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“If you want a new idea
read an old book.”

Anonymous

“ ‘Herr Hiemenz, is the flow steady now?’
He answered very sadly, ‘It always oscillates.’ ”

Theodore von Kármán

1 + 2 + 3 + 4 + · · · = − 1
12

Leonhard Euler
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Abstract

THE object of this thesis is the Large Eddy Simulation (LES) of turbulent flows, its
theoretical and practical development toward complex industrial flows requir-
ing unstructured flow solvers and its specific application to flows of different

complexities.
In a broad sense, LES deals with approximations of the dynamical system described

by the Navier-Stokes equations (NSE), the approximation being in the use of a lower
number of degrees of freedom (i.e., the number of grid cells and time steps used in
a computation) than those strictly required for a correct full numerical simulation of
the flow (i.e., DNS). In LES literature, the reduction in the number of degrees of free-
dom is usually introduced by formally applying a spatial low-pass convolution filter
to the NSE. This filter is aimed at separating the large turbulent scales, which in LES
are directly represented on a grid and simulated, from the small or sub-grid scales
(SGS), which in LES are only modeled, i.e., by a SGS model. The rational basis for
this approach and, as a matter of fact, for LES as a whole, stems from the classical
Kolmogorov picture of the turbulent energy cascade. The large scales are the most
energetic, anisotropic and the most dependent from the boundary conditions. Small
scales, in contrast, are much less energetic, more isotropic and universal, hence they
should be relatively easy to be modeled.

However, nowadays, it is fully recognized that the actual dynamical system effec-
tively represented by the numerical simulation is different from the formally filtered
NSE in several aspects. First and foremost, the effective scale separation between re-
solved and modeled scales is usually different from the theoretical one which, in most
cases, is not even present in practice. As a consequence, the overall scale separation
is actually determined by the computational grid, the numerical scheme and, possibly,
the SGS model too. This, in turn, introduces uncertainty in the computation as both the
resolved and the modeled scales are not precisely characterized and the SGS models,
which are developed in such incorrect framework, are also required to represent a not
well specified range of scales. A second important aspect concerns the specific form of
the equations used for the simulation which, despite the issues described above, is still
usually based on the formally filtered NSE. This approach either introduces additional
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modeling errors, known as commutation errors, or requires specific numerical strate-
gies and numerical methods with higher accuracy. These problems, which might appear
secondary or abstract, are in fact fundamental. Indeed, the overall LES approach can be
essentially reduced to the interaction between a scarcely resolved, numerically affected,
range of scales near the cut-off of the grid, and a SGS model, which should represent
the interactions of such scales with the missing ones. Whenever this interaction is mis-
represented, the outcome of the simulation is strongly affected. Moreover, this picture
is even more critical when considered in the framework of unstructured flow solvers,
usually adopted in practical engineering applications. Indeed, the hypotheses required
to fit the formal LES picture are seldom, if ever, satisfied and the higher numerical
accuracy required to overcome this limit is not usually available or practical.

Despite its high resolution requirements, LES is now feasible for small-medium
sized industrial applications and is explicitly required whenever the flow presents strong
unsteadiness or interactions among different spatial scales. As a consequence, in order
to further develop LES for complex industrial applications, it is of paramount impor-
tance to overcome its present deficiencies and limitations. In the present work, this
objective is pursued by first reformulating the LES problem in a new, consistent, the-
oretical framework. In particular, the classical LES route described above, in which
model filtered equations are used as representative of a numerical approach, is defi-
nitely abandoned. Instead, the new proposed framework is defined by equations which
are an exact representation of a given numerical method, independently from any filter
concept. In particular, this framework is more general than the classical one as it exactly
represents most of the known numerical approaches: finite differences, finite/spectral
element methods and finite volumes (FV), structured and unstructured. As such, it is
particularly suitable as theoretical framework for the development of LES in complex
applications using unstructured flow solvers of any type. Moreover, as a side-product of
the present LES reformulation, relevant differences arise at the level of the SGS terms
which need modeling and their underlying algebraic relations, also known as Germano
Identities. These differences are such that important reductions in the computational
costs of some classical SGS models are introduced and more complex modeling op-
tions can be explored with relative ease.

This last aspect, in particular, is further developed in the thesis trough the application
of the proposed framework to the FV method. As a result of this application, a new
SGS model is developed, which is intended to recover part of the energy lost by the
numerically affected scales of the flow, while remaining stable on general unstructured
grids.

The flexibility and suitability of the proposed LES approach and SGS model are
then demonstrated by their implementation in a general purpose unstructured FV solver
and the application to flows of increasing complexity. A particular attention is first
devoted to the turbulent channel flow, because of its relevance as LES benchmark and
the availability of solutions with different codes and SGS models. More specifically,
the comparison is made with the codes participating the LESinItaly database, ranging
from pseudo-spectral to finite difference ones, including several commercial and open-
source FV codes. The comparison not only shows the relevance of the proposed SGS
modeling strategy, which outperform all the reference LES solutions, but also evidences
a striking similarity of LES results among very different codes. This similarity is further
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investigated and possible causes are highlighted, leading to a better interpretation of
common results found in literature.

Finally, more complex flows are considered. These include: turbulent pipe flows
computed with unstructured grids at different Reynolds numbers; the flow and heat
transfer in a matrix of wall-mounted cubes; the cold, swirling, flow in a lab-scale in-
dustrial combustor. In all the cases, the proposed SGS model is compared with the
available DNS/experimental data and with more classical SGS modeling strategies us-
ing multiple grid resolutions. The results of these additional tests show that the pro-
posed SGS model is, at worst, as accurate as the classical SGS models, while retaining
its stability and lower computational costs. However, for the lower resolutions typical
of industrial applications, the effects of the new SGS model are more evident and lead
to a better prediction of the flow statistics.

III
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CHAPTER1
Introduction

Among the several physical phenomena governing the events on earth and influencing
our daily life, the flow of fluids is one of the most important as it affects almost all
the relevant physical fields. From planetary scale climate patterns, like El Niño, and
mesoscale convective systems, like tropical cyclones, to energy conversion in the most
diverse power plants and devices, like internal combustion engines; from the aerody-
namics of cars, airplanes and trains to the blood flow in the cardiovascular system; all
these physical mechanisms, or processes, involve a certain degree of interaction with
a fluid in some kind of motion. As such, it comes at no surprise that fluid mechanics,
the study of fluids in equilibrium or motion, can be dated back to the Classical era (250
B.C. circa) and the two books work of Archimedes, On Floating Bodies.

In its modern form, fluid mechanics, like every other branch of the classical me-
chanics, can accurately describe fluids and their motion by a set of partial differen-
tial equations (PDE)1 governing the relations between the momentum changes of fluid
parcels and the forces generating them. However, very differently from other branches
of classical mechanics, the analysis of the fluid motions is challenged by the inherent
non-linearity of the process, which determines, for nearly every flow, the possibility to
exist in two different states: laminar or turbulent. Laminar flows are characterized by a
regular pattern and time behavior for all the flow variables, usually allowing a complete
mathematical description. Turbulent flows, in contrast, exhibit a chaotic and seemingly
random behavior, characterized by strong three-dimensionality, unsteadiness and fluc-
tuations over a wide range of spatial and temporal scales. It is due to Reynolds (1883),
after his well known experiment, the recognition that, for incompressible, isothermal
flows, the behavior of the flow depends on a single non-dimensional parameter, now

1Under the continuum hypothesis and supplemented by proper initial and boundary conditions.
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Chapter 1. Introduction

known as Reynolds number:

Re =
ρUL

µ
(1.1)

where ρ and µ are the density and dynamic viscosity of the fluid while U and L are,
respectively, a characteristic velocity and length scale for the flow. When the Reynolds
number is below a specific, flow dependent, value the flow is laminar and exhibits a
regular pattern and time behavior; if the Reynolds number is above the specific value
then the flow starts to exhibit an irregular pattern (transitional phase) and, for even
higher values, eventually becomes fully turbulent. The Reynolds number is, actually, a
measure of the relative magnitude of convective (nonlinear) and viscous (linear) effects;
when Re is high the former dominate the latter and the flow behaves chaotically, with
a strong dependence on the initial and boundary conditions due to the nonlinearity. It
is still due to Reynolds (1895) the recognition that turbulent flows are more suitably
described in terms of statistical means and moments which, however, cannot provide a
full mathematical description of the flow.

From the engineering point of view, turbulent flows are ubiquitous while laminar
ones are the exceptions; also, turbulent flows are characterized by increased mixing
and dissipation, which are important in nearly all the applications (e.g., combustion,
pollution dispersal, internal and external aerodynamics). As a consequence, their de-
scription and understanding is of paramount importance, not only from the physical
point of view but also from a purely technical perspective. Nonetheless, still today, the
non-linearity of the problem challenges our advancements in the field, which remain
very limited.

This is especially true in relation to the inherent multi-scale nature of turbulent flows.
Indeed, in any given flow, large scale structures2 can be generated by interaction of
the mean flow with the boundary conditions (e.g., the geometrical details of the flow
domain), by instability of the mean flow itself or by any suitable external forcing. For
sufficiently high Re numbers, these structures are subjected to non-linear interactions
but essentially unaffected by the viscosity of the fluid; thus, by vortex stretching, these
structures break down into smaller structures. The non linear process acts on the smaller
structures as well, breaking them into even smaller structures, until their size is small
enough for the viscosity to dissipate their motion into heat. Quoting Richardson (1922,
p. 66),

We realize thus that: big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity - in the molecular
sense.

This energy cascade process has been given a first quantification by Kolmogorov
in 1941, now known as K41 theory3. The fact that it is among the few relevant theo-
retical results available in turbulence4, all of which are based on dimensional analysis,

2Flow structures can be loosely defined as coherent spatio/temporal patterns of velocity, having definite time and length scales.
3K41 is based on two hypotheses also known as dissipative anomaly and scale invariance, the second of which is now known to

be not exactly satisfied because of intermittency, see Frisch (1995). In the context of the present work, this discrepancy has a clear
definite effect on the numerical simulation of turbulent flows. However, to the best of the author’s knowledge, this has been rarely
investigated (Yakhot and Sreenivasan, 2005; Yakhot and Wanderer, 2011) and has never seen any practical application. Thus, from
now on, this specific flaw of K41 is not considered anymore.

4An additional, notable, one being the work of Oberlack (2001) on parallel shear flows.

2
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similarity assumptions or symmetries, just reflects the difficulty to make theoretical ad-
vancements in this field. On the other hand, while experimental analysis continues to
be an invaluable tool in fluid dynamic research (Kim, 2012a), it is often limited by the
operational conditions of the facilities and by the restricted set of collectible data for
a given experiment; more importantly, it can be hardly justified in several industrial
contexts, where multiple responses to design changes are needed within specific limits
of time and cost.

These motivations have led to the rapid emergence of computational fluid dynamics
(CFD), not only as a research tool on its own (Kim, 2012b; Moin and Mahesh, 1998)
but also as a support for industrial design. However, despite the increasing availability
of computational power5, the multi-scale feature of turbulence, as emerges from the
energy cascade picture, still remains a fundamental bottleneck in CFD, both for basic
research and for applied analysis in industrial design. This is easily appreciated by
considering a classical result of the K41 theory:

L

η
≈ Re

3
4 (1.2)

which expresses the ratio between the largest and smallest, dynamically active, spa-
tial scales in a turbulent flow as a function of the large scale Reynolds number; the same
number, cubed, is also a rough measure of the required number of degrees of freedom
needed to discretize the flow equations in a cubical domain of side L. As, for most ap-
plications, Re ranges from few thousands up to several millions, the number of degrees
of freedom required to discretize a turbulent flow then ranges, roughly, from 106 to 1014

and beyond6. It is thus apparent that, even with an optimal distribution of such degrees
of freedom and the twofold increase in computational power expected every 18 months
from the Moore’s Law, high Re turbulent flow simulations are precluded for the next
few decades, with such a direct, brute force, approach also known as Direct Numerical
Simulation (DNS)7.

In order to make CFD feasible at high Re numbers, the only viable route is thus to
remove some turbulent scales from the computation or, more correctly, to reduce the
number of represented degrees of freedom with respect to the required one. Unfor-
tunately, because of the non-linearity (e.g., the energy cascade), a dynamic coupling
exists between the different scales and, independently from how such degrees of free-
dom are chosen and removed, their interactions with the resolved ones have to be prop-
erly taken into account. This approach, which is also useful in basic research (Biferale,
2003) but is fundamental for industrial applications of CFD, goes under different names
that, for the sake of conciseness, but not without approximation, we summarize as tur-
bulence modeling. The name essentially refers to the fact that, for numerical simula-
tions using a reduced set of degrees of freedom, and according to the method used to

5The ten most powerful supercomputers at November 2013, as ranked by the TOP500 list (www.top500.org), have peak
performances ranging from 2.9 Pflop/s up to 33.9 Pflop/s. These value represent, roughly, an increase of 7 and 20 times, re-
spectively, of the same values as reported at the beginning of the author’s Ph.D. course. Unfortunately, the author’s machine has
remained exactly the same.

6Sharper estimates for wall bounded flows are provided by Choi and Moin (2012).
7Additional factors, of course, affect the refurbishment of DNSs performed on the top HPC machines like, for example, the

need to explore additional physical effects instead of the pure increase in Reynolds number. Thus, while in 2005 the 5th fastest
machine available in the world was used for a DNS employing around 18 billion degrees of freedom, in 2013 the 5th fastest
machine, 300 times faster than its predecessor, has been used on the same DNS with only a 2.5 factor increase of the Re number
and 242 billion degrees of freedom.

3
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Chapter 1. Introduction

reduce them, a statistical model (i.e., a surrogate for the missing degrees of freedom
and their interactions) has to be introduced in order to correctly predict the dynamics
of the flow under investigation.

Large Eddy Simulation (LES) is among such techniques used in turbulence model-
ing and the main topic of the present thesis, especially in relation to industrial compu-
tations, where its relevance is rapidly growing in the recent years (Tucker and Lardeau,
2009; Bouffanais, 2010). An overview of the approaches used in the numerical simula-
tion of turbulent flows is given in the first section of this chapter and, among them, LES
is first introduced and put in perspective in the second section. After this overview, the
purpose and outline of the thesis are presented in the third section. Finally, the novel
contributions of this work are briefly summarized in the fourth section.

1.1 Numerical simulation of turbulent flows

As emerged in the previous section, the key issue in the numerical simulation of turbu-
lent flows, for all but the most trivial cases, is the simultaneous presence of a wide range
of dynamically active spatial and temporal scales, all of which have to be represented
in a numerically accurate way. Despite the practical limit due to the availability of
sufficient computational power8, DNS has nonetheless being strongly developed in the
years, for simple geometries (Orszag and Patterson, 1972; Rogallo, 1981; Kim et al.,
1987) as well as for more complex ones (Laizet and Lamballais, 2009; Cockburn and
Shu, 1989; Wang, 2002; Liu et al., 2006; Patera, 1984) and remains a fundamental tool
in research. However, for engineering applications, a conceptual limit also remains,
due to the suitability of a DNS approach with respect to the answers required from the
computation. It is, indeed, very common in design engineering to only require, say,
mean flow rates in pipes, average heat fluxes trough surfaces or the drag and lift co-
efficient for a wing. While these are readily available in DNS too, it is also true that
most of the costs involved in DNS are required to produce information which is then
discarded, making the approach largely inadequate.

Among the turbulence modeling approaches, the one that first became established
and still today is the workhorse in the engineering practice is based on the application
of an averaging operator to the equations governing the motion of the fluid, the Navier-
Stokes equations (NSE). More specifically, such an operator is an operational time av-
erage in the original view of Reynolds (1895) while, according to the modern axiomatic
approach to probability, it is today intended as an ensemble average over an infinite
set of identical experiments (Pope, 2000; Monin and Yaglom, 1971). With a slight
misuse of nomenclature, such an approach leads to the so called Reynolds-Averaged
Navier-Stokes (RANS) equations. The main advantage of the RANS approach is that it
provides, as main dependent variables, the mean values as required in the engineering
practice and, in doing so, it also avoids the description of any other physical flow scale.
Which means that the resolution requirements of RANS computations are reduced to
those of the mean quantities, and their possible symmetries or steadiness can be readily
exploited in further reducing the computational costs. The downside in RANS is, of
course, a direct consequence of the approach: every fluctuation of flow variables on
every single scale has to be taken into account by the turbulence model. That is, the

8Memory, storage and bandwidth limitations exist as well.
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turbulence model is responsible for the whole energy cascade9. The difficulty of the
task is well clarified by the fact that modeled fluctuations include those in the wake of
bluff bodies as well as those in attached boundary layers or in separation bubbles of
diffusers. Because of such variability, as a matter of fact, RANS models are effectively
tuned (by modifying adjustable parameters) to perform well in specific applications.

Between DNS and RANS, turbulence modeling also allows a full range of interme-
diate approaches that directly compute, instead of modeling, some scales (or degrees
of freedom) and model the rest10. Indeed, with DNS still being unfeasible, there are,
nonetheless, several specific cases for which, despite its formal correctness, the RANS
approach simply does not perform well or is intrinsically inadequate. Typical examples
of the first group are free shear flows, ranging from mixing layers to the wakes of bluff
bodies and turbulent jets, in which the mean flow properties are influenced by most of
the modeled turbulent scales. Cases from the second group are flows with instabili-
ties, which by definition are smoothed out by the average11, or where the deterministic
evolution of the flow in a specific condition is of interest (in contrast to the average
one), like in weather predictions or accident scenarios. In all such cases, the inclusion
of some turbulent scales in the flow representation can mitigate the demanding task
of the turbulence model and lead to better flow descriptions, while still keeping the
computation feasible with respect to DNS.

LES belongs to this class of turbulence modeling approaches, its specificity being
that the largest flow scales (or the related degrees of freedom) are directly resolved
while the smallest ones, and their interactions with the former, are modeled. This dis-
tinguishing feature of LES and, as such, LES as a whole, is essentially motivated on the
basis of the K41 theory, for which large scales carry most of the energy and are those
directly affected by the geometrical features of the domain. In contrast, the small scales
carry much less energy and are supposed to be independent from the geometric details
of the flow, isotropic and similar among different flows. Thus, from one side, the rela-
tive low energy content of the modeled scales should make them relatively unimportant
in determining the mean flow features; on the other side, their relative isotropy and
similarity among different flows should also make them simple to be modeled (with re-
spect to, say, RANS). More specifically, still according to K41, the small scales simply
receive energy from the large ones, at a rate which is solely determined by the large
scales, and dissipate it. Thus, a simple model capable of dissipating the exact amount
of energy supplied by the large scales, should be a proper choice for LES (Ferziger and
Leslie, 1979).

1.2 Large Eddy Simulation: a preliminary perspective

While the previous idealized picture of LES can be considered correct when the under-
lying assumptions hold, it is, nonetheless, subjected to various criticalities.

First and foremost, the separation between resolved large scales and modeled small
ones and the operator determining it. It should be surprising at least, even for an LES

9More precisely, it is the effect of the cascade on the mean quantities.
10It might appear, at first, that Unsteady RANS (URANS) belongs to this category. However, this is not actually the case as, by

definition, the unsteadiness tracked in URANS is not related to any turbulent scale but only to some externally imposed time scale.
When the latter is missing, the significance of the results is open to debate (Sagaut, 2006). See, also, the next note.

11For several reasons this might not actually happen in the computational practice. Still, it has to be considered a flaw in the
application of the RANS approach instead of a merit.

5
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practitioner, to recognize that the first ever tentative formalization of such an operator
is still due to Reynolds (1895), whose formalism was conceived in terms of temporal
or spatial averages12. However, the spatial average formalism was soon abandoned by
Reynolds because, as an average operator, it does not provide the same nice properties
of the time average (Monin and Yaglom, 1971).

It is only with Leonard (1974) that the spatial averaging formalism is explicitly rein-
troduced and used as specific operator to obtain what, for the first time, is named “Large
Eddy Simulation”. In practice, Leonard identifies as large scales those produced by a
weighted volume average and suggests, in order to produce an LES, to explicitly apply
this weighted average to the convective terms of the equations at each time step13. The
same procedure can also be interpreted, as indeed Leonard does, as a spatial filtering
operation with the weight playing the role of the filter kernel; this immediately iden-
tify, qualitatively at least, the filter cut-off length ∆ as the discriminating length scale
between large resolved scales and small modeled ones14. Of course, for the procedure
to be meaningful, ∆ is required to be, somehow, bigger than the local dimension of
the underlying computational grid cells, say h; at the same time, following K41, ∆ is
also required to be within the inertial range, that is smaller than any flow scale possibly
affected by the geometry of the flow domain. Finally, under the hypotheses assumed
by Leonard, the spatial average operator becomes a convolution operator and recovers
most (but not all) of the desirable properties required by Reynolds; in particular, the
governing equations in LES, the filtered NSE, become in many aspects similar to the
URANS equations and modeling is required for the sub-grid scale (SGS) stresses, due
to the application of the filter to the non-linear convective terms (a rough analogous of
the Reynolds stresses arising in URANS).

However, even in 1974, the Leonard formalization was in strong contrast with the
mainstream pioneering works on LES performed in the meteorological community
(Smagorinsky, 1963; Lilly, 1967; Deardorff, 1970, 1971; Schumann, 1975). These
were all essentially based on solving the original NSE, on a grid with spacing h, with
a certain numerical method and supplementing them with a SGS model, responsible
for the missing scales in the computation. Thus, not only the filtering formalism com-
pletely disappears, but the whole concept of scale separation now is linked to the grid (a
la Nyquist), a typical assumption being ∆ = h, and the numerical method employed. In
addition, more often than not, the SGS model itself is just an additional non-linear vis-
cosity, borrowed from other fields (VonNeumann and Richtmyer, 1950), used to avoid
a blow up of the simulation. It thus comes at no surprise at all that, with the develop-
ment of computational methods and the diffusion of the LES approach, the difference
between the original Leonard formalization and the actual LES practice has indeed be-
come wider in the years (Reynolds, 1990; Pope, 2004). The main consequence of this is
that, while most of the LES works are still today developed within the classical filtering
framework, the actual practice is based on the most diverse approaches and even the
basic issue of the scale separation, which determines which scales are actually solved,
is not usually covered in detail.

A second important issue in LES is the underlying K41 theory, which is valid for

12The LES concepts introduced by Reynolds, in perspective, are quite advanced and rediscovered only more than 70 years later.
13The classical LES approach will be discussed at length in chapter 2. Here basic details only are introduced.
14In this picture, ∆ is either an explicit parameter of the filter kernel or can be determined analytically, by some means, from its

functional form.
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1.2. Large Eddy Simulation: a preliminary perspective

homogeneous, isotropic turbulence (HIT) in the limit of infinitely high Reynolds num-
bers; and even in that case, it usually is an oversimplification. Indeed, the K41 view of
the energy cascade is static, in the sense that the energy distribution at the different flow
scales is assumed to be in equilibrium and to identically satisfy the well known −5/3
spectrum at each time, with energy continuously flowing toward the smallest scales at
a fixed rate. However, this equilibrium assumption can be easily questioned, for ex-
ample, when an external forcing exists, because the different scales differently adapt to
the forcing, according to their specific time scale. Moreover, the same cascade picture
is not exactly true, as the energy is also subjected to an inverse cascade process, also
known as backscatter, going from the small scales to the larger ones and, in general,
the two processes act at the same time. Thus, in LES, a simple dissipative model could
actually not suffice to properly represent the missing scales and their interactions. Fi-
nally, the whole cascade process, assuming energy injection at the largest scales, can
simply be incorrect.
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Figure 1.1: Spectra of the wall-normal velocity component in a turbulent channel flow at different
Reynolds numbers and distances from the wall, d. a) Stream-wise spectra at channel centerline,
d = H; b) Span-wise spectra at d ∼ 5H/Reτ . DNS data taken from Moser et al. (1999); Hoyas and
Jiménez (2006); del Alamo and Jiménez (2003); del Alamo et al. (2004).

An important example of this is in wall bounded flows. This is clearly shown in fig-
ure 1.1, where velocity spectra in two different regions of a turbulent channel flow are
compared for different Reynolds numbers. Indeed, in the center of the channel (sub-
figure a), where the influence of the walls is lower, the flow approximately behaves as
in HIT and the cascade process is in rough accordance with the K41 theory; also, for
sufficiently high Re numbers, an inertial range spectrum can be partly appreciated. In
strong contrast, in the near wall region (sub-figure b) the energy is actually injected in
the flow at the smallest scales, by vorticity production at the wall and sweeps/ejections
(Brooke and Hanratty, 1993), leading to the formation of stream-wise vortices (Robin-
son, 1991), the overall process being largely self-sustaining besides the necessary mean
shear at the wall (Jiménez and Pinelli, 1999). Of course, in this case, the energy cascade
is mostly reversed. Also, these mechanisms are Re dependent and strongly anisotropic.
Thus, not only a dissipative SGS model would hardly work properly but, even a more
adequate model would still require, at least, a partial resolution of such mechanisms15,

15By definition, a SGS model, however complex, is only based on the available information during the computation.
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Chapter 1. Introduction

constraining the LES of wall-bounded flows to DNS-like scaling costs. This last issue
has led, by itself, to a whole area of modeling (Piomelli and Balaras, 2002), whose
efforts are devoted to the development of specific wall boundary conditions, which
become fundamental for high Reynolds numbers typical of engineering applications
(Fureby, 2008).

1.3 Purpose and outline of the thesis

The general purpose of the present thesis is the further development of LES toward its
application in complex engineering flows. The vagueness of this statement, which is not
accidental, is related to the fact that it is not possible (or anymore convenient) to develop
LES without considerations on its specific numerical implementation. Actually, it is
the author’s opinion that LES should be a possibly exact theoretical framework for
a generic numerical computation instead of, say, a possibly inexact application of a
toy model within the most diverse numerical frameworks. The relevance of the correct
approach for engineering applications becomes self-evident when most, if not all, of the
assumptions underlying the classical LES framework (Leonard, 1974) are not verified,
as is typically the case. In such circumstances, understanding the scale separation itself
becomes arduous and the development of SGS models, strictly relying on it, can lead
to erroneous results.

In order to achieve the proposed goal, the first necessary step, as presented in Chap-
ter 2, is to analyze, assumption by assumption, the classical LES framework (from now
on simply named as CLES) and to identify, if any, those assumptions which are lim-
iting the applicability of CLES. This analysis will clearly point out how these are all
related to the scale-separation operator, i.e., the filter, and that this has several influ-
ences on the resulting CLES framework and the related computational practice. This
result also suggests, as next step, reformulating the LES problem without the unnec-
essary limiting assumptions. Such reformulation is performed in Chapter 3 and leads
to several interesting results. Among these, the most important one is that, if properly
formulated, a Genralized LES framework (from now on simply named GLES) is pos-
sible, which is applicable to most of the known LES approaches, either according to
CLES or to the simple computational practice. As a matter of fact, as will be shown,
it represents an exact theoretical model for a generic computational framework. A sec-
ondary aspect of such result is to show how some consolidated practices in LES are
indeed wrong and unnecessarily complicated. As the intended goal of the thesis is the
applicability of LES to engineering flows, a relevant part of this work is related to the
finite volume (FV) method. There are several reasons for this, among which: the large
flexibility of the method, including the possibility to describe both complex geome-
tries and physics with a relatively low effort; the large availability of the method among
commercial, open-source and in-house codes; the related, much larger, diffusion among
CFD practitioners in the most diverse fields. As a consequence, the GLES framework
is further developed, in Chapter 4, in relation to the FV method and a new SGS model
is proposed. This SGS model is not simply dissipative in nature and can thus be more
appropriate for a large class of flows, including wall bounded ones. It is also shown
that, as GLES is a framework for a general computational approach, the proposed SGS
model can be also interpreted as a modification of the basic FV discretization scheme.
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1.3. Purpose and outline of the thesis

It is worth emphasizing here that one of the main results from the previous two chap-
ters is the identification of the FV method, as implemented in most available solvers, as
an LES approach for which exact model equations can be written. As a consequence,
the adoption of the proposed GLES framework with a FV code essentially amounts to
use the code as it is and, in the present case, to the inclusion of a SGS model specifically
developed for the method.

Having introduced the GLES framework and a specific SGS model for the FV
method, the remaining part of the thesis is devoted to the validation of the proposed
LES approach. In Chapter 5 the code adopted for the simulations, ANSYS R© Fluent R©

13.0, is first presented, together with the numerical settings relevant for the further
developments. The choice of the code, which is certainly not immune to criticism,
is essentially determined by the previously cumulated know-how on the code and the
possibility to show the easiness of implementation of the proposed approach in such
kind of code. Nonetheless, a specific section of the chapter is dedicated to the suit-
ability of the code for LES, with particular emphasis on two aspects not specifically
developed within this work: the numerical method and the generation of inflow bound-
ary conditions. Finally, some implementation details related to the SGS model and the
computation of the statistics in LES are also provided.

An additional aspect which is worth mentioning here is that, for the sake of gen-
erality, the whole content of the first four chapters is based on a general compressible
formulation. However, all the validations and test cases are based on strictly incom-
pressible flows. As such, the code presentation in chapter 5 is limited to the aspects
relevant for this kind of flows.

The first proposed validation, presented in Chapter 6, is for the turbulent channel
flow (Moser et al., 1999). Despite the strong contrast with the propositions of the
thesis, and even its title, this choice is motivated by several reasons. First of all, as
previously anticipated, it is a severe test case for LES and SGS models, due to its
anisotropy and dependence from the resolution of the smallest scales, where the tur-
bulence production mechanisms reside. At the same time, it is among the few, non
trivial, cases not depending from initial or boundary conditions, which would further
complicate the validation. Furthermore, despite its geometrical simplicity, the turbulent
channel flow is representative of a general class of wall bounded flows and, more im-
portantly, such kind of flows are usually present even in the most complex applications,
either at the inflow or the outflow of the domain. Finally, it is possibly the most used
benchmark for LES and allows comparisons with the most diverse codes. Indeed, part
of this chapter is dedicated to the comparison of the different LES codes used within
the LESinItaly group (Denaro et al., 2011; Abbà et al., 2013), an Italian collaborative
framework focusing on the analysis of the performances of several LES codes. Besides
providing and additional justification for the use of the code Fluent R©, this comparison
has evidenced several similarities among different codes and SGS models. This has
motivated a deeper analysis of the LES of turbulent channel flows and the identification
of possible mechanisms leading to such similarities.

The validation of the proposed SGS model is then extended to cases of increasing
complexity in Chapter 7. The first proposed case is the turbulent pipe flow (Wagner
et al., 2001; Wu and Moin, 2008). While having several similarities with the turbulent
channel flow, the case naturally allows an unstructured discretization of the flow do-

9



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 10 — #32 i
i

i
i

i
i

Chapter 1. Introduction

main, it is thus well suited for a first test of the model on complex geometries. Also,
the unstructured discretization for the case is found especially helpful in increasing the
near-wall resolution without an excessive increase in the overall cell count for the grid,
thus promoting tests also at higher Reynolds numbers. The second selected test case is
the flow and heat transfer in a matrix of surface mounted cubes (Meinders and Hanjalić,
1999). While this case too shares some similarities with the channel flow case, it also
introduces strong grid stretching in the flow direction and additional physics, like heat
transfer, vortex shedding, flow separation and reattachment. However, very differently
from the previous test cases, this flow is strongly influenced by large scale flow struc-
tures, thus allowing a test of the proposed SGS model in a case where its influence is
not expected to be relevant. Finally, the SGS model developed in this thesis is vali-
dated in the case of the turbulent cold flow in a swirled combustor. The case, besides
being representative of several combustion applications, has computational and physi-
cal features representative of a larger set of engineering flows, among which: regions
of very scarce resolution, including toward the wall; strong grid stretching; physical
inflow and outflow boundary conditions to be prescribed; complex flow physics, in-
cluding separations, strong recirculation and fluid dynamic instabilities leading to the
formation of large scale coherent structures. Experimental data for the comparison have
been gathered with the support of the Combustion and Optical Diagnostic Group at the
Department of Energy of Politecnico di Milano, both via Laser Doppler Velocimetry
(LDV) and Particle Image Velocimetry (PIV).

The thesis is closed, in Chapter 8, with some conclusions drawn from the preceding
tests and analyses. Possible future developments are also briefly discussed.

1.4 Novel contributions of this thesis

The novel contribution of this thesis can be summarized in the following points:

• a detailed analysis of the classical LES (CLES) framework in the more general
compressible formulation and the identification of previously unnoticed inconsis-
tencies and drawbacks of the formulation;

• the development of a general LES (GLES) framework which is an exact descrip-
tion for several practical LES approaches as well as for CLES;

• the further development of the GLES framework and the development of a novel
SGS model for general unstructured FV codes ;

• the first application of such SGS model in cases of engineering interest by inclu-
sion in a commercial CFD solver;

• the development of a single-pass, real time, algorithm for the parallel computation
of weighted moments and co-moments, useful for the gathering of spatial/tempo-
ral statistics in LES with FV codes;

• an innovative analysis for the LES of the turbulent channel flow, with the identifi-
cation of some of the mechanisms determining the prediction of mean quantities;

10
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1.4. Novel contributions of this thesis

Finally, despite the lack of novelty, a strong personal contribution has been given to
the creation of the LESinItaly database for the turbulent channel flow, which is available
at http://www.cfdlab.polimi.it/Research/Database.html.
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CHAPTER2

The Classical LES framework

In this chapter, the basis of the classical LES (CLES) framework are reviewed. For
the sake of convenience, the set of governing equations, as used in DNS, is first sum-
marized in section 2.1. The basis of CLES are first introduced in section 2.2 and the
the two main known approaches in CLES, based on implicit or explicit filtering of the
equations, are first delineated in section 2.3. A detailed presentation of the two meth-
ods, including the relative SGS modeling approaches, is instead reported in Section
2.4. Finally, section 2.5 contains a resume of the main assumptions used in CLES and
the consequences deriving from them. For the sake of generality, this presentation is
based on the compressible form of the equations, whose main references are Garnier
et al. (2009) and Wagner et al. (2007). Nonetheless, most of the concepts and details
which are not specific of compressible flows are covered in greater detail by Sagaut
(2006). However, it is important to stress again that the presentation given here is only
representative of the basic LES approach. Several proposals for LES have emerged in
the years (Boris et al., 1992; Margolin, 2009; Geurts and Holm, 2003; Guermond et al.,
2004; Verstappen, 2008; Trias et al., 2010; Knaepen et al., 2005; Stolz and Adams,
1999), but most of these are better represented in the new GLES framework developed
in Chapter 3, as this is actually one of the main goals of the thesis.

13
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Chapter 2. The Classical LES framework

2.1 The Navier-Stokes equations

Under the continuum hypothesis, the conservation of mass, momentum and energy for
a fluid medium are described by the Navier-Stokes equations (NSE):

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0

∂ (ρui)

∂t
+

∂

∂xj
(ρuiuj + σij) = 0

∂ (ρE)

∂t
+

∂

∂xj
(ρujE + qj + uiσij) = 0

(2.1)

where the convention of summation over repeated indices hold. In equation (2.1),
the independent variables t and xi refer, respectively, to the time and spatial coordi-
nates; ui represents the velocity vector and ρ is the density of the fluid. The energy
equation is formulated in terms of the total energy per unit mass E (Kosovic et al.,
2002):

ρE = ρe+
1

2
ρukuk (2.2)

where e is the internal energy per unit mass. Alternative formulations for the energy
equation are possible (Poinsot and Veynante, 2005) and have been used in LES as well
(Garnier et al., 2009; Piomelli, 1999); however, for the sake of comparison with the
approach proposed in Chapter 3 and with alternative LES proposals (e.g., Stolz and
Adams), the present formulation is found more suitable and thus adopted. Even though
the formulation in (2.1) allows the treatment of most fluids in nearly all the conditions,
for the sake of simplicity, only single-species, mono-phase, non-reactive, gaseous flows
in local thermodynamic equilibrium are considered, so that an ideal gas equation of
state can be assumed to hold:

p = ρRT (2.3)

where T and p are, respectively, the temperature and pressure of the fluid. R =
Cp−Cv is the gas constant, with Cp and Cv being the specific heats at constant pressure
and volume. Under these conditions:

ρe =
p

γ − 1
(2.4)

with γ = Cp/Cv. Finally, it is further assumed that variations of the specific heats
with the temperature can be neglected1 (i.e., a calorically perfect gas).

1All these assumptions are easily removed, at least formally, without adding specific issues to the formulation, besides physical
modeling ones.
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2.2. The filtering approach to the scale separation

The stress tensor σij and the heat flux vector qj are assumed to follow the Newton-
Stokes-Fourier hypotheses:

σij = pδij − 2µ

(
Sij −

1

3
Skkδij

)
= pδij + Σij

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
qj = −λ ∂T

∂xj

(2.5)

where δij is the Kronecker’s delta, Sij is the strain rate tensor and µ (T ) and λ (T )
are the dynamic viscosity and the thermal conductivity of the fluid. According to the
previous hypotheses, both depend on the temperature T only and are related trough the
constant Prandtl number Pr = Cpµ/λ.

2.2 The filtering approach to the scale separation

In the approach originally devised by Leonard (1974), the separation between the large
resolved scales and the small, non resolved, ones is formally achieved by applying a
spatial filtering operator2 to the NSE (2.1). For a generic scalar field φ, such filtering
operation, denoted by an overbar, is usually defined as::

φ̄
(
x, t, ∆̄

)
= G ∗ φ (x, t) =

∫
Ω

G
[
x, ξ, ∆̄ (x)

]
φ (ξ, t) dξ (2.6)

where Ω is the flow domain and G is the filter kernel which, in the most general
case, has a width ∆̄ with an explicit dependence on the spatial coordinates3. The op-
eration (2.6) is intended to be high-pass filtering in space, and leads to the following
decomposition for φ:

φ = φ̄+ φ′ (2.7)

Ideally, φ̄ represents the resolved, large-scale, component of φ and φ′ is the unre-
solved SGS component. However, this sharp distinction somehow implies the presence
of a computational grid or the use of a projection filter (e.g., G ∗G ∗ φ = G ∗ φ) while,
in more general cases, φ′ also has resolvable components, referred to as subfilter scales
(SFS). More generally, φ̄ and φ′ represents the parts of φ whose spatial scales are ap-
proximately larger and smaller, respectively, than the filter width ∆̄. Because of this

2LES can be also conceived in a temporal filtering framework or, more generally, in a general spatial/temporal filtering frame-
work. As the two approaches can be generally advanced in parallel, due to the independence of spatial and temporal coordinates,
and the temporal approach, in particular, is much less problematic and sufficiently developed (Pruett, 2008), the present thesis is
focused on the spatial filtering approach only. Of course, both approaches are based on the rationale that filtering in space is also
effective on the relative time scales and the converse.

3The dependence on temporal coordinates is possible as well (Leonard et al., 2007). However, it is usually needed in very
specific applications, like internal combustion engines, or generally moving grids, whose use in LES is still limited by the compu-
tational costs. As such, it is not considered in the present thesis.
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Chapter 2. The Classical LES framework

distinction, and because the present exposition is intended to just delineate the theoreti-
cal CLES framework, whose practical application is instead described in the following
sections, the list of classical filters used in LES is deliberately omitted here. It is just
worth mentioning that, for the following developments, the filter is also required to be
linear and preserve the constants, two properties met by all the known theoretical and
practical filters. Before applying the operator (2.6) to the NSE, it is a common, useful,
practice to also introduce the Favre transformation4 (Favre, 1983):

φ̃ =
ρφ

ρ̄
(2.8)

Under these conventions, and without any further assumption, the filtered Navier-
Stokes equations (FNSE) in the CLES framework follow:

∂ρ̄

∂t
+

∂

∂xj
(ρuj) = 0

∂ (ρ̄ũi)

∂t
+

∂

∂xj
(ρuiuj + σij) = 0

∂
(
ρ̄Ẽ
)

∂t
+

∂

∂xj
(ρujE + qj + uiσij) = 0

p̄ = ρ̄RT̃

(2.9)

As presented, the set of equations (2.9) is not closed, as it provides evolution equa-
tions for filtered quantities in terms of non-filtered ones. In order to further proceed
toward a closed set of equations, the main assumption always used in CLES is that the
filter operator G commutes with the spatial derivatives operators5 (Ghosal and Moin,
1995; Fureby and Tabor, 1997; Vasilyev, 2001):

G ∗
[
∂

∂xj
(· · · )

]
=

∂

∂xj
[G ∗ (· · · )] (2.10)

whose implications will be discussed at length in the next sections. If the filter G
satisfies the additional condition (2.10), the equations (2.9) then become:

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ũj) = 0

∂ (ρ̄ũi)

∂t
+

∂

∂xj
(ρ̄ũiuj + σ̄ij) = 0

∂
(
ρ̄Ẽ
)

∂t
+

∂

∂xj

(
ρ̄ũjE + q̄j + uiσij

)
= 0

p̄ = ρ̄RT̃

(2.11)

4Again, it is interesting to know that the specific operator in (2.8) has been actually introduced by Reynolds (1895).
5Commutation with time derivatives, as already implied, is always verified for spatial, time-independent filters.
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2.3. Filtering: Implicit vs. Explicit

where computable quantities are the filtered pressure p̄ and density ρ̄, the Favre
transformed filtered velocity components ũi and the total energy Ẽ. It is worth noting
how condition (2.10) is necessary and sufficient in order to have a closed continuity
equation. Also, the equation of state is closed independently of any assumption. How-
ever, non-linearities prevent equations (2.11) from being closed yet. More specifically,
three class of terms require closure:

• Filtered convective terms in the momentum and energy equations and the in the
definition of the total energy, due to the non commutation between the filtering
and the product.

• Filtered viscous stress tensor and heat flux vector. These are due to the fact that,
from equations (2.11), Favre filtered variables ũi and T̃ are known while, for con-
stant molecular coefficients, the two terms depend on the simply filtered variables
ūi and T̄ . Non-linearities due to the temperature dependence of the molecular
coefficients µ and λ additionally complicate the matter.

• Filtered diffusion term uiσij in the energy equation, due to a combination of the
previous two.

The last step in CLES consists in arranging the different terms in (2.11) in order
to obtain the final set of governing equations, to be supplemented with proper SGS
models for the non closed terms. However, the arrangement of the terms also reflects
the specific approach adopted in CLES and the resulting SGS modeling.

2.3 Filtering: Implicit vs. Explicit

The CLES framework, as delineated in the previous section, only represents a limited
view on the subject and, in some cases, can greatly differ from the computational prac-
tice. Indeed, the basic CLES framework can be further divided in two main areas: the
implicit and the explicit filtering approaches.

In the implicit filtering approach, the one already adopted before the Leonard for-
malization and certainly the most diffused still today, no actual filtering operation is
ever invoked. Instead, it is essentially based on solving the equations (2.1) with the
available spatial resolution, possibly supplementing them with a SGS model. Thus, the
scale separation between large and small scales is assumed to be implicitly determined
by: the grid, which for a step h can only solve spatial frequencies up to the wavenumber
kc = π/h; the numerical method, whose truncation error acts on the smallest resolved
scales as an additional filter; the SGS model itself, if present, whose formulation can
alter the energy fluxes toward the smallest scales, acting effectively as an additional
filter (Mason and Callen, 1986; Muschinski, 1996; Magnient et al., 2001).

In contrast, the explicit filtering approach is essentially based on the approach pro-
posed by Leonard (1974), further developed in the years (Lund, 2003; Gullbrand and
Chow, 2003) up to the more recent standards (Bose et al., 2010; Singh et al., 2012). In
practice, it is based on explicitly filtering the convective terms of the equations with a
numerical filter which, in theory, should satisfy the hypotheses assumed in the previous
section, i.e., (2.10).
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Chapter 2. The Classical LES framework

In order to better understand the distinguishing features of the two approaches, and
for the sake of simplicity, it is educative applying the filter G to a simpler scalar con-
servation law:

∂φ

∂t
+∇ · F (φ) = 0 (2.12)

where F denotes a generic, nonlinear, flux function. Upon application of the filter,
under the hypotheses of the previous section, and after a spatial discretization, equation
(2.12) can be rearranged in two formally equivalent, exact forms6 (Denaro, 2011):

∂φ̄

∂t
+∇d · Fd

M

(
φ̄
)

= ∇ ·
[
FM

(
φ̄
)
− F (φ)

]︸ ︷︷ ︸
I

+∇ ·
[
F (φ)− F (φ)

]
︸ ︷︷ ︸

II

+ (2.13a)

+∇d ·
[
Fd
M

(
φ̄
)
− FM

(
φ̄
)]

+
[
∇d −∇

]
· FM

(
φ̄
)︸ ︷︷ ︸

III

∂φ̄

∂t
+∇d · Fd

M

(
φ̄
)d

= ∇ ·
[
FM

(
φ̄
)
− F (φ)

]d︸ ︷︷ ︸
I

+∇ ·
[
F (φ)

d
− F (φ)

]
︸ ︷︷ ︸

II

(2.13b)

+∇d ·
[
Fd
M

(
φ̄
)
− FM

(
φ̄
)]d

+
[
∇d −∇

]
· FM

(
φ̄
)d︸ ︷︷ ︸

III

where the superscript d denotes the spatial discretization and the subscript M im-
plies that the flux function F has been possibly modified with a model, to take into
account the non resolvable terms. The meaning of equations (2.13) is that the terms
on the left hand sides are those actually retained in actual computations, while those
on the right hand side are those neglected and can be assumed to be the error in doing
such approximation7. Here, equation (2.13a) refers to the implicit filtering approach
and equation (2.13b) refers to the explicit filtering one, as can be easily understood by
the presence of the additional, discretized, filter level on the left hand side.

With equations (2.13) at hand, it is possible to analyze the differences among the
two approaches by looking at the respective errors on the right hand sides. Among the
three groups of terms evidenced, it appears that terms I and III are shared by the two ap-
proaches, with the difference that in the explicit filtering approach they are acted upon
by the discrete filter. In particular, terms I represent modeling errors, while terms III
represent discretization errors. It is thus apparent that, as both these terms are mostly
concentrated on the smallest resolved scales, in the explicit filtering approach they can
actually be filtered out by a proper selection of the filter. In contrast, the implicit fil-
tering approach does not allow such possibility and the consistency of the resolved
equation with respect to the original one is strongly determined by the specificities of

6The fact that the two equations are still exact can be easily verified as, with respect to the original equation (2.12), the additional
terms appearing in equations (2.13) exactly cancel each other.

7In practice, the approach is similar to the one used to obtain the local truncation errors of discretization schemes. The only
difference here is the presence of both filtered and unfiltered continuous terms together with the numerical solution φ̄ that is known
only at grid points. Consistency is restored by intending the numerical solution to be an interpolant for the given grid points. This
topic will be further discussed in chapter 3.
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2.3. Filtering: Implicit vs. Explicit

the term III, which are usually unknown and different among different codes as due to
the numerical method.

The key factor in the explicit filtering approach is thus the proper selection of the
filter which, in order to overwhelm the contribution III, needs to have a width ∆̄ some-
how larger than the local grid spacing, say h. In practice, the required ratio ∆̄/h is a
decreasing function of the accuracy of the method and, in the limit of infinite accuracy,
this ratio can be unity. However, it is worth noting that, while term I is still under the
filtering operation, it is not usually subjected to the same reduction with increasing filter
width, as it involves the difference FM

(
φ̄
)
− F (φ), which usually increases unless a

perfect model is employed. In practice, in the explicit filtering approach the numerical
error is filtered out but the SGS model assumes a stronger role.

The distinction among the two approaches is completed by looking at the terms
II, which could be defined as consistency errors, as they do not actually influence the
evolution of φ̄ but only its interpretation. In the explicit filtering approach this can be
made null by simply assuming that the discretized filter is, indeed, the one originally
wanted, so that no error arises in the implementation of the filter. Something which
is not usually noted, however, is the presence of an analogous term in the implicit fil-
tering approach, which leads to a catastrophic conclusion. Indeed, this term implies
completely unknown functions only, including the filter which is unspecified, and no
practical or conceptual choices can ever influence it. In practice, the filter being un-
specified, the meaning of the resolved variable φ̄ is completely determined by terms I
and III, and in turn determines the term II. The informed reader will notice how terms I
and II are usually combined in the implicit filtering approach, so that the model in FM

is also meant to include information about the filter, somehow restoring a form of con-
sistency; however, this does not circumvent the fact that the filter itself is determined by
the numerical method (term III), so that any numerical method should have its specific
SGS model, something which is in contrast with the actual practice in LES.

The dependency of the implicit filtering approach on the numerical method and the
grid itself is nowadays well recognized (Ghosal, 1996; Kravchenko and Moin, 1997;
Fedioun et al., 2001; Chow and Moin, 2003; Park et al., 2004; Meyers and Sagaut,
2007), as the fact that, for some specific numerical methods (e.g., finite differences), it
can lead to a complete lack of connection with the original NSE8 (Lund, 2003; Bose
et al., 2010). However, despite these limitations, the approach is largely diffused and
motivated by the observation that no model for the non resolvable terms can actually
be more effective than directly increasing the set of resolved scales, even if corrupted
by the numerical error. Also, the simplicity of the method is a key feature. Moreover,
theoretical results (Park and Mahesh, 2007a) and computational evidence (Majander
and Siikonen, 2002) exist which indicate that numerical errors in implicitly filtered LES
might not completely overwhelm SGS model effects when considered in a posteriori
tests (i.e., actual computations), especially for high Reynolds number flows.

It is informative to bring forward here that one of the main goals of this thesis is to
show that, despite appearances, most of the known numerical methods can actually be
put in the form (2.13b). Thus, both the explicit and the implicit filtering approaches can
be described within a single framework which has, at least, a formal consistency. A key

8In the sense that the resulting equations could not be obtained by applying a single operator to the NSE but different ones for
the different terms.
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Chapter 2. The Classical LES framework

step in such derivation, somehow surprisingly, will be the elimination of the condition
(2.10).

2.4 Practical CLES

Having delineated the basis of the two main approaches in CLES, this section is devoted
to a full description of the two methods when applied in further manipulating equations
(2.11). The implicitly filtered classical LES approach (IFCLES) is described first, as it
also corresponds to the most common form of CLES. The explicitly filtered classical
LES approach is described next.

2.4.1 Implicitly filtered CLES (IFCLES)

In this case, the filtered unclosed terms in equations (2.11) are replaced by their com-
putable parts. Thus, the equations are simply discretized starting from the following
continuous template:

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ũj) =0

∂ (ρ̄ũi)

∂t
+

∂

∂xj
(ρ̄ũiũj + σ̃ij) =

∂

∂xj
(ρ̄ũiũj − ρ̄ũiuj)︸ ︷︷ ︸

I

+
∂

∂xj
(σ̃ij − σ̄ij)︸ ︷︷ ︸

II

∂
(
ρ̄Ẽ
)

∂t
+

∂

∂xj

(
ρ̄ũjẼ + q̃j + ũiσ̃ij

)
=

∂

∂xj

(
ρ̄ũjẼ − ρ̄ũjE

)
︸ ︷︷ ︸

III

+
∂

∂xj
(q̃j − q̄j)︸ ︷︷ ︸

IV

+
∂

∂xj
(ũiσ̃ij − uiσij)︸ ︷︷ ︸

V

(2.14)

with:

σ̃ij = p̄δij − 2µ̃

(
S̃ij −

1

3
S̃kkδij

)
= p̄δij + Σ̃ij

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
q̃j = −λ̃ ∂T̃

∂xj

ρ̄Ẽ =
p̄

γ − 1
+

1

2
ρ̄ũkũk +

1

2
ρ̄ (ũkuk − ũkũk)︸ ︷︷ ︸

VI

(2.15)

where µ̃ and λ̃ refer, respectively, to µ(T̃ ) and λ(T̃ ). As the filtered nonlinear terms,
listed in section 2.2, have been substituted by straight computable quantities, SGS mod-
els needs to be introduced for the unclosed terms I-VI. Notice that, when SGS models
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2.4. Practical CLES

are effectively introduced in equations (2.14), no explicit reference to the filter remains
besides, possibly, the filter width ∆̄ in the SGS model itself. If necessary, this has to be
estimated by some grid related parameter, a common choice being ∆̄ = h for uniform
grids with step h or ∆̄ = V

1
3 for FV codes, where V is the volume of the computational

cell.

2.4.2 SGS Modeling in IFCLES

For general compressible flows, no matter what approach is used, SGS modeling is
usually required for several different terms, with respect to the sole convective ones for
incompressible flows, and most of these arise in the energy equation. As this thesis
is not devoted to the analysis of the energy equation nor to propose SGS models for
all its unclosed terms, the present discussion is, for the sake of conciseness, limited
to the closure of the convective terms only, I-III-VI in equations (2.14) and (2.15). A
detailed description on the modeling of the remaining terms can be found in Garnier
et al. (2009); Piomelli (1999); Vreman et al. (1995a); Knight et al. (1998).

A further manipulation is usually performed, on the terms III and V, to show that:

(
ρ̄ũjẼ − ρ̄ũjE

)
+ (ũiσ̃ij − uiσij) =

ũj

(
ρ̄Ẽ + p̄

)
− uj (ρE + p) +

(
ũiΣ̃ij − uiΣij

)
=

(ũj p̄− ujp)
(

1 +
1

γ − 1

)
+
ρ̄

2

(
ũjũkuk − ũjukuk

)
+
(
ũiΣ̃ij − uiΣij

)
=

ρ̄Cp

(
ũjT̃ − ũjT

)
+
ρ̄

2

(
ũjũkũk − ũjukuk + ũjV I

)
+
(
ũiΣ̃ij − uiΣij

)
=

(2.16)

where the equation of state has been used in the last step. Hence, in the present
thesis, SGS modeling is limited to the SGS stresses:

τij = −ρ̄ (ũiuj − ũiũj) (2.17)

and the SGS heat flux:

θj = −ρ̄Cp
(
ũjT − ũjT̃

)
(2.18)

Modeling options for the SGS stresses can be divided in two major classes (Sagaut,
2006): functional and structural models. Functional models are designed to model the
energy transfer mechanisms between resolved and unresolved scales, without explic-
itly considering the exact structure of the SGS stress tensor τij . Structural models, in
contrast, are aimed at reconstructing the SGS stress tensor τij without explicitly con-
sidering the energy transfers between the scales. Combining the two options, with the
so called mixed models, is also effective. Modeling options for the SGS heat flux are
then usually devised by mimicking those for the SGS stresses.
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Chapter 2. The Classical LES framework

Functional models

The basic hypothesis underlying the explicit functional modeling is that the action of
the sub-grid scales on the resolved scales is essentially an energetic action, so that the
balance of the energy transfers between the two scale ranges is sufficient to describe the
action of the unresolved scales. Thus, in general, these models modify the equations
by adding the desired dissipation or energy production effects into them. In practice,
instead of τij itself, these models are aimed at representing, in a statistical sense, the
action of the subgrid dissipation term τij∂ũi/∂xj . However, as a matter of fact, most
functional models, and those considered here as well, only consider the direct energy
cascade and are based on eddy viscosity/conductivity assumptions (Smagorinsky, 1963;
Eidson, 1985):

τ dij = τij −
1

3
δijτkk = 2ρ̄νsgs

(
S̃ij −

1

3
S̃kkδij

)
θj =

Cpρ̄νsgs
Prsgs

∂T̃

∂xj

(2.19)

where νsgs is the SGS viscosity, dependent on the specific model in use, and Prsgs
is the SGS Prandtl number, a constant to be specified. The isotropic part of τij , also
needed for term VI in (2.15) and (2.16), is generally neglected (Erlebacher et al., 1992),
modeled according to Yoshizawa (1986) or with a dedicated transport equation (e.g.,
Schumann); for incompressible flows it is instead absorbed in the pressure term.

The assumptions (2.19) are just variable density extensions of those usually em-
ployed for incompressible flows, according to the fact that compressibility effects on
the subgrid scales are negligible for most supersonic flows (Erlebacher et al., 1992).
They can also be partly justified by looking at the resolved dissipation term in IFCLES
which, according to the K41 theory, in the incompressible limit has the following iner-
tial range estimate :

−Σ̃ij
∂ũi
∂xj
∼ µ

[
u (l)

l

]2

∼ µ

(
u0

l0

)2(
l0
l

) 4
3

= µ

(
u0

l0

)2
Re0

Re (l)
= ρ

u3
0

l0

1

Re (l)
(2.20)

where l is a generic length scale within the inertial range, with associated charac-
teristic velocity u(l)9 and Reynolds number Re(l), while u0 and l0 are relative to the
largest scales, whose characteristic Reynolds number is Re0. It is thus apparent that,
for a numerical computation whose smallest resolved scale l is within the inertial range
(as LES is intended to be), the resolved dissipation term cannot equal the energy trans-
fer rate from the large scales, as Re(l) ∼ 1, by definition, is relative to the dissipative
scales. Hence, in order to prevent the energy pile-up at the smallest resolved scales
(possibly leading to the simulation blow-up), the molecular dynamic viscosity should
be supplemented by a SGS viscosity of the form µsgs = ρνsgs = [ρl2/t(l) − µ], with

9It is assumed here that u (l) ∼ u0(l/l0)1/3.
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t(l) the characteristic time associated to the scale l10, so that:

(µsgs + µ)

[
u (l)

l

]2

= ρ
l2

t (l)

[
u (l)

l

]2

= ρ
u (l)2

t (l)
∼ ρ

u2
0

t0
= ρ

u3
0

l0
(2.21)

and the resolved dissipation can then sustain the flow of energy from the largest
scales independently from l. While the inclusion of the molecular viscosity is, in theory,
necessary for any finite Reynolds number, it is usually neglected and νsgs is seek in the
form l2/t(l), or the equivalent one lu(l)11. By definition, the smallest resolved scale
in LES is related to the filter width ∆̄, thus, up to a constant, l = ∆̄ and all the SGS
models differ by the way they specify the time scale t(l) or the velocity scale u(l).

The simplest and most diffused SGS model is the one developed by Smagorinsky
(1963), which assumes:

νsgs =
(
Cs∆̄

)2
√

2S̃ijS̃ij (2.22)

where Cs, which is a constant usually assumed to be in the range 0.1 − 0.2, can
be interpreted as the ratio l/∆̄ and is, instead, a flow dependent quantity (Yoshizawa,
1989). A typical example of this flaw is in the limiting behavior of the model near the
walls, which provides a constant SGS viscosity instead of scaling with the cube of the
distance from the wall. For this reason, the Smagorinsky model is usually supplemented
with a near-wall damping function fw, so that the final form of the model is:

νsgs =
(
Csfw∆̄

)2
√

2S̃ijS̃ij (2.23)

Denoting the distance from the wall as y, typical forms of such function are:

fw (y) = 1− exp (−yuτ/25ν) (2.24)

according to van Driest (1956), or:

fw (y) =
√

1− exp
[
− (yuτ/25ν)3] (2.25)

in order to restore the cubic near-wall behavior for νsgs. However, usually, in un-
structured codes the distance from the wall is not a directly available geometrical quan-
tity, but is instead approximated by the means of a toy transport equation. In this case,
thus, as uτ =

√
τw/ρ and the wall shear stress τw is not directly available, there is the

need to resort to simpler formulations. For example, in Fluent R©, the following option
is adopted (ANS, 2010):

νsgs =
[
min

(
Cs∆̄, ky

)]2√
2S̃ijS̃ij (2.26)

10It is assumed here that t (l) ∼ t0(l/l0)2/3.
11In practice, the present analysis is still incorrect, because inertial range arguments are not anymore valid in the dissipative

range, where the molecular viscosity becomes relevant. It turns out that a better fit is given by ρνsgs =
√
ρ2l4/t2(l) + µ2 − µ,

see Meyers and Sagaut (2006)
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Chapter 2. The Classical LES framework

where k = 0.4187 is the von Kármán constant used in the code. In general, ∆̄ can
also vary in space (especially near the walls) as in IFCLES it is connected to the grid,
thus the overall behavior of the model might not be the expected one. The importance
of the near-wall behavior of SGS models will be further investigated in Chapter 6.

In order to remove some of the limitations associated with the Smagorinsky model,
an alternative route to the modification of the length scale l in the model is the modi-
fication of its time scale t(l). Among the several options (Sagaut, 2006), two specific
models are relevant for the present thesis12. One is the Vreman model (Vreman, 2004a,
2007):

νsgs = c

√
Bβ

αijαij
(2.27)

with:

αij =
∂ũj
∂xi

βij = ∆̄2
mαmiαmj

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 +

(
cc∆̄∂ũk/∂xk

)4
/c2

∆̄ =

(
3∏

m=1

∆̄m

) 1
3

(2.28)

where ∆̄m are the filter widths in the three coordinate directions13, cc = 0.1 is a
constant and c = 2.5C2

s , Cs being the constant in the Smagorinsky model. The model
is constructed on the basis of an algebraic classification of three-dimensional flows and,
trough βij , it is connected to a formal Taylor series expansion of the SGS stresses. In
practice, differently from the Smagorinsky model, the Vreman model predicts a correct
null SGS viscosity for 13 classes of flows and has a linear near-wall behavior.

The second one is the σ-model proposed by Nicoud et al. (2011) using the singular
values of the velocity gradient tensor, σ1 ≥ σ2 ≥ σ3 ≥ 0:

νsgs =
(
Cσ∆̄

)2 σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

(2.29)

with Cσ ≈ 1.35. In practice, the model has the correct cubic near-wall behavior and
vanishes for two-dimensional/two-component flows as well as for pure axisymmetric
or isotropic expansions/contractions.

A final model which is worth mentioning, as it is the model of choice for several
developments in this thesis, is the mixed-scale model developed by Sagaut (Sagaut,
1996; Sagaut et al., 1996) starting from an original idea of Cain, Bardina et al. (1980).
In practice, the SGS viscosity is based on a weighted, dimensionally correct, average

12The reasons are their relative ease of implementation in general unstructured codes, their relative novelty, their relevance in
the LES community and, finally, their particular difference in the near wall behavior, making them suitable for further analysis.

13In practice, especially in IFCLES, this distinction is only useful for structured codes; otherwise ∆̄ is used instead.
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of contributions due to the length scale l, the velocity scale u(l) and the time scale t(l),
leading to a one-parameter family of models:

νsgs = Cm∆̄1+α
(
q2
c

)(1−α)/2
(

2S̃ijS̃ij

)α/2
(2.30)

where α is a prefixed real parameter, Cm is the model constant and qc is a velocity
scale. In theory, any prescription for qc, including a transport equation for q2

c , is a
suitable choice (as well as different time scales in place of (2S̃ijS̃ij)

−1/2); however, in
the original formulation of the model, the following option is adopted:

q2
c =

1

2

(
ũj −

̂̄ρũj
ˆ̄ρ

)(
ũj −

̂̄ρũj
ˆ̄ρ

)
(2.31)

The velocity field
(
ũj − ̂̄ρũj/ ˆ̄ρ

)
, whose kinetic energy per unit mass is q2

c , repre-
sents the small-scale part of the resolved velocity field ũj and is defined through the
application of a second filter, referred to as test filter, denoted by a hat and associated to
the cutoff length ∆̂ > ∆̄. It should be noted that, even if an implicit filtering approach is
adopted, the test filter has to be effectively applied, with an actual numerical procedure,
in order to obtain the kinetic energy content of the highest resolved part of the energy
spectrum. However, the test filter is not related to the formulation (e.g., IFCLES) and
does not require the commutation property (2.10). By varying the parameter α differ-
ent interesting cases are obtained: the Smagorinsky model is recovered for α = 1; the
original mixed-scale formulation for α = 0.5; a model based on Kolmogorov scaling
for α = 1/3; a model based on the SGS kinetic energy for α = 0; the original proposal
of Bardina et al. (1980), later proposed again by several authors14, for α = −1. The
distinguishing feature of the mixed-scale model, for α 6= 1, is its sensitivity to the en-
ergy content in the smallest resolved scales, which also makes the model suitable for
transitional flows.

Before closing this section, it is worth noting how, among the functional models
presented, all have assumed a spurious alignment between the eigenvectors of the SGS
stress tensor τij and those of the resolved strain rate tensor S̃ij , which is not usually
verified (Tao et al., 2002; Horiuti, 2003). Also, the Smagorinsky model is the only one
using a full equilibrium assumption and being completely isotropic. The mixed-scale
model, in contrast, does not rely on the equilibrium assumption for α 6= 1, but still
retains the isotropy assumption. The models of Vreman and Nicoud, in contrast, while
being formally isotropic, are nonetheless sensitized to several anisotropies, the most
relevant one being the near-wall behavior.

Structural models

Functional models have their commonality in the presumed knowledge of the energy
transfer mechanisms between the different ranges of scales. In practice, they are based
on some hypotheses about the nature of the missing scales and about their functional
role in the interactions with the resolved scales. In contrast, the structural models are

14It is indeed known as Tsubokura model, see Tsubokura (2001); Yoshizawa et al. (1996).
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explicitly designed to reconstruct the SGS tensor, regardless of its function. In fact, any
attempt to reconstruct the unknown terms of the SGS tensor from the resolved velocity
field necessarily requires some assumptions to justify their very reconstructability and
the adherence of the reconstructed tensor to the exact one. From the practical point of
view, the aim and best achievable goal of a structural model is to exactly reconstruct
the energy content and the energy fluxes up to the Nyquist cutoff frequency associated
with the grid. However, by definition, they are not able to reconstruct non-resolvable
scales or their interaction, which still require modeling. Thus, in general, structural
SGS models are used in combination with functional models, in the form of a mixed
model. Still, as such reconstruction intervene on some of the smallest resolved scales as
well, it can also provide qualitative information on the largest non resolved scales, the
most energetic among the non resolved ones, including anisotropy and/or backscatter
of energy toward the largest scales. As these mechanisms are usually absent from
functional models, the use of mixed models can thus be a winning strategy in complex
flows.

A point of paramount importance for structural models is the assumption that the
resolved energy content and fluxes, i.e., the resolved nonlinear terms in the equations,
actually need a better reconstruction. While this necessity was already proven, some-
how, by Leonard (1974) for the explicit filtering approach, so that this class of models
is also more correctly referred to as subfilter-scale (SFS) models, this is much less ob-
vious for the implicit filtering one. Indeed, such reconstruction not only requires that
the energy transfer toward the smallest scales has been actually affected by the filter
(either implicitly or explicitly) but also that some information on such filter is actually
available to properly invert it. As shown in section 2.3, most numerical methods have
such filtering effects15 and require a better reconstruction of the nonlinear terms but, as
long as their formulation remains in the form of equation (2.13a), such reconstruction
remains totally arbitrary. However, as will be shown in Chapter 3, it is actually possi-
ble to express implicit filtering approaches in the form of equation (2.13b) and, at least
formally, such reconstruction becomes always well defined. It is then shown in Chapter
4 how, for the FV method, such process is particularly simple and allows the derivation
of a proper form of structural SGS model.

The large number of existing structural models also complicates the matter as they
could be further classified in several ways, especially appealing being the framework
of the approximate deconvolution models (Layton and Rebholz, 2012). However, it is
out of the scope of this work to provide an exhaustive description of all the models
and classifications; furthermore, for the reasons described above, the limitations of
the IFCLES framework preclude most possible choices and the limitations arising for
general unstructured codes preclude some others. As a consequence, this presentation
is limited to the class of structural models known as scale-similar.

The scale-similarity assumption has been first introduced in the SGS modeling by
Bardina (Bardina et al., 1980, 1983) and consists in assuming that the statistical struc-
ture of the velocity field at sub-grid scales is similar to that of the velocity field at the
smallest resolved scales (Meneveau and Katz, 2000). This is usually justified by the
fact that these two ranges of scales are contiguous in the spectral space and, as a con-
sequence, they have similar interactions with the largest resolved scales. This scale

15Notable exceptions being some spectral methods, e.g., Fourier Galerkin, if the time discretization error is negligible.
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similarity hypothesis has then been further generalized (and verified in experiments),
by Liu et al. (1994), to the case of two generic contiguous spectral bands. From the
modeling perspective, this means that tensors constructed with the smallest resolved
scales can replace tensors based on the largest non resolved scales, i.e., the SGS stress
tensor.

Adopting the form proposed by Liu et al. (1994), as it is the only suitable one in
the IFCLES framework, and considering mixed formulations with the contribution of a
functional model, as is more common for compressible flows (Erlebacher et al., 1992),
leads to the following SGS models in the IFCLES framework (Vreman et al., 1995a,b):

τij = −ρ̄

[(
̂̄ρũiũj

ˆ̄ρ
−
̂̄ρũi
ˆ̄ρ

̂̄ρũj
ˆ̄ρ

)
− 2νsgs

(
S̃ij −

1

3
S̃kkδij

)]

θj = −Cpρ̄

̂̄ρũjT̃
ˆ̄ρ
−
̂̄ρũj
ˆ̄ρ

̂̄ρT̃
ˆ̄ρ

− νsgs
Prsgs

∂T̃

∂xj

 (2.32)

where, as for the mixed-scale model in the previous section, the additional filter of
the model, the only one effectively and explicitly applied in this approach, is denoted by
a hat and ∆̂ > ∆̄. However, very differently from the mixed-scale model, in order for
the scale similar parts in models (2.32) to be consistent, the hat filter has to satisfy the
condition (2.10) and possibly be representative of the basic implicit filter level, the two
things being not necessarily compatible. Indeed, no matter what hat filter is adopted,
this filter level can only be arbitrary and not related to the basic filter level, denoted
by a bar, which is undetermined. It is worth mentioning that, in theory, to preserve
the Galilean invariance of the equations (2.14), the scale-similar part of the models
(2.32) is usually employed without any multiplicative constant (Speziale, 1985), thus
implicitly assuming that such models are also quantitatively correct16. However, what
is usually unnoticed is that such quantitative and qualitative correctness is not possible,
otherwise the model would be perfect. More importantly, for the Galilean invariance to
hold in IFCLES, would require the hat filter to be constant in space and that terms III
in equation (2.13a) also satisfy it, which is not usually the case.

Dynamic Procedure

The turning point in the historical LES development certainly coincide, in the author’s
opinion, with the moment Massimo Germano introduced the identity that now bears
his name (Germano, 1992). Germano derived his identity by looking at the form of
the equations (2.14) (in their incompressible formulation) when expressed at two filter
levels: the basic one with filter width ∆̄ and the one obtained by further application of
a test filter, again denoted by a hat, with width ∆̂ > ∆̄17. If the additional test filter
satisfy the exact same properties of the basic one, then the following exact identities
hold between the SGS stresses and heat fluxes at the two filtering levels (expressed, for
the sake of consistency, in their general compressible form (Moin et al., 1991; Salvetti

16Some exceptions exist, e.g., Sagaut and Grohens (1999).
17Notice, however, that the consecutive application of the two filters will generally have an equivalent width ˆ̄∆ > ∆̂, see

Vreman et al. (1997).
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Chapter 2. The Classical LES framework

and Banerjee, 1995)):

Tij − τ̂ij = −

(
̂̄ρũiũj −

̂̄ρũi ̂̄ρũj
ˆ̄ρ

)
≡ Lij

Qj − θ̂j = −Cp

(
̂̄ρũjT̃ −

̂̄ρũj ̂̄ρT̃
ˆ̄ρ

)
≡ Kj

(2.33)

where Tij and Qj are the SGS stress tensor and heat flux vector at the test filter
scale. The identities in (2.33), in the following denoted as Classical Germano Identities
(CGI), express the fact that the difference between the unknown SGS tensor at the test
filter level and the unknown test filtered SGS tensor is explicitly known as a function
of resolved quantities, i.e., the tensor Lij . An analogous reasoning holds for the heat
fluxes and the vector Kj .

The basic idea behind the Dynamic Procedure (Germano et al., 1991; Moin et al.,
1991) is to use the exact relations (2.33) as a constraint that the used SGS models
have to satisfy in order to be compliant with the algebraic structure of the SGS stresses
among different filtering levels. In practice, such constraint is imposed by dynamically
adjusting the model constants and satisfying the identities only in a least-squares sense.
Considering again, for the sake of consistency, the procedure when applied to mixed
models (Salvetti and Banerjee, 1995; Horiuti, 1997; Sarghini et al., 1999; Anderson and
Meneveau, 1999), the models in (2.32) can be first formally expressed at the two filter
levels as:

τij = cssaij + cevbij

Tij = CssAij + CevBij

θj = cqssdj + cqevfj

Qj = Cq
ssDj + Cq

evFj

(2.34)

where Aij and aij are the scale-similar model parts at the test and basic filter level
respectively, and similarly for Dj and dj; Bij and bij are instead the eddy-viscosity
model parts, at the test and basic filter level respectively, and similarly for Fj and fj .
Notice that the model constants have been factored out, including those for scale sim-
ilar terms, not previously considered in equation (2.32). In general, model constants
are different among the two filter levels (distinguished by an upper or lower case C),
among the eddy viscosity and scale-similar parts (distinguished by the ev and ss sub-
scripts) and among the stresses or the heat flux equation (the latter being denoted by
the superscript q). Upon substitution of the models (2.34) in the identities (2.33), these
become 18:

Eij + CssAij + CevBij − ĉssaij − ĉevbij = Lij
Eq
j + Cq

ssDj + Cq
evFj − ĉ

q
ssdj − ĉqevfj = Kj

(2.35)

18It is worth mentioning that the first identity is, in such case, usually limited to its anisotropic part while, for compressible
flows, a separate identity with different models is used for its trace (Moin et al., 1991). As this is not explicitly required in the
present compressible framework, we avoid such limitation for the sake of simplicity.
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2.4. Practical CLES

where, as a consequence of the fact of using the models instead of the true SGS
terms, the error terms Eij and Eq

j have been added, so that equations (2.35) still remain
formally exact. In order to proceed toward the determination of the constants in the
models, two additional assumptions are usually invoked: model constants are equal at
the two filter levels (e.g., Css = css); model constants at the basic filter level, those
effectively required, can be extracted from the hat filter (i.e., their variation is slow over
scales of the order ∆̂). With these assumptions, equations (2.35) then become:

Eij = Lij − Css

Amij︷ ︸︸ ︷
(Aij − âij)−Cev

Bmij︷ ︸︸ ︷(
Bij − b̂ij

)
Eq
j = Kj − Cq

ss

(
Dj − d̂j

)
︸ ︷︷ ︸

Dmj

−Cq
ev

(
Fj − f̂j

)
︸ ︷︷ ︸

Fmj

(2.36)

where the error terms could, in theory, also take into account the last two additional
hypotheses, as well as any other approximation affecting the exact identity. In the
final step of the procedure, according to Lilly (1992), the coefficients are determined
as those minimizing the errors in a least squares sense, as both systems in (2.36) are
overdetermined. This finally leads to the following equations:

∂EijEij
∂Css

= 2
[
−
(
AmijLij

)
+ Css

(
AmijA

m
ij

)
+ Cev

(
AmijB

m
ij

)]
= 0

∂EijEij
∂Cev

= 2
[
−
(
Bm
ijLij

)
+ Css

(
AmijB

m
ij

)
+ Cev

(
Bm
ijB

m
ij

)]
= 0

∂Eq
jE

q
j

∂Cq
ss

= 2
[
−
(
Dm
j Kj

)
+ Cq

ss

(
Dm
j D

m
j

)
+ Cq

ev

(
Dm
j F

m
j

)]
= 0

∂Eq
jE

q
j

∂Cq
ev

= 2
[
−
(
Fm
j Kj

)
+ Cq

ss

(
Dm
j F

m
j

)
+ Cq

ev

(
Fm
j F

m
j

)]
= 0

(2.37)

whose solutions are:

Css =

(
Bm
ijB

m
ij

)
(LrsAmrs)−

(
LijBm

ij

)
(Bm

rsA
m
rs)(

AmijA
m
ij

)
(Bm

rsB
m
rs)−

(
AmijB

m
ij

)
(AmrsB

m
rs)

Cev =

(
Bm
ijLij

)
− Css

(
AmijB

m
ij

)(
Bm
ijB

m
ij

)
Cq
ss =

(
Fm
j F

m
j

)
(KrDm

r )−
(
KjFm

j

)
(Fm

r D
m
r )(

Dm
j D

m
j

)
(Fm

r F
m
r )−

(
Dm
j F

m
j

)
(Dm

r F
m
r )

Cq
ev =

(
Fm
j Kj

)
− Cq

ss

(
Dm
j F

m
j

)(
Fm
j F

m
j

)

(2.38)

29



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 30 — #52 i
i

i
i

i
i

Chapter 2. The Classical LES framework

The coefficients so computed, when used with the respective models, have some de-
sirable features as well as some drawbacks. For example, with the simple Smagorinsky
model, Cev from equation (2.38) (computed by settingCss = 0) replacesC2

s in equation
(2.22) and vanishes in laminar flows as well as it goes to 0 at walls with the cube of
the distance. However, as can be appreciated by the solution in (2.38), these properties
arise from the specific combination between Bm

ij and Lij . In the Dynamic Smagorin-
sky model, for example, Bm

ij does not scale with the distance from the wall and the
properties directly derive from Lij . For different formulations, e.g., the σ-model, noth-
ing changes besides the fact that now Bm

ij involves ratios and differences of very small
quantities going very rapidly to 0 at the wall, thus the procedure becomes numerically
ill-posed toward the wall (Baya Toda et al., 2010, 2011). Such numerical problems
also affects the procedure in general as, for example, still in the Dynamic Smagorin-
sky model, a null denominator in Cev would also imply a null nominator but, from the
numerical point of view such correspondence cannot be exactly verified and the con-
stant is subjected to high oscillations, including negative values19. Several cures exists
for this behavior, among which averaging in homogeneous spatio/temporal directions
is common when possible, or along Lagrangian trajectories when this is not the case
(Meneveau et al., 1996). For unstructured codes, averaging is usually limited to the
neighbor of the grid point and, often, still requires clipping of the constants between
predefined limits (Nicoud et al., 2011).

2.4.3 Explicitly filtered CLES (EFCLES)

In Explicitly filtered CLES (EFCLES), following Leonard (1974) and Lund (2003), an
explicit spatial filter is applied to the non-linear terms of the governing equations in
order to control the spectral content of the numerical solution (Bose et al., 2010; Singh
et al., 2012). The continuous template used for the discretization is then the following
(Radhakrishnan and Bellan, 2012):

∂ρ̄

∂t
+

∂

∂xj

( ̂̄ρũj) =
∂

∂xj

( ̂̄ρũj − ρ̂uj)︸ ︷︷ ︸
VII

∂ (ρ̄ũi)

∂t
+

∂

∂xj

(
̂̄ρũiũj + ̂̃σij) =

∂

∂xj

(
̂̄ρũiũj − ρ̂uiuj

)
︸ ︷︷ ︸

I

+
∂

∂xj

(̂̃σij − σ̂ij)︸ ︷︷ ︸
II

∂
(
ρ̄Ẽ
)

∂t
+

∂

∂xj

(
̂̄ρũjẼ + ̂̃qj + ̂̃uiσ̃ij

)
=

∂

∂xj

(
̂̄ρũjẼ − ρ̂ujE

)
︸ ︷︷ ︸

III

+
∂

∂xj

(̂̃qj − q̂j)︸ ︷︷ ︸
IV

+
∂

∂xj

(
̂̃uiσ̃ij − ûiσij

)
︸ ︷︷ ︸

V

(2.39)

19While this is, sometimes, interpreted as a form of backscatter, it should be noticed that backscatter is mostly uncorrelated with
S̃ij (Horiuti, 2003) and thus such interpretation appears weak and unphysical.
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with:

̂̄ρẼ =
ˆ̄p

γ − 1
+

1

2
̂̄ρũkũk +

1

2
̂(ρukuk − ρ̄ũkũk)︸ ︷︷ ︸

VI

ˆ̄p = ̂̄ρRT̃
(2.40)

Here, in contrast to the current trends, but in accordance with the previous section, a
hat is used again to denote the explicit filtering operation while still preserving the bar-
tilde combination for the effectively resolved variables; however, as in more common
formulations, here it is still intended that (· · · ) = (̂· · · ) as a result of the hat filtering
itself (which, consistently with the present notation, is only implied by the formulation).
Also, while usually neglected, here the explicit hat filtering has been correctly applied
also to the viscous non linear terms, the continuity equation20 and the equation of state21

(notice, in particular, the larger hats on the resolved viscous terms). Again, it has to be
stressed that the hat filter has to satisfy (2.10) in order to make the previous equations
meaningful.

2.4.4 SGS Modeling in EFCLES

As a result of the different approach, different SGS terms arise in EFCLES with respect
to IFCLES, the two considered in (2.17) and (2.18) being now:

τij = −
(
ρ̂uiuj − ̂̄ρũiũj

)
θj = −Cp

(
ρ̂ujT − ̂̄ρũjT̃

) (2.41)

In general, these are modeled with modified forms of the SGS models used for
IFCLES. For eddy viscosity/conductivity SGS models, the usual assumption is (Bose
et al., 2010; Radhakrishnan and Bellan, 2012):

τ dij =

[
2ρ̄νsgs

(
S̃ij −

1

3
S̃kkδij

)]∧
θj =

[
Cpρ̄νsgs
Prsgs

∂T̃

∂xj

]∧ (2.42)

where, for the sake of readability, the notation (· · · )∧ = (̂· · · ) has been used. Anal-
ogous modifications also hold for the mixed models; however, in EFCLES, as well as
in IFCLES, there is no unique approach to the scale similar term, with several different
proposals emerged in the years. As this in no way affects the present and following dis-
cussion, only the most relevant model present in literature is cited here (Radhakrishnan

20SGS modeling for the term VII is, however, usually neglected (Radhakrishnan and Bellan, 2012).
21Which remains closed as, now, the doubly filtered pressure appears everywhere.

31



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 32 — #54 i
i

i
i

i
i

Chapter 2. The Classical LES framework

and Bellan, 2012):

τij = −

[
ρ̄

(
ũiũj −

̂̄ρũi
ˆ̄ρ

̂̄ρũj
ˆ̄ρ

)
− 2ρ̄νsgs

(
S̃ij −

1

3
S̃kkδij

)]∧

θj = −Cp

[
ρ̄

(
ũjT̃ −

̂̄ρũj
ˆ̄ρ

̂̄ρT̃
ˆ̄ρ

)
− ρ̄νsgs
Prsgs

∂T̃

∂xj

]∧ (2.43)

However, it is worth mentioning that, especially in the compressible case, there is
a lack of sustained practice on the explicit filtering approach and no specific model is
established yet definitely (see Appendix A).

Dynamic Procedure

SGS terms arising in the EFCLES approach also satisfy a different form of CGI (EFCGI):

Tij − τ̆ij = −

{[
ρ̄ũiũj −

(ρ̄ũi)
∪ (ρ̄ũj)

∪

ρ̄∪

]∧}∪

Qj − θ̆j = −Cp


ρ̄ũjT̃ − (ρ̄ũj)

∪
(
ρ̄T̃
)∪

ρ̄∪


∧
∪ (2.44)

where the notation (· · · )∪ = ˘(· · · ) is used to express the test filtering which, in
EFCLES, is generally different from the basic explicit hat filtering and such that the
associated filter width ∆̆ ≥ ∆̂. As in IFCLES, the test filtering still has to satisfy
condition (2.10) in order for the EFCGI to be meaningful. In the current practice, the
EFCGI are then enforced trough the same dynamic procedure as used for the IFCLES.

2.5 Summary on CLES

At this point, the following facts and assumptions concerning the CLES approach can
be summarized:

(i) In CLES, no matter what specific approach is used, the equations are derived
under the assumption that the basic filter level commutes with spatial derivative
operators. While this has been made sufficiently clear for the EFCLES approach,
it has been only implied for the IFCLES one. In practice, for some numerical
methods this is not possible (Lund, 2003) and the interpretation of the results can-
not be connected to a filtering operation. Moreover, for the EFCLES approach,
the true required commutation is between numerical filters and numerical deriva-
tive operators, which implies higher-order discretizations for both (Haselbacher
and Vasilyev, 2003).

(ii) The explicit test filter applied in the dynamic procedure, as needed from the
CGI/EFCGI, has to satisfy the exact same conditions of the basic filter level in
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order for the procedure to be meaningful. In both cases, the assumed form of the
SGS stresses is such that (2.10) is implied for the basic filter, thus it is required
also for the test one.

(iii) As will be more clear in the following chapter, because of the commutation re-
quirement (2.10), the CGI (2.33) for the momentum equation requires the filtering
of two tensors (τij and ρ̄ũiũj , 12 scalars in total) besides the filtering of the sin-
gle variables (ρ̄ and ũi, 4 scalars), independently from the specific SGS model
used. The CGI for the main term in the energy equation requires filtering two
vectors (θj and ρ̄ũjT̃ , 6 scalars in total) and an additional variable (T̃ , 1 scalar). If
scale-similarity models are considered, an additional tensor (6 scalars) and vector
(3 scalars) need to be test filtered with the additional test filtering of all the vari-
ables (5 scalars)22. In the most complex scenario this leads to filtering 37 scalars
in total. Dynamic modeling of the additional unclosed terms in the energy equa-
tion, as well as the EFCGI in the EFCLES approach, make this number higher.
Even in the most simple scenario, with a dynamic Smagorinsky model (Germano
et al., 1991) in the incompressible isothermal case, the IFCLES approach requires
filtering 15 scalars.

(iv) Because of the commutation requirement, independently from the specific ap-
proach, the CGI/EFCGI involve test filtering of the SGS model at the basic filter
level (e.g., τ̂ij in (2.33)). This, in turn, implies either inconsistently extracting
the dynamically computed constant from the test filter (as done here) or the adop-
tion of a consistent, but computationally even more expensive, dynamic procedure
(Ghosal et al., 1995).

What thus emerges from the previous analysis is that most of the problematic aspects
related to the CLES approach are uniquely due to the somewhat arbitrary will to put
the governing equations under the form (2.11), possibly because of the similarity with
RANS/URANS approaches, which in LES appears as particularly misleading. Indeed,
in turn, this requires the fulfillment of (2.10) at all the levels of the formulation. In
order to understand how limiting this is, it is useful to analyze under which conditions
the requirement (2.10) can be satisfied and what are the implications. It is simple to
show that, for a filter of the form G = G

[
x− ξ, ∆̄ (x)

]
, the spatial commutation error

has the following form (Sagaut, 2006; Fureby and Tabor, 1997):

∂φ̄

∂xi
− ∂φ

∂xi
=
∂∆̄

∂xi

(
∂G

∂∆̄
∗ φ
)

+

∫
∂Ω

G
[
x− ξ, ∆̄ (x)

]
φ (ξ, t)n (ξ) dS (2.45)

The second term on the right hand side represents interactions with the domain
boundary ∂Ω and, in general, can only be 0 if the filter support does not cut the do-
main boundary. For symmetric filters, this can only be obtained by reducing ∆̄ toward
the boundary. But then the first term, due to spatial gradients of ∆̄, is certainly non
null. Even if the second term in (2.45) could be made null by an asymmetric filter, in
general, especially for complex flows, the filter width is likely to change in any case,

22These are due to the fact that the scale-similar parts, as expressed in (2.32), have to be expressed at the test filter level to build
Tij and Qj in (2.33).
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either to better describe the different flow features or because it is implicitly tied to the
computational grid.

A third viable option, still suggested by equation (2.45), is to reduce the commu-
tation error by adopting a filter which is of high order in ∆̄, i.e., G = I + O(∆̄n),
where I is the identity operator. In this case, for ∆̄(x) = ∆̄(x0)f(x− x0) (Iovieno
and Tordella, 2003), and assuming a null contribution from the boundary term, the
commutation error around the point x0 can be made of order n:

(
∂φ̄

∂xi
− ∂φ

∂xi

)
∝ ∆̄n(x0)

∂fn

∂xi
(2.46)

Such high order commuting filters (HOCF) (Vasilyev et al., 1998; Haselbacher and
Vasilyev, 2003) can then allow EFCLES making the commutation error commensurate
to the numerical error23 (Bose et al., 2010; Haselbacher and Vasilyev, 2003). How-
ever, this approach has several non trivial consequences. To understand why, it has to
be recalled that the EFCLES approach, based on the filtering of the convective terms,
has its roots in the 2/3 dealiasing rule for spectral methods (Rogallo, 1981; Meyers
et al., 2008), roughly consisting in the elimination of 1/3 of the spectral content at the
smallest scales, as affected by aliasing errors; such elimination can then be interpreted
as a filter, the spectral cut-off. But, in that context, the distinction between the dis-
cretization and the explicit filtering is evanescent, due to the very specific features of
the numerical method, and no explicit problem of commutation exists even for more
complex applications (Pope, 2001; Hughes et al., 2000). In contrast, the application of
the same approach to more general numerical methods, requiring thus a HOCF, leads
to a conceptual difficulty, as the possibility to derive consistent FNSE becomes tied to a
specific numerical method. More precisely, as the commuting order of HOCF increases
only by adding more and more constraints on the filter moments, this seems to suggest
that only a very high-order discretization would lead to consistent FNSE. Moreover, as
commuting filters tend to spectral cut-off filters for increasing order of commutation,
the underlying reasoning would be that only spectral cut-off filters would lead to con-
sistent FNSE and only a spectral discretization would be amenable for a consistent LES
approach.

The conceptual limit is even more evident if, besides commutation with numerical
derivatives, additional conflicting constraints are required for the filter, like realizability
(Vreman et al., 1994; Geurts et al., 1997; van der Bos and Geurts, 2005) or simmetry
(Vreman, 2004b; Lehmkuhl et al., 2012), which are not satisfied by HOCF. Moreover,
the use of a HOCF in EFCLES also implies that the SFS stresses, those ideally recover-
able with a structural model, scale with the same order of the filter G (van der Bos and
Geurts, 2005) and their divergence scales like the commutation error. Hence, modeling
SFS with low order models (e.g., scale-similar models, as done by Singh et al. (2012)),
and neglecting commutation errors, is a completely inconsistent choice. Finally, as al-
ready noted in section 2.2, the advantage of HOCF diminishes for compressible flows,
as Favre filtering does not commute with spatial derivatives in any case (Garnier et al.,
2009) and the additional filtering of the viscous terms is required.

23The estimate provided in (2.46), despite correct, is based on heuristic arguments. A rigorous derivation is provided by Vasilyev
et al. (1998).
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The fact that the application of a generic filter with non constant width would always
lead to FNSE affected by commutation errors, might be acceptable as well. There are,
indeed, approaches directly dealing with their modeling (van der Bos and Geurts, 2005;
Iovieno and Tordella, 2003); nonetheless, additional complexity is certainly added to
the computation and no practical applications of such methods are known to date.

More generally, however, while having the equations under the form (2.11) might
certainly have its advantages, the overall approach appears overly constrictive as, in a
broader sense, it really is equivalent to selecting a specific model equation and then
devising the most suitable numerical procedure to fit the chosen model, not necessar-
ily with any success. Indeed, from the analysis above, it clearly appears that spectral
methods would be the only suitable choice, strongly limiting the application of LES.
One of the aims of the present work is to show that devising a model equation for a nu-
merical procedure is indeed possible, almost independently from the specific numerical
approach, and leads to important simplifications.
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CHAPTER3
A Generalized LES framework

This chapter is dedicated to the presentation of a generalized LES (GLES) framework,
which is intended to bypass most of the limitations encountered in the CLES frame-
work. The works and the approaches that inspired the present framework are first pre-
sented in section 3.1, so that it is put in the correct context. Basic assumptions and
definitions for the GLES framework are introduced in section 3.2, while the govern-
ing equations for GLES are presented in section 3.3. As the Germano Identities play
a crucial role in LES, section 3.4 is entirely devoted to their counterparts in the GLES
framework and the resulting advantages with respect to the classical ones. As the GLES
framework introduces some apparent differences with respect to the CLES one, espe-
cially in the form of the SGS terms, section 3.5 presents a functional analysis of the
GLES framework, introducing exact equations for resolved and unresolved kinetic en-
ergies and the functional SGS modeling options deriving from them. Finally, section
3.6 is intended to show how, in fact, the present GLES framework is an exact represen-
tation of several approaches to LES. The FV method is only briefly outlined as, being
the core of the present thesis, it is better analyzed in Chapter 4.

3.1 Introduction

The main conclusion to be drawn from the analysis in the previous chapter is that the
CLES approach suffers a misalignment between model LES equations (i.e., the equa-
tions effectively discretized for the computations) and real LES equations (those ideally
underlying the evolution of the resolved variables). Also, it is emerged that, to a very
large extent, the root of the problem can be traced back to the requirement of a filter
that commutes with spatial derivatives. Such misalignment has been highlighted before
(Vreman, 2004b, 2003) and alternative formulations have been proposed, which avoid
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commutation errors ab initio, i.e., arranging the equations in a different form, while
retaining the filtering formalism. The volume balance procedure developed by Schu-
mann (1975) was the first approach in this direction; it is an implicit LES formulation
based on staggered finite differences and a local volume average, which do not incur
in commutation issues due to the combined discretization of the volume average and
derivative operators. As a matter of fact, the method of Schumann can be considered
as an implicitly filtered LES based on a FV formulation. The same approach is also
used by Huang (1997). The possibility of combining explicit filtering and derivative
operators to avoid commutation errors was then first analyzed by Vreman and Geurts
(2002), who formulated commutation error free equations for incompressible flows in
the context of an explicitly filtered FV method. In practice, they intended the filter to
be a top-hat:

φ̄ =
1

|V (x)|

∫
V (x)

φ (ξ, t) dξ (3.1)

that is, a local volume average, and discretized the various filtered terms according
to the classical FV formulation and the Green-Gauss theorem:

∂φij
∂xj

=
1

V

∑
f

Afn
f
jφij (3.2)

but, differently from the classical FV method, the volume V and its faces, with area
Af and normal nfj , are not related to the computational cell but to the volume over
which filtering is desired. In the same work, Vreman and Geurts (2002) also recog-
nize the different nature of the resulting SGS stresses, due to the formulation (3.2), and
how they lead to a dynamic procedure based on a modified Germano identity. With
respect to the classical procedure (Germano et al., 1991), the dynamic procedure de-
veloped by Vreman and Geurts (2002) is cheaper and avoids the inconsistent extraction
of model constants from the test filter. They also propose two basic SGS parameteriza-
tions, one being based on a simple eddy-viscosity assumption and the other on a mixed
scale-similar/eddy-viscosity model. This approach is then recognized by de With and
Holdø (2005) to be straightly applicable to any implicitly filtered FV solver and the
modified dynamic procedure, based on a simple Smagorinsky model, is implemented
in the solver Fluent R©. However, both the approaches above have a serious lack in
justification, as both rely on standard SGS models, straightly transferred in the new
framework. Also, while Vreman and Geurts (2002) apply the treatment (3.2) to con-
vective and pressure terms, de With and Holdø (2005) only include convective terms in
their formulation of the dynamic SGS viscosity.

More detailed analyses on the approach have been provided by Denaro and cowork-
ers (Iannelli et al., 2003; Denaro et al., 2007; Denaro and De Stefano, 2011; Denaro,
2012, 2013) with a focus on the implicitly filtered FV approach. More specifically, they
are the first in explicitly recognizing that the approach in (3.2) can and need to to be
applied to all the terms in the equations, including the linear ones (i.e., diffusive and
pressure terms) and that SGS modeling is thus required for them as well. They also
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propose the relative modification for the dynamic procedure which, with respect to the
one employed by de With and Holdø (2005), includes all the necessary terms.

The GLES framework proposed here can be traced back to the class of commutation
error free approaches described above. In fact, when applied to the FV framework
and implemented in a solver like Fluent R©, it essentially consists in the work done by
de With and Holdø (2005) but taking into account all the necessary terms, as proposed
by Denaro and coworkers1. However, the advantage and novelty of the formulation
proposed here is that it goes beyond a specific discretization, like that in (3.1) and (3.2),
and further generalizes the previous approaches, so that it can actually include most of
the known LES approaches.

3.2 Basic definitions

A possible broader definition of LES, with respect to the one used in CLES, is the
one based on the concept of "degrees of freedom": LES is any approach which, for
proper initial and boundary conditions, seeks a numerical solution to NSE while not
having a sufficient number of degrees of freedom to properly describe it (dynamically
as well as statically). Of course, what is implicit in the definition is that the degrees
of freedom retained in the simulation are sufficient to describe a significant part of the
flow dynamics and that a minimum set of flow statistics can be computed with a certain
accuracy2. Thus, in view of the following developments, to be as general as possible, it
is better to avoid explicit reference to any filter operation and instead introduce a more
general operator Gi:

φ̄
(
x, t,∆i

)
= Gi ∗ φ (x, t) (3.3)

The action of Gi on any scalar field φ is such that φ̄ is the same scalar field but de-
prived of its information content on scales smaller than, approximately, ∆i. In contrast,
the energy content of φ̄ at scales O(∆i), or smaller, is not necessarily negligible as Gi

does not necessarily imply any smoothing. For example, as will be better shown in
section 3.6, Gi could be defined as the combination of a sampling operator (Knaepen
et al., 2005) and of the interpolation function underlying the successive numerical oper-
ations3 (e.g., the classical 2nd order, finite difference, central scheme implies sampling
and linear interpolation). In this case, φ̄ retains no physical information from φ at scales
∆i or smaller, but its energy content at the same scales is not negligible independently
from ∆i. Here it is assumed that sampling operators (better defined in section 3.6) al-
ways involve a successive interpolation, dependent on the specific numerical method
adopted, so that the dependence on continuous spatio-temporal coordinates used in
equation (3.3) can be retained without specific problems (nonetheless, from now on, it

1However, in contrast to previous works, the developments presented in Chapter 4 are used to devise a novel form of scale-
similar SGS model

2Besides known limitations (Meneveau, 1994), the vagueness of this implicit statement is not accidental as, still today, there is
a serious lack of objective assessment measures in LES. This is intended in the sense that, independently from the quality of the
results, which is easily assessed, there is no accepted indicator that a given simulation actually is a LES.

3A common misconception, usually typical among FEM practitioners, is that only FEM-like approaches univocally define a
functional space for the numerical solution. As will be better elucidated in section 3.6, recognizing that all the numerical methods
(finite volumes, finite differences, finite elements and spectral methods) can be put in the form of a weighted residual method, and
that test and trial functions can be defined on different computational grids, is the key to go beyond this misconception.
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Chapter 3. A Generalized LES framework

will be dropped for the sake of conciseness)4.
The superscript i ≥ 0 is introduced to distinguish between successive applications

of operators Gi which, while not necessarily different among them, are required to
satisfy ∆i+1 ≥ ∆i; this is not at all a constraint (and could easily be removed) but
greatly simplifies the understanding of the following passages. The first application of
an operator Gi will always be due to G1 with width ∆1, the second operator applied to
any function will always be G2 with width ∆2 ≥ ∆1, etc. In practice, the following
conventions are adopted:

G0 ∗ φ̄0 = φ̄0 = φ

G1 ∗ φ̄0 = φ̄1 = φ̄

φ̄n = Gn ∗ φ̄n−1 = Gn ∗Gn−1 ∗ . . . ∗G1 ∗G0 ∗ φ̄0

φ̄n−m
+(m)

= φ̄n = Gn ∗Gn−1 ∗ . . . ∗Gn−m+1 ∗ φ̄n−m

(3.4)

Thus, G0 = I is assumed to be the identity operator and, by definition, ∆0 = 0.
While not explicit in the notation, the operator (· · · )

+(m)
, and the notation φ̄m itself,

always implies a very specific sequence of m operators Gi which, in the following, will
always be made explicit whenever necessary. Also, note that variables like φ̄n are the
result of n different applications of different operators Gi and, as a consequence, the
associated smallest physical scale in the field cannot be considered to be ∆n in general,
which is only associated to the last operator applied Gn (Vreman et al., 1997). In
order to introduce such difference, the smallest physical length scale associated to φ̄n is
denoted by ∆n. Besides linearity and preservation of constants, two further constraints
are required for Gi. The first one is commutation with temporal derivatives:

Gi ∗
[
∂

∂t
(· · · )

]
=

∂

∂t

[
Gi ∗ (· · · )

]
(3.5)

in accordance with the CLES framework presented in chapter 2. While precluding
some kind of applications (e.g., moving grids (Leonard et al., 2007)), (3.5) is satisfied
in most of the known LES approaches and, in any case, far easier to model than the
commutation error for the spatial derivatives. The second constraint required for Gi in
a given computational domain Ω is the lack of interaction with its boundary ∂Ω. This,
in turn, either implies operators whose kernels become more and more asymmetric in
the proximity of the boundary or:

lim
x→∂Ω

Gi = G0 (3.6)

In fact, there is no practical application where none of these two is satisfied. Besides
the previous two constraints, no additional ones are required, hence the kernel of every
operator Gi is left free to vary in space, just like its width ∆i. Finally, in order to

4Using the symbol ∆ in the present context might appear misleading as in general, because of the interpolation, φ̄ still contains
energy at smaller scales. It should be clear, however, that ∆ refers to the physical energy content. Scales smaller than ∆ do not
have any physical significance and their inclusion in the formulation is just a mathematical step.

40



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 41 — #63 i
i

i
i

i
i
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treat variable density flows as in chapter 2, the Favre transformation is extended to the
present class of operators Gi by adopting the following notation:

φ̃n =
ρφ

n

ρ̄n

ρ̄nφ̃n = ρφ
n

= ρφ
n−1

+(1)

= ρ̄n−1φ̃n−1
+(1)

= · · · = ρ̄n−mφ̃n−m
+(m)

(3.7)

In the following, the variables ρ̄n, p̄n and the remaining φ̃n are assumed to be the
resolved variables, those actually available during a computation.

3.3 Governing equations

With the definitions introduced in the previous section, governing equations for the
GLES framework can be derived, as in CLES, by a formal application of operators Gi

to the basic NSE. However, differently from CLES, here n such operators are applied
in sequence, leading to:

∂ρ̄n

∂t
+

∂

∂xj
(ρuj)

n

= 0

∂ (ρ̄nũni )

∂t
+

∂

∂xj
(ρuiuj + σij)

n

= 0

∂
(
ρ̄nẼn

)
∂t

+
∂

∂xj
(ρujE + qj + uiσij)

n

= 0

ρ̄nẼn =
p̄n

γ − 1
+

1

2
ρ̄nũnk ũ

n
k +

1

2
ρ̄n (ũkuk

n − ũnk ũnk)

p̄n = ρ̄nRT̃ n

(3.8)

This, apparently vain, tedious multi-level formulation will be shown to be helpful
for several reasons. The main, most obvious, one is that not all the LES formulations
are equal (e.g., IFCLES vs. EFCLES), with some explicitly requiring multiple filtering
levels, in the formulation itself or in the SGS modeling (e.g., CGI), and a framework
supposed to be general requires a tool to properly handle them. In practical applica-
tions, one of such levels will always be a sampling operator (usually the first or the last
one) and, having included an interpolation as part of it, allows to consider equations
(3.8) in their continuous form without further approximations5. Under the previous
hypotheses, equations (3.8) are still exact evolutions equations for the ¯(· · · )n level vari-
ables but, just like in CLES, require further assumptions to be closed. Here, the most
trivial way is used to proceed, by simply using known variables in place of the un-
known ones, which leads to the final form of the equations for the GLES framework at

5This, of course, has an influence on the functional spaces where solutions to GLES equations reside but, in strict mathematical
terms, this is the main reason for which LES is usually applied in the first place, instead of the pure NSE.
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a generic level n ≥ 0:

∂ρ̄n

∂t
+

∂

∂xj

(
ρ̄nũnj

)n
=

∂

∂xj

(
χn−0
j

)n
∂ (ρ̄nũni )

∂t
+

∂

∂xj

(
ρ̄nũni ũ

n
j + σ̃nij

)n
=

∂

∂xj

(
τn−0
ij

)n
∂
(
ρ̄nẼn

)
∂t

+
∂

∂xj

(
ρ̄nũnj Ẽ

n + q̃nj + ũni σ̃
n
ij

)n
=

∂

∂xj

(
εn−0
j

)n
ρ̄nẼn =

p̄n

γ − 1
+

1

2
ρ̄nũnk ũ

n
k + αn

p̄n = ρ̄nRT̃ n

(3.9)

where:

σ̃nij = p̄nδij − 2µ̃n
(
S̃nij −

1

3
S̃nkkδij

)
= p̄nδij + Σ̃n

ij

S̃nij =
1

2

(
∂ũni
∂xj

+
∂ũnj
∂xi

)
q̃nj = −λ̃n∂T̃

n

∂xj

(3.10)

and µ̃n = µ(T̃ n), λ̃n = Cpµ̃
n/Pr. A first fundamental property that emerges from

equations (3.9) is that, as a result of the approach, the commutation property (2.10) is
not anymore necessary. The second main difference, with respect to the CLES frame-
work, is that modeling is now required for the following SGS terms (with m = 0):

χn−mj = −χm−nj = ρ̄nũnj − ρ̄mũmj
τn−mij = −τm−nij =

(
ρ̄nũni ũ

n
j − ρ̄mũmi ũmj

)
+
(
σ̃nij − σ̃mij

)
εn−mj = −εm−nj =

(
ρ̄nũnj Ẽ

n − ρ̄mũmj Ẽm
)

+
(
q̃nj − q̃mj

)
+
(
ũni σ̃

n
ij − ũmi σ̃mij

)
αn =

1

2
ρ̄n (ũkuk

n − ũnk ũnk)

(3.11)

which, besides αn, are different from those usually introduced in CLES, especially
in the IFCLES case. In particular, SGS terms in GLES always include both linear and
non-linear terms, independently from the specific approach, even for incompressible
flows. The continuity equation, in general, also involves non closed terms. For model-
ing purposes, and following the same steps outlined in section 2.4.2, the SGS term in
the energy equation can also be recast as follows:

εn−mj =
(
ρ̄nũnj T̃

n − ρ̄mũmj T̃m
)

+
(
q̃nj − q̃mj

)
+
(
ũni Σ̃n

ij − ũmi Σ̃m
ij

)
+ βn−mj (3.12)
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with:

βn−mj = −βm−nj = ũnj

(
1

2
ρ̄nũnk ũ

n
k + αn

)
− ũmj

(
1

2
ρ̄mũmk ũ

m
k + αm

)
(3.13)

so that, in case, SGS modeling can be limited to the first term in equation (3.12), the
SGS heat flux.

The equations presented here, as those in chapter 2, are intended for general com-
pressible flows as well as incompressible ones. However, in both cases, especially for
general purpose solvers, the actual form of the equations used for the discretization is
generally different and based on a pressure equation, which allows a higher flexibility
in handling both flow regimes and additional physical mechanisms. It is a matter of
simple manipulations6 to show that the following pressure equation holds in the GLES
framework:

∂

∂xi

∂

∂xj
(p̄nδij)

n

=
∂2ρ̄n

∂t2
− ∂

∂xi

∂

∂xj

(
ρ̄nũni ũ

n
j + Σ̃n

ij − τn−0
ij

)n
(3.14)

and can then be used whenever necessary. Notice that some authors (Carati et al.,
2001; Winckelmans et al., 2001, 2002; Knaepen et al., 2002; De Stefano and Vasilyev,
2004) have explicitly advocated the use of equations, whose form is similar to the one
proposed here, as formal LES model. However, under detailed scrutiny, their proposal
can be actually seen as the application of the EFCLES formalism to the IFCLES equa-
tions and, as they still invoke the commutation property (2.10) for the implicit filter, the
overall approach produces no actual difference with CLES. In fact, as will be shown in
section 3.6, such commutation for the implicit filter does not hold in general.

3.4 Generalized Germano Identities

The CGI, expressed in equations (2.33) and (2.44), are exact algebraic relations be-
tween SGS terms considered at different filtering levels. As such, they obviously de-
pend on the form of the SGS terms. It is then easy to see that, because of the different
form of the SGS terms, a still more crucial difference arises in GLES, with respect to
CLES, as in GLES the SGS terms satisfy the following Generalized Germano Identities
(GGI):

χn−kj − χm−kj = χn−mj

τn−kij − τm−kij = τn−mij

εn−kj − εm−kj = εn−mj

(3.15)

for any (n,m, k) combination (negative values for the integers are excluded by defi-
nition). In practice, the case k = 0 is relevant for the use of these relations in a dynamic
procedure. The primary thing to notice about such GGI is that their validity holds for

6Exploiting the definition of τn−0
ij would reveal that equation (3.14) is just the classical pressure equation acted upon by the n

Gi operators.
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any combination of Gi operators satisfying the hypotheses defined in section 3.2, thus
they are more general than CGI in the sense that they are satisfied under much looser
conditions, which in practice are always verified. The second important difference,
with respect to the CGI, is that none of the tensors/vectors in (3.15) is acted upon by
any of the Gi operators. This, in turn, has two major consequences. The first is that,
when such GGI are used for modeling purposes, SGS model constants do not need to
be arbitrarily extracted from any operator Gi. The second is that, in practice, all the
terms in the equations (3.15) only involve products of variables (at the different possi-
ble levels); as a consequence, all that is required to use the GGI in a dynamic procedure
are the variables at two different levels. As will be better shown in chapter 4, in the
worst case scenario of a mixed model for a compressible flow, considering both the
momentum and energy equation, only 12 scalars need to be explicitly filtered7 against
the 37 required in the IFCLES framework. In the simplest case of a Smagorinsky model
for an incompressible flow, only 3 scalars need to be filtered, against the 15 required
in the IFCLES framework. Thus, the dynamic procedure in the GLES framework is
67 − 80% cheaper than the one in the IFCLES framework; with respect to the the EF-
CLES framework the advantage is even higher.

The only exception to the previous reasoning is for the αi terms which, instead, still
satisfy a form of CGI (m ≥ n):

αm − αn+(m−n)
=

1

2

(
ρ̄nũnk ũ

n
k

+(m−n) − ρ̄mũmk ũmk
)

(3.16)

Thus, in a dynamic procedure, model constants in αn should still be arbitrarily ex-
tracted from the operator (· · · )

+(m−n)
and 2 additional scalars should be filtered. How-

ever, differently from the CGI, (3.16) is still valid under the more loose assumptions
used in GLES.

3.5 Functional analysis

The important result from the previous sections is that, not requiring the commutation
property (2.10), the GLES framework involves a different form of SGS stresses. As
a consequence, a problem arises about the most suitable form of SGS models in the
GLES framework, as those developed within the CLES framework are not necessarily
suitable for GLES too. In practice, this matter can be analyzed by two different points
of view, according to the available forms of SGS models: structural and functional.

As already noted in section 2.4.2, structural models assume that the resolved terms
in the equations require a better reconstruction to be used conveniently and, to properly
reconstruct them, they also require that some information on the operators affecting the
resolved fields is actually available. As this would require specifying the set of Gi used
in a computation, a structural analysis is postponed to chapter 4, where it is used to
develop a novel form of scale-similar term for GLES applied to the FV method.

A functional analysis, in contrast, does not require such detailed information as it
simply evidences the role of the SGS terms in the energy transfers between resolved
and non resolved scales. In practice, such role is devised by looking at the equations

7In practice, as shown in section 3.6 and chapter 4, most of the times the Gi operators are still conveniently interpreted as
classical filters.
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for the resolved and non-resolved kinetic energies. For the present GLES framework,
exact equations for the resolved kinetic energy q̃nr = ρ̄nũnj ũ

n
j /2 and the SGS kinetic

energy qnsgs = q̃0
r − q̃nr are derived in Appendix B. For the present analysis, however, it

is sufficient to report the equation for q̃nr :

∂q̃nr
∂t

=− ∂

∂xk

[
q̃nr ũ

n
k + p̄nũnk + ũnj

(
Σ̃n
jk − τn−0

jk

)]
+ p̄n

∂ũnk
∂xk

+ Σ̃n
jk

∂ũnj
∂xk

−τn−0
jk

∂ũnj
∂xk

+ ũnj
∂χn−0

j

∂t
− q̃nr
ρ̄n

[
∂ρ̄n

∂t
+
∂ (ρ̄nũnk)

∂xk

] (3.17)

and to note that, in the previous equation, the terms on the second line are those
that, with an inverted sign, appear in the equation for qnsgs (see equation (B.8)). As
such, these terms are then responsible for the energy transfers between resolved and
non resolved scales.

Some important information can be obtained from equation (3.17). The first and
most important is that, besides the last two terms, the equation exactly coincides with
the analogous equation for the IFCLES approach (Sagaut, 2006). Moreover, despite be-
ing formally different, the SGS stresses also play the exact same role as in the IFCLES
approach. Indeed, as in equation (2.20), the resolved dissipation term −Σ̃n

jk∂ũ
n
j /∂xk is

unable to completely dissipate the flux of energy from the largest scales, and the term
τn−0
jk ∂ũnj /∂xk should compensate for it. Hence, in practice, from the functional point

of view, the SGS models introduced for the IFCLES framework are suitable choices for
τn−0
ij too.

However, as noted above, two additional terms appear in equation (3.17), which do
not have a counterpart in any CLES formulation. Before proceeding, it is important
to anticipate that the first two terms, −τn−0

jk ∂ũnj /∂xk and ũnj ∂χ
n−0
j /∂t, refer, respec-

tively, to the modeling and commutation in the momentum equation. An analogous
decomposition could have been chosen for the last term but, as a matter of fact, in the
continuity equation the two aspects are necessarily linked and no modeling issue exists
if the operators Gi commute with the spatial derivatives. This is highlighted by the fact
that the term in square brackets has the form of the continuity equation which holds
for commuting filters (see equation (2.11)). Nonetheless, in case commutation does not
hold, this term can also be rewritten as:

− q̃
n
r

ρ̄n

[
∂ρ̄n

∂t
+
∂ (ρ̄nũnk)

∂xk

]
=− q̃nr

ρ̄n

[
∂χn−0

k

∂xk
+
∂ (ρ̄n − ρ)

∂t

]
=− q̃nr

ρ̄n
∂χn−0

k

∂xk

n

− q̃nr
ρ̄n

[
∂ (ρ̄nũnk)

∂xk
− ∂ (ρ̄nũnk)

∂xk

n
] (3.18)

Hence, the SGS model for the continuity equation, if any, affects the energy balance
like any other mass source, redistributing the energy on the available resolved mass per
unit volume. The fact that the term ũnj ∂χ

n−0
j /∂t represents the effects of the commu-

tation is not directly demonstrable. However some heuristic arguments can be used to
support this assertion. First of all, when commutation is assumed to hold, the form of
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the equations is formally unchanged and the term disappears8. A second argument is
that, by using the following decomposition:

ũnj
∂χn−0

j

∂t
= ũnj

∂

∂t

[
n−1∑
i=0

(
ρ̄i+1ũi+1

j − ρ̄iũij
)]

= −
n−1∑
i=0

ũnj
∂χ

i−(i+1)
j

∂t
(3.19)

the term could be interpreted as a flux of energy from the level n toward the smallest
ones. However, if the different bands (· · · )

i−(i+1)
can be associated to the elements of

an orthonormal basis for L2(Ω) then, by the Parseval’s theorem, this term has a null
contribution on the overall resolved kinetic energy in the domain Ω9. The interpreta-
tion of the Gi as projectors into such orthonormal basis does not imply, in general, the
commutation property10 (Vreman, 2004b) but, at least conceptually, such a global ex-
pansion necessarily implies, for each band, a unique length scale ∆i over all the domain
Ω (which, in a general sense, is a condition for commutation to hold).

In conclusion, the main result of the present functional analysis is that models for
the SGS stresses devised for the CLES framework would play the exact same role in
GLES and, in both cases, the model is needed to counteract the lack of dissipation
from the resolved terms. The role of the SGS model in the continuity equation, if
any, is to remove/add energy from the resolved scales at a rate proportional to the
relative effect of mass addition/removal in the continuity equation. Additional terms
appearing in equation (3.17) seem to be related to the non commutation of the operators
Gi with spatial derivatives, as they disappear when commutation holds. However, their
interpretation is relatively unimportant as they do not describe the effect of additional
SGS terms and cannot be affected by specific modeling options besides the specification
of the operators Gi.

3.6 Practical relevance of GLES

The analysis and the developments from the previous sections allow to state that exact
generalized LES equations can be written, which do not require limiting or impractical
assumptions on the scale separation operators Gi. Such equations retain a physical
significance as the formal role of the SGS terms is analogous to that found in classical
LES formulations; still, the form of the SGS stresses and fluxes is different and leads
to different Germano Identities with some favorable properties in terms of the related
Dynamic Procedure.

Having established the previous points, what remain to be defined is the practical
relevance of the proposed GLES framework, how can it be effectively applied in prac-
tical computations. It is the purpose of the present section to show that, as a matter of
fact, most of the known LES approaches can be fit into this form or could be without
specific problems. Considering the works of Vreman and Denaro, cited in the intro-
duction of this chapter, and those cited in the following, it is noteworthy how most of
the inconsistencies related to the CLES formulation have been somehow recognized

8In fact, the term does not disappear as, instead, it assumes a form that cancels terms in τn−0
ij and repristinates the original

form of the equations for the IFCLES approach.
9The correctness of this assertion is strictly valid only for bases whose orthogonality condition does not involves weights.

10A notable exception being the Fourier modes.
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in specific numerical settings but never related to a general theoretical framework, as
proposed here11.

3.6.1 Explicitly filtered GLES

It is very easy to see that the GLES framework is straightly applicable to the explicit
filtering approach. In this case the operatorsGi are actual filters and, for all the practical
purposes, a single filter level needs to be considered (i.e., n = 1). In fact, the only
case for which the explicit filtering approach actually follows the GLES proposal is, to
the best of the author’s knowledge, the Approximate Deconvolution Modeling (ADM)
proposed by Stolz and Adams (1999), which in some cases is presented with the full
filtering approach (Garnier et al., 2009; Stolz et al., 2001a) as in GLES. Nonetheless,
the application of the GLES approach would be always straightforward as it would
just require filtering all the terms after the application of the discrete spatial derivative
operators. Also, it is the only consistent approach for general, non-commuting, filters.

A slight difficulty might arise in the case of implicit treatment of some terms in the
equations, like the viscous terms or the discretization of the pressure equation (3.14).
However, as is usually the case for higher order discretizations, a possible solution is to
adopt a deferred correction approach (Khosla and Rubin, 1974), with unfiltered terms
treated implicitly and the relative correction treated explicitly. In practice, for constant
density flows, the explicit filtering of the pressure equation is unnecessary, and can be
avoided. In contrast, it is strictly necessary for variable density flows. An even more
elegant solution, however, would be the recognition that ADM is also consistently done
by appropriately filtering the solution at each time step (Mathew et al., 2003), and to
use the exact same approach in GLES.

Finally, is worth emphasizing how the interpretation of the explicit filtering approach
performed according to the GLES framework is not different from the one in the EF-
CLES one. Indeed, by applying the method to a simple scalar conservation law, fol-
lowing the same approach used in section 2.3, the following equation is obtained:

∂φ̄

∂t
+∇d · Fd

M

(
φ̄
)d

= ∇ ·
[
FM

(
φ̄
)
− F (φ)

]d︸ ︷︷ ︸
I

+
[
∇ · F (φ)

d
−∇ · F (φ)

]
︸ ︷︷ ︸

II

+∇d ·
[
Fd
M

(
φ̄
)
− FM

(
φ̄
)]d

+ [∇d −∇] · FM

(
φ̄
)d︸ ︷︷ ︸

III

(3.20)

which has the exact same terms appearing in equation (2.13b). However, in equation
(3.20) the discrete filter acts on the discrete derivatives as well, thus leading to a possible
better removal of the error.

3.6.2 Implicitly filtered LES with finite differences

While not directly relevant for the present thesis, IFCLES based on finite differences
certainly has an important role, at least in the academic practice. It is thus interesting
to highlight how the present framework can be readily applied to this approach too.

11The only exceptions to this are, in fact, the EFCLES and the IFCLES based on finite differences, which still remain related to
the original Leonard formalization.
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A concept which is extremely useful in formalizing the discretization of continuous
equations on a discrete computational grid, especially for LES, is the sampling oper-
ator introduced by Debliquy (Debliquy et al., 2004; Knaepen et al., 2005; Fauconnier
et al., 2007). Such operator, in practice, acts as a projector between the continuous,
physical domain Ω and its discrete counterpart Ω∆i

= {x1,x2, . . . ,xN i}, described as
a collection of N i points xj ∈ Ω. The superscript ∆i serves the purpose to remind the
discrete nature of the object and, more generally, indicates the typical length scale as-
sociated with it but, in no way it means that such length is constant in space. Following
the presentation of the GLES framework, a general sequence of n discrete domains (in
the following simply denoted as grids) Ω∆i is considered here; however, as for GLES,
such sequence cannot be arbitrary, but has to satisfy the constraints Ω∆i ⊆ Ω∆i−1 and
N i ≤ N i−1.

With such definitions, the sampling operator S∆i can be more precisely defined as
the operator that, for any function φ(x) with x ∈ Ω returns φ∆i

(xj) = φ(xj)∀xj ∈ Ω∆i .
In practice, for any function, the sampling operator S∆i returns the exact same value
on the grid Ω∆i:

φ∆i

= S∆i ∗ φ (3.21)

Due to the above definitions, S∆i satisfies the following properties:

φ∆i

= S∆i ∗ φ = S∆i ∗ S∆i ∗ φ

S∆i ∗ (φψ) =
(
S∆i ∗ φ

)(
S∆i ∗ ψ

)
= φ∆i

ψ∆i (3.22)

hence, it is idempotent and commutes with the product operation. Also, due to the
embedding of the grids Ω∆i:

φ∆i

= S∆i ∗ φ = S∆i ∗ φ∆j

= C∆i,∆j ∗ φ∆j

= C∆i,∆j ∗ S∆j ∗ φ ∀j ≤ i (3.23)

where the additional coarsening operator C∆i,∆j has been introduced. In order to fi-
nalize the description of the finite difference approach, it is still necessary to introduce
the effect of the discretization. In practice, two possible ways exists. One consists in
recognizing the fact that continuous derivative operators cannot interact with sampled
values of a function and, as done in equation (3.20), to introduce discrete counterparts
of continuous operators (e.g., ∇d in place of ∇) and treat their difference as an er-
ror. This was the preferred choice in later works on the sampling formalism (Knaepen
et al., 2005; Fauconnier et al., 2007). However, an additional possibility consists in
embedding within the sampling operators also an interpolation, as originally proposed
by Debliquy et al. (2004). The way to intend this interpolation is such that, when a con-
tinuous derivative operator is applied to a sampled function, it exactly returns the value
which would have been obtained by applying the underlying discrete approximation on
the available discrete values. In general, such interpolants might be more complex than
expected (see Debliquy et al. (2004) for some practical examples), in order to fit all the
required constraints on all the discrete operators, but in most practical cases such inter-
polants exist, whcih is all that is required here. Thus, roughly speaking, the sampling
operator S∆i defines the grid and the underlying numerical discretization as a whole.
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The important thing to notice about the sampling operators defined above is that,
by themselves, they do not lead to any closure problem due to the presence of non
linear terms, however complex they might be12. In contrast, they do not commute
with continuous spatial derivatives, the relative commutation error being actually the
truncation error of the underlying numerical scheme13:

∂φ∆i

∂xi
− S∆i ∗ ∂φ

∂xi
= L.T.E. (3.24)

Thus, when applied to the NSE, sampling operators still leads to the rise of non
closed terms which need modeling, but these are only due to the numerical errors. In
practice, the relevance of such errors is strictly dependent on the underlying interpo-
lation and the resolution capabilities of the given grid with respect to the continuous
function they act upon. For DNS applications such combination is selected to have an
error which, in some norm, can be considered negligible. In contrast, in LES based on
sampling operators the grid is by definition such that, independently from the specific
numerical method, such approximation is not possible and a model is necessary.

At this point, it is straightforward to show that when a generic finite difference
method is applied to the NSE on the grid Ω∆k , the exact form of the resulting equations
is the following:

∂
(
ρ∆k

u∆k

i

)
∂t

+ S∆k ∗ ∂

∂xj

(
ρ∆k

u∆k

i u∆k

j + σ∆k

ij

)
= S∆k ∗ ∂

∂xj

(
τ∆k

ij

)
(3.25)

where, for the sake of conciseness, the discussion is limited to the sole momentum
equation and, besides the specific differences due to the operator S∆i , σ∆k

ij is defined as
the analogous term in equation (3.10). Of course, unless it is specifically modeled, the
error τ∆k

ij in equation (3.25):

τ∆k

ij =
(
ρ∆k

u∆k

i u∆k

j + σ∆k

ij

)
− (ρuiuj + σij) (3.26)

is not really present in actual computations. It is worth mentioning that the formu-
lation actually proposed by Debliquy et al. is different from the one proposed here,
as it is based on the error definition used in equation (3.24), which would seem more
natural. However, within the present sampling formalism, the following identity holds
in the sampling points:

∂φ∆k

∂xi
−S∆k ∗ ∂φ

∂xi
= S∆k ∗ ∂φ

∆k

∂xi
−S∆k ∗ ∂φ

∂xi
= S∆k ∗ ∂

∂xi

(
φ∆k − φ

)
(3.27)

hence restoring the complete correspondence among the two formulations. The fact
that equation (3.25) exactly fits the one in the proposed GLES framework should be

12As long as the evaluation is limited to the sampling points.
13An analogous extension could be provided for the time discretization.
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Chapter 3. A Generalized LES framework

already self-evident by looking at the equations (3.9), even when a series of n sam-
pling operators are considered in series. Such correspondence, of course, also includes
Germano Identities of the form:

τ∆m

ij − τ∆n

ij =
(
ρ∆m

u∆m

i u∆m

j + σ∆m

ij

)
−
(
ρ∆n

u∆n

i u∆n

j + σ∆n

ij

)
(3.28)

Again, the form of such identity seems to not correspond to the one originally de-
vised by Debliquy et al. which, in a simplified notation, could be written as:

(
∂φ∆m

∂xi
− S∆m ∗ ∂φ

∂xi

)
− C∆m,∆n

(
∂φ∆n

∂xi
− S∆n ∗ ∂φ

∂xi

)
=

=
∂φ∆m

∂xi
− C∆m,∆n ∂φ∆n

∂xi

(3.29)

However, invoking again the identity in (3.27) and the properties of the coarsening
operator in (3.23), it becomes:

S∆m ∗ ∂

∂xi

(
φ∆m − φ

)
− S∆m ∗ ∂

∂xi

(
φ∆n − φ

)
=

= S∆m ∗ ∂

∂xi

(
φ∆m − φ∆n) (3.30)

from which the present form of Germano Identities easily follows:

(
φ∆m − φ

)
−
(
φ∆n − φ

)
=
(
φ∆m − φ∆n)

(3.31)

In practice, the whole difference among the two approaches is only a matter of inter-
pretation of the error: it can be seen as due to the replacement of continuous derivative
operators with discrete ones or, as in the present GLES approach, due to an incorrect
interpolation of the underlying function. However, no matter what the interpretation is,
the two approaches are exactly equivalent. Notably, different interpretations of the error
lead to different forms of Germano Identities, with the form (3.31) arising in GLES be-
ing much less cumbersome than the classical one (3.29)14. Of course, explicit filtering
(as described in the previous section) and sampling can be merged in a single GLES
formulation with two levels, and nothing would change besides the interpretation of the
operators, which shows the power of the approach.

3.6.3 Implicitly filtered LES with the method of weighted residuals

Notably, the most straightforward interpretation of a numerical method as a formal LES
approach can be obtained by its interpretation within the weighted residuals method
(Finlayson and Scriven, 1966; Finlayson, 1972). Such interpretation is not new (Hughes

14Notice that, when equation (3.29) is used in a dynamic procedure, the models replacing the terms in parentheses need to be
in the form of the divergence of a term, for compatibility with the governing equations. As a consequence, the model constant
is acted upon by the derivative operators and, while not requiring the extraction from any test filter, its computation requires the
resolution of a differential problem. The overall procedure is, indeed, very similar to the one proposed by Morinishi and Vasilyev
(2002).
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et al., 2000; Pope, 2001; Oberai and Wanderer, 2005a), as already noted is its connec-
tion with the FV formulation (Vreman, 2004b), however it is discussed here to highlight
that it exactly fits the proposed GLES framework in general. Without the intent to be
complete or detailed, in the weighted residuals method, the solution u, in the domain
Ω, for a generic scalar differential problem:

L (u) = 0 (3.32)

subject to proper initial and boundary conditions, is assumed to be representable in
the form:

uNd (x, t) =
N∑
i=1

ûi (t) Φi (x) (3.33)

where the Φi are trial functions used for the expansion and the ûi areN unknown co-
efficients to be determined. The way such coefficients are determined is by substitution
of the expansion (3.33) in the original equation (3.32) and by applying the following
restrictions on the resulting residual (Karniadakis and Sherwin, 1999):

∫
Ω

vj (x)L
(
uNd
)
dx = 0 j = 1, 2, . . . , N (3.34)

where the vj are called test or weight functions. In practice, this approach can
lead to several different methods, according to the specific choice of the functions vj
and Φi. The first consideration emerging from equations (3.32–3.34) is that, in the
present form, they already represent an LES formalism. Indeed, independently from
the specific definition of vj , it is possible to define the projector PN so that (Vreman,
2004b):

PN ∗ u (x, t) =
N∑
i=1

ûi (t) Φi (x)

=
N∑
i=1

Φi (x)

∫
Ω

vi (ξ)u (ξ, t) dξ

=

∫
Ω

[
N∑
i=1

vi (ξ) Φi (x)

]
u (ξ, t) dξ

=

∫
Ω

GN (x, ξ)u (ξ, t) dξ = uNd (x, t)

(3.35)

Also, as equation (3.34) holds for each j, it is easy to see that this implies also the
following relation:

∫
Ω

GN (x, ξ)L
(
uNd
)
dξ = PN ∗ L

(
uNd
)

= 0 (3.36)
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Thus, not only the solution (3.33) is in the form of a filtered function, but the equa-
tions themselves are discretized in the form (3.36), which is analogous to the one used
in the GLES framework. In particular, it should be noted that no commutation is as-
sumed between PN and L as they are discretized together. What, instead, is explicitly
missing from equation (3.36) is any explicit reference to the subgrid scales, as it is
assumed that the number N of degrees of freedom in uNd is sufficient to completely
resolve all the dynamically active scales. However, by definition, this is not the case
in LES and one should instead consider the following form (Pope, 2001; Oberai and
Wanderer, 2005a):

PN ∗ L
(
PN ∗ u

)
+ PN ∗

[
L (u)− L

(
PN ∗ u

)]
= 0 (3.37)

It is interesting to note that, as for GLES, even linear operators formally contribute
to the definition of the SGS term in (3.37) and, in particular, the ideal SGS model is
defined as:

PN ∗M
(
PN ∗ u

)
= PN ∗

[
L (u)− L

(
PN ∗ u

)]
(3.38)

Such relation can be used to derive a variational Germano Identity (Oberai and Wan-
derer, 2005a) by considering that, in general, it holds also for a projection PM with
M < N :

PM ∗M
(
PM ∗ u

)
= PM ∗

[
L (u)− L

(
PM ∗ u

)]
(3.39)

However, in the present casePM ∗PN = PM , and the application ofPM to equation
(3.38) leads to:

PM ∗M
(
PN ∗ u

)
= PM ∗

[
L (u)− L

(
PN ∗ u

)]
(3.40)

Thus, subtracting equation (3.40) from equation (3.39), finally gives the variational
Germano Identity:

PM ∗M
(
PM ∗ u

)
−PM ∗M

(
PN ∗ u

)
= PM ∗

[
L
(
PN ∗ u

)
− L

(
PM ∗ u

)]
(3.41)

where should be noted that PM ∗ u is actually obtained as PM ∗ (PN ∗ u). In
practice, this is exactly the same identity which arises in the GLES framework, with
the only difference that here the projection PM has been retained in the identity. This
approach, as suggested by Oberai and Wanderer (2005a), is in line with the variational
formulation and, at the same time, with the approach of Morinishi and Vasilyev (2002),
both leading to a vectorial level identity for the momentum equations in LES, with the
model constants acted upon by differential operators. It is worth noting that this is
actually also the nature of the GGI in the GLES framework but, in the author’s opinion,
this only masks the true local algebraic nature of such identities and, as a byproduct,
extremely complicates the nature of the resulting dynamic procedure. As such, the
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form (3.15) is considered here as fully valid and, in this variational formulation, it
corresponds to15:

M
(
PM ∗ u

)
−M

(
PN ∗ u

)
= L

(
PN ∗ u

)
− L

(
PM ∗ u

)
(3.42)

A final point which is worth noting is how, for different choices of vj , different
numerical methods and LES approaches are obtained. A first possible choice is to
define vj(x) = δ(x−xj), where the xj define a set of discrete locations. Such approach,
known as collocation method, leads to the following definition for uNd :

PN ∗ u (x, t) =
N∑
i=1

Φi (x)

∫
Ω

vi (ξ)u (ξ, t) dξ

=
N∑
i=1

Φi (x)

∫
Ω

δ (ξ − ξi)u (ξ, t) dξ

=
N∑
i=1

u (xi, t) Φi (x)

(3.43)

Thus the projector PN becomes the sampling operator defined in the previous sec-
tion and the functions Φi assume the role of shape functions, clarifying and supporting
the way interpolation has been embedded in the present definition of sampling oper-
ators. However, the choice on Φi still can be almost arbitrary and, according to the
number of points included in each shape function, it determines the specific numerical
method, ranging from basic finite differences to full spectral collocation methods.

A second possible option for vj is the one which defines Galerkin methods, which
are based on vj(x) = Φj (x). In this case uNd is defined as follows:

PN ∗ u (x, t) =
N∑
i=1

Φi (x)

∫
Ω

vi (ξ)u (ξ, t) dξ

=
N∑
i=1

Φi (x)

∫
Ω

Φi (ξ)u (ξ, t) dξ

=
N∑
i=1

ûi (t) Φi (x)

(3.44)

and the projection is not anymore in space but in spectral bands defined by the
functions Φi (x). As a consequence, the coefficients ûi(t) are not associated to local
values of the function but to its energy content in the specific spectral band.

Another possible option for vj , which will be the main topic for the rest of the thesis,
is the one leading to the definition of the FV method. In this case, the domain Ω is first
conveniently subdivided in a set of N non overlapping volumes Ωj , of measure Vj .

15Note that this form is not exactly equivalent because of the specific notation used here. When the full expressions are intro-
duced the equivalence can be restored.
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Then, vj is defined as the function which is unitary within the volume Ωj and null
outside it:

PN ∗ u (x, t) =
N∑
i=1

Φi (x)

∫
Ω

vi (ξ)u (ξ, t) dξ

=
N∑
i=1

Φi (x)

∫
Ωi

u (ξ, t) dξ

=
N∑
i=1

[
1

Vi

∫
Ωi

u (ξ, t) dξ

]
ViΦi (x)

=
N∑
i=1

ūFV (xi, t) Ψi (x)

(3.45)

For the sake of convenience, the last line in equation (3.45) is expressed in terms of
the FV variables ūFV (xi, t) which arbitrarily, but according to the current cell centered
FV practice, are defined in the centroids xi of the volumes Ωi. From equation (3.45)
clearly emerges the similarity with the sampling operator defined in (3.43). However,
very differently from the sampling operator, this FV operator does not commute with
the product as it is defined in terms of FV variables and not local ones. Also, notably,
it is not even idempotent, as in this case one would have:

PN ∗ PN ∗ u (x, t) =
N∑
j=1

Φj (x)

∫
Ω

vj (ξ)
[
PN ∗ u (ξ, t)

]
dξ

=
N∑
j=1

Φj (x)

∫
Ω

vj (ξ)

[
N∑
i=1

ūFV (xi, t) Ψi (ξ)

]
dξ

=
N∑
i=1

N∑
j=1

ūFV (xi, t) Φj (x)

∫
Ωj

Ψi (ξ) dξ

=
N∑
i=1

ūFV (xi, t)

[
N∑
j=1

Ψj (x)
1

Vj

∫
Ωj

Ψi (ξ) dξ

]
(3.46)

but this is not usually noted in practice because only affects the shape functions and
not the point values. The solution underlying a FV computation can be also interpreted
as a combination of two different operatorsGi, one due to the top-hat filtering as defined
in equation (3.1) and the second in the sequence due to the sampling as in the previous
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section. Indeed:

GS ∗GTH ∗ u (x, t) =PN ∗
∫

Ω

GTH (y, ξ)u (ξ, t) dξ

=PN ∗

[
1

V (y)

∫
Ωy

u (ξ, t) dξ

]

=
N∑
i=1

Ψi (x)

∫
Ω

vi (y)

[
1

V (y)

∫
Ωy

u (ξ, t) dξ

]
dy

=
N∑
i=1

Ψi (x)

∫
Ω

δ (y − xi)

[
1

V (y)

∫
Ωy

u (ξ, t) dξ

]
dy

=
N∑
i=1

Ψi (x)

[
1

V (xi)

∫
Ωxi

u (ξ, t) dξ

]

=
N∑
i=1

ūFV (xi, t) Ψi (x)

(3.47)

where Ωy is the volume, around the point y, within which the top-hat kernel GTH

is non null and Ωxi is such volume for the specific point xi. Notice, also, that the
order of the two operators GS and GTH is important and cannot be inverted. Again,
the multilevel GLES formalism shows all its power in handling such situation without
any specific modification. The analysis of the FV method will be further advanced in
the next chapter, where the knowledge of the specific form of the projection operator
underlying the method will be used to develop a proper form of scale-similar SGS
model.
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CHAPTER4
Application of the GLES framework to the FV

method

In this chapter, the knowledge on the basic operator underlying the FV method is used,
within the GLES framework, to develop a new scale-similar SGS model for LES per-
formed with the FV method. In section 4.1 the basis of the FV method is briefly sum-
marized and the underlying FV operator further analyzed. As a result of this analysis
and with additional results derived in Appendix C and D, in section 4.2 low order ap-
proximations are obtained for the terms defining the SGS stresses (3.11) in the GLES
framework. In section 4.3, structural modeling options are analyzed in terms of their
applicability to the FV method and of the resulting accuracy with respect to the anal-
ysis at the previous section. A simple form of scale similar term emerges as possible
candidate structural model, whose details are described in section 4.4 together with its
implementation as a dynamic two parameter mixed model. In section 4.5 the proposed
scale-similar term and the relative dynamic procedure are further analyzed from the nu-
merical point of view in a simplified 1D linear framework, providing some guidance in
the setting of the overall dynamic procedure. Finally, the inclusion of the scale similar
model in the pressure equation is discussed in section 4.6. The chapter is closed with
two sections that, while not specific of the FV approach, have benefited from the prior
introduction of the proposed scale-similar model. The first, section 4.7, is a comparison
of the GLES framework with the ADM approach of Stolz and Adams (1999). The sec-
ond, section 4.8, contains some comments on the Galilean invariance of the proposed
GLES framework.
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Chapter 4. Application of the GLES framework to the FV method

4.1 A further analysis of the FV operator

The analysis in section 3.6.3, and in particular the form (3.34) of the discretized equa-
tions, has made clear that the FV method is a straight application of the GLES frame-
work. The discussion in section 3.1, equation (3.2) in particular, should have also clar-
ified how the actual discretization is performed and how it actually implies a combined
discretization of both filtering and derivative operators. Thus, it is not of interest here
to further specify these aspects, which nonetheless are highlighted again in the next
chapter. Instead, to further proceed in the application of the GLES framework to the
FV method, it is interesting to further analyze the form of the FV operator presented in
section 3.6.3, which is proposed again below:

GFV ∗ u = GS ∗GTH ∗ u =
N∑
i=1

[
1

Vi

∫
Ωi

u (ξ, t) dξ

]
Ψi (x)

=
N∑
i=1

ūFV (xi, t) Ψi (x)

(4.1)

Also, it is worth remembering that SGS terms in the FV method have the form (3.11)
outlined for the GLES framework, that in the FV parlance amounts to a difference be-
tween solved and unsolved fluxes. Equation (4.1) contains all the necessary information
to build a structural model for such terms, which is the purpose of the present chapter.
However, the qualitative features of the two operators appearing in it, the sampling op-
erator and the top-hat filter, are quite different. The first is idempotent and commutes
with the product but not the derivative operators, the second is not idempotent and does
not commute with the product or, in general, with the derivative operators. Both are
connected to the intrinsic limited resolution of the grid, trough N and the non overlap-
ping feature of the volumes Ωi, but the top-hat filter itself does not imply any loss of
resolution and, in theory, is fully invertible1. In contrast, the effects due to the sampling
are not in practice invertible, but only diminishable trough a better selection of shape
functions (i.e., a more accurate numerical method).

In practice, among the two operators, it appears that it is the top-hat filter that mostly
determines the solution, while the sampling effect, nonetheless present, is only related
to the numerical accuracy of the discretization. This can be appreciated by the fact that,
if one would somehow invert the FV operator from equation (4.1), in order to have a
better approximation of the original function u, then would inevitably solve equations
of the form:

1

Vi

∫
Ωi

u (ξ, t) dξ = ūFV (xi, t) i = 1, 2, . . . , N (4.2)

while different, more accurate, choices for the Ψi could always be made a posteriori.
The fact that the two problems are separable, and that sampling is treatable only in
numerical terms, can also be appreciated by the Germano Identities (3.15). Indeed,

1In practice, especially for the top-hat filter, such operation is ill-posed and only approximate inversions are possible.
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4.2. Structural analysis of the SGS stresses in GLES

given a model that is optimal in terms of reconstruction of the top-hat effect, say τTHij ,
then the optimal model for the overall FV operator, τFVij can be built as:

τFVij = τTHij + τFV−THij (4.3)

where the last term is not generally computable as it involves a stress tensor built
by sampling a continuous top-hat solution, which is not available. However, the in-
teresting thing from the practical point of view is that this term is, by definition of
sampling, exactly null in all the N sampling points where it is actually needed. Hence,
again, the top-hat filter is all that matter from the SGS modeling point of view, and
sampling effects can always be treated a posteriori by simply improving the numerical
accuracy. It should be mentioned that an alternative point of view exists, according to
which the choice of the shape functions can be made also with a modeling purpose in
mind, both functional and structural. Such approach (Boris et al., 1992; Fureby, 2008),
which is known as Monotone Integrated Large Eddy Simulation (MILES) or, somehow
misleadingly, as Implicit LES (ILES)2, will not be discussed again but, as one of the
numerical schemes implemented in Fluent R© belongs to this group, some examples of
this approach will be given in chapters 6 and7.

According to the previous discussion, it is then assumed from now on, but just for
SGS modeling purposes, that the FV approach is consistent with a top-hat filter alone.
The sampling, in contrast, is not further developed as it only concerns numerical aspects
that do not directly affect LES as such. Of course, numerical aspects are important in
LES as well and will be discussed whenever necessary, especially in chapter 5, but not
in relation to the modeling of the sampling operator.

4.2 Structural analysis of the SGS stresses in GLES

The possibility to exclude the sampling operator from the definition of FV operators
is extremely important because the remaining top-hat operator is amenable of further
developments with extreme ease. In particular, it is possible to further analyze the
tensor τn−mij and, by suitable hypotheses, to extend the analysis to the true SGS tensor
τn−0
ij .

It is first worth recalling that the present definition of the unique operatorG affecting
the governing equations in the FV approach is:

G ∗ φ =
1

Vi

∫
Ωi

φ (ξ, t) dξ = φ̄FV (xi, t) (4.4)

It is shown in Appendix C that, under suitable assumptions, the effect that a sequence
of n−m such operators has on a resolved variable at level m can be approximated by:

φ̄n = φ̄m + ∆2
n,mMk

∂2φ̄m

∂x2
k

+O
(
∆4
n,m

)
∆2
n,m =

n−m∑
j=1

(
∆m+j

)2 (4.5)

2Notice that the implicitness here is not related to filtering operations but to the SGS modeling, which is implicit in the numerical
method.
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Chapter 4. Application of the GLES framework to the FV method

where ∆m+j represents the cubic root of the volume V associated to the jth operator
G that, in the sequence, acts on φ̄m. With such relation at hand, it is further shown in
Appendix D that, within the same order of approximation, and considering the viscosity
as constant, the term τn−mij , which is reported here for clarity:

τn−mij =

I︷ ︸︸ ︷(
ρ̄nũni ũ

n
j − ρ̄mũmi ũmj

)
+

II︷ ︸︸ ︷
(p̄n − p̄m) δij

−2µ

III︷ ︸︸ ︷(
S̃nij − S̃mij

)
+

2µ

3
δij

IV︷ ︸︸ ︷(
S̃nqq − S̃mqq

) (4.6)

can be approximated as follows:

τn−mij = ∆2
n,mMk

(
∂2ρ̄mũmi ũ

m
j

∂x2
k

− 2ρ̄m
∂ũmi
∂xk

∂ũmj
∂xk

)
︸ ︷︷ ︸

I

+δij ∆2
n,mMk

∂2p̄m

∂x2
k︸ ︷︷ ︸

II

−µ
[
∂

∂xj

(
∆2
n,mMk

∂2ũmi
∂x2

k

)
+

∂

∂xi

(
∆2
n,mMk

∂2ũmj
∂x2

k

)]
︸ ︷︷ ︸

III

−µ
[
∂

∂xj

(
2∆2

n,mMk

ρ̄m
∂ρ̄m

∂xk

∂ũmi
∂xk

)
+

∂

∂xi

(
2∆2

n,mMk

ρ̄m
∂ρ̄m

∂xk

∂ũmj
∂xk

)]
︸ ︷︷ ︸

III

+
2µ

3
δij

∂

∂xq

(
∆2
n,mMk

∂2ũmq
∂x2

k

+
2∆2

n,mMk

ρ̄m
∂ρ̄m

∂xk

∂ũmq
∂xk

)
︸ ︷︷ ︸

IV

+O
(
∆4
n,m

)

(4.7)

The final step to take, in order to arrive at an usable expression for the SGS stress
tensor, is to note that, still within an approximation of order ∆4

n,m, and for sufficiently
smooth variations3 of ∆n,m, equation (4.5) can be invoked again and the relation above
remains equally valid if m level variables are substituted with the n level ones. This
remarkable fact allows thus to write τn−mij as a function of n level variables only, in-
dependently from m, which can then be assumed to be 0. In practice, the resulting
expression can then be considered a low order model for τn−0

ij . In doing these steps,
however, it should be noted that the validity of the approach is not independent from
the difference in scale between ∆m and ∆n, as higher order derivatives at levelmmight
not be negligible in general.

While equation (4.7) will be used, in the next section, as a reference for the develop-
ment of a structural SGS model, it is proposed here to instead highlight the complexity
of the SGS stresses arising in GLES, something which has not been possible with the
simple functional analysis developed in section 3.5. In particular, similar approxima-
tions arising in the CLES framework (Vreman et al., 1996; Clark et al., 1979) simply

3In practice, as for the validity of equation (4.5), it is required that local variations of all the implied ∆j have continuous second
derivatives.
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4.3. Structural modeling options in the FV method

amount to the second term in I, also known as Clark model. Heuristically, these addi-
tional terms not arising in CLES could again be interpreted as due to the commutation
of the filter with the spatial derivatives (or the lack of).

4.3 Structural modeling options in the FV method

Before turning the attention to the development of a structural SGS model for LES with
the FV method, it is useful to stress again the suitability of such option when using this
specific implicitly filtered approach. Indeed, it has been shown that the FV method
is based on two operators, the sampling and the top-hat filter. The former has been
shown to be non influential from the modeling point of view, the latter instead affects
all the terms, especially the non linear ones (as it does not commute with the product),
and is fully known. As the uniquely important filter (from the modeling point of view)
is known and, as shown in the following, invertible, it is then assumed here that such
inversion is necessary and meaningful as in any other explicit filtering approach.

Notice, also, that this is largely independent from the numerical approach, even if
some correcting terms might be of the same order of the numerical error or higher.
Indeed, the two act in a very different manner. Thus, inverting some effects cannot
be established, a priori, to be vain by only considering leading order arguments. For
example, a physically sound anti-dissipative mechanism could act in a way which is
different from any possible truncation error effect. Also, leading order arguments are
likely to be unimportant in LES as, more often than not, the resolved fields have low
regularity and higher order derivatives might not be negligible. It is thus in this spirit
that the structural modeling option is considered in the FV method.

In order to proceed in the construction of a structural SGS model for τn−0
ij , the only

thing that remains to be determined is the best way to use the available information.
More specifically, this information amounts to equation (4.2) that, from now on, is the
reference for the FV operator, and equation (4.7), which will give additional insight.
Among the aspects affecting this choice, some are especially relevant for the application
in general purpose solvers and will be considered in detail: ease of implementation,
computational cost, possible limitations in the applicability, consistency of the overall
procedure.

In total, there are three possible approaches to build a structural SGS model, based
respectively on the reconstruction of the missing scales, the use of a differential model
or the use of a scale-similar model. All of them are analyzed in the following in terms
of suitability for a general purpose solver.

4.3.1 Models based on reconstruction

A possible approach in constructing a structural SGS model is based on directly using
equation (4.2) to approximately invert the top-hat filter in it. In practice, this is done by
using a truncated Taylor series development for the unknown φ around the centroid of
the volume Ωi.

Following the same approach described in Appendix C, for a second order recon-
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Chapter 4. Application of the GLES framework to the FV method

struction, leads to the following differential problem for φ in each point xi:

φ̄FV (xi, t) = φ (xi, t) + V
2
3
i

[
M200

∂2φ

∂x2
+M020

∂2φ

∂y2
+M002

∂2φ

∂z2

] ∣∣∣∣
xi

+V
2
3
i

[
M110

∂2φ

∂x∂y
+M101

∂2φ

∂x∂z
+M011

∂2φ

∂y∂z

] ∣∣∣∣
xi

(4.8)

where the moments Mqrs are computable from equation (C.4) and φ̄FV (xi, t) is the
known filtered variable in the cell center. Once the differential equation (4.8) is solved
for all the approximate unfiltered functions φ (xi, t), they can be used in τn−0

ij in place
of the true unfiltered ones4. However, such approach has several drawbacks as: the
low second order approximation still requires solving an implicit second order PDE for
each necessary variable (up to six per each time step), reconstructions beyond the sec-
ond order would even require non available boundary conditions and operators whose
discretization is cumbersome, if not impossible, in general unstructured FV solvers.
Besides this, one could also argue that it is not possible to advance such a reconstruc-
tion beyond the order of the discretized differential operators5. Thus, this approach
would have several disadvantages in a practical implementation.

A second possible approach to invert the filter in equation (4.2) is based on the Van
Cittert deconvolution method (Stolz and Adams, 1999). In this approach, the inverse of
a generic operator G is expressed as:

G−1 = [I − (I −G)]−1 =
∞∑
n=0

(I −G)n =
∞∑
n=0

n∑
k=0

(−1)k n!

k! (n− k)!
Gk (4.9)

where I = G0 is the identity operator and Gk stands for k consecutive applications
of the operator G. The series is convergent if ‖I − G‖ < 1 but, in practice, it is
arrested at low finite values, e.g., n = 5. The approximate unfiltered variables are then
reconstructed as:

φ = φ̄FV +
(
φ̄FV −G ∗ φ̄FV

)
+
(
φ̄FV − 2G ∗ φ̄FV +G ∗G ∗ φ̄FV

)
+ · · · (4.10)

This method is, in theory, applicable to the full FV operator GFV , including its
sampling component as, from equation (3.46):

GFV ∗GFV ∗ φ =
N∑
i=1

Ψi (x)

[
N∑
j=1

φ̄FV (xj, t)
1

Vi

∫
Ωi

Ψj (ξ) dξ

]
(4.11)

thus, the point values of the doubly filtered FV variables ¯̄φFV (xi, t) can be obtained
4To correctly reconstruct the SGS stresses a similar treatment is required for the pressure, the density and the three momentum

components.
5Notice that this objection is different from the one at the beginning of this section. Here is the reconstruction itself which is

considered and the consistency of its discretization.
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as:

¯̄φFV (xi, t) =
N∑
j=1

φ̄FV (xj, t)
1

Vi

∫
Ωi

Ψj (ξ) dξ (4.12)

In practice, however, the method is limited by the effective knowledge of the shape
functions, which can be partial or inaccurate. For example, the typical knowledge in
the FV method is limited to the point values φ̄FV (xi, t) and the local gradients, which
means that the operation (4.12) returns the identity ¯̄φFV (xi, t) = φ̄FV (xi, t). But even
including a more accurate information, the integration of arbitrary shape functions on
arbitrary polyhedral cells, typical of FV applications, is far from trivial, even if it is
only needed once and could be performed as a preprocessing step.

A final reconstruction option that deserves some attention is based on equation (4.8).
Indeed, within an accuracy of V

2
3
i , it can be straightly inverted to give:

φ (xi, t) = φ̄FV (xi, t)−Mij
∂

∂xi

(
∂φ̄FV
∂xj

) ∣∣∣∣
xi

(4.13)

with:

Mij =
V

2
3
i

2

2M200 M110 M101

M110 2M020 M011

M101 M011 2M002

 (4.14)

which is an explicit relation and only requires the computation of the moments Mqrs

and the implementation of a second order differential operator. For this reason, this
option has been preliminarily considered in this work. However, its practical imple-
mentation in a general purpose FV solver resulted to be not straightforward as second
order operators are not directly available and their implementation could be not exactly
cost effective. Indeed, not only each of the six independent terms requires a summation
over neighbor cells, which means six summations for each of the five variables needed
to reconstruct τn−0

ij . But, also, for each variable the cell-centered gradient is also re-
quired, which means the computation of four gradient terms not usually available. A
temperature dependent viscosity would then make the cost even higher. Finally, the
computation of the moments Mqrs for general polyhedral cells requires additional stor-
age and a dedicated routine. For these reasons, while certainly applicable, this route
has been abandoned.

4.3.2 Differential model

Following Clark et al. (1979), and many others, a structural model for the FV method
could be based on the approximation (4.7) which, for the present purpose, would be
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written as:

τn−0
ij ≈∆2

n,0Mk

(
∂2ρ̄nũni ũ

n
j

∂x2
k

− 2ρ̄n
∂ũni
∂xk

∂ũnj
∂xk

)
+ δij∆

2
n,0Mk

∂2p̄n

∂x2
k

−µ
[
∂

∂xj

(
∆2
n,0Mk

∂2ũni
∂x2

k

)
+

∂

∂xi

(
∆2
n,0Mk

∂2ũnj
∂x2

k

)]
−µ
[
∂

∂xj

(
2∆2

n,0Mk

ρ̄n
∂ρ̄n

∂xk

∂ũni
∂xk

)
+

∂

∂xi

(
2∆2

n,0Mk

ρ̄n
∂ρ̄n

∂xk

∂ũnj
∂xk

)]
+

2µ

3
δij

∂

∂xq

(
∆2
n,0Mk

∂2ũnq
∂x2

k

+
2∆2

n,0Mk

ρ̄n
∂ρ̄n

∂xk

∂ũnq
∂xk

)
(4.15)

However, this option is reported here just for the sake of completeness as, while
still being an approximation, its implementation cost would be far higher than the one
related to the more accurate and simple approach based on equation (4.13). Also, the
implementation of the second order differential terms while retaining the overall second
order accuracy would be practically impossible with the basic numerical tools available
in general purpose solvers.

4.3.3 Scale-similar model

The only remaining option for a structural model and, in fact, the one used in the present
work, is the use of a scale similar model. Besides the true reasons that have motivated
this choice, to be discussed in the following, this is also, to the best of the author’s
knowledge, the only approach which has been already used in the GLES framework
applied to the FV method6. Indeed, in their explicitly filtered FV approach, Vreman
and Geurts (2002) suggest7:

τn−0
ij ≈ ρ̄n+1ũn+1

i ũn+1
j − ρ̄nũni ũnj (4.16)

thus neglecting the effect of the pressure and viscous terms. As the approach is
explicit, the filter used on the n level variables, to provide those at the level n + 1,
is the same basic filter which determines the n level variables themselves. The full
scale-similar approximation8, including pressure and viscous terms, has been instead
proposed by Denaro (2012):

τn−0
ij ≈ τm−nij (4.17)

with m = n+ 1. In practice, as the method is based on the implicit approach (i.e., a
straightforward FV method), variables at the levelm are obtained from those at the level
n (i.e., the resolved variables) by the means of equation (4.12), thus integrating the exact
shape functions of the underlying numerical method. However, this was practically
possible due to the use of a fully structured in-house code.

6Notice, however, that none of these models has been originally presented in the GLES framework nor with a compressible
formulation. For the sake of clarity, however, they are reported here using the general GLES form.

7In practice they use a mixed model with an eddy viscosity based on the Smagorinsky model.
8Within a dynamic, two parameters, mixed model.
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4.3. Structural modeling options in the FV method

Besides merits and demerits of these two proposals, which will be better clarified
in the following, the scale-similar formulation has clear computational advantages with
respect to the previous ones. Indeed, for a basic scale-similar model of the form (4.17),
the required operations amount to filtering five variables and, because of the inclu-
sion of viscous terms, computing the gradient of the three filtered velocity components
(those at the basic n level being readily available). A similar, but even more interesting,
advantage arises when the use of a dynamic procedure is considered. Indeed, in this
case τm−nij should be computed in any case (see section 3.4) and the overall additional
costs of a dynamic, two parameters, mixed model would still be those described above,
but just related to the additional test filter level r = m + 1 and the computation of the
tensor τ r−mij . For such a dynamic procedure with a mixed model, the use of a second
test filter might become troublesome (Anderson and Meneveau, 1999) and a differen-
tial model might be better suited; nonetheless, a priori tests performed by Chumakov
(2006) have shown that, especially for LES with low resolution, scale-similar models
are clearly superior with respect to differential approximations.

For these reasons, the scale-similar approach has been chosen as the only viable op-
tion for a structural model to be implemented in a general purpose FV solver. However,
because of the inherent difficulty of implementing the filtering as in the previous cases,
a different formulation has been developed, as described below.

4.3.4 Present proposal: a modified scale-similar term

The key aspect of any scale-similar model is the filter, or general operator, that is ap-
plied to the resolved variables to obtain tensors of the form (4.17). The approach pro-
posed by Denaro (2012) is fully consistent with the general GLES framework applied
to the FV method, does not neglect any term and uses the unique exact form for the
filter which is consistent with the FV method:

φ̄n+1 (xi, t) =
N∑
j=1

φ̄n (xj, t)
1

Vi

∫
Ωi

Ψj (ξ) dξ (4.18)

However, extending such approach to general purpose FV solvers is far from trivial
and, in most cases, the available information is such that the filter (4.18) produces an
identity. In order to circumvent such limit, here it is proposed to use a different form
of filter, which is more easily adaptable to any unstructured grid. This is achievable if,
instead of the volume Ωi of the given cell, an extended volume Ω∗i , with measure V ∗i , is
considered for the filter. In this case, even considering a constant shape function Ψj on
the volume Ωj would produce a meaningful filtering formula:

φ̄n+1 (xi, t) =
N∑
j=1

φ̄n (xj, t)
1

V ∗i

∫
Ω∗i

Ψj (ξ) dξ =

∑Nb
j=1 φ̄

n (xj, t)Vj∑Nb
j=1 Vj

(4.19)

where the summation is intended over a set of Nb neighbor cells for the given cell i;
in practice, a volume weighted average as also proposed by Griman et al. (2010). While
this filter essentially looses the connection with the sampling part of the FV method,
this could be approximately restored by not considering all the cells in the volume Ω∗i ,
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but only alternating layers of cells. However, extending the approach beyond the first
layer of neighbor cells (in this case would simply amount to exclude the cell i from the
sum) becomes impractical and such approach is thus not considered, also because it has
been shown that sampling is not relevant for modeling purposes.

With the filter (4.19) at hand, the last issue that needs to be addressed is the resulting
accuracy that would be obtained by using it in producing a scale-similar model of the
form τm−nij . This analysis can be performed by recurring, again, at the hypotheses
introduced in section 4.2. Namely, that the action of the top-hat filter underlying the
FV operator and that of the discrete filter (4.19) are both representable as (m > n):

φ̄m = φ̄n + ∆2
m,nMk

∂2φ̄n

∂x2
k

+O
(
∆4
m,n

)
∆2
m,n =

m−n∑
j=1

(
∆n+j

)2 (4.20)

Neglecting, for the moment, the implications of such assumption, one can then an-
alyze the resulting scale-similar term τm−nij and compare it with the true SGS stress
tensor τn−0

ij . This is easily done as, from section 4.3.2, emerges that:

τn−0
ij =

Constant ∆2
n,0 part︷ ︸︸ ︷

∆2
n,0f

(
ρ̄n, ũni , ũ

n
j

)
+

Viscous variable ∆2
n,0 part︷ ︸︸ ︷

h
(
ρ̄n, ũnj

) ∂∆2
n,0

∂xi
+ h (ρ̄n, ũni )

∂∆2
n,0

∂xj
+O

(
∆4
n,0

)
(4.21)

where the first term represents all the terms with constant ∆2
n,0, while the second

and third term represent the variable ∆2
n,0 part, which is only due to the viscous terms.

Both functional forms, f and h, are easily obtained from equation (4.15) thus, for the
sake of conciseness, they are not reported here. From equation (4.7), a similar analysis
performed for the scale-similar term produces instead (m > n):

τm−nij =

Constant ∆2
m,n part︷ ︸︸ ︷

∆2
m,nf

(
ρ̄n, ũni , ũ

n
j

)
+

Viscous variable ∆2
m,n part︷ ︸︸ ︷

h
(
ρ̄n, ũnj

) ∂∆2
m,n

∂xi
+ h (ρ̄n, ũni )

∂∆2
m,n

∂xj
+O

(
∆4
m,n

)
(4.22)

where, notably, f and hmaintain the same functional form as in (4.21), but the order
of the scaling is now ∆2

m,n, instead of ∆2
n,0. This notable fact implies that, despite all,

only zero order terms would be well predicted. Unfortunately, the form of the SGS
stresses in GLES is such that zero order terms are exactly null, hence a model of the
form τm−nij is largely useless. It is worth mentioning, however, that this is explicitly
due to the enlarged filter (4.19), while in the work of Vreman and Geurts (2002) and in
the work of Denaro (2012) the two factors, ∆2

m,n and ∆2
n,0, are exactly the same and no

consistency error arises.
In order to restore, at least, a partial accuracy, the novel approach proposed here is
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4.3. Structural modeling options in the FV method

based on the following estimate:

∆2
n,0

∆2
m,n

τm−nij − τn−0
ij =∆2

n,0

[
h (ρ̄n, ũni ) βj + h

(
ρ̄n, ũnj

)
βi
]

+O
(
∆2
n,0∆2

m,n

)
+O

(
∆4
n,0

) (4.23)

where:

βi =
1

∆2
m,n

∂∆2
m,n

∂xi
− 1

∆2
n,0

∂∆2
n,0

∂xi
=

∂

∂xi

(
ln ∆2

m,n − ln ∆2
n,0

)
=

∂

∂xi

[
ln

(
∆2
m,n

∆2
n,0

)]
(4.24)

From which follows that a scale-similar model of the form (∆2
n,0/∆

2
m,n)τm−nij would

approximate with O(∆2
n,0∆2

m,n) accuracy the convective and pressure part of τn−0
ij as

well as its viscous part at constant ∆2
n,0. If, in addition, the ratio (∆2

m,n/∆
2
n,0) is con-

stant in space, the same accuracy would be restored for the whole SGS stress tensor.
This form of structural model is the one proposed here for the use in general unstruc-
tured FV solvers and further investigated, in the form proposed in the next section, in
the remaining part of the thesis. Note that similar arguments have been proposed before
by Pruett (1997); Pruett et al. (2001), even if in a completely different context. Also, it
seems relevant to note that the procedure developed by Iovieno and Tordella (2003) to
deal with commutation errors in the CLES framework has strong similarities with the
SGS model proposed above, as in fact both provide a similarity contribution for all the
terms in the equations, including linear ones, and both have scaling factors depending
on the filter width. However, while the overall accuracy is also the same and determined
by similar Taylor series arguments, the specific arrangement of the terms adopted in the
former work is different, as it reflects the underlying CLES approach and the specific
error term modeled, which is the one reported in equation (2.45).

Before closing this section, it is also worth highlighting under which conditions the
previous analysis can be considered valid. A first remarkable fact is that the previous
analysis is actually independent from the specific approximation (4.20). That is, as
long as it holds for all the filtering levels involved, the resulting functional forms f and
h will be the same for the two tensors and will multiply the same leading order term
of the approximation. In practice, multiplying τm−nij by (∆2

n,0/∆
2
m,n)k/2 will always

cancel the order k error term. This also means that a variable viscosity and the mixed
terms in equation (4.20), two effects which have been neglected in the analysis, are
automatically taken into account. Thus, the effectively necessary conditions for the
previous analysis to hold are that the filter (4.19) preserves, in passing from Ωi to Ω∗i ,
both the centroid (to avoid spurious first order terms in τm−nij ) and the second order
moments of the filtering volume (to have the same functional forms f and h for both
τm−nij and τn−0

ij ). Notice that, in general, this is not difficult to achieve as the only
additional effective requirement for the filter is that its weights remain positive to be
still representative of neighbor volumes. Their effective magnitude can indeed be quite
arbitrary and still represent an ideal enlarged volume, not necessarily corresponding to
the volume of a given set of cells but just given fractions of their single volumes.
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Chapter 4. Application of the GLES framework to the FV method

4.4 A dynamic mixed SGS model for GLES with the FV method

The filter proposed in (4.19) could be easily adapted to preserve the two basic con-
straints required by the analysis at the previous section. Indeed, with methods similar
to those developed by Sagaut and Grohens (1999), Haselbacher and Vasilyev (2003)
or Marsden et al. (2002), the volume weights could be easily set to preserve any spe-
cific constraint. However, for how easy it can be, this approach would still require the
computation of the matrixMij in (4.14) and the storage of nine weights per cell. This
approximately amounts to 150% the storage of a compressible solver and 225% for
an incompressible one9. Also, the computation of the weights can be cumbersome for
general polyhedral cells10 (Lien and Kajiya, 1984; Dobrovolskis, 1996; Jasak, 1996).

For these reasons and to keep, in general, the approach as simple as possible, the
filter actually used in this work is not based on any correction and simply uses formula
(4.19) over a set of neighbor cells, with the weights being exactly the volumes of the
cells. Nonetheless, to overcome possible deficiencies of this approach, the model is
implemented with a variable coefficient Css trough a dynamic procedure. A heuristic
justification for this can be found in the fact that a possible error in the filter moments,
if equal for all the moments, can be compensated by a unique constant11. Also, while
an error in the centroid of the filter is hardly compensated by a multiplicative constant,
such error should be less frequent in general as the computational stencils of the filter
tend to be symmetrical in most cases. Moreover, for a filter centroid still being within
the original cell, one could also argue that, having assumed constant shape functions,
no error would arise. In practice, to also compensate the lack of dissipation typically
associated to scale-similar models, the overall SGS model proposed is a dynamic, two
parameters, mixed model with a scale-similar term as proposed in the previous section
and an eddy-viscosity part based on the mixed scale model (see section 2.4.2).

Hence, for resolved variables at level n, a first test filter at level m > n and a
secondary test filter at level r > m, the proposed parameterization for the SGS stresses
at the basic (n) and test (m) filter levels reads:

τn−0
ij =Cev2ρ̄

n
∣∣∣S̃n∣∣∣α (kn−mSGS

) 1−α
2 ∆1+α

n,0

(
S̃nij −

1

3
S̃nggδij

)
+ Css

(
∆n,0

∆m,n

)2

τm−nij

τm−0
ij =Cev2ρ̄

m
∣∣∣S̃m∣∣∣α (km−rSGS

) 1−α
2 ∆1+α

m,0

(
S̃mij −

1

3
S̃mggδij

)
+ Css

(
∆m,0

∆r,m

)2

τ r−mij

(4.25)

9These, somehow, pessimistic estimates do not take into account the storage required for the geometric information.
10Nonetheless, a method for such computation has been developed as part of this thesis, as shown in chapter 5.
11Notice that this is a typical situation for a fully structured uniform grid, where the enlarged filter gives moments which differ

from the original ones by a common factor. See next section.
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4.4. A dynamic mixed SGS model for GLES with the FV method

where Cev and Css are the constants to be computed dynamically and:

kn−mSGS =
1

2

(
ũnj − ũmj

) (
ũnj − ũmj

)
km−rSGS =

1

2

(
ũmj − ũrj

) (
ũmj − ũrj

)
∣∣∣S̃n∣∣∣ =

√
2S̃nijS̃

n
ij∣∣∣S̃m∣∣∣ =

√
2S̃mij S̃

m
ij

(4.26)

In the numerical tests performed in chapters 6 and 7, different filter stencils and
parameters α are used so, for the moment, these are left unspecified. The only thing
to notice is that, for practical reasons, the filter to obtain the level r variables is simply
based on further r − m applications of the filter used to obtain the level m variables,
which might lead to a slight inconsistency with respect to the parameterization at the
level n. Finally, it is worth mentioning that, in the practical implementation of the
model, the level n variables always refer to the variables actually resolved in the solver.
The levels m and r are instead always obtained from a single application of the test
filter (r = m + 1 = n + 2). Again, it is assumed here that the dynamic procedure, as
illustrated below, can provide a cure for any possible inconsistency among the filtering
procedures at the different levels.

Besides the different proposal for the scale-similar term and the use of the GGI
reported in (3.15), the present dynamic procedure follows the classical approach de-
scribed in section 2.4.2. Expressing the relations (4.25) in compact form as:

τn−0
ij = CevA

n
ij + CssB

n
ij

τm−0
ij = CevA

m
ij + CssB

m
ij

(4.27)

the constants in the model are computed by the same least-squares error minimiza-
tion, leading to:

Css =
AijAijLrsBrs − LijAijArsBrs

AijAijBrsBrs − AijBijArsBrs

Cev =
LijAij − CssAijBij

AijAij

(4.28)

with Aij = Amij − Anij , Bij = Bm
ij − Bn

ij and Lij = τm−nij . By comparison with
the analogous relations (2.38) in the IFCLES approach, it can be appreciated the lack
of filtered tensors in the present dynamic procedure, from which results the saving in
computational costs described in section 3.4.

As a matter of fact, the dynamic procedure as implemented above still is an approx-
imate procedure to enforce an algebraic equality in a least squares sense. As such, it
comes at no surprise that the resulting coefficients are affected by the same problematic
behavior appearing in the CLES approach: both constants can become negative, which
is physically unacceptable, can assume large values and show very rapid fluctuations.
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Chapter 4. Application of the GLES framework to the FV method

In order to prevent instabilities in the computation, the strategy adopted here is based
on a simple clipping procedure. In particular, the following limits are adopted:

0 ≤ Css ≤ 2

0 ≤ Cev ≤ C1−α
q C2α

s

(4.29)

with Cq = 0.2 and Cs = 0.18. The limit on the eddy viscosity constant is simply
the theoretical value of the constant as emerges from analyses in HIT with spectral cut-
off filters (Sagaut, 2006). While this might appear strongly limited, it should be men-
tioned that such values are higher than those usually employed with the respective static
models (Yoshizawa et al., 2000) and in line with the most advanced theoretical stud-
ies available (Meldi et al., 2011; Meyers and Sagaut, 2006), that for the Smagorinsky
model coefficient predict Cs ≤ 0.18 as satisfied even under the most extreme events.
Thus, using larger values appears as largely unphysical. For what concerns the scale-
similar constant Css, the chosen maximum value has been determined by the auxiliary
analysis proposed in the next section and by the following heuristic argument. For the
present test filter applied on a uniform structured grid with only nearest neighbors cells
in the stencil, the ratio ∆2

n,0/∆
2
m,n in the model is about 0.27 and the maximum value

Css = 2 leads to an overall model coefficient which is in line with that proposed by
Liu et al. (1994) for a similar model. Of course, different choices are possible and a
sensitivity exists on these parameters but, nonetheless, these values have been found
optimal for most of the present applications.

Despite the straightforward applicability of the present modeling strategy also for
the energy equation or, at least, the SGS heat flux, this route has not been followed in
the present thesis. Instead, modeling in the energy equation has been formulated on the
basis of a simple constant SGS Prandtl number, leading to:

εn−0
j ≈

(
ρ̄nũnj T̃

n − ρujT
)
≈ 2Cpρ̄

n

Prsgs
Cev

∣∣∣S̃n∣∣∣α (kn−mSGS

) 1−α
2 ∆1+α

n,0

∂T̃ n

∂xj
(4.30)

The main reason for this choice is that, having included a structural model in the
momentum equation should already represent an enhancement in the transport of the
energy, while the straight inclusion of a scale similar term in the energy equation might
lead to unphysical unboundedness, which should be avoided. For the same reason,
using an overly advanced dissipation term appears as largely useless in the present
context and a constant SGS Prandtl number Prsgs = 0.85 is adopted in all the cases.

4.5 A numerical analysis interlude

A fact that might, maybe, pass unnoticed is that, within the FV method, the structural
modeling option is always suitable, even for linear 1D equations, because the FV op-
erator is always in place. Actually, as emerges from the considerations in the sections
3.6.2 and 3.6.3, it is indeed suitable for any numerical method, as shown by Faucon-
nier et al. (2007, 2008, 2009) in the finite difference case and by Oberai and Wanderer
(2005b) in a more general variational formulation.

As a consequence, it becomes interesting to apply the proposed dynamic scale-
similar model to a simplified 1D linear equation to further analyze it and, possibly,
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4.5. A numerical analysis interlude

correct its behavior. More specifically, such analysis is used here as a further justifi-
cation for the chosen clipping limits for the Css constant. The main limitation of such
analysis, of course, is due to the very different features of the underlying equation,
especially the lack of three-dimensionality and nonlinear terms.

4.5.1 Model equation

In order to proceed, a simple linear 1D transport equation for a generic variable φ is
considered in a FV formulation:

∂

∂t

1

Vi

∫
Ωi

φdx+
1

Vi

∫
Ωi

∂

∂x

(
Uφ− ν ∂φ

∂x

)
dx (4.31)

with U the constant transport velocity and ν the constant diffusivity. Even before
introducing the discretization and in this simple setting, it should be apparent that equa-
tion (4.31) already introduces a closure problem, because prescribes the evolution of the
FV variable φ̄:

φ̄ =
1

Vi

∫
Ωi

φdx (4.32)

in terms of local values of φ. In particular, the closure problem can also be inter-
preted as due to the fact that the volume integral does not commute with the spatial
derivative inside it12. The usual approach in the FV community is to simply neglect
this fact, within a second order accurate discretization; however, it is clear that there is
a discrepancy which is independent from the numerical discretization, and indeed has
to be faced for higher order approximations. For this reason, it seems more appropriate
to reformulate equation (4.31) as follows:

∂φ̄

∂t
+

1

Vi

∫
Ωi

∂

∂x

(
Uφ̄− ν ∂φ̄

∂x

)
dx =

1

Vi

∫
Ωi

∂

∂x

SGS flux τ︷ ︸︸ ︷[
U
(
φ̄− φ

)
− ν

∂
(
φ̄− φ

)
∂x

]
dx

(4.33)

and to interpret the term on the right hand side as a SGS flux τ which, in theory,
needs to be modeled. In particular, according to the developments in the previous
section, the model adopted here is:

τ = Cα

U ( ˜̄φ− φ̄
)
− ν

∂
(

˜̄φ− φ̄
)

∂x

 = Cψ (4.34)

12If such commutation is invoked, then the FV integral formulation reverts to the differential one.
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where the tilde in ˜̄φ denotes the application of a test filter and the constant C is
computed as a result of a dynamic procedure:

C =
U
(
φ̄− ˜̄φ

)
− ν ∂(φ̄−

˜̄φ)
∂x

α

[
U
(

˜̄φ− φ̄
)
− ν ∂(

˜̄φ−φ̄)
∂x

]
− β

[
U

(
ˆ̄̃
φ− ˜̄φ

)
− ν

∂

(
ˆ̄̃
φ− ˜̄φ

)
∂x

] (4.35)

The hat in
ˆ̄̃
φ denotes the application of a second test filter while, for the moment, the

parameters α and β are unspecified. Notice that, in this special case, the constant C is
an exact solution of the dynamic procedure based on the following Germano Identity:

τ − T = U
(
φ̄− ˜̄φ

)
− ν

∂
(
φ̄− ˜̄φ

)
∂x

(4.36)

where T is the SGS flux at the test filter level and is modeled with the second term in
the denominator of C. At this point is then possible to introduce the spatial discretiza-
tion13.

4.5.2 Discretization

Considering a uniform grid with spacing ∆x and variables φ̄i located in the centroids
of the cells xi, equation (4.33) can be put in the following equivalent form, after inte-
gration by parts:

∂φ̄i
∂t

+
1

∆x

(
Uφ̄− ν ∂φ̄

∂x
− Cψ

) ∣∣∣∣i+ 1
2

i− 1
2

= 0 (4.37)

It is worth noting how, even in the form above, a closure problem seems to appear,
as variables are known in the cell centers but their values are needed on the cell faces
xi± 1

2
. It should be clear now that this closure problem is relative to the sampling part

in the FV operator, while the closure problem addressed above with τ is related to the
top-hat part of the FV operator. Also, it is evident how the two problems are completely
independent and manageable separately as, for example, different shape functions can
now be selected for the interpolation. Here, for simplicity, linear shape functions are
selected but, some inconsistencies are purposely/inevitably introduced, as almost al-
ways happens in the computational practice. For example, the face value φ̄i+ 1

2
in the

convective term is computed as follows:

φ̄i+ 1
2

=
1− γ

2

(
φ̄i + φ̄i+1

)
+
γ

2

[(
φ̄i +

∆x

2

∂φ̄

∂x

∣∣∣∣
i

)
+

(
φ̄i+1 −

∆x

2

∂φ̄

∂x

∣∣∣∣
i+1

)]
=

(
φ̄i + φ̄i+1

)
2

+
γ∆x

4

(
∂φ̄

∂x

∣∣∣∣
i

− ∂φ̄

∂x

∣∣∣∣
i+1

) (4.38)

13The temporal discretization is not influent for the following developments.
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where the first term represents the only consistent part due to the linear shape func-
tion. The second part however, which is a typical correction used in unstructured FV
codes to enhance the resolution capabilities of the scheme14, is completely spurious and
introduces the gradient in the cell center as additional unknown. In the present case,
the discretization of this term according to the available options for unstructured codes
always leads to:

∂φ̄

∂x

∣∣∣∣
i

=

(
φ̄i+1 − φ̄i−1

)
2∆x

(4.39)

and the resulting discretization for the full convective term becomes:

φ̄
∣∣i+ 1

2

i− 1
2

=

(
φ̄i+1 − φ̄i−1

)
2

+
γ

8

[
2
(
φ̄i+1 − φ̄i−1

)
−
(
φ̄i+2 − φ̄i−2

)]
(4.40)

The parameter γ will be specified in the following as either 1 or 0, according to
the scheme to be selected. For the diffusive term, instead, all the available options for
unstructured codes lead, in this 1D case, to the following discretization:

∂φ̄

∂x

∣∣∣∣i+ 1
2

i− 1
2

=

(
φ̄i+1 − φ̄i

)
∆x

−
(
φ̄i − φ̄i−1

)
∆x

=
φ̄i+1 − 2φ̄i + φ̄i−1

∆x
(4.41)

which is fully consistent with the underlying linear shape functions. The convective
part in the model for τ is also discretized in a consistent way:

αU
[
C
(

˜̄φ− φ̄
)] ∣∣∣∣i+ 1

2

i− 1
2

= αU
Ci+1

(
˜̄φi+1 − φ̄i+1

)
− Ci−1

(
˜̄φi−1 − φ̄i−1

)
2

(4.42)

For the diffusive part, instead, two discretization methods are considered. The first,
inconsistent, one follows the discretization of the convective part:

αν

C∂
(

˜̄φ− φ̄
)

∂x

 ∣∣∣∣∣
i+ 1

2

i− 1
2

= αν
Ci+1

(
∂ ˜̄φ
∂x

∣∣
i+1
− ∂φ̄

∂x

∣∣
i+1

)
− Ci−1

(
∂ ˜̄φ
∂x

∣∣
i−1
− ∂φ̄

∂x

∣∣
i−1

)
2

(4.43)

The second option, instead, is a consistent one and follows the discretization (4.41)

14This scheme is, in practice, the default LES option in Fluent R© and the default scheme used in this thesis. See chapter 5 for
additional details.
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for the original diffusive term:

αν

C∂
(

˜̄φ− φ̄
)

∂x

 ∣∣∣∣∣
i+ 1

2

i− 1
2

=αν

 2CiCi+1

Ci + Ci+1

(
˜̄φi+1 − ˜̄φi

)
−
(
φ̄i+1 − φ̄i

)
∆x


−αν

 2CiCi−1

Ci + Ci−1

(
˜̄φi − ˜̄φi−1

)
−
(
φ̄i − φ̄i−1

)
∆x


(4.44)

where the variable coefficient C is interpolated according to the usual approach
for variable viscosities. However, it should be noted, by looking at equation (4.35),
that, whatever discretization is used for ψ, there will always be an inconsistency as Ci
necessarily requires gradients in the cell center. Actually, this is not strictly required as
here C could be instead computed on the faces themselves. While this could certainly
improve the overall consistency, and similar approaches in SGS modeling have been
tried for different terms (Viré and Knaepen, 2009), it should be noted that the practical
relevance of such approach is certainly null for unstructured codes, as there dynamic
constants are necessarily computed in the cell centers. The last required discretization

is for the test filter, which defines ˜̄φi and
ˆ̄̃
φi. Again, two options are available. One is

based on equation (4.18), which is possible because the shape functions are known, and
leads to:

˜̄φi =
1

∆x

∫ xi+
∆x
2

xi−∆x
2

φ̄ (x) dx =
1

∆x

∫ xi

xi−∆x
2

φ̄i−1 +
φ̄i − φ̄i−1

∆x
(x− xi−1) dx

+
1

∆x

∫ xi+
∆x
2

xi

φ̄i +
φ̄i+1 − φ̄i

∆x
(x− xi) dx

=
1

8

(
φ̄i−1 + 6φ̄i + φ̄i+1

)
(4.45)

Analogously:

ˆ̄̃
φi =

1

8

(
˜̄φi−1 + 6˜̄φi + ˜̄φi+1

)
=

1

64

(
φ̄i−2 + 12φ̄i−1 + 38φ̄i + 12φ̄i+1 + φ̄i+2

)
(4.46)

The second option is based on equation (4.19) and corresponds to the approach
adopted here for the implementation of the scale-similar model:

˜̄φi =
1

3

(
φ̄i−1 + φ̄i + φ̄i+1

)
ˆ̄̃
φi =

1

3

(
˜̄φi−1 + ˜̄φi + ˜̄φi+1

)
=

1

9

(
φ̄i−2 + 2φ̄i−1 + 3φ̄i + 2φ̄i+1 + φ̄i+2

) (4.47)
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Notice that, the underlying second order approximations of the two filters are:

1

8

(
φ̄i−1 + 6φ̄i + φ̄i+1

)
=φ̄i +

2

8
∆x2∂

2φ̄

∂x2

∣∣
i

1

3

(
φ̄i−1 + φ̄i + φ̄i+1

)
=φ̄i +

2

27
(3∆x)2 ∂

2φ̄

∂x2

∣∣
i

(4.48)

thus, actually, none of the two provides the exact value ∆x2/24 for the second order
moment, which can be seen as a further justification of the overall approach proposed
in section 4.3. Nonetheless, it should be appreciated that the inconsistent filter, when
properly scaled (by α, see below), provides a value which is much closer to the exact
one. Without scaling, of course, the error is much higher15.

It should be clear now that the parameters α and β refer, respectively, to the ratios
∆2
n,0/∆

2
m,n and ∆2

m,0/∆
2
r,m in (4.25). Thus, when the consistent filter (4.45) is used,

they are assumed both unitary. In contrast, when the inconsistent filter (4.47) is used,
they are assigned the values:

α =
∆x2

(3∆x)2 =
1

9

β =
∆x2 + (3∆x)2

(3∆x)2 =
10

9

(4.49)

Table 4.1: Spatial discretization options for equation (4.37).

Consistent discretization Inconsistent discretization

Convective term (4.40), γ = 0 (4.40), γ = 1

Diffusive term (4.41)

Model - Convective part (4.42)

Model - Diffusive part (4.44) (4.43)

Filter (4.45-4.46) (4.47)

α 1 1/9

β 1 10/9

For the sake of clarity, the previous discretization options are all summarized in Ta-
ble 4.1.When these are used within equation (4.37), the resulting approximation finally

15Following the same reasoning, it can be shown that excluding the central cell i from the filter stencil would provide an even
better estimate of the filter moment, if properly scaled.
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reads:

∂φ̄i
∂t

=− U
(
φ̄i+1 − φ̄i−1

)
2∆x

− Uγ

8∆x

[
2
(
φ̄i+1 − φ̄i−1

)
−
(
φ̄i+2 − φ̄i−2

)]
+ν

φ̄i+1 − 2φ̄i + φ̄i−1

∆x2

+αU
Ci+1

(
˜̄φi+1 − φ̄i+1

)
− Ci−1

(
˜̄φi−1 − φ̄i−1

)
2∆x

− αν
∆x

C∂
(

˜̄φ− φ̄
)

∂x

 ∣∣∣∣∣
i+ 1

2

i− 1
2

(4.50)

where the last term can be discretized either trough (4.43) or (4.44). It is easy to
show that, in fact, both the filtering methods leads to the exact same discretization for
the model terms, the only difference being a multiplicative constant that can be ab-
sorbed in the definition of the dynamic constant Ci16. Thus, in practice, the only differ-
ence among the two filtering methods is in the computation of Ci, independently from
the discretization used for the diffusive part of the model. In particular, the consistent
filtering approach, after some algebra, can be shown to imply the following dynamic
constant CC

i :

CC
i =

−1

8α− β (10φ̄i−4φ̄i−1−4φ̄i+1−φ̄i−2−φ̄i+2)− 1
Re [11(φ̄i+1−φ̄i−1)−4(φ̄i+2−φ̄i−2)−(φ̄i+3−φ̄i−3)]

(2φ̄i−φ̄i−1−φ̄i+1)− 1
Re [2(φ̄i+1−φ̄i−1)−(φ̄i+2−φ̄i−2)]

(4.51)

while, for the inconsistent one, the dynamic constant CI
i is computed as:

CI
i =

−1

3α− β (φ̄i−1+φ̄i+1−φ̄i−2−φ̄i+2)− 1
Re [(φ̄i+1−φ̄i−1)+(φ̄i+2−φ̄i−2)−(φ̄i+3−φ̄i−3)]

(2φ̄i−φ̄i−1−φ̄i+1)− 1
Re [2(φ̄i+1−φ̄i−1)−(φ̄i+2−φ̄i−2)]

(4.52)

and, in both cases, Re = 2U∆x/ν. In the following, the no model formulation
(both with γ = 0 and γ = 1) is compared, trough a Non linear Spectral Analysis
(NSA), with two model formulations: the consistent one and the inconsistent one, both
with γ = 0. In addition, the inconsistent filter formulation is also evaluated with a
consistent diffusive term and/or with unitary parameters α and β.

4.5.3 Nonlinear Spectral Analysis

From the previous analysis emerges the fact that, overall, the effect of a scale-similar
model in this simplified framework can be interpreted as a modification of the basic dis-
cretization schemes. Also, this interpretation is independent from the specific filtering

16This heuristically confirms the assumption made in section 4.4 that an error introduced by the filter can be, possibly, corrected
by the dynamic procedure.
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approach and from the use, or not, of a dynamic procedure for the computation of the
constant C. In the former case, however, the resulting schemes are strictly nonlinear.

A possible approach to analyze such modified schemes is based on the so called
Nonlinear Spectral Analysis developed by Fauconnier and Dick (2011), which is suit-
able for general nonlinear schemes. In particular, the analysis is aimed at determining,
among other things, the modified wavenumber of a scheme by direct comparison with
an exact spectral discretization, instead of determining its theoretical expression, which
might be impossible for nonlinear schemes.

In practice, to this end, a set of Nr random fields with prescribed spectrum are first
generated. In the present case the selected spectrum E(k) is the one proposed by Pope
(2000):

E (k) = C0ε
2
3k−

5
3

 kL[
(kL)2 + cL

] 1
2


5
3

+p0

e
−β
{
[(kη)4+c4η]

1
4−cη

}
(4.53)

where, given the value U , a prescribed maximum spatial period L0 and the number
n of points over L0, the parameters in the spectrum have been determined as:

L =
L0

6
η =

∆x

2
=

L0

2 (n− 1)
ε =

U3

L
ν =

(
η4ε
)1/3 (4.54)

and the remaining constants fixed at17: p0 = 2, C0 = 1.5, β = 5.2, cL = 6.78 and
cη = 0.4. Each of the Nr fields fj is then constructed by taking the inverse Fourier
transform of the coefficients:

f̂±k =
√
E (k)e±iθ (4.55)

with θ a uniform random number in the interval [−π, π] and i =
√
−1. Finally,

for a given numerical scheme and for each of these random fields fj , the modified
wavenumber k′j(k) can be built by taking the Fourier transform of the signal fj acted
upon by the scheme. For first and second order discrete derivatives the result is:

k′j (k) = R

[
1

if̂k
F
(
δfj
δx

)]
k′j (k) = I

[
1

if̂k
F
(
δ2fj
δx2

)]
(4.56)

where R and I represent, respectively, the real and imaginary parts. As each of
these functions is relative to a single, random realization, they are more meaningfully

17In theory, cL and cη should be determined by the requirements that E(k) and 2νk2E(k) integrate, respectively, to the total
kinetic energy and ε. However, for the present purposes it was not necessary and, for simplicity, high Reynolds values have been
selected.
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presented as means µ within ±2σ bands, with:

µk′ (k) =
1

Nr

Nr∑
j=1

k′j (k)

σk′ (k) =

√√√√ 1

Nr − 1

Nr∑
j=1

[
k′j (k)− µk′ (k)

]2 (4.57)

In the following, all the presented results are relative to Nr = 1000, a grid with
n = 201 points on a period L0 = 2π and U = 10. A representative function fj and the
underlying spectrum function E(k) are depicted in Figure 4.1.
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Figure 4.1: Random function fj (a) and its underlying spectrum (b).

4.5.4 Results

A first interesting comparison is presented in Figure 4.2, where the effect of the param-
eter γ in the convective scheme is analyzed without any model for τ (i.e., C = 0) and
compared with several alternative finite difference discretizations. It is apparent how,
despite the lack of a formal accuracy improvement18, the spectral resolution properties
for γ = 1 are comparable to the ones of a 6th order scheme. This effect is extremely
valuable in LES as, more than the formal accuracy, for a convective scheme is important
to correctly transport the turbulent structures19.

The effect of the scale-similar model and its discretization are instead investigated
in Figure 4.3, for γ = 0 and with a fixed value of the constant C. In particular, for
the consistent discretization (α = 1) the values CC = 1 and CC = 2 are investigated.
However, for the inconsistent discretization (α = 1/9) the constant CI is selected
so that the convective term in the model exactly fits the consistent discretization and
differences can be appreciated only in the diffusive term. As emerges from the relations
(4.48), such value of the constant CI is exactly 27/8 times the value CC used for the

18On nonuniform grids the contribution of γ might even become inconsistent!
19Indeed, the formal accuracy of a scheme might easily break down for the scarcely resolved functions typical of LES.
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Figure 4.2: Effect of the parameter γ in the convective scheme (4.40).

consistent discretization. Also notice that, having a fixed value for the constant in the
model, such schemes are still fully linear and 2σ bands are not necessary.

The main thing emerging from the analysis is that the convective part of the scale
similar model has an effect comparable to the one due to the parameter γ20. In partic-
ular, a 6th order-like spectral behavior is recovered for CC = 2 or CI = 27/4 = 6.75.
A somehow unexpected effect, however, is also apparent for the diffusive term that, for
the consistent discretization, already recovers a 6th order-like behavior for CC = 1,
while a higher constant value somehow disrupts this accuracy. In contrast, an inconsis-
tent discretization for the diffusive term does not have the same appreciable effect and,
despite the favorable behavior at intermediate wavenumbers, the second order accuracy
is inevitably recovered at the grid cut-off, independently from the value of the con-
stant CI . It is worth noting that, differently from the filter, in a general purpose solver
both discretization methods are readily applicable for the diffusive term. However, ac-
cording to the common practice, in this thesis the scale-similar model is implemented
explicitly and, in this case, a higher effectiveness of the diffusive term would imply a
more stringent stability requirement on the time step. For this reason, and because of
the lower sensitivity to the value of the constant, the inconsistent discretization method
is selected in this thesis for the implementation of the diffusive part of the scale-similar
model. Overall, the analysis above also suggests that, despite the formal accuracy of

20Actually, in this simplified 1D framework, there is a full equivalence, as can be easily seen by developing the formula (4.42)
and setting CC = 2γ or CI = (27/4)γ. See also equation (5.49).
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Figure 4.3: Effect of the model constant for a consistent (4.44) and an inconsistent (4.43) discretization
of the diffusive part of the model. Left: convective term. Right: diffusive term. Top: CC = 1,
CI = 27/8. Bottom: CC = 2, CI = 27/4.

the approximations, even in such a rigid 1D linear framework, the use of a scale-similar
model is valuable for the implicitly filtered FV method and, heuristically, provides a
justification for its use in 3D turbulent fields, where the model would also contribute to
the resolution of additional physical effects not present in these tests.

What remains to be assessed is thus the effectiveness of the dynamic scale-similar
model as effectively implementable in the code Fluent R© and compare it with its consis-
tent ideal counterpart. This comparison is thus between a fully consistent discretization
with a dynamic constant CC in the range 0− 1 and the fully inconsistent discretization
with a dynamic constant CI in the tentative range 0 − 27/8, as determined from the
previous static analysis. In both cases γ = 0 is assumed and both the convective and
diffusive term are compared. The certainly expected result of this comparison, pre-
sented in Figure 4.4, is that the dynamic procedure cannot ameliorate the performances
of the static models in this specific linear case, where the filter moment is fixed and
determines the optimum value of the constant in the model, which instead is used here
only as upper limit of the dynamic range. However, it is somehow surprising how the
dynamic procedure for the inconsistent discretization is much less disruptive for the
potential accuracy of the model, while totally annihilates it in the consistent case. Ac-
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Figure 4.4: Present dynamic scale-similar model vs. fully consistent one. (a) Convective term. (b)
Diffusive term. Dashed colored lines: 2σ bands. Full colored lines: mean values.
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Figure 4.5: Present dynamic scale-similar model with γ = 1 and 0 ≤ CI ≤ 2. Correct implementation
(α = 1/10, β = 10/9) vs. incorrect one (α = 1, β = 1). (a) Convective term. (b) Diffusive term.
Dashed colored lines: 2σ bands. Full colored lines: mean values.

tually, as shown by the dashed lines, which represent the 2σ bands around the mean full
lines, the dynamic procedure for the consistent model is likely to ruin even the accuracy
of the basic discretization scheme.

This fact also promotes another consideration: what would be the accuracy of the
present implementation of the model when coupled with γ = 1 in the convective
scheme? Indeed, this is the actual default option for the convective scheme in Fluent R©

and the model should not promote any inaccuracy with respect to the basic scheme. In
practice, for the previously investigated range 0 ≤ CI ≤ 27/8, the resulting 2σ band
appears to be too wide and, after trial and error, a safer option appears to be the range
0 ≤ CI ≤ 2, which has indeed been adopted as default range in the present imple-
mentation of the dynamic scale-similar model (see equation (4.29)). For the sake of
completeness, this implementation (α = 1/10, β = 10/9) is analyzed in Figure 4.5 to-
gether with a wrong implementation, whose scaling factors are assumed unitary (α = 1,
β = 1). The figure shows that, not only the limited range 0− 2 is compatible with the
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accuracy of the underlying scheme, but also that a wrong implementation of the model
is simply unacceptable from the point of view of the accuracy due to the very wide 2σ
band. In practice, for real applications of the model in 3D turbulent fields, it will be
shown that such wrong behavior is likely to leave the basic discretization unaffected,
but the resulting model would be totally useless.

A final note is necessary on the suitability of the dynamic procedure and its effec-
tiveness, which here appears to be, at best, null. However, besides the differences in
the resolved fields, when real 3D turbulent applications are considered, the nature of
the dynamic procedure itself is completely different. Indeed, for the 1D linear case
the Germano Identity is enforced exactly and this has a strong effect on the resulting
scheme, as its suitability as static model does not imply the suitability within a dynamic
procedure21. In contrast, for 3D turbulent fields, the Germano Identity is tensorial and
can only be enforced in a least-squares sense. Thus, not only the enforcement has to
take into account additional 3D effects, but the procedure itself should tend to promote
those parts of the modeling assumption that are more likely to hold, and loosen those
that do not. This, indeed, usually happens for two-parameters mixed models, whose
scale-similar part is strongly promoted because of its higher correlation with the true
SGS stress tensor (Anderson and Meneveau, 1999). As a consequence, in the present
work, the use of the dynamic procedure in the model formulation is retained.

4.6 Effect of the model on the pressure equation

An interesting aspect of the GLES framework, which is not shared with any other LES
approach, is the prescription of a SGS term, in the momentum equation, which is strictly
dependent on the pressure. This difference is due to the fact that, differently from other
approaches, all the linear terms contribute to the SGS stresses in GLES. For functional
modeling assumptions, and from the functional perspective in general, this fact appears
to be irrelevant as, in practice, the pressure term only becomes relevant for compressible
flows and the overall energy balance between resolved and non resolved scales can be
managed with a single eddy viscosity term. However, for structural models explicitly
taking the pressure into account the situation is different. To better understand this
effect, let us consider the pressure equation (3.14):

∂

∂xi

∂

∂xj
(p̄nδij)

n

=
∂2ρ̄n

∂t2
− ∂

∂xi

∂

∂xj

[
ρ̄nũni ũ

n
j + Σ̃n

ij − τn−0
ij

]n
(4.58)

and a simplified numerical framework, with the discretized pressure p̄ni,j,k located in
the cell centers xi,j,k = [xi,j,k, yi,j,k, zi,j,k] of a grid with constant steps ∆x, ∆y, and
∆z. For this setting, with second order accuracy, a straightforward discretization of the
left hand side of equation (4.58) would make use of the linear shape functions for the

21In practice, the use of a Germano Identity, especially for scale-similar models, implies the hypotheses of scale invariance over
a certain range of scales. This, of course, might not hold in general and depends from the spectrum of the underlying function.
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inner derivatives, leading to:

[
∂

∂xi

∂

∂xj
(p̄nδij)

n
] ∣∣∣∣∣

xi,j,k

≈ ∇2
∆x (p̄n) |xi,j,k =

p̄ni+1,j,k − 2p̄ni,j,k + p̄ni−1,j,k

∆x2

+
p̄ni,j+1,k − 2p̄ni,j,k + p̄ni,j−1,k

∆y2

+
p̄ni,j,k+1 − 2p̄ni,j,k + p̄ni,j,k−1

∆z2

(4.59)

with the terms on the right hand side of equation (4.58) discretized with the same
approach. However, this approach would result in an inconsistency as the internal gra-
dient term should instead respect its actual discretization in the momentum equation in
order for the pressure equation to be meaningful. In particular, for a cell-centered FV
approach, the pressure gradient term in the momentum equation is usually discretized
as:

[
∂p̄n

∂xj

n
] ∣∣∣∣∣

xi,j,k

=
1

V

∑
f

nf p̄
n
fAf ≈

1

∆x∆y∆z


(
p̄ni+1,j,k − p̄ni−1,j,k

)
∆y∆z/2(

p̄ni,j+1,k − p̄ni,j−1,k

)
∆x∆z/2(

p̄ni,j,k+1 − p̄ni,j,k−1

)
∆x∆y/2


(4.60)

Thus, a consistent approach should consist in using the linear approximation on this
whole gradient term:

[
∂

∂xi

∂

∂xj
(p̄nδij)

nn
] ∣∣∣∣∣

xi,j,k

≈ ∇2
2∆x (p̄n) |xi,j,k =

p̄ni+2,j,k − 2p̄ni,j,k + p̄ni−2,j,k

4∆x2

+
p̄ni,j+2,k − 2p̄ni,j,k + p̄ni,j−2,k

4∆y2

+
p̄ni,j,k+2 − 2p̄ni,j,k + p̄ni,j,k−2

4∆z2

(4.61)

and a similar discretization for all the remaining terms in the pressure equation.
Hence, a first consequence of this analysis is that equation (4.58), while exact, is not
really suitable for the GLES framework as not representative of the actual computa-
tional approach. Indeed, it has been derived by directly applying the Gi operators to
the true pressure equation. If, instead, the GLES pressure equation is derived, consis-
tently, from the GLES equations (3.9), the still exact result is22:

∂

∂xi

∂

∂xj
(p̄nδij)

nn

=
∂2ρ̄n

∂t2
− ∂

∂xi

∂

∂xj

[
ρ̄nũni ũ

n
j + Σ̃n

ij − τn−0
ij

]nn
− ∂

∂xi

(
∂χn−0

i

∂t

)n
22The procedure, not reported here for the sake of conciseness, amounts to applying the time derivative operator to the continuity

equation, the filtered divergence operator ∂/∂xi(· · · )
n

to the momentum equations and mixing the two.
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(4.62)

and now, not surprisingly, also includes the contribution from the SGS term in the
continuity equation, as one would expect. Unfortunately, equation (4.62), when im-
plemented in co-located FV arrangements23, has the well known drawback of produc-
ing checkerboard solutions, because of the double spacing in the discretization (4.61).
However, here the pressure SGS term comes into play. Indeed, for the present scale-
similar model (4.25), the differential model (4.15) or, as better explained in the next
section, even a reconstruction based model as those in section 4.3.1, the pressure part
in the SGS stresses τn−0

ij is approximated, at the lowest order, as:

δij (p̄n − p) ≈ δij∆
2
n,0Mk

∂2p̄n

∂x2
k

(4.63)

Hence, if this term is compared with the difference in the Taylor series expansions
of the approximations in (4.59) and (4.61):

[
∇2

2∆x (p̄n)−∇2
∆x (p̄n)

]
|xi,j,k ≈

(
∆x2

4

∂4p̄n

∂x4
+

∆y2

4

∂4p̄n

∂y4
+

∆z2

4

∂4p̄n

∂z4

) ∣∣∣∣
xi,j,k

(4.64)

the overall effect of the pressure SGS term appears approximately similar to that of
stabilizing terms used to counteract the pressure checkerboard typical of the approach
(4.62) in co-located FV methods (Ferziger and Perić, 2002):

∂

∂xi

∂

∂xj

(
δij∆2

n,0Mk
∂2p̄n

∂x2
k

)nn
≈ ∂2

∂x2
j

(
∆2
n,0Mk

∂2p̄n

∂x2
k

)
∝C

[
∇2

2∆x (p̄n)−∇2
∆x (p̄n)

]
+O

(
∆2
n,0

) (4.65)

More specifically, besides the difference in the proportionality constant C, the pres-
sure part in the structural model also has additional terms of order ∆2

n,0, due to the
mixed derivatives, not present in (4.64)24. Thus, adding the pressure term in the struc-
tural model has an overall stabilizing effect which should prevent the pressure checker-
board. For the present scale-similar model (4.25), the exact effect of this inclusion is
that the pressure equation is solved for:

∂

∂xi

∂

∂xj
δij

[
p̄n + Css

∆2
n,0

∆2
m,n

(p̄n − p̄m)

]nn
(4.66)

and the checkerboard is avoided due to the coupling effect of the term p̄m. Unfortu-
nately, this auxiliary effect of the scale-similar pressure term can only be effective if it
is discretized consistently. In particular, this means that the pressure part in the scale-
similar term should be updated during the iterations for the pressure equation, in order

23The only ones considered here.
24Actually, even more terms appear if the full second order approximation (4.8) is considered. However, this difference is specif-

ically due to the stencils (4.59) and (4.61) used for the discretization. For full, 27-points, Laplacian stencils the full correspondence
is recovered.

84



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 85 — #107 i
i

i
i

i
i

4.7. Connection with ADM

for the final solution to be effectively representative of the discretization (4.66). While,
in general, this would not be difficult to achieve with a deferred correction approach
(Khosla and Rubin, 1974), the suitability of this modification should confront the fact
that stabilizing terms for the pressure equation are inevitably present in general purpose
solvers and cannot, in general, be removed. At the same time, for general unstructured
solvers, the discretization (4.61) is also largely impractical. As a consequence, in the
present thesis, structural pressure effects in the pressure equation have not been explic-
itly included. It is instead assumed that such role is implicitly played, with sufficient
accuracy, by the stabilizing terms originally present in the discretized pressure equation.
Finally, notice that a pressure treatment similar to the one resulting here from the SGS
model has been proposed by several authors. For example, Dormy (1999) advocated a
similar treatment for an equation of the form (4.58) in order to recover the accuracy of
the correct one (4.62) while using a compact stencil for the Laplacian. An even more
interesting view is furnished by Date (2003), whose reading is recommended because
the pressure equation is directly envisaged in terms of a filtered correction as proposed
here in (4.66), but motivated on the basis of its connection with the Stokes’ hypothesis
for the continuous stresses.

4.7 Connection with ADM

An additional feature of the present GLES framework, which becomes particularly
evident after the introduction of a structural SGS model, is its intimate connection
with the Approximate Deconvolution Modeling (ADM) approach proposed by Stolz
and Adams (1999). This connection has already been mentioned, in section 3.6.1,
with reference to the form of the discretized equations. However, when a structural
SGS model is used, the connection is also practical, as shown in the following. The
connection between ADM and CLES with differential structural models has already
been shown by Stolz et al. (2001b). A similar approach is followed here but, notably,
no commutation for the filter is required as the GLES framework uses the exact same
equations used in ADM.

In order to proceed with the demonstration, it is just necessary to note that, after the
introduction of the scale-similar part of the model in (4.25), and because of the scaling
factor Css∆2

n,0/∆
2
m,n in it, the momentum equations in (3.9) become25:

∂ (ρ̄nũni )

∂t
+

∂

∂xj

[
(ρui)

∗ (ρuj)
∗

ρ∗
+ σ∗ij

]n
= O

(
∆4
n,0

)
σ∗ij = p∗δij − 2µ

(
S∗ij −

1

3
S∗kkδij

)
S∗ij =

1

2

{
∂

∂xj

[
(ρui)

∗

ρ∗

]
+

∂

∂xi

[
(ρuj)

∗

ρ∗

]} (4.67)

25A similar reasoning could be done for the remaining equations if a proper structural SGS model is used in them too.

85



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 86 — #108 i
i

i
i

i
i

Chapter 4. Application of the GLES framework to the FV method

where the asterisk in the superscript denotes variables of the form:

φ∗ = φ̄n − Css∆2
n,0Mk

∂2φ̄n

∂x2
k

+O
(
∆4
n,0

)
∆2
n,m =

n−m∑
j=1

(
∆m+j

)2 (4.68)

and the whole equation (4.67) is a direct consequence of equations (4.7) and (4.15),
their underlying hypotheses (e.g., µ =constant) and the following two relations derived
in Appendix E:

(ρui)
∗ (ρuj)

∗

ρ∗
=ρ̄nũni ũ

n
j − Css∆2

n,0Mk

(
∂2ρ̄nũni ũ

n
j

∂x2
k

− 2ρ̄n
∂ũni
∂xk

∂ũnj
∂xk

)
+O

(
∆4
n,0

)
(ρui)

∗

ρ∗
=ũni − Css∆2

n,0Mk

(
∂2ũni
∂x2

k

+
2

ρ̄n
∂ρ̄n

∂xk

∂ũni
∂xk

)
+O

(
∆4
n,0

)
(4.69)

Thus, by recognizing that (4.68) is analogous to the deconvolution/reconstruction
relation (4.13), the connection between GLES and ADM becomes evident, as equa-
tions (4.67) use reconstructed fluxes to advance the filtered momentum components. In
particular, for the present scale-similar model, only second order terms can be correctly
reconstructed, thus the overall approximation is limited to the fourth order. In contrast,
ADM is based on explicit filtering and arbitrary order reconstruction trough equation
(4.9). With this connection, the dynamic procedure can then be also interpreted as a
dynamic reconstruction of second order terms in a second order ADM approach.

It is worth noting that, as for the pressure term, the action of the diffusive term on the
deconvolved variables in (4.69) can be interpreted as the addition of an hyper-viscosity
term. However, because of the specific implementation adopted for the viscous part of
the scale-similar model, the resulting effect is possibly limited (see section 4.5.4).

4.8 On the Galilean invariance in the GLES framework

Before closing this chapter, it seems appropriate to finally point out a classical criticism
on the proposed arrangement of the terms in the GLES equations (3.9), which is the
lack of Galilean invariance for some of the terms (Speziale, 1985). While the matter
deserves some attention in terms of SGS modeling, as shown in the following, such a
criticism can however be considered as highly unmotivated, for three main reasons.

The first, most important one, is that for general Gi operators, whose kernels arbi-
trarily vary in space, Galilean invariance is not preserved in any case, independently
from the specific arrangement of the terms, because the resulting ¯(· · · )n variables are
not Galilean invariant themselves (Sagaut, 2006).

A less solid, but nonetheless valid, motivation is that Galilean invariance is not nec-
essarily preserved when the equations are discretized (Bernardini et al., 2013), espe-
cially because such invariance depends from the combined discretization of the time
derivative term and the convective term.

Indeed, and this brings in the third reason, the Galilean invariance for the single
terms in the equations does not even hold for the pure NSE and it appears as completely
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4.8. On the Galilean invariance in the GLES framework

arbitrary to have such a requirement for the GLES equations (or any other form of LES
equations). More specifically, in the pure NSE, the spurious term arising from the
lack of invariance of the time derivative term exactly cancels an analogous spurious
term arising from the convective part, leading to the full invariance of the NSE. What
happens for the GLES equations is exactly the same, with the difference that the lack of
Galilean invariance is common to the resolved convective term, the SGS term and the
time derivative term. Their sum, however, exactly recovers the full Galilean invariance.
To show this, let us consider the following coordinates transformation:

t∗ = t

x∗i = xi − cit
(4.70)

between the fixed inertial frame (xi, t) and the one (x∗i , t
∗), moving at a constant

speed ci with respect to the fixed one, as depicted in Figure 4.6.

xi xi
*

cit

Figure 4.6: Translation of the reference frame in a Galilean transformation.

Under this coordinate transformation, flow variables transform as (Pope, 2000; Pruett,
2000):

u∗i (x∗i , t
∗) = ui (xi, t)− ci

p∗ (x∗i , t
∗) = p (xi, t)

ρ∗ (x∗i , t
∗) = ρ (xi, t)

(4.71)

As already stated, these transformations do not hold in LES/GLES if the operators
Gi do not preserve themselves the Galilean invariance. In practice this is never the case
but, for the sake of the discussion, here this is assumed to be true. In this case, after the
application of n operators Gi, the relations (4.71) become:

ũn∗i (x∗i , t
∗) = ũni (xi, t)− ci

p̄n∗ (x∗i , t
∗) = p̄n (xi, t)

ρ̄n∗ (x∗i , t
∗) = ρ̄n (xi, t)

(4.72)

Moreover, independently from the operators Gi, the derivative operators transform
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Chapter 4. Application of the GLES framework to the FV method

as:

∂

∂t
=

(
∂t∗

∂t

)
∂

∂t∗
+

(
∂x∗i
∂t

)
∂

∂x∗i
=

∂

∂t∗
− ci

∂

∂x∗i
∂

∂xi
=

(
∂t∗

∂xi

)
∂

∂t∗
+

(
∂x∗i
∂xi

)
∂

∂x∗i
=

∂

∂x∗i

(4.73)

Thus, with reference to the momentum equation:

∂ (ρ̄nũni )

∂t
+

∂

∂xj

(
ρ̄nũni ũ

n
j + p̄nδij + Σ̃n

ij

)n
=

∂

∂xj

(
τn−0
ij

)n
(4.74)

the pressure and diffusive terms exactly preserve the Galilean invariance:

p̄nδij + Σ̃n
ij = p̄n∗δij + Σ̃n∗

ij︸ ︷︷ ︸
TE

(4.75)

In contrast, the remaining terms do not. For the time derivative term the following
transformation is obtained26:

∂ (ρ̄nũni )

∂t
=
∂ (ρ∗u∗i + ρ∗ci)

∂t

n

=
∂ (ρ∗u∗i + ρ∗ci)

∂t∗

n∗

− cj
∂ (ρ∗u∗i + ρ∗ci)

∂x∗j

n∗

=
∂ (ρ̄n∗ũn∗i )

∂t∗︸ ︷︷ ︸
TE

− cj
∂ (ρ∗u∗i )

∂x∗j

n∗

︸ ︷︷ ︸
VI

+ci

∂ρ∗∂t∗

n∗

︸ ︷︷ ︸
IV

− ∂ (ρ∗cj)

∂x∗j

n∗

︸ ︷︷ ︸
II


(4.76)

While the convective term gives:

ρ̄nũni ũ
n
j = ρ̄n∗ũn∗i ũ

n∗
j︸ ︷︷ ︸

TE

+ cicj ρ̄
n∗︸ ︷︷ ︸

I

+ρ̄n∗

ciũn∗j︸ ︷︷ ︸
III

+ cjũ
n∗
i︸ ︷︷ ︸

V

 (4.77)

Finally, the SGS term becomes27:

τn−0
ij = τn−0∗

ij︸ ︷︷ ︸
TE

+cicj

 ρ̄n∗︸︷︷︸
I

− ρ∗︸︷︷︸
II

+ ci

ρ̄n∗ũn∗j︸ ︷︷ ︸
III

− ρ∗u∗j︸︷︷︸
IV


+cj

ρ̄n∗ũn∗i︸ ︷︷ ︸
V

− ρ∗u∗i︸︷︷︸
VI

 (4.78)

26Notice that in equation (4.76) the Gi operators are applied after the transformation. This is exactly the same procedure used
in obtaining the transformations (4.72) from those in (4.71).

27Again, pressure and viscous terms give no spurious contributions.
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4.8. On the Galilean invariance in the GLES framework

Thus, by comparison of terms with similar symbols (I-VI), one can readily observe
that, after the application of the operators Gi, spurious terms cancel each other and the
remaining terms (TE) return the transformed equation in the moving reference frame,
which is identical to the one in the fixed frame. In particular, it is evident that, like for
the pure NSE and the IFCLES approach28, the single terms (4.76-4.78) are not Galilean
invariant. However, differently from the pure NSE and from the IFCLES approach,
here the SGS term is necessary in order to recover the overall Galilean invariance.

One might argue that, by definition, SGS terms should not depend on the largest
resolved scales and, as a consequence, that Galilean invariance should be invoked for
them. However, this interaction just reflects the non-linearity of the governing equa-
tions, which is a true physical phenomenon. The conclusion to be drawn is that, in
GLES, in order to preserve Galilean invariance of the equations, specific SGS models
have to be used, which is not different from what is currently done in EFCLES (Singh
et al., 2012). Finally, notice that this has implications which are far from trivial be-
cause, as shown in chapter 3, the GLES framework is representative of a large fraction
of numerical methods, which indeed do not preserve the Galilean invariance property a
priori.

Let us now turn the attention to the specific scale-similar SGS model developed in
this thesis, to see if it actually recovers the Galilean invariance property. Assuming
that the test filter in the model also preserves the Galilean invariance, a straightforward
computation shows that:

Css
∆2
n,0

∆2
m,n

τm−nij =Css
∆2
n,0

∆2
m,n

τm−n∗ij + Css
∆2
n,0

∆2
m,n

[cicj (ρ̄m∗ − ρ̄n∗)]

+Css
∆2
n,0

∆2
m,n

[
ci
(
ρ̄m∗ũm∗j − ρ̄n∗ũn∗j

)
+ cj (ρ̄m∗ũm∗i − ρ̄n∗ũn∗i )

] (4.79)

Thus, by comparison with analogous terms arising in equation (4.78), the following
requirement arises, for both the momentum components and the density, in order to
preserve the Galilean invariance of the equations:

φ̄n − φ = Css
∆2
n,0

∆2
m,n

(
φ̄m − φ̄n

)
(4.80)

In practice, if the hypotheses underlying the model are satisfied, this condition is met
with a fourth order accuracy. This analysis also suggests an additional interpretation of
the factor ∆2

n,0/∆
2
m,n in the model, that is the factor required to preserve the Galilean

invariance at the largest possible order with a test filter of the form (4.19).

28The usually suggested form of the equations in LES is the one used in the IFCLES approach, because they share the same
invariance properties of the pure NSE.
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CHAPTER5
Numerical method

A fundamental property of the GLES approach is that it is straightly applicable to any
numerical method, as explained in section 3.6. As a consequence, the use of the GLES
framework in a specific solver simply requires, if any, the implementation of a specific
SGS model. In particular, the solver adopted in the present thesis is the unstructured,
cell-centered, FV code Fluent R© 13.0 and the developments in chapter 4 exactly fit its
structure. This chapter describes the numerical aspects of the solver and specific im-
plementation details related to the proposed SGS model and LES in general. Section
5.1 provides a general description of the solver and the underlying FV discretization,
with particular emphasis on the connection with the GLES framework. The specific
numerical schemes and procedures used in this thesis are described in section 5.2, 5.3
and 5.4, respectively for the spatial discretization, the temporal advancement and the
pressure-velocity coupling. The accuracy of the solver is assessed in section 5.5, both
from a theoretical point of view, with a simplified 1D linear analysis, and a posteriori,
by verification with analytical solutions. Finally, implementation details are discussed
in section 5.6, both in relation to the specific SGS model proposed here and the re-
maining aspects relevant for LES in general. As mentioned in chapter 1, the whole
presentation in the previous chapters is based, for the sake of generality, on a com-
pressible formulation. However, all the verification and validation tests, in this and
the following chapters, are based on strictly incompressible flows. As a consequence,
the only aspects of the code which are presented in this chapter are those relevant for
incompressible flows. Nonetheless, according to the presentation in section 4.4, imple-
mentation details for the proposed SGS model are given in their full generality.
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Chapter 5. Numerical method

5.1 Basic discretization

The CFD solver Fluent R© is based on a cell-centered, co-located FV discretization of
the governing equations (ANS, 2010; Mathur and Murthy, 1997; Kim et al., 1998).
As already explained in sections 3.6.3 and 4.5.1, the method consists in partitioning
the fluid domain of interest in a set of non overlapping finite volumes, or cells, and
discretizing the integral form of the equations for each of the volumes with the resolved,
dependent variables defined in the centroids of the volumes. Analogously to section
4.5.1, the overall discretization procedure can be better illustrated by considering a
generic balance equation for a scalar φ, written in integral form for the arbitrary cell
Ωi

1:

∂

∂t

1

Vi

∫
Ωi

ρφdx+
1

Vi

∫
Ωi

∂

∂xj

(
ρujφ− Γ

∂φ

∂xj

)
dΩ =

1

Vi

∫
Ωi

SφdΩ (5.1)

where Vi is the cell volume, Γ is a diffusion coefficient, ρ and ρuj are the density
of the fluid and the momentum which satisfy the continuity equation for the flow and
Sφ is a generic source term. It should be now clear that this equation is affected by a
closure problem because prescribes the evolution of the FV variable ρ̄φ̃:

ρ̄iφ̃i =
1

Vi

∫
Ωi

ρφdΩ (5.2)

in terms of local values of φ, uj , ρ and Γ. However, for the present purposes this is
not influential and a model for the missing scales, if any, is assumed to be embedded in
Sφ. Thus, equation (5.1) can be conveniently rewritten as:

∂ρ̄iφ̃i
∂t

+
1

Vi

∫
Ωi

∂

∂xj

(
ρ̄ũjφ̃− Γ

∂φ̃

∂xj

)
dΩ = S̄φ̃i (5.3)

where the subscript for the source term S clearly evidences its dependence from
the resolved variable φ̃i, in the sense that it can only be computed from the resolved
variables. Also, for the sake of simplicity, the same symbol has been retained for
Γ, but it is implicitly assumed that only its computable part is effectively retained.
Before proceeding with the discretization, it should be again appreciated how equation
(5.3) effectively has the form of a filtered equation, the filter being the top-hat one
in (5.2). Moreover, exactly as in GLES, no commutation property is invoked for the
filter, otherwise the differential form of the equations would be recovered. Instead, the
actual discretization used in Fluent R© (and any other FV code) employs the Green-Gauss
theorem to transform the equation above in the exact equivalent form below:

∂ρ̄iφ̃i
∂t

+

Nf
i∑
f

1

Vi

∫
Sf

nfj

(
ρ̄ũjφ̃− Γ

∂φ̃

∂xj

)
dSf = S̄φ̃i (5.4)

1The topology and the volume of the cells are assumed to be constant in time.
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where the volume integral has been reduced to a sum of surface integrals over the
N f
i faces Sf of the cell Ωi, n

f
j being the outward unit normal of such faces. Here, again,

the sampling problem due to the FV filter emerges, as resolved variables are known in
the cell centers but their values are required on the faces of the cells in order to advance
equation (5.4) in time. It is also worth noting that, differently from the simple 1D case
analyzed in section 4.5.1, an additional approximation is required here because face
values should also be integrated over the single faces, which is actually equivalent to
explicitly perform the top-hat filtering. In Fluent R© (and most second order FV codes),
the filtering operation (i.e., the surface integral) is first approximated by the midpoint
rule and then the interpolation is invoked to provide the point values of the variables in
the face centroids. Hence, equation (5.4) is finally approximated as:

∂ρ̄iφ̃i
∂t

+

Nf
i∑
f

(
ρ̄ũjφ̃− Γ

∂φ̃

∂xj

)
f

nfj
Af
Vi

= S̄φ̃i (5.5)

where the subscript f for the terms in parenthesis means that such terms have to be
interpolated to the centroid of the face f , Af is the area of the face and nfj now denotes
the outward unit normal in the face centroid.

It is worth mentioning that softwares for the grid generation only provide informa-
tion on the nodes of the grid and, for anything different from tetrahedral grids, the
information on the cell volume and the face normals and areas is somehow arbitrary.
In these cases (i.e., general polyhedral cells), each cell face is first split into triangular
sub-faces and a unique normal per face is obtained, nfj , together with the face centroid
f cj . Then this normal, which actually includes also the face area Af , is used in the
integrals in (5.5) and to compute the volume Vi itself as:

Vi =
1

3

Nf∑
f

nfj f
c
jAf (5.6)

so that the overall consistency is guaranteed. The final closure for equation (5.5)
is achieved by selecting a proper interpolation scheme for the cell variables and their
gradients. However, notice that the density and mass fluxes trough the faces are them-
selves solution of a similar equation obtained by setting φ̃ = 1 in (5.5). Thus, the final
form of the discretized equation is more conveniently rewritten as:

∂ρ̄iφ̃i
∂t

+

Nf
i∑
f

m̄f
j φ̃f −

(
Γ
∂φ̃

∂xj

)
f

nfj AfVi = S̄φ̃i (5.7)

where the mass flux per unit area m̄f
j = (ρ̄ũj)f and the density ρ̄i are assumed to be

known and interpolation is only required for φ̃ and its diffusive flux, both described in
the following section.
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Chapter 5. Numerical method

5.2 Numerical schemes

Formally, the selection of a shape function is all that is actually needed in a FV method
to close equation (5.7). However, while this is effectively done for node centered ar-
rangements, this approach is far from being straightforward for the cell centered ones,
especially for unstructured grids. Also, for historical reasons, such direct interpolation
has been avoided because of the lack of continuity for the typical inviscid early ap-
plications of the method. As a consequence, the cell centered FV practice is instead
based on the so called reconstruction, for which the convective face flux is first recon-
structed within the two adjacent cells of a face and the overall flux is then devised as a
solution of an exact or approximate Riemann problem (Toro, 2009)2. In practice, even
for incompressible viscous flows, where the interpolation could certainly be invoked,
the reconstruction approach remains the preferred one for the convective term. While
for first order accuracy one could just rest on the cell values themselves, this is gener-
ally too low for most practical applications and gradients in the cell centers are used to
improve the accuracy (Blazek, 2005).

In the following subsections, the gradient methods available in Fluent R© and used in
this thesis are first described. Then the methods used for the convective and diffusive
flux computation, which are based on such gradients, are presented. For future refer-
ence, a typical arrangement of computational cells and relative variables is reported in
Figure 5.1. Notice that, unless otherwise stated, all the higher order terms involving the
precomputed gradients are treated by the solver explicitly, with a deferred correction
approach (Khosla and Rubin, 1974), and updated with a specific iterative cycle3.

ci cn

f c nf

rni

ri rn

Figure 5.1: Typical arrangement of computational cells sharing a face in a cell centered FV framework.

2Notice, indeed, that the weighted residual method, on which the FV one is based, does not give a prescription for the interpo-
lation stencil, which can be quite arbitrary and include upwind cells only.

3This cycle, which in some codes is also referred to as non-orthogonal correction, is intermediate between the classical inner
and outer iterations.
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5.2. Numerical schemes

5.2.1 Gradient computation

Two classes of gradient computation methods are available in the solver. The first one
is based on the Green-Gauss theorem (Kim et al., 2003; Barth and Jespersen, 1989):

∫
Ωi

∂φ̃

∂xj
dΩ =

Nf
i∑
f

∫
Sf

nfj φ̃dSf (5.8)

which is then discretized according to the same procedure described in the previous
section, leading to the following value for the cell ci:

∂φ̃

∂xj

∣∣∣∣∣
ci

=

Nf
i∑
f

φ̃fn
f
j

Af
Vi

(5.9)

Notice, in particular, how the approximation is formally resulting in a filtered gradi-
ent instead of the pure gradient4. The face centroid values φ̃f required in (5.9) can be
computed with alternative methods. In the present thesis the selected option is based
on a simple average among the cells sharing the face f 5:

φ̃f =
φ̃i + φ̃n

2
(5.10)

where, for the given face f , φ̃i and φ̃n represent, respectively, the value of φ̃ in the
given cell ci and the neighbor one cn (see Figure 5.1). A variant of this scheme has also
been considered, for the terms in the SGS model, and implemented trough a separate
routine. In this case the face values are computed as a weighted volume average:

φ̃f =
Vnφ̃i + Viφ̃n
Vi + Vn

(5.11)

The second available option for the gradient is based on a least squares linear recon-
struction of the variable φ̃ (Barth, 1991). In practice, for every cell cn surrounding the
cell ci, the following identity is assumed to be valid:

φ̃n = φ̃i +
∂φ̃

∂xj

∣∣∣∣∣
ci

rnij (5.12)

This yields an overdetermined system of N f
i equations in three unknowns (i.e., the

gradient components) whose coefficient matrix is purely a function of the geometry.
4Nonetheless, this is usually neglected in second order codes.
5The alternative more accurate option, which is based on a node based average from the vertexes of the face, is not used here

for several reasons. The most important one is that it is unable to properly handle the doubly periodic boundary condition used
here in several test cases. Also, it has limitations for general polyhedral cells and incurs in higher computational costs.
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Chapter 5. Numerical method

The least-squares solution of the system is based on a Gram-Schmidt orthogonaliza-
tion of the coefficient matrix which can be expressed in closed form and stored in ad-
vance (Blazek, 2005), hence the overall solution cost amounts to the computation of a
matrix-vector product and is comparable to the cost of the Green-Gauss method above.
For this reason, and because of its better accuracy for general unstructured grids, the
least-squares method is chosen as default gradient computation method in this thesis.
However, is worth noting that, for fully structured uniform grids, all the methods above
reduce to a classical central scheme (e.g., see equation (4.39)).

5.2.2 Convective flux

Among the several available options for the convective flux, three of them are presented
here, as they are the only suitable ones for LES6. The default option in this thesis is the
second order central scheme originally introduced by Batten et al. (1996):

φ̃f =
1

2

[(
φ̃i +

∂φ̃

∂xj

∣∣∣∣∣
ci

rij

)
+

(
φ̃n +

∂φ̃

∂xj

∣∣∣∣∣
cn

rnj

)]
(5.13)

which is an obvious extension of the scheme (4.38) with γ = 1. The computational
stencil of the scheme is symmetric and independent from the velocity field thus, for
uniform Cartesian meshes, it is non-diffusive and well suited for LES. The scheme has
indeed been used in LES by Park and Mahesh (2007b) and found especially suitable
when the gradient method (5.9-5.10) is used. However, as any other linear higher order
scheme, it is non-monotone and, for general grids, can alter the energy content of the
flow. For this reason, two additional options are also considered. The first one is a
simpler, first order accurate, central scheme:

φ̃f =
φ̃i + φ̃n

2
(5.14)

which is obtained by deactivating the higher order terms in (5.13) and is the equiva-
lent of the scheme (4.38) with γ = 0. Despite the low formal accuracy7, this scheme has
the merit to not alter the energy content of the flow, as the true convective term, inde-
pendently from the grid (Verstappen and Veldman, 1998; Benhamadouche et al., 2002;
Verstappen and Veldman, 2003; Mahesh et al., 2004; Felten and Lund, 2006; Verstap-
pen and Van Der Velde, 2006; Verstappen, 2008). This scheme has also been used, by
Rossi (2009), for the DNS of scalar transport in Fluent R©, confirming its suitability for
scale resolving simulations on general unstructured grids.

The second option is still based on the scheme (5.13), but modified according to
a Convection Boundedness Criterion (CBC) and the Normalized Variable Diagram
(NVD) (Gaskell and Lau, 1988; Leonard, 1988, 1991), both formulated in a general
unstructured framework (Jasak et al., 1999). In practice, the scheme involves the fol-
lowing steps:

6The scale separation which is assumed to hold in LES is such that the energy content of the flow, even at the grid cut-off
scale, is not formally negligible. As such, numerical schemes used in LES need to avoid any artificial viscosity in order to alter the
resolved scales as little as possible.

7Which, again, has only a limited importance in LES.

96



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 97 — #119 i
i

i
i

i
i

5.2. Numerical schemes

• The parameters αf and γf are first computed:

αf = 1−
Sm

(
φ̃n − φ̃i

)
2
[(

1+Sm
2

)
∂φ̃
∂xj

∣∣
ci

+
(
Sm−1

2

)
∂φ̃
∂xj

∣∣
cn

]
rnij

γf =
αf
βm

(5.15)

with βm = 1/10 and Sm = sign(m̄f
jn

f
j ).

• The face value φ̃f is then determined as follows:

φ̃f =


UD (5.17) for αf ≤ 0 or αf ≥ 1

BLEND (5.18) for αf > 0 and αf < βm

CENTRAL (5.13) for αf ≥ βm and αf < 1

(5.16)

where CENTRAL denotes the default central scheme in (5.13), UD is the first
order upwind scheme:

φ̃f =

(
1 + Sm

2

)
φ̃i +

(
1− Sm

2

)
φ̃n (5.17)

and BLEND denotes a blending between the central scheme and a second order
upwind scheme:

φ̃f = (1− γf )

[(
1 + Sm

2

)(
φ̃i +

∂φ̃

∂xj

∣∣∣∣∣
ci

rij

)]

+ (1− γf )

[(
1− Sm

2

)(
φ̃n +

∂φ̃

∂xj

∣∣∣∣∣
cn

rnj

)]

+
γf
2

[(
φ̃i +

∂φ̃

∂xj

∣∣∣∣∣
ci

rij

)
+

(
φ̃n +

∂φ̃

∂xj

∣∣∣∣∣
cn

rnj

)] (5.18)

For reference, its representation in the NVD is reported in Figure 5.2 in terms of the
normalized variable φ̃+

f :

φ̃+
f = 1−

[(
1−Sm

2

)
φ̃i +

(
1+Sm

2

)
φ̃n

]
− φ̃f

2
[(

1+Sm
2

)
∂φ̃
∂xj

∣∣
ci

+
(
Sm−1

2

)
∂φ̃
∂xj

∣∣
cn

]
rnij

(5.19)

For obvious reasons, this scheme will be referred to as Bounded Central Scheme.
A similar scheme has been used by Grinstein et al. (2005) and found suitable for ILES
when coupled with proper wall boundary conditions. As such, it is considered in the
present thesis as a reference for the ILES approach, which is still completely justified
within the GLES framework.
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Figure 5.2: Bounded central scheme in the NVD. Effect of the blending: second order upwind (5.18) vs.
first order upwind (Jasak et al., 1999).

5.2.3 Diffusive flux

As most of the unstructured FV solvers, Fluent R© adopts a second order central scheme
for the discretization of the diffusive flux (Mathur and Murthy, 1997; Kim et al., 1998).
First, the face normal derivative is computed as:

nfj

(
∂φ̃

∂xj

)
f

=

( φ̃n − φ̃i
dsni

)
1

nfke
ni
k

+

〈
∂φ̃

∂xj

〉
f

(
nfj −

enij

nfke
ni
k

) (5.20)

where:

dsni =
√
rnij r

ni
j

enij =
rnij
dsni〈

∂φ̃

∂xj

〉
f

=
1

2

(
∂φ̃

∂xj

∣∣∣∣∣
ci

+
∂φ̃

∂xj

∣∣∣∣∣
cn

) (5.21)

Then the overall diffusive flux is computed as:

nfj

(
Γ
∂φ̃

∂xj

)
f

= Γfn
f
j

(
∂φ̃

∂xj

)
f

=
2ΓciΓcn

Γci + Γcn
nfj

(
∂φ̃

∂xj

)
f

(5.22)

The specific choice in (5.20) avoids the checkerboard effect, caused by the exclusive
use of the cell centered gradients in (5.21), and recovers the classical finite difference
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approximation for the Laplacian (4.59) on uniform Cartesian meshes. In particular,
among the different possible decompositions of the diffusion term (Moukalled and
Darwish, 2006; Jasak, 1996), the one adopted in the code is known as over-relaxed
approach and privileges the finite difference part for increasing non-orthogonality of
the mesh.

5.2.4 Boundary conditions

Dirichlet or Neumann boundary conditions are treated in Fluent R© as in any other code,
by direct inclusion of the respective convective or diffusive flux. A particular attention
is instead required for the mixed terms, i.e., convective fluxes for Neumann boundaries
and diffusive fluxes for Dirichlet ones. The first case is representative of outflow bound-
aries, where the diffusive flux normal to the boundary is assumed null. In this case the
face value for the transported variable is simply extrapolated from the interior with a
first order upwind, while the overall mass flux trough the boundary is assumed constant
and such that the continuity equation is satisfied.

c0

f c nf

rb

Figure 5.3: Typical arrangement of a near-wall computational cell.

The second case is instead more interesting as representative of walls. In the general
case equation (5.20) is used directly (Mathur and Murthy, 1997) (see Figure 5.3):

nfjΓf

(
∂φ̃

∂xj

)
f

= Γb

[(
φ̃b − φ̃0

dsb

)
1

nfke
b
k

+
∂φ̃

∂xj

∣∣∣∣∣
c0

(
nfj −

ebj

nfke
b
k

)]
(5.23)

with φ̃b the specified Dirichlet value, Γb the diffusion coefficient at the boundary and
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all the remaining terms simply following from their definitions in (5.21). However, it
is worth highlighting that this is just a first order approximation for the diffusive flux
at the boundary. Indeed, for a fully Cartesian grid, denoting by y the normal to the
boundary coordinate entering the domain, equation (5.23) reduces to:

Γb

(
φ̃b − φ̃0

dsb

)
≈ −Γb

(
∂φ̃

∂y

)
b

− Γb
dsb

2

(
∂2φ̃

∂y2

)
b

+O
[(
dsb
)2
]

(5.24)

While possibly negligible in most of the cases, this error might become problematic
for wall boundaries in wall driven turbulent flows. Indeed, the instantaneous resolved
profiles in LES are not expected to be linear in the near-wall region and the overall
interaction between turbulence production at the walls and the mean flow might be
impaired by the error at the wall. However, besides the numerical accuracy, the wall
boundary condition in LES is important in itself. Indeed, as already mentioned in chap-
ter 1, wall bounded flows have resolution requirements which are strictly dependent on
the Reynolds number and, for sufficiently high values, become practically intractable
in LES. Among the several available options, the approximate wall boundary condi-
tion used here for these cases is based on a simple wall function approach. In practice,
instead of directly using equation (5.23), the wall shear stress τw in the momentum
equations is approximated trough a blending of two terms according to Kader (1981):

ũ+
c0

= eBy+ + e
1
B

1

k
ln(Ey+) (5.25)

where k = 0.4187 is the von Kármán constant used in the code, E = 9.793 and:

ũ+
c0

=
ũpc0√
τw/ρ̄

y+ =
ρ̄y
√
τw/ρ̄

µ
B = − a (y+)

4

1 + by+
(5.26)

with ũpc0 the wall parallel velocity in the cell adjacent to the wall, y the distance
between the cell center c0 and the wall, µ the dynamic viscosity of the fluid, a = 0.01
and b = 5. Thus, due to the non-linearity and implicitness of relation (5.25), it is used
iteratively. Notice, also, that this wall-function is always active in Fluent R© and recovers
the linear approach in (5.23) only for well resolved boundary layers (i.e., y+

c0
< 5). For

reference, the velocity profile (5.25) is compared in Figure 5.4 with the Reichardt’s wall
law (Reichardt, 1951):

ũ+
c0

=
1

k
ln(1 + ky+) + 7.8

[
1− exp(−y

+

11
)− y+

11
exp(−y

+

3
)

]
(5.27)

5.3 Temporal discretization

The numerical schemes introduced in the previous section allow to rewrite the sum in
equation (5.7) as a linear combination of the value φ̃i in the integration cell ci and those
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Figure 5.4: Comparison of the wall function in Fluent R© versus the Reichardt’s velocity profile.

in the neighboring cells cn involved in the discretization of the convective and diffusive
terms, φ̃n. The final step to obtain a computable model for the full equation is the
discretization of the time derivative term. As for the spatial terms, LES requires a high
order accuracy also for the time discretization and, for incompressible flows, the only
feasible option in Fluent R© is a second order backward scheme. Developed by Gear
(1971) for stiff ordinary differential equations, it is the most accurate A-stable linear
multi-step method which also completely dumps the highest frequencies (i.e., it is L-
stable) and includes the full positive imaginary axis in its stability region. It is based on
the following Taylor series expansions:

φ̃mi =φ̃m+1
i −∆t

∂φ̃

∂t

∣∣∣∣m+1

ci

+
∆t2

2

∂2φ̃

∂t2

∣∣∣∣m+1

ci

− ∆t3

6

∂3φ̃

∂t3

∣∣∣∣m+1

ci

+O
(
∆t4
)

φ̃m−1
i =φ̃m+1

i − 2∆t
∂φ̃

∂t

∣∣∣∣m+1

ci

+ 2∆t2
∂2φ̃

∂t2

∣∣∣∣m+1

ci

− 8∆t3

6

∂3φ̃

∂t3

∣∣∣∣m+1

ci

+O
(
∆t4
) (5.28)

where ∆t is the time step used in the computation and the superscripts are used here
to momentarily denote the time levels tm−1 = (m − 1)∆t, tm = m∆t and tm+1 =

(m + 1)∆t. Hence, for given values φ̃mi and φ̃m−1
i , at the current and previous time

steps respectively, the time derivative at the next time level is discretized as:

3φ̃m+1
i − 4φ̃mi + φ̃m−1

i

2∆t
=
∂φ̃

∂t

∣∣∣∣m+1

ci

− ∆t2

3

∂3φ̃

∂t3

∣∣∣∣m+1

ci

+O
(
∆t3
)

(5.29)
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and, in its fully discretized form, equation (5.7) becomes:

3ρ̄m+1
i φ̃m+1

i − 4ρ̄mi φ̃
m
i + ρ̄m−1

i φ̃m−1
i

2∆t
+

Nf
i∑
f

m̄f
j φ̃f −

(
Γ
∂φ̃

∂xj

)
f

nfj AfVi = S̄φ̃i (5.30)

When the discretization methods described in the previous sections are then intro-
duced, the equation above can be finally expressed as:

(
3ρ̄m+1

i

2∆t
+ a0

)
︸ ︷︷ ︸

ai

φ̃m+1
i +

∑
n

anφ̃
m+1
n =

bm+k
i︷ ︸︸ ︷∑

n

bnφ̃
m+k
n

+
4ρ̄mi φ̃

m
i − ρ̄m−1

i φ̃m−1
i

2∆t
+ S̄∗

φ̃i︸ ︷︷ ︸
bmi

(5.31)

In particular, it should be noted that the present temporal discretization assumes a
fully implicit treatment of all the terms. As a consequence, the spatial discretization
terms have been split in a linear low order part treated implicitly and a possibly non-
linear part, containing higher order terms, which is treated with the deferred correction
approach within sub-iterations with index k. The same treatment, if possible, is also
used for the source term S̄φ̃i , which is split as follows:

S̄m+1

φ̃i
=S̄m

φ̃i
+
∂S̄φ̃i
∂φ̃i

∣∣∣∣∣
m

ci

(
φ̃m+1
i − φ̃mi

)
=

(
S̄m
φ̃i
− φ̃mi

∂S̄φ̃i
∂φ̃i

∣∣∣∣∣
m

ci

)
+
∂S̄φ̃i
∂φ̃i

∣∣∣∣∣
m

ci

φ̃m+1
i

=S̄∗
φ̃i

+ Cφ̃m+1
i

(5.32)

Thus, the coefficients a0, an and bn in (5.31) absorb all the relevant terms according
to the specific discretization, including the mass flux per unit area m̄f

j . The final step for
the time advancement of equation (5.30) is the resolution of the overall linear algebraic
system:

aiφ̃
m+1
i +

∑
n

anφ̃
m+1
n = bm+k

i + bmi = bi (5.33)

which in Fluent R© is performed by a Gauss-Seidel point iteration method with an
algebraic multigrid acceleration technique.

5.4 Pressure-velocity coupling

The discussion so far regarded the template linear equation (5.1). When the same rea-
soning is applied to the momentum and continuity equations for incompressible flows,
the matter is complicated by three main factors: the equations are nonlinear and cou-
pled, the lack of an independent equation for the pressure and the need to satisfy the
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continuity constraint. Indeed, for the incompressible flows considered in this thesis, the
governing equations reduce to:

Nf
i∑
f

m̄f
jn

f
j

Af
Vi

= S̄ρ̄

∂ρ̄ũi
∂t

+

Nf
i∑
f

(
m̄f
j ũ

f
i + p̄fδij + Σ̃f

ij

)
nfj
Af
Vi

= S̄ũi

∂ρ̄CpT̃

∂t
+

Nf
i∑
f

m̄f
jCpT̃f −

(
λ̃
∂T̃

∂xj

)
f

nfj AfVi = S̄T̃

(5.34)

where Σ̃ij is defined in (3.10) and, for clarity of notation, both Σ̃ij and ũi now have
f as superscript, but it still refers to their interpolated face values. Also, the source
terms on the right hand sides in (5.34) possibly contain SGS models in addition to any
explicit additional source. Coupling and non linearity among the momentum equations
are due to the presence of the mass flux per unit area m̄f

j and are both handled by sub-
iterations, as for the deferred correction terms, hence no particular difficulty is actually
introduced. However, an explicit connection between the pressure, the energy equation
and the density/mass conservation is now missing and a particular attention is required
to treat the equations above.

Indeed, any fluid velocity field is actually compressible to some degree and, what-
ever is the Mach number or the heat transfer mechanism acting on it, it is still governed
by the fully compressible NSE if the continuum hypothesis holds. However, in the
limit of a small Mach number in nearly isothermal cases, the flow equations become
stiff, in the sense that the flow adapts to disturbances within times which are very small
compared to the convective time (which leads to the approximation of a null Mach
number). While, in this limit, the continuous equations remain the same, they become
numerically intractable as the discretization would require a tremendous increase in the
computational cost to correctly describe all the time scales present in the simulation,
the most of which are not of interest. Hence, in order to overcome this difficulty, the
most common approach consists in adopting a simplified version of the equations, in
which the disturbance adaption time scales have been filtered out, that is the fully in-
compressible NSE above (i.e., their GLES counterpart), with the temperature treated
as a simply transported (i.e., uncoupled) scalar. This step, while resolving the previ-
ous issue, essentially changes the nature of the equations in the two aspects mentioned
above: the original conservation equation for the mass becomes a kinematic constraint
on the velocity field and the pressure loses its thermodynamic role, as the link with the
energy and mass equations is definitively lost due to the limit process. Moreover, an
independent equation for the pressure seems lacking.

The above issues are solved by first noting that, in fact, a pressure equation can be
derived and, for the GLES framework, it corresponds to equation (4.62). Then, it can
be also shown that, in the new set of equations (5.34), the pressure and the continuity
constraint are still linked, as the pressure now plays the role of a Lagrange multiplier,
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which is used to enforce the continuity constraint on the velocity field (Ferziger and
Perić, 2002).

Among the several methods available in Fluent R© to deal with the aforementioned
pressure-velocity coupling issues, the one adopted in this thesis is the fractional step
method (FSM). The overall approach has been originally developed by Chorin (1968)
and is a two step method in which a provisional pressure field is used to advance in time
the momentum equations8. The new velocity field, which does not satisfy the continuity
constraint, is then corrected with a pressure gradient term, computed after the resolution
of a Poisson-like equation for the pressure. Besides the theoretical basis over which the
method is built (Chorin and Marsden, 1997; Denaro, 2003), what greatly differs with
respect to more common methods (e.g., SIMPLE) is that the outer iterations required to
drive to zero the splitting error committed in fractioning the problem are unnecessary,
because in the FSM this error is made commensurate to the time integration error.

The specific method used in Fluent R© (Kim and Makarov, 2005) is based on an
approximate LU factorization of the system of discretized momentum and continu-
ity equations (5.34) (Quarteroni et al., 2000), originally introduced by Dukowicz and
Dvinsky (1992) and subsequently reinterpreted by Perot (1993), but modified according
to van Kan (1986) in order to preserve the second order accuracy (see also Guermond
et al. (2006) for a detailed discussion on the issues concerning the pressure accuracy
and the boundary conditions).

The basis of the method is best presented by expressing the momentum and the
continuity equations9 in (5.34) in the following matrix form, which is equivalent to the
form in equation (5.33):

(
1

∆t
M + B

)
︸ ︷︷ ︸

A

Un+1 + Gpn+1 =r

DUn+1 =s

(5.35)

In particular, the vectors Un+1 and pn+1 represent the fully discrete, cell-centered,
velocity and pressure solutions at the time level n + 1. The matrix A represents the
discrete operators, which are split in a diagonal mass matrix M relative to the time
discretization and a non diagonal matrix B representing the spatial discretization of
both convection and diffusion. The matrices G and D denote, respectively, the discrete
gradient and divergence operators and, finally, the vectors r and s contain all the explicit
contributions, including any possible source term or SGS model. Notice, also, that
the density is assumed to be known, but not necessarily constant, and absorbed in the
discretization operators. The equations (5.35) can be conveniently put in a block-matrix
form including the boundary conditions, represented as an additional vector:

[
A G

D 0

] [
Un+1

pn+1

]
=

[
r

s

]
+

[
bm

bc

]
(5.36)

8Different versions of the method exist, according to the way such provisional pressure field is defined.
9From now on the temperature is considered as a simple transported scalar whose discretization simply follows the techniques

described in the previous section.
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5.4. Pressure-velocity coupling

with the original discrete operators suitably modified according to the specific bound-
ary conditions adopted. The FSM implemented in Fluent consists in an approximate
LU factorization of the system (5.36). To this end, the equations are first factorized
exactly:

[
A 0

D −DA−1G

] [
I A−1G

0 I

] [
Un+1

δp

]
=

[
r−Gpn

s

]
+

[
bm

bc

]
(5.37)

with the pressure split in a known term from the previous time step, pn, and an
unknown correction δp = pn+1 − pn, according to van Kan (1986). Then, the two
following approximations are adopted:

A−1 ≈∆tM−1

DA−1G ≈∆tDM−1Gs

(5.38)

In particular, the first one is required in order to avoid the full inversion of A at
each time step. As will be better clarified in the following, the second approximation
represents, instead, the classical Rhie-Chow approach (Rhie, 1982; Rhie and Chow,
1983), with the original gradient operator G appearing in the momentum equations
replaced with the operator Gs. By further substitution of the approximations (5.38) in
the equations (5.37), the overall FSM can then be split in the following sub-steps:

AU∗ =r−Gpn + bm

∆tDM−1Gsδp =DU∗ − s− bc

Un+1 =U∗ −∆tM−1Gδp

pn+1 =pn + δp

(5.39)

Hence, the procedure consists in first advancing in time the velocity field with the
provisional pressure field pn. This yields an intermediate velocity field U∗ that, in
general, does not satisfy the continuity constraint. The second second step involves
the solution of a Poisson equation for the pressure correction δp. Finally, the last step
involves the correction of the provisional velocity with a gradient term and the update
of the pressure to the new time level. The overall error committed by the approxima-
tions (5.38) can be evaluated by considering the resulting equations in their full, non
factorized, form:

[
A ∆tAM−1G

D ∆tDM−1 (G−Gs)

] [
Un+1

δp

]
=

[
r−Gpn

s

]
+

[
bm

bc

]
(5.40)

Thus, two error terms are introduced, respectively, in the momentum and the conti-
nuity equations, both dependent from the pressure correction term:

∆tBM−1Gδp ≈∆t2BM−1G
∂p

∂t

∣∣∣∣n
∆tDM−1 (G−Gs)δp ≈∆t2DM−1 (G−Gs)

∂p

∂t

∣∣∣∣n (5.41)
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Chapter 5. Numerical method

However, while both are second order in time and consistent with the time integra-
tion error in (5.29), their nature is completely different. Indeed, the momentum error
term is entirely due to the approximate factorization (i.e., the approximate inverse for
A) and, while not actually done in the present case or the FSM in general, it can be
readily reduced by adding outer iterations to the cycle in (5.39), until the provisional
pressure field corresponds to the pressure field at the next time step and no pressure
corrections are anymore required. In contrast, the error in the continuity equation is
only related to the use of a compact Laplacian stencil in the Poisson equation for the
pressure and is not, in general, avoidable because the action of Gs produces a gradient
which is not even defined in the cell centers. This error is particularly harmful because,
in a single time step, introduces a direct kinetic energy source proportional to (Mahesh
et al., 2004; Felten and Lund, 2006; Jofre et al., 2014):

−
(
pn+1

)T
∆t2DM−1 (G−Gs)

∂p

∂t

∣∣∣∣n (5.42)

which might lead to instabilities or excessive dissipation. While the scale-similar
SGS model introduced in (4.25) explicitly contains a term which counteracts this issue,
the selection of a proper gradient operator for the pressure, G, is nonetheless funda-
mental in order to limit this spurious effect. In particular, the error (5.42) is due to the
fact that the proper gradient term is only known on the faces of the grid while, in or-
der to advance/correct the momentum equations, it is required in the cell centers (Trias
et al., 2014). Hence, suitable gradient operators are based on a sort of reconstruction of
the cell center gradient from the surface one. A possible approach consists in using an
approximate Green-Gauss identity (Perot, 2000; Jofre et al., 2014) leading to:

∂p̄

∂xj

∣∣∣∣
ci

=
1

Vi

Nf
i∑
f

(
∂p̄

∂n

)
f

Afr
i
j

(
∂p̄

∂n

)
f

=

(
p̄n − p̄i
dsni

)
1

nfke
ni
k

(5.43)

A similar alternative is usually adopted for body-force discretization methods. For
example, Mencinger (2012) proposes using:

∂p̄

∂xj

∣∣∣∣
ci

=
1

Vi

Nf
i∑
f

(
∂p̄

∂n

)
f

(
rikr

ni
k

rniq r
ni
q

nfmr
ni
m

)
Afn

f
j (5.44)

while the discretization adopted in OpenFOAM (OpenFOAM Foundation, 2013) is
based on:

∂p̄

∂xj

∣∣∣∣
ci

=
W−1

jm

Vi

Nf
i∑
f

(
∂p̄

∂n

)
f

Afn
f
m W−1

jm = Vi

 Nf
i∑
f

Afn
f
jn

f
m

−1

(5.45)

A different, more elaborated, approach relies on directly minimizing the continuity
error in a least squares sense. In particular, this can be done, as for the basic least-
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squares gradient method (5.12), on a face per face basis (Vidović, 2009; Jofre et al.,
2014), assuming for each face:

∂p̄

∂xj

∣∣∣∣
ci

nfj =

(
∂p̄

∂n

)
f

f = 1, 2, . . . , N f
i (5.46)

or on a full cell basis (Benhamadouche et al., 2002; Mahesh et al., 2004), by mini-
mizing:

Nf
i∑
f

[
∂p̄

∂xj

∣∣∣∣
ci

nfj −
(
∂p̄

∂n

)
f

]
Af (5.47)

Finally, while formally different in nature, it is worth mentioning also the approaches
developed by Date (1993), Deng et al. (1994) and Ashrafizadeh et al. (2009, 2012)
which essentially consist in using the Green-Gauss approach (5.9) with the pressure
face values determined in such a way to be consistent with the continuity preserving
velocities Un+1

c = Un+1 + ∆tM−1(G −Gs)δp. The Fluent R© solver offers two pres-
sure gradient schemes which are in line with those described above, the Body Force
Weighted (BFW) scheme and the PRESTO (PREssure STaggering Option) scheme.
Unfortunately, no specific details are available on the implementation, hence their ac-
curacy will be assessed a posteriori in the next section.

5.5 Accuracy analysis and assessment

This section is dedicated to the accuracy analysis and assessment of the different parts
of the solver which are involved in the computations presented in the next chapters.
When possible, a theoretical approach is used to provide more insight; otherwise, the
accuracy assessment is based on straight a posteriori tests for cases with an available an-
alytical solution. All the tests reveal that the solver achieves the presumed second order
accuracy, both in space and time. As a consequence, its use in LES can be considered
feasible.

5.5.1 Gradient computation

The implementation of the dynamic mixed SGS model proposed here requires the gra-
dient for the test filtered and doubly test filtered velocity fields. While certain imple-
mentation approaches would have allowed their direct availability in the solver, these
would have also limited the applicability of the model to iterative pressure-velocity al-
gorithms (i.e., the use of the FSM would have not been possible) because of specific
solver features related to Fluent R©. As a consequence, a gradient computation algorithm
based on equation (5.11) has been implemented in the solver trough a separate routine.
The specific choice of the algorithm, which is different from the basic least-squares ap-
proach used in the main solver, has been mostly dictated by the ease of implementation
and the good balance between costs and accuracy. The accuracy of the implementation
has been assessed by computing the gradient of the test function:

f (x, y, z) = sin(x) sin(y) sin(z) (5.48)
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Figure 5.5: Accuracy of the Gree-Gauss gradient computation method implemented in the code. a)
Structured, non-uniform grid. b) Uniform prismatic grid. c) Unstructured tetrahedral grid. d) L∞

norm of the error.

on three different grids, as depicted in Figure 5.5. These are, respectively, a fully
structured non-uniform grid (sub-figure a), a uniform prismatic grid (sub-figure b)
whose cells are split along a diagonal in the y − z plane and a fully unstructured
grid made of tetrahedrons (sub-figure c). For each grid, three successive refinements
have been performed and the computed gradient has been compared with the analytical
one. As results from sub-figure d, the method is second order accurate on structured
non-uniform grids. For the prismatic grid, which is typical of boundary layers, the x
component of the gradient (e.g., wall-normal), not affected by the split, still retains the
second order accuracy while the two remaining components are clear affected and only
present a first order accuracy. Finally, for the unstructured grid the method is clearly
not effective and should be replaced by a more accurate one. However, for the present
thesis no such grids are actually used as their suitability for LES, especially for wall
bounded flows, is certainly debatable.

5.5.2 Bounded central scheme

In this section the suitability of the Bounded Central scheme (5.16) for LES is tested
trough an NSA, whose results are reported in Figure 5.6 and compared with second
and third order upwind schemes and an upwind biased fifth order scheme. While LES
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results on the use of this scheme will be provided in the next two chapters, here it
is simply evidenced that the spectral properties of the scheme are such that it barely
recovers the transport and dissipative properties of a third order upwind scheme. While
Park et al. (2004) have found the third order upwind scheme not particularly useful for
LES, Aprovitola and Denaro (2004) have determined the opposite. Hence, according
also to Grinstein et al. (2005), the scheme is retained as possible candidate for ILES.
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Figure 5.6: NSA for the Bounded Central scheme. (a) Real (convective) part. (b) Imaginary (diffusive)
part. Dashed colored lines: 2σ bands. Full colored lines: mean value.

5.5.3 Simplified analysis of the time advancement

In order to analyze the combined features of the temporal and spatial discretization, it
is possible to extend the simplified 1D linear analysis presented in section 4.5 to the
fully discretized equation (5.30) and compare the resulting amplification factor of the
scheme with the exact one of the underlying model equation (4.31) in its differential
form. To this end, a uniform grid with spacing ∆x is considered again, with φ̄ni denoting
the solution in the centroid of the cell i at the time level tn = n∆t. When the temporal
discretization (5.29) is inserted in the FV equation (4.50), the resulting fully discretized
equation is:

3φ̄n+1
i − 4φ̄ni + φ̄n−1

i

2∆t
= −U

(
φ̄n+1
i+1 − φ̄n+1

i−1

)
2∆x

+ ν
φ̄n+1
i+1 − 2φ̄n+1

i + φ̄n+1
i−1

∆x2

−Uγ
2

[(
φ̄n+1
i+1 − φ̄n+1

i−1

)
2∆x

−
(
φ̄n+1
i+2 − φ̄n+1

i−2

)
4∆x

]

−2UMc

3

[(
φ̄ni+1 − φ̄ni−1

)
2∆x

−
(
φ̄ni+2 − φ̄ni−2

)
4∆x

]

−Mcν

∆x

∂
(

˜̄φ− φ̄
)

∂x

 ∣∣∣∣∣
i+ 1

2

i− 1
2

(5.49)

where Mc = αC denotes the overall constant in the scale-similar model, which is
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considered fixed with α = 1/9, and the diffusive part of the model will be analyzed
with both the inconsistent discretization (4.43):

∂
(

˜̄φ− φ̄
)

∂x

 ∣∣∣∣∣
i+ 1

2

i− 1
2

= − 1

12

(
φ̄ni+1 − 2φ̄ni + φ̄ni−1

∆x

)
− 8

12

(
φ̄ni+2 − 2φ̄ni + φ̄ni−2

4∆x

)

+
9

12

(
φ̄ni+3 − 2φ̄ni + φ̄ni−3

9∆x

)
(5.50)

and the consistent one (4.44):

∂
(

˜̄φ− φ̄
)

∂x

 ∣∣∣∣∣
i+ 1

2

i− 1
2

= −4

3

(
φ̄ni+1 − 2φ̄ni + φ̄ni−1

∆x

)
+

4

3

(
φ̄ni+2 − 2φ̄ni + φ̄ni−2

4∆x

)
(5.51)

According to the so called Von Neumann analysis (Crank and Nicolson, 1947), if
the boundary conditions for the above equation are periodic, the solution at each time
step can be expanded in a discrete Fourier series (due to the limited set of nodes in
which the solution is available) and, since the equation is linear, a single harmonic of
the series can be substituted in the equation (5.49) to study the effect of the numerical
method on the time evolution of a generic Fourier coefficient of the series. In practice,
it is assumed:

φ̄n+s
i+r = Cn+s

k ejk(xi+r∆x) (5.52)

where Cn+s
k is the Fourier coefficient associated to the wave number k at the time

level tn+s = (n + s)∆t and j =
√
−1. After the substitution of (5.52) into (5.49),

the simplification of the common factor ejkxi and the introduction of the amplification
factor G = Cn+1

k /Cn
k = Cn

k /C
n−1
k , equation (5.49) reduces to:

G2

a+jb︷ ︸︸ ︷[
3− 4σ

Re
(cos θ − 1) + jσ sin θ (2 + γ − γ cos θ)

]
+

G

[
−4− Mcσ

3Re
h (θ) + j

4Mcσ

3
sin θ (1− cos θ)

]
︸ ︷︷ ︸

c+jd

+1 = 0

(5.53)

where σ = U∆t/∆x is the Courant number, Re = U∆x/ν, θ = k∆x and the
function h(θ) is defined as:

h (θ) =2 (cos 2θ − 1)− cos 3θ + cos θ for (5.50)
h (θ) =4 [3 (cos θ − 1)− cos 2θ + cos θ] for (5.51)

(5.54)
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Equation (5.53) has two complex solutions for G, which are given by:

G =
− (c+ jd) (a− jb)± (a− jb)

√
(c+ jd)2 − 4 (a+ jb)

2 (a2 + b2)
(5.55)

but only the one with the positive sign is of interest here and has to be compared
with the exact amplification factor Gex:

Gex = e−σθ
2/Ree−jσθ (5.56)

Three Courant numbers σ = 0.1, 0.5, 1 and three Reynolds numbers Re = 100,
500, 1000 are used for the comparison, selected according to the typical values found
in the numerical simulations presented in the next chapters. In general, a cell Reynolds
number Re = 100 can be considered typical of near wall zones while the higher val-
ues can be considered typical of free stream cells. In contrast, as will be soon clear,
only the Courant number σ = 0.1 can be considered suitable for LES with the present
time integration scheme and the higher values are only considered for reference. A first
result of the analysis, which however is not presented, is that for such high Reynolds
numbers the discretization of the diffusive part in the scale-similar model is not ap-
preciable, hence the results presented here are relative to the inconsistent discretiza-
tion (5.50) only, which is also the one used for the actual SGS model implementation.
The behavior of the real part of the numerical amplification factor as a function of the
Courant number and the model constant Mc is presented in Figure 5.7 for Re = 100
and Re = 500 and in Figure 5.8 for Re = 1000. The viscosity ν is assumed equal to
the exact molecular viscosity νex in all but three cases: Figure 5.7 (a-b) and Figure 5.8
(a), where the effect of a SGS eddy viscosity is mimicked by using ν = 2νex for the
Re = 100 case and ν = 11νex for the two remaining higher Reynolds cases.

The analysis of the scheme without model (Mc = 0) clearly reveals that, indepen-
dently from the Reynolds number, increasing the Courant number above 0.1 produces
a bottleneck effect in the spectrum, for which intermediate spatial frequencies appear
strongly damped with respect to higher and lower ones. A similar effect can also be
observed when, at fixed Courant σ = 0.1, the Reynolds number is increased, but it is
much less evident and practically disappears for higher Courant numbers. The effect
of the Courant number is also evident for the imaginary part of the amplification factor,
depicted in Figure 5.9, as a unitary Courant number appears to completely remove the
advantage provided by the gamma scheme or the scale-similar model.

What is more important, however, is the emerged behavior of the scale-similar
model, which actually seems to counteract the bottleneck effect cited above, at least
for low/intermediate Courant numbers. More specifically, two effects are worth not-
ing. The first one is that for the Re = 100 case the model constant can, and should,
have values up to 2 without sensibly altering the stability (G < 1 should be preserved),
while the higher Reynolds cases already show more serious stability issues for a model
constant equal to 1. The second effect to note is that for σ = 0.1 and ν = νex the
scale-similar model does not appear as particularly helpful, but just compromises an
otherwise optimal behavior. However, if the effect of an additional eddy viscosity is
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Figure 5.7: Comparison between numerical and exact amplification factors. Left: Re = 100. Right:
Re = 500. a) σ = 0.1, ν = 2νex. b) σ = 0.1, ν = 11νex. c-d) σ = 0.1, ν = νex. e-f) σ = 0.5,
ν = νex. g-h) σ = 1, ν = νex.
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Figure 5.8: Comparison between numerical and exact amplification factors at Re = 1000. a) σ = 0.1,
ν = 11νex. b) σ = 0.1, ν = νex. c) σ = 0.5, ν = νex. d) σ = 1, ν = νex.
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Figure 5.9: Effect of the Courant number σ on the imaginary part of the amplification factor at Re =
100. a) σ = 0.1. b) σ = 1.

considered, the reasoning is reversed, as now the scale-similar model becomes funda-
mental in order to restore a more accurate spectral behavior. Overall, while this analysis
should not be considered conclusive, the effect of the scale similar term can be consid-
ered beneficial and the selected range for the dynamic constant, 0 ≤ C ≤ 2, appears as
representative of the most practical cases. Also, despite the low formal accuracy of the
model, its effects are net. The effective stability of the model will be instead assessed a
posteriori in the actual numerical simulations presented in the next chapters.
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5.5.4 2D Taylor-Green test case

In order to test the overall solver accuracy, both in space and time, the 2D Taylor solu-
tion (Taylor, 1923) is considered as benchmark problem:

u (x, y, t) =− cos (mπx) sin (mπy) e−2m2π2µt/ρ

v (x, y, t) = sin (mπx) cos (mπy) e−2m2π2µt/ρ

p (x, y, t) =− 1

4
[cos (2mπx) + cos (2mπy)] e−4m2π2µt/ρ

(5.57)

where µ and ρ denote the dynamic viscosity and the density of the fluid, x and y
denote the spatial coordinates, t ≥ 0 is the physical time and m > 0 is any positive in-
teger. Despite its simplicity, this test case allows the investigation of several parameters
with relative ease. In particular, here the analysis is focused on the ratio σ = ∆x/∆t
(which is representative of the Courant number), the Reynolds number Re = ρ/µ
and the resolution parameter m. All the simulations are performed with a structured
uniform grid on a square domain with linear dimensions Lx = Ly = 2 and periodic
boundary conditions in both the spatial directions. The error is evaluated by sampling,
at a given time T , the continuous exact solution (5.57) in the finite set of points where
the numerical solution is defined (i.e., the cell centers) and by taking the L∞ norm of
the difference between the numerical solution vector and the exact sampled solution.
In all the cases the least-squares gradient computation method (5.12) is adopted10.

The effect of the ratio σ is analyzed in Figures 5.10 and 5.11, form = 1 andRe = 1,
by varying, respectively, the pressure discretization scheme and the convection scheme.
The analysis is limited to the values σ = 0.1 and σ = 0.5 as, consistently with the re-
sults of the previous section, higher values completely destroy the overall accuracy. In
particular, in Figure 5.10 three different pressure discretization methods are analyzed:
the PRESTO, the BFW (see 5.4 for both) and a standard second order (2ND) central
scheme (5.13) based on the Green-Gauss formula (5.9). For all the cases, the results
clearly indicate that the solver achieve the expected second order accuracy for the veloc-
ity and the first order accuracy for the pressure. Indeed, it should be noted that the first
of the two approximations in (5.38) is such that the pressure correction in the adopted
FSM can only be first order accurate in time, no matter what boundary conditions are
used on the pressure.

The comparison performed in Figure 5.11 is instead meant to analyze the possibility
to use a symmetry preserving scheme, as advocated by several authors in order to avoid
any net kinetic energy effect due to the convection scheme (Verstappen and Veldman,
1998; Benhamadouche et al., 2002; Verstappen and Veldman, 2003; Mahesh et al.,
2004; Felten and Lund, 2006; Verstappen and Van Der Velde, 2006; Verstappen, 2008;
Rossi, 2009; Jofre et al., 2014; Trias et al., 2014). In order to do so, two options are
available in the solver: disabling the reconstruction of higher order terms (DisRec)
or setting to 0 the blending between high and low order schemes (HOB). While one
would expect that both options obtain the exact same effect, no specific information is

10In order to correctly perform the tests on this specific case, three solver details are of paramount importance: the selection of
a proper gradient scheme, in order to avoid inconsistencies at the corners of the domain; the double initialization of the solution at
the first two time steps, in order to avoid the inconsistency introduced by the first order Euler scheme used on the first time step;
the setting of the reference pressure p = 0 in a proper point, according to the exact solution (5.57).
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Figure 5.10: Courant number effect on the solution of the Taylor problem for different pressure dis-
cretizations and the central scheme at Re = 1. Top: σ = 0.1. Bottom: σ = 0.5. Left: Velocity error.
Right: Pressure error.

available on how and which term is effectively disabled in the equations, hence both are
tested. The results, which are presented for the PRESTO scheme only11, indicate that
disabling the reconstruction (DisRec) effectively retains the second order accuracy for
the velocity field, hence it is a suitable alternative. Notice, however, that some spurious
effects appear on the pressure accuracy, which might not be preserved.

The effect of the Reynolds number is investigated in Figure 5.12, with σ = 0.1,
for the basic Central-PRESTO discretization. For both the cases, Re = 100 and Re =
10000, the velocity accuracy remains second order, even if for the higher Reynolds case
it is not explicitly evident for the range of time steps considered in the analysis. What
is more interesting, however, is the fact that, for a sufficiently high Reynolds number,
the pressure achieves a full second order accuracy, which seems in contradiction with
previous results and statements. However, such contradiction is only apparent as, for
this specific flow, the pressure gradient exactly balance the convective terms, while
the viscous terms only determine the time variations. This, in turn, means that for
high Reynolds numbers the approximation (5.38) adopted in the FSM is still first order
accurate but, due to the low influence of the diffusive terms, the dominant error is due

11The two other schemes give exactly the same results.
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Figure 5.11: Courant number effect on the solution of the Taylor problem for different centered dis-
cretizations and the PRESTO scheme at Re = 1. Top: σ = 0.1. Bottom: σ = 0.5. Left: Velocity
error. Right: Pressure error.

to the convective terms and reverts to second order to satisfy the balance. This effect
is particularly evident when comparing the results for the two Reynolds numbers. For
the lower one the second order range is still limited but a change in slope is discernible.
For the higher one, instead, the range is much wider and full second order accuracy is
achieved. Obviously, extending the range of time steps toward smaller values would
have revealed the true first order accuracy for the pressure. Finally, notice that similar
results are also obtained with the Dis-Rec option (not shown), the only difference being
that the full second order accuracy for the pressure is already achieved for theRe = 100
case.

The final test performed is on the influence of the resolution parameter m, which in
literature appears to be seldom, if ever, tested. However, as for the test on the Reynolds
number, this is certainly important for solvers which are intended to be used in LES.
Indeed, the velocity fields typically resolved in LES never have the smoothness and
the resolution which are associated with m = 1. In particular, for m = 1, the grids
used in the previous tests provided from 22 to 642 cells per wavelength of the velocity
solution and the half of these values for the pressure, which are far from common,
even in DNS. Obviously, the overall analysis becomes increasingly meaningless for
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Figure 5.12: Reynolds number effect on the solution of the Taylor problem with σ = 0.1. Top: Re = 100.
Bottom: Re = 10000. Left: Velocity error. Right: Pressure error.

increasing values ofm as higher order error terms might not be negligible at very scarce
resolutions. Nonetheless, while the order of accuracy is not anymore a meaningful
error measure, the consistency of the numerical schemes should not be impaired by the
scarce resolution and an error reduction with the grid and time steps is still expected.
Formally, this test should have been done on a fixed grid, to keep the number of cells per
wavelength fixed. However, as the Courant number has been determined as a strongly
limiting factor, the test presented here is still performed at Re = 1 with a fixed ratio
σ = 0.1. Hence, in practice, it can be also considered as an extension of the results in
Figure 5.10 (a-b) toward very coarse grids.

In particular, three different values are considered for m: 2, 5 and 10. This values
determine, respectively, the following resolution ranges for the velocity on the adopted
grids: 11−321, 4.4−128.4 and 2.2−64.2 cells per wavelength. Those for the pressure
are instead the half of the previous values, thus accuracy cannot certainly be invoked
but, nonetheless, consistency and stability of the scheme can be assessed.

The results are presented in Figure 5.13 and, somehow surprisingly, still show that
the velocity is approximately second order accurate, even form = 10. However, the re-
sults for the intermediate valuem = 5, especially for the pressure, clearly evidence that
this might be a limit value, the results for m = 10 being purely fortuitous. Nonethe-
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Figure 5.13: Effect of the resolution parameter m on the solution of the Taylor problem with σ = 0.1
and Re = 1. Top: m = 2. Center: m = 5. Bottom: m = 10. Left: Velocity error. Right: Pressure
error.

less, the stability of the scheme has not been impaired by the simulations. Finally, it is
worth mentioning that similar results have been obtained with the Dis-Rec option (not
shown), the main difference being in the lack of a clear error reduction for the pressure
for all the three values of m.
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5.5.5 Laminar channel flow

The final test presented in this section is relative to the classical Poiseuille flow between
two parallel flat plates. The flow is driven by a constant longitudinal pressure gradient
∆P/L, which produces the unique steady velocity component u(y):

u (y) = −2H2

µ

∆P

L

[( y

2H

)
−
( y

2H

)2
]

(5.58)

where µ is the viscosity of the fluid and y is the wall-normal direction, along which
the plates are separated by a distance 2H . This particular test is performed to assess
the influence of the first order boundary conditions at walls on grids which are repre-
sentative of actual LES applications, as shown in the next chapter. In particular, the
simulations are performed on two sets of grids: one with a uniform cells distribution in
wall normal direction and the second one with a cosine stretching law:

yj = H

{
1− cos

[
(j − 1)π

Ny

]}
j = 1, 2, ..., Ny + 1 (5.59)

where yj is the jth grid node wall-normal coordinate and Ny, the number of compu-
tational cells in the y direction, is varied among the grids to obtain different wall-normal
resolutions.
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Figure 5.14: Reduction of the L∞ norm of the error on the stretched grid for the laminar channel flow
test case.

Fully three-dimensional computations are performed, with periodic boundary con-
ditions along the wall-parallel directions and the overall flow driven by either fixing
the pressure gradient or the overall mass flux. The computations are steady, in order to
avoid additional time discretization effects, and the pressure velocity coupling is based
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on a standard SIMPLEC method (Van Doormaal and Raithby, 1984). The remaining
numerical settings are the default Central-PRESTO discretization and a least-squares
method for the gradient computation. As shown in Figure 5.14, with both flow con-
ditions a full second order accuracy is achieved on the stretched grid and a similar
accuracy is also achieved on the uniform grid for Ny between 33 and 129 (not shown).
While this seems to invalidate the discussion in 5.2.4, this is not actually the case. In-
deed, as shown in Figure 5.15, the error distributions on the two grids are very different
and, for the uniform grid, two error peaks are also present at the first cells near the
walls12.
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Figure 5.15: Error distribution for the laminar channel flow test case with Ny = 129 and fixed mass
flow rate.

What thus happens is that, for the non-uniform grid, the near-wall grid spacing is
always much smaller than the maximum grid spacing in the center of the channel and
the error at the wall is negligible. In contrast, for the uniform grid, while the first order
error at the wall would be expected to emerge, it actually doesn’t because, with the
grid refinement, the velocity in the near-wal cells also decreases with the first power
of the grid step and the overall spatial error remains second order. While this seems to
suggest that the overall error actually is of second order, this is really not the case and
the observed behavior simply reflects the fact that, for this particular test, there is no
way to refine the grid without moving the effective point which is affected by the first
order error term. Of course, when the error is evaluated for the wall shear stress the
first order accuracy clearly emerges. In conclusion, while not readily apparent, the first
order error at the wall is certainly present, but its magnitude can be controlled with an
appropriate refinement of the grid.

12Notice that, for the fixed pressure gradient case, the wall peaks are also the only error peaks present on the uniform grid.
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5.6 Implementation details

Before closing this chapter it is necessary to introduce some details regarding both the
default LES implementation in Fluent R© and the implementation of the scale-similar
model proposed here, as well as some details regarding additional LES aspects which
are usually overlooked.

5.6.1 Default LES implementation

It should be now clear that, as a FV code, Fluent R© is perfectly suited for GLES. From
the practical point of view, the code being of the implicitly filtered type, differences
only arise at the SGS model level and just for two specific points in particular: the form
of the GI, which is that in (3.15), and the possible forms of structural models, which are
described in section 4.3. Finally, both these two points usually imply also the definition
of a proper test filter13, which should be implemented according to equation (4.18).
However, this is seldom done in practice and formula (4.19) is more typically adopted.
For understandable reasons, Fluent R© has no structural models implemented, hence its
default LES implementation is strictly defined by the test filter and the dynamic proce-
dure/GI used to compute model constants.

Unfortunately, despite the fact that the applicability of present GLES framework to
Fluent R© is known since the work of de With and Holdø (2005), the dynamic procedure
implemented in the code is based on the CGI as presented in (2.33) (Kim, 2004). In
particular, the test filter is in the form of equation (4.19), but does not involve the central
cell and the stencil is limited to first neighbor cells only. Also, the Smagorinsky model
is the only algebraic model available for the dynamic procedure14 and will be used as a
reference for the dynamic procedure proposed here.

5.6.2 SGS model

The full implementation of the proposed dynamic mixed SGS model has required the
development of three specific numerical aspects: a gradient computation algorithm,
already described and tested in the previous section; a filtering routine, due to the lack
of user-access to the default one implemented in the solver; an implementation strategy
for the whole model.

The filtering routine, which is required by both the proposed dynamic procedure
and the specific eddy-viscosity and scale-similar models used in it, has been designed
following equation (4.19) and such that it is already suitable for general compressible
flows. In particular, it is based on a two step procedure which is executed at each time
step and by each processor separately. In the first step the filtering stencil is created for
each cell trough the following procedure15:

13See Chester et al. (2001) for an alternative dynamic procedure without test filter.
14Additional SGS model options available in the solver are the WALE model of Nicoud and Ducros (1999) and the Dynamic

subgrid Kinetic Energy Model (DKEM) developed by Kim and Menon (1997). However, none of the two is further considered in
this thesis.

15A relevant alternative would have been the pre-computation and storage of the filtering stencils. However, this would have
required additional memory locations and the implementation of a dedicated data structure. In contrast, the computational burden
of performing such procedure at each time step is generally limited and preserves the flexibility which would be required, for
example, near shocks or other moving discontinuities typical of variable density flows.
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• Insertion of the cell in the stencil vector and its initialization as "Most Recently
Added Group of Cells" (MRAGC), trough a couple of integers denoting the start
and end positions of this group in the stencil vector.

• NL inner loops (m_loop) over the MRAGC (NL identifying the number of cell
layers in the filter stencil). In each loop, the following sub-steps are performed:

– For each cell i in MRAGC an inner loop over its faces (f_loop) is performed.

– For each face, the adjacent cell j is added to the stencil if: the stencil is not
full yet, the cell is not already into the stencil, the cell is a fluid cell and
effectively belongs to the current parallel partition.

– After the last cell in MRAGC has been visited, update MRAGC with the
newly added cells and go to the next m_loop.

• If necessary, remove from the stencil the cells having less than a certain number
of neighbors in the stencil (compactness criterion).

Which, while not being particularly designed to achieve high performances, has the
merit to be flexible enough to perform tests on the filter stencil independently from
the filter itself. After the stencil creation, for each cell the filter (4.19) is applied only
once to the resolved variables (ρ̄n, ρ̄nũni , p̄n and, if needed, ρ̄nT̃ n and ρ̄nũnj ũ

n
j ) and

the filtered variables are then exchanged among contiguous parallel domain partitions.
This overall procedure is appliedm+1 times and the results of the last two applications
are finally stored in memory together with the required gradient components, computed
with the newly implemented routine. The default setting used in this thesis is m = 1
and NL = 1, without satisfying any compactness criterion, hence the overall procedure
consists, for each cell, in four loops over neighbor cells (two for the stencil creation
and two for the effective filtering). However, in some cases with unstructured grids,
using a larger filter width has been found fundamental in order to correctly remove the
high frequency component from the computed solution. While both increasing m or
NL would have produced the desired effect, increasing the value of NL has been found
more suitable for two reasons. First, while having an higher serial cost then increasing
m, its parallel performances are superior as no extra communication costs are involved.
Second, as the overall procedure is only applied m + 1 times, for practical reasons,
increasing m to obtain a larger filter width would introduce an inconsistency between
the last two filter levels. Hence, this last option has been finally discarded.

For what concerns the implementation strategy of the whole model for τn−0
ij , its two

components have been split. For the eddy-viscosity part, naturally handled by the solver
trough a dedicated routine, no specific effort has been required for its implementation
and the dynamically computed viscosity is simply passed to the solver. The scale-
similar part, instead, has been implemented as an additional source term following the
classical FV integration rule:

∂

∂xj

(
τn−0
ij

)n
=

1

Vi

∫
Ωi

∂

∂xj

(
τn−0
ij

)
dΩ =

Nf
i∑
f

(
τn−0
ij

)
f
nfj
Af
Vi

(5.60)
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with (τn−0
ij )f interpolated according to (5.11), whose cost is an additional loop over

the cell’s nearest neighbors16. Finally, it’s worth mentioning that, on physical bound-
aries, no contribution from the scale-similar term is considered in (5.60). In contrast,
for the computation of the gradient of the filtered variables, the resolved variables are
used at the boundaries.

5.6.3 Inflow boundary conditions

Because of the very specific range of scales involved in a simulation, the specification
of proper boundary conditions is as important in LES as the use of proper numerical
methods and SGS models. Indeed, for a given computational domain, two specific
ranges of scales can be identified. One is relative to the so called super-grid scales
(SPGS), which are larger or comparable to the domain size and, in practice, determine
the mean flow entering/leaving the domain (Grinstein, 2006, 2009). Such scales require
modeling as the SGS ones, by proper specification of the domain boundaries and by
suitable mean flow specifications, both on the physical and the numerical side. The
second range of scales which can be identified is the one relative to the effectively
resolved scales in the domain, ranging from domain size scales down to the smallest
scales allowed by the computational grid and the specific LES approach adopted. Not
only the two ranges usually interact but, for a given domain, both need to be specified
on the boundaries and both determine the specific flow realization. In practice, besides
wall boundaries (where boundary conditions are, formally, trivial), these issues have
implications for inflow and outflow boundaries. SPGS modeling and outflows are not
specifically treated in this section but further discussed in chapter 7 with a practical
example. Inflow boundary conditions are discussed in the following.

The problem of specifying proper inflow boundary conditions in LES is usually
split in two sub-problems. One relative to the specification of the mean flow profiles at
inlet and one to the specification of the remaining scales down to the grid resolution.
Despite few exceptions (see Sagaut et al. (2004)), this is usually limited to the velocity
components and consists in assuming for the velocity on the boundary:

ũi (xj, t) = Ui (xj, t) + u′i (xj, t) (5.61)

where Ui is the mean velocity and u′i the relative fluctuation. The specification of Ui
is not usually an issue as it is based on the results of preliminary or concurrent RAN-
S/URANS computations or determined by analytical/empirical profiles (e.g., (5.27)).
Still, this component is certainly important and has to be specified with care. The diffi-
culties in specifying u′i can instead be traced back to three main factors. The first, most
important, one is that u′i represents almost all the scales actually present in the incom-
ing flow while Ui only represents few of the largest ones. Hence, in terms of physical
information, u′i is more rich and flow determining. The second factor is due to the fact
that the information contained in u′i is representative of: the whole energy cascade up
to the grid cut-off and the scale reduction process in it; the coherent structures and their
spatial-temporal correlations; any possible anisotropy or lack of homogeneity. Hence,
in practice, u′i actually contains most of the dynamics of the full NSE. Finally, u′i also

16Notice that the face based data structure typical of FV solvers is not usually available to the user. As a consequence, the source
term is implemented on a per cell basis.

123



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 124 — #146 i
i

i
i

i
i

Chapter 5. Numerical method

needs to be compatible with the actual discrete dynamical system simulated in the do-
main, which means that it has to be compatible with both the overall numerical method
and the computational grid. As a consequence, most of the known methods specify u′i
only approximately, trough some stochastic process which is further enforced to satisfy
specific flow constraints.

Among the several possible approaches (Tabor and Baba-Ahmadi, 2010), two meth-
ods are available in Fluent R©: the Spectral Synthesizer (SS) (Smirnov et al., 2001) and
the Vortex Method (VM) (Sergent, 2002; Mathey et al., 2003, 2006). Specific details
on these two methods can be found in the relative references and in (Viaro et al., 2012).
Here only some common features are recalled. In particular, both methods require the
specification, at the inflow boundary, of turbulence related velocity and length scales,
at least, or the full Reynolds stress tensor. Which means that, in general, a precursor
RANS simulation is required. As spatial and temporal correlations are enforced artifi-
cially trough an approximate procedure and, possibly, an incorrect RANS specification,
such methods also require an adaptation region between the inflow boundary and the
spatial location where the numerically sustainable flow dynamics is restored. Finally,
the specific implementation used in Fluent R© is such that: for the SS the spectral en-
ergy distribution of the fluctuations is strictly Gaussian17 while for the VM it almost
completely lacks a viscous range. These features are such that the VM recovers the
numerically sustainable flow dynamics only about 10 hydraulic diameters downstream
the inlet plane. For the current implementation of the SS instead no such recovery is
generally possible and the fluctuations are almost always dissipated, leading to a full
laminarization of the flow and a completely incorrect computation (Viaro et al., 2012).

Besides the specific implementation details, the necessity for an adaptation region
is a well known issue of all the stochastic inflow generation methods. Indeed, despite
the lack of physical correlations among the prescribed scales, an even more important
deficiency of such methods is that the prescribed velocity fluctuations are not adapted
to the current discretization method and grid resolution, which cannot be reasonably
considered in the procedure. Also, from the conceptual point of view, the dependence
of such methods on RANS simulations is not only a limit in itself but also mines the
reliability of the LES results as most RANS models have serious deficiencies even for
flows as simple as those in square ducts. In this case, there would be the embarrassing
situation of a turbulence modeling approach, LES, designed to overcome the RANS
limits, which instead relies on it for the inflow specification.

An alternative to stochastic inflow specification methods is based on the mapping of
velocity fields from concurrent simulations or databases. In these methods an auxiliary
computation, targeted toward the required inflow condition, is performed in parallel or
in advance with the same numerical parameters used in the main computation and with
specific boundary conditions. Once the auxiliary flow has reached the target condition
for the inflow, its velocity field is sampled on a representative plane and either used
directly as inflow in the main domain or stored over a sufficiently long time and used
subsequently. Such method has the advantage that no adaptation regions are required
and the resulting inflow is always the best possible prescription. Also, no additional
RANS computations are involved and the whole computation relies on LES features
only. However, this approach has been usually disregarded because considered costly,

17This behavior has been modified recently (Huang et al., 2010; Castro and Paz, 2013).
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due to the required storage or the parallel auxiliary computation, and impractical for
general purpose solvers.

While not specifically designed for any of the test cases analyzed in the next chap-
ters, a part of this thesis has been also dedicated to the implementation of such a map-
ping procedure in the Fluent R© solver. This was not only motivated by the effective
lack of a consistent inflow method in the code, but also by the fact that, in contrast to
the common beliefs, such a method is easily manageable in a general purpose solver
and can actually be competitive with the alternative stochastic methods, if not the only
available option in some specific cases. Such implementation is briefly described in the
following while the test on its implementation is best presented in chapter 7.

Periodic B.C.

Mapping of th
e velocity fie

ld

Auxiliary domain

Main domain

Inflow

Outflow

Figure 5.16: Sketch of the mapping procedure.

A sketch of the general approach followed in the implementation of the mapping
procedure is presented in Figure 5.16. In practice the method consists in having, parallel
to the main computational domain, also an auxiliary domain. While the simulation in
the main domain is set up as would be done normally, the one in the auxiliary domain is
performed on a smaller domain with periodic boundary conditions, but with the same
grid resolution and numerics used in the main domain. In practice, the flow in the
auxiliary domain is set up in order to reach equilibrium conditions, representative of
the required inflow, trough the application of a specific volume forcing.

Notice that, with respect to the total domain size, the auxiliary domain is usually a
small fraction and, most of the times, it is smaller than the development region needed
by stochastic methods. Also, it is worth stressing that a good practice in LES requires
that building block flows are tested in advance, in order to assess the required spatial
resolution and numerical setting for the flow at hand. Hence, in general, the fully de-
veloped flow in the auxiliary domain should be available in advance, with the correct
numerical setting, and ready to be inserted in the computation next to the main com-
putational domain. Finally, it is also worth mentioning that a current trend for general
purpose solvers is to have the mapping plane within the main domain itself, invoking a
sort of simplification in the overall setting (Baba-Ahmadi and Tabor, 2009; Tabor and
Baba-Ahmadi, 2010). Here, as clearly evidenced by Figure 5.16, this approach is not
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followed for several reasons. The first is that, as explained before, having a separate
auxiliary domain promotes the good practice of computing building block flows in ad-
vance. The second is that a mapping plane in the main domain introduces a dynamic
coupling with the inflow plane which, most of the times, requires spatial separations
among the two which are much larger than those required by stochastic methods, nul-
lifying any advantage of the approach. Finally, having a separate auxiliary domain
allows more flexibility in several aspects: the forcing of the flow; the use of nominally
different flow conditions with a scaling (Schlüter et al., 2004), which still provides bet-
ter results than pure stochastic methods (Keating et al., 2004); the use of the method
only for portions of the overall inlet section.

With both the main and auxiliary computations in place and correctly set up, the
mapping procedure implemented in the code follows the steps described below (see
Lampitella et al. (2012) for more details):

• First pre-processing step: all the parallel processes hosting cell faces on the mapped
or inflow boundaries transfer their information to the master process.

• Second pre-processing step: the master process determines the logical connections
among the faces/processes by a brute force search method and the Rodrigues’
rotation formula (Rodrigues, 1840). This information is stored in a four column
matrix of integers, whose ith row has the following structure:

INP
i IN f

i MAP P
i MAP f

i for i = 1, 2, . . . , N (5.62)

indicating, for each of the N faces on the inflow boundary, the hosting process
(INP

i ), the local face index (IN f
i ), the process hosting the corresponding face

on the mapped section (MAP P
i ) and the local index of this face (MAP f

i ). This
relational matrix is then transferred back to all the processes, which make it local
by eliminating rows not involving them.

• At run time, for each time step, each process performs a loop over its own re-
lational matrix and performs one of the following operations according to the
specific case (all the communications are non-blocking):

– The process hosts both the mapped and inflow faces. The required fields (e.g.,
velocity components, density, etc.) are simply stored in a dedicated memory
location.

– The process hosts a face on the mapped section. The required fields are sent
to the process hosting the corresponding face on the inlet.

– The process hosts a face on the inlet section. The required fields are received
from the process hosting the corresponding face on the mapped section and
stored in a dedicated memory location.

• At run time, for each time step, a classical routine for the implementation of
boundary conditions is used together with the information stored at the previous
step. This, in particular, may involve any required consideration on incoming/out-
coming waves, according to the needs. As this routine is separate from the one
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above and called after it, the non-blocking communication paradigm has no spe-
cific effects and full synchronization is always in place.

In practice, the main limitation of the algorithm is in the fact that both the mapped
and inlet boundaries need to have the exact same distribution of cell faces and this
is not allowed to change during the computation. It is also worth noting that all the
preprocessing steps are done only once in advance and the relational matrix stored in
memory. Hence, the overall cost of the algorithm is simply related to the communica-
tion between the usually low number of processes hosting the involved couples of faces.
Tests on different hardware architectures, as well as with different CPU loadings, and a
random domain partitioning have shown that, for fixed total number of cells, the above
procedure reduces the overall cost per time step between the 23% and the 12% with
respect to the VM, with an average cost saving around the 18%.

The interesting fact about these numbers is that, from the computational point of
view, the inflow specification method is blocking for the overall time advancement, no
matter how small the inlet face is. As a consequence, the savings above approximately
allows investing the 18% of the total computational cells in the auxiliary domain while
keeping the same costs of the VM. At the same time, the VM would still need an
adaptation region, hence requiring an overall greater number of cells and greater costs.
The effectiveness of the present implementation will be assessed in chapter 7 on two
specific test cases.

5.6.4 Flow statistics

An LES aspect which is often overlooked, or simply neglected, is the computation of
flow statistics. Indeed, an LES computation is strictly three-dimensional and unsteady
and, to produce the usually required mean flow quantities, the instantaneous quantities
need to be averaged in time and/or spatial directions along which the flow is homoge-
neous. However, for its own nature, LES can, and is usually required to, give additional
statistical information on the flow, like spatial and temporal spectral energy distribu-
tions, second or higher order moments, etc.

A first issue which is encountered in computing such first or higher order statistical
quantities is that, formally, the LES solution, independently from the specific approach,
is not equivalent to a DNS solution but, as demonstrated in section 3.6, almost always
responds to the GLES equations (3.9). As a consequence, even a mean velocity profile
does not exactly correspond, in theory, to the mean profile which is ideally looked for.
Higher order statistics are also subjected to additional subtle limitations (Sagaut, 2006)
and, even considering SGS models in their reconstructions, might not always lead to
the correct statistics, depending on the specific SGS model in use (Knaepen et al., 2002;
Winckelmans et al., 2002).

Here a different approach is followed, which in practice consists in computing
straight LES statistics and considering them as representative of the real flow. While
certainly incorrect, this is motivated by different reasons. The first one is that any possi-
ble approach to compute the statistics is always acting a posteriori, as a post-processing
step; hence the matter is not related to the actual computation as to the correct inter-
pretation of the results. The second one is that different SGS models or LES codes
would generally require different reconstruction procedures, making the analysis work
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extremely elaborate and impractical for a general purpose solver. Also, SGS models
are usually devised as only statistically correct, which means that their inclusion in the
flow statistics is not justified as it is not justified in RANS/URANS. Nonetheless, for
the present GLES framework applied to the FV method and the scale-similar model
developed in this thesis, an easy approach to such approximate reconstruction exists,
which consists in using equation (4.80):

φ∗ = φ̄n + Css
∆2
n,0

∆2
m,n

(
φ̄n − φ̄m

)
(5.63)

Hence, instead of computing the statistics from the resolved variables φ̄n, it is pos-
sible to compute them from the enhanced field φ∗, which is consistent with both the
Galilean invariance of the equations and the FV filter affecting them. As stated above,
such approach is not generally used here, but an example of the differences arising due
to its use is given in the next chapter.

A second issue related to the computation of the flow statistics is in the actual al-
gorithmic implementation. Indeed, the one adopted in Fluent R©, as well as in more
advanced research codes (Nek5000, 2013), is based on running time integrals. In par-
ticular, for any two given variables, φ and ψ, the following quantities are stored in
Fluent R©:

〈φ〉t−t0 =

∫ t

t0

φdt =
N∑
i=1

φi∆ti 〈ψ〉t−t0 =

∫ t

t0

ψdt =
N∑
i=1

ψi∆ti

〈
φ2
〉t−t0 =

∫ t

t0

φ2dt =
N∑
i=1

(
φi
)2

∆ti
〈
ψ2
〉t−t0 =

∫ t

t0

ψ2dt =
N∑
i=1

(
ψi
)2

∆ti

〈φψ〉t−t0 =

∫ t

t0

φψdt =
N∑
i=1

φiψi∆ti

(5.64)

with ∆ti denoting the N time steps covering the time interval t − t0 used for the
average and φi and ψi the values of the variables at such time steps. Then, variance and
covariance are computed as follows:

〈
(φ− 〈φ〉)2〉 =

〈φ2〉t−t0

t− t0
−
(
〈φ〉t−t0

)2

(t− t0)2

〈(φ− 〈φ〉) (ψ − 〈ψ〉)〉 =
〈φψ〉t−t0

t− t0
− 〈φ〉

t−t0 〈ψ〉t−t0

(t− t0)2

(5.65)

Besides the lack of a tool for statistical moments and co-moments of order higher
than two, this approach is a numerical nightmare as, not only serious cancellation er-
rors can occur, for example, in the subtractions in (5.65), but the stored variables in
(5.64) can grow in time without bounds! Hence, the accuracy on the variance and
co-variance can be lost even before the cancellation error occurs. These problems are
well known and reported as simple introductory examples in numerical analysis books,
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e.g., Higham (2002, p. 11) and Hammarling (2005, p. 46). It could be argued that,
with the double-precision floating-point format, these issues have low relevance, if any.
However, as shown, for example, by Chan et al. (1983), the previous algorithm for the
computation of the variance has a relative error with an upper bound given by:

er = Nk2u k =

√
1 +N

〈φ〉2ex〈
(φ− 〈φ〉)2〉

ex

(5.66)

where the subscript ex denotes the exact value, N is the number of collected sam-
ples, u is the arithmetic precision (e.g., around 10−15-10−17 for double precision) and
k represents the condition number of the sample with respect to the variance computa-
tion. Hence, the error grows like uN2 and, as it is not uncommon for the ratio under the
square root to be approximately 103 − 104, in the worst case scenario the error would
grow as 10−11N2. As a consequence, for N ≈ 105, which is not uncommon in LES,
the relative error bound would be 0.1; as soon as N reaches 3 · 105, the relative error
bound is approximately 100%. Even arguing that these are only upper bounds and that
some multiplicative constant lower than one might be present, the result can still be
non catastrophic but simply inaccurate. A typical case where this would happen is in
the realization of anisotropy maps for the resolved Reynolds stresses (Banerjee et al.,
2007). In this case the resolved Reynolds stress tensor is made anisotropic and the lo-
cal anisotropy is classified according to the eigenvalues of the anisotropy tensor, whose
components have specific upper and lower bounds. In this case, even small errors in
the computation of the statistics might make the resolved stresses not realizable and
completely useless in this kind of analysis.

In order to overcome such difficulties, and for additional reasons that will become
clear soon, a dedicated routine for the single-pass computation of the flow statistics has
been developed. Previous works in this area can be dated back to Weldford (1962),
which first developed a stable and accurate recurrence formula for the computation
of the mean, the variance and covariance, and general, arbitrary order, univariate mo-
ments. In particular, Weldford’s formulas are suited for single samples updating the
previously computed statistics. Chan et al. (1979) have extended the formulas for the
mean, the variance and the covariance to the case when they have to be updated from
already computed values over populations with the most diverse cardinality; Terriberry
(2008) additionally extended the work to the computation of third and fourth order
univariate moments. Finally, Pébay (2008) extended the previous works to the com-
putation of arbitrary order univariate central moments. While certainly reliable and
robust, all these methods still suffer a lack of flexibility, as not directly applicable to
general computations with variable time steps, which is instead possible with the for-
mulas in (5.64-5.65). Also, in anticipation of alternative applications, they would also
be inapplicable for spatial statistics, as for a FV method the local variables should be
weighted by the local cell volume Vi. To the best of the author’s knowledge, much less
work has been done in this area. Indeed, an update formula for the weighted variance
has been developed by West (1979) and further generalized by Chan et al. (1979) into
a pair-wise algorithm to handle data sets of different cardinalities18.

18The work of Choi and Sweetman (2010) is a notable exception which, nonetheless, employs a different approach based on
computed PDFs, hence it looses the generality of an exact integration formula.
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The formulation proposed here is intended as a generalization of the previous works
to the case of arbitrary order, univariate or multivariate, central moments. In particular,
given the two sets of N samples φ1, φ2, . . . , φN and ψ1, ψ2, . . . , ψN , and the corre-
sponding set of generic weights, w1, w2, . . . , wN , the variables which should be com-
puted are the weighted means, 〈φ〉Nw and 〈ψ〉Mw , and the weighted, multivariate, central
moment CN

k,q:

〈φ〉Nw =

N∑
i=1

wiφ
i

N∑
i=1

wi

〈ψ〉Nw =

N∑
i=1

wiψ
i

N∑
i=1

wi

CN
k,q =

N∑
i=1

wi

(
φi − 〈φ〉Nw

)k (
ψi − 〈ψ〉Nw

)q
N∑
i=1

wi

(5.67)

for any given combination of positive integers k and q. For the sake of generality, it
can be assumed that the original data samples and weights are available as two separate
sets of respective cardinality M and N −M , with N > M > 0, and that weighted
means and moments are available for the two sets19: 〈φ〉Mw , 〈φ〉N−Mw , 〈ψ〉Mw , 〈ψ〉N−Mw ,
CM
r,s and CM−N

r,s , with (0, 0) ≤ (r, s) ≤ (k, q). Then, as shown in Appendix F, the
following recurrence formulas hold:

〈φ〉Nw =
WM

WN
〈φ〉Mw +

WN−M

WN
〈φ〉N−Mw

〈ψ〉Nw =
WM

WN
〈ψ〉Mw +

WN−M

WN
〈ψ〉N−Mw

CN
k,q =

k∑
r=0

q∑
s=0

(
k

r

)(
q

s

)(〈φ〉N−Mw − 〈φ〉Mw
)r (
〈ψ〉N−Mw − 〈ψ〉Mw

)s
(WN)r+s+1 AN,Mk−r,q−s

(5.68)

where:

WM =
M∑
i=1

wi WN−M =
N∑

i=M+1

wi WN =
N∑
i=1

wi = WM +WN−M

AN,Mk−r,q−s = WN−M (WM
)r+s

CN−M
k−r,q−s +WM

(
−WN−M)r+sCM

k−r,q−s

(5.69)

These formulas, besides allowing the stable, single-pass/parallel20 computation of
19The relevant case of the update of time statistics is obtained for M = 1.
20The same formulas can be used with M = 1 to update time statistics, but also with any other combination which would then

allow the computation of the statistics for distributed data sets in parallel environments.
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second and higher order statistics21, also have an additional advantage in the fact that
they can be used to simplify exact integration formulas. Hence, for example, they
could be used to simplify the computation of the second order moments in (4.14) by
splitting an arbitrary computational cell in a sum of tetrahedrons, whose moments can
be computed exactly and then combined according to the last equation in (5.68)22.

21The fact that they reduces to those in the cited references can be readily verified by properly setting the weights and the integers
k and q. Still, the overall error bound is also problem dependent and will certainly grow with k and q.

22This would be also valuable in computational geometry for the computation of the inertia tensors for objects whose spatial
data are distributed among different processes.

131



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 132 — #154 i
i

i
i

i
i



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 133 — #155 i
i

i
i

i
i

CHAPTER6
Turbulent channel flow

In this chapter the proposed dynamic, mixed SGS model is tested on the turbulent chan-
nel flow at Reτ = 590 and compared with the available DNS data (Moser et al., 1999)
and alternative modeling options. A general description of the flow is first presented in
section 6.1, together with the most relevant features regarding its LES computation. A
brief description of the main computational setup used for all the tests is then given in
section 6.2, while extensive tests of the SGS model are presented in section 6.3. As this
test case also served as benchmark for the LESinItaly initiative (Denaro et al., 2011;
Abbà et al., 2013), a comparison of the proposed model with several alternative ones is
finally presented in section 6.4.

6.1 Flow description

The test case considered is the fully developed, turbulent, incompressible, isothermal
flow between two infinitely extended flat plates separated by a distance 2H . The mean
flow direction is along the x axis, the wall-normal direction is represented by the y
axis and the z axis represents the span-wise direction, as depicted in Figure 6.1. The
velocity components in the three directions are, respectively, u, v, and w. Both the
density, ρ, and the kinematic viscosity, ν, are assumed constant. The flow is statistically
steady, homogeneous in the wall parallel directions and its statistics are dependent on
the coordinate y only; moreover, the plane y = H is a symmetry plane for all the
statistics. Under these conditions, the basic equations governing the statistics in the
channel are presented in the following.
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xz

y

2H

Figure 6.1: Sketch of the channel flow.

6.1.1 Mean momentum equations

Introducing a generic statistical average operator 〈· · ·〉 (e.g., the ensemble average or
the time average), the velocity and pressure fields can be decomposed into an average
part and a fluctuation, denoted by a prime:

u = 〈u〉+ u′

v = 〈v〉+ v′

w = 〈w〉+ w′

p = 〈p〉+ p′

(6.1)

The usual approach in presenting this flow considers such components as relative
to the fully resolved velocity and pressure fields, as in DNS. However, in order to
extend the following discussion also to the general GLES case, while preserving a
familiar notation, the preceding decomposition is considered applied to the resolved
fields, independently from the specific resolution or LES approach adopted. With this
slight misuse of notation, under the mentioned hypotheses (∂〈·〉/∂x = 0, ∂〈·〉/∂z = 0,
∂〈·〉/∂t = 0), the average momentum and continuity GLES equations for the channel
flow can be written as:

∂ 〈v〉
∂y

=
∂
〈
χLESy

〉
∂y

1

ρ

∂ 〈p〉
∂x

=
∂

∂y

(
ν
∂ 〈u〉
∂y
− 〈u〉 〈v〉 − 〈u′v′〉+

〈
τLESxy

〉)
1

ρ

∂ 〈p〉
∂y

=
∂

∂y

(
ν
∂ 〈v〉
∂y
− 〈v〉 〈v〉 −

〈
v′2
〉

+
〈
τLESyy

〉)
1

ρ

∂ 〈p〉
∂z

=
∂

∂y

(
ν
∂ 〈w〉
∂y
− 〈w〉 〈v〉 − 〈w′v′〉+

〈
τLESwy

〉)
(6.2)

where the commutation between spatial and average operators has been fully ex-
ploited and the outer filter level present in GLES has been dropped, as not actually
affecting the balance equations above1. Notice that, in the previous equations, no as-
sumption has been made yet on the boundary conditions or the effective resolution of

1This can be also seen by the alternative form (B.1) for the momentum equation.
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the computation. As a consequence, generic LES terms have been retained in all the
equations. In particular, such terms may or not include explicit SGS models, but they
always include the effect of the resolution and the resulting numerical error2, hence
they are always present unless a full DNS computation is employed. When the bound-
ary conditions are introduced, namely, 〈v〉w = 0 and the fact that the mean flow is
along the x direction, hence it is driven only by the axial pressure gradient ∂〈p〉/∂x
and 〈w〉 = 0, the equations (6.2) reduce to the following form:

〈v〉 =
〈
χLESy

〉
−
〈
χLESy

〉
w

1

ρ

∂ 〈p〉
∂x

=
∂

∂y

ν ∂ 〈u〉
∂y
− 〈u′v′〉+

〈
τLESxy

〉 φx︷ ︸︸ ︷
−〈u〉 〈v〉



0 =
∂

∂y

−〈p〉ρ − 〈v′2〉+
〈
τLESyy

〉
+

φy︷ ︸︸ ︷
ν
∂ 〈v〉
∂y
− 〈v〉2


0 =

∂

∂y

(
−〈w′v′〉+

〈
τLESwy

〉)

(6.3)

At this point, a few comments are in order. First, it has been implicitly assumed
that only an explicit pressure gradient can generate a mean flow in a certain direction
and not any component of 〈τLES〉, which is usually the case. As a consequence, the z
momentum equation reduces to the fact that the stress 〈w′v′〉, if present, is only due to
〈τLESwy 〉. As these are usually negligible for the present arrangement, the z momentum
equation will not be further considered in the following. The second, more important,
thing to note is that, differently from the classical DNS case (Pope, 2000, p. 266),
〈v〉 cannot be considered null anymore. This would only happen for a commuting
filter/G operator and for mass fluxes which are consistent with the actual momentum
components. As none of these conditions is usually satisfied, it is shown in the sections
3.3 and 5.4 respectively that both these effects can be accounted for by the mass source
〈χLESy 〉. In case, any explicit SGS model for the continuity equation would also be
contained in it, exactly as for 〈τLES〉. This fact has probably an even more important
effect, as a non null vertical velocity component 〈v〉 implies the presence of spurious
terms in both the x and y momentum equations, φx and φy, which are similar to the
effect of a wall transpiration velocity. From now on, for the sake of conciseness, they
will both be included in the 〈τLES〉 terms in the respective equations. However, it
should be noted that φx appears as particularly harmful, it being directly proportional
to the mean velocity in the channel. Omitting, from now on, also the relation for 〈v〉, the
average GLES equations for the channel flow are then reduced to the two momentum

2It is assumed here that the GLES framework is applied in its implicit filtering form.
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equations:

1

ρ

∂ 〈p〉
∂x

=
∂

∂y

(
ν
∂ 〈u〉
∂y
− 〈u′v′〉+

〈
τMxy
〉)

0 =
∂

∂y

(
−〈p〉
ρ
−
〈
v′2
〉

+
〈
τMyy
〉) (6.4)

where the superscript M for the LES related terms denotes the fact that the respec-
tive φ contributions have been added to them. These equations can be further simplified
by first integrating the y momentum equation along y, which yields:

〈p〉
ρ

+
〈
v′2
〉
−
〈
τMyy
〉

=
pMw (x)

ρ
(6.5)

Hence, the sum of the three terms on the left side, which is constant in y, can only
be a function of x. Notice that, besides the density, such a function is usually identified
with the pressure at the wall, which is also true in this case. However, it has to be
stressed that this specific value appears to be a function of 〈τMyy 〉, which in general
might not be null at walls, thus motivating the use of the superscript M in pMw (x). In
any case, as neither 〈v′2〉 or 〈τMyy 〉 can depend on x, the relation (6.5) implies that:

∂ 〈p〉
∂x

=
∂pMw (x)

∂x
(6.6)

Hence the driving axial pressure gradient is not a function of y. This fact can be
finally used to integrate the x momentum equation, which reduces to:

1

ρ

∂pMw (x)

∂x
=

∂

∂y

(
ν
∂ 〈u〉
∂y
− 〈u′v′〉+

〈
τMxy
〉)

(6.7)

As the term in parentheses is only a function of y and pMw (x) is only a function of x,
then the two sides of the equation (6.7) are both constant and the above relation implies
the well known total linear stress variation along the channel height:

ν
∂ 〈u〉
∂y
− 〈u′v′〉+

〈
τMxy
〉

=
τw
ρ

(1− y/H) (6.8)

where τw is the wall shear stress. However, even considering 〈τMxy 〉 null at the walls,
equation (5.24) implies that, for the Fluent R© code, the effective stress entering the
balance is:

τw ≈ ρν
∂ 〈u〉
∂y

∣∣∣∣
w

+ ρν
∆y

4

∂2 〈u〉
∂y2

∣∣∣∣
w

+O
(
∆y2

)
(6.9)

where ∆y is the width of the first layer of cells next to the walls and, as for the flow,
it has been assumed that the grid is symmetric with respect to the plane y = H . To
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6.1. Flow description

understand the effect of such error, the second derivative above can be estimated from
the equation (6.8):

∂2 〈u〉
∂y2

= − τw
ρνH

+
1

ν

∂ 〈u′v′〉
∂y

− 1

ν

∂
〈
τLESxy

〉
∂y

− 1

ν

∂φx
∂y

(6.10)

In order to evaluate (6.10) at the wall, it is safe to assume that both 〈u′v′〉 and the
numerical error in 〈τLESxy 〉 vanish sufficiently fast toward the walls that they do not give
any contribution3. Moreover, in case of no-slip boundary conditions, the contribution
due to φx is also null. However, SGS models which do not vanish at walls sufficiently
fast would give a net contribution, finally leading to:

∂2 〈u〉
∂y2

∣∣∣∣
w

= − τw
ρνH

− 2
∂ 〈νsgs/ν〉

∂y

∣∣∣∣
w

∂ 〈u〉
∂y

∣∣∣∣
w

(6.11)

where it has been assumed 〈τLESxy 〉 ≈ 2〈νsgs〉∂〈u〉/∂y and that 〈νsgs〉 is null at the
wall, but not its derivative. Hence, from (6.9) and (6.11) follows that:

τw ≈ ρν
∂ 〈u〉
∂y

∣∣∣∣
w

(
1− ∆y

2

∂〈νsgs/ν〉
∂y

∣∣∣∣
w

)
(
1 + ∆y

4H

) (6.12)

Considering that any finite value for the SGS viscosity in the first cell near the wall,
cw, would, in fact, imply a finite derivative at the wall, the previous equation can also
be arranged as follows:

τw ≈ ρν
∂ 〈u〉
∂y

∣∣∣∣
w

(1− 〈νsgs/ν〉 |cw)(
1 + ∆y

4H

) (6.13)

As a consequence, the overall balance in the channel is altered by a first order term.
Finally, from the equations (6.6), (6.7) and (6.8), follows that the driving pressure gra-
dient is balanced by:

∂ 〈p〉
∂x

= −τw
H

(6.14)

The overall set of equations derived up to now can be more conveniently rewritten
by noting that the overall stream-wise momentum balance is determined solely by the
imposed external pressure gradient and the wall shear stress τw. It is then plausible that
ν and τw are the most relevant parameters for a proper nondimensionalization. These,
in particular, lead to the definition of the viscous, or friction, velocity and length scales:

uτ =

√
τw
ρ

=

√
−H
ρ

∂ 〈p〉
∂x

δ+ =
ν

uτ

(6.15)

3A limiting wall behavior proportional to (y− yw)2 is sufficient, but the numerical error is expected to depend on higher order
derivatives of 〈uv〉, hence its near-wall behavior might not respect this constraint.
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Chapter 6. Turbulent channel flow

also known as wall units. Notice that, for simulations where the pressure gradient
is fixed and used as flow driving mechanism, as assumed here, the definition of these
scales is always well posed. Indeed, any possible term which could give a net contri-
bution at the wall, hence altering the definition of τw, is always balanced by the given
pressure gradient, as demonstrated above for the error at the wall in (6.9) and (6.13).
The use of these scales leads to the following nondimensional quantities:

u+ =
〈u〉
uτ

y

H
=
( y
δ+

)(δ+

H

)
=
(yuτ
ν

)( ν

uτH

)
=

y+

Reτ

(6.16)

where u+ and y+ are the mean velocity and the wall-normal coordinate expressed
in wall units and Reτ is the friction Reynolds number. Then, the nondimensional mo-
mentum equations are obtained dividing (6.5) and (6.8) by u2

τ :

p+ +
〈
v′2
〉+ −

〈
τMyy
〉+

=p+
w

∂u+

∂y+
− 〈u′v′〉+ +

〈
τMxy
〉+

=1− y+

Reτ

(6.17)

Finally, the above nondimensionalization can be used to easily determine the pres-
sure gradient required to sustain a flow at a given friction Reynolds number:

∂ 〈p〉
∂x

= −τw
H

= −ρu
2
τ

H
= − ρ

H

(
νReτ
H

)2

= −ρν
2Re2

τ

H3
(6.18)

6.1.2 Bulk velocity

When a simulation is performed with a fixed pressure gradient, a relevant flow param-
eter as the mean bulk velocity Ub:

Ub =
1

2H

∫ 2H

0

〈u〉 dy (6.19)

is not fixed but it is an outcome of the simulation. It is then interesting to understand
what are the physical and numerical effects determining it. A first preliminary insight
can be obtained integrating by parts the definition above:

Ub =

[
y 〈u〉
2H

]2H

0

− 1

2H

∫ 2H

0

y
∂ 〈u〉
∂y

dy = − 1

2H

∫ 2H

0

y
∂ 〈u〉
∂y

dy (6.20)

and then adding (1/2)∂〈u〉/∂y to the integrand, upon consideration of the no-slip
boundary conditions:

Ub =
1

2

∫ 2H

0

(
1− y

H

) ∂ 〈u〉
∂y

dy (6.21)
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6.1. Flow description

Thus, the equation above reveals that the overall mass flux in the channel is deter-
mined by ∂〈u〉/∂y, and how it is balanced by the remaining terms in equation (6.8).
Moreover, the weighting factor in parentheses and the general behavior for the velocity
profile, suggest that it is the near-wall zone that mostly influence its value, as would
be expected by the fact that the driving pressure gradient is balanced by the wall shear
stress. In contrast, the zone far from the wall, in the channel center, determines the
difference between the centerline velocity Uc = 〈u〉y=H and Ub. Indeed, by symmetry:

Ub =

∫ H

0

(
1− y

H

) ∂ 〈u〉
∂y

dy = Uc −
1

H

∫ H

0

y
∂ 〈u〉
∂y

dy (6.22)

In order to effectively understand the effect of the various terms on Ub, it is useful
to insert ∂〈u〉/∂y, as derived by equation (6.8), in (6.21):

Ub =
1

2

∫ 2H

0

(
1− y

H

)[ τw
ρν

(
1− y

H

)
− 1

ν

(
−〈u′v′〉+

〈
τMxy
〉)]

dy (6.23)

Which, upon integration of the linear term, becomes:

Ub =
τwH

3ρν
− 1

2ν

∫ 2H

0

(
1− y

H

) (
−〈u′v′〉+

〈
τMxy
〉)
dy (6.24)

a relation equivalent to the one derived by Fukagata et al. (2002) and Gomez et al.
(2009), here extended to consider the generic effects due to the scarce resolution typical
of LES. In particular, the first term is the laminar contribution (Pope, 2000, p. 268)
and, as shown in the previous paragraph, can be affected by the way the wall shear
stress τw is computed at walls and, consequently, by the adopted SGS model (e.g.,
(6.10)). Still, its overall contribution is fixed by the pressure gradient (e.g., (6.14)) and
cannot be affected by any LES related issue. The second term represents instead the
turbulent contribution, due to the combined effect of the general resolution capabilities,
the numerical error and any possible SGS model employed. It is useful to express this
term in parentheses by the symbol 〈u′v′〉LES , denoting an equivalent tangential stress:

−〈u′v′〉LES = −〈u′v′〉+
〈
τLESxy

〉
− 〈u〉 〈v〉 (6.25)

As will be shown in the next paragraph, the response of the resolved 〈u′v′〉 to the
overall LES effect is nonlinear and cannot be determined solely by the balances above.
However, the common experience (see section 6.3) with low order codes suggests that
the typical resolution of LES computations usually determines an under-prediction of
−〈u′v′〉 in the near wall region for simulations performed without a SGS model. As
a consequence, in order to correctly predict the mean velocity in the channel, it is
necessary that the SGS model in 〈τLESxy 〉 is capable to overcome such deficiency by
explicitly adding a balancing contribution. This contribution might itself further damp
−〈u′v′〉, but it is the combined effect that is required to overcome the original defi-
ciency. Nonetheless, it might as well happen that the employed numerical method is
capable to appropriately resolve a significant fraction of the near-wall contribution in
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Chapter 6. Turbulent channel flow

−〈u′v′〉, or even over-predict it. In this case, obviously, the required role for 〈τLESxy 〉
is the opposite, it has to avoid any explicit contribution near the wall or even damp a
possibly overestimated −〈u′v′〉. It will be shown in section 6.4 that such a different
behavior for different codes actually exists.

An additional interesting effect is the one produced by φx = −〈u〉〈v〉, which is only
due to the possible errors in the continuity equation. In practice, whenever there is a
spurious source of mass, the resulting effect would be an increase of 〈v〉 and, for no
penetration boundary conditions at the walls, a net spurious mean velocity toward the
channel center, which would further decrease the overall stresses −〈u′v′〉LES .

In the author’s opinion, it is informative to highlight the analogy between LES mech-
anisms producing an overestimation of Ub, namely, the suppression of −〈u′v′〉LES , and
the typical mechanisms used in practice to reduce the drag in actual flows. For exam-
ple, riblet surfaces (Jiménez, 2004; García-Mayoral and Jiménez, 2011, 2012) confine
the near-wall turbulent structures, also known as stream-wise streaks, in a way which
is resemblant of the constraint given by a limited grid resolution. More direct analogies
exists with the explicit suppression of the near wall stresses −〈u′v′〉 (Iwamoto et al.,
2005) or the blowing at the walls (Fukagata et al., 2002).

6.1.3 Resolved stresses

An equation for the mean resolved stresses in GLES could be derived starting from
equations (B.1) and (B.6), taking their average, building an evolution equation for
〈ρ̄n〉〈ũni 〉F 〈ũnj 〉F and subtracting the latter from the averaged (B.6). Indeed, denoting
with 〈·〉F the Favre transformed average4, the following relation holds:

∂
〈
ρ̄nũni ũ

n
j

〉
∂t

=
∂ 〈ρ̄n〉

〈
ũni ũ

n
j

〉
F

∂t
=
∂ 〈ρ̄n〉 〈ũni 〉F

〈
ũnj
〉
F

∂t
+
∂ 〈ρ̄n〉

〈
ũn
′′
i ũ

n′′
j

〉
F

∂t
(6.26)

where:

〈ρ̄n〉
〈
ũn
′′

i ũ
n′′

j

〉
F

= 〈ρ̄n〉
〈

(ũni − 〈ũni 〉F )(ũnj −
〈
ũnj
〉
F

)
〉
F

(6.27)

is the mean resolved stress tensor. Hence, its evolution equation is the result of
the subtraction of the first term in the rightmost member above from the the term in
the leftmost member. However, this procedure, which is already convoluted for gen-
eral compressible flows, is rendered even more complicated by the fact that additional
terms appear for GLES on the last row in (B.6) and the second member in (B.1). Even
considering the inclusion of such a derivation here as fruitful, which is hardly the case,
the understanding of the additional terms would be hardly possible. If, instead, such
additional terms are neglected, which amounts to consider commuting spatial operators
only, then a strong simplification is obtained. Indeed, both equations (B.1) and (B.6)
would retain the exact same form of the classical continuous equations if the trace of
−τn−0

ij is included in the resolved pressure and its trace free part is absorbed in the

4Analogous to the one defined for the filter in (2.8).
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6.1. Flow description

viscous tensor Σ̃n
ij . Hence, all the manipulations could be done in the exact same way

and the terms put together could be separated back just at the end of the procedure5.

The resulting equations can be found, for example, in Adumitroaie et al. (1999) for
their general compressible version and in Launder et al. (1975) for the incompressible
one. Here, none of the two is reported, for the sake of conciseness. Instead, the approx-
imate GLES form (i.e., neglecting the non-commutation terms) for the incompressible
channel flow is directly reported, by adopting the convention that the instantaneous
LES/numerical terms can be decomposed as τLESij = 〈τLESij 〉+ τLESij

′ (Wu and Meyers,
2013)6. Limiting the discussion to the three normal stresses 〈u′2〉, 〈v′2〉, 〈w′2〉 and the
tangential one 〈u′v′〉, the following equations are obtained7 (Mathieu and Scott, 2000,
p. 108):

∂Txy
∂y
− εx − πy − πz = 〈u′v′〉 ∂ 〈u〉

∂y
∂Tyy
∂y
− εy + πy =0

∂Tzy
∂y
− εz + πz =0

∂Rxy

∂y
− εxy + πxy =

〈
v′2
〉 ∂ 〈u〉
∂y

(6.28)

Indicating, momentarily, the three velocity components and spatial coordinates as uα
and xα (with α = x, y, z), the transport, dissipative and pressure terms in the equations
for the normal stresses above can then be written as (no summation implied over Greek
indices):

Tαy =
ν

2

∂ 〈u′2α 〉
∂y

− 〈u
′2
αv
′〉

2
+
〈
u′ατ

LES
αy

′
〉
− δαy

〈p′u′α〉
ρ

εα =ν

〈
∂u′α
∂xj

∂u′α
∂xj

〉
+

〈
τLESαj

′∂u′α
∂xj

〉
πα =

〈
p′

ρ

(
∂u′α
∂xα

)〉 (6.29)

where δαy is the Kronecker’s delta symbol. The analogous terms in the equation for

5With the warning of not invoking specific properties for p̄n or Σ̃nij , besides the symmetry and the null trace property for the
latter.

6The effects due to a non null vertical mean velocity are, for the sake of consistency with the present approach, excluded from
the treatment.

7These are the only components which, nominally, are different from zero. However, a non null vertical velocity might induce
couplings with other components. Again, these are not considered in the following.
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the resolved tangential stress are instead given by:

Rxy =ν
∂ 〈u′v′〉
∂y

−
〈
u′v′2

〉
+
〈
u′τLESyy

′
〉

+
〈
v′τLESxy

′
〉
− 〈p

′u′〉
ρ

εxy =2ν

〈
∂u′

∂xj

∂v′

∂xj

〉
+

〈
τLESxj

′ ∂v′

∂xj

〉
+

〈
τLESyj

′ ∂u′

∂xj

〉
πxy =

〈
p′

ρ

(
∂u′

∂y
+
∂v′

∂x

)〉 (6.30)

Some important details emerge from the equations above which are worth noting.
First and foremost, only the equations for 〈u′2〉 and 〈u′v′〉 are effectively coupled with
the mean momentum equations, trough the respective source terms on the right hand
sides of the equations (6.28). The equations for the wall normal and span-wise fluctua-
tions, 〈v′2〉 and 〈w′2〉, are instead formally uncoupled from the mean equations and their
only direct source is the pressure redistribution trough πy and πz8. Hence, in practice,
the energy enters the stream-wise fluctuations from the mean stream-wise momentum
equation and is then redistributed to the remaining normal stresses. In parallel, the tan-
gential stress 〈u′v′〉 is modulated by a source term depending from both the wall normal
and the stream-wise momentum equations. Here, however, there is a direct feedback
mechanism at play9 as an increase in the mean velocity derivative would produce an
increase in the resolved tangential stress10, which would then reduce the mean velocity
derivative.

Further insight on these two source terms can be gained by rearranging them trough
the momentum equations. More specifically, for the 〈u′2〉 source term:

〈u′v′〉 ∂ 〈u〉
∂y

=
(
〈u′v′〉 −

〈
τLESxy

〉) ∂ 〈u〉
∂y

+
〈
τLESxy

〉 ∂ 〈u〉
∂y

=
1

ν

(〈
τLESxy

〉
− 〈u′v′〉

) [(〈
τLESxy

〉
− 〈u′v′〉

)
− τw

ρ

(
1− y

H

)]
+
〈
τLESxy

〉 ∂ 〈u〉
∂y

(6.31)

Or, by using the definition (6.25) with 〈v〉 = 0 and the viscous units:

〈u′v′〉+ ∂u+

∂y+
=
〈
τLESxy

〉+ ∂u+

∂y+
− 〈u′v′〉+LES

[
−〈u′v′〉+LES −

(
1− y+

Reτ

)]
(6.32)

Analogously, for the 〈u′v′〉 source term:

〈
v′2
〉+ ∂u+

∂y+
=
〈
τLESyy

〉+ ∂u+

∂y+
−
(
p+
w − p+

) [
−〈u′v′〉+LES −

(
1− y+

Reτ

)]
(6.33)

8It is assumed here that πx + πy + πz = 0. This is not anymore the case when a divergence error is present.
9Obviously, additional couplings among the equations exist.

10Note that the source term has a sign which is congruent with the sign of 〈u′v′〉, hence it really produces an enhancement of
the resolved stress.
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Hence, the source for the stream-wise normal stress is actually composed by an
LES dissipation term (e.g., for 〈τLESxy 〉+ ∝ ∂u+/∂y+), which would decrease it, and a
pseudo-production term PP+ (the remaining part in (6.32)), which instead transfers the
energy from the mean momentum equation. The interesting feature of PP+, however,
is that it is bounded with respect to 〈u′v′〉+LES and the envelope of the absolute maximum
achievable values11 is given by PP+

ENV = (1 − y+/Reτ )
2/4. However, this is not the

actual value of the maximum, which is instead given by (Laadhari, 2002):

PP+
MAX =

(
∂u+

∂y+

)2
(

1 +
1

Reτ
∂2u+

∂y+2

)
(6.34)

and is achieved at the position where:

−〈u′v′〉+LES =
∂u+

∂y+

(
1 +

1

Reτ
∂2u+

∂y+2

)
(6.35)

Hence, more than the actual maximum value of the pseudo-production, is its loca-
tion that is mostly determined by the specific LES approach. The source term for the
tangential stress, while having the same structure of the former one, has the second
term which is instead modulated by the pressure decay from its wall value. Also, the
effect of the SGS model is not anymore clearly dissipative. The pressure influence is
such that the faster is its decay from the wall the higher is the resulting enhancement
for the tangential stress. For an eddy viscosity SGS model the first term also has, ap-
proximately, a positive effect if the mean vertical velocity increases toward the channel
center, thus counteracting the negative effect appearing in (6.25). However, the present
analysis is formally valid for null vertical velocities only and such conclusion is only
partial.

The major difference among these two sources is that, obviously, only the one ap-
pearing in the stream-wise stress equation is an actual source of energy drained from
the mean flow, while the other one is just a feedback mechanism acting as modulation
and no actual energy flux is involved in its role. This can be also appreciated by adding
together the first three equations in (6.28), which gives the equation for the mean re-
solved turbulent kinetic energy 〈k〉:

∂Ty
∂y

= ε+ 〈u′v′〉 ∂ 〈u〉
∂y

(6.36)

with:

Ty =
∑
α

Tαy =
ν

2

∂ 〈k〉
∂y
− 〈kv

′〉
2

+
〈
u′jτ

LES
jy

′
〉
− 〈p

′v′〉
ρ

ε =
∑
α

εα = ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
+

〈
τLESij

′ ∂u′i
∂xj

〉 (6.37)

11The term is actually negative.
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And comparing such equation with the one for the mean resolved kinetic energy,
obtained multiplying the mean stream-wise momentum equation12 in (6.4) by 〈u〉:

∂ 〈T 〉
∂y

=
〈u〉
ρ

∂ 〈p〉
∂x
− 〈u′v′〉 ∂ 〈u〉

∂y
+
〈
τLESxy

〉 ∂ 〈u〉
∂y

+ ν

(
∂ 〈u〉
∂y

)2

(6.38)

with:

〈T 〉 =
ν

2

∂ 〈u〉2

∂y
− 〈u〉 〈u′v′〉+ 〈u〉

〈
τLESxy

〉
(6.39)

The first term on the right side of equation (6.38) represents the net energy injection
by the driving pressure gradient, while the third and the last member represent, respec-
tively, the dissipation due to the LES model/numerics and the viscous dissipation, both
of which formally disappear from the overall energy balance. In contrast, the term
〈u′v′〉∂〈u〉/∂y appears with switched sign in equation (6.36) and represents the only
possible energy flux for the stream-wise normal stress. As a consequence it is also the
only energy source for all the normal stresses.

It is worth closing this section by noting that equations (6.36) and (6.38) allow a
further understanding of the dependence of the mean bulk velocity Ub from the overall
simulation details. Indeed, integrating both equations between y = 0 and y = 2H ,
and assuming that both 〈T 〉 and Ty vanish at the walls, the following result is obtained
(Eyink, 2008; Mathieu and Scott, 2000, p. 110):

−1

ρ

∂ 〈p〉
∂x

Ub =
1

2H

∫ 2H

0

ε+
〈
τLESxy

〉 ∂ 〈u〉
∂y

+ ν

(
∂ 〈u〉
∂y

)2

dy (6.40)

which reflects the fact that, for a given pressure gradient, the resulting bulk flow
velocity is adjusted in order to sustain the overall dissipation in the simulation, which
is due to the viscous contribution (both mean and fluctuating) and the LES contribu-
tion, including both numerical and SGS modeling effects. Thus, as explained before, in
order to correctly predict Ub, the suitability of a given SGS model is strictly dependent
from the numerical details of the code. Whenever the numerical details are such that
the overall dissipation is underestimated, the SGS model is required to overcome this
deficiency by adding a further dissipation (i.e., an eddy viscosity model). On the con-
trary, whenever a given code already overestimates the dissipation, the SGS model is
required to counteract this action by an anti-diffusive effect. However, is worth noting
that such under/overestimations are likely to depend strongly from the details of the
velocity profile at the walls, where the mean velocity gradient is higher. This, in turn,
implies that a SGS model whose effect is stronger than required near the walls (e.g., a
limiting behavior different from y3) might sufficiently dump the mean velocity gradient
(according to the overall linear variation of the stresses) that the resulting bulk veloc-
ity is instead underestimated. A final, alternative view on the bulk flow prediction is
provided by comparison with the work of Eyink (2008), which interprets the turbulent
channel flow as a cross-stream flux of span-wise vorticity. Hence, an overestimation of
Ub can be also seen as due to some effect blocking this flux of vorticity.

12Again, for consistency in the derivation, 〈v〉 = 0 is assumed here.
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6.2 Computational setup

In the present thesis the turbulent channel flow is simulated for Reτ = 590 and the re-
sults compared with the available DNS data (Moser et al., 1999). According to the fully
developed condition and the flow homogeneity in the wall parallel directions, all the
computations have been performed in a computational box of extension Lx× 2H ×Lz
with periodic boundary conditions along the x and z directions and no-slip conditions
at the walls. In order to avoid SPGS modeling issues (see section 5.6.3), the box di-
mension are selected according to the reference DNS, Lx = 2πH and Lz = πH ,
so that any difference with respect to a full DNS is due to the lack of the smallest
scales, their modeling and the specific details of the scale separation operator, which in
the present case is the FV one, but possibly corrupted by the relatively low numerical
fidelity of the solver (i.e., the sampling operator). The flow is driven by a constant pres-
sure gradient that is determined according to equation (6.18) and, for all the simulations
reported here, the flow parameters are set up in order to obtain a resulting friction ve-
locity uτ = 1m/s. Fully structured computational grids are used in all the simulations,
with constant stream-wise and span-wise spacings, ∆x and ∆z, and a stretched nodes
distribution in the wall normal direction. Except for one case, all the grids adopt a
cosine stretching law:

yj = H

{
1− cos

[
(j − 1)π

Ny

]}
j = 1, 2, ..., Ny + 1 (6.41)

where yj is the jth grid node wall-normal coordinate and Ny is the number of com-
putational cells in the y direction. This is also selected for the LESinItaly comparisons
(see section 6.4) and is thus the default one. In order to analyze grids more similar to
the ones used in the computational practice, an additional hyperbolic tangent stretching
is also considered:

yj = H +H
tanh

{
γ
[

2(j−1)
Ny
− 1
]}

tanh γ
j = 1, 2, ..., Ny + 1 (6.42)

The overall set of used computational grids, with their labels and main parameters
are summarized in Table 6.1 in terms of viscous units, with the only grid employing
the hyperbolic stretching denoted by the label CT. In Table 6.1, the number of cells in
the x and z directions are denoted, respectively, by Nx and Nz and the computational
parameters for the reference DNS (Moser et al., 1999) are also reported.

The basic numerical settings for all the computations are those described in chapter
5, namely, a pure second order central scheme for the convective terms, the PRESTO
discretization for the pressure gradient, a least-squares approach for the gradient com-
putation and the implicit second order time advancement scheme with the fractional
step method for the pressure-velocity coupling. Alternatively, tests will be performed
with the bounded central scheme or the symmetry preserving scheme (SYM) by dis-
abling the reconstruction of higher order terms.

Besides the proposed dynamic mixed SGS model (DM), whose specific settings
will be described case by case, alternative SGS modeling options are also considered
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Chapter 6. Turbulent channel flow

Table 6.1: Grid parameters for the channel flow simulations.

ID Nx Nz Ny ∆+
x ∆+

z ∆+
ymin

∆+
ymax

DNS 384 384 257 9.7 4.8 0.04 7.2

C 64 64 33 57.92 28.96 1.34 56.15

CT 40 40 59 92.68 46.34 0.4 66.11

F 64 64 99 57.92 28.96 0.15 18.72

CZ 64 40 99 57.92 46.34 1.34 56.15

FZ 64 128 99 57.92 14.48 0.15 18.72

Table 6.2: SGS models for the channel flow simulations.

ID Type Formulation Reference eq. Damping Model constants

DM Mixed Dynamic (4.25)-(4.26)-(4.28) Implicit (4.29)

DS Eddy viscosity Dynamic (2.22)-(2.23)-(2.38) Implicit 0 ≤ Cs ≤ 0.23

NM No model

SM Eddy viscosity Static (2.22)-(2.23) (2.26) Cs = 0.1

SMVD Eddy viscosity Static (2.22)-(2.23) (2.24) Cs = 0.13

SVD Eddy viscosity Static (2.22)-(2.29) Implicit Cσ = 1.35

VR Eddy viscosity Static (2.22)-(2.27)-(2.28) Implicit c = 0.07225

for comparison. These are all summarized in Table 6.2 for clarity, with reference to the
relative equations for more details. For the DM model, different tests are performed
which, besides the grid and the convection scheme influence, investigate: the formu-
lation for the eddy viscosity part, by changing the parameter α; the influence of the
delta ratio scaling (∆2

n,0/∆
2
m,n), by purposely disabling it; the influence of the test filter

stencil extension; the smoothing of the dynamic constants; the rotational and Galilean
invariance of the model; the influence of the reconstruction procedure (5.63) in the
computed statistics. In all the cases, the reference model formulation (DM) employs
the delta ratio scaling with α = 0, m = 1, the filter stencil involving first neighbor cells
only and no smoothing of the constants, which are clipped in the ranges (4.29). Also,
no reconstruction is used to compute the flow statistics.

All the computations are performed with a constant time step ∆t+ = ∆tu2
τ/ν = 0.1,

which roughly ensures a maximum Courant number with the same value. Preliminary
tests with higher time step values confirmed the theoretical predictions in section 5.5.3
and the numerical results in section 5.5.4, always leading to anomalous results with
clear spectral bottleneck effects. As a consequence no specific tests are reported here
for the time step.

For the flow initialization, a single reference NM case has been initialized on the
coarse grid C by superimposing random fluctuations to the Reichardt’s velocity profile
(5.27). This computation has been advanced in time until the instantaneous, domain
averaged, resolved kinetic energy reached a statistically steady state. This preliminary
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flow field has then been used to further initialize all the remaining cases (using inter-
polation when necessary) and further advancing them until the new statistically steady
state was reached.

For this specific test case the flow statistics are not computed by the means of the
algorithm presented in section 5.6.4, but by gathering full domain flow samples at se-
lected time intervals and applying a standard two pass algorithm13. In particular, mean
quantities are computed as:

〈φ〉 (y) =
Ns−1∑
i=0

1

NsLxLz

∫ Lx

0

∫ Lz

0

φ (x, y, z, in∆t+ t0) dzdx (6.43)

where φ is a generic variable to be averaged, t0 is the time at which the first sample
is taken, Ns = 60 is the number of samples used here for all the average operations
and n = 3000 has been selected in order to have flow samples which are sufficiently
separated in time to be statistically independent. The resulting sampling time and the
separation time among different samples are respectively T = 30.6H/uτ and ∆T =
0.51H/uτ . Root mean squared (RMS) fluctuations are then computed in a second pass
as φRMS =

√
〈(φ− 〈φ〉)2〉. Finally, as the flow is homogeneous in the two wall-

parallel directions, spatial spectral energy distributions are also presented and computed
as:

Eφφ (y, kx) =
Ns−1∑
i=0

1

NsLz

∫ Lz

0

Fx [φ (x, y, z, in∆t+ t0) , kx] dz

Eφφ (y, kz) =
Ns−1∑
i=0

1

NsLx

∫ Lx

0

Fz [φ (x, y, z, in∆t+ t0) , kz] dx

(6.44)

where Fx and Fz, which denote the Fourier transform in the x and z directions,
have been computed by a Fast Fourier Transform (FFT) algorithm. The integrals in
both (6.43) and (6.44) are approximated with a trapezoidal integration method which,
for the present grids and boundary conditions, reduces to a simple arithmetic average
when the relative interval length, Lx or Lz, is included in the operation.

6.3 Numerical tests

The numerical results presented in the following are expressed in nondimensional vis-
cous units (6.16). The only exception to this is for the wavenumbers kx = 2πnx/Lx
and kz = 2πnz/Lz used in the spectral results, whose dimensions are m−1. Unless oth-
erwise stated, the grid F is used for all the computations (see Table 6.1) and the spectral
results are relative to the location y = H .

6.3.1 Basic solver capabilities

Before addressing SGS modeling issues, it is worth to first investigate the basic reso-
lution capabilities of the solver, in order to select the most suitable numerical settings

13In order to extract spatial informations which, otherwise, would not be available.
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Figure 6.2: Mean and RMS quantities for the channel flow with different pressure discretization schemes.
No-model simulations with central scheme.

for all the forthcoming tests. Two aspects, in particular, are first investigated, which are
related to the pressure and convective term discretization.

The effects of the pressure discretization are shown first, in Figures 6.2 and 6.3,
where the main statistical quantities for the channel flow are presented for the pure
central convective scheme and no model for the SGS terms. More specifically, the
PRESTO discretization scheme is compared with all the available alternatives, except
the BFW whose results are similar to the ones for the PRESTO. These include the
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Figure 6.3: Spectral energy distributions for the channel flow with different pressure discretization
schemes. No-model simulations with central scheme.

second order scheme (2nd ord.) also analyzed in section 5.5.4, a linear scheme based on
equations (5.9) and (5.10) and the standard scheme (Std.) based on equations (5.9) and
interpolation trough the discrete coefficients appearing in the momentum equations (see
ANS (2010) for more details.). The main outcome of this comparison is that, despite
the better agreement for the mean velocity profile (subfigure 6.2a) and, consistently, for
most of the resolved tangential stresses (subfigure 6.2f), all the remaining results are
strongly distorted for the simulations not employing the PRESTO discretization. The
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spectral energy distributions (Figure 6.3), in particular, are also inconsistent as even the
energy content in the largest scales is strongly underestimated, which is in contradiction
with the main assumption in LES, requiring the correct prediction of the largest flow
scales.
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Figure 6.4: Spurious LES effects in the momentum equations for different pressure discretizations. No-
model simulations with central scheme. a) x momentum. b) y momentum.

Several causes can be identified that, at least partially, justify these behaviors. First,
the strong underestimation of the energy for all the velocity components suggests a
possible effect due to a positively divergent velocity field. Indeed, as shown in equation
(3.17), a spurious creation of mass represents a net negative source of kinetic energy, as
the available energy is redistributed over the augmented mass of fluid. This is also co-
herent with the analysis presented in section 5.4 and the fact that the PRESTO scheme
is designed to minimize the inconsistency with the pressure equation. A confirmation
of this can be also obtained by looking at the spurious term in equation (6.17), 〈τMyy 〉+,
which is derived by adding together the mean pressure (subfigure 6.2b) and the square
of the RMS wall-normal velocity fluctuation (subfigure 6.2d). Indeed, as shown in
equation (6.3), this term also contains a direct contribution due to the divergence of the
mean velocity field, which is expected to be more relevant with respect to the remaining
numerical part and the squared mean vertical velocity14. This quantity is presented in
Figure 6.4b and is effectively positive in the channel center. Also, by comparison with
the same quantity for the x momentum equation, 〈τMxy 〉+ in Figure 6.4a, it is apparent
that the behavior of the PRESTO scheme, which appears to produce a negatively di-
vergent field, is instead within the uncertainty of the statistics, as now both PRESTO
and DNS results are non-null and roughly comparable. In contrast, in both equations,
the effect of alternative pressure discretizations appears qualitatively strong and similar
among different discretizations.

The net source of mass can also be appreciated by the mean velocity profiles in
Figure 6.2a, as all the schemes producing a net positive divergence also have an abrupt
change in the profile slope near the channel center. The fact that the remaining part of

14This quantity, which is not presented, has much higher absolute values for the alternative pressure discretizations than for the
PRESTO one. Still, its square is actually negligible.
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Figure 6.5: Source term in the tangential stress equation for different pressure discretizations. No-model
simulations with central scheme.

the profile is instead better predicted by these schemes can be justified by looking at
the resolved tangential stress. Indeed, except for the second order scheme, this appears
to be better predicted in the range 0 < y+ < 100. This better prediction can, in
turn, be motivated by the different pressure behavior which, while being completely
erroneous in the channel center, is much closer to the DNS one in the near-wall region.
While this can be hardly appreciated in Figure 6.2b, the resulting effect in the 〈u′v′〉+
source term, equation (6.33), is evident, as shown in Figure 6.5. Thus, the alternative
pressure discretizations, while altering most of the basic flow features, are capable to
better represent the near wall pressure behavior which, in turn, is responsible for a
better prediction of the tangential stress and, finally, for the near-wall velocity profile.
However, no matter how desirable this feature might be, it is obvious from the previous
results that such alternative pressure discretizations are certainly not well suited for
LES, as their overall behavior produces strongly unphysical results. As a consequence,
in all the remaining tests, the PRESTO scheme is confirmed as the default pressure
discretization scheme. It is worth highlighting that no particular effort has been put in
assessing the dependence of the alternative schemes from the remaining discretization
options. Nonetheless, the effective existence of such dependence seems unlikely.

The second basic solver aspect that needs a preliminary investigation is the convec-
tive scheme. The three options preliminarily investigated in section 5.5.4, the central
scheme, the bounded scheme and the symmetry preserving scheme, are compared in
Figure 6.6 for some representative flow statistics. In order to better understand the
outcome of the analysis, the addition of the DS model is also investigated for two of
the schemes. The main fact emerging from the comparison is that the three schemes
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Figure 6.6: Main flow statistics for the channel flow with different convective schemes. DS vs. NM
computations.

behave very differently and, more specifically, with very different levels of dissipation.
This can be appreciated from the spectral results, Figures 6.6e and 6.6f, as most of the
differences among the schemes are concentrated at the smallest resolved scales. An
interesting feature emerging from these figures is that the addition of a SGS model
(DS) has nearly no influence while the dominant dissipation is due to overall numer-
ical setting. In particular, somehow surprisingly, the central scheme is found as the
less dissipative while the bounded and the SYM scheme nearly have the same level of
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Figure 6.7: Additional statistics for the channel flow with different convective schemes and SGS model-
ing options. a) Equivalent tangential stress. b) Resolved tangential stress. c) Pseudo production. d)
Resolved production.

dissipation. This fact, which is in straight contradiction with the assumption regarding
the SYM scheme, suggests that there might be solver details preventing the disabled
reconstruction to behave as expected. However, it is also true that it might be the im-
plicit treatment of the higher order part in the central scheme which produces unlikely
results, for both the bounded and the unbounded schemes. Indeed, while not shown
in the tests presented in section 5.5.3, the implicit treatment of this part is responsible
for the low energy bump in the spectra at the smallest scales, as a result of a Courant
number still not sufficiently low. When the same spectral results are compared in the
near wall region (not shown), much similar results are obtained among the different
schemes. Still, even in this case, the SYM scheme tend to produce the highest level
of dissipation in most of the cases while there is always an appreciable range of re-
solved scales for which the central scheme better reproduces the energy content. As
a consequence, at the moment, no conclusive answer can be given on this matter. Re-
turning back to the main results in Figure 6.6, it can be also seen that there is a net
correspondence between a higher dissipation level, as discussed above, and a larger
overestimation of both the mean velocity profile and the stream-wise fluctuation, with
the pressure in the near-wall zone following the same trend. For the mean velocity
profile this can be justified either trough equation (6.40) or by looking at the equiva-
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lent stress in Figure 6.7a, which determines the mean velocity trough equation (6.24).
Notice, instead, how the same correspondence does not hold with the resolved stress in
Figure 6.7b, showing that the LES term is important in determining the overall velocity
profile, even without a SGS model on such a relatively fine grid. The analogous trend
in the resolved stream-wise velocity fluctuation, Figure 6.6c, can instead be justified
by looking at the pseudo-production term in Figure 6.7c or the full resolved production
term in Figure 6.7d. These two figures clarify that, independently from the actual level
of production, there is a one to one relation between the distance of the production peak
from the wall and the overestimation in the stream-wise velocity fluctuation. In prac-
tice, the farther is the peak from the wall the higher is the velocity fluctuation, which
could be justified by the fact that a peak far from the wall has a less narrow distribution
toward the wall, hence it is less affected by the viscous dissipation, which is dominant
in this zone. In turn, considering equation (6.32) and comparing Figure 6.7a and 6.7c,
it is clear that there is a direct relation between the production peak location and the
underestimation of the equivalent tangential stress. In contrast, the addition of a SGS
model does not appear as a relevant factor in determining the peak location, but only
its magnitude, which is always decreased by the DS model. However, such effect has
nearly no influence on the resulting velocity fluctuation. Finally, it is also worth noting
that the implementation of the DS model, independently from the convective scheme,
nearly reproduces the expected y3 behavior for the SGS eddy viscosity, Figure 6.6d,
even if not exactly.

In conclusion, from the analyses presented above, emerges that the combination
PRESTO/Central scheme is optimal for LES computations in Fluent R© and the general
trend of the results is in complete accordance with the theoretical analysis provided in
section 6.1. The overall effect of adding the DS model does not seem especially satis-
factory for two reasons. On one side, because of the basic features of the solver without
a SGS model, it is apparent that it is not an added dissipation that is needed to improve
the results, as the most influencing quantity, the equivalent tangential stress, is already
underestimated in the important near wall zone and the DS model does not significantly
affects it, due to its correct near-wall limiting behavior. On the other side, the effect of
the added viscosity appears as strongly limited, with minimum differences in all the
quantities between the NM and the DS cases. From the analysis in section 5.5.3 seems
that a possible cause might simply be the low value of the dynamic viscosity predicted
by the dynamic procedure implemented in Fluent R©, which instead should be higher to
produce a net effect on the resulting spectra.

6.3.2 Dynamic Mixed SGS model

The proposed dynamic, mixed SGS model in its default setting (DM) is compared
next with alternative SGS modeling options. In particular, the comparison is made
with a no model computation (NM), the default Fluent R© implementation of the dy-
namic Smagorinsky model (DS), a novel implementation of the dynamic Smagorinsky
model based on the present dynamic procedure developed in the GLES framework (DS-
Present) and the dynamic mixed model without the proper scaling based on the squared
delta ratio (DM-NDR). The results from the different models are presented in Figures
6.8-6.11.

A general comment that can be made is that, overall, the proposed model provides a
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Figure 6.8: Mean and RMS quantities for the channel flow with different SGS models.

better, almost perfect, resolution for the mean velocity profile (subfigure 6.8a), the near
wall peak in the stream-wise velocity fluctuation (subfigure 6.8c) and the stream-wise
spectra at y/H = 1 (subfigures 6.9a-c-e). No particular differences are found, with
respect to the other models, in the transverse fluctuations (subfigure 6.8d-e), except
that, for both, slightly lower values are predicted. The span-wise energy content at
y/H = 1 (subfigures 6.9b-d-f) is instead overestimated at the smallest scales, where the
dissipation levels appear lower than in the remaining models. Wherever necessary, the
model is capable to remove the anomalous low energy bump in the stream-wise spectra
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Figure 6.9: Spectral energy distributions for the channel flow at y/H = 1 with different SGS models.

but, in the near wall region (Figures 6.10 and 6.11) the differences in the spectra are
mitigated. Two anomalous results are also found, which are the higher level of stream-
wise fluctuations in the channel center and a slightly non monotone pressure behavior
in the near wall region. However, the overall spectral behavior of the model seems
in line with the expectation, producing a recovery of the energy at the intermediate
frequencies and, possibly, enhancing the effective dissipation at the smallest scales for
y/H = 1.

The better prediction in the mean velocity profile can be justified by a general lower
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Figure 6.10: Spectral energy distributions for the channel flow at y+ = 5 with different SGS models.

dissipation, according to equation (6.40), or, more precisely, by a better reconstruction
of the equivalent tangential stress. Indeed, while the resolved tangential stress (sub-
figure 6.8f) is the lowest among the SGS models, the equivalent one (not shown) is
necessarily in accordance with the velocity profile and closely follows the reference
DNS. This, in turn, can be associated with higher values of 〈τLESxy 〉 in the near wall-
region (not shown), which counteract the low values of the resolved tangential stress,
limited by the scarce resolution. The observed behavior for the pressure is, instead,
solely a consequence of the model acting on the velocity field, as only the traceless part
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Figure 6.11: Spectral energy distributions for the channel flow at y+ = 19 with different SGS models.

of the model has been coherently included in all the tests presented here15. More specif-
ically, its behavior implies a negatively divergent mean velocity field which, in turn, is
a possible enhancement for the mean velocity profile. The outcome for the stream-
wise fluctuation is more problematic as, analyzing the pseudo-production (not shown),
it appears that it closely follows the DNS production over all the channel height, as
implied by the correct velocity profile. However, this nearly perfect behavior turns out

15Its inclusion and correct treatment would have probably avoided the observed behavior, due to the purely dissipative features
of the pressure part in the model.
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to be problematic in the channel center, where it is higher than those relative to the
other SGS models. Hence, in practice, transferring the correct amount of energy in
the stream-wise fluctuation is negative as then this is not correctly dissipated far from
the wall. Comparing the span-wise spectra at y/H = 1 (subfigures 6.9b-d-f) with the
relative fluctuations (subfigures 6.8c-d-e), readily confirms that the observed behavior
is due to the lack of dissipation and the consequent pile-up of the energy at the smallest
scales. While merely increasing the maximum allowed value for the eddy viscosity co-
efficient would certainly serve the scope of increasing the dissipation, it will be shown
in the following that a different remedy is indeed necessary, as the problem is in fact
related to the way the scale-similarity constant is computed and then applied to the
model16.

A comment on the remaining SGS models is also necessary. In particular, it is
evident that the same mixed model without the proper scaling (DM-NDR) is almost
useless. In particular, as the model is certainly active in the near wall region, like
its correct counterpart, the result on the velocity profile is positive with respect to the
NM case, and the same is also true for the stream-wise velocity fluctuation. However,
the effect is minimal and, as testified by the spectral results, it is not related to any
enhancement of the predicted velocity field, whose spectral content is identical to the
NM/DS cases, but just to a mere perturbation of the momentum equation in the right
place, the near wall-zone. This seems also confirmed by the fact that the DM-NDR
model has a slight overestimate of the velocity in the zone near y+ = 1, where the grid
stretching is higher. As a matter of fact, most of the remaining results are practically
coincident with the NM case, testifying the fact that the proposed scaling is indeed
necessary and correct.
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Figure 6.12: SGS eddy viscosities for different SGS models. a) Linear scale. b) Logarithmic scale.

Finally, the analysis of the DS model and the present, cheaper, dynamic procedure
also evidences that, while not particularly useful for this flow, the latter is slightly more
effective than the default DS model. In particular, as shown in Figure 6.12, the pro-
posed dynamic procedure produces a higher eddy viscosity and the required y3 limiting
behavior is more closely respected.

16Indeed, no such effect is present in the stream-wise component of the spectra.
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6.3.3 Effect of the eddy viscosity formulation on the mixed model

The results from the previous paragraph suggest that changing the eddy viscosity for-
mulation might, maybe, alter the model dissipation and possibly ameliorate some of
the critical behaviors observed, like the high energy content in the channel center. This
would be also justified by the fact that, among the different options available in the
mixed scale formulation adopted here, α = 0 is possibly the one with the lowest dissi-
pation, as it is the only one dependent form the small scales only. In order to test these
ideas, the basic dynamic, mixed SGS model (α = 0) is compared, on the grid F, with
three alternative options: one based on the Smagorinsky model (α = 1), one based
on the original mixed-scale formulation (α = 0.5) and one based on the Tsubokura
model (α = −1). Only few selected results are presented here, in Figure 6.13, as they
are sufficient to show that, in practice, no difference exists among the different mod-
els and certainly not in the critical behaviors. The formulations based on α = 1 and
α = −1 are effectively found more dissipative, but the resulting effect is only slightly
discernible (subfigures 6.13c-f). As a consequence of this comparison, and because
it provides a slightly better prediction for both the mean velocity and the stream-wise
fluctuation, while having the lowest computational cost, the formulation with α = 0 is
kept as reference for the DM model.

6.3.4 Effect of the grid resolution

The effect of the grid resolution is, possibly, the most important factor when assessing
the performance of a SGS model. Indeed, for LES, it would be desirable to have a
model whose accuracy is independent from the filter width, at least when this is in the
inertial range (Pope, 2004). However, for most practical cases, and especially the chan-
nel flow considered here, such independence might not be really possible and obviously
depends from the specific statistical quantity at hand. For example, none of the DNS
spectral energy distributions shown in Figures 6.10 and 6.11 has a clear inertial range.
Also, the overall flow features are actually dependent from the smallest scales near the
wall (see Figure 1.1 and the relative discussion). Hence, irrespective of the specific LES
approach, an independence from the filter width cannot be expected. Using an implicit
filtering approach, obviously, makes the matter more complicated, as the dependence
form the filter width is then explicit in the equations, trough the local truncation errors.

As a consequence, whether or not an independence is effectively achievable17, study-
ing the influence of the grid resolution on a SGS model allows to understand its effective
limits of applicability as, still today, no definite rules for the determination of the proper
filter width exist, besides different heuristic estimates for different specific flows.

Two different assessments are proposed in the following, which are based on two
groups of simulations compared together. The first one is based on the two grids, C and
F, which simply differ by a factor of 3 in their wall normal resolution. On these two
grids, which are common to the LESinItaly database, the dynamic mixed model DM
is compared with the respective no model (NM) simulations, in order to understand
the effective model capability to influence the flow simulations independently from
the resolution. The second one is instead based on using the model DM on all the

17Besides the formal discussion in Pope (2004), to the best of the author’s knowledge, no such independence from the filter
width has been ever addressed. Note that this is different from demonstrating independence from the filter to grid width ratio,
which instead simply assess the numerical convergence.
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Figure 6.13: Main flow statistics for the channel flow with the DM model and different eddy viscosity
formulations.

grids in Table 6.1, in order to understand the model dependence from all the resolution
parameters.

The first comparison, presented in Figure 6.14, includes the main flow statistics usu-
ally used in applications, like the mean velocity profile and the wall-parallel velocity
fluctuations. The NM-DM figures (left side) evidence that, while the model effect has
the same qualitative behavior, independently from the grid, the model effectiveness is
reduced for the grid C. Hence, moving from grid F to grid C, in correspondence of
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Figure 6.14: Mean and RMS quantities for the channel flow with different grid resolutions. Left) NM vs.
DM on the grids C and F. Right) DM model on the grids of Table 6.1.

a natural increase of the numerical effects there is also an equivalent decrease in the
model effect. While this is an expected feature of an implicit filtering approach, the
specific details of the mechanisms at play can be better appreciated in Figure 6.16a,
where the mean LES effect 〈τMxy 〉+ is represented. It is evident that, despite some mi-
nor differences in the channel center, to be discussed in the following, the qualitative
and quantitative behavior of the DM model is independent from the grid, which is no
less than the maximum expectation from a SGS model. However, as a consequence of
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Figure 6.15: Representative spectral energy distributions at y/H = 1 for the channel flow with different
grid resolutions. Left) NM vs. DM on the grids C and F. Right) DM model on the grids of Table 6.1.

the scare resolution on the grid C, the anti-diffusive model effect in the near-wall zone
cannot be resolved and the resulting model effectiveness is strongly limited. Paradoxi-
cally, the NM simulation on the grid C has a near-wall numerical effect which closely
resembles the one of the DM model and, as a consequence, the relative velocity profile
improves the NM one on the grid F, where such numerical error is consistently reduced.

In contrast, the model effectiveness is stronger for the stream-wise fluctuation (sub-
figure 6.14c) as, independently from the grid, the near-wall peak is correctly repro-
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Figure 6.16: Mean LES effect in the x momentum equation. Left) NM vs. DM on the grids C and F.
Right) DM model on the grids of Table 6.1.

duced. It can be also noted that the simulation on the grid C has a lower overestimation
in the channel center, which is a direct effect of the higher 〈τMxy 〉+ values discussed
above. Note, in particular, that these are mostly related to the higher velocity derivative
and the higher eddy viscosity resulting from the larger filter width. When the spectral
results are analyzed, on the left side of Figure 6.15, it still emerges that the qualitative
behavior of the model is not impaired by the grid, especially in relation to the differ-
ences between the NM simulations. However, specific quantitative differences emerge
for the stream-wise velocity, which confirm the fact that a higher dissipation would
improve both the spectra and the fluctuations.

The analysis on the remaining grid parameters, right sides of Figures 6.14, 6.15 and
6.16, reveals an additional effect, typical of wall bounded flows, that the DM model
appears to not be able to contrast. Indeed, what these figures show is that the span-wise
resolution has a strong influence on the results, while both the wall-normal and the
stream-wise resolutions have a relatively lower effect.

In particular, as depicted in Figure 6.16b, the effect of reducing the span-wise
resolution (red curves) consistently increases the model effects, but with two issues.
On one side, increasing the resolution (e.g., grid FZ) does not deactivate the near
wall anti-dissipative effect, hence producing the slight underestimation of the veloc-
ity profile (subfigure 6.14b). In contrast, the increase in the model effect in the range
1 < y+ < 100, which emerges as function of the span-wise spacing only, is not able
to counteract the fact that the flow driving mechanism is not anymore resolved or even
represented on the grids with Nz = 40 (CT and CZ), as the stream-wise wall streaks
have span-wise spacings which are comparable to the span-wise grid step. Hence, a
sort of grid independence is achieved and, despite the very different spacings in the
remaining directions and the resulting numerical error effects, the two grids CT and CZ
provide very similar results. Even in this case, the latter effect is no less than the maxi-
mum expectation from a model which is not specifically equipped with wall-functions
or alternative eddy viscosity formulations, more suited for a not resolved wall region.
A different sensitivity to the span-wise spacing for 0 ≤ y+ ≤ 1 could be desirable but,
for the given resolutions, the independence shown by the model should be considered
correct and not a deficiency.
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Moreover, the analysis of the remaining quantities reveals that some positive effects
due to the model are still present. For example, a very low sensitivity is shown in the
resolution of the near-wall peak of the stream-wise velocity fluctuation as well as in
the channel center. Also, besides the due differences, similar spectral results are also
obtained (right sides of Figure 6.15), with the CT and CZ grids being the only ones
showing a slight energy pile-up at the smallest resolved scales. In conclusion, while not
optimal, the results of this grid sensitivity analysis reveal that the proposed DM model
is not affected by particular, grid related, issues and preserves most of its specificities
independently from the grid. In practice, the reported differences can be ascribed to the
effective capability of the grids in sustaining the flow, more than a possible negative
grid effect on the model.

6.3.5 Effect of the filter stencil

A model parameter which deserves attention is the stencil of the test filter, which in the
present implementation is the only parameter affecting the test filter width. Indeed, the
test filter directly influences the dynamic procedure, the scale similar part and even the
eddy viscosity part (for the present mixed scale model). In this section these effects
are investigated by changing the number of cell layers NL in the filter stencil (see
section 5.6.2 for more details). In particular, the default setting with NL = 1 and first
neighbor cells only involved in the stencil (DM) is compared with an extended stencil
formulation with NL = 2 and a no model formulation (NM).
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Figure 6.17: Effect of the filter stencil on the dynamically computed constants.

The representative set of results presented in Figure 6.18 reveals that two main as-
pects are involved in the filter extension. On one side, the overall dissipative features of
the model are increased in the logarithmic region, as revealed by the subfigures 6.18c-d.
This, in turn, has two effects: a slight overestimation of the mean velocity in the same
zone and a substantial recovery of the stream-wise velocity fluctuation, which is now
correctly predicted over most of the channel height. This behavior seems in accordance
with the expected one. Indeed, by construction, the present scale similar term is such
that it is always scaled to be representative of the true SGS stresses, independently from
the filter width. In contrast, the eddy viscosity part (for α = 0 used here) contains a
strong connection with the test filter width, because of its functional dependence on
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Figure 6.18: Main flow statistics for the channel flow with different filter stencils.

the sub-test kinetic energy (see equation (4.26)). However, when the overall model
is inserted in the Germano identity (3.15), it is still the scale similar part that plays a
dominant role in the dynamic procedure18, while the eddy viscosity part is usually con-
strained by its specific formulation. Hence, the dynamic procedure tends to give almost
the same results as for the lower filter width, possibly increasing the scale-similar con-
stant but leaving unaltered the eddy viscosity one. This is indeed confirmed in Figure

18Remember that the known term in the GGI is equal to the unscaled scale-similar term.

166



i
i

“Lampitella_Thesis” — 2014/2/26 — 16:15 — page 167 — #189 i
i

i
i

i
i
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6.17, where the average profiles of the two dynamically computed constants are shown.
Thus, with the eddy viscosity constant substantially unaltered, changing the filter width
then increases the present eddy viscosity where there is more difference between the
resolved kinetic energy and the test filtered one, which is around the production peak.

The second aspect involved in the extension of the filter stencil is that, because of
its specific volume average formulation (4.19), the enlarged filter is not able to com-
pletely remove the highest spatial frequencies from the current solution. Then, notably,
while the augmented dissipation of the model is apparent in the spectra (subfigures
6.18e-f), the stream-wise spectral result also reveals a different trend. Indeed, with the
present filter stencil, the same frequency band less affected by the test filter appears
also less affected by the overall model and dynamic procedure, while the rest of the
spectrum mostly retains its favorable properties. This behavior somehow shows that
the dissipation of the energy peak in the largest frequencies is strictly related to the
scale similar formulation and its underlying test filter, possibly in connection with the
hyper-viscosity effects evidenced for the viscous term (see section 4.7). However, the
overall results appear unaffected by this slight pile up of energy and as valid as the ones
for the smaller stencil.

6.3.6 Smoothing the constants

A typical approach used in CLES to regularize the dynamically computed constants
consists in smoothing them with the test filter before applying the clipping rules. This
is usually justified on the basis that the inconsistent extraction of the constant from the
test filter (see equation (2.35)) implies that the latter is smooth on the test filter scale.
However, the same reasoning does not apply to the GLES framework, because the
constants are not extracted from any test filter. In contrast, the clipping is nonetheless
necessary in both cases, as the dynamic procedure does not ensures that the resulting
constants assume physically sound values.

In order to show that such smoothing is indeed unnecessary, few selected results
are presented in Figure 6.19, where the default, not smoothed case (DM) is compared
with a simulation whose constants are smoothed (DM-SC) with the default test filter
(NL = 1). All the remaining results (not shown) have the same level of agreement,
hence smoothing the constants has no actual effect and is not even needed to improve
the stability of the computation, which has been already testified by all the previous
tests, performed without smoothing.

6.3.7 Galilean and rotation invariance

In this section two tests are performed, which are useful to understand some basic fea-
tures of the model and of the channel flow computation in general. In particular, these
two tests consist in performing the channel flow simulation in two different reference
frames: one is fixed, but has its stream-wise axis directed along the direction (1, 1, 1),
hence it is rotated with respect to the original reference frame; the second one is instead
still aligned with the reference axes, but moving along the x direction with a velocity
cx = 18.72m/s. The former test (DM-RI) is performed by first rotating the domain,
running the simulation with a rotated pressure gradient and then rotating back the flow
samples before computing the statistics. The second test (DM-GI) is instead simpler as
it just requires fixing a slip velocity equal to −cx for both walls, running the simulation
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Figure 6.19: Effect of the constants smoothing on the main flow statistics for the channel flow.

and then adding cx back to the flow samples before computing the statistics. In an ideal
situation, both tests would give exactly the same results of the previous sections. How-
ever, both the numerical method and the SGS model can indeed alter the simulation in
several aspects.

These effects are shown in Figure 6.20 and 6.21 where such computations are com-
pared with the default DM one and a NM one. Considering first the effect of the rota-
tion (DM-RI), it appears that most of the flow statistics are, indeed, largely independent
from the rotation and, in some aspects, even better for the rotated case. However, two
distinctive features are evident for the DM-RI case. The first one is that all the fluctu-
ations and the spectra seem to suggest that the scale-similar part of the model is less
active (with respect to the non-rotated case), while from Figure 6.20e clearly appears
the contrary (the eddy viscosity part, not shown, has no substantial differences). This
behavior reveals a possible drawback of the model which might also explain its too
high effect for some quantities in the non rotated case. Indeed, the overall model re-
lies on a single constant, computed from a tensorial identity and then applied again
to full scale-similar tensor. However, both the model formulation and its practical ap-
plication reveal that it is Reynolds number sensitive, and correctly reduces its effect
near the walls (see, for example, Figures 6.10 and 6.11 or Figure 6.20e). If then the
three velocity components in the channel are considered separately, it is plausible that
the value of the dynamic scale-similar constant is dominated by the momentum bal-
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Figure 6.20: Main flow statistics for the channel flow with different reference frames.

ance in the stream-wise direction, the remaining ones having a relatively low, possibly
null, Reynolds number. Therefore, applying the same single constant also for those
scale-similar components acting on the transverse directions would certainly lead to
an overestimation of the required energy recovery in those directions, which is indeed
what happens in the base DM case. The idea behind this rotation test is indeed that,
if the flow is directed in such a way to maximize the Reynolds number in all the di-
rections, then the dynamic procedure as implemented here would lead to better results
as the single dynamic constant would be more representative of all the flow directions.
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Figure 6.21: Spectral energy distributions for the channel flow with different reference frames.

While this immediately introduces a lack of effectiveness in the stream-wise action of
the model (e.g., subfigures 6.21c-e), it also reduces the spurious effects in the transverse
directions, from which some better results readily follows (e.g., compare Figure 6.20b
and the relative span-wise spectra in Figure 6.21b). Obviously, rotating the domain
is not an option for more complex flows and a different strategy should be adopted.
Among the possible options, relying on a fully tensorial dynamic constant seems the
most promising approach, as the increased cost could be easily managed within the low
ones of the overall dynamic procedure in GLES. The second distinctive feature of the
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DM-RI case is instead represented in Figure 6.20f where, despite the generally good
results, it is apparent that a net mean vertical velocity is present, v+. While no specific
efforts have been devoted to find the origin of such spurious velocity (whose effects
on the other variables are not clearly evident), it seems plausible that it is a combined
effect of two causes: a non perfect alignment between the pressure gradient, fixed by
components, and the channel centerline, as the channel is rotated axis by axis; round-
off errors in the velocity, caused by the backward rotations before the computation of
the statistics. As no secondary effects are evident, the last option is the most plausible.

When the effect of a constant translation velocity is considered (DM-GI), the main
conclusion that can be drawn is that the model appears not active for most of the quan-
tities, but also fully operative for the stream-wise spectra (left side of Figure 6.21).
A careful analysis of Figure 6.20e and the reconsideration of the rotation effects on
the dynamic scale-similar constant, reveal that both things actually happen. Indeed, the
overall effect of shifting the reference frame is that the mean velocity is also shifted and,
in particular, it is negative in the near wall zone up to the station where, approximately,
the DM and the DM-GI curves intersect in Figure 6.20e, slightly below y+ = 100.
Hence, there is a substantial region near the wall where the Reynolds number is sig-
nificantly lower than in the non moving reference frame, the model being thus less
active. In particular, it also appears to be less active than the same model on the grid
FZ (see Figure 6.16b), which justifies most of the results. In contrast, in the channel
center, two things happen. Not only the flow recovers its positive direction but, as the
Reynolds numbers in the three coordinate directions are more similar19, the resulting
dynamic constant is much better calibrated for all the three flow directions. As a conse-
quence, the model can exactly recover the stream-wise spectra for the DM case without
negatively affecting the span-wise ones.

Obviously, a fundamental problem remains, as the Galilean invariance is certainly
not satisfied by the proposed SGS model, as a result of its dependence from the Reynolds
number. As explained in section 6.1.1, additional terms are present in the equations
which might have impaired the model performances. In particular, the term φx =
−〈u〉〈v〉 (not shown) has a qualitative behavior that would have exactly determined
the same model reduction effects as those previously discussed. In this case the model
would have the same behavior observed in the fixed frame, but would result unable to
counteract its lack of Galilean invariance. The NM-GI case that would clarify the issue
was not initially scheduled among the tests for the model, as well as the case NM-RI,
and both will be the object of future investigations.

However, the combined results of the two tests, a direct inspection of the dynami-
cally computed constant (4.28) and the Galilean invariance study in section 4.8, all sus-
tain the fact that the scale-similar constant and the resulting effect of the model might
depend from the mean flow direction and intensity. This further sustains the hypothesis
that a full tensorial constant might be the proper solution to the above problems.

6.3.8 On the reconstruction and the statistics

All the results presented so far have been obtained by direct application of the formulas
(6.43) and (6.44) to the raw computed fields, without any particular concern on the spe-
cific meaning of such variables in LES or GLES in general. In fact, the interpretation

19The peak velocity in this case reaches approximately 8uτ .
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given in this chapter to the LES approach is somehow based on considering as best SGS
modeling option available the one that can better balance all the remaining effects, no
matter what their specific source is. In contrast, it is known (Sagaut, 2006, p. 305) that,
in order to compare such results with the DNS ones, the latter have to be filtered accord-
ing to the G operator embedded in the simulation or, alternatively, the former have to
be augmented by the contribution due to the adopted SGS model. It being understood
that both approaches are correct, two problems arise in general applications. On one
side, comparing the results with filtered DNS ones gives no reliability, as numerical
results are not demanded to satisfy some filtered counterpart of the NSE and providing
perfect filtered results is useless if they differ from the unfiltered ones. Also, reference
DNS are not usually available, filtered or not. The second, more important, problem is
that the LES terms which should be accounted for in reconstructing the statistics might
not be available or suitable for the purpose, which is exactly what happens in GLES
with an implicitly filtered approach. Indeed, not only the numerical error would not be
considered in such reconstruction, but even the adopted SGS model might not be suit-
able for the purpose as, for example, in GLES it also accounts for pressure and viscous
terms.
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Figure 6.22: Effect of the reconstruction (5.63) on the main flow statistics for the channel flow.

However, as briefly discussed in section 5.6.4, an alternative option exists for the
present GLES approach based on the FV method and the proposed dynamic mixed
model. This consists in using the relation (5.63) for each single variable before com-
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puting the statistics, instead of adding specific SGS models to the higher order mo-
ments. This approach has the advantage of being compatible with the SGS model and
the FV part of the implicit filter without requiring any additional effort in selecting spe-
cific SGS models for specific statistical moments. The differences which are obtained
between the raw approach used up to now and such reconstruction are summarized in
Figure 6.22 for the few selected variables which have shown a larger effect. In partic-
ular, no explicit effect is apparent on the mean velocity profile20, while both the effect
on the spectrum and the fluctuation are as expected, the reconstruction increases the
energy content at the smallest scales which, in turn, increases the level of the RMS
fluctuation. However, the most important difference is found in the resolved tangential
stress, which is shown in terms of the total linear stress in Figure 6.22d. This specific
presentation helps clarifying the main limit in using the approach (5.63), which cannot
take into account the effect of the eddy viscosity part of the model. Such limitation,
and the additional impossibility to take the numerical error into account, is what par-
tially justified not considering the reconstruction for the presentation of the results21.
In contrast, Figure 6.23 shows that considering the equivalent tangential stress as most
relevant variable avoids such problems ab initio. Obviously, its use is only possible in
the present channel flow case, where the total stress is known to vary linearly in the
wall normal direction but, nonetheless, this justifies the presentation of the results in
the previous paragraphs22.
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Figure 6.23: Difference between resolved (a) and equivalent (b) tangential stress in the channel flow
with or without reconstruction.

6.3.9 Comparison with alternative SGS models

As a final test, in view of the forthcoming comparison presented in the next section, it
is worth assessing the performance of the proposed SGS model with respect to addi-
tional modeling options. In particular, besides the DS model already considered, all the

20Note that it is still assumed that the correct friction velocity for the channel flow is the one determined by the pressure gradient
in (6.15). Otherwise, differences would arise in the velocity profile too, whose wall derivative is increased by the reconstruction.

21Still, according to Winckelmans et al. (2002), this is the only option to partially include the filtering effects in the normal
stresses.

22Note that such correspondence is not tautological and also holds when the friction velocity uτ is computed from the velocity
profile (not shown).
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Figure 6.24: Main flow statistics for the channel flow with different SGS models. Left) Grid F. Right)
Grid C.

remaining models listed in Table 6.2 do not rely on any dynamic procedure and, as a
consequence, are much cheaper than the present DM model. It is thus worth evaluating
the convenience of the present model with respect to such cheaper alternatives.

The comparison is presented in Figure 6.24 and Figure 6.25 in terms of some repre-
sentative quantities (see Table 6.2 for the legend). The first thing to note is that, besides
slight differences on the grid C, all the spectral results for the static models substantially
coincide and do not dissociate from the NM case. This is coherent with the fact that
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Figure 6.25: Spectral energy distributions at y/H = 1 for the channel flow with different SGS models.
Left) Grid F. Right) Grid C.

the model contribution (subfigures 6.24e-f) for y/H = 1 is similar among the different
models and essentially null. Nonetheless, the models differ significantly in the near-
wall region, producing the differences appearing in the mean velocity profile and RMS
stream-wise fluctuation. In particular, from the Figures 6.24e-f, it can be observed that
only the present DM model provides a grid independent effect while all the remaining
options are sensitive to the details of the grid near the wall. Among the static models,
SVD appears to be the most sensitive as its mean contribution is practically null. The
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default SM model, in contrast, is only slightly sensitive to the grid, but its contribution
is much larger than expected, with the consequence that the near wall velocity deriva-
tive is substantially underestimated and the dissipative part in the production term is
much more effective and reduces the stream-wise fluctuation near the wall. It is worth
noting how such behavior is only due to the wall damping (2.26) used in SM, as the
use of the van Driest formulation (SMVD-F) practically annihilates the model contri-
bution, producing results very similar to those for the model SVD. Interestingly, while
still having a certain sensitivity to the grid, the VR model has an effect which is similar
to the one of the DM model. However, the agreement is essentially due to the eddy
viscosity part of the DM model, which shares with the VR one the same linear scal-
ing with the distance from the wall. In contrast, the scale-similar part in DM produces
major differences in the two most important regions: the near wall one, where the ef-
fect is anti-dissipative, and the logarithmic one (the channel center), where the effect
is instead dissipative. Note, in particular, that both effects are fundamental in order to
correctly predict the slope of the velocity profile in the two respective regions and the
DM model is particularly effective in achieving both. In conclusion, the use of the less
cheaper DM model appears justified by the more accurate results and by the fact that all
the remaining models do not substantially differ from the NM option. The VR model,
nonetheless, represents a potential cheaper alternative.

Another conclusion which is worth stressing again is that, as confirmed by all the re-
sults presented in this and the previous sections, the requirement for a SGS model with
an y3 near-wall scaling appears as largely overrated, if not completely wrong. Indeed,
not only the results show that, for the present code, a net near-wall contribution is nec-
essary, but also that such contribution should ideally be independent from the grid, in
order to correctly recover the mean velocity profile with different near wall resolutions.
Both the DM and the VR model are successful in giving a net near-wall contribution,
but with important differences. The former has a physically sound independence from
the grid, but then fails in actively contributing for coarse wall-normal resolutions. The
latter has a near-wall scaling proportional to the linear distance from the wall, y, hence
produces better results for coarser grids but inevitably fails when the wall-normal spac-
ing is sufficiently fine23. While it is the net contribution, more than the scaling, that
gives different results, it is nonetheless evident that an y3 scaling would prevent any
SGS model from actively contributing in the near-wall region. Obviously, as already
stated, this is a code dependent issue. Any code whose NM formulation can exactly
reproduce the flow in the near wall zone would instead benefit from an y3 scaling.

6.4 The LESinItaly database

It is instructive to close this chapter by extending the previous comparisons to additional
SGS models as implemented in different codes. This not only allows to detect some of
the previously described effects independently from the specific solver, but also permits
to evaluate the performances of the DM model with respect to additional modeling
strategies. The selected codes and SGS models, listed in Table 6.3, are those from the
LESinItaly database (Denaro et al., 2011; Abbà et al., 2013).

Most of the codes use a standard second order FV formulation with a DS model. The
23A combination of the two is possibly a candidate for better overall performances and is currently under investigation.
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Figure 6.26: Main flow statistics for the channel flow with different codes and SGS models from the
LESinItaly database. Grid F.

code OF uses a Turbulent Kinetic Energy transport equation with a dynamic coefficient
which is averaged over the whole domain. The code FV instead uses the DS model as
implemented in the GLES framework and presented here in section 6.3.2; however the
details of the implementation are not known and may strongly differ from the present
ones. The code FD uses an anisotropic extension of the DS model, whose main ad-
vantage is the fact that it does not rely on a single dynamic constant, hence the CGI
(2.33) is satisfied exactly and not in a least squares sense. Finally, code PS uses a stan-
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Figure 6.27: Main flow statistics for the channel flow with different codes and SGS models from the
LESinItaly database. Grid C.

dard SM model with van Driest wall damping and a model for the commutation error,
which is reduced to a 4th order term. In practice, as previously mentioned, this commu-
tation error model has strong similarities with the scale-similar model proposed here.
Additional details on the codes and the models can be found in the cited references.

The results, presented in Figure 6.26 for the grid F and in Figure 6.27 for the grid
C, essentially reveal that, besides the specific differences, most of the FV codes are
affected by the same limitations present in Fluent R© with the classic DS model, in the
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6.4. The LESinItaly database

Table 6.3: Codes and SGS models from the LESinItaly database.

ID Code Formulation Model Reference

FD In-house Finite difference Anisotropic DS Abbà et al., 2003

TR TransAT R© Finite volume DS ASC, 2009

CS Code_Saturne R© Finite volume DS Benhamadouche et al., 2002

FV In-house Finite volume GLES DS Denaro and De Stefano, 2011

FL-DM Fluent R© Finite volume DM (4.25)

OF OpenFOAM R© Finite volume TKE equation Menon et al., 1996

PS In-house Pseudo-spectral SM + Comm.err. Iovieno and Tordella, 2003

velocity profile as well as in the remaining quantities. The only exception to this is
for code OF, which does not suffer the same problems. This could be explained by the
higher eddy viscosity value near the wall (subfigure 6.26b) or, considering the anoma-
lous velocity values in the first cell near the wall (Figures 6.26a and 6.27a), by a non
proper nondimensionalization of the velocity. The code FD, possibly because of its
specific SGS model, is the only one which is essentially independent from the grid.
Finally, while giving different results on the grid F, code PS and the present DM model
have striking similarities on the grid C, which is possibly justified by the fact that, for
this coarse grid, there is a dominance of the effects related to the wall-normal spacing,
hence the correspondence between the two formulations emerges24.

In conclusion, this brief analysis highlights that, on the grid F, the present DM model
is superior to all the alternative codes, as it is the only one correctly predicting the mean
velocity profile and the near-wall peak in the stream-wise velocity fluctuation, while not
being inferior for the remaining quantities. On the grid C the capability of the the DM
model is comparable to the one of the code PS or code FD. Notably, both are in-house
research codes with advanced numerical features, while the present DM model has been
implemented in a commercial code via User Defined Functions (UDF).

24Note, in particular, that code PS uses the commutation error model only in the y direction.
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CHAPTER7
Application to complex flows

In this chapter the proposed dynamic, mixed SGS model is applied to flows of increas-
ing complexities. The first case, considered in section 7.1, is the turbulent flow in a pipe
with circular cross section, which allows extending the model testing to unstructured
grids and higher Reynolds numbers while retaining the advantages of a fully developed
flow. The mapping procedure, presented in section 5.6.3, is also briefly tested on a
turbulent pipe flow for two different pipe sections. The second test case is the flow and
heat transfer in a matrix of surface mounted cubes, which is investigated in section 7.2.
While still retaining the conceptual simplicity of a fully developed flow, this test case
introduces both additional physics and strong grid stretching in the flow direction, thus
allowing a controlled test of the model in a more realistic scenario. Finally, in section
7.3, the dynamic mixed model is applied to the turbulent cold flow in a swirled combus-
tor. Besides being representative of combustion applications, the flow also has features
typical of general engineering applications, ranging from the need of wall functions to
strong grid non-uniformity and the specification of inflow/outflow boundary conditions
under epistemic uncertainty. Additional complexity is added by the physics of the flow,
whose dependence from the swirl is also investigated.

7.1 Turbulent pipe flow

The case considered in this section is represented by the fully developed, turbulent,
incompressible, isothermal flow in a straight circular pipe. From the formal point of
view, besides geometrical factors, the governing equations for the turbulent pipe flow
are identical to the ones for the plane channel described in the previous chapter (Ten-
nekes and Lumley, 1972). As a consequence, most of the ideas already developed for
the channel flow apply for this flow as well and are thus not repeated here. Despite the
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Chapter 7. Application to complex flows

appearances, both flows have a great practical relevance as most engineering applica-
tions have to deal with wall boundaries and, even for very complex domains, inflow
sections are usually related to fully developed flows in pipes of circular or rectangular
cross section. Hence, in order to correctly predict the flow statistics in the domain, it
is fundamental for the incoming flow to be correctly predicted as well. Moreover, as
shown in section 5.6.3, the mapping procedure later tested in this section strongly relies
on the correct prediction of such flows in order to provide a correct inflow condition.

However, despite these similarities, turbulent pipe flows can still be considered of
greater practical relevance as most industrial flows are actually flows in pipes with
circular cross section, which essentially motivated this separated test. Also, the domain
geometry allows a natural introduction of grids with unstructured topology, which is
the next logical step in testing a SGS model for industrial flows. Such switch in grid
topology, in turn, also allows extending the range of Reynolds numbers achievable in
wall resolved LES, as the grid resolution can be concentrated in the near wall zone
without strongly affecting the resolution in the rest of the domain.

7.1.1 Computational setup

The considered domain consists in a straight circular pipe of radius R and length Lz.
The mean flow direction is along the z axis, while the r and θ directions define, respec-
tively, the radial and tangential coordinates in planes normal to the mean flow direction.
The velocities in the three respective coordinate directions are uz, ur and uθ. Before
describing the specific setup for this flow, it is worth addressing the issue of how the
mean driving pressure gradient ∂〈p〉/∂z can be setup for a fully developed flow in a
pipe with a generic, constant, cross section. Denoting by P and A, respectively, the
perimeter and the area of the pipe cross section, the z momentum balance for the fully
developed flow condition in the pipe yields:

−∂ 〈p〉
∂z

A = τ̄wP with: τ̄w =
1

P

∫
P

τwdl (7.1)

where τ̄w = ρu2
τ is the average wall shear stress on the cross section perimeter.

Hence, introducing the hydraulic diameter of the section DH = 4A/P and the relative
friction Reynolds number ReDτ = uτDH/ν, the equation above leads to:

∂ 〈p〉
∂z

= − 4

DH

ρu2
τ = −4ρ

(
νReDτ

)2

D3
H

(7.2)

which can be used to drive the flow for a given ReDτ . Also, as for the channel flow,
this pressure gradient uniquely defines the friction velocity uτ :

uτ =

√
−DH

4ρ

∂ 〈p〉
∂z

(7.3)

However, with respect to the channel flow, here it is even more important to use
equation (7.3). Indeed, not only the computation of the wall shear stress in Fluent R©
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7.1. Turbulent pipe flow

is affected by a first order error (see equation (6.9)), but even the geometry of the
section might not be exactly reproduced by linear FV cells. For the present pipe flow,
DH = D = 2R and the formulas above are more commonly expressed in terms of the
pipe radius R:

Reτ =
uτR

ν

∂ 〈p〉
∂z

= −2ρ
ν2Re2

τ

R3
uτ =

√
−R

2ρ

∂ 〈p〉
∂z

(7.4)

Two distinct cases at different Reynolds numbers are considered for this test, re-
spectively Reτ = 320 and Reτ = 1142, and comparisons are made with the relative
reference DNS, Wagner et al. (2001) for the low Reynolds case and Wu and Moin
(2008) for the high Reynolds one. In terms of the mean bulk velocity Ub:

Ub =
1

A

∫
A

〈uz〉 dA (7.5)

and pipe diameter D, the respective bulk Reynolds numbers are instead ReD =
10, 000 andReD = 44, 000. In both cases, a no-slip boundary condition is applied at the
wall and a periodicity condition along the axial direction with Lz selected according to
the relative DNS domains, namely Lz = 10R for the low Reynolds case and Lz = 15R
for the higher one.

Unstructured hexahedral grids of different resolutions are used, whose topology is
sketched in figure 7.1. Note that, despite the prevalent role of tetrahedral grids in gen-
eral applications, these would severely affect the numerical accuracy of the computa-
tion, independently from the SGS model. As such, they are not well suited for LES
of wall bounded flows, where the smallest resolved scales are the turbulence driving
mechanism and the largest available accuracy is required. For this reason, a fully struc-
tured layer of cells has also been used near the walls.

Figure 7.1: Sketch of the grid topology for the pipe flow computations.
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Table 7.1: Dimensionless grid parameters for the turbulent pipe flows.

Case ∆z+ R∆θ+ ∆r+min N◦ DOF

Reτ = 320 - DNS 6.6 8.4 0.6 8.2 · 106

Reτ = 320 50 15 0.1 0.2 · 106

Reτ = 1142 - DNS 8.4 7.0 0.4 6.3 · 108

Reτ = 1142 - C 60 32 0.1 2.4 · 106

Reτ = 1142 - M 57 28 0.1 3.4 · 106

Reτ = 1142 - F 54 25 0.1 5.2 · 106

As summarized in Table 7.1, a single grid resolution is used for the low Reynolds
case, while three different grids with increasing resolutions, denoted C, M and F, are
tested for the higher Reynolds case. Note that, for all the grids, the maximum radial
cell dimension in the channel center is only slightly lower than the span-wise one at the
wall, R∆θ+. However, the radial direction is not anymore representative of the grid
topology in the channel center, hence it is not reported in Table 7.1. Computational
parameters for the reference DNS computations are instead reported to highlight the
difference, with respect to the present computations, in terms of total degrees of free-
dom represented. In particular, due to the single block structured grid topology used
in these studies, the near-wall resolution is lower than usual (e.g., compare the DNS
grid for the channel flow in Table 6.2) in order to avoid excessive resolution on the pipe
axis. Also, it is worth mentioning that the two DNS codes are based on second order
finite volumes/differences, in contrast to the fully spectral DNS code used as reference
for the channel flow.

The numerical setting is the default one chosen also for the channel flow tests: a Cen-
tral/PRESTO discretization, FSM for the pressure-velocity coupling and the backward
second order scheme for the time advancement, with the time step fixed approximately
by ∆t = 0.23ν/u2

τ .
Only two SGS modeling options are tested. One is the default DS model already

implemented in the code, which according to the results in section 6.3.2 can also be
interpreted as representative of a NM computation. For the high Reynolds case this
model is only used on the grid M. The second one, used instead for all the grids listed
in Table 7.1, is the present DM model. The model is used with its default setting
except for one parameter, the number of layers NL in the filter stencil, which is set to
2. While the results in section 6.3.5 possibly justify, or even suggest, the use of the
enlarged stencil, the only practical reason determining its exclusive use for the present
test is the fact that the single layer filter resulted to be problematic, as it either led to
instabilities or strongly polluted the solution with unphysical fluctuations. The reason
for this behavior has been found in the fact that, for the present unstructured grids, the
range of scales affected by the numerical error is larger than for the fully structured
grids used in the channel flow tests. As a consequence, in order for the scale similar
model and the dynamic procedure to use a physically sound small scale flow sample,
the test filter width required to be enlarged. The consequences of this forced choice
will be discussed with the presentation of the results.
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For all the cases, the mean axial velocity is initialized by using the Reichardt’s veloc-
ity profile (5.27) with superimposed random fluctuations. After the statistically steady
state is reached, flow samples are collected at each time step for a total sampling time
of 80R/uτ or, approximately, 1200R/Ub and 1540R/Ub for the low and high Reynolds
cases respectively. Both are enough to allow a particle to travel more than 100 times
trough the pipe axial length at velocity Ub. Flow statistics are computed in time by
the means of the algorithm presented in section 5.6.4 and additional spatial averages
are performed in the homogeneous direction θ using, for simplicity, only 4 perpendic-
ular radial profile samples. All the presented results, unless otherwise stated, are made
non-dimensional by the friction velocity uτ and the pipe radius R.

7.1.2 Numerical results

The main results for the low Reynolds case are presented in Figure 7.2 and substantially
show that no particular difference exists among the two models and both, in practice,
correctly predict all the flow statistics. The small specific differences can however be
explained by looking at the overall LES effect 〈τMzr 〉+, in Figure 7.2f, which can be
computed as for the channel flow. In particular, by comparison with Figure 6.16b, it
emerges that the model activation has the same pattern and maximum value seen for
the simulation of the turbulent channel flow on the grid FZ. In contrast, the near-wall
behavior appears more resemblant of the one on the grid CT, both being substantially
null at the wall. Notably, the present grid shares with the former ones the span-wise
resolution and the wall-normal grid stretching respectively. This, in practice, suggests
that the range 2 ≤ y+ ≤ 100 is mostly affected by the span-wise resolution and, in
both cases (present one and FZ), the model is too active, leading to the slight underes-
timations observed in the stream-wise profiles (subfigures 7.2a-b). In contrast, it also
appears that the present grid stretching (which is very similar to the one used for the
grid CT) somehow deactivates the model in the first few cells near the wall. However,
the overall model effectiveness remains higher than required as, for such low Reynolds
number, the already low model activity near the wall is not substantially altered1.

The higher Reynolds number case, whose results are presented in Figure 7.3, can
help in clarifying the previous issues, due to the larger number of grid resolutions
adopted. The first thing to note is that, for this case, more differences among the mod-
els arise and the effects of the extended filter stencil in the model DM are also more
easily recognizable. In particular, the stream-wise fluctuation is substantially predicted
in a correct way by the DM model for all the grids and wall distances, that is, without
excessive overestimation in the pipe center. Also, the mean velocity profiles present a
slight bump at the beginning of the logarithmic region, which is another feature of the
extended filter stencil, as observed in section 6.3.5. However, while most of the remain-
ing quantities are satisfactorily predicted, it is also clear that the model DM does not
particularly improve the DS one in the critical mean velocity profile, and for most of
the remaining quantities there is a substantial agreement with the model DS, indepen-
dently from the grid. Slight differences are present in the peak values of the tangential
stress and the span-wise fluctuation, but these are in line with the general features of
the models as observed in the previous chapters.

1Note that such low Reynolds number effect has already been noticed in section 6.3.2 for the near-wall spectra. Moreover, a
theoretical analysis as performed in section 5.5.3 also confirms the result.
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Figure 7.2: Main flow statistics for the turbulent pipe flow at Reτ = 320.

Such perpetual lack of activation for the model DM2, which is thus confirmed for
a higher Reynolds on three additional grids, can again find a justification in 〈τMzr 〉+,
represented in Figure 7.3f. This figure first confirms that the three grids are substantially
identical from the point of view of the model, and differences in the results are not to
be expected. However, more importantly, the lack of model activation in the near wall
zone (approximately for y+ ≤ 10) abruptly emerges again for all the three grids. While

2With respect to the channel flow results.
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Figure 7.3: Main flow statistics for the turbulent pipe flow at Reτ = 1142.

this could be again explained by the specific grid refinement at the wall, which is still
similar to the one used for the grid CT in the channel case, such behavior deserves a
more detailed analysis.

Indeed, what emerges from the two Reynolds cases analyzed here and, by extension,
also from the channel flow case on the grid CT, is that a specific grid stretching near the
wall is capable of completely nullifying the model action in that zone, which is also the
most important from the model performance point of view. In particular, such specific
grid stretching is characterized by a constant or nearly constant expansion ratio. While
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Figure 7.4: PDF for the dynamic constant Css at the wall. Top: turbulent channel flow at Reτ = 590,
NL = 2, grid F, DM model. Center: turbulent channel flow at Reτ = 590, NL = 1, grid CT, DM
model. Bottom: turbulent channel flow at Reτ = 590, NL = 1, grid F, DM-NDR model. Left: raw
constant as computed by the dynamic procedure. Right: clipped constant.

a detailed explanation is hard to find at the moment, a possible heuristic justification can
be found by reconsidering the DM model formulation, and more specifically the ratio
∆2
n,0/∆

2
m,n, which also appears, inverted, in the lowest order error term in equation

(4.24). It is easy to show that for a structured grid with stretching in the y direction
only, the volume average filter involving the first neighbor cells yields for such term:

∆2
m,n

∆2
n,0

∣∣∣∣∣
j

=

(
∆yj−1 + 5∆yj + ∆yj+1

∆yj

) 2
3

=

(
7 +

∆yj−1 − 2∆yj + ∆yj+1

∆yj

) 2
3

(7.6)
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Figure 7.5: PDF for the dynamic constant Css at the wall. Top: turbulent pipe flow at Reτ = 320.
Bottom: turbulent pipe flow at Reτ = 1142, grid M. Left: raw constant as computed by the dynamic
procedure. Right: clipped constant.

where j is the grid index along the y direction and ∆yj denotes the grid spacing for
the j th cell. It is thus apparent how such ratio is affected by a term which can be roughly
identified with the second derivative of the grid spacing. While for most grids such
perturbation is constant (not for the grid CT) and does not alter the 4th order accuracy
of the model, it readily assumes different values for different grid stretching functions
and differently affects the resulting dynamic procedure. For example, it is positive
for both the grid CT (at the wall) and any grid with an expansion ratio R > 1, but it is
strictly negative for the sine stretching law (6.41) and two orders of magnitude larger, in
terms of absolute value. While the overall ratio in equation (7.6) would still differ only
slightly for an intermediate cell, it should be noted that higher differences are found
in the near wall cells, where the filter stencil necessarily becomes asymmetric, and the
larger is the filter stencil the larger is the layer of cells involved. The fact that such
ratio strongly affects the resulting model has already been evidenced in section 6.3.2,
where the model DM-NDR has been shown to be completely ineffective. Here, such
effect is investigated more precisely, by looking at the probability distribution (PDF) of
the dynamically computed scale-similar constant, Css, in the first layer of cells near the
walls.

When the analysis is performed for the channel flow, Figure 7.4, it readily emerges
that the extended filter stencil is not, by itself, any cause of problems as the relative
PDF (subfigures 7.4a-b) has a well defined peak at the wall and the clipping does not
affect its distribution. Identical results are also obtained for a single layer filter stencil
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Chapter 7. Application to complex flows

(NL = 1) on both the grid C and F (not shown). However, the same analysis for the grid
CT (subfigures 7.4c-d) and the DM-NDR model (subfigures 7.4e-f) reveals that in both
cases the dynamic procedure is instead affected, even if in different ways. In particular,
as also predicted in section 4.5.4 (see Figure 4.5), the DM-NDR model would require
a wide range of Css values near the walls and, even if a definite peak is still present,
it is much less significant and the scale-similar part of the model mostly works with a
saturated value of the constant Css = 2. Such peak has been removed from the figure
for the sake of clarity, but it is nonetheless present. The result for the grid CT, notably,
shows a very similar behavior, with the PDF preserving its shape but, because of the
larger range of the constant values, the main peak is substantially lowered. Moreover,
after the clipping the PDF is substantially altered (the peak in Css = 2 has again been
removed for the sake of clarity).

With such results at hand, it is easy to recognize the exact same behavior of the grid
CT in the turbulent pipe flows, both at low (subfigures 7.5a-b) and high (subfigures
7.5c-d) Reynolds numbers. In particular, the non clipped PDF has a peak location
and a shape which are similar in the two cases but the required range for the dynamic
constant is substantially larger than assumed and the clipping has a very strong effect
on the resulting PDF. However, even not resorting to any clipping, it is apparent that
using a constant grid expansion ratio is not beneficial for the dynamic procedure at the
wall, whose outcome is much more spread than for a cosine stretching law.

At the moment, the most plausible cause for such behavior seems to be the specific
test filter at hand, which is strongly affected by the underlying grid. However, it is
not yet clear if it is just the ratio ∆2

n,0/∆
2
m,n that is affecting the dynamic procedure3

or the filter as a whole, when providing the full scale-similar term4. Considering the
strong difference between the DM-NDR model and the basic DM one, it appears that
the former plays a more important role in the dynamic procedure, as also evidenced in
section 4.5.4.

However, in conclusion, despite the mentioned flaws, the agreement of the model
DM with the DNS data can be considered satisfactory, and certainly better than the one
for the DS model. Also, besides a possible lack of convergence for the statistics and
the requirement for an extended filter stencil, the use of the model on such unstructured
grids has not shown particular issues with respect to the channel case5.

7.1.3 Test of the mapping procedure

Before switching the attention to more complex flows, the analysis presented in section
7.1.1 allows to briefly introduce the tests performed on the mapping procedure, pre-
sented in section 5.6.3. In particular, it has been applied in the generation of the inflow
condition for two fully developed turbulent flows in two straight ducts of different cross
sections. In the first case the cross section is circular and all the flow parameters are
those relative to the Reτ = 320 case presented in the previous section. The second case
is instead based on a square sectioned duct, with a fully structured grid and a friction

3This could justified by the fact that the scale-similar term entering the dynamic procedure is always proportional to the Leonard
tensor in the relative Germano identity. It is only the proportionality constant which is affected by the filter, trough the ratio
∆2
n,0/∆

2
m,n.

4For example, because of the filter asymmetry, odd error terms not considered in the model derivation might play an important
role

5Paradoxically, the main problem is in the structured part of the grid.
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7.1. Turbulent pipe flow

Reynolds number based on the hydraulic diameter ReDτ = 600. In both cases the map-
ping procedure is compared with the two stochastic inflow generation methods already
available in the solver, the VM and the SS, while the reference solution is a periodic
computation on a domain with length Lz and equal numerical/physical settings.

These settings, in particular, are identical to those used in the previous tests except
for the SGS modeling, which for simplicity is based on the NM approach with the
Bounded Central scheme for the convective term. However, all such details are not
actually influent as what really matters is that, for a given case, the three methods and
the reference solution all have the exact same setting, including the grid in the pipe
cross section and the axial spacing of the grid6. Thus, for the sake of conciseness, no
additional details are provided.

For the methods VM and SS the domain has an overall length L = 20DH , with DH

the hydraulic diameter of the section. The two methods are applied at the inlets with all
the required quantities to be prescribed determined by a preliminary RANS computa-
tion with a full Reynolds stress model. The details of the model are not influent, it just
suffices to mention that, among all the available models in the solver, the selected one
provided the most accurate solution for both the cross sections and for all the required
quantities. Hence the two methods worked in the best possible condition7. An outflow
condition is instead applied on the outlet section of the pipe, with the stream-wise vis-
cous derivatives set to zero and the three velocity components extrapolated from the
interior with a global mass flux computed in order to satisfy the continuity for the given
inlet condition.

For the mapping procedure, the original domain of length L has been split in two
parts. The auxiliary one, whose length is selected equal to the one of the reference
periodic computation, Lz, and the main one, with length L − Lz. So that the overall
domain length for the mapping procedure is identical to that for the alternative methods,
but the main domain length is smaller. This, in turn, allowed a fair comparison of the
computational costs for all the methods and, as shown in the results below, has not
impaired the outcome of the test. The computation in the auxiliary domain is setup as
an exact replica of the reference periodic one, with the same pressure gradient driving
the flow8. At each time step, following the procedure described in section 5.6.3, the
velocity field is then passed, from a reference surface in the auxiliary domain, to the
inlet surface of the main domain, where it is used as inflow condition. The outflow
condition is instead used for the outlet surface of the main domain.

All the results presented in the following are made non-dimensional by the friction
velocity uτ , the hydraulic diameter DH and the kinematic viscosity ν. However, dif-
ferently from the periodic pipe and channel flows previously analyzed, the use of the
pressure gradient for the determination of uτ is not anymore an option, as no actual
pressure gradient is used on the main domain. As a consequence, it is computed trough
the wall normal derivative of the mean velocity profile: uτ =

√
ν∂〈uz〉/∂n. In the

specific case of the square sectioned duct the profiles, and the friction velocity, are
computed in the symmetry plane after averaging on the four quadrants of the section.

The first thing to note from the results, presented in Figures 7.6 and 7.7, is that, on

6Obviously, for sufficiently long domains, differences in the domain axial length are not influent.
7Still, such one to one correspondence between the better quality of the prescribed quantities at the inlet and the output of the

methods has not been assessed.
8An alternative control algorithm has also been implemented, which allows fixing any integral quantity on the mapped surface.
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Figure 7.6: Axial development of the mean velocity profile for the inflow test. Top: z/DH = 0. Center:
z/DH = 5. Bottom: z/DH = 10. Left: Circular section. Right: Square section.

both sections, the mapping procedure can correctly reproduce the mean velocity profile
(subfigures 7.6a-b) and the stream-wise fluctuation (subfigures 7.7a-b), hence its ef-
fectiveness and correct implementation is readily confirmed. In contrast, what is more
interesting to note, is that none of the already available methods is capable to reproduce
the correct profiles at inlet. In particular, as the original RANS profiles are not reported
(for the sake of clarity), it should be mentioned that the mean velocity profiles correctly
reproduce the original RANS prescriptions but, nonetheless, this is not effectively rep-
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Figure 7.7: Axial development of the stream-wise velocity fluctuation profile for the inflow test. Top:
z/DH = 0. Center: z/DH = 5. Bottom: z/DH = 10. Left: Circular section. Right: Square
section.

resentative of the equilibrium LES solution. In contrast, the reproduced stream-wise
fluctuation is far even from the original prescription and strongly underestimated. Fol-
lowing the axial development of the profiles reveals that, still independently from the
section shape, the velocity field generated by the mapping procedure preserves its cor-
respondence with the reference periodic one. This thing, while probably obvious from
the physical point of view, confirms also that there are no evident implementation errors
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Chapter 7. Application to complex flows

in the parallel communication procedure, so that the full spatio/temporal flow dynam-
ics is replicated on the main domain as if it was an actual continuation of the auxiliary
domain. In contrast, the two default methods presents strong differences. On one side,
the SS method completely fails in providing a sustainable, physical inflow field, and
the flow laminarizes independently from the section shape. The analysis of the spec-
tral content for the inflow generated with such method (not shown) has revealed that its
main flaw is due to a lack of spatial correlation for the fluctuations in points on the same
inlet plane, while no problem exists for the temporal correlation. This suggests that the
observed behavior might be due to a wrong parallel implementation9. On the other
side, the VM is effective in producing a sustainable inflow field but, in order for this
to be completely adapted to the overall numerical/physical setting, requires a develop-
ment region which, for the present cases, is no less than 10DH . For the present specific
implementation, it has been observed that such behavior is mostly due to the fact that
the VM method provides a velocity field with no dissipative range in the spectrum (not
shown), thus rendering the adaption sensibly slow.
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Figure 7.8: Axial development of the friction Reynolds number for the inflow test on the square sectioned
duct.

However, it is worth noting that, even when the equilibrium is reached, the resulting
flow would still be representative of the original RANS prescription and not the desired
LES one. In particular, as shown in Figure 7.8 for the square sectioned pipe, while
the original prescription is based for all the methods on a friction Reynolds number
ReDτ = 600, only the mapping procedure is able to sustain it. Note that, to elucidate
the fact that the mapping uses a fraction of the domain for a periodic computation, the
relative curve in Figure 7.8 has been properly shifted. However, no attempt has been

9It is usually reported in the literature, e.g., Castro and Paz (2013), that such spectral like methods are embarassingly parallel.
However, a fundamental requirement for such implementation is that all the random part of the method is generated by a single
process, or in the same way by all the processes. The present implementation might thus fail because of a not correct management
of this aspect.
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7.2. Flow and heat transfer in a matrix of surface mounted cubes

made here in minimizing such length and the full reference periodic domain is used.
Besides the correctness of the implementation for the mapping procedure, these

results also provide a more interesting conclusion. Indeed, from the last figure is evident
that the cost for the auxiliary domain in the mapping method is lower than the one for
development region in the VM. However, even forcing the hand and assuming that the
same fraction of the domain is sufficient for both, the computational costs of the present
mapping procedure are the lowest among the two working methods.

Table 7.2: Normalized computational costs of the tested inflow methods.

VM SS Mapping

1 0.65-1.02 0.77-0.88

These costs, normalized with respect to the relative VM case, are summarized in
Table 7.2. In particular, the reported ranges are representative of the maximum and
minimum values detected in a group of tests performed on several different machines,
various load balances and different partitions of the domain. Even in the worst case,
the present mapping is found the 12% cheaper than the VM, while the average saving
is around the 18%. Note, also, that these costs refer to time advancement over 100 time
steps. Hence, considering the necessary development region for the method VM, the
overall cost saving offered by the mapping procedure can be substantial while being
also the best inflow prescription.

7.2 Flow and heat transfer in a matrix of surface mounted cubes

The test cases analyzed up to now, despite containing most of the flow physics encoun-
tered in more complex applications10, are somehow limited by the fact that no actual
obstacles have been considered and the fluid-solid interaction has been confined to the
walls of plane channels or pipes. As a consequence, the previous tests cannot certainly
be considered representative of most of the remaining interactions between flows and
solid objects, which are clearly the rule in the engineering practice. In order to over-
come such deficiency, while still relying on controlled flow conditions, the DM model
developed in this work has been used to compute the flow and heat transfer in a matrix
of surface mounted cubes.

Indeed, the inclusion of the heat transfer, and more specifically with a bluff body,
can be considered one of the most common fluid-solid interaction found in applications.
A typical example is the cooling of electronic parts and devices, which mostly resemble
bluff bodies. Also, cooling strategies for turbine blades are usually based on protruding
ribs in internal passages, which again involve a classical bluff body transferring heat to
the surrounding fluid. Such flows are characterized by recirculation regions as well as
shear layers, separations and vortex shedding, with the overall flow having strong three-
dimensionality and unsteadiness which, in turn, strongly influence the heat transfer
characteristics. Thus, even from the pure testing point of view, these flows can be
considered a representative benchmark for more challenging applications.

10The reluctant reader can convince himself by reanalyzing the channel flow test performed in a moving reference frame and
noting the concomitant presence of near wall structures and a mixing layer.
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Moreover, for the particular flow configuration analyzed here, as well as for similar
ones, RANS/URANS methods have shown to be strongly inadequate (Hellsten and
Rautaheimo, 1999), either because of the overlapping between modeled and geometry
dependent scales or because of the difference in Reynolds number between typical
applications and the range of validity of these models. Thus, from this point of view,
the present test is also well suited for LES.

However, on the other side, this class of flows is also known to be particularly insen-
sitive to the details of the SGS model (Mathey et al., 1999b; Krajnović and Davidson,
2002; Krajnović, 2009), which certainly promotes a lack of attractiveness for further
studies in LES. Nonetheless, when considering the development of new SGS models,
it is certainly important to also assess that such limiting behaviors are correctly repre-
sented. In this sense, with respect to the previous test cases, bluff body flows would
represent the opposite extreme in the scale of sensitivities to the SGS details.

Something that instead goes usually unnoticed, or not sufficiently stressed, is that
a lack of sensitivity in the SGS model necessarily denotes a much stronger sensitiv-
ity on the resolved scales. This, in turn, implies that, among all the parameters, the
computational grid assumes a fundamental role. In particular, while the flow details
can somehow be predicted accurately by a sufficient resolution of the geometry de-
pendent scales, which are large, the prediction of the heat transfer characteristics can
easily escape this line of reasoning. Indeed, on average, the heat transfer from a body
to a surrounding fluid is proportional to the local average fluid velocity and the mean
temperature difference between the solid and the fluid. However, the local heat transfer
characteristics strongly depend on the flow around the body, due to its influence on the
relative temperature distribution and the capability of the resolved flow structures to
enhance or impede the replacement of heated fluid parcels near the body surface. Typ-
ical examples of such influence are the decrease of heat transfer in strong recirculation
zones, where the fluid is trapped, as well as increased heat transfer in attachment/sep-
aration zones, due to the high local turbulence intensity. Thus, in practice, the overall
heat transfer can be easily dominated by small scale features, which in turn are still
influenced by the SGS model and its interaction with the grid. Moreover, from the
conceptual point of view, the effective transfer of heat between a solid and a fluid still
necessarily happens at the molecular level as no equivalent of the pressure drag exists
for the energy. Hence, again, the details of smallest resolved scales near the solid can
affect the mean heat transfer and the influence of the SGS model on such mechanism
needs to be properly assessed.

7.2.1 Flow description and computational setup

The flow considered in this test has been investigated experimentally by Meinders and
Hanjalić (Meinders, 1998; Meinders and Hanjalić, 1999), whose data served as refer-
ence for the 6th and 8th ERCOFTAC workshops on refined flow and turbulence mod-
eling (Hellsten and Rautaheimo, 1999) and are used here with the same purpose. The
experimental setup consists of a matrix of 25 × 10 equally spaced cubes, as sketched
in Figure 7.9. The cubes, whose sides have a length H = 0.015m, are placed in a
channel of depth D = 3.4H and their face to face distances are Sx = Sy = 3H ,
with x and y denoting the stream-wise and span-wise directions respectively. Flow and
heat transfer measurements are performed around the 18th cube row in the stream-wise
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direction, where a single internally heated cube is placed. The heated cube consists
of a copper core at fixed temperature Tc = 348.15K, covered by an epoxy mantle of
thickness 0.1H . The working fluid is air, with bulk temperature and velocity equal to
Ti = 293.15K and Ub = 3.86m/s respectively. At these conditions, the Reynolds num-
ber based on the cube height is ReH = HUb/ν = 3854 and the flow at the investigated
cube row is fully developed.

Figure 7.9: Sketch of the flow under investigation. Opposite channel wall not shown.

The flow and heat transfer under these conditions are simulated by the means of
three SGS modeling options. One is the present dynamic mixed model (DM) in its
default setting with the turbulent heat flux modeled according to equation (4.30). The
second option investigated is the default DS model implemented in the solver, with
the turbulent heat flux modeled according to equation (2.19). For both the previous
models, a constant SGS Prandtl number Prsgs = 0.85 is used, as typically done in
this kind of flows (Tyacke and Tucker, 2012). Finally, the third option considered is
based on the ILES approach, namely, a Bounded Central scheme for the convective
terms and no SGS model. All the remaining numerical settings are the default ones
already established in the previous chapter. The only exception to this is the convective
term in the temperature/energy equation, which is discretized with the bounded central
scheme for all the modeling options, including those relying on an explicit SGS heat
flux model. This choice has been motivated by the need of ensuring the proper physical
boundedness for the temperature and the fact that, especially for the DS model, the
effectiveness of the eddy viscosity appeared very limited (see section 6.3.2). Hence, in
order to have a fair comparison, the same bounded scheme has been used for all the
modeling options.

The computational domain is based on a sub-channel unit with dimensions 4H ×
3.4H × 4H in the x, y and z directions respectively (see Figure 7.9). The coupling of
the conduction in the heated cube with the convection in the outer flow is taken into
account by simultaneously solving the energy equation in the fluid domain and in the
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solid epoxy layer, whose internal surface temperature is fixed equal to Tc. As the flow
is fully developed, periodic boundary conditions apply for the stream-wise and span-
wise directions. However, to properly take into account the fact that only one cube was
heated in the experiment, a buffer constant temperature zone is defined adjacent to the
inlet of the domain, to force the recycled flow temperature to be uniform and equal to Ti.
No-slip velocity conditions are applied at all the solid walls and adiabatic conditions
for the temperature on the channel walls. Relevant physical properties for the fluid
and the solid epoxy mantle are summarized in Table 7.3. According to Meinders and
Hanjalić (1999), buoyancy effects are neglected as well as the variation of the molecular
coefficients with the temperature, leaving the energy equation uncoupled with respect
to the momentum equations.

Table 7.3: Material properties for the surface mounted cubes case.

Property Fluid (Air) Solid (Epoxy)

ρ
[
kg/m3

]
1.16 1150

λ [W/mK] 0.0246 0.236

Cp [J/kgK] 1007 1668.5

µ [kg/ms] 1.743·10−5

The flow has been initialized with a RANS solution on a coarse grid (see next sec-
tion) and then further advanced in time with superimposed random fluctuations and the
ILES approach. The resolved kinetic energy in the fluid and the temperature in the solid
have been monitored and this coarse simulation has been advanced in time until a sta-
tistically steady state has been reached. This preliminary flow field has then been used
to initialize all the remaining cases, which are advanced to the statistically steady state
before collecting the statistics, computed with the single-pass algorithm developed in
this thesis. The flow is driven by a constant pressure gradient in the stream-wise direc-
tion, ∂p/∂x = −7kg/m2s2, with a maximum difference in all the predicted mass flow
rates within the 4% of the experimental value. This has been assumed acceptable, con-
sidering the lack of sensitivity shown by the experimental results in this specific range
of Reynolds numbers (Meinders and Hanjalić, 1999), and allowed a strong reduction of
the computational costs as fixing the mass flow rate would have required abandoning
the FSM for the pressure-velocity coupling11.

The time step is fixed equal to ∆t = 1 · 10−5s, which ensured a maximum Courant
number below 0.5 for all the simulations. Time statistics are collected over 5 · 105 time
steps, which approximately amounts to 1290H/Ub. With respect to the main shedding
frequency of the cubes’ wake, determined by the experiments, this time represents ap-
proximately 135 shedding cycles. While being a relatively limited time with respect
to the one used in the experimental campaign, it appears to be sufficient for the pur-
poses of the present comparison and no significant differences have been appreciated
by extending it over additional shedding cycles.

11This is a specific solver feature that, obviously, has nothing to do with the FSM itself.
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7.2.2 Computational grids

Besides assessing the DM model capabilities, the specific aim of the present test is to
also evaluate, for this class of flows, the effective degree of independence of the LES
predictions from the grid, in terms of both flow and thermal quantities. In order to do
so, three fully structured grids are used, whose representative topology is sketched in
Figure 7.10 for a cross section in the flow symmetry plane (e.g., flow from left to right).

Figure 7.10: Representative grid topology for the surface mounted cubes case.

In practice, in order to understand the effective resolution capabilities in terms of the
total number of cells invested in the computation, the classical grid refinement approach
used up to now is not especially suitable in this case, as most cells would be used where
not specifically required, i.e., away from the cube and its wake. Instead, it is known
(Mathey et al., 1999b) that the correct prediction of this flow requires correctly captur-
ing the flow separations from the sharp edges and their dynamical behavior. Also, the
mean heat transfer characteristics are expected to depend on the proper representation
of the stresses at the walls of the cube (Mathey et al., 1999a). In contrast, the stresses at
the walls of the channel do not directly influence any of the heat transfer mechanisms
at play and, with respect to the overall drag generated by the cube, their influence is
certainly negligible.

For these reasons, the computational grids used here have all been designed to
achieve the maximum possible resolution near the cube surface with all the remain-
ing grid aspects determined solely by prefixed limits on the total cell count for the
given grid. The only exception to this has been determined by a specific solver feature,
which automatically enables the wall function (5.25) whenever the local wall-normal
spacing is not within the viscous sub-layer. Hence, in order to prevent a spurious switch
in the boundary conditions at the channel walls, a fixed spacing in wall-normal direc-
tion, ∆ymin = 0.01H , has been used, for all the grids, in the cells next to the channel
walls. Note that, according to the channel height D, the fluid properties and the driving
pressure gradient, this value would give approximately ∆y+

min = 5.5 for a pure channel
flow. However, it has been verified a posteriori that such value represents only an up-
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per limit and is never effectively reached. The remaining relevant grid parameters are
instead summarized in Table 7.4. In particular, Ns denotes the number of cells along
the cube sides, while ∆x denotes the grid spacing in both the wall-parallel directions, x
and z, which are kept equal in their extreme values but with different expansion ratios
in stream-wise and span-wise directions.

Table 7.4: Main grid parameters for the surface mounted cubes case.

Grid N◦ Cells Ns ∆xmin ∆xmax ∆ymax

C 6.7·105 35 0.02H 0.13H 0.11H

M 1.3·106 50 0.01H 0.14H 0.10H

F 2.3·106 60 0.01H 0.09H 0.10H

Among the different features of the grids, it is worth highlighting that the coarse grid
has just a slight increase in the grid spacing near the cube faces (0.02H vs. 0.01H for
the remaining cases) but this inevitably led to a more uniform grid in the wall-parallel
planes and a maximum spacing ∆xmax which is lower than the one relative to the
medium grid. As a result, the three grids strongly differ also in the ratio ∆xmax/∆xmin,
whose variation is not monotone with the total cell count.

It is worth mentioning that, from the modeling point of view, these grids represent
a challenging benchmark because, as both Figure 7.10 and Table 7.4 indicate, strong
positive/negative grid stretching exists in the mean flow direction and this could impair
the stability of a non-dissipative SGS model. Still, the present DM model has already
shown to have embedded hyper-viscous effects which should prevent such instability
and the present grids are a perfect benchmark for this feature.

7.2.3 Numerical results

Selected statistical results are presented on the paths depicted in Figure 7.11, which
include four vertical paths at different stream-wise stations in the symmetry plane of
the flow and two paths approximately on the symmetry planes of the cube. Unless
otherwise stated, all the quantities are nondimensionalized by the bulk velocity Ub and
the cube height H . For the thermal analysis, the nondimensional temperature θ and the
Nusselt number Nu are evaluated on the cube’s surface as follows:

θ =
T (ξ, η)− Ti
Tc − Ti

Nu =
λsH

λf [T (ξ, η)− Ti]
∂T (ξ, η)

∂n

(7.7)

where λf and λs denote the thermal conductivities of the fluid and the solid, T (ξ, η)
is the local temperature on the surface of the cube, expressed in a local coordinate sys-
tem, and the temperature derivative is evaluated on the solid side of the cube surface,
along the normal direction n. This overall evaluation procedure exactly follows the ex-
perimental one (Meinders, 1998), and has been found fundamental in order to correctly
compare the numerical results with the experimental ones.
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Flow

x/H=1.7x/H=-0.3 x/H=0.3 x/H=1.3

z/H=0.016

y/H=0.516

Figure 7.11: Location of the paths for the comparison of the results in the surface mounted cubes case.

Flow analysis

The effect of the grid resolution and the SGS model is investigated first, in Figure 7.12,
for the representative section at x/H = 1.3. Indeed, it suffices to show that, indepen-
dently from the resolution, all the SGS models investigated can correctly represent the
overall fluid dynamic behavior. This essentially confirms the expected low influence
of the SGS model. Specific differences among the models are found only for the ve-
locity fluctuations in the core of the channel, but these are reduced by increasing the
resolution. Note, however, how the distinctive features of the present DM model are
still evident. Namely, it is the only one correctly predicting all the local fluctuation
peaks, independently from the resolution. Also, as a single layer of cells is involved
in the test filter (e.g., NL = 1), it tends to overestimate the fluctuations in the channel
center for all the resolutions. The results obtained for the channel flow suggest that, in
this case, the simulations would have benefited from the filter stencil extension as the
predicted mean velocity profile seems roughly independent from both the resolution
and the SGS model. Still, a resolution limit is also present as none of the models can
correctly predict the fluctuation in the channel center.

A less marked, but nonetheless present, defect is also present, for all the grids, on
the mean velocity profile near the top wall. This behavior essentially replicates the one
for low resolutions in the channel flow and, remarkably, is still present in this case. The
fact that the model DM is not capable of reducing this effect is due to a combination
of the used grid stretching, already discussed in section 7.1.2, and of the generally low
span-wise resolution, which on the grid F still reaches ∆z+

max = 50. However, the
relative fluctuation in the same zone is instead better predicted by the model and, in
any case, the flow near the cube essentially behaves independently from the upper wall
zone.

The general trends observed here are essentially replicated for all the remaining
quantities and axial stations, they are thus not reported for the sake of convenience. A
notable exception is only present in the transverse velocity fluctuations (not shown),
which are underestimated in the wake of the cube, independently from the SGS model
and the grid resolution. This fact has been observed in most of the scale-resolving sim-
ulations performed on this flow (Mathey et al., 1999b; Ničeno et al., 2002) and seems
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Figure 7.12: Axial profiles for the surface mounted cubes at x/H = 1.3. Left) Mean velocity. Right)
RMS fluctuation of the stream-wise velocity. Top) Grid C. Center) Grid M. Bottom) Grid F.

to suggest that much higher resolutions are required to properly capture the anisotropy
features of the wake. A general overview of the overall accuracy achievable on the
coarse grid is instead given in Figure 7.13, where the profiles for the stream-wise veloc-
ity and its RMS fluctuation are compared on the remaining sections depicted in Figure
7.11. Again, no difference appears among the SGS models, but sufficient accuracy is
achieved at all the stations.

Overall, these results evidence two aspects. On one side, it is readily confirmed that
the prediction of this flow is mostly independent from the SGS details and sufficient
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Figure 7.13: Axial profiles for the surface mounted cubes on the grid C. Left) Mean velocity. Right) RMS
fluctuation of the stream-wise velocity. Top) x/H = −0.3. Center) x/H = 0.3. Bottom) x/H = 1.7.

accuracy is recoverable on relatively coarse grids (e.g., grid C). On the other side, while
not particularly effective, the model DM has shown no stability issues on any of the
grids. In this regard, it has to be mentioned that, differently from the previous test cases,
the scale-similar part of the model tended to be relatively active in most of the domain
zones for all the grids. While the details of such activation have not been investigated
and certainly produced few overall effects, this seems to confirm that the scale-similar
part of the model has embedded dissipative features which prevent instabilities even
when the model is strongly active in the whole domain. Also, the resulting general
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lower effectiveness could then be explained by the relatively low Reynolds number, not
producing a sufficient scale separation between the enhanced spectral zone and the one
affected by the model dissipative effects.

Thermal analysis

More interesting results are instead observed for the thermal quantities, illustrated in
Figures 7.14 and 7.15 as a function of the curvilinear coordinate s/H . Indeed, in
contrast to the flow predictions, two main distinctive features are now present which
evidence the complexity of the thermal predictions for bluff body flows.
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Figure 7.14: Temperature (left) and Nusselt (right) profiles on the surface of the cube for z/H = 0.016.
Top) Grid C. Center) Grid M. Bottom) Grid F.
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Figure 7.15: Temperature (left) and Nusselt (right) profiles on the surface of the cube for y/H = 0.516.
Top) Grid C. Center) Grid M. Bottom) Grid F.

The first of such features is that the two investigated quantities, the temperature and
the heat flux at the wall, both have a strong sensitivity to the grid and the SGS model.
The second feature is instead a remarkable difference between the ILES approach and
the explicit SGS modeling options, both being also sensitive to the grid. This is es-
pecially evident in Figure 7.14, but somehow masked in Figure 7.15, whose fortuitous
vertical position tends to show contrasting trends.

Considering the general agreement found in all the flow results, a detailed explana-
tion of such differences is hard to find. However, few details seem important in order to
clarify the matter. Indeed, two different regions can be clearly identified, one being the
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top and lateral faces of the cube, the other one being the front-rear ones. For the former
ones an increased resolution always tends to increase the predicted heat flux, but mostly
near the edges of the cube. This shows that the small scale details are indeed important
as they regulate the correct representation of the small separation regions along the cube
edges. These, in turn, are responsible for a larger fraction of the heat transfer on such
faces and tend to influence most of the relative temperature distribution. In particular,
the lower is the resolution the larger are the dimensions of such separation regions and,
as a consequence, the lower is the effectiveness in the heat transfer. While this is only
slightly appreciable for the explicit SGS modeling options, it is more evident for the
ILES approach, whose strong dependence on the grid resolution tends to produce the
largest variations in the Nusselt and temperature profiles.

In contrast, both the rear and front faces exhibit an inverse behavior, with both the
predicted Nusselt and temperature decreasing with increasing resolution, but with a de-
creased sensitivity to the grid (with respect to the remaining faces). When the relatively
lower differences among the SGS models are also considered ( still with respect to the
remaining faces), it becomes evident that on these two faces the heat transfer mech-
anisms at play are substantially independent from the small scales, to the extent that
increasing the resolution does not improve the results12.

However, even for such faces, a small scale influence seems to be nonetheless
present. Indeed, assuming that the SGS heat flux model has a negligible influence
with respect to the bounded central scheme used for the temperature convection, the
large difference in the results, and their sensitivity, among the models can be only de-
termined by the mass fluxes predicted by the relative momentum equations. As even
for similar Nusselt profiles the resulting temperature distributions on all the faces tend
to be lower for the ILES approach, this suggests that the relative velocity field tends
to diffuse the temperature in a stronger, incorrect, way. In particular, this mechanism
appears to be active independently from the grid resolution or the specific face of the
cube.

A different possible explanation for the present temperature results, which however
has not been investigated, is that, given the rough correctness for the different Nusselt
profiles and flow statistics, the mean surface temperature might actually depend on
higher order flow statistics not considered in the comparison. However, once again this
would confirm the fact that the resolution of the small scales is actually important for
the correct prediction of the heat transfer with bluff bodies.

In either case, when the DM and DS models are considered separately, the strong
agreement in their thermal results suggests that the DM model has, on this specific flow,
a practically null effect at all the resolved scales.

7.3 Cold flow in a swirled combustor

The last case considered in this thesis for the testing of the dynamic mixed model is the
turbulent cold flow in a swirled, lab scale, combustor. Besides the direct availability of
experimental data, this choice is essentially motivated by two factors. One is its rep-
resentativity of modern LES applications (Mahesh et al., 2004; Poinsot and Veynante,

12This conclusion might be somehow impaired by the possibly incorrect adiabatic condition at the wall, but the described effect
seems independent from the wall distance, hence largely negligible.
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7.3. Cold flow in a swirled combustor

Figure 7.16: Geometry and computational grid for the combustor test case. Top view. Red arrows:
tangential inlet. Blue arrows: axial inlet.

2005), LES being, for example, the only practical available tool to investigate combus-
tion instabilities. Moreover, the presence of the swirl, which in practical applications is
used, for example, to stabilize a non-premixed flame at high Reynolds numbers, also in-
troduces several fluid dynamical instabilities (Lucca-Negro and O’Doherty, 2001), like
precessing vortexes, and multiple recirculating regions, making the test a severe one. In
addition to this, the specific flow considered here also has features requiring additional
modeling efforts, thus making the overall test more representative of real engineering
applications. While no actual combustion is involved in the present analysis, this test
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Figure 7.17: Geometry and computational grid for the combustor test case. Bottom view. Red arrows:
tangential inlet. Blue arrows: axial inlet.

still represents a necessary step before additional physics is added to the simulation.

7.3.1 Flow description and computational setup

The investigated flow domain consists in a full, lab-scale, combustor composed by three
parts, as depicted in Figures 7.16 and 7.17. In the first part, the swirl generator, the air
flow enters the domain trough 8 separate tangential (red arrows in the figures) and 4
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axial (blue arrows in the figures) inlets. The swirler essentially consists of a hollow
cylinder whose external diameter is reduced toward the injection section, its overall
shape being resemblant of a bottle. The internal cylindrical core of the swirler acco-
modates an additional axial inlet directly entering the combustion chamber, as clarified
in Figure 7.18. This cylindrical pipe is typically used for the fuel gas in combustion
studies and, for the present cold flow case, was closed and only partly considered in the
computation.

Figure 7.18: Internal details of the swirler.

The air injection in the combustion chamber is trough a slightly divergent section
which precedes an abrupt expansion, as shown in Figure 7.19. The combustion cham-
ber, which is essentially cylindrical, has four plane windows, used as visual access
during the experiments13, and is connected with the final, cylindrical, exhaust trough
a convergent conical section. The main geometrical dimensions of the combustor are
summarized in Table 7.5 for reference.

Table 7.5: Lengths and diameters for the main parts of the combustor.

Part Length (mm) External Diameter (mm) Internal Diameter (mm)

Swirler 265 80 15

Injector 36 10

Combustion chamber 297 194

Conical section 55 194 98

Exhaust 299 98

13Such visual access has been replicated in the geometry images reported here but, nonetheless, the relative surfaces are solid
and the lateral surface of the chamber is fully closed.
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Figure 7.19: Geometry and computational grid for the combustor test case. Details of the injector
section.

The role of the different tangential and axial inlets is to produce different degrees
of swirl by splitting the overall air mass flow rate entering the domain. Such degree of
swirl can be classified in different ways. One simple possibility is the geometric swirl
number Sg (Claypole and Syred, 1980):

Sg =
πDeDs

4ATG
SR2 (7.8)

where De is the external diameter at the injector (efflux) section, Ds is the swirler
diameter at the section of the tangential inlets and ATG is the total area of the tangential
inlets. The parameter SR = ṁTG/(ṁTG + ṁAX) denotes instead the ratio between the
tangential mass flow rate and the total mass flow rate entering the swirler (tangential +
axial). Alternatively, a more detailed characterization of the swirl can be obtained by
the swirl number S (Gupta et al., 1984):

S =

∫ De/2
Di/2

〈uz〉 〈uθ〉 r2dr

De
2

∫ De/2
Di/2

〈uz〉2 rdr
(7.9)

where 〈uz〉 and 〈uθ〉 denote, respectively, the mean axial and tangential velocities
at the injector section, expressed in the local cylindrical coordinate system (z, r, θ),
and Di is the injector internal diameter. In the following analysis two different swirl
conditions are considered, whose classification trough the parameters introduced above
is reported in Table 7.6.

In the original, tentative, approach to this simulation the swirler was not actually
included in the computational domain and the generation of the inflow field was ex-
pected to be produced by the mapping procedure tested in section 7.1.3, fixing the swirl
number according to the work of Pierce and Moin (1998). Also, the outlet section was
placed just at the end of the exhaust. However, this approach determined two problems.
From the conceptual point of view, while suitable for general studies, fixing the swirl
number is not actually representative of the computational practice, as such flow char-
acterization is usually asked as output from the simulation. The second, more subtle,
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Table 7.6: Swirl numbers investigated for the combustor test case.

Case S1 S2

ṁTG [kg/s] 4.31 · 10−3 8.40 · 10−3

ṁAX [kg/s] 5.17 · 10−3 1.08 · 10−3

SR 0.45 0.89

Sg 5.95 22.63

S 2.05 3.13

aspect is related to the effect of the boundary conditions in this kind of internal flows.
Indeed, on one side, placing the outflow section just at the end of the exhaust, produced
essentially wrong results due to a coupling between the flow in the domain and the
boundary condition. On the other side, a preliminary computation has also shown that
the same coupling would exists upstream, toward the inlet section. This is shown in
Figure 7.20, where the main fluid dynamic instability affecting this flow, the Precessing
Vortex Core (PVC), is seen to influence the flow in the swirler.

Figure 7.20: Fluid dynamic coupling of the flow in the combustor visualized by an iso-surface of the
instantaneous pressure fluctuation. Left) Global view. Right) Enlargement on the PVC.

As a consequence, the original approach has been definitely abandoned and the final
computational domain extended. In particular, the inflow section has been placed more
correctly where the actual boundary condition is known, in the tangential and axial
pipes supplying the mass flow in the swirler. The outlet section, not shown in the previ-
ous images, has instead been moved in the quiescent air surrounding the experimental
testbed (an additional cylindrical volume with a 200mm length and a 300mm diameter).
The latter choice required no particular efforts and fixing the average pressure on the
new outlet section equal to the ambient pressure resolved the problem.

However, moving the inlet section upstream in the tangential and axial inflow ducts
determined a drastic change in the overall approach. First of all, the actual mass flow
rates in the experiments were only known globally and in terms of the split ratio SR,
but not for each single duct feeding the swirler. Hence, a preliminary 1D computation
has been used to estimate how the mass flow should be split among the single ducts,
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considering their lengths and the pressure losses in the various junctions of the feeding
network. As a consequence of this approach, specific flow details at the inlet sections
were also unknown, and only the single mass flow rates have been assigned, without
any fluctuation or variation over the section. Finally, the inclusion of the whole swirler
also determined an enormous increase of the overall estimated cell count. This was
not only the straight consequence of the additional fluid volume but, more importantly,
was determined by the required resolution at the swirler walls. Indeed, the already
high resolution which would be required at the wall is made even higher by the swirl,
which tends to enhance the near wall effects. In practice, for the higher swirl number
case S2, a grid resolution estimated trough the actual flow parameters, listed in Table
7.7, and considering the flow in the swirler as a straight flow in a straight duct, would
have required a factor 10 increase in resolution for each spatial direction because of the
swirl, making the computation largely unfeasible.

Table 7.7: Flow conditions for the combustor test case.

Property Symbol Value

Mean velocity at the injector section Vb [m/s] 9.2

Density ρ
[
kg/m3

]
1.225

Dynamic viscosity µ [kg/ms] 1.7894·10−5

In order to solve the problem, a different approach has instead been followed, using
the wall function boundary condition (5.25) for all the internal swirler walls, which
justifies some of the disturbing grid details emerging from the Figures 7.17 and 7.19.
Note, however, that this allowed to keep the overall cell count around 4.5 · 106, but the
swirler still required about 1/3 of the cells. For all the remaining boundaries classical
no-slip conditions have been applied, including the inlet of the central fuel gas duct,
which is truncated ten diameters below the injector section.

As for the previous test case, three modeling options are investigated here. Namely,
the ILES approach, a standard DS model and the present dynamic mixed model (DM)
with an extended filter stencil (NL = 2). A single computational grid has been used for
both the flow conditions S1 and S2, which is the one presented in the previous figures,
and the default computational settings are used.

The computations are started with quiescent air and advanced in time with a time
step approximately equal to 7.72ν/Vb, which determined a maximum Courant number
below one in most of the domain and a value around two for few single cells per time
step near the injector section. Once the statistically steady state is reached, flow statis-
tics are computed over 1 · 105 time steps, which has been verified to be sufficient for all
the reported quantities.

7.3.2 Numerical results

The experimental data for the comparison have been produced by both Laser Doppler
Velocimetry (LDV) and Particle Image Velocimetry (PIV), in two separate experimen-
tal campaigns realized at the Department of Energy of Politecnico di Milano. Radial,
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tangential and axial mean velocity and fluctuation profiles are available at different axial
stations in a symmetry plane of the combustion chamber but, for the present compari-
son, only few selected paths are considered, whose location is sketched in Figure 7.21.
Note, however, that not all the data are available at all the locations while both LDV
and PIV data are available for some others. Also, among the several available swirl
conditions, the cases S1 and S2 (see Table 7.6) have been selected as representative,
respectively, of low and high swirl conditions. In both cases, the nominal Reynolds
number based on the external diameter of the injector section, De, and the mean bulk
velocity at the same section (i.e., z = −19mm), Vb, is Re = 22674. Unless otherwise
stated, the results are nondimensionalized by these same quantities, De and Vb.

z=-19mm

z=1mm
z=5mm
z=9mm
z=15mm

z=25mm

Figure 7.21: Location of the paths for the comparison of the results in the swirled combustor case.
Reference z = 0 on the injector section.

The first comparison is presented for the section z = −19mm, which is inside the
injector, to analyze the correctness of the present approach in prescribing the bound-
ary conditions. For the S2 condition, Figure 7.22, this is actually the case (considering
the approximations adopted) and no specific differences arise among the models ex-
cept, possibly, for the fluctuations, whose axial component is better predicted by the
DS/ILES models while the tangential one is better predicted by the DM model. Ex-
cept for the mean tangential profile, the agreement of the DM model is less satisfactory
for the S1 case, Figure 7.23, while the other models maintain their level of agreement.
While an explanation is hard for this complex flow, it is notable that strong differences
exist among the models.

The anomaly in the mean velocity profile (subfigure 7.23a) can instead by justified
by the fact that for such intermediate swirl number there is a delicate balance of axial
and tangential momentum fluxes and the axial velocity profile results to be relatively
susceptible to small changes of the swirl number in this specific range. This can be also
understood by the fact that the differences among the models are mostly related to the
fact that the DM model predicts a different tangential velocity profile.

Overall, this comparison confirms that, as expected, for high swirl numbers the in-
flow procedure adopted is robust and can be used efficiently in the computational prac-
tice. In contrast, at low swirl numbers the flow is more susceptible to additional details,
to the extent that cannot be even excluded that the experimental data might have been af-
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Figure 7.22: Mean and fluctuation profiles at z=-19mm for the S2 case. Left) Mean velocities. Right)
RMS fluctuations. Top) Axial component. Bottom) Tangential component.

fected as well. Note, however, that the adoption of the wall function approach revealed
to be fundamental in order to obtain this level of agreement as completely incorrect
results have been obtained when a tentative wall resolving grid has been used14.

When the analysis is extended to the first section in the combustion chamber, Figures
7.24 and 7.25, the same trend in the results is replicated. For the S2 case no specific
difference arises among the models except for the fluctuations, whose predicted values
are higher for the ILES approach. While this is in accordance with the results in all the
preceding tests, it should be mentioned that all the data, experimental and numerical,
necessarily suffer a slight asymmetry due to the non perfect statistical convergence. As
a consequence, a quantitative agreement on the peak values of higher order statistics
is likely to be subject to a higher uncertainty. Notably, the DM model more closely
describes the details of the tangential velocity component due to the separation on the
outer edge of the injector, which is possibly due to the better prediction of the RMS
tangential velocity fluctuation at z = −19mm (subfigure 7.22d).

For the S1 case the differences are higher as expected, but only affect the fluctua-
tions. However, these can be all explained by the higher level of swirl predicted by the
DM model with respect to the alternative ones.

14Obviously, the motivation of the incorrect results resides in the wrong estimation of the required resolution, as explained in
the text.
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Figure 7.23: Mean and fluctuation profiles at z=-19mm for the S1 case. Left) Mean velocities. Right)
RMS fluctuations. Top) Axial component. Bottom) Tangential component.

When the remaining axial stations are considered, the overall picture is somehow
changed. For what concerns the high swirl case S2, Figures 7.26 and 7.27, the agree-
ment in all the mean velocity components is replicated at all the considered stations,
confirming the substantial correctness of the present approach for high swirl num-
bers, whose effects tend to dominate most of the differences among the models, except
maybe for few details of the ILES one, which predicts a relatively weaker reverse flow
on the axis.

The relative fluctuations, Figure 7.27, confirm the trend with only minor differences.
However, it can be readily appreciated that the DM model tends to produce slightly nar-
rower, lower peaks in the fluctuations (with respect to the DS model), which is possibly
a consequence of the extended filter stencil and/or the already confirmed embedded
dissipative features of the scale similar part of the model15.

The analysis for the lower swirl number case S1 is however more interesting. In-
deed, as shown in Figures 7.28 and 7.29, while a substantially good agreement with the
experimental data is found for all the models at all the stations, the DM model clearly
outperforms the remaining one. This can be appreciated for the mean velocities as, be-
sides some anomalous asymmetries in the experimental data, the DM model constantly
predicts better all the peak values, especially notable being the reverse flow intensity

15According to the lack of sensitivity to the eddy viscosity part shown in the channel test.
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Figure 7.24: Mean and fluctuation profiles at z=1mm for the S2 case. Left) Mean velocities. Right) RMS
fluctuations. Top) Axial component. Bottom) Tangential component.

on the axis and the maximum radial velocities.
The same effect is more evident for the fluctuations, in Figure 7.29, as again the DM

model appears to be the only one correctly predicting all the peak values independently
from the location. For selected locations (subfigures 7.29b-d) the DM model produces
larger differences with respect to the experimental data, but these seem related to the
grid resolution. In practice, in such locations the DM model predicts qualitative features
of the radial velocity fluctuation which are missed by the remaining models, but in
doing so the local quantitative agreement is lost.

The previous analysis for the low swirl number reveals two interesting aspects. From
one side, as the overall results have confirmed, the prediction in the combustion cham-
ber mostly depends from the prediction at the injector section (e.g., z = −19mm), with
the models producing only slight differences in the axial evolution. As such, the better
results of the DM model in the S1 case can only be related to the better representation
of the flow features at the injector, especially its swirl number. This is also substanti-
ated by the fact that all the features better predicted by the model DM are relative to
a higher swirl number, as effectively observed in Figure 7.23. Thus, the aspect high-
lighted here is that the DM model possibly produced a better representation of the flow
in the swirler and, as a consequence, produced a more correct flow evolution in the
combustion chamber.
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Figure 7.25: Mean and fluctuation profiles at z=1mm for the S1 case. Left) Mean velocities. Right) RMS
fluctuations. Top) Axial component. Bottom) Radial component.

This conclusion obviously contrasts with the experimental data used as reference.
However, and this is the second interesting aspect emerged from the analysis, there are
sufficient elements to, at least, doubt the experimental data for the injector section in
the case S1. Indeed, in general, it readily emerges here that the two techniques, PIV and
LDV, provided different results. While both are formally correct and there is no specific
clue suggesting the correctness of one over the other16, it is important to highlight that
only the PIV data are spatially coherent, in the sense that all the PIV data in the Figures
7.26, 7.27, 7.28 and 7.29 are taken from a single experiment as done for the simulations.
In contrast, the LDV data were not only the object of a different campaign, but also
taken in different moments for each flow variable and for each of the two stations at
z = −19mm and z = 1mm. As a consequence, considering the large sensitivity
of the flow at this swirl number (as also testified by the larger differences among the
SGS models), it is possible that there is a lack of coherence between the nominal flow
condition and the two conditions relative to the PIV and LDV data. Obviously, none of
these arguments sustains one data set over the other and the wrong flow condition might
actually be the one represented in the PIV dataset. However, on repetition of the PIV
campaign, its results have been confirmed, which thus sustains the initial hypothesis

16The author is perfectly aware of the connection between PIV and LES (Sheng et al., 2000) and of the resolution limits of both
PIV and LDV. However, all such issues have been nominally resolved in the postprocessing phase.
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Figure 7.26: Mean velocity profiles for the S2 case. Left) Axial component. Center) Tangential compo-
nent. Right) Radial component. From top to bottom: z = 5mm, z = 9mm, z = 15mm, z = 25mm.

on the LDV data. In conclusion, what emerged from this test case is that the present
approach in providing the inflow condition is affordable and provides reliable results at
both low and high swirl numbers. For high swirl numbers, besides few effects related
to the use of a bounded scheme, SGS models have no appreciable effect and the overall
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Figure 7.27: Mean RMS fluctuation profiles for the S2 case. Left) Axial component. Center) Tangential
component. Right) Radial component. From top to bottom: z = 5mm, z = 9mm, z = 15mm,
z = 25mm.

flow prediction is somehow saturated by the high swirl. LDV data for different swirl
numbers (not reported here) confirm this saturation effect. For lower swirl numbers and,
more specifically, for split ratios SR around 0.5, the flow exhibited a larger sensitivity
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to the inflow and the fluid dynamics in the swirler. Notably, for this more difficult
case, there is sufficient experimental evidence to sustain that the present DM model
provided a better prediction of all the flow quantities. More generally, the proposed
model has shown no sign of instability and correctly interacted with all the features of
this complex application, including the strong grid stretching in all the flow directions,
the use of wall functions and the very coarse resolution used in several, non primary,
parts of the flow domain. Considering the generally better results obtained with the
DM model, for this as well as the previous tests, the model has certainly shown its full
potential for complex engineering applications.
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Figure 7.28: Mean velocity profiles for the S1 case. Left) Axial component. Right) Radial component.
From top to bottom: z = 5mm, z = 9mm, z = 15mm, z = 25mm.
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Figure 7.29: Mean RMS fluctuation profiles for the S1 case. Left) Axial component. Right) Radial
component. From top to bottom: z = 5mm, z = 9mm, z = 15mm, z = 25mm.
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CHAPTER8
Conclusions

The present thesis has been developed with the aim of applying the Large Eddy Sim-
ulation (LES) approach to complex industrial flows. This aim has been pursued by
analyzing and extending the LES theoretical foundation and by systematically analyz-
ing its results from increasingly complex applications.

The theoretical developments have been motivated and generated by a careful analy-
sis of the Classical LES (CLES) framework, realized with specific attention on its main
hypotheses and working paradigms. The analysis, in turn, revealed that, in CLES, a
strong limiting role is played by the formal commutation hypothesis for the underlying
implicit or explicit filter. Indeed, this classical assumption, while usually overlooked,
is shown to influence the form of the unknown subgrid-scale (SGS) stresses as well as
more practical aspects of LES computations, like the form and the consistency of the
Germano Identity or the cost of the resulting Dynamic Procedure.

As a consequence of this analysis, the overall LES framework has been redefined by
simply avoiding the commutation requirement ab initio and by introducing a general
multi-level notation. These two simple modifications have produced, in turn, important
results. On one hand, simply removing the commutation requirement has modified the
actual form of the equations and of the SGS terms requiring a model, with the main con-
sequence of producing a fully consistent formulation (i.e., without any approximation
besides the SGS model) and a different Germano Identity whose associated Dynamic
Procedure has much lower costs than in CLES. On the other hand, both the modifica-
tions have allowed sufficient flexibility to adapt the new LES formulation to most of the
known LES approaches. In particular, by further analysis of sampling operators and of
the formalism of the weighted residuals method, the proposed LES framework is shown
to provide exact model equations for most of the known numerical approaches (e.g., fi-
nite differences, finite volumes, spectral elements) to the resolution of LES equations.
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This result, in particular, is in strong contrast with CLES, where a wrong toy model
equation is usually used as theoretical reference. This fact has been highlighted by
naming the proposed LES framework GLES (Generalized LES).

Because of this exact correspondence between GLES and the numerical practice,
the GLES framework is here elected as the best option for further developments toward
the LES application in complex industrial flows. In particular, the finite volume (FV)
method is further analyzed as representative of a large class of industrial applications.
With the GLES theoretical basis at hand, the FV method is bring back to its basic
operator form, which is a combination of a top-hat filter and a sampling operator. The
framework, however, also allowed a formal justification for separating the effects of
the two and only focusing on the top-hat part. More specifically, this focus consisted in
looking for the most suitable form of structural SGS model for a practical application in
an unstructured FV solver. The use of such form of model in a general low order code
has also been motivated, by alluding at the qualitatively different roles of the top-hat
filter and the sampling operator determining the numerical error.

Such structural model is identified with a specific form of scale-similar term, which
is properly scaled to account for the specificities of the approach. A dynamic mixed
version of the model is also presented as most suitable option, because of the possible
lack of stability and to counteract possible misalignments with the underlying model
assumptions. Specific theoretical and numerical aspects of the model are also briefly
analyzed.

With the model at hand, the flexibility of the GLES framework is shown by its im-
plementation in a commercial unstructured FV solver, which in the present case simply
required the use of a single external subroutine (UDF). However, in doing so, a general
attention is also given to the several aspects affecting the practical LES approach, and
two additional modifications are inserted in the solver. One is relatively new and con-
sisted in a novel algorithm for the efficient computation of arbitrary order, weighted,
central moments and co-moments. The second one is instead a simple inflow genera-
tion method based on the mapping of the velocity field, but its implementation is shown
to be largely superior, in terms of costs and performances, to the default methods im-
plemented in the solver.

The applications and tests of the proposed SGS model/LES framework have been
organized in terms of flows with increasing complexity, with a specific attention given
to the turbulent channel flow case, because of the relative importance of the test. In par-
ticular, the analysis is enriched by considering in more detail the equations governing
the mean LES solution and providing tentative explanations for some of the common
effects usually encountered in LES. The specific form of the equations is also used
to identify the actual effect of an LES model in the overall computation, allowing a
simple, effective, assessment also of the proposed one. Different tests have been per-
formed, in order to assess the most relevant aspects of the model and define its most
suitable default settings. The channel test case reveals that the model not only provides
an improvement over the general solver capabilities, but also over the different codes
and SGS models participating the LESinItaly database.

The feasibility of the model for real complex applications is shown in the last chap-
ter, where the model performances are found, at worst, equal to the no-model case, and
always better than the default modeling options when such differences are observed,
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8.1. Future work

without ever showing sign of instability, possibly because of its embedded hyper-
viscous effects. In the most complex scenario analyzed, the cold turbulent swirling
flow in a model combustor, the model is found compatible with all the typical assump-
tions and working hypotheses used in complex engineering flows, being at the same
time the most accurate tested model over a range of swirl conditions.

8.1 Future work

Specific critical points and not originally envisaged research directions have also emerged
during the development and testing phases of the present work. In particular:

• An important part of the developed SGS model is dependent from a numerical test
filter which, for ease of implementation and practical relevance, has been chosen
as a simple volume weighted average. However, while no result has evidenced
specific problems, such filter is possibly incongruent with the basic assumptions
underlying the model. As consistent test filters, possibly based on a differential
formulation, would not be difficult to implement in general, their use should be
strongly considered in further uses of the model.

• A specific possible inconsistency of the model is related to the possible presence
of spurious first order terms in its Taylor series development and the misrepresen-
tation of the second order moment of the basic FV cell filter. These two aspects
could be easily assessed by changing, respectively, the exponent in the delta ratio
factor of the model and excluding the central cell from the filter stencil (which in
a simplified 1D framework showed to better represent the second order moment
of a top-hat filter). Both tests should be also considered in the future.

• Besides the possible incongruence with the hypotheses underlying the model, the
adopted test filter has also shown to be sensitive to the specific details of the un-
derlying grid, influencing in turn the dynamic procedure and the activation of the
model in critical zones. However, the numerical evidence suggests that this spe-
cific aspect could be somehow modified by simply acting on the expression of
the filter width without necessarily affecting the whole filtering procedure. Such
modification should be easy to perform and is strongly suggested before further
applications of the proposed model.

• An additional drawback of the model has been certainly found in the adoption of
a single model constant for the full scale-similar tensor of the model. In partic-
ular, while very common in the LES community, such approach has shown here
to produce dynamic constants which are strongly dependent form the main flow
direction and how it is aligned with the reference frame. Modifying this model
aspect with a full tensorial constant would probably improve the model perfor-
mances while still being largely within the costs of a classical dynamic procedure.
Still, the model complexity would certainly rise and such a kind of modification
should be considered carefully.

• More generally, a detailed investigation on the results of the present dynamic pro-
cedure has not been originally considered, but would certainly clarify additional
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Chapter 8. Conclusions

aspects of the overall model, possibly indicating the better route for additional im-
provements. Possible aspects to investigate in a more systematic way would be:
the correlation between the dynamically computed constants and specific flow de-
tails, like main flow direction and magnitude; extension of the clipping ranges and
the dependence of the suitable ranges from the Reynolds number/spatial location;
the dependence of the dynamic constants from the specific filter and the under-
lying grid. Some of these aspects have been preliminarily analyzed but further
investigations are required.

• The single more interesting aspect emerged from the present work, but whose
investigation has been avoided, is the role of the model in the pressure equation.
It clearly emerged from the present work that the inclusion of the pressure part of
the model in the relative pressure equation could be a physically sound alternative
to the more common Rhie-Chow approach for cell centered FV codes. However,
this would have been a research topic in its own and a detailed investigation would
have necessarily required a different software platform, possibly developed ad
hoc. As such, and because of the lack of practical relevance that this would have
created for more general solvers, this topic has not been further investigated.

• As a side note, the whole testing part in this thesis failed in clarifying some dis-
turbing aspects which would need running additional tests. These, in particular,
include assessing the code dependence from the reference frame, in order to clar-
ify if the observed behaviors are due to the specific model adopted, and further
tests on the symmetry preserving scheme as obtainable in the code (Disable Re-
construction Option), in order to clarify its effective resolution capabilities.

More attention to these aspects, as well as a more detailed investigation of the fluid
dynamic aspects involved in the prediction of the more complex flows analyzed here,
would have certainly improved the present work.
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APPENDIXA
On scale-similarity models in CLES of

compressible flows

While not specifically relevant for the present work, it is important to emphasize how
different approaches can be used in proposing scale-similar terms for compressible
CLES. Considering first the IFCLES case, the main SGS term in the momentum equa-
tion reads (a similar reasoning follows for the other terms):

τij = −ρ̄ (ũiuj − ũiũj) (A.1)

The basic idea behind scale-similarity modeling is to assume that the SGS stresses
are scale invariant and can be well approximated by an upward shift in the filtering
level, so that any unclosed term is expressed in terms of resolvable quantities and their
explicitly filtered counterparts. The basic approach used in IFCLES, as presented in
section 2.4.2, is to directly consider as unclosed, in equation (A.1), the terms in paren-
theses, replace the velocities with the resolved ones and the Favre filter with an explicit
one based on the resolved density. The outcome of such an approach is the following
scale-similar model:

τij = − ρ̄
ˆ̄ρ

(
̂̄ρũiũj −

̂̄ρũi ̂̄ρũj
ˆ̄ρ

)
(A.2)

While completely valid and consistent, this is not the only possible approach in
IFCLES. Indeed, a possible route is to consider instead the density as well and rearrange
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Appendix A. On scale-similarity models in CLES of compressible flows

equation (A.1) as follows:

τij = −
(
ρuiuj − ρ̄

ρui
ρ̄

ρuj
ρ̄

)
(A.3)

At this point, a shift in the filter is introduced (a hat instead of a bar) and the unfil-
tered variables replaced with the known one, leading to:

τij = −

(
̂̄ρũiũj −

̂̄ρũi ̂̄ρũj
ˆ̄ρ

)
(A.4)

which exactly fits the known term in the CGI (2.33), as for incompressible flows. Of
course, the difference is subtle and only apparent for variable density flows. For what
concerns EFCLES, the SGS term is:

τij = −
(
ρ̂uiuj − ̂̄ρũiũj

)
(A.5)

In this case, it is the treatment of the density in the second term that matters. How-
ever, the approach proposed by Radhakrishnan and Bellan (2012) and reported in sec-
tion 2.4.4:

τij = −

[
ρ̄

(
ũiũj −

̂̄ρũi
ˆ̄ρ

̂̄ρũj
ˆ̄ρ

)]∧
(A.6)

appears as largely inconsistent as, now, the EFCLES SGS term explicitly involves
the density at two distinct filter levels. If, instead, the second term in (A.5) is first
expressed with bar variables only:

τij = −
(
ρuiuj − ρ̄

ρui
ρ̄

ρuj
ρ̄

)∧
(A.7)

then the bar filter is substituted with the hat one and resolved variables are used
instead of the basic unknown ones, the following form is obtained:

τij = −

(
ρ̄ũiũj −

̂̄ρũi ̂̄ρũj
ˆ̄ρ

)∧
(A.8)

which again, besides the difference between the basic and test filter operations, is
the form which fits the known term in the EFCGI (2.44). This difference, however, is
simply dependent from the fact that in EFCLES an explicit filter is available for the
scale-similar term but nothing prohibits using the test filter itself, in which case the
exact equality would be restored.
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APPENDIXB
Derivation of the kinetic energy equations in the

GLES framework

The peculiarities of the GLES framework are such that an equation for the resolved ki-
netic energy cannot be simply obtained by a scalar product of the momentum equation
in (3.9) with ũni , but further manipulations are required to circumvent the non commu-
tation property. In order to proceed, it is useful to first express the momentum equation
of the basic NSE in the following form:

∂ (ρ̄nũni )

∂t
+

∂

∂xj

(
ρ̄nũni ũ

n
j + p̄nδij + Σ̃n

ij − τn−0
ij

)
=
∂χn−0

i

∂t
(B.1)

With such equation, and nothing that:

∂
(
ρ̄nũni ũ

n
j

)
∂t

= ũni
∂
(
ρ̄nũnj

)
∂t

+ ũnj
∂ (ρ̄nũni )

∂t
− ũni ũnj

∂ρ̄n

∂t
(B.2)

an evolution equation can be written for ρ̄nũni ũ
n
j :

∂
(
ρ̄nũni ũ

n
j

)
∂t

=ũni
∂χn−0

j

∂t
+ ũnj

∂χn−0
i

∂t
− ũni ũnj

∂ρ̄n

∂t

−ũni
∂

∂xk

(
ρ̄nũnj ũ

n
k + p̄nδjk + Σ̃n

jk − τn−0
jk

)
−ũnj

∂

∂xk

(
ρ̄nũni ũ

n
k + p̄nδik + Σ̃n

ik − τn−0
ik

) (B.3)
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Appendix B. Derivation of the kinetic energy equations in the GLES framework

This equation can be further rearranged as follows:

∂
(
ρ̄nũni ũ

n
j

)
∂t

=ũni
∂χn−0

j

∂t
+ ũnj

∂χn−0
i

∂t
− ũni ũnj

∂ρ̄n

∂t

− ∂

∂xk

(
ρ̄nũni ũ

n
j ũ

n
k + p̄nũni δjk + ũni Σ̃n

jk − ũni τn−0
jk

)
− ∂

∂xk

(
ρ̄nũni ũ

n
j ũ

n
k + p̄nũnj δik + ũnj Σ̃n

ik − ũnj τn−0
ik

)
+
∂ũni
∂xk

(
ρ̄nũnj ũ

n
k + p̄nδjk + Σ̃n

jk − τn−0
jk

)
+
∂ũnj
∂xk

(
ρ̄nũni ũ

n
k + p̄nδik + Σ̃n

ik − τn−0
ik

)
(B.4)

Finally, nothing that:

ρ̄nũnj ũ
n
k

∂ũni
∂xk

+ ρ̄nũni ũ
n
k

∂ũnj
∂xk

=
∂

∂xk

(
ρ̄nũni ũ

n
j ũ

n
k

)
− ũni ũnj

∂ (ρ̄nũnk)

∂xk
(B.5)

the following form is obtained:

∂
(
ρ̄nũni ũ

n
j

)
∂t

=− ∂

∂xk

[
ρ̄nũni ũ

n
j ũ

n
k + p̄n

(
ũni δjk + ũnj δik

)
+
(
ũni Σ̃n

jk + ũnj Σ̃n
ik

)]
+p̄n

(
∂ũni
∂xk

δjk +
∂ũnj
∂xk

δik

)
+ Σ̃n

jk

∂ũni
∂xk

+ Σ̃n
ik

∂ũnj
∂xk

+
∂

∂xk

(
ũni τ

n−0
jk + ũnj τ

n−0
ik

)
− τn−0

jk

∂ũni
∂xk
− τn−0

ik

∂ũnj
∂xk

+ũni
∂χn−0

j

∂t
+ ũnj

∂χn−0
i

∂t
− ũni ũnj

[
∂ρ̄n

∂t
+
∂ (ρ̄nũnk)

∂xk

]
(B.6)

At this point, to obtain the equation for the resolved kinetic energy q̃nr = ρ̄nũnj ũ
n
j /2

just requires multiplying equation (B.6) by δij/2:

∂ (q̃nr )

∂t
=− ∂

∂xk

[
q̃nr ũ

n
k + p̄nũnk + ũnj

(
Σ̃n
jk − τn−0

jk

)]
+ p̄n

∂ũnk
∂xk

+ Σ̃n
jk

∂ũnj
∂xk

−τn−0
jk

∂ũnj
∂xk

+ ũnj
∂χn−0

j

∂t
− q̃nr
ρ̄n

[
∂ρ̄n

∂t
+
∂ (ρ̄nũnk)

∂xk

] (B.7)

The equation for the SGS kinetic energy qnsgs = q̃0
r − q̃nr is then easily obtained

by subtraction of the equation (B.7) from the equation for q̃0
r = ρujuj/2, obtained by
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setting n = 0 in equation (B.7) itself. This finally leads to:

∂
(
q̃nsgs
)

∂t
=− ∂

∂xk

[
q̃nsgsũ

n
k + (puk − p̄nũnk) +

(
ujΣjk − ũnj Σ̃n

jk

)
+ q̃0

r (uk − ũnk)
]

− ∂

∂xk

(
ũnj τ

n−0
jk

)
+

(
p
∂uk
∂xk
− p̄n∂ũ

n
k

∂xk

)
+

(
Σjk

∂uj
∂xk
− Σ̃n

jk

∂ũnj
∂xk

)
+τn−0

jk

∂ũnj
∂xk
− ũnj

∂χn−0
j

∂t
+
q̃nr
ρ̄n

[
∂ρ̄n

∂t
+
∂ (ρ̄nũnk)

∂xk

]
(B.8)
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APPENDIXC
Approximation of the FV operator in GLES

It is shown in section 4.2 that the unique operator G affecting the governing equations
in the FV approach can be assumed to be a top-hat filter:

G ∗ φ =
1

Vi

∫
Ωi

φ (ξ, t) dξ = φ̄FV (xi, t) (C.1)

A classical way to understand how this operator affects the continuous solution φ is
by expanding it in a Taylor series around xi, the centroid of the volume Ωi:

φ (ξ, t) =
∞∑

q,r,s=0

(ξ − xi)q (η − yi)r (ζ − zi)s

q!r!s!

∂q+r+sφ

∂xq∂yr∂zs

∣∣∣∣
xi

(C.2)

and then to substitute it in the definition (C.1). The resulting expression would then
be of the form:

φ̄FV (xi, t) =
∞∑

q,r,s=0

V
q+r+s

3
i Mqrs

∂q+r+sφ

∂xq∂yr∂zs

∣∣∣∣
xi

(C.3)

with the moments Mqrs defined as:

Mqrs =
1

V
q+r+s+3

3
i

∫
Ωi

(ξ − xi)q (η − yi)r (ζ − zi)s

q!r!s!
dξdηdζ (C.4)
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Appendix C. Approximation of the FV operator in GLES

While relation (C.3) provides a sufficient description of the effect of G on the orig-
inal variable φ, it is however in a form still not amenable for analysis. A further, com-
mon, simplification is then introduced, which consists in assuming the volume Ωi suf-
ficiently small that terms of second order in V 1/3

i are sufficient in describing the effect
of G and, moreover, that the topology of Ωi allows the separation of the integrals (C.4)
in the three coordinate directions. As a result of these assumptions, the following final
estimate is then obtained:

φ̄FV (xi, t) = φ (xi, t)+V
2
3
i

[
M200

∂2φ

∂x2
+M020

∂2φ

∂y2
+M002

∂2φ

∂z2

] ∣∣∣∣
xi

+O
(
V

4
3
i

)
(C.5)

It is worth mentioning that, while first order terms are always zero by definition of
centroid, the mixed second order terms neglected here are in general non null, not only
for polyhedral cells, but also for fully structured grids not aligned with the reference
axes. However, these hypotheses are only functional to part of the theoretical develop-
ments presented here and in Appendix D. It is shown, in chapter 4, that they have no
specific influence on the main results of the analysis.

In order to streamline the notation and bring it back to the more general terms de-
veloped within the GLES framework, the relation (C.5) can also be expressed between
two contiguous generic levels, n and n− 1, as:

φ̄n = φ̄n−1+(∆n)2Mk
∂2φ̄n−1

∂x2
k

+O
(
(∆n)4) ; ∆n = V

1
3
i ;Mk =


M200 for k = 1

M020 for k = 2

M002 for k = 3

(C.6)

where the intended mean of ∆n is that of the cubic root of the volume which defines
the FV variable φ̄n. However, the advantage of all the previous simplifications and
generalizations is that the relation in (C.6) can now be used in its own as a model for
the operator G in (C.1).

A further possible generalization, useful for the multilevel formalization used in
GLES, is the extension of relation (C.6) to two generic levels m and n. This is easily
accomplished by noting that, for sufficiently smooth variations of ∆n and within the
O((∆n)4) approximation:

φ̄n =φ̄n−1 + (∆n)2Mk
∂2φ̄n−1

∂x2
k

=φ̄n−2 +
(
∆n−1

)2
Mk

∂2φ̄n−2

∂x2
k

+ (∆n)2Mk
∂2φ̄n−2

∂x2
k

=φ̄n−3 +
(
∆n−2

)2
Mk

∂2φ̄n−3

∂x2
k

+
(
∆n−1

)2
Mk

∂2φ̄n−3

∂x2
k

+ (∆n)2Mk
∂2φ̄n−3

∂x2
k

=φ̄n−q + ∆2
n,n−qMk

∂2φ̄n−q

∂x2
k

∆2
n,n−q =

q−1∑
j=0

(
∆n−j)2

(C.7)
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Thus, with the present notation and within the previous hypotheses, the resolved
variables at two generic levels m and n > m are related by:

φ̄n = φ̄m + ∆2
n,mMk

∂2φ̄m

∂x2
k

+O
(
∆4
n,m

)
∆2
n,m =

n−m∑
j=1

(
∆m+j

)2 (C.8)

An additional relation, that is useful in the derivations of Appendix D, is the inverse
of the previous one:

1

φ̄m ±∆2
n,mMk

∂2φ̄m

∂x2
k

+O
(
∆4
n,m

) =
1

φ̄m
∓

∆2
n,mMk(
φ̄m
)2

∂2φ̄m

∂x2
k

+O
(
∆4
n,m

)
(C.9)

which is obtained by equating the equal order coefficients in the following relation:

a0 + a1∆n,m + a2∆2
n,m +O

(
∆3
n,m

)
b0 + b1∆n,m + b2∆2

n,m +O
(
∆3
n,m

) = c0 + c1∆n,m + c2∆2
n,m +O

(
∆3
n,m

)
(C.10)

and solving the resulting linear system for the cj:

ai =
i∑

j=0

cjbi−j (C.11)
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APPENDIXD
FV approximation for τn−mij in GLES

Within the approximations determined, for FV operators, by the relations (C.8) and
(C.9), it is possible to analyze, at the lowest order, the term τn−mij in the GLES frame-
work, which is reported here for clarity:

τn−mij =

I︷ ︸︸ ︷(
ρ̄nũni ũ

n
j − ρ̄mũmi ũmj

)
+

II︷ ︸︸ ︷
(p̄n − p̄m) δij−2µ

III︷ ︸︸ ︷(
S̃nij − S̃mij

)
+

2µ

3
δij

IV︷ ︸︸ ︷(
S̃nqq − S̃mqq

)
(D.1)

For the sake of simplicity, it is assumed in (D.1) and the following that µ is constant
which, for the high Reynolds numbers typical of applications, can be considered an
acceptable approximation. The four parts I-IV are analyzed separately in the following.
Whenever necessary, use is made of the relations (3.4) and (3.7).

I - Convective term

Term I in (D.1) can be first rearranged as follows:

(
ρ̄nũni ũ

n
j − ρ̄mũmi ũmj

)
=
ρui

nρuj
n

ρ̄n
− ρ̄mũmi ũmj

=
ρ̄mũmi

+(n−m)
ρ̄mũmj

+(n−m)

ρ̄m
+(n−m)

− ρ̄mũmi ũmj
(D.2)
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Appendix D. FV approximation for τn−mij in GLES

Then the first term can be approximated as:

ρ̄mũmi
+(n−m)

ρ̄mũmj
+(n−m)

ρ̄m
+(n−m)

=

=

[
ρ̄mũmi + ∆2

n,mMk
∂2ρ̄mũmi
∂x2
k

+O
(
∆4
n,m

)] [
ρ̄mũmj + ∆2

n,mMk
∂2ρ̄mũmj
∂x2
k

+O
(
∆4
n,m

)]
ρ̄m + ∆2

n,mMk
∂2ρ̄m

∂x2
k

+O
(
∆4
n,m

)
(D.3)

So that, considering equation (C.9), the overall approximation becomes:

(
ρ̄nũni ũ

n
j − ρ̄mũmi ũmj

)
= ∆2

n,mMk

(
ũmi

∂2ρ̄mũmj
∂x2

k

+ ũmj
∂2ρ̄mũmi
∂x2

k

− ũmi ũmj
∂2ρ̄m

∂x2
k

)
+O

(
∆4
n,m

)
(D.4)

This can be further rearranged by noting that:

ũmi
∂2ρ̄mũmj
∂x2

k

+ ũmj
∂2ρ̄mũmi
∂x2

k

=

= 2ũmi ũ
m
j

∂2ρ̄m

∂x2
k

+ ρ̄m
(
ũmi

∂2ũmj
∂x2

k

+ ũmj
∂2ũmi
∂x2

k

)
+ 2

∂ρ̄m

∂xk

(
ũmi

∂ũmj
∂xk

+ ũmj
∂ũmi
∂xk

)
(D.5)

Finally, by further expanding ∂2ρ̄mũmi ũ
m
j /∂x

2
k (see equations (E.4) and (E.5)), one

can readily show that the approximation (D.4) can be put in the more convenient form:

(
ρ̄nũni ũ

n
j − ρ̄mũmi ũmj

)
= ∆2

n,mMk

(
∂2ρ̄mũmi ũ

m
j

∂x2
k

− 2ρ̄m
∂ũmi
∂xk

∂ũmj
∂xk

)
+O

(
∆4
n,m

)
(D.6)

II - Pressure term

The treatment of the pressure term is immediate as its approximation directly follows
from equation (C.8):

p̄n − p̄m = ∆2
n,mMk

∂2p̄m

∂x2
k

+O
(
∆4
n,m

)
(D.7)
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III/IV - Viscous term and its trace

To analyze the viscous terms, it is first necessary to approximate the following term
(notice the tilde instead of the bar operator):

ũni =
ρ̄mũmi

+(n−m)

ρ̄m
+(n−m)

=

[
ρ̄mũmi + ∆2

n,mMk
∂2ρ̄mũmi
∂x2

k

+O
(
∆4
n,m

)] [ 1

ρ̄m
−

∆2
n,mMk

(ρ̄m)2

∂2ρ̄m

∂x2
k

+O
(
∆4
n,m

)]
=ũmi +

∆2
n,mMk

ρ̄m

(
∂2ρ̄mũmi
∂x2

k

− ũmi
∂2ρ̄m

∂x2
k

)
+O

(
∆4
n,m

)
=ũmi + ∆2

n,mMk

(
∂2ũmi
∂x2

k

+
2

ρ̄m
∂ρ̄m

∂xk

∂ũmi
∂xk

)
+O

(
∆4
n,m

)
(D.8)

From which the approximation for the viscous term III easily follows:

S̃nij − S̃mij =
1

2

[
∂

∂xj

(
∆2
n,mMk

∂2ũmi
∂x2

k

)
+

∂

∂xi

(
∆2
n,mMk

∂2ũmj
∂x2

k

)]
+

1

2

[
∂

∂xj

(
2∆2

n,mMk

ρ̄m
∂ρ̄m

∂xk

∂ũmi
∂xk

)
+

∂

∂xi

(
2∆2

n,mMk

ρ̄m
∂ρ̄m

∂xk

∂ũmj
∂xk

)]
+O

(
∆4
n,m

)
(D.9)

Term IV is then simply obtained as the trace of the previous one:

S̃nqq − S̃mqq =
∂

∂xq

(
∆2
n,mMk

∂2ũmq
∂x2

k

+
2∆2

n,mMk

ρ̄m
∂ρ̄m

∂xk

∂ũmq
∂xk

)
+O

(
∆4
n,m

)
(D.10)
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APPENDIXE
Additional FV approximations in GLES

Following the same approach delineated in Appendix D, it is possible to derive two
additional relations which are useful to show the connection between GLES and ADM
(Stolz and Adams, 1999). To this end, let us denote by a superscript asterisk the fol-
lowing approximation:

φ∗ = φ̄n −∆2
n,0Mk

∂2φ̄n

∂x2
k

+O
(
∆4
n,0

)
∆2
n,m =

n−m∑
j=1

(
∆m+j

)2 (E.1)

The first approximation is needed for (ρui)
∗(ρuj)

∗/ρ∗. This can be obtained by the
same passages between equations (D.3) and (D.4) with inverted signs:

(ρui)
∗ (ρuj)

∗

ρ∗
=

=

[
ρ̄nũni −∆2

n,0Mk
∂2ρ̄nũni
∂x2
k

+O
(
∆4
n,0

)] [
ρ̄nũnj −∆2

n,0Mk
∂2ρ̄nũnj
∂x2
k

+O
(
∆4
n,0

)]
ρ̄n −∆2

n,0Mk
∂2ρ̄n

∂x2
k

+O
(
∆4
n,0

) (E.2)

and, considering equation (C.9), leads to:

(ρui)
∗ (ρuj)

∗

ρ∗
=ρ̄nũni ũ

n
j

−∆2
n,0Mk

(
ũni
∂2ρ̄nũnj
∂x2

k

+ ũnj
∂2ρ̄nũni
∂x2

k

− ũni ũnj
∂2ρ̄n

∂x2
k

)
+O

(
∆4
n,0

) (E.3)
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Appendix E. Additional FV approximations in GLES

By using equation (D.5), this can be further rearranged as:

(ρui)
∗ (ρuj)

∗

ρ∗
= ρ̄nũni ũ

n
j

−∆2
n,0Mk

[
ũni ũ

n
j

∂2ρ̄n

∂x2
k

+ ρ̄n
(
ũni
∂2ũnj
∂x2

k

+ ũnj
∂2ũni
∂x2

k

)
+ 2

∂ρ̄n

∂xk

(
ũni
∂ũnj
∂xk

+ ũnj
∂ũni
∂xk

)]
+O

(
∆4
n,0

)
(E.4)

Finally, by the identities:

ũni
∂2ũnj
∂x2

k

+ ũnj
∂2ũni
∂x2

k

=
∂2ũni ũ

n
j

∂x2
k

− 2
∂ũni
∂xk

∂ũnj
∂xk

ũni
∂ũnj
∂xk

+ ũnj
∂ũni
∂xk

=
∂ũni ũ

n
j

∂xk

ũni ũ
n
j

∂2ρ̄n

∂x2
k

+ ρ̄n
∂2ũni ũ

n
j

∂x2
k

+ 2
∂ρ̄n

∂xk

∂ũni ũ
n
j

∂xk
=
∂2ρ̄nũni ũ

n
j

∂x2
k

(E.5)

the following final approximation is obtained:

(ρui)
∗ (ρuj)

∗

ρ∗
= ρ̄nũni ũ

n
j −∆2

n,0Mk

(
∂2ρ̄nũni ũ

n
j

∂x2
k

− 2ρ̄n
∂ũni
∂xk

∂ũnj
∂xk

)
+O

(
∆4
n,0

)
(E.6)

The second approximation is needed for (ρui)
∗/ρ∗, which is obtained as:

(ρui)
∗

ρ∗
=

[
ρ̄nũni −∆2

n,0Mk
∂2ρ̄nũni
∂x2

k

+O
(
∆4
n,0

)] [ 1

ρ̄n
+

∆2
n,0Mk

(ρ̄n)2

∂2ρ̄n

∂x2
k

+O
(
∆4
n,0

)]
=ũni +

∆2
n,0Mk

ρ̄n

(
ũni
∂2ρ̄n

∂x2
k

− ∂2ρ̄nũni
∂x2

k

)
+O

(
∆4
n,0

)
=ũni −

∆2
n,0Mk

ρ̄n

(
ρ̄n
∂2ũni
∂x2

k

+ 2
∂ρ̄n

∂xk

∂ũni
∂xk

)
+O

(
∆4
n,0

)
=ũni −∆2

n,0Mk
∂2ũni
∂x2

k

−
2∆2

n,0Mk

ρ̄n
∂ρ̄n

∂xk

∂ũni
∂xk

+O
(
∆4
n,0

)
(E.7)
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APPENDIXF
Single-pass, parallel computation of
arbitrary-order, weighted, moments

Given two sets of N data samples, x1, x2, . . . , xN and y1, y2, . . . , yN , and the corre-
sponding weights, w1, w2, . . . , wN , the weighted means xN and yN , and the generic,
weighted, multivariate, central moment CN

k,q are defined by:

xN =

N∑
i=1

wixi

N∑
i=1

wi

yN =

N∑
i=1

wiyi

N∑
i=1

wi

CN
k,q =

N∑
i=1

wi (xi − xN)k (yi − yN)q

N∑
i=1

wi

(F.1)

Let us assume that the original data couples and weights are available as two separate
data sets of respective cardinality M and N −M , with 0 < M < N . Also, weighted
means and moments are available for both the subsets: xM , xN−M , yM , yN−M , CM

r,s

and CN−M
r,s , with (0, 0) ≤ (r, s) ≤ (k, q). The relations derived in the following are

intended to express the equations (F.1) only in terms of these quantities and the weights
of the two data sets.

Recurrence formulas for the weighted means can be easily developed and are not
the subject of the present discussion. However, they are useful to introduce further
nomenclature conventions and for reference in the following manipulations; limiting
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Appendix F. Single-pass, parallel computation of arbitrary-order, weighted, moments

the discussion to the variables xi:

xN =

N∑
i=1

wixi

N∑
i=1

wi

=

M∑
i=1

wixi +
N∑

i=M+1

wixi

N∑
i=1

wi

=


M∑
i=1

wi

N∑
i=1

wi


︸ ︷︷ ︸
wM/wN

xM +


N∑

i=M+1

wi

N∑
i=1

wi


︸ ︷︷ ︸

wN−M/wN

xN−M

(F.2)

Noting that wM + wN−M = wN , equation (F.2) can be also expressed in the two
following forms:

xN = xM +
wN−M

wN
(xN−M − xM)

xN = xN−M −
wM

wN
(xN−M − xM)

(F.3)

To obtain a recurrence formula for CN
k,q, it is first multiplied by wN and then the sum

is split over the two separate sets:

wNCN
k,q =

N∑
i=1

wi (xi − xN)k (yi − yN)q =

M∑
i=1

wi [(xi − xM) + (xM − xN)]k [(yi − yM) + (yM − yN)]q +

N∑
i=M+1

wi [(xi − xN−M) + (xN−M − xN)]k
[(
yi − yN−M

)
+
(
yN−M − yN

)]q
(F.4)

Then, by introducing the binomial expansion formula:

(a+ b)p =

p∑
j=0

p!ap−jbj

(p− j)!j!
=

p∑
j=0

(
p

j

)
ap−jbj (F.5)

equation (F.4) can be rewritten as:

wNCN
k,q =

M∑
i=1

wi

k∑
r=0

q∑
s=0

(
k

r

)(
q

s

)
(xi − xM)k−r αrx,M (yi − yM)q−s αsy,M+

N∑
i=M+1

wi

k∑
r=0

q∑
s=0

(
k

r

)(
q

s

)
(xi − xN−M)k−r αrx,N−M

(
yi − yN−M

)q−s
αsy,N−M

(F.6)
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where:

αrx,M = (xM − xN)r

αsy,M = (yM − yN)s

αrx,N−M = (xN−M − xN)r

αsy,N−M =
(
yN−M − yN

)s (F.7)

Finally, like in Pébay (2008), the commutativity of the addition over finite sets can
be used to exchange the summation order, obtaining the following expression:

wNCN
k,q =

k∑
r=0

q∑
s=0

(
k

r

)(
q

s

)[
wMCM

k−r,q−s (xM − xN)r (yM − yN)s +

wN−MCN−M
k−r,q−s (xN−M − xN)r

(
yN−M − yN

)s]
(F.8)

Equation (F.8) is already in a recurrence form however, by using the relations (F.3),
it can be further simplified to obtain the following one:

CN
k,q =

k∑
r=0

q∑
s=0

(
k

r

)(
q

s

)
(xN−M − xM)r

(
yN−M − yM

)s
(wN)r+s+1 AN,Mk−r,q−s

AN,Mk−r,q−s = wN−M
(
wM
)r+s

CN−M
k−r,q−s + wM

(
−wN−M

)r+s
CM
k−r,q−s

(F.9)

which is the final recurrence formula presented in section 5.6.4.
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