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Abstract

REFLECTARRAY antennas are nowadays a quite popular technology, used in sev-
eral applications, thanks to their advance features e.g. low-cost, conformal de-
ployment, and the reconfigurability. Nevertheless, they still suffer for some

limitations, that are partially due to their intrinsic reduced bandwidth, that could be en-
larged, but generally with a drastic increase of the structure complexity. Therefore, in
this thesis new types of re-radiating element for reflectarray design will be presented.
Moreover, the design will exploit the capability of optimization algorithms to support
the design of RAs and enhance their bandwidth.

The developed activity was mainly focused on the following two research areas:

• the development of enhanced optimization techniques;

• the study of innovative, wide bandwidth printed Reflectarray Antennas (RAs).

For what concerns the activity on the optimization algorithms, different available
solutions, including evolutionary algorithms (e.g. PSO, GA), Bayesian optimization
algorithm (BOA), and compact genetic algorithm (cGA), have been firstly investigated.
Modified versions of BOA and cGA, which greatly improved their performances with
respect to the original algorithms, have been then developed. These modified algo-
rithms have been successfully applied to array synthesis problems, as the design of
thinned arrays and sparse arrays, revealing promising features also for more complex
applications as the optimized design of reflectarray antennas.

Passive reflectarrays are flat arrays of passive printed elements, whose resonant be-
havior allows a phase shaping of a beam incident on the array, thus replacing the cur-
vature of a conventional reflector. Despite of their advantages, RAs present also some
drawbacks, the main of which is their narrow bandwidth. In order to enhance the band-
width, new possible configurations of reflectarray unit elements have been studied. Af-
ter an exhaustive analysis of different types of elements, the most promising have been
used to design entire RAs; their full-wave numerical analysis shows the obtained band-
width improvement.

Reconfigurable reflectarray antenna (RRA) have been also investigated in the thesis.
RRA offer the possibility of dynamically control and reconfigure the antenna’s beam
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patterns, feature which is highly demanded in radar and satellite communication appli-
cations. The research has been focused on the design of a RRA unit cell, simple and
easy to implement in RRA. The selected configuration shows its characteristics, that
make it suitable for the design of a whole RRA.
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CHAPTER1
General Introductions

Antennas are essential components of any wireless communication system, transmit-
ting and receiving electromagnetic signals from one point to the other. They have been
designed in all kinds of shapes and sizes integrating themselves into several applica-
tions, such as personal communications and wireless connection.

In many applications, such as satellite or radar, the radiated power need to focus
at a specific direction to maximize the signal at the receivers. In these cases, anten-
nas with high gain are required. Generally, there are two approaches to achieve high
gain antennas: Big aperture antennas, or forming arrays of small antennas. The aper-
ture antennas have been the first structures that achieved high gain by creating large
illuminated apertures. The larger the aperture and the more uniform field phases and
amplitude on the aperture, the higher the directivity will be. The horn antennas and the
reflector are two typical examples of this type. The aperture antennas, however, often
have very large physical dimension, which requires a supporting structure. Therefore,
aperture antennas are usually bulky and heavy, which limits their applications to mod-
ern communication systems.

The second approach is to group several small antennas into an array, in which
each antenna is excited with a specific phase, to effectively create a large aperture of
uniform field. The array antennas also offer reconfigurability since the array phase can
be electrically tuned by controlling the excitation, i.e., the phased arrays. Moreover,
the elements of the array can be planar or conformal, therefore the phased arrays are
often less bulky than the aperture antennas. However, the phased arrays have their own
drawbacks, which are the design of the feeding network and the losses. Since each
element is excited individually by transmission line, the arrays need a complex feeding
network to excite their elements. The losses over the transmission line will increase
when the array’s size increases. The losses and complexity associated with the feed
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Chapter 1. General Introductions

network are major limitations of the phased arrays.
Both approaches have their own advantages and limitations. The idea of combining

their advantages, i.e., spatial techniques for exciting an array using single feed antenna
and an array of passive scatters, has been implemented, for example reflectarray anten-
nas [1]. The reflectarray antennas usually consist of an array of passive elements, which
are spatially excited by a feed antenna, and reflect the wave to create uniform phase in
the same way as an aperture antenna does. Compared to traditional reflectors, the RAs
have the major advantage of being planar, which enables the RAs to be integrated into
structures such as walls and roofs, and they are even more portable. Furthermore, they
may be designed on conformal surface as well.

1.1 Evolution of Reflectarray Antennas

As it is well known, reflectarray (RA) antennas consist of one or more feed antennas
illuminating a usually flat reflecting surface, whose electromagnetic reflecting features
have to be suitably designed in order to obtain the required performances of the whole
radiating system. Reflectarray antennas have first been proposed in 1963 by Kennedy et
al. [2], where the reflecting surface consisted of a planar array of variable-length shorted
waveguide components, as shown in Fig. 1.1. So, the original reflectarray antenna was
definitively not a low cost, easy to manage, light-weight antenna, allowing foldability or
any other of the interesting features that nowadays are typical properties of reflectarray
solutions.

Figure 1.1: Waveguide Reflectarray Antenna (from [2]).

This probably is the reason why for more than a decade this solution, without ap-
parent advantages but with evident drawbacks compared to parabolic reflectors for ex-
ample, has not been considered again, until 1975, when the feasibility of a reflectarray
with scanning possibilities has been claimed in a US patent [3]. In this case, a re-
flecting surface consisting of spiral antenna elements has been proposed, where each
re-radiating element uses a suitable set of diodes to manage properly the phase of the
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1.1. Evolution of Reflectarray Antennas

reflected wave allowing beam scanning of the whole system. So, it is possible to say
that from the very beginning, the usual way of enhancing reflectarray antenna electro-
magnetic performances in order to introduce them in real life application, is to exploit
complexity at most.

The real breakthrough in reflectarray technology came with the evolution of printed
circuit technology and high frequency laminates synthesis allowed low-profile, light-
weight implementations. In fact, even if the first reflectarray patent introducing a mi-
crostrip patch antenna based reflecting surface has been published in 1977 [4], it is
only from the late eighties that this kind of solution spread out. Furthermore, in order
to achieve good antenna performances, a very large array of patches has to be suitably
designed exploiting in the proper way all the possible geometrical free parameters,
requiring the adoption of numerical electromagnetic solvers, sophisticated numerical
optimization tools and in any case a significant numerical effort.

These, i.e., the enabled technology and the numerical modeling tool availability, are
the reasons why only nowadays printed reflectarrays technology became well-assessed,
and in the last years it substituted other technologies in many fields of applications, in
particular where it is of paramount importance to fulfill constrains such as high gain,
narrow beam with low side lobes, lightweight and smaller volume, easiness of deploy-
ment and foldability.

The main limitation now to a complete diffusion of this kind of solutions is due to
the fact that the most recent antenna systems require a very large bandwidth, typically
even the multi-band operability, or the possibility of beam steering: features that are
still difficult goals to be achieved with a printed reflectarray.

In fact, for what concerns the bandwidth, it is intrinsically limited for two different
reasons: the poor bandwidth of printed radiating elements themselves, usually no larger
than the 3 − 6%, and, most importantly, the frequency-dependence of the phase delay
of the incident field. In particular, this second aspect is quite critical and becomes
dominant in large RAs [5, 6], since it requires that the RA elements should be able to
compensate different phase delays at different operating frequencies

The usual way to enhance the RA bandwidth is to use radiating elements that consist
of two or more stacked printed single radiators (see for instance [7–10]). However,
this technique results in a heavier, bulkier and more complex re-radiating structure, as
depicted in Fig. 1.2, requiring a careful and expensive manufacturing and presenting
some difficulties for its foldability.

Recently, alternative solutions have been proposed, in which the RA elements are
single-layer printed patches of non conventional shape [11–16]. These shapes are cho-
sen properly in order to present more degrees of freedom as compared to the one usu-
ally adopted for multilayer stacked structures: these can be used to compensate the
frequency variation of the phase, allowing the bandwidth enhancement.

More recently, design of reflectarray antennas also involved the use of sub-wavelength
element as unit cell to enhance their bandwidth [17–21]. Initially, the term “artificial
impedance surfaces” was used to express the structure of closely spaced electrically
small patches [17], and later on was changed to sub-wavelength reflectarray antennas.
The idea is to reduce the element’s size to avoid the near-resonance operation of con-
ventional λ/2 unit cells. Reported results have shown an improvements of reflectarray
bandwidth to 17 − 19% 1 dB gain bandwidth. However, the main drawback of this
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Chapter 1. General Introductions

(a) Reflectarray illuminated by feed. (b) Multilayer structure.

Figure 1.2: Multi-layers Reflectarray Antenna (from [8]).

approach is the limited phase range of these elements. As the cell’s size decreases, the
phase range decreases, and consequently, the antenna gain and performance are also
decreased.

In recent years, there is another trend in RA design, which integrates electronic
devices into RA in order to change the electrical properties of RA elements to recon-
figure the RA pattern. These RAs are classified as reconfigurable reflectarray antennas
(RRAs). In fact, the first RRA has been designed a long time ago, when Phelan [3]
implemented rotation technique to spiral cell of reflectarray to reconfigure circularly
polarized wave. However, until recent years, with enabled technologies, several al-
ternative solutions for RRAs have been proposed including the use of varactor diodes,
PIN diodes, and also MEMS. The RRAs offer dynamically switching beam capabilities,
which allow RRAs to be applied to several applications such as radars. RRAs can also
be reconfigured at different frequencies, which would increase their bandwidth. The
limitations of RRAs, however, are the lack of phase availability and the complexity
of the designs. The first factor contributes to the discrepancies in RRA performances,
while the second factor results in a complex or multi-layer design, which includes the
controlling networks of RRAs. The RRA designs, therefore, need a simple structure
with continuous phase which allow to apply different design methods for the whole
RRA design.

1.2 Optimization of Reflectarray Antennas

The design of RAs for modern applications often involves hundreds of elements, which
requires an accurate design method for properly selecting RA elements. The use of
an indirect synthesis procedure based on an optimization scheme could be convenient
since it can handle a large number of degrees of freedom and provide a configuration
that satisfies different constraints.

In general, the optimization of RAs often uses phase-only optimization techniques,
which involves two steps: the phase-only synthesis (POS) is carried out first to find the
phase distribution of all RA elements to attain desired beam, then the RA element’s
dimension is selected to provide the required phase calculated in the first step. The sec-
ond step is often based on the analysis of the RA element which usually takes the local
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1.3. Motivations and Objectives

periodic (LP) assumption, i.e., element is analyzed in an infinite environment [22]. The
LP analysis is able to capture the mutual coupling effects between identical elements.
However, the final RA design consists of different elements, which potentially vary
strongly in geometries, thereby changing the interaction between elements. Therefore,
this leads to significant changes in the measured performances of the RA respect to the
numerically presented ones.

Recently, direct optimization technique (DOT) [23] has been proposed to directly
relate the element’s physical dimension to the RA performance. The surface current
corresponding to the element’s geometries is calculated first and then the far-field pat-
tern, which is used for evaluating the fitness function of the optimization algorithm, is
calculated using the equivalent theorem. The method, however, is still based on the
LP assumption for element analysis, i.e., calculating the surface current. Moreover,
the optimization is a gradient-based minimax, which greatly depends on starting points
and is a local optimization algorithm. Finally, the optimization procedure requires a
“look-up table” to store the surface current for calculating the RA pattern to proceed
the optimization routine.

The application of the global optimizations to RA design has been also proposed [24,
25], and deeply investigated. Genetic Algorithm (GA) has been first applied to the
design of RA [24] to maximize the gain in the desired direction and minimize the
side-lobe level. In that work, RA elements have been represented by simplified mod-
els to accelerate the optimization procedure. Particle Swarm Optimization (PSO) has
also been applied to RA design [25]. The RA has been synthesized to generate multi-
beams with single feed, and in this case it has been applied array theory to calculate the
far-field radiation, introducing suitable approximated modals of both the feed and the
elements. Although, these methods were efficient to optimize the RAs, they ignored
the interaction between elements, by using the ideal pattern for every elements or the
simplified models. As a result, the obtained patterns show significant discrepancies
with respect to measurements.

1.3 Motivations and Objectives

From these view points, a single-layer element, which offers enough phase range and
several degrees of freedom to compensate the required phase at different frequencies, is
needed for the design of passive RA. For active reconfigurable RAs, a simple structure
with continuous tuning phase is desired to introduce electronic components and manage
the RRA. Moreover, effective optimization algorithms are desired to solve complex
Electromagnetic problems, especially RA. Finally, an accurate optimization procedure
for RA design is also needed to efficiently handle the design process.

Given the issues outlined above, the goal of this thesis is to develop new optimiza-
tion algorithms and apply to design and optimize reflectarray antennas with improved
bandwidth performance for passive RA, and effectively controlling the design parame-
ters for RRA. To achieve this goal, the following steps need to be done:

• Develop new optimization algorithms (by introducing suitable modifications to
existing algorithms to improve their performances), which are applicable to elec-
tromagnetic (EM) problems, and able to manage a large number of parameters.
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Chapter 1. General Introductions

• Investigate non-conventional single-layer broadband elements with several de-
grees of freedom for application in passive RAs.

• Design entire passive RAs implementing a new design method to handle all de-
grees of freedom in order to improve the bandwidth of the RA.

• Propose a new, simple RRA element which offers continuously controllable phase,
and it is easy to integrate with electronic devices.

• Design the entire RRA by means of optimization to effectively control the RRA
performances.

1.4 Outline

The outline of this thesis is as follows. Chapter 2 is dedicated to the electromagnetic
backgrounds of the reflectarray antennas. The chapter presents the theory of array
antennas including thinned and sparse arrays. Reflectarray theory is also introduced,
which is extensively employed for the design of RAs later. In Chapter 3, two new
modified optimization algorithms: The improved compact Genetic Algorithm, and the
modified Bayesian Optimization Algorithm, are presented. Their performances have
been tested with mathematical and EM problems. In Chapter 4, the design of passive
RAs implementing a simple structure of double square rings as elementary, is carried
out. The double parameter design method is also introduced, and its application to
design entire RAs has been presented. In Chapter 5, a new RRA element has been
presented, and its implementation to design of entire RRA has also been shown. Finally,
Chapter 6 presents the thesis’s conclusions.
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CHAPTER2
Electromagnetic Background

In this chapter, some basic principles that have been used to analyze and design re-
flectarrays will be presented. Starting from the array theory, the definition of element
pattern and array factor will be introduced. In the design of reflectarrays, since the
arrays often consist of hundreds of elements, the array patterns are sometimes approx-
imated as the product of the element pattern and the array factor. Next, the concept
of phased array and phase shift, which are used to calculate the required phase for re-
flectarray design, will be presented. Finally, background on thinned and spares arrays
are introduced, which are used to exemplify the effectiveness of the newly developed
optimization algorithms.

In the second section, the concept and theory for designing reflectarray will be pre-
sented. The coordinate system that will be used to design RA is defined first. The
incident fields is then derived from the feed to each array’s element, where it is re-
flected back. Following, the radiation pattern of reflectarray antenna is calculated using
the array theory presented in the previous section.

The third section will be dedicated to the Floquet analysis, which is used for ana-
lyzing periodic apertures. The expression of periodic function will be presented first
as the expansion of Floquet series through the Fourier transform. Analogously, the
electromagnetic fields of periodic structure will be derived. From this analysis, it will
be shown that, for infinite structures, the electromagnetic fields will radiate at discrete
directions, instead of everywhere as the case for finite structures. The analysis is use-
ful the for design of reflective surface in Chapter 5. Finally, some conclusions will be
drawn at the end of this chapter.

7



Chapter 2. Electromagnetic Background

2.1 Antenna Array Principles

An antenna array is a spatially extended collection of similar radiating elements ori-
ented in the same direction in 3-D space and usually with the same radiation patterns.
The elements are usually spaced on a regular grid, and they are fed with currents usually
differing in both amplitude and phase, in order to properly shape the far-field radiation
pattern. In this section, some basic properties of antenna array such as the element
pattern, array pattern, definition of phased array, thinned array and sparse array will be
presented. For more detail on array theory, please refer to [26, 27].

2.1.1 Element Pattern

Element pattern is the radiation pattern of a single antenna of which the array consists.
It is the fundamental element for estimating the radiated power of an antenna array,
which is the superposition of all element patterns. The element pattern is defined as
the field intensity distribution of a radiating element as function of two far-field coor-
dinates, while the radial distance remains constant. The radiated electric field in the
far-field region can be expressed as

~E(r, θ, φ) = A
e−jk0r

r
~e(θ, φ) (2.1)

where A is a constant, which is related to the input excitation of the antenna, ~e(θ, φ) is
the element pattern, (r, θ, φ) is the spherical coordinate of far-field point, i.e., observa-
tion point, and k0 is the wave number in free space.

The other term, which is related to element far-field pattern, is the directivity. The
directivity is the far-field intensity pattern normalized with respect to the square root of
the average radiated power per unit angle, as it follows:

~D(θ, φ) =

√
4π

ηPr
A~e(θ, φ) (2.2)

where η denotes the free space impedance, which is approximated to 120πOhms, and
Pr is the total radiated power, which is determined by integrating the Poynting vector
on a closed surface covering the antenna:

Pr =

∫∫
Ω

| ~E2|
η
r2dΩ =

|A|2

η

∫ 2π

0

∫ π

0

|~e(θ, φ)|2 sin θ dθ dφ (2.3)

The directivity of an element represents the relative power flux per solid angle with
respect to that of an isotropic radiator that radiates an equal amount of power. A more
practical term that relates the far-field intensity pattern to the incident power at the input
instead of radiated power is antenna gain, which is expressed as:

~G(θ, φ) = A

√
4π

ηPinc
~e(θ, φ) (2.4)

Since the total radiated power is less than the incident power, because of Ohmic loss,
the gain is always smaller than the directivity.
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2.1. Antenna Array Principles

2.1.2 Array Pattern

By the array’s definition, i.e., array is a group of elements, all array pattern is the
summation of the element fields. It is shown that the far-field pattern of an array of
identical elements can be presented as a product of the element pattern and the array
factor, i.e., pattern multiplication. Considering an array of N identical elements uni-
formly distributed on X-axis with excitation coefficients, An (where n = 1, . . . , N ) ,
and separation d, the total radiated field of the array is expressed as:

~Earray = A1
e−jk0r1

r1

~e(θ, φ) + A2
e−jk0r2

r2

~e(θ, φ) + . . .+ AN
e−jk0rN

rN
~e(θ, φ) (2.5)

where rn is the distance from the nth element to the observation point located on the
far-field region.

Eqn. 2.5 can be written as:

~Earray =
e−jk0r1

r1

~e(θ, φ)

[
A1 + A2

r1

r2

e−jk0(r2−r1) + . . .+ AN
r1

rN
e−jk0(rN−r1)

]
(2.6)

Since the distance from the observation point to array element is much greater than
the distance between elements, two approximations are made r1 ≈ rn and rn − r1 ≈
(n− 1)d sin θ cosφ. Eqn. 2.6 reduces to:

~Earray ≈
e−jk0r1

r1

~e(θ, φ)
[
A1 + A2e

−jk0d sin θ cosφ + . . .+ ANe
−jk0(N−1)d sin θ cosφ

]
(2.7)

In Eqn. 2.7, the quantity inside the square bracket is called the array factor, while
the rest on the right is the element pattern as written in Eqn. 2.1. From Eqn. 2.7, it is
shown that the total radiated field of the array is the product of array factor and element
pattern. For the 2−D planar array, the array factor can be derived in the same way as:

AF (θ, φ) =
N∑
n=1

Ane
[−jkxxn−jkyyn] (2.8)

where (xn, yn) represents the coordinate of the nth element and kx, ky are

kx = k0 sin θ cosφ ky = k0 sin θ sinφ (2.9)

2.1.3 Phased Array

One of the main advantage of antenna arrays is their possibility to scan the beam by
controlling the phase of excitation to each array element, this type of array is called
phased array. This section, the theory to scan such phased arrays is presented. For sake
of simplicity, it is assumed to have a uniform array, which consists of identical elements
all of identical magnitude and each with a progressive phase. Assuming each succeed-
ing element has β progressive phase, the array factor in Eqn. 2.7 can be expressed
as:

9



Chapter 2. Electromagnetic Background

AF =
[
A1 + A2e

−j(k0d sin θ cosφ+β) + . . .+ ANe
−j(N−1)(k0d sin θ cosφ+β)

]
(2.10)

= A
N∑
n=1

e−j(n−1)(k0d sin θ cosφ+β) (2.11)

here, the amplitude of excitation is identical, i.e., An = A. The array factor, therefore,
can be reduced to:

AF =
N∑
n=1

e−j(n−1)ψ (2.12)

where ψ = kd sin θ cosφ+ β
The array factor in Eqn. 2.12 is the summation of exponential, it can be represented

by the vector sum ofN phasors each of unit amplitude and progressive phase ψ relative
to the previous one. It appears that by controlling the phase of excitation the maximum
radiation can be oriented in any direction, forming a scanning array. For example, we
want the main beam is at direction of (θ0, φ0), the phase shift β between the elements
will be determined by:

ψ = (kd sin θ cosφ+ β)
∣∣
θ=θ0,φ=φ0

= kd sin θ0 cosφ0 + β = 0

⇒ β = kd sin θ cosφ (2.13)

Therefore, by controlling the phase shift between the elements, the main beam radi-
ation can be tilted in desired direction to form a scanning array. In practice, the phase
shift can be adjusted by using electronic devices such as ferrite or diode phase shifters.
This is the basic principle of electronically scanning phased array.

For planar arrays, the scanning technique is similar as for linear arrays. In this case,
the progressive phase for each element will be determined in both x- and y- directions.
The array factor in Eqn. 2.8 will be written as:

AF (θ, φ) =
N∑
n=1

N∑
n=1

e−j(n−1)(k0dx sin θ cosφ+βx)e−j(m−1)(k0dy sin θ sinφ+βy) (2.14)

where dx, dy are the distances between elements, and βx, βy are the phase shift along
x− and y− directions respectively.

By controlling the phase shift βx, βy independently, it is possible to scan the main
beam in x− and y− directions differently. However, in practical applications, it often
requires to have only one main beam. Assuming the main beam is at the (θ0, φ0) direc-
tion, the phase shifts between elements in the x− and y− directions are determined as:

βx = k0dx sin θ0 cosφ0 (2.15a)
βy = k0dy sin θ0 sinφ0 (2.15b)

2.1.4 Thinned Array

Traditionally, antenna arrays are designed with uniformly spaced and weighted element
(usually of 0.5λ separation), which allow to easily calculate the array pattern and pre-
dict the side-lobe level of the array, e.g. using array factor as in Eqn. 2.10. Recently, the

10



2.1. Antenna Array Principles

synthesis of unequally spaced array has received a great attention in the Electromag-
netic community. With respect to equally spaced arrays, unequally spaced arrays pro-
vide more degree of freedom, i.e. the element’s position; thanks to this, the unequally
spaced can provide lower side-lobe levels (SLL) even with uniformly excitation [28].
Generally, there are proposed two approaches to obtain this kind of arrays: Thinned ar-
ray and sparse array. Both approaches are presented in the following subsections, and
will be used as optimization problems to test proposed optimization algorithms.

Figure 2.1: Thinned array from a regular array.

Thinned arrays, where some elements in the regular grid are turned off as shown in
Fig. 2.1, is the first proposed approach to achieve unequally spaced array. Compared to
the equally spaced array, the thinned arrays offer several advantages such as the power
consumption, and array weight. Moreover, thinned arrays provide an extra design pa-
rameter, i.e. turned off/on position, to control the SLL in thinned arrays. Massively
thinned arrays, i.e. thinned array in which almost half of the elements is switched off,
are recently become more and more popular, since the reduced number of switched
on elements allows a strong reduction of the array weight and of the complexity of
the feeding network. The reduction of the number of array elements has however also
some drawbacks, the main of which is the decreasing of the maximum gain that is
proportional to the total number of array elements [29].

The synthesis of thinned array, i.e. involving the procedure of removing some radi-
ating elements by terminating them with matched loads, can be considered as a binary
problem, where the excitation of each element can be assigned a value of 1/0 corre-
sponding to the state “ON/OFF” of that element in the array. From the array theory, the
array factor of thinned array is calculated as:

AF =
N∑
n=1

Ane
−j(n−1)ψ (2.16)

whereAn is the excitation, could be assigned a value of 1 or 0, and ψ = kd sin θ cosφ+
β.

The determination of turn ON/OFF elements results heavily in the affection of the
performance of the thinned array, especially the behavior of peak side-lobe level (PSL).
As an example, Fig. 2.2 plots the normalized array factor of different 100-element
thinned arrays with 50% of elements turned off randomly. Compared to the normalized
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Figure 2.2: Normalized array factor of 3 different 100 element linear thinned array with 50% turn off
randomly.
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Figure 2.3: Normalized array factor of 100 element linear array uniformly separation of 0.5λ .
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array factor of a fully populated array of 0.5λ spacing shown in Fig. 2.3, the PSLs
of thinned arrays fluctuate around the PSL of the regular array, which indicates the
possibility of minimizing the PSL of thinned array. While the beam widths are kept
almost the same. The synthesis of the thinned array, therefore, can be considered as an
optimization problem, and will be presented in the Section 3.4.1 as the validation of the
proposed optimization algorithm.

2.1.5 Sparse Array

Another type of unequally spaced array is the sparse array, where the element’s posi-
tions are varied in a limited range in the array. Generally, the separation between ele-
ments in sparse array is greater than 0.5λ and smaller than a wavelength λ to avoid the
grating lobes [27]. The sparse arrays, therefore, reduces the number of elements in the
array compared with equally spaced arrays of 0.5λ spacing, which in turn brings sev-
eral practical advantages such as the reduction of cost, weight. Moreover, the positions
of elements can be varied continuously, which adds an additional degree of freedom for
the design that allow the array to achieve low side-lobe level.

Compared to the thinned array approach, the sparse array is more flexible since
element’s positions are not fixed, however for a large planar array, the design of sparse
array requires a lot of effort to define the best configuration. In practice, the sparse
arrays have been proposed for different applications including the square kilometer
array (SKA) for radio telescope applications, as shown in Fig. 2.4.

Figure 2.4: Square Kilometer Array.

The synthesis of the sparse array is to determine the positions of all elements in
the array with the pre-defined constraint, e.g. the inter-element separation, normally
0.5λ ≤ d ≤ λ, to produce the required beam pattern. As shown in Fig. 2.5, the co-
ordinate of planar sparse array, each element’s position is controlled in both x− and
y−axis, therefore, a special procedure is needed to control these constraints. Several
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Figure 2.5: Coordinates of elements of sparse planar array.

methods have been proposed to design sparse arrays including the inversion algorithm,
and the application of optimization algorithms such as the differential evolution algo-
rithm. In the scope of the thesis, synthesis of sparse array is considered as an optimiza-
tion test problem to prove the performance of the proposed optimization algorithm in
Section 3.4.3.

2.2 Reflectarray Theory

In the chapter introduction, the approach to and the evolution of reflectarray have been
presented. In order to provide a deep understanding of the operational mechanism
of the RA, in this section the theory for RA design is presented, which includes the
model of the incident field and the reflected field, the array pattern, which is calculated
using the array theory, and finally the array phasing, which describes the beam forming
procedure.

The considered geometry for an off-set planar reflector antenna is reported in Fig. 2.6,
when a point source, with linear polarization, has been considered as a feed. The re-
flector consists of a surface covered by suitable printed elements and it is backed by a
conductive ground plane.

2.2.1 Coordinate systems

The relations between the different coordinate systems in Figure 2.6 are the following: r̂f

θ̂f

φ̂f

 =

 sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

 ·
 x̂f

ŷf

ẑf

 (2.17)

 x̂f

ŷf

ẑf

 =

 0 1 0

cosα0 0 sinα0

sinα0 0 − cosα0

 ·
 x̂

ŷ

ẑ

 (2.18)

therefore: r̂f

θ̂f

φ̂f

 =

 sin θ sinφ cosα0 + cos θ sinα0 sin θ cosφ sin θ sinφ sinα0 − cos θ cosα0

cos θ sinφ cosα0 − sin θ sinα0 cos θ cosφ cos θ sinφ sinα0 + sin θ cosα0

cosφ cosα0 − sinφ cosφ sinα0

·
 x̂

ŷ

ẑ


(2.19)
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Figure 2.6: Geometry of the considered reflectarray antenna.

2.2.2 Incident Field

The incident field may be written as:

~Einc(~r) = E0(~r)p̂(~r)e−jk0r (2.20)

where:

E0(~r) = −jk0Z0
1

4πr
E0(θ, φ) (2.21)

p̂(~r) = p̂(θ, φ) (2.22)

and E0(θ, φ) is the radiation pattern of the feed. (r̂,θ̂,φ̂) are the unit vectors of the
spherical coordinate system centered in the feed point.

At a point ~P , on the reflector surface, the incident field will be given by:

~Einc(~P ) = E0(~rP )p̂(~rP )e−jk0rP (2.23)

where it has been shown the dependence of both the magnitude and the polarization of
the field from the point. In general, the reflector is in the far-field region of the feed,
thus the incident field can be written as

~Einc(~P ) = E0(r0, θ̂P , φ̂P )p̂(θ̂P , φ̂P )e−jk0k̂P ·~r
′
P (2.24)

where

E0(r0, θ̂P , φ̂P ) = −jk0Z0
e−jk0r0

4πr0

E0(θ, φ) (2.25)
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and r0 is the distance between the feed and the origin of the Cartesian coordinate system
(x, y, z) and ~r′P is the vector that locates the point ~P in the same coordinate system.
Locally, the incident field represented by Eqn. 2.24 is a plane wave: in fact

p̂ = pθθ̂ + pφφ̂ (2.26)
~k(~P ) = k0k̂(~P ) (2.27)

i.e., the polarization unit vector and the propagation unit vector are orthogonal and the
impedance relation between the electric and magnetic field is satisfied

~H inc(~P ) =
1

Z0

k̂(~P )× ~Einc(~P ) (2.28)

It is important now to express the field, i.e., p̂ and k̂ in the coordinate system (x, y, z).
This can be done using the relation reported in Section 2.2.1:

k̂ = kxx̂+ kyŷ + kz ẑ (2.29)
p̂ = pxx̂+ pyŷ + pz ẑ (2.30)

Therefore the incident field has, in general, three components, i.e., it can be seen as the
superposition of a TE and a TM plane wave. This field may be decomposed in the TE
and TM waves, both of them will have an x and a y component:

~ETE(~P ) = ETE
x x̂+ ETE

y ŷ (2.31)
~ETM(~P ) = ETM

x x̂+ ETM
y ŷ + ETM

z ẑ (2.32)

This is correct since both TE and TM belong to the plane orthogonal to k̂, but TE has
no components parallel to ẑ, then TM lays in the plane that contains k̂ and ẑ (incident
plane) and, generally, it has three components along x̂, ŷ and ẑ.

Usually, both the TE and the TM plane waves interact with the elements on the
reflecting surface;this means that the TE and the TM reflection coefficient have to be
computed and combined to have the total reflected field:

ETE
r,y = ΓTE · ETE

i,y (2.33)

ETM
r,y = ΓTM · ETM

i,y (2.34)

ETOT
r,y = ETE

i,y + ETM
i,y (2.35)

2.2.3 Reflected Field

In the spherical coordinate system {r, θ, φ} with the origin at the center of the reflector
surface, the far-field power radiation pattern is

P (θ, φ) =
1

2
[E2

θ (θ, φ) + E2
φ(θ, φ)]/η, (2.36)

where Eθ and Eφ are the components of the field radiated by the reflectarray antenna,
and η =

√
µ0/ε0 is the free space characteristic impedance. This electric field can
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be found following a standard procedure by means of the electric and magnetic vector
potentials, ~F and ~A [26]. Specifically, the far-field radiation is approximated as

~Efar−field ' −jω ~A+ jωZ0r̂ × ~F , (2.37)

where ω is the angular frequency and r̂ is the unit vector in the radial direction. The
potentials, in turn, are given by

~A =
µ0

4π

∫∫
S

~JeGds, ~F =
ε0

4π

∫∫
S

~JmGds, (2.38)

where ~Je and ~Jm are equivalent electric and magnetic surface current densities, respec-
tively, on the reflector surface S, and G is the free space Green’s function. Integrations
in the Eqn. 2.38 are carried out on the upper reflector surface. Equivalent surface cur-
rent densities can be determined by means of Love’s equivalence principle [26] as

~Je = n̂× ~Htotal, ~Jm = −n̂× ~Etotal, (2.39)

where n̂ is the outward unit normal vector to the reflector surface. ~Etotal and ~Htotal in
the Eqn. 2.39 are total electric and magnetic fields on the reflector surface, which are
sum of incident fields from the feed ~Einc and ~H inc and the reflected fields by the system
of the re-radiating elements together with the ground plane. In fact, the total fields can
be represented as

~Etotal = (1 + ejψ) ~Einc, ~Htotal = (1− ejψ) ~H inc, (2.40)

since the ground plane in our model is assumed to be a perfect electric conductor (PEC)
and it reflects the incident wave completely. Therefore, the reflection coefficient of this
system is represented by the phase factor ψ = ψ(~P ) only, where ~P is some point on
the upper surface of the reflector.

2.2.4 Radiation Pattern of the Reflectarray Antenna

The radiated field strength at a certain point in the space, assumed to be in the far-
field, is calculated by adding the contributions of each element to the total radiated
fields. Therefore, assuming all the element patterns, EP , taken individually, are identi-
cal (within a certain tolerance) and that the patterns are all aligned in the same direction
in azimuth and elevation, then the total array antenna pattern is attained by multiplying
the array pattern by the element pattern. In fact, given an array of identical M ×N ele-
ments, for an identical elements with uniform spacing placed on the plane, the far-field
radiation pattern is therefore given by:

FF (θ, φ) =
M∑
m=1

N∑
n=1

Am,n · EP (θ, φ) · ej(ψx+ψy) (2.41)

where

ψx = 2π
xm,n
λ

sin θ cosφ (2.42)

ψy = 2π
ym,n
λ

sin θ sinφ (2.43)
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being xm,n and ym,n the coordinates of the element m,n, Am,n the complex local ex-
citation for each element, EP (θ, φ) is the element pattern, and being λ the free space
wavelength of the radiation.

2.2.5 Beam Forming

A printed reflectarray often consists of a feed and a planar array of printed elements at
the far-field region of the feed. The incident field from the feed to each reflectarray ele-
ment can be considered as a plane wave with a phase proportional to the distance from
that element to the feed. To produce a focus beam, the reflected field at each element
needs to be adjusted to create a progressive phase distribution on the planar surface that
generate pencil beam in a give direction as presented in phased array section. In or-
der to obtain this phase distribution, each element is incorporated a certain phase shift
when it is illuminated by a feed. The phase shift is adjusted independently for each
element by particular techniques such as varying one of the geometrical parameters in
the reflectarray elements, or attaching phase shifters.

In this section, the procedure to generate pencil beam is described. For other beams,
e.g. contoured beams, can be generated by implementing an appropriate phase distri-
bution. Considering the coordinate system shown in Fig. 2.6, the progressive phase
distribution on the reflectarray surface that produces a beam in the direction (ϕ0, θ0),
calculated using array theory, is expressed as:

φ(xi, yi) = −k0(xi cosϕb + yi sinϕb) sin θb (2.44)

where k0 is the propagation constant in vacuum, and (xi, yi) the coordinate of the ele-
ment i. On the other hand, the phase of the reflected field at each reflectarray element
is equal to the phase of the incident field from the feed and the phase-shift introduced
by each element:

φ(xi, yi) = −k0di + φshift(xi, yi) (2.45)

From Eqn. 2.44, 2.45, the phase shift required at each is element is calculated as:

φshift(xi, yi) = k0di − k0(xi cosϕb + yi sinϕb) sin θb (2.46)

Fig. 2.7 shows an example of required phase shift of a 32×32 reflectarray to create
a pencil beam scanning 18◦ in X − Y plane, which is designed in Section 4.5.2.

2.3 Floquet Analysis

The design of reflectarray antennas is often based on the analysis of the unit cell. To
understand how the unit cell will behave in the array, it is common to assume an infinite
array of identical cells [22]. In this section, the Floquet analysis approach to analyze
such infinite arrays will be presented. Before starting Floquet analysis, it is important
to introduce the Fourier transform of a periodic function in terms of a Floquet series
expansion.
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Figure 2.7: The required phase phase distribution of a reflectarray.

2.3.1 Floquet Series

Given a function f(x), the Fourier transform of f(x) is defined as:

f̃(kx) =
1

2π

∫ ∞
−∞

f(x)ejkxxdx (2.47)

where f̃(kx) is the Fourier transform of f(x), and kx is the spectral frequency. The
function f(x) can be found by using inverse Fourier transform as follows:

f(x) =

∫ ∞
−∞

f̃(kx)e
−jkxxdkx (2.48)

In case of a periodic function, g(x), in general both the phase and the amplitude are
periodic, with different periodicities, given by:

g(x) =
∞∑

n=−∞

f(x− na)e−jnϕ (2.49)

The Fourier transform of g(x) can be expressed as:
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g̃(kx) =
1

2π

∫ ∞
−∞

g(x)ejkxxdx (2.50)

=
1

2π
e−jnϕ

∞∑
n=−∞

∫ ∞
−∞

f(x− na)ejkxxdx (2.51)

= f̃(kx)
∞∑

n=−∞

ejn(kxa−ϕ) (2.52)

The infinite series summation can be substituted by an infinite series of Dirac delta
functions using the identity [27]

∞∑
n=−∞

ejnkxa =
2π

a

∞∑
n=−∞

δ

(
kx −

2nπ

a

)
(2.53)

Therefore, the Fourier transform of g(x) will be:

g̃(kx) =
2π

a
f̃(kx)

∞∑
n=−∞

δ

(
kx −

2nπ

a
− ϕ

a

)
(2.54)

From Eqn. 2.48, the periodic function g(x) can be represented alternatively using
inverse Fourier transform:

g(x) =

∫ ∞
−∞

g̃(kx)e
−jkxxdkx

=

∫ ∞
−∞

2π

a
f̃(kx)

∞∑
n=−∞

δ

(
kx −

2nπ

a
− ϕ

a

)
kxe
−jkxxdkx (2.55)

Since the Dirac-delta function has nonzero value only at discrete point, the periodic
function g(x) will have a set of discrete values, leaving

g(x) =
2π

a

∞∑
n=−∞

f̃

(
2nπ + ϕ

a

)
e−

j(2nπ+ϕ)x
a (2.56)

The right-hand side of Eqn. 2.56 is the Floquet series expansion of g(x) [27]. In
case ϕ = 0, Floquet series are the Fourier series.

2.3.2 Floquet Analysis

In the previous section, the periodic function has been represented in terms of the Flo-
quet series expansion, given in Eqn. 2.56. In this section, the same procedure is derived
for the electromagnetic fields of a periodic array of current sources in the same way.
The considered infinite array is assumed to have both the magnitude and phases of the
cells are periodic, with different periodicities, such that the phase can be shifted by a
constant value from one cell to the next. Therefore, the analysis can assist the analysis
of phase-shifted cells to produce plane-waves in different directions as it will be shown
in Section 5.3.
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For sake of simplicity, an 1-D array has been considered here, expressions of an
infinite 2-D array can be derived in similar manner. The considered array is assumed
to have y−directed current sources in the z− plane with spacing a in x−direction. The
current sources have identical magnitudes and their phases are shifted progressively by
constants kx0 along x− direction. If the current distribution at each element is expressed
as f(x), the total current density is given by:

Jy(x) =
∑
m

f(x−ma)e−j(kx0ma) (2.57)

where
∑
m

denotes for
∞∑

m=−∞
. Since the total current density is a periodic function, the

Fourier transform of Jy(x) will be:

J̃y(kx) =
1

2π

∫ ∞
−∞

Jy(x)ejkxx

=
1

2π

∑
m

e−jkx0ma
∫ ∞
−∞

f(x−ma)ejkxxdx

=
∑
m

e−jkx0maf̃(kx)e
jkxma

= f̃(kx)
∑
m

ej(kx−kx0)ma (2.58)

Using the identity in Eqn. 2.53, it can be written as:

J̃y(kx) =
2π

a
f̃(kx)

∑
m

δ

(
kx − kx0 −

2mπ

a

)
(2.59)

Therefore, the Fourier spectrum for J(x) exists only at discrete points in kx-axis.
These points are given by

kxm = kx0 +
2mπ

a
(2.60)

Similar to Eqn. 2.55, Eqn.2.56, the current density can be expressed as

Jy(x) =

∫ ∞
−∞

J̃y(kx)e
−jkxxdkx

=

∫ ∞
−∞

2π

a
f̃(kx)

∑
m

δ(kx − kxm)e−jkxxdkx

=
2π

a

∑
m

f̃(kxm)e−jkxmx (2.61)

where kxm are defined in Eqn. 2.60. Eqn. 2.61 represents the total current density
as Floquet series expansion. The current density may be then used to determine the
electric field as [27]

Ey = −πωµ0

a

∞∑
m=−∞

f̃(kxm)

kzm
e−jkxmx−jkzmz (2.62)
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with kxm is defined as Eqn. 2.60, and kzm = k2
0 − k2

xm.
The electric field produced by the current source in Eqn. 2.57 may be expressed in

terms of an infinite series. The exponential term inside the summation sign is known
as a Floquet modal function or a Floquet mode. The vector represents the propagation
direction of the nth Floquet mode:

~pn = x̂kxm + ẑkzm (2.63)

With respect to a finite aperture where radiated power is in every direction, an infinite
periodic structure only radiates plane waves in discrete directions for some particular
values ofm in Eqn. 2.60. A Floquet mode becomes a propagating mode if the following
condition is satisfied

k2
xm + k2

zm < k2
0 (2.64)

The direction of propagation is determined as θm = tan−1(kxm
kzm

). If the condition is not
satisfied, then the Floquet mode is an evanescent mode that decay along z−direction.
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CHAPTER3
Optimization Algorithms

In this chapter, two recently developed optimization algorithms, potentially applicable
to reflectarray design, will be presented. The application of evolutionary algorithms
such as Genetic Algorithms (GA), Particle Swarm Optimization Algorithm (PSO) to
Electromagnetic (EM) problems is reviewed to discuss their advantages and limitations.
A new trend of optimization algorithms based on the estimation of good solutions will
be presented.

Then, in the second section, an improved version of the compact Genetic algorithm
(cGA), hereafter denoted as M-cGA, is introduced. The M-cGA is recently devel-
oped by implementing more than one probability vector (PV) and integrating a learning
mechanism into cGA. The M-cGA shows its superior performances compared with its
ancestors when tested with mathematical problems as well as practical EM problems.

Following, in the third section, another algorithm, the modified Bayesian optimiza-
tion Algorithm (M-BOA), will be presented. A suitable mutation scheme is introduced
inside the original BOA to overcome the drawbacks of BOA, which limit its perfor-
mance when the starting points are not sufficiently good. The modified version has
been tested by benchmark functions at the end of this section, and the results have been
compared with the original BOA and the PSO as well.

Finally, in the forth section, some numerical results of the applications of the M-
cGA and the M-BOA to EM problems are presented. The M-cGA has been applied
to thinning array problems, while the M-BOA has been used to synthesize sparse ar-
rays. Their applications to large array syntheses show promising features for different
possible applications to EM problems, and reflectarray design in particular.
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3.1 Introduction

The design of complex electromagnetic (EM) structures for real life applications of-
ten requires to exploit the features of evolutionary computation techniques such as the
classic Genetic Algorithms (GA) [30], Particle Swarm Optimization (PSO) [31], Ant
Colony Optimization (ACO) [32] as well as more recently developed population-based
approaches such as Meta-PSO [33], Memetic Algorithm [34], the Invasive Weed Opti-
mization (IWO) [35], the Biogeography-Based Optimization [36] or other hybrid tech-
niques [37–39]. All these population-based techniques share the same basic idea, i.e.,
they attempt to reach the optimum solution acting at each step of the iterative process
on the current population, i.e., on a considered set of candidate solutions, through gen-
eral, problem-independent operators. These, however, could be insufficiently effective
and therefore they could lead to lose the best solutions, or, at least, to slow down the
convergence.

Obviously this risk is greater in case of complex optimization problems, as the
EM ones are, but it can occur also in simpler cases. To improve the performances of
population-based optimization algorithms such as GA, increasing the population size
could help for long-term performance of the algorithm [40]. The cost, however, will
be paid at the expense of computational performance, i.e., number of evaluations per
generation. Even increasing the population size, these algorithms are able to solve only
for low-order building blocks (BBs), while for a higher-order problem, they often get
stuck at a local minimum, as it will be shown later in section 3.2.4, the validation of the
modified compact Genetic algorithm.

In literature, another approach has been proposed to tackle this limitation of the
pseudo-stochastic algorithms. That approach is based on the idea of using the informa-
tion already available from the entire set of the most promising solutions to generate
new offspring, as opposed to what is done for instance in the GA, where only the genes
of two parents concur to the chromosome structure of a child. This principle has been
introduced in the Estimation of Distribution Algorithms (EDAs) [41], based on the es-
timate of the distribution of the promising solutions and on the generation of a new
population according to this estimate.

EDAs, in general, try to get the distribution of good solutions, and they work effec-
tively for problems where knowledge of these problems is already available. However,
when the information about the problems is unavailable or the starting points are not
good, these algorithms could be trapped at local minimas. In this chapter, different
modifications will be introduced to two EDAs in order to enhance their performances.
New algorithms, based on the compact Genetic Algorithm (cGA) and Bayesian opti-
mization algorithm (BOA), will be presented. By introducing a learning scheme and
a mutation scheme to the original cGA and BOA respectively, the modified cGA and
modified BOA showed significant improvements in their performances and are promis-
ing for application in EM problems.

3.2 Compact Genetic Algorithm

Genetic Algorithms (GAs) [30] are a class of the most well-known optimization algo-
rithms for applied engineering thanks to their ease of implementation. Their concepts
are based on the idea that the next generation would perform better than the current
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population. The creation of next generation depends on two main operators: Selection
and mutation. Depending on the selection methods, there are two general approaches
to GAs: Generational update and steady-state update, as depicted in Fig. 3.1. Gen-
erational approach selects a large number of individuals and makes a “big” update of
population, while steady-state approach only selects two individuals and makes “small”
update to the population.

Figure 3.1: Generational update vs. Steady-state update.

Both of these approaches have their own advantages and drawbacks, e.g. genera-
tional scheme evaluates more individuals per one iteration, but requires less iterations
than steady-state scheme. The generational scheme seems to gain popularity since most
of current GA versions are applying this concept. The steady-state scheme, however,
reduces computer resources needed to store and evaluate the population of GAs since
every iteration the algorithm just needs to store and evaluate only two new generated
individuals. In [42], Harik implemented this idea and created a new algorithm, named
compact Genetic Algorithm – cGA. The cGA uses a probability vector (PV) to rep-
resent the population, therefore it greatly reduces the memory storage required by the
algorithm (that is also why it is called compact). However, the cGA’s performances
are generally similar to the simple GA (sGA). Therefore, there is a need to improve its
capability, and in the next section, the ideas for cGA’s modifications are presented in
detail.

3.2.1 Concepts of cGA

Compact Genetic Algorithm, cGA, first presented in [42], uses a probability vector
(PV) to represent a possible solution. In cGA, instead of using a real population as
in traditional Genetic Algorithm, it manages the PV to get the distribution of good
solutions. The length of the PV corresponds to the number of variables of the problem,
and the value of the PV measures the probability of one variable to get particular value
e.g. the proportion of “1” in case of a binary problem. A full treatment of the method
can be found in [42, 43], but for sake of clarity and uniformity of notation it is briefly
summarized in the following section.

The pseudo code of cGA is described in Fig. 3.2. Initially, the PV is set to 0.5, i.e.,
assuming uniform distribution for every position. In each generation, two individuals
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are generated from the current PV. They are left to compete, and the winner will be
responsible for updating the PV. The updating rule will increase or decrease the proba-
bility vector by a factor 1/n (where n is the population size) according to the value of
the winner. The cGA will stop when the PV reaches a value of 0 or 1 at all positions,
i.e., when the optimal solution has been found.

Step 1: Initial PV: PV=0.5*ones(1,N)

Step 2: Generate two individuals: a & b

Step 3: Compete between individuals

winner,loser:= compete(a,b)

Step 4: Update PV:
for i = 1:N

if winner(i)#loser(i)

if winner(i)==1

PV(i)=PV(i)+1/n;

else PV(i)=PV(i)-1/n;

end

Step 5: Check convergence

Parameters: n: population size
N : chromosome length

Figure 3.2: Pseudo code of the compact Genetic Algorithm, cGA.

The procedure described above is for a binary problem where the PV is initially set
to 0.5 at all position, representing a uniform distribution. The cGA has been also mod-
ified for continuous variables as proposed in [44], where the author implemented two
PVs to represent solutions, for the mean, µ, and the standard deviation, σ. The variables
have been assumed to have normal distribution, and the updating process implements
the same idea as the original cGA. The original cGA, however, only performs equiv-
alent to the first-order behavior of the simple GA with uniform crossover. In the next
section, some improved versions of the cGA will be presented and their performances
will be reviewed.

3.2.2 Improved Compact Genetic Algorithms

The first modification of the standard cGA has been introduced in [42], by increasing
the number of generated offspring and applying a tournament competition, i.e., simu-
lating higher selection pressure. The concept is similar to improving the performance
of GAs by generating larger populations [40]. This modification therefore results in a
high computational cost since it needs to store and evaluate a considerable number of
individuals.

In [43], Ahn proposed new versions of cGAs introducing the elitism scheme. He
created two different approaches: The persistent elitism cGA (pe-cGA) and the non-
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persistent elitism cGA (ne-cGA). In the first iteration, the pe-cGA selects the winner
as the leader, and keeps the leader until the algorithm finds a new generated individual
with a better fitness score. The ne-cGA, on the contrary, will replace its leader by a
new random individual if the algorithm couldn’t find a better candidate after a certain
number of iterations. The cGA scheme has been modified as reported in [43], in which
pe-cGA and ne-cGA only generate one new individual for the next generation. The
new cGAs, therefore, only evaluate one individual per iteration. The elitism-based
cGAs outperform the original cGA in terms of computational cost, i.e., the number
of function evaluations. The reason for this is the elitism can prevent the loss of low
salience genes of chromosomes which is equivalent to increasing the selection pressure.
Unfortunately, pe-cGA and ne-cGA do not perform better in term of solution quality.

Step 4: Update PVs:
% local update

for i = 1:P & for j = 1:N

if winner(i,j)#loser(i,j)

if winner(i,j)==1

PV(i,j)=PV(i,j)+1/n;

else PV(i,j)=PV(i,j)-1/n;

end

% global update
pv_best = best(PVs)

for i = 1:P

PV(i) = PV(i)+c*(pv_best-PV(i))

end

Parameters:
P : number of PVs c: learning factor
N : length of PV n: populationsize

Figure 3.3: New updating rules for M-cGA.

In population-based optimization algorithms, the learning scheme plays an impor-
tant role to the algorithm’s performance as shown in the PSO and the recent hybrid
Genetic Swarm Optimization (GSO) [37]. This scheme has been implemented in this
thesis, and is presented in [45] to further improve the performance of the ne-cGA.
The ne-cGA has been modified by implementing more PVs and integrating a learn-
ing scheme (the new modified cGA is hereafter called M-cGA). The concept is to use
more than one PV to enhance the exploration properties of the algorithm and increase
the ability to avoid local optimums. Since the new algorithm incorporates more PVs,
a new updating rule has to be applied. Fig. 3.3 describes the new updating rules for
M-cGA, replacing step 4 in Fig. 3.2, where a learning scheme is added as global update
that allows PVs to learn from each other. The PVs, therefore, are updated not only by
their generated individuals, but also by the best PV. In the next section, M-cGA will be
tested and compared with its ancestors to prove its performances.
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3.2.3 Implementation of M-cGA

3.2.4 Mathematical Validation

In this section, the performance of M-cGA is tested and compared with its predeces-
sors, i.e., cGA, pe-cGA and ne-cGA, on mathematical test functions. The proposed
problems here include high-order building blocks (BB) problems, and continuous prob-
lems, which purposefully demonstrate M-cGA’s ability of dealing with both discrete
and continuous variables. In all cases, the M-cGA implements 4 PVs, while the popu-
lation, relating to the updating 1/n, for each cGA version is chosen to provide the best
convergence.

The first test function with high-order BBs is the Minimum Deceptive Problem
(MDP), consisting of concatenating ten copies of minimum deceptive functions, i.e.,
2 bits as follows:

fMDP =
10∑
i=1

f(x2i) (3.1)

where

f(x2i) =


0.7 if x2i = 00

0.4 if x2i = 01

0.0 if x2i = 10

1.0 if x2i = 11.

Fig. 3.4 reports the results of the MDP with 10 BBs performed by different algo-
rithms, where the quality of solution and speed of convergence of all cGAs are con-
sidered (the M-cGA is denoted as “new”). With low-order problems the M-cGA is
close to the cGA performances in terms of population size as plotted in Fig. 3.4(a),
while, as shown in Fig. 3.4(b) reporting the comparison of the quality of the solution
in terms of the number of function evaluations, the M-cGA outperforms cGA, pe-cGA,
and ne-cGA.

Fully deceptive problems have been then considered for testing the M-cGA. The
problems involving trap functions are ideal cases for testing the capability to deal with
high order BBs. A simple 3-deceptive problem, formed by concatenating ten copies
of the three bit trap function has been considered, each three bits trap function has
deceptive to optimal ratio of 0.7 as plotted in Fig. 3.5 and defined below:

f3−bit =
10∑
i=1

f(x3−bit) (3.2)

where

f(x3−bit) =


0.7 if sum(3− bit) = 0

0.4 if sum(3− bit) = 1

0.0 if sum(3− bit) = 2

1.0 if sum(3− bit) = 3

28



3.2. Compact Genetic Algorithm

(a) Number of corrected BBs vs. population size.

(b) Number of corrected BBs vs. number of function evaluations.

Figure 3.4: Performance of the algorithms on MDP problem.

In Fig. 3.6(a), the cGA fails to solve the problem, while the performance of pe-cGA
and ne-cGA can be considered close to the one of cGA with high selection pressure

29



Chapter 3. Optimization Algorithms

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sum(3bit)

f 3-
bi

t

Figure 3.5: 3-bit deceptive problem.

s = 8 and s = 16 respectively. The M-cGA generally shows better performances to
achieve best solutions both in terms of quality of the solution vs. population size and vs.
function evaluations, which indicates the superior performance of M-cGA with respect
to its ancestors.

The last considered mathematical test is the Sinc problem to illustrate the ability
of the newly proposed algorithm when dealing with continuous problems. The cGA
versions are modified for continuous variables as described in [44], where the normal
distribution is applied. The Sinc function is expressed as follows:

f(X) =
N∏
i=1

sin(π(xi − qi))
π(xi − qi)

(3.3)

For this problem, the M-cGA’s performances have been compared with two most recent
improved versions of cGA, i.e., the pe-cGA and the ne-cGA. The comparison have
been made on the achieved results and number of function evaluations required by each
algorithm.

Fig. 3.7 shows the performance of pe-cGA, ne-cGA and M-cGA on the Sinc problem
for cases of N = 10 and N = 20. Apparently, pe-cGA is the worst one among them,
while ne-cGA could not converge when the problem’s dimension increases, as shown
in Fig. 3.7(b). For both considered cases, M-cGA outperforms pe-cGA and ne-cGA in
term of achieved results and in term of the function evaluation as well. The results on
the continuous problems again confirm the higher performance of M-cGA with respect
to other cGA versions. In the next section, its application to thinned array syntheses
will be presented and compared with previous reported results by other methods.
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(a) Number of corrected BBs vs. population size.

(b) Number of corrected BBs vs. number of function evaluations.

Figure 3.6: Performance of the algorithms on 3-Deceptive problem.
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Figure 3.7: Performance of the algorithms on Sinc problem.
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3.3 Bayesian Optimization Algorithm

The Bayesian Optimization Algorithm (BOA), introduced in [46], uses probability the-
ory for estimating the distribution of promising solutions for the considered problem.
In the BOA, the interaction between parameters (i.e. variables) are investigated in order
to build a probabilistic model, i.e., a Bayesian Network (BN), that evolves during an
iterative process towards increasingly good solutions, until the achievement of a global
optimum.

In the BOA procedure the BN is built taking advantages of the information from the
selected most promising solutions and eventually the prior knowledge on the problem
to be optimized, if already available. At each iteration, new candidate solutions are
generated by sampling the BN, and then they are included in the population, in place
of its worst elements. A thorough description of BOA can be found in [46, 47], but for
sake of clarity and uniformity of the notation it is briefly summarized in the following,
before introducing its modifications, the M-BOA.

3.3.1 Standard BOA

The BOA starts with randomly generating an initial population as a set of strings.
The best solutions in the current population are then selected using a specific selec-
tion method such as the truncation selection or the tournament selection. A Bayesian
Network is then constructed to fit the selected set of strings. In the process of build-
ing the network, a metric and a search method are used to measure and maximize the
quality of the Bayesian network. The new offspring is generated using the information
encoded in the BN. Finally, a new population is obtained, substituting in the older one
the worst strings with the new ones. The iterative algorithm proceeds until the stop-
ping criteria are satisfied. The pseudo-code of the BOA could be summarized in the
following steps:

Step 1: Randomly generate initial population (P)

Step 2: Select a set of promising solutions (S) from (P)

Step 3:
Construct the network (B) using the information from the set of solu-
tions at step 2 and the prior knowledge of the problem, if available

Step 4: Generate a new Offspring (O) by sampling B

Step 5: Create a new population (P’) by replacing some instances from (P) with (O)

Step 6: If the stopping criteria are not met, go to Step 2.

Figure 3.8: Pseudo code of the Bayesian Optimization Algorithm, BOA.

In the above pseudo-code, steps (3) and (4) are the most important and critical, since
the accuracy and the effectiveness of the entire algorithm depends on them.

The Bayesian Network [48], as shown in Fig. 3.9, represents the structure of the
problem, since it is essentially a mathematical graphical model that combines proba-
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bilistic theory with graph theory to encode the relationship between variables contained
in the modeled data. In the graph, each node represents one variable and the edges be-
tween the nodes correspond to the conditional dependencies between two variables.
Once constructed, the BN is used to generate new instances, resorting the conditional
probability of each variable.

1

23

4 5

6

7 8

9 10

Figure 3.9: Bayesian Network.

Mathematically, a BN encodes the joint probabilistic distribution:

p(X) =
l∏

i=1

p(Xi|πi) (3.4)

where X = (X1, X2, . . . , Xl) is the vector of variables of problem, πi is the set of
parents of variable Xi, and p(Xi|πi) is the conditional probability of Xi conditioned on
the variables πi.

In the BOA procedure, the BN has to be trained in order to properly fit the promising
solutions which satisfy the design requirements. There are two basic components of
the algorithm to perform the learning of the BN: the scoring metric and the search
procedure.

The scoring metric quantifies the quality of the given network. As already men-
tioned, all the prior knowledge about the problem can be included into the metric as
well. The search engine is used to explore the space of all possible networks in order to
maximize the value of the scoring metric. The exploration is usually restricted by the
problem constraints such as the maximum number of incoming edge to one node. This
number directly influences the complexity of the algorithm in constructing the network
and generating the related offspring. In this work, we chose K2 as scoring metric [49]
and greedy algorithm as search procedure.

3.3.2 Modified BOA

As described above, the performance of the BOA greatly depends on the distribution
of the current good solutions. The critical point is that, in absence of available prior
knowledge of the problem, the initial population for the BOA, in order to start to build
up the BN, is randomly generated. Therefore, in some cases it could be possible that all
the best solutions in the initial population would not provide good enough distribution,
e.g. because they do not represent properly the solution space dimensionality, affecting
the convergence capability of the algorithm itself.

To overcome this problem, one possibility is to increase the population size: this
may increase the quality of the sampling in terms of information quantity, and there-
fore may improve the distribution modeling of good solutions, but it also increases
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the algorithm computational cost. On the contrary, the variation of the standard BOA
proposed here, presents the advantage of enhancing the method’s performance without
increasing its computational cost, since it does not need further sampling of the cost
function. The resulting approach will be indicated in the following as Modified BOA
(M-BOA).

The basic idea of the M-BOA is using not only the Bayesian Network for generating
a new offspring, but also a mutation scheme. Mutation is also characteristic of other
optimization algorithms such as the GA [30], Population Based Incremental Learning
(PBIL) [50] and the Compact Genetic Algorithm (cGA) [42]. Using mutation, some
individuals will be used to explore candidate solutions out of the considered distribution
space and therefore, the algorithm:

• will avoid being trapped in local optima;

• could find good solutions out of the initial population, allowing it to have a reduced
size.

Referring to the pseudo code of the BOA, the introduction of the mutation essentially
affects steps 4 and 5 that are modified as in Fig. 3.10.

Step 4:
Generate a set of new offspring (O) according to the joint distribution
encoded by B; generate a set of new offspring (O’) applying mutation
to the same set of promising solution (S) use to generate (O).

Step 5: Create a new population (P’) by replacing some instances, the worst
ones, from (P) with (O) and (O’).

Figure 3.10: The procedure to generate new population in M-BOA.

The scheme adopted by the M-BOA for generating a new population is therefore the
one sketched in Fig. 3.11. It is worth noticing that both the new population elements
obtained through the application of the Bayesian Network and through mutation are
derived from the same set of selected solutions, i.e., the best ones. This differs from
other algorithms that use mutation, since they generally apply it to the worst elements of
the population. The new population is therefore given by the sum of the most promising
elements of the previous population (S) plus the new offspring obtained applying to S
the BN (O) or the mutation (O’).

Finally, notice that M-BOA works with variable vectors, which is much preferable
for real variable problems or components, instead of probability vectors as for PBIL and
cGA. In all the examples and tests problems considered in the following, the M-BOA
with tournament selection and individual mutation have been adopted.

3.3.3 M-BOA Validation: Benchmark Functions

Preliminary results for the modified BOA have been presented in [51]. In this section,
the results of the testing of the M-BOA through its application to benchmark functions
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Figure 3.11: M-BOA new population generation scheme.

are presented, while in the next section real-life antenna problems will be considered.
In particular, the results shown here refer to the application of the M-BOA to the

Rosenbrock, the Rastrigin, the Ackley (all with dimension N = 15) and the Shenkel func-
tions and its comparison with the standard BOA and the PSO (the expressions of these
benchmark cost functions are reported in the Appendix A for the sake of completeness).
The three algorithms have been compared both in terms of speed of convergence and
reliability, considering for each of them the results obtained with 50 independent trials,
each consisting in 1000 iterations.

The curves of convergence relative to the application of the three optimization meth-
ods applied to the Rosenbrock function are shown in Fig. 3.12. The blue, green and red
lines represent the average curves of convergence over the 50 trials for the BOA, the
PSO and M-BOA, respectively. Comparing these three curves, it clearly appears that
the M-BOA outperforms the other two schemes, since both BOA and PSO are inclined
to stagnate.

Further performance comparisons are shown in Table 3.1, in which the average min-
imum values obtained by the three algorithms when applied to the different considered
benchmark functions are listed, together with the standard deviation (in parenthesis).
Both the BOA and the M-BOA outperform the PSO, in terms of convergency and re-
liability. For what concerns the comparison between these two, they show both an
(almost) zero standard deviation, but the average minimum value achieved with the
M-BOA is much smaller, and this confirms the results in Fig. 3.12, i.e., the M-BOA
achieves better result than the standard BOA.

3.4 Numerical Results

In this section, numerical results of the applications of M-cGA and M-BOA to EM
problems are presented. Each of these algorithms is applied to different tasks, in which
hundred of variables are needed to be controlled. The performance of M-cGA and M-
BOA are compared with results reported in literature, and conclusions are conducted at
the end of this chapter.

36



3.4. Numerical Results

100 101 102 103
10-5

10-4

10-3

10-2

10-1

100

101

102

103

Iteration

Fi
tn

es
s

 

 
BOA
M-BOA
PSO

Figure 3.12: Curves of convergence relative to the PSO (green line), the BOA (blue lines) and M-BOA
(red lines) applied to the Rosenbrock function.

Table 3.1: Comparison of PSO, BOA AND M-BOA in terms of minimum value and standard deviation
(in brackets).

Ackley Rosenbrock Rastrigin Shekel

3.149 0.218 30.062 0.0022
PSO

(0.164) (0.039) (9.48) (0.0178)

0.164 0.8384 0.1488 0.0013
BOA

(0) (0) (0) (0)

0.032 0.000085 0.0092 0.000026
M-BOA

(0.02) (0.0000128) (0.0012) (0.000016)

3.4.1 Synthesis of Thinned Arrays using M-cGA

In recent years, thinned arrays, presented in Section 2.1.4, have attracted significant
attention from researchers because of their advantages such as the reduction of the array
weight and of the complexity of the feeding network. The reduction of the number of
array elements has however also some disadvantages, the main of which is the decrease
of the maximum gain, that corresponds to an increase of the side-lobe level (SLL) with
respect to a fully populated array with the same size [29].

To overcome these drawbacks, several techniques have been proposed, aimed at
finding the best configurations of thinned array [52], [53]. Deterministic approaches
have been adopted first, but they do not show significant improvements with respect to
the random element placement [52,54]. Recently, dynamic program [55] and stochastic
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optimization techniques, including Genetic Algorithm (GA) [56], simulated annealing
(SA) [57, 58], and Ant Colony Optimization (ACO) [53], have been applied to the
optimization of thinned array. The obtained results are remarkable, even if they could
be further improved.

The combination of deterministic approaches and stochastic optimization have been
proposed exploiting the available knowledge of Different Sets (DS) or Almost Different
Sets using GA [59], [60]. The combinations have proved that this procedure is very
effective, in most case. However, the operations performed by the optimizer still remain
an inherent disadvantage of stochastic based optimization e.g. convergence difficulties.

Recently, M-cGA has been applied to thinned array problem and shown improve-
ments in controlling the peak side-lobe level (PSL) of several linear thinned array [61,
62]. The PVs in M-cGA are used to represent the states (ON/OFF) of all elements in
the arrays. The M-cGA manages these PV to find the best configuration of thinned
array with minimization of PSL. The performance of M-cGA is good even without the
help of deterministic method, i.e., DSs or ADSs. In this section, the use of M-cGA
is presented and further investigated for several large linear and planar thinned arrays.
The achieved PSLs show the effectiveness of M-cGA to thinning array problems.

Synthesis of Thinned Linear Array

The synthesis of linear thinned array using M-cGA has been presented in [61,62], and it
is extended in this section to several different configurations. Two main types of thinned
arrays are considered here: configurations with available ADS sequences and extended
configurations from available ADS in order to compare with the performance of GA-
ADS reported in [60]. In all the tested cases, M-cGA works alone with 4 probability
vectors, and the results are compared with those of GA with or without ADS.

The linear arrays considered in this section have different number of elements in the
array, with the spacing of 0.5λ (wavelength at considered frequency) in the regular grid.
Thus, if the array has N elements, its length is N × λ/2, and the side-lobel levels for
these regular arrays are -13.3 dB. These arrays are then thinned with different thinned
ratio, and the M-cGA is applied to reduce the PSL of these arrays.

The first considered case is a thinned array configuration where 50% of the elements
are turned on, and there are ADS sequences available for the GA-ADS optimization. In
Table 3.2, the achieved PSL by different methods has been reported. It appears that M-
cGA is able to obtain better results than both GA and GA-ADS for all cases. Moreover,
the computational cost required by M-cGA is much lower than those by GA or GA-
ADS as plotted in Fig. 3.13. When the number of elements in the array increases, the
number of function evaluations increases exponentially for the case of GA and GA-
ADS, while it shows a linear increase when using M-cGA. Fig. 3.14 and Fig. 3.15
report the normalized pattern of 502 element thinned array by different methods.
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Table 3.2: Achieved PSLs by Different Methods.

Array GA [60] ADS-GA [60] M-cGA
98 −19.82 −20.4 −20.45

198 −18.20 −19.24 −21.9

502 −20.83 −21.31 −23.53
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Figure 3.13: Function evaluation of different thinned arrays.

Secondly, the performance of M-cGA is compared to those of GA and GA-ADS
over the syntheses of arbitrary thinned array configurations where the ADSs are not
available, i.e., problem II and III in [60]. Two different arrays are thinned: The first
array of 198 elements with 79 elements are off, and the second case, 46 of 200 elements
are off, and the results are reported in Table 3.3, and Table 3.4. The optimized PSLs
by M-cGA are again lower than PSLs obtained by GA and GA-ADS. Furthermore, the
computational cost needed for M-cGA to converge is much lower than those required
by GA and GA-ADS as shown in Table 3.4. As an example, the obtained pattern of the
200-element thinned array with 77% turned on is shown in Fig. 3.16, while the thinned
arrays obtained by other methods are plotted in Fig. 3.17.
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Figure 3.14: Normalized Array Factor of 502 element thinned array, with 50% turn on.

Figure 3.15: Normalized Array Factor of 502 element thinned array obtained by other methods [60].
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Table 3.3: Obtained PSL by different methods.

Array GA [60] ADS-GA [60] M-cGA
198/79 −19.95 −20.25 −21.10

200/46 −22.47 −23.05 −23.75

Table 3.4: Function evaluations.

Array GA [60] ADS-GA [60] M-cGA
198/79 342, 540 126, 126 60, 000

200/46 345, 000 305, 600 100, 000
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Figure 3.16: Normalized Array Factor of 200 element thinned array, with 77% turn on.

Synthesis of Planar Thinned Array

In this section, the 20 × 10 element planar array is thinned using M-cGA. The proba-
bility vectors here are represented as one-dimensional vectors since it would be more
convenient for M-cGA operations e.g. learning and updating. The algorithm performs
the synthesis in the same way as it did for linear array. The sampled solution is con-
verted to planar array configuration. Even though, two-dimensional probability vector
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Figure 3.17: Normalized Array Factor of 200 element thinned array obtained by other methods [60].

is also applicable to represent the distribution of solution of planar array. The fitness
function here is the sum of PSLs at two main plane cuts, i.e., φ = 0◦, and φ = 90◦.

In Fig. 3.18, the far-field pattern cuts are reported, and Fig. 3.19 shows the average
convergence curve (over 30 trials) of the synthesis of the thinned array where 108 ele-
ments are turned on. The optimized PSLs are −26.6 dB at φ = 0◦ plane, and −23.5 dB
at φ = 90◦ plane. The achieved results by M-cGA are 10 dB (cost function) lower than
the results obtained by GA [56], and even 5 dB lower than the results obtained by mod-
ified real genetic algorithm (MGA) which optimized the position of the elements [63].
Moreover, the number of function evaluation required to converge by M-cGA is around
12000 (4 PVs and non-persistent elitism are implemented) which is less than half of
that needed by MGA [63].

3.4.2 Microstrip Filter Design

The first application of M-BOA to EM problem is the microstrip filter presented in [51].
In this section, this procedure is detailed, and the optimum results is reported.

The considered microstrip band-pass filter is show in Fig. 3.20, consiting of a cas-
cade of 2P − 1 segments, each of which with electrical length equal to λg/2 at the
central frequency (being λg the guided wavelength, given by λ0/εeff , where εeff is the
effective permitivity, related to the relative permitivity of the substrate εr and λ0 is the
free-space wavelength), but different width.

The filter can be easily modeled with its transmission line equivalent model, i.e.
with a cascade of 2P − 1 transmission lines, having the same electrical length λg/2,
but different characteristic impedance Zi, since the later quantity depends on the line
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Figure 3.18: Far-field patterns at two main plane cuts.
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Figure 3.19: Convergence curve of thinned array optimized by M-cGA.
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(a) Analytical Modal (b) Printed Design

Figure 3.20: Microstrip filters.

width wi. The filter can be therefore seen as a sequence of two-port networks, each
of which can be represented by its chain matrix [64], whose entries depend only on
the characteristic impedance and on the electric length. The chain matrix of the entire
structure is given by the product of 2P − 1 single chain matrices and the transmission
coefficient, i.e. the transfer function, of the filter is expressed in terms of the entries of
the chain matrix of the whole structure:

S21 =
2
√
Zout/Zin

Atot +Btot/Zin + (Zout/Zin)(CtotZin +Dtot)
(3.5)

where Zout, Zin are the reference impedances at the output and input ports of the filter,
respectively.

The performances of the filter depend on the number of lines used for its realization
(the greater is P , the larger is the bandwidth, but also the longer the filter is), and
on the values of the characteristic impedance of the equivalent transmission lines. In
the considered case here, P is fixed and the filter widths, wi, are optimized with the
M-BOA following the design constraints:

• the bandwidth that has to be equal or greater than a fixed value, e.g. 0.6;

• minimize the in-band ripple;

• maximize the out of band rejection

Even the model, Eqn. 3.5, doesn’t take into account the interactions between the
different lines, it represents a good compromise between the accuracy in modeling the
filter and the low computational cost that is very important aspect when optimization
tools as the M-BOA is applied. Fig. 3.21 show the transfer function of the microwave
filter consisting of 17 line segments (P = 9). The design satisfies 60% of 3-dB band-
width required, with in-band ripple less than -0.2dB (shown in the inset). In this case,
M-BOA is applied with population of 50, and mutation rate of 0.1. Variables considered
are the impedance, Zi, of each microstrip line segment. Table 3.5 reports the optimum
result obtained by the M-BOA. The results can be used to find the width, wi, of each
microstrip line segment which depends on the substrate and considered frequency.
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Figure 3.21: Transfer function of 17 line segment microstrip filter ( inset: in-band ripple).

Table 3.5: Impedance of each segment of final design.

Segment # Impedance (Ω) Segment # Impedance (Ω)

1 71.408 6 36.273

2 39.595 7 134.854

3 104.203 8 37.696

4 35.503 9 134.66

5 120.02

3.4.3 Sparse Array Synthesis using M-BOA

Thank to the promising results obtained over the benchmark functions, the M-BOA has
been applied to more realistic antenna problems, i.e., the optimization of the design of
three linear antenna arrays. To compare the results obtained by the M-BOA with those
provided by other approaches, different examples of linear, broadside, sparse, symmet-
ric arrays, have been considered [65–69]. In all the considered cases, the arrays are
symmetric, and the optimization goal is that of determining the array element excita-
tion coefficients, an, the position normalized with respect to the wavelength, dn/λ, and
the minimum number, 2N , of array elements that allows to satisfy the array radiation
constraints. Note that the estimation of the lowest number of necessary array elements
is an important aspect, as also discussed in [69]. Most of the optimization techniques
adopted for array syntheses [65, 70–75] work with a fixed and predetermined number
of array elements, which is generally taken larger than the actually needed, in order to

45



Chapter 3. Optimization Algorithms

be sure to satisfy the radiation pattern constraints. However, the use of a not redundant
number of elements is generally advantageous, since that reduces the feeding network
complexity and the antenna weight. For this reason, in the last years, several efforts
have been done to propose techniques for the design of arrays, linear and planar, with a
reduced number of elements not equally spaced [67–69, 76]. Due to their probabilistic
nature, BOA and M-BOA seem particularly suitable to determine, during the optimiza-
tion process, also the proper number of array elements, and therefore the design of such
kind of array seems a particularly suitable test case for comparing their performances.

Chebyshev–like Pattern Synthesis

The first considered example consists the synthesis of an array showing a radiation
pattern with the HPBW of at least 6.3◦, the -30 dB beam-width lower than 8◦ and the
side lobe level ≤ −30 dB (see the mask plotted later on in Fig 3.25.). Such require-
ments can be easily obtained with an uniformly spaced Chebyshev array with 2N = 20
elements (this is the reason why we named “Chebyshev-like” this type of radiation pat-
tern), while in [67,69] the constraints have been satisfied with unequally spaced arrays
with N = 6.

Here both the BOA and the M-BOA have been used for the array optimized synthe-
sis, according to the Chebyshev-like constraints specified above. In this test, a popu-
lation of 100 individuals in both the procedures has been used, considering 1000 inde-
pendent trials of 200 iterations each. The fitness function that models the problem is
defined as:

f(X) =
∑
i

ε(θi) (3.6)

where ε(θi) is the the difference between the constraints mask (Rmask) and the radiation
pattern (Rp) obtained at any iteration of the optimization process:

ε(θi) = Rp(θi)−Rmask(θi) (3.7)

It is worthy noticing that Eqn. 3.7 applies only when Rp(θi) − Rmask(θi) ≥ 0, i.e.,
when the obtained pattern exceeds the constraints, while ε(θi) = 0 when Rp(θi) −
Rmask(θi) ≤ 0.

The ranges of variation for the optimization variables are set equal to (0.25 − 5)
for the normalized array element location (dn/λ), (0 − 1) for the element excitation
coefficient (an) and (5 − 9) for the array element pair number (N ). In order to have a
stronger validation of the M-BOA, it has also been compared with the GA and the PSO.

First, the results of the comparison between the standard BOA and the M-BOA are
presented: in Fig. 3.22 the worst (dot-dashed line), the average (continuous line) and
the best (dashed line) curves of convergency relative to the two methods are plotted,
showing that the M-BOA outperforms the BOA both in terms of capability of conver-
gence (the average curve relative to M-BOA reaches a final value for the cost function
that is almost two order of magnitude smaller than the one of the BOA) and reliability
(the average curves converge, although with a greater number of iterations, almost to
the same value that the best one; moreover, the average curve of convergence for the
M-BOA is much closer to the best solution than to the worst one, and this means that

46



3.4. Numerical Results

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Iteration

F
itn

es
s 

va
lu

e

 

 

BOA - Average
BOA - Worst
BOA - Best
M-BOA - Average
M-BOA - Worst
M-BOA - Best

Figure 3.22: Chebyshev-like pattern synthesis: comparison between the BOA and the M-BOA in terms
of convergence.

the number of trials, in which a solution closed to the best one is reached, is greater
than the number of cases in which it is close to the worst one).

In Fig. 3.23 the average curve of convergence obtained with the M-BOA (red solid
line in Fig. 3.22) is compared with the best curves of convergence obtained with a
decreasing number of array elements: with N = 6 the algorithm convergence is still
good and fast: this means that it is possible to satisfy the radiation pattern constraints
with such a number of radiator pairs. The curve corresponding to N = 5 is not plotted
since in that case the algorithm does not converge.

The second column of Table 3.6 shows the probability (computed as the ratio be-
tween the times in which a good result is obtained and the total number of trials) of
obtaining a good solution with different array sizes within a predefined number of it-
erations. Note that, as it can be also deduced from the above considerations, in that
table any row corresponds to N = 5, since with such a small number of elements the
desired radiation pattern is never achieved (the probability is therefore 0). Moreover,
note that the probability to have good solutions first increases and then decreases. This
could be explained with the fact that with a high value of N , e.g. 9, the number of
variables that the M-BOA has to manage increases and therefore the convergence could
not be reached in the considered number of iterations; on the other side, when N is
small, i.e., 6, it becomes difficult to find the proper values of an and dn/λ that get the
required pattern. In both cases, the algorithm hardly converges and less good solutions
are obtained. On the contrary, medium values ofN , i.e., 7, 8, represent a good trade-off
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Figure 3.23: Chebyshev-like pattern synthesis: curves of convergences of the M-BOA, relative to differ-
ent values of array element pairs.

between the problem size and the ease of satisfying the pattern constraints. In the third
column of the table, the probability values computed in [69] for the same array problem
are reported: even if the case N = 10 is out of the range of the number of element pairs
considered here, its respective row has been added, just to show that also in [69] the
sum of the probabilities is equal to 1. It is worth to note that both algorithms shown
the ability to obtain the desired array performances with 6 elements, but the probabil-
ity value relative to M-BOA is higher than that what derived in [69] for the Bayesian
Interference (BI), and this confirms the better reliability of the M-BOA with respect to
the BI.

Table 3.6: Probability of good convergence for different values of N.

N
Convergence Probability

M-BOA BI [69]

6 0.182 0.1327

7 0.349 0.5377

8 0.296 0.2843

9 0.173 0.0393

10 0.006

Finally, the convergence of the M-BOA has been compared with that of the PSO and
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the GA. For doing that, N has been fixed to 6, a population of 100 individuals has been
considered and the results have been averaged over 30 independent trials, each of 1000
iterations. The resulting average curves of convergence for the M-BOA, the BOA, the
PSO and the GA are plotted in Fig. 3.24.

As expected, the BOA could not converge since the number of array elements is too
small, while the M-BOA outperforms both the GA and the PSO. The results show that
the M-BOA not only has the capability of automatically set the minimum number of
elements needed to satisfy the radiation constraints, but, for a fixed N, it also converges
faster than the GA and the PSO. Note that the radiation pattern in Fig. 3.25 does not
show uniform SLL as that obtained with the Chebyshev synthesis, but in any case the
mask is satisfied, with a much smaller number of elements.
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Figure 3.24: Chebyshev-like pattern synthesis (N = 6): average curves of convergency relative to
different methods.

Fig. 3.25 shows the radiation pattern for the N = 6 array, designed with the M-
BOA, together with the required mask, while the corresponding values of the element
positions (dn/λ) and of the excitation coefficients an are listed in Table 3.7.

Flat-beam (sector beam) pattern synthesis

The second considered example is the synthesis of a sector beam pattern with the fol-
lowing requirements: a first region ranging from 78.3◦ to 90◦,where the beam has to
be almost flat, with a ripple lower than 0.5 dB, and a second region, ranging from 0◦
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Figure 3.25: Chebyshev-like pattern synthesis (N = 6): best array factor (AF) obtained by M-BOA.

Table 3.7: Parameters of the N = 6 array design with the M-BOA.

Element # dn/λ an

1 0.4313 0.3657

2 1.3055 0.3282

3 2.1777 0.2769

4 3.0494 0.2037

5 3.9076 0.1316

6 4.7919 0.0815

to 69.3◦, in which the side-lobe level has to be less than -25 dB. Therefore, the cost
function is the same as Eqn. 3.6, considering Rmask(θi) defined in Fig. 3.28.

This synthesis problem is effectively solved by controlling the excitation amplitude
and the phase of all the array elements [65, 66]. In [66], the use of the Taguchi method
allows to fulfill the radiation pattern constraints with an array of N = 7 pairs of el-
ements, i.e., with 6 elements less than the one designed in [65] using PSO. As in the
previous example, the M-BOA is used also to estimate the minimum number of ele-
ments necessary to satisfy the radiation pattern requirements.

Since M-BOA has been shown that it outperformed BOA both in terms of speed of
convergence and solution quality, the M-BOA is from here on only compared with the
GA and the PSO. In all cases the ranges of variation for the optimization variables are
set equal to (0.25 − 5) for the normalized array element location (dn/λ), (−0.5 − 0.5)
for the element excitation coefficient (an), while for the M-BOA the number of element
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pairs could also vary between 4 and 9, since the problem could be easy solved with 10
pairs of elements.

In Fig. 3.26, the best curves of convergence of the M-BOA for different values of
N are reported. They have been obtained using a population of 100 individuals and
considering 800 independent trials, each of 200 iterations. From this plot it appears that
the problem can be solved even with N = 5 pairs of elements, since the convergence of
M-BOA with N = 5 is really fast, and the pattern requirements are reached with two
less pairs of elements than those of the array proposed in [66].
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Figure 3.26: Sector beam pattern synthesis: curves of convergency of the M-BOA, relative to different
values of array element pairs.

Table 3.8: Probability of good convergence with different values of N.

N M-BOA Convergence Probability

5 0.818

6 0.110

7 0.055

8 0.015

9 0.002

In Table 3.8, the probability of obtaining a good solution with different array sizes is
listed. For values smaller than 5 (e.g. N = 4), the algorithm could not convergence to
the desired solution and the probability is 0. The probability for N = 5 is the highest,
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indicating that this is the sufficient number of element pairs necessary to obtain the
desired radiation pattern. Moreover, when N increases, the probability of finding good
solution decreases, since the problem complexity increases and probably the population
size and/or the number of iterations considered here are not still enough to guarantee the
convergence. Finally, note that also in [69] an array of 10 elements satisfying the same
constraints as here has been designed, but comparing the probabilities of obtaining good
solutions in Table 3.8 with those in ( [69], Table III), it is possible to conclude that also
in this case the M-BOA outperforms the Bayesian Interference method.

In Fig. 3.27 the average curve of convergence for the M-BOA in the case with
N = 5, is compared with those relative to the GA and the PSO. For all the three
methods, the adopted population has 50 individuals, while 30 independent trials have
been considered, each of 1000 iterations. It could be seen that the GA converges better
than the PSO, while the M-BOA outperforms both of them. The radiation pattern ob-
tained with the M-BOA is plotted in Fig. 3.28, together with the mask it has to satisfy,
while the design parameters are listed in Table 3.9. A very good flat beam has been
obtained with a ripple of 0.22 dB, i.e., 0.36 dB less with respect to the ripple of the
array designed with the Taguchi method [66].
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Figure 3.27: Sector beam pattern synthesis (N = 5): average curves of convergence relative to different
methods .
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Figure 3.28: Sector beam pattern synthesis (N = 5): best array factor (AF) obtained by M-BOA.

Table 3.9: Parameters of the N = 5 array design with the M-BOA.

Element # dn/λ an

1 0.3586 0.2767

2 1.0748 0.1420

3 2.4697 - 0.0472

4 3.0955 - 0.0246

5 4.1708 0.0245

Null-controlled Pattern Synthesis

The last considered linear array example is the synthesis of an array whose radiation
pattern presents nulls for specific directions [66, 69]. The main beam has to point to
90◦ with a HPBW of 7.4◦, while the side-lobe levels have to be lower than -40 dB.
Moreover, two nulls are desired between 50◦ and 60◦. Such a radiation pattern has been
obtained using GA, PSO, and Taguchi methods with arrays of 20 elements [66,73,74].
Here, the M-BOA is used in order to estimate the sufficient number of element to fulfill
the requirements [69].

The ranges of variation are set equal to (0.25− 5) for the normalized array element
location (dn/λ), (−0.5 − 0.5) for the element excitation coefficient (an), and (5 − 9)
for the array element pair number (N ), assuming to be able to design the array with a
number of elements lower than that used in [66, 73, 74].The M-BOA uses a population
of 100 individuals, and 800 independent trials, each of 200 iterations, have been con-
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sidered. As previously, the cost function is given in Eqn. 3.6, considering Rmask(θi)
shown later on in Fig 3.31.
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Figure 3.29: Null-controlled pattern synthesis: curves of convergency of the M-BOA, relative to different
values of array element pairs.

In Fig. 3.29 , the average curve of convergence of M-BOA is plotted along with the
best curve of convergence obtained for different values of N . The results reveal that
the desired pattern can be obtained even with 6 pairs of elements, i.e., with a reduction
of the 40% of the number of elements compared with the one in [66]. It is worth to
note that the best result ever achieved for this problem is with N = 7 in [69], and this
again confirms the better performances of the proposed method with respect to direct
sampling from Bayesian Interference.

Table 3.10: Probability of good convergence with different values of N.

N M-BOA Convergency Probability

6 0.105

7 0.255

8 0.327

9 0.313

In Table 3.10, the probability of achieving good solutions with different values of
N is shown. For N = 5, the desired pattern is never obtained, while the probability
increases with N , probably due to the fact that the constraints on the radiation pattern
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are harder to fulfill with a too smaller number of elements (as can be seen in Fig. 3.29
that for larger values of N the convergence is faster). However, the probabilities to
obtain good solutions with N = 8 or N = 9 are very close, showing that a further
increases of the number of array element will not improve significantly the possibility
of having good solutions.
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Figure 3.30: Null-controlled pattern synthesis (N = 6): average curves of convergency relative to
different methods .

Finally, the performances of the M-BOA have been tested again against those of the
GA and the PSO, setting N = 6, using a population of 100 individuals and averaging
the results over 30 independent trials; for the M-BOA, it is sufficient to perform 200
iterations to reach the convergence, while both the GA and the PSO needed 10000
iterations; the resulting average curves of convergency are plotted in Fig. 3.30: also in
this case the M-BOA outperforms both the GA and the PSO in terms of computational
cost and in term of solution quality, i.e., the M-BOA requires less iterations than PSO
and GA, to reach a final value of the fitness function that is better than those of the PSO
and the GA. The desired pattern for the twelve elements null-controlled array, obtained
by M-BOA, is plotted in Fig. 3.31, together with the mask. All the design parameters
are instead reported in Table 3.11.
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Figure 3.31: Null-controlled pattern synthesis (N = 6): best array factor (AF) obtained by M-BOA.

Table 3.11: Parameters of the N = 6 array design with the M-BOA.

Element # dn/λ an

1 0.4221 0.2114

2 1.2611 0.1834

3 2.1023 0.1390

4 2.9476 0.0881

5 3.7805 0.0461

6 4.6220 0.0146

Synthesis of planar sparse array

The application of M-BOA to planar sparse array is explored in this sub-section. The
considered array consists of 108 elements and satisfies the design constraints [63] as
follows:

− Distance between any pair of elements is equal or greater than dc = 0.5λ .

− All elements are allocated on a fixed aperture of 9.5λ× 4.5λ.

The array is assumed to be symmetrical along x- and y- axis, which reduces the
problem complexity by a factor of 4. The element coordinate is controlled by the
adopted method from [63]. However, the configuration of sub-array, i.e., a quarter
as shown in Fig. 3.32, is chosen 4× 7 instead of 3× 9, which latter shows better PSLL
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performance. The configuration here is similar to the thinned array in [56], which is
optimized also by M-cGA in Section 3.4.1.
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(x1, y1)
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(xk, yk)

(x2, y2)

(xn, yn)

Figure 3.32: Coordinates of elements in subarray of sparse planar array.

The design object is to minimize the peak side-lobe level (PSLL) in two main planes,
i.e., xz-, and yz-planes. Therefore, the fitness function is the sum of PSLLs in two
planes, as explained in [56, 63], and also in Section 3.4.1. The array has been syn-
thesized using the M-BOA with a population of 100 individuals; 30 independent trials
have been considered, each of 500 iterations.

In Fig. 3.33, the average convergency curve of the M-BOA over the 30 independent
trials along with the best and worst convergency curves has been reported; M-BOA
can achieve very good solution e.g. −50.5 dB for the best case. Note that the optimal
solution obtained here is much lower than those reported in previous works [56, 63]
as could be seen from Table 3.12, in which the sum of PSLLs obtained with different
methods is reported. The performance of M-BOA is comparable to M-cGA, since both
of them are able to obtain fitness scores below −50 dB.

In Fig. 3.34, it is shown the array factors obtained by M-BOA. The PSLLs of the
optimal solution are both lower than −20 dB (−22 dB in yz-plane and −28.5 dB in xz-
plane) which is considerably lower than the result of PSL = −15.86 dB in yz-plane
in [63]. Moreover, the side-lobe levels on both planes are more “uniform” than those
of M-cGA, shown in Fig. 3.18.

Table 3.12: Obtained best PSLs by different methods.

Sum of PSLs (dB)
GA [56] MGA [63] M-cGA M-BOA
−39.83 −45.45 −50.6 −50.5

3.5 Conclusions

In this chapter, two new optimization algorithms have been developed and their appli-
cations have been demonstrated by several mathematical and EM examples. By inte-
grating learning mechanism, M-cGA shows better performance than its predecessors
and can be efficiently applied to array thinning problems. The obtained results reveal
that M-cGA is able to control PSLs of large arrays or planar arrays with pre-defined
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Figure 3.33: Convergence of M-BOA.
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Figure 3.34: Array Factor of optimal array at two main planes.

constraints. Moreover, the computational cost required by M-cGA is greatly reduced
with respect to other methods, which is important for applications such as scanning
arrays.
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The M-BOA has also been introduced: it shows improved performances with respect
to the standard BOA, as well as other optimization algorithms as the GA and the PSO,
both for what concerns the computational cost and the solution quality. Moreover, it
has been shown, considering different examples, that this method seems particularly
suitable for the design of sparse arrays, since it allows also to easily include the array
number of elements among the optimization parameters.

Both proposed algorithms have shown their effectiveness for solving different EM
problems. M-cGA is suitable for binary or discrete problems where the PVs are easily
defined and controlled. M-BOA found their application to continuous cases, in which
parameters can be even real or complex. From this view, M-BOA is potentially applica-
ble for design of passive reflectarray antennas where element’s dimensions are adjusted
continuously, M-cGA is suitable for optimizing reconfigurable reflectarray antennas, in
which the state of controllable devices could be discrete e.g. using MEMS devices.
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CHAPTER4
Passive Reflectarray Antennas

Reflectarray antennas (RA) are nowadays a quite popular technology, used in several
applications, due to a significant number of attractive properties, such as low cost,
low weight, conformal deployment and the possibility of introducing suitable recon-
figurable capabilities. Unfortunately, they present also some intrinsic limitations and
drawbacks compared to other solutions, and in particular a relatively narrow bandwidth.
The bandwidth could be enlarged, but generally with a drastic increase of the structure
complexity e.g. multi-layer structures.

Therefore, the objective of this chapter is to design a single layer passive reflectarray,
in which the re-radiating elements have unconventional shape and enough degrees of
freedom to compensate both the spatial and frequency phase variation of the re-radiated
field. In particular, the work here is focused on a re-radiating elements consisting of
two concentric square rings in which two different and quite independent geometric
parameters are varied.

This chapter will start with an overview of reflectarray antenna design with histor-
ical development and current state of the art. Then in the second section, the double
square ring unit cell will be introduced as a promising RA element. In the third section,
design methods are presented. In this work, the double parameter design and optimiza-
tion algorithm are combined for designing the reflectarray. Finally, two reflectarray
configurations with horn feed are designed and numerical results are presented at the
end of this chapter.

4.1 Reflectarray Antennas Design

The development of reflectarray antennas (RAs) started since 1963 when the first RA
design consisting of variable length shorted waveguide components has been proposed

61



Chapter 4. Passive Reflectarray Antennas

by Kennedy et al. [2]. Thanks to the improvements in antenna design technologies,
in recent decades, RAs have been designed with printed technology, which greatly
reduces the complexity of Kennedy’s design. Printed patches have been implemented
as RAs elements; by varying their lengths or attaching stubs to them, the responses
of these patches can be tuned such that an arbitrary phase shift can be introduced.
Patch antennas, however, are intrinsically narrow-band, and has contribute to the overall
narrow-band characteristic of the whole RA structure.

In general, there are two reported approaches to overcome this well-known draw-
back of RAs. The first one implements multi-layer designs [7, 8], which stacks several
patch layers to form the RA surface. Stacked patch RAs can improve the phase range
and phase behavior of RA elementary, therefore the bandwidth of RA could be in-
creased. This approach, however, increases the complexity of the RAs, i.e., multi-layer
structure. The second approach, on the opposite, uses single layer design of multi-
resonant structures, for example a unit cell consisting of double rings, or double square
rings. These structures offer more than one degree of freedom to control the phase of
the reflected wave. However, in all reported works, the RAs are often designed with
only one variable parameter, which results in the lack of bandwidth for some applica-
tions.

4.2 Double Square Ring Element

In view of previous section, single-layer structures are highly desired for the design of
reflectarray antennas. Among all the different types of patches that have been consid-
ered for this purpose, particular interest has been devoted to concentric rings of different
shape, since this kind of choice looks promising as an effective compromise between a
moderate increase of the complexity of the single patch geometry and its phase com-
pensation capabilities. Furthermore, this type of radiating elements intrinsically posses
different degrees of freedom, since the size and the width of the single rings could be
varied independently; moreover it has a reduced resonance size and finally it has been
seen that if such kind of elements are used in a multi-layer structure, in which the ele-
ments of each layer work in a different frequency band, they do not affect each others,
allowing the realization of a multi-layer, multi-band structure.

4.2.1 Unit Cell Design

The RA re-radiating element considered in this work is of the type sketched in Fig. 4.1,
and it consists of two square concentric rings, each one characterized by its side length
` and width w.

The considered unit cell’s dimension is 15 × 15 mm, which is equal to 0.587λ ×
0.587λ at 11.75 GHz, the desired center frequency. To improve the re-radiating el-
ements performances, a two layer dielectric structure has been used, consisting in a
substrate characterized by height h1 = 5 mm and relative dielectric constant εr1 = 1.1
and in a cover with h2 = 0.85 mm and εr2 = 2.5.

To derive to this configuration, various design stages have been carried out. Initially,
the unit cell was chosen with dimension of 12 × 12 mm, and printed on a substrate
h1 = 3 mm and relative dielectric constant εr1 = 1.1, and the upper substrate. The
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4.2. Double Square Ring Element

Figure 4.1: Geometry of the considered re-radiating element.

design is then investigated to define the best configuration of the unit cell, i.e. the
widths of the rings wout, win and dimension of the unit cell.
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Figure 4.2: Phase variation provided as a function of outer ring, at different frequencies, and Ratio =
0.8.

Fig. 4.2 and Fig. 4.3 plot the reflected phase at different frequencies and different
ratios between the outer ring and its width. Here, Ratio denotes for the ratio (`out −
wout)/`out, and (`in−win)/`in, so the ring’s widths are proportional to their dimensions.
While the ratio between the inner `in and outer ring `out is fixed to 0.5. It is shown that
for lower Ratio, the phase curve is smoother, while the phase range is remained larger
than 360◦ for all frequencies even when Ratio = 0.8. The Ratio is then assigned a value
of 0.8, i.e the ring’s widths are equal to 0.2 of their dimensions.
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Figure 4.3: Phase variation provided as a function of outer ring at center frequencies, and different
Ratio
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Figure 4.4: Phase variation provided as a function of outer ring, at center frequency and different
thickness.
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Figure 4.5: Phase variation provided as a function of outer ring, at center frequency and different
thickness.

The unit cell is then simulated with different substrate’s thickness and different cell
sizes. Fig. 4.4 plots the reflected phase of a 12 mm cell at center frequency with dif-
ferent substrate thicknesses, while Fig. 4.5 shows the same reflected phase of a 15 mm
cell. It is seen that the phase curve is smoother with thicker substrate, while the phase
range is narrower. For a lager cell size, e.g. 15 cm, the phase range is enlarged. With
the size of 15 mm, the phase range is more than 600◦, which is more than enough for
the RA design, even with substrate thickness of 5 mm. The unit cell is then chosen with
dimension of 15×15 mm and thickness h1 = 5 mm, while the Ratio between the ring’s
width and its dimension is 0.2. The unit cell is then used to design passive reflectarrays
in the next section.

4.2.2 Simulated Results

The structure in Fig. 4.1 is characterized by several degrees of freedom, i.e., the two
lengths, the two widths and the aspect ratios, that are not completely independent. Since
their effectiveness in controlling the phase of the re-radiated field is not electromagnet-
ically equivalent, the first analysis carried out was concentrated to figure out which set
of all the possible different geometrical parameters of a configuration of two concentric
rings may present the best phase variation.

In order to obtain this result, for all of them the phase of the re-radiated field has
been computed with a suitable set of different couples of geometrical parameters, con-
sidering the element embedded in an infinite periodic lattice and adopting a full wave
MoM approach. Examples of these results are reported in Fig. 4.6, and Fig. 4.7 where
the phase variation provided is reported as a function of the the size `out of the outer-
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most ring and the aspect ratio p, that relates the size of the inner ring to that of the outer
one, i.e., `in = p · `out ; the two ring widths (wout, win in Fig. 4.1) have been adjusted
proportionally to the size of the relative ring. These couple of geometrical parameters,
(`out, p), are used to design the RAs, later on.

0

5

10

15

0

0.2

0.4

0.6

0.8

−800

−600

−400

−200

0

ℓout [mm]

f = 10.75 GHz

p

P
h

a
s
e
 [
d

e
g
]

Figure 4.6: Phase variation provided at 10.75 GHz as a function of two geometrical parameters.

Fig. 4.8 and Fig. 4.9 show the phase variation with respect to the variation of the side
length `out, for a fixed value of the aspect ratio p and with respect to the variation of
p, having fixed `out, respectively. The three curves in the two figures refer to different
frequencies. From these results it is possible to conclude that all these phase curves
present a significant phase range, more remarkable when `out is varied, running from
around 300◦ to more than 600◦, and an important quasi-linear behavior: moreover,
curves corresponding different frequencies are almost parallel.

The design of each re-radiating element in an RA implies the choice of those `out
and p values that give the proper phase shift, to compensate both the phase delay in-
troduced by the distance between the feed and the element and the variation due to the
frequency. This choice requires not only the phase maps like the one shown in Fig. 4.6,
but also those like the one in Fig. 4.10, in which the difference between the curves of
the phase variation with the two selected geometrical parameters computed at the cen-
tral frequency and at an extreme of the band are plotted. Adopting the design procedure
introduced in [16], and also described in next Section 4.3.1, it is therefore possible to
first find the proper values of `out that provides the compensation of the phase delay
introduced by the path between the feed and each element, and then it is possible to
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4.2. Double Square Ring Element

Figure 4.7: Phase variation provided at 11.75 GHz as a function of two geometrical parameters.
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Figure 4.8: Phase variation provided as a function p.
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select the values of p to assure the proper variation with frequency of this phase.

4.3 Design method

Despite of the large number of degrees of freedom, in most of the RAs in which con-
centric rings are used, only one geometric parameter is independently varied [13–15],
while the others are changed proportionally: in this way it is possible to easily enlarge
the bandwidth, but not enough to fulfill the requirements in several applications. These
are the reasons why in the framework of this chapter we consider as radiating element a
concentric double square ring configuration, in which at least two geometrical parame-
ters are varied. In this way, it is possible to compensate with one parameter the spatial
phase shift and with the other the frequency variation of the incident field phase, so that
the re-radiated field remains almost the same over the whole bandwidth, overcoming
the previously considered limitations. In other words, this means that each element of
the array has to provide a phase contribution to the re-radiated field that varies both
with the element position and with the frequency.

To effectively control all degrees of freedom for reflectarray design, in this section,
double parameter design method will be implemented. By applying this method, the
reflectarray antennas have shown improvement in bandwidth as will be shown in the
next section. At the end of this section, other design methods such as the application of
optimization algorithms and artificial neural network (ANN) will be also reviewed.
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Figure 4.10: Difference between the phase at the central frequency and at one extreme of the band as a
function of `out and p.

4.3.1 Double Parameter Design

The method was first mentioned in [16], where two degrees of freedom are controlled
to compensate the phase requirements at different frequencies. For sake of simplicity,
in this sub-section, the method is explained using the double square ring unit cell, and
two of its parameters, `out and p.

Initially, the phase φ1 of reflected field at specific frequency f1 is calculated versus
two geometrical parameters, as previously shown in Fig. 4.11. For each required phase
delay, a set of geometrical values s = (`out, p) is selected. To illustrate this, the set of
all the geometrical values providing phase delay φ1 = 400◦ is plotted as a red line in
Fig. 4.11.

The same procedure has been used to generate the phase φ2 of the reflected field at
frequency f2 versus `out and p. Then, a map of phase difference ∆φ12 between φ1 and
φ2 is created, as previously shown in Fig. 4.12 . The set of geometrical values pairs
selected is used to identify the phase differences that can be achieved with radiating
element for a fixed phase delay at the second frequency (i.e., the green line in Fig. 4.12).
The cross points between the red line (the set selected from the first step) and the green
line are the values of (`out, p) that compensate the required phase delay φ1 at frequency
f1 and the phase difference between φ1 and φ2. In other words, elements with pair
values (`out, p) will compensate phase required at frequencies f1 and f2, which implies
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Figure 4.11: The set of `out and p values providing the required phase φ1 at frequency f1.

Figure 4.12: The set of `out and p values providing the required phase φ1 and ∆φ12at the considered
frequencies f1 and f2 vs. .

that the RAs bandwidth could be ensured for the entire designed band.
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4.3.2 Application of Artificial Neural Network

Generally, the reflectarray design can be divided into two steps: the characterization of
the reflectarray unit cell with respect to design parameters e.g. physical dimensions,
incident wave etc., and the design of the entire structure, which could be managed
by phase-only synthesis (POS) or by means of optimization. The characterization of
the unit cell is to map the phase and the amplitude of the reflection coefficient of the
unit cell to the selected geometrical parameters (these maps are then called look-up
tables). This step is often performed by a full wave method of moment approach and
applying the local periodic (LP) assumption, i.e., the element is embedded in an infinite
environment on which a plane wave impinges. The generation of the look-up table is
computationally expensive, since it requires to perform the full-wave analysis of the
periodic array several times for multiple values of geometrical parameters, as well as for
different frequencies, and angles of incidence. Moreover, the storage of data occupied
by these simulations requires a large amount of dynamic memory. Finally, if the design
of RAs is carried out by means of optimization using stochastic-based algorithms, the
reflection coefficient sampling rate needs to be high.

In order to reduce the computational time and memory consumption, the application
of artificial neural network (ANN) has been proposed in literature, relating the behavior
of RA unit cell and its geometrical parameters [15, 77–79]. These works demonstrate
the applicability of ANN in modeling the RA re-radiating elements. With the help of
the ANN, the amplitude and phase of the reflection coefficient can be reconstructed
precisely, taking into account the effect of different angles of incident wave, and for
different polarizations. For the detail description of ANN, the reader is referred to [80,
81], this sub-section is devoted to explain the implementation of ANN to reflectarray
design.

The general ANN model, applying to characterize RA unit cell, is depicted in Fig. 4.13.
The inputs for the network are selected design parameters, e.g. physical dimensions.
The angle of incidence can be included since it differs from one element to the other,
especially at the RA’s borders and when the RA’s electrical size is large. The outputs are
generally the phase and amplitude of the reflection coefficients for each polarization.
The network can consist in multiple hidden layers with bias. The input composition in
each neuron is made by a nonlinear weighted sum

f(x) = k(x)

(∑
i

wigi(x)

)
, (4.1)

where k(x) is a nonlinear activation function which models the activity of biological
neurons in the network and wi are the weights, which are the coefficients connecting
nodes in the network.

The ANN works properly when for any set of inputs, it produces the desired outputs.
It means the connections between the different nodes in the network are set properly,
i.e., the weights wi have been correctly chosen by the same training procedure. After
training, the ANN can be seen as a black box: when a set of design parameters input
to the box, we obtain a set of outputs, which visualize properly the behavior of RA
elements. The ANN is now ready to act as EM modeling tool box for selecting the
correct design parameters for every RA element.
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Figure 4.13: A typical Multi-layer Perceptron structure of ANN, with 2 hidden layers.

To show the effectiveness of this approach, Fig. 4.14 reports the comparison between
full-wave HFSS simulation and ANN surrogate model for phase values in 3 considered
frequencies. The ANN structure consists of 4 inputs, 2 outputs neurons and 2 hidden
layers of 11 and 9 neurons respectively. The inputs are the angle of incident, the fre-
quency and two geometrical parameters, i.e. `out, p, while the outputs are the magnitude
and phase of reflection coefficient.

4.3.3 Optimization of Reflectarray Antennas

The design of the entire reflectarray can be done: either directly by controlling the phase
of each element to create the desired beam, i.e., phase-only synthesis, or indirectly by
means of optimization, i.e., synthesis using optimization algorithms [24,25,82,83]. The
advantage of using global optimizers is that they are able to handle a large number of
degrees of freedom and provide a configuration, which satisfied pre-defined constraints.

Fig. 4.15 shows the block diagram of the implementation of global optimization
algorithm to design the reflectarray antennas. Optimization algorithms can be used in
setting parameters for elements in the array in order to produce the phase required to
create desired beam e.g. pencil, contour beams, etc. The required phases are computed
by fast methods such as phase-only synthesis (POS) or projection matrix algorithm
(PMA). This is a popular approach to integrate an optimizer since the design procedure
only works with RA elements [23,25,79]. Moreover, available data such as the look-up
tables or the ANN (as described in Section 4.3.2) or equivalent model of RA element
could be included to accelerate the optimization process. An example of application of
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Figure 4.14: Phase characterization by ANN.

Figure 4.15: Block diagram of the design procedure integrating global optimization algorithm.

ANN is shown in Fig. 4.16, where the ANN replaces the data from maps in Fig. 4.15.
This approach, however, often exploits the analysis of RA’s elements, which is based
on the local periodic (LP) assumption, and therefore neglects mutual coupling between
elements. This affects the performance of the RA e.g. resulting high side-lobe level.

Alternatively, global optimization can be applied to the design of entire array (global
level) by considering the RA as an object and all parameters relating to elements are
variables. By controlling these parameters, the optimizers try to find the best con-
figuration that fits the design constraints, which is validated by full-wave simulation.
However, this approach is normally very time consuming, since there are hundreds or
even thousands of variables characterizing an RA and also the evaluation performed by
full-wave simulator is time consuming. The advantage is that the design will take into
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Figure 4.16: Part of the block diagram in 4.15 modified by the introduction of ANN.

account all aspect of the array, therefore, the final design would satisfy all constraints.
This approach is applied in the next chapter for the design of reconfigurable reflectarray
antennas.

4.4 Reflectarray Implementation

From the previous sections, the double square ring unit cell has shown a good phase
behavior with several degrees of freedom which allows the potential application of the
double parameter approach to design RAs. In this section, reflectarray designs will
be realized using this unit cell combined with the design methods described above.
The design of horn antenna, which is used later as the feed for the RAs, is presented
first. Following, the implementation of these design methods to determine geometrical
parameters for each element in the array is carried out.

4.4.1 Horn Antenna Design

For the following RA designs, a horn antenna is implemented as the feed, designed to
operate atX band and cover the design frequency band 10.75−12.75 GHz for RAs. The
feed is pyramidal horn, which follows the design method described in ( [26], Chapter
13). The prototype of horn antenna is depicted in Fig. 4.17, while its parameters are
listed in Table 4.1. In Fig. 4.18, it is plotted the radiation patterns of the designed horn
at two main plane cuts at 11.75 GHz. The phase center of the horn is determined at a
distance of 136.5 mm from the port.

Table 4.1: Parameter for horn antenna (in mm).

a b l a1 b1 ρ

15 10.134 30 74 50 120
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l

(a) Pyramid horn

(b) E-plane view

Figure 4.17: Pyramid horn antenna (from [26]).

4.4.2 Implementation

In this chapter, passive RAs are designed with pencil beams scanned to a pre-defined
direction. The phase required for each element is determined by the phased array theory
presented in Section 2.1:

φR(xi, yi) = k0(di − (xi cosϕb + yi sinϕb) sin θb) (4.2)

where k0 is the propagation constant in vacuum, (xi, yi) are the coordinates of element
i, di is the distance from the phase center of the feed to the cell, and φR(xi, yi) is the
phase shift required for element i, and φb, θb is the direction of the beam. Other beam
patterns such as contour beam could be synthesized in the same manner (the required
phase could be found by phase-only synthesis).

Two parameters, i.e., `out and p, are manipulated to obtain the required phase for ev-
ery element. The double parameter design method is implemented in order to enhance
the bandwidth of reflectarray.

4.5 Numerical Results

In this section, numerical results of reflectarray antennas designed in the previous sec-
tions will be presented. The design of a re-radiated surface, consisting of 5×5 array
of double square ring elements with plane wave excitation, is shown first to prove the
effect of design method to improve the RA gain. Then, the designs of two RA configu-
rations with horn feed will be presented. Numerical results of these RAs will show the
wide-band characteristic of the double square ring elements.
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Figure 4.18: Radiation pattern of horn antenna at two main plain cuts.

4.5.1 Reflective Surface Design

As a proof of the concepts summarized in the previous sections, and in particular of
the real possibility to enhance the bandwidth with the use of the introduced double pa-
rameter method, design of a reflective surface has first been considered. The surface
consists in 5×5 array of double square ring elements on which, for the sake of simplic-
ity, the incident field is a plane wave impinging orthogonally to the plane. The layout
of the reflective surface is shown in Fig. 4.19, the elements have been design to redirect
the incident wave to scan at an angle of 20◦ with respect to the normal. Two different
approaches are applied to design the surface for maximizing the gain in the frequency
band 10.75− 12.75 GHz, that corresponds to a bandwidth of 17%

In Fig. 4.20, it is shown the frequency behavior of the maximum gain on the entire
frequency band computed using the dual-parameters re-radiating elements and com-
pared with the gain of similar surface, in which only `out has been used as degree of
freedom. It is possible to see that the gain variation is less than 1 dB for the whole
considered bandwidth. Moreover, the exploitation of two degrees of freedom of RA’s
elements allows an increase of gain of almost 1 dB.
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(a)

Einc.

Eref.

200

(b)

Figure 4.19: Prototype of 5× 5 reflective surface with plane-wave incident.

Figure 4.20: Gain comparison for 5 × 5 reflective surface. Inset: radiation pattern of dual-parameter
antenna at central frequency.
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4.5.2 Reflectarray Antennas Designs

In order to experimentally validate the synthesis concepts previously detailed, two re-
flectarray configurations of different size have been considered. Both of them are off-set
fed, since in that case the distances between the feeder and the lower and upper sides
of the reflector are quite different, and the frequency compensation of the introduced
delays is more complex to achieve. With the same aim of considering the worst case,
the planar reflectors have been designed in such a way that the direction of maximum
radiation is slanted with respect to the broadside: in this way it is possible to check if
the direction of maximum radiation remains the same at the different frequency, due to
the proper compensation of the re-radiated field phase.

16×16 Reflectarray Antenna

The first considered RA design is the configuration depicted in Fig. 4.21, consisting in a
16×16 planar reflector fed by a rectangular horn located at a distance of 390 mm along
the z-axis and of 125 mm along the x-axis from the center of the coordinate system,
which is coincident with the central point of the reflector.

Figure 4.21: View of the designed 16× 16 RA geometry.

The structure has been designed using the two degrees of freedom of the double
ring re-radiating elements to obtain the maximum re-radiation in a direction tilted of
18◦ with respect to the normal and to minimize the gain variation in the frequency range
10.75− 12.75 GHz, as reported in Fig. 4.23.
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The entire RA has been analyzed using a full wave simulator and the radiation pat-
terns for different frequencies have been computed. In Fig. 4.23, the radiation patterns
in the plane φ = 0◦ computed at the extremes and at the center of the frequency band,
are shown: in this case, not only the gain variation is really small, lower than 0.5 dB
in the entire band, but the side lobe level remains almost constant and below −18 dB.
Compared to the radiation pattern obtained by 1 parameter design method Fig. 4.24 and
Fig. 4.25, the gain is higher while the side-lobe levels are managed lower by using dou-
ble parameter method. The results confirm the effectiveness of the proposed method
for passive reflectarray design.

Figure 4.22: 3-D radiation patterns of the 16×16 RA computed at the central frequency.

32×32 Reflectarray Antenna

The second considered configuration is the 32× 32 planar reflector shown in Fig. 4.26.
In this case the rectangular horn located at a distance of 671 mm along the z-axis and of
217.5 mm along the x-axis from the center of the coordinate system, which is coincident
with the central point of the reflector. As in the previous design, to improve the re-
radiating elements performances, the same dual layer dielectric structure has been used,
consisting in a substrate characterized by height h1 = 5 mm and relative dielectric
constant εr1 = 1.1 and in a cover with h2 = 0.85 mm and εr2 = 2.5. As in the previous
case, the planar reflector has been optimized to work in the frequency band 10.75 −
12.75 GHz, and to have a direction of maximum radiation tilted 18◦ off broadside.
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Figure 4.23: Radiation patterns of the 16×16 RA designed by double parameter method, computed at
three different frequencies in the plane φ = 0◦. Inset: gain frequency variation
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Figure 4.24: Radiation patterns of the 16×16 RA designed by 1-parameter method, computed at three
different frequencies in the plane φ = 0◦. Inset: gain frequency variation.
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Figure 4.25: 3-D radiation patterns of the 16×16 RA designed by 1-parameter method computed at the
central frequency.

In Fig. 4.27, the 3D radiation pattern of the reflectarray, computed at the central
frequency, is reported, showing the high directivity of the designed structure and the
absence of unwanted high lobes apart from those around the maximum.

Finally, in Fig. 4.28, the cuts in the vertical plane for three different frequency values
are shown: the main lobe is almost coincident in the three cases, and no shift of main
beam occurs changing frequency. The side lobes increase slightly with the frequency,
but in any case they are well controlled. In the figure inset it is reported the frequency
behavior of the gain, showing that also in this case it remains almost constant over the
entire bandwidth. Finally, the aperture efficiencies are reproted Table 4.2 for both de-
signs, which are acceptable since one of the limitations of passive RA is low efficiency
due to the spillover, cross polar and illumination losses.

Table 4.2: Aperture Efficiency.

RA16 RA32
53.6% 40.03%

4.6 Conclusions

In this chapter, the step by step design procedure of passive reflectarray antennas has
been presented. The double square ring element has been proposed as a unit cell for
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Figure 4.26: View of the designed 32× 32 RA geometry.

passive phase compensation. This element is classified as a single layer structure with
two square rings printed on the same layer. The unit cell offers a good phase range and
several degrees of freedom for antenna design. ANN surrogate model is used to get a
fast description of reflection coefficient.

The double parameter design method has also been introduced which effectively
manages design parameters of double square ring element to enhance the gain band-
width of reflectarray antennas. The example of the reflective surface has shown that
by applying this design method, gain can be improved by almost 1 dB over the whole
bandwidth.

We also presented numerical results of two different passive RA configurations.
The results have shown the effectiveness of the design method and performance of
the proposed unit cell. A large bandwidth, i.e., more than 17% of 1 dB gain bandwidth
has been achieved for both RA designs. Moreover, these results are validated by Ansoft
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Figure 4.27: 3-D radiation patterns of the 32×32 RA computed at the central frequency.
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Figure 4.28: Radiation patterns of the 32×32 RA computed at three different frequencies in the plane
φ = 0◦. Inset: gain frequency variation.
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HFSS simulation.
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CHAPTER5
Reconfigurable Reflectarray Antennas

The previous chapter has addressed the advantages of reflectarray antennas over tradi-
tional reflector due to their attractive qualities, e.g. low-cost, light weight, good effi-
ciency, high gain, and ease of manufacturing. In more recent years, the possibility of
reconfigurability has been investigated, too. By integrating elements such as varactor
diodes, PIN diode switches, or micro-electro-mechanical system (MEMS) to array ele-
ment (scatter), the arrays are able to synthesize different patterns on the same structure.
This has enabled reflectarrays to be applied to several complex communication systems
such as satellite communication systems, radars.

In reconfigurable reflectarray antenna (RRA), each element is loaded with one or
more electronic switch to reconfigure its electrical properties. Therefore, the design
of the RRA unit cell is the core of design procedure. The element has to show not
only good phase behavior for array design, but also to be simple to integrate with the
switches. Here, a unit cell consisting of three dipole has been adopted as the RRA ele-
ment. The analysis of this element combining with varactor diodes has shown potential
application for RRA.

In this chapter, the design and the analysis of three dipole unit cell and its application
to RRA is presented. The chapter starts with a review on RRA design, where different
methods are listed. Then, the RRA unit cell based on tunable resonator approach imple-
menting varactors is presented. Next, the optimization of the infinite reflective surface,
in which the Floquet harmonics of the structure are suppressed by optimization pro-
cedure, is presented. Finally, the use of the proposed element for the RRA design is
described. This adopted design procedure is based on the combination of method of
moment and optimization routine will be implemented as RRA design method. Nu-
merical results and conclusions are addressed at the end of this chapter.
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5.1 Introduction

The introduction of RRA has dated back to 1977, when Phelan [84] implemented ro-
tation technique to spiral cell of reflectarray to reconfigure circularly polarized wave.
With enabled technologies, in recent years, several alternative solutions for RRA have
been proposed including the use of varactor diode, PIN diode, and more recently devel-
oped MEMS. This significant progress has allowed RRAs to be used in various areas.
Similarly to passive RA design, there are three main approaches that could be adopted
to obtain the phase shift in RRAs: tunable resonator, guided-wave approach, and rota-
tion technique [85].

The first approach consists in changing the resonant frequency of elements. Instead
of changing the physical dimensions of the resonator as in passive RA, RRA elements
use electronic switches to attain this phase shift. The idea is using these devices to
vary the effective electrical length of the resonator, so that the reflection phase change
as well. Devices such as varactor diode, PIN diode or MEMS could be implemented
in this approach. The first attempt to integrate varactor diode to RRA is presented
in [86], however the design only achieved 180◦ of phase range. Larger phase range can
be achieved by using different loading configurations [87–89] with the same concept
of varactor-loaded patch. It is also possible to use MEMS varactor for this kind of
approach.

Alternatively, the phase shift of the RRA elements can be controlled by using guided-
wave approach. The concept is again similar to the one applied in fixed reflectarray
design, which uses delay line to shift the phase of reflected wave. The impinging wave
is first transformed by the antenna into a guided-wave, that is then phase shifted using
delay line and re-radiate. The delay line in case of RRA is control by varactor diode
to create different phase shift. This approach offers several advantages over the first
one, as the possibility to attain more than 360◦ of phase range [90, 91] using coupled
aperture. Moreover, using this technique, wide-band behavior can be achieved since
the delay line can provide true-time delay capability.

The third approach is based on the use of rotation techniques. The concept is
the same as implemented in passive RA, in which different phase shift for circular-
polarized wave is generated by rotating elements [92, 93]. In RRA, independent rota-
tion of each element is carried out by electrical means to create electromagnetic rotation
of element instead of geometry rotation. This was first done in [84] by using diodes in
rotation-invariant geometry. Other designs have been proposed so far, however there is
no full reflectarray with beam-scanning using this technique.

The RRA, in any case, present their trivial drawbacks such as the complexity of the
design since electronic devices and their controlling network that have to be integrated
into the array platform. The quantization effect is also another well known problem
for RRA. The phase errors at each element due to the finite number of available phases
result in decreasing the gain and increasing the side lobe levels. Though, the RRA are
still very attractive for modern communication systems. So far, research on RRA is
mainly focused on single band, single polarization, and now is extending to multi-band
operation, polarization manipulation, and amplification, which promises wide range of
applications of RRA.
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5.2 Unit Cell Design

As mentioned in the previous section, the most important part of the design of recon-
figurable reflectarray antennas is the unit cell design, which allows the integration of
electronic components into RRA for controlling the reflected phase. After considering
and analyzing different possible configurations for RRA unit cell, the one consisting
of three printed dipoles has been chosen, since it could be easy for manufacturing and
integrating with electronic devices. The three dipoles are parallelly printed on a same
dielectric layer and each of them is loaded with a varactor that acts as phase shifter.
The introduction of three varactors is also an advantage of the proposed design, since
the unit cell now offers more degrees of freedom to control the phase variation and the
possible reconfigurability.

5.2.1 Three-dipole Unit Cell

The considered RRA unit cell was first proposed in [94, 95] as passive reflectarray
element. The three printed dipoles form a multi-resonant structure: by controlling
the length of the dipoles and the ratio between the center dipole and the two satellite
dipoles, the unit cell has shown a good phase behavior with more than 500◦ of phase
range with very low losses. The implementation of this unit cell to passive RA has
shown the achievement of wide bandwidth in the X-band, and a good performance of
RA design. Taking as a reference the results in [94, 95] the “passive” RA unit cell has
been firstly analyzed and designed to work at a frequency of 5.5 GHz.

The element structure is sketched in Fig. 5.1, where its dimension are shown. The
dipole width is 3 mm, while their length is varied to compensate the phase shift. Figs. 5.2–
5.3 plot the phase and amplitude of the reflection coefficient versus the length of the
center dipole. The results confirm the good phase response of the element over a wide
frequency band.

10 mm

10 mm

30 mm

30
m

m

Figure 5.1: Three-dipole unit cell.
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Figure 5.2: Phase of the reflection coefficient for the three-dipole unit cell.
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Figure 5.3: Amplitude of the reflection coefficient for three-dipole unit cell.
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5.2.2 Reconfigurable Unit Cell

If instead of varying the length of the dipoles, each one is loaded with a tunable reac-
tance, realized by a varactor diode, it is possible at the same time to compensate the
phase shift and to provide the reconfigurability. The RRA element considered in this
work is therefore modified as illustrated in Fig. 5.4, and it consists of three dipoles with
attached varactors, backed by air substrate and ground plane. The element is designed
at frequency of 5.5 GHz, and the cell dimension is 5.5λ× 5.5λ.

x

y

C1C2 C3
30 mm

30 mm

L1 L2L2

10 mm 10 mm

Figure 5.4: RRA unit cell.

The tunable resonator approach is applied in this case; the capacitance of varactors
are varied to obtain different phase of reflected wave. Thank to the three degrees of
freedom, in addition to provide the desired phase shift and the possibility to reconfigure
the RA, this unit cell also allows to control of the mutual coupling between adjacent
cells as shown in next section. Moreover, this enables the application of the design
method mentioned in Section 4.3 to the design of RRA.

5.2.3 Simulated Results

In RRA design, the physical dimensions of the element are fixed since the control
part is performed by electronic means. Therefore, the first step is to define the proper
values for all geometry parameters, i.e., the length, width of the dipoles, as well as their
ratio need to be defined. Fig. 5.5 and Fig. 5.6 show examples of the reflection phase
of the RRA element for different lengths of dipoles, and different ratios between the
center and two satellite dipoles. In this case, three varactors are set to the same value,
and are varied simultaneously in between (0.1–2) pF. By extensive analysis, all design
parameters are defined as follows: the main dipole length L1 equals to 28 mm, while
the ratio between the main dipole and two satellite dipoles L2/L1 is 0.8, and the air
substrate thickness is 5.5 mm.

As mentioned above, three varactors can be manipulated independently to control
the phase of the reflection coefficient. Fig. 5.7 shows a graph of the phase variation as
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Figure 5.5: Phase of the reflection coefficient of the RRA unit cell:for different values of the center
dipole’s length
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Figure 5.6: Phase of the reflection coefficient of the RRA unit cell for different values of the ratio L2/L1.
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Figure 5.7: Phase variation provided at 5.5 GHz as function of the two varactor parameters
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a function of the capacitance values of the center dipole and those of the two satellite
ones assuming two satellite varactors have a same value.

Fig. 5.8 illustrates the phase curve at different frequencies when the three varactors
are equally varied, i.e., along the diagonal in Fig. 5.7. It is possible to see that the
phase range for the design is around 370◦ at the center frequency, which is favorable
for array phasing. In all cases, a varactor is characterized by a variable capacitor, an
inductor, L = 0.4 nH, and a resistor, R, which is assumed to be 0. A more realistic
modeling could be employed but the current analysis, the ideal model without losses is
sufficiently accurate.

5.3 Infinite Reflective Surface

The analysis and the design of reflectarray antennas often makes the assumption of lo-
cal periodicity (LP), which assumes that all elements are identical [22]. The unit cell
of a reflectarray is analyzed first in an infinite environment with a full-wave approach,
which captures the mutual coupling effects between identical elements. The data from
this analysis is then used for selecting elements that produce the necessary scattering
characteristics for the array. The final configuration, therefore, consists of different ele-
ments with potentially strong variation in geometries or loads from element to element.
This changes the mutual coupling between elements, which violates the LP assumption,
and affects the performance of the reflectarray.

To circumvent this problem, the surrounded element [96, 97] and extended local
periodicity methods [98] have been proposed. These methods attempt to include the
real environment in the element analysis, so that, the data obtained from the unit cell
analysis more accurately takes into account the effect of an element’s neighbors. The
achieved results show an improvement in the array performances. However, the design
of a reflectarray is still based on the analysis of a local region of elements and the
final far-field pattern can still show discrepancies with respect to that obtained by the
full-wave simulation or measurements of the entire RA.

In this section, the design of a surface with a periodic phase gradient to illustrate the
effect of the LP violation. Though the structure is not the same as a reflectarray, this is
the first step to understanding the mutual coupling effect and the way to control it. The
analysis of the periodic structure can be used to assist in the design of optimized RAs
later. To control the mutual coupling in the proposed structure, an optimization scheme
is integrated into the design process. Moreover, to speed up the optimization process,
the scattering matrix technique is employed.

5.3.1 Reflective Surface

The structure considered is shown in Fig. 5.9, which consists of 1×3 sub-array with
master/slave boundaries on the four surrounding walls, i.e., simulating an infinite envi-
ronment.

The 1×3 sub-array was chosen to produce 120◦ inter-element phase shifts, which re-
sults in large electrical differences between the adjacent elements and purposeful strong
violations of the LP assumption. The array is phased such that the phase periodicity
along the X-axis equal to the length of the sub-array, Wx. From the Floquet analysis in
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Figure 5.9: 1× 3 Sub-array

Section 2.3, the direction of propagating modes are determined as

θp = sin−1

(
2pπ

kW

)
(5.1)

where W is phase periodicity and k is the wave number. From Eqn. (5.1), the modes p
that propagate can be determined by calculating the values of p which result in∣∣∣∣2pπkW

∣∣∣∣ ≤ 1 (5.2)

5.3.2 Floquet Harmonics

From Eqn. (5.1) and Eqn. (5.2), the propagating modes, p, for the structure in Fig. 5.9
are−1, 0, 1, and the desired direction is given by p = 1 (since W = Wx = 3×0.55λ).
An incident plane wave is assumed to normally impinge the reflectarray surface and
then is reflected at an angle θ1 (p = 1 in Eqn. 5.1 ). To simulate and capture the
incident and reflected waves of the structure, a Floquet port is employed as shown in
Fig. 5.9. The incident plane wave is generated by mode TE0 of the Floquet port and
the reflected power will be coupled to mode TEp, where p = −1, 0, 1. By considering
each mode as a separate port, the coupled power to each mode from the incident, TE0

mode can be directly obtained from a multi-port scattering matrix representation.
To illustrate the existence of Floquet harmonics in this type of structure, an initial

array of unloaded dipoles is designed. The results are shown in Fig. 5.10, which illus-
trates the Floquet harmonics of an infinite dipole array for different phase offsets (i.e.,
the sub-array is first phased with the first element’s phase set to 0◦, then 30◦, 60◦, and
so on). This is to illustrate the impact of varying the local geometry on the harmonic
magnitudes.

The same procedure is applied to the designs of the 1×3 arrays of square patch and
of the RRA unit cell proposed in this chapter. Fig. 5.11 and Fig. 5.12 show the Floquet
harmonic behavior of these structures with different phase offsets. The phase offsets
are varied in the same way as the case of unloaded dipole array. It is clear that for all
the cases, the Floquet harmonics do exist on the phased gradient surface. Moreover,
depending on the interaction between elements (mutual coupling), the power coupled
to a same mode is different, which means by proper controlling the mutual coupling, it
is possible also to control these Floquet harmonics. From these results, it can be seen
that significant power is transmitted to mode TE−1, therefore, in order to improve the
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Figure 5.10: Floquet harmonics of the 1×3 unloaded dipole array

94



5.3. Infinite Reflective Surface

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

M
ag

ni
tu

de

 

 

[0, 120, 240]

[30, 150, 270]

[60, 180, 300]

[90, 210, 330]

Figure 5.11: Floquet harmonics of the 1×3 square patch array

efficiency of coupling to the desired p = 1 mode, the other two harmonics, p = −1, 0,
have to be suppressed.
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Figure 5.12: Floquet harmonics of the 1×3 array of loaded three-dipole element.
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5.4 Reconfigurable Reflectarray Implementation

As illustrated in the previous section, the violation of local periodicity results in the
existence of Floquet harmonics in the phase gradient periodic structure. The same con-
clusion could be drawn for the case of finite reflectarray antennas, since the elements
in the array are different in phase to shape the desired beam. As a results, the RA
performance is affected: the real RA pattern is different from the predicted one, and
it generally presents higher side lobe level. To overcome with this problem, in this
section, a new approach based on the method of moment (MoM) combined with an
optimization algorithm is proposed as a design tool for enhancing the RRA’s perfor-
mances. The proposed method will be detailed with other approaches in the following.

5.4.1 RRA Design Methods

Generally, the design of RRAs could implement the same procedures as described for
passive RAs. The design is based on the analysis of the single element and the phase
shift to create desired beam patterns. The phase shift is calculated using phase-only
synthesis techniques such as the intersection approach, or the projection matrix algo-
rithm. For example, to create pencil beam, the RA design Eqn. 4.2 is used to find the
phase required for each element to compensate the spatial and frequency differences.
This approach, however, suffers from the same limitation as demonstrated in previous
section. Moreover, the phase quantization effect could be an issue because this results
in an additional increase in phase error.

Recently, the work in [99] has shown that the phase calculated using element anal-
ysis is no longer correct in the finite array environment. The paper pointed out that the
phase after reflection will differ from that calculated using LP assumption. As a result,
radiation pattern shown discrepancies as already pointed out. Moreover, the amplitude
of the reflected wave does not only depend on the position of the element with respect
to the feed, but also on the phase offset. Therefore, phase offset can be considered as
a degree of freedom for the design. This method will be briefly summarized here and
be used as a reference method to compare the results obtained by the here proposed
approach.

Figure 5.13: Scheme for the scattering matrix characterization of the RA elements behavior, Y. Abdallah,
et al. [99].
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The method is described for the design of the RA with identical elements, which
are loaded by reactance to serve as phase shifter. The procedure to calculate the reac-
tive load is summarized below. At first, the method replaces all reactance components
by lumped ports, and characterizes the relation between ports by means of scattering
elements as shown in Fig. 5.13. Here, ~b0i represents the incident wave from feed to
element ith, ~ai denotes the excitation wave after reflection of incident wave at element
ith. The “total” incident wave enters each element is the sum of the incident from the
feed and the mutual coupling from element’s neighbors as follows:

~btot = ~b0 + [S]~a (5.3)

where the excitation weightings ~ai are the reflected from total coupled waves.

~a = [Γ]~btot (5.4)

substituting Eqn. 5.4 into Eqn. 5.3, we have:

[Γ]−1~a = ~b0 + [S]~a (5.5)

and assuming |Γ| = 1

| ~a |=| ~b0 + [S]~a | (5.6)

Solving Eqn. 5.6 with respect to the excitation ~a, the reactive loads, Xm,n, can be found
through ~a and Γ

Γm,n =
am,n
btot,m,n

(5.7)

Xm,n =
jΓm,n − 50

jΓm,n + 50
(5.8)

The method could properly account for the effects of all elements in the array, and
therefore it attains the correct phase and amplitude of the wave after reflection (~a).
As a consequent, the results have shown an improvement in side lobe area of the RA
pattern with respect to the traditional RA design method. The method, however, is
applicable for the case where there is only one port attach to each element (single
dipole or patch). It becomes very complex in which any unit cell consists of more
elements, as the considered case here, since the number of ports drastically increases, if
the interaction among the elements of a single cell has to be taken into account as well.

As mentioned in the previous chapter, optimization algorithms could be integrated
in the RA design procedure to provide a fully integrated design tool. Especially for
RRA, when geometrical parameters are fixed and only the electronic switches are ad-
justed, optimization routines can be applied to control the performance of the RRAs
effectively. The values or states of these electronic devices are considered as variables
to be optimized by the global optimization algorithms in order to create the desired
beam patterns.
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5.4.2 Optimization of RRA

The optimization scheme for RRA design is shown in Fig. 5.14. At the beginning, ini-
tial RRA configurations are generated based on he phase-only synthesis approach. They
are good starting points, since the array main beams could be properly formed using the
calculated phase. The optimization, therefore, needs only to adjust the values/states of
electronic components to maintain the desired beam, and control the side-lobe area. To
guarantee an accurate description of the entire RRA, MoM is implemented in the eval-
uation of RRA design. Each configuration is, therefore, computed by MoM, and the
radiation pattern will be used to score the fitness function, which are the input for opti-
mization’s operators. New set of RRA configurations are then generated by optimizer
and the procedure continues until the problem’s constraints are satisfied.

Figure 5.14: RRA design scheme using optimization algorithms

Generally, the fitness function is defined as:

f =
∑
u

∑
v

(|E(u, v)| −Mask(u, v))2 (5.9)

represents the error between the computed radiation pattern and the mask at each step of
the optimization process and for different individuals of the population. This function
takes into account the pattern of all points in the visible space, i.e., u2 + v2 ≤ 1,
and where the pattern is greater than mask, i.e., (u, v) ∈ |E(u, v)| ≥ Mask(u, v). The
Mask is defined as shown in 5.15, with specified beam-width and side-lobe level. Since
the main beam constraints are generally reached with the initial step, the optimization
essentially focus on the reduction of the side-lobe level and maintain the beam.
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Figure 5.15: Desired mask for optimizing RRAs

5.5 Numerical Results

In this section, numerical results of the RRA designs will be presented. The first exam-
ple considered is the optimization of an infinite reflective surface. The design has been
chosen to prove the ability to reduce the Floquet harmonics by means of optimization
and the possibility to control the mutual coupling. Following, two designs of 8×8 RRA
with two different elements, i.e., single dipole and three-dipole unit cell are presented.

5.5.1 Optimization of infinite reflective surface

From Floquet theory, it is known that when the phase periodicity of an infinite structure
is greater than one wavelength, there will be propagating Floquet harmonics. Flo-
quet harmonics in the infinite structure correspond to side-lobes in the finite structure.
Therefore, there is a need to suppress these harmonics in the infinite array especially
when scanning the array. In this section, a process of optimizing an infinite reflective
surface based on the unit cell described in Section 5.2.2 is introduced, which greatly
reduces these harmonics.

In this work, an approach based on the generalized scattering matrix is proposed to
effectively manage all RRA elements: all the varactors are substituted by lumped ports,
and a multi-port analysis including the Floquet port and the associated harmonics is
performed. This results in a generalized scattering matrix [100] including the lumped
ports and Floquet ports. Using signal flow graphs, the lumped ports can be loaded
with suitable reactance and the coupling from the p = 0 mode to the other Floquet
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modes can be estimated. Hence, the impact of varying the varactor capacitances on the
Floquet modes can be easily computed once the multi-port scattering matrix has been
determined, which makes the optimization of the structure much more computationally
feasible.

Next, all the dipoles are loaded with the reactance as shown in Fig. 5.4 and the loads
that produce the required phase shifts while minimizing the amplitudes of the undesired
Floquet harmonics are determined employing the M-BOA, introduced in Section 3.3.2.
The results are shown in Fig. 5.16, which compares the prediction from the scattering
matrix method to full-wave simulations with Ansys HFSS. The full-wave simulations
include lumped-element capacitance in the dipoles set to the optimized values. Good
correlation between proposed method and HFSS is found, which confirms its effective-
ness and accuracy. Moreover, the results confirm that the undesired Floquet harmonics
are greatly reduced.

A further step is that of trying to optimize the structure over the frequency band
ranging from 5 to 6 GHz, in such a way that the power transfer to the undesired Floquet
harmonics is minimized on the entire band. Fig. 5.17 shows the power coupled to dif-
ferent modes at different frequencies. The power coupled to mode −1 and mode 0 are
below 0.1 (−20 dB) for the frequency band from 5.2 − 6 GHz, and most of energy is
transferred to mode 1, which is the desired direction. Therefore, by dynamically con-
trolling the capacitance values of these varactors, the Floquet harmonics are suppressed
over a large bandwidth.

5.5.2 8×8 Reflectarray of Loaded Dipole Elements

The first RRA configuration considered is an 8×8 array of single dipoles loaded with
reactance as phase shifter. The array layout is shown in Fig. 5.18, where the unit cell
consist of only one dipole which has similar dimension as the center dipole of the cell
plotted in Fig. 5.4. The array is placed at a distance of 294.5 mm from theX−Y plane,
while the feed is located at the origin of the reference system and has a cos θ pattern.
A more accurate feed pattern could be assumed, but here the simple case has been
considered with the purpose to compare the proposed method with other approaches
presented in Section 5.4. The method based on the element analysis (local periodicity
assumption), and the method from [99] are respectively named as method 1 and method
2.

Fig. 5.19 shows the evaluation of the RRA performances by the two methods 1
and 2 as a function of the phase offset. The fitness function defined in Eqn. 5.9 is
used to evaluate the RRA radiation patterns. It is clear that the RRA performance
depends on phase offset, therefore the phase offset could be a degree of freedom for the
design. Moreover, by selecting the best results of each method over the phase offset
range, the method 2 (the approach from [99]) showed better result than the method 1
based on element analysis (local periodic assumption), which indicates that the RRA
performance could be improved by accurately defining the phase for each element.

The proposed approach using optimization algorithm is then carried out to design
the RRA. The M-BOA [51] is applied to adjust these continuous values of varactors.
Fig. 5.20 compares the optimized results with the best results obtained by method 2
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Figure 5.16: Optimized results of Infinite Reflective Surface

(the best configuration of method 2 is picked up from Fig. 5.19). By using optimization
approach, an improvement in side-lobe level is observed, especially remarkable for
the 1st side-lobe. The results do not show a breakthrough, but rather they reveal the
possibility to enhance the RRA performance by properly controlling the phase shifters.
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Figure 5.17: Power coupled to Floquet harmonics at different frequencies

5.5.3 8×8 Reflectarray of Loaded Three-Dipole Elements

The design of an 8×8 RRA with three-dipole elements is finally considered and has
a same configuration described in Section 5.5.2, but with the three-dipole unit cell
instead of single dipole elements, as depicted in Fig. 5.21. Each dipole is loaded with a
varactor, and could be manipulated independently to provide different phase shift. The
two satellite dipoles have been considered loaded with the same valued varactors in
order to reduce the complexity of controlling network and accelerate the optimization
process. As mention above, the method in [99] is computationally expensive to apply
to three-dipole element, therefore, the optimization has been applied here only to the
element analysis approach, and the results have been compared with those of method
1.

Fig. 5.22 plots the radiation pattern of the best configurations obtained by method 1
and optimization approach in the φ = 0◦ plane. The RRA configuration obtained by the
optimization approach maintains the main beam scanning in direction θ = 150◦, while
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Figure 5.18: Layout of the 8× 8 RRA using single dipoles as elements.

it manages to keep the side-lobe level lower than the RRA designed using method 1. A
detailed comparison in the side-lobe area is shown in Fig. 5.23 where the differences
of radiation patterns obtained by optimization and method 1 are plotted. The side-lobe
level is well controlled by optimization design method, where the difference is greater
than zero. It is worthy to notice that in some points the difference is lower than 0: this
generally occurs in correspondence of zeros of the radiation patterns that are irrelevant
for comparison. The radiation pattern in two planes, θ = 79◦ and θ = 86◦, are plotted
in Fig. 5.24, and Fig. 5.25. Also in these cases, the results relative to the RRA designed
with the optimization approach outperform those obtained with method 1.

5.6 Conclusions

In this chapter, the design of reconfigurable reflectarray antennas has been considered.
The RRA unit cell consisting of three dipoles loaded with varactors that can be varied
independently to create different phase shift for the element has been proposed for the
RRA design.

The design of infinite reflective surface implementing the proposed element is pre-
sented. From the Floquet analysis and full-wave simulation, it has been demonstrated
that the Floquet harmonics exist on this kind of structures. This was taken to illustrate
the mutual coupling effect in periodic structures, and reflectarray as well, which is the
results of the violation of local periodic assumption. These Floquet harmonics over a
wide frequency band could be controlled by optimizing the structure, for instance with
M-BOA. The results reveal the possibility to improve RRA performance by properly
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Figure 5.19: Fitness score vs. phase offset
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Figure 5.20: Radiation pattern of the 8×8 RRA in φ = 0◦ cut plane
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Figure 5.21: Layout of the 8× 8 RRA with three-dipole elements.

controlling the mutual coupling effect between elements.
To verify this idea, two RRA configurations have been designed with different meth-

ods. The results showed an improvement in side-lobe area using optimization design
method. All the results, however, have been computed by full-wave approach
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Figure 5.22: Radiation pattern in the φ = 0◦ plane cut

Figure 5.23: Radiation difference between the two approaches

106



5.6. Conclusions

0 50 100 150 200 250 300 350
-70

-60

-50

-40

-30

-20

-10

[deg]

N
or

m
al

iz
ed

 |E
| [

dB
]

 

 

Method 1
Optimized Results

Figure 5.24: Radiation pattern in the θ = 79◦ plane cut
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Figure 5.25: Radiation pattern in the θ = 86◦ plane cut
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CHAPTER6
Conclusions

The goal of this thesis is to demonstrate the possibility to implement global optimiza-
tion algorithms to antenna designs, with a particular focus on reflectarray antennas. To
support the designs of complex EM problems, the first objective is to develop new op-
timization algorithms, which overcome the limitations of the best available population-
based global optimizers. These algorithm are then tested with EM problems to prove
their performances. The second objective is to design a single layer reflectarray with
improved bandwidth, and finally, the application of optimization algorithms to design
reflectarray antennas was the last objective.

In Chapter 3, two new optimization algorithms significantly improved from their
ancestors have been presented. The first considered algorithm is the compact genetic
algorithm (cGA). CGA implements the probability vector (PV) to represent the pop-
ulation, which greatly reduces the occupied memory by the algorithm, however cGA
could not improve in term of solution quality with respect to simple genetic algorithm
(sGA). The improved version of cGA by implementing more than one PV, and integrat-
ing a learning mechanism in updating process has been proposed. The idea is to use
more than one PV to enhance the exploration properties of the algorithm and increase
the ability to avoid the local optimum. The improved version showed its excellent per-
formance compared to its ancestors, and also GAs when applied to mathematical and
EM problems, including thinned array syntheses. The obtained results showed that
the improved version of cGA not only provides better results, but also at a reduced
computational cost.

Moreover, in the Chapter 3, another optimization algorithm has been deeply in-
vestigated, and a significantly new version has been proposed, the modified Bayesian
optimization algorithm (M-BOA). This is a derivation of the original BOA by suitably
introducing a mutation scheme to prevent the diversity of new generated population.
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The M-BOA overcomes the drawback of BOA when the starting points are not good,
or when it has been trapped in local minimum. This shows the effectiveness of the
mutation scheme in population-based algorithms. M-BOA has been successfully im-
plemented to several EM design problems such as filter design, linear array syntheses,
or sparse array syntheses. The optimized results revealed that the M-BOA not only
provides the optimum solution, but it can also estimate the requirement to obtain these
solutions, as it has been shown in linear array syntheses. Both the considered algo-
rithms showed their potential application to EM problem where hundred of parameters
have to be managed.

In Chapter 4, the double square ring element for passive reflectarray design has
been investigated. The considered element possesses a good phase behavior over a
wide frequency range, which it yields a large reflectarray bandwidth. Moreover, the
proposed unit cell offers several degrees of freedom for RA design, and it allows the
application of double parameter design method to passive RA design. The application
of double parameter design ensures the performance of the reflectarray over a defined
frequency range. Numerical results of 16×16 array and 32×32 proved the effectiveness
of the chosen element and of the design method. The reflectarrays implemented this
unit cell achieved 17% 1dB gain bandwidth over the whole desired band.

Finally, in Chapter 5, the application of the optimization to RA design has been
proposed for reconfigurable reflectarrays (RRA). A new RRA element, consisting of
three dipoles loaded with varactors, has been presented. The considered element is a
single-layer structure, which allows easily to introduce the controlling network for these
varactors. Additionally, the RRA unit cell offers a continuous phase range of more than
360◦. The proposed element has been first implemented for the design of a reflective
surface. Though designing such a surface is not quite the same as designing an RA, this
step showed the possibility to controlling the mutual coupling effect between elements
in array by properly control the varactors of each elements. Through the design, it
shows the interaction between elements in RA is significant, and can be controlled by
properly design or by means of optimization. Finally, the designs of 8×8 RRA with
singe dipole element and three-dipole element have proved this idea. The optimized
design showed an improvement in side-lobe suppression.

Through these investigations, the original goals and objectives have been achieved:

− Two new optimization algorithms have been developed, which showed better per-
formance with respect to their ancestors, and are promising for the optimization
of EM problems.

− The double square ring unit cell has been proposed for the passive reflectarray
design. Numerical results showed good frequency behavior of the whole RA de-
signs.

− Finally, the three-dipole unit cell has been proposed for RRA design. The imple-
mentation of optimization algorithm to RA design is also presented through the
design of infinite reflective surface and two entire RRAs.
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APPENDIXA
Benchmark Functions

The expressions of the standard cost function used in Section 3.3.3 are:

− Ackley function (N = 15)

f(X) = 10 + e− 20e−0.2
√

1
N

∑
i xi

2 − e
1
N

∑
i cos(2πxi)

− Rosenbrock function (N = 15)

f(X) =
N∑
i=1

(
100(x2i − x2

2i−1)2 + (1− x2i−1)2
)

− Rastrigin function (N = 15)

f(X) =
N∑
i=1

(
x2
i − 10 cos(2πxi) + 10

)
− Shekel function (N = 9)

f(X) = 12−
N∑
i=1

(
(X − ai)T (X − ai) + ci

)−1

where X = (x1, x2) is the variable vector, ai are vectors of ith locel minima and
ci are constant proportional to minimum f((ai)

T ) ≈ 12− 1
ci

. There are 9 minima
at points (−3,−3), (−3, 0), (−3,+3), . . . , (+3,+3).
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Generalized Scattering Matrix

Figure B.1: A generator with impedance Zg connected to a load impedance ZL

In the Fig. B.1 there is no defined characteristic impedance, nor is there a voltage
reflection coefficient, or incident and reflected voltage or current waves. It is possible,
however, to define a new set of waves, called power waves, which have useful properties
when dealing with power transfer between a generator and a load.

The incident and reflected power wave amplitudes a and b are defined as the follow-
ing linear transformations of the total voltage and current:

a =
V + ZRI

2
√
RR

(B.1a)

b =
V − Z∗RI

2
√
RR

(B.1b)
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Appendix B. Generalized Scattering Matrix

where ZR = RR + jXR is known as the reference impedance.
The reflection coefficient, Γp, for the reflected power wave can be found by using

(B.1) and the fact that V = ZLI at the load:

Γp =
b

a
=
V − Z∗RI
V + ZRI

=
ZL − Z∗R
ZL+ ZR

(B.2)

Equation (B.2) suggests that choosing the reference impedance as the conjugate of
the load impedance,

ZR = Z∗L, (B.3)

will have the useful effect of making the reflected power wave amplitude go to zero.
To define the scattering matrix for power waves for an N-port network, we assume

the reference impedance for port i is ZRi. Then, analogous to (B.1), we define the power
wave amplitude vectors in terms of the total voltage and current vectors:

[a] = [F ]([V ] + [ZR][I]) (B.4a)

[b] = [F ]([V ]− [Z∗R][I]) (B.4b)

where [F] is a diagonal matrix with elements 1/2
√
Re{ZRi} and [ZR] is a diagonal

matrix with elements ZRi.
By the impedance matrix relation that [V ] = [Z][I], (B.4) can be written as

[b] = [F ]([Z]− [ZR]∗)([Z] + [ZR])−1[F ]−1[a] (B.5)

Because the scattering matrix for power waves, [Sp], should relate [b] to [a], we have

[Sp] = [F ]([Z]− [ZR]∗)([Z] + [ZR])−1[F ]−1 (B.6)

The ordinary scattering matrix for a network can first be converted to an impedance
matrix, then converted to the generalized power wave scattering matrix using (B.6).

For multi-port network simulated in HFSS, the impedance matrix is directly ob-
tained from full-wave simulation, while the reference impedance is the input impedance
Zo for active port, and is the impedance characteristic of lumped element loading at
lumped port e.g. RLC circuit represent for varactor diode .
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