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To my family





When you discover what you will be in your life,
set out to do it as if God Almighty called you

at this particular moment in history to do it.

Don’t just set out to do a good job.

Set out to do such a good job that the living,
the dead or the unborn couldn’t do it any better.

If it falls your lot to be a street sweeper,
sweep streets like Michelangelo painted pictures,

sweep streets like Beethoven composed music,
sweep streets like Leontyne Price sings

before the Metropolitan Opera.

Sweep streets like Shakespeare wrote poetry.

Sweep streets so well that all the hosts of heaven and earth
will have to pause and say:

Here lived a great street sweeper who swept his job well.

If you can’t be a pine at the top of the hill,
be a shrub in the valley.

But be the best little shrub on the side of the hill.

Be a bush if you can’t be a tree.
If you can’t be a highway, just be a trail.

If you can’t be a sun, be a star.

For it isn’t by size that you win or fail.

Be the best of whatever you are.

Dr. Martin Luther King, Jr.
What Is Your Life’s Blueprint? — Philadelphia, 26th October 1967





A B S T R A C T

The technological advancements in the field of biomedical engi-
neering happened in the last decades changed the way in which

surgical interventions are performed. Computer Aided Surgery (CAS)
techniques were developed to help and assist the surgeon during the
surgical intervention, providing him/her with information that can
be used to improve the performances of the treatment. The increas-
ing use of robotic systems in the Operating Room (OR) during the last
20 years brought to the development of Computer and Robot Assisted
Surgery (CRAS), an extension of the CAS paradigm in which the robot
provides an active contribution to the surgeon. The robotic assistant
have to act according to the needs of the surgery and the surgeon, as
an intelligent transparent operator which ensures an higher accuracy
and a better performance with respect to traditional techniques by
reducing the fatigue to the human operator and providing a reliable
way to verify and improve the accuracy of the procedure.

In this thesis, the aspects of high level control of a robotic device for
neurosurgical intervention was studied and an architecture to man-
age a robotic system during the execution of the workflow of the
intervention, in order to change the parameters and control modes in
a semi-automatic way according to the current situation in the OR, the
step of the intervention and the surgeon’s needs. In detail, the work
was focused in the definition of a set of Finite State Machines (FSMs)
that can manage the transitions between two steps by properly en-
abling/disabling the control modes and parameters without causing
unpredictable movements and glitches of the robot, which is close to
the patient.

In this scope, also controllers to move a tool carried by a robot
towards a pre-calculated target pose in space were developed and
tested; this procedure, called targeting was studied with a target 1. that
doesn’t move in space, and 2. that can change its pose in time.

In the former case the developed algorithm uses an external localizer
to measure the accuracy of the position and, based on that, to itera-
tively correct the pose of the tool until the accuracy requirements are
satisfied; studies on the final accuracy and convergence performances
of the algorithm were carried out. In the latter case, an algorithm to
follow a target that moves in space was implemented in the devel-
oped architecture and tests on the performances were carried out to
evaluate the accuracy and the delay.

All the developed algorithms were tested in the scope of the EU

funded projects for brain surgery ROBOCAST (FP7-ICT-2007-215190)

ix



and ACTIVE (FP7-ICT-2009-6-270460), aimed at developing integrated
solutions to assist the surgeons during the intervention.

Those activities are in the direction of the OR of the future, in which
the clinical staff, sensors and the robotic assistants share the environ-
ment with a context-driven surgical workflow that adapts the behav-
ior of the devices without requiring a massive intervention of the
human operator.

x
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1 I N T R O D U C T I O N

We’ve learned from experience that the truth will
come out.

Richard Phillips Feynman
Cargo Cult Science – 1974

contents
1.1 Computer Assisted Surgery . . . . . . . . . . . . . . . . . . . 1
1.2 Robotic surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Neurosurgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Aim of the thesis and structure of the document . . . . . . . 5

1.1 computer assisted surgery

The surgical activity is a very complex task that is performed by
humans in tough conditions: stress and, eventually, reduced working
space can make the task to be more complex.

In order to assist the surgeon during the intervention, engineering
research in the bio-medical field lead to the development of Com-
puter Aided Surgery (CAS) techniques. This is a set of methods that
can assist the surgeon starting from the pre-operative phase to the
intra-operative phase, providing tools to check, during the interven-
tion, the correctness of the procedure through visual feedback on the
medical images or through augmented reality. This can be done using
the diagnostic images, performed prior to the intervention on which
the surgeon plans the surgical procedure, after a proper registration
with the intra-operative reality.

This kind of CAS procedures were introduced in the beginning of
the 1990’s, but the basic concepts here used were already introduced
in the surgical practice with different devices. One of these was the
stereotaxic frame that was introduced in the beginning of 1900 [1];
it is a device that is fixed on the patient’s head and allows the in-
sertion of straight instruments (i. e. electrodes or probes for biopsies
and localize drug delivery) using a cartesian Coordinate Frame (CF)
defined by the frame itself, after properly mounting and aligning it
with anatomical landmarks. This is based on the concept that the
brain have a constant structure with respect to different subjects, and
thus that the frame could be used to identify internal structure based

1



2 introduction

on external landmarks, as if there is an atlas of the internal brain
structure that is shared among all people.

The only way to get patient specific information of the brain was to
use medical images. In the 1950’s, the stereotactic frame was refined
[2] and it was possible to take two orthogonal images of the patient
wearing the frame with landmarks on the frame itself, in order to get
information about the anatomy of the patient with respect to the po-
sition of the frame, in order to be able to identify internal points in
3d coordinates. Later, the idea of atlas was refined [3] by assuming
that the brain can be reconstructed from a statistical atlas properly
adapted using proportional factors measured from anatomical struc-
tures, giving the future possibility for rigid and non-rigid registration
techniques of a generalized atlas. After that several different stereo-
tactic frames were developed based on the polar coordinate system,
giving an isocentric CF.

In 1973 the Computed Tomography (CT) was invented [4] and so it
was the direct acquisition of 3d images. This increased the precision
in the recognition of internal structure because the information of
the third dimension is encompassed by this kind of images and not
anymore inferred from two orthogonal images.

In the 1980’s, the development of personal computers changed the
paradigm of the CAS towards a frameless stereotaxis, in which the
current intra-operative reality can be projected in the image space, op-
posed to the previous paradigm of projection of a point in the images
on the intra-operative reality. This became possible through the use
of localization systems, as passive arms [5] and triangulation systems
such as cameras or, more in general, systems of emitters and receivers
using different physical working principles such as electromagnetic
and acoustic. The localizers can be used to register the intra-operative
reality to the diagnostic images through homologous points [6], thus
leading to the possibility of extended reality in which the images are
properly displayed on a monitor, highlighting structures and infor-
mation that are important for the procedure.

1.2 robotic surgery

In the last decades, robotic surgery increased its role in surgery.
Computer and Robot Assisted Surgery (CRAS) is an extension of the
concept of CAS in which there is the interaction with the environment.
The use of robots in surgery is a valid tool to aid the action of the sur-
geon, providing an active support along with the increased number
of information provided by CAS.

The Operating Room (OR) is a tough environment due to the high
number of obstacles present, such as other devices and the surgical
staff. Moreover, the environment is shared between the robotic ma-



1.2 robotic surgery 3

nipulators and people, which increases the requirements on the safety
of the procedure, in particular from the point of view of the patient.

The robotic device cannot substitute completely the surgeon, but
it can be used exploiting its features in order to increase the possi-
bility of the surgery and alleviate difficulties. In fact, a robot can
do repetitive tasks accurately, remain in a fixed position and it can
also be tele-operated, reducing human contact with the patient low-
ering the risk of infections. Moreover, it has been proven [7] that the
use of a robotic assistant can increase the intervention accuracy and
repeatability for instance when positioning surgical tools on target
poses defined on medical images during the pre-operative planning.

In surgery, robots can be divided in two classes [8]:

surgeon extender as tools that can extend the possibility of the
surgeon to perform the intervention through a direct control,
making possible the treatment of otherwise untreatable cases,
i. e. using standard procedure.

auxiliary surgical support as tools that act as tool holding de-
vices that work as an assistant, active if controlled by a com-
puter or passive if static.

Using robot that are in contact with the patient can reduce the
invasiveness of the intervention, allowing the reduction of the access
point but maintaining a good dexterity inside the body of the patient
for the intervention [9].

Attention must be paid during the design phase of a surgical robot,
because it is sharing the environment with the surgical staff and the
patient. In particular, the robot should leave a reasonably easy access
to the patient site when in operation and must be easily and fast
removable in case of emergency, as long as also the tools connected
to it must be easily removable [10]. Purpose specific robots can be
designed providing a fail-safe mechanical structure that encompasses
some of the safety issues [11], such as constant pose in case of power
loss. In some applications standard industrial robot were used in the
surgical environment [12], also via proper modification of the internal
sensors to increase the safety [13].

For robots and devices in general, in medical applications the safety
issues are extremely important in order not to hurt the patient and the
surgical staff [14]. Computer assisted tools can give a feedback on the
current position of the robot device and notify the surgeon in case the
robot is not where it is expected to be. The robot should have redun-
dant systems for checking the safety of the procedure, in particular if
they have an active role during the intervention. Surgeons must also
be trained in the use of the devices in order to monitor and under-
stand the behavior of the device and react appropriately if needed.
The maximum speed of the robot should also be constrained in order
to reduce the movement during the reaction time, either automatic or
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due to the surgeon intervention. It is important for a surgical robot
that the eventual fail results in a controlled stop to a safe state in
which the robot can be removed and the procedure ended manually,
with the only exception of neurosurgery, in which the removal of the
surgical tool from the robot can be critical if it is inside the brain of
the patient [10].

In order to increase the safety of the procedure, the surgeon has to
be asked for confirmation of the actions and movements of the robot
prior to them, in order to make him/her aware of the next actions
that will happen, and have his/her consensus.

1.3 neurosurgery

Neurosurgery is a field in which the requirement for accuracy is
particularly demanding. On the other hand, the landmarks on the
brain structure can be difficult to be individuated in minimally inva-
sive procedures and thus it is a field in which CAS systems play an
important role, as well as robotic devices in the last decades [15]–[17].

The use of CRAS solutions in this field is of help to the surgeon
because those system are faster than humans and also are not sus-
ceptible to fatigue and the stress that can arise in human operators
during those interventions, which can last several hours.

For this reason, in the 1980’s the first passive robot assistants de-
veloped in the or where retractable arms that were used to hold tools
in place over the head of the patient in a time-reliable [18] way com-
pared to a human operator which suffers of fatigue after a short time.

Surgical robots in neurosurgery can be divided in two categories:
1) passive and 2) semi-active [19]. Passive systems, as the Neuro-
mate (Renishaw ltd., UK) [15], [20], [21], autonomously move to a
predefined position defined on the pre-operative data (e. g. close to
the entry point on the skull) before locking and powering off, then
the probe is manually inserted by the surgeon. In devices that belong
to the semi-active category, the surgeon can interact with the robot
through a master handling device such as in the NeuroArm, devel-
oped for microsurgery and stereotactic brain procedures [22], [23]; in
those categories there are also robots in which the probe can also be
cooperatively driven (hands-on control), as in the ROSA™ (MedTech,
France) system [24].

In this field of surgery, robotic devices are not yet widely used
in practice [25], but they are increasing their role, also thanks to the
research projects funded by public institutions, as the European Com-
munity in Europe, because the use of robotic arm can make the pro-
cedure to be more accurate and more reliable, as long as to carry
out operations that would result in more complex procedures if per-



1.4 aim of the thesis and structure of the document 5

formed in a traditional way, i. e. due to the stress for the operator and
eventually the reduced working space.

Those projects aim to improve the performances of the procedure
in terms of accuracy and effectiveness, creating a wider concept of the
surgery with equipped ORs in which the information from navigation
systems, medical images and the current reality provide the surgeon
with a reliable platform to perform his/her task. In this picture the
robot should act as a transparent reliable assistant under the control
of the human operator that defines the specifications and the behavior,
in terms of parameters and control modes, that the device must apply
in the different phases of the procedure, integrating in the traditional
procedures without heavily changing the habits of the surgeons; this
will bring the surgery to better results, making the overhead, in terms
of costs, training and added preparation time, acceptable.

1.4 aim of the thesis and structure of the
document

The thesis here presented was aimed at defining a method to gen-
erate and handle a surgical workflow for robot-aided neurosurgery
in which the device adopts its behavior, in terms of parameters and
control modes, according to the phase of the intervention and user
needs; also the autonomous movement of the robot was studied by
developing and verifying algorithms to bring a tool, held by a robot,
on a static target and also to track the movement of the target itself.

This problem was treated through the definition of a Finite State
Machine (FSM), which coordinates the workflow of the surgical inter-
vention and also a FSM for each device present in the OR. In the device
FSM, the states correspond to the different possible control modes,
along with the transition actions, while the global-workflow FSM col-
lects the states of all the devices to accomplish that particular step
of the surgical procedure and the custom parameters for each state.
This system was implemented in a custom defined Robot Operating
System (ROS) and Open RObot COntrol Software (OROCOS) architec-
ture which interacts with a database to get the information about the
states and parameters.

In neurosurgical intervention two main types of procedures can be
identified: 1) keyhole and 2) open-skull. In the first case, i. e. in
keyhole brain biopsy, the research activity was directed towards the
convergence and accuracy analysis of an iterative targeting algorithm
to place and orient a surgical probe on the skull of the patient using
a robotic arm, guided by the information of the target defined by the
surgeon on the medical images and the information about the pose
of the tool from an optical tracking system that surveys the robotic
arm. In the second case, i. e. during open skull surgery for epilepsy
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treatment with awake patient the brain moves due to breathing and
heartbeat, so a robotic actuator which is holding a surgical tool in
contact with the brain tissue must follow the target of the surgical
procedure in order not to harm healthy tissues; studies on an algo-
rithm for target following were carried out to test the performances
of the algorithm and its compliance with respect to the neurosurgical
requirements.

The work presented in this thesis is then divided in two chapters.
The first, presented in chapter 2 on the facing page, describes the
topics of high level control of a surgical procedure as long as the co-
ordination of the robot devices and control modes is presented; the
second, presented in chapter 3 on page 25, is about the different strate-
gies used to bring a tool held by a robot on a target, the targeting
procedure, and to keep it in position within an accuracy that satis-
fies the requirements of the surgical procedure if the target moves in
space. Both these activities were integrated in the EU funded projects
ROBOt and sensor integration for Computer Assisted Surgery and
Therapy (ROBOCAST) FP7-ICT-2007-215190 [26], [27] and Active Con-
straints Technologies for Ill-defined or Volatile Environments (ACTIVE)
FP7-ICT-2009-6-270460 [12], which both aim at defining an integrated
robotic suite for neurosurgical interventions.

The preliminary part of these activities were started during my stay
at the Medizingruppe of the Institut für Prozessrechentechnik, Auto-
mation und Robotik,1 Karlsruher Institut für Technologie, Germany,
while the proper development along with the experiments were car-
ried out at the NearLab2 of the Dipartimento di Elettronica, Informa-
zione e Bioingegneria, Politecnico di Milano, Italy.

1 http://rob.ipr.kit.edu
2 www.nearlab.polimi.it

http://rob.ipr.kit.edu
www.nearlab.polimi.it
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Life is like riding a bicycle. To keep your balance
you must keep moving.

Albert Einstein
Letter to his son Eduard – 1930
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The work presented in this chapter1 describes a control architecture
to manage the workflow of a surgical intervention, which changes the
control mode and parameters for the devices present in the environ-
ment, i. e. input devices, environmental sensors and robots.2

The control architecture implemented is described in section 2.3
and a simplified scenario is then introduced in section 2.4, along with
the tests performed.

2.1 description of the scenario

The architecture used here, showed in fig. 2.1, encompasses: 1) a
robotic arm, 2) a master device and 3) external localization sensors
(environmental cameras and tracking systems).

The selected robot is a LightWeight Robot (LWR) 4+ (KUKA Labo-
ratories, Augsburg, DE) [30], which features 7 Degrees of Freedom
(DoFs) that can be remotely controlled via a proprietary interface, the
Fast Research Interface (FRI), that allows the user to get the internal
sensors information and to provide motion commands with control

1 from the contributions Comparetti et al. [28], [29]
2 video demonstration at www.youtube.com/watch?v=x2Pkx31beJc
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Figure 2.1: The setup of the scenario: 1. is the LWR actuator, 2. is the tele-
operation master device and 3. are the markers for the OTS (not
shown in the picture) .

frequencies up to 1 kHz, which is the frequency of the internal con-
troller; the LWR also features torque sensors on each joint, which allow
to measure the external torque on the joint itself, compensating the
weight of the tool attached to the robot flange. The kinematic struc-
ture of this robot is anthropomorphic and, like an human arm, it has
a spherical joint with three DoFs in the base (shoulder), a planar ro-
tational joint with one DoF in the elbow and a second spherical joint
with three DoFs in the flange (wrist).

The chosen master devices is the Geomagic Touch (formerly Sens-
able Phantom Omni – Geomagic, Morrisville, North Carolina), a small
serial robot arm which can measure the motion of the handle in 6 DoFs

and can provide force feedback in 3 DoFs (Cartesian translations).
The external localization systems used here are the OptoTrack Cer-

tus (NDI, Ontario, Canada), an Optical Tracking System (OTS) used as
a supervisor of the system in order to measure and check the perfor-
mances of the control architecture with a stated accuracy of 0.15mm
in a pyramidal working volume of about 25m3, and the Microsoft
Kinect for xbox 360 (Microsoft, Washington, U.S.), to track the human
body segments.

2.2 workflow, states and transitions

A surgical procedure is composed of different steps in which the
surgical staff executes different tasks. A robot which has to act as a
surgeon assistant thus have to change its behavior according to the
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needs of the current step of the intervention. The possible control
modes that can be used can be summarized in the following cate-
gories:

• Autonomous for brain electrodes insertion as in Stereo Elec-
troEncephalography (SEEG) (epilepsy invasive diagnostics);

• Cooperative with active constraints (limiting the operative space
for safety purpose) for cortical stimulation or resection (epilepsy
surgery, tumor removal);

• Tele-operated via master console for remote resection or discon-
nection (epilepsy surgery, tumor ablation).

Thus there can be the need to switch from one mode to the other to
perform the surgical task. In [31], the robot interacts with the environ-
ment in order to get in contact with a target object and thus the robot
needs then to switch from an unconstrained motion in space to a con-
strained motion with force control after the contact. For doing so,
sensors information can be used to trigger the instant in time when
to perform the transition between the two controllers; in particular
the authors used proximity and force sensors to get the information
about the contact with the target and thus to trigger the change of
control mode.

The problem to be tackled during the switching phase is to guar-
antee the continuity of the robot trajectory without glitches; this is
particularly important in robotic surgery application if the robot is
holding a tool which is in contact with the patient.

A surgical workflow is composed by several tasks and the ordered
list of those tasks represent the surgical procedure. In each task, a
surgical robot that acts as an assistant needs to implement different
control modes, according to the task itself. From that, there is the
need to define an high level control architecture that is dedicated
to supervise and guide the flow of the surgical procedure, defining
the control modes that each of the devices should have during the
procedure.

The control architecture here presented is a multi-layer architecture
in which a FSM, called System Behaviour Supervisor (SBS), is defined
to handle the surgical workflow and to coordinate the devices that
have a dedicated FSM implemented in their controllers to handle the
transition among the different statuses commanded by the high level
architecture. In this way, the global FSM takes care of coordinating
the events and the respective actions to be performed as long as they
appear, while the device-specific FSMs are dedicated in handling the
transition among the different control modes.
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GUI

SBS

Robot controllerMaster controller

LWR 4+

Collision avoider

Figure 2.2: High Level Controller UML component diagram: it shows the
main components to control the robot along with their connec-
tions; the ball represents the provider of information while the
socket represents the receiver.

2.3 control architecture

2.3.1 General

In fig. 2.2 is presented an UML component diagram of the devel-
oped control architecture. It encompasses a Graphical User Inter-
face (GUI) as the main interface with the user and it is aimed to control
a robot to perform a surgical procedure (as the one that will be de-
scribed in section 2.4). In this architecture there are two FSMs: 1) SBS

for the high level control of the procedure and 2) Robot controller
for the control of the robot device, while the other blocks represent
the possible source of data for the robot movement in case of remote
control or to avoid obstacles detected by the environment monitoring
cameras.

The SBS is the FSM that is deputed to the high level control of the
architecture throughout the intervention and it defines the behavior
for each device, as the control mode and its parameter, given the
current situation and step of the intervention. It retrieves the infor-
mation about the workflow and the behavior in the current step from
a proper DataBase (DB)3 and it forwards the new parameters to the
devices’ FSM. Moreover, it polls the devices’ controller to get infor-
mation about their status and, in case of problems, it enables the
safe-state and notifies the user about the potentially dangerous condi-
tion. The SBS first forwards the parameters and the new control mode
to the devices’ FSM and at the end it broadcasts an enabling trigger

3 document based, CouchDB [32]
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signal, which is detected by the devices controllers and marks the
instant from which the new parameters and control modes must be
used. The SBS requires a positive acknowledge from the receiver of its
commands, and in case of a negative or absent response, the safe-state
is commanded and the user notified.

The communication between GUI and SBS and also between SBS

and the Robot controller is implemented using the Common Object
Request Broker Architecture (CORBA) middleware [33]; it is a client-
server communication which is used because the data flow on those
channels have a limited bandwidth. The devices’ FSMs act as servers,
providing the methods to enable the different control modes and pa-
rameters, while the SBS is a client of each of those; in the client side,
the middleware offers the possibility to implement a timeout func-
tionality on each call to the server methods, which is used to detect
failure in the communication between the modules and to enable the
emergency procedure.

During normal operations, when a switching event is detected, the
SBS is triggered and it loads the new parameters for the devices and
it streams them to dedicated device, identified in fig. 2.2 by the sole
Robot controller component. These events can be the interaction with
the GUI or the contact between the robot and the operator, and the
correct one is determined by the current status; i. e. the contact be-
tween robot and user is, in general, a potentially dangerous collision,
while it is correct in case the robot is cooperatively controlled by the
user (see section 2.4).

The architecture is implemented using Qt [34], Robot Operating
System (ROS) [35], [36] and Open RObot COntrol Software (OROCOS)
[37], [38] frameworks. Qt was used to implement the GUI and the SBS,
ROS was used as interface with the devices and for streaming the data
on the private LAN among the different components and OROCOS was
used for the implementation of the controllers in Real-Time (RT) and
for the interface with the LWR.

2.3.2 Detailed description

In fig. 2.3, the control schema in fig. 2.2 is presented adding de-
tails on the multi-components previously introduced. Here follows a
description of all the modules.

2.3.2.1 Collision avoider

kinect This module is the ROS interface with the Microsoft Kinect,
in order to get the information about the position of the human body
segments in space through the use of the OpenNI libraries [39].

The robot pose in the Kinect reference frame can be identified us-
ing a set of three markers made of paper, a circular shape with a
diameter of 3 cm, in three different colors. They can be localized us-
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GUI

SBS

Robot Behavior
controller

Tele-manipulation
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LWR 4+

Null space
interpolator

Configuration
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Hands-On
controller

Kinematic Solver

Cartesian space
interpolator
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Joint space
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Haptic device

User avoider

Kinect
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Figure 2.3: High Level Controller UML component diagram: the Robot controller is showed in detail,
including the different components (highlighted in green) to enable the control modes
that the robot can implement. Dashed components represent the devices and their
respective controllers.
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B

Figure 2.4: Null-space movement of the LWR. The circle represents the null-
space along with the allowed and not allowed ranges for ηp
highlighted in green and red respectively; B represents the ob-
stacle, while S, E and W represent, respectively, the points of the
shoulder, elbow and wrist of the kinematic representation of the
robot.

ing the depth and RGB cameras of the device and from that a CF can
be defined; by placing a set of markers on both the robot base and
flange, using a calibration procedure [40], the robot base pose in the
Kinect CF can be estimated.

user avoider The task for that component is to keep the tool on
the target while avoiding the collision with the users present in the
environment [41]. This is possible by exploiting the redundancy of
the robot, through a movement in the null-space of the robot itself,
which is represented by a circle that crosses the elbow and which
axis is the vector from the shoulder to the wrist of the robotic arm
[42], as shown in fig. 2.4.

For each joint configuration it is possible to define an angle ηp ∈
[−π;π] which defines the position of the elbow on the circle described
earlier, using as a reference the position of the elbow when it points
upward. Due to the joint limits, some ranges for ηp may be not
allowed in the different Cartesian pose of the work-space of the robot:
if we define the ith allowed interval as ηp ∈ [αi;Ωi], moving within
this interval doesn’t change the pose of the wrist of the robot, while
switching to an ηp in a different interval for the same Cartesian pose
requires a reconfiguration of the joints with a movement of the wrist.
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It is possible to calculate the vector tangent to the null-space circle
vt by using eq. (2.1)

vt = vES × vEW (2.1)

where vES is the vector from the elbow pose to the shoulder and
vEW is the vector from the elbow pose to the wrist (see fig. 2.4). By
knowing the pose of the body segments in the robot CF through the
calibration, it is possible to compute the distance from the robot elbow
to the human body dEB. If this distance is below a safety threshold
dsafe, it is possible to calculate a new value for ηp by using eq. (2.2)

ηt+1
p =


ηtp + k · dsafe

dEB
if (−1 < cos ϑ < −c)

ηtp if (−c < cos ϑ < c)

ηtp − k · dsafe
dEB

if (c < cos ϑ < 1)

(2.2)

where dEB = ‖dEB‖, k is the proportional gain,4 ϑ is the angle between
dEB and vt and c is a threshold;5 within this threshold, the value of ηp
is not updated to avoid instabilities in case dEB is almost orthogonal
to vt, which causes cos ϑ to change frequently its sign due to the noise
in the measurement of dEB.

2.3.2.2 Master controller

haptic device This module is the ROS interface with the haptic
device, in order to get the information about the current pose of the
master device and send the information about the force feedback.

tele-manipulation controller This module is the OROCOS inter-
face that, given the current pose of the robot and the current pose of
the master device, computes the target pose for the robot, taking into
account proper scaling factors defined by the user to increase the ac-
curacy of the movement [43]. Moreover, it implements the mapping
of the CFs from the master side to the robot in order to have the de-
sired correspondence between the movement of the user’s hand and
the motion replicated by the robot.

2.3.2.3 Robot controller

robot behavior controller This OROCOS module implements
the FSM of the robot device. As long as the SBS triggers the new sta-
tus, the module takes care about the transition phase from the current
state to the new one, by properly enabling the different functionali-
ties and setting the initial conditions of the controllers on the other
modules.

4 in the case here presented, k was empirically set to 0.05
5 in the case here presented, c was empirically set to 0.03
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hands-on controller During the Hands-on mode (cooperative)
this OROCOS module takes as input the current pose and external
torques measured from the joints’ torque sensors, both expressed in
joint space, and, as long as the external torque of at least one joint
exceed its a joint-specific threshold (meaning that the user is pushing
on the robot body) a contact is considered detected; those torques are
used by the admittance controller [44] in eq. (2.3)

jt+1
i = jti +Gi · τti (2.3)

where i ∈ [1, 7] is the joint index, t is the time, τ is the external torque,
Gi is the constant gain (joint specific) of the controller, jti is the current
joint position from the encoder readings and jt+1

i is the desired value
for the joint position.

pose provider During autonomous movements and tele-operation,
this OROCOS module gives the target in Cartesian space (in the robot
base CF). According to the settings from the Robot Behavior controller,
this module can act as a provider of constant target poses for au-
tonomous movements towards the target itself or it can simply pro-
vide the target pose coming from outer modules as the Master con-
troller or the Target following.

interpolators This OROCOS module, given a target in the task
space,6 it calculates the via points from the source to the target with
a trapezoidal velocity profile, sampled at the robot cycle frequency;
on the rising and falling edge of the velocity profile, the acceleration
is kept at the maximum allowed value, until the velocity reaches its
maximum. This module is then smoothing input steps, in the task
space, by defining the fastest parabolic trajectory that reaches the tar-
get with zero final velocity.

kinematic solver This OROCOS module calculates the analytic ver-
sion of the inverse kinematics for the LWR robot [45], using the null
space variable as a constraint for the solution of this redundant robot;
this gives the possibility to calculate the new joints in case a new
Cartesian pose is provided, as well as the value for ηp, the redun-
dancy parameter.

configuration optimizer This OROCOS module takes care of han-
dling the redundancy of the robot7 by constraining the possible con-
figurations of the robot itself. Based on the needs of the step which is
being executed, there are three possibilities for the null-space variable
ηp [42]: 1) keep the current value, or 2) keep the null space in the

6 either joint, Cartesian or null space
7 the LWR features 7 DoFs
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center of the current allowed interval for ηp, or 3) use the value that
is calculated by the Collision avoider module to keep the robot away
from the users.

certus This ROS module is used as an interface with the OptoTrack
Certus, in order to detect the position and orientation of set of LEDs

that define a rigid body called Dynamic Reference Frame (DRF) and
to make the data to be available on the LAN, to be used by the target
following to calculate the motion of the rigid bodies.

target following This OROCOS module, given the current pose of
the robot and the desired target measured by the OTS, calculates the
robot pose that allows the Tool Center Point (TCP) to be on the target
that moves in space, minimizing the tracking error between the de-
sired and current pose. Its behavior is better described in section 3.2.

2.4 test scenario and experiments

2.4.1 Workflow

A simplified scenario was drawn for the current chapter that fore-
sees the following five steps:

1. Move the robot autonomously to the home position (Homing);

2. Move the robot autonomously close to the patient (Autonomous);

3. Move the robot to the target cooperatively guided by the sur-
geon (Hands-on);

4. Move the robot according to the input from a master device
(Tele-operation);

5. Keep the robot in the current pose and terminate the procedure
(Steady).

This represents an example of a possible surgical intervention where
the surgeon controls the robot both manually and through a joystick
interface.

In the different steps the behavior for the devices in the environ-
ment is different, thus it is fundamental to switch from one behavior
to another during the execution time without stopping the devices
or having unpredictable movements due to a mis-handled transition,
i. e. bad settings in the initial parameters of the controller.

The trigger to switch between steps is based on events like pressing
buttons on a proper User Interface (UI) or touching the devices and,
for doing so, the surgeon is provided with an interface that allows
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Figure 2.5: Animated schema of the possible steps and transitions event: as
long as an event is detected, the step goes from the current to
the following one, as indicated by the red arrow.

the control of the devices: as long as the surgeon requires to switch
to the following step, (s)he creates an event by pressing a button on
the GUI or by touching the robot. fig. 2.5 shows the user interaction
for the depicted workflow.

In the GUI is present a button that goes to the next step in the list,
and, in case of the event towards the Hands-on step, the trigger event
can be raised by the surgeon by touching the robot itself: in fact, the
user is allowed to touch the robot only during the cooperative mode,
while in all the other steps, a contact between user and robot have to
be considered as a faulty condition and have to raise a warning event
to the user and put the robot in a safe state and, eventually, move it
away.

2.4.2 Experiments

In order to test the behavior of the devices during the transition
between different states, in the scenario described in section 2.1 the
OptoTrack Certus OTS, was used as a supervisor of the system in or-
der to measure and check the performances of the control architecture
by measuring the pose of a DRF placed on the robot flange, to detect
eventual residual movements that can happen during the switching
phase. In the tests, all the devices and modules in the control ar-
chitecture were sharing the same clock in order to have consistent
timestamps among all of them; the components and the robot were
running at 100Hz.

An experiment is divided in six slots with five transitions among
the following ordered list of states: Steady, Homing, Autonomous,
Hands-on, Tele-operation, Steady. All the transitions are triggered
via the GUI, apart from the transition from Autonomous to Hands-on
which is triggered by the contact of the user with the robot as in
fig. 2.5. This experiment was repeated for 19 times.

During the experiment, the following data were acquired:

• Pose of a DRF fixed on the robot flange, from the OTS;
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• Cartesian pose of the LWR, from the forward kinematics of the
robot encoders readings.

All those data were analyzed to check the continuity over time of
the data, according to this schema:

1. 19 trials were acquired;

2. for each trial, 5 transition events are triggered;

3. for each event, three time-windows of 0.1 s are selected before,
during and after the event itself;

4. within each time-window, the recorded signal was averaged to
remove the noise;

5. those three values for each event were used to define three pop-
ulations of 19 samples each.

6. those three populations, were statistically compared using the
One Way ANOVA test with Bonferroni adjustment and α = 0.05,
in order to check if the differences among them are statistically
significant;

So globally, five groups of three populations of 19 samples are
obtained and compared, to check for statistically significant differ-
ences. The same process was also applied on the derivatives of the
signals, up to the 3

rd order, computed using a First-Order Adaptive
Window (FOAW) derivative filter [46].

2.5 results

In fig. 2.6 an example of the raw data from the OTS is shown, along
with the instant in which a transition happened and the contact be-
tween human and robot was detected. It can be seen that, after the
third transition, the Hands-on mode is enforced and the motion of the
LWR is following the torques provided by the user.

figs. 2.7 and 2.8 show an example of the three derivatives of the sig-
nal recorded from the OTS using a time-window of 0.1 s. In fig. 2.7a it
can be noted that the first derivative is close to 0, while the derivatives
of higher order present a bigger order of magnitude due to differentia-
tion. Statistical difference was found in the data of the Cartesian pose
of the LWR, measured from the robot encoders readings, as shown in
fig. 2.8.
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Figure 2.6: Example of the recorded data: the thin solid line is the data of the absolute x axis
measured by the OTS, the thick solid line is the detection of the contact between human
and robot and the dashed vertical lines are the instant in which the transition occurred;
the data are also zoomed-in to highlight the trajectory during the transitions.
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(a) First derivative

(b) Second derivative

(c) Third derivative

Figure 2.7: Data of the x axis of the OTS measurements with a time window of 0.1 s: the mean
value and the standard deviation are showed in the interval around the event.
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(a) First derivative

(b) Second derivative

(c) Third derivative

Figure 2.8: Data of the x axis of the robot pose with a time window of 0.1 s: the mean value and
the standard deviation are showed in the interval around the event and horiziontal
lines indicate a statistical difference among the populations.
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2.6 discussions

In this chapter, a flexible, scalar and modular high level architecture
to manage the switching among different control modes for a robot
manipulator was presented. The need for this kind of architecture is
in application in which the user is in close contact with the robot and
interacts with it, making the scenario dynamically changing during
the execution of tasks.

The chosen approach is the definition of a workflow for a simpli-
fied surgical procedure in which the task is to reach a point close
to the patient in the target area of the surgery and then to perform
the surgical task using the robot as a slave device that replicates the
surgeon’s movements. For this reason, the user is provided with an
interface to the control architecture that, based on GUI and sensors
inputs, defines the correct behavior for the devices in the scenario.

In [31] the robot was equipped with external proximity sensors and
force sensors to obtain a smooth transition from free motion to contact
with the target in a four-stages transition towards the contact; during
this transitions, the initial conditions of the following controller are
adapted to obtain continuity from the previous state, thus obtaining
a reduced impact force with the target.

In a complex and dynamic environment like the operating room,
it is important to have the possibility to have a control system that
can modify and adapt the behavior of the devices according to user
inputs, events and sensor data representing the different steps of the
intervention, because during the surgical procedure the tasks for the
robot changes and thus the control mode needs to be adapted to
cope with the new situation, in order to be used by the surgeon to
accomplish his/her task.

The purpose of the work performed in this chapter is to ensure the
continuity of the robot trajectory during the transition between states,
without unpredictable shaking of the robot flange. Results showed
that the robot flange, and then also the tool connected to it, is kept in
a steady position during the transitions. This factor is mandatory for
a robotic application in which the robot is directly interacting with
the patient organs through the contact between the tissues and the
tool carried by the robot, in order to prevent damages to the patient
due to unpredictable movements. During the transition from Au-
tonomous mode to Hands-on mode, an higher variability is present
on all the data due to the fact that, during the first part of the contact
the user is acting against the robot, which is commanded to keep its
current position but, due to the mechanical compliance in the geome-
try of this kind of serial robots, this action can cause a small bending
in the structure, causing an increased variability of the derivative in
this transition (see detail in fig. 2.6); this, however, doesn’t affect the
performance of the schema because this transition happens far from
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the patient and it is under the control of the user. When switching to
Homing and to Autonomous mode, statistical difference was found
in the data from the LWR encoder readings (see fig. 2.8), due to the fact
that the robot starts its movement as long as it receives the event (see
detail in fig. 2.6), accelerating at the maximum acceleration allowed
by the interpolator in Cartesian space, increasing the variability of the
data; the same statistical difference was not revealed by the tracking
system because the noise on this data is higher. Using a time-window
shorter than 0.1 s in the analysis of the data (see section 2.4.2), on the
one hand it reduces the effects of the motion of the robot after the
transition has been triggered, but on the other hand the contribution
of the noise is more relevant.
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Your task is not to foresee the future, but to en-
able it.

Antoine de Saint Exupéry
The Wisdom of the Sands – 1948
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This chapter presents the works related to targeting procedures;
those procedures are a set of control strategies that allow a tool car-
ried by a robot to reach a target; in particular this chapter is divided
in two sections:

target approaching is the action to put the tool on a target that
doesn’t move in space1 (see section 3.1).

target following as the action to keep the tool on a target that
moves in space (see section 3.2 on page 56).2

3.1 target approaching

3.1.1 Introduction

During keyhole neurosurgical procedures, straight probes are in-
troduced inside the brain, where suitable trajectories are planned on
pre-operative medical images, i. e. for Deep Brain Stimulation (DBS),
SEEG and biopsies [51].

1 from the contributions Comparetti et al. [47]–[50]
2 video demonstration at www.youtube.com/watch?v=gpf-D-6z3bI
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Keyhole neurosurgery is a highly demanding surgical procedure
since functional areas of high importance and, most importantly, blood
vessels have to be avoided during probe advancement inside the
brain. Robotic systems avoid maneuvers with the stereotactic frame
[52] or fixed grid-based trajectories, and have already been used to
automatically position and insert such straight probes into the brain
[19], [25].

When using a robot, the patient’s medical images and the pre-
operative plan must be registered with the robot reference frame in
order to perform the planned probe targeting. This can be achieved
using a laser pointer [53] and fiducials placed on the patient’s head
[13] or an ultrasound localization systems [20], [54]. OTSs can also be
used for guiding the surgical robotic arm (e.g. for total hip replace-
ment [55], for neurosurgery [56] and for bone ablation [57]). Inte-
gration of the robot and external localization systems requires a cal-
ibration procedure in order to establish a common reference frame.
Hand eye calibration allows mapping sensor-centered measurements
into the robot/world frame [58]. If an external sensor, e. g. an optical
localizer, is used, the calibration procedure estimates the geometrical
transformation between its CF and the robot CF. Such calibration [59]
can be performed with closed form solutions [60] or with iterative
optimization approaches [40], [58], [61].

Targeting accuracy requirements depend on the clinical application
and it is necessary to distinguish between technical and clinical accu-
racy achieved. The technical accuracy of frame based stereotactic pro-
cedures is about 0.05mm, while frameless stereotaxy has a technical
accuracy worse than 0.5mm. In both cases, the accuracy reached in
clinical practice is far worse than the technical accuracy.

In radiosurgery the clinical targeting error, i. e. residual distance be-
tween the beam and the target tissue, is reported to be 1mm [62] and
it is achieved using serial robots. In orthopedic procedures, where
the orientation of knee cutting guides influences the final prosthesis
components orientation, ±3° of orientation error in the frontal plane
guarantee a positive outcome of the procedure [63]. In spine surgery,
pedicle screws can be inserted into the spine using a miniaturized
Stewart Platform, which allows achieving 0.1mm of technical target-
ing accuracy [64] and deviations of 1mm in clinical trials [65]. In
neurosurgical keyhole procedures [51], where access to the brain is
about 5mm in diameter, the clinical positioning accuracy of straight
probes at the entry point has to be below 1mm [66]. The same tar-
geting accuracy is required in ear, nose and throat interventions [67],
where robotic drilling guides can be used to perform cochleostomy
[68]. In table 3.1 technical and clinical accuracy values of commer-
cially available robotic systems are reported.

OTSs were also used to correct the pose of the robot when deviations
between the actual and the planned position were detected, tracking
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Table 3.1: Surgical robots accuracy. The values of the accuracy in clinical
trials and laboratory tests are reported.

Robot Clinical accuracy Technical accuracy

SpineAssist 1mm [65] 0.1mm [64]

Neuromate (0.82 to 2.9)mm [69] –

Robodoc 1mm [70] –

Cyberknife 1.1mm [71] –

SABiR – 0.4mm [72]

Pathfinder 1mm [73] (0.5 to 2.7)mm [13], [69]

MAKOplasty 3° [74] –

ROSA – (0.9± 0.3)mm (specs)

the robot base and the tool relative to the patient [75]–[77]. In [75], the
tracking system maps the position of the target to the robot reference
frame by correcting the position of the robot and updating calibra-
tion parameters by means of a Kalman filter. In [77], the control of
the robot position and orientation is implemented using Proportional
Integral (PI) controllers. Residual targeting errors are approximately
twice as big as the localization error.

Tracking systems performance for robot control was also improved
by adding inertial measurements units [78] in order to increase the
control robustness with respect to marker occlusions, to compensate
for delay of the optical system and to reduce noise.

Serial robots generally have a large workspace and their absolute
positioning accuracy is low because of modelling errors in the kine-
matics. On the contrary, parallel robots have greater accuracy, but
they suffer from a limited workspace relative to their footprint. Us-
ing robots connected in series, having a redundant number of DoFs,
allows performing the surgical task with a more flexible robot con-
figuration in the OR environment. A multi-robot approach for neu-
rosurgery applications was already proposed in the Evolution I [79],
designed for micro-neurosurgical and micro-endoscopic applications.
A Parallel Kinematic Machine (PKM) was coupled with an articulated
mobile platform achieving 20µm as positioning accuracy. Despite the
great targeting accuracy reached, the research was dismissed since
the developed system was too cumbersome and expensive.

As in the aforementioned papers, the approach here presented
combines navigation data via optical sensors and robotic assistance
for keyhole neurosurgery using three robots connected as a multi-
ple kinematic chain, part of a robotic suite for keyhole neurosurgery,
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named ROBOCAST. A biopsy probe is positioned by the modular
robotic system at the planned entry point on the patient skull, and
it is then inserted in the brain via tele-operation control through a
haptic device. The previous work, i. e. the general ROBOCAST system
architecture and pre-operative planning algorithms, are described in
[27], [80].

In order to perform the targeting, an OTS is used to detect the po-
sition of the robots, of the patient and of the surgical tool held by
the robot, allowing the procedure navigation, similarly to [75], [77].
The OTS makes it possible to check the accuracy of the task during
its execution and for iteratively correcting the pose of the robot when
deviations between the actual and the planned pose are detected [49],
[75]. Such deviations happen because serial robots have low absolute
accuracy due to an inaccurate model of the robot [13], [69] and also
because the calibration between the robot space and the measurement
system is affected by errors [40]. In the approach here described, the
external sensor allows iterative corrections of the pose of the robots
in case errors between the desired and the actual poses of the surgical
tool are detected., by weighting the correction movement differently
in case the error (in terms of position and orientation error) is increas-
ing or decreasing in magnitude over time.

The method proposed can be used with inexpensive, low resolu-
tion manipulators, which would help reduce the cost of a medical
robotic system, since the residual errors can be reduced by measure-
ment and correction. The main contribution of the work performed
in this section is therefore to prove the clinical applicability of a navi-
gated robotic approach for neurosurgical intervention. Only combin-
ing the external localization system, the automatic robotic approach
can satisfy the application accuracy requirements.

The original concept behind the iterative targeting algorithm was
proposed in [48], while here the suitability for clinical applicability
has been proved through extensive tests, performed under operating
condition settings, since the obtained targeting accuracy satisfies the
clinical requirements. The innovative targeting algorithm presented
has potential applications for surgical robotic systems already present
in the market.

3.1.2 Accuracy evaluation

3.1.2.1 Materials and Methods

the system The ROBOCAST system is a robotic chain of three robots,
totalling 13 DoFs; the system [27] encompasses (see table 3.2 for de-
tails):

• Gross Positioner (GP), (PathFinder, Prosurgics Ldt, UK); a serial
6 DoF arm, which is used to approach the patient head [81];
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Table 3.2: Robots characteristics.

Robot Type # DoFs Accuracy Velocity Workspace

GP serial 6 0.5mm [13] 50mm/s* 0.75m × 0.75m × 0.75m*

FP parallel 6 < 0.1mm 1.3mm/s,
4.3 °/s

40mm × 40mm × 10mm,
12° × 12° × 12°

LA linear 1 8µm 2mm/s 110mm

* Fixed by ROBOCAST specifications

• Fine Positioner (FP), (SpineAssist, Mazor, Israel); a parallel 6

DoF miniaturized PKM, used to further correct the targeting. It
is rigidly connected to the GP via a custom-built quick release
interlock;

• Linear Actuator (LA); a 1 DoF bespoke piezo-actuator, which
makes the biopsy linear probe advance through a tele-operated
haptic interface (Omega, Force Dimension, Switzerland) [82].
The LA is attached to the FP end effector upper plate.

The Optotrack Certus OTS (NDI, Ontario, Canada), with 0.15mm
stated accuracy, is used for tracking the overall robotic chain. DRFs,
rigid bodies composed of four active markers each, are attached to
all the bases and the end-effectors of the robots. The tracking system
is interfaced with the robot high level controller through a Sensor
Manager application [83], which is based on the IGSTK framework3

(Kitware Inc., Clifton Park, New York, USA).
The desired target in the brain and the entry point on the patient

skull are defined during the planning. In the intra-operative scenario,
the surgical tool is firstly aligned onto the desired trajectory at the
entry point using the GP and the FP and then inserted inside the brain
towards the planned target, using the tele-operated LA.

spatial relations Calibrating the system means to establish a
common CF among the robots (GP, FP and LA) and the optical sen-
sor. To compute the spatial transformations (see fig. 3.1) among the
forward kinematics of the robot, the joint angles encoders (BGP, BFP

and BLA) and the OTS (AGP, AFP and ALA), the approach described in
[40], [58] was used for GP and FP calibration: XGP, YGP, XFP and YFP are
the transformations computed during the calibration and represent
the transformations between the DRFs in the optical CF and the robots
internal CF (see fig. 3.1), in particular:

3 www.igstk.org

www.igstk.org


30 target in neurosurgery

Figure 3.1: Robots calibration schema. The spatial transformations between the robots internal
CFs and the DRFs are represented.

• XGP is the transformation between the GP end-effector internal
CF and the origin of the DRF attached to the GP end-effector;

• YGP is the transformation between the GP base internal CF and
the origin of the DRF attached to the GP base;

• XFP is the transformation between the FP end-effector internal
CF and the origin of the DRF attached to the FP end-effector;

• YFP is the transformation between the FP base internal CF and
the origin of the DRF attached to the FP base;

• XLA is the transformation between the LA end-effector internal
CF and the origin of the DRF attached to the LA end-effector;

• YLA is the transformation between the LA base internal CF and
the origin of the DRF attached to the LA base.

In order to perform the calibration, the GP working volume was
sampled acquiring 28 poses (in a sphere of 173.21mm radius). In or-
der to sample the FP working volume as well, 28 poses were acquired
(in a sphere of 7.86mm in radius). Calibration errors were computed
on 15 poses not used for calibration.
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Figure 3.2: Spatial transformations used during probe targeting. Mi is
the spatial transformation between the Tool and the robot end-
effector: for the GP robot it is MGP = X−1

GP ·YFP ·BFP ·X−1
FP ·YLA ·BLA

and for the FP robot MFP = X−1
FP · YLA · BLA.

In order to calibrate the LA, the probe was advanced for 100mm
(backward and forward with 5mm spacing) and the 3d coordinates
of the tip position were sampled using a custom built divot, equipped
with a DRF. Principal Component Analysis was applied in order to
compute the orientation of the line approximating the probe advance-
ment in the 3d space.

Probe targeting brings the probe (Tool) tip CF Tj in the desired tar-
get pose Td (2 cm outside the patient’s skull entry point), as planned
in the pre-operative phase. From there, the probe is advanced by the
surgeon using the haptic interface [27]. In order for the Tool Tj CF to
reach the Td CF, the ith robot (i = GP, FP) has to change its pose from
Bi,j to Bi,j+1 (fig. 3.2), where j is the movement iteration index.

If Mi represents the transformation between Tj and the ith robot
end-effector CF, the transformation to be applied to the ith robot end
effector Ci,j is:

Ci,j = Mi · Rj · M−1
i (3.1)

where Rj is the transformation between the probe tip CF (Tj) and the
target pose (Td). Therefore, the new robot pose Bi,j+1 is:

Bi,j+1 = Bi,j · Ci,j (3.2)

Note that this transformation is independent of the base CF, and
depends only on optical differential measurements (Rj), calibration
matrices (Xi, Yi) and robot initial poses (Bi,j):

MGP = X−1
GP · YFP · BFP · X−1

FP · YLA · BLA (3.3)
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for the GP robot (i = GP) and

MFP = X−1
FP · YLA · BLA (3.4)

for the FP robot (i = FP).

the closed loop targeting algorithm The residual transforma-
tion Rj between the desired (Td) and the actual (Tj) probe tip CF is
computed as Rj = T−1

j · Td. The error Translation Component (TC) is
the Euclidean distance of the translation part of Rj [84], while the er-
ror Rotation Component (RC) is estimated computing the arctangent
of the norm of the vector component of the quaternion associated to
Rj, divided by the scalar component.

The targeting algorithm is described in fig. 3.3: first the ith robot
approaches the target iteratively until the error Rj is below a thresh-
old (specifically defined for each robot) or if the maximum number
of iterations is reached; the (i + 1)th robot is then moved and the
control loop continues until success or failure are met. It is worth
noting that if Mi was known perfectly without measurement errors,
just one movement would put the end-effector in the correct position:
iteration are then required to deal with Mi, Bi,j and optical tracker
inaccuracies.

The robot arm pose correction Ci,j (dashed block represented in
fig. 3.3) is computed to reduce in magnitude the Rj transformation (in
both TC and RC components), avoiding instability. The Rj translation
component (TCj) and the Rj rotation component (RCj) were scaled
multiplying TCj and RCj by a scaling factor ns

j computed as follows:

ns
j

(
ẋsj
)
=

1

1+ eẋs
j/10

(3.5)

where ẋ is the first derivative, computed using finite differences, of
the s component (TCj and RCj). As an example, the correction n

is 0.5 when the error does not change from the previous iteration
(TCj+1 = TCj or RCj+1 = RCj); when the error is decreasing, thus
ẋ < 0, the correction n approaches 1, while if the error increases the
correction n is reduced towards 0. The exponential parameter 1/10,
the sigmoid amplitude, was empirically set.

experimental protocol

The planning A brain phantom was designed and developed using a
plastic skull and polyvinyl alcohol as brain mimicking material [85],
with two gadolinium markers fixed on the base of the skull, used
as targets. Magnetic Resonance Image (MRI) images of the phantom
were acquired (T1, 512× 512× 144, 0.5mm × 0.5mm × 1mm slice spac-
ing) to get the 3d coordinates of the targets in the medical images CF.
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Figure 3.3: Block diagram of the target approaching controller. The residual transformation is
Rj = T−1

j ·Td. First the ith robot approaches the target with an iterative approach until
the error Rj (both the translation (TC) and the rotation (RC) components) is below a
threshold (specifically defined for each robot) or if the maximum number of iterations
is reached. Then the (i + 1)th robot is moved and the control loop continues until
success or failure are met.
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For each target point, 12 possible entry points were selected on the
whole skull surface, therefore 12 probe trajectories were planned for
each target point.

The planned trajectories were registered into the operating volume
using a point-based registration algorithm [86]. The surgical probe
was positioned by the GP and the FP 2 cm above the entry point along
the planned trajectory (Td), then it was inserted in the phantom by
the LA towards, following the designed surgical plan.

In order to evaluate system performances, the following data were
measured:

• The final probe tip residual transformation matrices (Rj) com-
ponents (TCf and RCf) for both the GP and the FP;

• The actual Entry Point (EP);

• The actual Target Point (TP);

• The actual Probe Trajectory (PT), computed as the line crossing
EP and TP.

The targeting tests The modular-robotic system was moved in order
to align the actual surgical probe trajectory (Tj) with the planned
trajectory (Td). The GP threshold was set to 2mm for translation (TC)
and 0.1 rad for rotation (RC), with a maximum of 10 iterations allowed,
after which the FP was moved towards the desired target pose (Td).
The FP threshold was set to 0.08mm (corresponding to the expected
accuracy of DRFs [87]) for translation and 0.01 rad for rotation with
maximum 10 iterations allowed.

Targeting tests were performed with the ROBOCAST system in three
different conditions:

“calibrated” targeting the optical calibration of GP, FP and LA

(see section 3.1.2.1 on page 29) was performed immediately be-
fore the targeting experiments;

“non-calibrated” targeting the optical calibration of GP, FP and
LA was performed the day before the experiments, in order to
check the calibration stability;

“perturbed” targeting in order to test the algorithm robustness,
the calibration (see section 3.1.2.1 on page 29) was altered on
purpose by multiplying the calibration matrix (XGP) by transfor-
mation matrices (PGP) randomly chosen in a population of (0 to
50)mm translation and (0 to 0.09) rad rotation (uniform distri-
bution) and multiplying the calibration matrix (XFP) by transfor-
mation matrices (PFP) randomly chosen in a population of (0 to
5)mm range of translation and (0 to 0.03) rad rad of rotation
(uniform distribution).
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(a) The surgical probe is automatically positioned by GP and FP

(b) Final targeting verification:
the probe tip reaches the
gadolinium marker center

Figure 3.4: The OR set-up during the experiments.
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Table 3.3: Experimental protocol for the targeting accuracy tests.

Number of targets 2

Number of entry points (for each target) 12

Number of repetitions in each entry point 3

Maximum number of iteration per robots 10

Translation (mm) Angle (rad)

GP threshold 2 0.1

FP threshold 0.08 0.01

GP calibration perturbation (PGP) 50 (max) 0.09 (max)

FP calibration perturbation (PFP) 5 (max) 0.03 (max)

For each targeting experiment (fig. 3.4), all DRFs poses were ac-
quired at 30Hz, while the test protocol is reported in table 3.3.

evaluation metrics and data analysis Targeting performance
evaluation was performed computing the residual translation and ro-
tation transformation (TCj and RCj components of Rj) for each target-
ing trial.

Experimental results were evaluated using non-parametric Kruskal-
Wallis test with p < 0.05 significance (STATISTICA 10, StatSoft).

In order to check whether the iterative targeting always assures
that the residual translation transformation (TCj component of Rj) is
decreasing in magnitude, the following data were computed:

• Iterative corrections of the GP (ICGP), computed for each target-
ing experiment (k) as:

ICGPk = TCGP,j−1,k − TCGP,j,k (3.6)

• Iterative correction of the FP (ICFP), computed for each targeting
experiment (k) as:

ICFPk = TCFP,j−1,k − TCFP,j,k (3.7)

The Pearson correlation coefficients among the TC component of
the PGP and the TC component of the residual Rj and among the TC

component of the PFP and the TC component of the residual Rj were
computed.

In order to compare the overall targeting accuracy, the following
evaluation metrics were computed:

• Residual Error at the Entry point (REEP): Euclidean distance
between the actual and the desired EP;
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Table 3.4: Calibration residuals and calibration errors (median, 25th and
75th percentile) for the three robots (GP, FP and LA).

(a) Calibration residual

TC (mm) RC (rad)

GP 0.2245 (0.1288 to 0.2623) 0.0021 (0.0008 to 0.0306)

FP 0.1548 (0.1260 to 0.2009) 0.0035 (0.0020 to 0.0049)

LA 0.2561 (0.1452 to 0.4279) 0.0014 (0.0009 to 0.0054)

(b) Calibration errors

TC (mm) RC (rad)

GP 0.7724 (0.6430 to 0.8303) 0.0008 (0.0006 to 0.0011)

FP 0.2405 (0.2025 to 0.3450) 0.0129 (0.0115 to 0.0140)

LA 0.2863 (0.2639 to 0.3411) 0.0073 (0.0069 to 0.0077)

• Residual Error at the Target point (RETP): Euclidean distance
between the actual and the desired TP;

• Angle between the actual and desired probes trajectories (APT):
angle between the two lines in space.

Different experimental setups were compared using non-parametric
Kruskal-Wallis test with p < 0.05 significance (STATISTICA 10, Stat-
Soft).

3.1.2.2 Results

calibration Calibration residuals and calibration errors for GP, FP

and LA are reported in table 3.4 in both the (TC) and the (RC) com-
ponents. Calibration residuals are about 0.2mm for the three robots,
which is the accuracy that would be reached without an iterative tar-
geting, if the calibration model would perfectly generalize.

Gross Positioner and Fine Positioner targeting Figure 3.5
shows the TCF and RCF components of the final (either below thresh-
old or after the maximum number of iterations was reached) Rj trans-
formation matrix for the GP and the FP in the three evaluation scenar-
ios (calibrated, non-calibrated and perturbed). There is no significant
difference within the same robot (GP or FP) in the three evaluation sce-
narios as far as the TCF parameter is considered. The angular residual
error of the GP (RCF) worsen when the system is not calibrated, while
the RCF of the FP is not statistically affected. The FP provides a signif-
icantly better final pose of the surgical probe tip with respect to the
GP robot.
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(a) TCF

(b) RCF

Figure 3.5: Components of the final (either below threshold or after the maximum number of
iterations was reached) Rj transformation matrix for the GP and the FP in the three
evaluation scenarios (calibrated, non-calibrated and perturbed). Bars represent the
median value and the error bars show the interquartile range of the data presented.
Horizontal bars indicate significant difference (p < 0.05).
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Figure 3.6: ICGP (eq. (3.6)) and ICFP (eq. (3.7)) in the three evaluation sce-
narios (calibrated, non-calibrated and perturbed). Bars repre-
sent the median value and the error bars show the interquartile
range of the data presented. Horizontal bars indicate significant
difference (p < 0.05).

Table 3.5: Negative corrections of the iterative algorithm for GP and FP tar-
geting.

Condition Value GP FP

Calibrated
# (%) 1 (0.49%) 6 (3%)

Largest correction [mm] −0.1479 −0.2066

Non-calibrated
# (%) 0 (0%) 10 (4.9%)

Largest correction [mm] 0 −0.4011

Perturbed
# (%) 0 (0%) 14 (0%)

Largest correction [mm] 0 −0.8775

fig. 3.6 shows ICGP (see eq. (3.6)) and ICFP (see eq. (3.7)) in the three
evaluation scenarios (calibrated, non-calibrated and perturbed). The
correction value population appears normally distributed, with few
negative outliers (table 3.5).

fig. 3.7 shows the relationship between the TC component of the
PGP and the TC component of the Rj, after the GP targeting movement,
and between the TC component of the PFP and the TC component of
the Rj, after the FP targeting movement. As shown, there is no corre-
lation (p > 0.05) among the perturbation and the automatic targeting
performance, neither for the GP (fig. 3.7a), nor for the FP (fig. 3.7b).

Linear Actuator targeting fig. 3.8 shows the targeting distances
at the entry point (REEP), at the target point (RETP) and the angular
error among the planned and the actual probe trajectory (APT) in the
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(a) Relationship between TC of the PGP (perturbation) and TC of the Rj (residual error) after GP

movement; Pearson −0.2121, p = 0.1038.

(b) Relationship between TC of the PGP (perturbation) and TC of the Rj (residual error) after FP

movement; Pearson −0.0948, p = 0.4712.

Figure 3.7: Relationship between TC component of the P
ith robot and TC of the Rj after the ith robot

movement; Pearson coefficient value and p value are also reported.
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(a) Targeting distances at the entry point REEP, at the target point RETP in the three
evaluation scenarios (calibrated, non-calibrated and perturbed)

(b) Angular error AEP among the planned and the actual probe trajectory in the
three evaluation scenarios (calibrated, non-calibrated and perturbed)

Figure 3.8: Errors between planned trajectory and real one. Bars represent the median value and
the error bars show the interquartile range of the data presented. Horizontal bars
indicate significant difference (p < 0.05).
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three evaluation scenarios (calibrated, non-calibrated and perturbed).
As shown, there is a significant difference between the targeting er-
rors TC at the EP and at the TP, and among the three calibration sce-
narios. Also, there is a significant difference in the angular trajectory
RC errors among the three calibration scenarios.

The location of the entry point did not influence the targeting ac-
curacy, since no statistically significant difference was found in the
errors.

3.1.2.3 Discussions

In this section we show the experimental evaluation of a novel tar-
geting algorithm designed for a multi-robot system (three robots con-
nected in series) designed for keyhole neurosurgery, based on exter-
nal sensors. Robotic systems suffer from two main drawbacks: the
movement accuracy of a serial robot does not respect surgical require-
ments and there is a lack of feedback information if the actual robot
pose differs from the planned desired one.

In the proposed approach, an optical localization system tracks
both the pose, for the registration, of the patient head and the robot
end-effector [78], estimating the error between the planned and the
current surgical tool pose, allowing further iterative corrections of the
pose of the robot end effector. Also, kinematic redundancy (13 DoFs)
allows optimizing the robot approach: the miniaturized parallel robot
(FP) mounted on the serial robot (GP) provides a more accurate sur-
gical probe pose, due to its greater accuracy and resolution. The
iterative targeting algorithm, which moves the second robot only af-
ter the GP residual error transformation has reached the pre-defined
threshold, assures that the FP is able to perform further corrections
within its limited workspace. The LA is then used to make the probe
advance along the trajectory reached by the GP and FP.

The system was tested following the planned operatory workflow:
first the GP and FP bring the probe’s actual pose to the planned one,
2 cm above the entry point (GP, FP targeting). The residual error, is
reduced iteratively, first approaching the reduction with the gross
positioner (GP), then refining the targeting with the fine positioner
(FP).

The targeting approach outperforms other neurosurgical robots tar-
geting accuracies. As examples, the PathFinder was tested on phan-
toms and the reported targeting accuracy is 0.5mm [13]. The Neuro-
Mate accuracy was reported to be 1.95mm in the frameless approach
[20] and 2.9mm using implanted skull fiducials [54].

In literature targeting for keyhole surgery was addressed providing
optical tracking based corrections to robots. With respect to existing
methodologies, the one proposed is based on iterative corrections and
allows reaching accuracy values twice as better.
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The optical feedback approach proposed by [76] allowed reaching
(2.6± 0.8)mm as maximum error at the first iteration and (0.60± 0.36)
mm as final targeting error, while [77] reached 0.5mm of accuracy
without previous calibration. Using the iterative approach proposed,
the GP allowed reaching 0.25mm as median value in all the three cal-
ibration scenarios, while the FP targeting performances were around
0.1mm as median value. It must be noted that this value is limited
only by the registration error and by the accuracy of the localization
system.

The iterative approach proposed proved to be independent of the
calibration residuals: even if the calibration transformation is inac-
curate, the iterative algorithm allows reaching comparable residual
errors with the accurate calibrations for both the serial and the paral-
lel robots despite the high initial errors. The feedback control scheme
is based on kinematics and it is intrinsically stable because of the low
speed allowed. Stability problems were tackled by modulating the
amplitude of the correction as a function of current error. Also, the
target was considered fixed since the patient head is supposed to be
framed in a head-ring.

The correction values of the GP are negative in magnitude (about
−0.2mm which means that the robot is getting further from the tar-
get) in one case only when the system is calibrated. The correction
values of the FP are negative in magnitude (about −0.3mm) in ap-
proximately 5% of the cases, independently of the calibration accu-
racy. Such values are comparable to the OTS accuracy. Stated optical
system accuracy is 0.15mm, which is the worse 3d localization er-
ror. When using a four markers DRF, the target error in the center of
mass is 0.08mm [87]. The external sensor accuracy (tracker) affects
indeed the results, since the corrections are computed starting from
tracker coordinates. Cheap system with low working volume, such
as the Vicra system (NDI, Ontario, Canada) can be applied to the tar-
get surgical scenario, which is surgery around the head, which is a
small anatomical district, allowing to reach 0.13mm of accuracy in
case four markers are used [87].

Considering the LA targeting, the error at the entry point (0.6mm
as median value) is statistically different from the targeting error at
the target point (0.4mm as median value), and both values satisfy
requirements for clinical applications (1mm is the typical stereotactic
frame accuracy). Fiducial registration error [87] (which was estimated
to be about 0.1mm as median value) influences the results, but with
an amplitude of the same order as the optical localization error.

With regard to targeting performances, it is worth recalling that
the ROBOCAST system was specially designed for keyhole approaches,
where a straight surgical probe is inserted in the brain tissue and the
robot acts as an assistant, providing an accurate holder for guiding
the probe insertion. Therefore the aim of this study was to improve
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and test the accuracy of targeting in terms of position and rotation
errors. The novelty of the approach relies on the iterative tracking
of the current pose, performed combining the robotic architecture
with an external optical tracking device. The control of the position
and orientation is implemented applying a correction factor which is
scaled depending on the fact that the robot approach is getting closer
or further to the target pose.

In conclusion, the objective of this section was reached as the target-
ing accuracy obtained is better than previous works and than the one
required by neurosurgical procedures. The presence of the tracking
system is not a further constraint in the OR since it is usually used for
neuronavigation, thus, as already introduced, the targeting algorithm
proposed can be easily integrated into already commercially available
surgical robots suites for keyhole surgery.

3.1.3 Convergence evaluation

The aim of the work presented in this section is to provide sim-
ulated and experimental evidence of the iterative targeting conver-
gence robustness, with respect to perturbations in the calibration ma-
trices, robot pose and targeted point for a robot-aided keyhole neuro-
surgical procedure, such as brain biopsy and electrodes placement.

3.1.3.1 Theory

the targeting problem An iterative algorithm is used for com-
pensating targeting errors, and robustness is assessed as the ability
of such an algorithm to converge by starting from perturbed initial
condition and by using perturbed data. In fig. 3.9 the experimental
scenario is presented.

In a robot manipulator, the base CF (CFBase) identifies the robot in-
ternal CF and the flange CF (CFFlange) identifies the free extremity CF.
External localization sensors (e. g. cameras, fluoroscopic images, lo-
calization systems [87]) can be used to track the robot links. The
transformation matrices, which relate the position and orientation of
the markers attached to the last link DRF with respect to the robot
CFFlange, can be estimated with a “hand-eye” calibration procedure
[40], as in section 3.1.2.1, that solves the matrix system eq. (3.8):

A · X = Y · B (3.8)

in which the X and Y matrices are the calibration matrices, B is the
robot pose (forward kinematics), and A = G−1 · T · R−1

j (fig. 3.10a) is
the transformation from the flange DRF and the robot base DRF, where
G and T are the robot base and robot tool poses in the localizer CF.

The surgical tools connected to the robot flange (and actual robot
End-Effector (EE)) are also calibrated with respect to the markers on
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Figure 3.9: The keyhole neurosurgery scenario. The robotic arm (1) auto-
matically aligns the surgical probe (2) to the planned trajectory
(3). The external optical sensor (4) information is used to mea-
sure the accuracy and evaluate the correction for the robot by
measuring the robot base CF (5) and the robot end-effector CF (6)
position.

the robot [49]. The desired pose of the surgical tool is generally pre-
operatively defined in the medical images CF and is known in the
intra-operative environment after a registration procedure. Given the
tool’s actual and desired pose, the robot pose can be consequently
estimated. Nonetheless, due to hand-eye calibration inaccuracies [40]
and due to serial robot intrinsic inaccuracies [75], further adjustments
of the robot pose can be required. In [49], the TCP pose was iteratively
corrected until the residual transformation error between the current
and the planned surgical tool poses was below a user-defined thresh-
old or until the maximum number of iterations was reached. In the
following, we assume that the CF of the surgical tool and the CF of the
markers attached to the robot last link are coincident.

spatial transformations CFs and geometric transformations are
shown in fig. 3.10b, where j indicates the targeting iteration index:

• CFWorld: the CF of the external sensor or of the laboratory;

• CFBase: the internal CF of the robot base;

• CFFlange: the CF of the robot flange;

• CFToolj , CFToolj+1
: the actual CF of the tool fixed to the robot

flange at iterations j and j+ 1 respectively;

• CFTool*j
, CFTool*j+1

: the estimated CF of the tool at iterations j and
j+ 1 respectively;
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Figure 3.10: Kinematic chain representation for the targeting convergence analysis.
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• CFTarget: the CF of the tool target pose.

The geometrical transformations among the aforementioned CFs,
that are known or that can be measured using external position sen-
sors, are:

• G: pose of the CFBase in the CFWorld;

• T: pose of the CFTarget in the CFWorld;

• Bj, Bj+1: pose of the CFFlange in the CFBase , at iterations j and
j+ 1;

• Rj: transformation between the CFTool and the CFTarget;

• Cj: transformation from Bj to Bj+1;

while the unknown transformations are:

• R∗
j : the transformation between the CFTool*j

and the CFTarget;

• X: actual transformation from the CFTool to the CFFlange [40];

• X̂: estimated transformation from the CFTool*j
to the CFFlange (cal-

ibration matrix) [40].

The relationship between X̂ and X is:

X̂ = X−1 · N (3.9)

where N is the error transformation due to the calibration inaccuracy.
In order to align the estimated tool pose (CFTool*j

) with the tool target
pose (CFTarget), the robot pose has to change from Bj to Bj+1 according
to the estimated Cj transformation

Bj+1 = Bj · Cj (3.10)

where Cj is:

Cj = X · Rj · X−1 (3.11)

that is approximated with Ĉj, computed as:

Ĉj = X̂ · Rj · X̂
−1

(3.12)

in which X is approximated with X̂. From this point on, B̂j+1 = Bj · Ĉj

(approximating Bj+1) is consequently computed as:

B̂j+1 = Bj · X̂ · Rj · X̂
−1

= Bj · X−1 · N · Rj · N−1 · X
(3.13)
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Targeting iterations are therefore needed to make the tool CF ap-
proximate with the tool target pose. Iterations are stopped when Rj

translation and rotation components are both below a pre-determined
threshold value, chosen according to the application requirements
(e. g. as already specified, in case of keyhole neurosurgical applica-
tion, the targeting accuracy is 1mm).

3.1.3.2 Methods

The targeting algorithm brings the surgical tool into the target pose
T, with the robot in the initial pose B0 (fig. 3.10b).

When the transformation N and Rj are pure translations, from
eq. (3.13), convergence is reached within one iteration

B̂j+1 = Bj · X−1 · Rj · X

= Bj+1

(3.14)

while when, instead, the transformation N is a not-nil rotation, the
targeting iterates until the residual error transformation Rj is below
a predefined threshold.

Targeting is iteratively performed correcting the robot EE pose in
the Cartesian space by measuring the position reached by the tool af-
ter the movement is performed and by calculating the correction from
the error with respect to the desired pose. This is performed after
the programmed movement of the robot. Time for robot movement,
sensing and error correction (quite long) allows neglecting robot dy-
namics, as discussed in section 3.1.2 on page 28.

The question faced by this section is to find a measurable perturba-
tion in terms of calibration errors that allow defining the robustness
of the method with respect to such perturbation.

Numerical simulations and laboratory experiments were performed
to assess the targeting convergence with respect to the calibration er-
ror, as function of the robot initial and target pose. The calibration
matrix X was multiplied by an error matrix Nϑ that represents all the
errors in the robot calibration chain which can be due to encoders,
external measurement system or calibration estimation inaccuracies.

The rotation component of the transformation matrices (Nϑ, Bϑ
0

and Tϑ) were rotations about the trisectrix of the first octant. The
translation component of the transformation matrices, (Bd

0 and Td),
were varied along a vector obtained by rotating the x axis by 30°
around the y axis and rotating the resulting vector by 30° around
the x axis. Ranges and step of variations are reported in table 3.6.

The following parameters, which represent the metric of the robust-
ness, were estimated:

1. Nϑ
MAX, which is the maximum angular component of N which

allows convergence as a function of Bϑ
0 , Bd

0 , Tϑ and Td;
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Table 3.6: Testing protocol for the convergence analysis: ranges of variation
of the variables.

Variable Range Step (simulation) Step (experiments)

Nϑ (0 to 60)° 0.25° 10°

Bϑ
0 (0 to 60)° 1° 6°

Bd
0 (0 to 150)mm 1mm 15mm

Tϑ (0 to 60)° 1° 6°

Td (0 to 150)mm 1mm 15mm

2. # iterations: the number of iterations for targeting, varying Nϑ,
Bϑ
0 , Bd

0 , Tϑ and Td. At Nϑ
MAX, the correlation between the num-

ber of iterations and B0 and T variations were computed using
Pearson correlation coefficient (α < 0.05). The relationship be-
tween the number of iterations and the value of Nϑ component
was fitted using an exponential function.

simulations In order to analyze the convergence of the targeting
over a wide range of the perturbing parameters, numerical simula-
tions were performed (Matlab

® R2012a, The MathWorks, Natick,
Massachusetts) since experiments are limited by time. In those tests,
X was assumed to be a 4× 4 identity matrix without any loss of gen-
erality. This allows rewriting eq. (3.13) as follows:

B̂j+1 = Bj · N · Rj · N−1 (3.15)

The selected threshold on Rj, as the minimum positioning resolu-
tion, is 0.8mm for the translation component and 0.05° for the ro-
tation component, which allow satisfying neurosurgical applications
requirements [48]. The maximum number of allowed iterations was
100 and no measurement noise was added during the simulation.

experiments The convergence performances of the algorithm were
also experimentally tested using the 7 DoFs LWR 4+ (KUKA Laborato-
ries, Augsburg, DE) [30], and the OptoTrack Certus (NDI, Ontario,
Canada), with 0.15mm stated accuracy in a pyramidal working vol-
ume of about 25m3, as external sensor. Two sensors (DRFs), composed
of four active markers each, were attached to the robot flange and to
the robot base. The robot and the tracking system CFs were calibrated,
as reported in [59], and the X transformation was therefore estimated
(X̂).
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The robot target positions were varied as reported in table 3.6 and
the iterative algorithm convergence was assessed. During each algo-
rithm iteration, the targeting accuracy was computed.

Targeting accuracy of the LWR was assessed estimating the residual
translation and rotation components of the transformation connecting
the desired and the actual tool target pose. The selected threshold on
Rj, as the minimum positioning resolution, is 0.8mm for the transla-
tion component and 0.05° for the rotation component. The maximum
number of allowed iterations was 100.

3.1.3.3 Results

The experimental calibration procedure (between the OTS and the
robot) median residual errors, calculated on the 33 poses used for the
calibration matrices estimation, resulted in 1.81mm (with 1.25mm
and 2.79mm as first and third quartiles) and 0.14° (with 0.11° and 0.19
° as first and third quartiles) for translation and rotation components,
respectively. The median technical accuracy of the robot in 15 trials
while reaching a target fixed in space was 1.18mm (with 0.91mm and
1.44mm as first and third quartiles) and 0.95° (with 0.93° and 0.98°
as first and third quartiles) for translation and rotation components,
respectively.

fig. 3.11 shows the Nϑ values which allow convergence in simu-
lation and experiments, varying Bϑ

0 , Bd
0, Tϑ and Td as indicated in

table 3.6. The maximum values for the angular component of N
which allows convergence, Nϑ

MAX, resulted to be independent from
B0 and T variations. In simulations Nϑ

MAX resulted to be around 55°
in case of Bϑ

0 , 54.25° in case of Bd
0 variations and around 57.5° in case

of T variations (both angular and translation components). In exper-
imental conditions Nϑ

MAX resulted 50° in case of B0 and T variations.
The convergence was reached until Tϑ = 42°, since for Tϑ > 42° the
markers were not visible from the external sensor.

In fig. 3.12 the number of targeting iterations is shown as a func-
tion of B0 and T variations, with Nϑ = Nϑ

MAX, which is higher in
simulation results than in the experiments, as shown in fig. 3.11. In
simulations, the number of iterations is independent from B0 and T
variations and is around 65 in case of B0 variations and 95 in case of T
rotation component. In the set-up described in section 3.1.3.2, when
Td is greater than 40mm the algorithm does not converge within 100

iterations. In experiments, the number of required iterations is ap-
proximately 40 and is independent from B0 and T variations, which
takes about 80 s to be carried out.

fig. 3.13 shows the maximum number of targeting iterations re-
quired as a function of Nϑ, evaluated for all the possible B0 and T
variations. Nϑ was varied until the experimentally computed Nϑ

MAX
(Nϑ = 50°). As shown, the number of iterations increases exponen-
tially in both testing conditions. fig. 3.13 further confirms the results
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shown in fig. 3.12: convergence was achieved in a finite number of
iterations until Nϑ was around 55° in simulations and 50° in case of
experimental conditions.

3.1.3.4 Discussions

In the present section, the convergence of the algorithm presented
in section 3.1.2 [48], [49] was verified, numerically and experimentally
using a serial robot and an OTS, with respect to modifications of the
starting pose of the robot and the target point. Simulations allowed
testing convergence extensively exploring (much more than with the
experiments) the parameters’ space (B, T, N). In the simulation, no
noise was added to better understand the behavior of the system in
pure conditions.

The convergence of the iterative targeting assures that the obtained
accuracy is lower than the selected thresholds (0.8mm and 0.05°)
thus satisfying technical requirements for neurosurgery. Independent
from calibration, the targeting accuracy has to be less than 1mm at
the target point. Calibration inaccuracies can be due to noise in the
measurements system or robot inaccuracies. Previous works [40], [58]
showed that hand-eye calibration errors are in the range of 0.06mm
for translation values and 0.03 rad for rotation values, which are two
orders of magnitude less than the Nϑ

MAX we computed.
In the tests, only the calibration rotation error was considered, since

translations are corrected in a single iteration step. In our setup, the
tool to be aligned to the target pose was considered to be coincident
with the CF tracked by the external monitoring system. Also, the
robots initial pose (B0) and the tool target pose (T) were varied in
range which is compatible with the operating room constraints, both
in simulation and in experimental conditions. We showed that tar-
geting convergence was reached independently from B0 and T up to
errors in the calibration matrix of 60° in simulation, and around 50°
in experimental conditions (fig. 3.11).

During keyhole neurosurgery, the robot and target poses could
change, e. g. during SEEG procedures, in which up to 18 electrodes
are implanted in the brain, generally in a single hemisphere. We
showed that, independently from the required task, the robot can
reach the target with the required accuracy, provided there is a clear
line of sight between the markers attached on the flange and the op-
tical tracker, otherwise the robot is stopped. We showed also that
convergence depends only on the amount of angular error in the cal-
ibration matrix (ϑ < 50°).

Using the Nϑ
MAX transformation matrix to perturb the calibration

matrix, also the number of iterations required to converge showed to
be almost independent from B0 and T variations in both simulations
and experimental conditions (fig. 3.12). In experimental conditions,
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less iterations are needed to reach the target since the Nϑ
MAX value

used was slightly inferior (50° instead of 60°).

At last, there is an exponential increase in the number of iterations
varying the N matrix rotation component, both in simulation and in
experimental conditions (fig. 3.13). For calibration errors of the same
amplitude of the ones reported in literature, the number of requested
iterations is approximately 10, which is compatible with the neurosur-
gical intervention time; in fact, in each iteration the robot movement
takes about 3 s which is a small amount of time for the overall pro-
cess to reach the target compared to the duration of the intervention
which takes several hours.

The targeting accuracy experimentally computed in the same con-
ditions satisfies the intervention requirements. In keyhole surgery,
where a straight tool (e. g. a probe) has to be accurately positioned,
respecting the pre-operative plan, serial and parallel robots can be
used. As an example, neurosurgical interventions, such as deep brain
stimulation or SEEG, require a targeting accuracy below 1.1mm. Un-
fortunately serial robot’s accuracy is limited due to possible manu-
facturing inaccuracies and to intrinsic system compliance: reported
accuracy values of serial robots are in the range of (0.5 to 4.4)mm
[13], [69], while parallel robots, which are more accurate, suffer of
reduced working space.

External sensors, such as optical localization systems, can be used
to register the intra-operative reality on the pre-operative images [56],
thus allowing the surgical tools navigation and patient motion com-
pensation in several medical application. In trans-cranial magnetic
stimulation, [88] used an OTS and a force sensor and defined an hy-
brid force and position controller to keep the stimulating coil on site,
while [89] proposed an online calibration method which calculates
the robot base to optical tracker transformation at the set-up phase
based on a previous estimation of the calibration matrices, report-
ing a final accuracy of 2.21mm as a mean value. Optical localiza-
tion systems need clear line-of-sight, but they allow increasing the
targeting accuracy, as already reported [48], [49]; the targeting strat-
egy presented here relies on the positioning accuracy of the external
measurement system, as long as the selected threshold for the ap-
plication, i. e. the maximum allowed error, reaches the stated accu-
racy of the tracking system. In our study, the selected threshold is
larger than the one of the tracking system used in the experiments
section 3.1.3.2 and it is the same order of magnitude of the most ac-
curate commercially available tracking systems. Moreover, that value
was selected because it is of same order of magnitude of stereotactic
frames (whose positioning accuracy can be influenced by the manual
adjustments of the frame) and can be lowered according to the tech-
nical accuracy of the used external sensor. Robotic positioning sys-
tems present in literature allowed reaching worse targeting accuracy
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in clinical trials, e. g. the ROBODOC® system allowed positioning the
bone cutting guide with 1mm error [70] and the Cyberknife® system
allowed orienting the beam with 1.1mm error [71]. The Neuromate®

system allowed performing brain biopsies with (0.86± 0.32)mm ac-
curacy [54]. The parallel robot presented in [72] was able to achieve
0.4mm accuracy via the kinematic calibration obtained using an opti-
cal localizer and the targeting procedure with a closed-loop controller.
For the experimental evaluation, we used a KUKA LWR, whose basic
accuracy is not satisfying the surgical requirements. This robot fea-
tures torque sensors in each joint, which increase the safety of the
device in the detection of collisions while making the structure to be
more flexible than a classic industrial serial robot. It has a redundant
kinematic structure, which enables the possibility to avoid obstacles
while keeping the end effector in its pose, increasing the workspace
with dexterity of the robot, making it to be more suitable in a crowded
environment such as the operating room.

The results presented in this section show that iterative algorithms
using external devices can give an improvement in the placement
accuracy in neurosurgical procedures, where the accuracy is a key
factor and the time required for the positioning of the tool is negligi-
ble.

In order to use such a versatile system for neurosurgery, the com-
bined use of an accurate external sensor is therefore helpful because
its positional accuracy, i. e. the accuracy of the measurement of posi-
tion and orientation of rigid bodies in space, is higher than the robot
accuracy and then it allows the measurement of discrepancies with re-
spect to the desired pose. In those procedures, the access on the brain
is reduced to a small hole, causing a reduced loss of cerebrospinal
fluid and a reduced brain shift, minimizing the target displacement.

The present algorithm can also be integrated with other environ-
mental sensors for automatic collision avoidance and with a GUI to
simulate the robot movements to check possible collisions before the
real movement execution.

3.2 target following

3.2.1 Introduction

In open skull surgery with awake patient, the brain tissue suffers
of movements due to breathing and heartbeat [90]; moreover, dur-
ing epilepsy surgery, the patient can have active movements during
the brain mapping procedure, unpredictable epileptic seizures, inten-
tional movements of the patient (i. e. for discomfort) or due to the
action of the surgeon [91]; all those movements can result in vibra-
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tions of the head of the patient, which is fixed on the surgical table
through a proper frame.

In case a robot is holding a surgical tool and it is actively perform-
ing the intervention in contact with the brain, these movements rise
safety issues if the robot doesn’t keep the tool on the target.

The problem of moving target was investigated in particular in
quasi-periodic movements as beating heart, in the different surgical
applications. In this case the problem can be divided in two main
streams: the identification and tracking of the movement and the
control of the robot to follow the movement. [92] proposed a ro-
bust method to estimate the spatial deformation in 3d using stereo-
scopic images form endoscopes based on time-varying Fourier series,
which considers both the heartbeat and breathing movements. [93]
proposed a method to control a robot to cancel breathing motion for
intervention in the chest, with a robot that can be tele-manipulated
using a master device; the authors kept the breathing cancellation
separated from the tele-manipulation controller given the fact that
the input from the user is not periodic as breathing is. They devel-
oped an adaptive approach of a generalized predictive controller to
separate the contribution of the motion in the two components due
to heartbeat and breathing, which are recorded using a camera at
500Hz, and to treat them separately to obtain a prediction of the
target Point of Interest (POI), and used that to feed the data to the
robot, which was custom made to push the acceleration limits. In
[94] they used the biological signal as the Electro-Cardiography (ECG)
and blood pressure, combined with the position information of the
POIs to predict the motion of the hearth and use it to move the robot
to compensate the motion of the target.

In the field of visual servoing and motion control in medical ap-
plications, controllers for robotic arms were developed to compen-
sate movements of a target, in particular for periodic and predictable
movements like heartbeat and breathing [95]. [96] uses visual servo-
ing techniques with a 500Hz camera to control two DoFs of a robot to
follow the planar movement of a beating heart, through the definition
of a proper model of the heart motion; similarly, [97] uses a predic-
tion schema based on feature tracking on the surface as well as the
signal of the electrocardiogram and breathing pressure to estimate
the movement of the heart. In [98] an analysis of the visual servoing
techniques is made referring to the most common prediction algo-
rithms that are generally used in cardiac surgery, as model-based or
model-free prediction algorithms.

In the field of neurosurgery, no works are published yet about
motion compensation during open skull procedures. This is due to
the fact that the robotic assistant for these kind of interventions are
mainly used as static tool holders or they are moved cooperatively
by the surgeon to reach the desired target. This is part of the EU
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Figure 3.14: Target following kinematic chain representation: the relation-
ship among the robot, the DRFs and the target are represented.

funded project ACTIVE [12], which is pushing the state of the art by
developing a multi-robot system for open skull surgery with awake
patient. In one of the possible scenarios of this project, the robot is
tele-operated by the surgeon which is sitting at a master console; in
this console, the user has a monitor, along with the master device,
in which (s)he can see the images from a camera pointing on the
surgical scene. The information about the motion itself is estimated
using a set of 3d cameras that can track features on the brain struc-
ture and, based on that data, to reconstruct the motion of the surgical
target, providing the information to both the camera-image stabiliza-
tion and to the robot controller which will automatically compensate
the target motion, providing to the surgeon the possibility to work on
the master side as if the brain is not moving.

3.2.2 Methods

The control schema here implemented is presented in [78] and it
is based on the use of an OTS that can track, as a function of time t,
the 3d pose of the robot base Gt, the pose of a tool carried by a robot
At and the target pose Tt, as indicated in fig. 3.14. Using the same
calibration procedure described in section 3.1.3.1, the matrix X and Y
can be estimated and they are considered to be constant with respect
to time.4

4 within a reasonable limit, which is larger than the time required for the execution of
the same session of trials
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By closing the kinematic chain on the robot and the OTS, the error
Et can be calculated with eq. (3.16):

Et = Y−1 · At · X · B−1
t (3.16)

where Bt is the forward kinematics of the robot from the joint en-
coders readings in the assumption that their errors are negligible.

This error encompasses the contributions due to the measurement
noise from the robot encoders and the OTS as long as the contribution
due to the approximation from the minimization procedure used to
estimate the calibration matrices X and Y, called calibration error. Et

is a function of the time t because its value changes with the 3d tool
pose At.5

A Low-Pass (LP) filter can be used to reduce the dynamics of the
error with respect to the time t, as in eq. (3.17):

(Et)f = lowpass (Et) (3.17)

which is applied on each component of the translation and on each
angle of the orientation of the pose.

The new robot pose B̂t that causes the tool pose to reach the target
pose is the one with Ct = I4, the 4d identity matrix, which can be
calculated using eq. (3.18):

B̂t = (Et)
−1
f · Y−1 · Ht · X (3.18)

where Ht is the desired pose of the POI in the CF of the optical DRF of
the robot base, calculated as in eq. (3.19):

Ht = G−1
t · Tt (3.19)

where Gt is the desired pose of the robot base DRF and Tt is the target
pose, both expressed in the CF of the OTS.

A schematic representation of the controller is shown in fig. 3.15; in
this schema, the desired robot pose is fed to the robot controller that,
given the initial conditions as current pose and velocity, it calculates
the via-points, sampled at the robot controller frequency, that bring
the robot on the target pose along the fastest path that respects the
maximum velocity and acceleration limits of the robot dynamics.

To test the performances of the target following algorithm, the tar-
get pose of the POI in the robot CF, Bt,d, was generated using pre-
defined functions. The tool to be kept on the target trajectory is the

5 the procedure used to estimate the calibration matrices minimize this error on the
poses used for the calibration, and thus it is not constant, in particular on a pose
which is not one used for the calibration
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Figure 3.15: Target following algorithm: the schema shows the sources of errors (robot er and OTS

eo) and the data flow. Bt,r represents the real pose of the robot, including the posi-
tioning error, which can be measured by the OTS. The − sign indicates the inversion
of the transformation matrix; the constant contribution of the calibration matrices is
omitted in this schema, and the eqs. described in section 3.2.2 have to be used as a
reference.

tip of a mock up of a surgical probe, that can be tracked with the OTS

through a proper DRF.6 Instead of using eq. (3.19) to obtain the target
pose Ht in the robot base DRF CF, eq. (3.20) was used:

Ht = Y · Bt,d · X−1 (3.20)

as input for the target following algorithm described in section 3.2.2.
The pre-defined trajectories used for the tests are in eqs. (3.21a)

and (3.21b):

g1(t) =


x (t) = x0 +

d
2 · cos (2π · f · t)

y (t) = y0 +
d
2 · sin (2π · f · t)

z (t) = z0

(3.21a)

g2(t) =


x (t) = x0 + vt

y (t) = y0 + at2

z (t) = z0

(3.21b)

where d, f, v and a are the parameters, respectively diameter and fre-
quency for g1(t) and velocity and acceleration for g2(t); the orienta-
tion component of the target pose was maintained constant through-
out the movement.

6 a pivoting procedure was performed to directly obtain the information about the tip
of the tool from the optical measurements
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Table 3.7: Experimental protocol for the target following algorithm: ranges
and sampling for the independent variables.

(a) g1(t)

d f

Range [1; 14]mm [0.5; 4.0]Hz

Sampling 1mm 0.5Hz

(b) g2(t)

v a

Range [0.000; 0.010]m/s [0.01; 0.10]m/s2

Sampling 0.025m/s 0.01m/s2

In the tests performed, the two parameters were varied according
to table 3.7, according to the measurements obtained during real pro-
cedures [91]; the trajectories were generated for 20 s in case of g1(t)
and 1.5 s in case of g2(t) and, in both cases, the TCP was on the trajec-
tory at the beginning of the movement.

The robot and OTS were sampled at 100Hz, while the LP filter im-
plemented for the error pose of eq. (3.17) is a moving average filter
on 50 samples, giving a Full Width at Half Maximum (FWHM) of the
frequency response of the filter of 4.8Hz.

The trajectory of the tool connected to the robot was then recorded
through its DRF, converted in the robot base CF using the calibration
matrices, and this data was compared with the desired trajectory of
the target Bt,d, in order to evaluate the tracking error as eq. (3.22)

Dt = B−1
t,d · Bt (3.22)

and the tracking delay on each axis, from the cross-correlation of the
translation components of the two signals Bt,d and Bt on the three
axis. The data were processed prior to the extraction of the delay with
a LP filter with a cut-off frequency of 0.5Hz higher than the expected
bandwidth content of the generated signal,7 in order to remove the
noise of the optical measurement; after that, the data were fitted in
order to reconstruct the functions of eqs. (3.21a) and (3.21b) in order
to be able to re-sample the signals at 1000Hz, to increase the accuracy
of the delay extraction.

In order to measure the performances of the tracking, the Root
Mean Square (RMS) error of the translation component of Dt was
evaluated on each axis; the tracking is considered good when the

7 from eqs. (3.21a) and (3.21b)
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RMS error is below the threshold of 1.5mm, which is the Target Regis-
tration Error (TRE) [99] of the DRF corresponding to the tip of the tool
used in the experiments.8 This threshold defines the regions of the
parameters’ space ((d, f) and (a, v) respectively) in which the perfor-
mance in terms of RMS error are acceptable or not; given the shape of
the results (see figs. 3.23 and 3.24 on page 71 and on page 72) these re-
gions are separated by a boundary curve that can be identified throug
a fitting. In the case here presented, the selected fitting functions are
the hyperbola in eq. (3.23a) for g1(t) and the first order polynomial
function eq. (3.23b) for g2(t):

d · f = k1 (3.23a)

a = k2a
· v+ k2b

(3.23b)

where k1, k2a
and k2b

are the fitting parameters that describe the
curves of the boundaries of the two regions. In particular, the RMS

error is acceptable for d · f 6 k1 in case of g1(t) and for a 6 k2a
· v+

k2b
in case of g2(t).

The input pose Ht was used in the control schema using two ap-
proaches: 1) by feeding the generated target pose Ht directly to
the controller, or 2) by feeding the controller with a target pose that
comes from a prediction one-step in the future Ĥt+∆t, where ∆t is
the sampling interval.

To perform the prediction Ĥt+∆t, a Kalman Filter (KF) approach
was chosen. In order to have a general representation of the pose of
a rigid body which avoids singularities, the orientation component
was described using quaternions and doing so adds non-linearity to
the system model that can be handled using extended versions of KF.
The Unscented Kalman Filter (UKF) is an extension of the classical
KF to non-linear processes and measurement models, which reduces
the computational power required and also doesn’t require the ex-
plicit linearization of the system, leading to better results [100]. The
algorithm here implemented is based on a second order model for
the translation component of the pose and a first order model for
the orientation [101], and takes as input Ht, either generated using
eqs. (3.21a) and (3.21b) or measured online by the OTS, and it provides
the Ĥt+∆t.

3.2.3 Results

In fig. 3.16 is shown an example of the data for the two functions in
eqs. (3.21a) and (3.21b) as the target trajectory to be followed, along

8 the tool is a mock-up of a surgical probe, shown in fig. 2.1 on page 8, which main
axis is long approximately 20 cm, increasing the TRE of the localization of the DRF
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Table 3.8: Fitting parameters for the surface threshold boundary: the parameters are shown with
their 95% confidence bounds and the R2 of the fitting.

(a) Fitting parameters of eq. (3.23a)

Data k1 Confidence bounds R2

No prediction
x 0.0077 (0.0068, 0.0087) 0.9423

y 0.0075 (0.0067, 0.0083) 0.9645

Prediction
x 0.0075 (0.0067, 0.0084) 0.9583

y 0.0074 (0.0067, 0.0081) 0.9725

(b) Fitting parameters of eq. (3.23b)

Data k2a
Confidence bounds k2b

Confidence bounds R2

No prediction
x 0.000 (0.000, 0.000) 0.010 (0.010, 0.010) —

y 0.800 (−0.670, 2.270) 0.002 (0.015, 0.033) 0.500

z < −0.001 (< −0.001, < 0.001) 0.060 (0.060, 0.060) —

Prediction
x 0.000 (0.000, 0.000) 0.010 (0.010, 0.010) —

y 1.200 (−0.073, 2.473) 0.018 (0.010, 0.026) 0.750

z 0.800 (−0.670, 2.270) 0.054 (0.045, 0.063) 0.500

with the real path performed by the robot, as measured by the OTS;
both of them are reported in the CF of the robot base.

The RMS errors of the tracking for the three components is pre-
sented in figs. 3.17 to 3.19 for the g1(t) movement, while in figs. 3.20

to 3.22 for g2(t).

In figs. 3.23 and 3.24, the surfaces in figs. 3.17, 3.18 and 3.20 to 3.22

are presented after a cut with a plane parallel to the parameters’ plane
at a RMS error value of 1.5mm, along with the fitting curves approx-
imated with the functions in eqs. (3.23a) and (3.23b), whose results
are reported in table 3.8.

As regards the results about g1(t) in figs. 3.17 and 3.18, the RMS

error shows reduced performances for large values of the parameters
d and f, with an higher RMS error for f = 3Hz. The results about
g2(t) in figs. 3.20 to 3.22, instead show an RMS error with reduced
performances for increasing values of the parameters a, while the
performances are approximately constant as function of v.

The tracking delays are reported in table 3.9 on the three axis for
both g1(t) and g2(t); the larger delays are obtained for g1(t) for f > 3

Hz (data not shown), while no significant cross-correlation was found
in the signals for g2(t) and for the z axis of g1(t).
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Figure 3.17: RMS error during the g1(t) movement: x axis.
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Figure 3.18: RMS error during the g1(t) movement: y axis.



3.2 target following 67

1

2

3

4

1

4

7

10

14

2

4

6

8

10

f, Hzd, mm

R
M

S
er

ro
r,

m
m

(a) No prediction

1

2

3

4

1

4

7

10

14

2

4

6

8

10

f, Hzd, mm

R
M

S
er

ro
r,

m
m

(b) Prediction

Figure 3.19: RMS error during the g1(t) movement: z axis.
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Figure 3.20: RMS error during the g2(t) movement: x axis.
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Figure 3.21: RMS error during the g2(t) movement: y axis.
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Figure 3.22: RMS error during the g2(t) movement: z axis.
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Figure 3.23: RMS error below threshold during the g1(t) movement: the data and the fitting func-
tions are presented.
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Table 3.9: Time delays between target and robot trajectories: the median
is presented along with the inter-quartile range in brackets (25

th

and 75
th percentiles); for polynomial functions (as z of g1(t) and

for g2(t)), no significant cross-correlation was found, to estimate
the delay.

Function Data
Delay, s

No prediction Prediction

g1(t)

x 0.08 (0.07, 0.18) 0.08 (0.07, 0.20)

y 0.08 (0.07, 0.19) 0.08 (0.07, 0.09)

z — —

g2(t)

x — —

y — —

z — —

3.2.4 Discussions

In this section it was presented how to use the architecture devel-
oped in chapter 2, to follow the movement of a target in space. The
analysis was conducted by investigating the relationship between fre-
quency and amplitude of the motion and also with respect to acceler-
ations and velocities of the movement.

As regards the relationship between frequency and diameter of the
motion studied with eq. (3.21a), the result showed that for movements
with a limited bandwidth, the system is able to obtain a tracking er-
ror which are of the same order of the TRE of the localization of the
DRF defined on the surgical tool, which satisfies the requirements of
the depicted application in neurosurgery. Despite of that, high fre-
quencies components of the movement show a decreasing of the per-
formances, in particular if associated with a large range of movement.
Worse results are obtained with a frequency of 3Hz, which is close to
the limits of the dynamic ranges of the robot; with higher frequencies
the robot is not able to follow the target and then the delays and the
tracking errors are increased; the degraded performances for higher
frequencies are more evident for larger movements, in which the ef-
fects of the delayed and incorrect motion of the robot are more visible.
The controller uses trajectory interpolators (see section 2.3.2.3) which
are designed to move the robot along the fastest path to the target
point given the current velocity and position, under the constraints
of the maximum acceleration and velocity that the robot can reach;
in case the movement has bandwidth which is larger than what the
robotic arm can do, the robot moves along the chords of the circle
g1(t), which are the only possibility to reach the target that is rapidly
moving on a circular trajectory. The fitting parameters in table 3.8a
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can be re-conducted to a limit on the speed along the curvilinear
abscissa of the circle drawn by g1(t); in fact the parameter d is the
diameter of the circle, while f represents the number of circles drawn
for the unit of time and so an estimate of the velocity is vs = π · d · f;
the product d · f is the fitting parameter k and thus it is vs = πk which
is approximately 0.025m/s.

As regards the relationship between velocity and accelerations of
the movement studied with eq. (3.21b), the acceleration of the move-
ment is the real limit which makes the performance to decrease. This
is due to the fact that the delays of the complete architecture make it
difficult for the controller to recover after the beginning of the move-
ment and to reduce then the tracking error. In this case, the limit
identified by the fitting parameters in table 3.8b can be re-conducted
to a line with constant a = 0.01m/s2, which gives a velocity of ap-
proximately 0.03m/s on the y axis, which is compatible with the limit
found for the g1(t) movement.

This means that for those categories of movements, the limit is the
velocity of the movement itself along the trajectory.

In [93] the authors presented a method to estimate the motion of
the heart due to heartbeat and the respiratory movement; they devel-
oped an algorithm to estimate and predict the heart motion by sep-
arating the components due to heartbeat and respiratory movement;
the lab experiments results showed an error which is approximately
10% of the movement and it requires an initial time to learn the char-
acteristics of the disturbance motion to be able to remove it. In [94]
they used the ECG signal as a trigger to anticipate the mechanical mo-
tion of the heart, with a tracking accuracy of 0.9mm as RMS error
value. The results presented in the current section are obtained with
a model-free approach, without any assumption on the motion of the
POI, as the movements in neurosurgical environment usually are [91].

The prediction algorithm here implemented is used with constant
orientation, but the implementation works also in the general case
in which both translations and orientations are changing over time.
The use of predicting algorithms doesn’t reduce the tracking delays,
which are mostly due to computational and communication delays
in the LAN. To reduce those problems, a better analysis of the source
of the delays in the complete system have to be performed, new so-
lutions with dedicated hardware for the more power-demanding cal-
culations have to be investigated, along with the development of pre-
dicting algorithms that can predict the pose at more than one sample
ahead; for doing so, higher bandwidth in the control loops have to be
used, as long as an higher sampling frequency of the measurement
of the motion from the OTS, also including sensor fusion algorithms
with Inertial Measurement Units (IMUs).



4 C O N C L U S I O N S

Experience is what you get when you didn’t get
what you wanted.

Randolph Frederick Pausch
The Last Lecture – 2007

In this thesis, an architecture for robot control for neurosurgical
robotic operations was described. In order to help the surgeon dur-
ing the intervention, the user may need to change the behavior of the
device at high level to cope with the different needs of the phases
of the intervention. For doing so, an architecture with an UI was
implemented to automatically handle the switching phase among be-
haviors keeping the safety of the system.

The architecture presented in chapter 2
1 is modular and scalable,

which means that new functionalities can be added to the schema by
simply connecting the new components and adding them properly to
the FSMs, with also the possibility to improve the current functional-
ity by substituting the current components with the new one, without
the need to change and reprogram the architecture of the controller.
ROS and OROCOS proved to be a flexible and hardware independent
tool to implement both high and low level controllers for robotic ap-
plications, with the possibility to distribute the computational power
over a dedicated LAN, using machines that can withstand the com-
putational power required by the application. In order to keep the
time synchronization of all the machines included in the architecture,
all the computers share the same clock over the network ensuring a
timing accuracy of 0.5ms with the reference machine.

The control architecture handles the different situations that can
happen during a surgical procedure, ensuring that the transition do
not cause unpredictable behavior of the robot arm, which is the ma-
chine that can effectively harm the patient with the surgical tool at-
tached to it. The robot arm used in the architecture, the LWR 4+, is
made to share its workspace with the operators, and for doing so, in-
ternal controllers are implemented to effectively cope with situations
that can be potentially dangerous for the operators, i. e. by using the
information coming from the torque sensors present on each joint.
These sensors can also be used to detect contacts with obstacles or
operators and, based on this information, to eventually enable the

1 from the contributions Comparetti et al. [28], [29]
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emergency procedures to maintain the safety, or to manually guide
the robot towards the target.

In chapter 3
2 algorithms to position and orient tools carried by a

robot were presented. The discussion was conducted in two different
conditions: 1) with a static target in section 3.1, and 2) with a moving
target in section 3.2.

In section 3.1.2 an accuracy evaluation of a targeting algorithm was
presented. The iterative approach described proved to ensure a posi-
tioning accuracy which is compatible with the neurosurgical applica-
tion, while in section 3.1.3 a convergence evaluation of the algorithm
was performed in order to test the robustness of the algorithm with
respect to errors in the estimation of the pose of the tool on the target.
This algorithm can be applied to already existing commercial solu-
tions which encompass a robot and an optical localizer, without the
need to change the controllers of the devices, but simply using their
data to improve the positioning accuracy. The final achieved target-
ing accuracy is the one of the external sensor used, which is the one
used for the registration of the pre-operative images with the intra-
operative reality, making it consistent with the accuracy level of the
procedure. Future works are directed towards increasing the safety
of the system so that the chosen path towards the target is clear of ob-
stacles. Performance analysis in a real operating room for electrodes
positioning during SEEG will be also investigated.

In section 3.2 the developed architecture was used to track a target
that moves in space, as can happen during a neurosurgical interven-
tion with awake patient. The results presented show that the track-
ing error is compatible with the surgical procedure for slow motions,
while for faster movements both the delays and tracking errors are
not suitable for the application; however, those movements are out-
side the ranges of movement registered in the clinical practice [91]
and are close to the limits of the robot device. Possible solutions to
improve the performances of the tracking, the measurement of the
desired pose have to be acquired at higher frequencies; sensor fusion
algorithms with OTSs and IMUs can also be used to extend the band-
width of the information about the position of the target, as long as
prediction algorithms that can estimate the future pose with at a time
that is as long as the delay of the movement of the robot can improve
the results.

In neurosurgical applications each intervention is prepared in the
pre-operative phase with the acquisition of medical images on which
the surgeon defines the target region(s) for the surgery; during the
intra-operative phase, the pre-operative images are registered with
the current reality to obtain the information in the same CF and to
enable the possibility of intra-operative navigation. In this process,
the accuracy of the reconstruction of the target for the surgical in-

2 from the contributions Comparetti et al. [47]–[50]
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tervention in the intra-operative phase is determined by the whole
processing of the information, which defines the requirements of ac-
curacy for the robotic actuators that perform the surgery, resulting in
an approximate estimation of this requirement of 1mm [102], which
was used in the present thesis as a reference value to verify the per-
formances of the algorithms developed.
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