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Summary

This research work presents a shape optimization approach for turboma-
chinery applications based on the adjoint method and accurate equations of
state for the thermo-physical description of the fluids. The nature of the
research is numerical, hence most of the work expense has been dedicated
to the development of the tools embedded in the optimization framework.
The algorithm proposed is based on a discrete inviscid adjoint method able
to treat real-gas flows, state-of-the-art parametrization techniques (NURBS)
and a preconditioned steepest descent optimizer to reach the optimal point.
The mathematical approach followed is extensively described in chapter 2
and 3. Built-in equations of state and look-up tables (LuT) are introduced
within the optimization algorithm to handle real-gas effects. In particular, a
novel consistent LuT method, discussed in chapter 4, is devised.

The potential of the optimization approach is investigated by resorting
to different aerodynamic and turbomachinery 2D design problems, detailed
in chapter 5. The design methodology is initially applied to the re-design of
a wind tunnel nozzle operating under both ideal and real gas flows.

Then, two different turbomachinery design examples are reported. The
former focuses on the maximization of the performances of a transonic cas-
cade and represents the earliest test case performed in this research. The
latter aims at optimizing an existing converging-diverging turbine cascade
operating under supersonic conditions, with the objective of achieving a
more uniform flow at the blade outlet section. Real-gas equations of state are
herein considered, properly introduced at both flow and adjoint level through
the LuT approach.

An original extension of the algorithm for treating off-design conditions is
also envisaged in the present research work. The method devised combines a
standard multi-point optimization technique with an uncertainty quantifica-
tion algorithm to assess the design points and the weights of the multi-point
problem. The capability of the novel approach in providing robust designs is
finally investigated by maximizing the performances of the mentioned super-
sonic blade configuration, working under a relatively wide range of operating
conditions.
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In all test cases remarkable outcomes are achieved in terms of improve-
ment of performances of the initial configuration and computational effi-
ciency.

Most of the applications of adjoint method are still restricted to shape
optimization, however new perspectives have been recently risen on the use
of adjoint. In this regard, the last chapter is devoted to illustrate the po-
tential of adjoint-based methods for uncertainty quantification and robust
optimization. The study is carried out by taking a quasi-1D transonic prob-
lem as reference test case.
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Chapter 1

Introduction

Fluid-Dynamic Optimal Shape Design (FOSD) is the art of improving
the performances of realistic devices immersed in fluid media. A fascinating
blend of theory and computation, heuristics and rigor.
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Chapter 1

1.1 The Problem of Optimal Shape Design

Optimal Shape Design (OSD) is nowadays a necessity in many industrial
fields. In aircraft design the reduction of few percent of drag means a lot
of fuel saving, car industries are strongly involved in the limitation of struc-
ture weights and in the improvement of vehicle aerodynamics, whereas en-
ergy power sector gains considerable benefits from efficiency maximization
of power systems and system components (e.g. turbomachinery). However,
OSD is still a difficult and computer-demanding task. Many challenges re-
main from the mathematical point of view to obtain design algorithms ca-
pable of solving multi-disciplinary problems, complex physical models (e.g.
turbulence models) or unsteady situations with reasonable computational
resources. Among OSD subjects, Fluid-Dynamic Optimal Shape Design
(FOSD) assumes a relevant role in the field of Computational Fluid-Dynamics
(CFD). There are many situations in which achieving the optimal solution
represents a very demanding operation without the use of automatic design
tools, also for skilled designers. Wing design, blade design or design of micro-
fluidic devices are three examples of fluid-dynamic components where FOSD
is intensively applied to enhance their performances. In aeronautics, high lift
configurations are also challenging because the flow needs to be accurately
solved and turbulence approaches like DES or LES are still too demanding to
be included in the design loop. Also, shape optimization for unsteady flows
is only at an early stage.

In mathematical terms, a fluid-dynamic optimal shape design (FOSD)
requires the optimization of one or more fitness function J which in turn
depend on a set of design parameters α defining the shape to be optimized.
A single-objective deterministic optimization problem can be formulated as

min J(α) subject to

{
c(α) 0

d(α) ≥ 0.
(1.1)

where c(α), d(α) are, respectively, the equality and inequality constraints
for the fitness function J(α). In unconstrained optimization, the fitness
function is minimized (maximized) with no restriction at all on the values
of design variables. Constrained optimization, conversely, approaches the
optimal configuration satisfying a series of criteria (e.g. on geometry, on
physical properties) that limit the space of possible solutions.

Generally, optimization problems can be either local or global. Global op-
timization algorithms are became of paramount interest in FOSD as they are
able to treat noisy objective functions without requiring informations on con-
tinuity, existence of derivatives and uni-modality of the functions themselves.
They directly allow the specification of equality and inequality constraints,
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Introduction

and normally require a huge amount of function evaluations to reach the
optimum. The major drawback of such algorithms is in fact the slow con-
vergence which couples with the intrinsic difficulty in finding the real global
optimum of flat functions. An exhaustive analysis of global optimization for
CFD applications and the related algorithms can be found in several books
and works, for instance [1, 2, 3, 4, 5].

On the other hand, local optimization algorithms perturb a known initial
configuration according to indications usually given by the gradient ∇J or by
a combination of gradient itself and higher-order sensitivities (commonly the
hessian ∇2J). A variety of local optimization algorithms has been invented
for functionals of a finite number of variables. A thorough description of them
can be found in [6]. Herein only the method of steepest descent, extensively
applied in this thesis, is briefly recalled. By locally approximating the fitness
function J through the Taylor series expansion the following relation holds

J(α+ δα) = J(α) + (δα)T∇J +
1

2
(δα)T∇2J(δα) (1.2)

If the expansion is truncated at the first-order term, the method of steep-
est descent is recovered. The resulting fixed-step size formula to update the
geometry at each design step can be written as

δα =− λ∇J
(α)k+1 =(α)k + δα.

(1.3)

The parameter λ is a small number that forces the algorithm to make
small jumps. Stable conditions are realized for a proper choice of λ which
guarantees that J(α + δα) ≤ J(α). A graphical visualization of the steep-
est descent method is highlighted in Figures 1.1 and 1.2, together with the
influence of the step-size λ. In Figure 1.1 a correct selection of the step-size
enables a smooth descent towards the optimum, while increasing its value
produces a zig-zag descent, see Figure 1.2. A too large λ leads, conversely,
to a divergence of the method.

The estimation of the best step-size value can be attempted by many
techniques normally called line search methods [7]. Adaptive solution usually
work well at expense of a high increase of the overall computational burden
of the optimization process. However, some famous pioneers of shape design
for fluids, like A. Jameson and O. Pironneau, suggest that the optimal step-
size is not necessarily a good idea in FOSD. It seems better to think in terms
of dynamical systems attached to the minimization problems, as proposed
in [8]. Thinking in these terms means adjusting by manual or automatic
trial and error operations the choice of the step-size to the specific shape
optimization problem. As an example, a first selection of λ can be based

3



Chapter 1

Figure 1.1. Descent trend toward the minimum using a proper step-size.

Figure 1.2. Descent trend toward the minimum using a poor accurate step-size.

on purely geometrical criteria concerning some characteristic length of the
shape of interest. Such an approach is heuristic, often based on experience,
but should be preferred in case of fluid-dynamic shape optimization, where
even slightly changes of the geometry may lead to a failure of the convergence
of the underlying numerical solvers.

Despite the concepts expressed thus far generally hold for all categories
of FOSD problems, in the following the attention will be restricted to FOSD
for turbomachinery applications.

1.1.1 Optimal Shape Design in Turbomachinery

Optimization techniques play a key role in the present-day design process of
turbomachinery; thanks to the progressive increase of computational capabil-
ity, high-fidelity solution methods based on Computational Fluid Dynamics

4



Introduction

(CFD) are now routinely applied within these optimization algorithms, re-
sulting in automatic design tools.

The turbomachinery design process presents optimization challenges at
many levels, resulting in a step-by-step procedure of increasing fidelity level.
The final turbomachinery layout is then usually a complex combination of the
outcomes provided by each optimization step, starting from the preliminary
choice of the number of stages and of the stage arrangement [9], to the
throughflow (or axisymmetric) design [10, 11, 12], up to the detailed blade
shape definition [13, 3].

In the last decades inverse design methods [14, 15] and CFD-based shape
optimization procedures were specifically developed for turbomachinery ap-
plications. CFD-based shape optimization methods are, in many cases, sup-
ported by the application of stochastic methods, such as evolutionary algo-
rithms (EAs) [16]. These techniques usually search for the optimal shape by
resorting to genetic algorithms (GA) coupled to surrogate models to reduce
the overall computational cost of the optimization procedure [17, 18]. Such
an approach allows to explore a wide range of feasible solutions, identify-
ing the best individual (i.e. global minimum in some circumstances), and
handling multi-objective optimization problems [19, 20, 21, 22].

However, if complex aerodynamic configurations are of concern, the cost
of the overall optimization process may become prohibitive and this practi-
cally limits the available design space and the number of possible solutions.
Furthermore, in many cases the performance improvement of realistic tur-
bomachinery cascades is achieved by optimizing existing blade geometries
in presence of mechanical and geometrical constraints; as a consequence,
the optimal shape cannot be significantly different from the initial configu-
ration and minor geometry modifications are generally acceptable. In this
context, deterministic gradient-based design techniques provide relevant im-
provements in terms of computational cost and available extension of the
design space. These methods automatically determine the optimal configu-
ration by a relatively low number of steps, outperforming GAs for these type
of problems, provided that an efficient way is introduced to calculate the gra-
dient. In general the aerodynamic design of turbomachinery requires a large
number of design variables, while relatively simple objective functions are to
be minimized; for such problems the adjoint approach represents the most
suitable and effective technique to compute the gradient [23]. Adjoint-based
deterministic methodologies, hence, can represent one of the most suitable
choice for the optimization of existing turbomachinery cascades. In this per-
spective, the potential of adjoint approach for turbomachinery applications
has been investigated in some early works, but only recently has become more
popular. The early works were based on the continuous adjoint formulation,
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see for example [24], [25], while the recent availability of automatic differ-
entiation tools has offered the possibility of developing discrete adjoints, as
carried out in [26], [27], [28]. However, publications regarding turbomachin-
ery shape design using adjoint are still a few compared to the vast collection
of works related to stochastic (evolutionary) optimization.

1.1.2 Optimal Shape Design in ORC Turbomachinery

The vast majority of researches focused on FOSD in turbomachinery mainly
consider gas turbine technology. In fact, as already mentioned, the problem
of optimal design is of extremely relevance in aircraft industry, whereby not
only purely fluid-dynamic effects but also heat transfer mechanisms are to
be taken into account in the optimization of turbine blades. The efficiency
of turbine cascades is also a key theme for large-scale applications using
supercritical steam or condensing flows (e.g. nuclear turbines) as working
fluids.

However, in the energy field, alternatively to the current paradigm of
centralized power conversion, a renewed interest has recently arisen in de-
centralized power generation, whereby energy needing is partly fulfilled by
a network of relatively small units. At the same time, abundant renewable
sources are often characterized by a comparatively small exploitable power
capacity of the single site [29, 30]. As a consequence, small-to-medium scale
power plants (from few kW up to few MW ) exploiting renewable sources are
candidates to play a relevant role in this future distributed energy scenario.
Among the available technologies for high-efficiency conversion of thermal
power into electricity and/or heat in this range of capacity, Organic Rankine
Cycles (ORC) stand out in terms of reliability and cost-effectiveness, and
have been demonstrated to be advantageous compared to steam Rankine
cycles [31, 32].

This is mainly a consequence of the increase of specific cost of system
components as the scale of the plant reduces. From this perspective, the use
of organic fluids, characterized by high molecular weight, can make available
cost-effective solutions for the turbo-expander, together a whole simplifica-
tion of the plant arrangement.

The specific enthalpy drop, along the turbine expansion line, is inversely
proportional to the molecular weight of the fluid. This determines two main
advantages in case of organic fluids: primarily the relatively small specific
work can be disposed in a low number of stages; secondarily, for a target
power output, a relatively large mass flow rate is required, resulting in an
enlarged size of small-capacity ORC turbines with respect to steam units
[33].

On the other hand, the low number of stages leads to high expansion

6



Introduction

ratios per stage; this, combined with the low speed of sound, leads to the
widespread application of transonic and supersonic turbines in ORC systems.
As a result, strong shock waves and chocked flow conditions are commonly
found in these machines, complicating the design and operation of ORC
systems. Moreover part of the expansion process usually occurs in close
proximity of the saturated vapor curve, or even close to the critical point. In
such thermodynamic conditions complex equations of state are necessary to
accurately describe the behavior of organic working fluids.

This design scenario is further complicated by the lack, in the open lit-
erature, of experimental data regarding flows of organic fluids [34, 35], espe-
cially in the thermodynamic region of interest. Reliable design tools, such
as efficiency prediction methods based on empirical loss correlations, and
well-established size criteria are not still available for ORC turbines. Their
dimensioning is mostly based on guidelines originally conceived for gas or
steam machines, even in the selection of aerodynamic blade profiles, hence
there are very often considerable margins of improvement of their perfor-
mances.

1.2 Motivation of the Research Work

Considering the aforementioned difficulties, improved designs of ORC tur-
bines are of significant interest; these improvements require the development
of specific design procedures, essentially based on CFD and accurate EoS
models, and the evaluation of non-conventional turbine architectures. A
number of work address the second issue, for instance see [9], whereby the au-
thors proposed a multi-stage centrifugal turbine architecture for ORC appli-
cations designed by means of a combination of 1-D/throughflow approaches.
Conversely, very few research papers are dedicated to the implementation of
automatic shape optimization algorithms specifically targeted to ORC tur-
bine cascades. Some pioneering works on this topic can be found in [36, 37].
All authors undertake the optimization problems using evolutionary algo-
rithms for the re-design of existing transonic/supersonic blades, whereas no
research works have been published on adjoint methods for real gas flows. In
the field of ORC, adjoint methods can assume an increasing importance due
to the considerable requirements of computational resources to perform ac-
curate real-gas CFD simulations, which can make EAs (GAs) less attractive
compared to other turbomachinery applications.

The lack of published results and the assessment of the theoretical huge
potential of adjoint methods for real-gas flows motivated the present thesis,
which is inserted in a more comprehensive research program focused on design
techniques for ORC turbines, currently ongoing within the Fluid-Dynamics
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of Machines research group in a framework of collaboration with University
of Brescia. Main aim of the present work is therefore the development of a 2D
shape optimization approach based on adjoint method for real-gas inviscid
flows.

1.2.1 Structure of the Thesis

The present thesis is divided into five main chapters as follows:

� Chapter 2 addresses the issue of efficiently computing sensitivities in
Computational Fluid-Dynamics. In particular an overview on the present-
day methodologies is initially given, followed by an extensive descrip-
tion of the solution developed in this research.

� Chapter 3 illustrates the features of the numerical tools composing the
optimization loop. The main characteristics of the flow and adjoint
solvers are firstly described, then the overall design loop for single and
multi-point optimization is widely discussed.

� Chapter 4 presents the look-up table approach (LuT) developed within
this work that constitutes the basis for the high-fidelity simulations and
design processes under real gas flow conditions.

� Chapter 5 reports the most relevant outcomes of shape optimization
applied to wind tunnel nozzles and turbomachinery blades, working
under both ideal and real gas conditions. An original strategy for
effectively managing the fluctuations of the operating conditions within
the design process is also remarked.

� Chapter 6 presents a comprehensive analysis of the potential of adjoint
method for uncertainty quantification (UQ) and robust design opti-
mization, (RDO), which are relatively novel research fields in CFD.
Therefore this chapter represents an extension of the thesis to show
new applications of adjoint. A simple model problem is used as a
benchmark to investigate the performances of several UQ algorithms.
At the end of the section a novel hybrid robust optimization approach
for fluid-dynamic problems is proposed.

1.2.2 Major Novelties of the Research

The distinctive features of the present research work can be summarized as
follows:

� Adjoint Method

Most of the novelties of this work are related on the adjoint solver.
The adjoint inherits the peculiarities of the native flow solver, such

8
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as the node-pair formulation and the high resolution scheme based on
the Vinokur-Montagné approach suited for real gas flows. As a result,
the adjoint solver is capable to deal with real-gas effects as well. To
the author’s knowledge, no adjoint method for arbitrary EoS has been
published yet, then this represents a distinguishing aspect of the work.

� Thermodynamic Modeling of Real-Gases

A consistent look-up table approach has been developed and coupled
with the flow and adjoint solvers for a generalized thermodynamic
treatment. The satisfaction of the thermodynamic consistency featured
by the method represents an original extension of well-established ap-
proaches proposed by other researchers. Moreover, the use of a LuT
approach makes the choice of the thermodynamic library completely
free. State-of-the-art and novel thermodynamic models can then be
easily accounted for in the optimization loop.

� Shape Parameterization

An advanced parameterization technique based on NURBS curves is
introduced to iteratively modifies the geometry according to the gradi-
ent direction. The adoption of NURBS curves for transonic/supersonic
flow problems is still at an early stage in adjoint-based shape optimiza-
tion.

� Shape Optimization

Original applicative examples have been selected to investigate the per-
formances of the design algorithm, namely the re-design of an existing
supersonic turbine cascade for ORC applications and the re-design of a
supersonic wind tunnel nozzle to be installed in a facility designed for
dense gas-dynamics studies.

� Innovative Applications of Adjoint

The potential of the adjoint method as the basis for innovative uncer-
tainty quantification and robust design algorithms is investigated in the
present work. The use of sensitivity derivatives in the context of robust
optimization has undergone a very limited application. Also, a com-
prehensive comparison among robust design strategies is still an open
issue in the field of advanced aerodynamic design. Part of the thesis is
therefore dedicated to face this problem, with original outcomes.

9





Chapter 2

Sensitivity Analysis for Shape
Optimization

The calculation of sensitivity derivatives still represents an entangling chal-
lenge in the field of Computational Fluid-Dynamics. This chapter, focusing
on modern strategies for computing sensitivities, aims to be a distinguishing
contribution for those who approach this hard issue.
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Chapter 2

2.1 Sensitivity Derivatives

In Computational Fluid-Dynamics (CFD) sensitivity derivatives are to be
intended as the derivatives of aerodynamic quantities, typically depending
on flow, with respect to some parametrization of the geometry or some phys-
ical variables (e.g. the boundary conditions of the flow problem). Sensitivity
derivatives have widespread benefits in aerodynamic problems. Firstly, they
are suitable for the analysis of complex problems in which the reliable identifi-
cation of the sensitivity of quantities of interest with respect to some physical
or geometrical parameter is of paramount importance, for instance in control
flow problems [38]. Moreover, they represent the basis of many shape design
procedures. In fact, they can be easily utilized within gradient-based algo-
rithms or as a support to enhance the accuracy of response surface techniques
when gradient-free methods (e.g. genetic algorithms) are preferred. Lastly,
they are employed in uncertainty quantification methods to predict statisti-
cal moments of the quantity of interest [39], [40]. Despite the key role played
in many applications, sensitivity calculation has been only recently widely
adopted in engineering practice. The most critical aspect for sensitivity eval-
uation, for a long time, has been essentially the lack of efficient methods for
determining the gradient of fitness functions. A considerable computational
effort is in fact usually necessary to obtain accurate values, especially if tra-
ditional solutions, as finite difference or discrete direct methods (reported in
the following), are applied.

Alternatively, the control theory or the adjoint method, pioneered by An-
thony Jameson in 1995, proved to be very effective to overcome the drawbacks
of the previously mentioned methods. In this case, the gradient is obtained
by resorting to a suitably defined adjoint problem which can be formulated
and solved with a computational cost that is independent from the number
of design parameters. For this reason, this method is very attractive for CFD
design problems, which typically involve many design variables. Neverthe-
less, in spite of the relevant number of advantages, some factors have limited
the diffusion of adjoint methods in the fluid-dynamic community. The dif-
ficulty of implementing continuous adjoint formulations and the derivation
of flow solvers by hand have been the two predominant factors that have
lowered the spread of such approach. Only recently, the availability of au-
tomatic differentiation tools has truly contribute to a wide interest into the
adjoint method and sensitivity evaluation.

The main techniques which can be employed to compute the gradient
of a cost functional are described in the following sections, with particular
emphasis on the discrete adjoint method.
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2.1.1 Finite Difference Techniques

The finite difference methods (FDM) can be regarded as the standard ap-
proach for the computation of the sensitivities of a fitness function. FDM
are a non-intrusive method, as they require no modifications of the original
flow solver. They only need the evaluation of the fitness function for each
perturbation of the geometrical variables αgeo or physical variables αphy.

Let J be the cost function to be minimized in an optimization problem. In
fluid-dynamics J is generally depending on a vector of physical and geomet-
rical design variables αphy and αgeo, respectively, state variables u, and grid
points X. State variables, in turn, depend on both physical and geometrical
design variables, while grid variables are only function of the geometrical
design variables. The functional J can therefore be written as

J = J [αphy,u(αphy,αgeo),X(αgeo)]. (2.1)

The state variables u are also constrained to satisfy the fluid-dynamic
governing equations. For steady-state problems, the governing equations can
be symbolically expressed as

R[αphy,u(αphy,αgeo),X(αgeo)] = 0, (2.2)

and can be regarded as an equality constraint for the minimization prob-
lem. A single gradient component is then computed by perturbing one of the
independent variables of the problem. If δαgeo represents a shape perturba-
tion of the body to be optimized, the gradient of the cost functional, using
a centered second-order accurate formula, can be written as

dJ

dαgeo
=

1

2
{J [αphy,u(αphy,αgeo + δαgeo),X(αgeo + δαgeo)]−

J [αphy,u(αphy,αgeo − δαgeo),X(αgeo − δαgeo)]}
(2.3)

The previous equation implies two new flow solutions on the modified mesh,
expressed as

R[αphy,u(αphy,αgeo ± δαgeo),X(αgeo ± δαgeo)] = 0. (2.4)

Despite its simplicity this approach requires large computational resources
(total cost is 2×Nαgeo for the second order formula ) and is problematic in
the choice of the step-length needed by the finite difference procedure. If it
is too small the rounding errors become significant, conversely a too large
step size involves a poor accuracy of the Taylor expansion.
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2.1.2 The Adjoint Method for Fluid-Mechanics

In this section the mathematical fundamentals of the adjoint method are
briefly recalled. Both continuous and discrete approaches to the adjoint
method are available [8]. In this work we only consider the second approach,
in which the flow equations are firstly discretized and then derived by Auto-
matic Differentiation (AD), also called Algorithmic Differentiation. A gen-
eral mathematical formulation of the discrete adjoint approach, including
the grid deformation effects, is now extensively presented. The formulation
here described enables to compute the sensitivity derivatives of the fitness
function which depend on the flow equations of motion solved on either struc-
tured and unstructured meshes. All the vectors specified in the following are
conventionally assumed as column vectors.

Notice that equation (2.2) holds for an arbitrary choice of the design
variables αphy and αgeo. This implies that the total derivatives of (2.2) with
respect to αphy and αgeo, reported in (2.5), are identically null — as long as
u is the solution of Eq. (2.2) for any αphy and αgeo.

dR

dαgeo
=
∂R

∂u

∂u

∂αgeo
+
∂R

∂X

dX

dαgeo
= 0

dR

dαphy
=

∂R

∂αphy
+
∂R

∂u

∂u

∂αphy
= 0.

(2.5)

This is a crucial mathematical observation that will be used for the deriva-
tion of the adjoint problem.

The fitness function and the constraint, defined according to the above
expressions, are written considering a general problem, in which both the
physical quantities and the shape of the geometry of interest can be modified
in the procedure. However, in standard shape optimization problems, the
physical variables appearing in expressions (2.1) and (2.2) are to be consid-
ered as fixed known parameters (i.e. are not considered as variables in the
design process). The gradient of the fitness function has to be computed
with respect to the geometrical design variables αgeo only, and is therefore
expressed as

dJ

dαgeo
=
∂J

∂u

∂u

∂αgeo
+
∂J

∂X

dX

dαgeo
. (2.6)

The relation (2.1) shows that the gradient is a function of the first-
order state sensitivity derivatives ∂u/∂αgeo. The direct calculation of these
terms is usually a very demanding operation in terms of computational cost.
As already discussed in 2.1.1, the simplest but computationally prohibitive
method to compute ∂u/∂αgeo is the finite difference technique (FDM). As an
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alternative ∂u/∂αgeo can be obtained by solving the first equation of (2.5),
rewritten as

∂u

∂αgeo
= −

(
∂R

∂u

)−1(
∂R

∂X

dX

dαgeo

)
. (2.7)

However the calculation of (2.7) requires a considerable CPU memory
utilization as a series of N decoupled linear systems (with N the columns of
the constant matrix ∂R

∂X
dX

dαgeo
) has to be solved. This calculation methodology

is often called the discrete direct method and it was pursued by many authors
in the past. A more efficient strategy is achieved by plugging the previous
relation into equation (2.6). The resulting gradient can be therefore expressed
in the form

dJ

dαgeo
= −∂J

∂u

(
∂R

∂u

)−1(
∂R

∂X

dX

dαgeo

)
+
∂J

∂X

dX

dαgeo
. (2.8)

In the previous relation the vector −∂J
∂u

(∂R
∂u

)−1 is named adjoint or co-state
variables vector. The adjoint variables v are consequently determined through
the resolution of the adjoint linear system, rewritten as(

∂R

∂u

)T
v = −

(
∂J

∂u

)T
. (2.9)

Equation (2.9) represents the discrete form of the adjoint equation, see e.g.
[41]. The gradient vector of the original objective function is finally ex-
pressed, through the above relations, as(

dJ

dαgeo

)T
=

(
dX

dαgeo

)T[(
∂J

∂X

)T
+

(
∂R

∂X

)T
v

]
. (2.10)

To ease the development of adjoint based design algorithms for CFD
applications, great interest has been recently arisen in the exploitation of
Algorithmic Differentiation (AD) techniques. AD can in fact be used to
directly obtain the matrix-vector products required for the computation of
the gradient of an arbitrary fitness function. State-of-the-art CFD solvers
adopting unstructured meshes and advanced numerical schemes may be, at
least in principle, exactly differentiated. In this way the complex and error-
prone hand coding operation traditionally needed for the development of
adjoint-based gradient optimization methods can be completely avoided.

Within the present work the AD tool Tapenade, developed at INRIA [42],
is applied to the primal equations. To improve the computational efficiency
of the differentiation process, the discrete adjoint solver and the gradient
evaluator are both constructed by selectively applying the AD tool to the
inviscid flow solver zFlow, which will be described in the following chapter.

15



Chapter 2

2.2 Principles of Algorithmic Differentiation

Algorithmic (Automatic) Differentiation (AD) is a method to numerically
evaluate derivatives of a function specified by a computer program. AD
exploits the fact that any numerical procedure that implements a function
can be (generally) decomposed into a sequence of elementary assignments,
which can be trivially differentiated by a pre-defined mathematical rules.
These elemental derivatives are then assembled using the chain rule from
derivative calculus to build gradients, directional derivatives, and Jacobian
matrix of the top function. AD has indeed a great potential to overcome
the problems limiting the use of other techniques (finite differences, hand
differentiation). The main features of AD can be briefly summarized as:

1. It does not require the knowledge of a function but only its implemen-
tation.

2. The computed derivatives are exact (in the sense of machine precision).

3. It is reasonably fast, namely it needs a single run to differentiate the
source code.

4. By the reverse mode, it has the ability to compute the gradient of a
functional at a cost that is independent from the number of design
variables.

AD can be performed in two different modes known as forward/tangent or
backward/reverse. To better understand how AD practically works, a func-
tion of two independent variables is taken as reference. A special formalism
is also introduced, namely the arrow over the parameter indicates an input
(independent) variable, whereas the arrow below the parameter highlights
the output (dependent) quantity. Let be numflux a generic subroutine
written in Fortran/C++ computing the numerical flux for a discretization
scheme (for instance the Godunov or Lax-Wendroff numerical flux). Using
the standard Fortran notation, numflux is generally expressed as

subroutine numflux (α,u, f),

where α,u are, respectively, the input vectors of parameters and states,
while being f the output numerical flux vector. Let us suppose to apply
the direct/tangent differentiation to the previous numerical procedure. AD
builds a new subroutine, normally identified by the suffix d, appearing as

subroutine numflux d (α,
↓
αd,u,

↓
ud, f ,f d

↓
),
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where fd is the differentiated output quantity that can be written as

fd =
∂f

∂α
αd +

∂f

∂u
ud. (2.11)

If the inputs/outputs reduce to scalars the tangent mode computes the
directional derivatives of f with respect to α, u. As a matter of fact, the
partial derivatives ∂f

∂α
, ∂f
∂u

can be found by assigning to αd, ud, alternatively,
the values 1, 0 and 0, 1. Conversely, for vector quantities, the Jacobians
∂f
∂α
, ∂f
∂u

can be iteratively evaluated performing nc calls (with nc the number
of columns of the Jacobian matrix) of the differentiated routine. Each call,
in fact, allows to calculate a single column of the matrix, as long as the input
vector has only an element equal to 1, while being null otherwise.

Reverse mode, on the contrary, generates a new routine, identified by the
suffix b, which normally reads as

subroutine numflux b (α,αb
↓
,u,ub

↓
, f ,

↓
fb)

where the outputs of the routine are αb,ub, while being fb the input
parameter. The new two output vectors are expressed as

αb =

(
∂f

∂α

)T
fb

ub =

(
∂f

∂u

)T
fb.

(2.12)

The reverse mode of AD is therefore able to deliver immediately the
matrix-vector products ( ∂f

∂α
)T fb, (

∂f
∂u

)T fb. For scalar input quantities, reverse
differentiation gives the directional derivatives at a cost of one routine call.
As a consequence, for a function of n variables, it can be (at least theoreti-
cally) n times more efficient than the tangent mode. The reverse mode of AD
is then of paramount importance for efficiently adjointing CFD solvers, see
e.g. equation (2.9), in which the transposed matrix-vector product is clearly
in evidence.

In spite of the relevant advantages, some drawbacks affect the Algorith-
mic Differentiation. The main drawback of AD is the request, to the user, of
a deep knowledge of the source code and it needs a certain amount of work
and attention for correctly differentiating the primal procedures. Further-
more, the method is not still mature to be applied to an entire source code,
therefore a complex program has to be selectively differentiated to guaran-
tee reasonable computational performances when compared to those of the
original version.
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Several AD tools have been developed by various academic teams. The
most used are ADIFOR, ADOC, TAF and TAPENADE. The last one is
employed in the present thesis. TAPENADE [42] is developed and mantained
by the Tropics research team of INRIA’s Nice Sophia-Antipolis and is freely
downloadable from the website:

http://www-sop.inria.fr/tropics/

2.3 Design Chain for Shape Optimization

In aerodynamic optimization, the geometry of the body is always represented
by a parameterization, namely by modeling its shape through some math-
ematical representation. The simplest approach consists in directly speci-
fying the geometry of interest by the boundary mesh points, normally in-
terpolated by splines. In the context of shape design, this solution is often
labeled as CAD-free (computer aided design-free) technique. State-of-the-
art approaches, conversely, allow to define the geometry through a series of
weighted basis functions, whose spatial definition can be actively managed by
changing the position of a low number of parameters, usually called control
points. B-Splines, NURBS (Non-uniform rational B-Splines) or Chebyshev
Polynomials are examples of parametric curves. In the present research work
NURBS parameterization technique is accounted for, hence a full description
of such type of curves is given in the following.

In a sensitivity-based design process the shape of the geometry is updated
according to the gradient of the functional J , expressed, in a general form, by
the relation (2.10). This relation assumes a different expression depending
on the chosen shape representation. In the present work a CAD-free and
a NURBS-based methodologies are considered, therefore the two different
gradient formulations are extensively discussed.

As mentioned, the first idea is to select, as geometrical design variables
αgeo, the grid points bounding the shape to be optimized, such as airfoils
or end-walls, without the introduction of any explicit parametrization of
the geometry. In the sequel, the vector collecting these mesh points, called
hereinafter active variables, will be synthetically expressed as Xb.

2.3.1 Design Chain using Grid Equations

In CFD-based simulation the relation between the vectors X and Xb, herein
representing the set of design variables (Xb = αgeo), is implicitly avail-
able in the mesh generation solver, then it is usually called grid equation.
The most straightforward way to exactly compute the geometric sensitivities
( dX

dαgeo
)T = ( dX

dXb
)T of equation (2.10) is therefore through the differentiation
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of the grid equations. However, this operation presents a number of relevant
drawbacks. First of all this choice limits the possibility of adopting com-
mercial tools, as the source code is commonly not accessible. Furthermore,
fully automatic grid generators based on complex methods, such as advanc-
ing Delaunay-front techniques, may result too demanding to differentiate.
Hence, this strategy is recommended only for geometries meshed through
analytical or elliptic grid generators. Once the grid sensitivities are given,
they can be straightforwardly substituted into (2.10) to obtain the active
gradient expression, which can be written as(

dJ

dXb

)T
=

(
dX

dXb

)T[(
∂J

∂X

)T
+

(
∂R

∂X

)T
v

]
. (2.13)

A powerful alternative consists in the use of a mesh deformation tool to
properly adjust the computational grid according to the movement of the
body. In this case, the prior gradient formulation (2.13), has to be slightly
modified as suggested afterwards.

2.3.2 Design Chain using Mesh Deformation

During the design process the set of parameters Xb is iteratively altered ac-
cording to a given search direction (i.e. the gradient) and the resulting dis-
placement of the geometry profile affects in turn the topology of the mesh.
Therefore, an additional information, accounting for the rate of grid deforma-
tion, is required to definitely establish a relation between the computational
grid and the active variables. By expressing the mesh deformation equation
as X = X(Xbold ,∆Xb), whereby ∆Xb = Xb − Xbold indicates the deforma-
tion of the shape to be optimized between two consecutive design steps, the
relation between X and Xb finally holds

dX

dαgeo
=

dX

dXb

=
∂X

∂∆Xb

d∆Xb

dXb

=
∂X

∂∆Xb

, (2.14)

assuming d∆Xb

dXb
= I, being I the identity matrix. By plugging (2.14) into

(2.10) the resulting active gradient can be written as(
dJ

dXb

)T
=

(
∂X

∂∆Xb

)T[(
∂J

∂X

)T
+

(
∂R

∂X

)T
v

]
. (2.15)

The term in brackets of equation (2.15) and (2.13) indicates the gradient
of the fitness function with respect to the entire set of grid points X, namely
when X = αgeo, hereinafter called aerodynamic gradient. This term is a
function of the flow and adjoint solutions and is normally computed as post-
processing once the adjoint equations are converged.
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2.3.3 Design Chain using Parametric Representations

When a parameterization of the geometry is specified, a further sensitivity
derivative appears on the left side of equations (2.13) and (2.15). As a
matter of fact, the vector of the active variables Xb becomes a function of
the parameters of the curves. By indicating with γ the whole set of curves
parameters, which now become the design variables of the problem (γ =
αgeo), the relation between Xb (∆Xb) and γ simply holds Xb = Xb(γ), or,
more precisely, Xb = ∆Xb(γ). Therefore, the use of chain rule still enables
to recover the final gradient formulation, which yields

(
dJ

dγ

)T
=

(
dXb

dγ

)T(
dJ

dXb

)T
=


(

dXb

dγ

)T ( dX
dXb

)T [( ∂J
∂X

)T
+
(
∂R
∂X

)T
v
]
.

(
dXb

dγ

)T ( ∂X
∂∆Xb

)T [( ∂J
∂X

)T
+
(
∂R
∂X

)T
v
]
,

(2.16)
where the upper expression (2.16) is assembled using the grid equations ap-
proach introduced in 2.3.1, while the lower one refers to the mesh deformation
approach reported in 2.3.2. Notice that both the bottom equation (2.16) and
(2.15) need the specification of a closure equation to properly account for the
rate of grid deformation during the evolution of the design process. Several
techniques are available to properly compute the effect of grid deformation
on the gradient, see e.g. [43]. The two methods developed in this work are
reported in section 2.3.5. Conversely, an effective methodology to obtain the
term (dXb

dγ
), identifying the sensitivities of the active points with respect to

the parameters of the (parametric) curves, is briefly discussed in the next
section.

2.3.4 Surface Representation

Non-Uniform Rational B-Spline (NURBS) curves are probably the most pop-
ular curves and surfaces in computer graphics and nowadays they are the
standard for curve and surface description in computer aided design. NURBS
curves provide a single precise mathematical form capable of representing
common analytical shapes such as lines, planes, conics, and free-form curves
and surfaces.

A generic NURBS curve N(u) of degree p takes the form

N(u) =
n∑
i=0

Ri,p(u)Pi, (2.17)

where Pi is one of the n+ 1 control points where n ≥ p. As for the B-Spline
curves, the parameter u varies inside the knot sequence U = [u0, um]. The
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value u0 and um are the first and the last elements of a strictly increasing
sequence of m+ 1 elements, so-called knots.

The piecewise rational functions Ri,p(u) are called rational basis functions
since are expressed as

Ri,p(u) =
ωiNi,p(u)∑n
i=0 ωiNi,p(u)

, (2.18)

where, Ni,p are the B-Spline basis function recursively defined as

Ni,p(u)
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u), (2.19)

and ωi are the weights of the control points.
NURBS basis functions and curves are a generalization of non-rational

B-spline basis functions and curves. Particularly, if all the weights ωi in
equation (2.18) are the same, the basis functions Ri,p(u) reduce to the B-
Spline basis functions Ni,p(u), see equation (2.19). In this case, the NURBS
curve is equivalent to a B-Spline with the same control polygon.

NURBS curves inherit all the properties characterizing B-spline curves.
Moreover, changing the weight ωi only affects the portion of the curve con-
trolled by the local basis function Ri,p(u). Hence, control point movement or
weight modification can both be used to achieve local shape control. Qual-
itatively, if ωi increase (decreases), the curve moves closer to (farther from)
Pi. Furthermore, the movement of the curve for a fixed parameter value ū is
along a straight line in direction of Pi.

Due to their rational basis functions, second degree NURBS curves ex-
actly represent conics, i.e. parabolas, ellipses and hyperboles. A very ex-
haustive description of the NURBS curves/surfaces can be found in [44] and
[45].

The vector of coordinates Xb = [xb,yb, zb] of the set of (active) boundary
nodes in the cartesian space is therefore a function of N(u). The underlying
algebraic relation can be concisely summarized as

Xb = Xb(N(u)) = Xb(u, ω,P). (2.20)

By differentiating equation (2.20) against u, ω,P the three parametric
sensitivities dXb

du
, dXb

dω
, and dXb

dP
are obtained. This work only accounts for

the sensitivities of the functional with respect to the control points, thus
equation (2.16) can be rewritten substituting γ = P, achieving ( dJ

dαgeo
)T =

(dJ
dγ

)T = ( dJ
dP

)T .

2.3.5 Mesh Deformation

Grid deformation algorithms are still an interesting area of research in the
field of computational geometry. Several methodologies are currently avail-
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able to accurately deform the mesh for an assigned boundary displacement.
The most used strategy is based on the spring analogy [46], although the
method suffers from severe limitations in case of significant mesh deforma-
tions. More innovative approaches, relying on the use of radial basis func-
tions, have been successfully applied by [47] to unstructured grids, proving
a high robustness also in case of relevant displacements.

In the present thesis two different alternatives are considered. The first
method, taken into account at an early stage of the research, neglects the
deformation of the grid over the whole computational domain except for the
moving boundary. In other words, at each design step, the domain is enforced
to be freeze, thus the contribution of the grid deformation rate practically
vanishes.

Apart from marginal applications involving tiny displacements, this meth-
od, often named frozen domain, is generally very poor to approximate the
rate of grid deformation in optimization problems. However, its choice can
be regarded as an effective solution to simplify the gradient equation (2.16).
As shown in [48], the method is suitable for inviscid flows. In a differential
form the frozen domain approach can therefore be written as

∂Xk

∂∆Xb

=
∂(Xkold + ∆Xk)

∂∆Xb

=
∂∆Xk

∂∆Xb

=

{
1 k = b

0 k 6= b.
(2.21)

Even though a relevant simplification is introduced in the gradient for-
mulation, the use of such a strategy frequently leads to satisfactory results
in terms of reliability of the overall design procedure. In fact, notice that
optimization methods used for large scale optimization problems, as the pre-
conditioned steepest descent method, do not require an accurate estimate of
the gradient, see [41], as it is the case of more sophisticated algorithms such
as quasi-newton BFGS, and hence can tolerate the uncertainties introduced
by such an approach. As a consequence, the frozen domain methodology may
be regarded as a reliable compromise for optimizations processes involving
boundary grid points as design variables. This issue is anyhow investigated in
the present thesis by employing the frozen domain approach in optimization
processes involving inviscid flows.

The second methodology accounts for the contribution of the interior
nodes in the rate of grid deformation. As already mentioned, several types
of deformation laws are available to effectively predict the rate of grid defor-
mation for a displacement of an active boundary surface. These methods are
generally expressed in algebraic form, therefore, once coded, are rather easy
to differentiate in order to estimate the term ( ∂X

∂∆Xb
)T .

The approach chosen in the present thesis follows the seminal work of
[47] to achieve a highly flexible and robust deformation tool for unstructured
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grids, mainly based on the use of radial basis functions. Radial basis func-
tions (RBF) have become a well-established tool for interpolating scattered
data and they are typically adopted in fluid-structure interaction to transfer
information over the discrete fluid-structure interface. Radial basis functions
are interpolating functions approximating the displacement of a single mesh
point through a weighted sum of basis functions in the form

s(X) =

NXb∑
j=1

wjφ(‖X−Xbj‖) + p(Xb) (2.22)

where Xbj = [xbj , ybj , zbj ] are the boundary points where the displacements
are known, p an additional polynomial, NXb

the total number of boundary
points, and φ a given basis function with respect to the Euclidean distance
‖X−Xbj‖. s is the displacement of any mesh node Xi. The weights wj and
the polynomial p are determined by the interpolating conditions

s(Xb) = dbj , (2.23)

where dbj is the displacement at the Xbj boundary point. Additional condi-
tions are required to compute the coefficients of the polynomial p(Xb) and
they can be written as

NXb∑
j=1

wjp(Xbj) = 0. (2.24)

The minimal degree of the polynomial depends on the choice of the basis
function. Generally, if the basis functions are conditionally positive definite
of order m ≤ 2, a linear polynomial can be used. The values of the coefficients
w and the coefficients β of the polynomial are obtained by solving the linear
system [

dbj
0

]
=

[
Mb,b Pb

PT
b 0

] [
w
β

]
, (2.25)

where Mb,b indicates a square matrix (with NXb
rows and columns) contain-

ing the evaluation of the basis function φi,j = φ(‖Xbi −Xbj‖), Pb a NXb
× 4

matrix with a single row j given by [1 xbj ybj zbj ]. The spatial displace-
ment of an interior grid node is obtained by evaluating the interpolation
function (2.22) at the internal grid point, namely imposing that

dj = s(Xj). (2.26)

The most relevant features of the RBF-based mesh deformation are the
ability of individually moving each node of the mesh and the possibility of
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Name Function
Quadric biharmonics 1 + ||x||2
Inverse quadric biharmonics 1

1+||x||2

Thin plate spline ||x||2log(||x||)
Gaussian e−||x||

2

Volume spline ||x||
Wendland C0 (1− ||x||)2

Table 2.1. Some radial basis functions with global support implemented in dMesh.

interpolating the displacements separately for each spatial direction. As a
consequence, no mesh connectivity information is required, thus making the
method very suitable for both structured and unstructured meshes.

On the basis of the theoretical background explained so far, a novel mesh
deformation tool, named dMesh, for unstructured grid has been developed
within the present research work. The tool embeds a series of basis function,
reported in Table 2.1 and adopts a fast direct method from the MKL library
for the resolution of the linear system (2.25).

The quality and the robustness of the method have been assessed by
deforming some existing meshes according to a prescribed movement of the
solid walls of the domain. The movement of the wall can be assigned in terms
of rigid rotation, rigid translation or scaling operation. Two different test
cases, both referred to structured meshes, are herein reported to appreciate
the capability of the method into distorting both 2D and 3D computational
grids. The first test consists in a movement of a 2D viscous structured mesh
due to a severe rigid rotation of 20 degree (clockwise) of the blade profile
around the leading edge. The second example, on the contrary, considers a
mesh deformation caused by a scaling of the 3D turbine blade geometry. The
coordinates of the points are in fact scaled by a factor 0.5 in x and y direction.
A Wendland’s C0 basis function is applied to both tests, but similar results
have been obtained using the volume splines. Figures 2.1 and 2.2 show the
initial and the deformed meshes. A reasonable quality of the final meshes is
preserved, even in presence of significant distortions of the original blade wall.
In both cases, the total computational burden necessary to deform the grids
is very limited and anyhow much lower than that necessary to generate a new
grid. However, the cost associated to mesh construction strongly depends on
the type of mesh generator and the expense is generally much higher for
elliptic solvers, as the one applied in this study.

It should be finally noted that in shape optimization the spatial displace-
ment of the active surface is very limited at each design-step, hence the
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inflow/outflow boundaries may be approximately considered as fixed walls
throughout the design process.

Figure 2.1. Original (left) and deformed (right) meshes after a rigid rotation.

The source code of the grid deformation tool has been finally automati-
cally differentiated through AD in reverse mode to compute the term ( ∂X

∂∆Xb
)T

necessary for gradient definition. As the spatial displacements are simply ex-
pressed by means of algebraic relations, see (2.22), the derivation of the
RBF-based solver is a relatively manageable task.

Starting from the aerodynamic gradient both frozen and radial basis func-
tion approaches ensure the construction of a low dimension sensitivity vector
(active gradient), that can be either directly utilized in customary CAD-free
optimization loops or further processed to achieve surface gradients.

2.3.6 Implementation of the Design Chain using AD

Up to now the method to obtain a design chain for shape optimization has
been presented and the strategies to compute each term appearing in the sur-
face gradient equation have been discussed. However, to clearly understand
how exploiting AD for assembling the surface gradient (2.16), the step-by-
step procedure can be concisely summarized as follows:

1. The first step of the design chain provides the resolution of the adjoint

equation. AD is exploited to immediately obtain the vector
(
∂J
∂u

)T
and

the Jacobian
(
∂R
∂u

)T
v. The routines implementing the functional J (the

objective function of the shape optimization problem) and the vector
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Figure 2.2. Original (left) and deformed (right) meshes after a scaling in x/y
direction.

R (the numerical fluxes of the flow solver) are then backwardly differ-
entiated taking u (the states) as independent variables. As a result,
using the AD formalism of section 2.2, the following two expressions
can be written:

ub =

(
∂J

∂u

)T
→ f = J, fb = 1

ub =

(
∂R

∂u

)T
v→ f = R, fb = v.

(2.27)

Notice that second equation includes also the linearization of the bound-
ary conditions and the nature of the thermo-physical behavior of the
fluid, which also holds in the first relation. This can be clearly pointed
out by restricting the analysis to conservative flow solvers. In these
tools the state variables are represented by the conservative variables,
i.e. ρ, ρu, ρv, ρet for 2D problems. Since, in the general case of com-
pressible viscous flows, the flux function and the residual vector R
depend on pressure p and temperature T and the Jacobian matrix is
the derivative of the flux functions with respect to the conservative
variables u, then R = R(u,p(u),T(u)). By restricting the analysis to
inviscid flow, which is the flow model considered in the present thesis,
the latter relation simplifies in R = R(u,p(u)). The transposed ma-
trix (∂R

∂u
)T appearing in the adjoint equations can then be conveniently
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expressed as

(
dR

du

)T
=

(
∂R

∂u

)T
+

(
dp

du

)T(
∂R

∂p

)T
(2.28)

The term (dp
du

)T implies the linearization of the thermodynamic model,
which will be discussed more precisely in chapter 4.

2. The second step of the design chain involves the calculation of the
gradient with respect the whole set of grid points, namely the aero-
dynamic gradient [( ∂J

∂X
)T + (∂R

∂X
)Tv] of (2.15). This operation can be

straightforwardly carried out by separately differentiating the numeri-
cal procedures implementing J(X) and R(X), using the reverse mode
of AD. By adopting the same notation used in section 2.2 and assuming
as the vector of parameters α the vector X, the resulting relations can
be written as

αb =

(
∂J

∂X

)T
→ f = J,α = X, fb = 1

αb =

(
∂R

∂X

)T
v→ f = R,α = X, fb = v.

(2.29)

3. The following step of the procedure involve the calculation of the active
gradient. The aerodynamic gradient is then multiplied by the trans-
posed grid deformation vector, achieved by reversely processing the
mesh deformation algorithm through AD. By remembering the grid
deformation equation and using AD notation, the following relation
holds

αb =

(
dJ

dXb

)T
→ f = X,α = ∆Xb, fb =

[(
∂J

∂X

)T
+

(
∂R

∂X

)T
v

]
.

(2.30)

In case of the use of a differentiated version of the grid generator simply
yields α = Xb. It should be pointed out that the vector ∆Xb may be
quickly obtained by computing, (active) node by (active) node, the dis-
placement between the current shape profile and that of the preceding
configuration. For parameterized geometries, such a displacement is a
function of the curves themselves, namely ∆Xb = ∆Xb(P ).
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4. The last element of the design chain is the calculation of the sensitivities
of the fitness function with respect to NURBS control points. The
surface gradient is therefore evaluated in a similar fashion, namely

αb =

(
dJ

dP

)T
→ f = Xb,α = P, fb =

(
dJ

dXb

)T
. (2.31)

The active/surface gradient can be finally used in any design optimization
approach, see chapter 3, to perform a sensitivity analysis or as the basis for
some uncertainty quantification algorithm, see chapter 6.
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Optimization Methodology

This chapter illustrates the main elements of the optimization chain, pro-
viding a comprehensive description of the numerical solvers utilized in the
design process. An overview of the optimization algorithm developed within
this research work is also presented.
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3.1 Numerical Solvers

3.1.1 Flow Solver

The method used to construct a discrete form of the Euler equations for
general unstructured and hybrid grids is now described. The discretization
scheme, following the ideas introduced in [49] and subsequently extended
in [50] can be regarded as an hybrid finite-volume/finite-element (FEFV)
scheme. The description of the hybrid discretization approach as imple-
mented in the zFlow solver is outlined in the following. The direct application
of the physical principles (mass, energy and momentum balances) to a finite
amount of matter, assuming inviscid flows, leads to the Euler equations, that
read:

d

dt

∫
Ω

u(x, t) dΩ +

∮
∂Ω

nF(u(x, t)) dσ = 0 (3.1)

An alternative formulation of the integral Euler equations is the so-called
weak or variational form. This formulation is particularly convenient as a
starting point to construct a discretized version of the equations (3.1) by
means of both finite volume and finite element methods. Multiplying the
equations (3.1) for a given test function φ belonging to a suitable subspace
V and integrating by parts the second domain integral, the weak form is
obtained:

d

dt

∫
Ω

φu dΩ +

∮
∂Ω

φnF(u) dσ −
∫

Ω

∇φF(u) dΩ = 0 (3.2)

The first step needed for the construction of a discrete version of the
weak formulation (3.2) is the subdivision of the domain Ω into a collection
of non-overlapping elements E, i.e. the generation of a grid τh. The domain
associated to element E is denoted by Ωe. For every vertex i (hereinafter
called node) of the grid τh, Ωi denotes the union of the domains Ωe of the
elements E which contain the node i, ∂Ωi denotes the boundary of Ωi, and
Γi the set ∂Ωi ∩ ∂Ω. The set of all the nodes of τh is denoted by K, that of
the boundary nodes by K∂ and that of the nodes inside or on the boundary
of Ωi by Ki. The set Ki with the exception of node i is instead denoted by
Ki 6=, and K∂

i = Ki ∩K∂.
The discrete version of (3.2) is obtained by searching the approximate

solution among functions uh ∈ Vh and test functions φh ∈ Vh (Galerkin
method), where Vh denotes the finite dimensional function space of linear or
bilinear functions φh, namely functions which are globally continuous and
linear or bilinear inside the elements E of τh. Both the unknown functions
u and the test functions φ appearing in (3.2) are therefore replaced by the
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expansions:

u← uh(x, t) =
∑
k∈K

Nk(x)uk(t)

φ← φh(x) =
∑
k∈K

Nk(x)φk
(3.3)

thus leading, for a generic node i of τh, to the semi-discrete equations:

∑
k∈Ki

[∫
Ωi

NiNk dΩ

]
duk
dt

+

∫
Γi

nF(uh) dσ −
∫

Ωi

∇NiF(uh) dσ = 0 (3.4)

The computations of the integrals of the discrete weak formulation (3.4)
is usually performed by cycling over all the elements of τh and assembling all
the contributions. However, following the ideas originally introduced in [49]
and successively generalized in [50] the computation can be rearranged in a
more convenient form, namely as a summation over ”pairs” of interacting
nodes, called node-pairs. Two nodes i and k interact if the associated regions
Ωi, Ωk have a nonempty intersection, i.e. if Ωik = Ωi ∩ Ωk 6= 0. By omitting
for brevity the derivation, which is entirely reported in [51], equation (3.4)
can be expressed in the discrete form as

Di
dui
dt

+
∑

k∈Ki, 6=

ηik
Fi + Fk

2
+ ξ∂i Fi = 0. (3.5)

where the metric coefficients, which are a function of the grid points X only,
are defined as

Di(X) =
∑
k∈Ki

∫
Ωi

NiNk dΩ

ηik(X) =

∫
Ωik

(Ni∇Nk −Nk∇Ni) dΩ

ξ∂i (X) =

∫
Γi

Nin dσ.

(3.6)

The metric vectors introduced above are characterized by the remarkable
properties:

ηik = −ηki∑
k∈Ki, 6=

ηik + ξ∂i = 0. (3.7)
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The above relations guarantee that the metric coefficients behave simi-
larly to the integrated normal vectors of suitably defined control volumes in
the frame of a finite volume method. In other words, a special class of finite
volume methods is obtained by exploiting the metric vectors ηik and ξ∂i in
order to define the finite volume cells, without requiring an explicit defini-
tion of the actual cell geometry (although, in practice, such information are
known a-priori).
The simple average flux ηik(Fi + Fk)/2 in (3.5) approximates a centered
scheme that, in absence of any stabilization terms, is not suited to the com-
putation of hyperbolic problems. In order to provide a stabilization of the
numerical scheme the centered formulation is replaced by a high-resolution
numerical flux function usually employed in the finite volume method, thus
leading to the so-called FE/FV scheme:

Di
dui
dt

+
∑

k∈Ki, 6=

f̂(ui,uk,g
−
i ,g

+
k ,ηik) + ξ∂i Fi = 0 (3.8)

where f̂ denotes the numerical flux function in the direction ηik. The gra-
dients g−i ,g

+
k are used to evaluate the limiters required to achieve a non

oscillatory high-resolution (TVD) scheme. In this thesis the numerical flux
function is due to Roe-Davis [52] with the vanAlbada flux limiter generalized
to the case of an arbitrary EoS following the Vinokur-Montagné approach
[53]. If we denote by u the global vector of the unknown solution, by D
the lumped (or diagonalized) mass matrix, and by R(u) the global residual
vector, system of equation (3.8) can be written in a compact form yielding

D
du

dt
+ R(u) = 0. (3.9)

The equations are integrated in time by an implicit (Backward Euler) method;
implicit schemes represent an effective solution in the context of optimization,
in which the computational savings provided by implicit techniques drasti-
cally reduce the overall computational expense of the optimization process.
The linear system arising at each time step is approximatively solved by
means of a preconditioned GMRES method ([54]), with the incomplete LU
factorization technique ILU0 (no fill-in allowed) as preconditioning solver.

The version of the solver used in the present thesis integrates a rich ther-
modynamic library for the calculation of properties of pure fluids and mix-
tures. The thermodynamic behavior of the fluid can be modeled by EoS
of different complexity, comprising the polytropic ideal gas (PIG), the poly-
tropic Van der Waals model (PVdW), cubic EoS and very accurate multi-
parameter equations of state. Cubic and multi-parameter equations are ac-
cessible through the FluidProp database or by a novel look-up table (LUT)
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approach specifically developed within the present thesis. A comprehensive
description of the LUT method is given in chapter 4.

3.1.2 Adjoint Solver

Basically the adjoint solver implements a linearization of the non-linear
steady term R(u) of eq. (3.9), thus inheriting the numerical features of the
native flow solver. The adjoint problem requires the calculation of a linear al-
gebraic system in the form Av = b, where A = (∂R/∂u)T , b = −(∂J/∂u)T .
In order to solve the adjoint system iterative matrix-free techniques are pre-
ferred, as they do not require the explicit calculation of the Jacobian matrix
∂R/∂u, but they only need to evaluate the product (∂R/∂u)Tv at each
iteration. In particular, in the present research, the iterative Flexible Gen-
eralized Minimal Residual Method (FGMRES), see [54], is adopted. The
adjoint system of equations (6.11) is then solved by constructing the vectors
(∂R/∂u)Tv and (∂J/∂u)T by exploiting AD in reverse mode, see [42]. In
particular the vector (∂R/∂u)Tv is assembled on-the-fly during the itera-
tions of the solver. In this way the high-resolution of the numerical method
is intrinsically preserved.

The efficiency of the FGMRES is further enhanced by preconditioning the
linear system through the ILU0 (no fill-in allowed) or ILUT (fill-in allowed by
fixing a threshold value) incomplete factorization techniques applied to the
first-order Jacobian matrix. A typical convergence rate of the adjoint solver
for an inviscid flow case using either ILU0 or ILUT preconditioner (with a
threshold value of the order 10−3) is provided in Figure 3.1.
In general, the higher is the accuracy of the preconditioner, the lower is the
number of iterations required to achieve convergence, but the greater is also
the computational cost to construct the preconditioning matrix. As a result,
ILU0 preconditioner enables to converge more rapidly compared to ILUT
technique, despite the lower number of iterations required by this latter. In
both cases, the algorithm proved to robustly drive the solution of the sparse
linear system to convergence, the convergence rate being approximatively an
order of magnitude higher than the one of the flow calculation for an inviscid
flow problem.

The adjoint solver embeds the same thermodynamic library implemented
in the flow solver. However, since equations of state appear in a linearized
form within the adjoint solver, as outlined in the final section of chapter
2, external calls via FluidProp are not suited for automatic differentiation,
therefore only PIG, PVdW and LUT approaches are taken into account. The
differentiation of a flow solver for real gases is not a standard operation and
represents one of the major hardnesses of this work. In fact, the exact (re-
verse) differentiation of the residual vector based on a Vinokur-Montagné flux
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Figure 3.1. Convergence rates of the adjoint solver using ILU0 and ILUT precon-
ditioners.

splitting scheme, described in the previous section, requires the establishment
of effective differentiation rules for arbitrary equations of state. More details
concerning this generalized differentiation treatment, in the framework of the
real-gas adjoint solver developed within the present research, are addressed
in the following.

Real-Gas Adjoint Equations
In section 2.3 of chapter 2 the step-by-step procedure to construct the design
chain for shape optimization through AD has been deeply discussed. As
outlined in the first item of section 2.3, the construction of the adjoint system
has been limited to inviscid flows, hence the contribution of temperature is
omitted hereinafter.

The chain expansion of the (transposed) Jacobian matrix appearing in
the adjoint equations is now further extended for the case of flux functions
using approximate Riemann solvers for real gases, as the one proposed in [53]
and implemented in zFlow. Hence, more terms are to be adjointed during
the differentiation process. The numerical flux function becomes dependent
on the conservative state, pressure and derivatives of pressure with respect to
density and internal energy, as reported in [55]. Therefore the global residual
can be rewritten as

R = R[u,p(u),∇pe(u),∇pρ(u)], (3.10)
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or, more concisely, as

R = R[q(u)], (3.11)

where q = (u,p,∇pe ,∇pρ). As pressure p and its derivatives ∇pe ,∇pρ are
functions of the conservative state u, the following relation for the Jacobian
holds

(
dR

du

)T
=

(
dq

du

)T(
∂R

∂q

)T
(3.12)

The first matrix of the right hand-side of equation (3.12) involve second-
order derivatives of pressure with respect to density and internal energy, that
can be automatically computed by means of AD in reverse mode for any type
of equation of state. This operation is herein carried out for both PIG and
PVdW models, as well as for the equations of state constructed by means of
the look-up table approach presented in chapter 4.

Alternative Methods for Adjoint System Resolution
The effectiveness of ILU-type preconditioning may quickly decays with prob-
lem size and stiffness, most particularly for viscous or three dimensional prob-
lems, requiring an increase of the fill-in level to impractical values. These
hardnesses have been faced by many authors as [23], [56], and [57]. One of the
most interesting idea is the so-called implicit dual solution method presented
in [56]. The general principle behind this idea is essentially the concept of
duality between the flow and adjoint system. Duality can be regarded as a
mathematical property for which if an iterative method is effective for the
non-linear (flow) problem, then a corresponding variant is suitable for the
adjoint problem. The duality concept has been formalized by Giles in [58]
and is of paramount importance in the context of linearization of non-linear
problems. In practice, any time-marching algorithm successfully used for
converging flow equations can be immediately adopted for solving the ad-
joint equations and similar convergence rates are to be expected. Assuming
that the linearization is exact, complete and based on the fully converged
non-linear solution, the linear computation ensures the convergence within a
fixed number of iterations with the same iterative method (and CFL number)
of the flow equations. Implicit time-marching algorithms outperform the ef-
ficiency of explicit methods due to the fact that, theoretically, are no subject
to any limitations in the CFL number. Hence they are of great importance
for the resolution of adjoint linear system when iterative linear solvers tend
to stall. A time-dependent formulation of the adjoint system can be written
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as

V

(
∂v

∂t

)
+

(
∂R

∂u

)T
v +

(
∂J

∂u

)T
= V

(
∂v

∂t

)
+D = 0, (3.13)

D concisely indicates the original adjoint system and V ensembles the (mesh)
cell volumes. The previous relationship can be marched to steady-state con-
dition using the same algorithms implemented in the flow solver. In case of
an explicit Euler method the following expression intuitively holds

vn+1 = vn − ∆t

V
Dn. (3.14)

By linearizing D between two consecutive time steps the implicit version
is obtained. The linearization yields

Dn+1 = Dn +
∂Dn

∂v
∆v. (3.15)

However, since

∂D

∂v
=
∂[(∂R

∂u
)Tv + (∂J

∂u
)T ]

∂v
=

(
∂R

∂u

)T
, (3.16)

after performing some algebraic manipulations, the corresponding implicit
counterpart of (3.14) can be written as

[
V

∆t
I +

(
∂R

∂u

)T]
∆vn = −Dn

vn+1 = vn + ∆vn
(3.17)

The above equation represents the dual implicit formulation for the ad-
joint problem. In the present thesis the explicit forward formula has been
used for shape optimization of a quasi-1D problem, extensively discussed
in the chapter 5. The model was originally developed as a starting point
to build a solid background on the fundamental aspects of adjoint method,
including the capabilities of Automatic Differentiation.

3.1.3 Gradient Calculators

In chapter 2 the expressions of the the gradient of the fitness function,
depending on both active grid nodes (2.15) and NURBS control points,
(2.16) have been found. As already seen, both formulations require the par-
tial derivatives of J and R with respect to the whole set of grid points.
In a numerical solver the informations of the grid are explicitly accounted
for through the so-called metric quantities, i.e. the normal vectors and
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the areas of the grid cells. In the present node-pair numerical technique,
the influence of the grid points on the cost function is therefore given by
the metric vectors previously introduced, namely J = J(η(X), ξ∂(X)) and
R = R(η(X), ξ∂(X)). The term in brackets of eq. (2.15) can be rewritten
using the chain rule as

(
∂J

∂X

)T
+

(
∂R

∂X

)T
v =

[(
∂J

∂(η, ξ∂)

d(η, ξ∂)

dX

)T
+

(
∂R

∂(η, ξ∂)

d(η, ξ∂)

dX

)T
v

]
.

(3.18)
If the fitness function is computed on the boundary, as occurs in many

applications, J depends only on ξ∂ and the final expression of the (active)
gradient reads

(
dJ

dXb

)T
=

(
dX

dXb

)T[(
dξ∂

dX

)T(
∂J

∂ξ∂

)T
+

(
d(η, ξ∂)

dX

)T(
∂R

∂(η, ξ∂)

)T
v

]
.

(3.19)
The derivatives of the metric vectors with respect to the grid variables are

computed by reversely differentiating the source code, computing the metric
quantities by AD and assigning the vectors (∂J/∂ξ∂)T and (∂R/∂(η, ξ∂))Tv
as inputs to the differentiated procedures. Notice that the vector (∂R/∂(η, ξ∂))Tv
can be automatically obtained using the adjoint solver. The aerodynamic
gradient components, i.e. the term into the brackets, are computed in a ded-
icated tool (named zAero) implementing the differentiated metrics of the flow
solver. The remaining operations, namely the calculation of the active and
surface gradient, are separately carried out by means of two further softwares
(zMesh and zSurf) embedding, respectively, the differentiated mesh defor-
mation algorithms and the differentiated version of the NURBS routines. In
this way shape optimization based on both active and surface gradients can
be performed in a flexible manner.

3.2 Shape Optimization Algorithm

3.2.1 Gradient Smoothing and Projection

Design strategies involving the direct (CAD-free methods), or the indirect
(methods using standard CAD representations) use of active grid points as
design variables allow a high flexibility into conforming the geometry to the
desired objectives. In both cases the active gradient is required in the op-
timization process and this is usually a vector of large dimension, as a con-
siderable number of boundary points is normally employed for accurately
meshing the geometry. Unfortunately, the active gradient components may
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assume arbitrary directions and intensities. In fact, as the active gradient
is generally less smooth than the objective function, its spectrum is often
characterized by high frequency noise, as highlighted in Figure 3.2 for the
VKI LS-59 turbine blade.

Figure 3.2. Original active gradient components for the VKI LS-59 cascade.

This drawback usually leads to a failure of the optimization cycle (e.g.
occurrence of unfeasible designs), therefore some low pass filtering technique
is to be introduced to stabilize the design process. Implicit gradient smooth-
ing based on an elliptic procedure has been developed in the past in order to
arrive at a stable and effective optimization process. In fact, as pointed out
in [59], the smoother acts as a preconditioner for the optimization algorithm,
therefore allowing for much larger design steps, which imply a reduction of
the number of iterations needed for convergence. In the present thesis the
original approach proposed by [60] is adopted. The active gradient given by
equation (3.19) is therefore smoothed through the following implicit equation

(
d̂J

dXb

)T
ib

−ε
[(

d̂J

dXb

)T
ib+1

−2

(
d̂J

dXb

)T
ib

+

(
d̂J

dXb

)T
ib−1

]
=

(
dJ

dXb

)T
ib

. (3.20)

where ̂dJ/dXb are the smoothed gradients at the active boundary nodes
ib − 1, ib, ib + 1, dJ/dXb the non-smoothed vector, and ε the smoothing fac-
tor, assumed as a prescribed constant parameter in the present work. The
smoothed gradient is then projected onto a suitable direction (e.g. alongside
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the direction normal to the surface or alongside the axial/tangential direc-
tion), thus preserving the required geometrical constraints of the design. The
projection operator acts in fact both to reduce the allowable design space and
to implicitly ensure the fulfillment of constraints that may be imposed on the
geometry (as the chord length or the thickness of a blade trailing-edge). In
this work the optimal configuration is searched by using the first-order steep-
est descent method. As a result the spatial displacements of the boundary
grid points at a given iteration are computed as

δxT = −λ
(

d̂J

dXb

)T
, (3.21)

where λ is the step-size mandatory to convert the (projected) smoothed gra-
dients into feasible spatial displacements of the active grid points. Since the
use of a line search method to determine λ at each iteration is computation-
ally extremely demanding, see e.g. [59], this factor is usually assumed as a
constant parameter in FOSD. Similarly, equation (3.21) is applied in case of
displacement of control points.

3.2.2 Local Shape Control

Despite the adoption of the smoothing procedure, the resulting spatial dis-
placements given by (3.21) applied to all the active nodes may lead to large
deformations of the geometry. Intersection or overlapping problems among
nodes may occur during the optimization procedure. As a result, a uniform
step-length λ value assigned to the active nodes Xb is not always the most
effective solution as design strategy. As an example, the trailing-edge of a
turbine blade is a fairly problematic part to move due to the presence of a
relevant number of grid points in a zone characterized by a high curvature.
In order to overcome the severe limitations related to the uniform value of λ,
an additional strategy in which the step-length can vary from node to node is
accompanied to the elliptic smoothing. The method defines the step-length
through different functional forms in which λ becomes dependent on the po-
sition of the node. Purely geometrical criteria are also introduced to properly
modify the initial uniform value of the step-length only in the most critical
regions of the shape. In this work the simple Heaviside and the more sophis-
ticated Gaussian-like functional forms are taken into account and written
as

λ =

{
0 ri ≤ rcj
λ ri > rcj

λ = λMAX − (λMIN − λMAX)e
−(ri)

2

r2cj .

(3.22)
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In (3.22) rcj is the radius of the circle containing the points whose step-lengths
have to be modified according to the relations (3.22) and ri is the distance
between node i and the center of the circle j. More precisely, the whole
procedure for computing the spatial displacements is as follows: initially the
smoothed gradient is computed and projected, then equation (3.22) is ap-
plied to obtain the step-lengths of all active nodes. The number of circles,
their positions, and their radii can be specified at two different levels: first
the designer can freely attempt to generate the circles by a trial and error op-
eration and analyzing the resulting gradient vector; second a criterion based
on the local mean radius of the geometry is also introduced in such a way
that a circle is automatically positioned in the mesh zones characterized by a
finer grid spacing, as the leading or the trailing-edge of a turbine/compressor
blading. The radius of curvature at any active point is easily obtained by
computing the discrete Hessian through some finite difference formulas. In
this work the concavity of the discretized shape is expressed as

∂2f

∂x2
=
∂2y

∂x2
=
yi+1 − 2yi + yi−1

δx̄2
, (3.23)

where x̄ is the averaged spatial displacement in axial direction between
nodes i, i − 1 and i, i + 1. As a result, the initial spatial displacement is
proportionally altered only for the nodes contained inside the circles, while
a uniform step-length is maintained for the remaining ones. Thanks to the
proposed correction scheme (3.22), the satisfaction of the constraints con-
nected to the mechanical resistance of the geometry (e.g. the trailing-edge
minimum thickness of a blade or an airfoil) can also be guaranteed during
the design process, without recurring to constrained optimization techniques,
such as penalty function methods. Notice also that the combined use of a
smoother and the proposed non-uniform step-length strategy may allow to
further decrease the number of iterations required to reach the optimal de-
sign, resulting in a speed-up of the optimization. Furthermore, this shape
control strategy is also an effective technique to prevent unfeasible geometry
deformations in case of the use of control points as design variables.

3.2.3 Design Algorithm

The zFlow code and the adjoint solver have been combined within a fully au-
tomated optimization strategy, whose block diagram is shown in Figure 3.3.
In order to easy accomplish design processes for a variety of fluid-dynamic
problems the entire set of numerical tools necessary for the optimization loop
has been embedded into a fully flexible Python package. The package has
been structured to allow future direct interfaces with advanced Python-based
optimization libraries, such as [61], and a relatively easy maintenance. The
package embeds the following numerical tools:
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� An unstructured grid generator based on an advancing front/Delaunay
technique extensively described in [62].

� The real-gas flow solver (zFlow).

� The flow post-processing unit (zfPost). A mass-average and a mixed-
out average schemes for real-gases are implemented to compute the
mean quantities (e.g. velocities) at a given boundary surface.

� The corresponding real-gas adjoint solver (JzFlow).

� The aerodynamic gradient calculator (zAero).

� The active gradient calculator (zMesh). This code includes the smooth-
ing and projection operators and the two differentiated versions of the
mesh deformation algorithms discussed in chapter 2.

� The surface gradient calculator (zSurf), integrating the differentiated
version of the NURBS curves.

� A multi-dimensional simulation initializer (zStart).

The latter tool is employed to properly initialize both the flow and ad-
joint calculation by interpolating the flowfields computed at the preceding
iteration on the new grid, thus accelerating the convergence of both solvers.
A fast interpolation is achieved by resorting to an inverse weighted-sum ap-
proach coupled to a kd-tree domain partitioning strategy as proposed by [63].
In addition, the convergence tolerance of the solvers may be independently
fixed, thus allowing the capability of exploring so called non-converged (or
one shot) optimization strategies, see for instance [64].
For 2D simulations the computational cost associated to the grid generation
is a small fraction of the time required by the flow and adjoint solvers to con-
verge. As a result, in the test cases presented in chapter 5, is often preferred
to mesh the geometry at each optimization step instead of employing the grid
perturbation algorithm to generate the new grid. A certain detrimental effect
on the gradient accuracy can be attributed to this solution. However, the
effect of this (possible) source of error tends to be fully compensated by the
smoothing operator. Notice anyway that the use of robust algorithms such
as the steepest descent method or some improved variants (e.g. Conjugate
Gradient), see for instance [65], [66], allows to accept a certain level of gra-
dient approximation without compromising the success of the optimization
procedure. In FOSD, anyway, the best way to establish whether a gradient
approximation is acceptable or not is the evaluation of the gradient effect on
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Figure 3.3. Fully automated adjoint-based optimization algorithm for single-point
optimization.

the optimization process. Hence, the descent behavior of the process usu-
ally represents a clear indication of the suitability of gradient approximation.
Both approaches for the calculation of mesh sensitivities (frozen domain and
radial basis function), reported in chapter 2, can be alternatively employed
in conjunction with grid generation.

As already mentioned, in the present thesis, the design loop sketched in
Figure 6.2 is sequentially advanced using a (preconditioned) steepest descent
method. The algorithm is particularly robust and fails only if no reduction
of cost function can be obtained in gradient direction, which signifies the
calculation of a very poor gradient.

3.2.4 Multi-Objective Optimization

Multi-objective optimization stands for an optimization of two or more fitness
functions that are solved simultaneously. The response of a multi-objective
optimization in normally not a single point, but rather a set of solutions
that form a so-called Pareto front. Each point on the Pareto front satisfy
the Pareto optimality conditions, which is stated as follows: a feasible vector
of design variables is Pareto optimal is there exists no other feasible vector
which would improve one of the objective without causing a corresponding
worsening of at least another objective. Consequently, if exists a solution
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that can be improved on one or more objective at the same time, it is not a
Pareto optimal, or, in other words, it is dominated by the Pareto front.

Multi-objective optimizations can be handled in different ways that, ex-
emplifying, can be grouped in two main categories. The first class employs a
multi-objective optimization algorithm to simultaneously take into account
a set of cost functionals. This strategy can be computationally expensive,
but rather advantageous for complex and non-smooth problems. The second
category, conversely, aims at transforming the multi-objective problem into
a single one through the use of a weighted-sum function, i.e. a weighted sum

of the objectives, with the remarkable property that
∑Nobj

i=1 ωj = 1, whereby
ωj is a single weight. The great advantage of such approach is the capability
to deal with any optimization method suitable for single objective problems.
Nevertheless, as pointed out in [67], the main drawback remains the appro-
priate choice of the weight coefficients. Also, if understanding the effects of
changing weights on the objective is of interest, this method can become com-
putationally demanding, since lots of simulations are required to construct
the Pareto front.

Another problem concerning the use of a weighted approach is the sum-
mation of the objectives. As usually occurs, non-concurrent contributions
can have values differing for orders of magnitude. This difficulty is often
overcame by properly scaling the objectives or, for gradient-based methods,
the corresponding gradient vectors.

In this work a multi-objective shape design algorithm based on adjoint is
established and applied to a test case presented in 5. This method is based
on a weighted sum approach and origins from the formulation of the gradi-
ent reported in 2, namely (2.15) and (2.16). In these expressions only the
aerodynamic gradient depends on the adjoint flow-field, that in turn varies
as the objective changes. The remaining operations are purely analytical and
can be performed once, providing that the aerodynamic gradient is available.
As a consequence, the weighted-sum fitness function gradient can be simply
constructed by firstly summing the contributions of the aerodynamic gradi-
ents issuing from the set of cost functionals and then converting the resulting
sensitivity vector into a usable active or surface gradient. The weighted-sum
(surface) gradient vector can therefore be written as

(
dJ

dγ

)T
=

(
dXb

dγ

)T(
dX

dXb

)TNobj∑
i=1

ωj

[(
∂Jj
∂X

)T
+

(
∂R

∂X

)T
vj

]
. (3.24)

In turbomachinery field an interesting example of multi-objective opti-
mization is represented by the so-called multi-point shape design. The term
multi-point essentially means that the same functional is calculated at differ-

43



Chapter 3

ent operating conditions (e.g. pressures, temperatures, angle of attack etc.).
Thus the method allows to address with flow problems inherently charac-
terized by relevant fluctuations of the operating conditions and, hence, may
represent a viable methodology to obtain robust blade profiles, namely less
sensitive, in terms of changes of performance, to the variations of the oper-
ating conditions.

3.2.5 Multi-Point Design Algorithm

To prove the potential of multi-point methodology in dealing with fluctu-
ating operating conditions the previous single-point optimization algorithm
has been adapted for enabling multiple evaluations of flow and adjoint so-
lutions. The schematic view of the resulting design algorithm is depicted in
Figure 3.4 for the same objective function computed at two different operat-
ing conditions. Both flow and adjoint solutions are separately converged and
the associated aerodynamic gradient are evaluated. Therefore the gradients
are linearly combined and the resulting weighted-sum aerodynamic gradient
is processed according to the previous single-point optimization loop. No-
tice that multi-point approach enables to approximate, and then optimize,
the mean value of the objective function over the range of variation of the
operating conditions.

However, the main shortcoming of the multi-point technique remains the
appropriate selection of weights and design points where evaluating the objec-
tive function. This choice affects the resulting mean value and, consequently,
the results of optimization. A method to effectively overcome this limitation
could be established by retrieving the concept of statistical expectancy for
continuous aleatory variables. The stochastic mean of the objective J is
defined as follows:

J̄(P, x) =

∫
J(P)fx(x)dx, (3.25)

where the definite integral above is integrated over the set of possible val-
ues of the random variable(s) x, varying according to the probability density
function fx. If the weights and the set of design points are inferred through
integration rules, as occurs in some uncertainty quantification methods [68],
the statistical mean becomes well predicted by the resulting weighted-sum
and can then be reliably used as a merit function in the multi-point opti-
mization loop. Furthermore, in this case, the choice of weights and design
points is mathematically rigorous and is no longer left to empirical laws or
to designer experience. An example of (stochastic) multi-point is described
in chapter 5.

By looking Figure 3.4, notice that all simulations are separately initialized
by interpolating the old solution on the new grid to speed-up the overall
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Figure 3.4. Fully automated adjoint-based optimization algorithm for multi-point
optimization.

design process. The advancing towards the optimum is still carried out by the
preconditioned steepest descent, the preconditioning operator being applied
to the weighted-sum active gradient.
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Thermodynamic Modeling of
Real Gas Flows

The assumption of ideal gas behavior is highly misleading in a number
of realistic applications (e.g. Organic Rankine Cycles turbines, refrigerant
compressors etc). Therefore several tools are currently available to accurately
predict the thermodynamic properties of fluids in presence of strong real-gas
effects. However, most of these tools are largely inefficient when coupled with
existing CFD solvers. An effective solution to this issue is proposed in this
chapter.
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4.1 Introduction on Real-Gas Flow Modeling

The accurate modeling of thermodynamic and transport properties of flu-
ids exhibiting non negligible real-gas behavior is crucial in many technical
applications; in the energy-conversion technology fluids are often employed
in far from ideal-gas conditions, and the availability of proper thermody-
namic models is a necessary prerequisite for the accurate estimate of both
component and whole system performance. The prediction of real-gas ther-
modynamic properties can be achieved by determining analytical expressions
for the fundamental relation or, more commonly, by resorting to Equations
of State (EoS) and their derivatives. Several formulations of the EoS and
of transport properties correlations are available [69, 70, 71, 72, 73, 74], but
their direct implementation implies a high computational cost in case of nu-
merical studies, when a set of governing equations is iteratively solved, e.g.
detailed Computational Fluid Dynamic (CFD) calculations [75], dynamic
plant simulations [76].

As an alternative, Look-up Tables (LuT) can be used to represent the
thermo-physical behavior of the fluid. In the thermodynamic regions of in-
terest, a grid of nodal points (storing all thermodynamic and transport prop-
erties) is preliminary built. Within the discretized domain, the properties at
any point are computed using fast interpolation methods, with a dramatic
reduction in computational time [77, 78, 79, 80]. However this method does
not automatically guarantee the thermodynamic consistency of the model,
as instead it occurs in the case of direct EoS implementation. Thermody-
namic consistency implies that, given a triple of thermodynamic properties,
e.g. P, T, ρ, if T = g(P, ρ) and P = f(T, ρ), then P ≡ f(g(P, ρ), ρ). Gen-
erally, most of the LuT approaches substitute the functions f, g with their
approximate counterparts f̃ , g̃ and this finally leads to P 6≡ f(g(P, ρ), ρ).
The consistency error ε = P − f̃(g̃(P, ρ), ρ) can be minimized by increasing
the accuracy of the LuT, improving either the number of mesh nodes or the
order of the interpolation scheme. This can be usually done at the expense
of a greater computational cost. On the other hand, consistency errors may
induce significant non-smooth perturbations over CFD code iterations, which
may even prevent the solver to converge.

This chapter presents a novel interpolation method for property calcula-
tion of real gases using LuT. At first the values of specific internal energy e
are calculated for each node of a grid expressed in terms of specific entropy
s and specific volume v by resorting to accurate EoS implemented in the
software FluidProp [81]. The nodal values are then used to construct, by as-
signing a selected functional form, a local fundamental relation in the energy
formulation (e = e(v, s)). Within any cell of the thermodynamic domain, the
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coefficients of the functional form are calculated referring to the local grid
data; the analytical treatment of the fundamental relation locally established
guarantees that any thermodynamic property of any internal point is intrin-
sically consistent. The functional forms selected for e have indeed to exhibit
a sufficient regularity (second order derivatives are required, for example, for
the calculation of the speed of sound) and must fulfill the thermodynamic
stability within the cell.

A similar approach has been adopted also for computing the transport
properties. Two different functional forms are assigned to the dynamic viscos-
ity µ and to the thermal conductivity k; coherently with the thermodynamic
table, also the transport properties are expressed as functions of the spe-
cific volume and of the specific entropy (µ = µ(v, s), k = k(v, s)). The sets
of coefficients of the two interpolating functions are then computed at any
cell on the basis of the transport properties stored within local grid points.
Notice that no consistency issues have to be taken into account, since ther-
modynamic quantities (consistently calculated) do not depend on transport
properties.

The chapter is structured as follows. At first the details of the LuT
methodology are presented in Section 4.2. Issues concerning thermodynamic
stability, accuracy and computational cost are discussed in Section 4.3, in
which the LuT method is applied for the siloxane MDM and the carbon
dioxide; both single and two-phase regions close to the vapor saturation line
have been explored, for reduced temperature ranging between Tr ' 0.6 and
Tr ' 1.05. Two examples of LuT application in combination with CFD are
finally presented in Section 4.4.

4.2 Look-up Table Approach (LUT)

The standard computational scheme of any interpolation based method for
the calculation of thermo-physical properties consists in a two-step proce-
dure. As a first step, the thermodynamic mesh is generated based on the
data provided by an existing database (tables of experimental data or even
Equations of State and transport properties correlations). The whole set of
properties is computed afterwards on the basis of the data stored in each
node of the grid. The key aspects of a LuT algorithm, namely its efficiency
and its accuracy, are then related to the methodologies introduced to resolve
either steps. This section presents the methods developed in this work to
achieve an optimal compromise between accuracy and efficiency, given that
the thermodynamic consistency is intrinsically satisfied.

The main novelty of the present LuT procedure, with respect to other
approaches available in the open literature, lies in the computation of the
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thermodynamic properties; once the table is determined, nodal values are
used to construct (by proper interpolation) a local fundamental relation,
which can be analytically differentiated to compute in a straightforward way
any thermo-physical quantity of interest. Each step of the procedure is sep-
arately described in the following.

4.2.1 Generation of the Thermodynamic Mesh

The construction of the thermodynamic mesh is based on the discretization
of the saturation line according to a given temperature interval. The points
can be uniformly or variably spaced through a spline-based reconstruction
method, allowing also a refinement as the critical point is approached; an
example of discretized vapor saturation line for siloxane MDM is given in
Figure 4.1. The resulting saturation grid represents the support line on which
the LuT is constructed by proceeding along directions locally orthogonal to
the line.

Figure 4.1. Left: Discretized MDM vapor saturation line in the T-s plane. Right:
Discretized MDM vapor saturation line in the critical region of the T-s plane.

The normal spacing may be, in principle, specified using a generic pair
of states (e.g. ρ, e), however, this choice strongly affects the shape and the
thermodynamic regions covered by the resulting grid. Figure 4.2 depicts
three different thermodynamic meshes generated starting from the same ba-
sis points and specifying the normal spacing as a function of (log(v), s),
(log(T ), s), and (log(v), e). As well visible, the third grid extends in regions
far from the critical point, while the former two also include the supercritical
zone; this represents a crucial advantage in processes that occur, at least
partially, in the dense-gas region (such as ORC turbine expansions). Fur-
thermore, the use of (log(T ), s) as independent variables usually leads to
relevant deformations of the mesh for different couples of thermodynamic
properties. This results in higher computational costs and lower accuracies
when the LuT method is applied in process or CFD calculation, in which dif-
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ferent couples (e.g. ρ, e or P, ρ) are required. After several trials on a large
variety of fluids, the definition of the normal spacing in the (log(v), s) plane
resulted as the best construction strategy. This allows to easily embed real
gas regions in the thermodynamic domain, while preserving an acceptable
skewness of the mesh for the couples commonly required in CFD calls. As a
result, (log(v), s) represents the basic choice of all grids constructed for the
CFD simulations reported in the following.

Figure 4.2. Thermodynamic meshes generated using (log(v), s), (log(T ), s), and
(log(v), e) as independent variables for normal spacing. For clarity, the tables are
reported in the T − s plane.

The use of the saturation line as a basic support for LuT construction
enables also the adoption of a multi-block approach, providing that the sat-
uration line is split into several pieces, possibly with different discretization.
The multi-block construction also allows to easily embed two-phase regions
in the domain; the adjacent blocks result completely separated, with two
different sets of points (one for each block) assigned at the boundary. Since
the saturation line always belong to a boundary surface, all properties are
continuous across any single cell of the domain. Figure 4.3 sketches, in the
T − s plane, two examples of thermodynamic mesh for, respectively, MDM
(split into three blocks) and CO2 (made by two blocks). As the original
tables are generated in the (log(v), s) plane, the corresponding grids in the
T, s plane may exhibit a certain skewness, especially for fluids featuring a
positive slope of the saturation line such as MDM . Notice also that mesh
spacing can differ from one block to another and in both grid directions (e.g
Fig. 4.3, left).

4.2.2 Construction of the Fundamental Equations

The major novelty of the present approach is the construction of a thermo-
dynamic fundamental relation in the form e = e(v, s) valid within each cell
through an interpolation-based method. The pre-computed thermodynamic
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Figure 4.3. Look-up Tables for siloxane MDM (left) and CO2 (right) in the T-s
plane.

properties (stored at any grid node) are used as basis points. An analytic
functional form is then required to mimic the real thermodynamic behavior
of the fluid. In this context a simple bilinear and a more accurate bicubic
bivariate interpolation methods based on edge-points are implemented. In
particular the bicubic form was chosen in such a way to guarantee a degree
of variability of the second derivatives within the cells; as a matter of fact
the second derivatives of the fundamental relation are required for the cal-
culation of some thermodynamic quantities, such as the specific heats or the
speed of sound, as shown in Section 4.2.4. The bicubic functional form can
be written as

e(v, s) = b00 + b01v + b02v
2 + b03v

3+

b10s+ b11sv + b12sv
2 + b13sv

3+

b20s
2 + b21s

2v + b22s
2v2 + b23s

2v3+

b30s
3 + b31s

3v + b32s
3v2 + b33s

3v3

(4.1)

For each cell the weights bi,j of the interpolation functions are determined
by using the values of entropy, specific volume, and internal energy of the
surrounding 4 (bilinear) or 16 (bicubic) grid nodes.

This approach allows to manage the calculation of the whole set of weights
for all grid cells in a pre-processing phase. As a result, the accuracy of the
method may be further enhanced by using higher-order interpolating func-
tions without compromising the computational efficiency of the calculation
strategy; indeed, the overall expense remains only dependent on the number
of cells and on the pair of state variables, as outlined in the following.

4.2.3 Transport Property Functional Forms

Similarly to the case of thermodynamic properties, the transport properties
of any point of the domain are calculated according to a LuT approach.
Therefore, a local analytical functional form is constructed for both the dy-
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namic viscosity µ and the thermal conductivity k at any cell of the grid.
In either cases the specific volume v and the specific entropy s have been
taken as independents and simple bilinear functions are implemented, since
no second order derivatives of transport properties are required in the con-
text of fluid-dynamic computations. However, more complex relations can be
adopted with no significant increase of the computational cost. The bilinear
functional forms for µ and k can be written as:

µ(v, s) = β00 + β01v + β10s+ β11sv (4.2)

k(v, s) = ζ00 + ζ01v + ζ10s+ ζ11sv. (4.3)

Each set of local values of the coefficients βi,j, ζi,j of the functions is
established resorting to the triple v, s, µ or v, s, k of the surrounding 4 grid
nodes. As in the case of thermodynamic property calculation, the whole set
of weights is determined in the pre-processing phase, thus not affecting the
computational efficiency of the method.

4.2.4 Computation of Thermodynamic Properties

The whole set of thermodynamic quantities normally involved in process or
CFD calculations, i.e. P, T, h, c, cv, cP , is provided by properly deriving the
analytical expression of the fundamental relation. As a result, the thermody-
namic consistency of the method is automatically satisfied. Since the speed of
sound and the specific heats are functions of the second-order partial deriva-
tives of e, the bicubic interpolation form is required in the solution of flow
problems. The full set of thermodynamic properties as a function of s, v can
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be written as

P = −
(
∂e

∂v

)
s

T =

(
∂e

∂s

)
v

h = e−
(
∂e

∂v

)
s

v

c = v

√(
∂2e

∂v2

)
s

cv =
T(
∂2e
∂s2

)
v

cP =

T

(
∂2e
∂v2

)
s

T
cv

(
∂2e
∂v2

)
s

−
(

∂2e
∂v∂s

)2 ,

(4.4)

in which cP is only defined in single phase regions. Furthermore, most of the
flux splitting numerical schemes suitable for arbitrary equations of state, as
the one proposed in [53] and implemented in the flow solvers described in
the following, require the calculation of secondary thermodynamic properties
to reconstruct the fluxes among adjacent cells. These are commonly limited
to derivatives of pressure with respect to density and to internal energy for
inviscid simulations [51], which, properly combined, are used to recover the
fluid speed of sound. The specification of temperature derivatives is further
needed in case of viscous [82] and throughflow problems [83] solved by implicit
time integration algorithms. If analytically rewritten as function of s, v, such
derivatives can be additionally inferred as outputs of the present LuT method
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as follows:
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∂2e
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(4.5)

For a given input pair of thermodynamic properties (e.g. vs, ve, Ps,
PT ) the calculation strategy is divided into three main steps: the mesh
cell containing the desired point is initially identified and the corresponding
set of weights is separately selected; then the given pair is converted into
the explicit state v, s by iteratively solving a non-linear equation (system);
finally all thermodynamic properties are calculated by means of the set of
equations (4.4) and (4.5).

The identification of the correct grid element where the thermodynamic
point of interest lies represents the most demanding operation of any LuT ap-
proach and the time correspondingly required proportionally increases with
the number of mesh nodes. A considerable reduction of the computational
expense related to the search process is herein achieved by adopting fast
nearest-neighbor techniques. Within the present LuT algorithm a robust
kd-tree partitioning algorithm [84, 85] has been implemented and tuned to
decompose the original thermodynamic domain in a tree structure suitable
for a highly efficient search procedure.

In particular, several tree structures are assembled and stored, one for
each couple of thermodynamic states required in CFD codes. Such approach
leads approximately to the same computational cost for a single search pro-
cedure using different input pairs, at least on meshes characterized by similar
skewness. Moreover, as kd-tree methods act primarily on Euclidean spaces,
an algebraic transformation is initially applied to the thermodynamic prop-
erties in order to map the original values within the normalized space 0-1.
This ensures an acceleration of the searching process.

Apart from the favorable case of v, s, which seldom occurs in CFD or
process calculations, any other pair of states cannot be directly used for the
computation of the thermodynamic properties, as the fundamental relation
explicitly depends on v, s. Therefore the input state has to be preliminarily
converted into the independent state v, s by solving a non-linear problem in
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the form f(v, s) = f0, f0 being a vector of two given properties. The most
demanding case occurs when none of the input variables correspond to the
independent variables of the fundamental relation. Considering for example
PT as independent variables, the non-linear system to be solved to restore
v, s can be written as:

P (v, s) = P0

T (v, s) = T0.
(4.6)

Equations (4.6) can be solved by any iterative algorithm available for non
linear systems. In this work some Newton’s updates are employed to hasten
the solution. The linearization of equations (4.6) simply holds:

P (v + δv, s+ δs) = P (v, s) +
∂P

∂v
δv +

∂P

∂s
δs = P0

T (v + δv, s+ δs) = T (v, s) +
∂T

∂v
δv +

∂T

∂s
δs. = T0

(4.7)

By plugging the fundamental relation in the linearized equations, the full
system is more conveniently expressed as[

∂P
∂v

∂P
∂s

∂T
∂v

∂T
∂s

] [
δv
δs

]
=

[
∂2e
∂v2

− ∂2e
∂v∂s

∂2e
∂v∂s

∂2e
∂s2

] [
δv
δs

]
=

[
P0 − P (v, s)
T0 − T (v, s)

]
, (4.8)

where the vector δv, δs represent the incremental steps of the solution v, s.
A very fast convergence is usually achieved by selecting as initial guess for
the iterative process the couple v, s belonging to the mesh node closest to the
assigned one. Given the couple v, s corresponding to the point of interest,
the thermodynamic quantities are straightforwardly evaluated by applying
the relations (4.4), while the transport properties are simply given by the
functional forms (4.2) and (4.3).

4.3 Analysis of the Method

In this section the accuracy and the computational efficiency of the method
are carefully assessed. Carbon dioxide and siloxane MDM are considered as
reference compounds for the investigations. The thermodynamic tables are
constructed on the basis of the data provided by FluidProp.

4.3.1 Thermodynamic Stability

Each fundamental relation describing thermodynamic equilibrium states has
to satisfy the so-called stability conditions [86]. To guarantee the thermody-
namic stability it is necessary and sufficient that the fundamental relation is

56



Thermodynamic Modeling of Real Gas Flows

convex with respect to the specific entropy and the specific volume, namely
that, for a pure substance:

d2e =
1

2

(
∂2e

∂s2

)
v

ds2 +

(
∂2e

∂s∂v

)
dsdv +

1

2

(
∂2e

∂v2

)
s

dv2 > 0 (4.9)

Therefore, the quadratic form (4.9) which expresses d2e is required to be
positive definite or, equivalently, that all the principal minors of the matrix of
the quadratic form are positive. As the matrix of (4.9) is the Hessian matrix
(H = H(s, v)) of e, the stability of the fundamental relation is guaranteed if
and only if [86]:


H1,1 =

(
∂2e
∂s2

)
v

> 0

det(H) =

(
∂2e
∂s2

)
v

(
∂2e
∂v2

)
s

−
(

∂2e
∂s∂v

)(
∂2e
∂v∂s

)
> 0.

(4.10)

The bicubic relation expressed in (4.1), therefore, must guarantee the
thermodynamic stability in the region of application. This simply leads to
local conditions, since a different fundamental relation is defined on a single
mesh element. As a result, a simple method to ensure the local stability of
a given bicubic function requires the verification of the conditions specified
by (4.10) over the domain of application. In the present work this opera-
tion is performed immediately after the definition of the full set of bicubic
relations. In particular, the stability conditions have been investigated in
additional verification points obtained by equally dividing each cell of the
support mesh in eight parts. These points include the barycenter of the
cells, which represent the points where the interpolation error tends to be
higher. The fulfillment of the stability conditions have been satisfactorily
verified for different fluids and for mesh of different dimensions over the en-
tire (possibly multi-block) domain. Figure 4.4 shows, in the T − s diagram,
how the stability conditions are fulfilled by the the whole set of fundamental
relations established in the domain using the LuT. The results reported in
Fig. 4.4 refer to a two-block LuT constructed for the siloxane MDM using
5000 cells for the single-phase block and 2500 cells for the two-phase block.
The verification points are about 40000 for the vapor/supercritical region and
about 20000 for the two-phase region. It can bee seen how conditions (4.10)
are respected at any investigated point of the thermodynamic domain and
not only on the support grid nodes, as already guaranteed by the stability of
the Span-Wagner EoS [73] employed for the generation of the mesh.
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Figure 4.4. Verification of the thermodynamic stability for the siloxane MDM.
Left: Non-dimensional value of H1,1. Right: Non-dimensional value of det(H).
H = H(s, v) is the Hessian matrix of the fundamental relation e = e(s, v) estab-
lished at a certain cell of the domain.

4.3.2 Accuracy

The accuracy of the proposed LuT approach is herein evaluated by quantita-
tively estimating the deviations of the interpolated values against the quan-
tities given by the original models implemented in the FluidProp database,
namely the Span-Wagner EoS for both fluids [73, 87, 88]. Two ensembles
of 500 randomly distributed points are initially generated and used for the
analysis. The former group is representative of the regions far from the criti-
cal point, the latter one is conversely extrapolated from the critical one. The
results shown in the following refer to the mean percentage relative error of
P, c, cP as a function of the grid node number for v, s as input pair. Further
calculations, not reported herein, gave similar outcomes for the remaining
couples.

Figures 4.5 and 4.6 display the convergence of the mean relative error as
a function of the table nodes. For both fluids, the error tends to be higher
in the critical region. This behavior is most probably due to strong real
gas effects, which induce high deviations of the thermo-physical properties
between two close states. As a consequence, the bicubic shape is less suitable
to predict the trend of internal energy within a single cell element, resulting
in a degradation of the accuracy of its first and second-order derivatives. As
expected, Figures 4.5 and 4.6 also show a lower accuracy for c and cP . This
can be easily explained by inferring the order of the interpolating polynomials
used for approximating the three properties. Such orders, with respect to the
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Figure 4.5. LUT accuracy for MDM. Left: Mean relative error far from the critical
point. Right: Mean relative error in the critical region.

Figure 4.6. LUT accuracy for CO2. Left: Mean relative error far from the critical
point. Right: Mean relative error in the critical region.

independent variables, can be synthetically written as

P ∝ v2

c ∝ v
3
2

cP ∝ s.

(4.11)

As shown, pressure (and temperature) are described by quadratic func-
tions, whereas specific heat capacities are basically linear and, therefore, re-
sult to be calculated with minor accuracy. In general the interpolation error
decreases quadratically with the number of mesh elements (1/N2) far from
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the critical point, whereas lower convergence orders are achieved in proximity
of the critical region.

4.3.3 Computational Efficiency

The computational efficiency of the LuT approach is now assessed by com-
paring the time necessary for a direct evaluation of the thermo-physical prop-
erties through the equation of state implemented in FluidProp with that re-
quired by the LuT algorithm. The mean ratio of the computational burdens
of the two methods (LuT cost divided by the direct evaluation cost) for the
set of the previously described 500 points, randomly distributed in the ther-
modynamic space (in both critical and non-critical regions) is summarized
in Tables 4.1 and 4.2. For a given input pair the whole set of thermody-
namic and transport quantities is evaluated on a fixed thermodynamic mesh
composed by 10000 elements.

vs ve Ps PT
MDM 10−3 10−2 10−2 10−1

CO2 10−3 10−2 10−3 10−1

Table 4.1. Mean computational time ratio between the LuT and the direct method
far from the critical region.

vs ve Ps PT
MDM 10−3 10−3 10−2 10−2

CO2 10−3 10−3 10−3 10−2

Table 4.2. Mean computational time ratio between the LuT and the direct method
in the critical region.

The present interpolation-based scheme outperforms the direct evaluation
method for any pair of thermodynamic states. The computational cost is
reduced of at least three orders of magnitude with respect to direct calls
where v, s (or one of them) explicitly appears as input state. Up to three
orders of magnitude gain can be achieved by calling with v, e in critical
regions, which represents the most used couple in a CFD solver. Conversely,
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the use of P, T as independent variables needs the solution of the non-linear
system (4.6), which entails a reduction of the computational gain offered by
the LuT method. However, this type of call is not required in real-gas CFD
solvers adopting conservative variables.

The influence of the grid dimension on the total computational burden
is now investigated. The whole set of thermodynamic properties (previously
based on a mesh of 10000 cells) is now assessed on grids of increasing size.
The investigation is performed for MDM in the region far from the criti-
cal point. The computational expenses are coherently evaluated on meshes
having similar skewness.

Figure 4.7. Total computational cost of 500 search operations carried out for MDM
in non-critical regions on grids of varying dimension.

The results shown in Figure 4.7 point out a very interesting trend. The
computational cost increases less than linearly with the number of mesh ele-
ments, leading to the considerable advantage of making use of very fine mesh,
i.e. very accurate properties calculation, without considerably affecting the
whole cost of the simulation. Since most of the computational effort is due
to the cell identification rather than to the property evaluation (using the
same call the evaluation time is almost the same on different grid size), this
outcome can be completely conferred to the characteristics of the kd-tree par-
titioning algorithm. In fact, grids covering similar thermodynamic areas but
characterized by different number of elements have comparable tree struc-
tures, namely the thermodynamic domain is divided in the same number
of main partitions. Therefore, the introduction of further mesh points only
leads to a modification of the tree structure at a lower level, resulting in an
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increase of local partitions of the domain for a finer mesh.

Figure 4.8. Overview of kd-tree partitioning algorithm. The values shown are the
coordinates of the dividers (red circles), namely the basis points of the table. Black
circles indicate the query points.

Hence, the main architecture of the tree is fully conserved between a
coarse and a fine grid, while only its sub-structure is changed. This allows to
envisage a search procedure as split into two main parts: the search starts by
proceeding along the primary partitions of the tree (global search), which are
approximately equal between the two grids, then, in the case of a fine grid,
the cell of interest is reached through the peripheral branches (local search)
effectively arranged on the main tree structure. For a coarse grid, contrarily,
the search stops at the first (global) level; see Figure 4.8. The additional
time consumed is then only related to the local search, which is usually very
efficient. A further investigation conducted by using carbon dioxide provided
the same indications. The potential of this feature of the LuT algorithm can
be fully exploited in CFD simulations, as those reported in the next section.

4.4 Application to Turbomachinery Flows

The proposed LuT method has been embedded into existing CFD solvers
for the simulation of turbomachinery flows of organic fluids. In particular
TzFlow code [83] for throughflow calculations of multistage machines and
zFlow code [51] for blade-to-blade cascade calculations are considered. The
performances of both solvers for realistic turbomachinery applications are in-
vestigated in the following, considering a transonic multistage radial turbine
and a supersonic axial turbine nozzle.
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4.4.1 Throughflow Simulation of a Multi-Stage ORC Radial Tur-
bine

The throughflow simulation of the transonic six-stage radial turbine proposed
in [9], designed to operate with siloxane MDM, is first considered. The
calculation presented in [9] was originally performed by coupling the TzFlow
solver with the external thermodynamic library FluidProp, which models
the MDM fluid with the Span-Wagner EoS [87]; this reference calculation
is hereinafter indicated as SW. In the present context the TzFlow solver is
extended to implement the proposed LuT approach, and then applied to the
same machine using tables constructed with the Span-Wagner EoS, so to
guarantee full coherence between the physical models used in the LuT and
SW calculations. The comparison between the results achieved with LuT
and the SW methods allows to highlight the impact of the thermodynamic
treatment on the computational cost and accuracy of a CFD simulation for
a whole machine.

The isentropic thermodynamic process ideally experienced by the fluid
within the machine is represented in the left frame of Figure 4.9, where also
the table used for the LuT calculation is provided in the T −s state diagram.

From the fluid dynamic point of view the TzFlow solver implements the
so-called CFD-based throughflow model. In a nutshell, the flow model is ob-
tained by averaging the three dimensional Euler equations in the azimuthal
direction; this leads to a highly simplified axisymmetric problem, but proper
source terms have to be introduced to model the flow deflection imparted
by the blades, the aerodynamic losses, and the blade blockage [83]. From
the thermodynamic point of view the solver is formulated in conservative
form, hence the couple e, v represents the input pair in many instances of
the calculation; however in the throughflow model the loss source term, for-
mulated as a friction force, is expressed as D = T ∂s

∂t
(with t the streamwise

coordinate). As a result, differently from a standard inviscid flow solver,
throughflow simulations also require the calculation of temperature, entropy,
and their derivatives.

The TzFlow calculations of the six-stage centrifugal turbine have been
performed using Craig & Cox loss model [89], and assuming elliptic-arc mean
line blades (following the design remarks proposed in [90]). The computa-
tional grid is composed by about 30 kcells (40 × 750 cells in spanwise and
streamwise direction respectively), arranged in a structured multi-block as-
sembly and composed by cascades and channels; the relatively high number
of cells, with respect to the common experience on axisymmetric calculations,
is motivated by the spatial resolution required for an appropriate modeling
of the gradients of blockage in bladed zones (multiplied by the twelve cas-
cades of the machine). For the LuT calculations four thermodynamic tables
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are considered, composed by 5000, 10000, 20000 and 50000 cells, all of them
covering the same area on the state diagram but characterized by different
levels of refinement.

An example of result for real-gas throughflow calculations is shown in
the central frame of Figure 4.9, where the distributions of total enthalpy
and entropy on the meridional plane are depicted for the LuT calculation
performed with the 5 kcells table. As clearly visible, the total enthalpy only
drops across rotors, due to the work exchange (adiabatic flow conditions
are assumed, as usually done in turbomachinery); conversely the entropy
increases progressively along the machine, due to the action of losses in stator
and rotor cascades; both the quantities exhibit large spanwise gradients in the
last stages, due to the significant flaring of the channel. All these features are
properly captured by both the SW and LuT models, from the quantitative
and the qualitative point of views. A relevant quantitative comparison is
provided in the right frame of Figure 4.9, where the midspan profiles of
static pressure and static temperature for SW and LuT models are shown to
be perfectly overlapped.

This indicates that the present LuT algorithm (with the specific grid used)
allows to accurately predict the evolution of thermo-physical quantities along
the machine.

Figure 4.9. Left: Tabulated region for throughflow simulation (MDM). Center:
meridional evolution of total enthalpy and entropy field within the 6-stage cen-
trifugal turbine. Right: comparison between SW and LuT results in terms of
streamwise distribution of pressure and temperature at turbine mid-span.

The crucial quantitative comparison among different models is now per-
formed in terms of computational efficiency. For this comparison the 5 kcells
table has been first considered for the LuT model and, beside the SW model,
further calculations have been performed using simpler thermodynamic mod-
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els, namely the polytropic ideal gas (PIG) and the polytropic Van der Waals
(PVdW) gas models. These latter models are also available in TzFlow by
direct implementation of the EoS within the solver. It should be noted that
this procedure represents the most efficient strategy to determine the thermo-
physical properties of a working fluid, as just simple analytical operations are
required to solve for the full set of thermodynamic relations. Both polytropic
models predict the fluid properties by using a constant specific heat ratio,
obtained by conveniently averaging the γ values along the ideal expansion
line shown in the left frame of Figure 4.9.

Table 4.3 compares the savings in computational cost with respect to SW
(implemented trough the external library) provided by the LuT, PIG and
PVdW models. Since in a CFD calculation a large amount of resources are
required by the integration of the flow equations (e.g., for the calculation
of fluxes, the solution of linear system, etc.), to properly analyze the effec-
tiveness of the thermodynamic approach the overall computational cost is
conveniently split into two contributions: the first one is the cost needed for
the fluid-dynamics calculation, which is a fixed and irremovable fraction of
the total expense; the second one is the cost needed for the calculation of
thermodynamic properties.

For calculations performed using PIG or PVdW models the thermody-
namic cost is a few percent of the total one, so their cost represents a rough
estimate of the fluid-dynamic cost - the PIG and PVdW simulations share
the same computational time indeed, as seen from Table 4.3. The SW com-
putational cost being the double of the PIG/PVdW one, the thermodynamic
cost of the calls to the external library roughly equates the fluid dynamic one.
When the LuT approach is used, the fast-searching algorithm and the local
analytical model enable to strongly reduce the thermodynamic cost, saving
about 2/3 of the corresponding one required by the SW simulation.

PIG PV dW LUT (5kc) SW
Time saving 53 % 52 % 33 % -

Table 4.3. Total computational cost saved by using different thermodynamic mod-
eling approaches compared to SW model for the throughflow simulation.

The influence of the grid size on the total computational cost of the LuT
simulation is now investigated, with reference to the PIG/PVdW computa-
tional cost. The three refined grids are used for the comparison, beside the
original one. From the data reported in Table 4.3 it is possible to obtain
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a rough estimation of a PIG computation, which results approximately 150
seconds. The difference between the PIG and LuT burdens is around 65
seconds for a grid of 5 kcells. Increasing the number of grid nodes of one
order of magnitude (50 kcells) the extra cost, purely thermodynamic, is just
about 13%. As a result the grid size has a slight relevance on the total com-
putational cost of the simulation, allowing for the use of fine (and accurate)
thermodynamic meshes, if required by the problem, without compromising
the effectiveness of the computational procedure.

Figure 4.10. Total computational cost of the throughflow simulation using different
grid size.

4.4.2 Blade-to-blade Simulation of a Supersonic ORC Cascade

The second test case focuses on the blade-to-blade simulation of a supersonic
ORC nozzle at mid-span. The cascade is characterized by an extremely high
expansion ratio, which leads to a design exit Mach number of 2. As a result,
inter-blade channel is of converging-diverging shape, with a sonic throat up-
stream of the discharge section. The working compound is siloxane MDM
also in this application; the ideal thermodynamic process through the cascade
is sketched in the left frame of Figure 4.11, along with the thermodynamic
table used for the LuT simulations.

The calculations have been performed with a simplified version of the
zFlow code, which solves for the two-dimensional inviscid flow equations in
Cartesian coordinates; the codes zFlow and TzFlow were developed on the
same bases, sharing the same numerical solution procedure and most of the
computational features. After a preliminary grid dependence analysis, a

66



Thermodynamic Modeling of Real Gas Flows

computational grid of about 20000 triangular elements has been selected for
the present blade-to-blade calculations; the relatively large number of cells,
with respect to typical values used for inviscid blade-to-blade simulations,
is motivated by the presence of strong shocks. As done for the previous
test case, the results of the LuT approach are now compared with the ones
achieved with SW, PIG and PVdW models, first considering a 5 kcells table
for the LuT calculation.

The accuracy of the LuT approach is first evaluated against the solution
gained by using SW model. The central frame of Figure 4.11 shows the
distribution of Mach number, from which the sonic throat and the trailing
edge shock can be observed. In the same Figure the streamlines are also
reported, showing the considerable flow turning both within and, especially,
downstream of the blade channel.

Once again, all the flow features are captured by the LuT approach from
both the qualitative and quantitative point of views. In particular a relevant
quantitative comparison is provided in the right frame of Figure 4.11, where
the distributions of isentropic Mach number along the blade surface for SW
and LuT models are shown to perfectly overlap, confirming the accuracy of
the solution provided by the LuT algorithm.

Figure 4.11. Left: Tabulated region for supersonic turbine simulation (MDM).
Center: Blado-to-blade Mach flow field at nominal operating conditions. Right:
Predicted isentropic Mach number distribution along the blade surface.

The performances of the LuT method are now analyzed. In full coherence
with the preceding throughflow application, the same thermodynamic models
are herein utilized for the analysis.

The time savings provided by LuT, PIG and PVdW approaches compared
to the SW one, reported in Table 4.4, are larger than that in the throughflow
case. In particular, for the SW calculation the thermodynamic cost amounts
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PIG PV dW LuT SW
Time saving 83 % 82 % 65 % -

Table 4.4. Total computational cost saved by using different thermodynamic mod-
eling approaches compared to SW model for the supersonic cascade simulation.

to 80% of the overall computational cost, considerably higher than that oc-
curring in the throughflow simulation; as a result, the LuT approach provides
an even more significant saving, almost the double of that achieved for the
throughflow test-case.

As already found for the throughflow calculation, the influence of the
table size on the overall computational burden is limited, as depicted in the
left frame of Figure 4.12; a further study is finally carried out to evaluate the
sensitivity of the convergence rate on the table size. Very similar residual
values are achieved at end of the simulation going from 5 to 200 kcells,
as visible in the right frame of Figure 4.12. However, lower convergence
rates of the flow solver are observed for coarser thermodynamic meshes, as
highlighted in the same figure for LuT tables composed by 5 and 10 kcells.

Figure 4.12. Left: Total computational cost of the blade-to-blade simulation using
different grid sizes. Right: Convergence rate of the flow solver as a function of
grid size.
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Shape Optimization
Applications

This chapter presents some examples of shape optimization for inviscid
flow through converging-diverging channels and turbine blade passages. The
aim is to investigate the potential of the previously described adjoint-based
methodology in improving the performances of existing geometries. The test
cases reported in the next sections follow the natural evolution of the work,
hence the discussion starts by illustrating the results of a simple inverse de-
sign problem and concludes providing the outcomes drawn by the re-design
of a supersonic ORC turbine stator. The following test cases are extensively
described:

� Shape Optimization for Quasi-1D Transonic Flow through
Diverging Channels

� Shape Optimization for Quasi-Uniform Supersonic Flow through
Converging-Diverging Nozzles

� Shape Optimization of a Transonic Turbine Cascade

� Shape Optimization of a Supersonic ORC Turbine Cascade
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5.1 Inverse Design for Quasi-1D Transonic Flow

through Diverging Channels

5.1.1 Problem Statement

The first example concerns internal flows inside a channel of variable area.
The physical behavior of the flow is modeled by the compressible quasi-1D
Euler equations. The channel shape is described by the following hyperbolic-
tangent relation (5.1)

y(x) = a+ b·tanh(cx− d). (5.1)

The independent parameters of (5.1), i.e. the design variables of the
problem, are initially set to a = 1.75, b = 0.699, c = 0.8, d = 4. The purpose
of this first design exercise is to evaluate the capability of the adjoint method
for inverse design applications. Inverse design methods are often use to gen-
erate geometry configurations able to reproduce an exact matching between
a target pressure trend and a computed one along some prescribed direction.
In this case the stream-wise distribution of the static pressure is firstly given
by fixing the design parameters values as previously. Then the shape of the
channel is altered by acting on c, d parameters, now set to c = 1, d = 3.8.
The aim of the optimization is therefore to establish the equivalence between
the initial pressure distribution, assumed as reference, and the current one.
As a result the fitness function of the problem can be written as

J =
1

2
(pi − ptgi)

2. (5.2)

where pi, ptgi are, respectively, the pressure and its target counterpart at
a given cell. In order to obtain a shock formation inside the diverging part
of the channel, supersonic inflow and subsonic outflow boundary conditions
are imposed. Inlet and outlet Mach numbers have been fixed equal to 1.5
and 0.6. Computational grid consists of about 300 equi-spaced cells. The
working fluid is air modeled as polytropic ideal gas.

5.1.2 Gradient Validation

In order to properly deform the channel geometry, the sensitivity derivatives
of the fitness function with respect to each design variable a, b, c, d are to be
computed. However, for quasi-1D flow problems with fixed mesh size, and
more in general for fluid-dynamic problems in which the cost functional does
not straightforwardly depend on the grid, the (surface) gradient expression
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simply reduces to (
dJ

dγ

)T
=

[(
∂J

∂γ

)T
+

(
∂R

∂γ

)T
v

]
. (5.3)

where the vector γ is herein represented by c, d. As no post-processing
operation, i.e. smoothing and projection, is applied to the original gradi-
ent, it is easy to validate the accuracy of the adjoint method against some
finite difference technique. Centered finite difference formula with appropri-
ate step-size has been utilized for the purpose. The results of the comparison
are shown in Table 5.1, where is clearly highlighted an excellent agreement
between the two methods.

Gradient Adjoint Centered FDM
dJ
dc

12.50467932 12.54722000
dJ
dd

-4.00182424 -3.992915

Table 5.1. Validation of shape gradient for quasi-1D flows.

5.1.3 Shape Optimization Results

The design process is advanced using either a conjugate gradient or a quasi-
newton method, both available through the open-source Dakota software
[91]. The two algorithms are capable to successfully converge to the local
minimum in almost the same number of iterations, see in Figure 5.1 the
quasi-newton convergence.

The present test case obviously reveals a very scarce applicative inter-
est and has been inserted in this thesis only for completeness. However, its
simplicity represents a key-point when advanced studies on innovative nu-
merical methods involving adjoint are to be carried out. As a matter of fact,
the simple model problem has been taken as the reference test case for the
uncertainty quantification studies performed to investigate the potential of
the adjoint for stochastic predictions. The very low computational demand
required by the quasi-1D model enables the use of a full (and very expensive)
Monte-Carlo method for comparison purposes. The results are extensively
reported in the following chapter.

71



Chapter 5

Figure 5.1. Convergence history for the quasi 1-D pressure matching problem.

Figure 5.2. Left: Initial and final stream-wise pressure distribution. Right: Base-
line and optimized nozzle geometry.

72



Shape Optimization Applications

5.2 Quasi-Uniform Supersonic Flow through

Converging-Diverging Nozzles

5.2.1 Introduction

Gas dynamic subsonic-supersonic nozzles are largely applied in rocket propul-
sion, turbines, supersonic wind tunnel etc. Supersonic wind tunnel nozzles
are characterized by a highly uniform supersonic flow at outlet section and,
therefore, are the benchmark for test sections where high quality uniform
flow is required. In recent years an innovative test rig, called TROVA, for
the experimental investigation of organic vapor streams has been designed
and built at Politecnico di Milano and its commissioning is currently un-
derway [35]. The wind tunnel accommodates a supersonic planar nozzle,
representative of a supersonic turbine blade passage. The geometry of such
nozzles has been preliminarily determined for different fluids and operating
conditions by the Method of Characteristics (MoC), see [92]. Often, the MoC
method does not permit to satisfy the trade-off between the flow uniformity
and the constraint on the maximal nozzle length, which represents a limita-
tion in most wind tunnels. As a matter of fact, the baseline nozzle geometry
generated through MoC may be only the initial guess of a more complex
design procedure intended to match the nozzle characteristics (e.g. flow uni-
formity) with the strict requirements, in terms of maximum allowable space,
of the wind tunnels. In this context, shape optimization can be of notewor-
thy aid to improve the design, by ensuring the achievement of a high-quality
uniform flow even for nozzles different from those initially suggested by MoC
calculation.

5.2.2 Problem Statement

The planar converging-diverging channel herein considered was designed as-
suming the siloxane MDM as working compound. The classical 2D Method of
Characteristics (MOC) was originally adopted for the design of the diverging
part of the nozzle, while a polynomial functional form was used to construct
the converging portion, [92]. For given reference operating conditions and
working compound, the MOC-based design generates a nozzle shape capa-
ble of providing uniform flow at the outlet section. Therefore, even slightly
changes in the fluid-dynamic behavior of the flow or minor geometry modi-
fications usually lead to a rapid degradation of nozzle performances. In this
case, the baseline MoC profile was simply shortened to obtain a nozzle length
compatible with the space available in the TROVA test section. A spanwise
re-definition of the geometry is then mandatory to achieve a high-quality
uniform flow.

The design process is carried out by using two different shape optimization
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approaches. In the former exercise the nozzle geometry is parameterized
by directly using the boundary mesh points, while in the second case the
profile is described by NURBS parametric curves. Accordingly, the descent
direction towards the local minimum of the function to be optimized is given
by, respectively, the active gradient and the surface gradient. In all presented
test cases, the (active) gradient is calculated by resorting to the frozen domain
approach.

As pointing out pros & cons of both methods is initially of main concern,
the thermo-physical description of the fluid is carried out through the poly-
tropic Van der Waals (PVdW) equation of state (EoS). The use of the PVdW
model instead of the Span-Wagner EoS produces quite significant deviations
in the prediction of the stream-wise Mach number distribution and enables
to considerably limit the computational burdens without affecting the results
of the comparison. A more accurate nozzle re-design is finally performed by
introducing in the optimization loop the thermodynamic model originally
adopted in MoC design. The latter design exercise serves, among others, as
a first verification of the feasibility of the real gas adjoint method presented
in chapter 3.

In all three examples the computational grid is generated at each design
step by the automated Delaunay-based unstructured solver and is composed
by about 5000 triangular elements. The baseline mesh layout is shown in
Figure 5.3.

Figure 5.3. Computational mesh of the converging-diverging channel.

Total conditions (pressure and temperature) are imposed at inflow bound-
ary, whereas a proper static backpressure value, ensuring a fully supersonic
flow, is initially assigned at outflow domain. For the PVdW model, the
caloric equation of state is specified through a constant γ, whose value is
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preliminarily evaluated by taking the arithmetic mean between the inlet and
the outlet section. Thermodynamic conditions at inlet/outlet section are
listed in Table 5.2. As the inlet compressibility factor is close to 0.6, relevant
real-gas effects occur at least in the first part of the expansion process.

Fluid PT TT ps γ

MDM 10 bar 276 � 1.0 bar 1.0278

Table 5.2. Total upstream conditions, static outlet pressure and specific heat ratio
for shape optimization of quasi-uniform supersonic flows.

The three test cases are now separately discussed, starting from the nozzle
re-design through active points.

5.2.3 Shape Optimization of Converging-Diverging Nozzle using
Active Points

The quantitative evaluation of flow uniformity is not a uniquely defined pro-
cedure. A quick indication of the level of uniformity can be achieved by mea-
suring, at the outlet section, the dispersion of flow angles of each streamtube
around a prescribed mean value. Alternative formulations can be specified
in terms of Mach numbers variability or as a combination of both flow angle
and Mach number distribution. In the present study the first definition is
addressed. The rationale behind this decision is essentially due to the fact
that the measurement techniques expected to be used for velocity measure-
ments, as LDV and aerodynamic pressure probes, are highly sensible to the
flow direction. Therefore the objective function can be written as

J(Xb) =

[ nob∑
i=1

(αi − αtg)2

] 1
2

. (5.4)

In Equation 5.5 αi is the flow angle at each cell of the outlet boundary, αtg
is the target mixed outflow angle (herein equal to 0), and Xb indicates the
vector of the grid points coordinates of the nozzle profile to be optimized.
The gradient vector of the fitness function is computed by means of the
procedure explained in chapter 3 and subsequently projected along the span
direction. In this way the length of the channel is conserved throughout the
optimization, without any explicit constraint in the procedure. Both the flow
and the adjoint solver are converged to a residual error of the order of 10−6.
The optimization parameters, identified after a preliminary study, and the
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fitness function values are listed in Table 5.3.

ε λ design iterations Jinitial Jfinal
20.0 1.0e-05 20 0.75 0.12

Table 5.3. Results and main parameters of gradient-based optimization for quasi-
uniform supersonic flows using active gradient.

The objective function trend is reported in Figure 5.4. The convergence of
the optimization process is achieved in about 20 design steps, corresponding
to a total cost of about 10 minutes on a standard PC (dual-core Opteron
node at 2.8 GHz).

Figure 5.4. Convergence history of nozzle shape optimization based on active
points.

Figure 5.5 shows a comparison between the flowfield in the initial and
optimal configurations in terms of flow angle distribution. The most relevant
differences between the initial and final nozzle contours appear visible in the
region located just upstream of the outlet section, where the optimized profile
results practically aligned with the prescribed mean direction. By virtue of
this improvement, the flow passage area, in the final part, increases less
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rapidly than in the initial configuration, thus reducing the spanwise peaks of
flow angle observed at baseline outlet section, see 5.6. For both geometries,
the highest values of the flow angle still yield downstream of the throat in
the small portion close to the solid boundary.

Figure 5.5. Initial and optimized flow fields of the converging-diverging nozzle.

The trends of the gradient modules are sketched in Figure 5.7 for the
baseline and optimized configuration. In this figure the effect of elliptic
smoothing is clearly pointed out; the smoothing operator is able to reduce
the oscillations appearing in the original gradient. Notice that the modules of
the smoothed gradient vectors in the optimized configuration (blue line) are
of orders of magnitude smaller than in the baseline one (green line), as the
optimization process approached the local minimum. However, for nozzle
shape optimization, the evolution of the optimization problem is stopped
when the relative difference of the fitness function value at two consecutive
iterations is less than a fixed tolerance.

Interestingly, the gradients values are almost null along the converging
part of the nozzle. This is due to the fact that the flow uniformity at the
outlet section of the nozzle is much more sensitive to the shape of the di-
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Figure 5.6. Comparison of the spanwise flow angle distribution at nozzle outlet
section between the baseline and optimized configurations.

verging part than to that of the converging part. As expected, the gradient
components become more relevant in proximity of the nozzle outlet section,
indicating that the flow angle is mostly affected by the shape of the final
part of the diverging portion. In this perspective the adjoint-based gradient
calculation can be regarded also as a method to preliminarily analyze the
influence of each active grid point on the objective function value, and this
information is extremely useful in the context of a design methodology.

5.2.4 Shape Optimization of Converging-Diverging Nozzle using
Surface Gradient

The same design problem of the previous section is now solved by defin-
ing the nozzle geometry through NURBS parametric curves. The profile is
constructed by means of two NURBS curves, the former describing the con-
verging portion and the latter approximating the diverging one, for a total
amount of 25 control points. The control points distribution and the related
nozzle profile are shown, properly scaled, in Figure 5.8.

The main difference against the previous case is that the corresponding
fitness function is now minimized by directly acting on the position of the
control points. Therefore the objective is re-formulated as

J(P) =

[ nob∑
i=1

(αi − αtg)2

] 1
2

. (5.5)
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Figure 5.7. Streamwise distributions of the gradient vector modules for the baseline
(original and smoothed) and optimized (smoothed) nozzle configuration. Notice
that the node enumeration does not respect the actual streamwise location along
the nozzle abscissa.

Figure 5.8. Control point distribution and profile of the converging-diverging nozzle.
Notice that x, y scales are independent.

The design process is converged by using the same optimization param-
eters of the preceding application. The active gradient is firstly smoothed
and projected onto the spanwise direction, then is further processed for the
computation of the surface sensitivities. The smoothing and projection op-
erations at mesh level ensure the preservation of the nozzle axial length and
drastically tackle the probability of failure of the design process. At each it-
eration, the spatial displacement of the NURBS control points are computed
according to the step-length λ listed in Table 5.4.

It should be noted that acting on a single control point implies the con-
temporary displacement of several mesh nodes. As a consequence, the surface
gradient is typically of higher smoothness class than the active sensitivity
vector. Hence the optimization process, if well posed, converges to feasible
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ε λ design iterations Jinitial Jfinal
20.0 1.0e-06 10 0.70 0.14

Table 5.4. Results and main parameters of gradient-based optimization for quasi-
uniform supersonic flows using surface gradient.

geometries more easily than through CAD-free methods. A certain increase
of the convergence rate is also usually to be expected, however establishing
generalized convergence rules for both methods remains a complex challenge
and is anyhow beyond the scope of the present study.

The convergence of the optimization process is herein achieved in about 10
design steps, see Figure 5.9, hence approximately halving the computational
cost of the previous case.

Figure 5.9. Convergence history of nozzle shape optimization based on NURBS
control points compared to descent trend based on active points.

Similar considerations to the previous case can be traced regarding the
flow angle distribution along the stream-wise nozzle direction. However, de-
spite the fitness function values are almost the same in the optimal point, the
NURBS-based design process ensures a more regular spanwise distribution
of the flow angle at nozzle outlet section, see Figure 5.11. This is mainly
due to the fact that the residual noise present in the active gradient is fur-
ther reduced when processed to compute the surface sensitivity vector, thus
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the full shape design results smoother. As a consequence the use of surface
sensitivities, if available, is highly recommended in shape optimization prob-
lems. An interesting alternative strategy, not investigated in this work, could
rely on the hierarchical integration between the two methods. Starting from
the NURBS-based optimal configuration, the CAD-free approach could be
applied to locally refine the nozzle shape. In fact, CAD-free techniques are
potentially able to successfully operate on geometry details, which conversely
are problematic to be captured by using a lower-dimension parameterization.

Figure 5.10. Initial and optimized flow angle distribution using NURBS parametric
curves.

5.2.5 Shape Optimization of Converging-Diverging Nozzle using
Surface Gradient and Accurate Equations of State

The previous shape optimization test case is now performed with the use
of a more complex equation of state. The fluid thermo-physical behavior
is herein accurately predicted through the Span-Wagner (SW) EoS, intro-
duced at both flow and adjoint level by means of the look-up table approach
presented in chapter 4. As already mentioned, the LUT algorithm is fully
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Figure 5.11. Comparison of the spanwise flow angle distribution at nozzle outlet
section between the baseline and optimized configurations.

ε λ design iterations Jinitial Jfinal
0.0 1.0e-06 10 0.885 0.081

Table 5.5. Results and main parameters of gradient-based optimization for quasi-
uniform flows using surface gradient and accurate equations of state.

differentiated within the adjoint solver. Preliminary flow calculations were
conducted to find a suitable extension of the thermodynamic mesh ensuring
a high robustness of the design process. A final thermodynamic mesh of
about 20000 elements is used for the calculations.

The nozzle geometry is parameterized according to the same control
points distribution shown in Figure 5.8. A reasonable compromise between
stability and efficiency of the design procedure has been achieved by employ-
ing the same step-size λ of the preceding case. To investigate the intrinsic
smoothing properties of the NURBS parameterization the value of ε is herein
nullified. The setup and the final results of the optimization are summarized
in Table 5.5.

The initial and the optimized flowfields in terms of flow angle are reported
in Figure 5.12. Again, the design process enforces a better alignment of the
final part of the nozzle profile to the prescribed mean angle, leading to a
considerable regularization of the flow angle distribution at outlet section,
as depicted in Figure 5.14. As expected, geometry parameterization may be
regarded as an intrinsic source of smoothing. Consequently, the smoothness

82



Shape Optimization Applications

of the design can be preserved even without the use of the elliptic technique.
This may lead also to a considerable speed-up of the overall process. The
convergence rate of the design process is shown in 5.13.

Figure 5.12. Initial and optimized flow angle distribution using NURBS parametric
curves and SW-LUT thermodynamic model.

Summarizing, the outcomes achieved in the three test cases essentially
demonstrate that i) the adjoint method developed is particularly robust and
reasonably fast ii) the success of the optimization is ensured for a wide range
of step-sizes and for gradients computed by both frozen domain and radial
basis function approaches. iii) the implementation of a differentiated LUT
algorithm into the adjoint solver guarantees a high flexibility, leaving unaf-
fected the possibility of straightforwardly exploiting state-of-the-art thermo-
dynamic models embedded in external tools.
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Figure 5.13. Convergence history of nozzle shape optimization based on NURBS
control points and accurate equations of state.

Figure 5.14. Comparison of the spanwise flow angle distribution at nozzle outlet
section between the baseline and optimized configurations.
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5.3 Performance Improvement of a Transonic

Turbine Cascade

The capability of the current adjoint method in dealing with different fluid-
dynamic problems is assessed in this section, reporting the maximization of
the performances of a transonic turbine cascade. The design exercise herein
discussed represents one of the seminal applications of the present research
work, whereby no parameterization technique was still introduced in the
optimization loop. Therefore the design process is proceeded by using the
active grid points, i.e. the nodes of the blade profile, as design variables.

The original VKI LS-59 cascade is chosen as the reference geometry to
optimize. The grid nodes forming the blade shape are moved in order to
maximize the cascade performance, expressed in terms of isentropic efficiency.
As a result the fitness function is given by

J(Xb) =
h1 − h2ob

h1 − h2is

, (5.6)

where the inlet/outlet static enthalpies h are computed by mass-averaging
the specific properties at the outflow boundary. Total conditions are im-
posed upstream of the blade, while a static back-pressure corresponding to
Mis = 1 is prescribed at the outlet section. With these boundary conditions
a normal shock appears on the final part of the suction side, just before
the trailing-edge. For such flow configuration the turbine loss mechanism is
dominated by the shock losses, consequently the use of the Euler physical
model can be considered as an affordable approximation. The effect of the
numerical viscosity is approximately the same at each design step (thanks
to the very slight change of the grid topology as the design evolves), hence,
any improvement of the fitness function value results from the reduction of
shocks strength. The grid is composed of about 8000 triangular elements
and convergence tolerances of the order of 10−6 are used for both flow and
adjoint (i.e. FGMRES threshold value) solvers. Several initial calculations
have been carried out to verify the independence of the solution from the
grid spacing.
The gradient of the fitness function is smoothed and projected onto the
tangential direction in order to leave the length of the blade axial chord un-
changed. Differently from the previous case, a non-uniform step length strat-
egy is introduced to compute the displacement vectors. This latter technique
has been adopted after that preliminary optimization tests, with uniform λ
for all active nodes, led to unacceptable deformations of the trailing-edge; for
this reason the λ parameter has been modified in proximity of the leading
and trailing-edge zones by applying both the Heaviside and the Gaussian-

85



Chapter 5

ε λ design iterations Jinitial Jfinal
10.0 -0.02 53 94.3 % 95.7 %

Table 5.6. Results and main parameters of gradient-based optimization for the VKI
LS-59 transonic cascade.

like correction scheme, as depicted by the circles positioned in Figure 5.16.
The best results have been obtained by using the Heaviside approach and
are therefore reported in the following. To prevent unsuitable blade shapes
in the context of an unconstrained optimization, the design cycle is stopped
if the ratio |Ai−A0|

A0
< 0.05, where Ai is the blade area at a given iteration

while A0 represents the initial blade area. As a consequence the optimal
blade maintains a mechanical resistance similar to the one of the baseline
geometry.

The convergence is approximately reached after about 50 design steps, as
plotted in Figure 5.15a, corresponding to a total computational time of about
30 minutes on the same machine previously mentioned. The final blade area
reduces of -3%, thus remaining within the acceptable range.

Figure 5.15b, which compares the initial and optimal blade profiles, shows
that the optimization leads to a reduction of blade curvature on the blade
suction side and to a more rectilinear rear suction side. This is consistent
with the distribution of displacement vectors at the beginning of the design
process, reported - with proper scaling - in the left frame of Figure 5.16. The
considerably lower magnitude of the displacement vectors in the optimal
configuration, shown in the right frame of Figure 5.16, clearly indicates the
convergence of the design procedure.

The main parameters and the final results of the optimization proce-
dure are summarized in Table 5.6. Preliminary numerical tests have been
performed to select the proper values for optimization and smoothing pa-
rameters. However, the best compromise between computational efficiency
and stability, in terms of geometry deformations, has been achieved by se-
lecting values for ε and λ of the same order of magnitude as those used in the
nozzle case, (with negative values of λ required for maximization problems).

Figure 5.17 depicts the resulting pressure fields of the initial and opti-
mized configuration. Even though the general flow features are almost the
same throughout the optimization process, some relevant differences can be
noticed. As previously discussed, the loss generation is here due to the shocks
appearing on the rear part of both the pressure and the suction side, with
the latter much stronger than the former. Thanks to the blade re-design the
shock appearing on the rear suction side of the optimized layout exhibits a
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(a) (b)

Figure 5.15. Convergence history of the VKI LS59 optimization process (a) and
sketch of both original and optimized blade shape contours (b).

weaker intensity than that occurring in the initial configuration; the severe
pressure gradients just upstream of the trailing edge on the rear pressure
side are also significantly weakened, resulting in an attenuation of the shock
wave in this region. These features can be fully appreciated in Figure 5.18,
which shows the pressure distributions on the suction and pressure side of
the blade. In particular, the optimal blade shape induces a delay in the ex-
pansion on the suction side before the throat, and a higher acceleration on
the suction side just downstream of the throat. This eventually leads to a
reduction of post-expansion just upstream of the trailing edge, and hence to
a decrease in shock strength; as a result shock losses are weakened, and the
isentropic efficiency increases of about 1.5%.
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Figure 5.16. Initial and optimized contours of the VKI-LS59 blade. The spatial
displacements assigned to the boundary nodes at first and final iteration are also
reported.

Figure 5.17. Initial and optimized pressure fields of the VKI-LS59 cascade.
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Figure 5.18. Initial and optimized blade loading of the VKI-LS59 cascade.
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5.4 Performance Improvement of a Supersonic

ORC Turbine Cascade

The design algorithm sketched in Figure 3.3 is now applied to the re-design
of the profile of a converging-diverging turbine cascade operating under su-
personic conditions. Radial basis function approach is used for computing
active gradients. The blade geometry, shown in Figure 5.19, has been orig-
inally designed by means of the method of characteristics (MOC) for the
diverging part and constructing a highly smooth leading-edge portion for en-
suring acceptable performance in case of relevant variations of the incidence
angle.

Two test cases are considered, a first one in which the cascade perfor-
mance are maximized at reference conditions and a second one conversely
finalized to obtain a blade profile less sensitive to the fluctuations of the op-
erating conditions at off-design. As a matter of fact, supersonic cascade per-
formance rapidly decays at off-design conditions due to the onset of strong
shock waves in the post-expansion region downstream of the blade outlet
section. This is, for instance, the case of supersonic turbines installed in
small-size power plants, as in [31], whereby the operating scenario is sub-
ject to continuous oscillations. As a result, more robust design strategies
specifically targeted to supersonic cascades appear a promising alternative
compared to single-point design procedures.

5.4.1 Geometry Construction

Each side of the turbine blade is defined by a set of 11 control points, see
Figure 5.19. The position of the NURBS control points is found as follows:
initially, the blade camberline is defined by fixing the inlet, outlet and stagger
blade angles. Once the reference line has been generated, it is conveniently
divided into a number of intervals, which can be equally spaced or with a
variable length. Starting from these points, arbitrary normal distances from
the corresponding construction line determine the position of the set of inner
control points. Therefore the position of each inner control point is iteratively
changed until minimizing the distance between the reference profile and the
profile generated by NURBS curves. The procedure is repeated for both
suction and pressure side.

5.4.2 Simulation Setup

In this work inviscid governing equations are considered, the choice being
appropriate for operating conditions in which shock waves represent the ma-
jor source of losses, as commonly occurs in supersonic cascades. As the final
purpose is the optimization of plane profiles, 2D blade-to-blade flow is con-
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Figure 5.19. Profile contour and control points distribution of the converging-
diverging blade. Red points indicate the design variables, whereas red dots are fixed
during optimization.

sidered. Inflow conditions are computed starting from total pressure and
temperature, while non-reflecting boundary conditions (Giles) are applied at
the domain outflow in order to capture the realistic flow pattern. A prelimi-
nary analysis has been conducted to assess the independence of the solution
from the grid spacing, leading to final grid size of about 20000 triangular
elements. The working compound is the siloxane MDM, modeled by means
of the polytropic Van der Waals equation of state. As relevant real gas ther-
modynamic effects occur, polytropic ideal gas law is unsuitable for such a
problem.

5.4.3 Single-Point Optimization

The first test case aims at re-designing the supersonic blade cascade of Figure
5.19 operating under reference conditions. Thermodynamic conditions at
design point are listed in Table 5.10.

Fluid PT TT ps γ

MDM 8 bar 272 � 1.0 bar 1.0214

Table 5.7. Upstream total conditions, static outlet pressure and specific heat ratio
for shape optimization at reference condition.
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The predicted flow-field at reference conditions, shown in the left frame
of Figure 5.20 in terms of Mach number, highlights a strong shock generated
on the blade rear suction side.

Figure 5.20. Left: Predicted Mach flow-field using the baseline and optimized
cascade. Right: Comparison of blade loading between the baseline and optimized
cascade.

The resulting effect is a non-uniform flow at the blade outlet section which
is highly detrimental for the efficiency of the cascade and of the whole stage.
Therefore, a significant objective of shape optimization is the achievement
of a more uniform flow in terms of Mach number pitch-wise distribution at
the outlet bound of the computational domain. Furthermore, achieving a
more uniform flow necessarily leads to a weakening of the shock intensities,
and therefore to a considerable reduction of the total pressure losses which is
then expected as a further outcome of the design process. Moreover, in case
of turbulent flows, shock waves/boundary layer interactions are significantly
attenuated, reducing the risk of boundary layer separations. Also, a more
uniform flow leaving the stator contributes to improve the efficiency of the
subsequent rotor and, hence, of the full turbine stage. The cost functional
to be minimized is therefore written as

J(P) =

[∑nob

i=1(Mi −Mmix)
2

nob

] 1
2

, (5.7)

where M is the Mach number at each boundary node, nob the number of
outflow boundary nodes, and subscript mix indicates the pitch-wise mixed-
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out averaged value.
As a preliminary step, the gradient of the objective, computed at the

first iteration of the design process and provided in the right frame of Figure
5.21 properly smoothed and projected, has been analyzed. Notice, firstly,
that a high gradient regularization of the original gradient, see left frame of
Figure 5.21, is due to both elliptic smoothing coupled to a non-uniform step-
length strategy applied in the region close to the trailing-edge. This initial
operation can be regarded as a very useful strategy to better understand
how the design process will proceed and, possibly, to decide which design
variables can be removed from the optimization. As expected, the gradient
distribution depicted in Figure 5.21 shows that the value of the objective J
is strongly influenced by the blade region located downstream of the throat,
while a minor contribution is due to the upstream part. As a matter of fact,
in supersonic cascades the physical features of the shock waves stemming
in the turning region are greatly affected by the shape of the semi-bladed
channel. Therefore, in the present study, the control points drawn with blue
circles in Figure 5.19 are kept fixed during the design process.

Figure 5.21. Left: Original gradient components at first iteration. Right:
Smoothed and projected gradient components at first iteration.

The convergence of the optimization procedure is achieved in about 12
iterations, requiring a total computational burden of about 20 minutes on
a standard PC (Opteron dual-core working station). The step-length λ and
smoothing parameters ε were set to -0.05 and 30, respectively, after some trial
and error operations. However, the design process displayed a relatively high
robustness compared to significant variations of both parameters (mostly ε).
Less smooth and slightly faster optimizations are achieved by reducing the ε
value, whereas the final solution is found to be very similar in all cases. The
final results of the simulation are reported in Table 5.8.
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Figure 5.22. Convergence history of the single-point optimization.

Blade J(P) Y mflow αflow

Baseline 0.078 9.9 % 1 76.29 deg
Single-Point 0.011 2.8 % 0.977 76.94 deg

Table 5.8. Results of shape optimization at reference conditions. Mass flow rates
are reported in non-dimensional form. Total pressure loss coefficient Y is defined
as PT0−PT1

PT0−ps1 .

The optimized blade shape, depicted in the right frame of left Figure
5.20, evidences a more straight rear suction side with respect to the initial
configuration, essentially in the semi-bladed region. The differences between
the two blade shapes can be better appreciated in the left Figure 5.20, where
the optimized shape is labeled as Single-Point. The re-design of the rear
passage geometry entails significant changes of the flow behavior inside both
bladed and turning (post-expansion) regions. It should be noted that the
optimization process leaves almost unaffected the size of the throat and en-
larges the blade outlet section, thus ensuring a very similar mass flow rate
between the two configurations. Hence the diverging portion of the opti-
mized configuration results characterized by higher passage area ratios. As a
consequence the fluid stream is subject to larger accelerations on both pres-
sure and suction sides of the diverging channel, reaching higher outlet Mach
numbers. The flow is not further accelerated at the exit of the bladed re-
gion due to the rectilinear rear suction profile. The reduction of the suction
side curvature enables in fact to avoid the over-acceleration present in the
original flow pattern, that are the cause of the compression fan formation
just before the trailing-edge of the baseline cascade. As depicted in Figure
5.20 right, the concave rear shape of the baseline suction side provides an
isentropic deceleration of the flow but the conjunction of the characteristic
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waves of the fan promotes the growth of a strong shock in the mixing zone.
The shock is instead completely removed in the optimized configuration and
the efficiency decay remains only related to the fishtail shock detaching from
the trailing-edge.

A more uniform flow is therefore finally achieved in the downstream re-
gion, leading to a relevant decrease of the total pressure loss coefficient, which
passes from about 10% to 2.8% for the optimal configuration.

Notice also that, despite the unconstrained design process leads to a more
stocky blade, a very slight reduction of the mass flow rate through the turbine
occurs (about 2.3%). However, this variation may be adjusted by increas-
ing the blade height of the same order or recurring to constrained design
algorithms which are anyhow beyond the scope of the present work.

5.4.4 Multi-Point Optimization

As previously underlined, CFD-based optimization approaches are widely
recognized as a standard to improve the performance of baseline turboma-
chinery configurations. However, most of the published research works still
focus on single-point optimization and the effect of the variation of the tur-
bine operating conditions is rarely taken into account in the design proce-
dure. Two different design methodologies are able to deal with multiple val-
ues of operating conditions (i.e. total inlet conditions, static backpressure):
multi-point optimization and stochastic (robust) optimization. The second
approach solves the optimization problem in a fully stochastic framework,
then may suitably handle the aleatory trend of the turbine boundary condi-
tions. Conversely the first method embeds in a single objective deterministic
design problem several non-concurrent contributions, one for each operating
condition, through a weighted-sum approach. However, to the knowledge
of the author, a comprehensive comparison between the two methods is not
still available in the open literature and only few works analyze the poten-
tial of the former approach, see e.g. [67]. In the following the potential of
the multi-point approach in dealing with fluctuating operating conditions is
investigated. The final objective is the design of a blade profile guarantee-
ing improved and more robust performance than those offered by both the
baseline and single-point blade shapes at off-design. From a probabilistic per-
spective the aim of a multi-point optimization procedure is the minimization
of the mean of the fitness function J(P) as well as its standard deviation.

In power plants, power control is generally managed by acting on the inlet
total pressure through the throttling valves positioned before the turbine en-
trance. However, preliminary studies carried out in this work indicated that a
relatively higher variability of the cascade performance is obtained by chang-
ing the static backpressure. By following the two-step approach proposed in
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[93], an analysis of variance (ANOVA) is initially performed taking total inlet
conditions, static backpressure, and inlet flow angle as uncertain parameters
with uniform distribution. The scope of such analysis is to quantitatively
estimate, in terms of Sobol’s indexes [94], the impact of any single stochastic
input on of the objective function J(P ) value, namely how the variability of
a single operating condition affects the turbine performances. The range of
variation of the variables are indicated in Table 5.9. A third-order tensorial
stochastic collocation method is exploited for the analysis.

Variable PT TT ps αflowin

Interval 7.6-8.4 bar 268-276 � ∼ 1.0-2.0 bar ± 10 deg

Table 5.9. Variability of the uncertain inputs for the ANOVA analysis.

The results of the ANOVA analysis are reported in the histogram of Fig-
ure 5.23, where the bars represent the values of the Sobol’s indexes. As
clearly highlighted, the fluctuations of the turbine performances are primar-
ily related to the uncertainty of static backpressure, the corresponding index
being close to unity. Marginal interaction effects among the stochastic vari-
ables are also present.

Figure 5.23. Results of preliminary ANOVA analysis.
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Therefore, in the following off-design study, the total conditions are kept
at nominal values, while the static backpressure is left to vary between about
1.0-2.0 bar according to a uniform distribution. As underlined by [95], the
main shortcoming of multi-point optimization remains the selection of appro-
priate design points and their associated weights. To address the evaluation
of such points a novel approach, based on an uncertainty quantification al-
gorithm, is proposed. Precisely, a stochastic collocation [96] method of third
order is initially applied to determine the quadrature nodes corresponding to
the three off-design conditions of the multi-point optimization. Uncertainty
quantification methods based on stochastic series, as stochastic collocation
or polynomial chaos, estimate such values by exploiting sampling techniques
(e.g. latin-hypercube) drawing samples on the basis of the specified statis-
tics of the input parameters. As a result, for uniform probability density
functions, the algorithm uniformly distributes the points over the range of
possible operating conditions. The order of quadrature has been chosen as
a trade-off between the computational cost of the optimization (more points
imply more flow/adjoint simulations) and the minimum amount of evalua-
tions needed for accurately predicting first and second order statistical mo-
ments, see [93]. In fact, it has been demonstrated by some authors, see for
example [97], that quadrature formulas of order n accurately predict statis-
tical moments till to order n − 1. Finally the weights of the cost function
are proportional to the probability density function (PDF) of the uncertain
parameter, that are, for uniform distribution, all equal to 1.0 if normalized.
In practice, the methodology herein proposed estimates the expectancy J̄ of
the fitness function through a three-point quadrature formula as follows:

J̄(P, p) =

∫
J(P)fp(p)dp =

p3∑
j=p1

wjJ(P) |pj , (5.8)

where fp is the PDF of static backpressure.

Fluid PT TT ps γ

MDM 8 bar 272 � ∼ 1.0-2.0 bar 1.0214

Table 5.10. Total upstream conditions, static outlet pressure and specific heat ratio
for shape optimization at off-design.

The functional to be minimized is therefore J̄ , written as a sum of three
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non-concurrent contributions in the form

J̄(P) = J(P) |p1 +J(P) |p2 +J(P) |p3 (5.9)

The values of p1, p2, and p3 corresponding to the quadrature nodes are
respectively 2.0, 1.52, and 1.13 bar. The fitness function gradient can be
written in a similar fashion as

∇J̄(P) = ∇J(P) |p1 +∇J(P) |p2 +∇J(P) |p3 (5.10)

The design algorithm shown in Figure 3.4 has been used to account for
multiple evaluations of the flow and adjoint solution. The optimization pro-
cess is advanced using the steepest descent method with the same control
parameters and reaches the convergence in about 10 iterations, see Figure
5.24. The algorithm is capable of significantly reduce the fitness function
value (0.10 compared to the initial value of 0.26) in about one hour on the
same machine.

Figure 5.24. Convergence history of the multi-point optimization.

5.4.5 Assessment of Performance of Multi-Point Blade

The off-design performance of the baseline, single-point, and multi-point con-
figurations are finally investigated in this section. The efficiency of the cas-
cade over the range of variation of the static backpressure is quantitatively
evaluated by means of the uncertainty quantification algorithm previously
mentioned. The aim is to synthetically summarize the performances through
statistical parameters, i.e. by using mean and standard deviation. For ac-
curately predicting the statistical moments of the objective and the total
loss coefficient, a four order stochastic collocation method is adopted. Both
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the objective and the total loss coefficient values are initially determined
onto four quadrature points (off-design conditions) uniformly spread over the
range of possible operating conditions. Then the results are post-processed
by the UQ solver to extract the mean and the standard deviation of the merit
functions.

Figure 5.25. Left: Fitness function trend at off-design. Right: Total pressure
losses trend at off-design.

Figure 5.25 reports the trends of the cost functional shown in equation
5.9 and Y for different values of static backpressure contained in the previous
interval. Notice that the geometry designed in the previous section, labeled
as Single-Point in the pictures, outperforms the baseline blade configuration
for the whole range of outflow pressure. However the trends exhibit a greater
variability with respect to those obtained using the baseline cascade. This
is confirmed by comparing the mean and the standard deviation of J and Y
obtained through the UQ algorithm. The values are reported in Table 5.11,
where it well appears how the single-point technique is unsuitable to achieve
robust designs, even though the mean performance of the turbine stator may
result enhanced compared to the baseline case.

Multi-point methodology, conversely, satisfies both aspects of the opti-
mization. The cascade efficiency is significantly improved in terms of mean
and standard deviation with respect to both baseline and single-point as-
semblies. The robustness of the configuration becomes therefore greatly en-
hanced over a wide range of possible operating conditions. As expected,
single-point optimization performs better at nominal conditions compared to
multi-point approach, but performance quickly degrades at off-design. The
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Baseline Single-Point Multi-Point

J̄ 9.10e-02 4.65e-02 2.78e-02
σJ 1.62e-02 2.66e-02 1.19e-02
ȳ 1.69e-01 1.14e-01 5.75e-02
σy 5.36e-02 6.67e-02 1.91e-02

Table 5.11. Predicted statistical moments of the fitness function and total pressure
loss coefficient for the baseline, single-point, and multi-point profiles.

three blade shapes are sketched in Figure 5.27. Multi-point and single-point
profiles have a very similar straight rear suction side, which corresponds ap-
proximatively the same outlet blade section. The major shape differences
are located on the rear pressure side, where multi-point profile is practically
superimposed on the baseline one.

As already discussed in single-point optimization, the straight rear suction
side induces a limited over-speed in the semi-bladed region and prevents the
formation of any compression fan afterwards. The advantages provided to
the rear straight contour have been found to be highly beneficial in operating
conditions around the nominal point for the single-point profile and they
are also proved for the multi-point geometry. As highlighted in the left
frame of Figure 5.26, in these conditions the two cascades exhibit comparable
behaviors and no over-speed zones are observed.

At the highest part-load operation, reported in Figure 5.28, the flow over-
expands in the diverging channel and suddenly adjusts to the outflow con-
dition through a strong fishtail shock extending to the whole blade outlet
section. Such shock impinges on the rear blade wall and propagates in the
downstream region, producing a consistent worsening of the turbine perfor-
mance for all the three cases, see Figure 5.25. The shock strength appears
of greater intensity in the single-Point configuration due to the higher flow
speed at outlet blade section. However, in the baseline assembly, the com-
pression wave seems initially weaker compared to the one originating in the
single-point optimization, but its intensity is rapidly strengthened in the free-
stream region due to the interaction with the compression fan forming on the
concave part of the suction side. The overlapping of these two physical phe-
nomena produce a highly detrimental effect on flow uniformity and, hence,
a relevant increase of the total pressure losses, as visible in Figure 5.25.

The Mach fields generated by the multi-point and single-point cascades
display the same dynamics. In both cases the straight rear suction still
prevents the appearance of compression fans, as shown in the right frame of
Figure 5.26, while the shock wave pattern is similar. However, the former ge-
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ometry takes advantage from the curvature of pressure side that significantly
alters the ratio between the throat and the blade outlet section, reducing it by
a factor of 10%. As a consequence the fluid flow exits from the turbine blade
passage at a lower Mach number and, therefore, the shock intensity results
considerably weakened compared to the one originating from the single-point
profile. Notice anyway that in the multi-point case the reduction of the area
ratio is essentially realized by enlarging the throat size, which induces an
excess of mass flow rate of about 10% with respect to the other two config-
urations. Smaller deviations may be achieved by forcing different designs of
the pressure side, even though lower fluid-dynamic performance are likely to
be accepted. However the potential guaranteed by such a design procedure
can be exploited if proper changes in the blade span are introduced.

Figure 5.26. Left: Predicted isentropic Mach number on the blade surface for
the three geometries in reference conditions. Right: Predicted isentropic Mach
number on the blade surface for the three geometries in worst operating scenario
(static pressure equal to 2.0 bar).
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Figure 5.27. Baseline, single-point and multi-point blade profiles.

Figure 5.28. Predicted Mach flowfields at worst operating scenario for the three
geometries: baseline (left), single-point (center), and multi-point (right).
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5.5 Effect of Thermodynamic Model and Tur-

bulence on Supersonic Blade Design

Most of the ORC turbines operate in thermodynamic regions characterized
by strong real gas-effects. The importance of an accurate thermo-physical
description of the fluid in ORC turbomachinery has been underlined in in a
number of seminal works, see for instance [51], [98], and [82]. In these works
has been outlined how the neglect of non ideal effects in the simulation pro-
cess can lead to unsatisfactory predictions of the main flow features, such as
Mach numbers and pressure coefficient distributions along the blade. Hence,
automated design methods not considering real effects are expected to be not
suited to obtain proper design in regions where strong non-ideal effects take
place. Therefore, the present section investigates the potentialities offered by
a fully real-gas adjoint-based design methodology compared to approaches
based on simplified equations of state.

5.5.1 Influence of Thermodynamic Model

The main outcomes of shape optimization of a converging-diverging blade
passage using the simplified polytropic polytropic Van der Waals have been
extensively analyzed in the previous section. However, the nominal operating
conditions of the supersonic turbine leads to an expansion process character-
ized, almost in the initial part, by relevant real-gas effects (inlet compressibil-
ity factor close to 0.7). As a result, the scant accuracy of the PVdW model
in predicting the thermo-physical behavior of the fluid can have a significant
impact on the resulting optimized blade shape. In fact the optimal configu-
ration found by introducing the polytropic Van der Waals equation cannot
longer represent the optimal point for the same design procedure employing
a different equation of state. For turbines working close to the critical point
the influence of this effect may be even amplified. In fact, the use of approx-
imate thermodynamic relations in both flow and adjoint solver may lead to
descent directions different from those observed using a more accurate EoS.
As a consequence, in the worst scenario, the optimal assembly could even
behaves worse than the initial baseline when its performances are verified by
using more accurate EoS, although the optimization process has converged
to a local minimum.

In order to point out the influence of the accuracy of the thermo-physical
model of the fluid on the final blade shape, two further single-point design
procedures are carried out, the former using the simplest polytropic ideal
gas law and the latter adopting the more complex Span-Wagner equation of
state. Span-Wagner (SW) EoS represents a state-of-the-art multi-parameter
fundamental relation having a superior accuracy compared to that of cubic
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equations of state, see [99] and [100]. In this study the SW EoS, hereinafter
called SW-LUT, is available through the LUT algorithm presented in chapter
4, which is implemented in both flow and adjoint solver. Notice that the
use of a LUT method in both solvers, which represents one of the major
novelties of this work, fully decouples the issue of selection of the most suited
thermodynamic model from the simulation processes. In fact, any type of
equations of state is potentially usable, the choice being only dependent on
the database employed to construct the look-up table.

The design processes use the same parameterization, computational grid,
and optimization parameters of the previous test case. The LUT is composed
by about 20000 elements and covers a thermodynamic area similar to that
represented in the left frame of Figure 4.9. Similar convergence rates are
achieved in both cases, as depicted in Figure 5.29. The total computational
expense is about 30% higher compared to PVdW optimization.

Figure 5.29. Left: Convergence history of shape optimization using the SW-LUT
model. Right: Convergence history of shape optimization using the PIG model.

The profiles of the three geometries are reported in the left frame of Figure
5.30. The slight differences on both pressure and suction side affect the shape
of the diverging part of the bladed channel. In fact the combination of a more
straight pressure side and more curved suction profile in the bladed channel
leads to an increase of the ratio between the throat area and the blade outlet
section, as it is well depicted in the right frame of Figure 5.30.

The performances of the resulting optimized configurations are there-
fore investigated by computing the flow pattern using the accurate SW-LUT
model. The resulting flow-fields in terms of Mach number are depicted in
Figure 5.31.

The modification of the area ratio of the diverging channel induces a
higher flow acceleration within the turbine blade passage, both on pressure
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Figure 5.30. Left: Layout of the optimized geometries obtained using PIG, PVdW
and SW-LUT equations of state. Right: Area ratio of the baseline geometry
compared to the geometries optimized by using PIG, PVdW and SW-LUT thermo-
dynamic model.

and suction side, as suggested by the isentropic Mach number distribution
shown in Figure 5.32. Then, fluid velocity does not further increase on the
rear straight suction side for the Span-Wagner case. In the other two config-
urations the effect of a greater acceleration on the rear suction profile lead to
a higher Mach number just upstream of the trailing-edge. As a consequence,
the intensity of the fishtail shock detaching from the trailing-edge is more
stronger for the configurations optimized using the simplified equations of
state. This in turn strongly affects the flow uniformity at the outlet domain,
shown in Figure 5.33, and the resulting performances of the cascades, see
Table 5.12. Summarizing, this study pointed out the intrinsic limitation of
ideal gas-based adjoint methods for shape optimization in dense-gas flow re-
gions and demonstrates the capability of the current real-gas adjoint method
in re-designing existing ORC cascades with relatively low computational ex-
pense.

Baseline Optimized (PIG) Optimized (PVdW) Optimized (SW)

J 0.077 0.02 0.018 0.014
Y 11.78 % 4.8 % 4.5 % 3.6 %

Table 5.12. Predicted fitness function J values and total pressure loss coefficient
Y = PT0−PT1

PT0−ps1 for the baseline and optimized blades using PIG, PVdW, and SW-
LUT Eos.
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Figure 5.31. Mach flow-field obtained with the three optimized blades (PIG, PVdW
and SW-LUT).

Notice that, as already mentioned, the final objective of these shape op-
timizations is the maximization of fluid-dynamic efficiency of 2D profiles.
Therefore, in realistic 3D prismatic blades, different predicted values of mass
flow rate in blade-to-blade plane can be easily managed by acting on span-
wise direction, i.e. by either adjusting the blade height or the diameter of
the cascade.

5.5.2 Design Validation for Turbulent Flows

The inviscid fluid model, in absence of significant boundary layer-shock wave
interactions and flow separations, is often sufficient to predict the perfor-
mances of supersonic stages with a reasonable accuracy. Therefore the opti-
mized configuration resulting from an inviscid design process should better
behave also in case of turbulent flows, if the most detrimental phenomena,
i.e. the shock waves, are attenuated in the final cascade layout. However, a
quantitative assessment of the performances of both baseline and optimized
geometry using a turbulent model is mandatory to confirm the indications
provided by the (inviscid) design methodology. Moreover, turbulent simu-
lations give the opportunity of an indirect verification of the whole design
procedure, especially if they are performed through highly validated CFD
tools, widely recognized as a standard from industries and academic insti-
tutions. In the present study the ANSYS-CFX is utilized. The optimized
geometry taken as reference for the calculations is the profile designed by
means of the Span-Wagner EoS, as the thermodynamic model used in the
design procedure is easily accessible via interpolation methods in a number
of commercial tools.
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Figure 5.32. Predicted isentropic Mach number distribution along the blade profile
for the three optimized blades (PIG, PVdW and SW-LUT).

Computational Model
The analysis of the cascade performances is carried out on the basis of quasi-
3D CFD simulations. As only blade-to-blade effects are of interest in this
study, a straight stream-tube around midspan is taken into account, hence
the quasi-3D calculations were performed with constant thickness of the com-
puted channel.

The calculations were performed using the ANSYS-CFX code, applied to
structured grids composed by hexahedral elements, with 2 cells in spanwise
direction. Turbulence effects are introduced using the k − ω SST model,
ensuring wall y+ well below the unity (maximum value about of 0.2) all along
the blade; as discussed above, the MDM is treated as a real gas through a
look-up table interpolation method suitably defined for the CFX solver. High
resolution numerical schemes and implicit time integration are used. Total
conditions, flow angles and turbulence quantities are assigned at the inlet,
static pressure is given at the outlet. Non-reflecting conditions are indirectly
obtained by placing the outflow domain at a distance of about three axial
chords from the trailing-edge. Preliminary calculations were carried out to
determine the proper position of the boundary section. The calculations were
performed on a Linux cluster composed by 7 parallel two-processors.

A grid independence analysis was performed, by reducing grid spacing in
the blade-to-blade plane. The outcome of this analysis indicates that a grid
independent solution is achieved with at least 50 kcells in the blade-to-blade
plane (resulting in 100000 hexahedral cells in the 3D domain). The relatively
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Figure 5.33. Mach pitch-wise distribution obtained with the three optimized blades
(PIG, PVdW and SW-LUT).

high number of elements required is motivated by the presence of shocks, and
by the significant grid clustering at the profile walls to guarantee the desired
value of y+. The resulting computational time for each simulation was about
one hour, relatively high due to the large number of element and the 3D
nature of the model, but still acceptable for the present investigation.

The numerical model used in this context was previously assessed against
measurements performed on a research turbine stage installed at Politecnico
di Milano [101]. In this paper, the CFD model was shown to provide es-
timates of stage efficiency with an error around 1%, while the difference
between experimental and computed stator losses was found of the order of
0.2%. These results let the author consider the numerical model herein used
as a high-fidelity analysis tool.

Results of the Simulations
The results of turbulent simulations are now deeply discussed. Most of the
flow features observed in the inviscid simulations are conserved in turbulent
calculations. As well visible in Figure 5.35 and Figure 5.36, the strong shock
originating on the trailing-edge and impinging on the curved suction side
in the baseline geometry is highly weakened in the optimized configuration.
This is a direct consequence of the full re-design of the blade rear suction side,
which affects the shape of both diverging channel and semi-bladed region.
The diverging portion of the optimized configuration results characterized
by higher passage area ratios. As in the case of inviscid flows, the fluid
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Figure 5.34. Computational mesh of the turbulent simulations. A very high-quality
mesh resolution is obtained close to the trailing-edge.

stream is then subject to larger accelerations on both pressure and suction
sides of the diverging channel, reaching higher outlet Mach numbers. The
flow is not further accelerated at the exit of the bladed region due to the
straight designed rear suction profile, see Figure 5.38. Mach number and
flow angle spanwise distribution are therefore more uniform in the optimized
configuration, see Figure 5.37, resulting in a considerable improvement of the
performances.

Figure 5.35. Left: Predicted Mach number distribution for the baseline geometry.
Right: Predicted Mach number distribution for the optimized geometry.
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Figure 5.36. Left: Predicted total pressure distribution for the baseline geometry.
Right: Predicted total pressure distribution for the optimized geometry.

The final results of the simulations are reported in Table 5.13. Notice that
the reduction of the total pressure loss coefficient is approximately in accor-
dance with the values provided by the inviscid simulations. This means that
the improvement of the performances is almost fully related to the weakening
of shock wave intensities. A similar loss contribution in both configurations
(baseline and optimized) is expected due to shear stresses and viscous shear
layer generated at the trailing-edge. Hence, the outcomes of the turbulent
simulations demonstrate the validity of the design methodology developed
within this research.

Blade Y mflow αflow Machmix

Baseline 20.32 % 1 76.53 deg 1.886
Single-Point 12.24 % 0.94 77.65 deg 1.911

Table 5.13. Results of turbulent simulations for the baseline and optimized config-
urations. Mass flow rates are reported in non-dimensional form.

As long as flow separations do not occur and shock wave-boundary layer
interactions are of weak intensity, inviscid model has been deemed suitable
for accurately predicting the behavior of transonic/supersonic flows at a low
computational expense. Compared to inviscid case, the results of the tur-
bulent calculations over-estimate the total pressure loss coefficient of about
8% for either baseline or optimized configurations. Most of this difference
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Figure 5.37. Left: Predicted spanwise Mach number distribution at outflow bound-
ary. Right: Predicted spanwise flown angle distribution at outflow boundary.

originates from the mixing process downstream of the cascade, which now
includes the effect of the shear layer (in addition to shock waves) on the
mixed-out averaged quantities. A minor contribution may be associated to
the dissipation induced by the different numerics of the two solvers. However,
the use of very fine grids strongly reduces such an effect.

To reliably compare inviscid and turbulent simulations the attention has
then to be placed on the flow pattern up to the trailing-edge, thus neglect-
ing the mixing zone. The isentropic Mach number distribution along the
blade surface, for instance, represents a good choice to understand whether
significant differences between the two models (and solvers) happen. Alter-
natively, static pressure fields provide useful indications about the reliability
of the inviscid solution. In this context, Mach number distribution along the
blade surface are reported. Left and right frames of Figure 5.39 show the
profiles on the baseline and optimized blade. Inviscid and turbulent Mach
profiles greatly agree all along the pressure side and for the major part of the
suction side. The largest discrepancies are located on the rear suction side,
whereby the fishtail wave generating at the trailing-edge impinges against
the blade wall, see Figures 5.40 and 5.41. The phenomenon becomes really
dissipative only for turbulent flows, mostly due to viscous effects, whereas
for inviscid flows such a wave is simply formed by a sequence of isentropic
expansion fans. This finally reflects in an increase of total pressure losses
which translates into a reduction of isentropic Mach number along the rear
suction side.

Moreover, turbulent calculations pointed out negligible interaction effects
between boundary layer and shock wave in both configurations.
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Figure 5.38. Isentropic Mach number distribution on the blade surface.

Figure 5.39. Left: Predicted isentropic Mach number on the baseline blade surface
for inviscid and turbulent flows. Right: Predicted isentropic Mach number on the
optimized blade surface for inviscid and turbulent flows.
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Figure 5.40. Left: Predicted fishtail wave pattern for baseline configuration in case
of inviscid flows. Right: Predicted fishtail shock pattern for baseline configuration
in case of turbulent flows.

Figure 5.41. Left: Predicted fishtail wave pattern for optimized configuration in
case of inviscid flows. Right: Predicted fishtail shock pattern for optimized con-
figuration in case of turbulent flows.
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Adjoint-based Uncertainty
Quantification

According to AIAA, the uncertainty if CFD is a potential deficiency in any
phase or activity of the modeling process that is due to the lack of knowledge.
On the contrary, error in CFD simulations is clearly deterministic and is
defined as a recognizable deficiency in any phase or activity of the modeling
process that is not due to the lack of knowledge. This chapter focuses on
the uncertainty concept investigating the potential of the adjoint method for
statistical predictions.
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6.1 Introduction on Uncertainty Quantifica-

tion in CFD

The use of automatic optimization algorithms in engineering is nowadays
widely used in the design process. Thanks to the recent increase of computa-
tional capabilities, effective optimization calculations can be carried out in a
time compatible with industrial needs. These are generally based on a deter-
ministic approach. i.e. all involved quantities (operating conditions, models,
geometrical data) are supposed to be perfectly known and to exactly match
the real-world situation. In practice, an engineering component is affected
by geometric tolerances; moreover, it may operate at off-design conditions
for a large amount of its life; finally, the mathematical model itself, along
with its associated closure parameters may also be imperfectly known. Given
the number of uncertainties affecting engineering systems, deterministic op-
timization approaches may offer good performances at nominal conditions,
but poor off-design behavior.

As a consequence, design strategies addressing the effect of uncertainties
are particularly attractive for the optimization of realistic problems. The
objective is to achieve designs that are less sensitive to input parameter
variability. Such an approach is known as robust design. The objective
of robust design methodologies may be of two kinds: to achieve a suitable
trade-off between maximization of mean performances and their stability
under system uncertainty or to minimize system failure probability under
uncertainty (see, e.g., Ref. [102]). In this work we address the first kind of
problems.

Our purpose is to develop an efficient robust design methodology to op-
timize the stochastic performances of a given functional (typically its mean
and/or variance). Low-order statistical moments are evaluated by an uncer-
tainty quantification (UQ) algorithm coupled to the optimization process.
Nested approaches, given by an internal UQ method and an external opti-
mizer [103] have a total computational cost that is roughly the sum of those
of the two algorithms. When expensive fitness functions or multiple uncer-
tain variables are taken into account, the global expense may indeed become
prohibitive. This is often the case for Fluid Dynamics applications, where fit-
ness function evaluations imply the solution of complex systems of non-linear
equations (Euler or Navier-Stokes).

Considerable research efforts are hence currently underway in order to re-
duce the number of deterministic evaluations required for obtaining a robust
design. For instance, Congedo et al. [104] integrate a Simplex Stochastic
Collocation (SSC) method with a geometric simplex optimization algorithm.
The SSC method combines effective random sampling in high dimensional
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spaces (multiple uncertainties) and polynomial interpolation. Nevertheless,
its application to complex configuration strongly relies on the possibility of
massive parallelization [105]. Massive parallelization of one or both algo-
rithms is also adopted in Refs [103, 106]. In Ref. [107] the original fitness
function is replaced by less expensive models (meta-modeling). Also, two-
step approaches, in which only the most influential uncertain parameters
–selected through a preliminary step– are considered in the optimization
process have been explored [108, 109]. In the last case, global efficiency of
the algorithm depends on the ability of quickly and accurately sorting the
uncertain parameters according to their impact on the optimization objec-
tives.

The versatility and efficiency of robust optimization is tightly related to
the performance of the underlying uncertainty quantification methods. In-
trusive approaches, like Polynomial Chaos (PC) [110], guarantee faster con-
vergence for problems with multiple uncertainties, but their implementation
needs a substantial modification of existing deterministic codes [111]. On
the other hand, non intrusive methods, such as Monte Carlo (MC) meth-
ods, require a number of function evaluations that is often too large to be
affordable. Non-Intrusive Polynomial Chaos (NIPC) [112] and Probabilistic
Collocation Methods (PCM) [113] considerably reduce computational cost
with respect to MC methods, but their cost increases exponentially with the
number of uncertain parameters, even if it can be somewhat alleviated by
means of sparse-grid sampling [114] and ANOVA reduction [115] techniques.

Among the UQ methodologies, the Method of Moments (MoM), which
approximates statistical moments of the fitness function by Taylor series ex-
pansions, has proven to be remarkably fast, as long as the fitness sensitivity
derivatives with respect to uncertain parameters are provided by an efficient
method and complete output statistics are not required. In the context of
fluid-dynamics, the adjoint formulation has been conceived for this aim and
successfully applied to several problems [24]. Since the cost of adjoint is
nearly independent from the number of uncertain variables, it allows sav-
ing a relevant amount of time with respect to finite difference techniques.
Thanks to these features the Adjoint Method of Moments (AMoM) is a
good candidate for coupling with optimization algorithms in robust design
strategies, because of its ability of providing low-order moments of the cost
functionals, once the sensitivities are obtained by solving the adjoint prob-
lem. This methodology may be particularly attractive for multi-objective
optimization, as commonly required for fluid-dynamics applications: for this
kind of optimization problems, genetic algorithms are often adopted due to
their flexibility and their capability to reach global optima. However, they
require multiple function evaluations at each iteration, with an associated
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high computational expense, especially if such function evaluation requires
in turn multiple deterministic runs to estimate statistical moments of the
objectives [109].

In this chapter a novel hybrid robust optimization approach is proposed.
It combines the efficiency of AMoM with the capability of a multi-objective
genetic algorithm (MOGA) to search for the best design over the whole
space of solutions. According to the order of approximation used for statis-
tical moments (first or second), only two or three deterministic calculations
(non-linear, adjoint and eventually linear) have to be run for each individual
generated by MOGA.

To demonstrate the potential of this approach a package of quasi 1-D
codes, including a non-linear, a discrete adjoint, and a linear solver is devel-
oped. The numerical codes are integrated in an automatic procedure that
allows to compute efficiently the sensitivity derivatives of the fitness func-
tion(s) based on the assigned input distributions of uncertain variables. The
derivatives are subsequently used to estimate the expectancy and variance of
the quantities of interest through a generalized Adjoint Method of Moments
[116]. The performances of the AMoM, in terms of output statistics accuracy
and cost, are initially assessed against other well-established UQ techniques.
Then, the method of moments is coupled to an optimization algorithm and
the proposed robust optimization method is applied to an inverse design
exercise for quasi 1-D flows through a diverging nozzle.

The chapter is organized as follows: Section II provides an overview of
some popular UQ techniques; the adjoint theory is also briefly recalled. Sec-
tion III synthetically illustrates the optimization algorithms considered in
this work. Section IV describes the numerical solvers and the fully auto-
mated procedure developed to compute the low-order statistical moments
by AMoM. Section V assesses the method of moments against several UQ
methods for a simple quasi 1-D problem with multiple uncertainties. Finally
in Section VI the proposed robust optimization strategy is described and
applied to an inverse design exercise for quasi 1-D flows with an embedded
shock. A comparison with other possible robust design methodologies is also
provided in terms of solution accuracy and computational cost.

6.2 Uncertainty Quantification Algorithms

This section describes the UQ algorithms used in this study. The Adjoint
Method of Moments developed in this study is presented first. Then, we
briefly recall two alternative methods considered here for comparison pur-
poses and available in the Dakota open source software [91] (provided by
Sandia Lab), which is extensively employed in this work.
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6.2.1 The Method of Moments

The idea behind the Method of Moments (MoM) [107] origins from the appli-
cation of the expectation operator to the local approximation (Taylor series)
of a functional J around the mean value of the stochastic input variables.
Here we consider a generalized formulation for the case of multiple uncertain
variables with statistical distributions a-priori are known.

The second-order Taylor expansion of a functional J (α), with α a random
vector, reads:

J(α+ δα) = J(α) +
N∑
i=1

∂J

∂αi

∣∣∣∣
α

δαi +
1

2

N∑
i=1

N∑
j=1

∂2J

∂αi∂αj

∣∣∣∣
α

δαiδαj + o(|δαi|2)

(6.1)
where α = E[α] is the expectancy of α and δα = α−α is by construction
a randomly distributed vector with zero mean. By applying the statistical
definition of mean and variance to either the linear or quadratic Taylor ap-
proximation, a first- or, respectively, second-order approximation of the first
two moments (mean and variance) is obtained. For instance the first order
expectancy and variance for generally distributed and correlated uncertain-
ties may be expressed as:

E[J ]1 = J(α) (6.2)
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where Ci,j = E[δαiδαj] the covariance matrix. If the components of δα are
not correlated the covariance matrix reduces to a diagonal one and equation
6.3 takes the simplified form:

V ar[J ]1 =
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(
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σ2
i (6.4)

with σ2
i = V ar[δαi]. In this work, we mostly use second-order formulas (see

references [117] and [116] for details), given by:
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where Si and Ki are the skewness and the kurtosis of the input distribu-
tions. Note that eqs. (6.3), (6.5), (6.6) contain the first and second order
sensitivities of J. As already seen, the most direct way to compute them is
through perturbation techniques, such as finite differences. Nevertheless the
accuracy of finite difference estimates is subject to the step-size definition
and truncation errors. Furthermore, for expensive calculations involving a
large number of uncertainties, their computational cost in terms of function
evaluations is so high that they are simply not applicable. As in the case of
shape optimization, a more powerful and effective alternative is represented
by adjoint method [118].

Hereafter, the mathematical fundamentals of the approach is briefly re-
called on the basis of what already discussed in chapter 2. A simplified
theory, that does not account for mesh deformation, is presented. However,
the given formulation is suitable for treating quasi 1-D problems, in which the
mesh size is not perturbed by a geometry modification (if the overall domain
length remains fixed). Let be J a scalar function of a vector of some con-
trol/design variables αgeo,αphy and state variables u. For the sake of brevity
the set of control/design variables is simply indicated by α in the following.
The state variables u are in turn constrained to satisfy the non-linear (Eu-
ler or Navier-Stokes) governing equations R. The resulting relations can be
written as

J = J [α,u(α)] s.t. R[α,u(α)] = 0. (6.7)

Differentiating the functional J in equation (6.7) with respect to α it allows
to express its gradient as a function of the first-order sensitivity derivatives
du
dα

of state variables with respect to control parameters:

dJ

dα
=
∂J

∂α
+
∂J

∂u

du

dα
(6.8)

This dependency can be eliminated by deriving the governing equations as
follows:

∂R

∂α
+
∂R

∂u

du

dα
= 0 (6.9)
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which gives

du

dα
= −

(
∂R

∂u

)−1(
∂R

∂α

)
(6.10)

By plugging the last expression ∂u
∂α

into eq. (6.8) and by setting:

v = −dJ

du

(
∂R

∂u

)−1

,

one finally obtains the following linear system:(
∂J

∂u

)T
+

(
∂R

∂u

)T
v = 0 (6.11)

where v is the so-called adjoint variable vector. Eq. (6.11) represents the
discrete adjoint formulation considered in this context. The i−th component
of the fitness gradient is finally evaluated by:

dJ

dαi
=

(
∂J

∂αi

)T
+

(
∂R

∂αi

)T
v (6.12)

By further differentiating the fitness function J we are able to determine
each component of the Hessian matrix, which involves the evaluation of the
second-order state sensitivity derivatives ∂2u

∂αi∂αj
. In order to avoid their cal-

culation, a mathematical procedure similar to the previous one is applied,
i.e. the constraint R = 0 is double differentiated and the resulting expression
for ∂2u

∂αi∂αj
is then plugged in the second-order differentiated formulation of

J . As a final result, the ijth component of the Hessian matrix reads:

d2J

dαidαj
= D2

i,jJ + vTD2
i,jR (6.13)

where D2
i,jJ is given by:

D2
i,jJ =

∂2J

∂αi∂αj
+

∂2J

∂αi∂u

(
∂u

∂αj

)
+

∂2J

∂αj∂u

(
∂u

∂αi

)
+
∂2J

∂2u

(
∂u

∂αi

)(
∂u

∂αj

)
(6.14)

and D2
i,jR is defined in a similar way. Note that eq. (6.14) involves anyhow

the calculation of state sensitivity derivatives ∂u
∂αi,j

. These are in turn ob-

tained by solving the linearized version, eq. (6.10), of the non-linear partial
differential equations. The overall mathematical treatment and some imple-
mentation details can be found in [119]. Once the first and second-order
derivatives are available, along with the variances of the control parameters
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α, the Method of Moments allows to obtain the low-order moments (mean
and variance) in a straightforward way, simply by inserting the derivatives
of J in eqs. (6.2) and ((6.3). or in eqs. (6.5) and (6.6).

The development of a discrete adjoint and a linear code may be eased by
means of Algorithmic Differentiation (AD) software. We refer the interested
reader to [41] to understand how AD works. Roughly speaking, the automatic
differentiation acts directly on a subroutine generating a linear or adjoint
differentiated version of the provided numerical procedure, thereby relieving
the computational burden associated to by-hand code differentiation. Within
this study the AD tool Tapenade, developed at INRIA [42], is applied to the
discretized primal equations. The adjoint and linear code are created by
means of the reverse (adjoint) and forward (linear) mode of differentiation,
respectively. A tangent-on-tangent (double linear differentiation) approach
is instead applied to obtain the Hessian matrix [119].

6.2.2 Sampling Methods

Monte-Carlo methods produce the output statistics from a set of samples of
the fitness function spread over the whole multidimensional space formed by
the uncertain variables. Its basic, or crude, version consists in the following
few steps:

1. Sample input random variable(s) from their known, or assumed, prob-
ability density function.

2. Calculate deterministic output(s) for each sampled input value(s).

3. Compute an hystogram by binning the results.

4. Determine statistics of the ouput distribution, such as mean, variance,
PDF.

Despite the method is proven to be easy to implement and robust, the
application of a brute-force MC algorithm is rather prohibitive for fluid-
dynamics problems, since MC displays a low convergence rate (of the order
of 1/

√
(N)) and, as a result, hundreds or thousands of deterministic simula-

tions are indeed compulsory to obtain an affordable output statistics. Any-
way, basic MC represents a benchmark technique against which other meth-
ods are compared for simple flow problems. A random-based Monte-Carlo
uncertainty analysis is therefore chosen as reference case for the application
investigated in this study.

6.2.3 Stochastic Expansion Methods

Stochastic expansion methods refer to a class of uncertainty quantification
algorithms that try to approximate the functional relationship between a set
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of output response metrics and a set of input random variables. Hereafter, we
present two non-intrusive stochastic expansion methods, namely Non Intru-
sive Polynomial Chaos (NIPC) and Probabilistic Collocation (PCM), used
for comparison with the AMoM in Section V.

Non Intrusive Polynomial Chaos (NIPC)
Polynomial Chaos methods construct the approximation of a functional by
means of a truncated series of multivariate orthogonal basis polynomials,
chosen according to the Askey scheme [120], so to best fit the statistical
distribution of uncertain parameters α. The Chaos expansion of a QoI J(α),
function of a n-dimensional random vector α takes the form:

J(α) =
P∑
i=0

ηjψj(α) (6.15)

where ηj and ψj(α) are, respectively, the weights and the multivariate or-
thogonal basis of the expansion, related to the probability density of input
random variables. In Dakota [91], the weights ηj can be estimated through
a non intrusive procedure using either spectral projection or linear regres-
sion. The basic idea of the first approach is to project the response against
each basis function using inner product and enforcing orthogonality. The
resulting integrals [121] are evaluated through sampling techniques, quadra-
ture formulas, or sparse grids integration based on Smolyak’s construction.
The second alternative uses instead a single linear least squares solution of
the form ψη = J and is associated with a so-called total-order expansion
comprising a total number of terms Nt in the series given by the formula:

Nt = P + 1 = r
(n+ p)!

n!p!
(6.16)

where p is the order of the polynomial chaos expansion and r is an over-
sampling factor (typically 1 ≤ r ≤ 2).

In both cases the final objective is the calculation of a stochastic response
surface that allows to accurately predict the statistical moments of the cost
function by a reconstructed Monte-Carlo method applied to the inexpensive
model (6.15). The stochastic problem is reduced to a set of deterministic
simulations at each collocation point.

In the present work a linear regression method (with r = 1) on both
full and sparse grids is considered to extract the coefficients ξj of the chaos
expansion. Full grids are built by both structured (tensor grids) and un-
structured approaches (by a latin-hypercube method). Spectral projection
based on Smolyak’s sparse grid technique is also investigated for reducing
the number of collocation points.
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The fully tensored grid (for quadrature order equal to 3) and Smolyak’s
sparse grids corresponding to Gauss-Patterson rules for two uniformly-distributed
non-dimensional uncertainties a and b is depicted in Figure 6.1.

Figure 6.1. Examples of stochastic grids. Full tensor grid (left), Gauss-Patterson
sparse grid low resolution (middle), and Gauss-Patterson sparse grid high resolu-
tion (on the right).

Probabilistic Collocation Method (PCM)
Probabilistic Collocation Method (PCM) is closely related to the polyno-
mial chaos method. The key difference is that whereas NIPC employs bases
of multivariate orthogonal polynomials, PCM uses Lagrange interpolation
polynomials. In a single dimension (case of a single uncertain parameter
α) Lagrange polynomials interpolate a set of collocation points αj using the
functional form:

J(α) =

Np∑
j=1

Jj(αj)
m∏

k=1,k 6=j

α− αk
αj − αk

(6.17)

Equation (6.17) is used to build an approximation of the functional in the
case of a higher dimensional uncertain vector by constructing a tensor prod-
uct of 1-D polynomials of order p − 1, being p the order of the quadrature
polynomials, selected according the Askey scheme. The roots of the quadra-
ture polynomials, permuted by a full factorial design, represent the knots of
the global interpolating function. The result is a series of Np = pn terms,
corresponding to a multivariate interpolation function:

J(α) =

Np∑
j=1

Jj(αj)
n∏
k=1

[
m∏

k=1,k 6=j

α− αk
αj − αk

]
(6.18)
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where the coefficient Jj(αj) are the deterministic solutions (i.e. fitness func-
tion values) at collocation point αj and n is the number of uncertain param-
eters. An total amount of pn decoupled simulations is carried out for com-
puting the weights of eq. (6.18). The output statistics are finally computed
by a reconstructed Monte-Carlo method (RMC) applied to the interpolat-
ing function (6.18). Despite PCM is a simple and affordable UQ method, it
suffers from severe limitations due to the curse of dimensionality (the com-
putational cost grows exponentially with the number of uncertainties) and
oscillatory behavior in presence of discontinuities (Runge’s phenomenon).
Various extensions to the tensor formulas have been proposed to overcome
these difficulties. They include sparse grid techniques, simplex stochastic
collocation [122] and the construction of the interpolating function by means
of non-polynomial basis. In this work we employ PCM with a simple full
factorial tensor formulation.

6.3 Numerical solvers

To explore the interest of AMoM for robust design optimization, a full pack-
age of quasi-1D codes for the Euler equations has been developed. It com-
prises an isentropic flow solver, here described, its adjoint, a linear code and
numerical procedures for gradient and hessian computation. In the following,
we provide the main features of these solvers.

6.3.1 Non-linear flow solver

The physical model used in the non-linear flow solver is represented by the
well-known Euler equations for quasi-1D flows:

∂u

∂t
+
∂f(u)

∂x
+B(u) = 0 B(u) =

 ρv
ρvht
ρv2

 1

S

dS

dx
(6.19)

where ui = [ρ, ρet, ρv] and f(ui) = [ρv, ρvht, ρv
2 + p] are, respectively, the

conservative variable and the physical flux vectors, and S = S(x) is the
nozzle area at abscissa x. The system of equations is completed by a thermal
and a caloric equation of state. For sake of simplicity in this work we use the
perfect gas model with a constant specific heat ratio of 1.4 (air).

The governing equations are discretized by a cell-centered finite vol-
ume formulation. Three different numerical schemes (Rusanov’s first-order
scheme [123], Roe’s first order scheme [123], and an high resolution extension
of the Roe’s scheme based on the van Albada-Van Leer’s limiter [123]) are
implemented within the code. A four-step explicit Runge-Kutta method is
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adopted for time integration [124]. The code is constructed in a highly mod-
ular manner to facilitate its automatic derivation via TAPENADE [42, 39].

6.3.2 Adjoint and linear flow solvers

As pointed out in Section II, the adjoint and linear flow solvers are linearized
versions of the baseline non-linear solver. They have been developed by
applying the backward (adjoint) and forward (linear) mode of automatic
differentiation to explicit parts of the native software. To construct the
adjoint code, routines of the native nonlinear code calculating the fitness
function J and the global residual R are inversely differentiated with respect
to u in order to compute the vectors (∂J

∂u
)T and (∂R

∂u
)Tv, as used in equation

(6.11). The gradient calculation is carried out by inversely differentiating the
same routines with respect to the αi to obtain the terms ( ∂J

∂αi
)T and ( ∂R

∂αi
)Tv

of equation (6.12).
The modular structure of the native solver is of paramount importance to

ensure an efficient automatic differentiation of the non-linear routines. Fur-
thermore it allows to easily change the objective function without significant
modification of the overall numerical procedure.

The solution of the adjoint solver is converged by means of an explicit
time-marching method (the same used for the non-linear solver). For the
present problem, the algorithm proved to robustly converge the solution to
a steady-state. Nevertheless, for more complex problems, convergence of
adjoint solvers may require faster solvers, like GMRES [54]. These techniques
will be considered in the future.

On the other hand, the linear solver computes the solution by constructing

the matrix
∂R

∂u
and the vector

∂R

∂αi
through the direct differentiation of the

numerical residual routine and by applying the LU factorization method
(available in the LAPACK library) to solve equation (6.9). The resulting
methodology is computationally efficient for a relevant number of sensitivity
parameters. According to the definition of the Hessian components given in
equation (6.13), the terms D2

i,jR and D2
i,jJ are finally obtained directly by

double differentiating the procedures that give J and R and providing the

solution of the linear solver
∂u

∂αi
as an input for the generated routines.

6.3.3 AMoM-based Uncertainty Quantification loop

In the UQ framework, all or part of the input variables αi are considered
as random variables with a known probability distribution function. In this
case, information about the first and second sensitivity derivatives provided
by the non-linear, adjoint, and linear solvers, are used to estimate how the
randomness propagates through the system of governing equations and af-
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fects the objective function J in terms of mean value and variance. For
this purpose, we couple the numerical solvers described in the preceding
subsections with the generalized Method of Moments, as sketched Fig. 6.2,
specifically oriented to the evaluation of the low-order statistical moments.

Figure 6.2. Automated coupling procedure for UQ for the quantity of interest
(objective function).

Given an initial guess of the uncertain parameters αi, the non-linear solver
is run first, to evaluate the fitness function. Moreover, the computed values
of the state variables u are passed-in to the adjoint and linear codes which
return, respectively, the adjoint variable vector v and flow sensitivities with

respect to the uncertain parameters,
∂u

∂αi
. This information is post-processed

to obtain the gradient and the Hessian of the fitness function with respect
to the stochastic input variables. Once the first and second-order derivatives
are available, mean µ(J) and variance σ2(J) of the fitness function can be
computed by the generalized method of moments. The low-order moments
of the stochastic fitness function are finally made available as objectives for
the robust optimization algorithms, presented hereafter.
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6.4 Optimization algorithms

Robust optimization strategies investigated in this work are based on two
underlying deterministic optimization algorithms: the first one is a Pareto-
Based multi-objective Genetic Algorithm (MOGA), while the second one is
a gradient-based BFGS (Broyden-Fletcher-Goldfarb-Shanno) method [125].
The MOGA is employed in a bi-objective search in which low-order moments,
provided by an UQ method, are taken as separate fitness functions, in accor-
dance with the formulation of the optimization problem. The gradient-based
method is then used to refine the best-so-far solution of the MOGA[126],
chosen on the Pareto front according to the following criterion: first the indi-
vidual with minimum expectancy is chosen, then the objective is constructed
by a linear combination of mean and standard deviation, each multiplied by
a weighted factor of 0.5. In this way the gradient-based algorithm will tend
to simultaneously optimize statistical moments, thus improving the best in-
dividual provided by MOGA with a bi-objective optimization.

In this work, we make use of the implementations of these algorithms
available in the open source software Dakota. For the whole calculations
carried out, the genetic algorithm starts with an initial population comprising
50 individuals which evolves for 30 generations to ensure a fully converged
Pareto front.

6.5 Numerical Applications

This section presents the numerical applications of AMoM in UQ and robust
optimization context extensively debating the results against other strategies.
The section is divided into three parts: the first defines the test case while
the second and the third one report the UQ analysis and the robust design
optimization results for the stated problem.

6.5.1 Problem statement

In the following we consider transonic flow through a quasi-1D diverging
nozzle. The flow equations are discretized by using a computational grid of
300 uniformly spaced cells, and Rusanov’s spatial discretization scheme. The
nozzle area distribution is parametrized by the following function:

S(x) = a+ b·tanh(cx− d) (6.20)

where a, b, c, d are free coefficients that define the geometry.
The moderate computational expense of the flow solver, of the order of

six CPU seconds on a standard PC, enables to efficiently compare the various
stochastic solutions with a reference Monte-Carlo simulation based on 500000
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Table 6.1. Distributions and statistical parameters of the input uncertain variables.

α Distribution Parameter 1 Parameter 2 Group
a Normal 1,75 (mean) 1,0 % (CoV) G
b Normal 0,699 (mean) 1,0 % (CoV) G
c Normal 0,8 (mean) 1,0 % (CoV) G
d Normal 4,0 (mean) 1,0 % (CoV) G
pT Uniform 0,9 (low bound) 1,1 (up bound) O
TT Uniform 0,9 (low bound) 1,1 (up bound) O
γ Uniform 1,39 (low bound) 1,40 (up bound) T

samples, which ensures full convergence of the output statistics. Several
sources of uncertainties, summarized in Table 6.1, are taken into account.
They include geometric uncertainties (group G), operating conditions (group
O), and thermodynamic uncertainties (group T). In this study, the first group
of uncertainties is represented by the four coefficients of eq. (6.20), the second
one comprises the reservoir pressure pT and temperature TT , and the latter
includes the specific heat ratio γ. Geometric uncertainties are assumed as
normally distributed, with given mean and coefficient of variation (CoV =
σ
µ
); the other uncertain parameters are assumed to be uniformly-distributed

with imposed lower and upper bounds.
The range of variation of the total pressure is such that a shock is al-

ways created in the divergent. In the following, we consider a robust design
problem where the average pressure distribution along the nozzle provided
by the stochastic flow solver is required to match a target pressure distribu-
tion. Precisely, the cost function is defined as the mean quadratic error with
respect to the target all over the nozzle:

J =
1

2

n∑
i=1

(pi − ptarget)2 (6.21)

where pi represents the pressure at the ith mesh cell. We require the mean
value of J to be zero, its variance being as low as possible. The robust
optimization problem is then set as follows:

Find S(x) such that: E[J(S)] = 0, V ar[J(S)] = min
S
V ar[J(S).]

In this work, the two statistical moments are minimized simultaneously by
means of a MOGA in a robust optimization loop; the process iteratively
modifies the values of the coefficients a, b, c, d of equation (6.20) until con-
vergence.
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6.5.2 Assessment of the AMoM as an UQ method

This Session assesses the capabilities of the AMoM as UQ method against
other methods commonly used in the literature. Initially, the AMoM is
applied to the model problem described in the preceding section to estimate
the low-order statistics (mean and variance) of the QoI (6.21) under multiple
uncertainties. Then the capability of AMoM of efficiently providing accurate
information on the contribution of each uncertain parameter to the global
variance of a QoI is investigated. This approach, close to analysis of variance
(ANOVA), can provide useful information for reducing the size of a stochastic
problem, i.e. neglecting its dependencies on the less influential uncertain
parameters, while preserving a high level of accuracy of the output statistical
moments.

First, we assess the UQ capabilities of the AMoM for two cases. The first
case consists in computing the moments of functional J (6.21) by taking into
account all of the variables given in Tab. 6.1 as uncertain parameters; in the
second case, only uncertainties belonging to group G are taken into account.
The results are summarized in Tables 6.2 and 6.3. The computations were
carried out with both the first-order (FOSM) and the second-order (SOSM)
method of moments. Nevertheless, for the former method, J evaluated at
the design point is equal to zero, as well as the first-order derivatives. Hence,
statistical moments computed according to eqs. (6.2), (6.3) are identically
null. For this reason, FOSM was discarded and only SOSM computations
are presented in the following. Moreover, in the SOSM method the first and
second-order derivatives of J were computed using both the proposed Adjoint
Method and finite differences. The results obtained using second-order NIPC
on both structured (NIPC2QFF) and unstructured full grids (NIPC2LHS),
accurate sparse grid approach (NIPC2QS), second- and third-order PCM
(PCM2 and PCM3), and Monte Carlo sampling (MC) are also reported for
comparison.

When all groups of uncertain parameters are taken into account simulta-
neously, SOSM provides high error levels with respect to the reference Monte
Carlo computation, compared to NIPC and PCM. Results of the AMoM are
very similar to those of the finite difference SOSM, apart from minor numer-
ical errors. Nevertheless, the second one is 16 times more expensive, for this
highly dimensional stochastic problem. In spite of its relative inaccuracy, the
computational cost of AMoM is much lower (one to five orders of magnitude)
compared to the other methods. The inaccuracy of AMoM for this case is
essentially due to the fact that small fluctuations of the reservoir pressure
(parameter pT ) lead to large displacements of the shock wave across the noz-
zle divergent. Such large displacement cannot be approximated accurately
by means of Taylor-series expansions.
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Table 6.2. Results of UQ analysis for 6 uncertainties.

Method Error µ (%) Error σ (%) Time (s)
SOSM fin. diff. 32,25 56,34 80
SOSM adjoint 32,25 56,30 5

PCM2 4,09 35,53 60
PCM3 2,29 3,35 700

NIPC2QFF 3,74 36,20 54
NIPC2LHS 1,36 2,25 54

NIPC2QS 1,43 1,42 98
Random MC 0,0 0,0 105

Table 6.3. Results of UQ analysis for 4 uncertainties.

Method Error µ (%) Error σ (%) Time (s)
SOSM fin. diff. 9,91 16,93 40
SOSM adjoint 10,13 17,00 5

PCM2 3,28 17,32 15
PCM3 1,43 1,35 75

NIPC2QFF 3,57 17,53 15
NIPC2LHS 2,02 7,17 15

NIPC2QS 1,34 1,66 40
Random MC 0,0 0,0 105

In fact, for the second case, where only geometrical uncertainties are
taken into account, the accuracy of the SOSM method increases greatly,
even if error levels remain large compared to other methods, because of the
presence of a shock wave, that invalidates the use of Taylor-series expansions
locally. The computational cost of AMoM is still much lower (3 to 25 times)
than NIPC or PCM methods, and orders of magnitude lower than that of
Monte Carlo sampling.

Computations (not shown here) were also run for a smooth flow problem
(no shock in the divergent). In this case, AMoM results are in excellent
agreement with Monte Carlo ones for both cases (all uncertainty groups or
only G group taken into account), for a computational cost that is drastically
lower than any other method.

In summary, AMoM allows for a cheap but rough estimate of low-order
moment of the QoI, its accuracy being greatly reduced for non-smooth flows
with large shock fluctuations.

Then, we investigate the capability of AMoM of efficiently predicting the
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contribution of a given uncertain parameter to the randomness of a QoI,
in order to rank the importance of input uncertainties. To this purpose,
analysis of variance (ANOVA) is usually adopted to preliminarily quantify
the contributions of each uncertainty to the global variance of the QoI.

In the following, we use information available via the AMoM to calculate
the so-called importance factors of each uncertain parameter, expressed as:

χi =
σ2(J) |i
σ2(J)

(6.22)

Indicators defined by (6.22) measure the fraction of variance of a QoI that
is due to a specific input variable. They are calculated afterwards the au-
tomated coupling procedure, using available information about output vari-
ance.

The results are compared with those of a classical ANOVA analysis using
NIPC based on sparse grid integration (NIPC2QS) and the corresponding
variance based decomposition, according to the Sobol’s indexes[94].

Figure 6.3. Results of the adjoint-based and sparse grid integration preliminary
ANOVA.

Figure 6.3 depicts the results of the ANOVA analysis for the whole set
of parameters listed in Table 6.1. Both the NIPC2QS and AMoM approach
give similar trends. Nevertheless the adjoint-based methodology requires a
fraction of the sparse grid computational cost (of the order of 10−1), and
appears to be much more efficient for stochastic problems with multiple un-
certainties. Hystograms displayed in Figure 6.1 clearly show that the highest
contribution to the variance of the fitness function J is due to the reservoir

132



Adjoint-based Uncertainty Quantification

pressure. Interaction effects between pT and the remaining uncertain vari-
ables (represented by the bars at the right) are correctly captured by the
adjoint-based approach. Since the main objective of the ANOVA is to rank
the parameters according to their relative impact on the variance of the QoI,
more than obtaining the exact importance factors, the present investigation
demonstrates the interest of AMoM for quick ANOVA analysis prior to more
detailed UQ or robust optimization calculations.

6.5.3 Robust Design of an Inverse Flow Problem

Results shown in the preceding Section show that the AMoM enables for a
cheap estimate of low-order moments of a QoI, even if with lower accuracy
compared to other UQ methods, namely for shock-dominated flows. In the
following, we investigate the suitability of AMoM as UQ method within a
robust optimization loop: despite the fact that statistical moments are not
evaluated as accurately as by other UQ methods AMoM is still expected to
provide proper and cheap information of search for optimization purposes.

In the following, we apply AMoM to the solution of the inverse flow
problem under uncertainty described in subsection V.A. For this purpose,
the mean E[J ] and the variance (σ[J ])2 of the quadratic error with respect
to the target pressure are simultaneously minimized by means of a MOGA
(see Section IV). The optimization is carried out for both cases discussed
in the preceding Section, i.e. by taking into account all of the uncertain
input parameters (case 1) or by considering only group G uncertainties (case
2). Statistical distributions used for random parameters are those of Table
6.1. Hereafter, we discuss results obtained by using AMoM coupled with a
MOGA (referred as AMoM-MOGA) compared to several robust optimization
strategies:

1. Second-order NIPC based on full factorization of the collocation points
coupled to a MOGA (NIPC2QFF-MOGA).

2. NIPC using accurate sparse grid quadrature, coupled to a MOGA
(NIPC2QS-MOGA).

3. Two-step strategy based on preliminary selection of the most influential
uncertain parameters via ANOVA, then robust optimization by apply-
ing NIPC2QFF to the reduced set of random parameters along with
MOGA (2STEP). For the present problem, ANOVA shows that pT is
largely the most influential variable, and the only one that should be
retained for subsequent optimization, as more than 90% of the fitness
variance is due to total pressure. For case 2, where only geometric
uncertainties are considered, the most influential parameters are the
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geometrical coefficients c and d, so that a, b are taken as deterministic
in the optimization loop.

Approach 1 is considered hereafter as the reference in terms of accuracy,
since NIPC2QFF ensures good accuracy compared to Monte-Carlo, at least
for expectancy estimates. Approach 2 still provides accurate estimates of
the statistics with reduced computational cost with respect to NIPC2QFF.
Finally, approach 3 drastically reduces computational cost, at the expense of
neglecting most of the sources of uncertainty.

For all optimization runs, a fully converged Pareto front is obtained by
means of the MOGA. Then, to investigate the possibility of improving the
best configuration of the AMoM-MOGA approach, a second optimization
step is applied; the solution is then refined by a local search algorithm, cou-
pling the second-order AMoM with a BFGS method (referred to AMoM-
BFGS). To make it compatible with a gradient-based algorithm, the bi-
objective optimization problem is reformulated in a single-objective one by
constructing the combined cost function:

J = λµ+ (1− λ)σ (6.23)

In a similar fashion, the gradient becomes:

∇J = λ∇µ+ (1− λ)∇σ (6.24)

where λ has been fixed to 0.5, and ∇µ,∇σ are calculated by deriving the first
order expectancy and variance equations, namely relations (6.2), (6.3) with
respect to uncertain parameters. As a consequence second-order derivatives
are used to estimate the gradient of the cost function.

The resulting optimal solutions given by the overall optimization process
are subsequently validated a posteriori by computing their fitness functions
by means of a third order polynomial chaos.

Simulation results, at the end of the validation process, are provided in
Tables 6.4 and 6.5. The last column provides computational costs of the
simulations with the MOGA. The gradient-based refinement applied to the
AMoM-MOGA best individual, that typically takes about one hundred sec-
onds, slightly improves the objectives. As a consequence solutions of the
genetic solver are considered as the reference and the second optimization
step is not accounted for hereafter. The AMoM-MOGA approach is found to
be far cheaper than the other methods; the cost is also nearly independent
from the number of uncertainties taken into account. The last rows of Ta-
bles 6.4 and 6.5 also provide the mean and variance of the cost function for a
geometry obtained by means of a deterministic optimization. Deterministic
design offers poor off-design behavior compared to robust optimization ap-
proaches, the standard deviation of the error with respect to target pressure
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Table 6.4. Robust design results for 6 uncertainties.

Method Mean Std. Dev. a b c d Time (s)
NIPC2QFF-MOGA 2.79e-01 2.54e-01 1.503 0.719 0.762 4.04 20000

NIPC2QS-MOGA 2.86e-01 2.59e-01 1.507 0.719 0.755 3.99 3400
2STEP 2.81e-01 2.54e-01 1.505 0.714 0.778 4.09 800

AMoM-MOGA 2.79e-01 2.53e-01 1.502 0.719 0.762 4.04 1450
AMoM-BFGS 2.75e-01 2.50e-01 1.5 0.73 0.759 4.04 130
deterministic 3.64e-01 3.26e-01 1.75 0.699 0.8 4.0 -

being approximately 50% larger. For both optimization cases (6 uncertain-
ties or 2 G-uncertainties), all robust optimization approaches return very
similar results in terms of mean, standard deviations, and design variables;
the resulting nozzle profiles are superposed to within plotting accuracy, see
Figure 6.4.

The computational cost of the NIPC2QFF methodology is about one
order of magnitude greater than that of the other approaches, due to the
highly expensive estimate of low-order moments by full factorial polynomial
chaos (64 deterministic simulations for design required). As a consequence it
is not suitable for robust designs of realistic problems involving a moderate
number of random parameters, unless massive parallelization is applied like
in [106]. The cost drastically decreases by adopting sparse grid techniques,
since mean and standard deviation are evaluated after a lower number of
deterministic calculations (13 for each individual of the genetic algorithm).
The two-step strategy, leading to just 1 or 2 deterministic simulations for each
individual, is the more efficient one for the present test case. Its accuracy
and efficiency strongly relies on the preliminary analysis of variance: to this
aim, AMoM provides the required information quickly and accurately.

The second series of runs (4 uncertainties) leads to similar conclusions.
Note that the optimal nozzle contour, sketched with a red line, is com-
pletely different from that obtained by taking into account fluctuations of
the total pressure. This confirms again the high impact of this parameter
on the solution. Differently from the previous case, the NIPC2QS-MOGA
and the 2STEP methodologies require now a similar computational effort as
NIPC2QFF-MOGA, as only two variables, a, b, over a total of four, are omit-
ted in the uncertainty analysis. The NIPC2QFF-MOGA strategy remains
nevertheless the most costly.
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Table 6.5. Robust design results for 4 uncertainties.

Method Mean Std. Dev. a b c d Time (s)
NIPC2QFF-MOGA 5.04e-02 6.61e-02 1.986 0.709 0.83 4.03 4300

NIPC2QS-MOGA 5.04e-02 6.62e-02 1.916 0.69 0.83 4.01 2400
2STEP 5.05e-02 6.64e-02 1.915 0.704 0.83 4.04 2100

AMoM-MOGA 5.05e-02 6.62e-02 1.996 0.705 0.83 3.99 1400
AMoM-BFGS 5.04e-02 6.61e-02 1.996 0.706 0.83 3.983 125
deterministic 5.09e-02 6.77e-02 1.75 0.699 0.8 4.0 -

Figure 6.4. Baseline and robust nozzle contours for the inverse flow problem.

6.6 Conclusive Remarks

This chapter has illustrated an interesting application of the adjoint for UQ
and robust design approaches in CFD. In particular a novel robust design
approach, based on an Adjoint Method of Moments (AMoM) combined with
a Multi-Objective Genetic Algorithm (MOGA) has been proposed. The per-
formances of AMoM have been assessed for a transonic flow problem against
with some widely-used stochastic methods (Monte-Carlo, NIPC, and PCM).
The first- and second-order sensitivity derivatives have been computed by
both an adjoint approach and finite differences.

For problems characterized by large fluctuations of the input parameters,
and in the transonic regime (where shock waves are present in the flow), the
method of moments provided high error levels with respect to the other UQ
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techniques taken into account (Monte-Carlo, NIPC and PCM). This defect
is related to the intrinsic nature of the method, which makes use of Taylor-
series expansion. Nevertheless, in all numerical tests carried out, the use
of the adjoint formulation leads to a dramatic reduction of computational
cost. As a consequence the AMoM appears to be a suitable candidate for
quick estimate of the statistical moments for stochastic problems involving
an arbitrarily large number of random parameters.

Subsequently, the AMoM was coupled with a multi-objective genetic
solver (MOGA) to build a robust design strategy, and the resulting hybrid
robust optimization algorithm (AMoM-MOGA) was applied to an inverse
design exercise for transonic 1-D flows through a diverging channel.

Numerical tests show the interest of the proposed methodology in terms
of solution accuracy and computational burden against other investigated ro-
bust strategies. The final results point out that the coupling between AMoM
and a genetic solver makes an efficient robust optimization tool, despite the
scant accuracy of expectancy and standard deviation provided by the uncer-
tainty propagation method in case of non-smooth flows. Present numerical
experiments show that the AMoM-based robust optimization returns results
that are close to those obtained by using NIPC as UQ method in terms of
accuracy (final values of the objective functions and of the design variables),
with a much lower computational expense. The latter is shown to be almost
independent on the number of uncertain parameters that are taken into ac-
count. In conclusion, AMoM-based robust optimization is an effective and
promising design tool, that is worth further investigations for more complex
applications.
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Conclusions and Future
Perspectives

This research work has presented an efficient optimization framework for im-
proving the design of fluid-dynamic devices operating under ideal and real gas
flows. The iterative update of the baseline configuration has been obtained
by means of a gradient method based on a discrete inviscid adjoint, state-
of-the-art parameterization techniques and a preconditioned steepest de-
scent searching algorithm. Differently from standard approaches, the present
methodology is capable to effectively deal with real-gas effects adopting, al-
ternatively, built-in equations of state or a fast look-up table method. The
last one results in a non-intrusive coupling between the numerical solvers and
the thermodynamic library, allowing for the inclusion of any thermodynamic
models (provided by the library) into the design loop with a relatively low
effort.

The geometry of interest is deformed according to surface gradients, i.e.
gradients with respect to NURBS control points, or active gradients, i.e.
gradients with respect to active boundary mesh nodes. Whenever necessary,
the smoothness of the sensitivities can be augmented by recurring to elliptic
smoothing techniques applied at mesh level.

Test cases have concerned the optimization of wind tunnel nozzles and
turbine cascades operating under flows characterized by relevant real-gas
effects. The re-design of a supersonic cascade for ORC applications has been
proposed as original test case. To address off-design conditions, a standard
multi-point methodology has been coupled to a stochastic algorithm for the
choice of weights and samples in which evaluating the objective function. An
ANOVA analysis has been also used to preliminarily select the most influent
uncertain parameters.

The results achieved generally proved a quick convergence of the design
algorithm to the local minimum. Regarding the supersonic turbine opti-
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mization, considerable improvements of the cascade performance have been
obtained by weakening the shocks appearing in the initial configuration, in
reference as well as at off-design conditions. The off-design performances
of the optimized blades have been finally investigated from a probabilistic
perspective to demonstrate the validity of the multi-point strategy. The out-
comes of the stochastic analysis has revealed the potential of the proposed
multi-point optimization as a viable strategy to improve the robustness of
supersonic turbomachinery cascades exposed to relevant variations of the
operating conditions.

The work conducted in this research has led to a better understanding
of the adjoint method for shape optimization and uncertainty quantification
algorithms applied to aerodynamics and turbomachinery problems. The is-
sues encountered during this work suggested a number of possible ideas to
improve the quality of the research. Among these, to the author’s opinion,
the most favorable paths for future new achievements can be oriented in the
following directions:

� A comprehensive analysis on gradient accuracy is planned as a first
step to further consolidate the results achieved in this work. In this
perspective, a thorough study of the effect of gradient approximation on
the optimized layout, currently ongoing, will be extensively performed.
In fact there are still a few studies on this topic in the literature.

� Viscous and turbulent adjoints will be considered. Precisely, algebraic
turbulence models could be the first candidates to be fully differenti-
ated and embedded within design loop. The capability of matrix-free
techniques for solving viscous and turbulent adjoint problems remains
one of the trickiest issues of the method. Indeed, numerical studies
on the convergence of these methods for advection-diffusion problems
could be of paramount importance for the whole adjoint community.

� The optimization method could be extended to handle explicit con-
straints using the Lagrangian formulation. In addition, state-of-the-art
optimization solvers, such as BFGS or SQP, could be taken into ac-
count to compare their performances against the ones offered by the
steepest-descent method.

� A comparison between the present robust multi-point approach and
fully stochastic design strategies could be of great interest to point
out advantages and disadvantages of both solutions. As an example,
the hybrid algorithm for stochastic optimizations proposed in the last
chapter represents a valuable strategy to efficiently manage uncertain
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operating conditions. Meta-modeling techniques could also offer a vi-
able contribution for enhancing the efficiency of robust optimization
methods.
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