitative comparison, we study the
sensitivity of the total amount of metabolized TPZ, M

tpz
(t). After injecting TPZ for

20 minutes, we calculate M
tpz

(t) = 7.76838× 10−9 g/m3 when using Robin boundary
conditions and M

tpz
(t) = 8.6685 × 10−9 g/m3 in the case of Neumann conditions.

Owing to these results, we conclude that the parameter βc is not a factor of primary
importance to determine the concentrations of oxygen and TPZ. As a result, we will
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Figure 5.2: Oxygen concentration profile, TPZ concentration profile and metabolized drug profile are
visualized from left to right. On the top row, simulations are performed using Robin boundary con-
ditions for the concentrations of oxygen and TPZ at the boundary of the interstitial volume with the
exterior. The results obtained using homogeneous Neumann conditions are depicted at the bottom.

use Robin conditions for all the forthcoming simulations.

5.3.3 Nanoparticle adhesion patterns and delivery of TPZ from nanoparticle in-
jection

We split the analysis of the TPZ delivery from nanoparticles in two parts. First we focus
on the nanoparticle adhesion model, with the aim to validate our results with respect to
the ones reported in [69, 70]. In a second phase, we analyze the concentration of TPZ
delivered from the nanoparticles that decorate the capillary walls.

Nanoparticle adhesion is regulated by the vascular adhesion parameter Π, which
in turn depends on the shear rate induced by the interaction of blood flow with the
capillary walls. These two quantities are depicted in Figure 5.3. We observe that the
wall shear rate features a significant spatial variation, although the capillary radius is
considered to be constant along the network. This effect is due to the variable pressure,
and consequently flow rate, along the network. We observe that the calculated values
of wall shear rate fall in the physiological range. According to the adopted adhesion
model, the variability of wall shear rate is conveyed to the adhesion parameter, reported
on Figure 5.3 (left). As a result, we expect that the concentration of nanoparticles will
not be uniform along the network.

The nanoparticle concentration, namely Ψ(s, t), depends on the adhesion parameter
and on the particle concentration traveling through the vascular network. To compare
the delivery of TPZ from nanoparticle with the case of bolus injection, we consider a
constant concentration of injected particles for 20 minutes. A preliminary validation of
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t=20 s t=20 min t=20 min
normalized Cnpmax normalized Cnpmax absolute Cnpmax

Figure 5.3: Top panel: profiles of wall shear rate and vascular deposition parameter Π(s) along the
capillary network. Bottom, starting from the left: the density of nanoparticles decorating the wall,
Ψ, at 20 seconds and at 20 minutes after nanoparticle injection has started. These values refer to a
nominal unit concentration of injected particles (]/m3). Bottom right: Ψ at 20 minutes after injection
for an inlet nanoparticles concentration equal to Cnpmax.

our simulations arises observing that the nanoparticle density per unit capillary surface,
calculated for an injection phase lasting 20 seconds, is comparable to that reported
in [69, 70]. The analysis of adhered particles at 20 minutes after the initial time, shows
that adhesion progressively increases. According to the model, saturation of particle
receptors is not likely to be observed under the considered conditions. The results of
Figure 5.3 (left and middle panels, bottom row) refer to the concentration of adhered
nanoparticles normalized with respect to the injected value. On the right, we show the
density of adhering particles when we consider the initial particle concentration Cnp

max,
which is calculated in order to match the the total flow of TPZ relative to the systemic
bolus injection, as we have explained in section 5.2.3.

Figure 5.4 shows the TPZ concentration delivered from nanoparticles at 20 seconds
and 20 minutes after particle injection has started. Although the concentration levels
are significantly different in the two cases, because of the time scales, the concentration
maps share some similarities. In both cases, however, the geometry of the network can
not be immediately related to the TPZ concentration map. Indeed, it is rather the distri-
bution of the adhesion factor along the network, Π, and accordingly the nanoparticles
concentration the Ψ, that affect the calculated concentration field. Finally, the amount
of metabolized TPZ behaves again as the complementary of the oxygen concentration
field.
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Figure 5.4: TPZ concentration maps at 20 seconds and 20 minutes after starting nanoparticle release
(left and central panels). On the right we show the metabolized drug after 20 minutes. Robin bound-
ary conditions are used in all cases.

5.3.4 Comparison of TPZ delivery from bolus and nanoparticle injection

Our main objective is the comparison of these two modalities to deliver drug to a tumor.
In particular, the proposed model will enable us to compare how the concentration of
delivered drug varies in space and time for the two cases. We also point out that,
although the delivery pathway is different, the comparisons refer to the same amount
of drug injected into the system.

In Figure 5.5 we visualize the TPZ concentration maps in the two cases, reported
at 20 minutes, 40 minutes and at a final points comparable to the time at which there
will be no longer drug to be delivered to the tissue. The magnitude of the end time
point may differ in bolus or nanoparticle injection. The first time point (20 minutes)
corresponds to the instant when the injection of drug or particles into the vessels is
turned off. The analysis of the results reveals some differences since the beginning
of the delivery process. The drug concentration in the case of nanoparticle delivery is
larger than the one of bolus delivery at all time points and the discrepancy increases
with time.

Figure 5.5 also shows that the concentration of TPZ delivered from bolus injection
rapidly vanishes after the injection is switched off. At 40 minutes after the injection
has started, there is only a negligible trace of TPZ in the tissue, while after 3 hours the
drug has completely vanished. This is clearly due to drug metabolization. Surprisingly,
TPZ drug concentration from bolus delivery is also lower at the first time point. The
superior performance of the nanoparticle delivery system on the short time scale can be
justified by the role of nanoparticle adhesion. This effect helps to harvest drug from the
blood stream and to store it on the arterial walls. As a result drug may be delivered in
higher concentrations to the interstitial volume and at the same time a lower fraction of
the injected drug is washed away by the blood stream leaving the tissue sample.

In addition, the release rate from nanoparticles is more persistent. Drug will be
delivered to the tissue over a period of time that is significantly longer than 20 min-
utes. This is due to the nanoparticle matrix, which represents a diffusional barrier to
the release of drug into the tissue. In this case, drug delivery and metabolization nearly
balance, because the TPZ concentration in the interstitial volume slowly decreases for
a period of almost one day. This interpretation is strengthened by visualizing the time-
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cTPZbol 20 min 40 min 6 hours

cTPZnp 20 min 40 min 48 hours

Figure 5.5: Comparison of TPZ concentrations released from bolus injection (subscript bol) and
nanoparticle injection (subscript np).

course of the total amount of drug available in the tissue, namely the volumetric integral
of the TPZ concentration. The results, shown in Figure 5.6, further highlight the ineffi-
ciency of drug bolus delivery when compared to drug delivery from nanoparticles.

Bolus injection turns out to be a sub-optimal delivery strategies for two reasons. On
one hand, tissue drug concentration rapidly reaches a plateau, much before the final in-
jection time. The drug injected during this plateau phase is more likely to be washed out
by the blood stream. On the other hand, bolus injection system lacks any buffer mech-
anism. Once injection is switched off, drug levels rapidly decrease. In comparison, the
nanoparticle delivery system features two significant advantages. First of all, the par-
ticle adhesion mechanism allows for the accumulation of drug on the capillary walls.
Secondly, the presence of particles decorating the capillary walls ensures a persistent
drug release rate after that particle injection has stopped.

The profiles of TPZ concentration have a direct impact on the quantity of metabo-
lized drug. The maps of metabolized drug are shown in Figure 5.7. We observe that
these maps look alike in all reported cases. This similarity confirms the dominant role
of oxygen concentration to selectively activate the drug metabolization. However, the
magnitude changes drastically from case to case. Since for the bolus delivery mode
the drug supply to the tissue stops at 20 minutes, the amount of metabolized drug re-
mains almost constant after this time. In contrast, the buffer effect provided by the
adhered nanoparticles allows to achieve a significant increase of metabolized drug over
time. After 48 hours, the magnitude of metabolized TPZ from nanoparticle injection is
almost 20 fold larger than in the case of bolus injection.

Finally, we compare the cell surviving fractions (SF) calculated from bolus and
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bolus injection nanoparticle injection

Figure 5.6: Comparison of systemic and nanoparticle release timecourses. The variation of
∫

Ω
ctpzt and

M
tpz

over time is visualized. The red line marks the time at which the injection of drug or particles
into the vessels is stopped.

nanoparticle injection. The cell surviving fraction depends on space and time, but also
on the oxygen availability. To selectively attack tumor mass, TPZ it targeted to treat
hypoxic tissue. For this reason, it is convenient to plot the dependence of SF on oxygen
partial pressure. This visualization is shown in Figure 5.8. The points of this diagram
correspond to the nodes of the computational grid in the interstitial volume, denoted
with xi. For each node, we extract the value of oxygen concentration and surviving
fraction, at the final time,

(t = T,xi)→ coxt (t = T,xi), SF (t = T,xi).

Then, in the diagrams of Figure 5.8 the surviving fraction is plotted with respect to the
corresponding oxygen concentration, while the spatial information is lost. As expected,
SF sharply decreases for low oxygen concentrations, confirming that TPZ is able to
selectively target hypoxic regions. The nanoparticle delivery mode results to be more
effective also with respect to this indicator. On a short time scale, equivalent to the
injection time, the efficacy of the two treatments is comparable and not particularly
satisfactory because more than 50% of the cells still survive in hypoxic regions. While
the situation is almost unchanged for longer time scales in the case of bolus delivery,
the performance significantly improves for nanoparticles on the time scale of 48 hours.
In fact, we observe that in the regions of tissue exposed to oxygen partial pressure lower
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MTPZ
bol 20 min 40 min 6 hours

MTPZ
np 20 min 40 min 48 hours

Figure 5.7: Comparison of metabolized TPZ released from bolus injection (subscript bol) and nanopar-
ticle injection (subscript np).

than 10 mmHg, more than 70% of cells are killed by the drug. A slight drawback of
this type of treatment can be detected looking at the distribution of the points. The
dispersion of the point cloud increases and the slope of the underlying curve decreases
with respect to the other plots. This suggests that the action of TPZ becomes less
selective to target cells exposed to low oxygen concentration.

5.4 Conclusions

In this chapter we have developed a model capable to simulate the spatio-temporal evo-
lution of drugs delivered to a tumor mass. The analysis is performed at the microscale,
where the fundamental physics at the basis of flow and transport can be directly applied.
We have used the model to compare bolus and nanoparticle injection for delivering
chemotherapy agents. The model provides different insights on treatment performance,
based on the analysis of specific quantitative indicators, such as the cell surviving frac-
tion. On one hand, we show that bolus injection does not ensure an optimal delivery.
Drug washout by the blood stream and saturation of the concentration level in the in-
terstitial tissue limit the amount of drug that reaches the malignant cells. On the other
hand, we observe that a more controlled drug delivery process, achieved by means of
nanoparticle injection, helps to override the previous limitations. The model captures
an expected trend that is confirmed by several studies [2, 16].

Besides these encouraging results, the model is prone to several improvements. One
of the main limitations of the study consists to consider a tumor as a static environment.
This assumption may be questionable, especially over the characteristic time scales of
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SFTPZbol 20 min 6 hours

SFTPZnp 20 min 48 hours

Figure 5.8: Comparison of cell surviving fraction (SF) when TPZ released from bolus injection (sub-
script bol) and nanoparticle injection (subscript np).

controlled delivery. Future developments of the model will indeed consider the tumor
microenvironment as a dynamic system where angiogenesis, cell proliferation and drug
treatment constantly interact. As discussed in [46, 54], the evolution of the tumor envi-
ronment also affects how nanoparticles adhere to the capillary walls.

Further ramifications of this study will also be devoted to develop specific models for
different types of cancer. We expect that tumors developing in the brain, breast, liver or
lungs may feature significant differences in their transport properties. The physiology
of these organs as well as available metrics for the transport properties of different types
of cancer will be combined to set up specific variants of the model for different tumors.

Another line of development moves along with the rapid technological progress in
designing different nanovectors to efficiently and selectively deliver drugs [40,98,110].
Indeed, the model can be refined with respect to the drug delivery platform. In addition
to the currently adopted model for rigid nanoporous particles, we would like to build up
a library of delivery models to account for liposomes and other drug carriers. Finally,
we believe that the proposed modelling and computational approach may effectively
complement, at a coarser scale of analysis, the extraordinary results that molecular
dynamics methods are obtaining to boost the discovery and testing of new drugs [111].
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